Sample records for ca release response

  1. The quantal nature of calcium release to caffeine in single smooth muscle cells results from activation of the sarcoplasmic reticulum Ca(2+)-ATPase.

    PubMed

    Steenbergen, J M; Fay, F S

    1996-01-26

    Calcium release from intracellular stores occurs in a graded manner in response to increasing concentrations of either inositol 1,4,5-trisphosphate or caffeine. To investigate the mechanism responsible for this quantal release phenomenon, [Ca2+] changes inside intracellular stores in isolated single smooth muscle cells were monitored with mag-fura 2. Following permeabilization with saponin or alpha-toxin the dye, loaded via its acetoxymethyl ester, was predominantly trapped in the sarcoplasmic reticulum (SR). Low caffeine concentrations in the absence of ATP induced only partial Ca2+ release; however, after inhibiting the calcium pump with thapsigargin the same stimulus released twice as much Ca2+. When the SR Ca(2+)-ATPase was rendered non-functional by depleting its "ATP pool," submaximal caffeine doses almost fully emptied the stores of Ca2+. We conclude that quantal release of Ca2+ in response to caffeine in these smooth muscle cells is largely due to the activity of the SR Ca(2+)-ATPase, which appears to return a portion of the released Ca2+ back to the SR, even in the absence of ATP. Apparently the SR Ca(2+)-ATPase is fueled by ATP, which is either compartmentalized or bound to the SR.

  2. Calcium released by photolysis of DM-nitrophen stimulates transmitter release at squid giant synapse.

    PubMed

    Delaney, K R; Zucker, R S

    1990-07-01

    1. Transmitter release at the squid giant synapse was stimulated by photolytic release of Ca2+ from the 'caged' Ca2+ compound DM-nitrophen (Kaplan & Ellis-Davies, 1988) inserted into presynaptic terminals. 2. Competing binding reactions cause the amount of Ca2+ released by DM-nitrophen photolysis to depend on the concentrations of DM-nitrophen, total Ca2+, Mg+, ATP and native cytoplasmic Ca2+ buffer. Measurements of presynaptic [Ca2+] changes by co-injection of the fluorescent indicator dye Fura-2 show that DM-nitrophen photolysis causes a transient rise in Ca2+ followed by decay within about 150 ms to an increased steady-state level. 3. Rapid photolysis of Ca2(+)-loaded nitrophen within the presynaptic terminal was followed in less than a millisecond by depolarization of the postsynaptic membrane. As with action potential-evoked excitatory postsynaptic potentials (EPSPs), the light-evoked response was partially and reversibly blocked by 1-3 mM-kainic acid which desensitizes postsynaptic glutamate receptors. 4. Release was similar in magnitude and rate to normal action potential-mediated EPSPs. 5. The release of transmitter by photolysis of Ca2(+)-loaded DM-nitrophen was not affected by removal of Ca2+ from the saline or addition of tetrodotoxin. Photolysis of DM-nitrophen injected into presynaptic terminals without added Ca2+ did not stimulate release of transmitter nor did it interfere with normal action potential-mediated release. 6. Stimulation of presynaptic action potentials in Ca2(+)-free saline during the light-evoked response did not elicit increased release of transmitter if the ganglion was bathed in Ca2(+)-free saline, i.e. in the absence of Ca2+ influx. Increasing the intensity of the light or stimulating presynaptic action potentials in Ca2(+)-containing saline increased the release of transmitter. Therefore the failure of presynaptic voltage change to increase transmitter release resulting from release of caged Ca2+ was not due to saturation or inhibition of the release mechanism by light-released Ca2+. 7. Decreasing the temperature of the preparation increased the delay to onset of the light-evoked response and reduced its amplitude and rate of rise to an extent similar to that observed for action potential-evoked EPSPs.

  3. Ca2+-induced Ca2+ Release Phenomena in Mammalian Sympathetic Neurons Are Critically Dependent on the Rate of Rise of Trigger Ca2+

    PubMed Central

    Hernández-Cruz, Arturo; Escobar, Ariel L.; Jiménez, Nicolás

    1997-01-01

    The role of ryanodine-sensitive intracellular Ca2+ stores present in nonmuscular cells is not yet completely understood. Here we examine the physiological parameters determining the dynamics of caffeine-induced Ca2+ release in individual fura-2–loaded sympathetic neurons. Two ryanodine-sensitive release components were distinguished: an early, transient release (TR) and a delayed, persistent release (PR). The TR component shows refractoriness, depends on the filling status of the store, and requires caffeine concentrations ≥10 mM. Furthermore, it is selectively suppressed by tetracaine and intracellular BAPTA, which interfere with Ca2+-mediated feedback loops, suggesting that it constitutes a Ca2+-induced Ca2+-release phenomenon. The dynamics of release is markedly affected when Sr2+ substitutes for Ca2+, indicating that Sr2+ release may operate with lower feedback gain than Ca2+ release. Our data indicate that when the initial release occurs at an adequately fast rate, Ca2+ triggers further release, producing a regenerative response, which is interrupted by depletion of releasable Ca2+ and Ca2+-dependent inactivation. A compartmentalized linear diffusion model can reproduce caffeine responses: When the Ca2+ reservoir is full, the rapid initial Ca2+ rise determines a faster occupation of the ryanodine receptor Ca2+ activation site giving rise to a regenerative release. With the store only partially loaded, the slower initial Ca2+ rise allows the inactivating site of the release channel to become occupied nearly as quickly as the activating site, thereby suppressing the initial fast release. The PR component is less dependent on the store's Ca2+ content. This study suggests that transmembrane Ca2+ influx in rat sympathetic neurons does not evoke widespread amplification by CICR because of its inability to raise [Ca2+] near the Ca2+ release channels sufficiently fast to overcome their Ca2+-dependent inactivation. Conversely, caffeine-induced Ca2+ release can undergo considerable amplification especially when Ca2+ stores are full. We propose that the primary function of ryanodine-sensitive stores in neurons and perhaps in other nonmuscular cells, is to emphasize subcellular Ca2+ gradients resulting from agonist-induced intracellular release. The amplification gain is dependent both on the agonist concentration and on the filling status of intracellular Ca2+ stores. PMID:9041445

  4. Bombesin and thrombin affect discrete pools of intracellular calcium through different G-proteins.

    PubMed

    Wang, J L; Kalyanaraman, S; Vivo, M D; Gautam, N

    1996-11-15

    In mouse NIH 3T3 cells, the mitogens bombesin and thrombin induced Ca2+ release from intracellular stores. Ca2+ release induced by bombesin was inhibited by the Ca(2+)-ATPase inhibitor thapsigargin, while Ca2+ release induced by thrombin was unaffected by this agent. The Ca(2+)-release response to bombesin was not affected by pertussis toxin, but the response to thrombin was abolished by the toxin. Stable transfectants overexpressing the G-protein subunit type alpha 9 showed an accentuated response to bombesin, indicating that the bombesin receptor was coupled to a Gq-like G-protein. Together, these results show that the two mitogenic receptors are coupled to distinct G-proteins that affect functionally different pools of Ca2+. Organization of signalling pathways in this manner may allow cells to differentially encode information from different signals.

  5. Bombesin and thrombin affect discrete pools of intracellular calcium through different G-proteins.

    PubMed Central

    Wang, J L; Kalyanaraman, S; Vivo, M D; Gautam, N

    1996-01-01

    In mouse NIH 3T3 cells, the mitogens bombesin and thrombin induced Ca2+ release from intracellular stores. Ca2+ release induced by bombesin was inhibited by the Ca(2+)-ATPase inhibitor thapsigargin, while Ca2+ release induced by thrombin was unaffected by this agent. The Ca(2+)-release response to bombesin was not affected by pertussis toxin, but the response to thrombin was abolished by the toxin. Stable transfectants overexpressing the G-protein subunit type alpha 9 showed an accentuated response to bombesin, indicating that the bombesin receptor was coupled to a Gq-like G-protein. Together, these results show that the two mitogenic receptors are coupled to distinct G-proteins that affect functionally different pools of Ca2+. Organization of signalling pathways in this manner may allow cells to differentially encode information from different signals. PMID:8947471

  6. Effect of Mg2+ on the control of Ca2+ release in skeletal muscle fibres of the toad.

    PubMed Central

    Lamb, G D; Stephenson, D G

    1991-01-01

    1. The effect of myoplasmic Mg2+ on Ca2+ release was examined in mechanically skinned skeletal muscle fibres, in which the normal voltage-sensor control of Ca2+ release is preserved. The voltage sensors could be activated by depolarizing the transverse tubular (T-) system by lowering the [K+] in the bathing solution. 2. Fibres spontaneously contracted when the free [Mg2+] was decreased from 1 to 0.05 mM, with no depolarization or change of total ATP, [Ca2+] or pH (pCa 6.7, 50 microM-EGTA). After such a 'low-Mg2+ response' the sarcoplasmic reticulum (SR) was depleted of Ca2+ and neither depolarization nor caffeine (2 mM) could induce a response, unless the [Mg2+] was raised and the SR reloaded with Ca2+. Exposure to 0.05 mM-Mg2+ at low [Ca2+] (2 mM-free EGTA, pCa greater than 8.7) also induced Ca2+ release and depleted the SR. 3. The response to low [Mg2+] was unaffected by inactivation of the voltage sensors, but was completely blocked by 2 microM-Ruthenium Red indicating that it involved Ca2+ efflux through the normal Ca2+ release channels. 4. In the absence of ATP (and creatine phosphate), complete removal of Mg2+ (i.e. no added Mg2+ with 1 mM-EDTA) did not induce Ca2+ release. Depolarization in the absence of Mg2+ and ATP also did not induce Ca2+ release. 5. Depolarization in 10 mM-Mg2+ (pCa 6.7, 50 microM-EGTA, 8 mM-total ATP) did not produce any response. In the presence of 1 mM-EGTA to chelate most of the released Ca2+, depolarizations in 10 mM-Mg2+ did not noticeably deplete the SR of Ca2+, whereas a single depolarization in 1 mM-Mg2+ (and 1 mM-EGTA) resulted in marked depletion. Depolarization in the presence of D600 and 10 mM-Mg2+ produced use-dependent 'paralysis', indicating that depolarization in 10 mM-Mg2+ did indeed activate the voltage sensors. 6. Depolarization in the presence of 10 mM-Mg2+ and 25 microM-ryanodine neither interfered with the normal voltage control of Ca2+ release nor caused depletion of the Ca2+ in the SR even after returning to 1 mM-Mg2+ for 1 min, indicating that few if any of the release channels had been opened by the depolarization.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1708823

  7. UTP - Gated Signaling Pathways of 5-HT Release from BON Cells as a Model of Human Enterochromaffin Cells.

    PubMed

    Liñán-Rico, Andromeda; Ochoa-Cortes, Fernando; Zuleta-Alarcon, Alix; Alhaj, Mazin; Tili, Esmerina; Enneking, Josh; Harzman, Alan; Grants, Iveta; Bergese, Sergio; Christofi, Fievos L

    2017-01-01

    Background: Enterochromaffin cells (EC) synthesize and release 5-HT and ATP to trigger or modulate gut neural reflexes and transmit information about visceral/pain sensation. Alterations in 5-HT signaling mechanisms may contribute to the pathogenesis of IBD or IBS, but the pharmacologic or molecular mechanisms modulating Ca 2+ -dependent 5-HT release are not understood. Previous studies indicated that purinergic signaling via ATP and ADP is an important mechanism in modulation of 5-HT release. However, EC cells also respond to UTP and UDP suggesting uridine triphosphate receptor and signaling pathways are involved as well. We tested the hypothesis that UTP is a regulator of 5-HT release in human EC cells. Methods: UTP signaling mechanisms were studied in BON cells, a human EC model, using Fluo-4/Ca 2+ imaging, patch-clamp, pharmacological analysis, immunohistochemistry, western blots and qPCR. 5-HT release was monitored in BON or EC isolated from human gut surgical specimens (hEC). Results: UTP, UTPγS, UDP or ATP induced Ca 2+ oscillations in BON. UTP evoked a biphasic concentration-dependent Ca 2+ response. Cells responded in the order of UTP, ATP > UTPγS > UDP > MRS2768, BzATP, α,β-MeATP > MRS2365, MRS2690, and NF546. Different proportions of cells activated by UTP and ATP also responded to UTPγS (P2Y 4 , 50% cells), UDP (P2Y 6 , 30%), UTPγS and UDP (14%) or MRS2768 (<3%). UTP Ca 2+ responses were blocked with inhibitors of PLC, IP3R, SERCA Ca 2+ pump, La 3+ sensitive Ca 2+ channels or chelation of intracellular free Ca 2+ by BAPTA/AM. Inhibitors of L-type, TRPC, ryanodine-Ca 2+ pools, PI3-Kinase, PKC or SRC-Kinase had no effect. UTP stimulated voltage-sensitive Ca 2+ currents (I Ca ), V m -depolarization and inhibited I K (not I A ) currents. An I Kv 7.2/7.3 K + channel blocker XE-991 mimicked UTP-induced V m -depolarization and blocked UTP-responses. XE-991 blocked I K and UTP caused further reduction. La 3+ or PLC inhibitors blocked UTP depolarization; PKC inhibitors, thapsigargin or zero Ca 2+ buffer did not. UTP stimulated 5-HT release in hEC expressing TPH1, 5-HT, P2Y 4 /P2Y 6 R. Zero-Ca 2+ buffer augmented Ca 2+ responses and 5-HT release. Conclusion: UTP activates a predominant P2Y 4 R pathway to trigger Ca 2+ oscillations via internal Ca 2+ mobilization through a PLC/IP 3 /IP3R/SERCA Ca 2+ signaling pathway to stimulate 5-HT release; Ca 2+ influx is inhibitory. UTP-induced V m -depolarization depends on PLC signaling and an unidentified K channel (which appears independent of Ca 2+ oscillations or I ca /VOCC). UTP-gated signaling pathways triggered by activation of P2Y 4 R stimulate 5-HT release.

  8. UTP – Gated Signaling Pathways of 5-HT Release from BON Cells as a Model of Human Enterochromaffin Cells

    PubMed Central

    Liñán-Rico, Andromeda; Ochoa-Cortes, Fernando; Zuleta-Alarcon, Alix; Alhaj, Mazin; Tili, Esmerina; Enneking, Josh; Harzman, Alan; Grants, Iveta; Bergese, Sergio; Christofi, Fievos L.

    2017-01-01

    Background: Enterochromaffin cells (EC) synthesize and release 5-HT and ATP to trigger or modulate gut neural reflexes and transmit information about visceral/pain sensation. Alterations in 5-HT signaling mechanisms may contribute to the pathogenesis of IBD or IBS, but the pharmacologic or molecular mechanisms modulating Ca2+-dependent 5-HT release are not understood. Previous studies indicated that purinergic signaling via ATP and ADP is an important mechanism in modulation of 5-HT release. However, EC cells also respond to UTP and UDP suggesting uridine triphosphate receptor and signaling pathways are involved as well. We tested the hypothesis that UTP is a regulator of 5-HT release in human EC cells. Methods: UTP signaling mechanisms were studied in BON cells, a human EC model, using Fluo-4/Ca2+imaging, patch-clamp, pharmacological analysis, immunohistochemistry, western blots and qPCR. 5-HT release was monitored in BON or EC isolated from human gut surgical specimens (hEC). Results: UTP, UTPγS, UDP or ATP induced Ca2+oscillations in BON. UTP evoked a biphasic concentration-dependent Ca2+response. Cells responded in the order of UTP, ATP > UTPγS > UDP >> MRS2768, BzATP, α,β-MeATP > MRS2365, MRS2690, and NF546. Different proportions of cells activated by UTP and ATP also responded to UTPγS (P2Y4, 50% cells), UDP (P2Y6, 30%), UTPγS and UDP (14%) or MRS2768 (<3%). UTP Ca2+responses were blocked with inhibitors of PLC, IP3R, SERCA Ca2+pump, La3+sensitive Ca2+channels or chelation of intracellular free Ca2+ by BAPTA/AM. Inhibitors of L-type, TRPC, ryanodine-Ca2+pools, PI3-Kinase, PKC or SRC-Kinase had no effect. UTP stimulated voltage-sensitive Ca2+currents (ICa), Vm-depolarization and inhibited IK (not IA) currents. An IKv7.2/7.3 K+ channel blocker XE-991 mimicked UTP-induced Vm-depolarization and blocked UTP-responses. XE-991 blocked IK and UTP caused further reduction. La3+ or PLC inhibitors blocked UTP depolarization; PKC inhibitors, thapsigargin or zero Ca2+buffer did not. UTP stimulated 5-HT release in hEC expressing TPH1, 5-HT, P2Y4/P2Y6R. Zero-Ca2+buffer augmented Ca2+responses and 5-HT release. Conclusion: UTP activates a predominant P2Y4R pathway to trigger Ca2+oscillations via internal Ca2+mobilization through a PLC/IP3/IP3R/SERCA Ca2+signaling pathway to stimulate 5-HT release; Ca2+influx is inhibitory. UTP-induced Vm-depolarization depends on PLC signaling and an unidentified K channel (which appears independent of Ca2+oscillations or Ica/VOCC). UTP-gated signaling pathways triggered by activation of P2Y4R stimulate 5-HT release. PMID:28751862

  9. Restitution of defective glucose-stimulated insulin secretion in diabetic GK rat by acetylcholine uncovers paradoxical stimulatory effect of beta-cell muscarinic receptor activation on cAMP production.

    PubMed

    Dolz, Manuel; Bailbé, Danielle; Giroix, Marie-Hélène; Calderari, Sophie; Gangnerau, Marie-Noelle; Serradas, Patricia; Rickenbach, Katharina; Irminger, Jean-Claude; Portha, Bernard

    2005-11-01

    Because acetylcholine (ACh) is a recognized potentiator of glucose-stimulated insulin release in the normal beta-cell, we have studied ACh's effect on islets of the Goto-Kakizaki (GK) rat, a spontaneous model of type 2 diabetes. We first verified that ACh was able to restore the insulin secretory glucose competence of the GK beta-cell. Then, we demonstrated that in GK islets 1) ACh elicited a first-phase insulin release at low glucose, whereas it had no effect in Wistar; 2) total phospholipase C activity, ACh-induced inositol phosphate production, and intracellular free calcium concentration ([Ca2+]i) elevation were normal; 3) ACh triggered insulin release, even in the presence of thapsigargin, which induced a reduction of the ACh-induced [Ca2+]i response (suggesting that ACh produces amplification signals that augment the efficacy of elevated [Ca2+]i on GK exocytosis); 4) inhibition of protein kinase C did not affect [Ca2+]i nor the insulin release responses to ACh; and 5) inhibition of cAMP-dependent protein kinases (PKAs), adenylyl cyclases, or cAMP generation, while not affecting the [Ca2+]i response, significantly lowered the insulinotropic response to ACh (at low and high glucose). In conclusion, ACh acts mainly through activation of the cAMP/PKA pathway to potently enhance Ca2+-stimulated insulin release in the GK beta-cell and, in doing so, normalizes its defective glucose responsiveness.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerthoffer, W.T.; Murphey, K.A.; Khoyi, M.A.

    Previous studies have shown that muscarinic activation of airway smooth muscle in low Ca++ solutions increases myosin phosphorylation without increasing tension. Blocking Ca++ influx reduced phosphorylation, but not to basal levels. It was proposed that release of intracellular Ca++ contributed to dissociation of phosphorylation and contraction. To test this hypothesis the effects of ryanodine were studied under similar conditions. Ryanodine (10(-7) to 10(-5) M) antagonized caffeine-induced contraction of canine tracheal smooth muscle. Ryanodine also reduced carbachol-induced contractions and carbachol-induced myosin phosphorylation. The effect of ryanodine on potassium and serotonin-induced contractions was also investigated to test for a nonspecific inhibitory effect.more » In contrast to the effect on carbachol responses, ryanodine (10(-5) M) potentiated the contractile response to low concentrations of serotonin and potassium, but had no effect on the maximum response to either stimulant. Carbachol (10(-6) M) and ryanodine (10(-5) M) both significantly decreased /sup 45/Ca++ content of tracheal muscle. The effect of ryanodine and carbachol together on /sup 45/Ca++ content was not greater than either drug alone suggesting that ryanodine reduces the caffeine and carbachol responses by depleting releaseable Ca++ stores. Ryanodine significantly reduced Ca++-induced contraction and myosin phosphorylation in carbachol-stimulated muscle, suggesting that some of the Ca++ responsible for elevated phosphorylation is released from the sarcoplasmic reticulum.« less

  11. Role of different types of Ca2+ channels and a reticulum-like Ca2+ pump in neurotransmitter release.

    PubMed

    Fossier, P; Baux, G; Tauc, L

    1993-01-01

    The factors controlling the Ca2+ concentration directly responsible for triggering acetylcholine (ACh) release were investigated at an identified neuro-neuronal synapse of the Aplysia buccal ganglion. The types of presynaptic voltage-gated Ca2+ channels associated with transmitter release were determined by using selective blockers such as nifedipine, omega-conotoxin and a partially purified extract from the venom of a funnel web spider (FTx). L-type, N-type and P-type Ca2+ channels are present in the presynaptic neuron. The influx of Ca2+ through both N- and P-types induces the release of ACh whereas Ca2+ flowing through L-type channels modulates the duration of the presynaptic action potential by controlling the Ca(2+)-dependent K+ current. tBuBHQ, a blocker of the reticulum Ca2+ pump, induces a potentiation of evoked release without modifying the presynaptic Ca2+ influx. This seems to indicate that a part of the Ca2+ entering the presynaptic terminal through N- and P-type Ca2+ channels is sequestered in a presynaptic reticulum-like Ca2+ buffer preventing these ions from contributing to ACh release. To exert its control, this Ca2+ buffer must be located close to both the presynaptic Ca2+ channels and the transmitter release mechanism.

  12. The destiny of Ca(2+) released by mitochondria.

    PubMed

    Takeuchi, Ayako; Kim, Bongju; Matsuoka, Satoshi

    2015-01-01

    Mitochondrial Ca(2+) is known to regulate diverse cellular functions, for example energy production and cell death, by modulating mitochondrial dehydrogenases, inducing production of reactive oxygen species, and opening mitochondrial permeability transition pores. In addition to the action of Ca(2+) within mitochondria, Ca(2+) released from mitochondria is also important in a variety of cellular functions. In the last 5 years, the molecules responsible for mitochondrial Ca(2+) dynamics have been identified: a mitochondrial Ca(2+) uniporter (MCU), a mitochondrial Na(+)-Ca(2+) exchanger (NCLX), and a candidate for a mitochondrial H(+)-Ca(2+) exchanger (Letm1). In this review, we focus on the mitochondrial Ca(2+) release system, and discuss its physiological and pathophysiological significance. Accumulating evidence suggests that the mitochondrial Ca(2+) release system is not only crucial in maintaining mitochondrial Ca(2+) homeostasis but also participates in the Ca(2+) crosstalk between mitochondria and the plasma membrane and between mitochondria and the endoplasmic/sarcoplasmic reticulum.

  13. PUA/PSS multilayer coated CaCO3 microparticles as smart drug delivery vehicles.

    PubMed

    Du, Chao; Shi, Jun; Shi, Jin; Zhang, Li; Cao, Shaokui

    2013-10-01

    Hybrid CaCO3 microparticles coated by sodium poly(styrene sulfonate) (PSS) and aliphatic poly(urethane-amine) (PUA) were developed as thermal-/pH-responsive drug delivery vehicles via LbL self-assembly technique. The DOX release from the CaCO3 microparticles was higher than 60% within 36 h, whereas the value of PUA/PSS-coated microparticles was only 20%. The results demonstrated that the PUA/PSS multilayer coating could reduce the drug release rate and significantly assuage the initial burst release of DOX. In addition, the drug release of the hybrid microparticles was found to be thermal-/pH-dual responsive. More interestingly, more than 90% of DOX was released in 36 h at pH2.1 and 55 °C owing to the combined action of the dissolution of the CaCO3 core and the shrinkage of aliphatic PUA. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Type-3 ryanodine receptors mediate hypoxia-, but not neurotransmitter-induced calcium release and contraction in pulmonary artery smooth muscle cells.

    PubMed

    Zheng, Yun-Min; Wang, Qing-Song; Rathore, Rakesh; Zhang, Wan-Hui; Mazurkiewicz, Joseph E; Sorrentino, Vincenzo; Singer, Harold A; Kotlikoff, Michael I; Wang, Yong-Xiao

    2005-04-01

    In this study we examined the expression of RyR subtypes and the role of RyRs in neurotransmitter- and hypoxia-induced Ca2+ release and contraction in pulmonary artery smooth muscle cells (PASMCs). Under perforated patch clamp conditions, maximal activation of RyRs with caffeine or inositol triphosphate receptors (IP3Rs) with noradrenaline induced equivalent increases in [Ca2+]i and Ca2+-activated Cl- currents in freshly isolated rat PASMCs. Following maximal IP3-induced Ca2+ release, neither caffeine nor chloro-m-cresol induced a response, whereas prior application of caffeine or chloro-m-cresol blocked IP3-induced Ca2+ release. In cultured human PASMCs, which lack functional expression of RyRs, caffeine failed to affect ATP-induced increases in [Ca2+]i in the presence and absence of extracellular Ca2+. The RyR antagonists ruthenium red, ryanodine, tetracaine, and dantrolene greatly inhibited submaximal noradrenaline- and hypoxia-induced Ca2+ release and contraction in freshly isolated rat PASMCs, but did not affect ATP-induced Ca2+ release in cultured human PASMCs. Real-time quantitative RT-PCR and immunofluorescence staining indicated similar expression of all three RyR subtypes (RyR1, RyR2, and RyR3) in freshly isolated rat PASMCs. In freshly isolated PASMCs from RyR3 knockout (RyR3-/-) mice, hypoxia-induced, but not submaximal noradrenaline-induced, Ca2+ release and contraction were significantly reduced. Ruthenium red and tetracaine can further inhibit hypoxic increase in [Ca2+]i in RyR3-/- mouse PASMCs. Collectively, our data suggest that (a) RyRs play an important role in submaximal noradrenaline- and hypoxia-induced Ca2+ release and contraction; (b) all three subtype RyRs are expressed; and (c) RyR3 gene knockout significantly inhibits hypoxia-, but not submaximal noradrenaline-induced Ca2+ and contractile responses in PASMCs.

  15. Dual regulation of Ca2+-dependent glutamate release from astrocytes: vesicular glutamate transporters and cytosolic glutamate levels.

    PubMed

    Ni, Yingchun; Parpura, Vladimir

    2009-09-01

    Vesicular glutamate transporters (VGLUTs) are responsible for vesicular glutamate storage and exocytotic glutamate release in neurons and astrocytes. Here, we selectively and efficiently overexpressed individual VGLUT proteins (VGLUT1, 2, or 3) in solitary astrocytes and studied their effects on mechanical stimulation-induced Ca2+-dependent glutamate release. Neither VGLUT1 nor VGLUT2 overexpression changed the amount of glutamate release, whereas overexpression of VGLUT3 significantly enhanced Ca2+-dependent glutamate release from astrocytes. None of the VGLUT overexpression affected mechanically induced intracellular Ca2+ increase. Inhibition of glutamine synthetase activity by L-methionine sulfoximine in astrocytes, which leads to increased cytosolic glutamate concentration, greatly increased their mechanically induced Ca2+-dependent glutamate release, without affecting intracellular Ca2+ dynamics. Taken together, these data indicate that both VGLUT3 and the cytosolic concentration of glutamate are key limiting factors in regulating the Ca2+-dependent release of glutamate from astrocytes.

  16. Effect of quinine on the release of catecholamines from bovine cultured chromaffin cells.

    PubMed Central

    Tang, R.; Novas, M. L.; Glavinovic, M. I.; Trifaró, J. M.

    1990-01-01

    1. The effects of quinine on catecholamine release from cultured bovine chromaffin cells were studied. 2. Quinine (25-400 microM) produced a dose-related inhibition of catecholamine release in response to depolarizing concentrations (12.5-50 mM) of K+. 3. The inhibition of the secretory response to high K+ produced by quinine decreased with the increase in the extracellular concentration of Ca2+. 4. Stimulation of cultured chromaffin cells with 50 mM K+ produced a significant increase in Ca2+ influx. In the presence of 100 microM quinine a 54% inhibition of the K(+)-induced Ca2+ influx was observed. 5. Quinine treatment of chromaffin cell cultures produced a small but significant decrease in membrane resting potential and a less pronounced depolarization in response to 50 mM K+. 6. The results suggest that the inhibition of the K(+)-evoked release of catecholamines produced by quinine is at least partly due to a decrease in Ca2+ influx. Ca2+ influx is lower because quinine reduces the sensitivity of the membrane potential to changes in extracellular K+ but direct effects of quinine on Ca2+ channels cannot be excluded. PMID:2158846

  17. GABAA receptor: a unique modulator of excitability, Ca2+ signaling, and catecholamine release of rat chromaffin cells.

    PubMed

    Alejandre-García, Tzitzitlini; Peña-Del Castillo, Johanna G; Hernández-Cruz, Arturo

    2018-01-01

    The role of gamma-aminobutyric acid (GABA) in adrenal medulla chromaffin cell (CC) function is just beginning to unfold. GABA is stored in catecholamine (CA)-containing dense core granules and is presumably released together with CA, ATP, and opioids in response to physiological stimuli, playing an autocrine-paracrine role on CCs. The reported paradoxical "dual action" of GABA A -R activation (enhancement of CA secretion and inhibition of synaptically evoked CA release) is only one aspect of GABA's multifaceted actions. In this review, we discuss recent physiological experiments on rat CCs in situ which suggest that GABA regulation of CC function may depend on the physiological context: During non-stressful conditions, GABA A -R activation by endogenous GABA tonically inhibits acetylcholine release from splanchnic nerve terminals and decreases spontaneous Ca 2+ fluctuations in CCs, preventing unwanted CA secretion. During intense stress, splanchnic nerve terminals release acetylcholine, which depolarizes CCs and allows the Ca 2+ influx that triggers the release of CA and GABA. With time, CA secretion declines, due to voltage-independent inhibition of Ca 2+ channels and desensitization of cholinergic nicotinic receptors. Nonetheless, acute activation of GABA A -R is depolarizing in about 50% of CCs, and thus GABA, acting as an autocrine/paracrine mediator, could help to maintain CA exocytosis under stress. GABA A -R activation is not excitatory in about half of CCs' population because it hyperpolarizes them or elicits no response. This percentage possibly varies, depending on functional demands, since GABA A -R-mediated actions are determined by the intracellular chloride concentration ([Cl - ] i ) and therefore on the activity of cation-chloride co transporters, which is functionally regulated. These findings underscore a potential importance of a novel and complex GABA-mediated regulation of CC function and of CA secretion.

  18. Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle.

    PubMed

    Baylor, S M; Hollingworth, S

    2003-08-15

    Experiments were carried out to compare the amplitude and time course of Ca2+ release from the sarcoplasmic reticulum (SR) in intact slow-twitch and fast-twitch mouse fibres. Individual fibres within small bundles were injected with furaptra, a low-affinity, rapidly responding Ca2+ indicator. In response to a single action potential at 16 degrees C, the peak amplitude and half-duration of the change in myoplasmic free [Ca2+] (Delta[Ca2+]) differed significantly between fibre types (slow-twitch: peak amplitude, 9.4 +/- 1.0 microM (mean +/- S.E.M.); half-duration, 7.7 +/- 0.6 ms; fast-twitch: peak amplitude 18.5 +/- 0.5 microM; half-duration, 4.9 +/- 0.3 ms). SR Ca2+ release was estimated from Delta[Ca2+] with a computational model that calculated Ca2+ binding to the major myoplasmic Ca2+ buffers (troponin, ATP and parvalbumin); buffer concentrations and reaction rate constants were adjusted to reflect fibre-type differences. In response to an action potential, the total concentration of released Ca2+ (Delta[CaT]) and the peak rate of Ca2+ release ((d/dt)Delta[CaT]) differed about 3-fold between the fibre types (slow-twitch: Delta[CaT], 127 +/- 7 microM; (d/dt)Delta[CaT], 70 +/- 6 microM ms-1; fast-twitch: Delta[CaT], 346 +/- 6 microM; (d/dt)Delta[CaT], 212 +/- 4 microM ms-1). In contrast, the half-duration of (d/dt)Delta[CaT] was very similar in the two fibre types (slow-twitch, 1.8 +/- 0.1 ms; fast-twitch, 1.6 +/- 0.0 ms). When fibres were stimulated with a 5-shock train at 67 Hz, the peaks of (d/dt)Delta[CaT] in response to the second and subsequent shocks were much smaller than that due to the first shock; the later peaks, expressed as a fraction of the amplitude of the first peak, were similar in the two fibre types (slow-twitch, 0.2-0.3; fast-twitch, 0.1-0.3). The results support the conclusion that individual SR Ca2+ release units function similarly in slow-twitch and fast-twitch mammalian fibres.

  19. Ca2+ release triggered by nicotinate adenine dinucleotide phosphate in intact sea urchin eggs.

    PubMed Central

    Perez-Terzic, C M; Chini, E N; Shen, S S; Dousa, T P; Clapham, D E

    1995-01-01

    Nicotinate adenine dinucleotide phosphate (NAADP) was recently identified [Lee and Aarhus (1995) J. Biol. Chem. 270, 2152-2157; Chini, Beers and Dousa (1995) J. Biol. Chem. 270, 3116-3223] as a potent Ca(2+)-releasing agent in sea urchin egg homogenates. NAADP triggered Ca2+ release by a mechanism that was distinct from inositol 1,4,5-trisphosphate (InsP3)- and cyclic ADP-ribose (cADPR)-induced Ca2+ release. When NAADP was microinjected into intact sea urchin eggs it induced a dose-dependent increase in cytoplasmic free Ca2+ which was independent of the extracellular [Ca2+]. The Ca2+ waves elicited by microinjections of NAADP originated at the site of injection and swept across the cytosol. As previously found in sea urchin egg homogenates, NAADP-induced Ca2+ release in intact eggs was not blocked by heparin or by prior desensitization to InsP3 or cADPR. Thio-NADP, a specific inhibitor of the NAADP-induced Ca2+ release in sea urchin homogenates [Chini, Beers and Dousa (1995) J. Biol. Chem. 270, 3116-3223] blocked NAADP (but not InsP3 or cADPR) injection-induced Ca2+ release in intact sea urchin eggs. Finally, fertilization of sea urchin eggs abrogated subsequent NAADP-induced Ca2+ release, suggesting that the NAADP-sensitive Ca2+ pool may participate in the fertilization response. This study demonstrates that NAADP acts as a selective Ca(2+)-releasing agonist in intact cells. Images Figure 2 PMID:8554544

  20. Responsiveness of mouse calvaria to parathyroid hormone after explant cryopreservation: 45Ca release in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wezeman, F.H.; Dungan, D.D.

    1986-08-01

    Newborn mouse calvaria prelabeled with /sup 45/Ca and cryopreserved at -196 degrees C in serum-free medium containing dimethylsulfoxide were compared to unpreserved explants for response to parathyroid hormone during subsequent culture. After short-term cryopreservation followed by rapid thawing, the viable explants continued to release /sup 45/Ca to the culture medium but additions of parathyroid hormone to the medium did not cause increased bone resorption. The data suggest that cryopreservation and thawing impairs mechanisms responsible for parathyroid hormone action on bone cells.

  1. Quantifying Ca2+ release and inactivation of Ca2+ release in fast- and slow-twitch muscles.

    PubMed

    Barclay, C J

    2012-12-01

    The aims of this study were to quantify the Ca(2+) release underlying twitch contractions of mammalian fast- and slow-twitch muscle and to comprehensively describe the transient inactivation of Ca(2+) release following a stimulus. Experiments were performed using bundles of fibres from mouse extensor digitorum longus (EDL) and soleus muscles. Ca(2+) release was quantified from the amount of ATP used to remove Ca(2+) from the myoplasm following stimulation. ATP turnover by crossbridges was blocked pharmacologically (N-benzyl-p-toluenesulphonamide for EDL, blebbistatin for soleus) and muscle heat production was used as an index of Ca(2+) pump ATP turnover. At 20°C, Ca(2+) release in response to a single stimulus was 34 and 84 μmol (kg muscle)(-1) for soleus and EDL, respectively, and increased with temperature (30°C: soleus, 61 μmol kg(-1); EDL, 168 μmol kg(-1)). Delivery of another stimulus within 100 ms of the first produced a smaller Ca(2+) release. The maximum magnitude of the decrease in Ca(2+) release was greater in EDL than soleus. Ca(2+) release recovered with an exponential time course which was faster in EDL (mean time constant at 20°C, 32.1 ms) than soleus (65.6 ms) and faster at 30°C than at 20°C. The amounts of Ca(2+) released and crossbridge cycles performed are consistent with a scheme in which Ca(2+) binding to troponin-C allowed an average of ∼1.7 crossbridge cycles in the two muscles.

  2. Quantifying Ca2+ release and inactivation of Ca2+ release in fast- and slow-twitch muscles

    PubMed Central

    Barclay, C J

    2012-01-01

    The aims of this study were to quantify the Ca2+ release underlying twitch contractions of mammalian fast- and slow-twitch muscle and to comprehensively describe the transient inactivation of Ca2+ release following a stimulus. Experiments were performed using bundles of fibres from mouse extensor digitorum longus (EDL) and soleus muscles. Ca2+ release was quantified from the amount of ATP used to remove Ca2+ from the myoplasm following stimulation. ATP turnover by crossbridges was blocked pharmacologically (N-benzyl-p-toluenesulphonamide for EDL, blebbistatin for soleus) and muscle heat production was used as an index of Ca2+ pump ATP turnover. At 20°C, Ca2+ release in response to a single stimulus was 34 and 84 μmol (kg muscle)−1 for soleus and EDL, respectively, and increased with temperature (30°C: soleus, 61 μmol kg−1; EDL, 168 μmol kg−1). Delivery of another stimulus within 100 ms of the first produced a smaller Ca2+ release. The maximum magnitude of the decrease in Ca2+ release was greater in EDL than soleus. Ca2+ release recovered with an exponential time course which was faster in EDL (mean time constant at 20°C, 32.1 ms) than soleus (65.6 ms) and faster at 30°C than at 20°C. The amounts of Ca2+ released and crossbridge cycles performed are consistent with a scheme in which Ca2+ binding to troponin-C allowed an average of ∼1.7 crossbridge cycles in the two muscles. PMID:23027818

  3. Inhibition of Ca2+ channels and adrenal catecholamine release by G protein coupled receptors.

    PubMed

    Currie, Kevin P M

    2010-11-01

    Catecholamines and other transmitters released from adrenal chromaffin cells play central roles in the "fight-or-flight" response and exert profound effects on cardiovascular, endocrine, immune, and nervous system function. As such, precise regulation of chromaffin cell exocytosis is key to maintaining normal physiological function and appropriate responsiveness to acute stress. Chromaffin cells express a number of different G protein coupled receptors (GPCRs) that sense the local environment and orchestrate this precise control of transmitter release. The primary trigger for catecholamine release is Ca2+ entry through voltage-gated Ca2+ channels, so it makes sense that these channels are subject to complex regulation by GPCRs. In particular G protein βγ heterodimers (Gbc) bind to and inhibit Ca2+ channels. Here I review the mechanisms by which GPCRs inhibit Ca2+ channels in chromaffin cells and how this might be altered by cellular context. This is related to the potent autocrine inhibition of Ca2+ entry and transmitter release seen in chromaffin cells. Recent data that implicate an additional inhibitory target of Gβγ on the exocytotic machinery and how this might fine tune neuroendocrine secretion are also discussed.

  4. Does the protein kinase C pathway modulate sarcolemma damage and the release of cytosolic proteins in the rat heart?

    PubMed

    Daniels, S; Duncan, C J

    1993-06-01

    1. The release of creatine kinase (CK) in the Langendorff-perfused rat heart during the Ca(2+)-paradox, was critically dependent on the duration and [Ca2+]o of the initial Ca(2+)-depletion phase. 2. When [Ca2+]i was raised by perfusion with caffeine or under N2, activation of the protein kinase C pathway (PKC) produced a small but significant release of CK. PKC stimulation is therefore able to substitute for the Cao(2+)-depletion of the Ca(2+)-paradox. 3. The PKC inhibitor, 1-(5-isoquinolinyl sulphonyl)-2-methyl piperazine, (2 x 10(-6) M) inhibited both the Ca(2+)-paradox and caffeine-induced release of CK. 4. It is concluded that the PKC pathway has a regulatory role for the damage system of the sarcolemma that is responsible for the release of cytosolic proteins.

  5. Modeling and measurement of vesicle pools at the cone ribbon synapse: changes in release probability are solely responsible for voltage-dependent changes in release

    PubMed Central

    Thoreson, Wallace B.; Van Hook, Matthew J.; Parmelee, Caitlyn; Curto, Carina

    2015-01-01

    Post-synaptic responses are a product of quantal amplitude (Q), size of the releasable vesicle pool (N), and release probability (P). Voltage-dependent changes in presynaptic Ca2+ entry alter post-synaptic responses primarily by changing P but have also been shown to influence N. With simultaneous whole cell recordings from cone photoreceptors and horizontal cells in tiger salamander retinal slices, we measured N and P at cone ribbon synapses by using a train of depolarizing pulses to stimulate release and deplete the pool. We developed an analytical model that calculates the total pool size contributing to release under different stimulus conditions by taking into account the prior history of release and empirically-determined properties of replenishment. The model provided a formula that calculates vesicle pool size from measurements of the initial post-synaptic response and limiting rate of release evoked by a train of pulses, the fraction of release sites available for replenishment, and the time constant for replenishment. Results of the model showed that weak and strong depolarizing stimuli evoked release with differing probabilities but the same size vesicle pool. Enhancing intraterminal Ca2+ spread by lowering Ca2+ buffering or applying BayK8644 did not increase PSCs evoked with strong test steps showing there is a fixed upper limit to pool size. Together, these results suggest that light-evoked changes in cone membrane potential alter synaptic release solely by changing release probability. PMID:26541100

  6. Muscarinic Ca2+ responses resistant to muscarinic antagonists at perisynaptic Schwann cells of the frog neuromuscular junction.

    PubMed Central

    Robitaille, R; Jahromi, B S; Charlton, M P

    1997-01-01

    1. Acetylcholine causes a rise of intracellular Ca2+ in perisynaptic Schwann cells (PSCs) of the frog neuromuscular junction. The signalling pathway was characterized using the fluorescent Ca2+ indicator fluo-3 and fluorescence microscopy. 2. Nicotinic antagonists had no effect on Ca2+ responses evoked by ACh and no Ca2+ responses were evoked with the nicotinic agonist nicotine. The muscarinic agonists muscarine and oxotremorine-M induced Ca2+ signals in PSCs. 3. Ca2+ responses remained unchanged when extracellular Ca2+ was removed, indicating that they are due to the release of Ca2+ from internal stores. Incubation with pertussis toxin did not alter the Ca2+ signals induced by muscarine, but did block depression of transmitter release induced by adenosine and prevented Ca2+ responses in PSCs induced by adenosine. 4. The general muscarinic antagonists atropine, quinuclidinyl benzilate and N-methyl-scopolamine failed to block Ca2+ responses to muscarinic agonists. Atropine (at 20,000-fold excess concentration) also failed to reduce the proportion of cells responding to a threshold muscarine concentration sufficient to cause responses in less than 50% of cells. Only the allosteric, non-specific blocker, gallamine (1-10 microM) was effective in blocking muscarine-induced Ca2+ responses. 5. In preparations denervated 7 days prior to experiments, low concentrations of atropine reversibly and completely blocked Ca2+ responses to muscarine. 6. The lack of blockade by general muscarinic antagonists in innervated, in situ preparations suggests that muscarinic Ca2+ responses at PSCs are not mediated by any of the five known muscarinic receptors or that post-translational modification prevented antagonist binding. Images Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 PMID:9365908

  7. Mobilization of Ca2+ by Cyclic ADP-Ribose from the Endoplasmic Reticulum of Cauliflower Florets1

    PubMed Central

    Navazio, Lorella; Mariani, Paola; Sanders, Dale

    2001-01-01

    The NAD+ metabolite cADP-Rib (cADPR) elevates cytosolic free Ca2+ in plants and thereby plays a central role in signal transduction pathways evoked by the drought and stress hormone abscisic acid. cADPR is known to mobilize Ca2+ from the large vacuole of mature cells. To determine whether additional sites for cADPR-gated Ca2+ release reside in plant cells, microsomes from cauliflower (Brassica oleracea) inflorescences were subfractionated on sucrose density gradients, and the distribution of cADPR-elicited Ca2+ release was monitored. cADPR-gated Ca2+ release was detected in the heavy-density fractions associated with rough endoplasmic reticulum (ER). cADPR-dependent Ca2+ release co-migrated with two ER markers, calnexin and antimycin A-insensitive NADH-cytochrome c reductase activity. To investigate the possibility that contaminating plasma membrane in the ER-rich fractions was responsible for the observed release, plasma membrane vesicles were purified by aqueous two-phase partitioning, everted with Brij-58, and loaded with Ca2+: These vesicles failed to respond to cADPR. Ca2+ release evoked by cADPR at the ER was fully inhibited by ruthenium red and 8-NH2-cADPR, a specific antagonist of cADPR-gated Ca2+ release in animal cells. The presence of a Ca2+ release pathway activated by cADPR at higher plant ER reinforces the notion that, alongside the vacuole, the ER participates in Ca2+ signaling. PMID:11299392

  8. Functional Cooperation between the IP3 Receptor and Phospholipase C Secures the High Sensitivity to Light of Drosophila Photoreceptors In Vivo

    PubMed Central

    Kohn, Elkana; Katz, Ben; Yasin, Bushra; Peters, Maximilian; Rhodes, Elisheva; Zaguri, Rachel; Weiss, Shirley

    2015-01-01

    Drosophila phototransduction is a model system for the ubiquitous phosphoinositide signaling. In complete darkness, spontaneous unitary current events (dark bumps) are produced by spontaneous single Gqα activation, while single-photon responses (quantum bumps) arise from synchronous activation of several Gqα molecules. We have recently shown that most of the spontaneous single Gqα activations do not produce dark bumps, because of a critical phospholipase Cβ (PLCβ) activity level required for bump generation. Surpassing the threshold of channel activation depends on both PLCβ activity and cellular [Ca2+], which participates in light excitation via a still unclear mechanism. We show here that in IP3 receptor (IP3R)-deficient photoreceptors, both light-activated Ca2+ release from internal stores and light sensitivity were strongly attenuated. This was further verified by Ca2+ store depletion, linking Ca2+ release to light excitation. In IP3R-deficient photoreceptors, dark bumps were virtually absent and the quantum-bump rate was reduced, indicating that Ca2+ release from internal stores is necessary to reach the critical level of PLCβ catalytic activity and the cellular [Ca2+] required for excitation. Combination of IP3R knockdown with reduced PLCβ catalytic activity resulted in highly suppressed light responses that were partially rescued by cellular Ca2+ elevation, showing a functional cooperation between IP3R and PLCβ via released Ca2+. These findings suggest that in contrast to the current dogma that Ca2+ release via IP3R does not participate in light excitation, we show that released Ca2+ plays a critical role in light excitation. The positive feedback between PLCβ and IP3R found here may represent a common feature of the inositol-lipid signaling. PMID:25673847

  9. Fenspiride inhibits histamine-induced responses in a lung epithelial cell line.

    PubMed

    Quartulli, F; Pinelli, E; Broué-Chabbert, A; Gossart, S; Girard, V; Pipy, B

    1998-05-08

    Using the human lung epithelial WI26VA4 cell line, we investigated the capacity of fenspiride, an anti-inflammatory drug with anti-bronchoconstrictor properties, to interfere with histamine-induced intracellular Ca2+ increase and eicosanoid formation. Histamine and a histamine H1 receptor agonist elicited a rapid and transient intracellular Ca2+ increase (0-60 s) in fluo 3-loaded WI26VA4 cells. This response was antagonized by the histamine H1 receptor antagonist, diphenhydramine, the histamine H2 receptor antagonist, cimetidine, having no effect. Fenspiride (10(-7)-10(-5) M) inhibited the histamine H1 receptor-induced Ca2+ increase. In addition, histamine induced a biphasic increase in arachidonic acid release. The initial rise (0-30 s), a rapid and transient arachidonic acid release, was responsible for the histamine-induced intracellular Ca2+ increase. In the second phase release (15-60 min), a sustained arachidonic acid release appeared to be associated with the formation of cyclooxygenase and lipoxygenase metabolites. Fenspiride (10(-5) M) abolished both phases of histamine-induced arachidonic acid release. These results suggest that anti-inflammatory and antibronchoconstrictor properties of fenspiride may result from the inhibition of these effects of histamine.

  10. L-type Ca(2+) currents overlapping threshold Na(+) currents: could they be responsible for the "slip-mode" phenomenon in cardiac myocytes?

    PubMed

    Piacentino, Valentino; Gaughan, John P; Houser, Steven R

    2002-03-08

    Phosphorylation of Na channels has been suggested to increase their Ca permeability. Termed "slip-mode conductance" (SMC), this hypothesis predicts that Ca influx via protein kinase A (PKA)-modified Na channels can induce sarcoplasmic reticulum (SR) Ca release. We tested this hypothesis by determining if SR Ca release is graded with I(Na) in the presence of activated PKA (with Isoproterenol, ISO). V(m), I(m), and [Ca](i) were measured in feline (n=26) and failing human (n=19) ventricular myocytes. Voltage steps from -70 through -40 mV were used to grade I(Na). Na channel antagonists (tetrodotoxin), L-type Ca channel (I(Ca,L)) antagonists (nifedipine, cadmium, verapamil), and agonists (Bay K 8644, FPL 64176) were used to separate SMC from I(Ca,L). In the absence of ISO, I(Na) was associated with SR Ca release in human but not feline myocytes. After ISO, graded I(Na) was associated with small amounts of SR Ca release in feline myocytes and the magnitude of release increased in human myocytes. I(Na)-related SR Ca release was insensitive to tetrodotoxin (n=10) but was blocked by nifedipine (n=10) and cadmium (n=3). SR Ca release was induced over the same voltage range in the absence of ISO with Bay K 8644 and FPL 64176 (n=9). Positive voltage steps (to 0 mV) to fully activate Na channels (SMC) in the presence of ISO and Verapamil only caused SR Ca release when block of I(Ca,L) was incomplete. We conclude that PKA-mediated increases in I(Ca,L) and SR Ca loading can reproduce many of the experimental features of SMC.

  11. Phosphatidylinositol 3-kinase inhibition restores Ca2+ release defects and prolongs survival in myotubularin-deficient mice

    PubMed Central

    Kutchukian, Candice; Lo Scrudato, Mirella; Tourneur, Yves; Poulard, Karine; Vignaud, Alban; Berthier, Christine; Allard, Bruno; Lawlor, Michael W.; Buj-Bello, Ana; Jacquemond, Vincent

    2016-01-01

    Mutations in the gene encoding the phosphoinositide 3-phosphatase myotubularin (MTM1) are responsible for a pediatric disease of skeletal muscle named myotubular myopathy (XLMTM). Muscle fibers from MTM1-deficient mice present defects in excitation–contraction (EC) coupling likely responsible for the disease-associated fatal muscle weakness. However, the mechanism leading to EC coupling failure remains unclear. During normal skeletal muscle EC coupling, transverse (t) tubule depolarization triggers sarcoplasmic reticulum (SR) Ca2+ release through ryanodine receptor channels gated by conformational coupling with the t-tubule voltage-sensing dihydropyridine receptors. We report that MTM1 deficiency is associated with a 60% depression of global SR Ca2+ release over the full range of voltage sensitivity of EC coupling. SR Ca2+ release in the diseased fibers is also slower than in normal fibers, or delayed following voltage activation, consistent with the contribution of Ca2+-gated ryanodine receptors to EC coupling. In addition, we found that SR Ca2+ release is spatially heterogeneous within myotubularin-deficient muscle fibers, with focally defective areas recapitulating the global alterations. Importantly, we found that pharmacological inhibition of phosphatidylinositol 3-kinase (PtdIns 3-kinase) activity rescues the Ca2+ release defects in isolated muscle fibers and increases the lifespan and mobility of XLMTM mice, providing proof of concept for the use of PtdIns 3-kinase inhibitors in myotubular myopathy and suggesting that unbalanced PtdIns 3-kinase activity plays a critical role in the pathological process. PMID:27911767

  12. Calbindin-D(28k) controls [Ca(2+)](i) and insulin release. Evidence obtained from calbindin-d(28k) knockout mice and beta cell lines

    NASA Technical Reports Server (NTRS)

    Sooy, K.; Schermerhorn, T.; Noda, M.; Surana, M.; Rhoten, W. B.; Meyer, M.; Fleischer, N.; Sharp, G. W.; Christakos, S.

    1999-01-01

    The role of the calcium-binding protein, calbindin-D(28k) in potassium/depolarization-stimulated increases in the cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and insulin release was investigated in pancreatic islets from calbindin-D(28k) nullmutant mice (knockouts; KO) or wild type mice and beta cell lines stably transfected and overexpressing calbindin. Using single islets from KO mice and stimulation with 45 mM KCl, the peak of [Ca(2+)](i) was 3.5-fold greater in islets from KO mice compared with wild type islets (p < 0.01) and [Ca(2+)](i) remained higher during the plateau phase. In addition to the increase in [Ca(2+)](i) in response to KCl there was also a significant increase in insulin release in islets isolated from KO mice. Evidence for modulation by calbindin of [Ca(2+)](i) and insulin release was also noted using beta cell lines. Rat calbindin was stably expressed in betaTC-3 and betaHC-13 cells. In response to depolarizing concentrations of K(+), insulin release was decreased by 45-47% in calbindin expressing betaTC cells and was decreased by 70-80% in calbindin expressing betaHC cells compared with insulin release from vector transfected betaTC or betaHC cells (p < 0.01). In addition, the K(+)-stimulated intracellular calcium peak was markedly inhibited in calbindin expressing betaHC cells compared with vector transfected cells (225 nM versus 1,100 nM, respectively). Buffering of the depolarization-induced rise in [Ca(2+)](i) was also observed in calbindin expressing betaTC cells. In summary, our findings, using both isolated islets from calbindin-D(28k) KO mice and beta cell lines, establish a role for calbindin in the modulation of depolarization-stimulated insulin release and suggest that calbindin can control the rate of insulin release via regulation of [Ca(2+)](i).

  13. The role of luminal Ca2+ in the generation of Ca2+ waves in rat ventricular myocytes

    PubMed Central

    Lukyanenko, Valeriy; Subramanian, Saisunder; Györke, Inna; Wiesner, Theodore F; Györke, Sandor

    1999-01-01

    We used confocal Ca2+ imaging and fluo-3 to investigate the transition of localized Ca2+ releases induced by focal caffeine stimulation into propagating Ca2+ waves in isolated rat ventricular myocytes. Self-sustaining Ca2+ waves could be initiated when the cellular Ca2+ load was increased by elevating the extracellular [Ca2+] ([Ca2+]o) and they could also be initiated at normal Ca2+ loads when the sensitivity of the release sites to cytosolic Ca2+ was enhanced by low doses of caffeine. When we prevented the accumulation of extra Ca2+ in the luminal compartment of the sarcoplasmic reticulum (SR) with thapsigargin, focal caffeine pulses failed to trigger self-sustaining Ca2+ waves on elevation of [Ca2+]o. Inhibition of SR Ca2+ uptake by thapsigargin in cells already preloaded with Ca2+ above normal levels did not prevent local Ca2+ elevations from triggering propagating waves. Moreover, wave velocity increased by 20 %. Tetracaine (0·75 mM) caused transient complete inhibition of both local and propagating Ca2+ signals, followed by full recovery of the responses due to increased SR Ca2+ accumulation. Computer simulations using a numerical model with spatially distinct Ca2+ release sites suggested that increased amounts of releasable Ca2+ might not be sufficient to generate self-sustaining Ca2+ waves under conditions of Ca2+ overload unless the threshold of release site Ca2+ activation was set at relatively low levels (< 1·5 μM). We conclude that the potentiation of SR Ca2+ release channels by luminal Ca2+ is an important factor in Ca2+ wave generation. Wave propagation does not require the translocation of Ca2+ from the spreading wave front into the SR. Instead, it relies on luminal Ca2+ sensitizing Ca2+ release channels to cytosolic Ca2+. PMID:10373699

  14. Osmosensation in TRPV2 dominant negative expressing skeletal muscle fibres

    PubMed Central

    Zanou, Nadège; Mondin, Ludivine; Fuster, Clarisse; Seghers, François; Dufour, Inès; de Clippele, Marie; Schakman, Olivier; Tajeddine, Nicolas; Iwata, Yuko; Wakabayashi, Shigeo; Voets, Thomas; Allard, Bruno; Gailly, Philippe

    2015-01-01

    Abstract Increased plasma osmolarity induces intracellular water depletion and cell shrinkage followed by activation of a regulatory volume increase (RVI). In skeletal muscle, this is accompanied by transverse tubule (TT) dilatation and by a membrane depolarization responsible for a release of Ca2+ from intracellular pools. We observed that both hyperosmotic shock-induced Ca2+ transients and RVI were inhibited by Gd3+, ruthenium red and GsMTx4 toxin, three inhibitors of mechanosensitive ion channels. The response was also completely absent in muscle fibres overexpressing a non-permeant, dominant negative (DN) mutant of the transient receptor potential, V2 isoform (TRPV2) ion channel, suggesting the involvement of TRPV2 or of a TRP isoform susceptible to heterotetramerization with TRPV2. The release of Ca2+ induced by hyperosmotic shock was increased by cannabidiol, an activator of TRPV2, and decreased by tranilast, an inhibitor of TRPV2, suggesting a role for the TRPV2 channel itself. Hyperosmotic shock-induced membrane depolarization was impaired in TRPV2-DN fibres, suggesting that TRPV2 activation triggers the release of Ca2+ from the sarcoplasmic reticulum by depolarizing TTs. RVI requires the sequential activation of STE20/SPS1-related proline/alanine-rich kinase (SPAK) and NKCC1, a Na+–K+–Cl− cotransporter, allowing ion entry and driving osmotic water flow. In fibres overexpressing TRPV2-DN as well as in fibres in which Ca2+ transients were abolished by the Ca2+ chelator BAPTA, the level of P-SPAKSer373 in response to hyperosmotic shock was reduced, suggesting a modulation of SPAK phosphorylation by intracellular Ca2+. We conclude that TRPV2 is involved in osmosensation in skeletal muscle fibres, acting in concert with P-SPAK-activated NKCC1. Key points Increased plasma osmolarity induces intracellular water depletion and cell shrinkage (CS) followed by activation of a regulatory volume increase (RVI). In skeletal muscle, the hyperosmotic shock-induced CS is accompanied by a small membrane depolarization responsible for a release of Ca2+ from intracellular pools. Hyperosmotic shock also induces phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK). TRPV2 dominant negative expressing fibres challenged with hyperosmotic shock present a slower membrane depolarization, a diminished Ca2+ response, a smaller RVI response, a decrease in SPAK phosphorylation and defective muscle function. We suggest that hyperosmotic shock induces TRPV2 activation, which accelerates muscle cell depolarization and allows the subsequent Ca2+ release from the sarcoplasmic reticulum, activation of the Na+–K+–Cl− cotransporter by SPAK, and the RVI response. PMID:26108786

  15. Pulsed Infrared Releases Ca2+ from the Endoplasmic Reticulum of Cultured Spiral Ganglion Neurons.

    PubMed

    Barrett, John N; Rincon, Samantha; Singh, Jayanti; Matthewman, Cristina; Pasos, Julio; Barrett, Ellen F; Rajguru, Suhrud M

    2018-04-18

    We investigated the effects of pulsed infrared radiation (IR, 1863 nm) stimulation on cytosolic [Ca 2+ ] in inner ear spiral ganglion neurons cultured from day 4 postnatal mice and loaded with a fluorescent Ca 2+ indicator (fluo-4, -5F or -5N). IR pulse trains (200 µs, 200-250 Hz, 2-5 s) delivered via an optical fiber coupled to IR source produced a rapid, transient temperature increase of 6-11ºC (above a baseline of 24-30 ºC) and evoked transient increases in both nuclear and cytosolic [Ca 2+ ] of 0.20 - 1.4 µM, with a simultaneous reduction of [Ca 2+ ] in regions containing endoplasmic reticulum (ER). IR-induced increases in cytosolic [Ca 2+ ] continued in medium containing no added Ca 2+ ({plus minus} Ca 2+ buffers) and low [Na + ], indicating that the [Ca 2+ ] increase was mediated by release from intracellular stores. Consistent with this hypothesis, the IR-induced [Ca 2+ ] response was prolonged and eventually blocked by inhibition of ER Ca-ATPase with cyclopiazonic acid, and was also inhibited by a high concentration of ryanodine and by inhibitors of IP 3 -mediated Ca 2+ release (xestospongin C and 2-APB). The thermal sensitivity of the response suggested involvement of warm-sensitive transient receptor potential (TRP) receptors. Immunostaining of the spiral ganglion demonstrated the presence of intracellular TRPV4 and TRPM2, and the IR-induced [Ca 2+ ] increase was inhibited by TRPV4 inhibitors (HC067047 and GSK2193874). These results suggest that the temperature-sensitivity of IR-induced [Ca 2+ ] elevations is conferred by TRP channels on ER membranes, which facilitate Ca 2+ efflux into the cytosol and initiate Ca 2+ -induced Ca 2+ -release via IP 3 and ryanodine receptors.

  16. Calcium buffering properties of sarcoplasmic reticulum and calcium-induced Ca2+ release during the quasi-steady level of release in twitch fibers from frog skeletal muscle

    PubMed Central

    Fénelon, Karine; Lamboley, Cédric R.H.; Carrier, Nicole

    2012-01-01

    Experiments were performed to characterize the properties of the intrinsic Ca2+ buffers in the sarcoplasmic reticulum (SR) of cut fibers from frog twitch muscle. The concentrations of total and free calcium ions within the SR ([CaT]SR and [Ca2+]SR) were measured, respectively, with the EGTA/phenol red method and tetramethylmurexide (a low affinity Ca2+ indicator). Results indicate SR Ca2+ buffering was consistent with a single cooperative-binding component or a combination of a cooperative-binding component and a linear binding component accounting for 20% or less of the bound Ca2+. Under the assumption of a single cooperative-binding component, the most likely resting values of [Ca2+]SR and [CaT]SR are 0.67 and 17.1 mM, respectively, and the dissociation constant, Hill coefficient, and concentration of the Ca-binding sites are 0.78 mM, 3.0, and 44 mM, respectively. This information can be used to calculate a variable proportional to the Ca2+ permeability of the SR, namely d[CaT]SR/dt ÷ [Ca2+]SR (denoted release permeability), in experiments in which only [CaT]SR or [Ca2+]SR is measured. In response to a voltage-clamp step to −20 mV at 15°C, the release permeability reaches an early peak followed by a rapid decline to a quasi-steady level that lasts ∼50 ms, followed by a slower decline during which the release permeability decreases by at least threefold. During the quasi-steady level of release, the release amplitude is 3.3-fold greater than expected from voltage activation alone, a result consistent with the recruitment by Ca-induced Ca2+ release of 2.3 SR Ca2+ release channels neighboring each channel activated by its associated voltage sensor. Release permeability at −60 mV increases as [CaT]SR decreases from its resting physiological level to ∼0.1 of this level. This result argues against a release termination mechanism proposed in mammalian muscle fibers in which a luminal sensor of [Ca2+]SR inhibits release when [CaT]SR declines to a low level. PMID:23008434

  17. Calcium buffering properties of sarcoplasmic reticulum and calcium-induced Ca(2+) release during the quasi-steady level of release in twitch fibers from frog skeletal muscle.

    PubMed

    Fénelon, Karine; Lamboley, Cédric R H; Carrier, Nicole; Pape, Paul C

    2012-10-01

    Experiments were performed to characterize the properties of the intrinsic Ca(2+) buffers in the sarcoplasmic reticulum (SR) of cut fibers from frog twitch muscle. The concentrations of total and free calcium ions within the SR ([Ca(T)](SR) and [Ca(2+)](SR)) were measured, respectively, with the EGTA/phenol red method and tetramethylmurexide (a low affinity Ca(2+) indicator). Results indicate SR Ca(2+) buffering was consistent with a single cooperative-binding component or a combination of a cooperative-binding component and a linear binding component accounting for 20% or less of the bound Ca(2+). Under the assumption of a single cooperative-binding component, the most likely resting values of [Ca(2+)](SR) and [Ca(T)](SR) are 0.67 and 17.1 mM, respectively, and the dissociation constant, Hill coefficient, and concentration of the Ca-binding sites are 0.78 mM, 3.0, and 44 mM, respectively. This information can be used to calculate a variable proportional to the Ca(2+) permeability of the SR, namely d[Ca(T)](SR)/dt ÷ [Ca(2+)](SR) (denoted release permeability), in experiments in which only [Ca(T)](SR) or [Ca(2+)](SR) is measured. In response to a voltage-clamp step to -20 mV at 15°C, the release permeability reaches an early peak followed by a rapid decline to a quasi-steady level that lasts ~50 ms, followed by a slower decline during which the release permeability decreases by at least threefold. During the quasi-steady level of release, the release amplitude is 3.3-fold greater than expected from voltage activation alone, a result consistent with the recruitment by Ca-induced Ca(2+) release of 2.3 SR Ca(2+) release channels neighboring each channel activated by its associated voltage sensor. Release permeability at -60 mV increases as [Ca(T)](SR) decreases from its resting physiological level to ~0.1 of this level. This result argues against a release termination mechanism proposed in mammalian muscle fibers in which a luminal sensor of [Ca(2+)](SR) inhibits release when [Ca(T)](SR) declines to a low level.

  18. Weak endogenous Ca2+ buffering supports sustained synaptic transmission by distinct mechanisms in rod and cone photoreceptors in salamander retina

    PubMed Central

    Van Hook, Matthew J; Thoreson, Wallace B

    2015-01-01

    Differences in synaptic transmission between rod and cone photoreceptors contribute to different response kinetics in rod- versus cone-dominated visual pathways. We examined Ca2+ dynamics in synaptic terminals of tiger salamander photoreceptors under conditions that mimicked endogenous buffering to determine the influence on kinetically and mechanistically distinct components of synaptic transmission. Measurements of ICl(Ca) confirmed that endogenous Ca2+ buffering is equivalent to ˜0.05 mmol/L EGTA in rod and cone terminals. Confocal imaging showed that with such buffering, depolarization stimulated large, spatially unconstrained [Ca2+] increases that spread throughout photoreceptor terminals. We calculated immediately releasable pool (IRP) size and release efficiency in rods by deconvolving excitatory postsynaptic currents and presynaptic Ca2+ currents. Peak efficiency of ˜0.2 vesicles/channel was similar to that of cones (˜0.3 vesicles/channel). Efficiency in both cell types was not significantly affected by using weak endogenous Ca2+ buffering. However, weak Ca2+ buffering speeded Ca2+/calmodulin (CaM)-dependent replenishment of vesicles to ribbons in both rods and cones, thereby enhancing sustained release. In rods, weak Ca2+ buffering also amplified sustained release by enhancing CICR and CICR-stimulated release of vesicles at nonribbon sites. By contrast, elevating [Ca2+] at nonribbon sites in cones with weak Ca2+ buffering and by inhibiting Ca2+ extrusion did not trigger additional release, consistent with the notion that exocytosis from cones occurs exclusively at ribbons. The presence of weak endogenous Ca2+ buffering in rods and cones facilitates slow, sustained exocytosis by enhancing Ca2+/CaM-dependent replenishment of ribbons in both rods and cones and by stimulating nonribbon release triggered by CICR in rods. PMID:26416977

  19. Ca(2+) regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Chen, N. X.; Ryder, K. D.; Pavalko, F. M.; Turner, C. H.; Burr, D. B.; Qiu, J.; Duncan, R. L.

    2000-01-01

    Osteoblasts subjected to fluid shear increase the expression of the early response gene, c-fos, and the inducible isoform of cyclooxygenase, COX-2, two proteins linked to the anabolic response of bone to mechanical stimulation, in vivo. These increases in gene expression are dependent on shear-induced actin stress fiber formation. Here, we demonstrate that MC3T3-E1 osteoblast-like cells respond to shear with a rapid increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) that we postulate is important to subsequent cellular responses to shear. To test this hypothesis, MC3T3-E1 cells were grown on glass slides coated with fibronectin and subjected to laminar fluid flow (12 dyn/cm(2)). Before application of shear, cells were treated with two Ca(2+) channel inhibitors or various blockers of intracellular Ca(2+) release for 0. 5-1 h. Although gadolinium, a mechanosensitive channel blocker, significantly reduced the [Ca(2+)](i) response, neither gadolinium nor nifedipine, an L-type channel Ca(2+) channel blocker, were able to block shear-induced stress fiber formation and increase in c-fos and COX-2 in MC3T3-E1 cells. However, 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, an intracellular Ca(2+) chelator, or thapsigargin, which empties intracellular Ca(2+) stores, completely inhibited stress fiber formation and c-fos/COX-2 production in sheared osteoblasts. Neomycin or U-73122 inhibition of phospholipase C, which mediates D-myo-inositol 1,4,5-trisphosphate (IP(3))-induced intracellular Ca(2+) release, also completely suppressed actin reorganization and c-fos/COX-2 production. Pretreatment of MC3T3-E1 cells with U-73343, the inactive isoform of U-73122, did not inhibit these shear-induced responses. These results suggest that IP(3)-mediated intracellular Ca(2+) release is required for modulating flow-induced responses in MC3T3-E1 cells.

  20. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells*

    PubMed Central

    Arredouani, Abdelilah; Ruas, Margarida; Collins, Stephan C.; Parkesh, Raman; Clough, Frederick; Pillinger, Toby; Coltart, George; Rietdorf, Katja; Royle, Andrew; Johnson, Paul; Braun, Matthias; Zhang, Quan; Sones, William; Shimomura, Kenju; Morgan, Anthony J.; Lewis, Alexander M.; Chuang, Kai-Ting; Tunn, Ruth; Gadea, Joaquin; Teboul, Lydia; Heister, Paula M.; Tynan, Patricia W.; Bellomo, Elisa A.; Rutter, Guy A.; Rorsman, Patrik; Churchill, Grant C.; Parrington, John; Galione, Antony

    2015-01-01

    Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca2+ action potentials due to the activation of voltage-dependent Ca2+ channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca2+ release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca2+ from the endolysosomal system, resulting in localized Ca2+ signals. We show here that NAADP-mediated Ca2+ release from endolysosomal Ca2+ stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca2+ release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca2+ signals, and insulin secretion. Our findings implicate NAADP-evoked Ca2+ release from acidic Ca2+ storage organelles in stimulus-secretion coupling in β cells. PMID:26152717

  1. Response of hippocampal mossy fiber zinc to excessive glutamate release.

    PubMed

    Takeda, Atsushi; Minami, Akira; Sakurada, Naomi; Nakajima, Satoko; Oku, Naoto

    2007-01-01

    The response of hippocampal mossy fiber zinc to excessive glutamate release was examined to understand the role of the zinc in excessive excitation in the hippocampus. Extracellular zinc and glutamate concentrations during excessive stimulation with high K(+) were compared between the hippocampal CA3 and CA1 by the in vivo microdialysis. Zinc concentration in the CA3 was more increased than that in the CA1, while glutamate concentration in the CA3 was less increased than that in the CA1. It is likely that more increase in extracellular zinc is linked with less increase in extracellular glutamate in the CA3. To see zinc action in mossy fiber synapses during excessive excitation, furthermore, 1mM glutamate was regionally delivered to the stratum lucidum in the presence of zinc or CaEDTA, a membrane-impermeable zinc chelator, and intracellular calcium signal was measured in the CA3 pyramidal cell layer. The persistent increase in calcium signal during stimulation with glutamate was significantly attenuated in the presence of 100 microM zinc, while significantly enhanced in the presence of 1mM CaEDTA. These results suggest that zinc released from mossy fibers attenuates the increase in intracellular calcium signal in mossy fiber synapses and postsynaptic CA3 neurons after excessive inputs to dentate granular cells.

  2. pH-Responsive mineralized nanoparticles as stable nanocarriers for intracellular nitric oxide delivery.

    PubMed

    Lee, Hong Jae; Kim, Da Eun; Park, Dong Jin; Choi, Gi Hyun; Yang, Dal-Nim; Heo, Jung Sun; Lee, Sang Cheon

    2016-10-01

    We describe a calcium carbonate (CaCO3) mineralization approach to generate pH-responsive nanocarriers that can stably load S-nitrosoglutathione (GSNO) and dissolve at acidic endosomes to trigger intracellular release of nitric oxide (NO). GSNO-loaded CaCO3-mineralized nanoparticles (GSNO-MNPs) were prepared by an anionic block copolymer (PEG-Poly(l-aspartic acid))-templated mineralization. Ionic GSNO could be loaded in situ inside the CaCO3 core during the mineralization process. The stability of GSNO shielded within the crystalline CaCO3 core was greatly enhanced. The GSNO-MNPs triggered NO release at endosomal pH and an intracellular ascorbic acid level. Confocal microscopy demonstrated that the GSNO-MNPs could be dissolved at endosomal environments to release GSNO and sequentially generate NO through the GSNO reduction in the cytosol. In vitro cell experiments demonstrated that NO release by the GSNO-MNPs efficiently improved therapeutic activity of doxorubicin (DOX). Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Light-Induced Acid Generation on a Gatekeeper for Smart Nitric Oxide Delivery.

    PubMed

    Choi, Hyung Woo; Kim, Jihoon; Kim, Jinhwan; Kim, Yonghwi; Song, Hyun Beom; Kim, Jeong Hun; Kim, Kimoon; Kim, Won Jong

    2016-04-26

    We report herein the design of a light-responsive gatekeeper for smart nitric oxide (NO) delivery. The gatekeeper is composed of a pH-jump reagent as an intermediary of stimulus and a calcium phosphate (CaP) coating as a shielding layer for NO release. The light irradiation and subsequent acid generation are used as triggers for uncapping the gatekeeper and releasing NO. The acids generated from a light-activated pH-jump agent loaded in the mesoporous nanoparticles accelerated the degradation of the CaP-coating layers on the nanoparticles, facilitating the light-responsive NO release from diazeniumdiolate by exposing a NO donor to physiological conditions. Using the combination of the pH-jump reagent and CaP coating, we successfully developed a light-responsive gatekeeper system for spatiotemporal-controlled NO delivery.

  4. Quantifying the effect of light activated outer and inner retinal inhibitory pathways on glutamate release from mixed bipolar cells.

    PubMed

    Lipin, Mikhail Y; Vigh, Jozsef

    2018-05-01

    Inhibition mediated by horizontal and amacrine cells in the outer and inner retina, respectively, are fundamental components of visual processing. Here, our purpose was to determine how these different inhibitory processes affect glutamate release from ON bipolar cells when the retina is stimulated with full-field light of various intensities. Light-evoked membrane potential changes (ΔV m ) were recorded directly from axon terminals of intact bipolar cells receiving mixed rod and cone inputs (Mbs) in slices of dark-adapted goldfish retina. Inner and outer retinal inhibition to Mbs was blocked with bath applied picrotoxin (PTX) and NBQX, respectively. Then, control and pharmacologically modified light responses were injected into axotomized Mb terminals as command potentials to induce voltage-gated Ca 2+ influx (Q Ca ) and consequent glutamate release. Stimulus-evoked glutamate release was quantified by the increase in membrane capacitance (ΔC m ). Increasing depolarization of Mb terminals upon removal of inner and outer retinal inhibition enhanced the ΔV m /Q Ca ratio equally at a given light intensity and inhibition did not alter the overall relation between Q Ca and ΔC m . However, relative to control, light responses recorded in the presence of PTX and PTX + NBQX increased ΔC m unevenly across different stimulus intensities: at dim stimulus intensities predominantly the inner retinal GABAergic inhibition controlled release from Mbs, whereas the inner and outer retinal inhibition affected release equally in response to bright stimuli. Furthermore, our results suggest that non-linear relationship between Q Ca and glutamate release can influence the efficacy of inner and outer retinal inhibitory pathways to mediate Mb output at different light intensities. © 2018 Wiley Periodicals, Inc.

  5. Control of calcium release and the effect of ryanodine in skinned muscle fibres of the toad.

    PubMed Central

    Lamb, G D; Stephenson, D G

    1990-01-01

    1. Skinned muscle fibres from the toad were used to investigate the roles of T-system membrane potential and Ca2+ in controlling the calcium release channels of the sarcoplasmic reticulum (SR). 2. Replacement of K+ in the bathing solution with Na+ produced a large contraction which could last for 30 s or more under certain circumstances. This prolonged contraction could be quickly and completely terminated by repolarizing the fibre in the K+ solution and then immediately re-initiated by returning to the Na+ solution. These data indicate that the membrane potential tightly controlled the substantial and prolonged release of calcium. 3. T-system depolarization in the presence of 10 mM-free EGTA (pCa greater than 9) markedly depleted the SR of Ca2+. This implies that depolarization of the T-system can still trigger substantial release of Ca2+ from the SR even when the myoplasmic [Ca2+] is very low and very heavily buffered by EGTA. 4. When the SR was heavily loaded with Ca2+, substitution of a weakly buffered high [Ca2+] solution (pCa 5.4, 50 microM-EGTA) could produce a small to moderate, transient contraction taking between 3 and 12 s to reach a peak and lasting 30 s or more. 5. This contraction may be produced at least partly by 'calcium-induced calcium release' as ruthenium red (2 microM) completely blocked the responses. Moreover, repeated substitutions produced successively smaller responses in parallel with the 'run-down' of the depolarization-induced contractions. 6. Depolarization could always produce an additional large and fast response at any stage during a 'Ca2(+)-induced' response. 7. In the presence of 25 microM-ryanodine, the rapid contraction produced by T-system depolarization was prolonged and could not be stopped by repolarization. During and after this contraction no depolarizing stimulus could induce a further contraction, even though in some fibres addition of 30 mM-caffeine produced a maximum response which indicated that there was still a substantial amount of calcium in the SR. 8. At pCa 6.4, 25 microM-ryanodine could itself induce a substantial slow contracture in a normally polarized fibre within 30-60 s, after which little or no response could be induced by T-system depolarization. At higher concentrations (25 microM) ryanodine produced a near-maximum contraction in only a few seconds.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2167367

  6. Disruption of the vacuolar calcium-ATPases in arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway

    USDA-ARS?s Scientific Manuscript database

    Calcium (Ca2+) signals regulate many aspects of plant development, including the Hypersensitive Response (HR) that triggers a programmed cell death response to protect a plant from a pathogen. A transient increase in cytosolic Ca2+ ([Ca2+]cyt ) results from Ca2+ entry from the apoplast or release fr...

  7. Stabilization of diastolic calcium signal via calcium pump regulation of complex local calcium releases and transient decay in a computational model of cardiac pacemaker cell with individual release channels

    PubMed Central

    Maltsev, Alexander V.; Maltsev, Victor A.; Stern, Michael D.

    2017-01-01

    Intracellular Local Ca releases (LCRs) from sarcoplasmic reticulum (SR) regulate cardiac pacemaker cell function by activation of electrogenic Na/Ca exchanger (NCX) during diastole. Prior studies demonstrated the existence of powerful compensatory mechanisms of LCR regulation via a complex local cross-talk of Ca pump, release and NCX. One major obstacle to study these mechanisms is that LCR exhibit complex Ca release propagation patterns (including merges and separations) that have not been characterized. Here we developed new terminology, classification, and computer algorithms for automatic detection of numerically simulated LCRs and examined LCR regulation by SR Ca pumping rate (Pup) that provides a major contribution to fight-or-flight response. In our simulations the faster SR Ca pumping accelerates action potential-induced Ca transient decay and quickly clears Ca under the cell membrane in diastole, preventing premature releases. Then the SR generates an earlier, more synchronized, and stronger diastolic LCR signal activating an earlier and larger inward NCX current. LCRs at higher Pup exhibit larger amplitudes and faster propagation with more collisions to each other. The LCRs overlap with Ca transient decay, causing an elevation of the average diastolic [Ca] nadir to ~200 nM (at Pup = 24 mM/s). Background Ca (in locations lacking LCRs) quickly decays to resting Ca levels (<100 nM) at high Pup, but remained elevated during slower decay at low Pup. Release propagation is facilitated at higher Pup by a larger LCR amplitude, whereas at low Pup by higher background Ca. While at low Pup LCRs show smaller amplitudes, their larger durations and sizes combined with longer transient decay stabilize integrals of diastolic Ca and NCX current signals. Thus, the local interplay of SR Ca pump and release channels regulates LCRs and Ca transient decay to insure fail-safe pacemaker cell operation within a wide range of rates. PMID:28792496

  8. Endoplasmic Reticulum Ca2+ Handling in Excitable Cells in Health and Disease

    PubMed Central

    Mattson, Mark P.

    2011-01-01

    The endoplasmic reticulum (ER) is a morphologically and functionally diverse organelle capable of integrating multiple extracellular and internal signals and generating adaptive cellular responses. It plays fundamental roles in protein synthesis and folding and in cellular responses to metabolic and proteotoxic stress. In addition, the ER stores and releases Ca2+ in sophisticated scenarios that regulate a range of processes in excitable cells throughout the body, including muscle contraction and relaxation, endocrine regulation of metabolism, learning and memory, and cell death. One or more Ca2+ ATPases and two types of ER membrane Ca2+ channels (inositol trisphosphate and ryanodine receptors) are the major proteins involved in ER Ca2+ uptake and release, respectively. There are also direct and indirect interactions of ER Ca2+ stores with plasma membrane and mitochondrial Ca2+-regulating systems. Pharmacological agents that selectively modify ER Ca2+ release or uptake have enabled studies that revealed many different physiological roles for ER Ca2+ signaling. Several inherited diseases are caused by mutations in ER Ca2+-regulating proteins, and perturbed ER Ca2+ homeostasis is implicated in a range of acquired disorders. Preclinical investigations suggest a therapeutic potential for use of agents that target ER Ca2+ handling systems of excitable cells in disorders ranging from cardiac arrhythmias and skeletal muscle myopathies to Alzheimer disease. PMID:21737534

  9. Differential Regulation of Multiple Steps in Inositol 1,4,5-Trisphosphate Signaling by Protein Kinase C Shapes Hormone-stimulated Ca2+ Oscillations*

    PubMed Central

    Bartlett, Paula J.; Metzger, Walson; Gaspers, Lawrence D.; Thomas, Andrew P.

    2015-01-01

    How Ca2+ oscillations are generated and fine-tuned to yield versatile downstream responses remains to be elucidated. In hepatocytes, G protein-coupled receptor-linked Ca2+ oscillations report signal strength via frequency, whereas Ca2+ spike amplitude and wave velocity remain constant. IP3 uncaging also triggers oscillatory Ca2+ release, but, in contrast to hormones, Ca2+ spike amplitude, width, and wave velocity were dependent on [IP3] and were not perturbed by phospholipase C (PLC) inhibition. These data indicate that oscillations elicited by IP3 uncaging are driven by the biphasic regulation of the IP3 receptor by Ca2+, and, unlike hormone-dependent responses, do not require PLC. Removal of extracellular Ca2+ did not perturb Ca2+ oscillations elicited by IP3 uncaging, indicating that reloading of endoplasmic reticulum stores via plasma membrane Ca2+ influx does not entrain the signal. Activation and inhibition of PKC attenuated hormone-induced Ca2+ oscillations but had no effect on Ca2+ increases induced by uncaging IP3. Importantly, PKC activation and inhibition differentially affected Ca2+ spike frequencies and kinetics. PKC activation amplifies negative feedback loops at the level of G protein-coupled receptor PLC activity and/or IP3 metabolism to attenuate IP3 levels and suppress the generation of Ca2+ oscillations. Inhibition of PKC relieves negative feedback regulation of IP3 accumulation and, thereby, shifts Ca2+ oscillations toward sustained responses or dramatically prolonged spikes. PKC down-regulation attenuates phenylephrine-induced Ca2+ wave velocity, whereas responses to IP3 uncaging are enhanced. The ability to assess Ca2+ responses in the absence of PLC activity indicates that IP3 receptor modulation by PKC regulates Ca2+ release and wave velocity. PMID:26078455

  10. Osmosensation in TRPV2 dominant negative expressing skeletal muscle fibres.

    PubMed

    Zanou, Nadège; Mondin, Ludivine; Fuster, Clarisse; Seghers, François; Dufour, Inès; de Clippele, Marie; Schakman, Olivier; Tajeddine, Nicolas; Iwata, Yuko; Wakabayashi, Shigeo; Voets, Thomas; Allard, Bruno; Gailly, Philippe

    2015-09-01

    Increased plasma osmolarity induces intracellular water depletion and cell shrinkage (CS) followed by activation of a regulatory volume increase (RVI). In skeletal muscle, the hyperosmotic shock-induced CS is accompanied by a small membrane depolarization responsible for a release of Ca(2+) from intracellular pools. Hyperosmotic shock also induces phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK). TRPV2 dominant negative expressing fibres challenged with hyperosmotic shock present a slower membrane depolarization, a diminished Ca(2+) response, a smaller RVI response, a decrease in SPAK phosphorylation and defective muscle function. We suggest that hyperosmotic shock induces TRPV2 activation, which accelerates muscle cell depolarization and allows the subsequent Ca(2+) release from the sarcoplasmic reticulum, activation of the Na(+) -K(+) -Cl(-) cotransporter by SPAK, and the RVI response. Increased plasma osmolarity induces intracellular water depletion and cell shrinkage followed by activation of a regulatory volume increase (RVI). In skeletal muscle, this is accompanied by transverse tubule (TT) dilatation and by a membrane depolarization responsible for a release of Ca(2+) from intracellular pools. We observed that both hyperosmotic shock-induced Ca(2+) transients and RVI were inhibited by Gd(3+) , ruthenium red and GsMTx4 toxin, three inhibitors of mechanosensitive ion channels. The response was also completely absent in muscle fibres overexpressing a non-permeant, dominant negative (DN) mutant of the transient receptor potential, V2 isoform (TRPV2) ion channel, suggesting the involvement of TRPV2 or of a TRP isoform susceptible to heterotetramerization with TRPV2. The release of Ca(2+) induced by hyperosmotic shock was increased by cannabidiol, an activator of TRPV2, and decreased by tranilast, an inhibitor of TRPV2, suggesting a role for the TRPV2 channel itself. Hyperosmotic shock-induced membrane depolarization was impaired in TRPV2-DN fibres, suggesting that TRPV2 activation triggers the release of Ca(2+) from the sarcoplasmic reticulum by depolarizing TTs. RVI requires the sequential activation of STE20/SPS1-related proline/alanine-rich kinase (SPAK) and NKCC1, a Na(+) -K(+) -Cl(-) cotransporter, allowing ion entry and driving osmotic water flow. In fibres overexpressing TRPV2-DN as well as in fibres in which Ca(2+) transients were abolished by the Ca(2+) chelator BAPTA, the level of P-SPAK(Ser373) in response to hyperosmotic shock was reduced, suggesting a modulation of SPAK phosphorylation by intracellular Ca(2+) . We conclude that TRPV2 is involved in osmosensation in skeletal muscle fibres, acting in concert with P-SPAK-activated NKCC1. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  11. Intracellular Calcium Mobilization in Response to Ion Channel Regulators via a Calcium-Induced Calcium Release Mechanism

    PubMed Central

    Petrou, Terry; Olsen, Hervør L.; Thrasivoulou, Christopher; Masters, John R.; Ashmore, Jonathan F.

    2017-01-01

    Free intracellular calcium ([Ca2+]i), in addition to being an important second messenger, is a key regulator of many cellular processes including cell membrane potential, proliferation, and apoptosis. In many cases, the mobilization of [Ca2+]i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca2+]i release, by ratiometric calcium imaging. We show that six such modulators [amiodarone (Ami), dofetilide, furosemide (Fur), minoxidil (Min), loxapine (Lox), and Nicorandil] initiate release of [Ca2+]i in prostate and breast cancer cell lines, PC3 and MCF7, respectively. Whole-cell currents in PC3 cells were inhibited by the compounds tested in patch-clamp experiments in a concentration-dependent manner. In all cases [Ca2+]i was increased by modulator concentrations comparable to those used clinically. The increase in [Ca2+]i in response to Ami, Fur, Lox, and Min was reduced significantly (P < 0.01) when the external calcium was reduced to nM concentration by chelation with EGTA. The data suggest that many ion channel regulators mobilize [Ca2+]i. We suggest a mechanism whereby calcium-induced calcium release is implicated; such a mechanism may be important for understanding the action of these compounds. PMID:27980039

  12. Single and combined effects of carbamazepine and vinpocetine on depolarization-induced changes in Na+, Ca2+ and glutamate release in hippocampal isolated nerve endings.

    PubMed

    Sitges, María; Chiu, Luz María; Nekrassov, Vladimir

    2006-07-01

    The single and combined effects of carbamazepine and vinpocetine on the release of the excitatory amino acid neurotransmitter glutamate, on the rise in internal Na+ (Na(i), as determined with SBFI), and on the rise in internal Ca2+ (Ca(i), as determined with fura-2) induced by an increased permeability of presynaptic Na+ channels, with veratridine, or by an increased permeability of presynaptic Ca2+ channels with high K+, were investigated in isolated hippocampal nerve endings. The present study shows that carbamazepine and vinpocetine, both inhibit dose dependently the release of preloaded [3H]Glu induced by veratridine. However, carbamazepine is two orders of magnitude less potent than vinpocetine. The calculated IC(50)'s for carbamazepine and vinpocetine to inhibit veratridine-induced [3H]Glu release are 200 and 2 microM, respectively. Consistently 150 microM carbamazepine and 1.5 microM vinpocetine reduce the veratridine-induced rise in Na(i) in a similar extent. The single effects of carbamazepine and of vinpocetine on the presynaptic Na+ channel mediated responses, namely the rise in Na(i) and the release of Glu induced by veratridine, are additive. Responses that depend on the entrance of external Ca2+ via presynaptic Ca2+ channels, such as the release of [3H]Glu and the rise in Ca(i) induced by high K+, are insensitive to 300 microM carbamazepine and slightly reduced by 5 microM vinpocetine. It is concluded that the additive effects of carbamazepine, which is one of the most common antiepileptic drugs, and vinpocetine that besides its known neuroprotective action and antiepileptic potential is a memory enhancer, may perhaps be advantageous in the treatment of epileptic patients.

  13. Designed Synthesis of Lipid-Coated Polyacrylic Acid/Calcium Phosphate Nanoparticles as Dual pH-Responsive Drug-Delivery Vehicles for Cancer Chemotherapy.

    PubMed

    Wang, Xin; Zhang, Manjie; Zhang, Lingyu; Li, Lu; Li, Shengnan; Wang, Chungang; Su, Zhongmin; Yuan, Yue; Pan, Weisan

    2017-05-11

    Herein, we report a facile strategy to prepare supported lipid-bilayer-coated polyacrylic acid/calcium phosphate nanoparticles (designated as PAA/CaP@SLB NPs) as a new dual pH-responsive drug-delivery platform for cancer chemotherapy. The synthesized PAA/CaP NPs exhibited both a high payload of doxorubicin (DOX) and dual pH-responsive drug-release properties. Additionally, the coated lipid bilayer had the ability to enhance the cellular uptake of PAA/CaP NPs without affecting the pH-responsive drug release. Moreover, the blank PAA/CaP@SLB NPs exhibited excellent biocompatibility and the DOX-loaded PAA/CaP@SLB NPs markedly increased the cellular accumulation of DOX and its cytotoxic effects on HepG-2 cells. Furthermore, when used to evaluate the in vivo therapeutic efficacy in mice with the hepatocarcinoma cell line (H-22), the DOX-loaded PAA/CaP@SLB NPs exhibited superior inhibition of tumor growth compared with the free DOX group. Thus, PAA/CaP@SLB NPs are a promising drug-delivery vehicle to increase the therapeutic efficacy of anticancer drugs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Regulation of insulin secretion from islets of Langerhans rendered permeable by electric discharge

    PubMed Central

    Yaseen, M. Adel; Pedley, Kevin C.; Howell, Simon L.

    1982-01-01

    1. High-voltage electric discharge has been used to increase the permeability of B-cells of isolated islets of Langerhans to facilitate studies of the effects of normally impermeable substances on insulin secretion. 2. The application of an intense electric field increased the [14C]sucrose space of the islets from 37.8±3.1% to 86.2±5.2% of their total volume as assessed by 3H2O content. The cells remained permeable for at least 40min. 3. Ultrastructural studies showed no deleterious changes in the structure of the B-cells after discharge. 4. Insulin secretion from normal islets was unaffected by increasing the medium [Ca2+] from 10nm to 10μm. In the islets that had been rendered permeable by discharge, insulin secretion was significantly increased under these conditions, without any alteration in the release of lactate dehydrogenase, a cytoplasmic marker enzyme. 5. Studies of the dynamics of insulin release during perifusion showed that the response to increased (10μm) Ca2+ concentration was rapid and sustained over a period of at least 13min. 6. Secretion responses to Ca2+ in perifusion established that maximum release in permeabilized islets occurs at approx. 1μm-Ca2+ and half-maximum release occurs at approx. 0.6μm-Ca2+. 7. The study of the effect of agents that interfere with the microtubular microfilamentous system in B-cells using a perifusion system revealed that cytochalasin B caused a considerable increase, whereas vinblastine sulphate caused a significant inhibition, in insulin release in response to 1μm-Ca2+. 8. This technique should facilitate the study of the role of normally impermeable ions and metabolic intermediates in the regulation of insulin secretion. ImagesPLATE 1 PMID:6751326

  15. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Activates Global and Heterogeneous Local Ca2+ Signals from NAADP- and Ryanodine Receptor-gated Ca2+ Stores in Pulmonary Arterial Myocytes*

    PubMed Central

    Jiang, Yong-Liang; Lin, Amanda H. Y.; Xia, Yang; Lee, Suengwon; Paudel, Omkar; Sun, Hui; Yang, Xiao-Ru; Ran, Pixin; Sham, James S. K.

    2013-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+-mobilizing messenger that releases Ca2+ from endolysosomal organelles. Recent studies showed that NAADP-induced Ca2+ release is mediated by the two-pore channels (TPCs) TPC1 and TPC2. However, the expression of TPCs and the NAADP-induced local Ca2+ signals have not been examined in vascular smooth muscle. Here, we found that both TPC1 and TPC2 are expressed in rat pulmonary arterial smooth muscle cells (PASMCs), with TPC1 being the major subtype. Application of membrane-permeant NAADP acetoxymethyl ester to PASMCs elicited a biphasic increase in global [Ca2+]i, which was independent of extracellular Ca2+ and blocked by the NAADP antagonist Ned-19 or the vacuolar H+-ATPase inhibitor bafilomycin A1, indicating Ca2+ release from acidic endolysosomal Ca2+ stores. The Ca2+ response was unaffected by xestospongin C but was partially blocked by ryanodine or thapsigargin. NAADP triggered heterogeneous local Ca2+ signals, including a diffuse increase in cytosolic [Ca2+], Ca2+ sparks, Ca2+ bursts, and regenerative Ca2+ release. The diffuse Ca2+ increase and Ca2+ bursts were ryanodine-insensitive, presumably arising from different endolysosomal sources. Ca2+ sparks and regenerative Ca2+ release were inhibited by ryanodine, consistent with cross-activation of loosely coupled ryanodine receptors. Moreover, Ca2+ release stimulated by endothelin-1 was inhibited by Ned-19, ryanodine, or xestospongin C, suggesting that NAADP-mediated Ca2+ signals interact with both ryanodine and inositol 1,4,5-trisphosphate receptors during agonist stimulation. Our results show that NAADP mediates complex global and local Ca2+ signals. Depending on the physiological stimuli, these diverse Ca2+ signals may serve to regulate different cellular functions in PASMCs. PMID:23443655

  16. Tachykinins Stimulate a Subset of Mouse Taste Cells

    PubMed Central

    Grant, Jeff

    2012-01-01

    The tachykinins substance P (SP) and neurokinin A (NKA) are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1). These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca2+-imaging on isolated taste cells, it was observed that SP induces Ca2+ -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca2+-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca2+-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca2+-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like) and umami-responsive Type II (Receptor) cells. Importantly, stimulating NK-1R had an additive effect on Ca2+ responses evoked by umami stimuli in Type II (Receptor) cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods. PMID:22363709

  17. Silent calcium channels in skeletal muscle fibers of the crustacean Atya lanipes.

    PubMed

    Monterrubio, J; Lizardi, L; Zuazaga, C

    2000-01-01

    The superficial (tonic) abdominal flexor muscles of Atya lanipes do not generate Ca(2+) action potentials when depolarized and have no detectable inward Ca(2+) current. These fibers, however, are strictly dependent on Ca(2+) influx for contraction, suggesting that they depend on Ca(2+)-induced Ca(2+) release for contractile activation. The nature of the communication between Ca(2+) channels in the sarcolemmal/tubular membrane and Ca(2+) release channels in the sarcoplasmic reticulum in this crustacean muscle was investigated. The effects of dihydropyridines on tension generation and the passive electrical response were examined in current-clamped fibers: Bay K 8644 enhanced tension about 100% but did not alter the passive electrical response; nifedipine inhibited tension by about 70%. Sr(2+) and Ba(2+) action potentials could be elicited in Ca(2+)-free solutions. The spikes generated by these divalent cations were abolished by nifedipine. As the Sr(2+) or Ba(2+) concentrations were increased, the amplitudes of the action potentials and their maximum rate of rise, V(max), increased and tended towards saturation. Three-microelectrode voltage-clamp experiments showed that even at high (138 mm) extracellular Ca(2+) concentration the channels were silent, i.e., no inward Ca(2+) current was detected. In Ca(2+)-free solutions, inward currents carried by 138 mm Sr(2+) or Ba(2+) were observed. The currents activated at voltages above -40 mV and peaked at about 0 mV. This voltage-activation profile and the sensitivity of the channels to dihydropyridines indicate that they resemble L-type Ca(2+) channels. Peak inward current density values were low, ca. -33 microA/cm(2) for Sr(2+) and -14 microA/cm(2) for Ba(2+), suggesting that Ca(2+) channels are present at a very low density. It is concluded that Ca(2+)-induced Ca(2+) release in this crustacean muscle operates with an unusually high gain: Ca(2+) influx through the silent Ca(2+) channels is too low to generate a macroscopic inward current, but increases sufficiently the local concentration of Ca(2+) in the immediate vicinity of the sarcoplasmic reticulum Ca(2+) release channels to trigger the highly amplified release of Ca(2+) required for tension generation.

  18. Calcium Binding-Mediated Sustained Release of Minocycline from Hydrophilic Multilayer Coatings Targeting Infection and Inflammation

    PubMed Central

    Zhang, Zhiling; Nix, Camilla A.; Ercan, Utku K.; Gerstenhaber, Jonathan A.; Joshi, Suresh G.; Zhong, Yinghui

    2014-01-01

    Infection and inflammation are common complications that seriously affect the functionality and longevity of implanted medical implants. Systemic administration of antibiotics and anti-inflammatory drugs often cannot achieve sufficient local concentration to be effective, and elicits serious side effects. Local delivery of therapeutics from drug-eluting coatings presents a promising solution. However, hydrophobic and thick coatings are commonly used to ensure sufficient drug loading and sustained release, which may limit tissue integration and tissue device communications. A calcium-mediated drug delivery mechanism was developed and characterized in this study. This novel mechanism allows controlled, sustained release of minocycline, an effective antibiotic and anti-inflammatory drug, from nanoscale thin hydrophilic polyelectrolyte multilayers for over 35 days at physiologically relevant concentrations. pH-responsive minocycline release was observed as the chelation between minocycline and Ca2+ is less stable at acidic pH, enabling ‘smart’ drug delivery in response to infection and/or inflammation-induced tissue acidosis. The release kinetics of minocycline can be controlled by varying initial loading, Ca2+ concentration, and Ca2+ incorporation into different layers, enabling facile development of implant coatings with versatile release kinetics. This drug delivery platform can potentially be used for releasing any drug that has high Ca2+ binding affinity, enabling its use in a variety of biomedical applications. PMID:24409292

  19. Effect of sodium nitroprusside and 8-bromo cyclic GMP on nerve-mediated and acetylcholine-evoked secretory responses in the rat pancreas

    PubMed Central

    Yago, Maria D; Tapia, Jose A; Salido, Gines M; Adeghate, Ernest; Juma, Lubna M O; Martinez-Victoria, Emilio; Mañas, Mariano; Singh, Jaipaul

    2002-01-01

    The effects of sodium nitroprusside (SNP) and 8-bromo-guanosine 3′5′ cyclic monophosphate (8-Br-cyclic GMP) on nerve-mediated and acetylcholine (ACh)-evoked amylase secretion, tritiated choline ([3H]-choline) release and on intracellular free calcium concentration ([Ca2+]i) in the isolated rat pancreas were investigated.Electrical field stimulation (EFS; 10 Hz) and ACh (1×10−5 M) caused large increases in amylase output from pancreatic segments. The response to ACh was blocked by atropine (1×10−5 M) whereas the EFS-evoked response was markedly reduced but not abolished. In contrast, pretreatment with tetrodotoxin (1×10−6 M) abolished the secretory effect of EFS.Either SNP (1×10−3 M) or 8-Br-cyclic GMP (1×10−4 M) inhibited amylase secretion compared to basal. Combining either SNP or 8-Br-cyclic GMP with EFS resulted in a marked decrease in amylase output compared to EFS alone. In contrast, either SNP or 8-Br-cyclic GMP had no significant effect on the amylase response to ACh. When extracellular Ca2+ concentration ([Ca2+]o) was elevated from 2.56 mM to 5.12 mM, SNP failed to inhibit the response to EFS.EFS stimulated the release of 3H from pancreatic segments preloaded with [3H]-choline. Either SNP or 8-Br-cyclic GMP had no effect on basal 3H release but significantly reduced the EFS-evoked response.In fura-2 loaded acinar cells, SNP elicited a small decrease in [Ca2+]i compared to basal and had no effect on the ACh-induced [Ca2+]i peak response.Nitric oxide may modulate the release of endogenous neural ACh in response to EFS in the rat pancreas. PMID:11976267

  20. Inositol 1,4,5-trisphosphate-induced calcium release in the organelle layers of the stratified, intact egg of Xenopus laevis

    PubMed Central

    1990-01-01

    Using double-barreled, Ca2(+)-sensitive microelectrodes, we have examined the characteristics of the Ca2+ release by inositol 1,4,5- trisphosphate (Ins(1,4,5)P3) in the various layers of Xenopus laevis eggs in which the organelles had been stratified by centrifugation. Centrifugation of living eggs stratifies the organelles yet retains them in the normal cytoplasmic milieu. The local increase in intracellular free Ca2+ in each layer was directly measured under physiological conditions using theta-tubing, double-barreled, Ca2(+)- sensitive microelectrodes in which one barrel was filled with the Ca2+ sensor and the other was filled with Ins(1,4,5)P3 for microinjection. The two tips of these electrodes were very close to each other (3 microns apart) enabling us to measure the kinetics of both the highly localized intracellular Ca2+ release and its subsequent removal in response to Ins(1,4,5)P3 injection. Upon Ins(1,4,5)P3 injection, the ER- enriched layer exhibited the largest release of Ca2+ in a dosage- dependent manner, whereas the other layers, mitochondria, lipid, and yolk, released 10-fold less Ca2+ in a dosage-independent manner. The removal of released Ca2+ took place within approximately 1 min. The sensitivity to Ins(1,4,5)P3 and the time course of intracellular Ca2+ release in the unstratified (unactivated) egg is nearly identical to that observed in the ER layer of the stratified egg. Our data suggest that the ER is the major organelle of the Ins(1,4,5)P3-sensitive Ca2+ store in the egg of Xenopus laevis. PMID:2324195

  1. Purified TPC Isoforms Form NAADP Receptors with Distinct Roles for Ca2+ Signaling and Endolysosomal Trafficking

    PubMed Central

    Ruas, Margarida; Rietdorf, Katja; Arredouani, Abdelilah; Davis, Lianne C.; Lloyd-Evans, Emyr; Koegel, Heidi; Funnell, Timothy M.; Morgan, Anthony J.; Ward, John A.; Watanabe, Keiko; Cheng, Xiaotong; Churchill, Grant C.; Zhu, Michael X.; Platt, Frances M.; Wessel, Gary M.; Parrington, John; Galione, Antony

    2010-01-01

    Summary Intracellular Ca2+ signals constitute key elements in signal transduction. Of the three major Ca2+ mobilizing messengers described, the most potent, nicotinic acid adenine dinucleotide phosphate (NAADP) is the least well understood in terms of its molecular targets [1]. Recently, we showed that heterologous expression of two-pore channel (TPC) proteins enhances NAADP-induced Ca2+ release, whereas the NAADP response was abolished in pancreatic beta cells from Tpcn2 gene knockout mice [2]. However, whether TPCs constitute native NAADP receptors is unclear. Here we show that immunopurified endogenous TPC complexes possess the hallmark properties ascribed to NAADP receptors, including nanomolar ligand affinity [3–5]. Our study also reveals important functional differences between the three TPC isoforms. Thus, TPC1 and TPC2 both mediate NAADP-induced Ca2+ release, but the subsequent amplification of this trigger Ca2+ by IP3Rs is more tightly coupled for TPC2. In contrast, TPC3 expression suppressed NAADP-induced Ca2+ release. Finally, increased TPC expression has dramatic and contrasting effects on endolysosomal structures and dynamics, implicating a role for NAADP in the regulation of vesicular trafficking. We propose that NAADP regulates endolysosomal Ca2+ storage and release via TPCs and coordinates endoplasmic reticulum Ca2+ release in a role that impacts on Ca2+ signaling in health and disease [6]. PMID:20346675

  2. Purified TPC isoforms form NAADP receptors with distinct roles for Ca(2+) signaling and endolysosomal trafficking.

    PubMed

    Ruas, Margarida; Rietdorf, Katja; Arredouani, Abdelilah; Davis, Lianne C; Lloyd-Evans, Emyr; Koegel, Heidi; Funnell, Timothy M; Morgan, Anthony J; Ward, John A; Watanabe, Keiko; Cheng, Xiaotong; Churchill, Grant C; Zhu, Michael X; Platt, Frances M; Wessel, Gary M; Parrington, John; Galione, Antony

    2010-04-27

    Intracellular Ca(2+) signals constitute key elements in signal transduction. Of the three major Ca(2+) mobilizing messengers described, the most potent, nicotinic acid adenine dinucleotide phosphate (NAADP) is the least well understood in terms of its molecular targets [1]. Recently, we showed that heterologous expression of two-pore channel (TPC) proteins enhances NAADP-induced Ca(2+) release, whereas the NAADP response was abolished in pancreatic beta cells from Tpcn2 gene knockout mice [2]. However, whether TPCs constitute native NAADP receptors is unclear. Here we show that immunopurified endogenous TPC complexes possess the hallmark properties ascribed to NAADP receptors, including nanomolar ligand affinity [3-5]. Our study also reveals important functional differences between the three TPC isoforms. Thus, TPC1 and TPC2 both mediate NAADP-induced Ca(2+) release, but the subsequent amplification of this trigger Ca(2+) by IP(3)Rs is more tightly coupled for TPC2. In contrast, TPC3 expression suppressed NAADP-induced Ca(2+) release. Finally, increased TPC expression has dramatic and contrasting effects on endolysosomal structures and dynamics, implicating a role for NAADP in the regulation of vesicular trafficking. We propose that NAADP regulates endolysosomal Ca(2+) storage and release via TPCs and coordinates endoplasmic reticulum Ca(2+) release in a role that impacts on Ca(2+) signaling in health and disease [6]. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. VEGF-induced neoangiogenesis is mediated by NAADP and two-pore channel-2–dependent Ca2+ signaling

    PubMed Central

    Favia, Annarita; Desideri, Marianna; Gambara, Guido; D’Alessio, Alessio; Ruas, Margarida; Esposito, Bianca; Del Bufalo, Donatella; Parrington, John; Ziparo, Elio; Palombi, Fioretta; Galione, Antony; Filippini, Antonio

    2014-01-01

    Vascular endothelial growth factor (VEGF) and its receptors VEGFR1/VEGFR2 play major roles in controlling angiogenesis, including vascularization of solid tumors. Here we describe a specific Ca2+ signaling pathway linked to the VEGFR2 receptor subtype, controlling the critical angiogenic responses of endothelial cells (ECs) to VEGF. Key steps of this pathway are the involvement of the potent Ca2+ mobilizing messenger, nicotinic acid adenine-dinucleotide phosphate (NAADP), and the specific engagement of the two-pore channel TPC2 subtype on acidic intracellular Ca2+ stores, resulting in Ca2+ release and angiogenic responses. Targeting this intracellular pathway pharmacologically using the NAADP antagonist Ned-19 or genetically using Tpcn2−/− mice was found to inhibit angiogenic responses to VEGF in vitro and in vivo. In human umbilical vein endothelial cells (HUVECs) Ned-19 abolished VEGF-induced Ca2+ release, impairing phosphorylation of ERK1/2, Akt, eNOS, JNK, cell proliferation, cell migration, and capillary-like tube formation. Interestingly, Tpcn2 shRNA treatment abolished VEGF-induced Ca2+ release and capillary-like tube formation. Importantly, in vivo VEGF-induced vessel formation in matrigel plugs in mice was abolished by Ned-19 and, most notably, failed to occur in Tpcn2−/− mice, but was unaffected in Tpcn1−/− animals. These results demonstrate that a VEGFR2/NAADP/TPC2/Ca2+ signaling pathway is critical for VEGF-induced angiogenesis in vitro and in vivo. Given that VEGF can elicit both pro- and antiangiogenic responses depending upon the balance of signal transduction pathways activated, targeting specific VEGFR2 downstream signaling pathways could modify this balance, potentially leading to more finely tailored therapeutic strategies. PMID:25331892

  4. Methanol induces cytosolic calcium variations, membrane depolarization and ethylene production in arabidopsis and tobacco.

