Sample records for ca ti fe

  1. Enhanced magnetism of perovskite oxides, Sr(Sn,Fe)O3- δ , by substitution of nonmagnetic Ca and Ti ions

    NASA Astrophysics Data System (ADS)

    Nomura, Kiyoshi; Suzuki, Shigeyo; Mizunuma, Tomoya; Koike, Yuya; Okazawa, Atsushi

    2017-11-01

    Magnetic properties of perovskite oxides, SrSn1- x Fe x O3- δ ( x ≤ 0.15), substituted with nonmagnetic Ca and Ti ions were studied. XRD patterns showed the orthorhombic structure (close to tetragonal) of (Sr1- y Ca y )(Sn1- x Fe x )O3- δ and Sr(Sn1- x- y Fe x Ti y )O3- δ . The cell volumes decreased with the increase of Ca and Ti doping rates. Although Ti-substituted Sr(Sn, Fe)O3- δ showed small saturation magnetizations as compared with non-Ti substituted one, the magnetization increased a little with Ti doping rates up to 15%. On the other hand, all Ca-substituted Sr(Sn, Fe)O3- δ showed larger saturation magnetization than non-Ca substituted one. Two doublets of Fe3+ and a doublet of Fe4+ were observed in Mössbauer spectra of Ca-substituted Sr(Sn, Fe)O3- δ with weak ferromagnetism, and two sextets of high spin Fe3+ were additionally observed in Mössbauer spectra of Ca-doped Sr(Sn, Fe)O3- δ with relatively strong ferromagnetism. When Sr(Sn, Fe)O3- δ were further codoped with Ca and Ti ions, they showed the stable and enhanced ferromagnetic properties. It is considered that magnetic polarons among high spin Fe3+ species are overlapped by shrinking or deforming the crystal structure of perovskite oxides. That is the magnetism induced by a chemical pressure of perovskite oxides.

  2. Photocatalytic activity of Fe-doped CaTiO₃ under UV-visible light.

    PubMed

    Yang, He; Han, Chong; Xue, Xiangxin

    2014-07-01

    The photocatalytic degradation of methylene blue (MB) over Fe-doped CaTiO₃ under UV-visible light was investigated. The as-prepared samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) system, Fourier transform infrared spectra (FT-IR), and UV-visible diffuse reflectance spectroscopy (DRS). The results show that the doping with Fe significantly promoted the light absorption ability of CaTiO₃ in the visible light region. The Fe-doped CaTiO₃ exhibited higher photocatalytic activity than CaTiO₃ for the degradation of MB. However, the photocatalytic activity of the Fe-doped CaTiO₃ was greatly influenced by the calcination temperature during the preparation process. The Fe-doped CaTiO₃ prepared at 500°C exhibited the best photocatalytic activity, with degradation of almost 100% MB (10ppm) under UV-visible light for 180 min. Copyright © 2014. Published by Elsevier B.V.

  3. TiO2-BASED Composite Films for the Photodegradation of Oxytetracycline

    NASA Astrophysics Data System (ADS)

    Li, Hui; Guan, Ling-Xiao; Feng, Ji-Jun; Li, Fang; Yao, Ming-Ming

    2015-02-01

    The spread of the antibiotic oxytetracycline (OTC) has been thought as a threat to the safety of drinking water. In this paper, the photocatalytic activity of the nanocrystalline Fe/Ca co-doped TiO2-SiO2 composite film for the degradation of OTC was studied. The films were characterized by field emission scanning electron microscopy (FE-SEM) equipped with energy-dispersive spectroscopy (EDS), N2 adsorption/desorption isotherms, photoluminescence (PL) spectra, and UV-Vis diffraction reflectance absorption spectra (DRS). The FE-SEM results indicated that the Fe/Ca co-doped TiO2-SiO2 film was composed of smaller nanoparticles compared to pure TiO2 or TiO2-SiO2 film. The BET surface area results showed that the specific surface area of the pure TiO2, TiO2-SiO2 and Ca2+/Fe3+ co-doped TiO2-SiO2 is 118.3 m2g-1, 294.3 m2g-1 and 393.7 m2g-1, respectively. The DRS and PL spectra revealed that the Fe/Ca co-doped TiO2-SiO2 film had strong visible light adsorption and diminished electrons/holes recombination. Experimental results showed that the Fe/Ca co-doped TiO2-SiO2 film is effective in the degradation of OTC under both UV and visible light irradiation.

  4. Magnetic properties of (SrFe{sub 12}O{sub 19}){sub x}(CaCu{sub 3}Ti{sub 4}O{sub 12}){sub 1–x} composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremina, R. M., E-mail: REremina@yandex.ru; Sharipov, K. R.; Yatsyk, I. V.