    PubMed

    Tran, Daniel; Dauphin, Aurélien; Meimoun, Patrice; Kadono, Takashi; Nguyen, Hieu T H; Arbelet-Bonnin, Delphine; Zhao, Tingting; Errakhi, Rafik; Lehner, Arnaud; Kawano, Tomonori; Bouteau, François

    2018-03-20

    Methanol is a volatile organic compound released from plants through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. However, molecular mechanisms that explain how methanol could affect plant defences remain poorly understood. Using cultured cells and seedlings from Arabidopsis thaliana and tobacco BY2 expressing the apoaequorin gene, allowing quantification of cytosolic Ca2+, a reactive oxygen species (ROS) probe (CLA, Cypridina luciferin analogue) and electrophysiological techniques, we followed early plant cell responses to exogenously supplied methanol applied as a liquid or as volatile. Methanol induces cytosolic Ca2+ variations that involve Ca2+ influx through the plasma membrane and Ca2+ release from internal stores. Our data further suggest that these Ca2+ variations could interact with different ROS and support a signalling pathway leading to well known plant responses to pathogens such as plasma membrane depolarization through anion channel regulation and ethylene synthesis. Methanol is not only a by-product of PME activities, and our data suggest that [Ca2+]cyt variations could participate in signalling processes induced by methanol upstream of plant defence responses.

  5. Cytosolic acidification and intracellular zinc release in hippocampal neurons

    PubMed Central

    Kiedrowski, Lech

    2012-01-01

    In neurons exposed to glutamate, Ca2+ influx triggers intracellular Zn2+ release via an as yet unclear mechanism. Since glutamate induces a Ca2+-dependent cytosolic acidification, the present work tested the relationships among intracellular Ca2+ concentration ([Ca2+]i), intracellular pH (pHi), and [Zn2+]i. Cultured hippocampal neurons were exposed to glutamate and glycine (Glu/Gly), while [Zn2+]i, [Ca2+]i and pHi were monitored using FluoZin-3, Fura2-FF, and 2′,7′-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein, respectively. Glu/Gly applications decreased pHi to 6.1 and induced intracellular Zn2+ release in a Ca2+-dependent manner, as expected. The pHi drop reduced the affinity of FluoZin-3 and Fura-2-FF for Zn2+. The rate of Glu/Gly-induced [Zn2+]i increase was not correlated with the rate of [Ca2+]i increase. Instead, the extent of [Zn2+]i elevations corresponded well to the rate of pHi drop. Namely, [Zn2+]i increased more in more highly acidified neurons. Inhibiting the mechanisms responsible for the Ca2+-dependent pHi drop (plasmalemmal Ca2+ pump and mitochondria) counteracted the Glu/Gly-induced intracellular Zn2+ release. Alkaline pH (8.5) suppressed Glu/Gly-induced intracellular Zn2+ release whereas acidic pH (6.0) enhanced it. A pHi drop to 6.0 (without any Ca2+ influx or glutamate receptor activation) led to intracellular Zn2+ release; the released Zn2+ (free Zn2+ plus Zn2+ bound to Fura-2FF and FluoZin-3) reached 1 μM. PMID:22339672

  6. Selection of intracellular calcium patterns in a model with clustered Ca2+ release channels

    NASA Astrophysics Data System (ADS)

    Shuai, J. W.; Jung, P.

    2003-03-01

    A two-dimensional model is proposed for intracellular Ca2+ waves, which incorporates both the discrete nature of Ca2+ release sites in the endoplasmic reticulum membrane and the stochastic dynamics of the clustered inositol 1,4,5-triphosphate (IP3) receptors. Depending on the Ca2+ diffusion coefficient and concentration of IP3, various spontaneous Ca2+ patterns, such as calcium puffs, local waves, abortive waves, global oscillation, and tide waves, can be observed. We further investigate the speed of the global waves as a function of the IP3 concentration and the Ca2+ diffusion coefficient and under what conditions the spatially averaged Ca2+ response can be described by a simple set of ordinary differential equations.

  7. An integrated mechanism of cardiomyocyte nuclear Ca(2+) signaling.

    PubMed

    Ibarra, Cristián; Vicencio, Jose Miguel; Varas-Godoy, Manuel; Jaimovich, Enrique; Rothermel, Beverly A; Uhlén, Per; Hill, Joseph A; Lavandero, Sergio

    2014-10-01

    In cardiomyocytes, Ca(2+) plays a central role in governing both contraction and signaling events that regulate gene expression. Current evidence indicates that discrimination between these two critical functions is achieved by segregating Ca(2+) within subcellular microdomains: transcription is regulated by Ca(2+) release within nuclear microdomains, and excitation-contraction coupling is regulated by cytosolic Ca(2+). Accordingly, a variety of agonists that control cardiomyocyte gene expression, such as endothelin-1, angiotensin-II or insulin-like growth factor-1, share the feature of triggering nuclear Ca(2+) signals. However, signaling pathways coupling surface receptor activation to nuclear Ca(2+) release, and the phenotypic responses to such signals, differ between agonists. According to earlier hypotheses, the selective control of nuclear Ca(2+) signals by activation of plasma membrane receptors relies on the strategic localization of inositol trisphosphate receptors at the nuclear envelope. There, they mediate Ca(2+) release from perinuclear Ca(2+) stores upon binding of inositol trisphosphate generated in the cytosol, which diffuses into the nucleus. More recently, identification of such receptors at nuclear membranes or perinuclear sarcolemmal invaginations has uncovered novel mechanisms whereby agonists control nuclear Ca(2+) release. In this review, we discuss mechanisms for the selective control of nuclear Ca(2+) signals with special focus on emerging models of agonist receptor activation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Resveratrol-induced autophagy is dependent on IP3Rs and on cytosolic Ca2.

    PubMed

    Luyten, Tomas; Welkenhuyzen, Kirsten; Roest, Gemma; Kania, Elzbieta; Wang, Liwei; Bittremieux, Mart; Yule, David I; Parys, Jan B; Bultynck, Geert

    2017-06-01

    Previous work revealed that intracellular Ca 2+ signals and the inositol 1,4,5-trisphosphate (IP 3 ) receptors (IP 3 R) are essential to increase autophagic flux in response to mTOR inhibition, induced by either nutrient starvation or rapamycin treatment. Here, we investigated whether autophagy induced by resveratrol, a polyphenolic phytochemical reported to trigger autophagy in a non-canonical way, also requires IP 3 Rs and Ca 2+ signaling. Resveratrol augmented autophagic flux in a time-dependent manner in HeLa cells. Importantly, autophagy induced by resveratrol (80μM, 2h) was completely abolished in the presence of 10μM BAPTA-AM, an intracellular Ca 2+ -chelating agent. To elucidate the IP 3 R's role in this process, we employed the recently established HEK 3KO cells lacking all three IP 3 R isoforms. In contrast to the HEK293 wt cells and to HEK 3KO cells re-expressing IP 3 R1, autophagic responses in HEK 3KO cells exposed to resveratrol were severely impaired. These altered autophagic responses could not be attributed to alterations in the mTOR/p70S6K pathway, since resveratrol-induced inhibition of S6 phosphorylation was not abrogated by chelating cytosolic Ca 2+ or by knocking out IP 3 Rs. Finally, we investigated whether resveratrol by itself induced Ca 2+ release. In permeabilized HeLa cells, resveratrol neither affected the sarco- and endoplasmic reticulum Ca 2+ ATPase (SERCA) activity nor the IP 3 -induced Ca 2+ release nor the basal Ca 2+ leak from the ER. Also, prolonged (4 h) treatment with 100μM resveratrol did not affect subsequent IP 3 -induced Ca 2+ release. However, in intact HeLa cells, although resveratrol did not elicit cytosolic Ca 2+ signals by itself, it acutely decreased the ER Ca 2+ -store content irrespective of the presence or absence of IP 3 Rs, leading to a dampened agonist-induced Ca 2+ signaling. In conclusion, these results reveal that IP 3 Rs and cytosolic Ca 2+ signaling are fundamentally important for driving autophagic flux, not only in response to mTOR inhibition but also in response to non-canonical autophagy inducers like resveratrol. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Ryanodine Receptor Calcium Leak in Circulating B-Lymphocytes as a Biomarker in Heart Failure.

    PubMed

    Kushnir, Alexander; Santulli, Gaetano; Reiken, Steven R; Coromilas, Ellie; Godfrey, Sarah J; Brunjes, Danielle L; Colombo, Paolo C; Yuzefpolskaya, Melana; Sokol, Seth I; Kitsis, Richard N; Marks, Andrew R

    2018-03-28

    Background -Advances in congestive heart failure (CHF) management depend on biomarkers for monitoring disease progression and therapeutic response. During systole, intracellular Ca2 + is released from the sarcoplasmic reticulum (SR) into the cytoplasm through type 2 ryanodine receptor/Ca2 + release channels (RyR2). In CHF, chronically elevated circulating catecholamine levels cause pathologic remodeling of RyR2 resulting in diastolic SR Ca2 + leak, and decreased myocardial contractility. Similarly, skeletal muscle contraction requires SR Ca2 + release through type-1 ryanodine receptors (RyR1), and chronically elevated catecholamine levels in CHF cause RyR1 mediated SR Ca2 + leak, contributing to myopathy and weakness. Circulating B-lymphocytes express RyR1 and catecholamine responsive signaling cascades, making them a potential surrogate for defects in intracellular Ca2 + handling due to leaky RyR channels in CHF. Methods -Whole blood was collected from patients with CHF, CHF status-post left-ventricular assist devices (LVAD), and controls. Blood was also collected from mice with ischemic CHF, ischemic CHF + S107 (a drug that specifically reduces RyR channel Ca2 + leak), and WT controls. Channel macromolecular complex was assessed by immunostaining RyR1 immunoprecipitated from lymphocyte enriched preparations. RyR1 Ca2 + leak was assessed using flow cytometry to measure Ca2 + fluorescence in B-lymphocytes, in the absence and presence of RyR1 agonists that empty RyR1 Ca2 + stores within the endoplasmic reticulum (ER). Results -Circulating B-lymphocytes from humans and mice with CHF exhibited remodeled RyR1 and decreased ER Ca2 + stores, consistent with chronic intracellular Ca2 + leak. This Ca2 + leak correlated with circulating catecholamine levels. The intracellular Ca2 + leak was significantly reduced in mice treated with the Rycal S107. CHF patients treated with LVAD exhibited a heterogeneous response. Conclusions -In CHF, B-lymphocytes exhibit remodeled leaky RyR1 channels and decreased ER Ca2 + stores consistent with chronic intracellular Ca2 + leak. RyR1 mediated Ca2 + leak in B-lymphocytes assessed using flow cytometry provides a surrogate measure of intracellular Ca2 + handling and systemic sympathetic burden, presenting a novel biomarker for monitoring response to pharmacologic and mechanical CHF therapy.

  10. Extracellular nucleotides potentiate the cytosolic Ca2+, but not cyclic adenosine 3', 5'-monophosphate response to parathyroid hormone in rat osteoblastic cells.

    PubMed

    Kaplan, A D; Reimer, W J; Feldman, R D; Dixon, S J

    1995-04-01

    Binding to PTH to its cell surface receptor activates both adenylyl cyclase and phospholipase-C, leading to elevation of cytosolic cAMP and free Ca2+. We have shown previously that extracellular nucleotides interact with P2U and P2Y subtypes of purinoceptor on osteoblastic cells, both linked to Ca2+ mobilization. In the present study, we investigated possible interactions between nucleotide and PTH signaling pathways in osteoblastic cells. The cytosolic free Ca2+ concentration ([Ca2+]i) of UMR-106 osteoblastic cells was monitored by fluorescence spectrophotometry. PTH (0.01-1 microM; bovine 1-84 or human 1-34) induced a small transient elevation of [Ca2+]i, lasting less than 1 min. A number of nucleotides, including ATP, UTP, and UDP, induced transient elevation of [Ca2+]i and potentiated the subsequent Ca2+ response to PTH. Of the nucleotides tested, UDP was the most effective at potentiating the PTH-induced Ca2+ transient. Treatment of cells with UDP (100 microM for 2.5 min), but not inorganic phosphate or uridine, reversibly potentiated the Ca2+ response to PTH (0.1 microM) by 11 +/- 2-fold (mean +/- SEM; n = 39). In contrast, UDP did not affect the cAMP response to PTH, indicating a selective action on Ca2+ signaling. Potentiation of the Ca2+ signal was still observed in the absence of extracellular Ca2+, establishing that nucleotides enhance PTH-induced release of Ca2+ from intracellular stores. Studies using selective purinoceptor agonists suggest that potentiation of PTH signaling is mediated by the P2U receptor subtype. In vivo, nucleotides released during trauma or inflammation may modulate PTH-induced Ca2+ signaling in osteoblasts.

  11. Paying the piper: the cost of Ca2+ pumping during the mating call of toadfish

    PubMed Central

    Harwood, Claire L; Young, Iain S; Tikunov, Boris A; Hollingworth, Stephen; Baylor, Stephen M; Rome, Lawrence C

    2011-01-01

    Abstract Superfast fibres of toadfish swimbladder muscle generate a series of superfast Ca2+ transients, a necessity for high-frequency calling. How is this accomplished with a relatively low rate of Ca2+ pumping by the sarcoplasmic reticulum (SR)? We hypothesized that there may not be complete Ca2+ saturation and desaturation of the troponin Ca2+ regulatory sites with each twitch during calling. To test this, we determined the number of regulatory sites by measuring the concentration of troponin C (TNC) molecules, 33.8 μmol per kg wet weight. We then estimated how much SR Ca2+ is released per twitch by measuring the recovery oxygen consumption in the presence of a crossbridge blocker, N-benzyl-p-toluene sulphonamide (BTS). The results agreed closely with SR release estimates obtained with a kinetic model used to analyse Ca2+ transient measurements. We found that 235 μmol of Ca2+ per kg muscle is released with the first twitch of an 80 Hz stimulus (15oC). Release per twitch declines dramatically thereafter such that by the 10th twitch release is only 48 μmol kg−1 (well below the concentration of TNC Ca2+ regulatory sites, 67.6 μmol kg−1). The ATP usage per twitch by the myosin crossbridges remains essentially constant at ∼25 μmol kg−1 throughout the stimulus period. Hence, for the first twitch, ∼80% of the energy goes into pumping Ca2+ (which uses 1 ATP per 2 Ca2+ ions pumped), but by the 10th and subsequent twitches the proportion is ∼50%. Even though by the 10th stimulus the Ca2+ release per twitch has dropped 5-fold, the Ca2+ remaining in the SR has declined by only ∼18%; hence dwindling SR Ca2+ content is not responsible for the drop. Rather, inactivation of the Ca2+ release channel by myoplasmic Ca2+ likely explains this reduction. If inactivation did not occur, the SR would run out of Ca2+ well before the end of even a 40-twitch call. Hence, inactivation of the Ca2+ release channel plays a critical role in swimbladder muscle during normal in vivo function. PMID:21946852

  12. CD38 Mediates Angiotensin II–Induced Intracellular Ca2+ Release in Rat Pulmonary Arterial Smooth Muscle Cells

    PubMed Central

    Lee, Suengwon; Paudel, Omkar; Jiang, Yongliang; Yang, Xiao-Ru

    2015-01-01

    CD38 is a multifunctional enzyme that catalyzes the formation of the endogenous Ca2+-mobilizing messengers cyclic ADP-ribose (cADPR) and nicotinic acid adenosine dinucleotide phosphate (NAADP) for the activation of ryanodine receptors (RyRs) of sarcoplasmic reticulum and NAADP-sensitive Ca2+ release channels in endolysosomes, respectively. It plays important roles in systemic vascular functions, but there is little information on CD38 in pulmonary arterial smooth muscle cells (PASMCs). Earlier studies suggested a redox-sensing role of CD38 in hypoxic pulmonary vasoconstriction. This study sought to characterize its roles in angiotensin II (Ang II)–induced Ca2+ release (AICR) in PASMCs. Examination of CD38 expression in various rat arteries found high levels of CD38 mRNA and protein in pulmonary arteries. The Ang II–elicited Ca2+ response consisted of extracellular Ca2+ influx and intracellular Ca2+ release in PASMCs. AICR activated in the absence of extracellular Ca2+ was reduced by pharmacological or siRNA inhibition of CD38, by the cADPR antagonist 8-bromo-cADPR or ryanodine, and by the NAADP antagonist Ned-19 or disruption of endolysosomal Ca2+ stores with the vacuolar H+-ATPase inhibitor bafilomycin A1. Suppression of AICR by the inhibitions of cADPR- and NAADP-dependent pathways were nonadditive, indicating interdependence of RyR- and NAADP-gated Ca2+ release. Furthermore, AICR was inhibited by the protein kinase C inhibitor staurosporine, the nonspecific NADPH oxidase (NOX) inhibitors apocynin and diphenyleneiodonium, the NOX2-specific inhibitor gp91ds-tat, and the scavenger of reactive oxygen species (ROS) tempol. These results provide the first evidence that Ang II activates CD38-dependent Ca2+ release via the NOX2-ROS pathway in PASMCs. PMID:25078456

  13. The influence of calcium and pH on growth in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Evans, M. L.

    1988-01-01

    We investigated the interaction of Ca2+ and pH on root elongation in Zea mays L. cv. B73 x Missouri 17 and cv. Merit. Seedlings were raised to contain high levels of Ca2+ (HC, imbibed and raised in 10 mM CaCl2) or low levels of Ca2+ (LC, imbibed and raised in distilled water). In HC roots, lowering the pH (5 mM MES/Tris) from 6.5 to 4.5 resulted in strong, long-lasting growth promotion. Surprisingly, increasing the pH from 6.5 to 8.5 also resulted in strong growth promotion. In LC roots acidification of the medium (pH 6.5 to 4.5) resulted in transient growth stimulation followed by a gradual decline in the growth rate toward zero. Exposure of LC roots to high pH (pH shift from 6.5 to 8.5) also promoted growth. Addition of EGTA resulted in strong growth promotion in both LC and HC roots. The ability of EGTA to stimulate growth appeared not to be related to H+ release from EGTA upon Ca2+ chelation since, 1) LC roots showed a strong and prolonged response to EGTA, but only a transient response to acid pH, and 2) promotion of growth by EGTA was observed in strongly buffered solutions. We also examined the pH dependence of the release of 45Ca2+ from roots of 3-day-old seedlings grown from grains imbibed in 45Ca2+. Release of 45Ca2+ from the root into agar blocks placed on the root surface was greater the more acidic the pH of the blocks. The results indicate that Ca2+ may be necessary for the acid growth response in roots.

  14. Neuronal activity determines distinct gliotransmitter release from a single astrocyte

    PubMed Central

    Covelo, Ana

    2018-01-01

    Accumulating evidence indicates that astrocytes are actively involved in brain function by regulating synaptic activity and plasticity. Different gliotransmitters, such as glutamate, ATP, GABA or D-serine, released form astrocytes have been shown to induce different forms of synaptic regulation. However, whether a single astrocyte may release different gliotransmitters is unknown. Here we show that mouse hippocampal astrocytes activated by endogenous (neuron-released endocannabinoids or GABA) or exogenous (single astrocyte Ca2+ uncaging) stimuli modulate putative single CA3-CA1 hippocampal synapses. The astrocyte-mediated synaptic modulation was biphasic and consisted of an initial glutamate-mediated potentiation followed by a purinergic-mediated depression of neurotransmitter release. The temporal dynamic properties of this biphasic synaptic regulation depended on the firing frequency and duration of the neuronal activity that stimulated astrocytes. Present results indicate that single astrocytes can decode neuronal activity and, in response, release distinct gliotransmitters to differentially regulate neurotransmission at putative single synapses. PMID:29380725

  15. Effects of adrenalectomy on the control and adrenergic regulation of cytosolic free calcium in hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freudenrich, C.C.

    1987-01-01

    The purpose of this study was to investigate the effects of adrenalectomy on the control and ..cap alpha..-adrenergic regulation of the concentration of cytosolic free calcium (Ca/sub i/) in hepatocytes. In hepatocytes isolated from adrenalectomized (adx) and sham-operated male rats 7-1 days after surgery, Ca/sub i/ at rest and in response to epinephrine (EPI) was measured with the calcium-sensitive photoprotein aequorin, /sup 45/Ca efflux was measured, and Ca/sup 2 +/ release from intracellular stores in response to inositol triphosphate (IP/sub 3/) was measured in saponin-permeabilized cells. Liver calmodulin content was also assayed by radioimmunoassay. It was found in adx ratsmore » that the resting Ca/sub i/ was elevated, the rise in Ca/sub i/ during EPI stimulation was reduced at physiological EPI concentrations, and the rise in calcium efflux evoked by EPI was reduced. Furthermore, the slope of the relationship between Ca/sub i/ and calcium efflux was reduced 60% in adx. Adx did not alter the characteristics of Ca/sup 2 +/ release from intracellular calcium pools in response to IP/sub 3/ in permeabilized cells. Finally, the liver calmodulin contents were not significantly different between the 2 groups.« less

  16. Raised intracellular [Ca2+] abolishes excitation-contraction coupling in skeletal muscle fibres of rat and toad.

    PubMed Central

    Lamb, G D; Junankar, P R; Stephenson, D G

    1995-01-01

    1. Raising the intracellular [Ca2+] for 10 s at 23 degrees C abolished depolarization-induced force responses in mechanically skinned muscle fibres of toad and rat (half-maximal effect at 10 and 23 microM, respectively), without affecting the ability of caffeine or low [Mg2+] to open the ryanodine receptor (RyR)/Ca2+ release channels. Thus, excitation-contraction coupling was lost, even though the Ca2+ release channels were still functional. Coupling could not be restored in the duration of an experiment (up to 1 h). 2. The Ca(2+)-dependent uncoupling had a Q10 > 3.5, and was three times slower at pH 5.8 than at pH 7.1. Sr2+ caused similar uncoupling at twenty times higher concentration, but Mg2+, even at 10 mM, was ineffective. Uncoupling was not noticeably affected by removal of ATP or application of protein kinase or phosphatase inhibitors. 3. Confocal laser scanning microscopy showed that the transverse tubular system was sealed in its entirety in mechanically skinned fibres and that its integrity was maintained in uncoupled fibres. Electron microscopy revealed distorted or severed triad junctions and Z-line aberrations in uncoupled fibres. 4. Only when uncoupling was induced at a relatively slow rate (e.g. over 60 s with 2.5 microM Ca2+) could it be prevented by the protease inhibitor leupeptin (1 mM). Immunostaining of Western blots showed no evidence of proteolysis of the RyR, the alpha 1-subunit of dihydropyridine receptor (DHPR) or triadin in uncoupled fibres. 5. Fibres which, whilst intact, were stimulated repeatedly by potassium depolarization with simultaneous application of 30 mM caffeine showed reduced responsiveness after skinning to depolarization but not to caffeine. Rapid release of endogenous Ca2+, or raised [Ca2+] under conditions which minimized the loss of endogenous diffusible myoplasmic molecules from the skinned fibre, caused complete uncoupling. Taken together, these results suggest that Ca(2+)-dependent uncoupling can also occur in intact fibres. 6. This Ca(2+)-dependent loss of depolarization-induced Ca2+ release may play an important feedback role in muscle by stopping Ca2+ release in localized areas where it is excessive and may be responsible for long-lasting muscle fatigue after severe exercise, as well as contributing to muscle weakness in various dystrophies. Images Figure 1 Figure 7 Figure 9 PMID:8847631

  17. Exploring the biophysical evidence that mammalian two‐pore channels are NAADP‐activated calcium‐permeable channels

    PubMed Central

    Reilly‐O'Donnell, Benedict; Sitsapesan, Rebecca

    2016-01-01

    Abstract Nicotinic acid adenine dinucleotide phosphate (NAADP) potently releases Ca2+ from acidic intracellular endolysosomal Ca2+ stores. It is widely accepted that two types of two‐pore channels, termed TPC1 and TPC2, are responsible for the NAADP‐mediated Ca2+ release but the underlying mechanisms regulating their gating appear to be different. For example, although both TPC1 and TPC2 are activated by NAADP, TPC1 appears to be additionally regulated by cytosolic Ca2+. Ion conduction and permeability also differ markedly. TPC1 and TPC2 are permeable to a range of cations although biophysical experiments suggest that TPC2 is slightly more selective for Ca2+ over K+ than TPC1 and hence capable of releasing greater quantities of Ca2+ from acidic stores. TPC1 is also permeable to H+ and therefore may play a role in regulating lysosomal and cytosolic pH, possibly creating localised acidic domains. The significantly different gating and ion conducting properties of TPC1 and TPC2 suggest that these two ion channels may play complementary physiological roles as Ca2+‐release channels of the endolysosomal system. PMID:26872338

  18. Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions.

    PubMed

    Grossini, Elena; Farruggio, Serena; Qoqaiche, Fatima; Raina, Giulia; Camillo, Lara; Sigaudo, Lorenzo; Mary, David; Surico, Nicola; Surico, Daniela

    2016-09-15

    Perivascular adipose tissue can be involved in the process of cardiovascular pathology through the release of adipokines, namely adiponectins. Monomeric adiponectin has been shown to increase coronary blood flow in anesthetized pigs through increased nitric oxide (NO) release and the involvement of adiponectin receptor 1 (AdipoR1). The present study was therefore planned to examine the effects of monomeric adiponectin on NO release and Ca(2+) transients in porcine aortic endothelial cells (PAEs) in normal/high glucose conditions and the related mechanisms. PAEs were treated with monomeric adiponectin alone or in the presence of intracellular kinases blocker, AdipoR1 and Ca(2+)-ATPase pump inhibitors. The role of Na(+)/Ca(2+) exchanger was examined in experiments performed in zero Na(+) medium. NO release and intracellular Ca(2+) were measured through specific probes. In PAE cultured in normal glucose conditions, monomeric adiponectin elevated NO production and [Ca(2+)]c. Similar effects were observed in high glucose conditions, although the response was lower and not transient. The Ca(2+) mobilized by monomeric adiponectin originated from an intracellular pool thapsigargin- and ATP-sensitive and from the extracellular space. Moreover, the effects of monomeric adiponectin were prevented by kinase blockers and AdipoR1 inhibitor. Finally, in normal glucose condition, a role for Na(+)/Ca(2+) exchanger and Ca(2+)-ATPase pump in restoring Ca(2+) was found. Our results add new information about the control of endothelial function elicited by monomeric adiponectin, which would be achieved by modulation of NO release and Ca(2+) transients. A signalling related to Akt, ERK1/2 and p38MAPK downstream AdipoR1 would be involved. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. /sup 45/Ca efflux for myometrial cells: comparison of the effects of prostaglandin F/sub 2/. cap alpha. (PGF/sub 2/), oxytocin (OT) and arachidonate (A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katona, G.; Molnar, M.; Toth, M.

    1986-03-01

    The aim of this study was to measure PGF/sub 2..cap alpha../-induced Ca/sup 2 +/ release from uterine cells and to compare this to the actions of OT and A. Smooth muscle cells isolated from the uterus (shell gland) of laying hens were cultured for 7 days in M199 plus 10% fetal calf serum. The cells were treated with digitonin (20..mu..M) and preloaded with /sup 45/Ca for 40 min. Addition of PGF/sub 2..cap alpha../ caused a biphasic /sup 45/Ca-efflux. There was a small but significant /sup 45/Ca-release within 30 sec (rapid phase) followed by a larger one within 7 min (slowmore » phase). In comparison, both OT and A stimulated /sup 45/Ca efflux during a single, slow phase. The maximal effect of A was observed at < 7 min, whereas that of OT was slower, peaking after 7 min. Mepacrin, an inhibitor of A release, attenuated the action of OT without having any effect on A promoted /sup 45/Ca-efflux. Indomethacin, an inhibitor of PG synthase, failed to suppress the Ca-releasing effect of A suggesting the A itself or a lipoxygenase product may have been responsible for the observed effects. Moreover, these results provide suggestive evidence that A release is an important step in the action of various uterotonic agents converging on the mobilization of intracellular Ca.« less

  20. An alkaline follicular fluid fraction induces capacitation and limited release of oviduct epithelium-bound stallion sperm.

    PubMed

    Leemans, Bart; Gadella, Bart M; Stout, Tom A E; Nelis, Hilde; Hoogewijs, Maarten; Van Soom, Ann

    2015-09-01

    Induction of hyperactivated motility is considered essential for triggering the release of oviduct-bound mammalian spermatozoa in preparation for fertilization. In this study, oviduct-bound stallion spermatozoa were exposed for 2 h to: i) pre-ovulatory and ii) post-ovulatory oviductal fluid; iii) 100% and iv) 10% follicular fluid (FF); v) cumulus cells, vi) mature equine oocytes, vii) capacitating and viii) non-capacitating medium. None of these triggered sperm release or hyperactivated motility. Interestingly, native FF was detrimental to sperm viability, an effect that was negated by heat inactivation, charcoal treatment and 30 kDa filtration alone or in combination. Moreover, sperm suspensions exposed to treated FF at pH 7.9 but not pH 7.4 showed Ca(2+)-dependent hypermotility. Fluo-4 AM staining of sperm showed elevated cytoplasmic Ca(2+) in hyperactivated stallion spermatozoa exposed to treated FF at pH 7.9 compared to a modest response in defined capacitating conditions at pH 7.9 and no response in treated FF at pH 7.4. Moreover, 1 h incubation in alkaline, treated FF induced protein tyrosine phosphorylation in 20% of spermatozoa. None of the conditions tested induced widespread release of sperm pre-bound to oviduct epithelium. However, the hyperactivating conditions did induce release of 70-120 spermatozoa per oviduct explant, of which 48% showed protein tyrosine phosphorylation and all were acrosome-intact, but capable of acrosomal exocytosis in response to calcium ionophore. We conclude that, in the presence of elevated pH and extracellular Ca(2+), a heat-resistant, hydrophilic, <30 kDa component of FF can trigger protein tyrosine phosphorylation, elevated cytoplasmic Ca(2+) and hyperactivated motility in stallion sperm, but infrequent release of sperm pre-bound to oviduct epithelium. © 2015 Society for Reproduction and Fertility.

  1. A ROS-Assisted Calcium Wave Dependent on the AtRBOHD NADPH Oxidase and TPC1 Cation Channel Propagates the Systemic Response to Salt Stress.

    PubMed

    Evans, Matthew J; Choi, Won-Gyu; Gilroy, Simon; Morris, Richard J

    2016-07-01

    Plants exhibit rapid, systemic signaling systems that allow them to coordinate physiological and developmental responses throughout the plant body, even to highly localized and quickly changing environmental stresses. The propagation of these signals is thought to include processes ranging from electrical and hydraulic networks to waves of reactive oxygen species (ROS) and cytoplasmic Ca(2+) traveling throughout the plant. For the Ca(2+) wave system, the involvement of the vacuolar ion channel TWO PORE CHANNEL1 (TPC1) has been reported. However, the precise role of this channel and the mechanism of cell-to-cell propagation of the wave have remained largely undefined. Here, we use the fire-diffuse-fire model to analyze the behavior of a Ca(2+) wave originating from Ca(2+) release involving the TPC1 channel in Arabidopsis (Arabidopsis thaliana). We conclude that a Ca(2+) diffusion-dominated calcium-induced calcium-release mechanism is insufficient to explain the observed wave transmission speeds. The addition of a ROS-triggered element, however, is able to quantitatively reproduce the observed transmission characteristics. The treatment of roots with the ROS scavenger ascorbate and the NADPH oxidase inhibitor diphenyliodonium and analysis of Ca(2+) wave propagation in the Arabidopsis respiratory burst oxidase homolog D (AtrbohD) knockout background all led to reductions in Ca(2+) wave transmission speeds consistent with this model. Furthermore, imaging of extracellular ROS production revealed a systemic spread of ROS release that is dependent on both AtRBOHD and TPC1 These results suggest that, in the root, plant systemic signaling is supported by a ROS-assisted calcium-induced calcium-release mechanism intimately involving ROS production by AtRBOHD and Ca(2+) release dependent on the vacuolar channel TPC1. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. Expression and subcellular localization of the ryanodine receptor in rat pancreatic acinar cells.

    PubMed Central

    Leite, M F; Dranoff, J A; Gao, L; Nathanson, M H

    1999-01-01

    The ryanodine receptor (RyR) is the principal Ca2+-release channel in excitable cells, whereas the inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) is primarily responsible for Ca2+ release in non-excitable cells, including epithelia. RyR also is expressed in a number of non-excitable cell types, but is thought to serve as an auxiliary or alternative Ca2+-release pathway in those cells. Here we use reverse transcription PCR to show that a polarized epithelium, the pancreatic acinar cell, expresses the type 2, but not the type 1 or 3, isoform of RyR. We furthermore use immunochemistry to demonstrate that the type 2 RyR is distributed throughout the basolateral and, to a lesser extent, the apical region of the acinar cell, but is excluded from the trigger zone, where cytosolic Ca2+ signals originate in this cell type. Since propagation of Ca2+ waves in acinar cells is sensitive to ryanodine, caffeine and Ca2+, these findings suggest that Ca2+ waves in this cell type result from the co-ordinated release of Ca2+, first from InsP3Rs in the trigger zone, then from RyRs elsewhere in the cell. RyR may play a fundamental role in Ca2+ signalling in polarized epithelia, including for Ca2+ signals initiated by InsP3. PMID:9882629

  3. Patterns of intracellular calcium oscillations in horse oocytes fertilized by intracytoplasmic sperm injection: possible explanations for the low success of this assisted reproduction technique in the horse.

    PubMed

    Bedford, Sylvia J; Kurokawa, Manabu; Hinrichs, Katrin; Fissore, Rafael A

    2004-04-01

    In all species studied, fertilization induces intracellular Ca2+ ([Ca2+]i) oscillations required for oocyte activation and embryonic development. This species-specific pattern has not been studied in the equine, partly due to the difficulties linked to in vitro fertilization in this species. Therefore, the objective of this study was to use intracytoplasmic sperm injection (ICSI) to investigate fertilization-induced [Ca2+]i signaling and, possibly, ascertain problems linked to the success of this technology in the horse. In vivo- and in vitro-matured mare oocytes were injected with a single motile stallion sperm. Few oocytes displayed [Ca2+]i responses regardless of oocyte source and we hypothesized that this may result from insufficient release of the sperm-borne active molecule (sperm factor) into the oocyte. However, permeabilization of sperm membranes with Triton-X or by sonication did not alleviate the deficient [Ca2+]i responses in mare oocytes. Thus, we hypothesized that a step downstream of release, possibly required for sperm factor function, is not appropriately accomplished in horse oocytes. To test this, ICSI-fertilized horse oocytes were fused to unfertilized mouse oocytes, which are known to respond with [Ca2+]i oscillations to injection of stallion sperm, and [Ca2+]i monitoring was performed. Such pairs consistently displayed [Ca2+]i responses demonstrating that the sperm factor is appropriately released into the ooplasm of horse oocytes, but that these are unable to activate and/or provide the appropriate substrate that is required for the sperm factor delivered by ICSI to initiate oscillations. These findings may have implications to improve the success of ICSI in the equine and other livestock species.

  4. Intracellular Ca2+ release and Ca2+ influx during regulatory volume decrease in IMCD cells.

    PubMed

    Tinel, H; Wehner, F; Sauer, H

    1994-07-01

    Volume changes and cytosolic Ca2+ concentration ([Ca2+]i) of inner medullary collecting duct (IMCD) cells under hypotonic stress were monitored by means of confocal laser scanning microscopy and fura 2 fluorescence, respectively. Reduction of extracellular osmolality from 600 to 300 mosmol/kgH2O by omission of sucrose led to an increase in cell volume within 1 min to 135 +/- 3% (n = 9), followed by a partial regulatory volume decrease (RVD) to 109 +/- 2% (n = 9) within the ensuring 5 min. In parallel, [Ca2+]i rose from 145 +/- 9 to 433 +/- 16 nmol/l (n = 9) and thereafter reached a lower steady state of 259 +/- 9 nmol/l. Under low-Ca2+ conditions (10 nmol/l) RVD was not impeded and reduction of osmolality evoked only a transient increase of [Ca2+]i by 182 +/- 22 nmol/l (n = 6). Preincubation with 100 mumol/l 8-(N,N-diethylamino)octyl-3,4,5-trimethoxy-benzoate hydrochloride (TMB-8) or 20 mmol/l caffeine, both effective inhibitors of Ca2+ release from intracellular stores, in low Ca2+ as well as in high Ca2+, inhibited the Ca2+ response and abolished RVD. The temporal relationship between Ca2+ release from intracellular stores and Ca2+ entry was analyzed by determining fura 2 quenching, using Mn2+ as a substitute for external Ca2+. Intracellular Ca2+ release preceded Mn2+ influx by 17 +/- 3 s (n = 10). Mn2+ influx persisted during the whole period of exposure to hypotonicity, indicating that there is no time-dependent Ca2+ channel inactivation. Preincubation with TMB-8 or caffeine reduced Mn2+ influx to the control level, indicating that activation of Ca2+ channels in the plasma membrane occurs via intracellular Ca2+ release.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Inositol 1,4,5-trisphosphate-sensitive Ca2+ release in rat fast- and slow-twitch skinned muscle fibres.

    PubMed

    Talon, S; Huchet-Cadiou, C; Léoty, C

    1999-11-01

    Inositol 1,4,5-trisphosphate (InsP3), an intracellular messenger, induces Ca2+ release in various types of cells, particularly smooth muscle cells. Its role in skeletal muscle, however, is controversial. The present study shows that the application of InsP3 to rat slow- and fast-twitch saponin-skinned fibres induced contractile responses that were not related to an effect of InsP3 on the properties of the contractile proteins. The amplitude of the contractures was dependent upon the Ca(2+)-loading period, and was larger in slow- than in fast-twitch muscle. In both types of skeletal muscle, these responses, unlike caffeine contractures, were not inhibited by ryanodine (100 microM), but were abolished by heparin (20 micrograms.ml-1). In soleus muscle, the concentration of heparin required to inhibit the response by 50% (IC50) was 5.7 micrograms.ml-1, a similar value to that obtained previously in smooth muscle. Furthermore, the results show that in slow-twitch muscle, the InsP3 contractures have a "bell-shaped" dependency on the intracellular Ca2+ concentration. These results show that InsP3 receptors should be present in skeletal muscle. Thus, it is possible that InsP3 participates in the regulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle, particularly in slow-twitch fibres.

  6. Ryanodine receptors decant internal Ca2+ store in human and bovine airway smooth muscle.

    PubMed

    Tazzeo, T; Zhang, Y; Keshavjee, S; Janssen, L J

    2008-08-01

    Several putative roles for ryanodine receptors (RyR) were investigated in human and bovine airway smooth muscle. Changes in intracellular Ca2+ concentration ([Ca2+]i) and membrane current were investigated in single cells by confocal fluorimetry and patch-clamp electrophysiology, respectively, whereas mechanical activity was monitored in intact strips with force transducers. RyR released Ca2+ from the sarcoplasmic reticulum in a ryanodine- and chloroethyl phenol (CEP)-sensitive fashion. Neither ryanodine nor CEP inhibited responses to KCl, cholinergic agonists or serotonin, indicating no direct role for RyR in contraction; in fact, there was some augmentation of these responses. In tissues pre-contracted with carbachol, the concentration-response relationships for isoproterenol and salmeterol were unaffected by ryanodine; relaxations due to a nitric oxide donor were also largely unaffected. Finally, it was examined whether RyR were involved in regulating [Ca2+]i within the subplasmalemmal space using patch-clamp electrophysiology as well as Ca2+ fluorimetry: isoproterenol increased [Ca2+]i- and Ca2+-dependent K+ current activity in a ryanodine-sensitive fashion. In conclusion, ryanodine receptors in airway smooth muscle are not important in directly mediating contraction or relaxation. The current authors speculate instead that these allow the sarcoplasmic reticulum to release Ca2+ towards the plasmalemma (to unload an overly full Ca2+ store and/or increase the Ca2+-buffering capacity of the sarcoplasmic reticulum) without affecting bronchomotor tone.

  7. Staphylococcal leukotoxins trigger free intracellular Ca2+ rise in neurones, signalling through acidic stores and activation of store-operated channels

    PubMed Central

    Jover, Emmanuel; Tawk, Mira Y; Laventie, Benoît-Joseph; Poulain, Bernard; Prévost, Gilles

    2013-01-01

    Headache, muscle aches and chest pain of mild to medium intensity are among the most common clinical symptoms in moderate Staphylococcus aureus infections, with severe infections usually associated with worsening pain symptoms. These nociceptive responses of the body raise the question of how bacterial infection impinges on the nervous system. Does S. aureus, or its released virulence factors, act directly on neurones? To address this issue, we evaluated the potential effects on neurones of certain bi-component leukotoxins, which are virulent factors released by the bacterium. The activity of four different leukotoxins was verified by measuring the release of glutamate from rat cerebellar granular neurones. The bi-component γ-haemolysin HlgC/HlgB was the most potent leukotoxin, initiating transient rises in intracellular Ca2+ concentration in cerebellar neurones and in primary sensory neurones from dorsal root ganglia, as probed with the Fura-2 Ca2+ indicator dye. Using pharmacological antagonists of receptors and Ca2+ channels, the variations in intracellular Ca2+ concentration were found independent of the activation of voltage-operatedCa2+ channels or glutamate receptors. Drugs targeting Sarco-Endoplasmic Reticulum Ca2+-ATPase (SERCA) or H+-ATPase and antagonists of the store-operated Ca2+ entry complex blunted, or significantly reduced, the leukotoxin-induced elevation in intracellular Ca2+. Moreover, activation of the ADP-ribosyl cyclase CD38 was also required to initiate the release of Ca2+ from acidic stores. These findings suggest that, prior to forming a pore at the plasma membrane, leukotoxin HlgC/HlgB triggers a multistep process which initiates the release of Ca2+ from lysosomes, modifies the steady-state level of reticular Ca2+ stores and finally activates the Store-Operated Calcium Entry complex. PMID:23152983

  8. Staphylococcal leukotoxins trigger free intracellular Ca(2+) rise in neurones, signalling through acidic stores and activation of store-operated channels.

    PubMed

    Jover, Emmanuel; Tawk, Mira Y; Laventie, Benoît-Joseph; Poulain, Bernard; Prévost, Gilles

    2013-05-01

    Headache, muscle aches and chest pain of mild to medium intensity are among the most common clinical symptoms in moderate Staphylococcus aureus infections, with severe infections usually associated with worsening pain symptoms. These nociceptive responses of the body raise the question of how bacterial infection impinges on the nervous system. Does S. aureus, or its released virulence factors, act directly on neurones? To address this issue, we evaluated the potential effects on neurones of certain bi-component leukotoxins, which are virulent factors released by the bacterium. The activity of four different leukotoxins was verified by measuring the release of glutamate from rat cerebellar granular neurones. The bi-component γ-haemolysin HlgC/HlgB was the most potent leukotoxin, initiating transient rises in intracellular Ca(2+) concentration in cerebellar neurones and in primary sensory neurones from dorsal root ganglia, as probed with the Fura-2 Ca(2+) indicator dye. Using pharmacological antagonists of receptors and Ca(2+) channels, the variations in intracellular Ca(2+) concentration were found independent of the activation of voltage-operated Ca(2+) channels or glutamate receptors. Drugs targeting Sarco-Endoplasmic Reticulum Ca(2+)-ATPase (SERCA) or H(+)-ATPase and antagonists of the store-operated Ca(2+) entry complex blunted, or significantly reduced, the leukotoxin-induced elevation in intracellular Ca(2+). Moreover, activation of the ADP-ribosyl cyclase CD38 was also required to initiate the release of Ca(2+) from acidic stores. These findings suggest that, prior to forming a pore at the plasma membrane, leukotoxin HlgC/HlgB triggers a multistep process which initiates the release of Ca(2+) from lysosomes, modifies the steady-state level of reticular Ca(2+) stores and finally activates the Store-Operated Calcium Entry complex. © 2012 Blackwell Publishing Ltd.

  9. The elementary events of Ca2+ release elicited by membrane depolarization in mammalian muscle.

    PubMed

    Csernoch, L; Zhou, J; Stern, M D; Brum, G; Ríos, E

    2004-05-15

    Cytosolic [Ca(2+)] transients elicited by voltage clamp depolarization were examined by confocal line scanning of rat skeletal muscle fibres. Ca(2+) sparks were observed in the fibres' membrane-permeabilized ends, but not in responses to voltage in the membrane-intact area. Elementary events of the depolarization-evoked response could be separated either at low voltages (near -50 mV) or at -20 mV in partially inactivated cells. These were of lower amplitude, narrower and of much longer duration than sparks, similar to 'lone embers' observed in the permeabilized segments. Their average amplitude was 0.19 and spatial half-width 1.3 microm. Other parameters depended on voltage. At -50 mV average duration was 111 ms and latency 185 ms. At -20 mV duration was 203 ms and latency 24 ms. Ca(2+) release current, calculated on an average of events, was nearly steady at 0.5-0.6 pA. Accordingly, simulations of the fluorescence event elicited by a subresolution source of 0.5 pA open for 100 ms had morphology similar to the experimental average. Because 0.5 pA is approximately the current measured for single RyR channels in physiological conditions, the elementary fluorescence events in rat muscle probably reflect opening of a single RyR channel. A reconstruction of cell-averaged release flux at -20 mV based on the observed distribution of latencies and calculated elementary release had qualitatively correct but slower kinetics than the release flux in prior whole-cell measurements. The qualitative agreement indicates that global Ca(2+) release flux results from summation of these discrete events. The quantitative discrepancies suggest that the partial inactivation strategy may lead to events of greater duration than those occurring physiologically in fully polarized cells.

  10. Relationship between nitric oxide- and calcium-dependent signal transduction pathways in growth hormone release from dispersed goldfish pituitary cells.

    PubMed

    Chang, John P; Sawisky, Grant R; Davis, Philip J; Pemberton, Joshua G; Rieger, Aja M; Barreda, Daniel R

    2014-09-15

    Nitric oxide (NO) and Ca(2+) are two of the many intracellular signal transduction pathways mediating the control of growth hormone (GH) secretion from somatotropes by neuroendocrine factors. We have previously shown that the NO donor sodium nitroprusside (SNP) elicits Ca(2+) signals in identified goldfish somatotropes. In this study, we examined the relationships between NO- and Ca(2+)-dependent signal transduction mechanisms in GH secretion from primary cultures of dispersed goldfish pituitary cells. Morphologically identified goldfish somatotropes stained positively for an NO-sensitive dye indicating they may be a source of NO production. In 2h static incubation experiments, GH release responses to the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) were attenuated by CoCl2, nifedipine, verapamil, TMB-8, BHQ, and KN62. In column perifusion experiments, the ability of SNP to induce GH release was impaired in the presence of TMB-8, BHQ, caffeine, and thapsigargin, but not ryanodine. Caffeine-elicited GH secretion was not affected by the NO scavenger PTIO. These results suggest that NO-stimulated GH release is dependent on extracellular Ca(2+) availability and voltage-sensitive Ca(2+) channels, as well as intracellular Ca(2+) store(s) that possess BHQ- and/or thapsigargin-inhibited sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases, as well as TMB-8- and/or caffeine-sensitive, but not ryanodine-sensitive, Ca(2+)-release channels. Calmodulin kinase-II also likely participates in NO-elicited GH secretion but caffeine-induced GH release is not upstream of NO production. These findings provide insights into how NO actions many integrate with Ca(2+)-dependent signalling mechanisms in goldfish somatotropes and how such interactions may participate in the GH-releasing actions of regulators that utilize both NO- and Ca(2+)-dependent transduction pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. A novel D-phenylalanine-derivative hypoglycemic agent A-4166 increases cytosolic free Ca2+ in rat pancreatic beta-cells by stimulating Ca2+ influx.

    PubMed

    Fujitani, S; Yada, T

    1994-03-01

    It has recently been shown that N-[(trans-4-isopropylcyclohexyl)-carbonyl]D-phenylalanine (A-4166), a new nonsulfonylurea oral hypoglycemic agent, reduces blood glucose levels in nondiabetic and diabetic animals in a quicker and shorter lasting manner than sulfonylureas, and that the hypoglycemic effect of A-4166 is due to the stimulation of insulin release. However, the mechanism by which A-4166 stimulates insulin release is still unknown. In the present study, we investigated the effect of A-4166 on the cytosolic free Ca2+ concentration ([Ca2+]i) in pancreatic beta-cells from normal rats by dual wavelength fura-2 microfluorometry. In the presence of 2.8 mM glucose, A-4166 produced a rapid increase in [Ca2+]i in a concentration-dependent manner over the range of 3-30 microM. The increase in [Ca2+]i was transient, oscillatory, or sustained. A-4166 did not evoke any decrease in [Ca2+]i, whereas a high concentration of glucose (16.7 mM), a metabolized secretagogue, produced an initial decrease and a subsequent increase in [Ca2+]i. In the presence of 16.7 mM glucose, low concentrations (0.03-1 microM) of A-4166 produced an increase in [Ca2+]i in some of the beta-cells tested. The [Ca2+]i response to A-4166 was completely and reversibly inhibited under Ca(2+)-free conditions as well as by nitrendipine, a blocker of the L-type Ca2+ channel. Nitrendipine also inhibited insulin release from perfused rat pancreases stimulated by A-4166. Diazoxide, an opener of the ATP-sensitive K+ channel, blocked the [Ca2+]i response to A-4166. Sulfonylureas such as tolbutamide and glibenclamide increased [Ca2+]i in a manner similar to A-4166. These results indicate that at basal glucose concentrations, A-4166 increases [Ca2+]i in rat pancreatic beta-cells by stimulating Ca2+ influx through L-type Ca2+ channels, and that this effect is markedly augmented at elevated glucose concentrations. It appears that the increase in [Ca2+]i is related to the stimulation of insulin release by A-4166. Inhibition of ATP-sensitive potassium channels, but not stimulation of beta-cell metabolism, may be involved in the increase in [Ca2+]i by A-4166.

  12. The release of acetylcholine from post-ganglionic cell bodies in response to depolarization.

    PubMed Central

    Johnson, D A; Pilar, G

    1980-01-01

    1. Acetylcholine (Ach) release from parasympathetic ganglia cell somata was investigated in denervated avian ciliary ganglia. Three days after the input to the ganglion (the oculomotor nerve) was sectioned, all presynaptic nerve terminals had degenerated. 2. Denervated ganglia were shown to contain endogenous ACh and to be capable of synthesizing [3H]ACh from [3H]choline added to the incubation medium. 3. In response to depolarization induced by incubation in 50 mM-[K+]o, denervated ganglia released [3H]ACh into bath effluents in amounts approximately 15% of the non-denervated contralateral control. This release was shown to be Ca2+ dependent in both intact and denervated ganglia. 4. Antidromic electrical stimulation of ciliary nerves also elicited [3H]ACh release. Nicotine (1 microgram/microliter.) depolarized denervated ciliary ganglion cells and evoked release of the transmitter and this release was antagonized by curare. 5. It is concluded that the ganglionic cell bodies sysnthesized ACh and released the transmitter in response to K+ depolarization, antidromic stimulation and cholinergic agonists, despite the lack of morphological specializations usually associated with stimulus-induced release of neurotransmitter. The evidence suggests the existence of a mechanism of transmitter release which is Ca2+ dependent, probably from a cytoplasmic pool and therefore distinct from the usual vesicular release at the nerve terminal. Images Plate 1 Plate 2 PMID:6247485

  13. The effect of light on outer segment calcium in salamander rods

    PubMed Central

    Matthews, Hugh R; Fain, Gordon L

    2003-01-01

    Calcium acts as a second messenger in vertebrate rods, regulating the recovery phase of the light response and modulating sensitivity during light-adaptation. Since light not only decreases the outer segment calcium concentration ([Ca2+]i) by closing cyclic nucleotide-gated channels but can also increase [Ca2+]i by releasing Ca2+ from buffer sites or intracellular stores, we examined in detail the effect of light and circulating current on [Ca2+]i by making simultaneous measurements of suction pipette current and [Ca2+]i from isolated rods of the salamander Ambystoma tigrinum after incorporation of the fluorescent dye fluo-5F. When the release of Ca2+ is measured in 0 Ca2+−0 Na+ solution, minimising fluxes of Ca2+ across the plasma membrane, it is substantial only for light bright enough to bleach a significant fraction of the photopigment and is restricted to the part of the outer segment in which the bleach occurred. It is unlikely, therefore, to make a large contribution to [Ca2+]i for most of the physiological operating range of the rod. Nevertheless, since release is half-maximal for a bleach of less than 10 %, it cannot be produced by a simple mechanism such as a change in the affinity of a binding site on rhodopsin itself but must instead require some more complex interaction. In Ringer solution, the Ca2+ in the light-releasable pool can be discharged merely by the decrease in [Ca2+]i that occurs as the outer segment channels close. In steady background light or after exposure to saturating illumination, the fraction of Ca2+ in the pool decreases essentially in proportion to [Ca2+]i as if Ca2+ were being removed from a buffer site within the cytoplasm. Furthermore, [Ca2+]i itself changes in proportion to the circulating current, with little evidence for a contribution from Ca2+ release or other mechanisms of Ca2+ homeostasis. This indicates that flux of Ca2+ across the plasma membrane is the major determinant of outer segment Ca2+ concentration within the rod's normal operating light intensity range. Once Ca2+ has been discharged from the releasable pool, it is restored following dim illumination apparently as the simple result of the subsequent restoration of dark [Ca2+]i and the rebinding of Ca2+ to its release site, but after brighter light perhaps also as a consequence of regeneration of the photopigment. PMID:12949220

  14. Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release.

    PubMed Central

    Debanne, D; Guérineau, N C; Gähwiler, B H; Thompson, S M

    1996-01-01

    1. Excitatory synaptic transmission between pairs of monosynaptically coupled pyramidal cells was examined in rat hippocampal slice cultures. Action potentials were elicited in single CA3 pyramidal cells impaled with microelectrodes and unitary excitatory postsynaptic currents (EPSCs) were recorded in whole-cell voltage-clamped CA1 or CA3 cells. 2. The amplitude of successive unitary EPSCs in response to single action potentials varied. The amplitude of EPSCs was altered by adenosine or changes in the [Mg2+]/[CA2+] ratio. We conclude that single action potentials triggered the release of multiple quanta of glutamate. 3. When two action potentials were elicited in the presynaptic cell, the amplitude of the second EPSC was inversely related to the amplitude of the first. Paired-pulse facilitation (PPF) was observed when the first EPSC was small, i.e. the second EPSC was larger than the first, whereas paired-pulse depression (PPD) was observed when the first EPSC was large. 4. The number of trials displaying PPD was greater when release probability was increased, and smaller when release probability was decreased. 5. PPD was not postsynaptically mediated because it was unaffected by decreasing ionic flux with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or receptor desensitization with aniracetam. 6. PPF was maximal at an interstimulus interval of 70 ms and recovered within 500 ms. Recovery from PPD occurred within 5 s. 7. We propose that multiple release sites are formed by the axon of a CA3 pyramidal cell and a single postsynaptic CA1 or CA3 cell. PPF is observed if the first action potential fails to release transmitter at most release sites. PPD is observed if the first action potential successfully triggers release at most release sites. 8. Our observations of PPF are consistent with the residual calcium hypothesis. We conclude that PPD results from a decrease in quantal content, perhaps due to short-term depletion of readily releasable vesicles. PMID:9011608

  15. Ionic and secretory response of pancreatic islet cells to minoxidil sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoine, M.H.; Hermann, M.; Herchuelz, A.

    Minoxidil sulfate is an antihypertensive agent belonging to the new class of vasodilators, the K+ channel openers. The present study was undertaken to characterize the effects of minoxidil sulfate on ionic and secretory events in rat pancreatic islets. The drug unexpectedly provoked a concentration-dependent decrease in 86Rb outflow. This inhibitory effect was reduced in a concentration-dependent manner by glucose and tolbutamide. Minoxidil sulfate did not affect 45Ca outflow from islets perfused in the presence of extracellular Ca++ and absence or presence of glucose. However, in islets exposed to a medium deprived of extracellular Ca++, the drug provoked a rise inmore » 45Ca outflow. Whether in the absence or presence of extracellular Ca++, minoxidil sulfate increased the cytosolic free Ca++ concentration of islet cells. Lastly, minoxidil sulfate increased the release of insulin from glucose-stimulated pancreatic islets. These results suggest that minoxidil sulfate reduces the activity of the ATP-sensitive K+ channels and promotes an intracellular translocation of Ca++. The latter change might account for the effect of the drug on the insulin-releasing process. However, the secretory response to minoxidil sulfate could also be mediated, at least in part, by a modest Ca++ entry.« less

  16. Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus.

    PubMed

    Besser, Limor; Chorin, Ehud; Sekler, Israel; Silverman, William F; Atkin, Stan; Russell, James T; Hershfinkel, Michal

    2009-03-04

    Zn(2+) is coreleased with glutamate from mossy fiber terminals and can influence synaptic function. Here, we demonstrate that synaptically released Zn(2+) activates a selective postsynaptic Zn(2+)-sensing receptor (ZnR) in the CA3 region of the hippocampus. ZnR activation induced intracellular release of Ca(2+), as well as phosphorylation of extracellular-regulated kinase and Ca(2+)/calmodulin kinase II. Blockade of synaptic transmission by tetrodotoxin or CdCl inhibited the ZnR-mediated Ca(2+) rises. The responses mediated by ZnR were largely attenuated by the extracellular Zn(2+) chelator, CaEDTA, and in slices from mice lacking vesicular Zn(2+), suggesting that synaptically released Zn(2+) triggers the metabotropic activity. Knockdown of the expression of the orphan G-protein-coupled receptor 39 (GPR39) attenuated ZnR activity in a neuronal cell line. Importantly, we observed widespread GPR39 labeling in CA3 neurons, suggesting a role for this receptor in mediating ZnR signaling in the hippocampus. Our results describe a unique role for synaptic Zn(2+) acting as the physiological ligand of a metabotropic receptor and provide a novel pathway by which synaptic Zn(2+) can regulate neuronal function.

  17. Characteristics of inositol trisphosphate-mediated Ca/sup 2 +/ release from permeabilized hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, S.K.; Williamson, J.R.

    1986-11-05

    Ca/sup 2 +/ release triggered by inositol trisphosphate (Ins(1,4,5)P/sub 3/) has been measured in saponin-permeabilized hepatocytes with /sup 45/Ca/sup 2 +/ or Quin 2. The initial rate of Ca/sup 2 +/ release was not greatly affected by the incubation temperature. The amount of Ca/sup 2 +/ released by Ins(1,4,5)P/sub 3/ was not affected by pH (6.5-8.0). La/sup 3 +/ (100 ..mu..M) markedly inhibited the effect of 1 ..mu..M Ins(1,4,5)P/sub 3/. The possibility that La/sup 3 +/ chelates Ins(1,4,5)P/sub 3/ cannot be excluded since the effect of La/sup 3 +/ could be overcome by increasing the Ins(1,4,5)P/sub 3/ concentration. Ins(1,4,5)P/sub 3/-mediatedmore » Ca/sup 2 +/ release showed a requirement for permeant cations in the incubation medium. Optimal release was observed with potassium gluconate. Other monovalent cations, with the exception of Li/sup +/, can substitute for K/sup +/. Permeant anions, at concentrations above 40 mM, inhibited Ca/sup 2 +/ release produced by Ins(1,4,5)P/sub 3/. Cl/sup -/, Br/sup -/, I/sup -/, and SO/sup 2 -//sub 4/ were equally effective as inhibitors. Ins(1,4,5)P/sub 3/ also caused the release of /sup 54/Mn/sup 2 +/ and /sup 85/Sr/sup 2 +/ accumulated by the permeabilized hepatocytes. The results are consistent with Ins(1,4,5)P/sub 3/ promoting the membrane translocation of divalent cations through an ion channel rather than an ion carrier. The translocation of positive charge through this channel is balanced by ancillary movements of monovalent cations and anions across the reticular membranes. The transport systems responsible for these compensatory ion movements may represent a potential site for the regulation of the hormone-mediated Ca/sup 2 +/ signal.« less

  18. A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans.

    PubMed

    MacDonald, Patrick E; De Marinis, Yang Zhang; Ramracheya, Reshma; Salehi, Albert; Ma, Xiaosong; Johnson, Paul R V; Cox, Roger; Eliasson, Lena; Rorsman, Patrik

    2007-06-01

    Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+) responses of alpha and beta cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn(2+) signalling was blocked, but was reversed by low concentrations (1-20 muM) of the ATP-sensitive K(+) (KATP) channel opener diazoxide, which had no effect on insulin release or beta cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 muM). Higher diazoxide concentrations (>/=30 muM) decreased glucagon and insulin secretion, and alpha- and beta-cell Ca(2+) responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (<1 muM) stimulated glucagon secretion, whereas high concentrations (>10 muM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na(+) (TTX) and N-type Ca(2+) channels (omega-conotoxin), but not L-type Ca(2+) channels (nifedipine), prevented glucagon secretion. Both the N-type Ca(2+) channels and alpha-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an alpha-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.

  19. Actin cytoskeleton modulates calcium signaling during maturation of starfish oocytes.

    PubMed

    Kyozuka, Keiichiro; Chun, Jong T; Puppo, Agostina; Gragnaniello, Gianni; Garante, Ezio; Santella, Luigia

    2008-08-15

    Before successful fertilization can occur, oocytes must undergo meiotic maturation. In starfish, this can be achieved in vitro by applying 1-methyladenine (1-MA). The immediate response to 1-MA is the fast Ca2+ release in the cell cortex. Here, we show that this Ca2+ wave always initiates in the vegetal hemisphere and propagates through the cortex, which is the space immediately under the plasma membrane. We have observed that alteration of the cortical actin cytoskeleton by latrunculin-A and jasplakinolide can potently affect the Ca2+ waves triggered by 1-MA. This indicates that the cortical actin cytoskeleton modulates Ca2+ release during meiotic maturation. The Ca2+ wave was inhibited by the classical antagonists of the InsP(3)-linked Ca2+ signaling pathway, U73122 and heparin. To our surprise, however, these two inhibitors induced remarkable actin hyper-polymerization in the cell cortex, suggesting that their inhibitory effect on Ca2+ release may be attributed to the perturbation of the cortical actin cytoskeleton. In post-meiotic eggs, U73122 and jasplakinolide blocked the elevation of the vitelline layer by uncaged InsP(3), despite the massive release of Ca2+, implying that exocytosis of the cortical granules requires not only a Ca2+ rise, but also regulation of the cortical actin cytoskeleton. Our results suggest that the cortical actin cytoskeleton of starfish oocytes plays critical roles both in generating Ca2+ signals and in regulating cortical granule exocytosis.

  20. Reduction of perifusate magnesium alters inotropic response of papillary muscle to ion channel modulators.

    PubMed

    Manju, L; Nair, R Renuka

    2005-09-01

    Magnesium has a significant role in the regulation of ion transport. Marginal deficiency of Mg can therefore affect myocardial excitability and contractility. This study was taken up with the objective of examining the inotropic response of the myocardium to variation in extracellular [Mg]o and identifying the ion channels and pumps mediating the inotropic changes. Electrically stimulated rat papillary muscle was used as the experimental model and mechanical changes were recorded using a physiograph. Channel specific antagonists were used to identify the channels mediating the functional changes. Diastolic Ca2+ levels were determined in isolated myocytes by the ratiometric method using the fluorescent indicator Fura2-AM. A negative association was observed between the level of [Mg]o and force of contraction, with a peak at 0.48 mM Mg. The force of contraction in Mg deficient medium (0.48 mM) was 158% of control (1.2 mM Mg) (p < 0.001). Inotropic response to the L-type channel antagonist (verapamil-1 microm) and NaK ATPase inhibitor (Ouabain-0.3 mM) was augmented in Mg deficiency (p < 0.005), indicating activation of the channel and the pump. The response to T-type channel inhibitor (NiCl2-40 microM) was attenuated in Mg deficiency (p < 0.05). The response to the sarcoplasmic reticular Ca pump inhibitor (caffeine-10 mM) and the SR Ca2+ release channel inhibitor (ryanodine-1 microM) were not significantly affected by Mg deficiency. Diastolic level of Ca2+ increased with a decrease in Mg (p < 0.05). The observations of the study lead to the conclusion that the positive inotropic response in Mg deficiency is mediated by an increase in basal Ca2+ combined with Ca-induced-Ca release consequent to Ca2+ influx through L-type Ca channel. Variation in sensitivity to Ca channel blockers and NaK ATPase inhibitor in Mg deficiency can have pharmacological implications.

  1. Release of Taurine and Glutamate contributes to cell volume regulation in human retinal Müller cells: Differences in modulation by calcium.

    PubMed

    Netti, Vanina; Pizzoni, Alejandro; Peréz-Domínguez, Martha; Ford, Paula; Pasantes-Morales, Herminia; Ramos-Mandujano, Gerardo; Capurro, Claudia

    2018-05-23

    Neuronal activity in the retina generates osmotic gradients that lead to Müller cell swelling, followed by a regulatory volume decrease (RVD) response, partially due to the isoosmotic efflux of KCl and water. However, our previous studies in a human Müller cell line (MIO-M1) demonstrated that an important fraction of RVD may also involve the efflux of organic solutes. We also showed that RVD depends on the swelling-induced Ca 2+ release from intracellular stores. Here we investigate the contribution of Taurine (Tau) and Glutamate (Glu), the most relevant amino acids in Müller cells, to RVD through the volume-regulated anion channel (VRAC), as well as their Ca 2+ -dependency in MIO-M1 cells. Swelling-induced [ 3 -H]-Tau/[ 3 H]-Glu release was assessed by radiotracer assays and cell volume by fluorescence videomicroscopy. Results showed that cells exhibited an osmosensitive efflux of [ 3 H]-Tau and [ 3 H]-Glu (Tau > Glu) blunted by the VRAC inhibitors DCPIB and CBX, reducing RVD. Only [ 3 H]-Tau efflux was dependent on Ca 2+ release from intracellular stores. RVD was unaffected in a Ca 2+ -free medium, probably due to Ca 2+ -independent Tau and Glu release, but was reduced by chelating intracellular Ca 2+ . The inhibition of phosphatidylinositol-3-kinase reduced [ 3 H]-Glu efflux but also the Ca 2+ -insensitive [ 3 H]-Tau fraction and decreased RVD, evidencing the relevance of this Ca 2+ -independent pathway. We propose that VRAC-mediated Tau and Glu release has a relevant role in RVD in Müller cells. The observed disparities in Ca 2+ influence on amino acid release support the presence of VRAC isoforms that may differ in substrate selectivity and regulatory mechanisms, with important implications for retinal physiology.

  2. Caffeine alleviates the deterioration of Ca2+ release mechanisms and fragmentation of in vitro aged mouse eggs

    PubMed Central

    Zhang, Nan; Wakai, Takuya; Fissore, Rafael. A.

    2011-01-01

    The developmental competence of mammalian eggs is compromised by postovulatory aging. We and others found that in these eggs the intracellular calcium ([Ca2+]i) responses required for egg activation and initiation of development are altered. Nevertheless, the mechanism(s) underlying this defective Ca2+ release is not well known. Here, we investigated if the function of IP3R1, the major Ca2+ release channel at fertilization, was undermined in in vitro aged mouse eggs. We found that in aged eggs IP3R1 displayed reduced function, as many of the changes acquired during maturation that enhance IP3R1 Ca2+ conductivity such as phosphorylation, receptor reorganization and increased Ca2+ store content ([Ca2+]ER) were lost with increasing postovulatory time. IP3R1 fragmentation, possibly associated with the activation of caspase-3, was also observed in these eggs. Many of these changes were prevented when the postovulatory aging of eggs was carried out in the presence of caffeine, which minimized the decline in IP3R1 function and maintained [Ca2+]ER content. Caffeine also maintained mitochondrial membrane potential as measured by JC-1 fluorescence. We therefore conclude that [Ca2+]i responses in aged eggs are undermined by reduced IP3R1 sensitivity, decreased [Ca2+]ER and compromised mitochondrial function, and that addition of caffeine ameliorates most of these aging-associated changes. Understanding the molecular basis of the protective effects of caffeine will be useful in elucidating, and possibly reversing, the signaling pathway(s) compromised by in vitro culture of eggs. PMID:22095868

  3. Hyperforin/HP-β-Cyclodextrin Enhances Mechanosensitive Ca2+ Signaling in HaCaT Keratinocytes and in Atopic Skin Ex Vivo Which Accelerates Wound Healing.

    PubMed

    Takada, Hiroya; Yonekawa, Jun; Matsumoto, Masami; Furuya, Kishio; Sokabe, Masahiro

    2017-01-01

    Cutaneous wound healing is accelerated by mechanical stretching, and treatment with hyperforin, a major component of a traditional herbal medicine and a known TRPC6 activator, further enhances the acceleration. We recently revealed that this was due to the enhancement of ATP-Ca 2+ signaling in keratinocytes by hyperforin treatment. However, the low aqueous solubility and easy photodegradation impede the topical application of hyperforin for therapeutic purposes. We designed a compound hydroxypropyl- β -cyclodextrin- (HP- β -CD-) tetracapped hyperforin, which had increased aqueous solubility and improved photoprotection. We assessed the physiological effects of hyperforin/HP- β -CD on wound healing in HaCaT keratinocytes using live imaging to observe the ATP release and the intracellular Ca 2+ increase. In response to stretching (20%), ATP was released only from the foremost cells at the wound edge; it then diffused to the cells behind the wound edge and activated the P2Y receptors, which caused propagating Ca 2+ waves via TRPC6. This process might facilitate wound closure, because the Ca 2+ response and wound healing were inhibited in parallel by various inhibitors of ATP-Ca 2+ signaling. We also applied hyperforin/HP- β -CD on an ex vivo skin model of atopic dermatitis and found that hyperforin/HP- β -CD treatment for 24 h improved the stretch-induced Ca 2+ responses and oscillations which failed in atopic skin.

  4. Hyperforin/HP-β-Cyclodextrin Enhances Mechanosensitive Ca2+ Signaling in HaCaT Keratinocytes and in Atopic Skin Ex Vivo Which Accelerates Wound Healing

    PubMed Central

    Takada, Hiroya; Yonekawa, Jun; Matsumoto, Masami; Sokabe, Masahiro

    2017-01-01

    Cutaneous wound healing is accelerated by mechanical stretching, and treatment with hyperforin, a major component of a traditional herbal medicine and a known TRPC6 activator, further enhances the acceleration. We recently revealed that this was due to the enhancement of ATP-Ca2+ signaling in keratinocytes by hyperforin treatment. However, the low aqueous solubility and easy photodegradation impede the topical application of hyperforin for therapeutic purposes. We designed a compound hydroxypropyl-β-cyclodextrin- (HP-β-CD-) tetracapped hyperforin, which had increased aqueous solubility and improved photoprotection. We assessed the physiological effects of hyperforin/HP-β-CD on wound healing in HaCaT keratinocytes using live imaging to observe the ATP release and the intracellular Ca2+ increase. In response to stretching (20%), ATP was released only from the foremost cells at the wound edge; it then diffused to the cells behind the wound edge and activated the P2Y receptors, which caused propagating Ca2+ waves via TRPC6. This process might facilitate wound closure, because the Ca2+ response and wound healing were inhibited in parallel by various inhibitors of ATP-Ca2+ signaling. We also applied hyperforin/HP-β-CD on an ex vivo skin model of atopic dermatitis and found that hyperforin/HP-β-CD treatment for 24 h improved the stretch-induced Ca2+ responses and oscillations which failed in atopic skin. PMID:28210627

  5. Subpopulation of store-operated Ca2+ channels regulate Ca2+-induced Ca2+ release in non-excitable cells.

    PubMed

    Yao, Jian; Li, Qin; Chen, Jin; Muallem, Shmuel

    2004-05-14

    Ca2+-induced Ca2+ release (CICR) is a well characterized activity in skeletal and cardiac muscles mediated by the ryanodine receptors. The present study demonstrates CICR in the non-excitable parotid acinar cells, which resembles the mechanism described in cardiac myocytes. Partial depletion of internal Ca2+ stores leads to a minimal activation of Ca2+ influx. Ca2+ influx through this pathway results in an explosive mobilization of Ca2+ from the majority of the stores by CICR. Thus, stimulation of parotid acinar cells in Ca2+ -free medium with 0.5 microm carbachol releases approximately 5% of the Ca2+ mobilizable by 1 mm carbachol. Addition of external Ca2+ induced the same Ca2+ release observed in maximally stimulated cells. Similar results were obtained by a short treatment with 2.5-10 microm cyclopiazonic acid, an inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase pump. The Ca2+ release induced by the addition of external Ca2+ was largely independent of IP(3)Rs because it was reduced by only approximately 30% by the inhibition of the inositol 1,4,5-trisphosphate receptors with caffeine or heparin. Measurements of Ca2+ -activated outward current and [Ca2+](i) suggested that most CICR triggered by Ca2+ influx occurred away from the plasma membrane. Measurement of the response to several concentrations of cyclopiazonic acid revealed that Ca2+ influx that regulates CICR is associated with a selective portion of the internal Ca2+ pool. The minimal activation of Ca2+ influx by partial store depletion was confirmed by the measurement of Mn2+ influx. Inhibition of Ca2+ influx with SKF96365 or 2-aminoethoxydiphenyl borate prevented activation of CICR observed on addition of external Ca2+. These findings provide evidence for activation of CICR by Ca2+ influx in non-excitable cells, demonstrate a previously unrecognized role for Ca2+ influx in triggering CICR, and indicate that CICR in non-excitable cells resembles CICR in cardiac myocytes with the exception that in cardiac cells Ca2+ influx is mediated by voltage-regulated Ca2+ channels whereas in non-excitable cells Ca2+ influx is mediated by store-operated channels.

  6. Polyphenols of Rubus coreanum Inhibit Catecholamine Secretion from the Perfused Adrenal Medulla of SHRs

    PubMed Central

    Yu, Byung-Sik; Na, Duck-Mi; Kang, Mi-Young

    2009-01-01

    The present study was attempted to investigate whether polyphenolic compounds isolated from wine, which is brewed from Rubus coreanum Miquel (PCRC), may affect the release of catecholamines (CA) from the isolated perfused adrenal medulla of the spontaneously hypertensive rats (SHRs), and to establish its mechanism of action. PCRC (20~180 µg/ml) perfused into an adrenal vein for 90 min relatively dose-dependently inhibited the CA secretory responses to ACh (5.32 mM), high K+ (56 mM), DMPP (100 µM) and McN-A-343 (100 µM). PCRC itself did not affect basal CA secretion (data not shown). Also, in the presence of PCRC (60 µg/ml), the CA secretory responses to veratridine (a selective Na+ channel activator (10 µM), Bay-K-8644 (a L-type dihydropyridine Ca2+ channel activator, 10 µM), and cyclopiazonic acid (a cytoplasmic Ca2+ -ATPase inhibitor, 10 µM) were significantly reduced, respectively. In the simultaneous presence of PCRC (60 µg/ml) and L-NAME (an inhibitor of NO synthase, 30 µM), the inhibitory responses of PCRC on the CA secretion evoked by ACh, high K+, DMPP, and Bay-K-8644 were considerably recovered to the extent of the corresponding control secretion compared with that of PCRC-treatment alone. The level of NO released from adrenal medulla after the treatment of PCRC (60 µg/ml) was greatly elevated compared with the corresponding basal level. Taken together, these results demonstrate that PCRC inhibits the CA secretion from the isolated perfused adrenal medulla of the SHRs evoked by stimulation of cholinergic receptors as well as by direct membrane-depolarization. It seems that this inhibitory effect of PCRC is mediated by blocking the influx of calcium and sodium into the adrenal medullary chromaffin cells of the SHRs as well as by inhibition of Ca2+ release from the cytoplasmic calcium store at least partly through the increased NO production due to the activation of NO synthase. PMID:20054501

  7. Capping of the N-terminus of PSD-95 by calmodulin triggers its postsynaptic release

    PubMed Central

    Zhang, Yonghong; Matt, Lucas; Patriarchi, Tommaso; Malik, Zulfiqar A; Chowdhury, Dhrubajyoti; Park, Deborah K; Renieri, Alessandra; Ames, James B; Hell, Johannes W

    2014-01-01

    Postsynaptic density protein-95 (PSD-95) is a central element of the postsynaptic architecture of glutamatergic synapses. PSD-95 mediates postsynaptic localization of AMPA receptors and NMDA receptors and plays an important role in synaptic plasticity. PSD-95 is released from postsynaptic membranes in response to Ca2+ influx via NMDA receptors. Here, we show that Ca2+/calmodulin (CaM) binds at the N-terminus of PSD-95. Our NMR structure reveals that both lobes of CaM collapse onto a helical structure of PSD-95 formed at its N-terminus (residues 1–16). This N-terminal capping of PSD-95 by CaM blocks palmitoylation of C3 and C5, which is required for postsynaptic PSD-95 targeting and the binding of CDKL5, a kinase important for synapse stability. CaM forms extensive hydrophobic contacts with Y12 of PSD-95. The PSD-95 mutant Y12E strongly impairs binding to CaM and Ca2+-induced release of PSD-95 from the postsynaptic membrane in dendritic spines. Our data indicate that CaM binding to PSD-95 serves to block palmitoylation of PSD-95, which in turn promotes Ca2+-induced dissociation of PSD-95 from the postsynaptic membrane. PMID:24705785

  8. Capping of the N-terminus of PSD-95 by calmodulin triggers its postsynaptic release.

    PubMed

    Zhang, Yonghong; Matt, Lucas; Patriarchi, Tommaso; Malik, Zulfiqar A; Chowdhury, Dhrubajyoti; Park, Deborah K; Renieri, Alessandra; Ames, James B; Hell, Johannes W

    2014-06-17

    Postsynaptic density protein-95 (PSD-95) is a central element of the postsynaptic architecture of glutamatergic synapses. PSD-95 mediates postsynaptic localization of AMPA receptors and NMDA receptors and plays an important role in synaptic plasticity. PSD-95 is released from postsynaptic membranes in response to Ca(2+) influx via NMDA receptors. Here, we show that Ca(2+)/calmodulin (CaM) binds at the N-terminus of PSD-95. Our NMR structure reveals that both lobes of CaM collapse onto a helical structure of PSD-95 formed at its N-terminus (residues 1-16). This N-terminal capping of PSD-95 by CaM blocks palmitoylation of C3 and C5, which is required for postsynaptic PSD-95 targeting and the binding of CDKL5, a kinase important for synapse stability. CaM forms extensive hydrophobic contacts with Y12 of PSD-95. The PSD-95 mutant Y12E strongly impairs binding to CaM and Ca(2+)-induced release of PSD-95 from the postsynaptic membrane in dendritic spines. Our data indicate that CaM binding to PSD-95 serves to block palmitoylation of PSD-95, which in turn promotes Ca(2+)-induced dissociation of PSD-95 from the postsynaptic membrane. © 2014 The Authors.

  9. Effects of adrenalectomy on the alpha-adrenergic regulation of cytosolic free calcium in hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freudenrich, C.C.; Borle, A.B.

    1988-06-25

    We have previously published that bilateral adrenalectomy in the rat reduces the Ca2+-mediated alpha-adrenergic activation of hepatic glycogenolysis, while it increases the cellular calcium content of hepatocytes. In the experiments presented here, the concentration of cytosolic free calcium (Ca2+i) at rest and in response to epinephrine was measured in aequorin-loaded hepatocytes isolated from sham and adrenalectomized male rats. We found that in adrenalectomized rats the resting Ca2+i was elevated, the rise in Ca2+i evoked by epinephrine was reduced, and the rise in /sup 45/Ca efflux that follows such stimulation was depressed. Furthermore, the slope of the relationship between Ca2+i andmore » calcium efflux was decreased 60% in adrenalectomized. Adrenalectomy did not change Ca2+ release from intracellular calcium pools in response to IP3 in saponin-permeabilized hepatocytes. The EC50 for inositol 1,4,5-triphosphate and the maximal Ca2+ released were similar in both sham and adrenalectomized animals. Finally, the liver calmodulin content determined by radioimmunoassay was not significantly different between sham and adrenalectomized rats. These results suggest that 1) adrenalectomy reduces calcium efflux from the hepatocyte, probably by an effect on the plasma membrane (Ca2+-Mg2+)-ATPase-dependent Ca2+ pump and thus alters cellular calcium homeostasis; 2) adrenalectomy decreases the rise in Ca2+i in response to epinephrine; 3) this decreased rise in Ca2+i is not due to defects in the intracellular Ca2+ storage and mobilization processes; and 4) the effects of adrenalectomy on cellular calcium metabolism and on alpha-adrenergic activation of glycogenolysis are not caused by a reduction in soluble calmodulin.« less

  10. Hypotonic stress promotes ATP release, reactive oxygen species production and cell proliferation via TRPV4 activation in rheumatoid arthritis rat synovial fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Fen; Hui, Zhenhai; Wei, Wei

    Rheumatoid arthritis (RA) is a chronic and systemic autoimmune-disease with complex and unclear etiology. Hypotonicity of synovial fluid is a typical characteristic of RA, which may play pivotal roles in RA pathogenesis. In this work, we studied the responses of RA synovial fibroblasts to hypotonic stress in vitro and further explored the underlying mechanisms. Data showed that hyposmotic solutions significantly triggered increases in cytosolic calcium concentration ([Ca{sup 2+}]{sub c}) of synoviocytes. Subsequently, it caused rapid release of ATP, as well as remarkable production of intracellular reactive oxygen species (ROS). Meanwhile, hypotonic stimulus promoted the proliferation of synovial fibroblasts. These effects weremore » almost abolished by calcium-free buffer and significantly inhibited by gadolinium (III) chloride (a mechanosensitive Ca{sup 2+} channel blocker) and ruthenium red (a transient receptor potential vanilloid 4 (TRPV4) blocker). 4α-phorbol 12,13-didecanoate, a specific agonist of TRPV4, also mimicked hypotonic shock-induced responses shown above. In contrast, voltage-gated channel inhibitors verapamil and nifedipine had little influences on these responses. Furthermore, RT-PCR and western blotting evidently detected TRPV4 expression at mRNA and protein level in isolated synoviocytes. Taken together, our results indicated that hypotonic stimulus resulted in ATP release, ROS production, and cell proliferation depending on Ca{sup 2+} entry through activation of TRPV4 channel in synoviocytes. - Highlights: • Hypotonic stress evokes Ca{sup 2+} entry in rheumatoid arthritis synovial fibroblasts. • Hypotonic stress induces rapid ATP release and ROS production in synoviocytes. • Hypotonic stimulation promotes the proliferation of synovial fibroblasts. • TRPV4 controls hypotonic-induced responses in synoviocytes.« less

  11. TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses.

    PubMed

    Dunn, Kathryn M; Hill-Eubanks, David C; Liedtke, Wolfgang B; Nelson, Mark T

    2013-04-09

    In the CNS, astrocytes are sensory and regulatory hubs that play important roles in cerebral homeostatic processes, including matching local cerebral blood flow to neuronal metabolism (neurovascular coupling). These cells possess a highly branched network of processes that project from the soma to neuronal synapses as well as to arterioles and capillaries, where they terminate in "endfeet" that encase the blood vessels. Ca(2+) signaling within the endfoot mediates neurovascular coupling; thus, these functional microdomains control vascular tone and local perfusion in the brain. Transient receptor potential vanilloid 4 (TRPV4) channels--nonselective cation channels with considerable Ca(2+) conductance--have been identified in astrocytes, but their function is largely unknown. We sought to characterize the influence of TRPV4 channels on Ca(2+) dynamics in the astrocytic endfoot microdomain and assess their role in neurovascular coupling. We identified local TRPV4-mediated Ca(2+) oscillations in endfeet and further found that TRPV4 Ca(2+) signals are amplified and propagated by Ca(2+)-induced Ca(2+) release from inositol trisphosphate receptors (IP3Rs). Moreover, TRPV4-mediated Ca(2+) influx contributes to the endfoot Ca(2+) response to neuronal activation, enhancing the accompanying vasodilation. Our results identify a dynamic synergy between TRPV4 channels and IP3Rs in astrocyte endfeet and demonstrate that TRPV4 channels are engaged in and contribute to neurovascular coupling.

  12. Relationship between depolarization-induced force responses and Ca2+ content in skeletal muscle fibres of rat and toad.

    PubMed

    Owen, V J; Lamb, G D; Stephenson, D G; Fryer, M W

    1997-02-01

    1. The relationship between the total Ca2+ content of a muscle fibre and the magnitude of the force response to depolarization was examined in mechanically skinned fibres from the iliofibularis muscle of the toad and the extensor digitorum longus muscle of the rat. The response to depolarization in each skinned fibre was assessed either at the endogenous level of Ca2+ content or after depleting the fibre of Ca2+ to some degree. Ca2+ content was determined by a fibre lysing technique. 2. In both muscle types, the total Ca2+ content could be reduced from the endogenous level of approximately 1.3 mmol l-1 (expressed relative to intact fibre volume) to approximately 0.25 mmol l-1 by either depolarization or caffeine application in the presence of Ca2+ chelators, showing that the great majority of the Ca2+ was stored in the sarcoplasmic reticulum (SR). Chelation of Ca2+ in the transverse tubular (T-) system, either by exposure of fibres to EGTA before skinning or by permeabilizing the T-system with saponin after skinning, reduced the lower limit of Ca2+ content to < or = 0.12 mmol l-1, indicating that 10-20% of the total fibre Ca2+ resided in the T-system. 3. In toad fibres, both the peak and the area (i.e. time integral) of the force response to depolarization were reduced by any reduction in SR Ca2+ content, with both decreasing to zero in an approximately linear manner as the SR Ca2+ content was reduced to < 15% of the endogenous level. In rat fibres, the peak size of the force response was less affected by small decreases in SR content, but both the peak and area of the response decreased to zero with greater depletion. In partially depleted toad fibres, inhibition of SR Ca2+ uptake potentiated the force response to depolarization almost 2-fold. 4. The results show that in this skinned fibre preparation: (a) T-system depolarization and caffeine application can each virtually fully deplete the SR of Ca2+, irrespective of any putative inhibitory effect of SR depletion on channel activation; (b) all of the endogenous level of SR Ca2+ must be released in order to produce a maximal response to depolarization; and (c) a substantial part (approximately 40%) of the Ca2+ released by a depolarization is normally taken back into the SR before it can contribute to force production.

  13. Relationship between depolarization-induced force responses and Ca2+ content in skeletal muscle fibres of rat and toad.

    PubMed Central

    Owen, V J; Lamb, G D; Stephenson, D G; Fryer, M W

    1997-01-01

    1. The relationship between the total Ca2+ content of a muscle fibre and the magnitude of the force response to depolarization was examined in mechanically skinned fibres from the iliofibularis muscle of the toad and the extensor digitorum longus muscle of the rat. The response to depolarization in each skinned fibre was assessed either at the endogenous level of Ca2+ content or after depleting the fibre of Ca2+ to some degree. Ca2+ content was determined by a fibre lysing technique. 2. In both muscle types, the total Ca2+ content could be reduced from the endogenous level of approximately 1.3 mmol l-1 (expressed relative to intact fibre volume) to approximately 0.25 mmol l-1 by either depolarization or caffeine application in the presence of Ca2+ chelators, showing that the great majority of the Ca2+ was stored in the sarcoplasmic reticulum (SR). Chelation of Ca2+ in the transverse tubular (T-) system, either by exposure of fibres to EGTA before skinning or by permeabilizing the T-system with saponin after skinning, reduced the lower limit of Ca2+ content to < or = 0.12 mmol l-1, indicating that 10-20% of the total fibre Ca2+ resided in the T-system. 3. In toad fibres, both the peak and the area (i.e. time integral) of the force response to depolarization were reduced by any reduction in SR Ca2+ content, with both decreasing to zero in an approximately linear manner as the SR Ca2+ content was reduced to < 15% of the endogenous level. In rat fibres, the peak size of the force response was less affected by small decreases in SR content, but both the peak and area of the response decreased to zero with greater depletion. In partially depleted toad fibres, inhibition of SR Ca2+ uptake potentiated the force response to depolarization almost 2-fold. 4. The results show that in this skinned fibre preparation: (a) T-system depolarization and caffeine application can each virtually fully deplete the SR of Ca2+, irrespective of any putative inhibitory effect of SR depletion on channel activation; (b) all of the endogenous level of SR Ca2+ must be released in order to produce a maximal response to depolarization; and (c) a substantial part (approximately 40%) of the Ca2+ released by a depolarization is normally taken back into the SR before it can contribute to force production. PMID:9051571

  14. Parallel activation of Ca(2+)-induced survival and death pathways in cardiomyocytes by sorbitol-induced hyperosmotic stress.

    PubMed

    Chiong, M; Parra, V; Eisner, V; Ibarra, C; Maldonado, C; Criollo, A; Bravo, R; Quiroga, C; Contreras, A; Vicencio, J M; Cea, P; Bucarey, J L; Molgó, J; Jaimovich, E; Hidalgo, C; Kroemer, G; Lavandero, S

    2010-08-01

    Hyperosmotic stress promotes rapid and pronounced apoptosis in cultured cardiomyocytes. Here, we investigated if Ca(2+) signals contribute to this response. Exposure of cardiomyocytes to sorbitol [600 mosmol (kg water)(-1)] elicited large and oscillatory intracellular Ca(2+) concentration increases. These Ca(2+) signals were inhibited by nifedipine, Cd(2+), U73122, xestospongin C and ryanodine, suggesting contributions from both Ca(2+) influx through voltage dependent L-type Ca(2+) channels plus Ca(2+) release from intracellular stores mediated by IP(3) receptors and ryanodine receptors. Hyperosmotic stress also increased mitochondrial Ca(2+) levels, promoted mitochondrial depolarization, reduced intracellular ATP content, and activated the transcriptional factor cyclic AMP responsive element binding protein (CREB), determined by increased CREB phosphorylation and electrophoretic mobility shift assays. Incubation with 1 mM EGTA to decrease extracellular [Ca(2+)] prevented cardiomyocyte apoptosis induced by hyperosmotic stress, while overexpression of an adenoviral dominant negative form of CREB abolished the cardioprotection provided by 1 mM EGTA. These results suggest that hyperosmotic stress induced by sorbitol, by increasing Ca(2+) influx and raising intracellular Ca(2+) concentration, activates Ca(2+) release from stores and causes cell death through mitochondrial function collapse. In addition, the present results suggest that the Ca(2+) increase induced by hyperosmotic stress promotes cell survival by recruiting CREB-mediated signaling. Thus, the fate of cardiomyocytes under hyperosmotic stress will depend on the balance between Ca(2+)-induced survival and death pathways.

  15. Concerted vs. Sequential. Two Activation Patterns of Vast Arrays of Intracellular Ca2+ Channels in Muscle

    PubMed Central

    Zhou, Jinsong; Brum, Gustavo; González, Adom; Launikonis, Bradley S.; Stern, Michael D.; Ríos, Eduardo

    2005-01-01

    To signal cell responses, Ca2+ is released from storage through intracellular Ca2+ channels. Unlike most plasmalemmal channels, these are clustered in quasi-crystalline arrays, which should endow them with unique properties. Two distinct patterns of local activation of Ca2+ release were revealed in images of Ca2+ sparks in permeabilized cells of amphibian muscle. In the presence of sulfate, an anion that enters the SR and precipitates Ca2+, sparks became wider than in the conventional, glutamate-based solution. Some of these were “protoplatykurtic” (had a flat top from early on), suggesting an extensive array of channels that activate simultaneously. Under these conditions the rate of production of signal mass was roughly constant during the rise time of the spark and could be as high as 5 μm3 ms−1, consistent with a release current >50 pA since the beginning of the event. This pattern, called “concerted activation,” was observed also in rat muscle fibers. When sulfate was combined with a reduced cytosolic [Ca2+] (50 nM) these sparks coexisted (and interfered) with a sequential progression of channel opening, probably mediated by Ca2+-induced Ca2+ release (CICR). Sequential propagation, observed only in frogs, may require parajunctional channels, of RyR isoform β, which are absent in the rat. Concerted opening instead appears to be a property of RyR α in the amphibian and the homologous isoform 1 in the mammal. PMID:16186560

  16. Modeling CICR in rat ventricular myocytes: voltage clamp studies

    PubMed Central

    2010-01-01

    Background The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR) in cardiac myocytes, with voltage clamp (VC) studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect Ca2+ loading of the sarcoplasmic reticulum (SR), and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR Ca2+ release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic Ca2+ concentration ([Ca2+]myo). Methods The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU), in which resides the mechanistic basis of CICR). The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed Ca2+ channels (trigger-channel and release-channel). It releases Ca2+ flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[Ca2+]myo. Results Our model reproduces measured VC data published by several laboratories, and generates graded Ca2+ release at high Ca2+ gain in a homeostatically-controlled environment where [Ca2+]myo is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR Ca2+ release, its activation by trigger Ca2+, and its refractory characteristics mediated by the luminal SR Ca2+ sensor. Proper functioning of the DCU, sodium-calcium exchangers and SERCA pump are important in achieving negative feedback control and hence Ca2+ homeostasis. Conclusions We examine the role of the above Ca2+ regulating mechanisms in handling various types of induced disturbances in Ca2+ levels by quantifying cellular Ca2+ balance. Our model provides biophysically-based explanations of phenomena associated with CICR generating useful and testable hypotheses. PMID:21062495

  17. Carbon-Based Solid-State Calcium Ion-Selective Microelectrode and Scanning Electrochemical Microscopy: A Quantitative Study of pH-Dependent Release of Calcium Ions from Bioactive Glass.

    PubMed

    Ummadi, Jyothir Ganesh; Downs, Corey J; Joshi, Vrushali S; Ferracane, Jack L; Koley, Dipankar

    2016-03-15

    Solid-state ion-selective electrodes are used as scanning electrochemical microscope (SECM) probes because of their inherent fast response time and ease of miniaturization. In this study, we report the development of a solid-state, low-poly(vinyl chloride), carbon-based calcium ion-selective microelectrode (Ca(2+)-ISME), 25 μm in diameter, capable of performing an amperometric approach curve and serving as a potentiometric sensor. The Ca(2+)-ISME has a broad linear response range of 5 μM to 200 mM with a near Nernstian slope of 28 mV/log[a(Ca(2+))]. The calculated detection limit for Ca(2+)-ISME is 1 μM. The selectivity coefficients of this Ca(2+)-ISME are log K(Ca(2+),A) = -5.88, -5.54, and -6.31 for Mg(2+), Na(+), and K(+), respectively. We used this new type of Ca(2+)-ISME as an SECM probe to quantitatively map the chemical microenvironment produced by a model substrate, bioactive glass (BAG). In acidic conditions (pH 4.5), BAG was found to increase the calcium ion concentration from 0.7 mM ([Ca(2+)] in artificial saliva) to 1.4 mM at 20 μm above the surface. In addition, a solid-state dual SECM pH probe was used to correlate the release of calcium ions with the change in local pH. Three-dimensional pH and calcium ion distribution mapping were also obtained by using these solid-state probes. The quantitative mapping of pH and Ca(2+) above the BAG elucidates the effectiveness of BAG in neutralizing and releasing calcium ions in acidic conditions.

  18. Release of Applied Mechanical Loading Stimulates Intercellular Calcium Waves in Drosophila Wing Discs.

    PubMed

    Narciso, Cody E; Contento, Nicholas M; Storey, Thomas J; Hoelzle, David J; Zartman, Jeremiah J

    2017-07-25

    Mechanical forces are critical but poorly understood inputs for organogenesis and wound healing. Calcium ions (Ca 2+ ) are critical second messengers in cells for integrating environmental and mechanical cues, but the regulation of Ca 2+ signaling is poorly understood in developing epithelial tissues. Here we report a chip-based regulated environment for microorgans that enables systematic investigations of the crosstalk between an organ's mechanical stress environment and biochemical signaling under genetic and chemical perturbations. This method enabled us to define the essential conditions for generating organ-scale intercellular Ca 2+ waves in Drosophila wing discs that are also observed in vivo during organ development. We discovered that mechanically induced intercellular Ca 2+ waves require fly extract growth serum as a chemical stimulus. Using the chip-based regulated environment for microorgans, we demonstrate that not the initial application but instead the release of mechanical loading is sufficient, but not necessary, to initiate intercellular Ca 2+ waves. The Ca 2+ response depends on the prestress intercellular Ca 2+ activity and not on the magnitude or duration of the mechanical stimulation applied. Mechanically induced intercellular Ca 2+ waves rely on IP 3 R-mediated Ca 2+ -induced Ca 2+ release and propagation through gap junctions. Thus, intercellular Ca 2+ waves in developing epithelia may be a consequence of stress dissipation during organ growth. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Calcium signalling in the acinar environment of the exocrine pancreas: physiology and pathophysiology.

    PubMed

    Gryshchenko, Oleksiy; Gerasimenko, Julia V; Peng, Shuang; Gerasimenko, Oleg V; Petersen, Ole H

    2018-02-09

    Ca 2+ signalling in different cell types in exocrine pancreatic lobules was monitored simultaneously and signalling responses to various stimuli were directly compared. Ca 2+ signals evoked by K + -induced depolarization were recorded from pancreatic nerve cells. Nerve cell stimulation evoked Ca 2+ signals in acinar but not in stellate cells. Stellate cells are not electrically excitable as they, like acinar cells, did not generate Ca 2+ signals in response to membrane depolarization. The responsiveness of the stellate cells to bradykinin was markedly reduced in experimental alcohol-related acute pancreatitis, but they became sensitive to stimulation with trypsin. Our results provide fresh evidence for an important role of stellate cells in acute pancreatitis. They seem to be a critical element in a vicious circle promoting necrotic acinar cell death. Initial trypsin release from a few dying acinar cells generates Ca 2+ signals in the stellate cells, which then in turn damage more acinar cells causing further trypsin liberation. Physiological Ca 2+ signals in pancreatic acinar cells control fluid and enzyme secretion, whereas excessive Ca 2+ signals induced by pathological agents induce destructive processes leading to acute pancreatitis. Ca 2+ signals in the peri-acinar stellate cells may also play a role in the development of acute pancreatitis. In this study, we explored Ca 2+ signalling in the different cell types in the acinar environment of the pancreatic tissue. We have, for the first time, recorded depolarization-evoked Ca 2+ signals in pancreatic nerves and shown that whereas acinar cells receive a functional cholinergic innervation, there is no evidence for functional innervation of the stellate cells. The stellate, like the acinar, cells are not electrically excitable as they do not generate Ca 2+ signals in response to membrane depolarization. The principal agent evoking Ca 2+ signals in the stellate cells is bradykinin, but in experimental alcohol-related acute pancreatitis, these cells become much less responsive to bradykinin and then acquire sensitivity to trypsin. Our new findings have implications for our understanding of the development of acute pancreatitis and we propose a scheme in which Ca 2+ signals in stellate cells provide an amplification loop promoting acinar cell death. Initial release of the proteases kallikrein and trypsin from dying acinar cells can, via bradykinin generation and protease-activated receptors, induce Ca 2+ signals in stellate cells which can then, possibly via nitric oxide generation, damage more acinar cells and thereby cause additional release of proteases, generating a vicious circle. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  20. Tamarind seed gum-hydrolyzed polymethacrylamide-g-gellan beads for extended release of diclofenac sodium using 32 full factorial design.

    PubMed

    Nandi, Gouranga; Nandi, Amit Kumar; Khan, Najim Sarif; Pal, Souvik; Dey, Sibasish

    2018-07-15

    Development of tamarind seed gum (TSG)-hydrolyzed polymethacrylamide-g-gellan (h-Pmaa-g-GG) composite beads for extended release of diclofenac sodium using 3 2 full factorial design is the main purpose of this study. The ratio of h-Pmaa-g-GG and TSG and concentration of cross-linker CaCl 2 were taken as independent factors with three different levels of each. Effects of polymer ratio and CaCl 2 on drug entrapment efficiency (DEE), drug release, bead size and swelling were investigated. Responses such as DEE and different drug release parameters were statistically analyzed by 3 2 full factorial design using Design-Expert software and finally the formulation factors were optimized to obtain USP-reference release profile. Drug release rate was found to decrease with decrease in the ratio of h-Pmaa-g-GG:TSG and increase in the concentration of Ca 2+ ions in cross-linking medium. The optimized formulation showed DEE of 93.25% and an extended drug release profile over a period of 10h with f 2 =80.13. Kinetic modeling unveiled case-I-Fickian diffusion based drug release mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Nitric Oxide in Astrocyte-Neuron Signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nianzhen

    Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca 2+ elevations in response to neurotransmitters. A Ca 2+ elevation can propagate to adjacent astrocytes as a Ca 2+ wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca 2+-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca 2+ signaling by imaging NO in purified murine cortical astrocytemore » cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca 2+-dependent NO production. To test the roles of NO in astrocytic Ca 2+ signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca 2+, possibly through store-operated Ca 2+ channels. The NO-induced Ca 2+ signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca 2+ change. The consequence of this NO-induced Ca 2+ influx was assessed by simultaneously monitoring of cytosolic and internal store Ca 2+ using fluorescent Ca 2+ indicators x-rhod-1 and mag-fluo-4. Blockage of NO signaling with the NO scavenger PTIO significantly reduced the refilling percentage of internal stores following ATP-induced Ca 2+ release, suggesting that NO modulates internal store refilling. Furthermore, locally photo-release of NO to a single astrocyte led to a Ca 2+ elevation in the stimulated astrocyte and a subsequent Ca 2+ wave to neighbors. Finally, the author tested the role of NO inglutamate-mediated astrocyte-neuron signaling by recording the astrocyte-evoked glutamate-dependent neuronal slow inward current (SIC). Although NO is not required for the SIC,PTIO reduced SIC amplitude, suggesting that NO modulates glutamate release from astrocytes or glutamate receptor sensitivity of neurons.« less

  2. Calgranulin C Has Filariacidal and Filariastatic Activity

    PubMed Central

    Gottsch, John D.; Eisinger, Steven W.; Liu, Sammy H.; Scott, Alan L.

    1999-01-01

    The calgranulins are a family of calcium- and zinc-binding proteins produced by neutrophils, monocytes, and other cells. Calgranulins are released during inflammatory responses and have antimicrobial activity. Recently, one of the calgranulins, human calgranulin C (CaGC), has been implicated as an important component of the host responses that limit the parasite burden during filarial nematode infections. The goal of this work was to test the hypothesis that human CaGC has biologic activity against filarial parasites. Brugia malayi microfilariae and adults were exposed in vitro to 0.75 to 100 nM recombinant human CaGC. Recombinant CaGC affected adult and larval parasites in a dose-dependent fashion. Microfilariae were more sensitive to the action of CaGC than were adult parasites. At high levels, CaGC was both macrofilariacidal and microfilariacidal. At lower levels, the percentage of parasites killed was dependent on the level of CaGC in the culture system. The larvae not killed had limited motility. The filariastatic effect of low-level CaGC was reversed when the CaGC was removed from the culture system. Immunohistochemical analysis demonstrated that human CaGC accumulated in the cells of the hypodermis-lateral chord of adult and larval parasites. The antifilarial activity of CaGC was not due to the sequestration of zinc. Thus, the cellular and molecular mechanisms that result in the production and release of CaGC in humans may play a key role in the regulation of filarial parasite numbers. PMID:10569784

  3. Properties of Ca2+ release induced by clofibric acid from the sarcoplasmic reticulum of mouse skeletal muscle fibres

    PubMed Central

    Ikemoto, Takaaki; Endo, Makoto

    2001-01-01

    To characterize the effect of clofibric acid (Clof) on the Ca2+ release mechanism in the sarcoplasmic reticulum (SR) of skeletal muscle, we analysed the properties of Clof-induced Ca2+ release under various conditions using chemically skinned skeletal muscle fibres of the mouse.Clof (>0.5 mM) released Ca2+ from the SR under Ca2+-free conditions buffered with 10 mM EGTA (pCa >8).Co-application of ryanodine and Clof at pCa >8 but not ryanodine alone reduced the Ca2+ uptake capacity of the SR. Thus, Ca2+ release induced by Clof at pCa >8 must be a result of the activation of the ryanodine receptor (RyR).At pCa >8, (i) Clof-induced Ca2+ release was inhibited by adenosine monophosphate (AMP), (ii) the inhibitory effect of Mg2+ on the Clof-induced Ca2+ release was saturated at about 1 mM, and (iii) Clof-induced Ca2+ release was not inhibited by procaine (10 mM). These results indicate that Clof may activate the RyR-Ca2+ release channels in a manner different from Ca2+-induced Ca2+ release (CICR).In addition to this unique mode of opening, Clof also enhanced the CICR mode of opening of RyR-Ca2+ release channels.Apart from CICR, a high concentration of Ca2+ might also enhance the unique mode of opening by Clof.These results suggest that some features of Ca2+ release activated by Clof are similar to those of physiological Ca2+ release (PCR) in living muscle cells and raise the possibility that Clof may be useful in elucidating the mechanism of PCR in skeletal muscle. PMID:11606311

  4. Purkinje cells from RyR2 mutant mice are highly arrhythmogenic but responsive to targeted therapy.

    PubMed

    Kang, Guoxin; Giovannone, Steven F; Liu, Nian; Liu, Fang-Yu; Zhang, Jie; Priori, Silvia G; Fishman, Glenn I

    2010-08-20

    The Purkinje fiber network has been proposed as the source of arrhythmogenic Ca(2+) release events in catecholaminergic polymorphic ventricular tachycardia (CPVT), yet evidence supporting this mechanism at the cellular level is lacking. We sought to determine the frequency and severity of spontaneous Ca(2+) release events and the response to the antiarrhythmic agent flecainide in Purkinje cells and ventricular myocytes from RyR2(R4496C/+) CPVT mutant mice and littermate controls. We crossed RyR2(R4496C/+) knock-in mice with the newly described Cntn2-EGFP BAC transgenic mice, which express a fluorescent reporter gene in cells of the cardiac conduction system, including the distal Purkinje fiber network. Isolated ventricular myocytes (EGFP(-)) and Purkinje cells (EGFP(+)) from wild-type hearts and mutant hearts were distinguished by epifluorescence and intracellular Ca(2+) dynamics recorded by microfluorimetry. Both wild-type and RyR2(R4496C/+) mutant Purkinje cells displayed significantly slower kinetics of activation and relaxation compared to ventricular myocytes of the same genotype, and tau(decay) in the mutant Purkinje cells was significantly slower than that observed in wild-type Purkinje cells. Of the 4 groups studied, RyR2(R4496C/+) mutant Purkinje cells were also most likely to develop spontaneous Ca(2+) release events, and the number of events per cell was also significantly greater. Furthermore, with isoproterenol treatment, although all 4 groups showed increases in the frequency of arrhythmogenic Ca(2+(i)) events, the RyR2(R4496C/+) Purkinje cells responded with the most profound abnormalities in intracellular Ca(2+) handling, including a significant increase in the frequency of unstimulated Ca(2+(i)) events and the development of alternans, as well as isolated and sustained runs of triggered beats. Both Purkinje cells and ventricular myocytes from wild-type mice showed suppression of spontaneous Ca(2+) release events with flecainide, whereas in RyR2(R4496C/+) mice, the Purkinje cells were preferentially responsive to drug. In contrast, the RyR2 blocker tetracaine was equally efficacious in mutant Purkinje cells and ventricular myocytes. Purkinje cells display a greater propensity to develop abnormalities in intracellular Ca(2+) handling than ventricular myocytes. This proarrhythmic behavior is enhanced by disease-causing mutations in the RyR2 Ca(2+) release channel and greatly exacerbated by catecholaminergic stimulation, with the development of arrhythmogenic triggered beats. These data support the concept that Purkinje cells are critical contributors to arrhythmic triggers in animal models and humans with CPVT and suggest a broader role for the Purkinje fiber network in the genesis of ventricular arrhythmias.

  5. The elementary events of Ca2+ release elicited by membrane depolarization in mammalian muscle

    PubMed Central

    Csernoch, L; Zhou, J; Stern, M D; Brum, G; Ríos, E

    2004-01-01

    Cytosolic [Ca2+] transients elicited by voltage clamp depolarization were examined by confocal line scanning of rat skeletal muscle fibres. Ca2+ sparks were observed in the fibres' membrane-permeabilized ends, but not in responses to voltage in the membrane-intact area. Elementary events of the depolarization-evoked response could be separated either at low voltages (near −50 mV) or at −20mV in partially inactivated cells. These were of lower amplitude, narrower and of much longer duration than sparks, similar to ‘lone embers’ observed in the permeabilized segments. Their average amplitude was 0.19 and spatial half-width 1.3 μm. Other parameters depended on voltage. At −50 mV average duration was 111 ms and latency 185 ms. At −20 mV duration was 203 ms and latency 24 ms. Ca2+ release current, calculated on an average of events, was nearly steady at 0.5–0.6 pA. Accordingly, simulations of the fluorescence event elicited by a subresolution source of 0.5 pA open for 100 ms had morphology similar to the experimental average. Because 0.5 pA is approximately the current measured for single RyR channels in physiological conditions, the elementary fluorescence events in rat muscle probably reflect opening of a single RyR channel. A reconstruction of cell-averaged release flux at −20 mV based on the observed distribution of latencies and calculated elementary release had qualitatively correct but slower kinetics than the release flux in prior whole-cell measurements. The qualitative agreement indicates that global Ca2+ release flux results from summation of these discrete events. The quantitative discrepancies suggest that the partial inactivation strategy may lead to events of greater duration than those occurring physiologically in fully polarized cells. PMID:14990680

  6. Potential of Sulphur-containing Amino Acids in the Prevention of Catecholamine-induced Arrhythmias.

    PubMed

    Adameova, Adriana; Tappia, Paramjit S; Hatala, Robert; Dhalla, Naranjan S

    2018-01-30

    Various physiological and pathological stimuli can hypersensitize the sympathetic nervous system resulting in a substantial release of catecholamines (CA) and consequent alterations in excitation-contraction coupling and excitation-transcription coupling. It has been shown that oxidation products of CA, rather than CA themselves, are responsible for such adaptation to a new equilibrium. While chronic, sustained accumulation of CA and their toxic products are associated with the depression in cardiac contractile force and remodeling, acute excessive release of CA can result in brief oxidative bursts and serious damage leading in lethal arrhythmias. In response to such oxidative stress, dysregulation of ion homeostasis, activation of neurohumoral system, immune and inflammatory responses, are augmented. These events are inter-related, and as a complex promote electrical instability. Likewise, remodeling occurring after the loss of cardiomyocytes, induces the development of a proarrhythmogenic environment. Thus, CA oxidation products may be involved in triggering arrhythmias as a result of both changes in cardiac cell automaticity and conduction velocity. In contrast, sulphur-containing amino acids (S-AA), in particular taurine and its precursor cysteine have been shown to modulate redox state of the heart. However, the multiple anti-oxidant properties of S-AA are unlikely to be exclusively responsible for their anti-arrhythmic action. They also possess additional cytoprotective effects which can stabilize electrical activity of the heart. It is concluded that specific S-AA may attenuate deleterious effects of supraphysiological levels of CA and this could serve as an important mechanism for the treatment and/or prevention of arrhythmogenesis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Amphetamine and Methamphetamine Differentially Affect Dopamine Transporters in Vitro and in Vivo*S⃞

    PubMed Central

    Goodwin, J. Shawn; Larson, Gaynor A.; Swant, Jarod; Sen, Namita; Javitch, Jonathan A.; Zahniser, Nancy R.; De Felice, Louis J.; Khoshbouei, Habibeh

    2009-01-01

    The psychostimulants d-amphetamine (AMPH) and methamphetamine (METH) release excess dopamine (DA) into the synaptic clefts of dopaminergic neurons. Abnormal DA release is thought to occur by reverse transport through the DA transporter (DAT), and it is believed to underlie the severe behavioral effects of these drugs. Here we compare structurally similar AMPH and METH on DAT function in a heterologous expression system and in an animal model. In the in vitro expression system, DAT-mediated whole-cell currents were greater for METH stimulation than for AMPH. At the same voltage and concentration, METH released five times more DA than AMPH and did so at physiological membrane potentials. At maximally effective concentrations, METH released twice as much [Ca2+]i from internal stores compared with AMPH. [Ca2+]i responses to both drugs were independent of membrane voltage but inhibited by DAT antagonists. Intact phosphorylation sites in the N-terminal domain of DAT were required for the AMPH- and METH-induced increase in [Ca2+]i and for the enhanced effects of METH on [Ca2+]i elevation. Calmodulin-dependent protein kinase II and protein kinase C inhibitors alone or in combination also blocked AMPH- or METH-induced Ca2+ responses. Finally, in the rat nucleus accumbens, in vivo voltammetry showed that systemic application of METH inhibited DAT-mediated DA clearance more efficiently than AMPH, resulting in excess external DA. Together these data demonstrate that METH has a stronger effect on DAT-mediated cell physiology than AMPH, which may contribute to the euphoric and addictive properties of METH compared with AMPH. PMID:19047053

  8. Carbonylation Induces Heterogeneity in Cardiac Ryanodine Receptor Function in Diabetes Mellitus

    PubMed Central

    Shao, Chun Hong; Tian, Chengju; Ouyang, Shouqiang; Moore, Caronda J.; Alomar, Fadhel; Nemet, Ina; D'Souza, Alicia; Nagai, Ryoji; Kutty, Shelby; Rozanski, George J.; Ramanadham, Sasanka; Singh, Jaipaul

    2012-01-01

    Heart failure and arrhythmias occur at 3 to 5 times higher rates among individuals with diabetes mellitus, compared with age-matched, healthy individuals. Studies attribute these defects in part to alterations in the function of cardiac type 2 ryanodine receptors (RyR2s), the principal Ca2+-release channels on the internal sarcoplasmic reticulum (SR). To date, mechanisms underlying RyR2 dysregulation in diabetes remain poorly defined. A rat model of type 1 diabetes, in combination with echocardiography, in vivo and ex vivo hemodynamic studies, confocal microscopy, Western blotting, mass spectrometry, site-directed mutagenesis, and [3H]ryanodine binding, lipid bilayer, and transfection assays, was used to determine whether post-translational modification by reactive carbonyl species (RCS) represented a contributing cause. After 8 weeks of diabetes, spontaneous Ca2+ release in ventricular myocytes increased ∼5-fold. Evoked Ca2+ release from the SR was nonuniform (dyssynchronous). Total RyR2 protein levels remained unchanged, but the ability to bind the Ca2+-dependent ligand [3H]ryanodine was significantly reduced. Western blotting and mass spectrometry revealed RCS adducts on select basic residues. Mutation of residues to delineate the physiochemical impact of carbonylation yielded channels with enhanced or reduced cytoplasmic Ca2+ responsiveness. The prototype RCS methylglyoxal increased and then decreased the RyR2 open probability. Methylglyoxal also increased spontaneous Ca2+ release and induced Ca2+ waves in healthy myocytes. Treatment of diabetic rats with RCS scavengers normalized spontaneous and evoked Ca2+ release from the SR, reduced carbonylation of RyR2s, and increased binding of [3H]ryanodine to RyR2s. From these data, we conclude that post-translational modification by RCS contributes to the heterogeneity in RyR2 activity that is seen in experimental diabetes. PMID:22648972

  9. IP{sub 3}-dependent intracellular Ca{sup 2+} release is required for cAMP-induced c-fos expression in hippocampal neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenting; Tingare, Asmita; Ng, David Chi-Heng

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer cAMP-induced c-fos expression in hippocampal neurons requires a submembraneous Ca{sup 2+} pool. Black-Right-Pointing-Pointer The submembraneous Ca{sup 2+} pool derives from intracellular ER stores. Black-Right-Pointing-Pointer Expression of IP{sub 3}-metabolizing enzymes inhibits cAMP-induced c-fos expression. Black-Right-Pointing-Pointer SRE-mediated and CRE-mediated gene expression is sensitive to IP{sub 3}-metabolizing enzymes. Black-Right-Pointing-Pointer Intracellular Ca{sup 2+} release is required for cAMP-induced nuclear translocation of TORC1. -- Abstract: Ca{sup 2+} and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate informationmore » encoded in the spatiotemporal dynamics and magnitude of Ca{sup 2+} and cAMP signals, including some that are Ca{sup 2+}-responsive, some that are cAMP-responsive and some that detect coincident Ca{sup 2+} and cAMP signals. Because Ca{sup 2+} and cAMP can influence each other's amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca{sup 2+} are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca{sup 2+} buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP{sub 3} levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements - the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP{sub 3} metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was inhibited by depletion of intracellular Ca{sup 2+} stores. Our data indicate that Ca{sup 2+} release from IP{sub 3}-sensitive pools is required for cAMP-induced transcription in hippocampal neurons.« less

  10. Suppression of receptor-mediated Ca2+ mobilization and functional leukocyte responses by hyperforin.

    PubMed

    Feisst, Christian; Werz, Oliver

    2004-04-15

    We have recently identified hyperforin, a lipophilic constituent of the herb Hypericum perforatum (St. John's wort), as a dual inhibitor of the proinflammatory enzymes cyclooxygenase-1 and 5-lipoxygenase. The aim of the present study was to further elucidate antiinflammatory properties and respective targets of hyperforin. We found that hyperforin inhibited the generation of reactive oxygen species (ROS) as well as the release of leukocyte elastase (degranulation) in human isolated polymorphonuclear leukocytes (PMNL), challenged by the G protein-coupled receptor (GPCR) ligand N-formyl-methionyl-leucyl-phenylalanine (fMLP) with an IC 50 approximately equal 0.3 microM. When PMNL were stimulated with phorbol-12-myristate-13-acetate (PMA) or ionomycin, hyperforin (up to 10 microM) failed to inhibit ROS production and elastase release, respectively. Moreover, hyperforin blocked receptor-mediated Ca(2+) mobilization ( IC 50 approximately equal 0.4 and 4 microM, respectively) in PMNL and monocytic cells, and caused a rapid decline of the intracellular Ca(2+) concentration in resting cells. In contrast, the Ca(2+) influx induced by ionomycin or thapsigargin was not suppressed. Comparative studies with the specific phospholipase C inhibitor U-73122 and hyperforin revealed similarities between both compounds. Thus, U-73122 and hyperforin blocked fMLP- and PAF-induced Ca(2+) mobilization, ROS formation, and elastase release, but failed to suppress these responses when cells were stimulated by PMA or ionomycin. Also, both compounds rapidly decreased basal Ca(2+) levels in resting cells and led to a rapid decline of the Ca(2+) elevations evoked by fMLP or PAF. Our data suggest that hyperforin targets component(s) within G protein signaling cascades that regulate Ca(2+) homeostasis, coupled to proinflammatory leukocyte functions.

  11. Calcium signalling silencing in atrial fibrillation.

    PubMed

    Greiser, Maura

    2017-06-15

    Subcellular calcium signalling silencing is a novel and distinct cellular and molecular adaptive response to rapid cardiac activation. Calcium signalling silencing develops during short-term sustained rapid atrial activation as seen clinically during paroxysmal atrial fibrillation (AF). It is the first 'anti-arrhythmic' adaptive response in the setting of AF and appears to counteract the maladaptive changes that lead to intracellular Ca 2+ signalling instability and Ca 2+ -based arrhythmogenicity. Calcium signalling silencing results in a failed propagation of the [Ca 2+ ] i signal to the myocyte centre both in patients with AF and in a rabbit model. This adaptive mechanism leads to a substantial reduction in the expression levels of calcium release channels (ryanodine receptors, RyR2) in the sarcoplasmic reticulum, and the frequency of Ca 2+ sparks and arrhythmogenic Ca 2+ waves remains low. Less Ca 2+ release per [Ca 2+ ] i transient, increased fast Ca 2+ buffering strength, shortened action potentials and reduced L-type Ca 2+ current contribute to a substantial reduction of intracellular [Na + ]. These features of Ca 2+ signalling silencing are distinct and in contrast to the changes attributed to Ca 2+ -based arrhythmogenicity. Some features of Ca 2+ signalling silencing prevail in human AF suggesting that the Ca 2+ signalling 'phenotype' in AF is a sum of Ca 2+ stabilizing (Ca 2+ signalling silencing) and Ca 2+ destabilizing (arrhythmogenic unstable Ca 2+ signalling) factors. Calcium signalling silencing is a part of the mechanisms that contribute to the natural progression of AF and may limit the role of Ca 2+ -based arrhythmogenicity after the onset of AF. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  12. Spontaneous sarcoplasmic reticulum calcium release and extrusion from bovine, not porcine, coronary artery smooth muscle.

    PubMed Central

    Stehno-Bittel, L; Sturek, M

    1992-01-01

    1. We tested the hypothesis that the Ca(2+)-loaded sarcoplasmic reticulum (SR) of coronary artery smooth muscle spontaneously releases Ca2+ preferentially toward the sarcolemma to be extruded from the cell without increasing the average free myoplasmic [Ca2+] (Ca(im)) concentration. 2. The SR of bovine cells was Ca(2+)-loaded by depolarization-induced Ca2+ influx. Release (unloading) of Ca2+ from the SR during recovery from depolarization was determined by Fura-2 microfluorometry of Ca(im). The SR Ca2+ unloading was maximal following a long (14 min) recovery from depolarization, as shown by the 66% decrease in the peak caffeine-induced Ca(im) transient compared to the Ca(im) transient after a short (2 min) recovery. No increase in Ca(im) occurred during the long recovery. No unloading of the SR Ca2+ store was noted in porcine cells. 3. Approximately 80% of the outward K+ current in bovine and porcine cells was sensitive to subsarcolemmal Ca2+ (Ca(is)) concentrations. Whole-cell voltage clamp using pipette solutions with Ca2+ concentrations clamped between 0 and 1000 nM with Ca(2+)-EGTA or Ca(2+)-BAPTA buffers showed increasing K+ currents (normalized for cell membrane surface area) as a function of both membrane potential and Ca(is). Clamping of Ca(im) and Ca(is) was verified by the lack of changes in K+ current and Fura-2 ratio in response to Ca2+ influx, Ca(2+)-free external solution, or caffeine-induced Ca2+ release. At +30 to +50 mV the K+ current amplitude showed a similar sensitivity to Ca2+ as Fura-2. These data indicate that in this experimental preparation Ca(2+)-activated K+ current is a valid estimate of Ca(is). 4. Simultaneous Ca(im) and Ca(is) measurements in bovine cells which were not Ca(2+)-clamped (2 x 10(-4) M-EGTA pipette solution) showed that during the long recovery period the K+ current (reflecting Ca(is)) increased 55%, while Ca(im) did not change. 5. In quiescent bovine cells the Ca(is) was higher than Ca(im), while the higher resting Ca(is) gradient was not apparent in porcine cells. 6. The Ca(is) concentration was directly related to the amount of Ca2+ in the SR in bovine, but not porcine cells. Depletion of the SR in bovine cells by caffeine resulted in a 58% decrease in K+ current compared to the resting K+ current. 7. Caffeine-induced Ca2+ release caused an increase in Ca(is) which preceded the increase in Ca(im) by approximately 2 s.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1403820

  13. Measurement and simulation of myoplasmic calcium transients in mouse slow-twitch muscle fibres.

    PubMed

    Hollingworth, Stephen; Kim, Michele M; Baylor, Stephen M

    2012-02-01

    Bundles of intact fibres from soleus muscles of adult mice were isolated by dissection and one fibre within a bundle was micro-injected with either furaptra or mag-fluo-4, two low-affinity rapidly responding Ca(2+) indicators. Fibres were activated by action potentials to elicit changes in indicator fluorescence (ΔF), a monitor of the myoplasmic free Ca(2+) transient ([Ca(2+)]), and changes in fibre tension. All injected fibres appeared to be slow-twitch (type I) fibres as inferred from the time course of their tension responses. The full-duration at half-maximum (FDHM) of ΔF was found to be essentially identical with the two indicators; the mean value was 8.4 ± 0.3 ms (±SEM) at 16°C and 5.1 ± 0.3 ms at 22°C. The value at 22°C is about one-third that reported previously in enzyme-dissociated slow-twitch fibres that had been AM-loaded with mag-fluo-4: 12.4 ± 0.8 ms and 17.2 ± 1.7 ms. We attribute the larger FDHM in enzyme-dissociated fibres either to an alteration of fibre properties due to the enzyme treatment or to some error in the measurement of ΔF associated with AM loading. ΔF in intact fibres was simulated with a multi-compartment reaction-diffusion model that permitted estimation of the amount and time course of Ca(2+) release from the sarcoplasmic reticulum (SR), the binding and diffusion of Ca(2+) in the myoplasm, the re-uptake of Ca(2+) by the SR Ca(2+) pump, and Δ[Ca(2+)] itself. In response to one action potential at 16°C, the following estimates were obtained: 107 μm for the amount of Ca(2+) release; 1.7 ms for the FDHM of the release flux; 7.6 μm and 4.9 ms for the peak and FDHM of spatially averaged Δ[Ca(2+)]. With five action potentials at 67 Hz, the estimated amount of Ca(2+) release is 186 μm. Two important unknown model parameters are the on- and off-rate constants of the reaction between Ca(2+) and the regulatory sites on troponin; values of 0.4 × 10(8) m(-1) s(-1) and 26 s(-1), respectively, were found to be consistent with the ΔF measurements.

  14. Spatially defined InsP3-mediated signaling in embryonic stem cell-derived cardiomyocytes.

    PubMed

    Kapoor, Nidhi; Maxwell, Joshua T; Mignery, Gregory A; Will, David; Blatter, Lothar A; Banach, Kathrin

    2014-01-01

    The functional role of inositol 1,4,5-trisphosphate (InsP3) signaling in cardiomyocytes is not entirely understood but it was linked to an increased propensity for triggered activity. The aim of this study was to determine how InsP3 receptors can translate Ca(2+) release into a depolarization of the plasma membrane and consequently arrhythmic activity. We used embryonic stem cell-derived cardiomyocytes (ESdCs) as a model system since their spontaneous electrical activity depends on InsP3-mediated Ca(2+) release. [InsP3]i was monitored with the FRET-based InsP3-biosensor FIRE-1 (Fluorescent InsP3 Responsive Element) and heterogeneity in sub-cellular [InsP3]i was achieved by targeted expression of FIRE-1 in the nucleus (FIRE-1nuc) or expression of InsP3 5-phosphatase (m43) localized to the plasma membrane. Spontaneous activity of ESdCs was monitored simultaneously as cytosolic Ca(2+) transients (Fluo-4/AM) and action potentials (current clamp). During diastole, the diastolic depolarization was paralleled by an increase of [Ca(2+)]i and spontaneous activity was modulated by [InsP3]i. A 3.7% and 1.7% increase of FIRE-1 FRET ratio and 3.0 and 1.5 fold increase in beating frequency was recorded upon stimulation with endothelin-1 (ET-1, 100 nmol/L) or phenylephrine (PE, 10 µmol/L), respectively. Buffering of InsP3 by FIRE-1nuc had no effect on the basal frequency while attenuation of InsP3 signaling throughout the cell (FIRE-1), or at the plasma membrane (m43) resulted in a 53.7% and 54.0% decrease in beating frequency. In m43 expressing cells the response to ET-1 was completely suppressed. Ca(2+) released from InsP3Rs is more effective than Ca(2+) released from RyRs to enhance INCX. The results support the hypothesis that in ESdCs InsP3Rs form a functional signaling domain with NCX that translates Ca(2+) release efficiently into a depolarization of the membrane potential.

  15. Effect of calcium carbonate particle shape on phagocytosis and pro-inflammatory response in differentiated THP-1 macrophages.

    PubMed

    Tabei, Yosuke; Sugino, Sakiko; Eguchi, Kenichiro; Tajika, Masahiko; Abe, Hiroko; Nakajima, Yoshihiro; Horie, Masanori

    2017-08-19

    Phagocytosis is a physiological process used by immune cells such as macrophages to actively ingest and destroy foreign pathogens and particles. It is the cellular process that leads to the failure of drug delivery carriers because the drug carriers are cleared by immune cells before reaching their target. Therefore, clarifying the mechanism of particle phagocytosis would have a significant implication for both fundamental understanding and biomedical engineering. As far as we know, the effect of particle shape on biological response has not been fully investigated. In the present study, we investigated the particle shape-dependent cellular uptake and biological response of differentiated THP-1 macrophages by using calcium carbonate (CaCO 3 )-based particles as a model. Transmission electron microscopy analysis revealed that the high uptake of needle-shaped CaCO 3 particles by THP-1 macrophages because of their high phagocytic activity. In addition, the THP-1 macrophages exposed to needle-shaped CaCO 3 accumulated a large amount of calcium in the intracellular matrix. The enhanced release of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) by the THP-1 macrophages suggested that the needle-shaped CaCO 3 particles trigger a pro-inflammatory response. In contrast, no pro-inflammatory response was induced in undifferentiated THP-1 monocytes exposed to either needle- or cuboidal-shaped CaCO 3 particles, probably because of their low phagocytic activity. We also found that phosphate-coated particles efficiently repressed cellular uptake and the resulting pro-inflammatory response in both THP-1 macrophages and primary peritoneal macrophages. Our results indicate that the pro-inflammatory response of macrophages upon exposure to CaCO 3 particles is shape- and surface property-dependent, and is mediated by the intracellular accumulation of calcium ions released from phagocytosed CaCO 3 particles. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Attenuated Ca(2+) release in a mouse model of limb girdle muscular dystrophy 2A.

    PubMed

    DiFranco, Marino; Kramerova, Irina; Vergara, Julio L; Spencer, Melissa Jan

    2016-01-01

    Mutations in CAPN3 cause limb girdle muscular dystrophy type 2A (LGMD2A), a progressive muscle wasting disease. CAPN3 is a non-lysosomal, Ca-dependent, muscle-specific proteinase. Ablation of CAPN3 (calpain-3 knockout (C3KO) mice) leads to reduced ryanodine receptor (RyR1) expression and abnormal Ca2+/calmodulin-dependent protein kinase II (Ca-CaMKII)-mediated signaling. We previously reported that Ca(2+) release measured by fura2-FF imaging in response to single action potential stimulation was reduced in old C3KO mice; however, the use of field stimulation prevented investigation of the mechanisms underlying this impairment. Furthermore, our prior studies were conducted on older animals, whose muscles showed advanced muscular dystrophy, which prevented us from establishing whether impaired Ca(2+) handling is an early feature of disease. In the current study, we sought to overcome these matters by studying single fibers isolated from young wild-type (WT) and C3KO mice using a low affinity calcium dye and high intracellular ethylene glycol-bis(2-aminoethylether)-n,n,n',n'-tetraacetic acid (EGTA) to measure Ca(2+) fluxes. Muscles were subjected to both current and voltage clamp conditions. Standard and confocal fluorescence microscopy was used to study Ca(2+) release in single fibers enzymatically isolated from hind limb muscles of wild-type and C3KO mice. Two microelectrode amplifier and experiments were performed under current or voltage clamp conditions. Calcium concentration changes were detected with an impermeant low affinity dye in the presence of high EGTA intracellular concentrations, and fluxes were calculated with a single compartment model. Standard Western blotting analysis was used to measure the concentration of RyR1 and the α subunit of the dihydropyridine (αDHPR) receptors. Data are presented as mean ± SEM and compared with the Student's test with significance set at p < 0.05. We found that the peak value of Ca(2+) fluxes elicited by single action potentials was significantly reduced by 15-20 % in C3KO fibers, but the kinetics was unaltered. Ca(2+) release elicited by tetanic stimulation was also impaired in C3KO fibers. Confocal studies confirmed that Ca(2+) release was similarly reduced in all triads of C3KO mice. Voltage clamp experiments revealed a normal voltage dependence of Ca(2+) release in C3KO mice but reduced peak Ca(2+) fluxes as with action potential stimulation. These findings concur with biochemical observations of reduced RyR1 and αDHPR levels in C3KO muscles and reduced mechanical output. Confocal studies revealed a similar decrease in Ca(2+) release at all triads consistent with a homogenous reduction of functional voltage activated Ca(2+) release sites. Overall, these results suggest that decreased Ca(2+) release is an early defect in calpainopathy and may contribute to the observed reduction of CaMKII activation in C3KO mice.

  17. Transient release kinetics of rod bipolar cells revealed by capacitance measurement of exocytosis from axon terminals in rat retinal slices.

    PubMed

    Oltedal, Leif; Hartveit, Espen

    2010-05-01

    Presynaptic transmitter release has mostly been studied through measurements of postsynaptic responses, but a few synapses offer direct access to the presynaptic terminal, thereby allowing capacitance measurements of exocytosis. For mammalian rod bipolar cells, synaptic transmission has been investigated in great detail by recording postsynaptic currents in AII amacrine cells. Presynaptic measurements of the dynamics of vesicular cycling have so far been limited to isolated rod bipolar cells in dissociated preparations. Here, we first used computer simulations of compartmental models of morphologically reconstructed rod bipolar cells to adapt the 'Sine + DC' technique for capacitance measurements of exocytosis at axon terminals of intact rod bipolar cells in retinal slices. In subsequent physiological recordings, voltage pulses that triggered presynaptic Ca(2+) influx evoked capacitance increases that were proportional to the pulse duration. With pulse durations 100 ms, the increase saturated at 10 fF, corresponding to the size of a readily releasable pool of vesicles. Pulse durations 400 ms evoked additional capacitance increases, probably reflecting recruitment from additional pools of vesicles. By using Ca(2+) tail current stimuli, we separated Ca(2+) influx from Ca(2+) channel activation kinetics, allowing us to estimate the intrinsic release kinetics of the readily releasable pool, yielding a time constant of 1.1 ms and a maximum release rate of 2-3 vesicles (release site)(1) ms(1). Following exocytosis, we observed endocytosis with time constants ranging from 0.7 to 17 s. Under physiological conditions, it is likely that release will be transient, with the kinetics limited by the activation kinetics of the voltage-gated Ca(2+) channels.

  18. Thermoresponsive Cellulose Acetate-Poly(N-isopropylacrylamide) Core-Shell Fibers for Controlled Capture and Release of Moisture.

    PubMed

    Thakur, Neha; Sargur Ranganath, Anupama; Sopiha, Kostiantyn; Baji, Avinash

    2017-08-30

    In this study, we used core-shell electrospinning to fabricate cellulose acetate-poly(N-isopropylacrylamide) (CA-PNIPAM) fibrous membranes and demonstrated the ability of these fibers to capture water from a high humid atmosphere and release it when thermally stimulated. The wettability of the fibers was controlled by using thermoresponsive PNIPAM as the shell layer. Scanning electron and fluorescence microscopes are used to investigate the microstructure of the fibers and confirm the presence of the core and shell phases within the fibers. The moisture capturing and releasing ability of these core-shell CA-PNIPAM fibers was compared with those of the neat CA and neat PNIPAM fibers at room temperature as well as at an elevated temperature. At room temperature, the CA-PNIPAM core-shell fibers are shown to have the maximum moisture uptake capacity among the three samples. The external temperature variations which trigger the moisture response behavior of these CA-PNIPAM fibers fall within the range of typical day and night cycles of deserts, demonstrating the potential use of these fibers for water harvesting applications.

  19. Extracellular nucleotides act through P2U purinoceptors to elevate [Ca2+]i and enhance basic fibroblast growth factor-induced proliferation in sheep chondrocytes.

    PubMed

    Kaplan, A D; Kilkenny, D M; Hill, D J; Dixon, S J

    1996-11-01

    Extracellular nucleotides interact with specific cell surface receptors to mediate a variety of biological responses, including elevation of the cytosolic free Ca2+ concentration ([Ca2+]i) in a number of cell types. Although extracellular ATP has been shown to affect chondrocyte function, the underlying mechanisms are poorly understood. In the present study, we investigated whether Ca2+-mobilizing purinoceptors are present on sheep chondrocytes. Chondrocytes were isolated from the proximal tibial growth plate of day 120-130 sheep fetuses. Early passage cells were loaded with indo-1 or fluo-3, and [Ca2+]i was monitored by fluorescence spectrophotometry. ATP (0.3-100 microM) induced transient elevation of [Ca2+]i, lasting approximately 1 min. Half-maximal elevation of [Ca2+]i was observed at an ATP concentration of 5.0 +/- 0.2 microM. Responses were still observed in the absence of extracellular Ca2+, and were abolished by pretreatment with thapsigargin, consistent with the release of Ca2+ from intracellular stores. Several nucleotides were tested for their ability to elevate [Ca2+]i. In order of potency, these were UTP approximately ATP > ADP approximately 2-methylthio-ATP. No responses were elicited by benzoylbenzoic-ATP, a P2Z-selective agonist; alpha,beta-methylene-ATP, an agonist selective for certain P2X purinoceptors; AMP; adenosine; or pyrophosphate (all at 100 microM), demonstrating specificity. Taken together, these data indicate that nucleotides elevate [Ca2+]i in chondrocytes through interaction with the P2U purinoceptor subtype. Although pretreatment with pertussis toxin virtually abolished the Ca2+ response to lysophosphatidic acid, the response to UTP was relatively insensitive, suggesting that P2U purinoceptors are not linked to a pertussis toxin-sensitive G protein in chondrocytes. In contrast, the Ca2+ response to UTP was markedly inhibited by the biologically active phorbol ester 12-O-tetradecanoyl-beta-phorbol 13-acetate, but not by the inactive control compound 4 alpha-phorbol 12,13-didecanoate, suggesting that a 12-O-tetradecanoyl-beta-phorbol 13-acetate-sensitive isoform of protein kinase C regulates P2U purinoceptor signaling in these cells. UTP (10 microM) enhanced the proliferative response to basic fibroblast growth factor. The response to basic fibroblast growth factor was also enhanced by ATP, but not by 2-methylthio-ATP, consistent with involvement of P2U purinoceptors. Nucleotides released during trauma, inflammation, or cell death may act through P2U purinoceptors to regulate chondrocyte function in an autocrine or paracrine manner.

  20. Alkylphenol Xenoestrogens with Varying Carbon Chain Lengths Differentially and Potently Activate Signaling and Functional Responses in GH3/B6/F10 Somatomammotropes

    PubMed Central

    Kochukov, Mikhail Y.; Jeng, Yow-Jiun; Watson, Cheryl S.

    2009-01-01

    Background Alkylphenols varying in their side-chain lengths [ethyl-, propyl-, octyl-, and nonylphenol (EP, PP, OP, and NP, respectively)] and bisphenol A (BPA) represent a large group of structurally related xenoestrogens that have endocrine-disruptive effects. Their rapid nongenomic effects that depend on structure for cell signaling and resulting functions are unknown. Objectives We compared nongenomic estrogenic activities of alkylphenols with BPA and 17β-estradiol (E2) in membrane estrogen receptor-α–enriched GH3/B6/F10 pituitary tumor cells. These actions included calcium (Ca) signaling, prolactin (PRL) release, extracellular-regulated kinase (ERK) phosphorylation, and cell proliferation. Methods We imaged Ca using fura-2, measured PRL release via radioimmunoassay, detected ERK phosphorylation by fixed cell immunoassay, and estimated cell number using the crystal violet assay. Results All compounds caused increases in Ca oscillation frequency and intracellular Ca volume at 100 fM to 1 nM concentrations, although long-chain alkylphenols were most effective. All estrogens caused rapid PRL release at concentrations as low as 1 fM to 10 pM; the potency of EP, PP, and NP exceeded that of E2. All compounds at 1 nM produced similar increases in ERK phosphorylation, causing rapid peaks at 2.5–5 min, followed by inactivation and additional 60-min peaks (except for BPA). Dose–response patterns of ERK activation at 5 min were similar for E2, BPA, and PP, whereas EP caused larger effects. Only E2 and NP increased cell number. Some rapid estrogenic responses showed correlations with the hydrophobicity of estrogenic molecules; the more hydrophobic OP and NP were superior at Ca and cell proliferation responses, whereas the less hydrophobic EP and PP were better at ERK activations. Conclusions Alkylphenols are potent estrogens in evoking these nongenomic responses contributing to complex functions; their hydrophobicity can largely predict these behaviors. PMID:19479013

  1. Ca2+ and frequency dependence of exocytosis in isolated somata of magnocellular supraoptic neurones of the rat hypothalamus

    PubMed Central

    Soldo, Brandi L; Giovannucci, David R; Stuenkel, Edward L; Moises, Hylan C

    2004-01-01

    In addition to action potential-evoked exocytotic release at neurohypophysial nerve terminals, the neurohormones arginine vasopressin (aVP) and oxytocin (OT) undergo Ca2+-dependent somatodendritic release within the supraoptic and paraventricular hypothalamic nuclei. However, the cellular and molecular mechanisms that underlie this release have not been elucidated. In the present study, the whole-cell patch-clamp technique was utilized in combination with high-time-resolved measurements of membrane capacitance (Cm) and microfluorometric measurements of cytosolic free Ca2+ concentration ([Ca2+]i) to examine the Ca2+ and stimulus dependence of exocytosis in the somata of magnocellular neurosecretory cells (MNCs) isolated from rat supraoptic nucleus (SON). Single depolarizing steps (≥20 ms) that evoked high-voltage-activated (HVA) Ca2+ currents (ICa) and elevations in intracellular Ca2+ concentration were accompanied by an increase in Cm in a majority (40/47) of SON neurones. The Cm responses were composed of an initial Ca2+-independent, transient component and a subsequent, sustained phase of increased Cm (termed ΔCm) mediated by an influx of Ca2+, and increased with corresponding prolongation of depolarizing step durations (20–200 ms). From this relationship we estimated the rate of vesicular release to be 1533 vesicles s−1. Delivery of neurone-derived action potential waveforms (APWs) as stimulus templates elicited ICa and also induced a ΔCm, provided APWs were applied in trains of greater than 13 Hz. A train of APWs modelled after the bursting pattern recorded from an OT-containing neurone during the milk ejection reflex was effective in supporting an exocytotic ΔCm in isolated MNCs, indicating that the somata of SON neurones respond to physiological patterns of neuronal activity with Ca2+-dependent exocytotic activity. PMID:14645448

  2. Extracellular Ca²⁺ acts as a mediator of communication from neurons to glia.

    PubMed

    Torres, Arnulfo; Wang, Fushun; Xu, Qiwu; Fujita, Takumi; Dobrowolski, Radoslaw; Willecke, Klaus; Takano, Takahiro; Nedergaard, Maiken

    2012-01-24

    Defining the pathways through which neurons and astrocytes communicate may contribute to the elucidation of higher central nervous system functions. We investigated the possibility that decreases in extracellular calcium ion concentration ([Ca(2+)](e)) that occur during synaptic transmission might mediate signaling from neurons to glia. Using noninvasive photolysis of the photolabile Ca(2+) buffer diazo-2 {N-[2-[2-[2-[bis(carboxymethyl)amino]-5-(diazoacetyl)phenoxy]ethoxy]-4-methylphenyl]-N-(carboxymethyl)-, tetrapotassium salt} to reduce [Ca(2+)](e) or caged glutamate to simulate glutamatergic transmission, we found that a local decline in extracellular Ca(2+) triggered astrocytic adenosine triphosphate (ATP) release and astrocytic Ca(2+) signaling. In turn, activation of purinergic P2Y1 receptors on a subset of inhibitory interneurons initiated the generation of action potentials by these interneurons, thereby enhancing synaptic inhibition. Thus, astrocytic ATP release evoked by an activity-associated decrease in [Ca(2+)](e) may provide a negative feedback mechanism that potentiates inhibitory transmission in response to local hyperexcitability.

  3. Extracellular Ca2+ Acts as a Mediator of Communication from Neurons to Glia

    PubMed Central

    Torres, Arnulfo; Wang, Fushun; Xu, Qiwu; Fujita, Takumi; Dobrowolski, Radoslaw; Willecke, Klaus; Takano, Takahiro; Nedergaard, Maiken

    2013-01-01

    Defining the pathways through which neurons and astrocytes communicate may contribute to the elucidation of higher central nervous system functions. We investigated the possibility that decreases in extracellular calcium ion concentration ([Ca2+]e) that occur during synaptic transmission might mediate signaling from neurons to glia. Using noninvasive photolysis of the photolabile Ca2+ buffer diazo-2 {N-[2-[2-[2-[bis(carboxymethyl)amino]-5-(diazoacetyl)phenoxy]ethoxy]-4-methylphenyl]-N-(carboxymethyl)-, tetrapotassium salt} to reduce [Ca2+]e or caged glutamate to simulate glutamatergic transmission, we found that a local decline in extracellular Ca2+ triggered astrocytic adenosine triphosphate (ATP) release and astrocytic Ca2+ signaling. In turn, activation of purinergic P2Y1 receptors on a subset of inhibitory interneurons initiated the generation of action potentials by these interneurons, thereby enhancing synaptic inhibition. Thus, astrocytic ATP release evoked by an activity-associated decrease in [Ca2+]e may provide a negative feedback mechanism that potentiates inhibitory transmission in response to local hyperexcitability. PMID:22275221

  4. Kinetic, pharmacological and activity-dependent separation of two Ca2+ signalling pathways mediated by type 1 metabotropic glutamate receptors in rat Purkinje neurones

    PubMed Central

    Canepari, Marco; Ogden, David

    2006-01-01

    Type 1 metabotropic glutamate receptors (mGluR1) in Purkinje neurones (PNs) are important for motor learning and coordination. Here, two divergent mGluR1 Ca2+-signalling pathways and the associated membrane conductances were distinguished kinetically and pharmacologically after activation by 1-ms photorelease of l-glutamate or by bursts of parallel fibre (PF) stimulation. A new, mGluR1-mediated transient K+ conductance was seen prior to the slow EPSC (sEPSC). It was seen only in PNs previously allowed to fire spontaneously or held at depolarized potentials for several seconds and was slowly inhibited by agatoxin IVA, which blocks P/Q-type Ca2+ channels. It peaked in 148 ms, had well-defined kinetics and, unlike the sEPSC, was abolished by the phospholipase C (PLC) inhibitor U73122. It was blocked by the BK Ca2+-activated K+ channel blocker iberiotoxin and unaffected by apamin, indicating selective activation of BK channels by PLC-dependent store-released Ca2+. The K+ conductance and underlying transient Ca2+ release showed a highly reproducible delay of 99.5 ms following PF burst stimulation, with a precision of 1–2 ms in repeated responses of the same PN, and a subsequent fast rise and fall of Ca2+ concentration. Analysis of Ca2+ signals showed that activation of the K+ conductance by Ca2+ release occured in small dendrites and subresolution structures, most probably spines. The results show that PF burst stimulation activates two pathways of mGluR1 signalling in PNs. First, transient, PLC-dependent Ca2+ release from stores with precisely reproducible timing and second, slower Ca2+ influx in the cation-permeable sEPSC channel. The priming by prior Ca2+ influx in P/Q-type Ca2+ channels may determine the path of mGluR1 signalling. The precise timing of PLC-mediated store release may be important for interactions of PF mGluR1 signalling with other inputs to the PN. PMID:16497716

  5. Role of ROS signaling in differential hypoxic Ca2+ and contractile responses in pulmonary and systemic vascular smooth muscle cells.

    PubMed

    Wang, Yong-Xiao; Zheng, Yun-Min

    2010-12-31

    Hypoxia causes a large increase in [Ca2+]i and attendant contraction in pulmonary artery smooth muscle cells (PASMCs), but not in systemic artery SMCs. The different responses meet the respective functional needs in these two distinct vascular myocytes; however, the underlying molecular mechanisms are not well known. We and other investigators have provided extensive evidence to reveal that voltage-dependent K+ (KV) channels, canonical transient receptor potential (TRPC) channels, ryanodine receptor Ca2+ release channels (RyRs), cyclic adenosine diphosphate-ribose, FK506 binding protein 12.6, protein kinase C, NADPH oxidase and reactive oxygen species (ROS) are the essential effectors and signaling intermediates in the hypoxic increase in [Ca2+]i in PASMCs and HPV, but they may not primarily underlie the diverse cellular responses in pulmonary and systemic vascular myocytes. Hypoxia significantly increases mitochondrial ROS generation in PASMCs, which can induce intracellular Ca2+ release by opening RyRs, and may also cause extracellular Ca2+ influx by inhibiting KV channels and activating TRPC channels, leading to a large increase in [Ca2+]i in PASMCs and HPV. In contrast, hypoxia has no or a minor effect on mitochondrial ROS generation in systemic SMCs, thereby causing no change or a negligible increase in [Ca2+]i and contraction. Further preliminary work indicates that Rieske iron-sulfur protein in the mitochondrial complex III may perhaps serve as a key initial molecular determinant for the hypoxic increase in [Ca2+]i in PASMCs and HPV, suggesting its potential important role in different cellular changes to respond to hypoxic stimulation in pulmonary and systemic artery myocytes. All these findings have greatly improved our understanding of the molecular processes for the differential hypoxic Ca2+ and contractile responses in vascular SMCs from distinct pulmonary and systemic circulation systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. The specific GTP requirement for inositol 1,4,5-trisphosphate-induced Ca2+ release from skinned vascular smooth muscle.

    PubMed

    Saida, K; Twort, C; van Breemen, C

    1988-01-01

    Exogenous GTP was required for the induction of Ca2+ release from smooth muscle SR by IP3 if endogenous GTP was depleted. NaN3 could function as a partial substitute for GTP as a cofactor for the IP3-induced Ca2+ release from the SR. In contrast to the IP3-induced Ca2+ release, caffeine-induced Ca2+ release from the SR did not require GTP. Pertussis toxin inhibited the IP3-induced Ca2+ release from the SR, whereas it had no effect on caffeine-induced Ca2+ release. These results indicate that in smooth muscle two different Ca2+ release-channels exist in the SR: (a) activated by IP3, and (b) activated by caffeine or Ca2+.

  7. Modulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle expressing ryanodine receptor impaired in regulation by calmodulin and S100A1

    PubMed Central

    Yamaguchi, Naohiro; Prosser, Benjamin L.; Ghassemi, Farshid; Xu, Le; Pasek, Daniel A.; Eu, Jerry P.; Hernández-Ochoa, Erick O.; Cannon, Brian R.; Wilder, Paul T.; Lovering, Richard M.; Weber, David; Melzer, Werner; Schneider, Martin F.

    2011-01-01

    In vitro, calmodulin (CaM) and S100A1 activate the skeletal muscle ryanodine receptor ion channel (RyR1) at submicromolar Ca2+ concentrations, whereas at micromolar Ca2+ concentrations, CaM inhibits RyR1. One amino acid substitution (RyR1-L3625D) has previously been demonstrated to impair CaM binding and regulation of RyR1. Here we show that the RyR1-L3625D substitution also abolishes S100A1 binding. To determine the physiological relevance of these findings, mutant mice were generated with the RyR1-L3625D substitution in exon 74, which encodes the CaM and S100A1 binding domain of RyR1. Homozygous mutant mice (Ryr1D/D) were viable and appeared normal. However, single RyR1 channel recordings from Ryr1D/D mice exhibited impaired activation by CaM and S100A1 and impaired CaCaM inhibition. Isolated flexor digitorum brevis muscle fibers from Ryr1D/D mice had depressed Ca2+ transients when stimulated by a single action potential. However, during repetitive stimulation, the mutant fibers demonstrated greater relative summation of the Ca2+ transients. Consistently, in vivo stimulation of tibialis anterior muscles in Ryr1D/D mice demonstrated reduced twitch force in response to a single action potential, but greater summation of force during high-frequency stimulation. During repetitive stimulation, Ryr1D/D fibers exhibited slowed inactivation of sarcoplasmic reticulum Ca2+ release flux, consistent with increased summation of the Ca2+ transient and contractile force. Peak Ca2+ release flux was suppressed at all voltages in voltage-clamped Ryr1D/D fibers. The results suggest that the RyR1-L3625D mutation removes both an early activating effect of S100A1 and CaM and delayed suppressing effect of CaCaM on RyR1 Ca2+ release, providing new insights into CaM and S100A1 regulation of skeletal muscle excitation-contraction coupling. PMID:21289290

  8. Effects of diltiazem or verapamil on calcium uptake and release from chicken skeletal muscle sarcoplasmic reticulum.

    PubMed

    Paydar, Mehrak Javadi; Pousti, Abbas; Farsam, Hasan; Amanlou, Massoud; Mehr, Shahram Ejtemaei; Dehpour, Ahmad Reza

    2005-11-01

    The purpose of this study was to determine the effects of 2 Ca2+ channel blockers, verapamil and diltiazem, on calcium loading (active Ca2+ uptake) and the following Ca2+ release induced by silver ion (Ag+) and Ca2+ from the membrane of heavy sarcoplasmic reticulum (SR) of chicken skeletal muscle. A fluorescent probe technique was employed to determine the calcium movement through the SR. Pretreatment of the medium with diltiazem and verapamil resulted in a significant decrease in the active Ca2+ uptake, with IC50 of about 290 micromol/L for verapamil and 260 micromol/L for diltiazem. Inhibition of Ca2+ uptake was not due to the development of a substantial drug-dependent leak of Ca2+ from the SR. It might, in part, have been mediated by a direct inhibitory effect of these drugs on the Ca2+ ATPase activity of the SR Ca2+ pump. We confirmed that Ca2+ channel blockers, administered after SR Ca2+ loading and before induction of Ca2+ release, caused a dose-dependent inhibition of both Ca2+- and Ag+-induced Ca2+ release rate. Moreover, if Ca2+ channel blockers were administered prior to SR Ca2+ loading, in spite of Ca2+ uptake inhibition the same reduction in Ca2+- and Ag+-induced Ca2+ release rate was seen. We showed that the inhibition of Ag+-induced Ca2+ release by L-channel blockers is more sensitive than Ca2+-induced Ca2+ release inhibition, so the IC50 for Ag+- and Ca2+-induced Ca2+ release was about 100 and 310 micromol/L for verapamil and 79 and 330 micromol/L for diltiazem, respectively. Our results support the evidence that Ca2+ channel blockers affect muscle microsome of chicken skeletal muscle by 2 independent mechanisms: first, reduction of Ca2+ uptake rate and Ca2+-ATPase activity inhibition, and second, inhibition of both Ag+- and Ca2+-induced Ca2+ release by Ca2+ release channels. These findings confirm the direct effect of Ca2+ channel blockers on calcium release channels. Our results suggest that even if the SR is incompletely preloaded with Ca2+ because of inhibition of Ca2+ uptake by verapamil and diltiazem, no impairment in Ca2+ release occurs.

  9. pH-Responsive Triblock Copolymeric Micelles Decorated with a Cell-Penetrating Peptide Provide Efficient Doxorubicin Delivery

    NASA Astrophysics Data System (ADS)

    Ng, Khen Eng; Amin, Mohd Cairul Iqbal Mohd; Katas, Haliza; Amjad, Muhammad Wahab; Butt, Adeel Masood; Kesharwani, Prashant; Iyer, Arun K.

    2016-12-01

    This study developed novel triblock pH-responsive polymeric micelles (PMs) using cholic acid-polyethyleneimine-poly- l-arginine (CA-PEI-pArg) copolymers. PEI provided pH sensitivity, while the hydrophilic cell-penetrating pArg peptide promoted cellular PM internalization. The copolymers self-assembled into PMs in aqueous solution at above the critical micelle concentration (2.98 × 10-7 M) and encapsulated doxorubicin in the core region, with a 34.2% ( w/ w) entrapment efficiency. PMs showed pH-dependent swelling, increasing in size by almost sevenfold from pH 7.4 to 5.0. Doxorubicin release was pH-dependent, with about 65% released at pH 5.0, and 32% at pH 7.4. Cellular uptake, assessed by confocal microscopy and flow cytometry, was enhanced by using doxorubicin-loaded CA-PEI-pArg PMs, as compared to free doxorubicin and DOX-loaded CA-PEI PMs. Moreover, 24-h incubation of these PMs with a human breast cancer cell line produced greater cytotoxicity than free doxorubicin. These results indicate that pH-responsive CA-PEI-pArg micelles could provide a versatile delivery system for targeted cancer therapy using hydrophobic drugs.

  10. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes

    NASA Astrophysics Data System (ADS)

    Jouaville, Laurence S.; Ichas, François; Holmuhamedov, Ekhson L.; Camacho, Patricia; Lechleiter, James D.

    1995-10-01

    INXenopus oocytes, as well as other cells, inositol-l,4,5-tris-phosphate (Ins(l,4,5)P3)-induced Ca2+ release1-4 is an excitable process that generates propagating Ca2+ waves5-7 that annihilate upon collision8-12. The fundamental property responsible for excitability13 appears to be the Ca2+ dependency of the Ins(l,4,5)P3 receptor9. Here we report that Ins(l,4,5)P3-induced Ca2+ wave activity is strengthened by oxidizable substrates that energize mitochondria, increasing Ca2+ wave amplitude, velocity and interwave period. The effects of pyruvate/malate are blocked by ruthenium red at the Ca2+ uniporter, by rotenone at complex I, and by antimycin A at complex III, and are subsequently rescued at complex IV by ascorbate tetramethylphenylenediamine (TMPD)14. Our data reveal that potential-driven mitochondrial Ca2+ uptake is a major factor in the regulation of Ins(l,4,5)P3-induced Ca2+ release and clearly demonstrate a physiological role of mitochondria in intracellular Ca2+ signalling.

  11. Tripeptidyl Peptidase II Regulates Sperm Function by Modulating Intracellular Ca2+ Stores via the Ryanodine Receptor

    PubMed Central

    Zhou, Yuchuan; Ru, Yanfei; Wang, Chunmei; Wang, Shoulin; Zhou, Zuomin; Zhang, Yonglian

    2013-01-01

    Recent studies have identified Ca2+ stores in sperm cells; however, it is not clear whether these Ca2+ stores are functional and how they are mobilized. Here, in vitro and in vivo, we determined that tripeptidyl peptidase II antagonists strongly activated the cAMP/PKA signaling pathway that drives sperm capacitation-associated protein tyrosine phosphorylation. We demonstrated that in the absence of Ca2+, TPIII antagonists elevated the intracellular Ca2+ levels in sperm, resulting in a marked improvement in sperm movement, capacitation, acrosome reaction, and the in vitro fertilizing ability. This antagonist-induced release of intracellular Ca2+ could be blocked by the inhibitors of ryanodine receptors (RyRs) which are the main intracellular Ca2+ channels responsible for releasing stored Ca2+. Consistent with these results, indirect immunofluorescence assay using anti-RyR antibodies further validated the presence of RyR3 in the acrosomal region of mature sperm. Thus, TPPII can regulate sperm maturation by modulating intracellular Ca2+ stores via the type 3 RyR. PMID:23818952

  12. AhV_aPA-induced vasoconstriction involves the IP₃Rs-mediated Ca²⁺ releasing.

    PubMed

    Zeng, Fuxing; Zou, Zhisong; Niu, Liwen; Li, Xu; Teng, Maikun

    2013-08-01

    AhV_aPA, the acidic PLA₂ purified from Agkistrodon halys pallas venom, was previously reported to possess a strong enzymatic activity and can remarkably induce a further contractile response on the 60 mM K⁺-induced contraction with an EC₅₀ in 369 nM on mouse thoracic aorta rings. In the present study, we found that the p-bromo-phenacyl-bromide (pBPB), which can completely inhibit the enzymatic activity of AhV_aPA, did not significantly reduce the contractile response on vessel rings induced by AhV_aPA, indicating that the vasoconstrictor effects of AhV_aPA are independent of the enzymatic activity. The inhibitor experiments showed that the contractile response induced by AhV_aPA is mainly attributed to the Ca²⁺ releasing from Ca²⁺ store, especially sarcoplasmic reticulum (SR). Detailed studies showed that the Ca²⁺ release from SR is related to the activation of inositol trisphosphate receptors (IP₃Rs) rather than ryanodine receptors (RyRs). Furthermore, the vasoconstrictor effect could be strongly reduced by pre-incubation with heparin, indicating that the basic amino acid residues on the surface of AhV_aPA may be involved in the interaction between AhV_aPA and the molecular receptors. These findings offer new insights into the functions of snake PLA₂ and provide a novel pathogenesis of A. halys pallas venom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Mechanisms underlying ketoconazole-induced Ca(2+) mobilization in Madin-Darby canine kidney cells.

    PubMed

    Jan, C; Tseng, C

    2000-04-15

    The effect of ketoconazole on Ca(2+) signaling in Madin-Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Ketoconazole evoked increases in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) concentration dependently. The response was decreased by external Ca(2+) removal. In Ca(2+)-free medium, pretreatment with ketoconazole abolished the [Ca(2+)](i) rise induced by thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) pump. Addition of 3 mM Ca(2+) induced a significant [Ca(2+)](i) rise after preincubation with 150 microM ketoconazole in Ca(2+)-free medium. Pretreatment with aristolochic acid (40 microM) to inhibit phospholipase A(2) inhibited the 150-microM-ketoconazole-induced internal Ca(2+) release by 37%, but inhibition of phospholipase C with 1-(6-((17beta-3-methoxyestra-1,3, 5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122) (2 microM) had no effect. Collectively, we found that ketoconazole increases [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from thapsigargin-sensitive pools in a manner independent of the production of inositol-1,4,5-trisphosphate, followed by Ca(2+) influx from the external space.

  14. Acetylcholine released from T cells regulates intracellular Ca2+, IL-2 secretion and T cell proliferation through nicotinic acetylcholine receptor.

    PubMed

    Mashimo, Masato; Iwasaki, Yukari; Inoue, Shoko; Saito, Shoko; Kawashima, Koichiro; Fujii, Takeshi

    2017-03-01

    T lymphocytes synthesize acetylcholine (ACh) and express muscarinic and nicotinic ACh receptors (mAChR and nAChR, respectively) responsible for increases in the intracellular Ca 2+ concentration ([Ca 2+ ] i ). Our aim in the present study was to assess whether autocrine ACh released from T lymphocytes regulates their physiological functions. MOLT-3 human leukemic cell line and murine splenocytes were loaded with fura-2 to monitor [Ca 2+ ] i changes in the absence or presence of several AChR antagonists, including mecamylamine, methyllycaconitine and scopolamine. Real-time PCR and ELISA were performed to measure interleukin-2 (IL-2) mRNA and protein levels. T lymphocytes constitutively produce sufficient amounts of ACh to elicit autocrine changes in [Ca 2+ ] i . These autocrine ACh-evoked [Ca 2+ ] i transients were mediated by nAChRs and then influx of extracellular Ca 2+ . Mecamylamine, a nAChR inhibitor, suppressed not only these [Ca 2+ ] i transients, but also IL-2 release and T cell proliferation. Here, we confirmed that T lymphocytes utilize ACh as a tool to interact with each other and that autocrine ACh-activated nAChRs are involved in cytokine release and cell proliferation. These findings suggest the possibility that nAChR agonists and antagonists and smoking are able to modulate immune function, which in turn suggests the therapeutic potential of immune activation or suppression using nAChR agonists or antagonists. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Electrogenic Na+/Ca2+ Exchange

    PubMed Central

    Danaceau, Jonathan P.; Lucero, Mary T.

    2000-01-01

    Olfactory receptor neurons (ORNs) from the squid, Lolliguncula brevis, respond to the odors l-glutamate or dopamine with increases in internal Ca2+ concentrations ([Ca2+]i). To directly asses the effects of increasing [Ca2+]i in perforated-patched squid ORNs, we applied 10 mM caffeine to release Ca2+ from internal stores. We observed an inward current response to caffeine. Monovalent cation replacement of Na+ from the external bath solution completely and selectively inhibited the caffeine-induced response, and ruled out the possibility of a Ca2+-dependent nonselective cation current. The strict dependence on internal Ca2+ and external Na+ indicated that the inward current was due to an electrogenic Na+/Ca2+ exchanger. Block of the caffeine-induced current by an inhibitor of Na+/Ca2+ exchange (50–100 μM 2′,4′-dichlorobenzamil) and reversibility of the exchanger current, further confirmed its presence. We tested whether Na+/Ca2+ exchange contributed to odor responses by applying the aquatic odor l-glutamate in the presence and absence of 2′,4′-dichlorobenzamil. We found that electrogenic Na+/Ca2+ exchange was responsible for ∼26% of the total current associated with glutamate-induced odor responses. Although Na+/Ca2+ exchangers are known to be present in ORNs from numerous species, this is the first work to demonstrate amplifying contributions of the exchanger current to odor transduction. PMID:10828249

  16. K(+)- and temperature-evoked taurine efflux from hypothalamic astrocytes.

    PubMed

    Tigges, G A; Philibert, R A; Dutton, G R

    1990-10-30

    Hypothalamic astrocytes in culture released taurine, a suspected inhibitory amino acid neurotransmitter/neuromodulator/osmoregulator, in response to isoosmotically increasing extracellular K+ in a dose-dependent fashion. In the absence of added Ca2+, basal release levels rose to approach those obtained after exposure to 60 mM K+ in the presence of 2.5 mM Ca2+, and were only partially lowered by the addition of 10 mM Mg2+. Stimulation with K+ (60 mM) did not further increase taurine efflux above the high basal levels seen in the absence of Ca2+. Under standard conditions complete replacement of Na+ with choline Cl had little effect on basal taurine release, but reduced K(+)-evoked (60 mM) efflux by 60%. The temperature dependence of the basal levels of taurine released from hypothalamic astrocytes was similar to that seen for cultured cerebellar astrocytes and neurons over the range 5-50 degrees C. Taurine release increased from 5 to 15 degrees C, remained constant between 15 and 33 degrees C, decreased between 33 and 37 degrees C and increased thereafter. The infection point of increased basal taurine release seen around 37 degrees C (most prominent in astrocytes), may be of physiological significance. Results presented also show that the ion (Na+, Ca2+ and K+) sensitivities of taurine efflux for cultured hypothalamic astrocytes are similar to those previously reported for cultured astrocytes from the cerebellum.

  17. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to bitter, sweet, and umami taste stimuli

    PubMed Central

    DeSimone, John A.; Phan, Tam-Hao T.; Ren, ZuoJun; Mummalaneni, Shobha

    2012-01-01

    The relationship between taste receptor cell (TRC) intracellular Ca2+ ([Ca2+]i) and rat chorda tympani (CT) nerve responses to bitter (quinine and denatonium), sweet (sucrose, glycine, and erythritol), and umami [monosodium glutamate (MSG) and MSG + inosine 5′-monophosphate (IMP)] taste stimuli was investigated before and after lingual application of ionomycin (Ca2+ ionophore) + Ca2+, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA-AM; Ca2+ chelator), U73122 (phospholipase C blocker), thapsigargin (Ca2+-ATPase blocker), and diC8-PIP2 (synthetic phosphatidylinositol 4,5-bisphosphate). The phasic CT response to quinine was indifferent to changes in [Ca2+]i. However, a decrease in [Ca2+]i inhibited the tonic part of the CT response to quinine. The CT responses to sweet and umami stimuli were indifferent to changes in TRC [Ca2+]i. However, a decrease in [Ca2+]i attenuated the synergistic effects of ethanol on the CT response to sweet stimuli and of IMP on the glutamate CT response. U73122 and thapsigargin inhibited the phasic and tonic CT responses to bitter, sweet, and umami stimuli. Although diC8-PIP2 increased the CT response to bitter and sweet stimuli, it did not alter the CT response to glutamate but did inhibit the synergistic effect of IMP on the glutamate response. The results suggest that bitter, sweet, and umami taste qualities are transduced by [Ca2+]i-dependent and [Ca2+]i-independent mechanisms. Changes in TRC [Ca2+]i in the BAPTA-sensitive cytosolic compartment regulate quality-specific taste receptors and ion channels that are involved in the neural adaptation and mixture interactions. Changes in TRC [Ca2+]i in a separate subcompartment, sensitive to inositol trisphosphate and thapsigargin but inaccessible to BAPTA and ionomycin + Ca2+, are associated with neurotransmitter release. PMID:22993258

  18. Sarcomere mechanics in uniform and non-uniform cardiac muscle: a link between pump function and arrhythmias.

    PubMed

    ter Keurs, Henk E D J; Shinozaki, Tsuyoshi; Zhang, Ying Ming; Zhang, Mei Luo; Wakayama, Yuji; Sugai, Yoshinao; Kagaya, Yutaka; Miura, Masahito; Boyden, Penelope A; Stuyvers, Bruno D M; Landesberg, Amir

    2008-01-01

    Starling's Law and the well-known end-systolic pressure-volume relationship (ESPVR) of the left ventricle reflect the effect of sarcomere length (SL) on stress (sigma) development and shortening by myocytes in the uniform ventricle. We show here that tetanic contractions of rat cardiac trabeculae exhibit a sigma-SL relationship at saturating [Ca2+] that depends on sarcomere geometry in a manner similar to skeletal sarcomeres and the existence of opposing forces in cardiac muscle shortened below slack length. The sigma-SL-[Ca2+]free relationships (sigma-SL-CaR) at submaximal [Ca2+] in intact and skinned trabeculae were similar, albeit that the sensitivity for Ca2+ of intact muscle was higher. We analyzed the mechanisms underlying the sigma-SL-CaR using a kinetic model where we assumed that the rates of Ca2+ binding by Troponin-C (Tn-C) and/or cross-bridge (XB) cycling are determined by SL, [Ca2+] or stress. We analyzed the correlation between the model results and steady state stress measurements at varied SL and [Ca2+] from skinned rat cardiac trabeculae to test the hypotheses that: (i) the dominant feedback mechanism is SL, stress or [Ca2+]-dependent; and (ii) the feedback mechanism regulates: Tn-C-Ca2+ affinity, XB kinetics or, unitary XB-force. The analysis strongly suggests that feedback of the number of strong XBs to cardiac Tn-C-Ca2+ affinity is the dominant mechanism that regulates XB recruitment. Application of this concept in a mathematical model of twitch-stress accurately reproduced the sigma-SL-CaR and the time course of twitch-stress as well as the time course of intracellular [Ca2+]i. Modeling of the response of the cardiac twitch to rapid stress changes using the above feedback model uniquely predicted the occurrence of [Ca2+]i transients as a result of accelerated Ca2+ dissociation from Tn-C. The above concept has important repercussions for the non-uniformly contracting heart in which arrhythmogenic Ca2+ waves arise from weakened areas in cardiac muscle. These Ca2+ waves can reversibly be induced in muscle with non-uniform excitation contraction coupling (ECC) by the cycle of stretch and release in the border zone between the damaged and intact regions. Stimulus trains induced propagating Ca2+ waves and reversibly induced arrhythmias. We hypothesize that rapid force loss by sarcomeres in the border zone during relaxation causes Ca2+ release from Tn-C and initiates Ca2+ waves propagated by the sarcoplasmic reticulum (SR). These observations suggest the unifying hypothesis that force feedback to Ca2+ binding by Tn-C is responsible for Starling's Law and the ESPVR in uniform myocardium and leads in non-uniform myocardium to a surge of Ca2+ released by the myofilaments during relaxation, which initiates arrhythmogenic propagating Ca2+ release by the SR.

  19. Autocrine Regulation of UVA-Induced IL-6 Production via Release of ATP and Activation of P2Y Receptors

    PubMed Central

    Kawano, Ayumi; Kadomatsu, Remi; Ono, Miyu; Kojima, Shuji; Tsukimoto, Mitsutoshi; Sakamoto, Hikaru

    2015-01-01

    Extracellular nucleotides, such as ATP, are released from cells in response to various stimuli and act as intercellular signaling molecules through activation of P2 receptors. Exposure to the ultraviolet radiation A (UVA) component of sunlight causes molecular and cellular damage, and in this study, we investigated the involvement of extracellular nucleotides and P2 receptors in the UVA-induced cellular response. Human keratinocyte-derived HaCaT cells were irradiated with a single dose of UVA (2.5 J/cm2), and ATP release and interleukin (IL)-6 production were measured. ATP was released from cells in response to UVA irradiation, and the release was blocked by pretreatment with inhibitors of gap junction hemichannels or P2X7 receptor antagonist. IL-6 production was increased after UVA irradiation, and this increase was inhibited by ecto-nucleotidase or by antagonists of P2Y11 or P2Y13 receptor. These results suggest that UVA-induced IL-6 production is mediated by release of ATP through hemichannels and P2X7 receptor, followed by activation of P2Y11 and P2Y13 receptors. Interestingly, P2Y11 and P2Y13 were associated with the same pattern of IL-6 production, though they trigger different intracellular signaling cascades: Ca2+-dependent and PI3K-dependent, respectively. Thus, IL-6 production in response to UVA-induced ATP release involves at least two distinct pathways, mediated by activation of P2Y11 and P2Y13 receptors. PMID:26030257

  20. Piezo1 regulates mechanotransductive release of ATP from human RBCs.

    PubMed

    Cinar, Eyup; Zhou, Sitong; DeCourcey, James; Wang, Yixuan; Waugh, Richard E; Wan, Jiandi

    2015-09-22

    Piezo proteins (Piezo1 and Piezo2) are recently identified mechanically activated cation channels in eukaryotic cells and associated with physiological responses to touch, pressure, and stretch. In particular, human RBCs express Piezo1 on their membranes, and mutations of Piezo1 have been linked to hereditary xerocytosis. To date, however, physiological functions of Piezo1 on normal RBCs remain poorly understood. Here, we show that Piezo1 regulates mechanotransductive release of ATP from human RBCs by controlling the shear-induced calcium (Ca(2+)) influx. We find that, in human RBCs treated with Piezo1 inhibitors or having mutant Piezo1 channels, the amounts of shear-induced ATP release and Ca(2+) influx decrease significantly. Remarkably, a critical extracellular Ca(2+) concentration is required to trigger significant ATP release, but membrane-associated ATP pools in RBCs also contribute to the release of ATP. Our results show how Piezo1 channels are likely to function in normal RBCs and suggest a previously unidentified mechanotransductive pathway in ATP release. Thus, we anticipate that the study will impact broadly on the research of red cells, cellular mechanosensing, and clinical studies related to red cell disorders and vascular disease.

  1. Involvement of plasma membrane-located calmodulin in the response decay of cyclic nucleotide-gated cation channel of cultured carrot cells.

    PubMed

    Kurosaki, F; Kaburaki, H; Nishi, A

    1994-03-07

    Increase in cytoplasmic cyclic AMP concentration stimulates Ca2+ influx through the cyclic AMP-gated cation channel in the plasma membrane of cultured carrot cells. However, the Ca2+ current terminated after a few minutes even in the presence of high concentrations of cyclic AMP indicating that hydrolysis of the nucleotide is not responsible for stop of the Ca2+ influx. Cyclic AMP evoked discharge of Ca2+ from inside-out sealed vesicles of carrot plasma membrane, and it was strongly inhibited when the suspension of the vesicles was supplemented with 1 microM of free Ca2+, while Ca2+ lower than 0.1 microM did not affect the Ca(2+)-release. The Ca2+ flux across plasma membrane was restored from this Ca(2+)-induced inhibition by the addition of calmodulin inhibitors or anti-calmodulin. These results suggest that Ca2+ influx initiated by the increase in intracellular cAMP in cultured carrot cells is terminated when the cytosolic Ca2+ concentration reaches the excitatory level in the cells, and calmodulin located in the plasma membrane plays an important role in the response decay of the cyclic nucleotide-gated Ca2+ channel.

  2. Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids

    NASA Technical Reports Server (NTRS)

    Eick, M. J.; Grossl, P. R.; Golden, D. C.; Sparks, D. L.; Ming, D. W.

    1996-01-01

    The dissolution kinetics of a simulated lunar glass were examined at pH 3, 5, and 7. Additionally, the pH 7 experiments were conducted in the presence of citric and oxalic acid at concentrations of 2 and 20 mM. The organic acids were buffered at pH 7 to examine the effect of each molecule in their dissociated form. At pH 3, 5, and 7, the dissolution of the synthetic lunar glass was observed to proceed via a two-stage process. The first stage involved the parabolic release of Ca, Mg, Al, and Fe, and the linear release of Si. Dissolution was incongruent, creating a leached layer rich in Si and Ti which was verified by transmission electron microscopy (TEM). During the second stage the release of Ca, Mg, Al, and Fe was linear. A coupled diffusion/surface dissolution model was proposed for dissolution of the simulated lunar glass at pH 3, 5, and 7. During the first stage the initial release of mobile cations (i.e., Ca, Mg, Al, Fe) was limited by diffusion through the surface leached layer of the glass (parabolic release), while Si release was controlled by the hydrolysis of the Si-O-Al bonds at the glass surface (linear release). As dissolution continued, the mobile cations diffused from greater depths within the glass surface. A steady-state was then reached where the diffusion rate across the increased path lengths equalled the Si release rate from the surface. In the presence of the organic acids, the dissolution of the synthetic lunar glass proceeded by a one stage process. The release of Ca, Mg, Al, and Fe followed a parabolic relationship, while the release of Si was linear. The relative reactivity of the organic acids used in the experiments was citrate > oxalate. A thinner leached layer rich in Si/Ti, as compared to the pH experiments, was observed using TEM. Rate data suggest that the chemisorption of the organic anion to the surface silanol groups was responsible for enhanced dissolution in the presence of the organic acids. It is proposed that the increased rate of Si release is responsible for the one stage parabolic release of mobile cations and the relatively thin leached layer compared to experiments at pH 3 and 5.

  3. How Shigella Utilizes Ca(2+) Jagged Edge Signals during Invasion of Epithelial Cells.

    PubMed

    Bonnet, Mariette; Tran Van Nhieu, Guy

    2016-01-01

    Shigella, the causative agent of bacillary dysentery invades intestinal epithelial cells using a type III secretion system (T3SS). Through the injection of type III effectors, Shigella manipulates the actin cytoskeleton to induce its internalization in epithelial cells. At early invasion stages, Shigella induces atypical Ca(2+) responses confined at entry sites allowing local cytoskeletal remodeling for bacteria engulfment. Global Ca(2+) increase in the cell triggers the opening of connexin hemichannels at the plasma membrane that releases ATP in the extracellular milieu, favoring Shigella invasion and spreading through purinergic receptor signaling. During intracellular replication, Shigella regulates inflammatory and death pathways to disseminate within the epithelium. At later stages of infection, Shigella downregulates hemichannel opening and the release of extracellular ATP to dampen inflammatory signals. To avoid premature cell death, Shigella activates cell survival by upregulating the PI3K/Akt pathway and downregulating the levels of p53. Furthermore, Shigella interferes with pro-apoptotic caspases, and orients infected cells toward a slow necrotic cell death linked to mitochondrial Ca(2+) overload. In this review, we will focus on the role of Ca(2+) responses and their regulation by Shigella during the different stages of bacterial infection.

  4. How Shigella Utilizes Ca2+ Jagged Edge Signals during Invasion of Epithelial Cells

    PubMed Central

    Bonnet, Mariette; Tran Van Nhieu, Guy

    2016-01-01

    Shigella, the causative agent of bacillary dysentery invades intestinal epithelial cells using a type III secretion system (T3SS). Through the injection of type III effectors, Shigella manipulates the actin cytoskeleton to induce its internalization in epithelial cells. At early invasion stages, Shigella induces atypical Ca2+ responses confined at entry sites allowing local cytoskeletal remodeling for bacteria engulfment. Global Ca2+ increase in the cell triggers the opening of connexin hemichannels at the plasma membrane that releases ATP in the extracellular milieu, favoring Shigella invasion and spreading through purinergic receptor signaling. During intracellular replication, Shigella regulates inflammatory and death pathways to disseminate within the epithelium. At later stages of infection, Shigella downregulates hemichannel opening and the release of extracellular ATP to dampen inflammatory signals. To avoid premature cell death, Shigella activates cell survival by upregulating the PI3K/Akt pathway and downregulating the levels of p53. Furthermore, Shigella interferes with pro-apoptotic caspases, and orients infected cells toward a slow necrotic cell death linked to mitochondrial Ca2+ overload. In this review, we will focus on the role of Ca2+ responses and their regulation by Shigella during the different stages of bacterial infection. PMID:26904514

  5. PP2B and PP1α cooperatively disrupt 7SK snRNP to release P-TEFb for transcription in response to Ca2+ signaling

    PubMed Central

    Chen, Ruichuan; Liu, Min; Li, Huan; Xue, Yuhua; Ramey, Wanichaya N.; He, Nanhai; Ai, Nanping; Luo, Haohong; Zhu, Ying; Zhou, Nan; Zhou, Qiang

    2008-01-01

    The positive transcription elongation factor b (P-TEFb), consisting of Cdk9 and cyclin T, stimulates RNA polymerase II elongation and cotranscriptional pre-mRNA processing. To accommodate different growth conditions and transcriptional demands, a reservoir of P-TEFb is kept in an inactive state in the multisubunit 7SK snRNP. Under certain stress or disease conditions, P-TEFb is released to activate transcription, although the signaling pathway(s) that controls this is largely unknown. Here, through analyzing the UV- or hexamethylene bisacetamide (HMBA)-induced release of P-TEFb from 7SK snRNP, an essential role for the calcium ion (Ca2+)–calmodulin–protein phosphatase 2B (PP2B) signaling pathway is revealed. However, Ca2+ signaling alone is insufficient, and PP2B must act sequentially and cooperatively with protein phosphatase 1α (PP1α) to disrupt 7SK snRNP. Activated by UV/HMBA and facilitated by a PP2B-induced conformational change in 7SK snRNP, PP1α releases P-TEFb through dephosphorylating phospho-Thr186 in the Cdk9 T-loop. This event is also necessary for the subsequent recruitment of P-TEFb by the bromodomain protein Brd4 to the preinitiation complex, where Cdk9 remains unphosphorylated and inactive until after the synthesis of a short RNA. Thus, through cooperatively dephosphorylating Cdk9 in response to Ca2+ signaling, PP2B and PP1α alter the P-TEFb functional equilibrium through releasing P-TEFb from 7SK snRNP for transcription. PMID:18483222

  6. Prostaglandin E(2) stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells.

    PubMed

    Sanzgiri, R P; Araque, A; Haydon, P G

    1999-11-05

    Recent Ca(2+) imaging studies in cell culture and in situ have shown that Ca(2+) elevations in astrocytes stimulate glutamate release and increase neuronal Ca(2+) levels, and that this astrocyte-neuron signaling can be stimulated by prostaglandin E(2) (PGE(2)). We investigated the electrophysiological consequences of the PGE(2)-mediated astrocyte-neuron signaling using whole-cell recordings on cultured rat hippocampal cells. Focal application of PGE(2) to astrocytes evoked a Ca(2+) elevation in the stimulated cell by mobilizing internal Ca(2+) stores, which further propagated as a Ca(2+) wave to neighboring astrocytes. Whole-cell recordings from neurons revealed that PGE(2) evoked a slow inward current in neurons adjacent to astrocytes. This neuronal response required the presence of an astrocyte Ca(2+) wave and was mediated through both N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors. Taken together with previous studies, these data demonstrate that PGE(2)-evoked Ca(2+) elevations in astrocyte cause the release of glutamate which activates neuronal ionotropic receptors. Copyright 1999 John Wiley & Sons, Inc.

  7. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca2+ during excitation-contraction coupling in atrial myocytes.

    PubMed

    Maxwell, Joshua T; Blatter, Lothar A

    2017-06-15

    In atrial myocytes excitation-contraction coupling is strikingly different from ventricle because atrial myocytes lack a transverse tubule membrane system: Ca 2+ release starts in the cell periphery and propagates towards the cell centre by Ca 2+ -induced Ca 2+ release from the sarcoplasmic reticulum (SR) Ca 2+ store. The cytosolic Ca 2+ sensitivity of the ryanodine receptor (RyRs) Ca 2+ release channel is low and it is unclear how Ca 2+ release can be activated in the interior of atrial cells. Simultaneous confocal imaging of cytosolic and intra-SR calcium revealed a transient elevation of store Ca 2+ that we termed 'Ca 2+ sensitization signal'. We propose a novel paradigm of atrial ECC that is based on tandem activation of the RyRs by cytosolic and luminal Ca 2+ through a 'fire-diffuse-uptake-fire' (or FDUF) mechanism: Ca 2+ uptake by SR Ca 2+ pumps at the propagation front elevates Ca 2+ inside the SR locally, leading to luminal RyR sensitization and lowering of the cytosolic Ca 2+ activation threshold. In atrial myocytes Ca 2+ release during excitation-contraction coupling (ECC) is strikingly different from ventricular myocytes. In many species atrial myocytes lack a transverse tubule system, dividing the sarcoplasmic reticulum (SR) Ca 2+ store into the peripheral subsarcolemmnal junctional (j-SR) and the much more abundant central non-junctional (nj-SR) SR. Action potential (AP)-induced Ca 2+ entry activates Ca 2+ -induced Ca 2+ release (CICR) from j-SR ryanodine receptor (RyR) Ca 2+ release channels. Peripheral elevation of [Ca 2+ ] i initiates CICR from nj-SR and sustains propagation of CICR to the cell centre. Simultaneous confocal measurements of cytosolic ([Ca 2+ ] i ; with the fluorescent Ca 2+ indicator rhod-2) and intra-SR ([Ca 2+ ] SR ; fluo-5N) Ca 2+ in rabbit atrial myocytes revealed that Ca 2+ release from j-SR resulted in a cytosolic Ca 2+ transient of higher amplitude compared to release from nj-SR; however, the degree of depletion of j-SR [Ca 2+ ] SR was smaller than nj-SR [Ca 2+ ] SR . Similarly, Ca 2+ signals from individual release sites of the j-SR showed a larger cytosolic amplitude (Ca 2+ sparks) but smaller depletion (Ca 2+ blinks) than release from nj-SR. During AP-induced Ca 2+ release the rise of [Ca 2+ ] i detected at individual release sites of the nj-SR preceded the depletion of [Ca 2+ ] SR , and during this latency period a transient elevation of [Ca 2+ ] SR occurred. We propose that Ca 2+ release from nj-SR is activated by cytosolic and luminal Ca 2+ (tandem RyR activation) via a novel 'fire-diffuse-uptake-fire' (FDUF) mechanism. This novel paradigm of atrial ECC predicts that Ca 2+ uptake by sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA) at the propagation front elevates local [Ca 2+ ] SR , leading to luminal RyR sensitization and lowering of the activation threshold for cytosolic CICR. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  8. IP/sub 3/ stimulates CA/sup + +/ efflux from fusogenic carrot protoplasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rincon, M.; Boss, W.F.

    1986-04-01

    Polyphosphoinositide breakdown plays an important role in signal transduction in animal cells (Berridge and Irvine, 1984, Nature, 312:315). Upon stimulation, phospholipase C hydrolyzes phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate (IP/sub 3/) and diacylglycerol both of which act as cellular second messengers. IP/sub 3/ mobilizes Ca/sup + +/ from internal stores, hence the cytosolic free Ca/sup + +/ concentration increases and those physiological activities regulated by Ca/sup + +/ are stimulated. To test if plant cells also responded to IP/sub 3/, Ca/sup + +/ efflux studies were done with fusogenic carrot protoplasts released in EGTA. The protoplasts were preloaded with /sup 45/Ca/supmore » + +/ placed in a Ca/sup + +/-free medium, and efflux determined as /sup 45/Ca/sup + +/ loss from the protoplasts. IP/sub 3/ (10-20..mu..M) caused enhanced /sup 45/Ca/sup + +/ efflux and the response was sustained for at least 15 min. In plants, as in animals, the observed IP/sub 3/-enhanced /sup 45/Ca/sup + +/ efflux suggested that IP/sub 3/ released Ca/sup + +/ from internal stores, and the increased free cytosolic Ca/sup + +/ activated Ca/sup + +/ pumping mechanisms which restored the Ca/sup + +/ concentration in the cytosol to the normal level.« less

  9. Ca(2+) and frequency dependence of exocytosis in isolated somata of magnocellular supraoptic neurones of the rat hypothalamus.

    PubMed

    Soldo, Brandi L; Giovannucci, David R; Stuenkel, Edward L; Moises, Hylan C

    2004-03-16

    In addition to action potential-evoked exocytotic release at neurohypophysial nerve terminals, the neurohormones arginine vasopressin (aVP) and oxytocin (OT) undergo Ca(2+)-dependent somatodendritic release within the supraoptic and paraventricular hypothalamic nuclei. However, the cellular and molecular mechanisms that underlie this release have not been elucidated. In the present study, the whole-cell patch-clamp technique was utilized in combination with high-time-resolved measurements of membrane capacitance (C(m)) and microfluorometric measurements of cytosolic free Ca(2+) concentration ([Ca(2+)](i)) to examine the Ca(2+) and stimulus dependence of exocytosis in the somata of magnocellular neurosecretory cells (MNCs) isolated from rat supraoptic nucleus (SON). Single depolarizing steps (> or =20 ms) that evoked high-voltage-activated (HVA) Ca(2+) currents (I(Ca)) and elevations in intracellular Ca(2+) concentration were accompanied by an increase in C(m) in a majority (40/47) of SON neurones. The C(m) responses were composed of an initial Ca(2+)-independent, transient component and a subsequent, sustained phase of increased C(m) (termed DeltaC(m)) mediated by an influx of Ca(2+), and increased with corresponding prolongation of depolarizing step durations (20-200 ms). From this relationship we estimated the rate of vesicular release to be 1533 vesicles s(-1). Delivery of neurone-derived action potential waveforms (APWs) as stimulus templates elicited I(Ca) and also induced a DeltaC(m), provided APWs were applied in trains of greater than 13 Hz. A train of APWs modelled after the bursting pattern recorded from an OT-containing neurone during the milk ejection reflex was effective in supporting an exocytotic DeltaC(m) in isolated MNCs, indicating that the somata of SON neurones respond to physiological patterns of neuronal activity with Ca(2+)-dependent exocytotic activity.

  10. Tachykinin receptor expression and function in human esophageal smooth muscle.

    PubMed

    Kovac, Jason R; Chrones, Tom; Preiksaitis, Harold G; Sims, Stephen M

    2006-08-01

    Tachykinins are present in enteric nerves of the gastrointestinal tract and cause contraction of esophageal smooth muscle; however, the mechanisms involved are not understood. Our aim was to characterize tachykinin signaling in human esophageal smooth muscle. We investigated functional effects of tachykinins on human esophageal smooth muscle using tension recordings and isolated cells, receptor expression with reverse transcription (RT)-polymerase chain reaction (PCR) and immunoblotting, intracellular Ca2+ responses using fluorescent indicator dyes, and membrane currents with patch-clamp electrophysiology. The mammalian tachykinins [substance P and neurokinin (NK) A and NKB] elicited concentration-dependent contractions of human esophageal smooth muscle. These responses were not affected by muscarinic receptor or neuronal blockade indicating a direct effect on smooth muscle cells (SMCs). Immunofluorescence and RT-PCR identified tachykinin receptors (NK1, NK2, and NK3) on SMCs. Contraction was mediated through a combination of Ca2+ release from intracellular stores and influx through L-type Ca2+ channels. NK2 receptor blockade inhibited the largest proportion of tachykinin-evoked responses. NKA evoked a nonselective cation current (I(NSC)) with properties similar to that elicited by muscarinic stimulation. The following paradigm is suggested: tachykinin receptor binding to SMCs releases Ca2+ from stores along with activation of I(NSC), which in turn results in membrane depolarization, L-type Ca2+ channel opening, rise of Ca2+ concentration, and contraction. These studies reveal new aspects of tachykinin signaling in human esophageal SMCs. Excitatory tachykinin pathways may represent targets for pharmacological intervention in disorders of esophageal dysmotility.

  11. A Diffusible Signal from Arbuscular Mycorrhizal Fungi Elicits a Transient Cytosolic Calcium Elevation in Host Plant Cells1[W

    PubMed Central

    Navazio, Lorella; Moscatiello, Roberto; Genre, Andrea; Novero, Mara; Baldan, Barbara; Bonfante, Paola; Mariani, Paola

    2007-01-01

    The implication of calcium as intracellular messenger in the arbuscular mycorrhizal (AM) symbiosis has not yet been directly demonstrated, although often envisaged. We used soybean (Glycine max) cell cultures stably expressing the bioluminescent Ca2+ indicator aequorin to detect intracellular Ca2+ changes in response to the culture medium of spores of Gigaspora margarita germinating in the absence of the plant partner. Rapid and transient elevations in cytosolic free Ca2+ were recorded, indicating that diffusible molecules released by the mycorrhizal fungus are perceived by host plant cells through a Ca2+-mediated signaling. Similar responses were also triggered by two Glomus isolates. The fungal molecules active in generating the Ca2+ transient were constitutively released in the medium, and the induced Ca2+ signature was not modified by the coculture of germinating spores with plant cells. Even ungerminated spores were able to generate the signaling molecules, as proven when the germination was blocked by a low temperature. The fungal molecules were found to be stable to heat treatment, of small molecular mass (<3 kD), and, on the basis of extraction with an organic solvent, partially lipophilic. Evidence for the specificity of such an early fungal signal to the AM symbiosis is suggested by the lack of a Ca2+ response in cultured cells of the nonhost plant Arabidopsis (Arabidopsis thaliana) and by the up-regulation in soybean cells of genes related to Medicago truncatula DMI1, DMI2, and DMI3 and considered essential for the establishment of the AM symbiosis. PMID:17142489

  12. A sequential vesicle pool model with a single release sensor and a Ca(2+)-dependent priming catalyst effectively explains Ca(2+)-dependent properties of neurosecretion.

    PubMed

    Walter, Alexander M; Pinheiro, Paulo S; Verhage, Matthijs; Sørensen, Jakob B

    2013-01-01

    Neurotransmitter release depends on the fusion of secretory vesicles with the plasma membrane and the release of their contents. The final fusion step displays higher-order Ca(2+) dependence, but also upstream steps depend on Ca(2+). After deletion of the Ca(2+) sensor for fast release - synaptotagmin-1 - slower Ca(2+)-dependent release components persist. These findings have provoked working models involving parallel releasable vesicle pools (Parallel Pool Models, PPM) driven by alternative Ca(2+) sensors for release, but no slow release sensor acting on a parallel vesicle pool has been identified. We here propose a Sequential Pool Model (SPM), assuming a novel Ca(2+)-dependent action: a Ca(2+)-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP) under control of synaptotagmin-1, the origins of slow release differ. In the SPM the slow release component is attributed to the Ca(2+)-dependent refilling of the RRP from a Non-Releasable upstream Pool (NRP), whereas the PPM attributes slow release to a separate slowly-releasable vesicle pool. Using numerical integration we compared model predictions to data from mouse chromaffin cells. Like the PPM, the SPM explains biphasic release, Ca(2+)-dependence and pool sizes in mouse chromaffin cells. In addition, the SPM accounts for the rapid recovery of the fast component after strong stimulation, where the PPM fails. The SPM also predicts the simultaneous changes in release rate and amplitude seen when mutating the SNARE-complex. Finally, it can account for the loss of fast- and the persistence of slow release in the synaptotagmin-1 knockout by assuming that the RRP is depleted, leading to slow and Ca(2+)-dependent fusion from the NRP. We conclude that the elusive 'alternative Ca(2+) sensor' for slow release might be the upstream priming catalyst, and that a sequential model effectively explains Ca(2+)-dependent properties of secretion without assuming parallel pools or sensors.

  13. A Sequential Vesicle Pool Model with a Single Release Sensor and a Ca2+-Dependent Priming Catalyst Effectively Explains Ca2+-Dependent Properties of Neurosecretion

    PubMed Central

    Walter, Alexander M.; Pinheiro, Paulo S.; Verhage, Matthijs; Sørensen, Jakob B.

    2013-01-01

    Neurotransmitter release depends on the fusion of secretory vesicles with the plasma membrane and the release of their contents. The final fusion step displays higher-order Ca2+ dependence, but also upstream steps depend on Ca2+. After deletion of the Ca2+ sensor for fast release – synaptotagmin-1 – slower Ca2+-dependent release components persist. These findings have provoked working models involving parallel releasable vesicle pools (Parallel Pool Models, PPM) driven by alternative Ca2+ sensors for release, but no slow release sensor acting on a parallel vesicle pool has been identified. We here propose a Sequential Pool Model (SPM), assuming a novel Ca2+-dependent action: a Ca2+-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP) under control of synaptotagmin-1, the origins of slow release differ. In the SPM the slow release component is attributed to the Ca2+-dependent refilling of the RRP from a Non-Releasable upstream Pool (NRP), whereas the PPM attributes slow release to a separate slowly-releasable vesicle pool. Using numerical integration we compared model predictions to data from mouse chromaffin cells. Like the PPM, the SPM explains biphasic release, Ca2+-dependence and pool sizes in mouse chromaffin cells. In addition, the SPM accounts for the rapid recovery of the fast component after strong stimulation, where the PPM fails. The SPM also predicts the simultaneous changes in release rate and amplitude seen when mutating the SNARE-complex. Finally, it can account for the loss of fast- and the persistence of slow release in the synaptotagmin-1 knockout by assuming that the RRP is depleted, leading to slow and Ca2+-dependent fusion from the NRP. We conclude that the elusive ‘alternative Ca2+ sensor’ for slow release might be the upstream priming catalyst, and that a sequential model effectively explains Ca2+-dependent properties of secretion without assuming parallel pools or sensors. PMID:24339761

  14. An autocrine ATP release mechanism regulates basal ciliary activity in airway epithelium.

    PubMed

    Droguett, Karla; Rios, Mariana; Carreño, Daniela V; Navarrete, Camilo; Fuentes, Christian; Villalón, Manuel; Barrera, Nelson P

    2017-07-15

    Extracellular ATP, in association with [Ca 2+ ] i regulation, is required to maintain basal ciliary beat frequency. Increasing extracellular ATP levels increases ciliary beating in airway epithelial cells, maintaining a sustained response by inducing the release of additional ATP. Extracellular ATP levels in the millimolar range, previously associated with pathophysiological conditions of the airway epithelium, produce a transient arrest of ciliary activity. The regulation of ciliary beat frequency is dependent on ATP release by hemichannels (connexin/pannexin) and P2X receptor activation, the blockage of which may even stop ciliary movement. The force exerted by cilia, measured by atomic force microscopy, is reduced following extracellular ATP hydrolysis. This result complements the current understanding of the ciliary beating regulatory mechanism, with special relevance to inflammatory diseases of the airway epithelium that affect mucociliary clearance. Extracellular nucleotides, including ATP, are locally released by the airway epithelium and stimulate ciliary activity in a [Ca 2+ ] i -dependent manner after mechanical stimulation of ciliated cells. However, it is unclear whether the ATP released is involved in regulating basal ciliary activity and mediating changes in ciliary activity in response to chemical stimulation. In the present study, we evaluated ciliary beat frequency (CBF) and ciliary beating forces in primary cultures from mouse tracheal epithelium, using videomicroscopy and atomic force microscopy (AFM), respectively. Extracellular ATP levels and [Ca 2+ ] i were measured by luminometric and fluorimetric assays, respectively. Uptake of ethidium bromide was measured to evaluate hemichannel functionality. We show that hydrolysis of constitutive extracellular ATP levels with apyrase (50 U ml -1 ) reduced basal CBF by 45% and ciliary force by 67%. The apyrase effect on CBF was potentiated by carbenoxolone, a hemichannel inhibitor, and oxidized ATP, an antagonist used to block P2X7 receptors, which reduced basal CBF by 85%. Additionally, increasing extracellular ATP levels (0.1-100 μm) increased CBF, maintaining a sustained response that was suppressed in the presence of carbenoxolone. We also show that high levels of ATP (1 mm), associated with inflammatory conditions, lowered basal CBF by reducing [Ca 2+ ] i and hemichannel functionality. In summary, we provide evidence indicating that airway epithelium ATP release is the molecular autocrine mechanism regulating basal ciliary activity and is also the mediator of the ciliary response to chemical stimulation. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  15. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to salty and sour taste stimuli

    PubMed Central

    DeSimone, John A.; Ren, ZuoJun; Phan, Tam-Hao T.; Heck, Gerard L.; Mummalaneni, Shobha

    2012-01-01

    The relationship between taste receptor cell (TRC) Ca2+ concentration ([Ca2+]i) and rat chorda tympani (CT) nerve responses to salty [NaCl and NaCl+benzamil (Bz)] and sour (HCl, CO2, and acetic acid) taste stimuli was investigated before and after lingual application of ionomycin+Ca2+, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA-AM), U73122 (phospholipase C blocker), and thapsigargin (Ca2+-ATPase inhibitor) under open-circuit or lingual voltage-clamp conditions. An increase in TRC [Ca2+]i attenuated the tonic Bz-sensitive NaCl CT response and the apical membrane Na+ conductance. A decrease in TRC [Ca2+]i enhanced the tonic Bz-sensitive and Bz-insensitive NaCl CT responses and apical membrane Na+ conductance but did not affect CT responses to KCl or NH4Cl. An increase in TRC [Ca2+]i did not alter the phasic response but attenuated the tonic CT response to acidic stimuli. A decrease in [Ca2+]i did not alter the phasic response but attenuated the tonic CT response to acidic stimuli. In a subset of TRCs, a positive relationship between [H+]i and [Ca2+]i was obtained using in vitro imaging techniques. U73122 inhibited the tonic CT responses to NaCl, and thapsigargin inhibited the tonic CT responses to salty and sour stimuli. The results suggest that salty and sour taste qualities are transduced by [Ca2+]i-dependent and [Ca2+]i-independent mechanisms. Changes in TRC [Ca2+]i in a BAPTA-sensitive cytosolic compartment regulate ion channels and cotransporters involved in the salty and sour taste transduction mechanisms and in neural adaptation. Changes in TRC [Ca2+]i in a separate subcompartment, sensitive to inositol trisphosphate and thapsigargin but inaccessible to BAPTA, are associated with neurotransmitter release. PMID:22956787

  16. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    PubMed

    Marquèze-Pouey, Béatrice; Mailfert, Sébastien; Rouger, Vincent; Goaillard, Jean-Marc; Marguet, Didier

    2014-01-01

    Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  17. The unliganded long isoform of estrogen receptor beta stimulates brain ryanodine receptor single channel activity alongside with cytosolic Ca2+

    PubMed Central

    Rybalchenko, Volodymyr; Grillo, Michael A.; Gastinger, Matthew J.; Rybalchenko, Nataliya; Payne, Andrew J.; Koulen, Peter

    2010-01-01

    Ca2+ release from intracellular stores mediated by endoplasmic reticulum membrane ryanodine receptors (RyR) plays a key role in activating and synchronizing downstream Ca2+-dependent mechanisms, in different cells varying from apoptosis to nuclear transcription and development of defensive responses. Recently discovered, atypical “non-genomic” effects mediated by estrogen receptors (ER) include rapid Ca2+ release upon estrogen exposure in conditions implicitly suggesting involvement of RyRs. In the present study, we report various levels of co-localization between RyR type 2 (RyR2) and ER type β (ERβ) in the neuronal cell line HT-22, indicating a possible functional interaction. Electrophysiological analyses revealed a significant increase in single channel ionic currents generated by mouse brain RyRs after application of the soluble monomer of the long form ERβ (ERβ1). The effect was due to a strong increase in open probability of RyR higher open channel sublevels at cytosolic [Ca2+] concentrations of 100 nM, suggesting a synergistic action of ERβ1 and Ca2+ in RyR activation, and a potential contribution to Ca2+-induced Ca2+ release rather than to basal intracellular Ca2+ concentration level at rest. This RyR/ERβ interaction has potential effects on cellular physiology, including roles of shorter ERβ isoforms and modulation of the RyR/ERβ complexes by exogenous estrogens. PMID:19899956

  18. Calcium ion as intracellular messenger and cellular toxin.

    PubMed

    Rasmussen, H; Barrett, P; Smallwood, J; Bollag, W; Isales, C

    1990-03-01

    Ca2+ serves a nearly universal intracellular messenger function in cell activation, but excess Ca2+ is also a cellular toxin. The possibility of Ca2+ intoxication is minimized by an elaborate autoregulatory system in which changes in Ca2+ influx rate across the plasma membrane are rapidly compensated for by parallel changes in Ca2+ efflux rate. By this mean, cellular Ca2+ homestasis is maintained so that minimal changes in total cell calcium and cytosolic Ca2+ concentration occur during sustained Ca2(+)-mediated responses. Rather than a sustained increase in cytosolic Ca2+ concentration, it is the localized cycling of Ca2+ across the plasma membrane that is the critically important Ca2+ messenger during the sustained phase of cellular responses mediated via surface receptors linked to the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 hydrolysis gives rise to inositol(1,4,5)trisphosphate (IP3) and diacylglycerol (DAG). The IP3 acts to release Ca2+ from an intracellular pool, thereby causing a transient rise in cytosolic Ca2+ concentration. This transient Ca2+ signal activates calmodulin-dependent protein kinases transiently, and hence, causes the transient phosphorylation of a subset of cellular proteins that mediate the initial phase of the response. The DAG brings about the association of protein kinase C (PKC) with the plasma membrane where a receptor-mediated increase in Ca2+ cycling across the membrane regulates PKC activity. The sustained phosphorylation of a second subset of proteins by PKC mediates the sustained phase of the response. Hence, Ca2+ serves as a messenger during both phases of the cellular response, but its cellular sites of action, its mechanisms of generation, and its molecular targets differ during the initial and sustained phases of the response.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Calcium ion as intracellular messenger and cellular toxin.