    2016-07-15

    New composite materials (SrFe{sub 12}O{sub 19}){sub x}(CaCu{sub 3}Ti{sub 4}O{sub 12}){sub 1–x} (x = 0, 0.05, 1) have been synthesized. Their magnetic properties are studied in the temperature range 5–300 K using the magnetic resonance and magnetometry methods. It is found that strontium hexaferrite microinclusions in the (SrFe{sub 12}O{sub 19}){sub 0.05}(CaCu{sub 3}Ti{sub 4}O{sub 12}){sub 0.95} composite “magnetize” CaCu{sub 3}Ti{sub 4}O{sub 12} at temperatures from 300 to 200 K, forming a ferrimagnetic particle near the SrFe{sub 12}O{sub 19} “core.” The magnetic resonance line below 200 K splits into two lines corresponding to SrFe{sub 12}O{sub 19} and CaCu{sub 3}Ti{sub 4}O{sub 12}. The coremore » effect decoration is manifested in the increase in the Curie–Weiss temperature from 25 K in CaCu{sub 3}Ti{sub 4}O{sub 12} without the doping ceramics to 80 K in the composite with 5% of SrFe{sub 12}O{sub 19}.« less

  5. Effect of (Sr{sub 0.7}Ca{sub 0.3})TiO{sub 3}-substitution on structure, dielectric, ferroelectric, and magnetic properties of BiFeO{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Juan; Liu, Xiao Qiang, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn; Chen, Xiang Ming, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn

    Bi{sub 1−x}(Sr{sub 0.7}Ca{sub 0.3}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} ceramics were prepared by a standard solid state reaction process, and the influence of Sr/Ca ratio on structure and properties for Bi{sub 1−x}(Sr,Ca){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} system was discussed by comparing with Sr{sub 0.5}Ca{sub 0.5}TiO{sub 3}-modified BiFeO{sub 3} ceramics. Rietveld analysis of X-ray diffraction data revealed that the crystal structure changed from rhombohedral R3c (x ≤ 0.4) to orthorhombic Pnma (x = 0.6) with Sr{sub 0.7}Ca{sub 0.3}TiO{sub 3} substitution, and biphasic structure (R3c + Pnma) was determined at x = 0.5, while that for Bi{sub 1−x}(Sr{sub 0.5}Ca{sub 0.5}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} system was at x = 0.4. This indicated thatmore » the morphotropic phase boundary in Bi{sub 1−x}(Sr,Ca){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} system shifted toward (Sr,Ca)TiO{sub 3} side with increasing Sr/Ca ratio. The Raman spectrometric analysis and selected area electron diffraction analysis also confirmed this transition. The dielectric relaxation could be well fitted by Arrhenius law, and the different activation energies were attributed to the different origins of the dielectric relaxations with increasing temperature. The current density-field (J-E) curves indicated that the leakage current was reduced to about five orders of magnitude with Sr{sub 0.7}Ca{sub 0.3}TiO{sub 3} substitution. The P-E hysteresis loops obtained by three different methods indicated the enhanced ferroelectricity at x = 0.4, and it could be attributed to the decrement of leakage current. Meanwhile, the magnetization was enhanced with Sr{sub 0.7}Ca{sub 0.3}TiO{sub 3} substitution, and the maximum remanent magnetization was determined at x = 0.2. The enhanced magnetization originated from the partial substitution of Fe{sup 3+} by Ti{sup 4+}.« less

  6. Stabilization of highly polar BiFeO 3-like structure: a new interface design route for enhanced ferroelectricity in artificial perovskite superlattices

    DOE PAGES

    Wang, Hongwei; Wen, Jianguo; Miller, Dean; ...

    2016-03-14

    In ABO 3 perovskites, oxygen octahedron rotations are common structural distortions that can promote large ferroelectricity in BiFeO 3 with an R3c structure [1] but suppress ferroelectricity in CaTiO 3 with a Pbnm symmetry [2]. For many CaTiO3-like perovskites, the BiFeO 3 structure is a metastable phase. Here, we report the stabilization of the highly polar BiFeO 3-like phase of CaTiO 3 in a BaTiO 3/CaTiO 3 superlattice grown on a SrTiO 3 substrate. The stabilization is realized by a reconstruction of oxygen octahedron rotations at the interface from the pattern of nonpolar bulk CaTiO 3 to a different patternmore » that is characteristic of a BiFeO 3 phase. The reconstruction is interpreted through a combination of amplitude-contrast sub-0.1-nm high-resolution transmission electron microscopy and first-principles theories of the structure, energetics, and polarization of the superlattice and its constituents. We further predict a number of new artificial ferroelectric materials demonstrating that nonpolar perovskites can be turned into ferroelectrics via this interface mechanism. Therefore, a large number of perovskites with the CaTiO 3 structure type, which include many magnetic representatives, are now good candidates as novel highly polar multiferroic materials [3].« less

  7. Physical conditions in CaFe interstellar clouds

    NASA Astrophysics Data System (ADS)

    Gnaciński, P.; Krogulec, M.

    2008-01-01

    Interstellar clouds that exhibit strong Ca I and Fe I lines are called CaFe clouds. Ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. We find that the chemical composition of CaFe clouds is solar and that there is no depletion into dust grains. CaFe clouds have high electron densities, n_e≈1 cm-3, that lead to high column densities of neutral Ca and Fe.

  8. Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts

    NASA Astrophysics Data System (ADS)

    Apeagyei, Eric; Bank, Michael S.; Spengler, John D.