    PubMed Central

    Rasmussen, H; Barrett, P; Smallwood, J; Bollag, W; Isales, C

    1990-01-01

    Ca2+ serves a nearly universal intracellular messenger function in cell activation, but excess Ca2+ is also a cellular toxin. The possibility of Ca2+ intoxication is minimized by an elaborate autoregulatory system in which changes in Ca2+ influx rate across the plasma membrane are rapidly compensated for by parallel changes in Ca2+ efflux rate. By this mean, cellular Ca2+ homestasis is maintained so that minimal changes in total cell calcium and cytosolic Ca2+ concentration occur during sustained Ca2(+)-mediated responses. Rather than a sustained increase in cytosolic Ca2+ concentration, it is the localized cycling of Ca2+ across the plasma membrane that is the critically important Ca2+ messenger during the sustained phase of cellular responses mediated via surface receptors linked to the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 hydrolysis gives rise to inositol(1,4,5)trisphosphate (IP3) and diacylglycerol (DAG). The IP3 acts to release Ca2+ from an intracellular pool, thereby causing a transient rise in cytosolic Ca2+ concentration. This transient Ca2+ signal activates calmodulin-dependent protein kinases transiently, and hence, causes the transient phosphorylation of a subset of cellular proteins that mediate the initial phase of the response. The DAG brings about the association of protein kinase C (PKC) with the plasma membrane where a receptor-mediated increase in Ca2+ cycling across the membrane regulates PKC activity. The sustained phosphorylation of a second subset of proteins by PKC mediates the sustained phase of the response. Hence, Ca2+ serves as a messenger during both phases of the cellular response, but its cellular sites of action, its mechanisms of generation, and its molecular targets differ during the initial and sustained phases of the response.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2190811

  20. Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes.

    PubMed

    Oschmann, Franziska; Mergenthaler, Konstantin; Jungnickel, Evelyn; Obermayer, Klaus

    2017-02-01

    Astrocytes integrate and process synaptic information and exhibit calcium (Ca2+) signals in response to incoming information from neighboring synapses. The generation of Ca2+ signals is mostly attributed to Ca2+ release from internal Ca2+ stores evoked by an elevated metabotropic glutamate receptor (mGluR) activity. Different experimental results associated the generation of Ca2+ signals to the activity of the glutamate transporter (GluT). The GluT itself does not influence the intracellular Ca2+ concentration, but it indirectly activates Ca2+ entry over the membrane. A closer look into Ca2+ signaling in different astrocytic compartments revealed a spatial separation of those two pathways. Ca2+ signals in the soma are mainly generated by Ca2+ release from internal Ca2+ stores (mGluR-dependent pathway). In astrocytic compartments close to the synapse most Ca2+ signals are evoked by Ca2+ entry over the plasma membrane (GluT-dependent pathway). This assumption is supported by the finding, that the volume ratio between the internal Ca2+ store and the intracellular space decreases from the soma towards the synapse. We extended a model for mGluR-dependent Ca2+ signals in astrocytes with the GluT-dependent pathway. Additionally, we included the volume ratio between the internal Ca2+ store and the intracellular compartment into the model in order to analyze Ca2+ signals either in the soma or close to the synapse. Our model results confirm the spatial separation of the mGluR- and GluT-dependent pathways along the astrocytic process. The model allows to study the binary Ca2+ response during a block of either of both pathways. Moreover, the model contributes to a better understanding of the impact of channel densities on the interaction of both pathways and on the Ca2+ signal.

  1. Factor Xa Mediates Calcium Flux in Endothelial Cells and is Potentiated by Igg From Patients With Lupus and/or Antiphospholipid Syndrome.

    PubMed

    Artim-Esen, Bahar; Smoktunowicz, Natalia; McDonnell, Thomas; Ripoll, Vera M; Pericleous, Charis; Mackie, Ian; Robinson, Eifion; Isenberg, David; Rahman, Anisur; Ioannou, Yiannis; Chambers, Rachel C; Giles, Ian

    2017-09-07

    Factor (F) Xa reactive IgG isolated from patients with antiphospholipid syndrome (APS) display higher avidity binding to FXa with greater coagulant effects compared to systemic lupus erythematosus (SLE) non APS IgG. FXa signalling via activation of protease-activated receptors (PAR) leads to increased intracellular calcium (Ca 2+ ). Therefore, we measured alterations in Ca 2+ levels in human umbilical vein endothelial cells (HUVEC) following FXa-mediated PAR activation and investigated whether FXa reactive IgG from patients with APS or SLE/APS- alter these responses. We observed concentration-dependent induction of Ca 2+ release by FXa that was potentiated by APS-IgG and SLE/APS- IgG compared to healthy control subjects' IgG, and FXa alone. APS-IgG and SLE/APS- IgG increased FXa mediated NFκB signalling and this effect was fully-retained in the affinity purified anti-FXa IgG sub-fraction. Antagonism of PAR-1 and PAR-2 reduced FXa-induced Ca 2+ release. Treatment with a specific FXa inhibitor, hydroxychloroquine or fluvastatin significantly reduced FXa-induced and IgG-potentiated Ca 2+ release. In conclusion, PAR-1 and PAR-2 are involved in FXa-mediated intracellular Ca 2+ release in HUVEC and FXa reactive IgG from patients with APS and/or SLE potentiate this effect. Further work is required to explore the potential use of IgG FXa reactivity as a novel biomarker to stratify treatment with FXa inhibitors in these patients.

  2. VEGF-induced intracellular Ca2+ oscillations are down-regulated and do not stimulate angiogenesis in breast cancer-derived endothelial colony forming cells

    PubMed Central

    Ruffinatti, Federico Alessandro; Poletto, Valentina; Massa, Margherita; Tancredi, Richard; Zuccolo, Estella; Khdar, Dlzar Alì; Riccardi, Alberto; Biggiogera, Marco; Rosti, Vittorio; Guerra, Germano; Moccia, Francesco

    2017-01-01

    Endothelial colony forming cells (ECFCs) represent a population of truly endothelial precursors that promote the angiogenic switch in solid tumors, such as breast cancer (BC). The intracellular Ca2+ toolkit, which drives the pro-angiogenic response to VEGF, is remodelled in tumor-associated ECFCs such that they are seemingly insensitive to this growth factor. This feature could underlie the relative failure of anti-VEGF therapies in cancer patients. Herein, we investigated whether and how VEGF uses Ca2+ signalling to control angiogenesis in BC-derived ECFCs (BC-ECFCs). Although VEGFR-2 was normally expressed, VEGF failed to induce proliferation and in vitro tubulogenesis in BC-ECFCs. Likewise, VEGF did not trigger robust Ca2+ oscillations in these cells. Similar to normal cells, VEGF-induced intracellular Ca2+ oscillations were triggered by inositol-1,4,5-trisphosphate-dependent Ca2+ release from the endoplasmic reticulum (ER) and maintained by store-operated Ca2+ entry (SOCE). However, InsP3-dependent Ca2+ release was significantly lower in BC-ECFCs due to the down-regulation of ER Ca2+ levels, while there was no remarkable difference in the amplitude, pharmacological profile and molecular composition of SOCE. Thus, the attenuation of the pro-angiogenic Ca2+ response to VEGF was seemingly due to the reduction in ER Ca2+ concentration, which prevents VEGF from triggering robust intracellular Ca2+ oscillations. However, the pharmacological inhibition of SOCE prevented BC-ECFC proliferation and in vitro tubulogenesis. These findings demonstrate for the first time that BC-ECFCs are insensitive to VEGF, which might explain at cellular and molecular levels the failure of anti-VEGF therapies in BC patients, and hint at SOCE as a novel molecular target for this disease. PMID:29221123

  3. Rem uncouples excitation–contraction coupling in adult skeletal muscle fibers

    PubMed Central

    Beqollari, Donald; Romberg, Christin F.; Filipova, Dilyana; Meza, Ulises; Papadopoulos, Symeon

    2015-01-01

    In skeletal muscle, excitation–contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca2+ channel (CaV1.1) to be communicated to the type 1 ryanodine-sensitive Ca2+ release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein–protein interactions. Although the molecular mechanism that underlies conformational coupling between CaV1.1 and RYR1 has been investigated intensely for more than 25 years, the question of whether such signaling occurs via a direct interaction between the principal, voltage-sensing α1S subunit of CaV1.1 and RYR1 or through an intermediary protein persists. A substantial body of evidence supports the idea that the auxiliary β1a subunit of CaV1.1 is a conduit for this intermolecular communication. However, a direct role for β1a has been difficult to test because β1a serves two other functions that are prerequisite for conformational coupling between CaV1.1 and RYR1. Specifically, β1a promotes efficient membrane expression of CaV1.1 and facilitates the tetradic ultrastructural arrangement of CaV1.1 channels within plasma membrane–SR junctions. In this paper, we demonstrate that overexpression of the RGK protein Rem, an established β subunit–interacting protein, in adult mouse flexor digitorum brevis fibers markedly reduces voltage-induced myoplasmic Ca2+ transients without greatly affecting CaV1.1 targeting, intramembrane gating charge movement, or releasable SR Ca2+ store content. In contrast, a β1a-binding–deficient Rem triple mutant (R200A/L227A/H229A) has little effect on myoplasmic Ca2+ release in response to membrane depolarization. Thus, Rem effectively uncouples the voltage sensors of CaV1.1 from RYR1-mediated SR Ca2+ release via its ability to interact with β1a. Our findings reveal Rem-expressing adult muscle as an experimental system that may prove useful in the definition of the precise role of the β1a subunit in skeletal-type EC coupling. PMID:26078055

  4. Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers.

    PubMed

    Beqollari, Donald; Romberg, Christin F; Filipova, Dilyana; Meza, Ulises; Papadopoulos, Symeon; Bannister, Roger A

    2015-07-01

    In skeletal muscle, excitation-contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca(2+) channel (Ca(V)1.1) to be communicated to the type 1 ryanodine-sensitive Ca(2+) release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein-protein interactions. Although the molecular mechanism that underlies conformational coupling between Ca(V)1.1 and RYR1 has been investigated intensely for more than 25 years, the question of whether such signaling occurs via a direct interaction between the principal, voltage-sensing α(1S) subunit of Ca(V)1.1 and RYR1 or through an intermediary protein persists. A substantial body of evidence supports the idea that the auxiliary β(1a) subunit of Ca(V)1.1 is a conduit for this intermolecular communication. However, a direct role for β(1a) has been difficult to test because β(1a) serves two other functions that are prerequisite for conformational coupling between Ca(V)1.1 and RYR1. Specifically, β(1a) promotes efficient membrane expression of Ca(V)1.1 and facilitates the tetradic ultrastructural arrangement of Ca(V)1.1 channels within plasma membrane-SR junctions. In this paper, we demonstrate that overexpression of the RGK protein Rem, an established β subunit-interacting protein, in adult mouse flexor digitorum brevis fibers markedly reduces voltage-induced myoplasmic Ca(2+) transients without greatly affecting Ca(V)1.1 targeting, intramembrane gating charge movement, or releasable SR Ca(2+) store content. In contrast, a β(1a)-binding-deficient Rem triple mutant (R200A/L227A/H229A) has little effect on myoplasmic Ca(2+) release in response to membrane depolarization. Thus, Rem effectively uncouples the voltage sensors of Ca(V)1.1 from RYR1-mediated SR Ca(2+) release via its ability to interact with β(1a). Our findings reveal Rem-expressing adult muscle as an experimental system that may prove useful in the definition of the precise role of the β(1a) subunit in skeletal-type EC coupling. © 2015 Beqollari et al.

  5. Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks.

    PubMed

    Niggli, E

    1999-01-01

    Subcellularly localized Ca2+ signals in cardiac and skeletal muscle have recently been identified as elementary Ca2+ signaling events. The signals, termed Ca2+ sparks and Ca2+ quarks, represent openings of Ca2+ release channels located in the membrane of the sarcoplasmic reticulum (SR). In cardiac muscle, the revolutionary discovery of Ca2+ sparks has allowed the development of a fundamentally different concept for the amplification of Ca2+ signals by Ca(2+)-induced Ca2+ release. In such a system, a graded amplification of the triggering Ca2+ signal entering the myocyte via L-type Ca2+ channels is accomplished by a recruitment process whereby individual SR Ca2+ release units are locally controlled by L-type Ca2+ channels. In skeletal muscle, the initial SR Ca2+ release is governed by voltage-sensors but subsequently activates additional Ca2+ sparks by Ca(2+)-induced Ca2+ release from the SR. Results from studies on elementary Ca2+ release events will improve our knowledge of muscle Ca2+ signaling at all levels of complexity, from the molecule to normal cellular function, and from the regulation of cardiac and skeletal muscle force to the pathophysiology of excitation-contraction coupling.

  6. Endocannabinoids control vesicle release mode at midbrain periaqueductal grey inhibitory synapses.

    PubMed

    Aubrey, Karin R; Drew, Geoffrey M; Jeong, Hyo-Jin; Lau, Benjamin K; Vaughan, Christopher W

    2017-01-01

    The midbrain periaqueductal grey (PAG) forms part of an endogenous analgesic system which is tightly regulated by the neurotransmitter GABA. The role of endocannabinoids in regulating GABAergic control of this system was examined in rat PAG slices. Under basal conditions GABAergic neurotransmission onto PAG output neurons was multivesicular. Activation of the endocannabinoid system reduced GABAergic inhibition by reducing the probability of release and by shifting release to a univesicular mode. Blockade of endocannabinoid system unmasked a tonic control over the probability and mode of GABA release. These findings provides a mechanistic foundation for the control of the PAG analgesic system by disinhibition. The midbrain periaqueductal grey (PAG) has a crucial role in coordinating endogenous analgesic responses to physiological and psychological stressors. Endocannabinoids are thought to mediate a form of stress-induced analgesia within the PAG by relieving GABAergic inhibition of output neurons, a process known as disinhibition. This disinhibition is thought to be achieved by a presynaptic reduction in GABA release probability. We examined whether other mechanisms have a role in endocannabinoid modulation of GABAergic synaptic transmission within the rat PAG. The group I mGluR agonist DHPG ((R,S)-3,5-dihydroxyphenylglycine) inhibited evoked IPSCs and increased their paired pulse ratio in normal external Ca 2+ , and when release probability was reduced by lowering Ca 2+ . However, the effect of DHPG on the coefficient of variation and kinetics of evoked IPSCs differed between normal and low Ca 2+ . Lowering external Ca 2+ had a similar effect on evoked IPSCs to that observed for DHPG in normal external Ca 2+ . The low affinity GABA A receptor antagonist TPMPA ((1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid) inhibited evoked IPSCs to a greater extent in low than in normal Ca 2+ . Together these findings indicate that the normal mode of GABA release is multivesicular within the PAG, and that DHPG and lowering external Ca 2+ switch this to a univesicular mode. The effects of DHPG were mediated by mGlu5 receptor engagement of the retrograde endocannabinoid system. Blockade of endocannabinoid breakdown produced a similar shift in the mode of release. We conclude that endocannabinoids control both the mode and the probability of GABA release within the PAG. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  7. Clustering of Ca2+ transients in interstitial cells of Cajal defines slow wave duration

    PubMed Central

    Drumm, Bernard T.; Hennig, Grant W.; Battersby, Matthew J.; Sung, Tae Sik

    2017-01-01

    Interstitial cells of Cajal (ICC) in the myenteric plexus region (ICC-MY) of the small intestine are pacemakers that generate rhythmic depolarizations known as slow waves. Slow waves depend on activation of Ca2+-activated Cl− channels (ANO1) in ICC, propagate actively within networks of ICC-MY, and conduct to smooth muscle cells where they generate action potentials and phasic contractions. Thus, mechanisms of Ca2+ regulation in ICC are fundamental to the motor patterns of the bowel. Here, we characterize the nature of Ca2+ transients in ICC-MY within intact muscles, using mice expressing a genetically encoded Ca2+ sensor, GCaMP3, in ICC. Ca2+ transients in ICC-MY display a complex firing pattern caused by localized Ca2+ release events arising from multiple sites in cell somata and processes. Ca2+ transients are clustered within the time course of slow waves but fire asynchronously during these clusters. The durations of Ca2+ transient clusters (CTCs) correspond to slow wave durations (plateau phase). Simultaneous imaging and intracellular electrical recordings revealed that the upstroke depolarization of slow waves precedes clusters of Ca2+ transients. Summation of CTCs results in relatively uniform Ca2+ responses from one slow wave to another. These Ca2+ transients are caused by Ca2+ release from intracellular stores and depend on ryanodine receptors as well as amplification from IP3 receptors. Reduced extracellular Ca2+ concentrations and T-type Ca2+ channel blockers decreased the number of firing sites and firing probability of Ca2+ transients. In summary, the fundamental electrical events of small intestinal muscles generated by ICC-MY depend on asynchronous firing of Ca2+ transients from multiple intracellular release sites. These events are organized into clusters by Ca2+ influx through T-type Ca2+ channels to sustain activation of ANO1 channels and generate the plateau phase of slow waves. PMID:28592421

  8. Ca2+ Entry is Required for Mechanical Stimulation-induced ATP Release from Astrocyte

    PubMed Central

    Lee, Jaekwang; Chun, Ye-Eun; Han, Kyung-Seok; Lee, Jungmoo; Woo, Dong Ho

    2015-01-01

    Astrocytes and neurons are inseparable partners in the brain. Neurotransmitters released from neurons activate corresponding G protein-coupled receptors (GPCR) expressed in astrocytes, resulting in release of gliotransmitters such as glutamate, D-serine, and ATP. These gliotransmitters in turn influence neuronal excitability and synaptic activities. Among these gliotransmitters, ATP regulates the level of network excitability and is critically involved in sleep homeostasis and astrocytic Ca2+ oscillations. ATP is known to be released from astrocytes by Ca2+-dependent manner. However, the precise source of Ca2+, whether it is Ca2+ entry from outside of cell or from the intracellular store, is still not clear yet. Here, we performed sniffer patch to detect ATP release from astrocyte by using various stimulation. We found that ATP was not released from astrocyte when Ca2+ was released from intracellular stores by activation of Gαq-coupled GPCR including PAR1, P2YR, and B2R. More importantly, mechanical stimulation (MS)-induced ATP release from astrocyte was eliminated when external Ca2+ was omitted. Our results suggest that Ca2+ entry, but not release from intracellular Ca2+ store, is critical for MS-induced ATP release from astrocyte. PMID:25792866

  9. Selective stimulation of catecholamine release from bovine adrenal chromaffin cells by an ionotropic purinergic receptor sensitive to 2-methylthio ATP.

    PubMed

    Tomé, Angelo R; Castro, Enrique; Santos, Rosa M; Rosário, Luís M

    2007-06-20

    2-Methylthioadenosine 5'-triphosphate (2-MeSATP), formerly regarded as a specific P2Y (metabotropic) purinergic receptor agonist, stimulates Ca2+ influx and evokes catecholamine release from adrenal chromaffin cells. These cells express P2Y and P2X (ionotropic) purinoceptors, with the latter providing an important Ca2+ influx pathway. Using single cell calcium imaging techniques, we have determined whether 2-MeSATP might be a specific P2X receptor agonist in bovine chromaffin cells and assessed the relative role of P2X and P2Y receptors on catecholamine secretion from these cells. ATP raised the [Ca2+]i in ~50% of the cells. Removing extracellular Ca2+ suppressed the [Ca2+]i-raising ability of 2-MeSATP, observed in ~40% of the ATP-sensitive cells. This indicates that 2-MeSATP behaves as a specific ionotropic purinoceptor agonist in bovine chromaffin cells. The 2-MeSATP-induced [Ca2+]i-rises were suppressed by PPADS. UTP raised the [Ca2+]i in ~40% of the ATP-sensitive cells, indicating that these expressed Ca2+-mobilizing P2Y receptors. UTP-sensitive receptors may not be the only P2Y receptors present, as suggested by the observation that ~20% of the ATP-sensitive pool did not respond to either 2-MeSATP or UTP. The average sizes of the ATP- and 2-MeSATP-evoked [Ca2+]i responses were identical in UTP-insensitive cells. 2-MeSATP stimulated Ca2+ influx and evoked catecholamine release, whereas UTP elicited Ca2+ release from intracellular stores but did not evoke secretion. 2-MeSATP-induced secretion was strongly inhibited by Cd2+ and suppressed by extracellular Ca2+ or Na+ removal. TTX inhibited 2-MeSATP-evoked secretion by ~20%. 2-MeSATP is a specific P2X purinoceptor agonist and a potent secretagogue in bovine chromaffin cells. Activation of 2-MeSATP-sensitive receptors stimulates Ca2+ influx mainly via voltage-sensitive Ca2+ channels. For the most part, these are activated by the depolarization brought about by Na+ influx across P2X receptor pores.

  10. Presynaptic kainate receptor-mediated facilitation of glutamate release involves Ca2+ -calmodulin at mossy fiber-CA3 synapses.

    PubMed

    Andrade-Talavera, Yuniesky; Duque-Feria, Paloma; Negrete-Díaz, José Vicente; Sihra, Talvinder S; Flores, Gonzalo; Rodríguez-Moreno, Antonio

    2012-09-01

    Presynaptic kainate receptors (KARs) modulate the release of glutamate at synapses established between mossy fibers (MF) and CA3 pyramidal cells in the hippocampus. The activation of KAR by low, nanomolar, kainate concentrations facilitates glutamate release. KAR-mediated facilitation of glutamate release involves the activation of an adenylate cyclase/cyclic adenosine monophosphate/protein kinase A cascade at MF-CA3 synapses. Here, we studied the mechanisms by which KAR activation produces this facilitation of glutamate release in slices and synaptosomes. We find that the facilitation of glutamate release mediated by KAR activation requires an increase in Ca(2+) levels in the cytosol and the formation of a Ca(2+) -calmodulin complex to activate adenylate cyclase. The increase in cytosolic Ca(2+) underpinning this modulation is achieved, both, by Ca(2+) entering via Ca(2+) -permeable KARs and, by the mobilization of intraterminal Ca(2+) stores. Finally, we find that, congruent with the Ca(2+) -calmodulin support of KAR-mediated facilitation of glutamate release, induction of long-term potentiation at MF-CA3 synapses has an obligate requirement for Ca(2+) -calmodulin activity. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  11. Calcium release and its voltage dependence in frog cut muscle fibers equilibrated with 20 mM EGTA

    PubMed Central

    1995-01-01

    Sarcoplasmic reticulum (SR) Ca release was studied at 13-16 degrees C in cut fibers (sarcomere length, 3.4-3.9 microns) mounted in a double Vaseline-gap chamber. The amplitude and duration of the action- potential stimulated free [Ca] transient were reduced by equilibration with end-pool solutions that contained 20 mM EGTA with 1.76 mM Ca and 0.63 mM phenol red, a maneuver that appeared to markedly reduce the amount of Ca complexed by troponin. A theoretical analysis shows that, under these conditions, the increase in myoplasmic free [Ca] is expected to be restricted to within a few hundred nanometers of the SR Ca release sites and to have a time course that essentially matches that of release. Furthermore, almost all of the Ca that is released from the SR is expected to be rapidly bound by EGTA and exchanged for protons with a 1:2 stoichiometry. Consequently, the time course of SR Ca release can be estimated by scaling the delta pH signal measured with phenol red by -beta/2. The value of beta, the buffering power of myoplasm, was determined in fibers equilibrated with a combination of EGTA, phenol red, and fura-2; its mean value was 22 mM/pH unit. The Ca content of the SR (expressed as myoplasmic concentration) was estimated from the total amount of Ca released by either a train of action potentials or a depleting voltage step; its mean value was 2,685 microM in the action-potential experiments and 2,544 microM in the voltage- clamp experiments. An action potential released, on average, 0.14 of the SR Ca content with a peak rate of release of approximately 5%/ms. A second action potential, elicited 20 ms later, released only 0.6 times as much Ca (expressed as a fraction of the SR content), probably because Ca inactivation of Ca release was produced by the first action potential. During a depolarizing voltage step to 60 mV, the rate of Ca release rapidly increased to a peak value of approximately 3%/ms and then decreased to a quasi-steady level that was only 0.6 times as large; this decrease was also probably due to Ca inactivation of Ca release. SR Ca release was studied with small step depolarizations that open no more than one SR Ca channel in 7,000 and increase the value of spatially averaged myoplasmic free [Ca] by only 0.2 nM. PMID:8537818

  12. Kinetic Studies of Calcium-Induced Calcium Release in Cardiac Sarcoplasmic Reticulum Vesicles

    PubMed Central

    Sánchez, Gina; Hidalgo, Cecilia; Donoso, Paulina

    2003-01-01

    Fast Ca2+ release kinetics were measured in cardiac sarcoplasmic reticulum vesicles actively loaded with Ca2+. Release was induced in solutions containing 1.2 mM free ATP and variable free [Ca2+] and [Mg2+]. Release rate constants (k) were 10-fold higher at pCa 6 than at pCa 5 whereas Ryanodine binding was highest at pCa ≤5. These results suggest that channels respond differently when exposed to sudden [Ca2+] changes than when exposed to Ca2+ for longer periods. Vesicles with severalfold different luminal calcium contents exhibited double exponential release kinetics at pCa 6, suggesting that channels undergo time-dependent activity changes. Addition of Mg2+ produced a marked inhibition of release kinetics at pCa 6 (K0.5 = 63 μM) but not at pCa 5. Coexistence of calcium activation and inhibition sites with equally fast binding kinetics is proposed to explain this behavior. Thimerosal activated release kinetics at pCa 5 at all [Mg2+] tested and increased at pCa 6 the K0.5 for Mg2+ inhibition, from 63 μM to 136 μM. We discuss the possible relevance of these results, which suggest release through RyR2 channels is subject to fast regulation by Ca2+ and Mg2+ followed by time-dependent regulation, to the physiological mechanisms of cardiac channel opening and closing. PMID:12668440

  13. Carvedilol inhibits cADPR- and IP3-induced Ca2+ release.

    PubMed

    Morgan, Anthony J; Bampali, Konstantina; Ruas, Margarida; Factor, Cailley; Back, Thomas G; Chen, S R Wayne; Galione, Antony

    2016-06-01

    Spontaneous Ca 2+ waves, also termed store-overload-induced Ca 2+ release (SOICR), in cardiac cells can trigger ventricular arrhythmias especially in failing hearts. SOICR occurs when RyRs are activated by an increase in sarcoplasmic reticulum (SR) luminal Ca 2+ . Carvedilol is one of the most effective drugs for preventing arrhythmias in patients with heart failure. Furthermore, carvedilol analogues with minimal β-blocking activity also block SOICR showing that SOICR-inhibiting activity is distinct from that for β-block. We show here that carvedilol is a potent inhibitor of cADPR-induced Ca 2+ release in sea urchin egg homogenate. In addition, the carvedilol analog VK-II-86 with minimal β-blocking activity also suppresses cADPR-induced Ca 2+ release. Carvedilol appeared to be a non-competitive antagonist of cADPR and could also suppress Ca 2+ release by caffeine. These results are consistent with cADPR releasing Ca 2+ in sea urchin eggs by sensitizing RyRs to Ca 2+ involving a luminal Ca 2+ activation mechanism. In addition to action on the RyR, we also observed inhibition of inositol 1,4,5-trisphosphate (IP 3 )-induced Ca 2+ release by carvedilol suggesting a common mechanism between these evolutionarily related and conserved Ca 2+ release channels.

  14. Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiac myocytes.

    PubMed

    Belmonte, Steve; Morad, Martin

    2008-03-01

    Cardiac myocyte contraction occurs when Ca2+ influx through voltage-gated L-type Ca2+ channels causes Ca2+ release from ryanodine receptors of the sarcoplasmic reticulum (SR). Although mitochondria occupy about 35% of the cell volume in rat cardiac myocytes, and are thought to be located <300 nm from the junctional SR, their role in the beat-to-beat regulation of cardiac Ca2+ signaling remains unclear. We have recently shown that rapid ( approximately 20 ms) application of shear fluid forces ( approximately 25 dynes/cm2) to rat cardiac myocytes triggers slowly ( approximately 300 ms) developing Cai transients that were independent of activation of all transmembrane Ca2+ transporting pathways, but were suppressed by FCCP, CCCP, and Ru360, all of which are known to disrupt mitochondrial function. We have here used rapid 2-D confocal microscopy to monitor fluctuations in mitochondrial Ca2+ levels ([Ca2+]m) and mitochondrial membrane potential (Delta Psi m) in rat cardiac myocytes loaded either with rhod-2 AM or tetramethylrhodamine methyl ester (TMRM), respectively. Freshly isolated intact rat cardiac myocytes were plated on glass coverslips and incubated in 5 mM Ca2+ containing Tyrode's solution and 40 mM 2,3-butanedione monoxime (BDM) to inhibit cell contraction. Alternatively, myocytes were permeabilized with 10 microM digitonin and perfused with an "intracellular" solution containing 10 microM free [Ca2+], 5 mM EGTA, and 15 mM BDM. Direct [Ca2+]m measurements showed transient mitochondrial Ca2+ accumulation after exposure to 10 mM caffeine, as revealed by a 66% increase in the rhod-2 fluorescence intensity. Shear fluid forces, however, produced a 12% decrease in signal, suggesting that application of a mechanical force releases Ca2+ from the mitochondria. In addition, caffeine and CCCP or FCCP strongly reduced Delta Psi m, while application of a pressurized solution produced a transient Delta Psi m hyperpolarization in intact ventricular myocytes loaded with TMRM. The close proximity of mitochondria to ryanodine receptors and large [Ca2+] that develop in microdomains following calcium release are likely to play a critical role in regulating cytosolic Ca2+ signaling. We suggest that mitochondria may accumulate and release Ca2+ in response to mechanical forces generated by blood flow, independent of surface membrane-regulated CICR. The extent to which such a signaling mechanism contributes to stretch-induced increase in myocardial force and pathogenesis of arrhythmias remains to be assessed.

  15. Effect of Engineered Nanoparticles on Exopolymeric Substances Release from Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Chiu, Meng-Hsuen; Khan, Zafir A.; Garcia, Santiago G.; Le, Andre D.; Kagiri, Agnes; Ramos, Javier; Tsai, Shih-Ming; Drobenaire, Hunter W.; Santschi, Peter H.; Quigg, Antonietta; Chin, Wei-Chun

    2017-12-01

    Engineered nanoparticles (ENPs), products from modern nanotechnologies, can potentially impact the marine environment to pose serious threats to marine ecosystems. However, the cellular responses of marine phytoplankton to ENPs are still not well established. Here, we investigate four different diatom species ( Odontella mobiliensis, Skeletonema grethae, Phaeodactylum tricornutum, Thalassiosira pseudonana) and one green algae ( Dunaliella tertiolecta) for their extracellular polymeric substances (EPS) release under model ENP treatments: 25 nm titanium dioxide (TiO2), 10-20 nm silicon dioxide (SiO2), and 15-30 nm cerium dioxide (CeO2). We found SiO2 ENPs can significantly stimulate EPS release from these algae (200-800%), while TiO2 ENP exposure induced the lowest release. Furthermore, the increase of intracellular Ca2+ concentration can be triggered by ENPs, suggesting that the EPS release process is mediated through Ca2+ signal pathways. With better understanding of the cellular mechanism mediated ENP-induced EPS release, potential preventative and safety measures can be developed to mitigate negative impact on the marine ecosystem.

  16. CD36- and GPR120-mediated Ca²⁺ signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice.

    PubMed

    Ozdener, Mehmet Hakan; Subramaniam, Selvakumar; Sundaresan, Sinju; Sery, Omar; Hashimoto, Toshihiro; Asakawa, Yoshinori; Besnard, Philippe; Abumrad, Nada A; Khan, Naim Akhtar

    2014-04-01

    It is important to increase our understanding of gustatory detection of dietary fat and its contribution to fat preference. We studied the roles of the fat taste receptors CD36 and GPR120 and their interactions via Ca(2+) signaling in fungiform taste bud cells (TBC). We measured Ca(2+) signaling in human TBC, transfected with small interfering RNAs against messenger RNAs encoding CD36 and GPR120 (or control small interfering RNAs). We also studied Ca(2+) signaling in TBC from CD36(-/-) mice and from wild-type lean and obese mice. Additional studies were conducted with mouse enteroendocrine cell line STC-1 that express GPR120 and stably transfected with human CD36. We measured release of serotonin and glucagon-like peptide-1 from human and mice TBC in response to CD36 and GPR120 activation. High concentrations of linoleic acid induced Ca(2+) signaling via CD36 and GPR120 in human and mice TBC, as well as in STC-1 cells, and low concentrations induced Ca(2+) signaling via only CD36. Incubation of human and mice fungiform TBC with lineoleic acid down-regulated CD36 and up-regulated GPR120 in membrane lipid rafts. Obese mice had decreased spontaneous preference for fat. Fungiform TBC from obese mice had reduced Ca(2+) and serotonin responses, but increased release of glucagon-like peptide-1, along with reduced levels of CD36 and increased levels of GPR120 in lipid rafts. CD36 and GPR120 have nonoverlapping roles in TBC signaling during orogustatory perception of dietary lipids; these are differentially regulated by obesity. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. The effect of imiquimod on taste bud calcium transients and transmitter secretion.

    PubMed

    Huang, Anthony Y; Wu, Sandy Y

    2016-11-01

    Imiquimod is an immunomodulator approved for the treatment of basal cell carcinoma and has adverse side effects, including taste disturbances. Paracrine transmission, representing cell-cell communication within taste buds, has the potential to shape the final signals that taste buds transmit to the brain. Here, we tested the underlying assumption that imiquimod modifies taste transmitter secretion in taste buds of mice. Taste buds were isolated from C57BL/6J mice. The effects of imiquimod on transmitter release in taste buds were measured using calcium imaging with cellular biosensors, and examining the net effect of imiquimod on taste-evoked ATP secretion from mouse taste buds. Up to 72% of presynaptic (Type III) taste cells responded to 100 μM imiquimod with an increase in intracellular Ca 2+ concentrations. These Ca 2 + responses were inhibited by thapsigargin, an inhibitor of the sarco/endoplasmic reticulum Ca 2 + -ATPase, and by U73122, a PLC inhibitor, suggesting that the Ca 2 + mobilization elicited by imiquimod was dependent on release from internal Ca 2 + stores. Moreover, combining studies of Ca 2 + imaging with cellular biosensors showed that imiquimod evoked secretion of 5-HT, which then provided negative feedback onto receptor (Type II) cells to reduce taste-evoked ATP secretion. Our results provide evidence that there is a subset of taste cells equipped with a range of intracellular mechanisms that respond to imiquimod. The findings are also consistent with a role of imiquimod as an immune response modifier, which shapes peripheral taste responses via 5-HT signalling. © 2016 The British Pharmacological Society.

  18. Buffer regulation of calcium puff sequences.

    PubMed

    Fraiman, Daniel; Dawson, Silvina Ponce

    2014-02-01

    Puffs are localized Ca(2 +) signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP3). They are the result of the liberation of Ca(2 +) from the endoplasmic reticulum through the coordinated opening of IP3 receptor/channels clustered at a functional release site. The presence of buffers that trap Ca(2 +) provides a mechanism that enriches the spatio-temporal dynamics of cytosolic calcium. The expression of different types of buffers along the cell's life provides a tool with which Ca(2 +) signals and their responses can be modulated. In this paper we extend the stochastic model of a cluster of IP3R-Ca(2 +) channels introduced previously to elucidate the effect of buffers on sequences of puffs at the same release site. We obtain analytically the probability laws of the interpuff time and of the number of channels that participate of the puffs. Furthermore, we show that under typical experimental conditions the effect of buffers can be accounted for in terms of a simple inhibiting function. Hence, by exploring different inhibiting functions we are able to study the effect of a variety of buffers on the puff size and interpuff time distributions. We find the somewhat counter-intuitive result that the addition of a fast Ca(2 +) buffer can increase the average number of channels that participate of a puff.

  19. Buffer regulation of calcium puff sequences

    NASA Astrophysics Data System (ADS)

    Fraiman, Daniel; Ponce Dawson, Silvina

    2014-02-01

    Puffs are localized Ca2 + signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP3). They are the result of the liberation of Ca2 + from the endoplasmic reticulum through the coordinated opening of IP3 receptor/channels clustered at a functional release site. The presence of buffers that trap Ca2 + provides a mechanism that enriches the spatio-temporal dynamics of cytosolic calcium. The expression of different types of buffers along the cell's life provides a tool with which Ca2 + signals and their responses can be modulated. In this paper we extend the stochastic model of a cluster of IP3R-Ca2 + channels introduced previously to elucidate the effect of buffers on sequences of puffs at the same release site. We obtain analytically the probability laws of the interpuff time and of the number of channels that participate of the puffs. Furthermore, we show that under typical experimental conditions the effect of buffers can be accounted for in terms of a simple inhibiting function. Hence, by exploring different inhibiting functions we are able to study the effect of a variety of buffers on the puff size and interpuff time distributions. We find the somewhat counter-intuitive result that the addition of a fast Ca2 + buffer can increase the average number of channels that participate of a puff.

  20. Short-Term Facilitation at a Detonator Synapse Requires the Distinct Contribution of Multiple Types of Voltage-Gated Calcium Channels.

    PubMed

    Chamberland, Simon; Evstratova, Alesya; Tóth, Katalin

    2017-05-10

    Neuronal calcium elevations are shaped by several key parameters, including the properties, density, and the spatial location of voltage-gated calcium channels (VGCCs). These features allow presynaptic terminals to translate complex firing frequencies and tune the amount of neurotransmitter released. Although synchronous neurotransmitter release relies on both P/Q- and N-type VGCCs at hippocampal mossy fiber-CA3 synapses, the specific contribution of VGCCs to calcium dynamics, neurotransmitter release, and short-term facilitation remains unknown. Here, we used random-access two-photon calcium imaging together with electrophysiology in acute mouse hippocampal slices to dissect the roles of P/Q- and N-type VGCCs. Our results show that N-type VGCCs control glutamate release at a limited number of release sites through highly localized Ca 2+ elevations and support short-term facilitation by enhancing multivesicular release. In contrast, Ca 2+ entry via P/Q-type VGCCs promotes the recruitment of additional release sites through spatially homogeneous Ca 2+ elevations. Altogether, our results highlight the specialized contribution of P/Q- and N-types VGCCs to neurotransmitter release. SIGNIFICANCE STATEMENT In presynaptic terminals, neurotransmitter release is dynamically regulated by the transient opening of different types of voltage-gated calcium channels. Hippocampal giant mossy fiber terminals display extensive short-term facilitation during repetitive activity, with a large several fold postsynaptic response increase. Though, how giant mossy fiber terminals leverage distinct types of voltage-gated calcium channels to mediate short-term facilitation remains unexplored. Here, we find that P/Q- and N-type VGCCs generate different spatial patterns of calcium elevations in giant mossy fiber terminals and support short-term facilitation through specific participation in two mechanisms. Whereas N-type VGCCs contribute only to the synchronization of multivesicular release, P/Q-type VGCCs act through microdomain signaling to recruit additional release sites. Copyright © 2017 the authors 0270-6474/17/374913-15$15.00/0.

  1. Ventricular fibrillation cardiac arrest produces a chronic striatal hyperdopaminergic state that is worsened by methylphenidate treatment.

    PubMed

    Nora, Gerald J; Harun, Rashed; Fine, David F; Hutchison, Daniel; Grobart, Adam C; Stezoski, Jason P; Munoz, Miranda J; Kochanek, Patrick M; Leak, Rehana K; Drabek, Tomas; Wagner, Amy K

    2017-07-01

    Cardiac arrest survival rates have improved with modern resuscitation techniques, but many survivors experience impairments associated with hypoxic-ischemic brain injury (HIBI). Currently, little is understood about chronic changes in striatal dopamine (DA) systems after HIBI. Given the common empiric clinical use of DA enhancing agents in neurorehabilitation, investigation evaluating dopaminergic alterations after cardiac arrest (CA) is necessary to optimize rehabilitation approaches. We hypothesized that striatal DA neurotransmission would be altered chronically after ventricular fibrillation cardiac arrest (VF-CA). Fast-scan cyclic voltammetry was used with median forebrain bundle (MFB) maximal electrical stimulations (60Hz, 10s) in rats to characterize presynaptic components of DA neurotransmission in the dorsal striatum (D-Str) and nucleus accumbens 14 days after a 5-min VF-CA when compared to Sham or Naïve. VF-CA increased D-Str-evoked overflow [DA], total [DA] released, and initial DA release rate versus controls, despite also increasing maximal velocity of DA reuptake (V max ). Methylphenidate (10 mg/kg), a DA transporter inhibitor, was administered to VF-CA and Shams after establishing a baseline, pre-drug 60 Hz, 5 s stimulation response. Methylphenidate increased initial evoked overflow [DA] more-so in VF-CA versus Sham and reduced D-Str V max in VF-CA but not Shams; these findings are consistent with upregulated striatal DA transporter in VF-CA versus Sham. Our work demonstrates that 5-min VF-CA increases electrically stimulated DA release with concomitant upregulation of DA reuptake 2 weeks after brief VF-CA insult. Future work should elucidate how CA insult duration, time after insult, and insult type influence striatal DA neurotransmission and related cognitive and motor functions. © 2017 International Society for Neurochemistry.

  2. Effects of elevated physiological temperatures on sarcoplasmic reticulum function in mechanically skinned muscle fibers of the rat.

    PubMed

    van der Poel, C; Stephenson, D G

    2007-07-01

    Properties of the sarcoplasmic reticulum (SR) with respect to Ca(2+) loading and release were measured in mechanically skinned fiber preparations from isolated extensor digitorum longus (EDL) muscles of the rat that were either kept at room temperature (23 degrees C) or exposed to temperatures in the upper physiological range for mammalian skeletal muscle (30 min at 40 or 43 degrees C). The ability of the SR to accumulate Ca(2+) was significantly reduced by a factor of 1.9-2.1 after the temperature treatments due to a marked increase in SR Ca(2+) leak, which persisted for at least 3 h after treatment. Results with blockers of Ca(2+) release channels (ruthenium red) and SR Ca(2+) pumps [2,5-di(tert-butyl)-1,4-hydroquinone] indicate that the increased Ca(2+) leak was not through the SR Ca(2+) release channel or the SR Ca(2+) pump, although it is possible that the leak pathway was via oligomerized Ca(2+) pump molecules. No significant change in the maximum SR Ca(2+)-ATPase activity was observed after the temperature treatment, although there was a tendency for a decrease in the SR Ca(2+)-ATPase. The observed changes in SR properties were fully prevented by the superoxide (O(2)(*-)) scavenger Tiron (20 mM), indicating that the production of O(2)(*-) at elevated temperatures is responsible for the increase in SR Ca(2+) leak. Results show that physiologically relevant elevated temperatures 1) induce lasting changes in SR properties with respect to Ca(2+) handling that contribute to a marked increase in the SR Ca(2+) leak and, consequently, to the reduction in the average coupling ratio between Ca(2+) transport and SR Ca(2+)-ATPase and muscle performance, and 2) that these changes are mediated by temperature-induced O(2)(*-) production.

  3. Ca2+-mediated ascorbate release from coronary artery endothelial cells.

    PubMed

    Davis, Kim A; Samson, Sue E; Best, Kelly; Mallhi, Kanwaldeep K; Szewczyk, Magdalena; Wilson, John X; Kwan, Chiu-Yin; Grover, Ashok K

    2006-01-01

    1.--The addition of Ca(2+) ionophore A23187 or ATP to freshly isolated or cultured pig coronary artery endothelial cells (PCEC) potentiated the release of ascorbate (Asc). Cultured PCEC were used to characterize the Ca(2+)-mediated release. An increase in Ca(2+)-mediated Asc release was observed from PCEC preincubated with Asc, Asc-2-phosphate or dehydroascorbic acid (DHAA). 2.--The effects of various ATP analogs and inhibition by suramin were consistent with the ATP-induced release being mediated by P2Y2-like receptors. 3.--ATP-stimulated Asc release was Ca(2+)-mediated because (a) ATP analogs that increased Asc release also elevated cytosolic [Ca(2+)], (b) Ca(2+) ionophore A23187 and cyclopiazonic acid stimulated the Asc release, (c) removing extracellular Ca(2+) and chelating intracellular Ca(2+)inhibited the ATP-induced release, and (d) inositol-selective phospholipase C inhibitor U73122 also inhibited this release. 4.--Accumulation of Asc by PCEC was examined at Asc concentrations of 10 microM (Na(+)-Asc symporter not saturated) and 5 mM (Na(+)-Asc symporter saturated). At 10 microM Asc, A23187 and ATP caused an inhibition of Asc accumulation but at 5 mM Asc, both the agents caused a stimulation. Substituting gluconate for chloride did not affect the basal Asc uptake but it abolished the effects of A23187. 5.--PCEC but not pig coronary artery smooth muscle cells show a Ca(2+)- mediated Asc release pathway that may be activated by agents such as ATP.

  4. FK506-binding protein 1b/12.6: a key to aging-related hippocampal Ca2+ dysregulation?

    PubMed Central

    Gant, JC; Blalock, EM; K-C, Chen; Kadish, I; Porter, NM; Norris, CM; Thibault, O; Landfield, PW

    2014-01-01

    It has been recognized for some time that the Ca2+-dependent slow afterhyperpolarization (sAHP) is larger in hippocampal neurons of aged compared with young animals. In addition, extensive studies since have shown that other Ca2+-mediated electrophysiological responses are increased in hippocampus with aging, including Ca2+ transients, L-type voltage-gated Ca2+ channel activity, Ca2+ spike duration and action potential accommodation. Elevated Ca2+-induced Ca2+ release from ryanodine receptors (RyRs) appears to drive amplification of the Ca2+ responses. Components of this Ca2+ dysregulation phenotype correlate with deficits in cognitive function and plasticity, indicating they may play critical roles in aging-related impairment of brain function. However, the molecular mechanisms underlying aging-related Ca2+ dysregulation are not well understood. FK506-binding proteins 1a and 1b (FKBP1a/1b, also known as FKBP12/12.6) are immunophilin proteins that bind the immunosuppressant drugs FK506 and rapamycin. In muscle cells, FKBP1a/1b also bind RyRs and inhibits Ca2+-induced Ca2+ release, but it is not clear whether FKBPs act similarly in brain cells. Recently, we found that selectively disrupting hippocampal FKBP1b function in young rats, either by microinjecting adeno-associated viral vectors containing siRNA, or by treatment with rapamycin, increases the sAHP and recapitulates much of the hippocampal Ca2+ dysregulation phenotype. Moreover, in microarray studies, we found FKBP1b gene expression was downregulated in hippocampus of aging rats and early-stage Alzheimer’s disease subjects. These results suggest the novel hypothesis that declining FKBP function is a key factor in aging-related Ca2+ dysregulation in the brain and point to potential new therapeutic targets for counteracting unhealthy brain aging. PMID:24291098

  5. Neuronal somatic ATP release triggers neuron–satellite glial cell communication in dorsal root ganglia

    PubMed Central

    Zhang, X.; Chen, Y.; Wang, C.; Huang, L.-Y. M.

    2007-01-01

    It has been generally assumed that the cell body (soma) of a neuron, which contains the nucleus, is mainly responsible for synthesis of macromolecules and has a limited role in cell-to-cell communication. Using sniffer patch recordings, we show here that electrical stimulation of dorsal root ganglion (DRG) neurons elicits robust vesicular ATP release from their somata. The rate of release events increases with the frequency of nerve stimulation; external Ca2+ entry is required for the release. FM1–43 photoconversion analysis further reveals that small clear vesicles participate in exocytosis. In addition, the released ATP activates P2X7 receptors in satellite cells that enwrap each DRG neuron and triggers the communication between neuronal somata and glial cells. Blocking L-type Ca2+ channels completely eliminates the neuron–glia communication. We further show that activation of P2X7 receptors can lead to the release of tumor necrosis factor-α (TNFα) from satellite cells. TNFα in turn potentiates the P2X3 receptor-mediated responses and increases the excitability of DRG neurons. This study provides strong evidence that somata of DRG neurons actively release transmitters and play a crucial role in bidirectional communication between neurons and surrounding satellite glial cells. These results also suggest that, contrary to the conventional view, neuronal somata have a significant role in cell–cell signaling. PMID:17525149

  6. Growth of Pollen Tubes of Papaver rhoeas Is Regulated by a Slow-Moving Calcium Wave Propagated by Inositol 1,4,5-Trisphosphate.

    PubMed Central

    Franklin-Tong, V. E.; Drobak, B. K.; Allan, A. C.; Watkins, PAC.; Trewavas, A. J.

    1996-01-01

    A signaling role for cytosolic free Ca2+ ([Ca2+]i) in regulating Papaver rhoeas pollen tube growth during the self-incompatibility response has been demonstrated previously. In this article, we investigate the involvement of the phosphoinositide signal transduction pathway in Ca2+-mediated pollen tube inhibition. We demonstrate that P. rhoeas pollen tubes have a Ca2+-dependent polyphosphoinositide-specific phospholipase C activity that is inhibited by neomycin. [Ca2+]i imaging after photolysis of caged inositol (1,4,5)-trisphosphate (Ins[1,4,5]P3) in pollen tubes demonstrated that Ins(1,4,5)P3 could induce Ca2+ release, which was inhibited by heparin and neomycin. Mastoparan, which stimulated Ins(1,4,5)P3 production, also induced a rapid increase in Ca2+, which was inhibited by neomycin. These data provide direct evidence for the involvement of a functional phosphoinositide signal-transducing system in the regulation of pollen tube growth. We suggest that the observed Ca2+ increases are mediated, at least in part, by Ins(1,4,5)P3-induced Ca2+ release. Furthermore, we provide data suggesting that Ca2+ waves, which have not previously been reported in plant cells, can be induced in pollen tubes. PMID:12239415

  7. Aldosterone increases cardiac vagal tone via G protein-coupled oestrogen receptor activation

    PubMed Central

    Brailoiu, G Cristina; Benamar, Khalid; Arterburn, Jeffrey B; Gao, Erhe; Rabinowitz, Joseph E; Koch, Walter J; Brailoiu, Eugen

    2013-01-01

    In addition to acting on mineralocorticoid receptors, aldosterone has been recently shown to activate the G protein-coupled oestrogen receptor (GPER) in vascular cells. In light of the newly identified role for GPER in vagal cardiac control, we examined whether or not aldosterone activates GPER in rat nucleus ambiguus. Aldosterone produced a dose-dependent increase in cytosolic Ca2+ concentration in retrogradely labelled cardiac vagal neurons of nucleus ambiguus; the response was abolished by pretreatment with the GPER antagonist G-36, but was not affected by the mineralocorticoid receptor antagonists, spironolactone and eplerenone. In Ca2+-free saline, the response to aldosterone was insensitive to blockade of the Ca2+ release from lysosomes, while it was reduced by blocking the Ca2+ release via ryanodine receptors and abolished by blocking the IP3 receptors. Aldosterone induced Ca2+ influx via P/Q-type Ca2+ channels, but not via L-type and N-type Ca2+ channels. Aldosterone induced depolarization of cardiac vagal neurons of nucleus ambiguus that was sensitive to antagonism of GPER but not of mineralocorticoid receptor. in vivo studies, using telemetric measurement of heart rate, indicate that microinjection of aldosterone into the nucleus ambiguus produced a dose-dependent bradycardia in conscious, freely moving rats. Aldosterone-induced bradycardia was blocked by the GPER antagonist, but not by the mineralocorticoid receptor antagonists. In summary, we report for the first time that aldosterone decreases heart rate by activating GPER in cardiac vagal neurons of nucleus ambiguus. PMID:23878371

  8. Functional distribution of Ca2+-coupled P2 purinergic receptors among adrenergic and noradrenergic bovine adrenal chromaffin cells.

    PubMed

    Tomé, Angelo R; Castro, Enrique; Santos, Rosa M; Rosário, Luís M

    2007-06-14

    Adrenal chromaffin cells mediate acute responses to stress through the release of epinephrine. Chromaffin cell function is regulated by several receptors, present both in adrenergic (AD) and noradrenergic (NA) cells. Extracellular ATP exerts excitatory and inhibitory actions on chromaffin cells via ionotropic (P2X) and metabotropic (P2Y) receptors. We have taken advantage of the actions of the purinergic agonists ATP and UTP on cytosolic free Ca2+ concentration ([Ca2+]i) to determine whether P2X and P2Y receptors might be asymmetrically distributed among AD and NA chromaffin cells. The [Ca2+]i and the [Na+]i were recorded from immunolabeled bovine chromaffin cells by single-cell fluorescence imaging. Among the ATP-sensitive cells ~40% did not yield [Ca2+]i responses to ATP in the absence of extracellular Ca2+ (Ca2+o), indicating that they expressed P2X receptors and did not express Ca2+- mobilizing P2Y receptors; the remainder expressed Ca2+-mobilizing P2Y receptors. Relative to AD-cells approximately twice as many NA-cells expressed P2X receptors while not expressing Ca2+- mobilizing P2Y receptors, as indicated by the proportion of cells lacking [Ca2+]i responses and exhibiting [Na+]i responses to ATP in the absence and presence of Ca2+o, respectively. The density of P2X receptors in NA-cells appeared to be 30-50% larger, as suggested by comparing the average size of the [Na+]i and [Ca2+]i responses to ATP. Conversely, approximately twice as many AD-cells expressed Ca2+-mobilizing P2Y receptors, and they appeared to exhibit a higher (~20%) receptor density. UTP raised the [Ca2+]i in a fraction of the cells and did not raise the [Na+]i in any of the cells tested, confirming its specificity as a P2Y agonist. The cell density of UTP-sensitive P2Y receptors did not appear to vary among AD- and NA-cells. Although neither of the major purinoceptor types can be ascribed to a particular cell phenotype, P2X and Ca2+-mobilizing P2Y receptors are preferentially located to noradrenergic and adrenergic chromaffin cells, respectively. ATP might, in addition to an UTP-sensitive P2Y receptor, activate an UTP-insensitive P2Y receptor subtype. A model for a short-loop feedback interaction is presented whereby locally released ATP acts upon P2Y receptors in adrenergic cells, inhibiting Ca2+ influx and contributing to terminate evoked epinephrine secretion.

  9. Action potentials and amphetamine release antipsychotic drug from dopamine neuron synaptic VMAT vesicles.

    PubMed

    Tucker, Kristal R; Block, Ethan R; Levitan, Edwin S

    2015-08-11

    Based on lysotracker red imaging in cultured hippocampal neurons, antipsychotic drugs (APDs) were proposed to accumulate in synaptic vesicles by acidic trapping and to be released in response to action potentials. Because many APDs are dopamine (DA) D2 receptor (D2R) antagonists, such a mechanism would be particularly interesting if it operated in midbrain DA neurons. Here, the APD cyamemazine (CYAM) is visualized directly by two-photon microscopy in substantia nigra and striatum brain slices. CYAM accumulated slowly into puncta based on vacuolar H(+)-ATPase activity and dispersed rapidly upon dissipating organelle pH gradients. Thus, CYAM is subject to acidic trapping and released upon deprotonation. In the striatum, Ca(2+)-dependent reduction of the CYAM punctate signal was induced by depolarization or action potentials. Striatal CYAM overlapped with the dopamine transporter (DAT). Furthermore, parachloroamphetamine (pCA), acting via vesicular monoamine transporter (VMAT), and a charged VMAT, substrate 1-methyl-4-phenylpyridinium (MPP(+)), reduced striatal CYAM. In vivo CYAM administration and in vitro experiments confirmed that clinically relevant CYAM concentrations result in vesicular accumulation and pCA-dependent release. These results show that some CYAM is in DA neuron VMAT vesicles and suggests a new drug interaction in which amphetamine induces CYAM deprotonation and release as a consequence of the H(+) countertransport by VMAT that accompanies vesicular uptake, but not by inducing exchange or acting as a weak base. Therefore, in the striatum, APDs are released with DA in response to action potentials and an amphetamine. This synaptic corelease is expected to enhance APD antagonism of D2Rs where and when dopaminergic transmission occurs.

  10. Disturbance caused by freshwater releases of different magnitude on the aquatic macroinvertebrate communities of two coastal lagoons

    NASA Astrophysics Data System (ADS)

    Cañedo-Argüelles, Miguel; Rieradevall, Maria

    2010-06-01

    The response of the aquatic macroinvertebrate communities to freshwater releases of different magnitude and persistence was investigated in two Mediterranean coastal lagoons (Ca l'Arana and Ricarda). The study was carried out during 14 months (June 2004-July 2005) in which different environmental variables and the macroinvertebrate communities associated with two different habitats, the Phragmites australis belt and the deep area of the lagoons, were sampled monthly. Additionally, potential colonizing sources were identified through the analysis of Chironomidae pupal exuviae. The initial response of the communities to the freshwater releases was similar, being characterized by a peak of opportunistic taxa (mainly Naididae), but the late response was different for each lagoon. In the Ca l'Arana, the magnitude of the freshwater release was higher (salinity dropped below five, which is the limit commonly established for most freshwater species) and its persistence was also higher, allowing the colonization of the lagoon by new insect taxa, which replaced the brackish water species. In the Ricarda, the salinity never dropped beyond five and pre-disturbance conditions were rapidly re-established. This, together with the acclimatizing mechanisms showed by the species Chironomus riparius and Hediste diversicolor, permitted the recovery of the pre-disturbance macroinvertebrate community.

  11. Role of Ca++ in Shoot Gravitropism. [avena

    NASA Technical Reports Server (NTRS)

    Rayle, D. L.

    1985-01-01

    A cornerstone in the argument that Ca(2+) levels may regulate growth is the finding the EGTA promotes straight growth. The usual explanation for these results is that Ca(2+) chelation from cell walls results in wall loosening and thus accelerated straight growth. The ability of frozen-thawed Avena coleoptile tissue (subjected to 15g tension) to extend in response to EGTA and Quin II was examined. The EGTA when applied in weakly buffered (i.e., 0.1mM) neutral solutions initiates rapid extension. When the buffer strength is increased, similar concentrations of EGTA produce no growth response. This implies when EGTA liberated protons are released upon Ca(2+) chelation they can either initiate acid growth (low buffer conditions) or if consumed (high buffer conditions) have no effect. Thus Ca(2+) chelation in itself apparently does not result in straight growth.

  12. Superoxide anion radical-triggered Ca2+ release from cardiac sarcoplasmic reticulum through ryanodine receptor Ca2+ channel.

    PubMed

    Kawakami, M; Okabe, E

    1998-03-01

    The ryanodine receptor Ca2+ channel (RyRC) constitutes the Ca2+-release pathway in sarcoplasmic reticulum (SR) of cardiac muscle. A direct mechanical and a Ca2+-triggered mechanism (Ca2+-induced Ca2+ release) have been proposed to explain the in situ activation of Ca2+ release in cardiac muscle. A variety of chemical oxidants have been shown to activate RyRC; however, the role of modification induced by oxygen-derived free radicals in pathological states of the muscle remains to be elucidated. It has been hypothesized that oxygen-derived free radicals initiate Ca2+-mediated functional changes in or damage to cardiac muscle by acting on the SR and promoting an increase in Ca2+ release. We confirmed that superoxide anion radical (O2-) generated from hypoxanthine-xanthine oxidase reaction decreases calmodulin content and increases 45Ca2+ efflux from the heavy fraction of canine cardiac SR vesicles; hypoxanthine-xanthine oxidase also decreases Ca2+ free within the intravesicular space of the SR with no effect on Ca2+-ATPase activity. Current fluctuations through single Ca2+-release channels have been monitored after incorporation into planar phospholipid bilayers. We demonstrate that activation of the channel by O2- is dependent of the presence of calmodulin and identified calmodulin as a functional mediator of O2--triggered Ca2+ release through the RyRC. For the first time, we show that O2- stimulates Ca2+ release from heavy SR vesicles and suggest the importance of accessory proteins such as calmodulin in modulating the effect of O2-. The decreased calmodulin content induced by oxygen-derived free radicals, especially O2-, is a likely mechanism of accumulation of cytosolic Ca2+ (due to increased Ca2+ release from SR) after reperfusion of the ischemic heart.

  13. Cellular calcium mobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, E.E.

    1984-01-01

    In vascular and other smooth muscles, occurrence of intracellular Ca stores which can be mobilized to support contraction may be a general phenomenon. The Ca stores are characterized by the requirement for release by high concentrations of agonists acting on plasma membrane receptors, by the failure of the released Ca2+ to recycle to the store, by the occurrence of rapid refilling of the store from the extracellular space, and by disappearance of the store when the plasma membrane is made leaky by saponin. In contrast to agonist-released Ca stores, those released by caffeine to support contraction in Ca2+-free solutions aremore » more slowly lost and refilled, are not always emptied when the agonist-related store is emptied, and do not disappear after saponin treatment. Stores released by agonists have been suggested to be in the endoplasmic reticulum near the plasma membrane or at the inner aspect of the plasma membrane related to high affinity, pH-dependent Ca-binding sites. Caffeine-released stores are assumed to be in endoplasmic reticulum. Continued exposure of some tissues to Ca2+-free solutions unmasks what is considered to be a recycling Ca store releasable by agonists. Release of Ca2+ and its reaccumulation in this store appear to be slower than at the nonrecycling store. The contractions which persist for many hours in Ca2+-free solution are inhibited temporarily by Ca2+ restoration. Existence of a recycling store of releasable Ca2+ requires occurrence of mechanisms to abolish Ca2+ extrusion or leak-out of the cell and to ensure recycling to the same store.« less

  14. STORE-OPERATED CALCIUM ENTRY IS PRESENT IN HL-1 CARDIOMYOCYTES AND CONTRIBUTES TO RESTING CALCIUM

    PubMed Central

    Touchberry, Chad D.; Elmore, Chris J.; Nguyen, Tien M.; Andresen, Jon J.; Zhao, Xiaoli; Orange, Matthew; Weisleder, Noah; Brotto, Marco; Claycomb, William C.; Wacker, Michael J.

    2011-01-01

    Store-operated Ca2+ entry (SOCE) has recently been shown to be of physiological and pathological importance in the heart, particularly during cardiac hypertrophy. However, measuring changes in intracellular Ca2+ during SOCE is very difficult to study in adult primary cardiomyocytes. As a result there is a need for a stable and reliable in vitro model of SOCE which can be used to test cardiac drugs and investigate the role of SOCE in cardiac pathology. HL-1 cells are the only immortal cardiomyocyte cell line available that continuously divides and spontaneously contracts while maintaining phenotypic characteristics of the adult cardiomyocyte. To date the role of SOCE has not yet been investigated in the HL-1 cardiac cell line. We report for the first time that these cells express stromal interaction molecule 1 (STIM1) and the Ca2+ release-activated Ca2+ (CRAC) channel Orai1, which are essential components of the SOCE machinery. In addition, SOCE is tightly coupled to sarcoplasmic reticulum (SR)-Ca2+ release in HL-1 cells, and such response was not impaired in the presence of voltage dependent Ca2+ channels (L-type and T-type channels) or reverse mode Na+/ Ca2+ exchanger (NCX) inhibitors. We were able to abolish the SOCE response with known SOCE inhibitors (BTP-2 and SKF-96365) and by targeted knockdown of Orai1 with RNAi. In addition, knockdown of Orai1 resulted in lower baseline Ca2+ and an attenuated response to thapsigargin (TG) and caffeine, indicating that SOCE may play a role in Ca2+ homeostasis during unstressed conditions in cardiomyocytes. Currently, there is little knowledge about SOCE in cardiomyocytes, and the present results suggest that HL-1 cells will be of great utility in investigating the role of SOCE in the heart. PMID:22079292

  15. The Role of Calcium in the Response of Osteoblasts to Mechanical Stimulation

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Farach-Carson, M. C.; Pavalko, F. M.

    1999-01-01

    A major biomedical concern in the exploration and development of space is the rapid loss of bone associated with extended periods of spaceflight. Mineral content, bone formation, matrix protein production and total body calcium are all reduced during long-term periods of weightlessness. These effects of weightlessness appears to be due to decreases in the anabolic function of osteoblasts and osteocytes rather than changes in the resorptive activity of osteoclasts. Conversely, subjecting the skeleton to exogenous mechanical loading increases matrix protein synthesis and bone formation rate, a process which also appears mediated through osteogenic cells. Osteoblasts have been shown to respond to a number of types of mechanical stimulation. However recently we have demonstrated that osteoblasts respond to fluid shear, but not physiologic levels of mechanical strain, with increases in expression of the matrix protein, osteopontin. We have also shown similar responses in other markers for the anabolic response in bone. The expression of the early response gene, c-fos, and the inducible-isoform of the prostaglandin synthetic enzyme, cyclooygenase-2 (COX-2), both increase rapidly in response to fluid shear, but not strain. How osteoblasts and osteocytes perceive mechanical stimuli and convert this stimulus into a biochemical event within the cell is still unknown. However, examination of the cellular events following mechanical stimulation indicate that two of the earliest responses are a rapid increase in intracellular calcium ([Ca(2+)](sub i)) and a reorganization of the actin cytoskeleton. The increase in [Ca(2+)](sub i) is dependent on the presence of extracellular Ca(2+), suggesting the activation of membrane Ca(2+) channel. We have previously characterized a mechanosensitive, cation-selective channel (MSCC) in osteoblast-like clonal cells, which we postulate is important in this early response to mechanical loading. Using an antisense oligodeoxynucleotide strategy, we have tentatively identified this channel as an isoform of the alc subunit of the dihydropyridine-sensitive, voltage sensitive Ca(2+) channel (VSCC). However, a major component in this mechanically induced rise in [Ca(2+)](sub i) is the release of Ca(2+) from intracellular stores. The actin cytoskeleton also rapidly responds to fluid shear with an increase in stress fiber formation and a realignment of the cell parallel to the direction of flow. To ascertain whether these two observations are related and how they effect shear-induced gene expression, we examined the role of Ca(2+) channels and intracellular Ca(2+) release on cytoskeletal reorganization and the resultant increases in the expression and production of c-fos and COX-2 in response to fluid shear.

  16. Optical induction of muscle contraction at the tissue scale through intrinsic cellular amplifiers.

    PubMed

    Yoon, Jonghee; Choi, Myunghwan; Ku, Taeyun; Choi, Won Jong; Choi, Chulhee

    2014-08-01

    The smooth muscle cell is the principal component responsible for involuntary control of visceral organs, including vascular tonicity, secretion, and sphincter regulation. It is known that the neurotransmitters released from nerve endings increase the intracellular Ca(2+) level in smooth muscle cells followed by muscle contraction. We herein report that femtosecond laser pulses focused on the diffraction-limited volume can induce intracellular Ca(2+) increases in the irradiated smooth muscle cell without neurotransmitters, and locally increased intracellular Ca(2+) levels are amplified by calcium-induced calcium-releasing mechanisms through the ryanodine receptor, a Ca(2+) channel of the endoplasmic reticulum. The laser-induced Ca(2+) increases propagate to adjacent cells through gap junctions. Thus, ultrashort-pulsed lasers can induce smooth muscle contraction by controlling Ca(2+), even with optical stimulation of the diffraction-limited volume. This optical method, which leads to reversible and reproducible muscle contraction, can be used in research into muscle dynamics, neuromuscular disease treatment, and nanorobot control. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Novel features on the regulation by mitochondria of calcium and secretion transients in chromaffin cells challenged with acetylcholine at 37°C

    PubMed Central

    Caricati‐Neto, Afonso; Padín, Juan‐Fernando; Silva‐Junior, Edilson‐Dantas; Fernández‐Morales, José‐Carlos; de Diego, Antonio‐Miguel G.; Jurkiewicz, Aron; García, Antonio G.

    2013-01-01

    Abstract From experiments performed at room temperature, we know that the buffering of Ca2+ by mitochondria contributes to the shaping of the bulk cytosolic calcium transient ([Ca2+]c) and secretion transients of chromaffin cells stimulated with depolarizing pulses. We also know that the mitochondrial Ca2+ transporters and the release of catecholamine are faster at 37°C with respect to room temperature. Therefore, we planned this investigation to gain further insight into the contribution of mitochondrial Ca2+ buffering to the shaping of [Ca2+]c and catecholamine release transients, using some novel experimental conditions that have not been yet explored namely: (1) perifusion of bovine chromaffin cells (BCCs) with saline at 37°C and their repeated challenging with the physiological neurotransmitter acetylcholine (ACh); (2) separate blockade of mitochondrial Ca2+ uniporter (mCUP) with Ru360 or the mitochondrial Na+/Ca2+ exchanger (mNCX) with CGP37157; (3) full blockade of the mitochondrial Ca2+ cycling (mCC) by the simultaneous inhibition of the mCUP and the mNCX. Ru360 caused a pronounced delay of [Ca2+]c clearance and augmented secretion. In contrast, CGP37157 only caused a tiny delay of [Ca2+]c clearance and a mild decrease in secretion. The mCC resulting in continued Ca2+ uptake and its release back into the cytosol was interrupted by combined Ru360 + CGP37157 (Ru/CGP), the protonophore carbonyl cyanide‐p‐trifluoromethoxyphenylhydrazone, or combined oligomycin + rotenone (O/R); these three treatments caused a mild but sustained elevation of basal [Ca2+]c that, however, was not accompanied by a parallel increase in basal secretion. Nevertheless, all treatments caused a pronounced augmentation of ACh‐induced secretion, with minor changes of the ACh‐induced [Ca2+]c transients. Combined Ru/CGP did not alter the resting membrane potential in current‐clamped cells. Additionally, Ru/CGP did not increase basal [Ca2+]c near subplasmalemmal sites and caused a mild decrease in the size of the readily releasable vesicle pool. Our results provide new functional features in support of the view that in BCCs there are two subpopulations of mitochondria, M1 underneath the plasmalemma nearby exocytotic sites and M2 at the core cell nearby vesicle transport sites. While M1 serves to shape the ACh‐elicited exocytotic response through its efficient Ca2+ removal by the mCUP, M2 shapes the lower [Ca2+]c elevations required for new vesicle supply to the exocytotic machinery, from the large reserve vesicle pool at the cell core. The mCUP of the M1 pool seems to play a more prominent role in controlling the ACh responses, in comparison with the mNCX. PMID:24744861

  18. Muscarinic agonists and ATP increase the intracellular Ca2+ concentration in chick cochlear hair cells.

    PubMed

    Shigemoto, T; Ohmori, H

    1990-01-01

    1. Cholinergic muscarinic agonists applied by the pressure puff method increased intracellular Ca2+ concentration in Fura-2-loaded hair cells. The Ca2+ response outlasted the agonist application. 2. The Ca2+ response induced by acetylcholine (ACh) was ACh dose dependent with a KD of 200 microM. Desensitization was negligible, and almost identical Ca2+ responses were observed when two ACh puffs were separated by 150 s. The response was blocked by d-tubocurarine (dTC). The KD of dTC blocking was 500 microM when 100 microM-ACh induced the Ca2+ response. 3. The amplitude of the ACh-induced Ca2+ responses were potentiated to 3 times the control by incubation with calcitonin gene-related peptide (CGRP; 0.1-1 microM). CGRP did not affect the resting Ca2+ concentration. Glycine (100 microM) potentiated the ACh response to 1.4 times the control, and also increased the resting Ca2+ concentration slightly. 4. The ACh-induced Ca2+ response was suppressed by atropine. It was induced in Ca2(+)-free extracellular medium, and in Ca2(+)-free medium desensitization to a second ACh stimulation was significant. The amplitude of the second Ca2+ response was 44% of the first when two ACh puffs were separated by 117 s in Ca2+ free medium. 5. Muscarine and carbamylcholine induced similar Ca2+ responses, with KD values of 130 microM for muscarine and 340 microM for carbamylcholine. Desensitization of Ca2+ responses was negligible in both agonists. 6. ATP co-exists with ACh in some presynaptic nerve terminals (Burnstock, 1981). Puff-applied ATP (100 microM) generated a Ca2+ response with a rapid rising phase and a following slow phase. In Ca2(+)-free medium the rapid phase disappeared and only the slow phase was observed. The rapid phase is due to the influx of Ca2+ ions and the slow phase is due to a release of Ca2+ ions from an intracellular reservoir. Under voltage clamp ATP induced a fast inward current and a following slow outward current. 7. Nicotine, adenosine, glycine, GABA, glutamate and bradykinin did not induce Ca2+ responses in the hair cell. 8. ACh induced hyperpolarization of the hair cell membrane under current clamp, most probably by the activation of Ca2+ activated K+ conductance. Therefore, a cholinergic muscarinic receptor may mediate the inhibitory effects of efferent innervation observed in hair cells.

  19. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux.

    PubMed

    Joseph, Noah; Reicher, Barak; Barda-Saad, Mira

    2014-02-01

    During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé. © 2013.

  20. How Source Content Determines Intracellular Ca2+ Release Kinetics. Simultaneous Measurement of [Ca2+] Transients and [H+] Displacement in Skeletal Muscle

    PubMed Central

    Pizarro, Gonzalo; Ríos, Eduardo

    2004-01-01

    In skeletal muscle, the waveform of Ca2+ release under clamp depolarization exhibits an early peak. Its decay reflects an inactivation, which locally corresponds to the termination of Ca2+ sparks, and is crucial for rapid control. In cardiac muscle, both the frequency of spontaneous sparks (i.e., their activation) and their termination appear to be strongly dependent on the Ca2+ content in the sarcoplasmic reticulum (SR). In skeletal muscle, no such role is established. Seeking a robust measurement of Ca2+ release and a way to reliably modify the SR content, we combined in the same cells the “EGTA/phenol red” method (Pape et al., 1995) to evaluate Ca2+ release, with the “removal” method (Melzer et al., 1987) to evaluate release flux. The cytosol of voltage-clamped frog fibers was equilibrated with EGTA (36 mM), antipyrylazo III, and phenol red, and absorbance changes were monitored simultaneously at three wavelengths, affording largely independent evaluations of Δ[H+] and Δ[Ca2+] from which the amount of released Ca2+ and the release flux were independently derived. Both methods yielded mutually consistent evaluations of flux. While the removal method gave a better kinetic picture of the release waveform, EGTA/phenol red provided continuous reproducible measures of calcium in the SR (CaSR). Steady release permeability (P), reached at the end of a 120-ms pulse, increased as CaSR was progressively reduced by a prior conditioning pulse, reaching 2.34-fold at 25% of resting CaSR (four cells). Peak P, reached early during a pulse, increased proportionally much less with SR depletion, decreasing at very low CaSR. The increase in steady P upon depletion was associated with a slowing of the rate of decay of P after the peak (i.e., a slower inactivation of Ca2+ release). These results are consistent with a major inhibitory effect of cytosolic (rather than intra-SR) Ca2+ on the activity of Ca2+ release channels. PMID:15337820

  1. Increased arterial smooth muscle Ca2+ signaling, vasoconstriction, and myogenic reactivity in Milan hypertensive rats

    PubMed Central

    Linde, Cristina I.; Karashima, Eiji; Raina, Hema; Zulian, Alessandra; Wier, Withrow G.; Hamlyn, John M.; Ferrari, Patrizia; Blaustein, Mordecai P.

    2012-01-01

    The Milan hypertensive strain (MHS) rats are a genetic model of hypertension with adducin gene polymorphisms linked to enhanced renal tubular Na+ reabsorption. Recently we demonstrated that Ca2+ signaling is augmented in freshly isolated mesenteric artery myocytes from MHS rats. This is associated with greatly enhanced expression of Na+/Ca2+ exchanger-1 (NCX1), C-type transient receptor potential (TRPC6) protein, and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) compared with arteries from Milan normotensive strain (MNS) rats. Here, we test the hypothesis that the enhanced Ca2+ signaling in MHS arterial smooth muscle is directly reflected in augmented vasoconstriction [myogenic and phenylephrine (PE)-evoked responses] in isolated mesenteric small arteries. Systolic blood pressure was higher in MHS (145 ± 1 mmHg) than in MNS (112 ± 1 mmHg; P < 0.001; n = 16 each) rats. Pressurized mesenteric resistance arteries from MHS rats had significantly augmented myogenic tone and reactivity and enhanced constriction to low-dose (1–100 nM) PE. Isolated MHS arterial myocytes exhibited approximately twofold increased peak Ca2+ signals in response to 5 μM PE or ATP in the absence and presence of extracellular Ca2+. These augmented responses are consistent with increased vasoconstrictor-evoked sarcoplasmic reticulum (SR) Ca2+ release and increased Ca2+ entry, respectively. The increased SR Ca2+ release correlates with a doubling of inositol 1,4,5-trisphosphate receptor type 1 and tripling of SERCA2 expression. Pressurized MHS arteries also exhibited a ∼70% increase in 100 nM ouabain-induced vasoconstriction compared with MNS arteries. These functional alterations reveal that, in a genetic model of hypertension linked to renal dysfunction, multiple mechanisms within the arterial myocytes contribute to enhanced Ca2+ signaling and myogenic and vasoconstrictor-induced arterial constriction. MHS rats have elevated plasma levels of endogenous ouabain, which may initiate the protein upregulation and enhanced Ca2+ signaling. These molecular and functional changes provide a mechanism for the increased peripheral vascular resistance (whole body autoregulation) that underlies the sustained hypertension. PMID:22140038

  2. Calcium in the control of renin release.

    PubMed

    Park, C S; Malvin, R L

    1978-07-01

    The effect of Ca concentrations in the incubation medium and of estimated intracellular Ca concentrations on renin release was examined with use of pig renal cortical slices. In addition, the Ca requirement for the epinephrine stimulatory effect and for the ouabain inhibitory action on renin release was also tested. In mediums containing 5.9 mM K, variations in Ca concentration had no effect on renin release. In contrast, when the K concentration was 59 mM, a significant inhibition of renin release was attained with all concentrations of calcium. The inhibition of renin release in high K mediums by Ca was attributed to an increase in the intracellular Ca concentration. In addition, both the stimulatory effect of epinephrine and the inhibitory effect of ouabain on renin release required Ca in the medium. These results support the hypothesis that the control of renin secretion is mediated, in part, by changes in the intracellular concentration of Ca, most likely in the juxtaglomerular cells.

  3. Effects of hirsutine, an antihypertensive indole alkaloid from Uncaria rhynchophylla, on intracellular calcium in rat thoracic aorta.

    PubMed

    Horie, S; Yano, S; Aimi, N; Sakai, S; Watanabe, K

    1992-01-01

    The effects of hirsutine, an indole alkaloid from Uncaria rhynchophylla (MIQ.) Jackson, on cytosolic Ca2+ level ([Ca2+]cyt) were studied by using fura-2-Ca2+ fluorescence in smooth muscle of the isolated rat aorta. Noradrenaline and high K+ solution produced a sustained increase in [Ca2+]cyt. Application of hirsutine after the increases in [Ca2+]cyt induced by noradrenaline and high K+ notably decreased [Ca2+]cyt, suggesting that hirsutine inhibits Ca2+ influx mainly through a voltage-dependent Ca2+ channel. Furthermore, the effect of hirsutine on intracellular Ca2+ store was studied by using contractile responses to caffeine under the Ca(2+)-free nutrient condition in the rat aorta. When hirsutine was added at 30 microM before caffeine treatment, the agent slightly but significantly reduced the caffeine-induced contraction. When added during Ca2+ loading, hirsutine definitely augmented the contractile response to caffeine. These results suggest that hirsutine inhibits Ca2+ release from the Ca2+ store and increases Ca2+ uptake into the Ca2+ store, leading to a reduction of intracellular Ca2+ level. It is concluded that hirsutine reduces intracellular Ca2+ level through its effect on the Ca2+ store as well as through its effect on the voltage-dependent Ca2+ channel.

  4. Gαq/11-mediated intracellular calcium responses to retrograde flow in endothelial cells.

    PubMed

    Melchior, Benoît; Frangos, John A

    2012-08-15

    Disturbed flow patterns, including reversal in flow direction, are key factors in the development of dysfunctional endothelial cells (ECs) and atherosclerotic lesions. An almost immediate response of ECs to fluid shear stress is the increase in cytosolic calcium concentration ([Ca(2+)](i)). Whether the source of [Ca(2+)](i) is extracellular, released from Ca(2+) intracellular stores, or both is still undefined, though it is likely dependent on the nature of forces involved. We have previously shown that a change in flow direction (retrograde flow) on a flow-adapted endothelial monolayer induces the remodeling of the cell-cell junction along with a dramatic [Ca(2+)](i) burst compared with cells exposed to unidirectional or orthograde flow. The heterotrimeric G protein-α q and 11 subunit (Gα(q/11)) is a likely candidate in effecting shear-induced increases in [Ca(2+)](i) since its expression is enriched at the junction and has been previously shown to be activated within seconds after onset of flow. In flow-adapted human ECs, we have investigated to what extent the Gα(q/11) pathway mediates calcium dynamics after reversal in flow direction. We observed that the elapsed time to peak [Ca(2+)](i) response to a 10 dyn/cm(2) retrograde shear stress was increased by 11 s in cells silenced with small interfering RNA directed against Gα(q/11). A similar lag in [Ca(2+)](i) transient was observed after cells were treated with the phospholipase C (PLC)-βγ inhibitor, U-73122, or the phosphatidylinositol-specific PLC inhibitor, edelfosine, compared with controls. Lower levels of inositol 1,4,5-trisphosphate accumulation seconds after the onset of flow correlated with the increased lag in [Ca(2+)](i) responses observed with the different treatments. In addition, inhibition of the inositol 1,4,5-trisphosphate receptor entirely abrogated flow-induced [Ca(2+)](i). Taken together, our results identify the Gα(q/11)-PLC pathway as the initial trigger for retrograde flow-induced endoplasmic reticulum calcium store release, thereby offering a novel approach to regulating EC dysfunctions in regions subjected to the reversal of blood flow.

  5. Ca(2+) signaling mechanisms in bovine adrenal chromaffin cells.

    PubMed

    Weiss, Jamie L

    2012-01-01

    Calcium (Ca(2+)) is a crucial intracellular messenger in physiological aspects of cell signaling. Adrenal chromaffin cells are the secretory cells from the adrenal gland medulla that secrete catecholamines, which include epinephrine and norepinephrine important in the 'fight or flight' response. Bovine adrenal chromaffin cells have long been used as an important model for secretion -(exocytosis) not only due to their importance in the short-term stress response, but also as a neuroendocrine model of neurotransmtter release, as they have all the same exocytotic proteins as neurons but are easier to prepare, culture and use in functional assays. The components of the Ca(2+) signal transduction cascade and it role in secretion has been extensively characterized in bovine adrenal chromaffin cells. The Ca(2+) sources, signaling molecules and how this relates to the short-term stress response are reviewed in this book chapter in an endeavor to generally -overview these mechanisms in a concise and uncomplicated manner.

  6. SNT-1 functions as the Ca2+ sensor for tonic and evoked neurotransmitter release in C. elegans.

    PubMed

    Li, Lei; Liu, Haowen; Wang, Wei; Chandra, Mintu; Collins, Brett M; Hu, Zhitao

    2018-05-14

    Synaptotagmin-1 (Syt1) binds Ca 2+ through its tandem C2 domains (C2A and C2B) and triggers Ca 2+ -dependent neurotransmitter release. Here we show that snt-1 , the homolog of mammalian Syt1, functions as the Ca 2+ sensor for both tonic and evoked neurotransmitter release at the C. elegans neuromuscular junction. Mutations that disrupt Ca 2+ binding in double C2 domains of SNT-1 significantly impaired tonic release, whereas disrupting Ca 2+ binding in a single C2 domain had no effect, indicating that the Ca 2+ binding of the two C2 domains is functionally redundant for tonic release. Stimulus-evoked release was significantly reduced in snt-1 mutants, with prolonged release latency as well as faster rise and decay kinetics. Unlike tonic release, evoked release was triggered by Ca 2+ binding solely to the C2B domain. Moreover, we showed that SNT-1 plays an essential role in the priming process in different subpopulations of synaptic vesicles with tight or loose coupling to Ca 2+ entry. SIGNIFICANCE STATEMENT We showed that SNT-1 in C. elegans regulates evoked neurotransmitter release through Ca 2+ binding to its C2B domain, a similar way to Syt1 in the mouse CNS and the fly NMJ. However, the largely decreased tonic release in snt-1 mutants argues SNT-1 has a clamping function. Indeed, Ca 2+ -binding mutations in the C2 domains in SNT-1 significantly reduced the frequency of the miniature excitatory postsynaptic current (mEPSC), indicating that SNT-1 also acts as a Ca 2+ sensor for tonic release. Therefore, revealing the differential mechanisms between invertebrates and vertebrates will provide significant insights into our understanding how synaptic vesicle fusion is regulated. Copyright © 2018 the authors.

  7. Loss of α2δ-1 Calcium Channel Subunit Function Increases the Susceptibility for Diabetes.

    PubMed

    Mastrolia, Vincenzo; Flucher, Sylvia M; Obermair, Gerald J; Drach, Mathias; Hofer, Helene; Renström, Erik; Schwartz, Arnold; Striessnig, Jörg; Flucher, Bernhard E; Tuluc, Petronel

    2017-04-01

    Reduced pancreatic β-cell function or mass is the critical problem in developing diabetes. Insulin release from β-cells depends on Ca 2+ influx through high voltage-gated Ca 2+ channels (HVCCs). Ca 2+ influx also regulates insulin synthesis and insulin granule priming and contributes to β-cell electrical activity. The HVCCs are multisubunit protein complexes composed of a pore-forming α 1 and auxiliary β and α 2 δ subunits. α 2 δ is a key regulator of membrane incorporation and function of HVCCs. Here we show that genetic deletion of α 2 δ-1, the dominant α 2 δ subunit in pancreatic islets, results in glucose intolerance and diabetes without affecting insulin sensitivity. Lack of the α 2 δ-1 subunit reduces the Ca 2+ currents through all HVCC isoforms expressed in β-cells equally in male and female mice. The reduced Ca 2+ influx alters the kinetics and amplitude of the global Ca 2+ response to glucose in pancreatic islets and significantly reduces insulin release in both sexes. The progression of diabetes in males is aggravated by a selective loss of β-cell mass, while a stronger basal insulin release alleviates the diabetes symptoms in most α 2 δ-1 -/- female mice. Together, these findings demonstrate that the loss of the Ca 2+ channel α 2 δ-1 subunit function increases the susceptibility for developing diabetes in a sex-dependent manner. © 2017 by the American Diabetes Association.

  8. Heterologous desensitization of muscarinic receptors by P2Z purinoceptors in rat parotid acinar cells.

    PubMed

    Fukushi, Y

    1999-01-01

    We studied the heterologous desensitization of muscarinic receptors by ATP in fura-2-loaded rat parotid acinar cells. Exposure to ATP or 3'-o-(4-benzoyl) benzoyl-ATP shortened the duration and decreased the magnitude of acetylcholine-induced Ca2+ release from intracellular Ca2+ stores in a dose-dependent manner. The shortening was observed only in an early stage of desensitization (within 20 s), whereas the decrease in the magnitude of the response was dependent upon the time the cells were exposed to the nucleotides. Atropine induced a profound shortening during the progressive decrease in the magnitude of acetylcholine-induced Ca2+ release. 3'-o-(4-Benzoyl) benzoyl-ATP did not induce an increase in the cytosolic Ca2+ concentration when the cells were incubated in the Ca2+- and Na+-free medium, but it did induce a strong desensitization of muscarinic receptors. The specific protein kinase C inhibitor bisindoylmaleimide resensitized the 3'-o-(4-benzoyl) benzoyl-ATP-treated muscarinic receptors. Phorbol 12-myristate 13-acetate potentiated the desensitization of muscarinic receptors. Ceramides that prevent the activation of phospholipase D resensitized the 3'-o-(4-benzoyl) benzoyl-ATP-treated muscarinic receptors. These results suggest that ATP, acting through P2Z purinoceptor-mediated phospholipase D, may produce a Ca2+-independent protein kinase C. Heterologous desensitization of muscarinic receptors by protein kinase C may shorten the duration and decrease the magnitude of acetylcholine-induced Ca2+ release.

  9. Gamma-oryzanol-loaded calcium pectinate microparticles reinforced with chitosan: optimization and release characteristics.

    PubMed

    Lee, Ji-Soo; Kim, Jong Soo; Lee, Hyeon Gyu

    2009-05-01

    Response surface methodology was used to optimize microparticle preparation conditions, including the ratio of pectin:gamma-oryzanol (OZ) (X(1)), agitation speed (X(2)), and the concentration of emulsifier (X(3)), for maximal entrapment efficiency (EE) of OZ-loaded Ca pectinate microparticles. The optimized values of X(1), X(2), and X(3) were found to be 2.72:5.28, 1143.5 rpm, and 2.61%, respectively. Experimental results obtained for the optimum formulation agreed favorably with the predicted results, indicating the usefulness of predicting models for EE. In order to evaluate the effect of chitosan-coating and blending on the release pattern of the entrapped OZ from microparticles, chitosan-coated and blended Ca pectinate microparticles were prepared. Release studies revealed that the chitosan treatments, especially the chitosan-coating, were effective in suppressing the release in both simulated gastric fluid (SGF) and intestinal fluid (SIF).

  10. [Ryanodine receptor, calcium leak and arrhythmias].

    PubMed

    Rueda, Angélica; de Alba-Aguayo, David R; Valdivia, Héctor H

    2014-01-01

    The participation of the ionic Ca(2+) release channel/ryanodine receptor in cardiac excitation-contraction coupling is well known since the late '80s, when various seminal papers communicated its purification for the first time and its identity with the "foot" structures located at the terminal cisternae of the sarcoplasmic reticulum. In addition to its main role as the Ca(2+) channel responsible for the transient Ca(2+) increase that activates the contractile machinery of the cardiomyocytes, the ryanodine receptor releases Ca(2+) during the relaxation phase of the cardiac cycle, giving rise to a diastolic Ca(2+) leak. In normal physiological conditions, diastolic Ca(2+) leak regulates the proper level of luminal Ca(2+), but in pathological conditions it participates in the generation of both, acquired and hereditary arrhythmias. Very recently, several groups have focused their efforts into the development of pharmacological tools to control the altered diastolic Ca(2+) leak via ryanodine receptors. In this review, we focus our interest on describing the participation of cardiac ryanodine receptor in the diastolic Ca(2+) leak under physiological or pathological conditions and also on the therapeutic approaches to control its undesired exacerbated activity during diastole. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  11. Release from the cone ribbon synapse under bright light conditions can be controlled by the opening of only a few Ca(2+) channels.

    PubMed

    Bartoletti, Theodore M; Jackman, Skyler L; Babai, Norbert; Mercer, Aaron J; Kramer, Richard H; Thoreson, Wallace B

    2011-12-01

    Light hyperpolarizes cone photoreceptors, causing synaptic voltage-gated Ca(2+) channels to open infrequently. To understand neurotransmission under these conditions, we determined the number of L-type Ca(2+) channel openings necessary for vesicle fusion at the cone ribbon synapse. Ca(2+) currents (I(Ca)) were activated in voltage-clamped cones, and excitatory postsynaptic currents (EPSCs) were recorded from horizontal cells in the salamander retina slice preparation. Ca(2+) channel number and single-channel current amplitude were calculated by mean-variance analysis of I(Ca). Two different comparisons-one comparing average numbers of release events to average I(Ca) amplitude and the other involving deconvolution of both EPSCs and simultaneously recorded cone I(Ca)-suggested that fewer than three Ca(2+) channel openings accompanied fusion of each vesicle at the peak of release during the first few milliseconds of stimulation. Opening fewer Ca(2+) channels did not enhance fusion efficiency, suggesting that few unnecessary channel openings occurred during strong depolarization. We simulated release at the cone synapse, using empirically determined synaptic dimensions, vesicle pool size, Ca(2+) dependence of release, Ca(2+) channel number, and Ca(2+) channel properties. The model replicated observations when a barrier was added to slow Ca(2+) diffusion. Consistent with the presence of a diffusion barrier, dialyzing cones with diffusible Ca(2+) buffers did not affect release efficiency. The tight clustering of Ca(2+) channels, along with a high-Ca(2+) affinity release mechanism and diffusion barrier, promotes a linear coupling between Ca(2+) influx and vesicle fusion. This may improve detection of small light decrements when cones are hyperpolarized by bright light.

  12. Expression of Ca2+-permeable two-pore channels rescues NAADP signalling in TPC-deficient cells

    PubMed Central

    Ruas, Margarida; Davis, Lianne C; Chen, Cheng-Chang; Morgan, Anthony J; Chuang, Kai-Ting; Walseth, Timothy F; Grimm, Christian; Garnham, Clive; Powell, Trevor; Platt, Nick; Platt, Frances M; Biel, Martin; Wahl-Schott, Christian; Parrington, John; Galione, Antony

    2015-01-01

    The second messenger NAADP triggers Ca2+ release from endo-lysosomes. Although two-pore channels (TPCs) have been proposed to be regulated by NAADP, recent studies have challenged this. By generating the first mouse line with demonstrable absence of both Tpcn1 and Tpcn2 expression (Tpcn1/2−/−), we show that the loss of endogenous TPCs abolished NAADP-dependent Ca2+ responses as assessed by single-cell Ca2+ imaging or patch-clamp of single endo-lysosomes. In contrast, currents stimulated by PI(3,5)P2 were only partially dependent on TPCs. In Tpcn1/2−/− cells, NAADP sensitivity was restored by re-expressing wild-type TPCs, but not by mutant versions with impaired Ca2+-permeability, nor by TRPML1. Another mouse line formerly reported as TPC-null likely expresses truncated TPCs, but we now show that these truncated proteins still support NAADP-induced Ca2+ release. High-affinity [32P]NAADP binding still occurs in Tpcn1/2−/− tissue, suggesting that NAADP regulation is conferred by an accessory protein. Altogether, our data establish TPCs as Ca2+-permeable channels indispensable for NAADP signalling. PMID:25872774

  13. Fluoxetine suppresses calcium signaling in human T lymphocytes through depletion of intracellular calcium stores.

    PubMed

    Gobin, V; De Bock, M; Broeckx, B J G; Kiselinova, M; De Spiegelaere, W; Vandekerckhove, L; Van Steendam, K; Leybaert, L; Deforce, D

    2015-09-01

    Selective serotonin reuptake inhibitors, such as fluoxetine, have recently been shown to exert anti-inflammatory and immunosuppressive effects. Although the effects on cytokine secretion, proliferation and viability of T lymphocytes have been extensively characterized, little is known about the mechanism behind these effects. It is well known that Ca(2+) signaling is an important step in the signaling transduction pathway following T cell receptor activation. Therefore, we investigated if fluoxetine interferes with Ca(2+) signaling in Jurkat T lymphocytes. Fluoxetine was found to suppress Ca(2+) signaling in response to T cell receptor activation. Moreover, fluoxetine was found to deplete intracellular Ca(2+) stores, thereby leaving less Ca(2+) available for release upon IP3- and ryanodine-receptor activation. The Ca(2+)-modifying effects of fluoxetine are not related to its capability to block the serotonin transporter, as even a large excess of 5HT did not abolish the effects. In conclusion, these data show that fluoxetine decreases IP3- and ryanodine-receptor mediated Ca(2+) release in Jurkat T lymphocytes, an effect likely to be at the basis of the observed immunosuppression. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells.

    PubMed

    Lecourieux, David; Mazars, Christian; Pauly, Nicolas; Ranjeva, Raoul; Pugin, Alain

    2002-10-01

    Cell suspensions obtained from Nicotiana plumbaginifolia plants stably expressing the apoaequorin gene were used to analyze changes in cytosolic free calcium concentrations ([Ca(2+)](cyt)) in response to elicitors of plant defenses, particularly cryptogein and oligogalacturonides. The calcium signatures differ in lag time, peak time, intensity, and duration. The intensities of both signatures depend on elicitor concentration and extracellular calcium concentration. Cryptogein signature is characterized by a long-sustained [Ca(2+)](cyt) increase that should be responsible for sustained mitogen-activated protein kinase activation, microtubule depolymerization, defense gene activation, and cell death. The [Ca(2+)](cyt) increase in elicitor-treated cells first results from a calcium influx, which in turns leads to calcium release from internal stores and additional Ca(2+) influx. H(2)O(2) resulting from the calcium-dependent activation of the NADPH oxidase also participates in [Ca(2+)](cyt) increase and may activate calcium channels from the plasma membrane. Competition assays with different elicitins demonstrate that [Ca(2+)](cyt) increase is mediated by cryptogein-receptor interaction.

  15. Analysis and Effects of Cytosolic Free Calcium Increases in Response to Elicitors in Nicotiana plumbaginifolia Cells

    PubMed Central

    Lecourieux, David; Mazars, Christian; Pauly, Nicolas; Ranjeva, Raoul; Pugin, Alain

    2002-01-01

    Cell suspensions obtained from Nicotiana plumbaginifolia plants stably expressing the apoaequorin gene were used to analyze changes in cytosolic free calcium concentrations ([Ca2+]cyt) in response to elicitors of plant defenses, particularly cryptogein and oligogalacturonides. The calcium signatures differ in lag time, peak time, intensity, and duration. The intensities of both signatures depend on elicitor concentration and extracellular calcium concentration. Cryptogein signature is characterized by a long-sustained [Ca2+]cyt increase that should be responsible for sustained mitogen-activated protein kinase activation, microtubule depolymerization, defense gene activation, and cell death. The [Ca2+]cyt increase in elicitor-treated cells first results from a calcium influx, which in turns leads to calcium release from internal stores and additional Ca2+ influx. H2O2 resulting from the calcium-dependent activation of the NADPH oxidase also participates in [Ca2+]cyt increase and may activate calcium channels from the plasma membrane. Competition assays with different elicitins demonstrate that [Ca2+]cyt increase is mediated by cryptogein–receptor interaction. PMID:12368509

  16. Ca-P spots modified zirconia by liquid precursor infiltration and the effect on osteoblast-like cell responses.

    PubMed

    Li, Yongmei; Liu, Yan; Zhang, Zutai; Zhuge, Ruishen; Ding, Ning; Tian, Yueming

    2018-01-26

    Ca-P spots modified zirconia by liquid precursor infiltration and the cell responses were investigated. Pre-sintered zirconia specimens were immersed in Ca-P precursor solution. After dense sintering, scanning electron microscopy showed Ca-P spots were formed on the zirconia and anchored with zirconia substrates. The distribution density was increased with the extension of immersion time. Energy dispersive spectrometer confirmed the stoichiometric Ca/P ratio was about 1.67. After hydrothermal treatment, Ca-P spots turned into rod crystals where diffraction peaks of tricalcium phosphate and hydroxyapatite were detected by X-ray diffraction, and Ca 2+ and PO 4 3- release decreased slightly (p>0.05). There was no significant decrease on three-point bending strength (p>0.05). Osteoblast-like MC3T3-E1 cells attached and spread well and showed higher proliferation on Ca-P spots modified zirconia (p<0.05), though its initial alkaline phosphatase activity was not significant high (p>0.05). In conclusion, Ca-P liquid precursor infiltration is a potential method to modify the zirconia ceramics for improving bioactivity.

  17. Increases in extracellular zinc in the amygdala in acquisition and recall of fear experience and their roles in response to fear.

    PubMed

    Takeda, A; Tamano, H; Imano, S; Oku, N

    2010-07-14

    The amygdala is enriched with histochemically reactive zinc, which is dynamically coupled with neuronal activity and co-released with glutamate. The dynamics of the zinc in the amygdala was analyzed in rats, which were subjected to inescapable stress, to understand the role of the zinc in emotional behavior. In the communication box, two rats were subjected to foot shock stress and anxiety stress experiencing emotional responses of foot-shocked rat under amygdalar perfusion. Extracellular zinc was increased by foot shock stress, while decreased by anxiety stress, suggesting that the differential changes in extracellular zinc are associated with emotional behavior. In rats conditioned with foot shock, furthermore, extracellular zinc was increased again in the recall of fear (foot shock) in the same box without foot shock. When this recall was performed under perfusion with CaEDTA, a membrane-impermeable zinc chelator, to examine the role of the increase in extracellular zinc, the time of freezing behavior was more increased, suggesting that zinc released in the lateral amygdala during the recall of fear participates in freezing behavior. To examine the role of the increase in extracellular zinc during fear conditioning, fear conditioning was also performed under perfusion with CaEDTA. The time of freezing behavior was more increased in the contextual recall, suggesting that zinc released in the lateral nucleus during fear conditioning also participates in freezing behavior in the recall. In brain slice experiment, CaEDTA enhanced presynaptic activity (exocytosis) in the lateral nucleus after activation of the entorhinal cortex. The present paper demonstrates that zinc released in the lateral amygdala may participate in emotional behavior in response to fear. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Monitoring the Secretory Behavior of the Rat Adrenal Medulla by High-Performance Liquid Chromatography-Based Catecholamine Assay from Slice Supernatants

    PubMed Central

    De Nardi, Frédéric; Lefort, Claudie; Bréard, Dimitri; Richomme, Pascal; Legros, Christian; Guérineau, Nathalie C.

    2017-01-01

    Catecholamine (CA) secretion from the adrenal medullary tissue is a key step of the adaptive response triggered by an organism to cope with stress. Whereas molecular and cellular secretory processes have been extensively studied at the single chromaffin cell level, data available for the whole gland level are much scarcer. We tackled this issue in rat by developing an easy to implement experimental strategy combining the adrenal acute slice supernatant collection with a high-performance liquid chromatography-based epinephrine and norepinephrine (NE) assay. This technique affords a convenient method for measuring basal and stimulated CA release from single acute slices, allowing thus to individually address the secretory function of the left and right glands. Our data point that the two glands are equally competent to secrete epinephrine and NE, exhibiting an equivalent epinephrine:NE ratio, both at rest and in response to a cholinergic stimulation. Nicotine is, however, more efficient than acetylcholine to evoke NE release. A pharmacological challenge with hexamethonium, an α3-containing nicotinic acetylcholine receptor antagonist, disclosed that epinephrine- and NE-secreting chromaffin cells distinctly expressed α3 nicotinic receptors, with a dominant contribution in NE cells. As such, beyond the novelty of CA assays from acute slice supernatants, our study contributes at refining the secretory behavior of the rat adrenal medullary tissue, and opens new perspectives for monitoring the release of other hormones and transmitters, especially those involved in the stress response. PMID:28993760

  19. Ciguatoxin extracted from poisonous moray eels Gymnothorax javanicus triggers acetylcholine release from Torpedo cholinergic synaptosomes via reversed Na(+)-Ca2+ exchange.

    PubMed

    Molgó, J; Gaudry-Talarmain, Y M; Legrand, A M; Moulian, N

    1993-09-17

    Ciguatoxin (CTX) (0.1 pM to 10 nM) added to a suspension of Torpedo synaptosomes incubated in Ca(2+)-free medium caused no detectable acetylcholine (ACh) release. However, subsequent addition of Ca2+ caused a large ACh release that depended on time of exposure, dose of CTX and on [Ca2+]. Tetrodotoxin completely prevented CTX-induced Ca(2+)-dependent ACh release. Simultaneous blockade of Ca2+ channel subtypes by FTX, a toxin extracted from the venom of the spider Agelenopsis aperta, omega-conotoxin and Gd3+ did not prevent ACh release caused by CTX, upon addition of Ca2+. These results suggest that CTX activates the reversed operation of the Na+/Ca2+ exchange system allowing the entry of Ca2+ in exchange for Na+. It is concluded that Torpedo synaptosomes are endowed with Na+ channels sensitive to pico- to nanomolar concentrations of CTX.

  20. An Exclusion Zone for Ca2+ Channels around Docked Vesicles Explains Release Control by Multiple Channels at a CNS Synapse

    PubMed Central

    Keller, Daniel; Babai, Norbert; Kochubey, Olexiy; Han, Yunyun; Markram, Henry; Schürmann, Felix; Schneggenburger, Ralf

    2015-01-01

    The spatial arrangement of Ca2+ channels and vesicles remains unknown for most CNS synapses, despite of the crucial importance of this geometrical parameter for the Ca2+ control of transmitter release. At a large model synapse, the calyx of Held, transmitter release is controlled by several Ca2+ channels in a "domain overlap" mode, at least in young animals. To study the geometrical constraints of Ca2+ channel placement in domain overlap control of release, we used stochastic MCell modelling, at active zones for which the position of docked vesicles was derived from electron microscopy (EM). We found that random placement of Ca2+ channels was unable to produce high slope values between release and presynaptic Ca2+ entry, a hallmark of domain overlap, and yielded excessively large release probabilities. The simple assumption that Ca2+ channels can be located anywhere at active zones, except below a critical distance of ~ 30 nm away from docked vesicles ("exclusion zone"), rescued high slope values and low release probabilities. Alternatively, high slope values can also be obtained by placing all Ca2+ channels into a single supercluster, which however results in significantly higher heterogeneity of release probabilities. We also show experimentally that high slope values, and the sensitivity to the slow Ca2+ chelator EGTA-AM, are maintained with developmental maturation of the calyx synapse. Taken together, domain overlap control of release represents a highly organized active zone architecture in which Ca2+ channels must obey a certain distance to docked vesicles. Furthermore, domain overlap can be employed by near-mature, fast-releasing synapses. PMID:25951120

  1. Further characterization of [3H]gamma-aminobutyric acid release from isolated neuronal growth cones: role of intracellular Ca2+ stores.

    PubMed

    Lockerbie, R O; Gordon-Weeks, P R

    1986-04-01

    We have recently shown that growth cones isolated from neonatal rat forebrain possess uptake and release mechanisms for the neurotransmitter gamma-aminobutyric acid. About half of the K+-induced release of [3H]gamma-aminobutyric acid from isolated growth cones is dependent on extracellular Ca2+. The remaining component of the [3H]gamma-aminobutyric acid release is unaffected by removal of extracellular Ca2+ and is resistant to blockade by the voltage-sensitive Ca2+-channel blocker methoxyverapamil. In the present series of experiments we have used caffeine to assess the possible role of intracellular stores of Ca2+ in supporting that component of the K+-induced release of [3H]gamma-aminobutyric acid from isolated growth cones that is independent of extracellular Ca2+. We have chosen caffeine because of its well established effect of releasing Ca2+ from smooth endoplasmic reticulum in muscle. We found that caffeine can release [3H]gamma-aminobutyric acid from isolated growth cones. This effect persists in Ca2+-free medium, in the presence of methoxyverapamil and in the absence of Na+. Furthermore, isobutylmethylxanthine could not substitute for caffeine suggesting that the caffeine effect is not due to phosphodiesterase inhibition and the subsequent rise in intracellular cyclic nucleotides. A combination of the mitochondrial poisons, Antimycin A and sodium azide had no effect on the release of [3H]gamma-aminobutyric acid induced either by caffeine or by high K+. We conclude that caffeine causes the release of Ca2+ from a non-mitochondrial store within the growth cone and that this Ca2+ store supports that component of the K+-induced release of [3H]gamma-aminobutyric acid that is independent of extracellular Ca2+.

  2. Reduction of calcium inactivation of sarcoplasmic reticulum calcium release by fura-2 in voltage-clamped cut twitch fibers from frog muscle

    PubMed Central

    1993-01-01

    Cut fibers from Rana temporaria and Rana pipiens (striation spacing, 3.9-4.2 microns) were mounted in a double Vaseline-gap chamber and studied at 14 degrees C. The Ca indicator purpurate-3,3' diacetic acid (PDAA) was introduced into the end pools and allowed to diffuse into the optical recording site. When the concentration at the site exceeded 2 mM, step depolarizations to 10 mV were applied and the [Ca] transient measured with PDAA was used to estimate Ca release from the sarcoplasmic reticulum (SR) (Baylor, S. M., W. K. Chandler, and M. W. Marshall. 1983. Journal of Physiology. 344:625-666). With depolarization, the rate of SR Ca release increased to an early peak and then rapidly decreased several-fold to a quasi-steady level. The total amount of Ca released from the SR at the time of peak rate of release appeared to be independent of SR Ca content, consistent with the idea that a single activated channel might pass, on average, a fixed number of ions, independent of the magnitude of the single channel flux. A possible explanation of this property is given in terms of locally induced Ca inactivation of Ca release. The solution in the end pools was then changed to one with PDAA plus fura-2. SR Ca release was estimated from the [Ca] transient, as before, and from the delta [Cafura-2] signal. On average, 2-3 mM fura-2 increased the quasi-steady level of the rate of SR Ca release by factors of 6.6 and 3.8, respectively, in three fibers from Rana temporaria and three fibers from Rana pipiens. The peak rate of release was increased in five of the six fibers but to a lesser extent than the quasi-steady level. In all fibers, the amplitude of the free [Ca] transient was markedly reduced. These increases in the rate of SR Ca release are consistent with the idea that Ca inactivation of Ca release develops during a step depolarization to 10 mV and that 2-3 mM fura-2 is able to reduce this inactivation by complexing Ca and thereby reducing free [Ca]. Once the concentration of fura-2 becomes sufficiently large, a further increase reduces the rate of SR Ca release. On average, 5-6 mM fura-2 increased the quasi-steady rate of release, compared with 0 mM fura-2, by 6.5 and 2.9, respectively, in four fibers from Rana temporaria and three from Rana pipiens.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8228914

  3. Catecholamine-Independent Heart Rate Increases Require CaMKII

    PubMed Central

    Gao, Zhan; Singh, Madhu V; Hall, Duane D; Koval, Olha M.; Luczak, Elizabeth D.; Joiner, Mei-ling A.; Chen, Biyi; Wu, Yuejin; Chaudhary, Ashok K; Martins, James B; Hund, Thomas J; Mohler, Peter J; Song, Long-Sheng; Anderson, Mark E.

    2011-01-01

    Background Catecholamines increase heart rate by augmenting the cAMP responsive HCN4 ‘pacemaker current’ (If) and/or by promoting inward Na+/Ca2+ exchanger current (INCX), by a ‘Ca2+ clock’ mechanism in sinoatrial nodal cells (SANCs). The importance, identity and function of signals that connect If and Ca2+ clock mechanisms are uncertain and controversial, but the multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is required for physiological heart rate responses to β-adrenergic receptor (β-AR) stimulation. The aim of this stuy is to measure the contribution of the Ca2+ clock and CaMKII to cardiac pacing independent of β-AR agonist stimulation. Methods and Results We used the L-type Ca2+ channel agonist BayK 8644 (BayK) to activate the SANC Ca2+ clock. BayK and isoproterenol were similarly effective in increasing rates in SANCs and Langendorff-perfused hearts from WT control mice. In contrast, SANCs and isolated hearts from mice with CaMKII inhibition by transgenic expression of an inhibitory peptide (AC3-I) were resistant to rate increases by BayK. BayK only activated CaMKII in control SANCs, but increased ICa equally in all SANCs, indicating that increasing ICa was insufficient and suggesting CaMKII activation was required for heart rate increases by BayK. BayK did not increase If or protein kinase A (PKA)-dependent phosphorylation of phospholamban (at Ser16), indicating that increased SANC Ca2+ by BayK did not augment cAMP/PKA signaling at these targets. Late diastolic intracellular Ca2+ release and INCX were significantly reduced in AC3-I SANCs and the response to BayK was eliminated by ryanodine in all groups. Conclusions The Ca2+ clock is capable of supporting physiological fight or flight responses, independent of β-AR stimulation or If increases. Complete Ca2+ clock and β-AR stimulation responses require CaMKII. PMID:21406683

  4. The effect of imiquimod on taste bud calcium transients and transmitter secretion

    PubMed Central

    Wu, Sandy Y

    2016-01-01

    Background and Purpose Imiquimod is an immunomodulator approved for the treatment of basal cell carcinoma and has adverse side effects, including taste disturbances. Paracrine transmission, representing cell–cell communication within taste buds, has the potential to shape the final signals that taste buds transmit to the brain. Here, we tested the underlying assumption that imiquimod modifies taste transmitter secretion in taste buds of mice. Experimental Approach Taste buds were isolated from C57BL/6J mice. The effects of imiquimod on transmitter release in taste buds were measured using calcium imaging with cellular biosensors, and examining the net effect of imiquimod on taste‐evoked ATP secretion from mouse taste buds. Key Results Up to 72% of presynaptic (Type III) taste cells responded to 100 μM imiquimod with an increase in intracellular Ca2+ concentrations. These Ca2 + responses were inhibited by thapsigargin, an inhibitor of the sarco/endoplasmic reticulum Ca2 +‐ATPase, and by U73122, a PLC inhibitor, suggesting that the Ca2 + mobilization elicited by imiquimod was dependent on release from internal Ca2 + stores. Moreover, combining studies of Ca2 + imaging with cellular biosensors showed that imiquimod evoked secretion of 5‐HT, which then provided negative feedback onto receptor (Type II) cells to reduce taste‐evoked ATP secretion. Conclusion and Implications Our results provide evidence that there is a subset of taste cells equipped with a range of intracellular mechanisms that respond to imiquimod. The findings are also consistent with a role of imiquimod as an immune response modifier, which shapes peripheral taste responses via 5‐HT signalling. PMID:27464850

  5. Effects of Mg2+ on Ca2+ release from sarcoplasmic reticulum of skeletal muscle fibres from yabby (crustacean) and rat.

    PubMed

    Launikonis, B S; Stephenson, D G

    2000-07-15

    1. The role of myoplasmic [Mg2+] on Ca2+ release from the sarcoplasmic reticulum (SR) was examined in the two major types of crustacean muscle fibres, the tonic, long sarcomere fibres and the phasic, short sarcomere fibres of the fresh water decapod crustacean Cherax destructor (yabby) and in the fast-twitch rat muscle fibres using the mechanically skinned muscle fibre preparation. 2. A robust Ca2+-induced Ca2+-release (CICR) mechanism was present in both long and short sarcomere fibres and 1 mM Mg2+ exerted a strong inhibitory action on the SR Ca2+ release in both fibre types. 3. The SR displayed different properties with respect to Ca2+ loading in the long and the short sarcomere fibres and marked functional differences were identified with respect to Mg2+ inhibition between the two crustacean fibre types. Thus, in long sarcomere fibres, the submaximally loaded SR was able to release Ca2+ when [Mg2+] was lowered from 1 to 0.01 mM in the presence of 8 mM ATPtotal and in the virtual absence of Ca2+ (< 5 nM) even when the CICR was suppressed. In contrast, negligible Ca2+ was released from the submaximally loaded SR of short sarcomere yabby fibres when [Mg2+] was lowered from 1 to 0.01 mM under the same conditions as for the long sarcomere fibres. Nevertheless, the rate of SR Ca2+ release in short sarcomere fibres increased markedly when [Mg2+] was lowered in the presence of [Ca2+] approaching the normal resting levels (50-100 nM). 4. Rat fibres were able to release SR Ca2+ at a faster rate than the long sarcomere yabby fibres when [Mg2+] was lowered from 1 to 0. 01 mM in the virtual absence of Ca2+ but, unlike with yabby fibres, the net rate of Ca2+ release was actually increased for conditions that were considerably less favourable to CICR. 5. In summary, it is concluded that crustacean skeletal muscles have more that one functional type of Ca2+-release channels, that these channels display properties that are intermediate between those of mammalian skeletal and cardiac isoforms, that the inhibition exerted by Mg2+ at rest on the crustacean SR Ca2+-release channels must be removed during excitation-contraction coupling and that, unlike in crustacean fibres, CICR cannot play the major role in the activation of SR Ca2+-release channels in the rat skeletal muscle.

  6. Glucose release in mantle tissue of Mytilus: regulation by calcium ions.

    PubMed

    Crespo, C A; Espinosa, J

    1990-09-01

    Glucose release activity in mantle tissue of Mytilus galloprovincialis was studied. Mantle tissue shows a basal glucose releasing activity. The external Ca2+ absence increases 2 to 3-fold the basal glucose release, and when A23187 (10 microM) was simultaneously present the release doubled that obtained in Ca2(+)-absence. EGTA (2 mM), chlorpromazine (200 microM) and lanthanum (3 mM) decreased the glucose release promoted by external Ca2+ absence. This and other data suggest that glucose release activity in mantle tissue might be controlled by Ca2+ ions.

  7. Intercellular signal communication among odontoblasts and trigeminal ganglion neurons via glutamate.

    PubMed

    Nishiyama, A; Sato, M; Kimura, M; Katakura, A; Tazaki, M; Shibukawa, Y

    2016-11-01

    Various stimuli to the exposed surface of dentin induce changes in the hydrodynamic force inside the dentinal tubules resulting in dentinal pain. Recent evidences indicate that mechano-sensor channels, such as the transient receptor potential channels, in odontoblasts receive these hydrodynamic forces and trigger the release of ATP to the pulpal neurons, to generate dentinal pain. A recent study, however, has shown that odontoblasts also express glutamate receptors (GluRs). This implies that cells in the dental pulp tissue have the ability to release glutamate, which acts as a functional intercellular mediator to establish inter-odontoblast and odontoblast-trigeminal ganglion (TG) neuron signal communication. To investigate the intercellular signal communication, we applied mechanical stimulation to odontoblasts and measured the intracellular free Ca 2+ concentration ([Ca 2+ ] i ). During mechanical stimulation in the presence of extracellular Ca 2+ , we observed a transient [Ca 2+ ] i increase not only in single stimulated odontoblasts, but also in adjacent odontoblasts. We could not observe these responses in the absence of extracellular Ca 2+ . [Ca 2+ ] i increases in the neighboring odontoblasts during mechanical stimulation of single odontoblasts were inhibited by antagonists of metabotropic glutamate receptors (mGluRs) as well as glutamate-permeable anion channels. In the odontoblast-TG neuron coculture, we observed an increase in [Ca 2+ ] i in the stimulated odontoblasts and TG neurons, in response to direct mechanical stimulation of single odontoblasts. These [Ca 2+ ] i increases in the neighboring TG neurons were inhibited by antagonists for mGluRs. The [Ca 2+ ] i increases in the stimulated odontoblasts were also inhibited by mGluRs antagonists. We further confirmed that the odontoblasts express group I, II, and III mGluRs. However, we could not record any currents evoked from odontoblasts near the mechanically stimulated odontoblast, with or without extracellular Mg 2+ , indicating that N-methyl-d-aspartic acid receptor does not contribute to inter-odontoblast signal communication. The results suggest that a mechanically stimulated odontoblast is capable of releasing glutamate into the extracellular space via glutamate-permeable anion channels. The released glutamate activates mGluRs on the odontoblasts in an autocrine/paracrine manner, forming an inter-odontoblasts communication, which drives dentin formation via odontoblast-odontoblast signal communication. Glutamate and mGluRs also mediate neurotransmission between the odontoblasts and neurons in the dental pulp to modulate sensory signal transmission for dentinal sensitivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. GTP requirement for inositol-1,4,5-trisphosphate-induced Ca2+ release from sarcoplasmic reticulum in smooth muscle.

    PubMed

    Saida, K; van Breemen, C

    1987-05-14

    We have examined inositol-1,4,5-trisphosphate (IP3)-induced Ca2+ release from the sarcoplasmic reticulum (SR) in the skinned vascular smooth muscle. The amount of Ca2+ in the SR was estimated indirectly by caffeine-induced contraction of the skinned preparation. The Ca2+ release from the SR by IP3 required GTP. A non-hydrolyzable analogue of GTP, guanosine 5'-(beta gamma-imido) triphosphate (GppNHp) could substitute for GTP in the IP3-induced Ca2+ release. These results suggest an involvement of GTP-binding protein in the mechanism of Ca2+ release from the SR by IP3 in smooth muscle.

  9. The Transient Receptor Potential (TRP) Channel Family in Colletotrichum graminicola: A Molecular and Physiological Analysis.

    PubMed

    Lange, Mario; Weihmann, Fabian; Schliebner, Ivo; Horbach, Ralf; Deising, Holger B; Wirsel, Stefan G R; Peiter, Edgar

    2016-01-01

    Calcium (Ca2+) is a universal second messenger in all higher organisms and centrally involved in the launch of responses to environmental stimuli. Ca2+ signals in the cytosol are initiated by the activation of Ca2+ channels in the plasma membrane and/or in endomembranes. Yeast (Saccharomyces cerevisiae) contains a Ca2+-permeable channel of the TRP family, TRPY1, which is localized in the vacuolar membrane and contributes to cytosolic free Ca2+ ([Ca2+]cyt) elevations, for example in response to osmotic upshock. A TRPY1 homologue in the rice blast fungus is known to be important for growth and pathogenicity. To determine the role of the TRP channel family in the maize pathogen Colletotrichum graminicola, proteins homologous to TRPY1 were searched. This identified not one, but four genes in the C. graminicola genome, which had putative orthologs in other fungi, and which we named CgTRPF1 through 4. The topology of the CgTRPF proteins resembled that of TRPY1, albeit with a variable number of transmembrane (TM) domains additional to the six-TM-domain core and a diverse arrangement of putatively Ca2+-binding acidic motifs. All CgTRPF genes were expressed in axenic culture and throughout the infection of maize. Like TRPY1, all TRPF proteins of C. graminicola were localized intracellularly, albeit three of them were found not in large vacuoles, but co-localized in vesicular structures. Deletion strains for the CgTRPF genes were not altered in processes thought to involve Ca2+ release from internal stores, i.e. spore germination, the utilization of complex carbon sources, and the generation of tip-focussed [Ca2+]cyt spikes. Heterologous expression of CgTRPF1 through 4 in a tryp1Δ yeast mutant revealed that none of the channels mediated the release of Ca2+ in response to osmotic upshock. Accordingly, aequorin-based [Ca2+]cyt measurements of C. graminicola showed that in this fungus, osmotic upshock-triggered [Ca2+]cyt elevations were generated entirely by influx of Ca2+ from the extracellular space. Cgtrpf mutants did not show pathogenicity defects in leaf infection assays. In summary, our study reveals major differences between different fungi in the contribution of TRP channels to Ca2+-mediated signal transduction.

  10. The Transient Receptor Potential (TRP) Channel Family in Colletotrichum graminicola: A Molecular and Physiological Analysis

    PubMed Central

    Lange, Mario; Weihmann, Fabian; Schliebner, Ivo; Horbach, Ralf; Deising, Holger B.; Wirsel, Stefan G. R.

    2016-01-01

    Calcium (Ca2+) is a universal second messenger in all higher organisms and centrally involved in the launch of responses to environmental stimuli. Ca2+ signals in the cytosol are initiated by the activation of Ca2+ channels in the plasma membrane and/or in endomembranes. Yeast (Saccharomyces cerevisiae) contains a Ca2+-permeable channel of the TRP family, TRPY1, which is localized in the vacuolar membrane and contributes to cytosolic free Ca2+ ([Ca2+]cyt) elevations, for example in response to osmotic upshock. A TRPY1 homologue in the rice blast fungus is known to be important for growth and pathogenicity. To determine the role of the TRP channel family in the maize pathogen Colletotrichum graminicola, proteins homologous to TRPY1 were searched. This identified not one, but four genes in the C. graminicola genome, which had putative orthologs in other fungi, and which we named CgTRPF1 through 4. The topology of the CgTRPF proteins resembled that of TRPY1, albeit with a variable number of transmembrane (TM) domains additional to the six-TM-domain core and a diverse arrangement of putatively Ca2+-binding acidic motifs. All CgTRPF genes were expressed in axenic culture and throughout the infection of maize. Like TRPY1, all TRPF proteins of C. graminicola were localized intracellularly, albeit three of them were found not in large vacuoles, but co-localized in vesicular structures. Deletion strains for the CgTRPF genes were not altered in processes thought to involve Ca2+ release from internal stores, i.e. spore germination, the utilization of complex carbon sources, and the generation of tip-focussed [Ca2+]cyt spikes. Heterologous expression of CgTRPF1 through 4 in a tryp1Δ yeast mutant revealed that none of the channels mediated the release of Ca2+ in response to osmotic upshock. Accordingly, aequorin-based [Ca2+]cyt measurements of C. graminicola showed that in this fungus, osmotic upshock-triggered [Ca2+]cyt elevations were generated entirely by influx of Ca2+ from the extracellular space. Cgtrpf mutants did not show pathogenicity defects in leaf infection assays. In summary, our study reveals major differences between different fungi in the contribution of TRP channels to Ca2+-mediated signal transduction. PMID:27359114

  11. Expression of the mammalian calcium signaling response to Trypanosoma cruzi in Xenopus laevis oocytes.

    PubMed

    Leite, M F; Moyer, M S; Andrews, N W

    1998-04-01

    Infective stages of the protozoan parasite Trypanosoma cruzi contain a soluble factor that induces elevation in the intracellular free Ca2+ concentration ([Ca2+]i) of mammalian cells. The process is pertussis toxin (PTx)-sensitive, and involves phospholipase C (PLC) activation, inositol 1,4,5-trisphosphate (IP3) formation and Ca2+ release from intracellular stores (Tardieux I, et al. J Exp Med 1994;179:1017-1022; Rodriguez A, et al. J Cell Biol 1995;129:1263-1273). We now report that a molecule exposed on the surface of the target cells is required to trigger the signaling cascade, and that a response with identical characteristics can be induced in Xenopus laevis oocytes injected with mRNA from normal rat kidney (NRK) fibroblasts. Xenopus oocytes do not show an endogenous response to the trypomastigote Ca2+ signaling factor, but a vigorous response in the form of a propagating Ca2+ wave is expressed after injection of NRK cell mRNA. As previously demonstrated for mammalian cells, the response is inhibited when injected oocytes are pretreated with PTx, implicating Galphai or Galphao trimeric G-proteins, and with thapsigargin, which depletes intracellular Ca2+ stores. Moreover, the [Ca2+]i transients triggered by the T. cruzi soluble factor in mRNA-injected oocytes are blocked by the same inhibitors of the parasite oligopeptidase B that abolish the [Ca2+]i response in NRK cells (Burleigh B, Andrews NW. J Biol Chem 1995;270:5172-5180; Burleigh BA et al. J Cell Biol 1997;136:609-620). The NRK mRNA fraction that induces expression of the [Ca2+]i response to the T. cruzi signaling factor contains messages from 1.5 to 2.0 kb, a size range consistent with the family of seven-transmembrane G-protein-coupled receptors.

  12. Intracellular ca2+ stores could participate to abscisic acid-induced depolarization and stomatal closure in Arabidopsis thaliana

    PubMed Central

    Meimoun, Patrice; Vidal, Guillaume; Bohrer, Anne-Sophie; Lehner, Arnaud; Tran, Daniel; Briand, Joël; Bouteau, François

    2009-01-01

    In Arabidopsis thaliana cell suspension,abscisic acid (aBa) induces changes in cytosolic calcium concentration ([Ca2+]cyt) which are the trigger for aBa-induced plasma membrane anion current activation, H+-aTPase inhibition, and subsequent plasma membrane depolarization. In the present study, we took advantage of this model to analyze the implication of intracellular Ca2+ stores in aBa signal transduction through electrophysiological current measurements, cytosolic Ca2+ activity measurements with the apoaequorin Ca2+ reporter protein and external pH measurement. Intracellular Ca2+ stores involvement was determined by using specific inhibitors of CICR channels: the cADP-ribose/ryanodine receptor (Br-cADPR and dantrolene) and of the inositol trisphosphate receptor (U73122). In addition experiments were performed on epidermal strips of A. thaliana leaves to monitor stomatal closure in response to ABA in presence of the same pharmacology. Our data provide evidence that ryanodine receptor and inositol trisphosphate receptor could be involved in ABA-induced (1) Ca2+ release in the cytosol, (2) anion channel activation and H+-ATPase inhibition leading to plasma membrane depolarization and (3) stomatal closure. Intracellular Ca2+ release could thus contribute to the control of early events in the ABA signal transduction pathway in A. thaliana. PMID:19847112

  13. Ca2+ release by inositol-trisphosphorothioate in isolated triads of rabbit skeletal muscle.

    PubMed Central

    Valdivia, C; Valdivia, H H; Potter, B V; Coronado, R

    1990-01-01

    The effectiveness of the nonmetabolizable second messenger analogue DL-myo-inositol 1,4,5-trisphosphorothioate (IPS3) described by Cooke, A. M., R. Gigg, and B. V. L. Potter, (1987b. Jour. Chem. Soc. Chem. Commun. 1525-1526.) was examined in triads purified from rabbit skeletal muscle. A Ca2+ electrode uptake-release assay was used to determine the size and sensitivity of the IPS3-releasable pool of Ca2+ in isolated triads. Uptake was initiated by 1 mM MgATP, pCa 5.8, pH 7.5 Release was initiated when the free Ca2+ had lowered to pCa approximately 7. We found that 5-25 microM myo-inositol 1,4,5-trisphosphate (IP3), and separately IPS3, consistently released 5-20% of the Ca2+ pool actively loaded into triads. Single channel recording was used to determine if ryanodine receptor Ca2+ release channels were affected by IPS3 at the same myoplasmic Ca2+ and IPS3 concentrations. Open probability of ryanodine receptor Ca2+ release channels was monitored in triads fused to bilayers over long periods (200 s) in the absence and following addition of 30 microM IPS3 to the same channel. At myoplasmic pCa approximately 7, IPS3 had no effect in the absence of MgATP (Po = 0.0094 +/- 0.001 in control and Po = 0.01 +/- 0.006 after IPS3) and slightly increased activity in the presence of 1 mM MgATP (Po = 0.024 +/- 0.03 in control and Po = 0.05 +/- 0.03 after IPS3). Equally small effects were observed at higher myoplasmic Ca2+. The onset of channel activation by IPS3 or IP3 was slow, on the time scale 20-60 s. We suggest that in isolated triads of rabbit skeletal muscle, IP3-induced release of stored Ca2+ is probably not mediated by the opening of Ca2+ release channels. PMID:2168221

  14. Structure and reactivity of ferrihydrite-soil organic carbon-calcium ternary complexes

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Adhikari, D.; Sowers, T.; Stuckey, J.; Poulson, S.; Sparks, D. L.

    2017-12-01

    Complete understanding about the interactions between soil organic carbon (SOC) and minerals is important for predicting the stability of SOC and its response to climate change. Recent studies have shown the importance of calcium (Ca)-bearing minerals and iron (Fe) oxide in associating with and stabilizing SOC. In this study, we have investigated the formation and reactivity of ferrihydrite-SOC-Ca ternary complexes. During the co-precipitation of ferrihydrite with SOC in the presence of Ca2+, 60% of SOC can be co-precipitated with ferrihydrite at a C/Fe (molar ratio) of up to 10, whereas the Ca/Fe ratio was saturated at 0.2. Increasing amount of Ca2+ did not affect the co-precipitation of SOC with ferrihydrite or the lability of ferrihydrite-bound SOC. In addition, microbial reduction of ferrihydrite and reductive release of ferrihydrite-bound SOC were not influenced by the presence of Ca, but the pathway for Fe mineral transformation during the reduction was affected by Ca. In the meantime, Fe reduction selectively released carboxylic-enriched SOC. As a comparison, the presence of SOC increased the incorporation of Ca into the structure of ferrihydrite. Our results indicate the formation of ferrihydrite-SOC-Ca complexes, with organic carbon bridging the ferrihydrite and Ca. Such ternary complexes potentially play an important role in regulating the interactions between SOC and mineral phases in soil.

  15. Effect of Engineered Nanoparticles on Exopolymeric Substances Release from Marine Phytoplankton.

    PubMed

    Chiu, Meng-Hsuen; Khan, Zafir A; Garcia, Santiago G; Le, Andre D; Kagiri, Agnes; Ramos, Javier; Tsai, Shih-Ming; Drobenaire, Hunter W; Santschi, Peter H; Quigg, Antonietta; Chin, Wei-Chun

    2017-12-13

    Engineered nanoparticles (ENPs), products from modern nanotechnologies, can potentially impact the marine environment to pose serious threats to marine ecosystems. However, the cellular responses of marine phytoplankton to ENPs are still not well established. Here, we investigate four different diatom species (Odontella mobiliensis, Skeletonema grethae, Phaeodactylum tricornutum, Thalassiosira pseudonana) and one green algae (Dunaliella tertiolecta) for their extracellular polymeric substances (EPS) release under model ENP treatments: 25 nm titanium dioxide (TiO 2 ), 10-20 nm silicon dioxide (SiO 2 ), and 15-30 nm cerium dioxide (CeO 2 ). We found SiO 2 ENPs can significantly stimulate EPS release from these algae (200-800%), while TiO 2 ENP exposure induced the lowest release. Furthermore, the increase of intracellular Ca 2+ concentration can be triggered by ENPs, suggesting that the EPS release process is mediated through Ca 2+ signal pathways. With better understanding of the cellular mechanism mediated ENP-induced EPS release, potential preventative and safety measures can be developed to mitigate negative impact on the marine ecosystem.

  16. Spontaneous Ca2+ sparks and Ca2+ homeostasis in a minimal model of permeabilized ventricular myocytes

    PubMed Central

    Hartman, Jana M.; Sobie, Eric A.

    2010-01-01

    Many issues remain unresolved concerning how local, subcellular Ca2+ signals interact with bulk cellular concentrations to maintain homeostasis in health and disease. To aid in the interpretation of data obtained in quiescent ventricular myocytes, we present here a minimal whole cell model that accounts for both localized (subcellular) and global (cellular) aspects of Ca2+ signaling. Using a minimal formulation of the distribution of local [Ca2+] associated with a large number of Ca2+-release sites, the model simulates both random spontaneous Ca2+ sparks and the changes in myoplasmic and sarcoplasmic reticulum (SR) [Ca2+] that result from the balance between stochastic release and reuptake into the SR. Ca2+-release sites are composed of clusters of two-state ryanodine receptors (RyRs) that exhibit activation by local cytosolic [Ca2+] but no inactivation or regulation by luminal Ca2+. Decreasing RyR open probability in the model causes a decrease in aggregate release flux and an increase in SR [Ca2+], regardless of whether RyR inhibition is mediated by a decrease in RyR open dwell time or an increase in RyR closed dwell time. The same balance of stochastic release and reuptake can be achieved, however, by either high-frequency/short-duration or low-frequency/long-duration Ca2+ sparks. The results are well correlated with recent experimental observations using pharmacological RyR inhibitors and clarify those aspects of the release-reuptake balance that are inherent to the coupling between local and global Ca2+ signals and those aspects that depend on molecular-level details. The model of Ca2+ sparks and homeostasis presented here can be a useful tool for understanding changes in cardiac Ca2+ release resulting from drugs, mutations, or acquired diseases. PMID:20852058

  17. Silibinin triggers yeast apoptosis related to mitochondrial Ca2+ influx in Candida albicans.

    PubMed

    Yun, Dae Gyu; Lee, Dong Gun

    2016-11-01

    Candida albicans is a common yeast that resides in the human body, but can occasionally cause systemic fungal infection, namely candidiasis. As this infection rate is gradually increasing, it is becoming a major problem to public health. Accordingly, we for the first time investigated the antifungal activity and mode of action of silibinin, a natural product extracted from Silybum marianum (milk thistle), against C. albicans. On treatment with 100μM silibinin, generation of reactive oxygen species (ROS) from mitochondria, which can cause yeast apoptosis via oxidative stress, was increased by 24.17% compared to that in untreated cells. Subsequently, we found disturbances in ion homeostasis such as release of intracellular K + and accumulation of cytoplasmic and mitochondrial Ca 2+ . Among these phenomena, mitochondrial Ca 2+ overload particularly plays a crucial role in the process of apoptosis, promoting the activation of pro-apoptotic factors. Therefore, we investigated the significance of mitochondrial Ca 2+ in apoptosis by employing 20mM ruthenium red (RR). Additional apoptosis hallmarks such as mitochondrial membrane depolarization, cytochrome c release, caspase activation, phosphatidylserine (PS) exposure, and DNA damage were observed in response to silibinin treatment, whereas RR pre-treatment seemed to block these responses. In summary, our results suggest that silibinin induces yeast apoptosis mediated by mitochondrial Ca 2+ signaling in C. albicans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effects of crystallinity and surface modification of calcium phosphate nanoparticles on the loading and release of tetracycline hydro-chloride

    NASA Astrophysics Data System (ADS)

    Zhang, Huaizhi; Yan, Dong; Menike Korale Gedara, Sriyani; Dingiri Marakkalage, Sajith Sudeepa Fernando; Gamage Kasun Methlal, Jothirathna; Han, YingChao; Dai, HongLian

    2017-03-01

    The influences of crystallinity and surface modification of calcium phosphate nanoparticles (nCaP) on their drug loading capacity and drug release profile were studied in the present investigation. The CaP nanoparticles with different crystallinity were prepared by precipitation method under different temperatures. CaP nanoparticles with lower crystallinity exhibited higher drug loading capacity. The samples were characterized by XRD, FT-IR, SEM, TEM and BET surface area analyzer respectively. The drug loading capacity of nCaP was evaluated to tetracycline hydro-chloride (TCH). The internalization of TCH loaded nCaP in cancer cell was observed by florescence microscope. nCaP could be stabilized and dispersed in aqueous solution by poly(acrylic acid) surface modification agent, leading to enhanced drug loading capacity. The drug release was conducted in different pH environment and the experimental data proved that nCaP were pH sensitive drug carrier, suggesting that nCaP could achieve the controlled drug release in intracellular acidic environment. Furthermore, nCaP with higher crystallinity showed lower drug release rate than that of lower crystallinity, indicating that the drug release profile could be adjusted by crystallinity of nCaP. nCaP with adjustable drug loading and release properties are promising candidate as drug carrier for disease treatment.

  19. On the nature and origin of the calcium asymmetry arising during gravitropic response in etiolated pea epicotyls

    NASA Technical Reports Server (NTRS)

    Migliaccio, F.; Galston, A. W.

    1987-01-01

    Seven day old etiolated pea epicotyls were loaded symmetrically with 3H-indole 3-acetic acid (IAA) or 45Ca2+, then subjected to 1.5 hours of 1g gravistimulation. Epidermal peels taken from top and bottom surfaces after 90 minutes showed an increase in IAA on the lower side and of Ca2+ on the upper side. Inhibitors of IAA movement (TIBA, 9-hydroxyfluorene carboxylic acid) block the development of both IAA and Ca2+ asymmetries, but substances known to interfere with normal Ca2+ transport (nitrendipine, nisoldipine, Bay K 8644, A 23187) do not significantly alter either IAA or Ca2+ asymmetries. These substances, however, are active in modifying both Ca2+ uptake and efflux through oat and pea leaf protoplast membranes. We conclude that the 45Ca2+ fed to pea epicotyls occurs largely in the cell wall, and that auxin movement is primary and Ca2+ movement secondary in gravitropism. We hypothesize that apoplastic Ca2+ changes during graviresponse because it is displaced by H+ secreted through auxin-induced proton release. This proposed mechanism is supported by localized pH experiments, in which filter paper soaked in various buffers was applied to one side of a carborundum-abraded epicotyls. Buffer at pH 3 increases calcium loss from the side to which it is applied, whereas pH 7 buffer decreases it. Moreover, 10 micromolar IAA and 1 micromolar fusicoccin, which promote H+ efflux, increase Ca2+ release from pea epicotyl segments, whereas cycloheximide, which inhibits H+ efflux, has the reverse effect. We suggest that Ca2+ does not redistribute actively during gravitropism: the asymmetry arises because of its release from the wall adjacent to the region of high IAA concentration, proton secretion, and growth. Thus, the asymmetric distribution of Ca2+ appears to be a consequence of growth stimulation, not a critical step in the early phase of the graviresponse.

  20. SIDT2 is involved in the NAADP-mediated release of calcium from insulin secretory granules.

    PubMed

    Chang, Guoying; Yang, Rui; Cao, Yanan; Nie, Aifang; Gu, Xuefan; Zhang, Huiwen

    2016-04-01

    The Sidt2 global knockout mouse (Sidt2(-/-)) has impaired insulin secretion. The aim of this study was to assess the role of SIDT2 protein in glucose-induced insulin secretion in primary cultured mouse β-cells. The major metabolic and electrophysiological steps of glucose-induced insulin secretion of primary cultured β-cells from Sidt2(-/-) mice were investigated. The β-cells from Sidt2(-/-) mice had normal NAD(P)H responses and KATP and KV currents. However, they exhibited a lower [Ca(2+)]i peak height when stimulated with 20mM glucose compared with those from WT mice. Furthermore, it took a longer time for the [Ca(2+)]i of β-cell from Sidt2(-/-) mice to reach the peak. Pretreatment with ryanodine or 2-aminoethoxydiphenyl borate (2-APB) did not change [Ca(2+)]i the response pattern to glucose in Sidt2(-/-) cells. Extraordinarily, pretreatment with bafilomycin A1(Baf-A1) led to a comparable [Ca(2+)]i increase pattern between these two groups, suggesting that calcium traffic from the intracellular acidic compartment is defective in Sidt2(-/-) β-cells. Bath-mediated application of 50nM nicotinic acid adenine dinucleotide phosphate (NAADP) normalized the [Ca(2+)]i response of Sidt2(-/-) β-cells. Finally, glucose-induced CD38 expression increased to a comparable level between Sidt2(-/-) and WT islets, suggesting that Sidt2(-/-) islets generated NAADP normally. We conclude that Sidt2 is involved in NAADP-mediated release of calcium from insulin secretory granules and thus regulates insulin secretion. © 2016 Society for Endocrinology.

  1. Cellular responses to nicotinic receptor activation are decreased after prolonged exposure to galantamine in human neuroblastoma cells.

    PubMed

    Barik, Jacques; Dajas-Bailador, Federico; Wonnacott, Susan

    2005-08-01

    In this study, we have examined cellular responses of neuroblastoma SH-SY5Y cells after chronic treatment with galantamine, a drug used to treat Alzheimer's disease that has a dual mechanism of action: inhibition of acetylcholinesterase and allosteric potentiation of nicotinic acetylcholine receptors (nAChR). Acute experiments confirmed that maximum potentiation of nicotinic responses occurs at 1 microM galantamine; hence this concentration was chosen for chronic treatment. Exposure to 1 microM galantamine for 4 days decreased Ca(2+) responses (by 19.8+/-3.6%) or [(3)H]noradrenaline ([(3)H]NA) release (by 23.9+/-3.3%) elicited by acute application of nicotine. KCl-evoked increases in intracellular Ca(2+) were also inhibited by 10.0+/-1.9% after 4 days' treatment with galantamine. These diminished responses are consistent with the downregulation of downstream cellular processes. Ca(2+) responses evoked by activation of muscarinic acetylcholine receptors were unaffected by chronic galantamine treatment. Exposure to the more potent acetylcholinesterase inhibitor rivastigmine (1 microM) for 4 days failed to alter nicotine-, KCl-, or muscarinic receptor-evoked increases in intracellular Ca(2+). These observations support the hypothesis that chronic galantamine exerts its effects through interaction with nAChR in this cell line. Exposure to 10 microM nicotine for 4 days produced decreases in acute nicotine- (18.0+/-3.5%) and KCl-evoked Ca(2+) responses (10.6+/-2.5%) and nicotine-evoked [(3)H]NA release (26.0+/-3.3%) that are comparable to the effects of a corresponding exposure to galantamine. Treatment with 1 microM galantamine did not alter numbers of [(3)H]epibatidine-binding sites in SH-SY5Y cells, in contrast to 62% upregulation of these sites in response to 10 microM nicotine. Thus, chronic galantamine acts at nAChR to decrease subsequent functional responses to acute stimulation with nicotine or KCl. This effect appears to be independent of the upregulation of nAChR-binding sites.

  2. Rechargeable calcium phosphate orthodontic cement with sustained ion release and re-release

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Weir, Michael D.; Chow, Laurence C.; Reynolds, Mark A.; Xu, Hockin H. K.

    2016-11-01

    White spot lesions (WSL) due to enamel demineralization are major complications for orthodontic treatments. Calcium phosphate (CaP) dental resins with Ca and P ion releases are promising for remineralization. However, previous Ca and P releases lasted for only weeks. Experimental orthodontic cements were developed using pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at mass ratio of 1:1 (PE); and PE plus 10% of 2-hydroxyethyl methacrylate (HEMA) and 5% of bisphenol A glycidyl dimethacrylate (BisGMA) (PEHB). Particles of amorphous calcium phosphate (ACP) were incorporated into PE and PEHB at 40% filler level. Specimens were tested for bracket-enamel shear bond strength, water sorption, CaP release, and ion recharge and re-release. PEHB+40ACP had higher bracket-enamel bond strength and ion release and rechargeability than PE+40ACP. ACP incorporation into the novel orthodontic cement did not adversely affect the bracket-enamel bond strength. Ion release and re-release from the novel ACP orthodontic cement indicated favorable release and re-release patterns. The recharged orthodontic cement could release CaP ions continuously for four weeks without further recharge. Novel rechargeable orthodontic cement containing ACP was developed with a high bracket-enamel bond strength and the ability to be repeatedly recharged to maintain long-term high levels of CaP ion releases.

  3. Odontoblasts as sensory receptors: transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction.

    PubMed

    Shibukawa, Yoshiyuki; Sato, Masaki; Kimura, Maki; Sobhan, Ubaidus; Shimada, Miyuki; Nishiyama, Akihiro; Kawaguchi, Aya; Soya, Manabu; Kuroda, Hidetaka; Katakura, Akira; Ichinohe, Tatsuya; Tazaki, Masakazu

    2015-04-01

    Various stimuli induce pain when applied to the surface of exposed dentin. However, the mechanisms underlying dentinal pain remain unclear. We investigated intercellular signal transduction between odontoblasts and trigeminal ganglion (TG) neurons following direct mechanical stimulation of odontoblasts. Mechanical stimulation of single odontoblasts increased the intracellular free calcium concentration ([Ca(2+)]i) by activating the mechanosensitive-transient receptor potential (TRP) channels TRPV1, TRPV2, TRPV4, and TRPA1, but not TRPM8 channels. In cocultures of odontoblasts and TG neurons, increases in [Ca(2+)]i were observed not only in mechanically stimulated odontoblasts, but also in neighboring odontoblasts and TG neurons. These increases in [Ca(2+)]i were abolished in the absence of extracellular Ca(2+) and in the presence of mechanosensitive TRP channel antagonists. A pannexin-1 (ATP-permeable channel) inhibitor and ATP-degrading enzyme abolished the increases in [Ca(2+)]i in neighboring odontoblasts and TG neurons, but not in the stimulated odontoblasts. G-protein-coupled P2Y nucleotide receptor antagonists also inhibited the increases in [Ca(2+)]i. An ionotropic ATP (P2X3) receptor antagonist inhibited the increase in [Ca(2+)]i in neighboring TG neurons, but not in stimulated or neighboring odontoblasts. During mechanical stimulation of single odontoblasts, a connexin-43 blocker did not have any effects on the [Ca(2+)]i responses observed in any of the cells. These results indicate that ATP, released from mechanically stimulated odontoblasts via pannexin-1 in response to TRP channel activation, transmits a signal to P2X3 receptors on TG neurons. We suggest that odontoblasts are sensory receptor cells and that ATP released from odontoblasts functions as a neurotransmitter in the sensory transduction sequence for dentinal pain.

  4. Feed-back modulation of cone synapses by L-horizontal cells of turtle retina.

    PubMed

    Gerschenfeld, H M; Piccolino, M; Neyton, J

    1980-12-01

    Light stimulation of the periphery of the receptive field of turtle cones can evoke both transient and sustained increases of the cone Ca2+ conductance, which may become regenerative. Such increase in the cone Ca2+ conductance evoked by peripheral illumination results from the activation of a polysynaptic pathway involving a feed-back connexion from the L-horizontal cells (L-HC) to the cones. Thus the hyperpolarization of a L-HC by inward current injection can evoke a Ca2+ conductance increase in neighbouring cones. The cone Ca2+ channels thus activated are likely located at its synaptic endings and probably intervene in the cone transmitter release. Therefore the feed-back connexion between L-HC and cones by modifying the Ca2+ conductance of cones could actually modulate the transmitter release from cone synapses. Such feed-back modulation of cone synapses plays a role in the organization of the colour-coded responses of the chromaticity type-horizontal cells and probably of other second order neurones, post-synaptic to the cones. The mechanisms operating the feed-back connexion from L-HC to cones are discussed.

  5. A chemical chaperone improves muscle function in mice with a RyR1 mutation.

    PubMed

    Lee, Chang Seok; Hanna, Amy D; Wang, Hui; Dagnino-Acosta, Adan; Joshi, Aditya D; Knoblauch, Mark; Xia, Yan; Georgiou, Dimitra K; Xu, Jianjun; Long, Cheng; Amano, Hisayuki; Reynolds, Corey; Dong, Keke; Martin, John C; Lagor, William R; Rodney, George G; Sahin, Ergun; Sewry, Caroline; Hamilton, Susan L

    2017-03-24

    Mutations in the RYR1 gene cause severe myopathies. Mice with an I4895T mutation in the type 1 ryanodine receptor/Ca 2+ release channel (RyR1) display muscle weakness and atrophy, but the underlying mechanisms are unclear. Here we show that the I4895T mutation in RyR1 decreases the amplitude of the sarcoplasmic reticulum (SR) Ca 2+ transient, resting cytosolic Ca 2+ levels, muscle triadin content and calsequestrin (CSQ) localization to the junctional SR, and increases endoplasmic reticulum (ER) stress/unfolded protein response (UPR) and mitochondrial ROS production. Treatment of mice carrying the I4895T mutation with a chemical chaperone, sodium 4-phenylbutyrate (4PBA), reduces ER stress/UPR and improves muscle function, but does not restore SR Ca 2+ transients in I4895T fibres to wild type levels, suggesting that decreased SR Ca 2+ release is not the major driver of the myopathy. These findings suggest that 4PBA, an FDA-approved drug, has potential as a therapeutic intervention for RyR1 myopathies that are associated with ER stress.

  6. A chemical chaperone improves muscle function in mice with a RyR1 mutation

    PubMed Central

    Lee, Chang Seok; Hanna, Amy D.; Wang, Hui; Dagnino-Acosta, Adan; Joshi, Aditya D.; Knoblauch, Mark; Xia, Yan; Georgiou, Dimitra K.; Xu, Jianjun; Long, Cheng; Amano, Hisayuki; Reynolds, Corey; Dong, Keke; Martin, John C.; Lagor, William R.; Rodney, George G.; Sahin, Ergun; Sewry, Caroline; Hamilton, Susan L.

    2017-01-01

    Mutations in the RYR1 gene cause severe myopathies. Mice with an I4895T mutation in the type 1 ryanodine receptor/Ca2+ release channel (RyR1) display muscle weakness and atrophy, but the underlying mechanisms are unclear. Here we show that the I4895T mutation in RyR1 decreases the amplitude of the sarcoplasmic reticulum (SR) Ca2+ transient, resting cytosolic Ca2+ levels, muscle triadin content and calsequestrin (CSQ) localization to the junctional SR, and increases endoplasmic reticulum (ER) stress/unfolded protein response (UPR) and mitochondrial ROS production. Treatment of mice carrying the I4895T mutation with a chemical chaperone, sodium 4-phenylbutyrate (4PBA), reduces ER stress/UPR and improves muscle function, but does not restore SR Ca2+ transients in I4895T fibres to wild type levels, suggesting that decreased SR Ca2+ release is not the major driver of the myopathy. These findings suggest that 4PBA, an FDA-approved drug, has potential as a therapeutic intervention for RyR1 myopathies that are associated with ER stress. PMID:28337975

  7. Calcium Coordination Solids for pH-Triggered Release of Olsalazine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Dana J.; Gonzalez, Miguel I.; Legendre, Christina M.

    Here, calcium coordination solids were synthesized and evaluated for delivery of olsalazine (H 4olz), an anti-inflammatory compound used for treatment of ulcerative colitis. The materials include one-dimensional Ca(H 2olz)•4H 2O chains, two-dimensional Ca(H 2olz)•2H 2O sheets, and a three-dimensional metal-organic framework Ca(H 2olz)•2DMF (DMF= N,N-dimethylformamide). The framework undergoes structural changes in response to solvent, forming a dense Ca(H 2olz) phase when exposed to aqueous HCl. The compounds Ca(H 2olz)•xH 2O (x=0, 2, 4) were each pressed into pellets and exposed to simulated gastrointestinal fluids to mimic the passage of a pill from the acidic stomach to the pH-neutral intestines. Allmore » three calcium materials exhibited a delayed release of olsalazine relative to Na 2(H 2olz), the commercial formulation, illustrating how formulation of a drug within an extended coordination solid can serve to tune its solubility and performance.« less

  8. Calcium Coordination Solids for pH-Triggered Release of Olsalazine

    DOE PAGES

    Levine, Dana J.; Gonzalez, Miguel I.; Legendre, Christina M.; ...

    2017-09-12

    Here, calcium coordination solids were synthesized and evaluated for delivery of olsalazine (H 4olz), an anti-inflammatory compound used for treatment of ulcerative colitis. The materials include one-dimensional Ca(H 2olz)•4H 2O chains, two-dimensional Ca(H 2olz)•2H 2O sheets, and a three-dimensional metal-organic framework Ca(H 2olz)•2DMF (DMF= N,N-dimethylformamide). The framework undergoes structural changes in response to solvent, forming a dense Ca(H 2olz) phase when exposed to aqueous HCl. The compounds Ca(H 2olz)•xH 2O (x=0, 2, 4) were each pressed into pellets and exposed to simulated gastrointestinal fluids to mimic the passage of a pill from the acidic stomach to the pH-neutral intestines. Allmore » three calcium materials exhibited a delayed release of olsalazine relative to Na 2(H 2olz), the commercial formulation, illustrating how formulation of a drug within an extended coordination solid can serve to tune its solubility and performance.« less

  9. Modeling of the Modulation by Buffers of Ca2+ Release through Clusters of IP3 Receptors

    PubMed Central

    Zeller, S.; Rüdiger, S.; Engel, H.; Sneyd, J.; Warnecke, G.; Parker, I.; Falcke, M.

    2009-01-01

    Abstract Intracellular Ca2+ release is a versatile second messenger system. It is modeled here by reaction-diffusion equations for the free Ca2+ and Ca2+ buffers, with spatially discrete clusters of stochastic IP3 receptor channels (IP3Rs) controlling the release of Ca2+ from the endoplasmic reticulum. IP3Rs are activated by a small rise of the cytosolic Ca2+ concentration and inhibited by large concentrations. Buffering of cytosolic Ca2+ shapes global Ca2+ transients. Here we use a model to investigate the effect of buffers with slow and fast reaction rates on single release spikes. We find that, depending on their diffusion coefficient, fast buffers can either decouple clusters or delay inhibition. Slow buffers have little effect on Ca2+ release, but affect the time course of the signals from the fluorescent Ca2+ indicator mainly by competing for Ca2+. At low [IP3], fast buffers suppress fluorescence signals, slow buffers increase the contrast between bulk signals and signals at open clusters, and large concentrations of buffers, either fast or slow, decouple clusters. PMID:19686646

  10. The quantal nature of Ca2+ sparks and in situ operation of the ryanodine receptor array in cardiac cells.

    PubMed

    Wang, Shi Qiang; Stern, Michael D; Ríos, Eduardo; Cheng, Heping

    2004-03-16

    Intracellular Ca(2+) release in many types of cells is mediated by ryanodine receptor Ca(2+) release channels (RyRCs) that are assembled into two-dimensional paracrystalline arrays in the endoplasmic/sarcoplasmic reticulum. However, the in situ operating mechanism of the RyRC array is unknown. Here, we found that the elementary Ca(2+) release events, Ca(2+) sparks from individual RyRC arrays in rat ventricular myocytes, exhibit quantized Ca(2+) release flux. Analysis of the quantal property of Ca(2+) sparks provided a view of unitary Ca(2+) current and gating kinetics of the RyRC in intact cells and revealed that spark activation involves dynamic recruitment of small, variable cohorts of RyRCs. Intriguingly, interplay of RyRCs in multichannel sparks renders an unusual, thermodynamically irreversible mode of channel gating that is unshared by an RyRC acting solo, nor by RyRCs in vitro. Furthermore, an array-based inhibitory feedback, overriding the regenerative Ca(2+)-induced Ca(2+) release of RyRCs, provides a supramolecular mechanism for the microscopic stability of intracellular Ca(2+) signaling.

  11. Release from the cone ribbon synapse under bright light conditions can be controlled by the opening of only a few Ca2+ channels

    PubMed Central

    Bartoletti, Theodore M.; Jackman, Skyler L.; Babai, Norbert; Mercer, Aaron J.; Kramer, Richard H.

    2011-01-01

    Light hyperpolarizes cone photoreceptors, causing synaptic voltage-gated Ca2+ channels to open infrequently. To understand neurotransmission under these conditions, we determined the number of L-type Ca2+ channel openings necessary for vesicle fusion at the cone ribbon synapse. Ca2+ currents (ICa) were activated in voltage-clamped cones, and excitatory postsynaptic currents (EPSCs) were recorded from horizontal cells in the salamander retina slice preparation. Ca2+ channel number and single-channel current amplitude were calculated by mean-variance analysis of ICa. Two different comparisons—one comparing average numbers of release events to average ICa amplitude and the other involving deconvolution of both EPSCs and simultaneously recorded cone ICa—suggested that fewer than three Ca2+ channel openings accompanied fusion of each vesicle at the peak of release during the first few milliseconds of stimulation. Opening fewer Ca2+ channels did not enhance fusion efficiency, suggesting that few unnecessary channel openings occurred during strong depolarization. We simulated release at the cone synapse, using empirically determined synaptic dimensions, vesicle pool size, Ca2+ dependence of release, Ca2+ channel number, and Ca2+ channel properties. The model replicated observations when a barrier was added to slow Ca2+ diffusion. Consistent with the presence of a diffusion barrier, dialyzing cones with diffusible Ca2+ buffers did not affect release efficiency. The tight clustering of Ca2+ channels, along with a high-Ca2+ affinity release mechanism and diffusion barrier, promotes a linear coupling between Ca2+ influx and vesicle fusion. This may improve detection of small light decrements when cones are hyperpolarized by bright light. PMID:21880934

  12. Chronic stress enhances calcium mobilization and glutamate exocytosis in cerebrocortical synaptosomes from mice.

    PubMed

    Satoh, Eiki; Tada, Yuichi; Matsuhisa, Fumikazu

    2011-11-01

    Our previous study showed that acute restraint stress enhances depolarization-induced increases in intrasynaptosomal free calcium (Ca(2+)) concentration ([Ca(2+)](i)) and Ca(2+)-dependent glutamate release in mouse cerebrocortical nerve terminals (synaptosomes). In the present study, we investigated the effects of chronic stress on [Ca(2+)](i) and glutamate release in cerebrocortical synaptosomes from mice. Male ddY strain mice were randomly assigned to one of two experimental groups: control group and chronic stressed group. Mice in the chronic stressed group were subjected to immobilization stress for 2 hours daily for a period of 21 days. [Ca(2+)](i) and glutamate release in cerebrocortical synaptosomes isolated from the mice were determined by fura-2 fluorescence assay and enzyme-linked fluorometric assay, respectively. Chronic stress caused a significant increase in resting [Ca(2+)](i) and significantly enhanced the ability of the depolarizing agents K(+) and 4-aminopyridine (4-AP) to increase [Ca(2+)](i). It also brought about a significant increase in spontaneous (unstimulated) glutamate release and significantly enhanced K(+)- and 4-AP-evoked Ca(2+)-dependent glutamate release. Synaptosomes were more sensitive to the depolarizing agents at lower concentrations following chronic stress than after acute stress. The pretreatment of synaptosomes with a combination of omega-agatoxin IVA (a P-type Ca(2+) channel blocker) and omega-conotoxin GVIA (an N-type Ca(2+) channel blocker) completely suppressed the enhancements of [Ca(2+)](i) and Ca(2+)-dependent glutamate release in chronic stressed mice. These results indicate that chronic stress enhances depolarization-evoked glutamate release by increasing [Ca(2+)](i) via stimulation of Ca(2+) entry through P- and N-type Ca(2+) channels, and that chronic stress increases the sensitivity to depolarizing agents.

  13. Reversible inhibition of the platelet procoagulant response through manipulation of the Gardos channel.

    PubMed

    Wolfs, Jef L; Wielders, Simone J; Comfurius, Paul; Lindhout, Theo; Giddings, John C; Zwaal, Robert F; Bevers, Edouard M

    2006-10-01

    The platelet procoagulant response requires a sustained elevation of the intracellular Ca2+ concentration, [Ca2+]i, causing exposure of phosphatidylserine (PS) at the outer surface of the plasma membrane. An increased [Ca2+]i also activates Ca2+-dependent K+ channels. Here, we investigated the contribution of the efflux of K+ ions on the platelet procoagulant response in collagen-thrombin-activated platelets using selective K+ channel blockers. The Gardos channel blockers clotrimazol, charybdotoxin, and quinine caused a similar decrease in prothrombinase activity as well as in the number of PS-exposing platelets detected by fluorescence-conjugated annexin A5. Apamin and iberiotoxin, inhibitors of other K+ channels, were without effect. Only clotrimazol showed a significant inhibition of the collagen-plus-thrombin-induced intracellular calcium response. Clotrimazol and charybdotoxin did not inhibit aggregation and release under the conditions used. Inhibition by Gardos channel blockers was reversed by valinomycin, a selective K+ ionophore. The impaired procoagulant response of platelets from a patient with Scott syndrome was partially restored by pretreatment with valinomycin, suggesting a possible defect of the Gardos channel in this syndrome. Collectively, these results provide evidence for the involvement of efflux of K+ ions through Ca2+-activated K+ channels in the procoagulant response of platelets, opening potential strategies for therapeutic interventions.

  14. Endoplasmic-Reticulum Calcium Depletion and Disease

    PubMed Central

    Mekahli, Djalila; Bultynck, Geert; Parys, Jan B.; De Smedt, Humbert; Missiaen, Ludwig

    2011-01-01

    The endoplasmic reticulum (ER) as an intracellular Ca2+ store not only sets up cytosolic Ca2+ signals, but, among other functions, also assembles and folds newly synthesized proteins. Alterations in ER homeostasis, including severe Ca2+ depletion, are an upstream event in the pathophysiology of many diseases. On the one hand, insufficient release of activator Ca2+ may no longer sustain essential cell functions. On the other hand, loss of luminal Ca2+ causes ER stress and activates an unfolded protein response, which, depending on the duration and severity of the stress, can reestablish normal ER function or lead to cell death. We will review these various diseases by mainly focusing on the mechanisms that cause ER Ca2+ depletion. PMID:21441595

  15. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide.

    PubMed

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.

  16. Calcium signaling during the plant-plant interaction of parasitic Cuscuta reflexa with its hosts.

    PubMed

    Albert, Markus; Kaiser, Bettina; van der Krol, Sander; Kaldenhoff, Ralf

    2010-09-01

    The plant parasite Cuscuta reflexa induces various responses in compatible and incompatible host plants. The visual reactions of both types of host plants including obvious morphological changes require the recognition of Cuscuta ssp. A consequently initiated signaling cascade is triggered which leads to a tolerance of the infection or, in the case of some incompatible host plants, to resistance. Calcium (Ca(2+)) release is the major second messenger during signal transduction. Therefore, we have studied Ca(2+) spiking in tomato and tobacco during infection with C. reflexa. In our recently published study Ca(2+) signals were monitored as bioluminescence in aequorin-expressing tomato plants after the onset of C. reflexa infestation. Signals at the attachment sites were observed from 30 to 48 h after infection. In an assay with leaf disks of aequorin-expressing tomato which were treated with different C. reflexa plant extracts it turned out that the substance that induced Ca(2+) release in the host plant was closely linked to the parasite's haustoria.

  17. Calcium signaling during the plant-plant interaction of parasitic Cuscuta reflexa with its hosts

    PubMed Central

    Kaiser, Bettina; van der Krol, Sander; Kaldenhoff, Ralf

    2010-01-01

    The plant parasite Cuscuta reflexa induces various responses in compatible and incompatible host plants. The visual reactions of both types of host plants including obvious morphological changes require the recognition of Cuscuta ssp. A consequently initiated signaling cascade is triggered which leads to a tolerance of the infection or, in the case of some incompatible host plants, to resistance. Calcium (Ca2+) release is the major second messenger during signal transduction. Therefore, we have studied Ca2+ spiking in tomato and tobacco during infection with C. reflexa. In our recently published study1 Ca2+ signals were monitored as bioluminescence in aequorin-expressing tomato plants after the onset of C. reflexa infestation. Signals at the attachment sites were observed from 30 to 48 h after infection. In an assay with leaf disks of aequorin-expressing tomato which were treated with different C. reflexa plant extracts it turned out that the substance that induced Ca2+ release in the host plant was closely linked to the parasite's haustoria. PMID:20818172

  18. Calcium regulates vesicle replenishment at the cone ribbon synapse

    PubMed Central

    Babai, Norbert; Bartoletti, Theodore M.; Thoreson, Wallace B.

    2010-01-01

    Cones release glutamate-filled vesicles continuously in darkness and changing illumination modulates this release. Because sustained release in darkness is governed by vesicle replenishment rates, we analyzed how cone membrane potential regulates replenishment. Synaptic release from cones was measured by recording post-synaptic currents in Ambystoma tigrinum horizontal or OFF bipolar cells evoked by depolarization of simultaneously voltage-clamped cones. We measured replenishment after attaining a steady-state between vesicle release and replenishment using trains of test pulses. Increasing Ca2+ currents (ICa) by changing the test step from −30 to −10 mV increased replenishment. Lengthening −30 mV test pulses to match the Ca2+ influx during 25 ms test pulses to −10 mV produced similar replenishment rates. Reducing Ca2+ driving force by using test steps to +30 mV slowed replenishment. Using UV flashes to reverse inhibition of ICa by nifedipine accelerated replenishment. Increasing [Ca2+]i by flash photolysis of caged Ca2+ also accelerated replenishment. Replenishment, but not the initial burst of release, was enhanced by using an intracellular Ca2+ buffer of 0.5 mM EGTA rather than 5 mM EGTA, and diminished by 1 mM BAPTA. This suggests that although release and replenishment and release exhibited similar Ca2+-dependencies, release sites are <200 nm from Ca2+ channels but replenishment sites are >200 nm away. Membrane potential thus regulates replenishment by controlling Ca2+ influx, principally by effects on replenishment mechanisms but also by altering releasable pool size. This in turn provides a mechanism for converting changes in light intensity into changes in sustained release at the cone ribbon synapse. PMID:21106825

  19. High-density lipoproteins induce a rapid and transient release of Ca2+ in cultured fibroblasts.

    PubMed Central

    Pörn, M I; Akerman, K E; Slotte, J P

    1991-01-01

    Several different cell types showed increased rates of proliferation and cholesterol mobilization in response to treatment with high-density lipoprotein (HDL). This would suggest that one main function of HDL is the activation of signal pathways in cells. In the current study we have used the fluorescent indicator fura-2 to monitor the level of cytosolic Ca2+ ([Ca2+]i) in human skin fibroblasts. Exposure of subconfluent as well as confluent fibroblasts to HDL3 (20-60 micrograms/ml) resulted in a rapid and transient increase in [Ca2+]i. Sequential additions of HDL3 resulted in diminished rises in [Ca2+]i. The transient rise in [Ca2+]i was observed with HDL prepared from plasma either by conventional ultracentrifugation or by precipitation with dextran sulphate. Chelation of the extracellular Ca2+ with EGTA prior to the addition of HDL3 did not prevent the HDL3-induced rise in [Ca2+]i, suggesting that the mobilized Ca2+ was derived mainly from intracellular stores. Covalent modification of the apoproteins of HDL3 with dimethyl suberimidate or tetranitromethane did not inhibit the HDL3-induced rise in [Ca2+]i. This indicates that the binding of HDL3 to cell surface receptors may not be necessary for the mobilization of intracellular Ca2+. Moreover, the Ca(2+)-releasing effect of HDL3 was not inhibited by the presence of albumin (1%, w/v) in the extracellular medium, suggesting that non-esterified fatty acids were not the cause of the increased [Ca2+]i. The exposure of fibroblasts to lysophosphatidic acid, a potent mitogen and Ca(2+)-releasing agent, before addition of HDL3 completely inhibited the HDL3-induced rise in [Ca2+]i. Furthermore, phorbol 12-myristate 13-acetate blocked the HDL3-induced rise in [Ca2+]i. The results of this study imply that exposure of cells to HDL generates an intracellular signal which is induced by a component of the lipid fraction. PMID:1930148

  20. Dynamic Ca2+ signalling in rat arterial smooth muscle cells under the control of local renin–angiotensin system

    PubMed Central

    Asada, Yukinori; Yamazawa, Toshiko; Hirose, Kenzo; Takasaka, Tomonori; Iino, Masamitsu

    1999-01-01

    We visualized the changes in intracellular Ca2+ concentration ([Ca2+]i), using fluo-3 as an indicator, in individual smooth muscle cells within intact rat tail artery preparations. On average in about 45 % of the vascular smooth muscle cells we found spontaneous Ca2+ waves and oscillations (≈0.13 Hz), which we refer to here as Ca2+ ripples because the peak amplitude of [Ca2+]i was about one-seventh of that of Ca2+ oscillations evoked by noradrenaline. We also found another pattern of spontaneous Ca2+ transients often in groups of two to three cells. They were rarely observed and are referred to as Ca2+ flashes because their peak amplitude was nearly twice as large as that in noradrenaline-evoked responses. Sympathetic nerve activity was not considered responsible for the Ca2+ ripples, and they were abolished by inhibitors of either the Ca2+ pump in the sarcoplasmic reticulum (cyclopiazonic acid) or phospholipase C (U-73122). Both angiotensin antagonists ([Sar1,Ile8]-angiotensin II and losartan) and an angiotensin converting enzyme inhibitor (captopril) inhibited the Ca2+ ripples. The extracellular Ca2+-dependent tension borne by unstimulated arterial rings was reduced by the angiotensin antagonist by ≈50 %. These results indicate that the Ca2+ ripples are generated via inositol 1,4,5-trisphosphate-induced Ca2+ release from the intracellular Ca2+ stores in response to locally produced angiotensin II, which contributes to the maintenance of vascular tone. PMID:10581318

  1. Endogenously Released Neuropeptide Y Suppresses Hippocampal Short-Term Facilitation and Is Impaired by Stress-Induced Anxiety

    PubMed Central

    Li, Qin; Bartley, Aundrea F.

    2017-01-01

    Neuropeptide Y (NPY) has robust anxiolytic properties and is reduced in patients with anxiety disorders. However, the mechanisms by which NPY modulates circuit function to reduce anxiety behavior are not known. Anxiolytic effects of NPY are mediated in the CA1 region of hippocampus, and NPY injection into hippocampus alleviates anxiety symptoms in the predator scent stress model of stress-induced anxiety. The mechanisms that regulate NPY release, and its effects on CA1 synaptic function, are not fully understood. Here we show in acute hippocampal slices from mice that endogenous NPY, released in response to optogenetic stimulation or synaptically evoked spiking of NPY+ cells, suppresses both of the feedforward pathways to CA1. Stimulation of temporoammonic synapses with a physiologically derived spike train causes NPY release that reduces short-term facilitation, whereas the release of NPY that modulates Schaffer collateral synapses requires integration of both the Schaffer collateral and temporoammonic pathways. Pathway specificity of NPY release is conferred by three functionally distinct NPY+ cell types, with differences in intrinsic excitability and short-term plasticity of their inputs. Predator scent stress abolishes the release of endogenous NPY onto temporoammonic synapses, a stress-sensitive pathway, thereby causing enhanced short-term facilitation. Our results demonstrate how stress alters CA1 circuit function through the impairment of endogenous NPY release, potentially contributing to heightened anxiety. SIGNIFICANCE STATEMENT Neuropeptide Y (NPY) has robust anxiolytic properties, and its levels are reduced in patients with post-traumatic stress disorder. The effects of endogenously released NPY during physiologically relevant stimulation, and the impact of stress-induced reductions in NPY on circuit function, are unknown. By demonstrating that NPY release modulates hippocampal synaptic plasticity and is impaired by predator scent stress, our results provide a novel mechanism by which stress-induced anxiety alters circuit function. These studies fill an important gap in knowledge between the molecular and behavioral effects of NPY. This article also advances the understanding of NPY+ cells and the factors that regulate their spiking, which could pave the way for new therapeutic targets to increase endogenous NPY release in patients in a spatially and temporally appropriate manner. PMID:28053027

  2. Infrared neural stimulation induces intracellular Ca2+ release mediated by phospholipase C.

    PubMed

    Moreau, David; Lefort, Claire; Pas, Jolien; Bardet, Sylvia M; Leveque, Philippe; O'Connor, Rodney P

    2018-02-01

    The influence of infrared laser pulses on intracellular Ca 2+ signaling was investigated in neural cell lines with fluorescent live cell imaging. The probe Fluo-4 was used to measure Ca 2+ in HT22 mouse hippocampal neurons and nonelectrically excitable U87 human glioblastoma cells exposed to 50 to 500 ms infrared pulses at 1470 nm. Fluorescence recordings of Fluo-4 demonstrated that infrared stimulation induced an instantaneous intracellular Ca 2+ transient with similar dose-response characteristics in hippocampal neurons and glioblastoma cells (half-maximal effective energy density EC 50 of around 58 J.cm -2 ). For both type of cells, the source of the infrared-induced Ca 2+ transients was found to originate from intracellular stores and to be mediated by phospholipase C and IP 3 -induced Ca 2+ release from the endoplasmic reticulum. The activation of phosphoinositide signaling by IR light is a new mechanism of interaction relevant to infrared neural stimulation that will also be widely applicable to nonexcitable cell types. The prospect of infrared optostimulation of the PLC/IP 3 cell signaling cascade has many potential applications including the development of optoceutical therapeutics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Total Ownership Cost a Decade Into the 21st Century

    DTIC Science & Technology

    2012-04-30

    Approved for public release; distribution is unlimited. Prepared for the Naval Postgraduate School, Monterey, CA 93943. Total Ownership Cost a Decade...ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for...Naval Postgraduate School,Graduate School of Business and Public Policy,Monterey,CA,93943 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING

  4. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons.

    PubMed

    Kwon, Seok-Kyu; Sando, Richard; Lewis, Tommy L; Hirabayashi, Yusuke; Maximov, Anton; Polleux, Franck

    2016-07-01

    Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU)-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance.

  5. Candida albicans-induced inflammatory response in human keratinocytes.

    PubMed

    Wollina, U; Künkel, W; Bulling, L; Fünfstück, C; Knöll, B; Vennewald, I; Hipler, U-C

    2004-06-01

    Candida albicans strains 3153a, ATCC 48867, CBS 2730, DSM 70014, and Vir 13 were cultivated and sterile C. albicans filtrates were produced. The interaction of soluble Candida factors of these infiltrates with human HaCaT keratinocytes was assayed in vitro. The following parameters were analyzed: cell proliferation, protein synthesis, nuclear matrix protein (NMP) 41 release, cytokine release (IL-1beta, soluble IL-2 receptor, IL-6, and IL-8), and reactive oxygen species (ROS). Cell counts at 1, 12, and 24 h were significantly lower for C. albicans strains CBS 2730 and VIR 13 (P < 0.05). There was no significant change for the remaining strains. Neither the protein synthesis nor the NMP-41 release was significantly affected. IL-6 and IL-8 were stimulated by C. albicans filtrates to different amounts with higher levels in strains of low virulence. There was no effect on the other cytokines. The production of ROS by HaCaT keratinocytes was suppressed. The induction of an inflammatory keratinocyte response by soluble C. albicans factors may play a role among the host-yeast interactions.

  6. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines

    PubMed Central

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; Williams, Daniel L.; Magee, Timothy D.; Kaeppler, Shawn M.; de Leon, Natalia; Hodge, David B.

    2015-01-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. PMID:25871649

  7. Caffeine-Induced Ca2+ Oscillations in Type I Horizontal Cells of the Carp Retina and the Contribution of the Store-Operated Ca2+ Entry Pathway

    PubMed Central

    Lv, Ting; Gong, Hai-Qing; Liang, Pei-Ji

    2014-01-01

    The mechanisms of release, depletion, and refilling of endoplasmic reticulum (ER) Ca2+ were investigated in type I horizontal cells of the carp retina using a fluo-3-based Ca2+ imaging technique. Exogenous application of caffeine, a ryanodine receptor agonist, induced oscillatory intracellular free Ca2+ concentration ([Ca2+]i) responses in a duration- and concentration-dependent manner. In Ca2+-free Ringer’s solution, [Ca2+]i transients could also be induced by a brief caffeine application, whereas subsequent caffeine application induced no [Ca2+]i increase, which implied that extracellular Ca2+ was required for ER refilling, confirming the necessity of a Ca2+ influx pathway for ER refilling. Depletion of ER Ca2+ by thapsigargin triggered a Ca2+ influx which could be blocked by the store-operated channel inhibitor 2-APB, which proved the existence of the store-operated Ca2+ entry pathway. Taken together, these results suggested that after being depleted by caffeine, the ER was replenished by Ca2+ influx via store-operated channels. These results reveal the fine modulation of ER Ca2+ signaling, and the activation of the store-operated Ca2+ entry pathway guarantees the replenishment of the ER so that the cell can be ready for response to the subsequent stimulus. PMID:24918937

  8. Microsomal Ca2+ flux modulation as an indicator of heavy metal toxicity.

    PubMed

    Pentyala, Srinivas; Ruggeri, Jeanine; Veerraju, Amulya; Yu, Zhangzhang; Bhatia, Anjori; Desaiah, Durisala; Vig, Parminder

    2010-07-01

    Inositol 1,4,5-trisphosphatee (IP3), an intracellular messenger, releases Ca2+ from microsomes. Ca2+ plays a major role in regulating various cellular events like neural transmission and regulation of hormones and growth factors. Aluminum (Al), lead (Pb) and mercury (Hg) were reported to alter Ca(2+)-regulated events thereby causing neurotoxicity. Hence, an attempt was made characterize IP3 mediated Ca2+ release from rat brain microsomes under the influence of Al, Pb and Hg. Different concentrations of metals were tested over a designated time scale and their effects on IP3 mediated Ca2+ release from microsomes were monitored using Fura-2 technique. All the three metals inhibited IP3 mediated Ca2+ release, Pb being more potent. The order of potency of these three metals was Pb>Hg>Al. Except for Al, both Hg and Pb independently released Ca2+ from microsomes. Re-uptake of Ca2+ into microsomes was inhibited by all the three metals, Pb being more potent. Microsomal Ca(2+)-ATPase activity was also inhibited by all the three metals. These results suggest that neurotoxicity exerted by Al, Pb and Hg may be due to the interference of these metals with IP3 mediated calcium release and also interfering with the microsomal Ca2+ sequestration mechanism. Differential effects of heavy metal induced changes in Ca2+ flux can be used as an index of relative toxicity.

  9. Inhibitory ryanodine prevents ryanodine receptor-mediated Ca²⁺ release without affecting endoplasmic reticulum Ca²⁺ content in primary hippocampal neurons.

    PubMed

    Adasme, Tatiana; Paula-Lima, Andrea; Hidalgo, Cecilia

    2015-02-27

    Ryanodine is a cell permeant plant alkaloid that binds selectively and with high affinity to ryanodine receptor (RyR) Ca(2+) release channels. Sub-micromolar ryanodine concentrations activate RyR channels while micromolar concentrations are inhibitory. Several reports indicate that neuronal synaptic plasticity, learning and memory require RyR-mediated Ca(2+)-release, which is essential for muscle contraction. The use of micromolar (inhibitory) ryanodine represents a common strategy to suppress RyR activity in neuronal cells: however, micromolar ryanodine promotes RyR-mediated Ca(2+) release and endoplasmic reticulum Ca(2+) depletion in muscle cells. Information is lacking in this regard in neuronal cells; hence, we examined here if addition of inhibitory ryanodine elicited Ca(2+) release in primary hippocampal neurons, and if prolonged incubation of primary hippocampal cultures with inhibitory ryanodine affected neuronal ER calcium content. Our results indicate that inhibitory ryanodine does not cause Ca(2+) release from the ER in primary hippocampal neurons, even though ryanodine diffusion should produce initially low intracellular concentrations, within the RyR activation range. Moreover, neurons treated for 1 h with inhibitory ryanodine had comparable Ca(2+) levels as control neurons. These combined findings imply that prolonged incubation with inhibitory ryanodine, which effectively abolishes RyR-mediated Ca(2+) release, preserves ER Ca(2+) levels and thus constitutes a sound strategy to suppress neuronal RyR function. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Spontaneous Ca(2+) transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine.

    PubMed

    Baker, Salah A; Drumm, Bernard T; Saur, Dieter; Hennig, Grant W; Ward, Sean M; Sanders, Kenton M

    2016-06-15

    Interstitial cells of Cajal at the level of the deep muscular plexus (ICC-DMP) in the small intestine generate spontaneous Ca(2+) transients that consist of localized Ca(2+) events and limited propagating Ca(2+) waves. Ca(2+) transients in ICC-DMP display variable characteristics: from discrete, highly localized Ca(2+) transients to regionalized Ca(2+) waves with variable rates of occurrence, amplitude, duration and spatial spread. Ca(2+) transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells. Ca(2+) transients in ICC-DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s). Functional intracellular Ca(2+) stores are essential for spontaneous Ca(2+) transients, and the sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) pump is necessary for maintenance of spontaneity. Ca(2+) release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3 Rs). Release from these channels is interdependent. ICC express transcripts of multiple RyRs and InsP3 Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC-DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC-DMP are mediated by activation of Ca(2+) -activated Cl(-) channels; thus, Ca(2+) signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca(2+) transients in ICC-DMP within intact jejunal muscles expressing a genetically encoded Ca(2+) indicator (GCaMP3) selectively in ICC. ICC-DMP displayed spontaneous Ca(2+) transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca(2+) transients was highly variable, and it was determined that firing was stochastic in nature. Ca(2+) transients were tabulated in multiple cells within fields of view, and no correlation was found between the events in adjacent cells. TTX (1 μm) significantly increased the occurrence of Ca(2+) transients, suggesting that ICC-DMP contributes to the tonic inhibition conveyed by ongoing activity of inhibitory motor neurons. Ca(2+) transients were minimally affected after 12 min in Ca(2+) free solution, indicating these events do not depend immediately upon Ca(2+) influx. However, inhibitors of sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) pump and blockers of inositol triphosphate receptor (InsP3 R) and ryanodine receptor (RyR) channels blocked ICC Ca(2+) transients. These data suggest an interdependence between RyR and InsP3 R in the generation of Ca(2+) transients. Itpr1 and Ryr2 were the dominant transcripts expressed by ICC. These findings provide the first high-resolution recording of the subcellular Ca(2+) dynamics that control the behaviour of ICC-DMP in situ. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  11. Spontaneous Ca2+ transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine

    PubMed Central

    Baker, Salah A.; Drumm, Bernard T.; Saur, Dieter; Hennig, Grant W.; Ward, Sean M.

    2016-01-01

    Key points Interstitial cells of Cajal at the level of the deep muscular plexus (ICC‐DMP) in the small intestine generate spontaneous Ca2+ transients that consist of localized Ca2+ events and limited propagating Ca2+ waves.Ca2+ transients in ICC‐DMP display variable characteristics: from discrete, highly localized Ca2+ transients to regionalized Ca2+ waves with variable rates of occurrence, amplitude, duration and spatial spread.Ca2+ transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells.Ca2+ transients in ICC‐DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s).Functional intracellular Ca2+ stores are essential for spontaneous Ca2+ transients, and the sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) pump is necessary for maintenance of spontaneity.Ca2+ release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3Rs). Release from these channels is interdependent.ICC express transcripts of multiple RyRs and InsP3Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. Abstract Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC‐DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC‐DMP are mediated by activation of Ca2+‐activated Cl− channels; thus, Ca2+ signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca2+ transients in ICC‐DMP within intact jejunal muscles expressing a genetically encoded Ca2+ indicator (GCaMP3) selectively in ICC. ICC‐DMP displayed spontaneous Ca2+ transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca2+ transients was highly variable, and it was determined that firing was stochastic in nature. Ca2+ transients were tabulated in multiple cells within fields of view, and no correlation was found between the events in adjacent cells. TTX (1 μm) significantly increased the occurrence of Ca2+ transients, suggesting that ICC‐DMP contributes to the tonic inhibition conveyed by ongoing activity of inhibitory motor neurons. Ca2+ transients were minimally affected after 12 min in Ca2+ free solution, indicating these events do not depend immediately upon Ca2+ influx. However, inhibitors of sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) pump and blockers of inositol triphosphate receptor (InsP3R) and ryanodine receptor (RyR) channels blocked ICC Ca2+ transients. These data suggest an interdependence between RyR and InsP3R in the generation of Ca2+ transients. Itpr1 and Ryr2 were the dominant transcripts expressed by ICC. These findings provide the first high‐resolution recording of the subcellular Ca2+ dynamics that control the behaviour of ICC‐DMP in situ. PMID:26824875

  12. The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons.

    PubMed

    Koplas, P A; Rosenberg, R L; Oxford, G S

    1997-05-15

    Capsaicin (Cap) is a pungent extract of the Capsicum pepper family, which activates nociceptive primary sensory neurons. Inward current and membrane potential responses of cultured neonatal rat dorsal root ganglion neurons to capsaicin were examined using whole-cell and perforated patch recording methods. The responses exhibited strong desensitization operationally classified as acute (diminished response during constant Cap exposure) and tachyphylaxis (diminished response to successive applications of Cap). Both acute desensitization and tachyphylaxis were greatly diminished by reductions in external Ca2+ concentration. Furthermore, chelation of intracellular Ca2+ by addition of either EGTA or bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid to the patch pipette attenuated both forms of desensitization even in normal Ca2+. Release of intracellular Ca2+ by caffeine triggered acute desensitization in the absence of extracellular Ca2+, and barium was found to effectively substitute for calcium in supporting desensitization. Cap activated inward current at an ED50 of 728 nM, exhibiting cooperativity (Hill coefficient, 2.2); however, both forms of desensitization were only weakly dependent on [Cap], suggesting a dissociation between activation of Cap-sensitive channels and desensitization. Removal of ATP and GTP from the intracellular solutions resulted in nearly complete tachyphylaxis even with intracellular Ca2+ buffered to low levels, whereas changes in nucleotide levels did not significantly alter the acute form of desensitization. These data suggest a key role for intracellular Ca2+ in desensitization of Cap responses, perhaps through Ca2+-dependent dephosphorylation at a locus that normally sustains Cap responsiveness via ATP-dependent phosphorylation. It also seems that the signaling mechanisms underlying the two forms of desensitization are not identical in detail.

  13. A mechanical stretch induces contractile activation in unstimulated developing rat skeletal muscle in vitro

    PubMed Central

    Mutungi, Gabriel; Edman, K A P; Ranatunga, K W

    2003-01-01

    The effects of a stretch-release cycle (≈25 % of the resting muscle fibre length, Lo) on both tension and [Ca2+]i in small, unstimulated, intact muscle fibre bundles isolated from adult and neonatal rats were investigated at 20 °C. The results show that the effects of the length change depended on the age of the rats. Thus, the length change produced three effects in the neonatal rat muscle fibre bundles, but only a single effect in the adult ones. In the neonatal fibre bundles, the length change led to an increase in resting muscle tension and to a transient increase in [Ca2+]i. The stretch-release cycle was then followed by a twitch-like tension response. In the adult fibre bundles, only the increase in resting tension was seen and both the transient increase in [Ca2+]i and the stretch-induced twitch-like tension response were absent. The amplitude of the twitch-like tension response was affected by both 2,3-butanedione monoxime and sarcomere length in the same manner as active twitch tension, suggesting that it arose from actively cycling crossbridges. It was also reversibly abolished by 25 mM K+, 1 μM tetrodotoxin and 1.5 mM lidocaine (lignocaine), and was significantly depressed (P < 0.001) by lowering [Ca2+]o. These findings suggest that a rapid stretch in neonatal rats induces a propagated impulse that leads to an increase in [Ca2+]i, and that abolishing the action potential abolishes the stretch-induced twitch-like tension response. In 5- to 7-day-old rats, the twitch-like tension response was ≈50 % of the isometric twitch. It then decreased progressively with age and was virtually absent by the time the rats were 21 days old. Interestingly, this is the same period over which rat muscles differentiate from their neonatal to their adult types. PMID:12813148

  14. Herpes simplex virus triggers activation of calcium-signaling pathways

    PubMed Central

    Cheshenko, Natalia; Del Rosario, Brian; Woda, Craig; Marcellino, Daniel; Satlin, Lisa M.; Herold, Betsy C.

    2003-01-01

    The cellular pathways required for herpes simplex virus (HSV) invasion have not been defined. To test the hypothesis that HSV entry triggers activation of Ca2+-signaling pathways, the effects on intracellular calcium concentration ([Ca2+]i) after exposure of cells to HSV were examined. Exposure to virus results in a rapid and transient increase in [Ca2+]i. Pretreatment of cells with pharmacological agents that block release of inositol 1,4,5-triphosphate (IP3)–sensitive endoplasmic reticulum stores abrogates the response. Moreover, treatment of cells with these pharmacological agents inhibits HSV infection and prevents focal adhesion kinase (FAK) phosphorylation, which occurs within 5 min after viral infection. Viruses deleted in glycoprotein L or glycoprotein D, which bind but do not penetrate, fail to induce a [Ca2+]i response or trigger FAK phosphorylation. Together, these results support a model for HSV infection that requires activation of IP3-responsive Ca2+-signaling pathways and that is associated with FAK phosphorylation. Defining the pathway of viral invasion may lead to new targets for anti-viral therapy. PMID:14568989

  15. Rechargeable calcium phosphate orthodontic cement with sustained ion release and re-release

    PubMed Central

    Zhang, Ling; Weir, Michael D.; Chow, Laurence C.; Reynolds, Mark A.; Xu, Hockin H. K.

    2016-01-01

    White spot lesions (WSL) due to enamel demineralization are major complications for orthodontic treatments. Calcium phosphate (CaP) dental resins with Ca and P ion releases are promising for remineralization. However, previous Ca and P releases lasted for only weeks. Experimental orthodontic cements were developed using pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at mass ratio of 1:1 (PE); and PE plus 10% of 2-hydroxyethyl methacrylate (HEMA) and 5% of bisphenol A glycidyl dimethacrylate (BisGMA) (PEHB). Particles of amorphous calcium phosphate (ACP) were incorporated into PE and PEHB at 40% filler level. Specimens were tested for bracket-enamel shear bond strength, water sorption, CaP release, and ion recharge and re-release. PEHB+40ACP had higher bracket-enamel bond strength and ion release and rechargeability than PE+40ACP. ACP incorporation into the novel orthodontic cement did not adversely affect the bracket-enamel bond strength. Ion release and re-release from the novel ACP orthodontic cement indicated favorable release and re-release patterns. The recharged orthodontic cement could release CaP ions continuously for four weeks without further recharge. Novel rechargeable orthodontic cement containing ACP was developed with a high bracket-enamel bond strength and the ability to be repeatedly recharged to maintain long-term high levels of CaP ion releases. PMID:27808251

  16. Effects of dantrolene and its derivatives on Ca2+ release from the sarcoplasmic reticulum of mouse skeletal muscle fibres

    PubMed Central

    Ikemoto, Takaaki; Hosoya, Takamitsu; Aoyama, Hiroshi; Kihara, Yasutaka; Suzuki, Masaaki; Endo, Makoto

    2001-01-01

    We analysed the effect of dantrolene (Dan) and five newly synthesized derivatives (GIFs) on Ca2+ release from the sarcoplasmic reticulum (SR) of mouse skeletal muscle.In intact muscles, GIF-0185 reduced the size of twitch contraction induced by electrical stimulation to the same extent as Dan. GIF-0082, an azido-functionalized Dan derivative, also inhibited twitch contraction, although the extent of inhibition was less than that of Dan and of GIF-0185.In skinned fibres, Dan inhibited Ca2+-induced Ca2+ release (CICR) under Mg2+-free conditions at room temperature. In contrast, GIF-0082 and GIF-0185 showed no inhibitory effect on CICR under the same conditions.Dan-induced inhibition of CICR was not affected by the presence of GIF-0082, whereas it was diminished in the presence of GIF-0185.GIF-0082 and GIF-0185 significantly inhibited clofibric acid (Clof)-induced Ca2+ release, as did Dan.Several Dan derivatives other than GIF-0082 and GIF-0185 showed an inhibitory effect on twitch tension but not on the CICR mechanism. All of these derivatives inhibited Clof-induced Ca2+ release.The magnitudes of inhibition of Clof-induced Ca2+ release by all Dan derivatives were well correlated with those of twitch inhibition. This supports the notion that the mode of Clof-induced opening of the RyR-Ca2+ release channel may be similar to that of physiological Ca2+ release (PCR).These results indicate that the difference in opening modes of the RyR-Ca2+ release channel is recognized by certain Dan derivatives. PMID:11606312

  17. The Upregulation of α2δ-1 Subunit Modulates Activity-Dependent Ca2+ Signals in Sensory Neurons

    PubMed Central

    Margas, Wojciech; Cassidy, John S.

    2015-01-01

    As auxiliary subunits of voltage-gated Ca2+ channels, the α2δ proteins modulate membrane trafficking of the channels and their localization to specific presynaptic sites. Following nerve injury, upregulation of the α2δ-1 subunit in sensory dorsal root ganglion neurons contributes to the generation of chronic pain states; however, very little is known about the underlying molecular mechanisms. Here we show that the increased expression of α2δ-1 in rat sensory neurons leads to prolonged Ca2+ responses evoked by membrane depolarization. This mechanism is coupled to CaV2.2 channel-mediated responses, as it is blocked by a ω-conotoxin GVIA application. Once initiated, the prolonged Ca2+ transients are not dependent on extracellular Ca2+ and do not require Ca2+ release from the endoplasmic reticulum. The selective inhibition of mitochondrial Ca2+ uptake demonstrates that α2δ-1-mediated prolonged Ca2+ signals are buffered by mitochondria, preferentially activated by Ca2+ influx through CaV2.2 channels. Thus, by controlling channel abundance at the plasma membrane, the α2δ-1 subunit has a major impact on the organization of depolarization-induced intracellular Ca2+ signaling in dorsal root ganglion neurons. PMID:25878262

  18. Store-Operated Ca2+ Entry (SOCE) Contributes to Normal Skeletal Muscle Contractility in young but not in aged skeletal muscle

    PubMed Central

    Brotto, Leticia S.; Bougoin, Sylvain; Nosek, Thomas M.; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome

    2011-01-01

    Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca2+ to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca2+ entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca2+ to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca2+ release channel-mediated Ca2+ release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca2+ entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle. PMID:21666285

  19. Store-operated Ca(2+) entry (SOCE) contributes to normal skeletal muscle contractility in young but not in aged skeletal muscle.

    PubMed

    Thornton, Angela M; Zhao, Xiaoli; Weisleder, Noah; Brotto, Leticia S; Bougoin, Sylvain; Nosek, Thomas M; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome; Brotto, Marco

    2011-06-01

    Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca(2+) to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca(2+) entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca(2+) to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca(2+) release channel-mediated Ca(2+) release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca(2+) entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle.

  20. Synaptic muscarinic response types in hippocampal CA1 interneurons depend on different levels of presynaptic activity and different muscarinic receptor subtypes

    PubMed Central

    Bell, L. Andrew; Bell, Karen A.; McQuiston, A. Rory

    2013-01-01

    Depolarizing, hyperpolarizing and biphasic muscarinic responses have been described in hippocampal inhibitory interneurons, but the receptor subtypes and activity patterns required to synaptically activate muscarinic responses in interneurons have not been completely characterized. Using optogenetics combined with whole cell patch clamp recordings in acute slices, we measured muscarinic responses produced by endogenously released acetylcholine (ACh) from cholinergic medial septum/diagonal bands of Broca inputs in hippocampal CA1. We found that depolarizing responses required more cholinergic terminal stimulation than hyperpolarizing ones. Furthermore, elevating extracellular ACh with the acetylcholinesterase inhibitor physostigmine had a larger effect on depolarizing versus hyperpolarizing responses. Another subpopulation of interneurons responded biphasically, and periodic release of ACh entrained some of these interneurons to rhythmically burst. M4 receptors mediated hyperpolarizing responses by activating inwardly rectifying K+ channels, whereas the depolarizing responses were inhibited by the nonselective muscarinic antagonist atropine but were unaffected by M1, M4 or M5 receptor modulators. In addition, activation of M4 receptors significantly altered biphasic interneuron firing patterns. Anatomically, interneuron soma location appeared predictive of muscarinic response types but response types did not correlate with interneuron morphological subclasses. Together these observations suggest that the hippocampal CA1 interneuron network will be differentially affected by cholinergic input activity levels. Low levels of cholinergic activity will preferentially suppress some interneurons via hyperpolarization and increased activity will recruit other interneurons to depolarize, possibly because of elevated extracellular ACh concentrations. These data provide important information for understanding how cholinergic therapies will affect hippocampal network function in the treatment of some neurodegenerative diseases. PMID:23747570

  1. Purinergic Signaling Regulates the Transforming Growth Factor-β3-Induced Chondrogenic Response of Mesenchymal Stem Cells to Hydrostatic Pressure.

    PubMed

    Steward, Andrew J; Kelly, Daniel J; Wagner, Diane R

    2016-06-01

    Although hydrostatic pressure (HP) is known to regulate chondrogenic differentiation of mesenchymal stromal/stem cells (MSCs), improved insight into the mechanotransduction of HP may form the basis for novel tissue engineering strategies. Previously, we demonstrated that matrix stiffness and calcium ion (Ca(++)) mobility regulate the mechanotransduction of HP; however, the mechanisms, by which these Ca(++) signaling pathways are initiated, are currently unknown. The purinergic pathway, in which adenosine triphosphate (ATP) is released and activates P-receptors to initiate Ca(++) signaling, plays a key role in the mechanotransduction of compression, but has yet to be investigated with regard to HP. Therefore, the objective of this study was to investigate the interplay between purinergic signaling, matrix stiffness, and the chondrogenic response of MSCs to HP. Porcine bone marrow-derived MSCs were seeded into soft or stiff agarose hydrogels and subjected to HP (10 MPa at 1 Hz for 4 h/d for 21 days) or kept in free swelling conditions. Stiff constructs were incubated with pharmacological inhibitors of extracellular ATP, P2 receptors, or hemichannels, or without any inhibitors as a control. As with other loading modalities, HP significantly increased ATP release in the control group; however, inhibition of hemichannels completely abrogated this response. The increase in sulfated glycosaminoglycan (sGAG) synthesis and vimentin reorganization observed in the control group in response to HP was suppressed in the presence of all three inhibitors, suggesting that purinergic signaling is involved in the mechanoresponse of MSCs to HP. Interestingly, ATP was released from both soft and stiff hydrogels in response to HP, but HP only enhanced chondrogenesis in the stiff hydrogels, indicating that matrix stiffness may act downstream of purinergic signaling to regulate the mechanoresponse of MSCs to HP. Addition of exogenous ATP did not replicate the effects of HP on chondrogenesis, suggesting that mechanisms other than purinergic signaling also regulate the response of MSCs to HP.

  2. Controlled On-chip Stimulation of Quantal Catecholamine Release from Chromaffin Cells Using Photolysis of Caged Ca2+ on Transparent Indium-Tin-Oxide Microchip Electrodes

    PubMed Central

    Chen, Xiaohui; Gao, Yuanfang; Hossain, Maruf; Gangopadhyay, Shubhra; Gillis, Kevin D.

    2008-01-01

    Photorelease of caged Ca2+ is a uniquely powerful tool to study the dynamics of Ca2+-triggered exocytosis from individual cells. Using photolithography and other microfabrication techniques, we have developed transparent microchip devices to enable photorelease of caged Ca2+ together with electrochemical detection of quantal catecholamine secretion from individual cells or cell arrays as a step towards developing high-throughput experimental devices. A 100 nm - thick transparent Indium-Tin-Oxide (ITO) film was sputter-deposited onto glass coverslips, which were then patterned into 24 cell-sized working electrodes (∼20 μm by 20 μm). We loaded bovine chromaffin cells with acetoxymethyl (AM) ester derivatives of the Ca2+ cage NP-EGTA and Ca2+ indicator dye Fura-4F, then transferred these cells onto the working ITO electrodes for amperometric recordings. Upon flash photorelease of caged Ca2+, a uniform rise of [Ca2+]i within the target cell leads to quantal release of oxidizable catecholamines measured amperometrically by the underlying ITO electrode. We observed a burst of amperometric spikes upon rapid elevation of [Ca2+]i and a “priming” effect of sub-stimulatory [Ca2+]i on the response of cells to subsequent [Ca2+]i elevation, similar to previous reports using different techniques. We conclude that UV photolysis of caged Ca2+ is a suitable stimulation technique for higher-throughput studies of Ca2+-dependent exocytosis on transparent electrochemical microelectrode arrays. PMID:18094774

  3. Long-term modulation of mitochondrial Ca2+ signals by protein kinase C isozymes

    PubMed Central

    Pinton, Paolo; Leo, Sara; Wieckowski, Mariusz R.; Di Benedetto, Giulietta; Rizzuto, Rosario

    2004-01-01

    The modulation of Ca2+ signaling patterns during repetitive stimulations represents an important mechanism for integrating through time the inputs received by a cell. By either overexpressing the isoforms of protein kinase C (PKC) or inhibiting them with specific blockers, we investigated the role of this family of proteins in regulating the dynamic interplay of the intracellular Ca2+ pools. The effects of the different isoforms spanned from the reduction of ER Ca2+ release (PKCα) to the increase or reduction of mitochondrial Ca2+ uptake (PKCζ and PKCβ/PKCδ, respectively). This PKC-dependent regulatory mechanism underlies the process of mitochondrial Ca2+ desensitization, which in turn modulates cellular responses (e.g., insulin secretion). These results demonstrate that organelle Ca2+ homeostasis (and in particular mitochondrial processing of Ca2+ signals) is tuned through the wide molecular repertoire of intracellular Ca2+ transducers. PMID:15096525

  4. Cytoplasmic Calcium Increases in Response to Changes in the Gravity Vector in Hypocotyls and Petioles of Arabidopsis Seedlings1

    PubMed Central

    Toyota, Masatsugu; Furuichi, Takuya; Tatsumi, Hitoshi; Sokabe, Masahiro

    2008-01-01

    Plants respond to a large variety of environmental signals, including changes in the gravity vector (gravistimulation). In Arabidopsis (Arabidopsis thaliana) seedlings, gravistimulation is known to increase the cytoplasmic free calcium concentration ([Ca2+]c). However, organs responsible for the [Ca2+]c increase and the underlying cellular/molecular mechanisms remain to be solved. In this study, using Arabidopsis seedlings expressing apoaequorin, a Ca2+-sensitive luminescent protein in combination with an ultrasensitive photon counting camera, we clarified the organs where [Ca2+]c increases in response to gravistimulation and characterized the physiological and pharmacological properties of the [Ca2+]c increase. When the seedlings were gravistimulated by turning 180°, they showed a transient biphasic [Ca2+]c increase in their hypocotyls and petioles. The second peak of the [Ca2+]c increase depended on the angle but not the speed of rotation, whereas the initial peak showed diametrically opposite characters. This suggests that the second [Ca2+]c increase is specific for changes in the gravity vector. The potential mechanosensitive Ca2+-permeable channel (MSCC) inhibitors Gd3+ and La3+, the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA), and the endomembrane Ca2+-permeable channel inhibitor ruthenium red suppressed the second [Ca2+]c increase, suggesting that it arises from Ca2+ influx via putative MSCCs in the plasma membrane and Ca2+ release from intracellular Ca2+ stores. Moreover, the second [Ca2+]c increase was attenuated by actin-disrupting drugs cytochalasin B and latrunculin B but not by microtubule-disrupting drugs oryzalin and nocodazole, implying that actin filaments are partially involved in the hypothetical activation of Ca2+-permeable channels. These results suggest that the second [Ca2+]c increase via MSCCs is a gravity response in the hypocotyl and petiole of Arabidopsis seedlings. PMID:18055589

  5. Photolysis of Caged Ca2+ But Not Receptor-Mediated Ca2+ Signaling Triggers Astrocytic Glutamate Release

    PubMed Central

    Smith, Nathan A.; Xu, Qiwu; Goldman, Siri; Peng, Weiguo; Huang, Jason H.; Takano, Takahiro; Nedergaard, Maiken

    2013-01-01

    Astrocytes in hippocampal slices can dynamically regulate synaptic transmission in a process mediated by increases in intracellular Ca2+. However, it is debated whether astrocytic Ca2+ signals result in release of glutamate. We here compared astrocytic Ca2+ signaling triggered by agonist exposure versus photolysis side by side. Using transgenic mice in which astrocytes selectively express the MrgA1 receptor, we found that receptor-mediated astrocytic Ca2+ signaling consistently triggered neuronal hyperpolarization and decreased the frequency of miniature excitatory postsynaptic currents (EPSCs). In contrast, photolysis of caged Ca2+ (o-nitrophenyl–EGTA) in astrocytes led to neuronal depolarization and increased the frequency of mEPSCs through a metabotropic glutamate receptor-mediated pathway. Analysis of transgenic mice in which astrocytic vesicular release is suppressed (dominant-negative SNARE mice) and pharmacological manipulations suggested that glutamate is primarily released by opening of anion channels rather than exocytosis. Combined, these studies show that photolysis but not by agonists induced astrocytic Ca2+ signaling triggers glutamate release. PMID:24174673

  6. The lysosomal Ca2+ release channel TRPML1 regulates lysosome size by activating calmodulin

    PubMed Central

    Cao, Qi; Yang, Yiming; Zhong, Xi Zoë; Dong, Xian-Ping

    2017-01-01

    Intracellular lysosomal membrane trafficking, including fusion and fission, is crucial for cellular homeostasis and normal cell function. Both fusion and fission of lysosomal membrane are accompanied by lysosomal Ca2+ release. We recently have demonstrated that the lysosomal Ca2+ release channel P2X4 regulates lysosome fusion through a calmodulin (CaM)-dependent mechanism. However, the molecular mechanism underlying lysosome fission remains uncertain. In this study, we report that enlarged lysosomes/vacuoles induced by either vacuolin-1 or P2X4 activation are suppressed by up-regulating the lysosomal Ca2+ release channel transient receptor potential mucolipin 1 (TRPML1) but not the lysosomal Na+ release channel two-pore channel 2 (TPC2). Activation of TRPML1 facilitated the recovery of enlarged lysosomes/vacuoles. Moreover, the effects of TRPML1 on lysosome/vacuole size regulation were eliminated by Ca2+ chelation, suggesting a requirement for TRPML1-mediated Ca2+ release. We further demonstrate that the prototypical Ca2+ sensor CaM is required for the regulation of lysosome/vacuole size by TRPML1, suggesting that TRPML1 may promote lysosome fission by activating CaM. Given that lysosome fission is implicated in both lysosome biogenesis and reformation, our findings suggest that TRPML1 may function as a key lysosomal Ca2+ channel controlling both lysosome biogenesis and reformation. PMID:28360104

  7. Calcium signaling in smooth muscle.

    PubMed

    Hill-Eubanks, David C; Werner, Matthias E; Heppner, Thomas J; Nelson, Mark T

    2011-09-01

    Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).

  8. Comparison of liposomal and 2-hydroxypropyl-β-cyclodextrin-lidocaine on cell viability and inflammatory response in human keratinocytes and gingival fibroblasts.

    PubMed

    Ferreira, Luiz Eduardo Nunes; Muniz, Bruno Vilela; Dos Santos, Cleiton Pita; Volpato, Maria Cristina; de Paula, Eneida; Groppo, Francisco Carlos

    2016-06-01

    The aim of this study was to observe the effect multilamellar liposomes (MLV) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) in the in-vitro effects of lidocaine in cell viability, pro-inflammatory cytokines and prostaglandin E2 release of both human keratinocytes (HaCaT) and gingival fibroblasts (HGF) cells. HaCaT and HGF cells were exposed to lidocaine 100-1 μm in plain, MLV and HP-β-CD formulations for 6 h or 24 h. The formulation effects in cell viability were measured by XTT assay and by fluorescent labelling. Cytokines (IL-8, IL-6 and TNF-α) and PGE2 release were quantified by ELISA. MLV and HP-β-CD formulations did not affect the HaCaT viability, which was significantly decreased by plain lidocaine after 24 h of exposure. Both drug carriers increased all cytokines released by HGF after 24-h exposure, and none of the carriers was able to reduce the PGE2 release induced by lidocaine. The effect of drug carrier in the lidocaine effects was dependent on the cell type, concentration and time of exposure. MLV and HP-β-CD showed benefits in improving cell viability; however, both of them showed a tendency to increase cytokine release when compared to the plain solution. © 2016 Royal Pharmaceutical Society.

  9. Rapid Recycling of Ca2+ between IP3-Sensitive Stores and Lysosomes

    PubMed Central

    López Sanjurjo, Cristina I.; Tovey, Stephen C.; Taylor, Colin W.