    2011-04-01

    Human exposures to particulate matter emitted from on-road motor vehicles include complex mixtures of metals from tires, brakes, parts wear and resuspended road dust. The aim of this study was to assess road dust for metals associated with motor vehicle traffic, particularly those metals coming from brake and tire wears. We hypothesized that the road dust would show significant difference in both composition and concentration by traffic type, road class and by location. X-ray fluorescence (XRF) analyses of 115 parked car tires showed Zn and Ca were likely associated with tire wear dust. XRF results of three used brake pads indicated high concentrations of Fe, Ti, Cu, Ba, Mo and Zr. To assess heavy metal exposures associated with tires and brake wear adjacent to roads of varying traffic and functional classes, 85 samples of road dust were collected from road surfaces adjacent to the curb and analyzed by XRF. Median concentrations for Fe, Ca and K were greater than Ti (1619 ppm), with concentration ratios of Fe: Ca: K: Ti [16:5:3:1]. Cumulative frequency distribution graphs showed distribution of Fe, Ba, Cu, and Mo were similar regardless of road traffic rating. However, Zn, Ti, and Zr varied significantly ( p < 0.05) with traffic ratings of roadways (heavy > moderate > low traffic). Fe, Ba, Cu, and Mo also had similar distributions regardless of road class while composition of Zn, Ti, and Zr varied significantly across road class ( p < 0.05) (Major roads > Minor roads > highway). In comparing urban road dust to rural road dust, we observed Fe, Ca, K, and Ti were significantly greater in urban road dust ( p < 0.05). In urban road dust the Fe: Ca: K: Ti relationship with median Ti of 2216 ppm was 12: 6: 3.5: 1. These results indicate that roadway dust may be important sources of metals for runoff water and localized resuspended particulate matter.

  9. Direct observation of charged domain walls in hybrid improper ferroelectric (Ca,Sr)3Ti2O7

    NASA Astrophysics Data System (ADS)

    Kurushima, Kousuke; Yoshimoto, Wataru; Ishii, Yui; Cheong, Sang-Wook; Mori, Shigeo

    2017-10-01

    We investigated ferroelectric (FE) domain wall structures including “charged domain walls” of hybrid improper FE (Ca,Sr)3Ti2O7 at the subatomic resolution by dark-field transmission electron microscopy (TEM) and high-resolution state-of-the-art aberration-corrected high-angle annular-dark-field (HAADF) scanning transmission electron microscopy (STEM). Dark-field TEM and high-resolution HAADF-STEM images obtained in the FE phase of single crystals of Ca2.46Sr0.54Ti2O7 revealed the formation of abundant charged domain walls with the head-to-head and tail-to-tail configurations in the FE domain structure, in addition to the FE 180° domain structure. The charged domain walls with the head-to-head and tail-to-tail FE polarizations exist stably and can be characterized as the unique double arc-type displacement of Ca/Sr ions in a unit cell without charge accumulation.

  10. Lunar highland rocks - Element partitioning among minerals. II - Electron microprobe analyses of Al, P, Ca, Ti, Cr, Mn and Fe in olivine

    NASA Technical Reports Server (NTRS)

    Smith, J. V.; Hansen, E. C.; Steele, I. M.

    1980-01-01

    Lunar olivines from anorthosites, granulitic impactites, and rocks in the Mg-rich plutonic trend were subjected to electron probe measurements for Al, P, Ca, Ti, Cr and Mn, which show that the FeO/MnO ratio for lunar olivines lies between 80 and 110 with little difference among the rock types. The low values of Ca in lunar olivines indicate slow cooling to subsolidus temperatures, with blocking temperatures of about 750 C for 67667 and 1000 C for 60255,73-alpha determined by the Finnerty and Boyd (1978) experiments. An important paradox is noted in the low Ti content of Fe-rich olivines from anorthosites, although both Ti and Fe tend to become enriched in liquid during fractional distillation. Except for Ca and Mn, olivine from anorthosites has lower minor element values than other rock types. Formation from a chemically distinct system is therefore implied.

  11. On the labyrinthine world of arsenites: a single-crystal neutron and X-ray diffraction study of cafarsite

    NASA Astrophysics Data System (ADS)

    Gatta, G. Diego; Rotiroti, Nicola; Cámara, Fernando; Meven, Martin

    2018-03-01

    The crystal chemistry of a cafarsite sample from the fengitic orthogneisses of the Mt. Leone-Arbola nappe (Lower Penninic), forming the central body of Mount Cervandone and cropping out both in Switzerland and Italy (Alpe Devero area, Verbano-Cusio-Ossola province), was investigated by electron microprobe analysis in wavelength-dispersive mode (EPMA-WDS), single-crystal Raman spectroscopy, and single-crystal X-ray and neutron diffraction at 293 K. The sample of cafarsite of this study was found experimentally to be anhydrous and the chemical formula obtained on the basis of the EPMA-WDS data and structural refinements is the following: Ca1,Ca2 (Ca15.56Na0.44)Σ16 Fe1 (Na0.53Fe2+ 0.17REE0.30)Σ1.00 Mn1,Ti,Fe2 (Ti7.46Fe3+ 4.47Fe2+ 3.20Mn2+ 0.85Al0.11) Σ16.11 As1,As2,As3 (AsO3)28 F F, with the general chemical formula Ca16(Na,Fe2+,REE)(Ti, Fe3+,Fe2+,Mn2+,Al)16(AsO3)28F [or Ca16(Na,Fe2+,REE)(Ti,Fe3+,Al)12(Fe2+,Mn)4(AsO3)28F]. Our experimental findings show that fluorine, which was unconsidered in the previous studies, is a key element. The anhydrous nature of this sample is also confirmed by its Raman spectrum, which does not show any evidence of active bands ascribable to the O-H stretching region. The X-ray and neutron structure refinements provide a structure model that is partially in agreement with the previous experimental findings. The space group (i.e. Pn3) and the unit-cell constant [i.e. 15.9507(4) Å] are conform to the literature data, but the structure of cafarsite, here refined, contains the following building units: three independent AsO3 groups (trigonal pyramids), one CaO6F polyhedron, one CaO8 polyhedron, two independent (Ti,Fe)O6 octahedra, one (Na,Fe,REE)O8 polyhedron, and one (Mn,Fe)O6 octahedron. Connections among polyhedra are mainly due to edge- or vertex-sharing; the AsO3 groups are not connected to each other.