    2014-01-01

    Inositol 1,4,5-trisphosphate (IP3) evokes release of Ca2+ from the endoplasmic reticulum (ER), but the resulting Ca2+ signals are shaped by interactions with additional intracellular organelles. Bafilomycin A1, which prevents lysosomal Ca2+ uptake by inhibiting H+ pumping into lysosomes, increased the amplitude of the initial Ca2+ signals evoked by carbachol in human embryonic kidney (HEK) cells. Carbachol alone and carbachol in combination with parathyroid hormone (PTH) evoke Ca2+ release from distinct IP3-sensitive Ca2+ stores in HEK cells stably expressing human type 1 PTH receptors. Bafilomycin A1 similarly exaggerated the Ca2+ signals evoked by carbachol or carbachol with PTH, indicating that Ca2+ released from distinct IP3-sensitive Ca2+ stores is sequestered by lysosomes. The Ca2+ signals resulting from store-operated Ca2+ entry, whether evoked by thapsigargin or carbachol, were unaffected by bafilomycin A1. Using Gd3+ (1 mM) to inhibit both Ca2+ entry and Ca2+ extrusion, HEK cells were repetitively stimulated with carbachol to assess the effectiveness of Ca2+ recycling to the ER after IP3-evoked Ca2+ release. Blocking lysosomal Ca2+ uptake with bafilomycin A1 increased the amplitude of each carbachol-evoked Ca2+ signal without affecting the rate of Ca2+ recycling to the ER. This suggests that Ca2+ accumulated by lysosomes is rapidly returned to the ER. We conclude that lysosomes rapidly, reversibly and selectively accumulate the Ca2+ released by IP3 receptors residing within distinct Ca2+ stores, but not the Ca2+ entering cells via receptor-regulated, store-operated Ca2+ entry pathways. PMID:25337829

  10. Rapid recycling of Ca2+ between IP3-sensitive stores and lysosomes.

    PubMed

    López Sanjurjo, Cristina I; Tovey, Stephen C; Taylor, Colin W

    2014-01-01

    Inositol 1,4,5-trisphosphate (IP3) evokes release of Ca2+ from the endoplasmic reticulum (ER), but the resulting Ca2+ signals are shaped by interactions with additional intracellular organelles. Bafilomycin A1, which prevents lysosomal Ca2+ uptake by inhibiting H+ pumping into lysosomes, increased the amplitude of the initial Ca2+ signals evoked by carbachol in human embryonic kidney (HEK) cells. Carbachol alone and carbachol in combination with parathyroid hormone (PTH) evoke Ca2+ release from distinct IP3-sensitive Ca2+ stores in HEK cells stably expressing human type 1 PTH receptors. Bafilomycin A1 similarly exaggerated the Ca2+ signals evoked by carbachol or carbachol with PTH, indicating that Ca2+ released from distinct IP3-sensitive Ca2+ stores is sequestered by lysosomes. The Ca2+ signals resulting from store-operated Ca2+ entry, whether evoked by thapsigargin or carbachol, were unaffected by bafilomycin A1. Using Gd3+ (1 mM) to inhibit both Ca2+ entry and Ca2+ extrusion, HEK cells were repetitively stimulated with carbachol to assess the effectiveness of Ca2+ recycling to the ER after IP3-evoked Ca2+ release. Blocking lysosomal Ca2+ uptake with bafilomycin A1 increased the amplitude of each carbachol-evoked Ca2+ signal without affecting the rate of Ca2+ recycling to the ER. This suggests that Ca2+ accumulated by lysosomes is rapidly returned to the ER. We conclude that lysosomes rapidly, reversibly and selectively accumulate the Ca2+ released by IP3 receptors residing within distinct Ca2+ stores, but not the Ca2+ entering cells via receptor-regulated, store-operated Ca2+ entry pathways.

  11. New approaches to evaluate sympathoadrenal system activity in experiments on Earth and in space

    NASA Astrophysics Data System (ADS)

    Kvetnansky, R.; Noskov, V. B.; Blazicek, P.; Macho, L.; Grigoriev, A. I.; Goldstein, D. S.; Kopin, I. J.

    In previous studies the activity of the sympathoadrenal system (SAS) in cosmonauts during space flights was evaluated by measuring plasma catecholamines (CA) levels and urinary CA and their metabolites concentrations. Plasma CA levels are accepted indicators of SAS activity, however, they are determined by the plasma clearances as well as the rates of CA release (spillover-SO) into the bloodstream. Nowadays methods are available which evaluate not only plasma levels of CA but also their release, spillover, uptake, reuptake, degradation and also CA synthesis in vivo measured by plasma levels of dihydroxyphenylalanine (DOPA). Plasma concentrations of DOPA, the CA noradrenaline (NE), adrenaline (ADR), and dopamine (DA), the deaminated catechol metabolites dihydroxyphenylglycol (DHPG) and dihydroxyphenylacetic acid (DOPAC), and the O-methylated metabolites methoxyhydroxyphenylglycol (MHPG) and homovanillic acid (HVA) were measured during immobilization stress (IMO) in conscious rats. Radiotracer methods were used to measure NE SO. IMO markedly increased arterial NE levels but NE SO was less elevated bacause the NE clearance was slightly reduced in IMO rats. Simultaneous measurements of plasma CA and their metabolites provide another means to obtain information about SAS function. For instance, dissociation between changes of plasma DHPG and NE levels can indicate changes in neuronal reuptake of NE. We found marked parallel increases in plasma NE and DHPG levels during acute IMO; however after repeated IMO, plasma NE levels were increased but DHPG responses were less pronounced suggesting a reduced NE reuptake. DOPA, the CA precursor, circulates in plasma at a concentration higher than NE. During stress, increased sympathoneural outflow stimulates DOPA synthesis and release into the circulation supporting the view that changes in plasma DOPA levels during stress reflect in vivo changes in the rate of CA synthesis. We propose to measure the new plasma indicators of SAS activity in cosmonauts and/or in animals before, during and after space flights.

  12. Rapid ionic modifications during the aequorin-detected calcium transient in a skinned canine cardiac Purkinje cell

    PubMed Central

    1985-01-01

    A microprocessor-controlled system of microinjections and microaspirations has been developed to change, within approximately 1 ms, the [free Ca2+] at the outer surface of the sarcoplasmic reticulum (SR) wrapped around individual myofibrils (0.3-0.4 micron radius) of a skinned canine cardiac Purkinje cell (2.5-4.5 micron overall radius) at different phases of a Ca2+ transient. Simultaneously monitoring tension and aequorin bioluminescence provided two methods for estimating the peak myoplasmic [free Ca2+] reached during the spontaneous cyclic Ca2+ release from the SR obtained in the continuous presence of a bulk solution [free Ca2+] sufficiently high to overload the SR. These methods gave results in excellent agreement for the spontaneous Ca2+ release under a variety of conditions of pH and [free Mg2+], and of enhancement of Ca2+ release by calmodulin. Disagreement was observed, however, when the Ca2+ transient was modified during its ascending phase. The experiments also permitted quantification of the aequorin binding within the myofibrils and determination of its operational apparent affinity constant for Ca2+ at various [free Mg2+] levels. An increase of [free Ca2+] at the outer surface of the SR during the ascending phase of the Ca2+ transient induced further release of Ca2+. In contrast, an increase of [free Ca2+] during the descending phase of the Ca2+ transient did not cause further Ca2+ release. Varying [free H+], [free Mg2+], or the [Na+]/[K+] ratio had no significant effect on the Ca2+ transient during which the modification was applied, but it altered the subsequent Ca2+ transient. Therefore, Ca2+ appears to be the major, if not the only, ion controlling Ca2+ release from the SR rapidly enough to alter a Ca2+ transient during its course. PMID:3981128

  13. A model of cardiac ryanodine receptor gating predicts experimental Ca2+-dynamics and Ca2+-triggered arrhythmia in the long QT syndrome

    NASA Astrophysics Data System (ADS)

    Wilson, Dan; Ermentrout, Bard; Němec, Jan; Salama, Guy

    2017-09-01

    Abnormal Ca2+ handling is well-established as the trigger of cardiac arrhythmia in catecholaminergic polymorphic ventricular tachycardia and digoxin toxicity, but its role remains controversial in Torsade de Pointes (TdP), the arrhythmia associated with the long QT syndrome (LQTS). Recent experimental results show that early afterdepolarizations (EADs) that initiate TdP are caused by spontaneous (non-voltage-triggered) Ca2+ release from Ca2+-overloaded sarcoplasmic reticulum (SR) rather than the activation of the L-type Ca2+-channel window current. In bradycardia and long QT type 2 (LQT2), a second, non-voltage triggered cytosolic Ca2+ elevation increases gradually in amplitude, occurs before overt voltage instability, and then precedes the rise of EADs. Here, we used a modified Shannon-Puglisi-Bers model of rabbit ventricular myocytes to reproduce experimental Ca2+ dynamics in bradycardia and LQT2. Abnormal systolic Ca2+-oscillations and EADs caused by SR Ca2+-release are reproduced in a modified 0-dimensional model, where 3 gates in series control the ryanodine receptor (RyR2) conductance. Two gates control RyR2 activation and inactivation and sense cytosolic Ca2+ while a third gate senses luminal junctional SR Ca2+. The model predicts EADs in bradycardia and low extracellular [K+] and cessation of SR Ca2+-release terminate salvos of EADs. Ca2+-waves, systolic cell-synchronous Ca2+-release, and multifocal diastolic Ca2+ release seen in subcellular Ca2+-mapping experiments are observed in the 2-dimensional version of the model. These results support the role of SR Ca2+-overload, abnormal SR Ca2+-release, and the subsequent activation of the electrogenic Na+/Ca2+-exchanger as the mechanism of TdP. The model offers new insights into the genesis of cardiac arrhythmia and new therapeutic strategies.

  14. Effects of methyl p-hydroxybenzoate (methyl paraben) on Ca2+ concentration and histamine release in rat peritoneal mast cells

    PubMed Central

    Fukugasako, Sanae; Ito, Shinichi; Ikemoto, Yoshimi

    2003-01-01

    Mechanisms of methyl p-hydroxybenzoate (methyl paraben) action in allergic reactions were investigated by measuring the intracellular Ca2+ concentration ([Ca2+]i) and histamine release in rat peritoneal mast cells (RPMCs). In the presence or absence of extracellular Ca2+, methyl paraben (0.1–10 mM) increased [Ca2+]i, in a concentration-dependent manner. Under both the conditions, methyl paraben alone did not evoke histamine release. In RPMCs pretreated with a protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate (PMA) 3 and 10 nM), methyl paraben (0.3–3 mM) induced histamine release. However, a high concentration (10 mM) of the agent did not increase the histamine release. U73122 (0.1 and 0.5 μM), an inhibitor of phospholipase C (PLC), significantly inhibited the methyl paraben-induced histamine release in PMA-pretreated RPMCs. U73343 (0.5 μM), an inactive analogue of U73122, did not inhibit the histamine release caused by methyl paraben. In Ca2+-free solution, PLC inhibitors (U73122 0.1 and 0.5 μM, D609 1–10 μM) inhibited the methyl paraben-induced increase in [Ca2+]i, whereas U73343 (0.5 μM) did not. Xestospongin C (2–20 μM) and 2 aminoethoxydiphenyl borate (30 and 100 μM), blockers of the inositol 1,4,5-trisphosphate (IP3) receptor, inhibited the methyl paraben-induced increase in [Ca2+]i in Ca2+-free solution. In conclusion, methyl paraben causes an increase in [Ca2+]i, which may be due to release of Ca2+ from storage sites by IP3 via activation of PLC in RPMCs. In addition, methyl paraben possibly has some inhibitory effects on histamine release via unknown mechanisms. PMID:12770943

  15. Keratinocyte Spray Technology for the Improved Healing of Cutaneous Sulfur Mustard Injuries

    DTIC Science & Technology

    2009-07-01

    evaluations using cells harvested at lower degrees of confluence. REFERENCES Arroyo CM, Schafer RJ, Kurt EM, Broomfield CA, Carmichael AJ...Broomfield CA, Carmichael AJ. (1999) Response of normal human keratinocytes to sulfur mustard (HD): cytokine release using a non-enzymatic...Westchester Hall SUNY, NY 11794-8702 Voice: (n/a) Kertinocyte Spray, Jan30_2009Patient: USex: N/AAge: ?DOB: 30- Jan -09Biopsy Taken: 02-Feb-09Biopsy Received

  16. Stretch-induced Ca2+ independent ATP release in hippocampal astrocytes.

    PubMed

    Xiong, Yingfei; Teng, Sasa; Zheng, Lianghong; Sun, Suhua; Li, Jie; Guo, Ning; Li, Mingli; Wang, Li; Zhu, Feipeng; Wang, Changhe; Rao, Zhiren; Zhou, Zhuan

    2018-02-28

    Similar to neurons, astrocytes actively participate in synaptic transmission via releasing gliotransmitters. The Ca 2+ -dependent release of gliotransmitters includes glutamate and ATP. Following an 'on-cell-like' mechanical stimulus to a single astrocyte, Ca 2+ independent single, large, non-quantal, ATP release occurs. Astrocytic ATP release is inhibited by either selective antagonist treatment or genetic knockdown of P2X7 receptor channels. Our work suggests that ATP can be released from astrocytes via two independent pathways in hippocampal astrocytes; in addition to the known Ca 2+ -dependent vesicular release, larger non-quantal ATP release depends on P2X7 channels following mechanical stretch. Astrocytic ATP release is essential for brain functions such as synaptic long-term potentiation for learning and memory. However, whether and how ATP is released via exocytosis remains hotly debated. All previous studies of non-vesicular ATP release have used indirect assays. By contrast, two recent studies report vesicular ATP release using more direct assays. In the present study, using patch clamped 'ATP-sniffer cells', we re-investigated astrocytic ATP release at single-vesicle resolution in hippocampal astrocytes. Following an 'on-cell-like' mechanical stimulus of a single astrocyte, a Ca 2+ independent single large non-quantal ATP release occurred, in contrast to the Ca 2+ -dependent multiple small quantal ATP release in a chromaffin cell. The mechanical stimulation-induced ATP release from an astrocyte was inhibited by either exposure to a selective antagonist or genetic knockdown of P2X7 receptor channels. Functional P2X7 channels were expressed in astrocytes in hippocampal brain slices. Thus, in addition to small quantal ATP release, larger non-quantal ATP release depends on P2X7 channels in astrocytes. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  17. Rechargeable dental adhesive with calcium phosphate nanoparticles for long-term ion release

    PubMed Central

    Zhang, Ling; Weir, Michael D.; Hack, Gary; Fouad, Ashraf F.; Xu, Hockin H. K.

    2015-01-01

    Objectives The tooth-resin bond is the weak link of restoration, with secondary caries as a main reason for failure. Calcium phosphate-containing resins are promising for remineralization; however, calcium (Ca) and phosphate (P) ion releases last only a couple of months. The objectives of this study were to develop the first rechargeable CaP bonding agent and investigate the key factors that determine CaP ion recharge and re-release. Methods Nanoparticles of amorphous calcium phosphate (NACP) were synthesized. Pyromellitic glycerol dimethacrylate (PMGDM), ethoxylated bisphenol-A dimethacrylate (EBPADMA), 2-hydroxyethyl methacrylate (HEMA), and bisphenol-A glycidyl dimethacrylate (BisGMA) were used to synthesize three adhesives (denoted PE, PEH and PEHB). NACP were mixed into adhesive at 0–30% by mass. Dentin shear bond strengths were measured. Adhesive specimens were tested for Ca and P initial ion release. Then the ion-exhausted specimens were immersed in Ca and P solution to recharge the specimens, and the recharged specimens were then used to measure ion re-release for 7 days as one cycle. Then these specimens were again recharged and the re-release was measured for 7 days as the second cycle. Three recharge/re-release cycles were tested. Results PEHB had the highest dentin bond strength (p<0.05). Increasing NACP content from 0 to 30% did not affect dentin bond strength (p>0.1), but increased CaP release and re-release (p<0.05). PEHB-NACP had the greatest recharge/re-release, and PE-NACP had the least (p<0.05). Ion release remained high and did not decrease with increasing the number of recharge/re-release cycles (p>0.1). After the third cycle, specimens without further recharge had continuous CaP ion release for 2–3 weeks. Significance Rechargeable CaP bonding agents were developed for the first time to provide long-term Ca and P ions to promote remineralization and reduce caries. Incorporation of NACP into adhesive had no negative effect on dentin bond strength. Increasing NACP filler level increased the ion recharge and re-release capability. The new CaP recharge method and PMGDM-EBPAGMA-NACP composition may have wide application in adhesives, composites and cements, to combat caries and remineralize lesions. PMID:26144190

  18. Hypotonic shock stimulates ascorbate release from coronary artery endothelial cells by a Ca2+ -independent pathway.

    PubMed

    Davis, Kim A; Samson, Sue E; Wilson, John X; Grover, Ashok K

    2006-10-24

    In endothelial cells, anion channels open upon osmotic swelling during shear stress and hypotonic shock. Therefore, we examined the effects of hypotonic shock on release of the antioxidant anion ascorbate from pig coronary artery endothelial cells. Hypotonic shock potentiated ascorbate release from freshly isolated or cultured pig coronary artery endothelial cells; subsequently cultured endothelial cells were used. The hypotonic shock-induced increase in Asc release was rapid, depended on the degree of hypotonic shock, and not due to membrane leakiness. Stimulating P2Y2 like receptors in endothelial cells with ATP causes ascorbate release via a Ca2+ -mediated pathway. Hypotonic shock-induced release differed from the Ca2+-mediated Asc release because: (a) the increase in release with hypotonic shock was additive to that with ATP or A23187 (Ca2+ -ionophore), (b) apyrase, suramin or removing extracellular Ca2+ did not affect the hypotonic shock-stimulated release, (c) anion channel blockers inhibited the release by the two pathways differently, and (d) hypotonic shock increased the ascorbate release from endothelial cells and cultured smooth muscle cells whereas the Ca2+ -mediated ascorbate release occurred only in endothelial cells. Accumulation of ascorbate by endothelial cells was examined at extracellular ascorbate concentrations of 10 (Na+ -ascorbate symporter not saturated) and 5000 microM (Na+ -ascorbate symporter saturated). Hypotonic shock and A23187 decreased ascorbate accumulation at 10 microM ascorbate but increased it at 5000 microM. The effects of the two treatments were additive and also differed from each other with substitution of gluconate for extracellular chloride. Thus, ascorbate release from endothelial cells can be potentiated by two distinct pathways - hypotonic shock mediated and ATP/Ca2+ stimulated.

  19. Communication between corneal epithelial cells and trigeminal neurons is facilitated by purinergic (P2) and glutamatergic receptors.

    PubMed

    Oswald, Duane J; Lee, Albert; Trinidad, Monique; Chi, Cheryl; Ren, Ruiyi; Rich, Celeste B; Trinkaus-Randall, Vickery

    2012-01-01

    Previously, we demonstrated that nucleotides released upon mechanical injury to corneal epithelium activate purinergic (P2) receptors resulting in mobilization of a Ca(2+) wave. However, the tissue is extensively innervated and communication between epithelium and neurons is critical and not well understood. Therefore, we developed a co-culture of primary trigeminal neurons and human corneal limbal epithelial cells. We demonstrated that trigeminal neurons expressed a repertoire of P2Yand P2X receptor transcripts and responded to P2 agonists in a concentration-dependent manner. Mechanical injuries to epithelia in the co-cultures elicited a Ca(2+) wave that mobilized to neurons and was attenuated by Apyrase, an ectonucleotidase. To elucidate the role of factors released from each cell type, epithelial and neuronal cells were cultured, injured, and the wound media from one cell type was collected and added to the other cell type. Epithelial wound media generated a rapid Ca(2+) mobilization in neuronal cells that was abrogated in the presence of Apyrase, while neuronal wound media elicited a complex response in epithelial cells. The rapid Ca(2+) mobilization was detected, which was abrogated with Apyrase, but it was followed by Ca(2+) waves that occurred in cell clusters. When neuronal wound media was preincubated with a cocktail of N-methyl-D-aspartate (NMDA) receptor inhibitors, the secondary response in epithelia was diminished. Glutamate was detected in the neuronal wound media and epithelial expression of NMDA receptor subunit transcripts was demonstrated. Our results indicate that corneal epithelia and neurons communicate via purinergic and NMDA receptors that mediate the wound response in a highly orchestrated manner.

  20. The role of Ca2+ signaling in the coordination of mitochondrial ATP production with cardiac work

    PubMed Central

    Balaban, Robert S.

    2009-01-01

    The heart is capable of balancing the rate of mitochondrial ATP production with utilization continuously over a wide range of activity. This results in a constant phosphorylation potential despite a large change in metabolite turnover. The molecular mechanisms responsible for generating this energy homeostasis are poorly understood. The best candidate for a cytosolic signaling molecule reflecting ATP hydrolysis is Ca2+. Since Ca2+ initiates and powers muscle contraction as well as serves as the primary substrate for SERCA, Ca2+ is an ideal feed-forward signal for priming ATP production. With the sarcoplasmic reticulum to cytosolic Ca2+ gradient near equilibrium with the free energy of ATP, cytosolic Ca2+ release is exquisitely sensitive to the cellular energy state providing a feedback signal. Thus, Ca2+ can serve as a feed-forward and feedback regulator of ATP production. Consistent with this notion is the correlation of cytosolic and mitochondrial Ca2+ with work in numerous preparations as well as the localization of mitochondria near Ca2+ release sites. How cytosolic Ca2+ signaling might regulate oxidative phosphorylation is a focus of this review. The relevant Ca2+ sensitive sites include several dehydrogenases and substrate transporters together with a post-translational modification of F1-FO-ATPase and cytochrome oxidase. Thus, Ca2+ apparently activates both the generation of the mitochondrial membrane potential as well as utilization to produce ATP. This balanced activation extends the energy homeostasis observed in the cytosol into the mitochondria matrix in the never resting heart. PMID:19481532

  1. A steady-state mechanism can account for the properties of inositol 2,4,5-trisphosphate-stimulated Ca2+ release from permeabilized L1210 cells.

    PubMed Central

    Loomis-Husselbee, J W; Dawson, A P

    1993-01-01

    We have investigated the effects of sub-maximal Ins(2,4,5)P3 concentrations on the Ca2+ permeability of the residual undischarged Ca2+ stores in electroporated or digitonin-permeabilized L1210 cells by measuring Ca(2+)-efflux rate after addition of the ATPase inhibitor thapsigargin. Low concentrations of Ins(2,4,5)P3, causing rapid discharge of a small proportion of the releasable Ca2+, result in a substantial stimulation of Ca2+ efflux after thapsigargin addition. This indicates firstly that in the absence of thapsigargin there must have been a substantial, counterbalancing, increase in rate of Ca2+ pumping, and secondly that the increased Ca2+ permeability is more consistent with a steady state than with a quantal model of Ca2+ release. Similar increases in passive Ca2+ permeability are produced by addition of concentrations of ionomycin which produce equivalent changes in Ca2+ loading to those produced by Ins(2,4,5)P3, although the time course and initial rate of Ca2+ release are very much slower. In the presence of a Ca(2+)-buffering system, the time course of Ca2+ release by Ins(2,4,5)P3 becomes superimposable on that of ionomycin, indicating that the initial rapid phase of Ins(2,4,5)P3-stimulated Ca2+ is at least partially due to positive feedback from extravesicular Ca2+. PMID:8382056

  2. Insight into the Role of Ca2+-Binding Protein 5 in Vesicle Exocytosis

    PubMed Central

    Sokal, Izabela

    2011-01-01

    Purpose. CaBP5 is a neuronal calmodulin-like Ca2+-binding protein that is expressed in the retina and in the cochlea. Although CaBP5 knockout mice displayed reduced sensitivity of retinal ganglion cell light responses, the function of CaBP5 in vivo is still unknown. To gain further insight into CaBP5 function, the authors screened for CaBP5-interacting partners. Methods. Potential retinal interacting partners for CaBP5 were identified using affinity chromatography followed by mass spectrometry and by yeast two-hybrid screening of a bovine retina cDNA library. Interacting partners were further analyzed using coimmunoprecipitation. Immunohistochemistry and subcellular fractionation were performed to determine their colocalization in the retina. The effect of CaBP5 on dopamine release and neurite outgrowth of PC12 cells was analyzed using ELISA and fluorescent labeling. Results. Using affinity chromatography, the authors identified Munc18–1 and myosin VI as interacting partners for CaBP5. Munc18–1 was also identified using the yeast two-hybrid system. Colocalization and coimmunoprecipitation of CaBP5 with these two proteins in retinal tissue further established their physiological interactions. Furthermore, CaBP5 expression in NGF-stimulated PC12 cells stimulates neurite outgrowth and dopamine exocytosis. Conclusions. This study shows that CaBP5 interacts with Munc18–1 and myosin VI, two proteins involved in the synaptic vesicle cycle. Together with the effect of CaBP5 in stimulating neurite outgrowth and vesicle exocytosis in PC12 cells, these results suggest that CaBP5 plays a role in neurotransmitter release. PMID:22039235

  3. Rab3A Inhibition of Ca2+ -Dependent Dopamine Release From PC12 Cells Involves Interaction With Synaptotagmin I.

    PubMed

    Dai, Zhipan; Tang, Xia; Chen, Jia; Tang, Xiaochao; Wang, Xianchun

    2017-11-01

    Rab3 and synaptotagmin have been suggested to play important roles in the regulation of neurotransmitter release and, however, the molecular mechanism has not been completely clear. Here, we studied the effects of Rab3A and synaptotagmin I (Syt I) on dopamine release using PC12 cells as a model system. Rab3A was demonstrated to have effects on both Ca 2+ -independent and Ca 2+ -dependent dopamine releases from the PC12 cells. Application of Rab3A (up to 2500 nM) gradually decreased the amount of Ca 2+ -dependently released dopamine, indicating that Rab3A is a negative modulator that was further supported by the increase in dopamine release caused by Rab3A knockdown. Syt I knockdown weakened the Ca 2+ -dependent dopamine release, suggesting that Syt I plays a positive regulatory role in the cellular process. Treatment of the Syt I-knocked down PC12 cells with Rab3A further decreased Ca 2+ -dependent dopamine release and, however, the decrease magnitude was significantly reduced compared with that before Syt I knockdown, thus for the first time demonstrating that the inhibitory effect of Rab3A on Ca 2+ -dependent dopamine release involves the interaction with Syt I. This work has shed new light on the molecular mechanism for Rab3 and synaptotamin regulation of neurotransmitter release. J. Cell. Biochem. 118: 3696-3705, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Investigation of the cardiomyocyte dysfunction in bradykinin type 2 receptor knockout mice.

    PubMed

    Roman-Campos, Danilo; Duarte, Hugo Leonardo; Gomes, Enéas Ricardo; Castro, Carlos Henrique; Guatimosim, Silvia; Natali, Antonio José; Almeida, Alvair Pinto; Pesquero, João Bosco; Pesquero, Jorge Luiz; Cruz, Jader Santos

    2010-12-18

    Bradykinin type 2 receptor (B(2)R) is the key component to trigger the intracellular signaling pathway in response to bradykinin under physiological conditions. The present study sought to investigate whether the B(2)R gene deletion will have an impact on myocardial function. Isolated cell shortening, patch-clamp technique, Western blot and confocal microscopy. Isolated cell shortening measurements showed significant reduction in B(2)R knockout (B(2)R(-/-)) left ventricular cardiac myocytes' shortening. Whole-cell recordings were used to study the electrophysiological aspects of the left ventricular B(2)R(-/-) cardiomyocytes. Results showed: 1) action potential lengthening; 2) unchanged inwardly rectifying K(+) current; 3) reduced transient outward K(+) (I(to)) and L-type Ca(2+) current densities; 5) changes in kinetic properties related to I(to) and I(Ca,L). In addition, transient sarcoplasmic reticulum (SR) Ca(2+) release was found to be smaller in B(2)R(-/-) cardiomyocytes. Importantly, evidence is provided that NO constitutive production is, at least in part, responsible for the reported electrophysiological modifications observed in cardiomyocytes from B(2)R(-/-) mice. Surprisingly, NO is not involved in the SR Ca(2+) release reduction as demonstrated in the present study. Taken together, our findings indicate that B(2)R plays a fundamental role in the regulation of cardiac function and Ca(2+) homeostasis, probably through a NO dependent pathway. These results may contribute to our understanding of the kinins participation in the control of cardiac function. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction

    PubMed Central

    Gri, Giorgia; Piconese, Silvia; Frossi, Barbara; Manfroi, Vanessa; Merluzzi, Sonia; Tripodo, Claudio; Viola, Antonella; Odom, Sandra; Rivera, Juan; Colombo, Mario P.; Pucillo, Carlo E.

    2008-01-01

    Summary CD4+CD25+ T regulatory cells (Tregs) play a central role in the suppression of immune responses thus serving to induce tolerance and to control persistent immune responses that can lead to autoimmunity. Here we explore if Tregs also play a role in controlling the immediate hypersensitivity response of mast cells (MCs). Tregs directly inhibit the FcεRI-dependent degranulation of MCs through cell-cell contact involving OX40-OX40L interactions between Tregs and MCs, respectively. MCs show increased cAMP levels and reduced Ca2+ influx, independent of PLC-γ2 or Ca2+ release from intracellular stores. Antagonism of cAMP in MCs reverses the inhibitory effects of Tregs restoring normal Ca2+ responses and degranulation. Importantly, the in vivo depletion or inactivation of Tregs causes enhancement of the anaphylactic response. The demonstrated cross-talk between Tregs and MCs defines a previously unrecognized mechanism controlling MCs degranulation. Loss of this interaction may contribute to the severity of allergic responses. PMID:18993084

  6. pH and calcium ion release evaluation of pure and calcium hydroxide-containing Epiphany for use in retrograde filling

    PubMed Central

    TANOMARU-FILHO, Mário; SAÇAKI, Juliana Nogueira; FALEIROS, Frederico Bordini Chaves; GUERREIRO-TANOMARU, Juliane Maria

    2011-01-01

    Objective Hydroxyl (OH-) and calcium (Ca++) ion release was evaluated in six materials: G1) Sealer 26, G2) White mineral trioxide aggregate (MTA), G3) epiphany, G4) epiphany + 10% calcium hydroxide (CH), G5) epiphany + 20% CH, and G6) zinc oxide and eugenol. Material and Methods Specimens were placed in polyethylene tubes and immersed in distilled water. After 3, 6, 12, 24, and 48 h, 7, 14, and 28 days, the water was assessed for pH with a pH meter and for Ca++ release by atomic absorption spectrophotometry. Results G1, G2, G4, and G5 had the highest pH until 14 days (p<0.05). G1 presented the highest Ca++ release until 6 h, and G4 and G5, from 12 h through 14 days. Ca++ release was greater for G1 and G2 at 28 days. G6 released the least Ca++. Conclusion MTA, Sealer 26, epiphany, and epiphany + CH release OH - and Ca++ ions. Epiphany + CH may be an alternative as retrofilling material. PMID:21437461

  7. Lycopene depresses glutamate release through inhibition of voltage-dependent Ca2+ entry and protein kinase C in rat cerebrocortical nerve terminals.

    PubMed

    Lu, Cheng-Wei; Hung, Chi-Feng; Jean, Wei-Horng; Lin, Tzu-Yu; Huang, Shu-Kuei; Wang, Su-Jane

    2018-05-01

    Lycopene is a natural dietary carotenoid that was reported to exhibit a neuroprotective profile. Considering that excitotoxicity and cell death induced by glutamate are involved in many brain disorders, the effect of lycopene on glutamate release in rat cerebrocortical nerve terminals and the possible mechanism involved in such effect was investigated. We observed here that lycopene inhibited 4-aminopyridine (4-AP)-evoked glutamate release and intrasynaptosomal Ca 2+ concentration elevation. The inhibitory effect of lycopene on 4-AP-evoked glutamate release was markedly reduced in the presence of the Ca v 2.2 (N-type) and Ca v 2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was insensitive to the intracellular Ca 2+ -release inhibitors dantrolene and CGP37157. Furthermore, in the presence of the protein kinase C inhibitors GF109203X and Go6976, the action of lycopene on evoked glutamate release was prevented. These results are the first to suggest that lycopene inhibits glutamate release from rat cortical synaptosomes by suppressing presynaptic Ca 2+ entry and protein kinase C activity.

  8. A toxin fraction (FTX) from the funnel-web spider poison inhibits dihydropyridine-insensitive Ca2+ channels coupled to catecholamine release in bovine adrenal chromaffin cells.

    PubMed

    Duarte, C B; Rosario, L M; Sena, C M; Carvalho, A P

    1993-03-01

    In adrenal chromaffin cells, depolarization-evoked Ca2+ influx and catecholamine release are partially blocked by blockers of L-type voltage-sensitive Ca2+ channels. We have now evaluated the sensitivity of the dihydropyridine-resistant components of Ca2+ influx and catecholamine release to a toxin fraction (FTX) from the funnel-web spider poison, which is known to block P-type channels in mammalian neurons. FTX (1:4,000 dilution, with respect to the original fraction) inhibited K(+)-depolarization-induced Ca2+ influx by 50%, as monitored with fura-2, whereas nitrendipine (0.1-1 microM) and FTX (3:3), a synthetic FTX analogue (1 mM), blocked the [Ca2+]i transients by 35 and 30%, respectively. When tested together, FTX and nitrendipine reduced the [Ca2+]i transients by 70%. FTX or nitrendipine reduced adrenaline and noradrenaline release by approximately 80 and 70%, respectively, but both substances together abolished the K(+)-evoked catecholamine release, as measured by HPLC. The omega-conotoxin GVIA (0.5 microM) was without effect on K(+)-stimulated 45Ca2+ uptake. Our results indicate that FTX blocks dihydropyridine- and omega-conotoxin-insensitive Ca2+ channels that, together with L-type voltage-sensitive Ca2+ channels, are coupled to catecholamine release.

  9. Polyamine regulates tolerance to water stress in leaves of white clover associated with antioxidant defense and dehydrin genes via involvement in calcium messenger system and hydrogen peroxide signaling

    PubMed Central

    Li, Zhou; Zhang, Yan; Peng, Dandan; Wang, Xiaojuan; Peng, Yan; He, Xiaoshuang; Zhang, Xinquan; Ma, Xiao; Huang, Linkai; Yan, Yanhong

    2015-01-01

    Endogenous polyamine (PA) may play a critical role in tolerance to water stress in plants acting as a signaling molecule activator. Water stress caused increases in endogenous PA content in leaves, including putrescine (Put), spermidine (Spd), and spermine (Spm). Exogenous application of Spd could induce the instantaneous H2O2 burst and accumulation of cytosolic free Ca2+, and activate NADPH oxidase and CDPK gene expression in cells. To a great extent, PA biosynthetic inhibitor reduced the water stress-induced H2O2 accumulation, free cytosolic Ca2+ release, antioxidant enzyme activities and genes expression leading to aggravate water stress-induced oxidative damage, while these suppressing effects were alleviated by the addition of exogenous Spd, indicating PA was involved in water stress-induced H2O2 and cytosolic free Ca2+ production as well as stress tolerance. Dehydrin genes (Y2SK, Y2K, and SK2) were showed to be highly responsive to exogenous Spd. PA-induced antioxidant defense and dehydrin genes expression could be blocked by the scavenger of H2O2 and the inhibitors of H2O2 generation or Ca2+ channels blockers, a calmodulin antagonist, as well as the inhibitor of CDPK. These findings suggested that PA regulated tolerance to water stress in white clover associated with antioxidant defenses and dehydrins via involvement in the calcium messenger system and H2O2 signaling pathways. PA-induced H2O2 production required Ca2+ release, while PA-induced Ca2+ release was also essential for H2O2 production, suggesting an interaction between PA-induced H2O2 and Ca2+ signaling. PMID:26528187

  10. Role of calcium in nitric oxide-induced cytotoxicity: EGTA protects mouse oligodendrocytes.

    PubMed

    Boullerne, A I; Nedelkoska, L; Benjamins, J A

    2001-01-15

    Active nitrogen species are overproduced in inflammatory brain lesions in multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE). NO has been shown to mediate the death of oligodendrocytes (OLs), a primary target of damage in MS. To develop strategies to protect OLs, we examined the mechanisms of cytotoxicity of two NO donors, S-nitroso-N-acetyl-penicillamine (SNAP) and sodium nitroprusside (SNP) on mature mouse OLs. Nitrosonium ion (NO+) rather than NO. mediates damage with both SNAP and SNP, as shown by significant protection with hemoglobin (HbO2), but not with the NO. scavenger PTIO. SNAP and SNP differ in time course and mechanisms of killing OLs. With SNAP, OL death is delayed for at least 6 hr, but with SNP, OL death is continuous over 18 hr with no delay. Relative to NO release, SNP is more toxic than SNAP, due to synergism of NO with cyanide released by SNP. SNAP elicits a Ca2+ influx in over half of the OLs within min. Further, OL death due to NO release from SNAP is Ca2+-dependent, because the Ca2+ chelator EGTA protects OLs from killing by SNAP, and also from killing by the NONOates NOC-9 and NOC-18, which spontaneously release NO. SNP does not elicit a Ca2+ influx, and EGTA is not protective. In comparison to the N20.1 OL cell line (Boullerne et al., [1999] J. Neurochem. 72:1050-1060), mature OLs are (1) more sensitive to SNAP, (2) much more resistant to SNP, (3) sensitive to cyanide, but not iron, and (4) exhibit a Ca2+ influx and EGTA protection in response to NO generated by SNAP. Copyright 2001 Wiley-Liss, Inc.

  11. Effect of inflammatory conditions and H2O2 on bare and coated Ti-6Al-4V surfaces: Corrosion behavior, metal ion release and Ca-P formation under long-term immersion in DMEM

    NASA Astrophysics Data System (ADS)

    Höhn, Sarah; Virtanen, Sannakaisa

    2015-12-01

    The surface oxide film and calcium-phosphate (Ca-P) formation on Ti-6Al-4V during long-term immersion in biological environments play a decisive role for the biocompatibility of the implant. Hence, the aim of the study was to evaluate the corrosion resistance, metal ion release and Ca-P formation in DMEM under physiological conditions at pH values of 7.4 and in comparison under simulated inflammatory conditions with pH 5 and in presence of H2O2. Furthermore, the influence of the immersion conditions was investigated on different surface treatments: on bare Ti-6Al-4V, after anodization, and for TiO2 nanoparticle (NP) and hydroxyapatite (HA)-incorporated TiO2-NP coatings. In the absence of H2O2, the impedance response indicated a stable thin oxide film and Ca-P formation after 28 days or 56 days depending on the coating, while under inflammatory conditions the Ca-P formation on the surface is time-delayed and dissolution of the anodized oxide layer as well as selective etching of the β-phase and phase boundaries in case of the bare alloy occur. Electrochemical impedance spectroscopy (EIS), however, indicates a good general corrosion behavior in all cases. The quantities of Ti, Al and V released from the bare and coated Ti-6Al-4V alloy markedly increased with decreasing pH (pH ≤ 5). Although the rapid increase of metal release was observed for all samples at pH 5, the quantities were significantly higher for the bare and anodized alloy than after coating with TiO2-NP or HA.

  12. Role of calcium stores and membrane voltage in the generation of slow wave action potentials in guinea-pig gastric pylorus

    PubMed Central

    Van Helden, D F; Imtiaz, M S; Nurgaliyeva, K; von der Weid, P-Y; Dosen, P J

    2000-01-01

    Intracellular recordings made in single bundle strips of a visceral smooth muscle revealed rhythmic spontaneous membrane depolarizations termed slow waves (SWs). These exhibited ‘pacemaker’ and ‘regenerative’ components composed of summations of more elementary events termed spontaneous transient depolarizations (STDs). STDs and SWs persisted in the presence of tetrodotoxin, nifedipine and ryanodine, and upon brief exposure to Ca2+-free Cd2+-containing solutions; they were enhanced by ACh and blocked by BAPTA AM, cyclopiazonic acid and caffeine. SWs were also inhibited in heparin-loaded strips. SWs were observed over a wide range of membrane potentials (e.g. −80 to −45 mV) with increased frequencies at more depolarized potentials. Regular spontaneous SW activity in this preparation began after 1–3 h superfusion of the tissue with physiological saline following the dissection procedure. Membrane depolarization applied before the onset of this activity induced bursts of STD-like events (termed the ‘initial’ response) which, when larger than threshold levels initiated regenerative responses. The combined initial-regenerative waveform was termed the SW-like action potential. Voltage-induced responses exhibited large variable latencies (typical range 0.3–4 s), refractory periods of ≈11 s and a pharmacology that was indistinguishable from those of STDs and spontaneous SWs. The data indicate that SWs arise through more elementary inositol 1,4,5-trisphosphate (IP3) receptor-induced Ca2+ release events which rhythmically synchronize to trigger regenerative Ca2+ release and induce inward current across the plasmalemma. The finding that action potentials, which were indistinguishable from SWs, could be evoked by depolarization suggests that membrane potential modulates IP3 production. Voltage feedback on intracellular IP3-sensitive Ca2+ release is likely to have a major influence on the generation and propagation of SWs. PMID:10747196

  13. An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release.

    PubMed Central

    Greenstein, Joseph L; Winslow, Raimond L

    2002-01-01

    The local control theory of excitation-contraction (EC) coupling in cardiac muscle asserts that L-type Ca(2+) current tightly controls Ca(2+) release from the sarcoplasmic reticulum (SR) via local interaction of closely apposed L-type Ca(2+) channels (LCCs) and ryanodine receptors (RyRs). These local interactions give rise to smoothly graded Ca(2+)-induced Ca(2+) release (CICR), which exhibits high gain. In this study we present a biophysically detailed model of the normal canine ventricular myocyte that conforms to local control theory. The model formulation incorporates details of microscopic EC coupling properties in the form of Ca(2+) release units (CaRUs) in which individual sarcolemmal LCCs interact in a stochastic manner with nearby RyRs in localized regions where junctional SR membrane and transverse-tubular membrane are in close proximity. The CaRUs are embedded within and interact with the global systems of the myocyte describing ionic and membrane pump/exchanger currents, SR Ca(2+) uptake, and time-varying cytosolic ion concentrations to form a model of the cardiac action potential (AP). The model can reproduce both the detailed properties of EC coupling, such as variable gain and graded SR Ca(2+) release, and whole-cell phenomena, such as modulation of AP duration by SR Ca(2+) release. Simulations indicate that the local control paradigm predicts stable APs when the L-type Ca(2+) current is adjusted in accord with the balance between voltage- and Ca(2+)-dependent inactivation processes as measured experimentally, a scenario where common pool models become unstable. The local control myocyte model provides a means for studying the interrelationship between microscopic and macroscopic behaviors in a manner that would not be possible in experiments. PMID:12496068

  14. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, Naohiko; Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp; Furuya, Kishio

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellularmore » Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.« less

  15. Inositol trisphosphate receptor mediated spatiotemporal calcium signalling.

    PubMed

    Miyazaki, S

    1995-04-01

    Spatiotemporal Ca2+ signalling in the cytoplasm is currently understood as an excitation phenomenon by analogy with electrical excitation in the plasma membrane. In many cell types, Ca2+ waves and Ca2+ oscillations are mediated by inositol 1,4,5-trisphosphate (IP3) receptor/Ca2+ channels in the endoplasmic reticulum membrane, with positive feedback between cytosolic Ca2+ and IP3-induced Ca2+ release creating a regenerative process. Remarkable advances have been made in the past year in the analysis of subcellular Ca2+ microdomains using confocal microscopy and of Ca2+ influx pathways that are functionally coupled to IP3-induced Ca2+ release. Ca2+ signals can be conveyed into the nucleus and mitochondria. Ca2+ entry from outside the cell allows repetitive Ca2+ release by providing Ca2+ to refill the endoplasmic reticulum stores, thus giving rise to frequency-encoded Ca2+ signals.

  16. Phyto and endocannabinoids exert complex actions on calcium and zinc signaling in mouse cortical neurons.

    PubMed

    Bouron, Alexandre

    2018-06-01

    Live-cell imaging experiments were performed with the fluorescent Ca 2+ and Zn 2+ probes Fluo-4 and FluoZin-3 on cultured cortical neurons dissociated from embryonic mice to investigate the effects of the cannabinoids anandamide (AEA), cannabidiol (CBD), and N-arachidonoyl glycine (NAGly) on neuronal store-operated Ca 2+ entry (SOCE). When tested individually AEA, CBD or NAGly inhibited SOCE. CBD and NAGly also released Ca 2+ from the endoplasmic reticulum. Furthermore, NAGly mobilized Zn 2+ from a store distinct from the endoplasmic reticulum and mitochondria, and up-regulated the thapsigargin-evoked Ca 2+ release. All these effects developed in a cannabinoid receptor CB1/2 independent manner via an intracellular pathway sensitive to the GPR55 antagonist ML193. Evidence is presented that cannabinoids influence Ca 2+ and Zn 2+ signaling in central nervous system neurons. The lipid sensing receptor GPR55 seems to be a central actor governing these responses. In addition, the alteration of the cytosolic Zn 2+ levels produced by NAGly provides support for the existence of a connection between endocannabinoids and Zn 2+ signaling in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Insulin Activates Vagal Afferent Neurons Including those Innervating Pancreas via Insulin Cascade and Ca(2+) Influx: Its Dysfunction in IRS2-KO Mice with Hyperphagic Obesity.

    PubMed

    Iwasaki, Yusaku; Shimomura, Kenju; Kohno, Daisuke; Dezaki, Katsuya; Ayush, Enkh-Amar; Nakabayashi, Hajime; Kubota, Naoto; Kadowaki, Takashi; Kakei, Masafumi; Nakata, Masanori; Yada, Toshihiko

    2013-01-01

    Some of insulin's functions, including glucose/lipid metabolism, satiety and neuroprotection, involve the alteration of brain activities. Insulin could signal to the brain via penetrating through the blood-brain barrier and acting on the vagal afferents, while the latter remains unproved. This study aimed to clarify whether insulin directly regulates the nodose ganglion neurons (NGNs) of vagal afferents in mice. NGs expressed insulin receptor (IR) and insulin receptor substrate-2 (IRS2) mRNA, and some of NGNs were immunoreactive to IR. In patch-clamp and fura-2 microfluorometric studies, insulin (10(-12)∼10(-6) M) depolarized and increased cytosolic Ca(2+) concentration ([Ca(2+)]i) in single NGNs. The insulin-induced [Ca(2+)]i increases were attenuated by L- and N-type Ca(2+) channel blockers, by phosphatidylinositol 3 kinase (PI3K) inhibitor, and in NGNs from IRS2 knockout mice. Half of the insulin-responsive NGNs contained cocaine- and amphetamine-regulated transcript. Neuronal fibers expressing IRs were distributed in/around pancreatic islets. The NGNs innervating the pancreas, identified by injecting retrograde tracer into the pancreas, responded to insulin with much greater incidence than unlabeled NGNs. Insulin concentrations measured in pancreatic vein was 64-fold higher than that in circulation. Elevation of insulin to 10(-7) M recruited a remarkably greater population of NGNs to [Ca(2+)]i increases. Systemic injection of glibenclamide rapidly released insulin and phosphorylated AKT in NGs. Furthermore, in IRS2 knockout mice, insulin action to suppress [Ca(2+)]i in orexigenic ghrelin-responsive neurons in hypothalamic arcuate nucleus was intact while insulin action on NGN was markedly attenuated, suggesting a possible link between impaired insulin sensing by NGNs and hyperphagic obese phenotype in IRS2 knockout mice These data demonstrate that insulin directly activates NGNs via IR-IRS2-PI3K-AKT-cascade and depolarization-gated Ca(2+) influx. Pancreas-innervating NGNs may effectively sense dynamic changes of insulin released in response to nutritional states. These interactions could serve to convey the changes in pancreatic and systemic insulin to the brain.

  18. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines.

    PubMed

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D; Williams, Daniel L; Magee, Timothy D; Kaeppler, Shawn M; de Leon, Natalia; Hodge, David B

    2015-07-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize ( Zea mays L.) lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA)more » content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Also, another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. In conclusion, this indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment« less

  20. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize ( Zea mays L.) lines

    DOE PAGES

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; ...

    2015-02-20

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA)more » content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Also, another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. In conclusion, this indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment« less

  1. ACTIVATION OF EXTRACELLULAR-SIGNAL REGULATED KINASE (ERK1/2) BY FLUID SHEAR IS CA2+- AND ATP-DEPENDENT IN MC3T3-E1 OSTEOBLASTS

    PubMed Central

    Liu, Dawei; Genetos, Damian C.; Shao, Ying; Geist, Derik J.; Li, Jiliang; Ke, Hua Zhu; Turner, Charles H.; Duncan, Randall L.

    2010-01-01

    To determine the role of Ca2+ signaling in activation of the Mitogen-Activated Protein Kinase (MAPK) pathway, we subjected MC3T3-E1 pre-osteoblastic cells to inhibitors of Ca2+ signaling during application of fluid shear stress (FSS). FSS only activated ERK1/2, rapidly inducing phosphorylation within 5 minutes of the onset of shear. Phosphorylation of ERK1/2 (pERK1/2) was significantly reduced when Ca2+i was chelated with BAPTA or when Ca2+ was removed from the flow media. Inhibition of both the L-type voltage-sensitive Ca2+ channel and the mechanosensitive cation-selective channel blocked FSS-induced pERK1/2. Inhibition of phospholipase C with U73122 significantly reduced pERK1/2. This inhibition did not result from block of intracellular Ca2+ release, but a loss of PKC activation. Recent data suggests a role of ATP release and purinergic receptor activation in mechanotransduction. Apyrase-mediated hydrolysis of extracellular ATP completely blocked FSS-induced phosphorylation of ERK1/2, while addition of exogenous ATP to static cells mimicked the effects of FSS on pERK1/2. Two P2 receptors, P2Y2 and P2X7, have been associated with the anabolic responses of bone to mechanical loading. Using both iRNA techniques and primary osteoblasts isolated from P2X7 knockout mice, we found that the P2X7, but not the P2Y2, purinergic receptor was involved in ERK1/2 activation under FSS. These data suggest that FSS-induced ERK1/2 phosphorylation requires Ca2+-dependent ATP release, however both increased Ca2+i and PKC activation are needed for complete activation. Further, this ATP-dependent ERK1/2 phosphorylation is mediated through P2X7, but not P2Y2, purinergic receptors. PMID:18291742

  2. Effects of Levetiracetam, Carbamazepine, Phenytoin, Valproate, Lamotrigine, Oxcarbazepine, Topiramate, Vinpocetine and Sertraline on Presynaptic Hippocampal Na(+) and Ca(2+) Channels Permeability.

    PubMed

    Sitges, María; Chiu, Luz María; Reed, Ronald C

    2016-04-01

    Ion channels are targets of various antiepileptic drugs. In cerebral presynaptic nerve endings Na(+) and Ca(2+) channels are particularly abundant, as they control neurotransmitter release, including the release of glutamate (Glu), the most concentrated excitatory amino acid neurotransmitter in the brain. Several pre-synaptic channels are implicated in the mechanism of action of the pro-convulsive agent, 4-aminopyridine (4-AP). In the present study the effects of levetiracetam and other established and newer (vinpocetine) anti-epileptic drugs, as well as of the anti-depressant, sertraline on the increase in Ca(2+) induced by 4-AP in hippocampal isolated nerve endings were investigated. Also the effects of some of the anti-seizure drugs on the selective increase in Ca(2+) induced by high K(+), or on the selective increase in Na(+) induced by veratridine were tested. Sertraline and vinpocetine effectively inhibited the rise in Ca(2+) induced by 4-AP, which was dependent on the out-in Na(+) gradient and tetrodotoxin sensitive. Carbamazepine, phenytoin, lamotrigine and oxcarbazepine inhibited the rise in Ca(2+) induced by 4-AP too, but at higher concentrations than sertraline and vinpocetine, whereas levetiracetam, valproic acid and topiramate did not. The three latter antiepileptic drugs also failed in modifying other responses mediated by the activation of brain presynaptic Na(+) or Ca(2+) channels, including Glu release. This indicates that levetiracetam, valproic acid and topiramate mechanisms of action are unrelated with a decrease in presynaptic Na(+) or Ca(2+) channels permeability. It is concluded that depolarized cerebral isolated nerve endings represent a useful tool to unmask potential antiepileptic drugs targeting presynaptic Na(+) and/or Ca(2+) channels in the brain; such as vinpocetine or the anti-depressant sertraline, which high effectiveness to control seizures in the animal in vivo has been demonstrated.

  3. Some Commonly Used Brominated Flame Retardants Cause Ca2+-ATPase Inhibition, Beta-Amyloid Peptide Release and Apoptosis in SH-SY5Y Neuronal Cells

    PubMed Central

    Al-Mousa, Fawaz; Michelangeli, Francesco

    2012-01-01

    Brominated flame retardants (BFRs) are chemicals commonly used to reduce the flammability of consumer products and are considered pollutants since they have become widely dispersed throughout the environment and have also been shown to bio-accumulate within animals and man. This study investigated the cytotoxicity of some of the most commonly used groups of BFRs on SH-SY5Y human neuroblastoma cells. The results showed that of the BFRs tested, hexabromocyclododecane (HBCD), tetrabromobisphenol-A (TBBPA) and decabromodiphenyl ether (DBPE), all are cytotoxic at low micromolar concentrations (LC50 being 2.7±0.7µM, 15±4µM and 28±7µM, respectively). They induced cell death, at least in part, by apoptosis through activation of caspases. They also increased intracellular [Ca2+] levels and reactive-oxygen-species within these neuronal cells. Furthermore, these BFRs also caused rapid depolarization of the mitochondria and cytochrome c release in these neuronal cells. Elevated intracellular [Ca2+] levels appear to occur through a mechanism involving microsomal Ca2+-ATPase inhibition and this maybe responsible for Ca2+-induced mitochondrial dysfunction. In addition, µM levels of these BFRs caused β-amyloid peptide (Aβ-42) processing and release from these cells with a few hours of exposure. These results therefore shows that these pollutants are both neurotoxic and amyloidogenic in-vitro. PMID:22485137

  4. The Novel Analogue of Hirsutine as an Anti-Hypertension and Vasodilatary Agent Both In Vitro and In Vivo

    PubMed Central

    Ma, Fen-Fen; Gu, Xian-Feng; Zhu, Yi-Chun; Zhu, Yi-Zhun

    2015-01-01

    In this paper, an analogue of hirsutine (compound 1) has been synthesized and evaluated as an anti-hypertension agent, which exhibits extraordinary effects on the contractile response of thoracic aorta rings from male SD rats in vitro (IC50 = 1.129×10-9±0.5025) and the abilities of reducing the systolic blood pressure (SBP) and heart rate (HR) of SHR in vivo. The mechanism investigation reveals that the vasodilatation induced by compound 1 is mediated by both endothelium-dependent and -independent manners. The relaxation in endothelium-intact aortic rings induced by compound 1 can be inhibited by L-NAME (1×10-6 mol•L-1) and ODQ (1×10-6 mol•L-1). Moreover, compound 1 can also block Ca2+ influx through L-type Ca2+ channels and inhibit intracellular Ca2+ release while no effect on K+ channel has been observed. All these data demonstrated that the NO/cyclic GMP pathway can be involved in endothelium-dependent manner induced by compound 1. Meanwhile the mechanism on the vasodilatation of compound 1 probably also related to blockade of Ca2+ influx through L-type Ca2+ channels and inhibition of intracellular Ca2+ release may have no relationship with K+ channels. PMID:25909998

  5. Calcium phosphate particles stimulate interleukin-1β release from human vascular smooth muscle cells: A role for spleen tyrosine kinase and exosome release.

    PubMed

    Dautova, Yana; Kapustin, Alexander N; Pappert, Kevin; Epple, Matthias; Okkenhaug, Hanneke; Cook, Simon J; Shanahan, Catherine M; Bootman, Martin D; Proudfoot, Diane

    2018-02-01

    Calcium phosphate (CaP) particle deposits are found in several inflammatory diseases including atherosclerosis and osteoarthritis. CaP, and other forms of crystals and particles, can promote inflammasome formation in macrophages leading to caspase-1 activation and secretion of mature interleukin-1β (IL-1β). Given the close association of small CaP particles with vascular smooth muscle cells (VSMCs) in atherosclerotic fibrous caps, we aimed to determine if CaP particles affected pro-inflammatory signalling in human VSMCs. Using ELISA to measure IL-1β release from VSMCs, we demonstrated that CaP particles stimulated IL-1β release from proliferating and senescent human VSMCs, but with substantially greater IL-1β release from senescent cells; this required caspase-1 activity but not LPS-priming of cells. Potential inflammasome agonists including ATP, nigericin and monosodium urate crystals did not stimulate IL-1β release from VSMCs. Western blot analysis demonstrated that CaP particles induced rapid activation of spleen tyrosine kinase (SYK) (increased phospho-Y525/526). The SYK inhibitor R406 reduced IL-1β release and caspase-1 activation in CaP particle-treated VSMCs, indicating that SYK activation occurs upstream of and is required for caspase-1 activation. In addition, IL-1β and caspase-1 colocalised in intracellular endosome-like vesicles and we detected IL-1β in exosomes isolated from VSMC media. Furthermore, CaP particle treatment stimulated exosome secretion by VSMCs in a SYK-dependent manner, while the exosome-release inhibitor spiroepoxide reduced IL-1β release. CaP particles stimulate SYK and caspase-1 activation in VSMCs, leading to the release of IL-1β, at least in part via exosomes. These novel findings in human VSMCs highlight the pro-inflammatory and pro-calcific potential of microcalcification. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Crosslink between calcium and sodium signalling.

    PubMed

    Verkhratsky, Alexei; Trebak, Mohamed; Perocchi, Fabiana; Khananshvili, Daniel; Sekler, Israel

    2018-02-01

    What is the topic of this review? This paper overviews the links between Ca 2+ and Na + signalling in various types of cells. What advances does it highlight? This paper highlights the general importance of ionic signalling and overviews the molecular mechanisms linking Na + and Ca 2+ dynamics. In particular, the narrative focuses on the molecular physiology of plasmalemmal and mitochondrial Na + -Ca 2+ exchangers and plasmalemmal transient receptor potential channels. Functional consequences of Ca 2+ and Na + signalling for co-ordination of neuronal activity with astroglial homeostatic pathways fundamental for synaptic transmission are discussed. Transmembrane ionic gradients, which are an indispensable feature of life, are used for generation of cytosolic ionic signals that regulate a host of cellular functions. Intracellular signalling mediated by Ca 2+ and Na + is tightly linked through several molecular pathways that generate Ca 2+ and Na + fluxes and are in turn regulated by both ions. Transient receptor potential (TRP) channels bridge endoplasmic reticulum Ca 2+ release with generation of Na + and Ca 2+ currents. The plasmalemmal Na + -Ca 2+ exchanger (NCX) flickers between forward and reverse mode to co-ordinate the influx and efflux of both ions with membrane polarization and cytosolic ion concentrations. The mitochondrial calcium uniporter channel (MCU) and mitochondrial Na + -Ca 2+ exchanger (NCLX) mediate Ca 2+ entry into and release from this organelle and couple cytosolic Ca 2+ and Na + fluctuations with cellular energetics. Cellular Ca 2+ and Na + signalling controls numerous functional responses and, in the CNS, provides for fast regulation of astroglial homeostatic cascades that are crucial for maintenance of synaptic transmission. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  7. CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction.

    PubMed

    Gri, Giorgia; Piconese, Silvia; Frossi, Barbara; Manfroi, Vanessa; Merluzzi, Sonia; Tripodo, Claudio; Viola, Antonella; Odom, Sandra; Rivera, Juan; Colombo, Mario P; Pucillo, Carlo E

    2008-11-14

    T regulatory (Treg) cells play a role in the suppression of immune responses, thus serving to induce tolerance and control autoimmunity. Here, we explored whether Treg cells influence the immediate hypersensitivity response of mast cells (MCs). Treg cells directly inhibited the FcvarepsilonRI-dependent MC degranulation through cell-cell contact involving OX40-OX40L interactions between Treg cells and MCs, respectively. When activated in the presence of Treg cells, MCs showed increased cyclic adenosine monophosphate (cAMP) concentrations and reduced Ca(2+) influx, independently of phospholipase C (PLC)-gamma2 or Ca(2+) release from intracellular stores. Antagonism of cAMP in MCs reversed the inhibitory effects of Treg cells, restoring normal Ca(2+) responses and degranulation. Importantly, the in vivo depletion or inactivation of Treg cells caused enhancement of the anaphylactic response. The demonstrated crosstalk between Treg cells and MCs defines a previously unrecognized mechanism controlling MC degranulation. Loss of this interaction may contribute to the severity of allergic responses.

  8. Profiling calcium signals of in vitro polarized human effector CD4+ T cells.

    PubMed

    Kircher, Sarah; Merino-Wong, Maylin; Niemeyer, Barbara A; Alansary, Dalia

    2018-06-01

    Differentiation of naïve CD4 + T cells into effector subtypes with distinct cytokine profiles and physiological roles is a tightly regulated process, the imbalance of which can lead to an inadequate immune response or autoimmune disease. The crucial role of Ca 2+ signals, mainly mediated by the store operated Ca 2+ entry (SOCE) in shaping the immune response is well described. However, it is unclear if human effector CD4 + T cell subsets show differential Ca 2+ signatures in response to different stimulation methods. Herein, we provide optimized in vitro culture conditions for polarization of human CD4 + effector T cells and characterize their SOCE following both pharmacological store depletion and direct T-cell receptor (TCR) activation. Moreover, we measured whole cell Ca 2+ release activated Ca 2+ currents (I CRAC ) and investigated whether the observed differences correlate to the expression of CRAC genes. Our results show that Ca 2+ profiles of helper CD4 + Th1, Th2 and Th17 are distinct and in part shaped by the intensity of stimulation. Regulatory T cells (Treg) are unique being the subtype with the most prominent SOCE response. Analysis of in vivo differentiated Treg unraveled the role of differential expression of ORAI2 in fine-tuning signals in Treg vs. conventional CD4 + T cells. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. The protective role of Bax Inhibitor-1 against chronic mild stress through the inhibition of monoamine oxidase A

    PubMed Central

    Lee, Hwa-Young; Lee, Geum-Hwa; Marahatta, Anu; Lin, Shun-Mei; Lee, Mi-Rin; Jang, Kyu Yun; Kim, Kyung Min; Lee, Hee Jae; Lee, Jae-Won; Bagalkot, Tarique Rajasaheb; Chung, Young-Chul; Lee, Yong-Chul; Kim, Hyung-Ryong; Chae, Han-Jung

    2013-01-01

    The anti-apoptotic protein Bax inhibitor-1 (BI-1) is a regulator of apoptosis linked to endoplasmic reticulum (ER) stress. It has been hypothesized that BI-1 protects against neuron degenerative diseases. In this study, BI-1−/− mice showed increased vulnerability to chronic mild stress accompanied by alterations in the size and morphology of the hippocampi, enhanced ROS accumulation and an ER stress response compared with BI-1+/+ mice. BI-1−/− mice exposed to chronic mild stress showed significant activation of monoamine oxidase A (MAO-A), but not MAO-B, compared with BI-1+/+ mice. To examine the involvement of BI-1 in the Ca2+-sensitive MAO activity, thapsigargin-induced Ca2+ release and MAO activity were analyzed in neuronal cells overexpressing BI-1. The in vitro study showed that BI-1 regulates Ca2+ release and related MAO-A activity. This study indicates an endogenous protective role of BI-1 under conditions of chronic mild stress that is primarily mediated through Ca2+-associated MAO-A regulation. PMID:24292328

  10. External pH changes affect NMDA-evoked and spontaneous release of cholecystokinin, somatostatin and noradrenaline from rat cerebrocortical nerve endings.

    PubMed

    Gemignani, Anita; Paudice, Paolo; Longordo, Fabio; Raiteri, Maurizio

    2004-10-01

    It was previously reported that the K+-evoked release of somatostatin-like immunoreactivity (SRIF-LI) and of cholecystokinin-like immunoreactivity (CCK-LI) from superfused rat cerebrocortical synaptosomes can be enhanced by NMDA or D-serine alone. We here studied the effects of extraterminal pH changes on SRIF-LI and CCK-LI release. Lowering pH from 7.4 to 6.9 or 6.4 abolished the effects of NMDA or D-serine on the K+-evoked peptide release. Identical results were obtained when external pH was raised to 8 or 8.7. Sudden alkalinization of the superfusion medium, in absence of K+-depolarization, induced SRIF-LI or CCK-LI release which was insensitive to NMDA. Based on experiments in Ca2+-free medium and with voltage-sensitive Ca2+ channel (VSCC) blockers, the pH 8.7-induced release of SRIF-LI and CCK-LI was only in part (30-50%) dependent on external Ca2+ and Ca2+ channel activation. In contrast, the alkalinization-evoked release of [3H]noradrenaline was highly sensitive to external Ca2+ removal and to blockade of Ca2+ channels with omega-conotoxins. The pH 8.7-evoked SRIF-LI and CCK-LI was about halved in synaptosomes intoxicated with botulinum toxin C1. The results suggest that the pH-sensitive NMDA receptors mediating somatostatin and cholecystokinin release contain NR1 subunits lacking the exon-5 cassette. Alkalinization represents a novel releasing stimulus which elicits neuropeptide release in part by conventional exocytosis and largely by an external Ca2+-independent mechanism. Differently, the release of noradrenaline provoked by alkalinization occurs entirely by conventional exocytosis.

  11. Properties of a Novel pH-dependent Ca2+ Permeation Pathway Present in Male Germ Cells with Possible Roles in Spermatogenesis and Mature Sperm Function

    PubMed Central

    Santi, Celia M.; Santos, Teresa; Hernández-Cruz, Arturo; Darszon, Alberto

    1998-01-01

    Rises of intracellular Ca2+ ([Ca2+]i) are key signals for cell division, differentiation, and maturation. Similarly, they are likely to be important for the unique processes of meiosis and spermatogenesis, carried out exclusively by male germ cells. In addition, elevations of [Ca2+]i and intracellular pH (pHi) in mature sperm trigger at least two events obligatory for fertilization: capacitation and acrosome reaction. Evidence implicates the activity of Ca2+ channels modulated by pHi in the origin of these Ca2+ elevations, but their nature remains unexplored, in part because work in individual spermatozoa are hampered by formidable experimental difficulties. Recently, late spermatogenic cells have emerged as a model system for studying aspects relevant for sperm physiology, such as plasmalemmal ion fluxes. Here we describe the first study on the influence of controlled intracellular alkalinization on [Ca2+]i on identified spermatogenic cells from mouse adult testes. In BCECF [(2′,7′)-bis(carboxymethyl)- (5,6)-carboxyfluorescein]-AM-loaded spermatogenic cells, a brief (30–60 s) application of 25 mM NH4Cl increased pHi by ∼1.3 U from a resting pHi ∼6.65. A steady pHi plateau was maintained during NH4Cl application, with little or no rebound acidification. In fura-2-AM-loaded cells, alkalinization induced a biphasic response composed of an initial [Ca2+]i drop followed by a two- to threefold rise. Maneuvers that inhibit either Ca2+ influx or intracellular Ca2+ release demonstrated that the majority of the Ca2+ rise results from plasma membrane Ca2+ influx, although a small component likely to result from intracellular Ca2+ release was occasionally observed. Ca2+ transients potentiated with repeated NH4Cl applications, gradually obliterating the initial [Ca2+]i drop. The pH-sensitive Ca2+ permeation pathway allows the passage of other divalents (Sr2+, Ba2+, and Mn2+) and is blocked by inorganic Ca2+ channel blockers (Ni2+ and Cd2+), but not by the organic blocker nifedipine. The magnitude of these Ca2+ transients increased as maturation advanced, with the largest responses being recorded in testicular sperm. By extrapolation, these findings suggest that the pH-dependent Ca2+ influx pathway could play significant roles in mature sperm physiology. Its pharmacology and ion selectivity suggests that it corresponds to an ion channel different from the voltage-gated T-type Ca2+ channel also present in spermatogenic cells. We postulate that the Ca2+ permeation pathway regulated by pHi, if present in mature sperm, may be responsible for the dihydropyridine-insensitive Ca2+ influx required for initiating the acrosome reaction and perhaps other important sperm functions. PMID:9649582

  12. Somato-axodendritic release of oxytocin into the brain due to calcium amplification is essential for social memory.

    PubMed

    Higashida, Haruhiro

    2016-07-01

    Oxytocin (OT) is released into the brain from the cell soma, axons, and dendrites of neurosecretory cells in the hypothalamus. Locally released OT can activate OT receptors, form inositol-1,4,5-trisphosphate and elevate intracellular free calcium (Ca(2+)) concentrations [(Ca(2+)) i ] in self and neighboring neurons in the hypothalamus, resulting in further OT release: i.e., autocrine or paracrine systems of OT-induced OT release. CD38-dependent cyclic ADP-ribose (cADPR) is also involved in this autoregulation by elevating [Ca(2+)] i via Ca(2+) mobilization through ryanodine receptors on intracellular Ca(2+) pools that are sensitive to both Ca(2+) and cADPR. In addition, it has recently been reported that heat stimulation and hyperthermia enhance [Ca(2+)] i increases by Ca(2+) influx, probably through TRPM2 cation channels, suggesting that cADPR and TRPM2 molecules act as Ca(2+) signal amplifiers. Thus, OT release is not simply due to depolarization-secretion coupling. Both of these molecules play critical roles not only during labor and milk ejection in reproductive females, but also during social behavior in daily life in both genders. This was clearly demonstrated in CD38 knockout mice in that social behavior was impaired by reduction of [Ca(2+)] i elevation and subsequent OT secretion. Evidence for the associations of CD38 with social behavior and psychiatric disorder is discussed, especially in subjects with autism spectrum disorder.

  13. Control of glutamate release by calcium channels and κ-opioid receptors in rodent and primate striatum

    PubMed Central

    Hill, M P; Brotchie, J M

    1999-01-01

    The modulation of depolarization (4-aminopyridine, 2 mM)-evoked endogenous glutamate release by κ-opioid receptor activation and blockade of voltage-dependent Ca2+-channels has been investigated in synaptosomes prepared from rat and marmoset striatum.4-Aminopyridine (4-AP)-stimulated, Ca2+-dependent glutamate release was inhibited by enadoline, a selective κ-opioid receptor agonist, in a concentration-dependent and nor-binaltorphimine (nor-BNI, selective κ-opioid receptor antagonist)-sensitive manner in rat (IC50=4.4±0.4 μM) and marmoset (IC50=2.9±0.7 μM) striatal synaptosomes. However, in the marmoset, there was a significant (≈23%) nor-BNI-insensitive component.In rat striatal synaptosomes, the Ca2+-channel antagonists ω-agatoxin-IVA (P/Q-type blocker), ω-conotoxin-MVIIC (N/P/Q-type blocker) and ω-conotoxin-GVIA (N-type blocker) reduced 4-AP-stimulated, Ca2+-dependent glutamate release in a concentration-dependent manner with IC50 values of 6.5±0.9 nM, 75.5±5.9 nM and 106.5±8.7 nM, respectively. In marmoset striatal synaptosomes, 4-AP-stimulated, Ca2+-dependent glutamate release was significantly inhibited by ω-agatoxin-IVA (30 nM, 57.6±2.3%, inhibition), ω-conotoxin-MVIIC (300 nM, 57.8±3.1%) and ω-conotoxin-GVIA (1 μM, 56.7±2%).Studies utilizing combinations of Ca2+-channel antagonists suggests that in the rat striatum, two relatively distinct pools of glutamate, released by activation of either P or Q-type Ca2+-channels, exist. In contrast, in the primate there is much overlap between the glutamate released by P and Q-type Ca2+-channel activation.Studies using combinations of enadoline and the Ca2+-channel antagonists suggest that enadoline-induced inhibition of glutamate release occurs primarily via reduction of Ca2+-influx through P-type Ca2+-channels in the rat but via N-type Ca2+-channels in the marmoset.In conclusion, the results presented suggest that there are species differences in the control of glutamate release by κ-opioid receptors and Ca2+-channels. PMID:10369483

  14. The role of spatial organization of Ca2+ release sites in the generation of arrhythmogenic diastolic Ca2+ release in myocytes from failing hearts

    PubMed Central

    Ho, Hsiang-Ting; Bonilla, Ingrid M.; Terentyeva, Radmila; Schober, Karsten E.; Terentyev, Dmitry; Carnes, Cynthia A.

    2018-01-01

    In heart failure (HF), dysregulated cardiac ryanodine receptors (RyR2) contribute to the generation of diastolic Ca2+ waves (DCWs), thereby predisposing adrenergically stressed failing hearts to life-threatening arrhythmias. However, the specific cellular, subcellular, and molecular defects that account for cardiac arrhythmia in HF remain to be elucidated. Patch-clamp techniques and confocal Ca2+ imaging were applied to study spatially defined Ca2+ handling in ventricular myocytes isolated from normal (control) and failing canine hearts. Based on their activation time upon electrical stimulation, Ca2+ release sites were categorized as coupled, located in close proximity to the sarcolemmal Ca2+ channels, and uncoupled, the Ca2+ channel-free non-junctional Ca2+ release units. In control myocytes, stimulation of β-adrenergic receptors with isoproterenol (Iso) resulted in a preferential increase in Ca2+ spark rate at uncoupled sites. This site-specific effect of Iso was eliminated by the phosphatase inhibitor okadaic acid, which caused similar facilitation of Ca2+ sparks at coupled and uncoupled sites. Iso-challenged HF myocytes exhibited increased predisposition to DCWs compared to control myocytes. In addition, the overall frequency of Ca2+ sparks was increased in HF cells due to preferential stimulation of coupled sites. Furthermore, coupled sites exhibited accelerated recovery from functional refractoriness in HF myocytes compared to control myocytes. Spatially resolved subcellular Ca2+ mapping revealed that DCWs predominantly originated from coupled sites. Inhibition of CaMK∏ suppressed DCWs and prevented preferential stimulation of coupled sites in Iso-challenged HF myocytes. These results suggest that CaMK∏-(and phosphatase)-dependent dysregulation of junctional Ca2+ release sites contributes to Ca2+-dependent arrhythmogenesis in HF. PMID:28612155

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohara-Imaizumi, Mica; Aoyagi, Kyota; Nakamichi, Yoko

    We simultaneously analyzed insulin granule fusion with insulin fused to green fluorescent protein and the subplasma membrane Ca{sup 2+} concentration ([Ca{sup 2+}]{sub PM}) with the Ca{sup 2+} indicator Fura Red in rat {beta} cells by dual-color total internal reflection fluorescence microscopy. We found that rapid and marked elevation in [Ca{sup 2+}]{sub PM} caused insulin granule fusion mostly from previously docked granules during the high KCl-evoked release and high glucose-evoked first phase release. In contrast, the slow and sustained elevation in [Ca{sup 2+}]{sub PM} induced fusion from newcomers translocated from the internal pool during the low KCl-evoked release and glucose-evoked secondmore » phase release. These data suggest that the pattern of the [Ca{sup 2+}]{sub PM} rise directly determines the types of fusing granules.« less

  16. Hydrogen sulfide activates TRPA1 and releases 5-HT from epithelioid cells of the chicken thoracic aorta.

    PubMed

    Delgermurun, Dugar; Yamaguchi, Soichiro; Ichii, Osamu; Kon, Yasuhiro; Ito, Shigeo; Otsuguro, Ken-Ichi

    2016-09-01

    Epithelioid cells in the chicken thoracic aorta are chemoreceptor cells that release 5-HT in response to hypoxia. It is likely that these cells play a role in chemoreception similar to that of glomus cells in the carotid bodies of mammals. Recently, H2S was reported to be a key mediator of carotid glomus cell responses to hypoxia. The aim of the present study was to reveal the mechanism of action of H2S on 5-HT outflow from chemoreceptor cells in the chicken thoracic aorta. The 5-HT outflow induced by NaHS, an H2S donor, and Na2S3, a polysulfide, was measured by using a HPLC equipped with an electrochemical detector. NaHS (0.3-3mM) caused a concentration-dependent increase in 5-HT outflow, which was significantly inhibited by the removal of extracellular Ca(2+). 5-HT outflow induced by NaHS (0.3mM) was also significantly inhibited by voltage-dependent L- and N-type Ca(2+) channel blockers and a selective TRPA1 channel blocker. Cinnamaldehyde, a TRPA1 agonist, mimicked the secretory response to H2S. 5-HT outflow induced by Na2S3 (10μM) was also inhibited by the TRPA1 channel blocker. Furthermore, the expression of TRPA1 was localized to 5-HT-containing chemoreceptor cells in the aortic wall. These findings suggest that the activation of TRPA1 and voltage-dependent Ca(2+) channels is involved in H2S-evoked 5-HT release from chemoreceptor cells in the chicken aorta. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Activation of K+ channels by lanthanum contributes to the block of transmitter release in chick and rat sympathetic neurons.

    PubMed

    Przywara, D A; Bhave, S V; Bhave, A; Chowdhury, P S; Wakade, T D; Wakade, A R

    1992-01-01

    We studied the effects of lanthanum (La3+) on the release of 3H-norepinephrine (3H-NE), intracellular Ca2+ concentration, and voltage clamped Ca2+ and K+ currents in cultured sympathetic neurons. La3+ (0.1 to 10 microM) produced concentration-dependent inhibition of depolarization induced Ca2+ influx and 3H-NE release. La3+ was more potent and more efficacious in blocking 3H-NE release than the Ca(2+)-channel blockers cadmium and verapamil, which never blocked more than 70% of the release. At 3 microM, La3+ produced a complete block of the electrically stimulated rise in intracellular free Ca2+ ([Ca2+]i) in the cell body and the growth cone. The stimulation-evoked release of 3H-NE was also completely blocked by 3 microM La3+. However, 3 microM La3+ produced only a partial block of voltage clamped Ca2+ current (ICa). Following La3+ (10 microM) treatment 3H-NE release could be evoked by high K+ stimulation of neurons which were refractory to electrical stimulation. La3+ (1 microM) increased the hyperpolarization activated, 4-aminopyridine (4-AP) sensitive, transient K+ current (IA) with little effect on the late outward current elicited from depolarized holding potentials. We conclude that the effective block of electrically stimulated 3H-NE release is a result of the unique ability of La3+ to activate a stabilizing, outward K+ current at the same concentration that it blocks inward Ca2+ current.

  18. Dissolution kinetics of iron-, manganese-, and copper-containing synthetic hydroxyapatites

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Hossner, L. R.; Ming, D. W.

    2005-01-01

    Micronutrient-substituted synthetic hydroxyapatite (SHA) is being evaluated by the National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program for crop production on long-duration human missions to the International Space Station or for future Lunar or Martian outposts. The stirred-flow technique was utilized to characterize Ca, P, Fe, Mn, and Cu release characteristics from Fe-, Mn-, and Cu-containing SHA in deionized (DI) water, citric acid, and diethylene-triamine-pentaacetic acid (DTPA). Initially, Ca and P release rates decreased rapidly with time and were controlled by a non-SHA calcium phosphate phase(s) with low Ca/P solution molar ratios (0.91-1.51) relative to solid SHA ratios (1.56-1.64). At later times, Ca/P solution molar ratios (1.47-1.79) were near solid SHA ratios and release rates decreased slowly indicating that SHA controlled Ca and P release. Substituted SHA materials had faster dissolution rates relative to unsubstituted SHA. The initial metal release rate order was Mn >> Cu > Fe which followed metal-oxide/phosphate solubility suggesting that poorly crystalline metal-oxides/phosphates were dominating metal release. Similar metal release rates for all substituted SHA (approximately 0.01 cmol kg-1 min-1) at the end of the DTPA experiment indicated that SHA dissolution was supplying the metals into solution and that poorly crystalline metal-oxide/phosphates were not controlling metal release. Results indicate that non-SHA Ca-phosphate phases and poorly crystalline metal-oxide/phosphates will contribute Ca, P, and metals. After these phases have dissolved, substituted SHA will be the source of Ca, P, and metals for plants.

  19. Research on the biological activity and doxorubicin release behavior in vitro of mesoporous bioactive SiO2-CaO-P2O5 glass nanospheres

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Wang, Gen; Zhang, Ying

    2017-10-01

    Mesoporous bioactive glass (MBG) nanospheres have been synthesized by a facile method of sacrificing template using cetyl trimethyl ammonium bromide (CTAB) as surfactant. The prepared MBG nanospheres possess high specific surface area (632 m2 g-1) as well as uniform size (∼100 nm). In addition, MBG nanospheres exhibited a quick in vitro bioactive response in simulated body fluids (SBF) and excellent bioactivity of inducing hydroxyapatite (HA) forming on the surface of MBG nanospheres. Furthermore, MBG nanospheres can sustain release of doxorubicin (DOX) with a higher encapsulation efficiency (63.6%) and show distinct degradation in PBS by releasing Si and Ca ions. The encapsulation efficiency and DOX release of MBG nanospheres could be controlled by mesoporous structure and local pH environment. The greater surface area and pore volumes of prepared MBG nanospheres are conducive to bioactive response and drug release in vitro. The amino groups in DOX can be easily protonated at acidic medium to become positively charged NH+3, which allow these drug molecules to be desorbed from the surface of MBG nanospheres via electrostatic effect. Therefore, the synthesized MBG nanospheres have a pH-sensitive drug release capability. In addition, the cytotoxicity of MBG nanospheres was assessed using a cell counting kit-8 (CCK-8), and results showed that the synthesized MBG nanospheres had no significant cytotoxicity to MC3T3 cells. These all indicated that as-prepared MBG nanospheres are promising candidates for bone tissue engineering.

  20. TPC2 is a novel NAADP-sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+.

    PubMed

    Pitt, Samantha J; Funnell, Tim M; Sitsapesan, Mano; Venturi, Elisa; Rietdorf, Katja; Ruas, Margarida; Ganesan, A; Gosain, Rajendra; Churchill, Grant C; Zhu, Michael X; Parrington, John; Galione, Antony; Sitsapesan, Rebecca

    2010-11-05

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca(2+) required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca(2+) from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca(2+) release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca(2+) that will enable it to act as a Ca(2+) release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca(2+)] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca(2+) release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca(2+) release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 μM but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.

  1. Ionic mechanisms and Ca2+ dynamics underlying the glucose response of pancreatic β cells: a simulation study

    PubMed Central

    Cha, Chae Young; Nakamura, Yasuhiko; Himeno, Yukiko; Wang, JianWu; Fujimoto, Shinpei; Inagaki, Nobuya; Earm, Yung E

    2011-01-01

    To clarify the mechanisms underlying the pancreatic β-cell response to varying glucose concentrations ([G]), electrophysiological findings were integrated into a mathematical cell model. The Ca2+ dynamics of the endoplasmic reticulum (ER) were also improved. The model was validated by demonstrating quiescent potential, burst–interburst electrical events accompanied by Ca2+ transients, and continuous firing of action potentials over [G] ranges of 0–6, 7–18, and >19 mM, respectively. These responses to glucose were completely reversible. The action potential, input impedance, and Ca2+ transients were in good agreement with experimental measurements. The ionic mechanisms underlying the burst–interburst rhythm were investigated by lead potential analysis, which quantified the contributions of individual current components. This analysis demonstrated that slow potential changes during the interburst period were attributable to modifications of ion channels or transporters by intracellular ions and/or metabolites to different degrees depending on [G]. The predominant role of adenosine triphosphate–sensitive K+ current in switching on and off the repetitive firing of action potentials at 8 mM [G] was taken over at a higher [G] by Ca2+- or Na+-dependent currents, which were generated by the plasma membrane Ca2+ pump, Na+/K+ pump, Na+/Ca2+ exchanger, and TRPM channel. Accumulation and release of Ca2+ by the ER also had a strong influence on the slow electrical rhythm. We conclude that the present mathematical model is useful for quantifying the role of individual functional components in the whole cell responses based on experimental findings. PMID:21708953

  2. Calcium-dependent transferrin receptor recycling in bovine chromaffin cells.

    PubMed

    Knight, Derek E

    2002-04-01

    The release of regulated secretory granules is known to be calcium dependent. To examine the Ca2+-dependence of other exocytic fusion events, transferrin recycling in bovine chromaffin cells was examined. Internalised 125I-transferrin was released constitutively from cells with a half-time of about 7 min. Secretagogues that triggered catecholamine secretion doubled the rate of 125I-transferrin release, the time courses of the two triggered secretory responses being similar. The triggered 125I-transferrin release came from recycling endosomes rather than from sorting endosomes or a triggered secretory vesicle pool. Triggered 125I-transferrin release, like catecholamine secretion from the same cells, was calcium dependent but the affinities for calcium were very different. The extracellular calcium concentrations that gave rise to half-maximal evoked secretion were 0.1 mm for 125I-transferrin and 1.0 mm for catecholamine, and the intracellular concentrations were 0.1 microm and 1 microm, respectively. There was significant 125I-transferrin recycling in the virtual absence of intracellular Ca2+, but the rate increased when Ca2+ was raised above 1 nm, and peaked at 1 microm when the rate had doubled. Botulinum toxin type D blocked both transferrin recycling and catecholamine secretion. These results indicate that a major component of the vesicular transport required for the constitutive recycling of transferrin in quiescent cells is calcium dependent and thus under physiological control, and also that some of the molecular machinery involved in transferrin recycling/fusion processes is shared with that for triggered neurosecretion.

  3. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia.

    PubMed

    Mizoguchi, Yoshito; Kato, Takahiro A; Seki, Yoshihiro; Ohgidani, Masahiro; Sagata, Noriaki; Horikawa, Hideki; Yamauchi, Yusuke; Sato-Kasai, Mina; Hayakawa, Kohei; Inoue, Ryuji; Kanba, Shigenobu; Monji, Akira

    2014-06-27

    Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca(2+)]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca(2+) elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca(2+) elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Distinct roles for multiple Src family kinases at fertilization.

    PubMed

    O'Neill, Forest J; Gillett, Jessica; Foltz, Kathy R

    2004-12-01

    Egg activation at fertilization requires the release of Ca2+ from the endoplasmic reticulum of the egg. Recent evidence indicates that Src family kinases (SFKs) function in the signaling pathway that initiates this Ca2+ release in the eggs of many deuterostomes. We have identified three SFKs expressed in starfish (Asterina miniata) eggs, designated AmSFK1, AmSFK2 and AmSFK3. Antibodies made against the unique domains of each AmSFK protein revealed that all three are expressed in eggs and localized primarily to the membrane fraction. Both AmSFK1 and AmSFK3 (but not AmSFK2) are necessary for egg activation, as determined by injection of starfish oocytes with dominant-interfering Src homology 2 (SH2) domains, which specifically delay and reduce the initial release of Ca2+ at fertilization. AmSFK3 exhibits a very rapid and transient kinase activity in response to fertilization, peaking at 30 seconds post sperm addition. AmSFK1 kinase activity also increases transiently at fertilization, but peaks later, at 2 minutes. These results indicate that there are multiple SFKs present in starfish eggs with distinct, perhaps sequential, signaling roles.

  5. Simultaneous recording of t-tubular electrical activity and Ca2+-release in heart failure

    NASA Astrophysics Data System (ADS)

    Crocini, C.; Coppini, R.; Ferrantini, C.; Yan, P.; Loew, L.; Tesi, C.; Poggesi, C.; Cerbai, E.; Pavone, F. S.; Sacconi, L.

    2014-05-01

    T-tubules (TT) are invaginations of the surface sarcolemma (SS) that mediate the rapid propagation of the action potential (AP) to the cardiomyocyte core. We employed the advantages of an ultrafast random access multi-photon (RAMP) microscope (Sacconi et al., PNAS 2012) with a double staining approach to optically record t-tubular AP and, simultaneously, the corresponding local Ca2+-release in different positions across the cardiomyocytes. Despite a uniform AP between SS and TT at steady-state stimulation, in control cardiomyocytes we observed a non-negligible be variability of local Ca2+-transient amplitude and kinetics. This variability was significantly reduced by applying 0.1μM Isoproterenol, which increases the opening probability of Ca2+-release units. In the rat heart failure model (HF), we previously demonstrated that some tubular elements fail to propagate AP. We found that the tubules unable to propagate AP, displayed a reduced correspondent Ca2+-transient amplitude as well as a slower Ca2+ rise compared to electrically coupled tubules. Moreover variability of Ca2+-transient kinetics were increased in HF. Finally, TT that did not show AP, occasionally exhibited spontaneous depolarizations that were never accompanied by local Ca2+-release in the absence of any pro-arrhythmogenic stimulation. Simultaneous recording of AP and Ca2+-transient allows us to probe the spatio-temporal variability of Ca2+-release, whereas the investigation of Ca2+-transient in HF discloses an unexpected uncoupling between t-tubular depolarization and Ca2+-release in remodeled tubules. This work was funded by the European Union 7th Framework Program (FP7/2007- 2013) under grant agreement n° 284464, 241526, by the Italian Ministry of University and Research (NANOMAX), and by Telethon-Italy (GGP13162).

  6. Nitric oxide-dependent activation of CaMKII increases diastolic sarcoplasmic reticulum calcium release in cardiac myocytes in response to adrenergic stimulation.

    PubMed

    Curran, Jerry; Tang, Lifei; Roof, Steve R; Velmurugan, Sathya; Millard, Ashley; Shonts, Stephen; Wang, Honglan; Santiago, Demetrio; Ahmad, Usama; Perryman, Matthew; Bers, Donald M; Mohler, Peter J; Ziolo, Mark T; Shannon, Thomas R

    2014-01-01

    Spontaneous calcium waves in cardiac myocytes are caused by diastolic sarcoplasmic reticulum release (SR Ca(2+) leak) through ryanodine receptors. Beta-adrenergic (β-AR) tone is known to increase this leak through the activation of Ca-calmodulin-dependent protein kinase (CaMKII) and the subsequent phosphorylation of the ryanodine receptor. When β-AR drive is chronic, as observed in heart failure, this CaMKII-dependent effect is exaggerated and becomes potentially arrhythmogenic. Recent evidence has indicated that CaMKII activation can be regulated by cellular oxidizing agents, such as reactive oxygen species. Here, we investigate how the cellular second messenger, nitric oxide, mediates CaMKII activity downstream of the adrenergic signaling cascade and promotes the generation of arrhythmogenic spontaneous Ca(2+) waves in intact cardiomyocytes. Both SCaWs and SR Ca(2+) leak were measured in intact rabbit and mouse ventricular myocytes loaded with the Ca-dependent fluorescent dye, fluo-4. CaMKII activity in vitro and immunoblotting for phosphorylated residues on CaMKII, nitric oxide synthase, and Akt were measured to confirm activity of these enzymes as part of the adrenergic cascade. We demonstrate that stimulation of the β-AR pathway by isoproterenol increased the CaMKII-dependent SR Ca(2+) leak. This increased leak was prevented by inhibition of nitric oxide synthase 1 but not nitric oxide synthase 3. In ventricular myocytes isolated from wild-type mice, isoproterenol stimulation also increased the CaMKII-dependent leak. Critically, in myocytes isolated from nitric oxide synthase 1 knock-out mice this effect is ablated. We show that isoproterenol stimulation leads to an increase in nitric oxide production, and nitric oxide alone is sufficient to activate CaMKII and increase SR Ca(2+) leak. Mechanistically, our data links Akt to nitric oxide synthase 1 activation downstream of β-AR stimulation. Collectively, this evidence supports the hypothesis that CaMKII is regulated by nitric oxide as part of the adrenergic cascade leading to arrhythmogenesis.

  7. F-actin-based Ca signaling-a critical comparison with the current concept of Ca signaling.

    PubMed

    Lange, Klaus; Gartzke, Joachim

    2006-11-01

    A short comparative survey on the current idea of Ca signaling and the alternative concept of F-actin-based Ca signaling is given. The two hypotheses differ in one central aspect, the mechanism of Ca storage. The current theory rests on the assumption of Ca-accumulating endoplasmic/sarcoplasmic reticulum-derived vesicles equipped with an ATP-dependent Ca pump and IP3- or ryanodine-sensitive channel-receptors for Ca-release. The alternative hypothesis proceeds from the idea of Ca storage at the high-affinity binding sites of actin filaments. Cellular sites of F-actin-based Ca storage are microvilli and the submembrane cytoskeleton. Several specific features of Ca signaling such as store-channel coupling, quantal Ca release, spiking and oscillations, biphasic and "phasic" uptake kinetics, and Ca-induced Ca release (CICR), which are not adequately described by the current concept, are inherent properties of the F-actin system and its dynamic state of treadmilling. Copyright 2006 Wiley-Liss, Inc.

  8. Myricetin Inhibits the Release of Glutamate in Rat Cerebrocortical Nerve Terminals

    PubMed Central

    Chang, Yi; Chang, Chia-Ying; Huang, Shu-Kuei

    2015-01-01

    Abstract The excessive release of glutamate is a critical element in the neuropathology of acute and chronic brain disorders. The purpose of the present study was to investigate the effect and possible mechanism of myricetin, a naturally occurring flavonoid with a neuroprotective profile, on endogenous glutamate release in the nerve terminals (synaptosomes) of the rat cerebral cortex. The release of glutamate was evoked by the K+ channel blocker 4-aminopyridine (4-AP) and measured by one-line enzyme-coupled fluorometric assay. We also used a membrane potential-sensitive dye to assay the synaptosomal plasma membrane potential, and a Ca2+ indicator Fura-2 to monitor cytosolic Ca2+ concentrations ([Ca2+]C). Results show that myricetin inhibited 4-AP-evoked glutamate release, and this effect was prevented by chelating extracellular Ca2+ ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor dl-threo-beta-benzyl-oxyaspartate had no effect on myricetin action. Myricetin did not alter the synaptosomal membrane potential, but decreased 4-AP-induced increases in the cytosolic free Ca2+ concentration. Furthermore, the myricetin effect on 4-AP-evoked glutamate release was prevented by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but not by blocking intracellular Ca2+ release. These results suggest that myricetin inhibits glutamate release from cerebrocortical synaptosomes by attenuating voltage-dependent Ca2+ entry. This implies that the inhibition of glutamate release is an important pharmacological activity of myricetin that may play a critical role in the apparent clinical efficacy of this compound. PMID:25340625

  9. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca exchangers.

    PubMed

    Barkla, Bronwyn J; Hirschi, Kendal D; Pittman, Jon K

    2008-05-01

    Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+)exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant's stress response. A common feature of these mutants was the perturbation of H(+)-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca(2+)/H(+) exchangers and H(+) pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca(2+) flux. These results suggest cautious interpretation of mutant Ca(2+)/H(+) exchanger phenotypes that may be due to either perturbed Ca(2+) or H(+) transport.

  10. Characteristics of inositol trisphosphate mediated Ca/sup 2 +/ release from permeabilized hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, S.K.; Williamson, J.R.

    1986-05-01

    Ca/sup 2 +/ release triggered by inositol trisphosphate (IP/sub 3/) has been measured in saponin-permeabilized hepatocytes with /sup 45/Ca/sup 2 +/ or Quin 2. The initial rate of Ca/sup 2 +/ release was not markedly affected by the incubation temperature (175 +/- 40 pmol/s/mg at 30/sup 0/C versus 133 +/- 24 pmol/s/mg at 4/sup 0/C). This result is consistent with the membrane translocation of Ca/sup 2 +/ occurring through an ion-channel rather than an ion-carrier. The amount of Ca/sup 2 +/ released by IP/sub 3/ was not affected by pH (6.5-8.0) or by compounds that inhibit voltage-gated Ca/sup 2 +/more » channels. La/sup 3 +/ (100 ..mu..M) markedly inhibits the effect of 1 ..mu..M IP/sub 3/. The possibility that La/sup 3 +/ chelates IP/sub 3/ cannot be excluded since the effect of La/sup 3 +/ can be overcome by increasing the IP/sub 3/ concentration. IP/sub 3/-mediated Ca/sup 2 +/ release displays a requirement for a permeant cation in the incubation medium. Optimal release is observed with K/sup +/ gluconate. Other monovalent cations, with the exception of Li/sup +/, can substitute for K/sup +/. Permeant anions, at concentrations above 40 mM, inhibit Ca/sup 2 +/ release produced by IP/sub 3/. Cl/sup -/, Br/sup -/, I/sup -/, and SO/sub 4//sup 2 -/ were equally effective. Ca/sup 2 +/ release was not inhibited by DIDS or Furosemide. /sup 85/Sr/sup 2 +/ and /sup 54/Mn/sup 2 +/ fluxes were also stimulated by IP/sub 3/. These results suggest that IP/sub 3/ acts to gate a divalent cation channel. The translocation of positive charge through this channel is balanced by ancillary movements of monovalent cations and anions across the reticular membrane.« less

  11. Transient receptor potential ankyrin 1 channels are involved in spontaneous peptide hormone release from astrocytes.

    PubMed

    Takizawa, Mai; Harada, Kazuki; Nakamura, Kazuaki; Tsuboi, Takashi

    2018-07-02

    Astrocytes, a large population of glial cells, detect neurotransmitters and respond by increasing intracellular Ca 2+ concentration ([Ca 2+ ] i ) and releasing chemical molecules called gliotransmitters. Recently discovered Ca 2+ influx through transient receptor potential ankyrin 1 (TRPA1) channels is reported to cause spontaneous [Ca 2+ ] i increase in astrocytes. While several physiological functions of TRPA1-mediated spontaneous Ca 2+ signal have been revealed, relation with gliotransmitter release, especially peptide hormone exocytosis is largely unknown. We therefore explored the [Ca 2+ ] i and exocytosis dynamics in rat astrocyte cell line C6 cells and primary astrocytes. TRPA1-mediated spontaneous [Ca 2+ ] i transients were observed in both C6 cells and primary astrocytes. Total internal reflection fluorescence microscopy revealed that Venus-tagged brain-derived neurotrophic factor and neuropeptide Y were released spontaneously from astrocytes. Activation of TRPA1 channels enhanced the frequency of peptide hormone exocytosis, and inhibition of TRPA1 channels decreased the number of peptide hormone exocytosis. These results suggest that TRPA1-mediated spontaneous [Ca 2+ ] i increase modulates the spontaneous release of peptide hormones from astrocytes. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Influence of the autonomic nervous system on calcium homeostasis in the rat.

    PubMed

    Stern, J E; Cardinali, D P

    1994-01-01

    The local surgical manipulation of sympathetic and parasympathetic nerves innervating the thyroid-parathyroid territory was employed to search for the existence of a peripheral neuroendocrine link controlling parathyroid hormone (PTH) and calcitonin (CT) release. From 8 to 24 h after superior cervical ganglionectomy (SCGx), at the time of wallerian degeneration of thyroid-parathyroid sympathetic nerve terminals, an alpha-adrenergic inhibition, together with a minor beta-adrenergic stimulation, of hypercalcemia-induced CT release, and an alpha-adrenoceptor inhibition of hypocalcemia-induced PTH release were found. In chronically SCGx rats PTH response to EDTA was slower, and after CaCl2 injection, serum calcium attained higher levels in face of normal CT levels. SCGx blocked the PTH increase found in sham-operated rats stressed by a subcutaneous injection of turpentine oil, but did not affect the greater response to EDTA. The higher hypocalcemia seen after turpentine oil was no longer observed in SCGx rats. The effects of turpentine oil stress on calcium and CT responses to a bolus injection of CaCl2 persisted in rats subjected to SCGx 14 days earlier. Interruption of thyroid-parathyroid parasympathetic input conveyed by the thyroid nerves (TN) and the inferior laryngeal nerves (ILN) caused a fall in total serum calcium, an increase of PTH levels and a decrease of CT levels, when measured 10 days after surgery. Greater responses of serum CT and PTH were detected in TN-sectioned, and in TN- or ILN-sectioned rats, respectively. Physiological concentrations of CT decreased, and those of PTH increased, in vitro cholinergic activity in rat SCG, measured as specific choline uptake, and acetylcholine synthesis and release. The results indicate that cervical autonomic nerves constitute a pathway through which the brain modulates calcium homeostasis.

  13. Hydrostatic Pressure–Induced Release of Stored Calcium in Cultured Rat Optic Nerve Head Astrocytes

    PubMed Central

    Mandal, Amritlal; Delamere, Nicholas A.

    2010-01-01

    Purpose. Elevated intraocular pressure is associated with glaucomatous optic nerve damage. Other investigators have shown functional changes in optic nerve head astrocytes subjected to elevated hydrostatic pressure (HP) for 1 to 5 days. Recently, the authors reported ERK1/2, p90RSK and NHE1 phosphorylation after 2 hours. Here they examine calcium responses at the onset of HP to determine what precedes ERK1/2 phosphorylation. Methods. Cytoplasmic calcium concentration ([Ca2+]i) was measured in cultured rat optic nerve astrocytes loaded with fura-2. The cells were placed in a closed imaging chamber and subjected to an HP increase of 15 mm Hg. Protein phosphorylation was detected by Western blot analysis. Results. The increase of HP caused an immediate slow increase in [Ca2+]i. The response persisted in calcium-free solution and when nickel chloride (4 mM) was added to suppress channel-mediated calcium entry. Previous depletion of the ER calcium stores by cyclopiazonic acid abolished the HP-induced calcium level increase. The HP-induced increase persisted in cells exposed to xestospongin C, an inhibitor of IP3R-mediated calcium release. In contrast, ryanodine receptor (RyR) antagonist ruthenium red (10 μM) or dantrolene (25 μM) inhibited the HP-induced calcium increase. The HP-induced calcium increase was abolished when ryanodine-sensitive calcium stores were pre-depleted with caffeine (3 mM). HP caused ERK1/2 phosphorylation. The magnitude of the ERK1/2 phosphorylation response was reduced by ruthenium red and dantrolene. Conclusions. Increasing HP causes calcium release from a ryanodine-sensitive cytoplasmic store and subsequent ERK1/2 activation. Calcium store release appears to be a required early step in the initial astrocyte response to an HP increase. PMID:20071675

  14. A plant EPF-type zinc-finger protein, CaPIF1, involved in defence against pathogens.

    PubMed

    Oh, Sang-Keun; Park, Jeong Mee; Joung, Young Hee; Lee, Sanghyeob; Chung, Eunsook; Kim, Soo-Yong; Yu, Seung Hun; Choi, Doil

    2005-05-01

    SUMMARY To understand better the defence responses of plants to pathogen attack, we challenged hot pepper plants with bacterial pathogens and identified transcription factor-encoding genes whose expression patterns were altered during the subsequent hypersensitive response. One of these genes, CaPIF1 (Capsicum annuum Pathogen-Induced Factor 1), was characterized further. This gene encodes a plant-specific EPF-type protein that contains two Cys(2)/His(2) zinc fingers. CaPIF1 expression was rapidly and specifically induced when pepper plants were challenged with bacterial pathogens to which they are resistant. In contrast, challenge with a pathogen to which the plants are susceptible only generated weak CaPIF1 expression. CaPIF1 expression was also strongly induced in pepper leaves by the exogenous application of ethephon, an ethylene-releasing compound, and salicylic acid, whereas methyl jasmonate had only moderate effects. CaPIF1 localized to the nuclei of onion epidermis when expressed as a CaPIF1-smGFP fusion protein. Transgenic tobacco plants over-expressing CaPIF1 driven by the CaMV 35S promoter showed increased resistance to challenge with a tobacco-specific pathogen or non-host bacterial pathogens. These plants also showed constitutive up-regulation of multiple defence-related genes. Moreover, virus-induced silencing of the CaPIF1 orthologue in Nicotiana benthamiana enhanced susceptibility to the same host or non-host bacterial pathogens. These observations provide evidence that an EPF-type Cys(2)/His(2) zinc-finger protein plays a crucial role in the activation of the pathogen defence response in plants.

  15. Spatial Segregation and Interaction of Calcium Signalling Mechanisms in Rat Hippocampal CA1 Pyramidal Neurons

    PubMed Central

    Nakamura, Takeshi; Lasser-Ross, Nechama; Nakamura, Kyoko; Ross, William N

    2002-01-01

    Postsynaptic [Ca2+]i increases result from Ca2+ entry through ligand-gated channels, entry through voltage-gated channels, or release from intracellular stores. We found that these sources have distinct spatial distributions in hippocampal CA1 pyramidal neurons. Large amplitude regenerative release of Ca2+ from IP3-sensitive stores in the form of Ca2+ waves were found almost exclusively on the thick apical shaft. Smaller release events did not extend more than 15 μm into the oblique dendrites. These synaptically activated regenerative waves initiated at points where the stimulated oblique dendrites branch from the apical shaft. In contrast, NMDA receptor-mediated increases were observed predominantly in oblique dendrites where spines are found at high density. These [Ca2+]i increases were typically more than eight times larger than [Ca2+]i from this source on the main aspiny apical shaft. Ca2+ entry through voltage-gated channels, activated by backpropagating action potentials, was detected at all dendritic locations. These mechanisms were not independent. Ca2+ entry through NMDA receptor channels or voltage-gated channels (as previously demonstrated) synergistically enhanced Ca2+ release generated by mGluR mobilization of IP3. PMID:12205182

  16. Targeting the CRMP2-Ca2+ Channel Complex for Abortive Treatment of Migraine and Posttraumatic Headache

    DTIC Science & Technology

    2017-09-01

    31 Aug 2017 4. TITLE AND SUBTITLE Migraine and Post -Traumatic Headache 5a. CONTRACT NUMBER Targeting the CRMP2-Ca2+ Channel Complex for Abortive...this study , we explored the axonal growth/specification collapsin response mediator protein 2 (CRMP2) as a novel “druggable” target for inhibiting...CGRP release and for potential relevance for treatment of migraine pain and post -traumatic headache. CRMP2 has been demonstrated to regulate N-type

  17. Hydrogen sulfide regulates intracellular Ca2+ concentration in endothelial cells from excised rat aorta.

    PubMed

    Moccia, Francesco; Bertoni, Giuseppe; Pla, Alessandra Florio; Dragoni, Silvia; Pupo, Emanuela; Merlino, Annalisa; Mancardi, Daniele; Munaron, Luca; Tanzi, Franco

    2011-09-01

    Hydrogen sulphide (H2S) is a recently discovered gasotransmitter that may regulate a growing number of endothelial functions, including nitric oxide (NO) release, proliferation, adhesion and migration, which are the key steps of angiogenesis. The mechanism whereby H2S impacts on endothelial physiology is still unclear: however, the aforementioned processes are driven by an increase in intracellular Ca2+ concentration ([Ca2+]i). In the present study, we exploited the excised rat aorta to gain insights into the regulation of [Ca2+]i by H2S within in situ endothelial cells (ECs). Sodium hydrosulphide (NaHS), a H2S donor, caused an elevation in [Ca2+]i, which disappeared in absence of extracellular Ca2+. NaHSinduced Ca2+ inflow was sensitive to high doses of Gd3+, but not BTP-2. Inhibition of the reverse-mode of the Na+-Ca2+ exchanger (NCX), with KB-R7943 or upon removal of extracellular Na+, abrogated the Ca2+ response to NaHS. Moreover, NaHS-elicited Ca2+ entry was significantly reduced by TEA and glybenclamide, which hinted at the involvement of ATP-dependent K+ (KATP) channels. Conversely, NaHS-evoked Ca2+ signal was not affected by the reducing agent, dithiothreitol. Acute addition of NaHS hindered both Ca2+ release and Ca2+ entry induced by ATP, a physiological agonist of ECs. Consistently, inhibition of endogenous H2S synthesis with DL-propargylglycine impaired ATP-induced Ca2+ inflow, whereas it did not affect Ca2+ mobilization. These data provide the first evidence that H2S may stimulate Ca2+ influx into ECs by recruiting the reverse-mode of NCX and KATP channels. In addition, they show that such gasotransmitter may modulate the Ca2+ signals elicited by physiological stimuli in intact endothelium.

  18. Insulin elicits a ROS-activated and an IP₃-dependent Ca²⁺ release, which both impinge on GLUT4 translocation.

    PubMed

    Contreras-Ferrat, Ariel; Llanos, Paola; Vásquez, César; Espinosa, Alejandra; Osorio-Fuentealba, César; Arias-Calderon, Manuel; Lavandero, Sergio; Klip, Amira; Hidalgo, Cecilia; Jaimovich, Enrique

    2014-05-01

    Insulin signaling includes generation of low levels of H2O2; however, its origin and contribution to insulin-stimulated glucose transport are unknown. We tested the impact of H2O2 on insulin-dependent glucose transport and GLUT4 translocation in skeletal muscle cells. H2O2 increased the translocation of GLUT4 with an exofacial Myc-epitope tag between the first and second transmembrane domains (GLUT4myc), an effect additive to that of insulin. The anti-oxidants N-acetyl L-cysteine and Trolox, the p47(phox)-NOX2 NADPH oxidase inhibitory peptide gp91-ds-tat or p47(phox) knockdown each reduced insulin-dependent GLUT4myc translocation. Importantly, gp91-ds-tat suppressed insulin-dependent H2O2 production. A ryanodine receptor (RyR) channel agonist stimulated GLUT4myc translocation and insulin stimulated RyR1-mediated Ca(2+) release by promoting RyR1 S-glutathionylation. This pathway acts in parallel to insulin-mediated stimulation of inositol-1,4,5-trisphosphate (IP3)-activated Ca(2+) channels, in response to activation of phosphatidylinositol 3-kinase and its downstream target phospholipase C, resulting in Ca(2+) transfer to the mitochondria. An inhibitor of IP3 receptors, Xestospongin B, reduced both insulin-dependent IP3 production and GLUT4myc translocation. We propose that, in addition to the canonical α,β phosphatidylinositol 3-kinase to Akt pathway, insulin engages both RyR-mediated Ca(2+) release and IP3-receptor-mediated mitochondrial Ca(2+) uptake, and that these signals jointly stimulate glucose uptake.

  19. Regulator of G-protein signaling 2 (RGS2) suppresses premature calcium release in mouse eggs

    PubMed Central

    Bernhardt, Miranda L.; Lowther, Katie M.; Padilla-Banks, Elizabeth; McDonough, Caitlin E.; Lee, Katherine N.; Evsikov, Alexei V.; Uliasz, Tracy F.; Chidiac, Peter; Williams, Carmen J.; Mehlmann, Lisa M.

    2015-01-01

    During oocyte maturation, capacity and sensitivity of Ca2+ signaling machinery increases dramatically, preparing the metaphase II (MII)-arrested egg for fertilization. Upon sperm-egg fusion, Ca2+ release from IP3-sensitive endoplasmic reticulum stores results in cytoplasmic Ca2+ oscillations that drive egg activation and initiate early embryo development. Premature Ca2+ release can cause parthenogenetic activation prior to fertilization; thus, preventing inappropriate Ca2+ signaling is crucial for ensuring robust MII arrest. Here, we show that regulator of G-protein signaling 2 (RGS2) suppresses Ca2+ release in MII eggs. Rgs2 mRNA was recruited for translation during oocyte maturation, resulting in ∼20-fold more RGS2 protein in MII eggs than in fully grown immature oocytes. Rgs2-siRNA-injected oocytes matured to MII; however, they had increased sensitivity to low pH and acetylcholine (ACh), which caused inappropriate Ca2+ release and premature egg activation. When matured in vitro, RGS2-depleted eggs underwent spontaneous Ca2+ increases that were sufficient to cause premature zona pellucida conversion. Rgs2−/− females had reduced litter sizes, and their eggs had increased sensitivity to low pH and ACh. Rgs2−/− eggs also underwent premature zona pellucida conversion in vivo. These findings indicate that RGS2 functions as a brake to suppress premature Ca2+ release in eggs that are poised on the brink of development. PMID:26160904

  20. PLC-dependent intracellular Ca2+ release was associated with C6-ceramide-induced inhibition of Na+ current in rat granule cells.

    PubMed

    Liu, Zheng; Fei, Xiao-Wei; Fang, Yan-Jia; Shi, Wen-Jie; Zhang, Yu-Qiu; Mei, Yan-Ai

    2008-09-01

    In this report, the effects of C(6)-ceramide on the voltage-gated inward Na(+) currents (I(Na)), two types of main K(+) current [outward rectifier delayed K(+) current (I(K)) and outward transient K(+) current (I(A))], and cell death in cultured rat cerebellar granule cells were investigated. At concentrations of 0.01-100 microM, ceramide produced a dose-dependent and reversible inhibition of I(Na) without alteration of the steady-state activation and inactivation properties. Treatment with C(2)-ceramide caused a similar inhibitory effect on I(Na). However, dihydro-C(6)-ceramide failed to modulate I(Na). The effect of C(6)-ceramide on I(Na) was abolished by intracellular infusion of the Ca(2+)-chelating agent, 1,2-bis (2-aminophenoxy) ethane-N, N, N9, N9-tetraacetic acid, but was mimicked by application of caffeine. Blocking the release of Ca(2+) from the sarcoplasmic reticulum with ryanodine receptor blocker induced a gradual increase in I(Na) amplitude and eliminated the effect of ceramide on I(Na). In contrast, the blocker of the inositol 1,4,5-trisphosphate-sensitive Ca(2+) receptor did not affect the action of C(6)-ceramide. Intracellular application of GTPgammaS also induced a gradual decrease in I(Na) amplitude, while GDPbetaS eliminated the effect of C(6)-ceramide on I(Na). Furthermore, the C(6)-ceramide effect on I(Na) was abolished after application of the phospholipase C (PLC) blockers and was greatly reduced by the calmodulin inhibitors. Fluorescence staining showed that C(6)-ceramide decreased cell viability and blocking I(Na) by tetrodotoxin did not mimic the effect of C(6)-ceramide, and inhibiting intracellular Ca(2+) release by dantrolene could not decrease the C(6)-ceramide-induced cell death. We therefore suggest that increased PLC-dependent Ca(2+) release through the ryanodine-sensitive Ca(2+) receptor may be responsible for the C(6)-ceramide-induced inhibition of I(Na), which does not seem to be associated with C(6)-ceramide-induced granule neuron death.

  1. Nanoscale distribution of presynaptic Ca(2+) channels and its impact on vesicular release during development.

    PubMed

    Nakamura, Yukihiro; Harada, Harumi; Kamasawa, Naomi; Matsui, Ko; Rothman, Jason S; Shigemoto, Ryuichi; Silver, R Angus; DiGregorio, David A; Takahashi, Tomoyuki

    2015-01-07

    Synaptic efficacy and precision are influenced by the coupling of voltage-gated Ca(2+) channels (VGCCs) to vesicles. But because the topography of VGCCs and their proximity to vesicles is unknown, a quantitative understanding of the determinants of vesicular release at nanometer scale is lacking. To investigate this, we combined freeze-fracture replica immunogold labeling of Cav2.1 channels, local [Ca(2+)] imaging, and patch pipette perfusion of EGTA at the calyx of Held. Between postnatal day 7 and 21, VGCCs formed variable sized clusters and vesicular release became less sensitive to EGTA, whereas fixed Ca(2+) buffer properties remained constant. Experimentally constrained reaction-diffusion simulations suggest that Ca(2+) sensors for vesicular release are located at the perimeter of VGCC clusters (<30 nm) and predict that VGCC number per cluster determines vesicular release probability without altering release time course. This "perimeter release model" provides a unifying framework accounting for developmental changes in both synaptic efficacy and time course. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. RIM-BPs Mediate Tight Coupling of Action Potentials to Ca(2+)-Triggered Neurotransmitter Release.

    PubMed

    Acuna, Claudio; Liu, Xinran; Gonzalez, Aneysis; Südhof, Thomas C

    2015-09-23

    Ultrafast neurotransmitter release requires tight colocalization of voltage-gated Ca(2+) channels with primed, release-ready synaptic vesicles at the presynaptic active zone. RIM-binding proteins (RIM-BPs) are multidomain active zone proteins that bind to RIMs and to Ca(2+) channels. In Drosophila, deletion of RIM-BPs dramatically reduces neurotransmitter release, but little is known about RIM-BP function in mammalian synapses. Here, we generated double conditional knockout mice for RIM-BP1 and RIM-BP2, and analyzed RIM-BP-deficient synapses in cultured hippocampal neurons and the calyx of Held. Surprisingly, we find that in murine synapses, RIM-BPs are not essential for neurotransmitter release as such, but are selectively required for high-fidelity coupling of action potential-induced Ca(2+) influx to Ca(2+)-stimulated synaptic vesicle exocytosis. Deletion of RIM-BPs decelerated action-potential-triggered neurotransmitter release and rendered it unreliable, thereby impairing the fidelity of synaptic transmission. Thus, RIM-BPs ensure optimal organization of the machinery for fast release in mammalian synapses without being a central component of the machinery itself. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Synaptically evoked Ca2+ release from intracellular stores is not influenced by vesicular zinc in CA3 hippocampal pyramidal neurones.

    PubMed

    Evstratova, Alesya; Tóth, Katalin

    2011-12-01

    The co-release of neuromodulatory substances in combination with classic neurotransmitters such as glutamate and GABA from individual presynaptic nerve terminals has the capacity to dramatically influence synaptic efficacy and plasticity. At hippocampal mossy fibre synapses vesicular zinc is suggested to serve as a cotransmitter capable of regulating calcium release from internal stores in postsynaptic CA3 pyramidal cells. Here we investigated this possibility using combined intracellular ratiometric calcium imaging and patch-clamp recording techniques. In acute hippocampal slices a brief train of mossy fibre stimulation produced a large, delayed postsynaptic Ca(2+) wave that was spatially restricted to the proximal apical dendrites of CA3 pyramidal cells within stratum lucidum. This calcium increase was sensitive to intracellularly applied heparin indicating reliance upon release from internal stores and was triggered by activation of both group I metabotropic glutamate and NMDA receptors. Importantly, treatment of slices with the membrane-impermeant zinc chelator CaEDTA did not influence the synaptically evoked postsynaptic Ca(2+) waves. Moreover, mossy fibre stimulus evoked postsynaptic Ca(2+) signals were not significantly different between wild-type and zinc transporter 3 (ZnT3) knock-out animals. Considered together our data do not support a role for vesicular zinc in regulating mossy fibre evoked Ca(2+) release from CA3 pyramidal cell internal stores.

  4. Synaptically evoked Ca2+ release from intracellular stores is not influenced by vesicular zinc in CA3 hippocampal pyramidal neurones

    PubMed Central

    Evstratova, Alesya; Tóth, Katalin

    2011-01-01

    Abstract The co-release of neuromodulatory substances in combination with classic neurotransmitters such as glutamate and GABA from individual presynaptic nerve terminals has the capacity to dramatically influence synaptic efficacy and plasticity. At hippocampal mossy fibre synapses vesicular zinc is suggested to serve as a cotransmitter capable of regulating calcium release from internal stores in postsynaptic CA3 pyramidal cells. Here we investigated this possibility using combined intracellular ratiometric calcium imaging and patch-clamp recording techniques. In acute hippocampal slices a brief train of mossy fibre stimulation produced a large, delayed postsynaptic Ca2+ wave that was spatially restricted to the proximal apical dendrites of CA3 pyramidal cells within stratum lucidum. This calcium increase was sensitive to intracellularly applied heparin indicating reliance upon release from internal stores and was triggered by activation of both group I metabotropic glutamate and NMDA receptors. Importantly, treatment of slices with the membrane-impermeant zinc chelator CaEDTA did not influence the synaptically evoked postsynaptic Ca2+ waves. Moreover, mossy fibre stimulus evoked postsynaptic Ca2+ signals were not significantly different between wild-type and zinc transporter 3 (ZnT3) knock-out animals. Considered together our data do not support a role for vesicular zinc in regulating mossy fibre evoked Ca2+ release from CA3 pyramidal cell internal stores. PMID:21986206

  5. Effects of caffeine and adenine nucleotides on Ca2+ release by the sarcoplasmic reticulum in saponin-permeabilized frog skeletal muscle fibres

    PubMed Central

    Duke, Adrian M; Steele, Derek S

    1998-01-01

    The effect of caffeine and adenine nucleotides on the sarcoplasmic reticulum (SR) Ca2+ release mechanism was investigated in permeabilized frog skeletal muscle fibres. Caffeine was rapidly applied and the resulting release of Ca2+ from the SR detected using fura-2 fluorescence. Decreasing the [ATP] from 5 to 0.1 mm reduced the caffeine-induced Ca2+ transient by 89 ± 1.4 % (mean ± s.e.m., n = 16), while SR Ca2+ uptake was unaffected.The dependence of caffeine-induced Ca2+ release on cytosolic [ATP] was used to study the relative ability of other structurally related compounds to substitute for, or compete with, ATP at the adenine nucleotide binding site. It was found that AMP, ADP and the non-hydrolysable analogue adenylyl imidodiphosphate (AMP-PNP) partially substituted for ATP, although none was as potent in facilitating the Ca2+-releasing action of caffeine.Adenosine reversibly inhibited caffeine-induced Ca2+ release, without affecting SR Ca2+ uptake. Five millimolar adenosine markedly reduced the amplitude of the caffeine-induced Ca2+ transient by 64 ± 4 % (mean ± s.e.m., n = 11). The degree of inhibition was dependent upon the cytosolic [ATP], suggesting that adenosine may act as a competitive antagonist at the adenine nucleotide binding site.These data show that (i) the sensitivity of the in situ SR Ca2+ channel to caffeine activation is strongly dependent upon the cytosolic [ATP], (ii) the number of phosphates attached to the 5′ carbon of the ribose ring influences the efficacy of the ligand, and (iii) removal of a single phosphate group transforms AMP from a partial agonist, to adenosine, which acts as a competitive antagonist under these conditions. PMID:9782158

  6. Effects of caffeine and adenine nucleotides on Ca2+ release by the sarcoplasmic reticulum in saponin-permeabilized frog skeletal muscle fibres.

    PubMed

    Duke, A M; Steele, D S

    1998-11-15

    1. The effect of caffeine and adenine nucleotides on the sarcoplasmic reticulum (SR) Ca2+ release mechanism was investigated in permeabilized frog skeletal muscle fibres. Caffeine was rapidly applied and the resulting release of Ca2+ from the SR detected using fura-2 fluorescence. Decreasing the [ATP] from 5 to 0.1 mM reduced the caffeine-induced Ca2+ transient by 89 +/- 1.4% (mean +/- s.e.m., n = 16), while SR Ca2+ uptake was unaffected. 2. The dependence of caffeine-induced Ca2+ release on cytosolic [ATP] was used to study the relative ability of other structurally related compounds to substitute for, or compete with, ATP at the adenine nucleotide binding site. It was found that AMP, ADP and the non-hydrolysable analogue adenylyl imidodiphosphate (AMP-PNP) partially substituted for ATP, although none was as potent in facilitating the Ca2+-releasing action of caffeine. 3. Adenosine reversibly inhibited caffeine-induced Ca2+ release, without affecting SR Ca2+ uptake. Five millimolar adenosine markedly reduced the amplitude of the caffeine-induced Ca2+ transient by 64 +/- 4% (mean +/- s.e.m., n = 11). The degree of inhibition was dependent upon the cytosolic [ATP], suggesting that adenosine may act as a competitive antagonist at the adenine nucleotide binding site. 4. These data show that (i) the sensitivity of the in situ SR Ca2+ channel to caffeine activation is strongly dependent upon the cytosolic [ATP], (ii) the number of phosphates attached to the 5' carbon of the ribose ring influences the efficacy of the ligand, and (iii) removal of a single phosphate group transforms AMP from a partial agonist, to adenosine, which acts as a competitive antagonist under these conditions.

  7. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model

    PubMed Central

    Negroni, Jorge A.; Morotti, Stefano; Lascano, Elena C.; Gomes, Aldrin V.; Grandi, Eleonora; Puglisi, José L; Bers, Donald M.

    2015-01-01

    A five-state model of myofilament contraction was integrated into a well-established rabbit ventricular myocyte model of ion channels, Ca2+ transporters and kinase signaling to analyze the relative contribution of different phosphorylation targets to the overall mechanical response driven by β-adrenergic stimulation (β-AS). β-AS effect on sarcoplasmic reticulum Ca2+ handling, Ca2+, K+ and Cl− currents, and Na+/K+-ATPase properties were included based on experimental data. The inotropic effect on the myofilaments was represented as reduced myofilament Ca2+ sensitivity (XBCa) and titin stiffness, and increased cross-bridge (XB) cycling rate (XBcy). Assuming independent roles of XBCa and XBcy, the model reproduced experimental β-AS responses on action potentials and Ca2+ transient amplitude and kinetics. It also replicated the behavior of force-Ca2+, release-restretch, length-step, stiffness-frequency and force-velocity relationships, and increased force and shortening in isometric and isotonic twitch contractions. The β-AS effect was then switched off from individual targets to analyze their relative impact on contractility. Preventing β-AS effects on L-type Ca2+ channels or phospholamban limited Ca2+ transients and contractile responses in parallel, while blocking phospholemman and K+ channel (IKs) effects enhanced Ca2+ and inotropy. Removal of β-AS effects from XBCa enhanced contractile force while decreasing peak Ca2+ (due to greater Ca2+ buffering), but had less effect on shortening. Conversely, preventing β-AS effects on XBcy preserved Ca2+ transient effects, but blunted inotropy (both isometric force and especially shortening). Removal of titin effects had little impact on contraction. Finally, exclusion of β-AS from XBCa and XBcy while preserving effects on other targets resulted in preserved peak isometric force response (with slower kinetics) but nearly abolished enhanced shortening. β-AS effects on XBCa vs. XBcy have greater impact on isometric vs. isotonic contraction, respectively. PMID:25724724

  8. The polycystins are modulated by cellular oxygen-sensing pathways and regulate mitochondrial function

    PubMed Central

    Padovano, Valeria; Kuo, Ivana Y.; Stavola, Lindsey K.; Aerni, Hans R.; Flaherty, Benjamin J.; Chapin, Hannah C.; Ma, Ming; Somlo, Stefan; Boletta, Alessandra; Ehrlich, Barbara E.; Rinehart, Jesse; Caplan, Michael J.

    2017-01-01

    Autosomal dominant polycystic kidney disease is caused by mutations in the genes encoding polycystin-1 (PC1) and polycystin-2 (PC2), which form an ion channel complex that may mediate ciliary sensory processes and regulate endoplasmic reticulum (ER) Ca2+ release. Loss of PC1 expression profoundly alters cellular energy metabolism. The mechanisms that control the trafficking of PC1 and PC2, as well as their broader physiological roles, are poorly understood. We found that O2 levels regulate the subcellular localization and channel activity of the polycystin complex through its interaction with the O2-sensing prolyl hydroxylase domain containing protein EGLN3 (or PHD3), which hydroxylates PC1. Moreover, cells lacking PC1 expression use less O2 and show less mitochondrial Ca2+ uptake in response to bradykinin-induced ER Ca2+ release, indicating that PC1 can modulate mitochondrial function. These data suggest a novel role for the polycystins in sensing and responding to cellular O2 levels. PMID:27881662

  9. Synthesis of dimeric analogs of adenophostin A that potently evoke Ca2+ release through IP3 receptors.

    PubMed

    Vibhute, Amol M; Pushpanandan, Poornenth; Varghese, Maria; Koniecnzy, Vera; Taylor, Colin W; Sureshan, Kana M

    2016-11-03

    Inositol 1,4,5-trisphosphate receptors (IP 3 Rs) are tetrameric intracellular channels through which many extracellular stimuli initiate the Ca 2+ signals that regulate diverse cellular responses. There is considerable interest in developing novel ligands of IP 3 R. Adenophostin A (AdA) is a potent agonist of IP 3 R and since some dimeric analogs of IP 3 R ligands are more potent than the corresponding monomer; we considered whether dimeric AdA analogs might provide agonists with increased potency. We previously synthesized traizolophostin, in which a simple triazole replaced the adenine of AdA, and showed it to be equipotent to AdA. Here, we used click chemistry to synthesize four homodimeric analogs of triazolophostin, connected by oligoethylene glycol chains of different lengths. We evaluated the potency of these analogs to release Ca 2+ through type 1 IP 3 R and established that the newly synthesized dimers are equipotent to AdA and triazolophostin.

  10. Role of bifidobacteria in the hydrolysis of chlorogenic acid

    PubMed Central

    Raimondi, Stefano; Anighoro, Andrew; Quartieri, Andrea; Amaretti, Alberto; Tomás-Barberán, Francisco A; Rastelli, Giulio; Rossi, Maddalena

    2015-01-01

    This study aimed to explore the capability of potentially probiotic bifidobacteria to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the enzymes involved in this reaction. Bifidobacterium strains belonging to eight species occurring in the human gut were screened. The hydrolysis seemed peculiar of Bifidobacterium animalis, whereas the other species failed to release CA. Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid was detected only in B. animalis. In silico research among bifidobacteria esterases identified Balat_0669 as the cytosolic enzyme likely responsible of CA release in B. animalis. Comparative modeling of Balat_0669 and molecular docking studies support its role in chlorogenic acid hydrolysis. Expression, purification, and functional characterization of Balat_0669 in Escherichia coli were obtained as further validation. A possible role of B. animalis in the activation of hydroxycinnamic acids was demonstrated and new perspectives were opened in the development of new probiotics, specifically selected for the enhanced bioconversion of phytochemicals into bioactive compounds. PMID:25515139

  11. Role of bifidobacteria in the hydrolysis of chlorogenic acid.

    PubMed

    Raimondi, Stefano; Anighoro, Andrew; Quartieri, Andrea; Amaretti, Alberto; Tomás-Barberán, Francisco A; Rastelli, Giulio; Rossi, Maddalena

    2015-02-01

    This study aimed to explore the capability of potentially probiotic bifidobacteria to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the enzymes involved in this reaction. Bifidobacterium strains belonging to eight species occurring in the human gut were screened. The hydrolysis seemed peculiar of Bifidobacterium animalis, whereas the other species failed to release CA. Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid was detected only in B. animalis. In silico research among bifidobacteria esterases identified Balat_0669 as the cytosolic enzyme likely responsible of CA release in B. animalis. Comparative modeling of Balat_0669 and molecular docking studies support its role in chlorogenic acid hydrolysis. Expression, purification, and functional characterization of Balat_0669 in Escherichia coli were obtained as further validation. A possible role of B. animalis in the activation of hydroxycinnamic acids was demonstrated and new perspectives were opened in the development of new probiotics, specifically selected for the enhanced bioconversion of phytochemicals into bioactive compounds. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  12. TRPA1 and TRPV1 are required for lidocaine-evoked calcium influx and neuropeptide release but not cytotoxicity in mouse sensory neurons.

    PubMed

    Eberhardt, Mirjam; Stueber, Thomas; de la Roche, Jeanne; Herzog, Christine; Leffler, Andreas; Reeh, Peter W; Kistner, Katrin

    2017-01-01

    Local anaesthetics (LA) reduce neuronal excitability by inhibiting voltage-gated Na+ channels. When applied at high concentrations in the direct vicinity of nerves, LAs can also induce relevant irritation and neurotoxicity via mechanisms involving an increase of intracellular Ca2+. In the present study we explored the role of the Ca2+-permeable ion channels TRPA1 and TRPV1 for lidocaine-induced Ca2+-influx, neuropeptide release and neurotoxicity in mouse sensory neurons. Cultured dorsal root ganglion (DRG) neurons from wildtype and mutant mice lacking TRPV1, TRPA1 or both channels were explored by means of calcium imaging, whole-cell patch clamp recordings and trypan blue staining for cell death. Release of calcitonin gene-related peptide (CGRP) from isolated mouse peripheral nerves was determined with ELISA. Lidocaine up to 10 mM induced a concentration-dependent reversible increase in intracellular Ca2+ in DRG neurons from wildtype and mutant mice lacking one of the two receptors, but not in neurons lacking both TRPA1 and TRPV1. 30 mM lidocaine also released Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. While 10 mM lidocaine evoked an axonal CGRP release requiring expression of either TRPA1 or TRPV1, CGRP release induced by 30 mM lidocaine again mobilized internal Ca2+ stores. Lidocaine-evoked cell death required neither TRPV1 nor TRPA1. Depending on the concentration, lidocaine employs TRPV1, TRPA1 and intracellular Ca2+ stores to induce a Ca2+-dependent release of the neuropeptide CGRP. Lidocaine-evoked cell death does not seem to require Ca2+ influx through TRPV1 or TRPV1.

  13. TRPA1 and TRPV1 are required for lidocaine-evoked calcium influx and neuropeptide release but not cytotoxicity in mouse sensory neurons

    PubMed Central

    Eberhardt, Mirjam; Stueber, Thomas; de la Roche, Jeanne; Herzog, Christine; Leffler, Andreas; Reeh, Peter W.

    2017-01-01

    Background Local anaesthetics (LA) reduce neuronal excitability by inhibiting voltage-gated Na+ channels. When applied at high concentrations in the direct vicinity of nerves, LAs can also induce relevant irritation and neurotoxicity via mechanisms involving an increase of intracellular Ca2+. In the present study we explored the role of the Ca2+-permeable ion channels TRPA1 and TRPV1 for lidocaine-induced Ca2+-influx, neuropeptide release and neurotoxicity in mouse sensory neurons. Methods Cultured dorsal root ganglion (DRG) neurons from wildtype and mutant mice lacking TRPV1, TRPA1 or both channels were explored by means of calcium imaging, whole-cell patch clamp recordings and trypan blue staining for cell death. Release of calcitonin gene-related peptide (CGRP) from isolated mouse peripheral nerves was determined with ELISA. Results Lidocaine up to 10 mM induced a concentration-dependent reversible increase in intracellular Ca2+ in DRG neurons from wildtype and mutant mice lacking one of the two receptors, but not in neurons lacking both TRPA1 and TRPV1. 30 mM lidocaine also released Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. While 10 mM lidocaine evoked an axonal CGRP release requiring expression of either TRPA1 or TRPV1, CGRP release induced by 30 mM lidocaine again mobilized internal Ca2+ stores. Lidocaine-evoked cell death required neither TRPV1 nor TRPA1. Summary Depending on the concentration, lidocaine employs TRPV1, TRPA1 and intracellular Ca2+ stores to induce a Ca2+-dependent release of the neuropeptide CGRP. Lidocaine-evoked cell death does not seem to require Ca2+ influx through TRPV1 or TRPV1. PMID:29141003

  14. Tension Recovery following Ramp-Shaped Release in High-Ca and Low-Ca Rigor Muscle Fibers: Evidence for the Dynamic State of AMADP Myosin Heads in the Absence of ATP

    PubMed Central

    Sugi, Haruo; Yamaguchi, Maki; Ohno, Tetsuo; Kobayashi, Takakazu; Chaen, Shigeru; Okuyama, Hiroshi

    2016-01-01

    During muscle contraction, myosin heads (M) bound to actin (A) perform power stroke associated with reaction, AMADPPi → AM + ADP + Pi. In this scheme, A • M is believed to be a high-affinity complex after removal of ATP. Biochemical studies on extracted protein samples show that, in the AM complex, actin-binding sites are located at both sides of junctional peptide between 50K and 20K segments of myosin heavy chain. Recently, we found that a monoclonal antibody (IgG) to the junctional peptide had no effect on both in vitro actin-myosin sliding and skinned muscle fiber contraction, though it covers the actin-binding sites on myosin. It follows from this that, during muscle contraction, myosin heads do not pass through the static rigor AM configuration, determined biochemically and electron microscopically using extracted protein samples. To study the nature of AM and AMADP myosin heads, actually existing in muscle, we examined mechanical responses to ramp-shaped releases (0.5% of Lo, complete in 5ms) in single skinned rabbit psoas muscle fibers in high-Ca (pCa, 4) and low-Ca (pCa, >9) rigor states. The fibers exhibited initial elastic tension drop and subsequent small but definite tension recovery to a steady level. The tension recovery was present over many minutes in high-Ca rigor fibers, while it tended to decrease quickly in low-Ca rigor fibers. EDTA (10mM, with MgCl2 removed) had no appreciable effect on the tension recovery in high-Ca rigor fibers, while it completely eliminated the tension recovery in low-Ca rigor fibers. These results suggest that the AMADP myosin heads in rigor muscle have long lifetimes and dynamic properties, which show up as the tension recovery following applied release. Possible AM linkage structure in muscle is discussed in connection with the X-ray diffraction pattern from contracting muscle, which is intermediate between resting and rigor muscles. PMID:27583360

  15. Tension Recovery following Ramp-Shaped Release in High-Ca and Low-Ca Rigor Muscle Fibers: Evidence for the Dynamic State of AMADP Myosin Heads in the Absence of ATP.

    PubMed

    Sugi, Haruo; Yamaguchi, Maki; Ohno, Tetsuo; Kobayashi, Takakazu; Chaen, Shigeru; Okuyama, Hiroshi

    2016-01-01

    During muscle contraction, myosin heads (M) bound to actin (A) perform power stroke associated with reaction, AMADPPi → AM + ADP + Pi. In this scheme, A • M is believed to be a high-affinity complex after removal of ATP. Biochemical studies on extracted protein samples show that, in the AM complex, actin-binding sites are located at both sides of junctional peptide between 50K and 20K segments of myosin heavy chain. Recently, we found that a monoclonal antibody (IgG) to the junctional peptide had no effect on both in vitro actin-myosin sliding and skinned muscle fiber contraction, though it covers the actin-binding sites on myosin. It follows from this that, during muscle contraction, myosin heads do not pass through the static rigor AM configuration, determined biochemically and electron microscopically using extracted protein samples. To study the nature of AM and AMADP myosin heads, actually existing in muscle, we examined mechanical responses to ramp-shaped releases (0.5% of Lo, complete in 5ms) in single skinned rabbit psoas muscle fibers in high-Ca (pCa, 4) and low-Ca (pCa, >9) rigor states. The fibers exhibited initial elastic tension drop and subsequent small but definite tension recovery to a steady level. The tension recovery was present over many minutes in high-Ca rigor fibers, while it tended to decrease quickly in low-Ca rigor fibers. EDTA (10mM, with MgCl2 removed) had no appreciable effect on the tension recovery in high-Ca rigor fibers, while it completely eliminated the tension recovery in low-Ca rigor fibers. These results suggest that the AMADP myosin heads in rigor muscle have long lifetimes and dynamic properties, which show up as the tension recovery following applied release. Possible AM linkage structure in muscle is discussed in connection with the X-ray diffraction pattern from contracting muscle, which is intermediate between resting and rigor muscles.

  16. Capsaicin-sensitive sensory neurons are involved in the plasma catecholamine response of rats to selective stressors.

    PubMed Central

    Zhou, X F; Livett, B G

    1991-01-01

    1. The effect of capsaicin pre-treatment on adrenal catecholamine (CA) secretion in response to stress is controversial. In earlier experiments performed under pentobarbitone anaesthesia, the release of CA in response to stress was complicated by the effects of the barbiturate anaesthesia. 2. In the present study we have used conscious freely moving rats with indwelling cannulae to study the effect of neonatal capsaicin pre-treatment on the plasma CA response to different types of stressors (swimming stress, hypovolaemic stress, immobilization stress and cold stress). 3. After swimming for 20 min, plasma noradrenaline (NA) levels increased by 8-fold and adrenaline by 2-fold in control rats. The increase in plasma NA levels in the capsaicin group was attenuated at 10 min of swimming compared with the vehicle group (P < 0.05). 4. With hypovolaemic stress, there were no differences in plasma CA levels, blood pressure and heart rate between the capsaicin group and the vehicle group. There were also no differences in plasma CA levels after immobilization stress between the two groups. 5. With cold stress, plasma NA levels increased 5-fold and adrenaline levels by 3-fold over basal at 45 min in the vehicle pre-treated rats. This increase was not observed in the capsaicin group. 6. Immunoreactive substance P was depleted by only 68% in the splanchnic nerve following capsaicin pre-treatment. If the remaining 32% was biologically active substance P then it could account for the maintenance of the response to hypovolaemic and immobilization stress. However, it might be possible that the responses to hypovolaemic and immobilization stresses could be attenuated if a more complete depletion were achieved. 7. These results in conscious rats indicate that capsaicin-sensitive sensory neurons are required for plasma CA response to selective stressors. They are required for CA output in response to cold stress and to the early phase of swimming stress, but not to hypovolaemic stress and immobilization stress. PMID:1841948

  17. Light-induced rapid Ca2+ response and MAPK phosphorylation in the cells heterologously expressing human OPN5

    PubMed Central

    Sugiyama, Takashi; Suzuki, Hirobumi; Takahashi, Takeo

    2014-01-01

    Molecular imaging is a powerful tool for investigating intracellular signalling, but it is difficult to acquire conventional fluorescence imaging from photoreceptive cells. Here we demonstrated that human opsin5 (OPN5) photoreceptor mediates light-induced Ca2+ response in human embryonic kidney (HEK293) and mouse neuroblastoma (Neuro2a) cell lines using a luminescence imaging system with a fluorescent indicator and a newly synthesized bioluminescent indicator. Weak light fluorescence and bioluminescence imaging revealed rapid and transient light-stimulated Ca2+ release from thapsigargin-sensitive Ca2+ stores, whereas long-lasting Ca2+ elevation was observed using a conventional fluorescence imaging system. Bioluminescence imaging also demonstrated that OPN5 activation in HEK293 cells induced a decrease in pertussis toxin–sensitive cAMP, confirming previous reports. In addition, ultraviolet radiation induced the phosphorylation of mitogen-activated protein kinases when OPN5 was stimulated in Neuro2a cells. These findings suggest that the combination of these imaging approaches may provide a new means to investigate the physiological characteristics of photoreceptors. PMID:24941910

  18. Intracellular calcium movements during excitation–contraction coupling in mammalian slow-twitch and fast-twitch muscle fibers

    PubMed Central

    Hollingworth, Stephen

    2012-01-01

    In skeletal muscle fibers, action potentials elicit contractions by releasing calcium ions (Ca2+) from the sarcoplasmic reticulum. Experiments on individual mouse muscle fibers micro-injected with a rapidly responding fluorescent Ca2+ indicator dye reveal that the amount of Ca2+ released is three- to fourfold larger in fast-twitch fibers than in slow-twitch fibers, and the proportion of the released Ca2+ that binds to troponin to activate contraction is substantially smaller. PMID:22450485

  19. Exchangers man the pumps

    PubMed Central

    Barkla, Bronwyn J; Hirschi, Kendal D

    2008-01-01

    Tonoplast-localised proton-coupled Ca2+ transporters encoded by cation/H+ exchanger (CAX) genes play a critical role in sequestering Ca2+ into the vacuole. These transporters may function in coordination with Ca2+ release channels, to shape stimulus-induced cytosolic Ca2+ elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant's stress response. A common feature of these mutants was the perturbation of H+-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca2+/H+ exchangers and H+ pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca2+ flux. These results suggest cautious interpretation of mutant Ca2+/H+ exchanger phenotypes that may be due to either perturbed Ca2+ or H+ transport. PMID:19841670

  20. Effect of Sarcoplasmic Reticulum (SR) Calcium Content on SR Calcium Release Elicited by Small Voltage-Clamp Depolarizations in Frog Cut Skeletal Muscle Fibers Equilibrated with 20 mM EGTA

    PubMed Central

    Pape, Paul C.; Carrier, Nicole

    1998-01-01

    Cut muscle fibers from Rana temporaria (sarcomere length, 3.5–3.9 μm; 14–16°C) were mounted in a double Vaseline-gap chamber and equilibrated with an external solution that contained tetraethyl ammonium– gluconate and an internal solution that contained Cs as the principal cation, 20 mM EGTA, and 0 Ca. Fibers were stimulated with a voltage-clamp pulse protocol that consisted of pulses to −70, −65, −60, −45, and −20 mV, each separated by 400-ms periods at −90 mV. The change in total Ca that entered into the myoplasm (Δ[CaT]) and the Ca content of the SR ([CaSR]) were estimated with the EGTA/phenol red method (Pape, P.C., D.-S. Jong, and W.K. Chandler. 1995. J. Gen. Physiol. 106:259–336). Fibers were stimulated with the pulse protocol, usually every 5 min, so that the resting value of [CaSR] decreased from its initial value of 1,700–2,300 μM to values near or below 100 μM after 18–30 stimulations. Three main findings for the voltage pulses to −70, −65, and −60 mV are: (a) the depletion-corrected rate of Ca release (release permeability) showed little change when [CaSR] decreased from its highest level (>1,700 μM) to ∼1,000 μM; (b) as [CaSR] decreased below 1,000 μM, the release permeability increased to a maximum level when [CaSR] was near 300 μM that was on average about sevenfold larger than the values observed for [CaSR] > 1,000 μM; and (c) as [CaSR] decreased from ∼300 μM to <100 μM, the release permeability decreased, reaching half its maximum value when [CaSR] was ∼110 μM on average. It was concluded that finding b was likely due to a decrease in Ca inactivation, while finding c was likely due to a decrease in Ca-induced Ca release. PMID:9689025

  1. Kinetics, Ca2+ dependence, and biophysical properties of integrin-mediated mechanical modulation of transmitter release from frog motor nerve terminals

    NASA Technical Reports Server (NTRS)

    Chen, B. M.; Grinnell, A. D.

    1997-01-01

    Neurotransmitter release from frog motor nerve terminals is strongly modulated by change in muscle length. Over the physiological range, there is an approximately 10% increase in spontaneous and evoked release per 1% muscle stretch. Because many muscle fibers do not receive suprathreshold synaptic inputs at rest length, this stretch-induced enhancement of release constitutes a strong peripheral amplifier of the spinal stretch reflex. The stretch modulation of release is inhibited by peptides that block integrin binding of natural ligands. The modulation varies linearly with length, with a delay of no more than approximately 1-2 msec and is maintained constant at the new length. Moreover, the stretch modulation persists in a zero Ca2+ Ringer and, hence, is not dependent on Ca2+ influx through stretch activated channels. Eliminating transmembrane Ca2+ gradients and buffering intraterminal Ca2+ to approximately normal resting levels does not eliminate the modulation, suggesting that it is not the result of release of Ca2+ from internal stores. Finally, changes in temperature have no detectable effect on the kinetics of stretch-induced changes in endplate potential (EPP) amplitude or miniature EPP (mEPP) frequency. We conclude, therefore, that stretch does not act via second messenger pathways or a chemical modification of molecules involved in the release pathway. Instead, there is direct mechanical modulation of release. We postulate that tension on integrins in the presynaptic membrane is transduced mechanically into changes in the position or conformation of one or more molecules involved in neurotransmitter release, altering sensitivity to Ca2+ or the equilibrium for a critical reaction leading to vesicle fusion.

  2. Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Tzu-Yu; Department of Mechanical Engineering, Yuan Ze University, Taoyuan, 320, Taiwan; Lu, Cheng-Wei

    2012-09-01

    Hispidulin, a naturally occurring flavone, has been reported to have an antiepileptic profile. An excessive release of glutamate is considered to be related to neuropathology of epilepsy. We investigated whether hispidulin affected endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes) and explored the possible mechanism. Hispidulin inhibited the release of glutamate evoked by the K{sup +} channel blocker 4-aminopyridine (4-AP). The effects of hispidulin on the evoked glutamate release were prevented by the chelation of extracellular Ca{sup 2+} ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate did not have any effect onmore » hispidulin action. Hispidulin reduced the depolarization-induced increase in cytosolic free Ca{sup 2+} concentration ([Ca{sup 2+}]{sub C}), but did not alter 4-AP-mediated depolarization. Furthermore, the effect of hispidulin on evoked glutamate release was abolished by blocking the Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na{sup +}/Ca{sup 2+} exchange. Mitogen-activated protein kinase kinase (MEK) inhibition also prevented the inhibitory effect of hispidulin on evoked glutamate release. Western blot analyses showed that hispidulin decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK; this decrease was also blocked by the MEK inhibitor. Moreover, the inhibition of glutamate release by hispidulin was strongly attenuated in mice without synapsin I. These results show that hispidulin inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca{sup 2+} entry and ERK/synapsin I signaling pathway. -- Highlights: ► Hispidulin inhibited glutamate release from rat cerebrocortical synaptosomes. ► This action did not involve the participation of GABA{sub A} receptors. ► A decrease in the Ca{sup 2+} influx through Ca{sub v}2.2 and Ca{sub v}2.1 channels was involved. ► A role for the MAPK/ERK/synapsin I pathway in the action of hispidulin was suggested. ► This study provided further understanding of the mode of hispidulin action in the brain.« less

  3. Rate-dependent Ca2+ signalling underlying the force-frequency response in rat ventricular myocytes: a coupled electromechanical modeling study

    PubMed Central

    2013-01-01

    Background Rate-dependent effects on the Ca2+ sub-system in a rat ventricular myocyte are investigated. Here, we employ a deterministic mathematical model describing various Ca2+ signalling pathways under voltage clamp (VC) conditions, to better understand the important role of calmodulin (CaM) in modulating the key control variables Ca2+/calmodulin-dependent protein kinase-II (CaMKII), calcineurin (CaN), and cyclic adenosine monophosphate (cAMP) as they affect various intracellular targets. In particular, we study the frequency dependence of the peak force generated by the myofilaments, the force-frequency response (FFR). Methods Our cell model incorporates frequency-dependent CaM-mediated spatially heterogenous interaction of CaMKII and CaN with their principal targets (dihydropyridine (DHPR) and ryanodine (RyR) receptors and the SERCA pump). It also accounts for the rate-dependent effects of phospholamban (PLB) on the SERCA pump; the rate-dependent role of cAMP in up-regulation of the L-type Ca2+ channel (ICa,L); and the enhancement in SERCA pump activity via phosphorylation of PLB. Results Our model reproduces positive peak FFR observed in rat ventricular myocytes during voltage-clamp studies both in the presence/absence of cAMP mediated β-adrenergic stimulation. This study provides quantitative insight into the rate-dependence of Ca2+-induced Ca2+-release (CICR) by investigating the frequency-dependence of the trigger current (ICa,L) and RyR-release. It also highlights the relative role of the sodium-calcium exchanger (NCX) and the SERCA pump at higher frequencies, as well as the rate-dependence of sarcoplasmic reticulum (SR) Ca2+ content. A rigorous Ca2+ balance imposed on our investigation of these Ca2+ signalling pathways clarifies their individual roles. Here, we present a coupled electromechanical study emphasizing the rate-dependence of isometric force developed and also investigate the temperature-dependence of FFR. Conclusions Our model provides mechanistic biophysically based explanations for the rate-dependence of CICR, generating useful and testable hypotheses. Although rat ventricular myocytes exhibit a positive peak FFR in the presence/absence of beta-adrenergic stimulation, they show a characteristic increase in the positive slope in FFR due to the presence of Norepinephrine or Isoproterenol. Our study identifies cAMP-mediated stimulation, and rate-dependent CaMKII-mediated up-regulation of ICa,L as the key mechanisms underlying the aforementioned positive FFR. PMID:24020888

  4. Endoplasmic reticulum and mitochondria interplay mediates apoptotic cell death: relevance to Parkinson's disease.

    PubMed

    Arduíno, Daniela Moniz; Esteves, A Raquel; Cardoso, Sandra M; Oliveira, Catarina R

    2009-09-01

    Sporadic Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta. Many cellular mechanisms are thought to be involved in the death of these specific neurons in PD, including oxidative stress, changes of intracellular calcium homeostasis, and mitochondrial dysfunction. Since recent studies have revealed that also endoplasmic reticulum (ER) stress in conjunction with abnormal protein degradation can contribute to the PD pathophysiology, we investigated here the molecular mechanisms underlying the interplay between ER and mitochondria and its relevance in the control of neuronal cell death in PD. We observed that MPP+ induced changes in the mitochondrial function, affecting mitochondrial membrane potential and electron transport chain function. Likewise, it was also evident the unfolded protein response activation by an overexpression of GRP78 protein. Moreover, stress stimuli caused the release of Ca2+ from the ER that consistently induced mitochondrial Ca2+ uptake, with a rise of mitochondrial matrix free Ca2+. Besides, Ca2+ release inhibition prevented MPP+ mediated mitochondria-dependent caspases activation. Our findings show that ER and mitochondria are in a close communication, establishing a dynamic ER-Ca2+-mitochondria interconnection that can play a prominent role in the neuronal cell death induction under particular stressful circumstances of PD pathology.

  5. Dynamic Inositol Trisphosphate-mediated Calcium Signals within Astrocytic Endfeet Underlie Vasodilation of Cerebral Arterioles

    PubMed Central

    Straub, Stephen V.; Bonev, Adrian D.; Wilkerson, M. Keith; Nelson, Mark T.

    2006-01-01

    Active neurons communicate to intracerebral arterioles in part through an elevation of cytosolic Ca2+ concentration ([Ca2+]i) in astrocytes, leading to the generation of vasoactive signals involved in neurovascular coupling. In particular, [Ca2+]i increases in astrocytic processes (“endfeet”), which encase cerebral arterioles, have been shown to result in vasodilation of arterioles in vivo. However, the spatial and temporal properties of endfoot [Ca2+]i signals have not been characterized, and information regarding the mechanism by which these signals arise is lacking. [Ca2+]i signaling in astrocytic endfeet was measured with high spatiotemporal resolution in cortical brain slices, using a fluorescent Ca2+ indicator and confocal microscopy. Increases in endfoot [Ca2+]i preceded vasodilation of arterioles within cortical slices, as detected by simultaneous measurement of endfoot [Ca2+]i and vascular diameter. Neuronal activity–evoked elevation of endfoot [Ca2+]i was reduced by inhibition of inositol 1,4,5-trisphosphate (InsP3) receptor Ca2+ release channels and almost completely abolished by inhibition of endoplasmic reticulum Ca2+ uptake. To probe the Ca2+ release mechanisms present within endfeet, spatially restricted flash photolysis of caged InsP3 was utilized to liberate InsP3 directly within endfeet. This maneuver generated large amplitude [Ca2+]i increases within endfeet that were spatially restricted to this region of the astrocyte. These InsP3-induced [Ca2+]i increases were sensitive to depletion of the intracellular Ca2+ store, but not to ryanodine, suggesting that Ca2+-induced Ca2+ release from ryanodine receptors does not contribute to the generation of endfoot [Ca2+]i signals. Neuronally evoked increases in astrocytic [Ca2+]i propagated through perivascular astrocytic processes and endfeet as multiple, distinct [Ca2+]i waves and exhibited a high degree of spatial heterogeneity. Regenerative Ca2+ release processes within the endfeet were evident, as were localized regions of Ca2+ release, and treatment of slices with the vasoactive neuropeptides somatostatin and vasoactive intestinal peptide was capable of inducing endfoot [Ca2+]i increases, suggesting the potential for signaling between local interneurons and astrocytic endfeet in the cortex. Furthermore, photorelease of InsP3 within individual endfeet resulted in a local vasodilation of adjacent arterioles, supporting the concept that astrocytic endfeet function as local “vasoregulatory units” by translating information from active neurons into complex InsP3-mediated Ca2+ release signals that modulate arteriolar diameter. PMID:17130519

  6. /sup 45/Ca distribution and transport in saponin skinned vascular smooth muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stout, M.A.; Diecke, F.P.

    1983-04-01

    /sup 45/Ca distribution and transport were studied in chemically skinned strips of caudal artery from Kyoto Wistar rats. Sarcolemmal membranes were made hyperpermeable by exposure for 60 min to solutions containing 0.1 mg/ml of saponin. Skinned helical strips responded with graded contractions to changes in ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid buffered free Ca solutions (10(-7) to 10(-5) M) and were sensitive to the Mg-ATP concentration. Tissues loaded in the presence of 10(-7) M Ca contracted in response to 10 mM caffeine. These experiments indicate the strips are skinned and possess a functional regulatory and contractile system and an intact Camore » sequestering system. /sup 45/Ca distributes in three compartments in skinned caudal artery strips. The Ca contents of two components are linear functions of the Ca-ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid concentration and desaturate at rapid rates. They correspond to the extracellular and cytoplasmic spaces. A significantly smaller component releases Ca at comparatively slower rates. /sup 45/Ca uptake by the slow component consists of an ATP-dependent and an ATP-independent fraction. The /sup 45/Ca content of the ATP-dependent fraction is a function of the free Ca concentration and is independent of the Ca-ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid concentration. Its content was enhanced by oxalate and was abolished by Triton X-100 skinning solutions. The ATP-independent component was not affected by Triton X-100 skinning and may represent Ca binding to cytoplasmic molecules and structures. The sequestered Ca was released with caffeine or Ca but not by epinephrine. The observations indicate that the sarcoplasmic reticulum and mitochondria of vascular smooth muscle strips skinned with saponin retain their functional integrity after saponin skinning.« less

  7. Effects of rogue ryanodine receptors on Ca2+ sparks in cardiac myocytes

    PubMed Central

    Chen, Xudong; Feng, Yundi; Tan, Wenchang

    2018-01-01

    Ca2+ sparks and Ca2+ quarks, arising from clustered and rogue ryanodine receptors (RyRs), are significant Ca2+ release events from the junctional sarcoplasmic reticulum (JSR). Based on the anomalous subdiffusion of Ca2+ in the cytoplasm, a mathematical model was developed to investigate the effects of rogue RyRs on Ca2+ sparks in cardiac myocytes. Ca2+ quarks and sparks from the stochastic opening of rogue and clustered RyRs are numerically reproduced and agree with experimental measurements. It is found that the stochastic opening Ca2+ release units (CRUs) of clustered RyRs are regulated by free Ca2+ concentration in the JSR lumen (i.e. [Ca2+]lumen). The frequency of spontaneous Ca2+ sparks is remarkably increased by the rogue RyRs opening at high [Ca2+]lumen, but not at low [Ca2+]lumen. Hence, the opening of rogue RyRs contributes to the formation of Ca2+ sparks at high [Ca2+]lumen. The interplay of Ca2+ sparks and Ca2+ quarks has been discussed in detail. This work is of significance to provide insight into understanding Ca2+ release mechanisms in cardiac myocytes. PMID:29515864

  8. Effects of rogue ryanodine receptors on Ca2+ sparks in cardiac myocytes.

    PubMed

    Chen, Xudong; Feng, Yundi; Huo, Yunlong; Tan, Wenchang

    2018-02-01

    Ca 2+ sparks and Ca 2+ quarks, arising from clustered and rogue ryanodine receptors (RyRs), are significant Ca 2+ release events from the junctional sarcoplasmic reticulum (JSR). Based on the anomalous subdiffusion of Ca 2+ in the cytoplasm, a mathematical model was developed to investigate the effects of rogue RyRs on Ca 2+ sparks in cardiac myocytes. Ca 2+ quarks and sparks from the stochastic opening of rogue and clustered RyRs are numerically reproduced and agree with experimental measurements. It is found that the stochastic opening Ca 2+ release units (CRUs) of clustered RyRs are regulated by free Ca 2+ concentration in the JSR lumen (i.e. [Ca 2+ ] lumen ). The frequency of spontaneous Ca 2+ sparks is remarkably increased by the rogue RyRs opening at high [Ca 2+ ] lumen , but not at low [Ca 2+ ] lumen . Hence, the opening of rogue RyRs contributes to the formation of Ca 2+ sparks at high [Ca 2+ ] lumen . The interplay of Ca 2+ sparks and Ca 2+ quarks has been discussed in detail. This work is of significance to provide insight into understanding Ca 2+ release mechanisms in cardiac myocytes.

  9. Structure of the skeletal muscle calcium release channel activated with Ca2+ and AMP-PCP.

    PubMed Central

    Serysheva, I I; Schatz, M; van Heel, M; Chiu, W; Hamilton, S L

    1999-01-01

    The functional state of the skeletal muscle Ca2+ release channel is modulated by a number of endogenous molecules during excitation-contraction. Using electron cryomicroscopy and angular reconstitution techniques, we determined the three-dimensional (3D) structure of the skeletal muscle Ca2+ release channel activated by a nonhydrolyzable analog of ATP in the presence of Ca2+. These ligands together produce almost maximum activation of the channel and drive the channel population toward a predominately open state. The resulting 30-A 3D reconstruction reveals long-range conformational changes in the cytoplasmic region that might affect the interaction of the Ca2+ release channel with the t-tubule voltage sensor. In addition, a central opening and mass movements, detected in the transmembrane domain of both the Ca(2+)- and the Ca2+/nucleotide-activated channels, suggest a mechanism for channel opening similar to opening-closing of the iris in a camera diaphragm. PMID:10512814

  10. Mitochondrial Ca2+ homeostasis during Ca2+ influx and Ca2+ release in gastric myocytes from Bufo marinus

    PubMed Central

    Drummond, Robert M; Mix, T Christian H; Tuft, Richard A; Walsh, John V; Fay, Fredric S

    2000-01-01

    The Ca2+-sensitive fluorescent indicator rhod-2 was used to monitor mitochondrial Ca2+ concentration ([Ca2+]m) in gastric smooth muscle cells from Bufo marinus. In some studies, fura-2 was used in combination with rhod-2, allowing simultaneous measurement of cytoplasmic Ca2+ concentration ([Ca2+]i) and [Ca2+]m, respectively. During a short train of depolarizations, which causes Ca2+ influx from the extracellular medium, there was an increase in both [Ca2+]i and [Ca2+]m. The half-time (t½) to peak for the increase in [Ca2+]m was considerably longer than the t½ to peak for the increase in [Ca2+]i. [Ca2+]m remained elevated for tens of seconds after [Ca2+]i had returned to its resting value. Stimulation with caffeine, which causes release of Ca2+ from the sarcoplasmic reticulum (SR), also produced increases in both [Ca2+]i and [Ca2+]m. The values of t½ to peak for the increase in [Ca2+] in both cytoplasm and mitochondria were similar; however, [Ca2+]i returned to baseline values much faster than [Ca2+]m. Using a wide-field digital imaging microscope, changes in [Ca2+]m were monitored within individual mitochondria in situ, during stimulation of Ca2+ influx or Ca2+ release from the SR. Mitochondrial Ca2+ uptake during depolarizing stimulation caused depolarization of the mitochondrial membrane potential. The mitochondrial membrane potential recovered considerably faster than the recovery of [Ca2+]m. This study shows that Ca2+ influx from the extracellular medium and Ca2+ release from the SR are capable of increasing [Ca2+]m in smooth muscle cells. The efflux of Ca2+ from the mitochondria is a slow process and appears to be dependent upon the amount of Ca2+ in the SR. PMID:10713963

  11. p-Coumaric Acid Attenuates UVB-Induced Release of Stratifin from Keratinocytes and Indirectly Regulates Matrix Metalloproteinase 1 Release from Fibroblasts

    PubMed Central

    Seok, Jin Kyung

    2015-01-01

    Ultraviolet (UV) radiation-induced loss of dermal extracellular matrix is associated with skin photoaging. Recent studies demonstrated that keratinocyte-releasable stratifin (SFN) plays a critical role in skin collagen metabolism by inducing matrix metalloproteinase 1 (MMP1) expression in target fibroblasts. In the present study, we examined whether SFN released from UVB-irradiated epidermal keratinocytes increases MMP1 release from dermal fibroblasts, and whether these events are affected by p-coumaric acid (p-CA), a natural phenolic compound with UVB-shielding and antioxidant properties. HaCaT cells were exposed to UVB in the absence and presence of p-CA, and the conditioned medium was used to stimulate fibroblasts in medium transfer experiments. The cells and media were analyzed to determine the expressions/releases of SFN and MMP1. UVB exposure increased SFN release from keratinocytes into the medium. The conditioned medium of UVB-irradiated keratinocytes increased MMP1 release from fibroblasts. The depletion of SFN using a siRNA rendered the conditioned medium of UVB-irradiated keratinocytes ineffective at stimulating fibroblasts to release MMP1. p-CA mitigated UVB-induced SFN expression in keratinocytes, and attenuated the MMP1 release by fibroblasts in medium transfer experiments. In conclusion, the present study demonstrated that the use of UV absorbers such as p-CA would reduce UV-induced SFN-centered signaling events involved in skin photoaging. PMID:25954129

  12. p-Coumaric Acid Attenuates UVB-Induced Release of Stratifin from Keratinocytes and Indirectly Regulates Matrix Metalloproteinase 1 Release from Fibroblasts.

    PubMed

    Seok, Jin Kyung; Boo, Yong Chool

    2015-05-01

    Ultraviolet (UV) radiation-induced loss of dermal extracellular matrix is associated with skin photoaging. Recent studies demonstrated that keratinocyte-releasable stratifin (SFN) plays a critical role in skin collagen metabolism by inducing matrix metalloproteinase 1 (MMP1) expression in target fibroblasts. In the present study, we examined whether SFN released from UVB-irradiated epidermal keratinocytes increases MMP1 release from dermal fibroblasts, and whether these events are affected by p-coumaric acid (p-CA), a natural phenolic compound with UVB-shielding and antioxidant properties. HaCaT cells were exposed to UVB in the absence and presence of p-CA, and the conditioned medium was used to stimulate fibroblasts in medium transfer experiments. The cells and media were analyzed to determine the expressions/releases of SFN and MMP1. UVB exposure increased SFN release from keratinocytes into the medium. The conditioned medium of UVB-irradiated keratinocytes increased MMP1 release from fibroblasts. The depletion of SFN using a siRNA rendered the conditioned medium of UVB-irradiated keratinocytes ineffective at stimulating fibroblasts to release MMP1. p-CA mitigated UVB-induced SFN expression in keratinocytes, and attenuated the MMP1 release by fibroblasts in medium transfer experiments. In conclusion, the present study demonstrated that the use of UV absorbers such as p-CA would reduce UV-induced SFN-centered signaling events involved in skin photoaging.

  13. Calexcitin interaction with neuronal ryanodine receptors.

    PubMed Central

    Nelson, T J; Zhao, W Q; Yuan, S; Favit, A; Pozzo-Miller, L; Alkon, D L

    1999-01-01

    Calexcitin (CE), a Ca2+- and GTP-binding protein, which is phosphorylated during memory consolidation, is shown here to co-purify with ryanodine receptors (RyRs) and bind to RyRs in a calcium-dependent manner. Nanomolar concentrations of CE released up to 46% of the 45Ca label from microsomes preloaded with 45CaCl2. This release was Ca2+-dependent and was blocked by antibodies against the RyR or CE, by the RyR inhibitor dantrolene, and by a seven-amino-acid peptide fragment corresponding to positions 4689-4697 of the RyR, but not by heparin, an Ins(1,4,5)P3-receptor antagonist. Anti-CE antibodies, in the absence of added CE, also blocked Ca2+ release elicited by ryanodine, suggesting that the CE and ryanodine binding sites were in relative proximity. Calcium imaging with bis-fura-2 after loading CE into hippocampal CA1 pyramidal cells in hippocampal slices revealed slow, local calcium transients independent of membrane depolarization. Calexcitin also released Ca2+ from liposomes into which purified RyR had been incorporated, indicating that CE binding can be a proximate cause of Ca2+ release. These results indicated that CE bound to RyRs and suggest that CE may be an endogenous modulator of the neuronal RyR. PMID:10393102

  14. A family of octopamine [corrected] receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster.

    PubMed

    Balfanz, Sabine; Strünker, Timo; Frings, Stephan; Baumann, Arnd

    2005-04-01

    In invertebrates, the biogenic-amine octopamine is an important physiological regulator. It controls and modulates neuronal development, circadian rhythm, locomotion, 'fight or flight' responses, as well as learning and memory. Octopamine mediates its effects by activation of different GTP-binding protein (G protein)-coupled receptor types, which induce either cAMP production or Ca(2+) release. Here we describe the functional characterization of two genes from Drosophila melanogaster that encode three octopamine receptors. The first gene (Dmoa1) codes for two polypeptides that are generated by alternative splicing. When heterologously expressed, both receptors cause oscillatory increases of the intracellular Ca(2+) concentration in response to applying nanomolar concentrations of octopamine. The second gene (Dmoa2) codes for a receptor that specifically activates adenylate cyclase and causes a rise of intracellular cAMP with an EC(50) of approximately 3 x 10(-8) m octopamine. Tyramine, the precursor of octopamine biosynthesis, activates all three receptors at > or = 100-fold higher concentrations, whereas dopamine and serotonin are non-effective. Developmental expression of Dmoa genes was assessed by RT-PCR. Overlapping but not identical expression patterns were observed for the individual transcripts. The genes characterized in this report encode unique receptors that display signature properties of native octopamine receptors.

  15. Ca(2+) and OH(-) release of ceramsites containing anorthite and gehlenite prepared from waste lime mud.

    PubMed

    Qin, Juan; Yang, Chuanmeng; Cui, Chong; Huang, Jiantao; Hussain, Ahmad; Ma, Hailong

    2016-09-01

    Lime mud is a kind of solid waste in the papermaking industry, which has been a source of serious environmental pollution. Ceramsites containing anorthite and gehlenite were prepared from lime mud and fly ash through the solid state reaction method at 1050°C. The objective of this study was to explore the efficiency of Ca(2+) and OH(-) release and assess the phosphorus and copper ion removal performance of the ceramsites via batch experiments, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that Ca(2+) and OH(-) were released from the ceramsites due to the dissolution of anorthite, gehlenite and available lime. It is also concluded that gehlenite had stronger capacity for Ca(2+) and OH(-) release compared with anorthite. The Ca(2+) release could be fit well by the Avrami kinetic model. Increases of porosity, dosage and temperature were associated with increases in the concentrations of Ca(2+) and OH(-) released. Under different conditions, the ceramsites could maintain aqueous solutions in alkaline conditions (pH=9.3-10.9) and the release of Ca(2+) was not affected. The removal rates of phosphorus and copper ions were as high as 96.88% and 96.81%, respectively. The final pH values of both phosphorus and copper ions solutions changed slightly. The reuse of lime mud in the form of ceramsites is an effective strategy. Copyright © 2016. Published by Elsevier B.V.

  16. Amphiphilically modified chitosan cationic nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    You, Jie; Li, Wenfeng; Yu, Chang; Zhao, Chengguang; Jin, Langping; Zhou, Yili; Xu, Xuzhong; Dong, Siyang; Lu, Xincheng; Wang, Ouchen

    2013-12-01

    A series of amphiphilic N-(2-hydroxy)propyl-3-trimethylammonium-chitosan-cholic acid (HPTA-CHI-CA) polymers were synthesized by grafting cholic acid (CA) and glycidyltrimethylammonium chloride onto chitosan. The self-assembly behavior of HPTA-CHI-CA was studied by fluorescence technique. The polymers were able to self-assemble into NPs in phosphate buffered saline with a critical aggregation concentration (CAC) in the range of 66-26 mg/L and the CAC decreased with the increasing of the degree of substitution (DS) of CA. The size of cationic HPTA-CHI-CA NPs ranges from 170 to 220 nm (PDI < 0.2). It was found that doxorubicin (DOX) could be encapsulated into HPTA-CHI-CA NPs based on self-assembly. The drug loading content and efficiency varies depending on the DS of CA and feeding ratio of DOX to polymer. In vitro release studies suggested that DOX released slowly from HPTA-CHI-CA NPs without any burst initial release. Besides, the confocal microscopic measurements indicated that DOX-HPTA-CHI-CA NPs could easily be uptaken by breast cancer (MCF-7) cells and release DOX in cytoplasm. Anti-tumor efficacy results showed that DOX-HPTA-CHI-CA NPs have a significant activity of inhibition MCF-7 cells growth. These results suggest cationic HPTA-CHI-CA may have great potential for anticancer drug delivery.

  17. The Orai-1 and STIM-1 Complex Controls Human Dendritic Cell Maturation

    PubMed Central

    Félix, Romain; Crottès, David; Delalande, Anthony; Fauconnier, Jérémy; Lebranchu, Yvon; Le Guennec, Jean-Yves; Velge-Roussel, Florence

    2013-01-01

    Ca2+ signaling plays an important role in the function of dendritic cells (DC), the professional antigen presenting cells. Here, we described the role of Calcium released activated (CRAC) channels in the maturation and cytokine secretion of human DC. Recent works identified STIM1 and Orai1 in human T lymphocytes as essential for CRAC channel activation. We investigated Ca2+ signaling in human DC maturation by imaging intracellular calcium signaling and pharmalogical inhibitors. The DC response to inflammatory mediators or PAMPs (Pathogen-associated molecular patterns) is due to a depletion of intracellular Ca2+ stores that results in a store-operated Ca2+ entry (SOCE). This Ca2+ influx was inhibited by 2-APB and exhibited a Ca2+permeability similar to the CRAC (Calcium-Released Activated Calcium), found in T lymphocytes. Depending on the PAMPs used, SOCE profiles and amplitudes appeared different, suggesting the involvement of different CRAC channels. Using siRNAi, we identified the STIM1 and Orai1 protein complex as one of the main pathways for Ca2+ entry for LPS- and TNF-α-induced maturation in DC. Cytokine secretions also seemed to be SOCE-dependent with profile differences depending on the maturating agents since IL-12 and IL10 secretions appeared highly sensitive to 2-APB whereas IFN-γ was less affected. Altogether, these results clearly demonstrate that human DC maturation and cytokine secretions depend on SOCE signaling involving STIM1 and Orai1 proteins. PMID:23700407

  18. Architecture of the nitric-oxide synthase holoenzyme reveals large conformational changes and a calmodulin-driven release of the FMN domain.

    PubMed

    Yokom, Adam L; Morishima, Yoshihiro; Lau, Miranda; Su, Min; Glukhova, Alisa; Osawa, Yoichi; Southworth, Daniel R

    2014-06-13

    Nitric-oxide synthase (NOS) is required in mammals to generate NO for regulating blood pressure, synaptic response, and immune defense. NOS is a large homodimer with well characterized reductase and oxygenase domains that coordinate a multistep, interdomain electron transfer mechanism to oxidize l-arginine and generate NO. Ca(2+)-calmodulin (CaM) binds between the reductase and oxygenase domains to activate NO synthesis. Although NOS has long been proposed to adopt distinct conformations that alternate between interflavin and FMN-heme electron transfer steps, structures of the holoenzyme have remained elusive and the CaM-bound arrangement is unknown. Here we have applied single particle electron microscopy (EM) methods to characterize the full-length of the neuronal isoform (nNOS) complex and determine the structural mechanism of CaM activation. We have identified that nNOS adopts an ensemble of open and closed conformational states and that CaM binding induces a dramatic rearrangement of the reductase domain. Our three-dimensional reconstruction of the intact nNOS-CaM complex reveals a closed conformation and a cross-monomer arrangement with the FMN domain rotated away from the NADPH-FAD center, toward the oxygenase dimer. This work captures, for the first time, the reductase-oxygenase structural arrangement and the CaM-dependent release of the FMN domain that coordinates to drive electron transfer across the domains during catalysis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Nature and origin of the calcium asymmetry-arising during gravitropic response in etiolated pea epicotyls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Migliaccio, F.; Galston, A.W.

    1987-10-01

    Seven day old etiolated pea epicotyls were loaded symmetrically with /sup 3/H-indole 3-acetic acid (IAA) or /sup 45/Ca/sup 2 +/, then subjected to 1.5 hours of 1g gravistimulation. Epidermal peels taken from top and bottom surfaces after 90 minutes showed an increase in IAA on the lower side and of Ca/sup 2 +/ on the upper side. Inhibitors of IAA movement (TIBA, 9-hydroxyfluorene carboxylic acid) block the development of both IAA and Ca/sup 2 +/ asymmetries, but substances known to interfere with normal Ca/sup 2 +/ transport do not significantly alter either IAA or Ca/sup 2 +/ asymmetries. These substances,more » however, are active in modifying both Ca/sup 2 +/ uptake and efflux through oat and pea leaf protoplast membranes. The authors conclude that the /sup 45/Ca/sup 2 +/ fed to pea epicotyls occurs largely in the cell wall, and that auxin movement is primary and Ca/sup 2 +/ movement secondary in gravitropism. They hypothesize that apoplastic Ca/sup 2 +/ changes during the graviresponse because it is displaced by H/sup +/ secreted through auxin-induced proton release. This proposed mechanism is supported by localized pH experiments, in which filter paper soaked in various buffers was applied to one side of a carborundum-abraded epicotyls. Buffer at pH 3 increased calcium loss from the side to which it is applied, whereas pH 7 buffer decreases it. Moreover, 10 micromolar IAA and 1 micromolar fusicoccin, which promote H/sup +/ efflux, increase Ca/sup 2 +/ release from pea epicotyl segments, whereas cycloheximide, which inhibits H/sup +/ efflux, has the reverse effect.« less

  20. Magnesium inhibition of ryanodine-receptor calcium channels: evidence for two independent mechanisms.

    PubMed

    Laver, D R; Baynes, T M; Dulhunty, A F

    1997-04-01

    The gating of ryanodine receptor calcium release channels (RyRs) depends on myoplasmic Ca2+ and Mg2+ concentrations. RyRs from skeletal and cardiac muscle are activated by microm Ca2+ and inhibited by mm Ca2+ and Mg2+. 45Ca2+ release from skeletal SR vesicles suggests two mechanisms for Mg2+-inhibition (Meissner, Darling & Eveleth, 1986, Biochemistry 25:236-244). The present study investigates the nature of these mechanisms using measurements of single-channel activity from cardiac- and skeletal RyRs incorporated into planar lipid bilayers. Our measurements of Mg2+- and Ca2+-dependent gating kinetics confirm that there are two mechanisms for Mg2+ inhibition (Type I and II inhibition) in skeletal and cardiac RyRs. The mechanisms operate concurrently, are independent and are associated with different parts of the channel protein. Mg2+ reduces Po by competing with Ca2+ for the activation site (Type-I) or binding to more than one, and probably two low affinity inhibition sites which do not discriminate between Ca2+ and Mg2+ (Type-II). The relative contributions of the two inhibition mechanisms to the total Mg2+ effect depend on cytoplasmic [Ca2+] in such a way that Mg2+ inhibition has the properties of Types-I and II inhibition at low and high [Ca2+] respectively. Both mechanisms are equally important when [Ca2+] = 10 microm in cardiac RyRs or 1 microm in skeletal RyRs. We show that Type-I inhibition is not the sole mechanism responsible for Mg2+ inhibition, as is often assumed, and we discuss the physiological implications of this finding.

  1. Failure to up-regulate transcription of genes necessary for muscle adaptation underlies limb girdle muscular dystrophy 2A (calpainopathy)

    PubMed Central

    Kramerova, Irina; Ermolova, Natalia; Eskin, Ascia; Hevener, Andrea; Quehenberger, Oswald; Armando, Aaron M.; Haller, Ronald; Romain, Nadine; Nelson, Stanley F.; Spencer, Melissa J.

    2016-01-01

    Limb girdle muscular dystrophy 2A is due to loss-of-function mutations in the Calpain 3 (CAPN3) gene. Our previous data suggest that CAPN3 helps to maintain the integrity of the triad complex in skeletal muscle. In Capn3 knock-out mice (C3KO), Ca2+ release and Ca2+/calmodulin kinase II (CaMKII) signaling are attenuated. We hypothesized that calpainopathy may result from a failure to transmit loading-induced Ca2+-mediated signals, necessary to up-regulate expression of muscle adaptation genes. To test this hypothesis, we compared transcriptomes of muscles from wild type (WT) and C3KO mice subjected to endurance exercise. In WT mice, exercise induces a gene signature that includes myofibrillar, mitochondrial and oxidative lipid metabolism genes, necessary for muscle adaptation. C3KO muscles fail to activate the same gene signature. Furthermore, in agreement with the aberrant transcriptional profile, we observe a commensurate functional defect in lipid metabolism whereby C3KO muscles fail to release fatty acids from stored triacylglycerol. In conjunction with the defects in oxidative metabolism, C3KO mice demonstrate reduced exercise endurance. Failure to up-regulate genes in C3KO muscles is due, in part, to decreased levels of PGC1α, a transcriptional co-regulator that orchestrates the muscle adaptation response. Destabilization of PGC1α is attributable to decreased p38 MAPK activation via diminished CaMKII signaling. Thus, we elucidate a pathway downstream of Ca2+-mediated CaMKII activation that is dysfunctional in C3KO mice, leading to reduced transcription of genes involved in muscle adaptation. These studies identify a novel mechanism of muscular dystrophy: a blunted transcriptional response to muscle loading resulting in chronic failure to adapt and remodel. PMID:27005420

  2. Vasorelaxant and antihypertensive effects of formononetin through endothelium-dependent and -independent mechanisms.

    PubMed

    Sun, Tao; Liu, Rui; Cao, Yong-xiao

    2011-08-01

    To investigate the mechanisms underlying the vasorelaxant effect of formononetin, an O-methylated isoflavone, in isolated arteries, and its antihypertensive activity in vivo. Arterial rings of superior mesenteric arteries, renal arteries, cerebral basilar arteries, coronary arteries and abdominal aortas were prepared from SD rats. Isometric tension of the arterial rings was recorded using a myograph system. Arterial pressure was measured using tail-cuff method in spontaneously hypertensive rats. Formononetin (1-300 μmol/L) elicited relaxation in arteries of the five regions that were pre-contracted by KCl (60 mmol/L), U46619 (1 μmol/L) or phenylephrine (10 μmol/L). The formononetin-induced relaxation was reduced by removal of endothelium or by pretreatment with L-NAME (100 μmol/L). Under conditions of endothelium denudation, formononetin (10, 30, and 100 μmol/L) inhibited the contraction induced by KCl and that induced by CaCl(2) in Ca(2+)-free depolarized medium. In the absence of extracellular Ca(2+), formononetin (10, 30, and 100 μmol/L) depressed the constriction caused by phenylephrine (10 μmol/L), but did not inhibit the tonic contraction in response to the addition of CaCl(2) (2 mmol/L). The contraction caused by caffeine (30 mmol/L) was not inhibited by formononetin (100 μmol/L). Formononetin (10 and 100 μmol/L) reduced the change rate of Ca(2+)-fluorescence intensity in response to KCl (50 mmol/L). In spontaneously hypertensive rats, formononetin (5, 10, and 20 mg/kg) slowly lowered the systolic, diastolic and mean arterial pressure. Formononetin causes vasodilatation via two pathways: (1) endothelium-independent pathway, probably due to inhibition of voltage-dependent Ca(2+) channels and intracellular Ca(2+) release; and (2) endothelium-dependent pathway by releasing NO. Both the pathways may contribute to its antihypertensive effect.

  3. Vasorelaxant and antihypertensive effects of formononetin through endothelium-dependent and -independent mechanisms

    PubMed Central

    SUN, Tao; LIU, Rui; CAO, Yong-xiao

    2011-01-01

    Aim: To investigate the mechanisms underlying the vasorelaxant effect of formononetin, an O-methylated isoflavone, in isolated arteries, and its antihypertensive activity in vivo. Methods: Arterial rings of superior mesenteric arteries, renal arteries, cerebral basilar arteries, coronary arteries and abdominal aortas were prepared from SD rats. Isometric tension of the arterial rings was recorded using a myograph system. Arterial pressure was measured using tail-cuff method in spontaneously hypertensive rats. Results: Formononetin (1–300 μmol/L) elicited relaxation in arteries of the five regions that were pre-contracted by KCl (60 mmol/L), U46619 (1 μmol/L) or phenylephrine (10 μmol/L). The formononetin-induced relaxation was reduced by removal of endothelium or by pretreatment with L-NAME (100 μmol/L). Under conditions of endothelium denudation, formononetin (10, 30, and 100 μmol/L) inhibited the contraction induced by KCl and that induced by CaCl2 in Ca2+-free depolarized medium. In the absence of extracellular Ca2+, formononetin (10, 30, and 100 μmol/L) depressed the constriction caused by phenylephrine (10 μmol/L), but did not inhibit the tonic contraction in response to the addition of CaCl2 (2 mmol/L). The contraction caused by caffeine (30 mmol/L) was not inhibited by formononetin (100 μmol/L). Formononetin (10 and 100 μmol/L) reduced the change rate of Ca2+-fluorescence intensity in response to KCl (50 mmol/L). In spontaneously hypertensive rats, formononetin (5, 10, and 20 mg/kg) slowly lowered the systolic, diastolic and mean arterial pressure. Conclusion: Formononetin causes vasodilatation via two pathways: (1) endothelium-independent pathway, probably due to inhibition of voltage-dependent Ca2+ channels and intracellular Ca2+ release; and (2) endothelium-dependent pathway by releasing NO. Both the pathways may contribute to its antihypertensive effect. PMID:21818108

  4. The role of TRPP2 in agonist-induced gallbladder smooth muscle contraction.

    PubMed

    Zhong, Xingguo; Fu, Jie; Song, Kai; Xue, Nairui; Gong, Renhua; Sun, Dengqun; Luo, Huilai; He, Wenzhu; Pan, Xiang; Shen, Bing; Du, Juan

    2016-04-01

    TRPP2 channel protein belongs to the superfamily of transient receptor potential (TRP) channels and is widely expressed in various tissues, including smooth muscle in digestive gut. Accumulating evidence has demonstrated that TRPP2 can mediate Ca(2+) release from Ca(2+) stores. However, the functional role of TRPP2 in gallbladder smooth muscle contraction still remains unclear. In this study, we used Ca(2+) imaging and tension measurements to test agonist-induced intracellular Ca(2+) concentration increase and smooth muscle contraction of guinea pig gallbladder, respectively. When TRPP2 protein was knocked down in gallbladder muscle strips from guinea pig, carbachol (CCh)-evoked Ca(2+) release and extracellular Ca(2+) influx were reduced significantly, and gallbladder contractions induced by endothelin 1 and cholecystokinin were suppressed markedly as well. CCh-induced gallbladder contraction was markedly suppressed by pretreatment with U73122, which inhibits phospholipase C to terminate inositol 1,4,5-trisphosphate receptor (IP3) production, and 2-aminoethoxydiphenyl borate (2APB), which inhibits IP3 recepor (IP3R) to abolish IP3R-mediated Ca(2+) release. To confirm the role of Ca(2+) release in CCh-induced gallbladder contraction, we used thapsigargin (TG)-to deplete Ca(2+) stores via inhibiting sarco/endoplasmic reticulum Ca(2+)-ATPase and eliminate the role of store-operated Ca(2+) entry on the CCh-induced gallbladder contraction. Preincubation with 2 μmol L(-1) TG significantly decreased the CCh-induced gallbladder contraction. In addition, pretreatments with U73122, 2APB or TG abolished the difference of the CCh-induced gallbladder contraction between TRPP2 knockdown and control groups. We conclude that TRPP2 mediates Ca(2+) release from intracellular Ca(2+) stores, and has an essential role in agonist-induced gallbladder muscle contraction.

  5. Citrus bergamia Risso Elevates Intracellular Ca2+ in Human Vascular Endothelial Cells due to Release of Ca2+ from Primary Intracellular Stores

    PubMed Central

    Kang, Purum; Han, Seung Ho; Moon, Hea Kyung; Lee, Jeong-Min; Kim, Hyo-Keun; Min, Sun Seek; Seol, Geun Hee

    2013-01-01

    The purpose of the present study is to examine the effects of essential oil of Citrus bergamia Risso (bergamot, BEO) on intracellular Ca2+ in human umbilical vein endothelial cells. Fura-2 fluorescence was used to examine changes in intracellular Ca2+ concentration [Ca2+]i . In the presence of extracellular Ca2+, BEO increased [Ca2+]i , which was partially inhibited by a nonselective Ca2+ channel blocker La3+. In Ca2+-free extracellular solutions, BEO increased [Ca2+]i in a concentration-dependent manner, suggesting that BEO mobilizes intracellular Ca2+. BEO-induced [Ca2+]i increase was partially inhibited by a Ca2+-induced Ca2+ release inhibitor dantrolene, a phospholipase C inhibitor U73122, and an inositol 1,4,5-triphosphate (IP3)-gated Ca2+ channel blocker, 2-aminoethoxydiphenyl borane (2-APB). BEO also increased [Ca2+]i in the presence of carbonyl cyanide m-chlorophenylhydrazone, an inhibitor of mitochondrial Ca2+ uptake. In addition, store-operated Ca2+ entry (SOC) was potentiated by BEO. These results suggest that BEO mobilizes Ca2+ from primary intracellular stores via Ca2+-induced and IP3-mediated Ca2+ release and affect promotion of Ca2+ influx, likely via an SOC mechanism. PMID:24348719

  6. Whole brain-pituitary in vitro preparation of the transgenic medaka (Oryzias latipes) as a tool for analyzing the differential regulatory mechanisms of LH and FSH release.

    PubMed

    Karigo, Tomomi; Aikawa, Masato; Kondo, Chika; Abe, Hideki; Kanda, Shinji; Oka, Yoshitaka

    2014-02-01

    Two types of gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH), are important pituitary hormones for sexual maturation and reproduction, and both of them are centrally regulated by gonadotropin-releasing hormone (GnRH) from the hypothalamus. In mammals, these two gonadotropins are secreted from a single type of gonadotrope. The mechanisms of differential regulation by GnRH of the release of two types of gonadotropins with different secretory profiles are still unknown. In teleosts, however, LH and FSH are secreted from separate cellular populations, unlike in mammals. This feature makes them useful for studying the regulatory mechanisms of LH and FSH secretions independently. Here, we generated transgenic medaka lines that express Ca(2+) indicator protein, inverse-pericam, specifically in the LH or FSH cells. We performed cell-type-specific Ca(2+) imaging of LH and FSH cells, respectively, using the whole brain-pituitary preparations of these transgenic fish in which all neural circuits and GnRH neuronal projection to the pituitary are kept intact. LH and FSH cells showed different Ca(2+) responses to GnRH. The results suggest differential regulation mechanisms for LH and FSH release by GnRH. Moreover, we also succeeded in detecting the effect on LH cells of endogenous GnRH peptide, which was released by electrical stimulation of the axons of GnRH1 neurons. Thus, our newly developed experimental model system using the whole brain-pituitary in vitro preparation of the transgenic medaka is a powerful tool for analyzing the differential regulatory mechanisms of the release of LH and FSH by multisynaptic neural inputs to the pituitary.

  7. Communication between mast cells and rat submucosal neurons.

    PubMed

    Bell, Anna; Althaus, Mike; Diener, Martin

    2015-08-01

    Histamine is a mast cell mediator released e.g. during food allergy. The aim of the project was to identify the effect of histamine on rat submucosal neurons and the mechanisms involved. Cultured submucosal neurons from rat colon express H1, H2 and H3 receptors as shown by immunocytochemical staining confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) with messenger RNA (mRNA) isolated from submucosal homogenates as starting material. Histamine evoked a biphasic rise of the cytosolic Ca(2+) concentration in cultured submucosal neurons, consisting in a release of intracellularly stored Ca(2+) followed by an influx from the extracellular space. Although agonists of all three receptor subtypes evoked an increase in the cytosolic Ca(2+) concentration, experiments with antagonists revealed that mainly H1 (and to a lesser degree H2) receptors mediate the response to histamine. In coculture experiments with RBL-2H3 cells, a mast cell equivalent, compound 48/80, evoked an increase in the cytosolic Ca(2+) concentration of neighbouring neurons. Like the response to native histamine, the neuronal response to the mast cell degranulator was strongly inhibited by the H1 receptor antagonist pyrilamine and reduced by the H2 receptor antagonist cimetidine. In rats sensitized against ovalbumin, exposure to the antigen induced a rise in short-circuit current (I sc) across colonic mucosa-submucosa preparations without a significant increase in paracellular fluorescein fluxes. Pyrilamine strongly inhibited the increase in I sc, a weaker inhibition was observed after blockade of protease receptors or 5-lipoxygenase. Consequently, H1 receptors on submucosal neurons seem to play a pivotal role in the communication between mast cells and the enteric nervous system.

  8. Zinc release from Schaffer collaterals and its significance.

    PubMed

    Takeda, Atsushi; Nakajima, Satoko; Fuke, Sayuri; Sakurada, Naomi; Minami, Akira; Oku, Naoto

    2006-02-15

    On the basis of the evidence that approximately 45% of Schaffer collateral boutons are zinc-positive, zinc release from Schaffer collaterals and its action were examined in hippocampal slices. When zinc release from Schaffer collaterals was examined using ZnAF-2, a membrane-impermeable zinc indicator, ZnAF-2 signal in the stratum radiatum of the CA1 was increased by tetanic stimuli at 100 Hz for 1s, suggesting that zinc is released from Schaffer collaterals in a calcium- and impulse-dependent manner. An in vivo microdialysis experiment indicated that the perfusion with 10 microM zinc significantly decreases extracellular glutamate concentration in the CA1. When tetanic stimuli at 100 Hz for 5s were delivered to the dentate granule cells, the increase in calcium signal in the stratum radiatum of the CA1, as well as in the stratum lucidum of the CA3, was attenuated by addition of 10 microM zinc, while enhanced by addition of 1mM CaEDTA, a membrane-impermeable zinc chelator. The increase in calcium signal in the CA1, in which Schaffer collateral synapses exist, during delivery of tetanic stimuli at 100 Hz for 1s to the Schaffer collateral-commissural pathway was also significantly enhanced by addition of 1mM CaEDTA. These results suggest that zinc released from Schaffer collaterals suppressively modulates presynaptic and postsynaptic calcium signaling in the CA1, followed by the suppression of glutamate release.

  9. Evolution and modulation of intracellular calcium release during long-lasting, depleting depolarization in mouse muscle

    PubMed Central

    Royer, Leandro; Pouvreau, Sandrine; Ríos, Eduardo

    2008-01-01

    Intracellular calcium signals regulate multiple cellular functions. They depend on release of Ca2+ from cellular stores into the cytosol, a process that in many types of cells appears to be tightly controlled by changes in [Ca2+] within the store. In contrast with cardiac muscle, where depletion of Ca2+ in the sarcoplasmic reticulum is a crucial determinant of termination of Ca2+ release, in skeletal muscle there is no agreement regarding the sign, or even the existence of an effect of SR Ca2+ level on Ca2+ release. To address this issue we measured Ca2+ transients in mouse flexor digitorum brevis (FDB) skeletal muscle fibres under voltage clamp, using confocal microscopy and the Ca2+ monitor rhod-2. The evolution of Ca2+ release flux was quantified during long-lasting depolarizations that reduced severely the Ca2+ content of the SR. As in all previous determinations in mammals and non-mammals, release flux consisted of an early peak, relaxing to a lower level from which it continued to decay more slowly. Decay of flux in this second stage, which has been attributed largely to depletion of SR Ca2+, was studied in detail. A simple depletion mechanism without change in release permeability predicts an exponential decay with time. In contrast, flux decreased non-exponentially, to a finite, measurable level that could be maintained for the longest pulses applied (1.8 s). An algorithm on the flux record allowed us to define a quantitative index, the normalized flux rate of change (NFRC), which was shown to be proportional to the ratio of release permeability P and inversely proportional to Ca2+ buffering power B of the SR, thus quantifying the ‘evacuability’ or ability of the SR to empty its content. When P and B were constant, flux then decayed exponentially, and NFRC was equal to the exponential rate constant. Instead, in most cases NFRC increased during the pulse, from a minimum reached immediately after the early peak in flux, to a time between 200 and 250 ms, when the index was no longer defined. NFRC increased by 111% on average (in 27 images from 18 cells), reaching 300% in some cases. The increase may reflect an increase in P, a decrease in B, or both. On experimental and theoretical grounds, both changes are to be expected upon SR depletion. A variable evacuability helps maintain a constant Ca2+ output under conditions of diminishing store Ca2+ load. PMID:18687715

  10. Determination of nitric oxide mediating intracellular Ca2+ release on neurons based on confocal microscopy imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Wang, Yuhua; He, Yipeng; Zeng, Yixiu; Zhang, Yanding; Xie, Shusen

    2014-09-01

    The gas NO is a ubiquitous intercellular messenger that modulates a wide range of physiological and pathophysiological functions. But few studies were made to study the role of NO in the Ca2+ release in dorsal root ganglion (DRG) neurons by confocal microscopy. Thus the objective of this study was to assess if NO has a role in Ca2+ signaling in DRG neurons using confocal microscopy combined with special fluorescence probe Fluo-3/AM. A 100 μM concentration of the NO donors (Sodium Nitroprusside, Dihydrate, SNP) and NO synthase inhibitor (NG-Monomethyl-L-arginine, Monoacetate salt, L-NMMA) was used in the study. Results showed that the fluorescence intensity increased rapidly after injecting SNP, which indicated that SNP could enhance intracellular Ca2+ release. And the fluorescence intensity shrank gradually with time and kept at a low level for quite a long period after loading with L-NMMA which indicated that L-NMMA could block intracellular Ca2+ release. All these results demonstrated that NO was involved in the regulation of intracellular Ca2+ release in the DRG neurons.

  11. Systemic delivery of siRNA by hyaluronan-functionalized calcium phosphate nanoparticles for tumor-targeted therapy

    NASA Astrophysics Data System (ADS)

    Qiu, Chong; Wei, Wei; Sun, Jing; Zhang, Hai-Tao; Ding, Jing-Song; Wang, Jian-Cheng; Zhang, Qiang

    2016-06-01

    In this study, hyaluronan (HA)-functionalized calcium phosphate nanoparticles (CaP-AHA/siRNA NPs) were developed for an injectable and targetable delivery of siRNA, which were prepared by coating the alendronate-hyaluronan graft polymer (AHA) around the surface of calcium phosphate-siRNA co-precipitates. The prepared CaP-AHA/siRNA NPs had a uniform spherical core-shell morphology with an approximate size of 170 nm and zeta potential of -12 mV. The coating of hydrophilic HA improved the physical stability of nanoparticles over one month due to the strong interactions between phosphonate and calcium. In vitro experiments demonstrated that the negatively charged CaP-AHA/siRNA NPs could effectively deliver EGFR-targeted siRNA into A549 cells through CD44-mediated endocytosis and significantly down-regulate the level of EGFR expression. Also, the internalized CaP-AHA/siRNA NPs exhibited a pH-responsive release of siRNA, indicating that the acidification of lysosomes probably facilitated the disassembling of nanoparticles and the resultant ions sharply increased the inner osmotic pressure and thus expedited the release of siRNA from late lysosomes into the cytoplasm. Furthermore, in vivo tumor therapy demonstrated that high accumulation of CaP-AHA/siEGFR NPs in tumor led to a significant tumor growth inhibition with a specific EGFR gene silencing effect after intravenous administration in nude mice xenografted with A549 tumor, along with a negligible body weight loss. These results suggested that the CaP-AHA/siRNA NPs could be an effective and safe systemic siRNA delivery system for a RNAi-based tumor targeted therapy strategy.In this study, hyaluronan (HA)-functionalized calcium phosphate nanoparticles (CaP-AHA/siRNA NPs) were developed for an injectable and targetable delivery of siRNA, which were prepared by coating the alendronate-hyaluronan graft polymer (AHA) around the surface of calcium phosphate-siRNA co-precipitates. The prepared CaP-AHA/siRNA NPs had a uniform spherical core-shell morphology with an approximate size of 170 nm and zeta potential of -12 mV. The coating of hydrophilic HA improved the physical stability of nanoparticles over one month due to the strong interactions between phosphonate and calcium. In vitro experiments demonstrated that the negatively charged CaP-AHA/siRNA NPs could effectively deliver EGFR-targeted siRNA into A549 cells through CD44-mediated endocytosis and significantly down-regulate the level of EGFR expression. Also, the internalized CaP-AHA/siRNA NPs exhibited a pH-responsive release of siRNA, indicating that the acidification of lysosomes probably facilitated the disassembling of nanoparticles and the resultant ions sharply increased the inner osmotic pressure and thus expedited the release of siRNA from late lysosomes into the cytoplasm. Furthermore, in vivo tumor therapy demonstrated that high accumulation of CaP-AHA/siEGFR NPs in tumor led to a significant tumor growth inhibition with a specific EGFR gene silencing effect after intravenous administration in nude mice xenografted with A549 tumor, along with a negligible body weight loss. These results suggested that the CaP-AHA/siRNA NPs could be an effective and safe systemic siRNA delivery system for a RNAi-based tumor targeted therapy strategy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr04034a

  12. Otoferlin acts as a Ca2+ sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses

    PubMed Central

    Goutman, Juan D; Auclair, Sarah Marie; Boutet de Monvel, Jacques; Tertrais, Margot; Emptoz, Alice; Parrin, Alexandre; Nouaille, Sylvie; Guillon, Marc; Sachse, Martin; Ciric, Danica; Bahloul, Amel; Hardelin, Jean-Pierre; Sutton, Roger Bryan; Avan, Paul; Krishnakumar, Shyam S; Rothman, James E

    2017-01-01

    Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C2-domain, Ca2+-binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice (Otof Ala515,Ala517/Ala515,Ala517) with lower Ca2+-binding affinity of the C2C domain. The IHC ribbon synapse structure, synaptic Ca2+ currents, and otoferlin distribution were unaffected in these mutant mice, but auditory brainstem response wave-I amplitude was reduced. Lower Ca2+ sensitivity and delay of the fast and sustained components of synaptic exocytosis were revealed by membrane capacitance measurement upon modulations of intracellular Ca2+ concentration, by varying Ca2+ influx through voltage-gated Ca2+-channels or Ca2+ uncaging. Otoferlin thus functions as a Ca2+ sensor, setting the rates of primed vesicle fusion with the presynaptic plasma membrane and synaptic vesicle pool replenishment in the IHC active zone. PMID:29111973

  13. Otoferlin acts as a Ca2+ sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses.

    PubMed

    Michalski, Nicolas; Goutman, Juan D; Auclair, Sarah Marie; Boutet de Monvel, Jacques; Tertrais, Margot; Emptoz, Alice; Parrin, Alexandre; Nouaille, Sylvie; Guillon, Marc; Sachse, Martin; Ciric, Danica; Bahloul, Amel; Hardelin, Jean-Pierre; Sutton, Roger Bryan; Avan, Paul; Krishnakumar, Shyam S; Rothman, James E; Dulon, Didier; Safieddine, Saaid; Petit, Christine

    2017-11-07

    Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C 2 -domain, Ca 2+ -binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice ( Otof Ala515,Ala517/Ala515,Ala517 ) with lower Ca 2+ -binding affinity of the C 2 C domain. The IHC ribbon synapse structure, synaptic Ca 2+ currents, and otoferlin distribution were unaffected in these mutant mice, but auditory brainstem response wave-I amplitude was reduced. Lower Ca 2+ sensitivity and delay of the fast and sustained components of synaptic exocytosis were revealed by membrane capacitance measurement upon modulations of intracellular Ca 2+ concentration, by varying Ca 2+ influx through voltage-gated Ca 2+ -channels or Ca 2+ uncaging. Otoferlin thus functions as a Ca 2+ sensor, setting the rates of primed vesicle fusion with the presynaptic plasma membrane and synaptic vesicle pool replenishment in the IHC active zone.

  14. Superresolution Modeling of Calcium Release in the Heart

    PubMed Central

    Walker, Mark A.; Williams, George S.B.; Kohl, Tobias; Lehnart, Stephan E.; Jafri, M. Saleet; Greenstein, Joseph L.; Lederer, W.J.; Winslow, Raimond L.

    2014-01-01

    Stable calcium-induced calcium release (CICR) is critical for maintaining normal cellular contraction during cardiac excitation-contraction coupling. The fundamental element of CICR in the heart is the calcium (Ca2+) spark, which arises from a cluster of ryanodine receptors (RyR). Opening of these RyR clusters is triggered to produce a local, regenerative release of Ca2+ from the sarcoplasmic reticulum (SR). The Ca2+ leak out of the SR is an important process for cellular Ca2+ management, and it is critically influenced by spark fidelity, i.e., the probability that a spontaneous RyR opening triggers a Ca2+ spark. Here, we present a detailed, three-dimensional model of a cardiac Ca2+ release unit that incorporates diffusion, intracellular buffering systems, and stochastically gated ion channels. The model exhibits realistic Ca2+ sparks and robust Ca2+ spark termination across a wide range of geometries and conditions. Furthermore, the model captures the details of Ca2+ spark and nonspark-based SR Ca2+ leak, and it produces normal excitation-contraction coupling gain. We show that SR luminal Ca2+-dependent regulation of the RyR is not critical for spark termination, but it can explain the exponential rise in the SR Ca2+ leak-load relationship demonstrated in previous experimental work. Perturbations to subspace dimensions, which have been observed in experimental models of disease, strongly alter Ca2+ spark dynamics. In addition, we find that the structure of RyR clusters also influences Ca2+ release properties due to variations in inter-RyR coupling via local subspace Ca2+ concentration ([Ca2+]ss). These results are illustrated for RyR clusters based on super-resolution stimulated emission depletion microscopy. Finally, we present a believed-novel approach by which the spark fidelity of a RyR cluster can be predicted from structural information of the cluster using the maximum eigenvalue of its adjacency matrix. These results provide critical insights into CICR dynamics in heart, under normal and pathological conditions. PMID:25517166

  15. The effect of glucose on insulin release and ion movements in isolated pancreatic islets of rats in old age.

    PubMed Central

    Ammon, H P; Fahmy, A; Mark, M; Wahl, M A; Youssif, N

    1987-01-01

    1. The effect of glucose on 86Rb+ efflux, 45Ca2+ net uptake and insulin secretion of pancreatic islets from 3- and 24-month-old rats was studied. 2. Raising the glucose concentration from 3 to 5.6 and 16.7 mM had no effect on 86Rb+ efflux from islets of 24-month-old male rats whereas that from 24-month-old female rats was decreased. 3. At 16.7 mM-glucose, net uptake of 45Ca2+ was significantly diminished in islets of 24-month-old rats compared to islets of 3-month-old rats. 4. In the presence of 16.7 mM-glucose, islets of 24-month-old rats exhibited only 60-70% of the insulin release obtained with islets from 3-month-old rats. 5. Neither net uptake of 45Ca2+ nor insulin secretion appear to differ between the sexes. 6. These data suggest that the decreased insulin secretory response to glucose during old age is due, at least in part, to inadequate inhibition of K+ efflux and diminished net uptake of Ca2+. PMID:3309262

  16. Spike-independent release of ATP from Xenopus spinal neurons evoked by activation of glutamate receptors

    PubMed Central

    Brown, Paul; Dale, Nicholas

    2002-01-01

    As the release of ATP from neurons has only been directly studied in a few cases, we have used patch sniffing to examine ATP release from Xenopus spinal neurons. ATP release was detected following intracellular current injection to evoke spikes. However, spiking was not essential as both glutamate and NMDA could evoke release of ATP in the presence of TTX. Neither acetylcholine nor high K+ was effective at inducing ATP release in the presence of TTX. Although Cd2+ blocked glutamate-evoked release of ATP suggesting a dependence on Ca2+ entry, neither ω-conotoxin-GVIA nor nifedipine prevented ATP release. N-type and L-type channels are thus not essential for glutamate-evoked ATP release. That glutamate receptors can elicit release in the absence of spiking suggests a close physical relationship between these receptors, the Ca2+ channels and release sites. As the dependence of ATP release on the influx of Ca2+ through Ca2+ channel subtypes differs from that of synaptic transmitter release, ATP may be released from sites that are distinct from those of the principal transmitter. In addition to its role as a fast transmitter, ATP may thus be released as a consequence of the activation of excitatory glutamatergic synapses and act to signal information about activity patterns in the nervous system. PMID:11986374

  17. Foraminiferal Stable Isotope Record at Millville, NJ: Implications for the onset of the PETM

    NASA Astrophysics Data System (ADS)

    Wright, J. D.; Miller, K. G.

    2016-12-01

    Traditional paleoceanographic tools (magneto-biostratigraphy, orbital cycles) are insufficient to assign rates to the initial release of carbon during the rapid onset of the PETM (<10 kyr). The ODP Leg 174AX Millville, NJ PETM section (70 m paleodepth) is >10 times more expanded relative to the thickest open ocean sites (e.g., Site 690). The onset interval at Millville is defined by a bulk carbonate δ13C of 3.5‰ across 25 cm interval. Two groups used the geochemical changes to constrain the timing for the initial pulse of carbon. Wright and Schaller (2013) focused on the differential responses in δ13C and %CaCO3 arguing that the release was fast (<1 year). Conversely, Zeebe et al. (2016) assumed the initial covariance in δ18O and δ13C represented equilibrium conditions, modeling a 4 kyr duration for the release. We generated planktonic and benthic foraminiferal stable isotope records across the onset of the PETM CIE at Millville. Most of the δ13C change recorded by foraminifera occurred over the 25 cm onset interval. However, foraminiferal δ18O values continue to decrease for another 1.5 m above the initial δ13C decrease contradicting Zeebe et al.'s assumption of equilibrium conditions. The foraminiferal stable isotope pattern is similar to the modeled response following a large, instantaneous release of light carbon to the atmosphere, that produces a rapid (decadal) scale warming in the surface air masses followed by continued warming but at a slower rate. Differential responses in δ13C, δ18O, and %CaCO3 at the onset of the PETM are consistent with an instantaneous initial release of carbon with centennial-scale warming that continued well after the initial carbon pulse similar to that predicted by climate models. Fitting the Millville isotope records to these models suggests that peak warmth followed the initial release by 100 to 200 years. The mid-shelf location of Millville a made it responsive to atmospheric changes unlike open ocean sites where thermal inertia dampens the larger atmosphere changes.

  18. Characterization of Wet-Heat Inactivation of Single Spores of Bacillus Species by Dual-Trap Raman Spectroscopy and Elastic Light Scattering▿

    PubMed Central

    Zhang, Pengfei; Kong, Lingbo; Setlow, Peter; Li, Yong-qing

    2010-01-01

    Dual-trap laser tweezers Raman spectroscopy (LTRS) and elastic light scattering (ELS) were used to investigate dynamic processes during high-temperature treatment of individual spores of Bacillus cereus, Bacillus megaterium, and Bacillus subtilis in water. Major conclusions from these studies included the following. (i) After spores of all three species were added to water at 80 to 90°C, the level of the 1:1 complex of Ca2+ and dipicolinic acid (CaDPA; ∼25% of the dry weight of the spore core) in individual spores remained relatively constant during a highly variable lag time (Tlag), and then CaDPA was released within 1 to 2 min. (ii) The Tlag values prior to rapid CaDPA release and thus the times for wet-heat killing of individual spores of all three species were very heterogeneous. (iii) The heterogeneity in kinetics of wet-heat killing of individual spores was not due to differences in the microscopic physical environments during heat treatment. (iv) During the wet-heat treatment of spores of all three species, spore protein denaturation largely but not completely accompanied rapid CaDPA release, as some changes in protein structure preceded rapid CaDPA release. (v) Changes in the ELS from individual spores of all three species were strongly correlated with the release of CaDPA. The ELS intensities of B. cereus and B. megaterium spores decreased gradually and reached minima at T1 when ∼80% of spore CaDPA was released, then increased rapidly until T2 when full CaDPA release was complete, and then remained nearly constant. The ELS intensity of B. subtilis spores showed similar features, although the intensity changed minimally, if at all, prior to T1. (vi) Carotenoids in B. megaterium spores' inner membranes exhibited two changes during heat treatment. First, the carotenoid's two Raman bands at 1,155 and 1,516 cm−1 decreased rapidly to a low value and to zero, respectively, well before Tlag, and then the residual 1,155-cm−1 band disappeared, in parallel with the rapid CaDPA release beginning at Tlag. PMID:20097820

  19. Novel insights on the relationship between T-tubular defects and contractile dysfunction in a mouse model of hypertrophic cardiomyopathy.