  12. Selective Removal of Iron from Low-Grade Ti Ore by Reacting with Calcium Chloride

    NASA Astrophysics Data System (ADS)

    Kang, Jungshin; Okabe, Toru H.

    2017-02-01

    Recently, titanium metal production by molten salt electrolysis using CaCl2 as molten salt and TiO2 or rutile (94 to 96 pct TiO2) as feedstock has been drawing attention. However, when a low-grade Ti ore (mainly FeTiO3) is used as feedstock, removal of iron (Fe) from the ore is indispensable. In this study, the influence of reaction temperature, reaction time, particle size of the ore, and source country for the ore on the removal of iron by selective chlorination using CaCl2 was assessed. Experimental results showed that the mass percent of iron in the ore decreased from 49.7 to 1.79 pct under certain conditions by selective removal of iron as FeCl2. As a result, high-grade CaTiO3 was produced when the ore particles smaller than 74 µm reacted with CaCl2 at 1240 K (967 °C) for 8 to 10 hours. Therefore, this study demonstrates that the removal of iron from the ore is feasible through the selective chlorination process using CaCl2 by optimizing the variables.

  13. Structural and magnetic properties of nanostructured composites (SrFe12O19)x(CaCu3Ti4O12)1-x

    NASA Astrophysics Data System (ADS)

    Gavrilova, T. P.; Deeva, J. A.; Yatsyk, I. V.; Yagfarova, A. R.; Gilmutdinov, I. F.; Lyadov, N. M.; Milovich, F. O.; Chupakhina, T. I.; Eremina, R. M.

    2018-05-01

    (SrFe12O19)x(CaCu3Ti4O12)1-x (x = 0.01, 0.03, 0.07, 0.1) composites were synthesized using a solid state method, while the pre-synthesized strontium hexaferrite SrFe12O19 (SFO) was added to the stoichiometric amount of CaO, CuO and TiO oxides to form the CaCu3Ti4O12 (CCTO) structure around SFO microinclusions. The structural and microstructural properties of obtained composites were studied by X-ray diffraction, scanning electron microscopy and transmission electron microscopy techniques. The magnetic properties were studied by electron spin resonance and magnetometry methods. Based on all experimental data we can conclude, that SFOxCCTO1-x nanostructured composites were formed only for concentrations x = 0.03 and x = 0.07, where SFO nanoinclusions are inside CCTO matrix, that leads to the strong mutual influence of the magnetic properties of both component.

  14. Competition between structural instabilities in strained ABO3 nanostructures

    NASA Astrophysics Data System (ADS)

    Bousquet, E.

    2010-03-01

    In spite of their simple structure, the family of ABO3 compounds present a large variety of phase transitions involving polar and non polar distortions as well as magnetic orders. Here we will discuss the microscopic origin of these properties and how they are affected in nanostructures through the concept of structural instabilities. We will from the fact that the ferroelectric (FE) and the antiferrodistortive (AFD) instabilities are in competition at the bulk level and are strongly sensitive to pressure and strain. From these considerations we will describe the possibilities to tune this FE/AFD competition by playing with strain and interface engineering. To that end we will first consider the effect of epitaxial strain on BaTiO3, SrTiO3, PbTiO3 and CaTiO3 thin films. In all of these compounds, the epitaxial strain can strongly modify the phase diagrams giving rise to different pure or mixed FE/AFD ground states. We will also extend the discussion on magnetic perovskites like CaMnO3 and will present the different strategies to induce or tune multiferroic properties. Second we will focus on the interface effects as present in bicolor superlattices. As an example we will examine the case of PbTiO3/SrTiO3 superlattice and will show that it exhibits totally unique properties arising from unexpected FE/AFD couplings at the interface between the layers. We will then investigate to which extent similar types of FE/AFD couplings can be induced in other artificially layered systems. We will consider different bicolor superlattices obtained from the combination of PbTiO3, SrTiO3, CaTiO3 and BaTiO3 and discuss how the intrinsic tendency of these compounds to favor either the FE or the AFD instabilities shifts or even suppresses the FE/AFD coupling.

  15. Compositional variation in minerals of the chevkinite group

    USGS Publications Warehouse

    Macdonald, R.; Belkin, H.E.

    2002-01-01

    The composition of chevkinite and perrierite, the most common members of the chevkinite group, is closely expressed by the formula A4BC2D2Si4O22, where A = (La,Ce,Ca,Sr,Th), B = Fe2+, C = (Fe2+,Fe3+,Ti,Al,Zr,Nb) and D = Ti. The A site is dominated by a strong negative correlation between (Ca+Sr) and the REE. Chondrite-normalized REE patterns are very variable, e.g. in LREE/HREE and Eu/Eu*. The C site is dominated by Ti, Al and Fe2+, in very variable proportions. Most chevkinites and perrierites are close to stoichiometric, with cation sums between 12.9 and 13.5, compared to the theoretical 13. There is no single, generally applicable charge balancing substitution scheme in the group; however, the general relationship (Ca+Sr)A + TiC + REEA + M3C+2+ defines a linear array with r2 = 0.91. Chevkinite and perrierite are shown to be compositionally distinct on the basis of CaO, FeO* Al2O3 and Ce2O3 abundances. Chevkinite forms mainly in chemically evolved parageneses, such as syenites, rhyolites and fenites associated with carbonatite complexes. Perrierite is more commonly recorded from igneous rocks of mafic to intermediate composition. The compositional characteristics and possible structural formulae of other members of the chevkinite group are reviewed briefly.