    PubMed

    Crocini, C; Ferrantini, C; Scardigli, M; Coppini, R; Mazzoni, L; Lazzeri, E; Pioner, J M; Scellini, B; Guo, A; Song, L S; Yan, P; Loew, L M; Tardiff, J; Tesi, C; Vanzi, F; Cerbai, E; Pavone, F S; Sacconi, L; Poggesi, C

    2016-02-01

    Abnormalities of cardiomyocyte Ca(2+) homeostasis and excitation-contraction (E-C) coupling are early events in the pathogenesis of hypertrophic cardiomyopathy (HCM) and concomitant determinants of the diastolic dysfunction and arrhythmias typical of the disease. T-tubule remodelling has been reported to occur in HCM but little is known about its role in the E-C coupling alterations of HCM. Here, the role of T-tubule remodelling in the electro-mechanical dysfunction associated to HCM is investigated in the Δ160E cTnT mouse model that expresses a clinically-relevant HCM mutation. Contractile function of intact ventricular trabeculae is assessed in Δ160E mice and wild-type siblings. As compared with wild-type, Δ160E trabeculae show prolonged kinetics of force development and relaxation, blunted force-frequency response with reduced active tension at high stimulation frequency, and increased occurrence of spontaneous contractions. Consistently, prolonged Ca(2+) transient in terms of rise and duration are also observed in Δ160E trabeculae and isolated cardiomyocytes. Confocal imaging in cells isolated from Δ160E mice reveals significant, though modest, remodelling of T-tubular architecture. A two-photon random access microscope is employed to dissect the spatio-temporal relationship between T-tubular electrical activity and local Ca(2+) release in isolated cardiomyocytes. In Δ160E cardiomyocytes, a significant number of T-tubules (>20%) fails to propagate action potentials, with consequent delay of local Ca(2+) release. At variance with wild-type, we also observe significantly increased variability of local Ca(2+) transient rise as well as higher Ca(2+)-spark frequency. Although T-tubule structural remodelling in Δ160E myocytes is modest, T-tubule functional defects determine non-homogeneous Ca(2+) release and delayed myofilament activation that significantly contribute to mechanical dysfunction. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. RIM-binding protein 2 regulates release probability by fine-tuning calcium channel localization at murine hippocampal synapses

    PubMed Central

    Grauel, M. Katharina; Reddy-Alla, Suneel; Willmes, Claudia G.; Brockmann, Marisa M.; Trimbuch, Thorsten; Rosenmund, Tanja; Pangalos, Maria; Vardar, Gülçin; Stumpf, Alexander; Walter, Alexander M.; Rost, Benjamin R.; Eickholt, Britta J.; Haucke, Volker; Schmitz, Dietmar; Sigrist, Stephan J.; Rosenmund, Christian

    2016-01-01

    The tight spatial coupling of synaptic vesicles and voltage-gated Ca2+ channels (CaVs) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca2+ channels and via RIM with other components of the release machinery. Although human RIM-BPs have been implicated in autism spectrum disorders, little is known about the role of mammalian RIM-BPs in synaptic transmission. We investigated RIM-BP2–deficient murine hippocampal neurons in cultures and slices. Short-term facilitation is significantly enhanced in both model systems. Detailed analysis in culture revealed a reduction in initial release probability, which presumably underlies the increased short-term facilitation. Superresolution microscopy revealed an impairment in CaV2.1 clustering at AZs, which likely alters Ca2+ nanodomains at release sites and thereby affects release probability. Additional deletion of RIM-BP1 does not exacerbate the phenotype, indicating that RIM-BP2 is the dominating RIM-BP isoform at these synapses. PMID:27671655

  1. Different signaling pathway between sphingosine-1-phosphate and lysophosphatidic acid in Xenopus oocytes: functional coupling of the sphingosine-1-phosphate receptor to PLC-xbeta in Xenopus oocytes.

    PubMed

    Noh, S J; Kim, M J; Shim, S; Han, J K

    1998-08-01

    In Xenopus oocytes, both sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) activate Ca2+-dependent oscillatory Cl- currents by acting through membrane-bound receptors. External application of 50 microM S1P elicited a long-lasting oscillatory current that continued over 30 min from the beginning of oscillation, with 300 nA (n = 11) as a usual maximum peak of current, whereas 1-microM LPA treatment showed only transiently oscillating but more vigorous current responses, with 2,800 nA (n = 18) as a maximum peak amplitude. Both phospholipid-induced Ca2+-dependent Cl- currents were observed in the absence of extracellular Ca2+, were blocked by intracellular injection of the Ca2+ chelator, EGTA, and could not be elicited by treatment with thapsigargin, an inhibitor of endoplasmic reticulum (ER) Ca2+ ATPase. Intracellular Ca2+ release appeared to be from inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store, because Cl- currents were blocked by heparin injection. Pretreatment with the aminosteroid, U-73122, an inhibitor of G protein-mediated phospholipase C (PLC) activation, to oocytes inhibited the current responses evoked both by S1P and LPA. However, when they were injected with 10 ng of antisense oligonucleotide (AS-ODN) against Xenopus phospholipase C (PLC-xbeta), oocytes could not respond to S1P application, whereas they responded normally to LPA, indicating that the S1P signaling pathway goes through PLC-xbeta, whereas LPA signaling goes through another unknown PLC. To determine the types of G proteins involved, we introduced AS-ODNs against four types of G-protein alpha subunits that were identified in Xenopus laevis; G(q)alpha, G11alpha, G0alpha, and G(i1)alpha. Among AS-ODNs against the G alphas tested, AS-G(q)alpha and AS-G(i1)alpha to S1P and AS-G(q)alpha and AS-G11alpha to LPA specifically reduced current responses, respectively, to about 20-30% of controls. These results demonstrate that LPA and S1P, although they have similar structural features, release intracellular Ca2+ from the IP3-sensitive pool, use different components in their signal transduction pathways in Xenopus oocytes.

  2. Multiple, disparate roles for calcium signaling in apoptosis of human prostate and cervical cancer cells exposed to diindolylmethane.

    PubMed

    Savino, John A; Evans, Jodi F; Rabinowitz, Dorianne; Auborn, Karen J; Carter, Timothy H

    2006-03-01

    Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, causes growth arrest and apoptosis of cancer cells in vitro. DIM also induces endoplasmic reticulum (ER) stress, and thapsigargin, a specific inhibitor of the sarcoplasmic reticulum/ER calcium-dependent ATPase, enhances this effect. We asked whether elevated cytosolic free calcium [Ca2+]i is required for cytotoxicity of DIM and thapsigargin in two cancer cells lines (C33A, from cervix, and DU145, from prostate). [Ca2+]i was measured in real-time by FURA-2 fluorescence. We tested whether DIM, thapsigargin, and DIM + thapsigargin cause apoptosis, measured by nucleosome release, under conditions that prevented elevation of [Ca2+]i, using both cell-permeable and cell-impermeable forms of the specific calcium chelator BAPTA. DIM, like thapsigargin, rapidly mobilized ER calcium. C33A and DU145 responded differently to perturbations in Ca2+ homeostasis, suggesting that DIM induces apoptosis by different mechanisms in these two cell lines and/or that calcium mobilization also activates different survival pathways in C33A and DU145. Apoptosis in C33A was independent of increased [Ca2+]i, suggesting that depletion of ER Ca2+ stores may be sufficient for cell killing, whereas apoptosis in DU145 required elevated [Ca2+]i for full response. Inhibitor studies using cyclosporin A and KN93 showed that Ca2+ signaling is important for cell survival but the characteristics of this response also differed in the two cell lines. Our results underscore the complex and variable nature of cellular responses to disrupted Ca2+ homeostasis and suggest that alteration Ca2+ homeostasis in the ER can induce cellular apoptosis by both calcium-dependent and calcium-independent mechanisms.

  3. Phototropins Function in High-Intensity Blue Light-Induced Hypocotyl Phototropism in Arabidopsis by Altering Cytosolic Calcium1[C][W][OA

    PubMed Central

    Zhao, Xiang; Wang, Yan-Liang; Qiao, Xin-Rong; Wang, Jin; Wang, Lin-Dan; Xu, Chang-Shui; Zhang, Xiao

    2013-01-01

    Phototropins (phot1 and phot2), the blue light receptors in plants, regulate hypocotyl phototropism in a fluence-dependent manner. Especially under high fluence rates of blue light (HBL), the redundant function mediated by both phot1 and phot2 drastically restricts the understanding of the roles of phot2. Here, systematic analysis of phototropin-related mutants and overexpression transgenic lines revealed that HBL specifically induced a transient increase in cytosolic Ca2+ concentration ([Ca2+]cyt) in Arabidopsis (Arabidopsis thaliana) hypocotyls and that the increase in [Ca2+]cyt was primarily attributed to phot2. Pharmacological and genetic experiments illustrated that HBL-induced Ca2+ increases were modulated differently by phot1 and phot2. Phot2 mediated the HBL-induced increase in [Ca2+]cyt mainly by an inner store-dependent Ca2+-release pathway, not by activating plasma membrane Ca2+ channels. Further analysis showed that the increase in [Ca2+]cyt was possibly responsible for HBL-induced hypocotyl phototropism. An inhibitor of auxin efflux carrier exhibited significant inhibitions of both phototropism and increases in [Ca2+]cyt, which indicates that polar auxin transport is possibly involved in HBL-induced responses. Moreover, PHYTOCHROME KINASE SUBSTRATE1 (PKS1), the phototropin-related signaling element identified, interacted physically with phototropins, auxin efflux carrier PIN-FORMED1 and calcium-binding protein CALMODULIN4, in vitro and in vivo, respectively, and HBL-induced phototropism was impaired in pks multiple mutants, indicating the role of the PKS family in HBL-induced phototropism. Together, these results provide new insights into the functions of phototropins and highlight a potential integration point through which Ca2+ signaling-related HBL modulates hypocotyl phototropic responses. PMID:23674105

  4. Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium.

    PubMed

    Zhao, Xiang; Wang, Yan-Liang; Qiao, Xin-Rong; Wang, Jin; Wang, Lin-Dan; Xu, Chang-Shui; Zhang, Xiao

    2013-07-01

    Phototropins (phot1 and phot2), the blue light receptors in plants, regulate hypocotyl phototropism in a fluence-dependent manner. Especially under high fluence rates of blue light (HBL), the redundant function mediated by both phot1 and phot2 drastically restricts the understanding of the roles of phot2. Here, systematic analysis of phototropin-related mutants and overexpression transgenic lines revealed that HBL specifically induced a transient increase in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) in Arabidopsis (Arabidopsis thaliana) hypocotyls and that the increase in [Ca(2+)]cyt was primarily attributed to phot2. Pharmacological and genetic experiments illustrated that HBL-induced Ca(2+) increases were modulated differently by phot1 and phot2. Phot2 mediated the HBL-induced increase in [Ca(2+)]cyt mainly by an inner store-dependent Ca(2+)-release pathway, not by activating plasma membrane Ca(2+) channels. Further analysis showed that the increase in [Ca(2+)]cyt was possibly responsible for HBL-induced hypocotyl phototropism. An inhibitor of auxin efflux carrier exhibited significant inhibitions of both phototropism and increases in [Ca(2+)]cyt, which indicates that polar auxin transport is possibly involved in HBL-induced responses. Moreover, PHYTOCHROME KINASE SUBSTRATE1 (PKS1), the phototropin-related signaling element identified, interacted physically with phototropins, auxin efflux carrier PIN-FORMED1 and calcium-binding protein CALMODULIN4, in vitro and in vivo, respectively, and HBL-induced phototropism was impaired in pks multiple mutants, indicating the role of the PKS family in HBL-induced phototropism. Together, these results provide new insights into the functions of phototropins and highlight a potential integration point through which Ca(2+) signaling-related HBL modulates hypocotyl phototropic responses.

  5. Ca2+ signaling in injured in situ endothelium of rat aorta.

    PubMed

    Berra-Romani, Roberto; Raqeeb, Abdul; Avelino-Cruz, José Everardo; Moccia, Francesco; Oldani, Amanda; Speroni, Francisco; Taglietti, Vanni; Tanzi, Franco

    2008-09-01

    The inner wall of excised rat aorta was scraped by a microelectrode and Ca2+ signals were investigated by fluorescence microscopy in endothelial cells (ECs) directly coupled with injured cells. The injury caused an immediate increase in the intracellular Ca2+ concentration ([Ca2+]i), followed by a long-lasting decay phase due to Ca2+ influx from extracellular space. The immediate response was mainly due to activation of purinergic receptors, as shown by the effect of P2X and P2Y receptors agonists and antagonists, such as suramin, alpha,beta-MeATP, MRS-2179 and 2-MeSAMP. Inhibition of store-operated Ca2+ influx did not affect either the peak response or the decay phase. Furthermore, the latter was: (i) insensitive to phospholipase C inhibition, (ii) sensitive to the gap junction blockers, palmitoleic acid, heptanol, octanol and oleamide, and (iii) sensitive to La3+ and Ni2+, but not to Gd3+. Finally, ethidium bromide or Lucifer Yellow did not enter ECs facing the scraped area. These results suggest that endothelium scraping: (i) causes a short-lasting stimulation of healthy ECs by extracellular nucleotides released from damaged cells and (ii) uncouples the hemichannels of the ECs facing the injury site; these hemichannels do not fully close and allow a long-lasting Ca2+ entry.

  6. Departure gate of acidic Ca2+ confirmed

    PubMed Central

    Jentsch, Thomas J; Hoegg-Beiler, Maja B; Vogt, Janis

    2015-01-01

    More potent, but less known than IP3 that liberates Ca2+ from the ER, NAADP releases Ca2+ from acidic stores. The notion that TPC channels mediate this Ca2+ release was questioned recently by studies suggesting that TPCs are rather PI(3,5)P2-activated Na+ channels. Ruas et al (2015) now partially reconcile these views by showing that TPCs significantly conduct both cations and confirm their activation by both NAADP and PI(3,5)P2. They attribute the failure of others to observe TPC-dependent NAADP-induced Ca2+ release in vivo to inadequate mouse models that retain partial TPC function. PMID:26022292

  7. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle

    PubMed Central

    Ørtenblad, Niels; Nielsen, Joachim; Saltin, Bengt; Holmberg, Hans-Christer

    2011-01-01

    Little is known about the precise mechanism that relates skeletal muscle glycogen to muscle fatigue. The aim of the present study was to examine the effect of glycogen on sarcoplasmic reticulum (SR) function in the arm and leg muscles of elite cross-country skiers (n= 10, 72 ± 2 ml kg−1 min−1) before, immediately after, and 4 h and 22 h after a fatiguing 1 h ski race. During the first 4 h recovery, skiers received either water or carbohydrate (CHO) and thereafter all received CHO-enriched food. Immediately after the race, arm glycogen was reduced to 31 ± 4% and SR Ca2+ release rate decreased to 85 ± 2% of initial levels. Glycogen noticeably recovered after 4 h recovery with CHO (59 ± 5% initial) and the SR Ca2+ release rate returned to pre-exercise levels. However, in the absence of CHO during the first 4 h recovery, glycogen and the SR Ca2+ release rate remained unchanged (29 ± 2% and 77 ± 8%, respectively), with both parameters becoming normal after the remaining 18 h recovery with CHO. Leg muscle glycogen decreased to a lesser extent (71 ± 10% initial), with no effects on the SR Ca2+ release rate. Interestingly, transmission electron microscopy (TEM) analysis revealed that the specific pool of intramyofibrillar glycogen, representing 10–15% of total glycogen, was highly significantly correlated with the SR Ca2+ release rate. These observations strongly indicate that low glycogen and especially intramyofibrillar glycogen, as suggested by TEM, modulate the SR Ca2+ release rate in highly trained subjects. Thus, low glycogen during exercise may contribute to fatigue by causing a decreased SR Ca2+ release rate. PMID:21135051

  8. Hypertonicity-induced transmitter release at Drosophila neuromuscular junctions is partly mediated by integrins and cAMP/protein kinase A

    NASA Technical Reports Server (NTRS)

    Suzuki, Kazuhiro; Grinnell, Alan D.; Kidokoro, Yoshiaki

    2002-01-01

    The frequency of quantal transmitter release increases upon application of hypertonic solutions. This effect bypasses the Ca(2+) triggering step, but requires the presence of key molecules involved in vesicle fusion, and hence could be a useful tool for dissecting the molecular process of vesicle fusion. We have examined the hypertonicity response at neuromuscular junctions of Drosophila embryos in Ca(2+)-free saline. Relative to wild-type, the response induced by puff application of hypertonic solution was enhanced in a mutant, dunce, in which the cAMP level is elevated, or in wild-type embryos treated with forskolin, an activator of adenylyl cyclase, while protein kinase A (PKA) inhibitors decreased it. The response was also smaller in a mutant, DC0, which lacks the major subunit of PKA. Thus the cAMP/PKA cascade is involved in the hypertonicity response. Peptides containing the sequence Arg-Gly-Asp (RGD), which inhibit binding of integrins to natural ligands, reduced the response, whereas a peptide containing the non-binding sequence Arg-Gly-Glu (RGE) did not. A reduced response persisted in a mutant, myospheroid, which expresses no integrins, and the response in DC0 was unaffected by RGD peptides. These data indicate that there are at lease two components in the hypertonicity response: one that is integrin mediated and involves the cAMP/PKA cascade, and another that is not integrin mediated and does not involve the cAMP/PKA cascade.

  9. Arachidonate-Regulated Ca2+ Influx in Human Airway Smooth Muscle

    PubMed Central

    Thompson, Michael A.; Prakash, Y. S.

    2014-01-01

    Plasma membrane Ca2+ influx, especially store-operated Ca2+ entry triggered by sarcoplasmic reticulum (SR) Ca2+ release, is a key component of intracellular calcium concentration ([Ca2+]i) regulation in airway smooth muscle (ASM). Agonist-induced Ca2+ oscillations in ASM that involve both influx and SR mechanisms have been previously demonstrated. In nonexcitable cells, [Ca2+]i oscillations involve Ca2+ influx via arachidonic acid (AA) –stimulated channels, which show similarities to store-operated Ca2+ entry, although their molecular identity remains undetermined. Little is known about AA-regulated Ca2+ channels or their regulation in ASM. In enzymatically dissociated human ASM cells loaded with the Ca2+ indicator, fura-2, AA (1–10 μM) triggered [Ca2+]i oscillations that were inhibited by removal of extracellular Ca2+. Other fatty acids, such as the diacylglycerol analog, 1-oleoyl-2-acetyl-SN-glycerol, oleic acid, and palmitic acid (10 μM each), failed to elicit similar [Ca2+]i responses. Preincubation with LaCl3 (1 μM or 1 mM) inhibited AA-induced oscillations. Inhibition of receptor-operated channels (SKF96,365 [10 μM]), lipoxygenase (zileuton [10 μM]), or cyclooxygenase (indomethacin [10 μM]) did not affect oscillation parameters. Inhibition of SR Ca2+ release (ryanodine [10 μM] or inositol 1,4,5-trisphosphate receptor inhibitor, xestospongin C [1 μM]) decreased [Ca2+]i oscillation frequency and amplitude. Small interfering RNA against caveolin-1, stromal interaction molecule 1, or Orai3 (20 nM each) reduced the frequency and amplitude of AA-induced [Ca2+]i oscillations. In ASM cells derived from individuals with asthma, AA increased oscillation amplitude, but not frequency. These results are highly suggestive of a novel AA-mediated Ca2+–regulatory mechanism in human ASM, reminiscent of agonist-induced oscillations. Given the role of AA in ASM intracellular signaling, especially with inflammation, AA-regulated Ca2+ channels could potentially contribute to increased [Ca2+]i in diseases such asthma. PMID:24471656

  10. CFP-10 from Mycobacterium tuberculosis Selectively Activates Human Neutrophils through a Pertussis Toxin-Sensitive Chemotactic Receptor

    PubMed Central

    Björnsdottir, Halla; Winther, Malene; Christenson, Karin; Oprea, Tudor; Karlsson, Anna; Forsman, Huamei; Dahlgren, Claes; Bylund, Johan

    2014-01-01

    Upon infection with Mycobacterium tuberculosis, neutrophils are massively recruited to the lungs, but the role of these cells in combating the infection is poorly understood. Through a type VII secretion system, M. tuberculosis releases a heterodimeric protein complex, containing a 6-kDa early secreted antigenic target (ESAT-6) and a 10-kDa culture filtrate protein (CFP-10), that is essential for virulence. Whereas the ESAT-6 component possesses multiple virulence-related activities, no direct biological activity of CFP-10 has been shown, and CFP-10 has been described as a chaperone protein for ESAT-6. We here show that the ESAT-6:CFP-10 complex induces a transient release of Ca2+ from intracellular stores in human neutrophils. Surprisingly, CFP-10 rather than ESAT-6 was responsible for triggering the Ca2+ response, in a pertussis toxin-sensitive manner, suggesting the involvement of a G-protein-coupled receptor. In line with this, the response was accompanied by neutrophil chemotaxis and activation of the superoxide-producing NADPH-oxidase. Neutrophils were unique among leukocytes in responding to CFP-10, as monocytes and lymphocytes failed to produce a Ca2+ signal upon stimulation with the M. tuberculosis protein. Hence, CFP-10 may contribute specifically to neutrophil recruitment and activation during M. tuberculosis infection, representing a novel biological role for CFP-10 in the ESAT-6:CFP-10 complex, beyond the previously described chaperone function. PMID:25332123

  11. Involvement of P-type Ca2+ channels in the K(+)- and d-fenfluramine-induced [3H]5-HT release from rat hippocampal synaptosomes.

    PubMed

    Frittoli, E; Gobbi, M; Mennini, T

    1994-06-01

    The Ca2(+)-dependent [3H]5-HT release induced by depolarization or by 0.5 microM d-fenfluramine in rat hippocampal synaptosomes, was significantly reduced (35-42%) by three different P-type Ca2+ channels blockers (omega-Agatoxin-IVA, 100 nM, funnel-web spider toxin, FTX, 0.05 microliters/ml, and its synthetic analogue, sFTX, 1 mM), indicating the major role of these channels in the Ca2+ influx preceding neurotransmitter release.

  12. An oxygen slow-releasing material and its application in water remediation as oxygen supplier.

    PubMed

    Zhou, Yanbo; Fang, Xingbin; Zhang, Zhiqing; Hu, Yonghua; Lu, Jun

    2017-11-01

    In this study, an oxygen slow-releasing material (OSRM) consisting of calcium peroxide (CaO 2 ), stearic acid (SA) and quartz sand was used to improve oxygen supply during bioremediation. The oxygen-releasing rates of CaO 2 powder and OSRM with different SA contents were investigated. The efficacy of OSRM as an oxygen supplier was assessed by water remediation experiments using activated sludge. Results showed that CaO 2 powder was effectively embedded by SA under anhydrous conditions. The oxygen-releasing rate decreased with increasing SA contents. Moreover, the OSRM exhibited higher oxygen-releasing capacity, and more effective pH control ability than CaO 2 powder. The water remediation experiments showed better removal of COD and [Formula: see text] with OSRM as the oxygen supplier. These results provided detailed information when CaO 2 was applied as the oxygen supplier in water remediation, which can serve as references for field application of bioremediation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauderman, K.A.; Gandhi, V.C.; Jones, D.J.

    Fluoxetine, a selective 5-Ht uptake inhibitor, inhibited 15 mM K{sup +}-induced ({sup 3}H)5-HT release from rat spinal cord and cortical synaptosomes at concentrations > 0.5 uM. This effect reflected a property shared by another selective 5-HT uptake inhibitor paroxetine but not by less selective uptake inhibitors such as amitriptyline, desipramine, imipramine or nortriptyline. Inhibition of release by fluoxetine was inversely related to both the concentration of K{sup +} used to depolarize the synaptosomes and the concentration of external Ca{sup 2+}. Experiments aimed at determining a mechanism of action revealed that fluoxetine did not inhibit voltage-independent release of ({sup 3}H)5-HT releasemore » induced by the Ca{sup 2+}-ionophore A 23187 or Ca{sup 2+}-independent release induced by fenfluramine. Moreover the 5-HT autoreceptor antagonist methiothepin did not reverse the inhibitory actions of fluoxetine on K{sup +}-induced release. Further studies examined the effects of fluoxetine on voltage-dependent Ca{sup 2+} channels and Ca{sup 2+} entry.« less

  14. Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle

    PubMed Central

    Royer, Leandro; Ríos, Eduardo

    2009-01-01

    Since its discovery in 1971, calsequestrin has been recognized as the main Ca2+ binding protein inside the sarcoplasmic reticulum (SR), the organelle that stores and upon demand mobilizes Ca2+ for contractile activation of muscle. This article reviews the potential roles of calsequestrin in excitation–contraction coupling of skeletal muscle. It first considers the quantitative demands for a structure that binds Ca2+ inside the SR in view of the amounts of the ion that must be mobilized to elicit muscle contraction. It briefly discusses existing evidence, largely gathered in cardiac muscle, of two roles for calsequestrin: as Ca2+ reservoir and as modulator of the activity of Ca2+ release channels, and then considers the results of an incipient body of work that manipulates the cellular endowment of calsequestrin. The observations include evidence that both the Ca2+ buffering capacity of calsequestrin in solution and that of the SR in intact cells decay as the free Ca2+ concentration is lowered. Together with puzzling observations of increase of Ca2+ inside the SR, in cells or vesicular fractions, upon activation of Ca2+ release, this is interpreted as evidence that the Ca2+ buffering in the SR is non-linear, and is optimized for support of Ca2+ release at the physiological levels of SR Ca2+ concentration. Such non-linearity of buffering is qualitatively explained by a speculation that puts together ideas first proposed by others. The speculation pictures calsequestrin polymers as ‘wires’ that both bind Ca2+ and efficiently deliver it near the release channels. In spite of the kinetic changes, the functional studies reveal that cells devoid of calsequestrin are still capable of releasing large amounts of Ca2+ into the myoplasm, consistent with the long term viability and apparent good health of mice engineered for calsequestrin ablation. The experiments therefore suggest that other molecules are capable of providing sites for reversible binding of large amounts of Ca2+ inside the sarcoplasmic reticulum. PMID:19403601

  15. Oleic acid blocks EGF-induced [Ca2+]i release without altering cellular metabolism in fibroblast EGFR T17.

    PubMed

    Zugaza, J L; Casabiell, X A; Bokser, L; Casanueva, F F

    1995-02-06

    EGFR-T17 cells were pretreated with oleic acid and 5-10 minutes later stimulated with EGF, to study if early ionic signals are instrumental in inducing metabolic cellular response. Oleic acid blocks EGF-induced [Ca2+]i rise and Ca2+ influx without altering 2-deoxyglucose and 2-aminobutiryc acid uptake nor acute, nor chronically. Oleic acid it is shown, in the first minutes favors the entrance of both molecules to modify the physico-chemical membrane state. On the other hand, oleic acid is unable to block protein synthesis. The results suggest that EGF-induced Ins(1,4,5)P3/Ca2+ pathway does not seem to be decisive in the control of cellular metabolic activity.

  16. The putative imidazoline receptor agonist, harmane, promotes intracellular calcium mobilisation in pancreatic beta-cells.

    PubMed

    Squires, Paul E; Hills, Claire E; Rogers, Gareth J; Garland, Patrick; Farley, Sophia R; Morgan, Noel G

    2004-10-06

    beta-Carbolines (including harmane and pinoline) stimulate insulin secretion by a mechanism that may involve interaction with imidazoline I(3)-receptors but which also appears to be mediated by actions that are additional to imidazoline receptor agonism. Using the MIN6 beta-cell line, we now show that both the imidazoline I(3)-receptor agonist, efaroxan, and the beta-carboline, harmane, directly elevate cytosolic Ca(2+) and increase insulin secretion but that these responses display different characteristics. In the case of efaroxan, the increase in cytosolic Ca(2+) was readily reversible, whereas, with harmane, the effect persisted beyond removal of the agonist and resulted in the development of a repetitive train of Ca(2+)-oscillations whose frequency, but not amplitude, was concentration-dependent. Initiation of the Ca(2+)-oscillations by harmane was independent of extracellular calcium but was sensitive to both dantrolene and high levels (20 mM) of caffeine, suggesting the involvement of ryanodine receptor-gated Ca(2+)-release. The expression of ryanodine receptor-1 and ryanodine receptor-2 mRNA in MIN6 cells was confirmed using reverse transcription-polymerase chain reaction (RT-PCR) and, since low concentrations of caffeine (1 mM) or thimerosal (10 microM) stimulated increases in [Ca(2+)](i), we conclude that ryanodine receptors are functional in these cells. Furthermore, the increase in insulin secretion induced by harmane was attenuated by dantrolene, consistent with the involvement of ryanodine receptors in mediating this response. By contrast, the smaller insulin secretory response to efaroxan was unaffected by dantrolene. Harmane-evoked changes in cytosolic Ca(2+) were maintained by nifedipine-sensitive Ca(2+)-influx, suggesting the involvement of L-type voltage-gated Ca(2+)-channels. Taken together, these data imply that harmane may interact with ryanodine receptors to generate sustained Ca(2+)-oscillations in pancreatic beta-cells and that this effect contributes to the insulin secretory response.

  17. Chemical UV Filters Mimic the Effect of Progesterone on Ca2+ Signaling in Human Sperm Cells.

    PubMed

    Rehfeld, A; Dissing, S; Skakkebæk, N E

    2016-11-01

    Progesterone released by cumulus cells surrounding the egg induces a Ca 2+ influx into human sperm cells via the cationic channel of sperm (CatSper) Ca 2+ channel and controls multiple Ca 2+ -dependent responses essential for fertilization. We hypothesized that chemical UV filters may mimic the physiological action of progesterone on CatSper, thus affecting Ca 2+ signaling in human sperm cells. We examined 29 UV filters allowed in sunscreens in the United States and/or the European Union for their ability to induce Ca 2+ signals in human sperm by applying measurements of the intracellular free Ca 2+ concentration. We found that 13 UV filters induced a significant Ca 2+ signal at 10 μM. Nine UV filters induced Ca 2+ signals primarily by activating the CatSper channel. The UV filters 3-benzylidene camphor (3-BC) and benzylidene camphor sulfonic acid competitively inhibited progesterone-induced Ca 2+ signals. Dose-response relations for the UV filters showed that the Ca 2+ signal-inducing effects began in the nanomolar-micromolar range. Single-cell Ca 2+ measurements showed a Ca 2+ signal-inducing effect of the most potent UV filter, 3-BC, at 10 nM. Finally, we demonstrated that the 13 UV filters acted additively in low-dose mixtures to induce Ca 2+ signals. In conclusion, 13 of 29 examined UV filters (44%) induced Ca 2+ signals in human sperm. Nine UV filters primarily activated CatSper and thereby mimicked the effect of progesterone. The UV filters 3-BC and benzylidene camphor sulfonic acid competitively inhibited progesterone-induced Ca 2+ signals. In vivo exposure studies are needed to investigate whether UV filter exposure affects human fertility.

  18. Spatio-temporal characterization imaging of Ca2+ oscillations in rat hippocampal neurons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihong; Lu, Jinling; Zhou, Wei; Liu, Rengang; Zeng, Shaoqun; Luo, Qingming

    2001-08-01

    Ca2+ is the most common signal transduction element in cells and plays critical rolls in neuronal development and plasticity. Ca2+ signals encode information in their oscillation frequency or amplitude and response time to regular cellular function. In this study, in order to reveal the spatio-temporal characterization of Ca2+ oscillations in rat hippocampal neurons, two kinds of Ca2+ fluorescent probes, yellow cameleons 2.1 (YC2.1) and Fluo-3, were used to monitor the change of the intracellular free Ca2+ concentration (]Ca2+[i). Spontaneous Ca2+ oscillations and glutamate elicited Ca2+ oscillations were observed with multi-photon excitation laser scan microscope (MPELSM) and confocal laser scan microscope (CLSM). The observation showed that the spatio- temporal characterization of either spontaneous or glutamate provoked Ca2+ oscillations had difference between the neurites and somata in individual nerons, especially in some distal end of neurites. The result indicated that Ca2+ oscillations were most important signal transduction pattern in neuronal development and activation. The spatio-temporal characterization of difference of Ca2+ signals between the distal endo of neurites and the somata might be associated with the distribution of ionotropic receptor and metabotropic glutamate receptors, and Ca2+ response mechanism mediated by two kinds of glutamate receptor. Ca2+ signal elicited by glutamate in the distal end of neurites appeared more complex and generated faster than that in the somata. It was suggested that Ca2+ signal in glutamate stimulated hippacamal neurons first generated from the distal end of neurites and then transduted to the somata. The complicated Ca2+ signal characterization in the distal end of neurites might be associated with neuronal activitation, neurotransmitter releasing, and other functions of neurons.

  19. Expression of multiple Src family kinases in sea urchin eggs and their function in Ca2+ release at fertilization.

    PubMed

    Townley, Ian K; Schuyler, Erin; Parker-Gür, Michelle; Foltz, Kathy R

    2009-03-15

    Egg activation at fertilization in deuterostomes requires a rise in intracellular Ca(2+), which is released from the egg's endoplasmic reticulum. In sea urchins, a Src Family Kinase (SpSFK1) is necessary for the PLCgamma-mediated signaling event that initiates this Ca(2+) release (Giusti, A.F., O'Neill, F.J., Yamasu, K., Foltz, K.R. and Jaffe, L.A., 2003. Function of a sea urchin egg Src family kinase in initiating Ca2+ release at fertilization. Dev. Biol. 256, 367-378.). Annotation of the Strongylocentrotus purpuratus genome sequence led to the identification of additional, predicted SFKs (Bradham, C.A., Foltz, D.R., Beane, W.S., Amone, M.I., Rizzo, F., Coffman, J.A., Mushegian, A., Goel, M., Morales, J., Geneviere, A.M., Lapraz, F., Robertson, A.J., Kelkar, H., Loza-Coll, M., Townley, I.K., Raisch, M., Roux, M.M., Lepage, T., Gache, C., McClay, D.R., Manning, G., 2006. The sea urchin kinome: a first look. Dev. Biol. 300, 180-193.; Roux, M.M., Townley, I.K., Raisch, M., Reade, A., Bradham, C., Humphreys, G., Gunaratne, H.J., Killian, C.E., Moy, G., Su, Y.H., Ettensohn, C.A., Wilt, F., Vacquier, V.D., Burke, R.D., Wessel, G. and Foltz, K.R., 2006. A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation. Dev. Biol. 300, 416-433.). Here, we describe the cloning and characterization of these 4 additional SFKs and test their function during the initial Ca(2+) release at fertilization using the dominant-interfering microinjection method coupled with Ca(2+) recording. While two of the new SFKs (SpFrk and SpSFK3) are necessary for Ca(2+) release, SpSFK5 appears dispensable for early egg to embryo transition events. Interestingly, SpSFK7 may be involved in preventing precocious release of Ca(2+). Binding studies indicate that only SpSFK1 is capable of direct interaction with PLCgamma. Immunolocalization studies suggest that one or more SpSFK and PLCgamma are localized to the egg cortex and at the site of sperm-egg interaction. Collectively, these data indicate that more than one SFK is involved in the Ca(2+) release pathway at fertilization.

  20. Roles of Ca(v) channels and AHNAK1 in T cells: the beauty and the beast.

    PubMed

    Matza, Didi; Flavell, Richard A

    2009-09-01

    T lymphocytes require Ca2+ entry though the plasma membrane for their activation and function. Recently, several routes for Ca2+ entry through the T-cell plasma membrane after activation have been described. These include calcium release-activated channels (CRAC), transient receptor potential (TRP) channels, and inositol-1,4,5-trisphosphate receptors (IP3Rs). Herein we review the emergence of a fourth new route for Ca2+ entry, composed of Ca(v) channels (also known as L-type voltage-gated calcium channels) and the scaffold protein AHNAK1 (AHNAK/desmoyokin). Both helper (CD4+) and killer (CD8+) T cells express high levels of Ca(v)1 alpha1 subunits (alpha1S, alpha1C, alpha1D, and alpha1F) and AHNAK1 after their differentiation and require these molecules for Ca2+ entry during an immune response. In this article, we describe the observations and open questions that ultimately suggest the involvement of multiple consecutive routes for Ca2+ entry into lymphocytes, one of which may be mediated by Ca(v) channels and AHNAK1.

  1. Effect of the environmental pollutant bisphenol A dimethacylate (BAD) on Ca2+ movement and viability in OC2 human oral cancer cells.

    PubMed

    Chien, Jau-Min; Chou, Chiang-Ting; Lu, Yi-Chau; Lu, Ti; Chi, Chao-Chuan; Tseng, Li-Ling; Liu, Shiuh-Inn; Cheng, Jin-Shiung; Kuo, Chun-Chi; Liang, Wei-Zhe; Jan, Chung-Ren

    2013-03-01

    The environmental pollutant bisphenol A dimethacylate (BAD) has been used as a dental composite. The effect of BAD on cytosolic Ca(2+) concentrations ([Ca(2+)]i) and viability in OC2 human oral cancer cells was explored. The Ca(2+)-sensitive fluorescent dye fura-2 was applied to measure [Ca(2+)]i. BAD induced [Ca(2+)]i rises in a concentration-dependent manner. The response was reduced by removing extracellular Ca(2+). BAD-evoked Ca(2+) entry was suppressed by nifedipine, econazole, and SK&F96365. In Ca(2+)-free medium, incubation with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin abolished BAD-induced [Ca(2+)]i rise. Inhibition of phospholipase C with U73122 did not alter BAD-induced [Ca(2+)]i rise. At 10-30μM, BAD inhibited cell viability, which was not reversed by chelating cytosolic Ca(2+). BAD (20-30μM) also induced apoptosis. Collectively, in OC2 cells, BAD induced a [Ca(2+)]i rise by evoking phospholipase C-independent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via store-operated Ca(2+) channels. BAD also caused apoptosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Upper critical solution temperature behavior of cinnamic acid and polyethyleneimine mixture and its effect on temperature-dependent release of liposome.

    PubMed

    Guo, Huangying; Kim, Jin-Chul

    2015-10-15

    The mixture of polyethyleneimine (PEI) and cinnamic acid (CA) in HEPES buffer (pH 7.0) exhibited an upper critical solution temperature in the temperature range of 20-50 °C. CA would be electrostatically conjugated with PEI and the PEI-CA conjugate is thought to act as a thermo-sensitive polymer. On the optical microscope image of PEI/CA mixture, microparticles were found at 25 °C, disappeared when heated to 50 °C, and formed again upon cooling to 25 °C. PEI-CA conjugate was immobilized on the surface of egg phosphatidylcholine (EPC) liposome by adding PEI to the suspension of liposome incorporating CA. The size and the zeta potential of the liposome markedly increased by cooling the liposomal suspension from 50 °C to 20 °C. This could be ascribed to the cooling-induced self-assembling property of PEI-CA conjugate. The release profile of Rhodamine B base from liposome incorporating CA with PEI was investigated while the liposome suspension of 50 °C was exposed to the release medium of 20 °C, 30 °C, 40 °C and 50 °C. The release degree was higher at a lower temperature. When exposed to a lower temperature (20 °C, 30 °C, 40 °C), PEI-CA could be self-assembled and change its configuration on the surface of liposome, promoting the release from the liposome. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Excitation-calcium release uncoupling in aged single human skeletal muscle fibers.

    PubMed

    Delbono, O; O'Rourke, K S; Ettinger, W H

    1995-12-01

    The biological mechanisms underlying decline in muscle power and fatigue with age are not completely understood. The contribution of alterations in the excitation-calcium release coupling in single muscle fibers was explored in this work. Single muscle fibers were voltage-clamped using the double Vaseline gap technique. The samples were obtained by needle biopsy of the vastus lateralis (quadriceps) from 9 young (25-35 years; 25.9 +/- 9.1; 5 female and 4 male) and 11 old subjects (65-75 years; 70.5 +/- 2.3; 6 f, 5 m). Data were obtained from 36 and 39 fibers from young and old subjects, respectively. Subjects included in this study had similar physical activity. Denervated and slow-twitch muscle fibers were excluded from this study. A significant reduction of maximum charge movement (Qmax) and DHP-sensitive Ca current were recorded in muscle fibers from the 65-75 group. Qmax values were 7.6 +/- 0.9 and 3.2 +/- 0.3 nC/muF for young and old muscle fibers, respectively (P < 0.01). No evidences of charge inactivation or interconversion (charge 1 to charge 2) were found. The peak Ca current was (-)4.7 +/- 0.08 and (-)2.15 +/- 0.11 muA/muF for young and old fibers, respectively (P < 0.01). The peak calcium transient studied with mag-fura-2 (400 microM) was 6.3 +/- 0.4 microM and 4.2 +/- 0.3 microM for young and old muscle fibers, respectively. Caffeine (0.5 mM) induced potentiation of the peak calcium transient in both groups. The decrease in the voltage-/Ca-dependent Ca release ratio in old fibers (0.18 +/- 0.02) compared to young fibers (0.47 +/- 0.03) (P < 0.01), was recorded in the absence of sarcoplasmic reticulum calcium depletion. These data support a significant reduction of the amount of Ca available for triggering mechanical responses in aged skeletal muscle and, the reduction of Ca release is due to DHPR-ryanodine receptor uncoupling in fast-twitch fibers. These alterations can account, at least partially for the skeletal muscle function impairment associated with aging.

  4. GDF11 Modulates Ca2+-Dependent Smad2/3 Signaling to Prevent Cardiomyocyte Hypertrophy.

    PubMed

    Duran, Javier; Troncoso, Mayarling Francisca; Lagos, Daniel; Ramos, Sebastian; Marin, Gabriel; Estrada, Manuel

    2018-05-18

    Growth differentiation factor 11 (GDF11), a member of the transforming growth factor-β family, has been shown to act as a negative regulator in cardiac hypertrophy. Ca 2+ signaling modulates cardiomyocyte growth; however, the role of Ca 2+ -dependent mechanisms in mediating the effects of GDF11 remains elusive. Here, we found that GDF11 induced intracellular Ca 2+ increases in neonatal rat cardiomyocytes and that this response was blocked by chelating the intracellular Ca 2+ with BAPTA-AM or by pretreatment with inhibitors of the inositol 1,4,5-trisphosphate (IP₃) pathway. Moreover, GDF11 increased the phosphorylation levels and luciferase activity of Smad2/3 in a concentration-dependent manner, and the inhibition of IP₃-dependent Ca 2+ release abolished GDF11-induced Smad2/3 activity. To assess whether GDF11 exerted antihypertrophic effects by modulating Ca 2+ signaling, cardiomyocytes were exposed to hypertrophic agents (100 nM testosterone or 50 μM phenylephrine) for 24 h. Both treatments increased cardiomyocyte size and [³H]-leucine incorporation, and these responses were significantly blunted by pretreatment with GDF11 over 24 h. Moreover, downregulation of Smad2 and Smad3 with siRNA was accompanied by inhibition of the antihypertrophic effects of GDF11. These results suggest that GDF11 modulates Ca 2+ signaling and the Smad2/3 pathway to prevent cardiomyocyte hypertrophy.

  5. HTDP-2, a new synthetic compound, inhibits glutamate release through reduction of voltage-dependent Ca²⁺ influx in rat cerebral cortex nerve terminals.

    PubMed

    Lin, Tzu-Yu; Lu, Cheng-Wei; Huang, Shu-Kuei; Chou, Shang-Shing Peter; Kuo, Yuh-Chi; Chou, Shiu-Huey; Tzeng, Woan-Fang; Leu, Chieh-Yih; Huang, Rwei-Fen S; Liew, Yih-Fong; Wang, Su-Jane

    2011-01-01

    The present study was aimed at investigating the effect of trans-6-(4-chlorobutyl)-5-hydroxy-4-(phenylthio)-1-tosyl-5,6-dihydropyridine-2(1H)-one (HTDP-2), a novel synthetic compound, on the release of endogenous glutamate in rat cerebrocortical nerve terminals (synaptosomes) and exploring the possible mechanism. The release of glutamate was evoked by the K⁺ channel blocker 4-aminopyridine (4-AP) and measured by an on-line enzyme-coupled fluorimetric assay. We also used a membrane potential-sensitive dye to assay nerve terminal excitability and depolarization, and a Ca²⁺ indicator, Fura-2-acetoxymethyl ester, to monitor cytosolic Ca²⁺ concentrations ([Ca²⁺](c)). HTDP-2 inhibited the release of glutamate evoked by 4-AP in a concentration-dependent manner. Inhibition of glutamate release by HTDP-2 was prevented by the chelating intraterminal Ca²⁺ ions, and by the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-β-benzyloxyaspartate. HTDP-2 did not alter the resting synaptosomal membrane potential or 4-AP-mediated depolarization whereas it decreased the 4-AP-induced increase in [Ca²⁺](c). Furthermore, the inhibitory effect of HTDP-2 on the evoked glutamate release was abolished by the N-, and P/Q-type Ca²⁺ channel blocker ω-conotoxin MVIIC, but not by the ryanodine receptor blocker dantrolene, or the mitochondrial Na⁺/Ca²⁺ exchanger blocker CGP37157. Based on these results, we suggest that, in rat cerebrocortical nerve terminals, HTDP-2 decreases voltage-dependent Ca²⁺ channel activity and, in so doing, inhibits the evoked glutamate release. Copyright © 2011 S. Karger AG, Basel.

  6. Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes.

    PubMed

    Maxwell, Joshua T; Blatter, Lothar A

    2012-12-01

    The widely accepted paradigm for cytosolic Ca(2+) wave propagation postulates a 'fire-diffuse-fire' mechanism where local Ca(2+)-induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) via ryanodine receptor (RyR) Ca(2+) release channels diffuses towards and activates neighbouring release sites, resulting in a propagating Ca(2+) wave. A recent challenge to this paradigm proposed the requirement for an intra-SR 'sensitization' Ca(2+) wave that precedes the cytosolic Ca(2+) wave and primes RyRs from the luminal side to CICR. Here, we tested this hypothesis experimentally with direct simultaneous measurements of cytosolic ([Ca(2+)](i); rhod-2) and intra-SR ([Ca(2+)](SR); fluo-5N) calcium signals during wave propagation in rabbit ventricular myocytes, using high resolution fluorescence confocal imaging. The increase in [Ca(2+)](i) at the wave front preceded depletion of the SR at each point along the calcium wave front, while during this latency period a transient increase of [Ca(2+)](SR) was observed. This transient elevation of [Ca(2+)](SR) could be identified at individual release junctions and depended on the activity of the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA). Increased SERCA activity (β-adrenergic stimulation with 1 μM isoproterenol (isoprenaline)) decreased the latency period and increased the amplitude of the transient elevation of [Ca(2+)](SR), whereas inhibition of SERCA (3 μM cyclopiazonic acid) had the opposite effect. In conclusion, the data provide experimental evidence that local Ca(2+) uptake by SERCA into the SR facilitates the propagation of cytosolic Ca(2+) waves via luminal sensitization of the RyR, and supports a novel paradigm of a 'fire-diffuse-uptake-fire' mechanism for Ca(2+) wave propagation in cardiac myocytes.

  7. Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes

    PubMed Central

    Maxwell, Joshua T; Blatter, Lothar A

    2012-01-01

    The widely accepted paradigm for cytosolic Ca2+ wave propagation postulates a ‘fire-diffuse-fire’ mechanism where local Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) via ryanodine receptor (RyR) Ca2+ release channels diffuses towards and activates neighbouring release sites, resulting in a propagating Ca2+ wave. A recent challenge to this paradigm proposed the requirement for an intra-SR ‘sensitization’ Ca2+ wave that precedes the cytosolic Ca2+ wave and primes RyRs from the luminal side to CICR. Here, we tested this hypothesis experimentally with direct simultaneous measurements of cytosolic ([Ca2+]i; rhod-2) and intra-SR ([Ca2+]SR; fluo-5N) calcium signals during wave propagation in rabbit ventricular myocytes, using high resolution fluorescence confocal imaging. The increase in [Ca2+]i at the wave front preceded depletion of the SR at each point along the calcium wave front, while during this latency period a transient increase of [Ca2+]SR was observed. This transient elevation of [Ca2+]SR could be identified at individual release junctions and depended on the activity of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA). Increased SERCA activity (β-adrenergic stimulation with 1 μm isoproterenol (isoprenaline)) decreased the latency period and increased the amplitude of the transient elevation of [Ca2+]SR, whereas inhibition of SERCA (3 μm cyclopiazonic acid) had the opposite effect. In conclusion, the data provide experimental evidence that local Ca2+ uptake by SERCA into the SR facilitates the propagation of cytosolic Ca2+ waves via luminal sensitization of the RyR, and supports a novel paradigm of a ‘fire-diffuse-uptake-fire’ mechanism for Ca2+ wave propagation in cardiac myocytes. PMID:22988145

  8. The role of nano-perovskite in the negligible thorium release in seawater from Greek bauxite residue (red mud)

    PubMed Central

    Gamaletsos, Platon N.; Godelitsas, Athanasios; Kasama, Takeshi; Kuzmin, Alexei; Lagos, Markus; Mertzimekis, Theo J.; Göttlicher, Jörg; Steininger, Ralph; Xanthos, Stelios; Pontikes, Yiannis; Angelopoulos, George N.; Zarkadas, Charalampos; Komelkov, Aleksandr; Tzamos, Evangelos; Filippidis, Anestis

    2016-01-01

    We present new data about the chemical and structural characteristics of bauxite residue (BR) from Greek Al industry, using a combination of microscopic, analytical, and spectroscopic techniques. SEM-EDS indicated a homogeneous dominant “Al-Fe-Ca-Ti-Si-Na-Cr matrix”, appearing at the microscale. The bulk chemical analyses showed considerable levels of Th (111 μg g−1), along with minor U (15 μg g−1), which are responsible for radioactivity (355 and 133 Bq kg−1 for 232Th and 238U, respectively) with a total dose rate of 295 nGy h−1. Leaching experiments, in conjunction with SF-ICP-MS, using Mediterranean seawater from Greece, indicated significant release of V, depending on S/L ratio, and negligible release of Th at least after 12 months leaching. STEM-EDS/EELS & HR-STEM-HAADF study of the leached BR at the nanoscale revealed that the significant immobility of Th4+ is due to its incorporation into an insoluble perovskite-type phase with major composition of Ca0.8Na0.2TiO3 and crystallites observed in nanoscale. The Th LIII-edge EXAFS spectra demonstrated that Th4+ ions, which are hosted in this novel nano-perovskite of BR, occupy Ca2+ sites, rather than Ti4+ sites. That is most likely the reason of no Th release in Mediterranean seawater. PMID:26899139

  9. Homeostatic Regulation of the PI(4,5)P2-Ca2+ Signaling System at ER-PM Junctions

    PubMed Central

    Chang, Chi-Lun; Liou, Jen

    2016-01-01

    The phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-Ca2+ signaling system is important for cell activation in response to various extracellular stimuli. This signaling system is initiated by receptor-induced hydrolysis of PI(4,5)P2 in the plasma membrane (PM) to generate the soluble second messenger inositol 1,4,5-trisphosphate (IP3). IP3 subsequently triggers the release of Ca2+ from the endoplasmic reticulum (ER) store to the cytosol to activate Ca2+-mediated responses, such as secretion and proliferation. The consumed PM PI(4,5)P2 and ER Ca2+ must be quickly restored to sustain signaling responses, and to maintain the homeostasis of PI(4,5)P2 and Ca2+. Since phosphatidylinositol (PI), the precursor lipid for PM PI(4,5)P2, is synthesized in the ER membrane, and a Ca2+ influx across the PM is required to refill the ER Ca2+ store, efficient communications between the ER and the PM are critical for the homeostatic regulation of the PI(4,5)P2-Ca2+ signaling system. This review describes the major findings that established the framework of the PI(4,5)P2-Ca2+ signaling system, and recent discoveries on feedback control mechanisms at ER-PM junctions that sustain the PI(4,5)P2-Ca2+ signaling system. Particular emphasis is placed on the characterization of ER-PM junctions where efficient communications between the ER and the PM occurs, and the activation mechanisms of proteins that dynamically localize to ER-PM junctions to provide the feedback control during PI(4,5)P2-Ca2+ signaling, including the ER Ca2+ sensor STIM1, the extended synaptotagmin E-Syt1, and the PI transfer protein Nir2. This review is part of a Special Issue entitled The Cellular Lipid Landscape. PMID:26924250

  10. Ozone (O{sub 3}) elicits neurotoxicity in spinal cord neurons (SCNs) by inducing ER Ca{sup 2+} release and activating the CaMKII/MAPK signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yun; Lin, Xiaowen; Zhao, XueJun

    Ozone (O{sub 3}) is widely used in the treatment of spinal cord related diseases. Excess or accumulation of this photochemical air can however be neurotoxic. In this study, in vitro cultured Wister rat spinal cord neurons (SCNs) were used to investigate the detrimental effects and underlying mechanisms of O{sub 3}. Ozone in a dose-dependent manner inhibited cell viability at a range of 20 to 500 μg/ml, with the dose at 40 μg/ml resulting in a decrease of cell viability to 75%. The cell death after O{sub 3} exposure was related to endoplasmic reticulum (ER) calcium (Ca{sup 2+}) release. Intracellular Ca{supmore » 2+} chelator, ER stabilizer (inositol 1,4,5-trisphosphate receptor (IP3R) antagonist and ryanodine receptor (RyR) antagonist) and calcium/calmodulin-dependent protein kinase II (CaMKII) antagonist could effectively block Ca{sup 2+} mobilization and inhibit cell death following 40 μg/ml O{sub 3} exposure. In addition, ER Ca{sup 2+} release due to O{sub 3} exposure enhanced phospho-p38 and phospho-JNK levels and apoptosis of SCNs through activating CaMKII. Based on these results, we confirm that ozone elicits neurotoxicity in SCNs via inducing ER Ca{sup 2+} release and activating CaMKII/MAPK signaling pathway. Therefore, physicians should get attention to the selection of treatment concentrations of oxygen/ozone. And, approaches, such as chelating intracellular Ca{sup 2+} and stabilizing neuronal Ca{sup 2+} homeostasis could effectively ameliorate the neurotoxicity of O{sub 3}. - Highlights: • Exposure to O{sub 3} can reduce the viability of SCNs and cause the cell death. • Exposure to O{sub 3} can trigger RyR and IP3R dependent intracellular Ca{sup 2+} release. • Exposure to O{sub 3} can enhance the phospho-CaMKII, phospho-JNK and phospho-p38 levels.« less

  11. Registration of CA0469C025C chickpea germplasm

    USDA-ARS?s Scientific Manuscript database

    Chickpea (Cicer arientinum L.) germplasm CA0469C025C (Reg. No. XXX; PI XXX), was released by the USDA-ARS in 2010. CA0469C025C was released based on its improved yield and reaction to Ascochyta blight relative to the popular commercial cultivars ‘Dwelley’, ‘Sierra’, and ‘Sawyer’. CA0490C025C is deri...

  12. Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release.

    PubMed Central

    van Kuppeveld, F J; Hoenderop, J G; Smeets, R L; Willems, P H; Dijkman, H B; Galama, J M; Melchers, W J

    1997-01-01

    Digital-imaging microscopy was performed to study the effect of Coxsackie B3 virus infection on the cytosolic free Ca2+ concentration and the Ca2+ content of the endoplasmic reticulum (ER). During the course of infection a gradual increase in the cytosolic free Ca2+ concentration was observed, due to the influx of extracellular Ca2+. The Ca2+ content of the ER decreased in time with kinetics inversely proportional to those of viral protein synthesis. Individual expression of protein 2B was sufficient to induce the influx of extracellular Ca2+ and to release Ca2+ from ER stores. Analysis of mutant 2B proteins showed that both a cationic amphipathic alpha-helix and a second hydrophobic domain in 2B were required for these activities. Consistent with a presumed ability of protein 2B to increase membrane permeability, viruses carrying a mutant 2B protein exhibited a defect in virus release. We propose that 2B gradually enhances membrane permeability, thereby disrupting the intracellular Ca2+ homeostasis and ultimately causing the membrane lesions that allow release of virus progeny. PMID:9218794

  13. Ca2+ mobilization in the aortic endothelium in streptozotocin-induced diabetic and cholesterol-fed mice.

    PubMed

    Kamata, K; Nakajima, M

    1998-04-01

    1. Experiments were performed to compare Ca2+ mobilization in the aortic endothelium in streptozotocin (STZ)-induced diabetic and cholesterol-fed mice with that in age-matched controls. 2. The intracellular free Ca2+ ([Ca2+]i) in the fura PE-3 loaded endothelium of aortic rings was dose-dependently increased by cumulative administration of acetylcholine (ACh). ACh caused a transient rise in [Ca2+]i in Ca2+-free medium. The ACh-induced increase in [Ca2+]i in normal or Ca2+-free medium was significantly weaker in both STZ-induced diabetic and cholesterol-fed mice. 3. The weaker [Ca2+]i response in Ca2+-containing medium in STZ-induced diabetic and cholesterol-fed mice was normalized by chronic administration of cholestyramine. 4. The increased low density lipoprotein (LDL) levels seen in both STZ-induced diabetic and cholesterol-fed mice were normalized by the same chronic administration of cholestyramine (300 mg kg(-1), p.o. daily for 10 weeks). Chronic administration of cholestyramine had no effect on the plasma glucose level. 5. Lysophosphatidylcholine (LPC) decreased the [Ca2+]i responses to ACh in the aortic endothelium from normal mice. 6. These results suggest that ACh increases both Ca2+ influx and Ca2+ release from storage in the aortic endothelium. The weaker [Ca2+]i influx seen in the endothelium of aortae from both STZ-induced diabetic and cholesterol-fed mice was improved by the chronic administration of cholestyramine, and we suggest that this improvement is due, at least in part, to a lowering of the plasma LDL level. It is further suggested that LPC may have an important influence over Ca2+ mobilization in the endothelium.

  14. Role of calcium permeable channels in dendritic cell migration.

    PubMed

    Sáez, Pablo J; Sáez, Juan C; Lennon-Duménil, Ana-María; Vargas, Pablo

    2018-06-01

    Calcium ion (Ca 2+ ) is an essential second messenger involved in multiple cellular and subcellular processes. Ca 2+ can be released and sensed globally or locally within cells, providing complex signals of variable amplitudes and time-scales. The key function of Ca 2+ in the regulation of acto-myosin contractility has provided a simple explanation for its role in the regulation of immune cell migration. However, many questions remain, including the identity of the Ca 2+ stores, channels and upstream signals involved in this process. Here, we focus on dendritic cells (DCs), because their immune sentinel function heavily relies on their capacity to migrate within tissues and later on between tissues and lymphoid organs. Deciphering the mechanisms by which cytoplasmic Ca 2+ regulate DC migration should shed light on their role in initiating and tuning immune responses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Complexin and Ca2+ stimulate SNARE-mediated membrane fusion

    PubMed Central

    Yoon, Tae-Young; Lu, Xiaobind; Diao, Jiajie; Lee, Soo-Min; Ha, Taekjip; Shin, Yeon-Kyun

    2008-01-01

    Ca2+-triggered, synchronized synaptic vesicle fusion underlies interneuronal communication. Complexin is a major binding partner of the SNARE complex, the core fusion machinery at the presynapse. The physiological data on complexin, however, have been at odds with each other, making delineation of its molecular function difficult. Here we report direct observation of two-faceted functions of complexin using the single-vesicle fluorescence fusion assay and EPR. We show that complexin I has two opposing effects on trans-SNARE assembly: inhibition of SNARE complex formation and stabilization of assembled SNARE complexes. Of note, SNARE-mediated fusion is markedly stimulated by complexin, and it is further accelerated by two orders of magnitude in response to an externally applied Ca2+ wave. We suggest that SNARE complexes, complexins and phospholipids collectively form a complex substrate for Ca2+ and Ca2+-sensing fusion effectors in neurotransmitter release. PMID:18552825

  16. Buffer kinetics shape the spatiotemporal patterns of IP3-evoked Ca2+ signals

    PubMed Central

    Dargan, Sheila L; Parker, Ian

    2003-01-01

    Ca2+ liberation through inositol 1,4,5-trisphosphate receptors (IP3Rs) plays a universal role in cell regulation, and specificity of cell signalling is achieved through the spatiotemporal patterning of Ca2+ signals. IP3Rs display Ca2+-induced Ca2+ release (CICR), but are grouped in clusters so that regenerative Ca2+ signals may remain localized to individual clusters, or propagate globally between clusters by successive cycles of Ca2+ diffusion and CICR. We used confocal microscopy and photoreleased IP3 in Xenopus oocytes to study how these properties are modulated by mobile cytosolic Ca2+ buffers. EGTA (a buffer with slow ‘on-rate’) speeded Ca2+ signals and ‘balkanized’ Ca2+ waves by dissociating them into local signals. In contrast, BAPTA (a fast buffer with similar affinity) slowed Ca2+ responses and promoted ‘globalization’ of spatially uniform Ca2+ signals. These actions are likely to arise through differential effects on Ca2+ feedback within and between IP3R clusters, because Ca2+ signals evoked by influx through voltage-gated channels were little affected. We propose that cell-specific expression of Ca2+-binding proteins with distinct kinetics may shape the time course and spatial distribution of IP3-evoked Ca2+ signals for specific physiological roles. PMID:14555715

  17. Elucidating the mechanism of action of pregabalin: α(2)δ as a therapeutic target in anxiety.

    PubMed

    Micó, Juan-Antonio; Prieto, Rita

    2012-08-01

    This review provides a brief summary of what is known about the anxiolytic mechanism of action of pregabalin, a highly selective, high-affinity ligand of the P/Q type of voltage-gated calcium channel (CaV). Evidence from in vivo models of neuronal hyperexcitability suggests that pregabalin reduces synaptic release of neurotransmitters in selected CNS regions including the cortex, olfactory bulb, hypothalamus, amygdala, hippocampus, cerebellum and dorsal horn of the spinal cord. Release of neurotransmitters from the synaptic vesicle, and propagation of neurotransmission, requires the vesicle to fuse with the presynaptic membrane. Pregabalin binding to the α(2)δ type 1 protein of the P/Q type CaV reduces the availability of Ca2+ required for membrane fusion and exocytosis of neurotransmitters. Evidence that the anxiolytic mechanism of action of pregabalin is mediated by binding to the α(2)δ type 1 protein comes from animal models, which have demonstrated a structure-activity relationship between the affinity of ligands for the α(2)δ type 1 protein and their potency in models of anxiety such as the Vogel conflict test. Furthermore, the anxiolytic activity of pregabalin is lost in transgenic mice with specific point mutations in the CaV α(2)δ type 1 protein. Pregabalin-mediated reduction in calcium currents has also been shown to result in a significant inhibition of the release of neurotransmitters implicated in pathological anxiety such as glutamate and monoamine neurotransmitters. However, further research is needed to confirm that these effects contribute to the anxiolytic mechanism of action of pregabalin. Finally, pregabalin may also act by inhibiting synaptogenesis of excitatory neurons formed in response to chronic stress or anxiety, or more acutely inhibit the trafficking of CaV to the plasma membrane.

  18. Pigment Translocation in Caridean Shrimp Chromatophores: Receptor Type, Signal Transduction, Second Messengers, and Cross Talk Among Multiple Signaling Cascades.

    PubMed

    Milograna, Sarah Ribeiro; Ribeiro, Márcia Regina; Bell, Fernanda Tinti; McNamara, John Campbell

    2016-11-01

    Pigment aggregation in shrimp chromatophores is triggered by red pigment concentrating hormone (RPCH), a neurosecretory peptide whose plasma membrane receptor may be a G-protein coupled receptor (GPCR). While RPCH binding activates the Ca 2+ /cGMP signaling cascades, a role for cyclic AMP (cAMP) in pigment aggregation is obscure, as are the steps governing Ca 2+ release from the smooth endoplasmic reticulum (SER). A role for the antagonistic neuropeptide, pigment dispersing homone (α-PDH) is also unclear. In red, ovarian chromatophores from the freshwater shrimp Macrobrachium olfersi, we show that a G-protein antagonist (AntPG) strongly inhibits RPCH-triggered pigment aggregation, suggesting that RPCH binds to a GPCR, activating an inhibitory G-protein. Decreasing cAMP levels may cue pigment aggregation, since cytosolic cAMP titers, when augmented by cholera toxin, forskolin or vinpocentine, completely or partially impair pigment aggregation. Triggering opposing Ca 2+ /cGMP and cAMP cascades by simultaneous perfusion with lipid-soluble cyclic nucleotide analogs induces a "tug-of-war" response, pigments aggregating in some chromatosomes with unpredictable, oscillatory movements in others. Inhibition of cAMP-dependent protein kinase accelerates aggregation and reduces dispersion velocities, suggesting a role in phosphorylation events, possibly regulating SER Ca 2+ release and pigment aggregation. The second messengers IP 3 and cADPR do not stimulate SER Ca 2+ release. α-PDH does not sustain pigment dispersion, suggesting that pigment translocation in caridean chromatophores may be regulated solely by RPCH, since PDH is not required. We propose a working hypothesis to further unravel key steps in the mechanisms of pigment translocation within crustacean chromatophores that have remained obscure for nearly a century. © 2016 Wiley Periodicals, Inc.

  19. CO2 sensing of La0.875Ca0.125FeO3 in wet vapor: a comparison of experimental results and first-principles calculations.

    PubMed

    Wang, Xiaofeng; Chen, Yanping; Qin, Hongwei; Li, Ling; Shi, Changmin; Liu, Liang; Hu, Jifan

    2015-05-28

    Experimental results show that with an increase of relative humidity, the resistance of La0.875Ca0.125FeO3 decreases at room temperature but increases at higher temperatures (140-360 °C). The humid effect at room temperature is due to the movement of H(+) or H3O(+) inside of the condensed water layer on the surface of La0.875Ca0.125FeO3. Regarding the humid effect at high temperatures, the density functional theory (DFT) calculations show that H2O can be adsorbed onto the La0.875Ca0.125FeO3 surface in the molecular and dissociative adsorption configurations, where the La0.875Ca0.125FeO3 surface gains some electrons from H2O or its dissociative products, consistent with our observation. Experimental results also show that CO2 sensing response at high temperatures decreases with an increase of room-temperature relative humidity. DFT calculations indicate that CO2 adsorbed onto the La0.875Ca0.125FeO3(010) surface, where high concentration oxygen adsorption occurs without water adsorption nearby, releases some electrons into the semiconductor surface, playing the role of a donor. The interaction between CO2 and the local La0.875Ca0.125FeO3(010) surface with pre-adsorption of H2O nearby results in some electron transfer from the La0.875Ca0.125FeO3 surface to CO2, which is responsible for the weakening of CO2 response at high temperatures for La0.875Ca0.125FeO3 with an increase of room-temperature relative humidity.

  20. Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling

    PubMed Central

    Lumbreras, Vicente; Bas, Esperanza; Gupta, Chhavi

    2014-01-01

    Cochlear implants are currently the most effective solution for profound sensorineural hearing loss, and vestibular prostheses are under development to treat bilateral vestibulopathies. Electrical current spread in these neuroprostheses limits channel independence and, in some cases, may impair their performance. In comparison, optical stimuli that are spatially confined may result in a significant functional improvement. Pulsed infrared radiation (IR) has previously been shown to elicit responses in neurons. This study analyzes the response of neonatal rat spiral and vestibular ganglion neurons in vitro to IR (wavelength = 1,863 nm) using Ca2+ imaging. Both types of neurons responded consistently with robust intracellular Ca2+ ([Ca2+]i) transients that matched the low-frequency IR pulses applied (4 ms, 0.25–1 pps). Radiant exposures of ∼637 mJ/cm2 resulted in continual neuronal activation. Temperature or [Ca2+] variations in the media did not alter the IR-evoked transients, ruling out extracellular Ca2+ involvement or primary mediation by thermal effects on the plasma membrane. While blockage of Na+, K+, and Ca2+ plasma membrane channels did not alter the IR-evoked response, blocking of mitochondrial Ca2+ cycling with CGP-37157 or ruthenium red reversibly inhibited the IR-evoked [Ca2+]i transients. Additionally, the magnitude of the IR-evoked transients was dependent on ryanodine and cyclopiazonic acid-dependent Ca2+ release. These results suggest that IR modulation of intracellular calcium cycling contributes to stimulation of spiral and vestibular ganglion neurons. As a whole, the results suggest selective excitation of neurons in the IR beam path and the potential of IR stimulation in future auditory and vestibular prostheses. PMID:24920028

  1. Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling.

    PubMed

    Lumbreras, Vicente; Bas, Esperanza; Gupta, Chhavi; Rajguru, Suhrud M

    2014-09-15

    Cochlear implants are currently the most effective solution for profound sensorineural hearing loss, and vestibular prostheses are under development to treat bilateral vestibulopathies. Electrical current spread in these neuroprostheses limits channel independence and, in some cases, may impair their performance. In comparison, optical stimuli that are spatially confined may result in a significant functional improvement. Pulsed infrared radiation (IR) has previously been shown to elicit responses in neurons. This study analyzes the response of neonatal rat spiral and vestibular ganglion neurons in vitro to IR (wavelength = 1,863 nm) using Ca(2+) imaging. Both types of neurons responded consistently with robust intracellular Ca(2+) ([Ca(2+)]i) transients that matched the low-frequency IR pulses applied (4 ms, 0.25-1 pps). Radiant exposures of ∼637 mJ/cm(2) resulted in continual neuronal activation. Temperature or [Ca(2+)] variations in the media did not alter the IR-evoked transients, ruling out extracellular Ca(2+) involvement or primary mediation by thermal effects on the plasma membrane. While blockage of Na(+), K(+), and Ca(2+) plasma membrane channels did not alter the IR-evoked response, blocking of mitochondrial Ca(2+) cycling with CGP-37157 or ruthenium red reversibly inhibited the IR-evoked [Ca(2+)]i transients. Additionally, the magnitude of the IR-evoked transients was dependent on ryanodine and cyclopiazonic acid-dependent Ca(2+) release. These results suggest that IR modulation of intracellular calcium cycling contributes to stimulation of spiral and vestibular ganglion neurons. As a whole, the results suggest selective excitation of neurons in the IR beam path and the potential of IR stimulation in future auditory and vestibular prostheses. Copyright © 2014 the American Physiological Society.

  2. Heterologous desensitization of both phosphoinositide and Ca2+ signaling in SH-SY5Y neuroblastoma cells: a role for intracellular Ca2+ store depletion?

    PubMed

    Willars, G B; Nahorski, S R

    1995-03-01

    Measurement of the intracellular Ca2+ concentration ([Ca2+]i) in fura-2-loaded single cells of the human neuroblastoma line SH-SY5Y indicated coexpression of muscarinic and bradykinin receptors linked to activation of phosphoinositidase C (PIC). Both agonists elevated [Ca2+]i and inositol-1,4,5-trisphosphate [Ins(1,4,5)P3] levels in populations of adherent cells, although in cells used directly upon attainment of confluence the responses to carbachol were greater than those to bradykinin and displayed additional sustained components. This model system was used to examine heterologous interactions when a second PIC-linked agonist was added 100-300 sec after but in the continued presence of the first. Maximal (1 mM) carbachol concentrations abolished the elevation of [Ca2+]i produced by bradykinin but the muscarinic antagonist atropine (10 microM) restored the response, provided that extracellular Ca2+ was present throughout the experiment or was added before bradykinin. Carbachol also abolished bradykinin-mediated Ins(1,4,5)P3 elevation. In contrast, bradykinin did not influence [Ca2+]i or Ins(1,4,5)P3 responses to carbachol in the presence of extracellular Ca2+. In cells maintained at confluence for 2 weeks, the rapid peak elevations of [Ca2+]i and Ins(1,4,5)P3 levels induced by carbachol and bradykinin were approximately equivalent in magnitude. In these cells carbachol again abolished bradykinin-mediated elevation of [Ca2+]i but only attenuated, rather than abolished, the elevation of Ins(1,4,5)P3 levels. The [Ca2+]i and Ins(1,4,5)P3 responses to bradykinin were fully restored 100 sec after atropine only in the presence of extracellular Ca2+. Thus, depletion of an intracellular Ins(1,4,5)P3-sensitive Ca2+ store may underlie the ability of carbachol to produce not only heterologous desensitization of the [Ca2+]i elevation induced by bradykinin but also that of the Ins(1,4,5)P3 response. This suggests a feed-forward activation of PIC by Ca2+ released from Ins(1,4,5)P3-sensitive stores. Furthermore, studies in which Ins(1,4,5)P3-sensitive stores were depleted with thapsigargin and cells were challenged in the presence or absence of extracellular Ca2+ indicated that Ca2+, irrespective of its origin (intra- or extracellular), potentiated the Ins(1,4,5)P3 response to bradykinin alone. In cells maintained at confluence for 2 weeks, bradykinin was again unable to influence either [Ca2+]i or Ins(1,4,5)P3 responses to carbachol in the presence of Ca2+. This lack of heterologous desensitization may be due to the rapid, full, homologous desensitization of bradykinin receptors, compared with an incomplete homologous desensitization of muscarinic receptors.

  3. The essential oil of bergamot enhances the levels of amino acid neurotransmitters in the hippocampus of rat: implication of monoterpene hydrocarbons.

    PubMed

    Morrone, Luigi A; Rombolà, Laura; Pelle, Cinzia; Corasaniti, Maria T; Zappettini, Simona; Paudice, Paolo; Bonanno, Giambattista; Bagetta, Giacinto

    2007-04-01

    The effects of bergamot essential oil (BEO) on the release of amino acid neurotransmitters in rat hippocampus have been studied by in vivo microdialysis and by in vitro superfusion of isolated nerve terminals. Intraperitoneal administration of BEO (100microl/kg) significantly elevated the extracellular concentration of aspartate, glycine and taurine in a Ca(2+)-dependent manner. A dose-relation study generated a bell-shaped curve. When perfused into the hippocampus via the dialysis probe (20microl/20min), BEO produced a significant increase of extracellular aspartate, glycine, taurine as well as of GABA and glutamate. The augmentation of all amino acids was Ca(2+)-independent. Focally injected 1:1 diluted BEO preferentially caused extracellular increase of glutamate. Interestingly, this release appeared to be strictly Ca(2+)-dependent. BEO concentration-dependently enhanced the release of [(3)H]D-aspartate from superfused hippocampal synaptosomes. Similar results were obtained by monitoring the BEO-evoked release of endogenous glutamate. At relatively high concentrations, the BEO-induced [(3)H]d-aspartate release was almost entirely prevented by the glutamate transporter blocker dl-threo-beta-benzyloxyaspartic acid (DL-TBOA) and was Ca(2+)-independent. At relatively low concentrations the release of [(3)H]D-aspartate was only in part ( approximately 50%) DL-TBOA-sensitive and Ca(2+)-independent; the remaining portion of release was dependent on extracellular Ca(2+). Interestingly, the monoterpene hydrocarbon-free fraction of the essential oil appeared to be inactive while the bergapten-free fraction superimposed the releasing effect of BEO supporting the deduction that psoralens may not be implicated. To conclude, BEO contains into its volatile fraction still unidentified monoterpene hydrocarbons able to stimulate glutamate release by transporter reversal and/or by exocytosis, depending on the dose administered.

  4. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics

    PubMed Central

    Rozov, A; Burnashev, N; Sakmann, B; Neher, E

    2001-01-01

    In connections formed by nerve terminals of layer 2/3 pyramidal cells onto bitufted interneurones in young (postnatal day (P)14–15) rat somatosensory cortex, the efficacy and reliability of synaptic transmission were low. At these connections release was facilitated by paired-pulse stimulation (at 10 Hz). In connections formed by terminals of layer 2/3 pyramids with multipolar interneurones efficacy and reliability were high and release was depressed by paired-pulse stimulation. In both types of terminal, however, the voltage-dependent Ca2+ channels that controlled transmitter release were predominantly of the P/Q- and N-subtypes. The relationship between unitary EPSP amplitude and extracellular calcium concentration ([Ca2+]o) was steeper for facilitating than for depressing terminals. Fits to a Hill equation with nH= 4 indicated that the apparent KD of the Ca2+ sensor for vesicle release was two- to threefold lower in depressing terminals than in facilitating ones. Intracellular loading of pyramidal neurones with the fast and slowly acting Ca2+ buffers BAPTA and EGTA differentially reduced transmitter release in these two types of terminal. Unitary EPSPs evoked by pyramidal cell stimulation in bitufted cells were reduced by presynaptic BAPTA and EGTA with half-effective concentrations of ∼0.1 and ∼1 mm, respectively. Unitary EPSPs evoked in multipolar cells were reduced to one-half of control at higher concentrations of presynaptic BAPTA and EGTA (∼0.5 and ∼7 mm, respectively). Frequency-dependent facilitation of EPSPs in bitufted cells was abolished by EGTA at concentrations of > 0.2 mm, suggesting that accumulation of free Ca2+ is essential for facilitation in the terminals contacting bitufted cells. In contrast, facilitation was unaffected or even slightly increased in the terminals loaded with BAPTA in the concentration range 0.02–0.5 mm. This is attributed to partial saturation of exogenously added BAPTA. However, BAPTA at concentrations > 1 mm also abolished facilitation. Frequency-dependent depression of EPSPs in multipolar cells was not significantly reduced by EGTA. With BAPTA, the depression decreased at concentrations > 0.5 mm, concomitant with a reduction in amplitude of the first EPSP in a train. An analysis is presented that interprets the effects of EGTA and BAPTA on synaptic efficacy and its short-term modification during paired-pulse stimulation in terms of changes in [Ca2+] at the release site ([Ca2+]RS) and that infers the affinity of the Ca2+ sensor from the dependence of unitary EPSPs on [Ca2+]o. The results suggest that the target cell-specific difference in release from the terminals on bitufted or multipolar cells can be explained by a longer diffusional distance between Ca2+ channels and release sites and/or lower Ca2+ channels density in the terminals that contact bitufted cells. This would lead to a lower [Ca2+] at release sites and would also explain the higher apparent KD of the Ca2+ sensor in facilitating terminals. PMID:11251060

  5. Modeling Vascularized Bone Regeneration Within a Porous Biodegradable CaP Scaffold Loaded with Growth Factors

    PubMed Central

    Sun, X; Kang, Y; Bao, J; Zhang, Y; Yang, Y; Zhou, X

    2013-01-01

    Osteogenetic microenvironment is a complex constitution in which extracellular matrix (ECM) molecules, stem cells and growth factors each interact to direct the coordinate regulation of bone tissue development. Importantly, angiogenesis improvement and revascularization are critical for osteogenesis during bone tissue regeneration processes. In this study, we developed a three-dimensional (3D) multi-scale system model to study cell response to growth factors released from a 3D biodegradable porous calcium phosphate (CaP) scaffold. Our model reconstructed the 3D bone regeneration system and examined the effects of pore size and porosity on bone formation and angiogenesis. The results suggested that scaffold porosity played a more dominant role in affecting bone formation and angiogenesis compared with pore size, while the pore size could be controlled to tailor the growth factor release rate and release fraction. Furthermore, a combination of gradient VEGF with BMP2 and Wnt released from the multi-layer scaffold promoted angiogenesis and bone formation more readily than single growth factors. These results demonstrated that the developed model can be potentially applied to predict vascularized bone regeneration with specific scaffold and growth factors. PMID:23566802

  6. Involvement of thromboxane A2 in the endothelium-dependent contractions induced by myricetin in rat isolated aorta

    PubMed Central

    Jiménez, Rosario; Andriambeloson, Emile; Duarte, Juan; Andriantsitohaina, Ramaroson; Jiménez, José; Pérez-Vizcaino, Francisco; Zarzuelo, Antonio; Tamargo, Juan

    1999-01-01

    The present study was undertaken to analyse the mechanism of the contractile response induced by the bioflavonoid myricetin in isolated rat aortic rings.Myricetin induced endothelium-dependent contractile responses (maximal value=21±2% of the response induced by 80 mM KCl and pD2=5.12±0.03). This effect developed slowly, reached a peak within 6 min and then declined progressively.Myricetin-induced contractions were almost abolished by the phospholipase A2 (PLA2) inhibitor, quinacrine (10 μM), the cyclo-oxygenase inhibitor, indomethacin (10 μM), the thromboxane synthase inhibitor, dazoxiben (100 μM), the putative thromboxane A2 (TXA2)/prostaglandin endoperoxide receptor antagonist, ifetroban (3 μM). These contractions were abolished in Ca2+-free medium but were not affected by the Ca2+ channel blocker verapamil (10 μM).In cultured bovine endothelial cells (BAEC), myricetin (50 μM) produced an increase in cytosolic free calcium ([Ca2+]i) which peaked within 1 min and remained sustained for 6 min, as determined by the fluorescent probe fura 2. This rise in [Ca2+]i was abolished after removal of extracellular Ca2+ in the medium.Myricetin (50 μM) significantly increased TXB2 production both in aortic rings with and without endothelium and in BAEC. These increases were abolished both by Ca2+-free media and by indomethacin.Taken together, these results suggests that myricetin stimulates Ca2+ influx and subsequently triggers the activation of the PLA2 and cyclo-oxygenase pathways releasing TXA2 from the endothelium to contract rat aortic rings. The latter response occurs via the activation of Tp receptors on vascular smooth muscle cells. PMID:10455307

  7. Reverse Micelle Mediated synthesis of Calcium Phosphate Nanocarriers for Controlled Release of Bovine Serum Albumin (BSA)

    PubMed Central

    Dasgupta, Sudip; Bandyopadhyay, Amit; Bose, Susmita

    2010-01-01

    Calcium phosphate (CaP) nanoparticle with calcium to phosphorus (Ca:P) molar ratio of 1.5:1 were synthesized using reverse micro emulsion. Ca(NO3)2.4H2O and H3PO4 were used as aqueous phase, cyclohexane as organic phase, and poly(oxyethylene)12 nonylphenol ether (NP-12) as surfactant. Depending on calcination temperature between 600 and 800 °C, CaP nanoparticle showed different phases calcium deficient hydroxyapatite (CDHA) and β-tricalcium phosphate (β-TCP), particle size between 48 and 69 nm, the BET specific average surface area between 73 m2/g and 57 m2/g. Bovine serum albumin (BSA) was used as a model protein to study loading and release behavior. Adsorptive property of BSA was investigated with the change in BET surface area of these nanoparticle and the pH of the suspension. At pH 7.5, maximum amount of BSA was adsorbed onto CaP nanoparticle. The release kinetics of BSA showed a gradual time dependent increase at pH 4.0 and 6.0 buffer solutions. However, the amount of released protein was significantly smaller at pH 7.2. BSA release rate also varied depending on the presence of different phases of CaPs in the system, β-TCP or CDHA. These results suggest that BSA protein release rate can be controlled by changing particle size, surface area and phase composition of CaP nanocarriers. PMID:19435617

  8. Potential mechanisms of cytosolic calcium modulation in interferon-gamma treated U937 cells

    NASA Technical Reports Server (NTRS)

    Klein, Jon B.; Mcleish, Kenneth R.; Sonnenfeld, Gerald; Dean, William L.

    1987-01-01

    The ability of interferon-gamma (IFN-gamma) to alter cytoplasmic Ca(2+) content in the monocytelike cell line U937 was investigated, using a slow Ca-channel blocker, diltiazem. In addition, the Ca-ATPase and the Ca-uptake activities were measured in isolated U937 membranes, together with the effect of inositol trisphosphate (IP3) upon the Ca(2+) release from Ca-loaded membranes. The addition of 50 U/ml INF-gamma to U937 cultures was found to increase internal Ca(2+) by about 100 percent within 3 min. The increase was significantly reduced by incubation in Ca-free buffer or by the addition of diltiazem. A crude membrane preparation from U937 cells was found to contain significant amounts of Ca-ATPase activity and to sequester Ca(2+) to a level of 8 nmol/mg in 30 sec; the addition of IP3 induced release of a portion of the sequestered Ca(2+) which was then resequestered. The results suggest that IFN-gamma causes an increase of cytoplasmic Ca(2+), in part, by the IP3-induced release from the internal storage sites and, in part, from the entry of extracellular Ca through slow channels.

  9. Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion.

    PubMed

    Cao, Qi; Zhong, Xi Zoë; Zou, Yuanjie; Murrell-Lagnado, Ruth; Zhu, Michael X; Dong, Xian-Ping

    2015-06-22

    Intra-endolysosomal Ca(2+) release is required for endolysosomal membrane fusion with intracellular organelles. However, the molecular mechanisms for intra-endolysosomal Ca(2+) release and the downstream Ca(2+) targets involved in the fusion remain elusive. Previously, we demonstrated that endolysosomal P2X4 forms channels activated by luminal adenosine triphosphate in a pH-dependent manner. In this paper, we show that overexpression of P2X4, as well as increasing endolysosomal P2X4 activity by alkalinization of endolysosome lumen, promoted vacuole enlargement in cells and endolysosome fusion in a cell-free assay. These effects were prevented by inhibiting P2X4, expressing a dominant-negative P2X4 mutant, and disrupting the P2X4 gene. We further show that P2X4 and calmodulin (CaM) form a complex at endolysosomal membrane where P2X4 activation recruits CaM to promote fusion and vacuolation in a Ca(2+)-dependent fashion. Moreover, P2X4 activation-triggered fusion and vacuolation were suppressed by inhibiting CaM. Our data thus suggest a new molecular mechanism for endolysosomal membrane fusion involving P2X4-mediated endolysosomal Ca(2+) release and subsequent CaM activation. © 2015 Cao et al.

  10. Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion

    PubMed Central

    Cao, Qi; Zhong, Xi Zoë; Zou, Yuanjie; Murrell-Lagnado, Ruth; Zhu, Michael X.

    2015-01-01

    Intra-endolysosomal Ca2+ release is required for endolysosomal membrane fusion with intracellular organelles. However, the molecular mechanisms for intra-endolysosomal Ca2+ release and the downstream Ca2+ targets involved in the fusion remain elusive. Previously, we demonstrated that endolysosomal P2X4 forms channels activated by luminal adenosine triphosphate in a pH-dependent manner. In this paper, we show that overexpression of P2X4, as well as increasing endolysosomal P2X4 activity by alkalinization of endolysosome lumen, promoted vacuole enlargement in cells and endolysosome fusion in a cell-free assay. These effects were prevented by inhibiting P2X4, expressing a dominant-negative P2X4 mutant, and disrupting the P2X4 gene. We further show that P2X4 and calmodulin (CaM) form a complex at endolysosomal membrane where P2X4 activation recruits CaM to promote fusion and vacuolation in a Ca2+-dependent fashion. Moreover, P2X4 activation-triggered fusion and vacuolation were suppressed by inhibiting CaM. Our data thus suggest a new molecular mechanism for endolysosomal membrane fusion involving P2X4-mediated endolysosomal Ca2+ release and subsequent CaM activation. PMID:26101220

  11. Calcium sources used by post-natal human myoblasts during initial differentiation.

    PubMed

    Arnaudeau, Serge; Holzer, Nicolas; König, Stéphane; Bader, Charles R; Bernheim, Laurent

    2006-08-01

    Increases in cytoplasmic Ca(2+) are crucial for inducing the initial steps of myoblast differentiation that ultimately lead to fusion; yet the mechanisms that produce this elevated Ca(2+) have not been fully resolved. For example, it is still unclear whether the increase comes exclusively from membrane Ca(2+) influx or also from Ca(2+) release from internal stores. To address this, we investigated early differentiation of myoblast clones each derived from single post-natal human satellite cells. Initial differentiation was assayed by immunostaining myonuclei for the transcription factor MEF2. When Ca(2+) influx was eliminated by using low external Ca(2+) media, we found that approximately half the clones could still differentiate. Of the clones that required influx of external Ca(2+), most clones used T-type Ca(2+) channels, but others used store-operated channels as influx-generating mechanisms. On the other hand, clones that differentiated in low external Ca(2+) relied on Ca(2+) release from internal stores through IP(3) receptors. Interestingly, by following clones over time, we observed that some switched their preferred Ca(2+) source: clones that initially used calcium release from internal stores to differentiate later required Ca(2+) influx and inversely. In conclusion, we show that human myoblasts can use three alternative mechanisms to increase cytoplasmic Ca(2+) at the onset of the differentiation process: influx through T-types Ca(2+) channels, influx through store operated channels and release from internal stores through IP(3) receptors. In addition, we suggest that, probably because Ca(2+) elevation is essential during initial differentiation, myoblasts may be able to select between these alternate Ca(2+) pathways.

  12. Electron probe microanalysis of calcium release and magnesium uptake by endoplasmic reticulum in bee photoreceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, O.; Walz, B.; Somlyo, A.V.

    Honey bee photoreceptors contain large sacs of endoplasmic reticulum (ER) that can be located unequivocally in freeze-dried cryosections. The elemental compositon of the ER was determined by electron probe x-ray microanalysis and was visualized in high-resolution x-ray maps. In the ER of dark-adapted photoreceptors, the Ca concentration was 47.5 {plus minus} 1.1 mmol/kg (dry weight). During a 3-sec nonsaturating light stimulus, {approximately}50% of the Ca content was released from the ER. Light stimulation also caused a highly significant increase in the Mg content of the ER; the ratio of Mg uptake to Ca released was {approximately}0.7. Our results show unambiguouslymore » that the ER is the source of Ca{sup 2+} release during cell stimulation and suggest the Mg{sup 2+} can nearly balance the charge movement of Ca{sup 2+}.« less

  13. Mechanism of chloride-dependent release of Ca2+ in the sarcoplasmic reticulum of rabbit skeletal muscle.

    PubMed Central

    Sukhareva, M; Morrissette, J; Coronado, R

    1994-01-01

    We investigated the effect of Cl- on the Ca2+ permeability of rabbit skeletal muscle junctional sarcoplasmic reticulum (SR) using 45Ca2+ fluxes and single channel recordings. In 45Ca2+ efflux experiments, the lumen of the SR was passively loaded with solutions of 150 mM univalent salt containing 5 mM 45Ca2+. Release of 45Ca2+ was measured by rapid filtration in the presence of extravesicular 0.4-0.8 microM free Ca2+ and 150 mM of the same univalent salt loaded into the SR lumen. The rate of release was 5-10 times higher when the univalent salt equilibrated across the SR-contained Cl- (Tris-Cl, choline-Cl, KCl) instead of an organic anion or other halides (gluconate-, methanesulfonate-, acetate-, HEPES-, Br-, I-). Cations (K+, Tris+) could be interchanged without a significant effect on the release rate. To determine whether Cl- stimulated ryanodine receptors, we measured the stimulation of release by ATP (5 mM total) and caffeine (20 mM total) and the inhibition by Mg2+ (0.8 mM estimated free) in Cl(-)-free and Cl(-)-containing solutions. The effects of ATP, caffeine, and Mg2+ were the largest in K-gluconate and Tris-gluconate, intermediate in KCl, and notably poor or absent in choline-Cl and Tris-Cl. Procaine (10 mM) inhibited the caffeine-stimulated release measured in K-gluconate, whereas the Cl- channel blocker clofibric acid (10 mM) but not procaine inhibited the caffeine-insensitive release measured in choline-Cl. Ruthenium red (20 microM) inhibited release in all solutions. In SR fused to planar bilayers we identified a nonselective Cl- channel (PCl: PTris: PCa = 1:0.5:0.3) blocked by ruthenium red and clofibric acid but not by procaine. These conductive and pharmacological properties suggested the channel was likely to mediate Cl(-)-dependent SR Ca2+ release. The absence of a contribution of ryanodine receptors to the Cl(-)-dependent release were indicated by the lack of an effect of Cl- on the open probability of this channel, a complete block by procaine, and a stimulation rather than inhibition by clofibric acid. A plug model of Cl(-)-dependent release, whereby Cl- removed the inhibition of the nonselective channel by large anions, was formulated under the assumption that nonselective channels and ryanodine receptor channels operated separately from each other in the terminal cisternae. The remarkably large contribution of Cl- to the SR Ca2+ permeability suggested that nonselective Cl- channels may control the Ca2+ permeability of the SR in the resting muscle cell. Images FIGURE 8 FIGURE 13 PMID:7948689

  14. Differential Permeabilization Effects of Ca2+ and Valinomycin on the Inner and Outer Mitochondrial Membranes as Revealed by Proteomics Analysis of Proteins Released from Mitochondria*S⃞

    PubMed Central

    Yamada, Akiko; Yamamoto, Takenori; Yamazaki, Naoshi; Yamashita, Kikuji; Kataoka, Masatoshi; Nagata, Toshihiko; Terada, Hiroshi; Shinohara, Yasuo

    2009-01-01

    It is well established that cytochrome c is released from mitochondria when the permeability transition (PT) of this organelle is induced by Ca2+. Our previous study showed that valinomycin also caused the release of cytochrome c from mitochondria but without inducing this PT (Shinohara, Y., Almofti, M. R., Yamamoto, T., Ishida, T., Kita, F., Kanzaki, H., Ohnishi, M., Yamashita, K., Shimizu, S., and Terada, H. (2002) Permeability transition-independent release of mitochondrial cytochrome c induced by valinomycin. Eur. J. Biochem. 269, 5224–5230). These results indicate that cytochrome c may be released from mitochondria with or without the induction of PT. In the present study, we examined the protein species released from valinomycin- and Ca2+-treated mitochondria by LC-MS/MS analysis. As a result, the proteins located in the intermembrane space were found to be specifically released from valinomycin-treated mitochondria, whereas those in the intermembrane space and in the matrix were released from Ca2+-treated mitochondria. These results were confirmed by Western analysis. Furthermore to examine how the protein release occurred, we examined the correlation between the species of released proteins and those of the abundant proteins in mitochondria. Consequently most of the proteins released from mitochondria treated with either agent were highly expressed proteins in mitochondria, indicating that the release occurred not selectively but in a manner dependent on the concentration of the proteins. Based on these results, the permeabilization effects of Ca2+ and valinomycin on the inner and outer mitochondrial membranes are discussed. PMID:19218587

  15. The effects of verapamil and diltiazem on N-, P- and Q-type calcium channels mediating dopamine release in rat striatum

    PubMed Central

    Dobrev, Dobromir; Milde, Alexander S; Andreas, Klaus; Ravens, Ursula

    1999-01-01

    The putative inhibitory effects of verapamil and diltiazem on neuronal non-L-type Ca2+ channels were studied by investigating their effects on either K+- or veratridine-evoked [3H]-dopamine ([3H]-DA) release in rat striatal slices. Involvement of N-, P- and Q-type channels was identified by sensitivity of [3H]-DA release to ω-conotoxin GVIA (ω-CTx-GVIA), ω-agatoxin IVA (ω-Aga-IVA) and ω-conotoxin MVIIC (ω-CTx-MVIIC), respectively.KCl (50 mM)-evoked [3H]-DA release was abolished in the absence of Ca2+, and was insensitive to dihydropyridines (up to 30 μM). It was significantly blocked by ω-CTx-GVIA (1 μM), ω-Aga-IVA (30 nM) and was confirmed to be abolished by ω-CTx-MVIIC (3 μM), indicating involvement of N-, P- and Q-type channel subtypes.Verapamil and diltiazem inhibited K+-evoked [3H]-DA release in a concentration-dependent manner. The inhibitory effects of verapamil or diltiazem (each 30 μM) were fully additive to the effect of ω-CTx-GVIA (1 μM), whereas co-application with ω-Aga-IVA (30 nM) produced similar effects to those of ω-Aga-IVA alone.As shown previously, veratridine-evoked [3H]-DA release in Ca2+ containing medium exclusively involves Q-type Ca2+ channels. Here, diltiazem (30 μM) did not inhibit veratridine-evoked [3H]-DA release, whereas verapamil (30 μM) partially inhibited it, indicating possible involvement of Q-type channels in verapamil-induced inhibition. However, verapamil (30 μM) inhibited this release even in the absence of extracellular Ca2+, suggesting that Na+ rather than Q-type Ca2+ channels are involved.Taken together, our results suggest that verapamil can block P- and at higher concentrations possibly N- and Q-type Ca2+ channels linked to [3H]-DA release, whereas diltiazem appears to block P-type Ca2+ channels only. PMID:10385261

  16. Paraoxonase 2 Serves a Proapopotic Function in Mouse and Human Cells in Response to the Pseudomonas aeruginosa Quorum-sensing Molecule N-(3-Oxododecanoyl)-homoserine Lactone*

    PubMed Central

    Schwarzer, Christian; Fu, Zhu; Morita, Takeshi; Whitt, Aaron G.; Neely, Aaron M.; Li, Chi; Machen, Terry E.

    2015-01-01

    Pseudomonas aeruginosa use quorum-sensing molecules, including N-(3-oxododecanoyl)-homoserine lactone (C12), for intercellular communication. C12 activated apoptosis in mouse embryo fibroblasts (MEF) from both wild type (WT) and Bax/Bak double knock-out mice (WT MEF and DKO MEF that were responsive to C12, DKOR MEF): nuclei fragmented; mitochondrial membrane potential (Δψmito) depolarized; Ca2+ was released from the endoplasmic reticulum (ER), increasing cytosolic [Ca2+] (Cacyto); and caspase 3/7 was activated. DKOR MEF had been isolated from a nonclonal pool of DKO MEF that were non-responsive to C12 (DKONR MEF). RNAseq analysis, quantitative PCR, and Western blots showed that WT and DKOR MEF both expressed genes associated with cancer, including paraoxonase 2 (PON2), whereas DKONR MEF expressed little PON2. Adenovirus-mediated expression of human PON2 in DKONR MEF rendered them responsive to C12: Δψmito depolarized, Cacyto increased, and caspase 3/7 activated. Human embryonic kidney 293T (HEK293T) cells expressed low levels of endogenous PON2, and these cells were also less responsive to C12. Overexpression of PON2, but not PON2-H114Q (no lactonase activity) in HEK293T cells caused them to become sensitive to C12. Because [C12] may reach high levels in biofilms in lungs of cystic fibrosis (CF) patients, PON2 lactonase activity may control Δψmito, Ca2+ release from the ER, and apoptosis in CF airway epithelia. Coupled with previous data, these results also indicate that PON2 uses its lactonase activity to prevent Bax- and Bak-dependent apoptosis in response to common proapoptotic drugs like doxorubicin and staurosporine, but activates Bax- and Bak-independent apoptosis in response to C12. PMID:25627690

  17. Distribution Profile of Inositol 1,4,5-Trisphosphate Receptor/Ca2+ Channels in α and β Cells of Pancreas: Dominant Localization in Secretory Granules and Common Error in Identification of Secretory Granule Membranes.

    PubMed

    Hur, Yong Suk; Yoo, Seung Hyun

    2015-01-01

    The α and β cells of pancreatic islet release important hormones in response to intracellular Ca increases that result from Ca releases through the inositol 1,4,5-trisphoshate receptor (IP3R)/Ca channels. Yet no systematic studies on distribution of IP3R/Ca channels have been done, prompting us to investigate the distribution of all 3 IP3R isoforms. Immunogold electron microscopy was performed to determine the presence and the relative concentrations of all 3 IP3R isoforms in 2 major organelles secretory granules (SGs) and the endoplasmic reticulum of α and β cells of rat pancreas. All 3 IP3R isoforms were present in SG membranes of both cells, and the IP3R concentrations in SGs were ∼2-fold higher than those in the endoplasmic reticulum. Moreover, large halos shown in the electron microscope images of insulin-containing SGs of β cells were gap spaces that resulted from separation of granule membranes from the surrounding cytoplasm. These results strongly suggest the important roles of SGs in IP3-induced, Ca-dependent regulatory secretory pathway in pancreas. Moreover, the accurate location of SG membranes of β cells was further confirmed by the location of another integral membrane protein synaptotagmin V and of membrane phospholipid PI(4,5)P2.

  18. Cannabinoid signalling inhibits sarcoplasmic Ca2+ release and regulates excitation–contraction coupling in mammalian skeletal muscle

    PubMed Central

    Oláh, Tamás; Bodnár, Dóra; Tóth, Adrienn; Vincze, János; Fodor, János; Reischl, Barbara; Kovács, Adrienn; Ruzsnavszky, Olga; Dienes, Beatrix; Szentesi, Péter; Friedrich, Oliver

    2016-01-01

    Key points Marijuana was found to cause muscle weakness, although the exact regulatory role of its receptors (CB1 cannabinoid receptor; CB1R) in the excitation–contraction coupling (ECC) of mammalian skeletal muscle remains unknown.We found that CB1R activation or its knockout did not affect muscle force directly, whereas its activation decreased the Ca2+‐sensitivity of the contractile apparatus and made the muscle fibres more prone to fatigue.We demonstrate that CB1Rs are not connected to the inositol 1,4,5‐trisphosphate pathway either in myotubes or in adult muscle fibres.By contrast, CB1Rs constitutively inhibit sarcoplasmic Ca2+ release and sarcoplasmic reticulum Ca2+ ATPase during ECC in a Gi/o protein‐mediated way in adult skeletal muscle fibres but not in myotubes.These results help with our understanding of the physiological effects and pathological consequences of CB1R activation in skeletal muscle and may be useful in the development of new cannabinoid drugs. Abstract Marijuana was found to cause muscle weakness, although it is unknown whether it affects the muscles directly or modulates only the motor control of the central nervous system. Although the presence of CB1 cannabinoid receptors (CB1R), which are responsible for the psychoactive effects of the drug in the brain, have recently been demonstrated in skeletal muscle, it is unclear how CB1R‐mediated signalling affects the contraction and Ca²⁺ homeostasis of mammalian skeletal muscle. In the present study, we demonstrate that in vitro CB1R activation increased muscle fatigability and decreased the Ca2+‐sensitivity of the contractile apparatus, whereas it did not alter the amplitude of single twitch contractions. In myotubes, CB1R agonists neither evoked, nor influenced inositol 1,4,5‐trisphosphate (IP3)‐mediated Ca2+ transients, nor did they alter excitation–contraction coupling. By contrast, in isolated muscle fibres of wild‐type mice, although CB1R agonists did not evoke IP3‐mediated Ca2+ transients too, they significantly reduced the amplitude of the depolarization‐evoked transients in a pertussis‐toxin sensitive manner, indicating a Gi/o protein‐dependent mechanism. Concurrently, on skeletal muscle fibres isolated from CB1R‐knockout animals, depolarization‐evoked Ca2+ transients, as well qas Ca2+ release flux via ryanodine receptors (RyRs), and the total amount of released Ca2+ was significantly greater than that from wild‐type mice. Our results show that CB1R‐mediated signalling exerts both a constitutive and an agonist‐mediated inhibition on the Ca2+ transients via RyR, regulates the activity of the sarcoplasmic reticulum Ca2+ ATPase and enhances muscle fatigability, which might decrease exercise performance, thus playing a role in myopathies, and therefore should be considered during the development of new cannabinoid drugs. PMID:27641745

  19. Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue.

    PubMed

    Macdonald, W A; Stephenson, D G

    2006-05-15

    Slow-twitch mechanically skinned fibres from rat soleus muscle were bathed in solutions mimicking the myoplasmic environment but containing different [ADP] (0.1 microm to 1.0 mm). The effect of ADP on sarcoplasmic reticulum (SR) Ca2+-content was determined from the magnitude of caffeine-induced force responses, while temporal changes in SR Ca2+-content allowed determination of the effective rates of the SR Ca2+-pump and of the SR Ca2+-leak. The SR Ca2+-pump rate, estimated at pCa (-log10[Ca2+]) 7.8, was reduced by 20% as the [ADP] was increased from 0.1 to 40 microm, with no further alteration when the [ADP] was increased to 1.0 mm. The SR Ca2+-leak rate constant was not altered by increasing [ADP] from 0.1 to 40 microm, but was increased by 26% when the [ADP] was elevated to 1.0 mm. This ADP-induced SR Ca2+-leak was insensitive to ruthenium red but was abolished by 2,5-di(tert-butyl)-1,4-hydroquinone (TBQ), indicating that the leak pathway is via the SR Ca2+-pump and not the SR Ca2+-release channel. The decrease in SR Ca2+-pump rate and SR Ca2+-leak rate when [ADP] was increased led to a 40% decrease in SR Ca2+-loading capacity. Elevation of [ADP] had only minor direct effects on the contractile apparatus of slow-twitch fibres. These results suggest that ADP has only limited depressing effects on the contractility of slow-twitch muscle fibres. This is in contrast to the marked effects of ADP on force responses in fast-twitch muscle fibres and may contribute to the fatigue-resistant nature of slow-twitch muscle fibres.

  20. Buffers and Oscillations in Intracellular Ca2+ Dynamics

    PubMed Central

    Falcke, Martin

    2003-01-01

    I model the behavior of intracellular Ca2+ release with high buffer concentrations. The model uses a spatially discrete array of channel clusters. The channel subunit dynamics is a stochastic representation of the DeYoung-Keizer model. The calculations show that the concentration profile of fast buffer around an open channel is more localized than that of slow buffers. Slow buffers allow for release of larger amounts of Ca2+ from the endoplasmic reticulum and hence bind more Ca2+ than fast buffers with the same dissociation constant and concentration. I find oscillation-like behavior for high slow buffer concentration and low Ca2+ content of the endoplasmic reticulum. High concentration of slow buffer leads to oscillation-like behavior by repetitive wave nucleation for high Ca2+ content of the endoplasmic reticulum. Localization of Ca2+ release by slow buffer, as used in experiments, can be reproduced by the modeling approach. PMID:12524263

Top