  16. Loparite, a rare-earth ore (Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3

    USGS Publications Warehouse

    Hedrick, James B.; Sinha, Shyama P.; Kosynkin, Valery D.

    1997-01-01

    The mineral loparite (Ce, NA, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3 is the principal ore of the light-group rare-earth elements (LREE) in Russia. The complex oxide has a perovskite (ABO3) structure with coupled substitutions, polymorphism, defect chemistry and a tendency to become metamict. The A site generally contains weakly bonded, easily exchanged cations of the LREE, Na and Ca. The B site generally contains smaller, highly charged cations of Ti, Nb or Fe+3. Mine production is from Russia's Kola Peninsula. Ore is beneficiated to produce a 95% loparite concentrate containing 30% rare-earth oxides. Loparite concentrate is refined by either a chlorination process or acid decomposition process to recover rare-earths, titanium, niobium and tantalum. Rare-earths are separated by solvent extraction and selective precipitation/dissolution. The concentrate is processed at plants in Russia, Estonia and Kazakstan.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Jyoti; Yadav, K.L., E-mail: klyadav35@yahoo.com; Prakash, Satya

    Highlights: • Spinel–perovskite xCoFe{sub 2}O{sub 4}–(1 − x)(0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3}) composites have been synthesized by solid state reaction method. • Two anomalies in dielectric constant have been identified, and the composites show relaxor behaviour. • The magnetic properties of the composites improve with increasing concentration of CoFe{sub 2}O{sub 4}. • Enhanced magnetodielectric effect is found, and magnetoelectric coupling has been confirmed by Δϵ ∼ γM{sup 2} relation. • Optical band gap energy of these composites has been reported for the first time. - Abstract: xCoFe{sub 2}O{sub 4}–(1 − x)(0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3}) compositesmore » with x = 0.1, 0.2, 0.3 and 0.4 have been synthesized by solid state reaction method. X-ray diffraction analysis and field emission secondary electron microscopy have been used for structural and morphological analysis, respectively. The spinel CoFe{sub 2}O{sub 4} and perovskite 0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} phase could be identified in the composites. Two anomalies in dielectric constant have been identified: first one is close to ferroelectric to paraelectric phase transition of 0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} ceramic and the other lies near the magnetic transition temperature of CoFe{sub 2}O{sub 4}. There is an increase in magnetocapacitance and saturation magnetization of the composites at room temperature with increase in CoFe{sub 2}O{sub 4} content. The magnetoelectric coupling coefficient (γ) was approximated by Δϵ ∼ γM{sup 2} relation. The optical band gap energy of the composites decreases with increase in CoFe{sub 2}O{sub 4} content.« less

  18. Self-propagating high-temperature synthesis of Ce-bearing zirconolite-rich minerals using Ca(NO3)2 as the oxidant

    NASA Astrophysics Data System (ADS)

    Zhang, Kuibao; Wen, Guanjun; Yin, Dan; Zhang, Haibin

    2015-12-01

    Synroc is recognized as the second generation waste form for the immobilization of high-level radioactive waste (HLW). Zirconolite-rich (CaZrTi2O7) Synroc minerals were attempted by self-propagating high-temperature synthesis (SHS) using Fe2O3, CrO3, Ca(NO3)2 as the oxidants and Ti as the reductant. All designed reactions were ignited and sustained using Ca(NO3)2 as the oxidant, and zirconolite-rich ceramic matrices were successfully prepared with pyrochlore (Ca2Ti2O6), perovskite (CaTiO3) and rutile (TiO2) as the minor phases. The sample CN-4, which was designed using Ca(NO3)2 as the oxidant with TiO2/Ti ratio of 7:9, was readily solidified with density of 4.62 g/cm3 and Vickers hardness of 1052 HV. CeO2 was successfully stabilized by the CN-4 sample with resultant phase constituent of 2M-CaZrTi2O7 and CaTiO3.

  19. Preparation of Ferrotitanium from Ilmenite by Electrolysis-Assisted Calciothermic Reduction in CaCl2-NaCl Molten Salt

    NASA Astrophysics Data System (ADS)

    Zhou, Zhongren; Hua, Yixin; Xu, Cunying; Li, Jian; Li, Yan; Gong, Kai; Ru, Juanjian; Xiong, Li

    2016-02-01

    Electrolysis-assisted calciothermic reduction method is proposed and successfully used to prepare ferrotitanium alloy from ilmenite by using equal-molar CaCl2-NaCl molten salt as electrolyte, molybdenum rod as cathode, and graphite as anode at 973 K with cell voltages of 3.2-4.4 V under inert atmosphere. Thermodynamics analysis of the process is presented, and the products obtained are examined with x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. It is demonstrated that the calciothermic reduction of ilmenite is a stepwise process since intermediate CaTiO3 is observed in the products partially reduced. In the calciothermic reduction process, the reduction of FeTiO3 first gives rise to the formation of Fe and CaTiO3, which as intermediates will further react with calcium metal to form ferrotitanium alloys. This is in good agreement with the prediction of thermodynamics. Experimental results also show that increasing cell voltage can accelerate the formation of calcium metal through electrolysis of CaO and CaCl2 and, hence, promote the calciothermic reduction of ilmenite. As the electrolytic zone and reduction zone are combined in the same bath, the theoretical energy requirement for the production of FeTi in the calciothermic process is lower than that in the aluminothermic process.

  20. Significantly enhanced ferroelectricity and magnetic properties in (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3}-modified BiFeO{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Juan; Liu, Xiao Qiang, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn; Chen, Xiang Ming, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn

    2015-05-07

    BiFeO{sub 3} multiferroic ceramics were modified by introducing (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} to form solid solutions. The single phase structure was easy to be obtained in Bi{sub 1−x}(Sr{sub 0.5}Ca{sub 0.5}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} (x = 0.2, 0.25, 0.3, and 0.4) solid solutions. Rietveld refinement of X-ray diffraction data revealed a transition from rhombohedral R3c (x = 0.2, 0.25, and 0.3) to orthorhombic Pnma (x = 0.4). Current density-field (J-E) characteristics indicated that the leakage current density was reduced by three orders of magnitude in Bi{sub 1−x}(Sr{sub 0.5}Ca{sub 0.5}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} ceramics. Both the ferroelectricity and magnetic properties were significantly enhanced in the presentmore » solid solutions. P-E hysteresis loop measurements with dynamic leakage current compensation methods showed the significantly enhanced ferroelectric properties for x = 0.25 and 0.3 and the paraelectric behavior for x = 0.4. The best ferromagnetic characteristics were achieved in the composition of x = 0.25, where the saturated M-H loop was determined with M{sub r} = 34.8 emu/mol. The improvement of ferroelectricity was mainly due to the suppressed leakage current, and the enhanced magnetism originated from the partial substitution of Fe{sup 3+} by Ti{sup 4+}, which destroyed its previous spiral structure to allow the appearance of a macroscopic magnetization.« less

  1. Temperature dependence of pre-edge features in Ti K-edge XANES spectra for ATiO₃ (A = Ca and Sr), A₂TiO₄ (A = Mg and Fe), TiO₂ rutile and TiO₂ anatase.

    PubMed

    Hiratoko, Tatsuya; Yoshiasa, Akira; Nakatani, Tomotaka; Okube, Maki; Nakatsuka, Akihiko; Sugiyama, Kazumasa

    2013-07-01

    XANES (X-ray absorption near-edge structure) spectra of the Ti K-edges of ATiO3 (A = Ca and Sr), A2TiO4 (A = Mg and Fe), TiO2 rutile and TiO2 anatase were measured in the temperature range 20-900 K. Ti atoms for all samples were located in TiO6 octahedral sites. The absorption intensity invariant point (AIIP) was found to be between the pre-edge and post-edge. After the AIIP, amplitudes damped due to Debye-Waller factor effects with temperature. Amplitudes in the pre-edge region increased with temperature normally by thermal vibration. Use of the AIIP peak intensity as a standard point enables a quantitative comparison of the intensity of the pre-edge peaks in various titanium compounds over a wide temperature range.

  2. Crystal structure of the mineral (Na,Ca,K)2(Ca,Na)4(Mg,Fe)5(Mg,Fe,Ti)5[Si12Al4O44](F,O)4: a triclinic representative of the amphibole family

    NASA Astrophysics Data System (ADS)

    Rastsvetaeva, R. K.; Aksenov, S. M.

    2012-05-01

    A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Å, b = 18.0457(3) Å; c = 9.8684(2) Å, α = 90.016(2)°, β = 105.543(4)°, γ = 89.985(2)°. The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with | F| > 3σ( F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K)2(Ca,Na)4(Mg,Fe)5(Mg,Fe,Ti)5[Si12Al4O44](F,O)4 has some symmetry and structural features that distinguish it from other minerals of this family.

  3. The evaluation of the statistical monomineral thermobarometric methods for the reconstruction of the lithospheric mantle structure

    NASA Astrophysics Data System (ADS)

    Ashchepkov, I.; Vishnyakova, E.

    2009-04-01

    The modified versions of the thermobarometers for the mantle assemblages were revised sing statistical calibrations on the results of Opx thermobarometry. The modifications suggest the calculation of the Fe# of coexisting olivine Fe#Ol according to the statistical approximations by the regressions obtained from the xenoliths from kimberlite data base including >700 associations. They allow reproduces the Opx based TP estimates and to receive the complete set of the TP values for mantle xenoliths and xenocrysts. For GARNET Three variants of barometer give similar results. The first is published (Ashchepkov, 2006). The second is calculating the Al2O3 from Garnet for Orthopyroxene according to procedure: xCrOpx=Cr2O3/CaO)/FeO/MgO/500 xAlOpx=1/(3875*(exp(Cr2O3^0.2/CaO)-0.3)*CaO/989+16)-XcrOpx Al2O3=xAlOp*24.64/Cr2O3^0.2*CaO/2.+FeO*(ToK-501)/1002 And then it suppose using of the Al2O3 in Opx barometer (McGregor, 1974). The third variant is transformation of the G. Grutter (2006) method by introducing of the influence of temperature. P=40+(Cr2O3)-4.5)*10/3-20/7*CaO+(ToC)*0.0000751*MgO)*CaO+2.45*Cr2O3*(7-xv(5,8)) -Fe*0.5 with the correction for P>55: P=55+(P-55)*55/(1+0.9*P) Average from this three methods give appropriate values comparable with determined with (McGregor,1974) barometer. Temperature are estimating according to transformed Krogh thermometer Fe#Ol_Gar=Fe#Gar/2+(T(K)-1420)*0.000112+0.01 For the deep seated associations P>55 kbar T=T-(0.25/(0.4-0.004*(20-P))-0.38/Ca)*275+51*Ca*Cr2-378*CaO-0.51)-Cr/Ca2*5+Mg/(Fe+0.0001)*17.4 ILMENITE P= ((TiO2-23.)*2.15-(T0-973)/20*MgO*Cr2O3 and next P=(60-P)/6.1+P ToK is determined according to (Taylor et al , 1998) Fe#Ol_Chr =(Fe/(Fe+Mg)ilm -0.35)/2.252-0.0000351*(T(K)-973) CHROMITE The equations for PT estimates with chromite compositions P=Cr/(Cr+Al)*T(K)/14.+Ti*0.10 with the next iteration P=-0.0053*P^2+1.1292*P+5.8059 +0.00135*T(K)*Ti*410-8.2 For P> 57 P=P+(P-57)*2.75 Temperature estimates are according to the O'Neill- Wall, 1987 The Fe#Ol values are estimated according to three iterations Fe#Ol_Chr=(Fe/Fe+Mg)/4.5-(P-32)*0.00115-0.03 Fe#Ol_Chr =( Fe#Ol -0.074)*0.45+0.086 Fe#Ol _Chr= Fe#Ol -( Fe#Ol -0.06)*(T(K)-1300)*0.000115+0.01 CLINOPYROXENE (Ash2009)=0.32 (1-0.2*Na/Al+0.012*Fe/Na)*Kd ^(3/4)*ToK/(1+Fe)-35*ln(1273/ToK)*(Al+Ti+2.5Na+1.5Fe3+)+(0.9-CaO)*10+Na20/Al2O3* ToK /200 with the second iteration P=(0.0000002* P4 +0.000002+P^3-0.0027*P^2+1.2241*P) The TP estimates were statistically tested wit the available experimental results in peridotite (315 runs) and eclogite (302 runs) system and show good agreement with the TP conditions of runs. The methods are joined together with the other 40 thermometers and 30 barometers for mantle associations in the FORTRAN program allowing simultaneous calculations of 10 pairs of T and P and write the matrix of calculated TPFO2 values together with the compositions of minerals or their formula coefficients. Grant RBRF 05-05-64718.

  4. High-pressure phase transitions of Fe 3-xTi xO 4 solid solution up to 60 GPa correlated with electronic spin transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki

    2013-06-12

    The structural phase transition of the titanomagnetite (Fe 3–xTi xO 4) solid solution under pressures up to 60 GPa has been clarified by single-crystal and powder diffraction studies using synchrotron radiation and a diamond-anvil cell. Present Rietveld structure refinements of the solid solution prove that the prefered cation distribution is based on the crystal field preference rather than the magnetic spin ordering in the solid solution. The Ti-rich phases in 0.734 ≤ x ≤1.0 undergo a phase transformation from the cubic spinel of Fd3m to the tetragonal spinel structure of I4 1/amd with c/a < 1.0. The transition is drivenmore » by a Jahn-Teller effect of IVFe 2+ (3d 6) on the tetrahedral site. The c/a < 1 ratio is induced by lifting of the degeneracy of the e orbitals by raising the d x2-y2 orbital below the energy of the d z2 orbital. The distortion characterized by c/a < 1 is more pronounced with increasing Ti content in the Fe 3–xTi xO 4 solid solutions and with increasing pressure. An X-ray emission experiment of Fe 2TiO 4 at high pressures confirms the spin transition of FeKβ from high spin to intermediate spin (IS) state. The high spin (HS)-to-low spin (LS) transition starts at 14 GPa and the IS state gradually increases with compression. The VIFe 2+ in the octahedral site is more prone for the HS-to-LS transition, compared with Fe 2+ in the fourfold- or eightfold-coordinated site. The transition to the orthorhombic post-spinel structure with space group Cmcm has been confirmed in the whole compositional range of Fe 3–xTi xO 4. The transition pressure decreases from 25 GPa (x = 0.0) to 15 GPa (x = 1.0) with increasing Ti content. There are two cation sites in the orthorhombic phase: M1 and M2 sites of eightfold and sixfold coordination, respectively. Fe 2+ and Ti 4+ are disordered on the M2 site. This structural change is accelerated at higher pressures due to the spin transition of Fe 2+ in the octahedral site. This is because the ionic radius of VIFe 2+ becomes 20% shortened by the spin transition. At 53 GPa, the structure transforms to another high-pressure polymorph with Pmma symmetry with the ordered structure of Ti and Fe atoms in the octahedral site. This structure change results from the order-disorder transition.« less

  5. Non-isothermal crystallization kinetics of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass containing nucleation agent P{sub 2}O{sub 5}/TiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bin, E-mail: stra-ceo@163.com; Wang, Yongya; Luo, Wenqin

    Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass ceramics containing nucleation agent P{sub 2}O{sub 5}/TiO{sub 2} were prepared by sol-gel method. The samples were characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The activation energy and kinetic parameters for crystallization of the samples were calculated by the Johnson-Mehi-Avrami (JMA) model and Augis-Bennett method according to the results of DSC. The results showed that the crystallization mechanism of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass, whose non-isothermal kinetic parameter n = 2.3, was consistent with surface crystallization of the JMA model. The kinetics model function of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass, f(α) = 2.3(1–α)[–ln(1–α)]{supmore » 0.57}, was also obtained. The addition of nucleation agent P{sub 2}O{sub 5}/TiO{sub 2} could reduce the activation energy, which made the crystal growth modes change from onedimensional to three-dimensional.« less

  6. Bio-Inspired Hierarchical Nanofibrous Fe3O4-TiO2-Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries.

    PubMed

    Li, Shun; Wang, Mengya; Luo, Yan; Huang, Jianguo

    2016-07-13

    A bioinspired hierarchical nanofibrous Fe3O4-TiO2-carbon composite was fabricated by employing natural cellulose substance (e.g., filter paper) as both the scaffold and the carbon source and showed improved electrochemical performances when it is employed as an anode material for lithium-ion batteries. FeOOH nanoparticles were first grown uniformly onto the surface of the titania thin-layer precoated cellulose nanofibers, and thereafter, the as-prepared FeOOH-TiO2-cellulose composite was calcined and carbonized in argon atmosphere at 500 °C for 6 h to produce the Fe3O4-TiO2-carbon composite. The resultant composite possesses a hierarchical structure that was faithfully inherited from the initial cellulose substance, which was composed of titania-coated carbon fibers with corncob-like shaped Fe3O4 nanoparticles immobilized on the surfaces. The diameter of the composite nanofiber is ca. 100-200 nm, and the diameter of the Fe3O4 nanoparticle is about 30 nm, which is coated with an ultrathin carbon layer with a thickness about 3 nm. This composite displayed superior lithium-ion storage performance. It showed a first-cycle discharge capacity of 1340 mAh/g, delivering a stable reversible capacity of ca. 525 mAh/g after 100 charge-discharge cycles at a current density of 100 mA/g, and the efficiency is as high as ca. 95% of the theoretical value. This is much higher than those of the commercial Fe3O4 powder (160 mAh/g) and the Fe3O4-carbon counter material (310 mAh/g). It was demonstrated that the thin titania precoating layer (thickness ca. 3-5 nm) is necessary for the high content loading of the Fe3O4 nanoparticles onto the carbon nanofibers. Owing to the unique three-dimensional porous network structure of the carbon-fiber scaffold, together with the ultrathin outer carbon-coating layer, the composite showed significantly improved cycling stability and rate capability.

  7. A -Site Ordered Double Perovskite CaMnTi 2 O 6 as a Multifunctional Piezoelectric and Ferroelectric–Photovoltaic Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Gaoyang; Charles, Nenian; Shi, Jing

    2017-09-11

    The double perovskite CaMnTi2O6, is a rare A site ordered perovskite oxide that exhibits a sizable ferroelectric polarization and relatively high Curie temperature. Using first-principles calculations combined with detailed symmetry analyses, we identify the origin of the ferroelectricity in CaMnTi2O6. We further explore the material properties of CaMnTi2O6, including its ferroelectric polarization, dielectric and piezoelectric responses, magnetic order, electronic structure, and optical absorption coefficient. It is found that CaMnTi2O6 exhibits room-temperature-stable ferroelectricity and moderate piezoelectric responses. Moreover, CaMnTi2O6 is predicted to have a semiconducting energy band gap similar to that of BiFeO3, and its band gap can further be tuned-viamore » distortions of the planar Mn-O bond lengths. CaMnTi2O6 exemplifies a new class of single-phase semiconducting ferroelectric perovskites for potential applications in ferroelectric photovoltaic solar cells.« less

  8. Decontamination System Utilizing Hydrogen Peroxide, UV Light and Catalytic Surfaces

    DTIC Science & Technology

    1992-02-01

    Min %DMO RecoveredDisk# Catalyst (relative to control) 1 Ag 2 0 5.4 2 Ag2 0 10.1 4 FeTiO3 56 5 FeTio3 48 7 None 558 None 56 Control None 100 Ag 2 0...Std. Ag2 0 44 FeTiO3 Std. FeTiO3 100 Reference 87 - 36 - Table 9g. Experiment U, 1-09-91, 50% H2 02 , No UV Light, Run Time - 40 Min % DMO...Ag 2 0 2 7.8 44 1-09 T FeTiO3 2 52 100 1-09 U MnO 2 59 921-09 U Mn304 2 62 89 1-21 Y Ag 2 S/CaCO3 2 36 103 1-21 Y Ag 2 S 2 39 100 1-21 Z FeS2 2 6.0

  9. Crystal structure of the mineral (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{sub 44}](F,O){sub 4}: a triclinic representative of the amphibole family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastsvetaeva, R. K., E-mail: rast@ns.crys.ras.ru; Aksenov, S. M.

    2012-05-15

    A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Angstrom-Sign , b = 18.0457(3) Angstrom-Sign ; c = 9.8684(2) Angstrom-Sign , {alpha} = 90.016(2) Degree-Sign , {beta} = 105.543(4) Degree-Sign , {gamma} = 89.985(2) Degree-Sign . The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with |F| > 3{sigma}(F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{submore » 44}](F,O){sub 4} has some symmetry and structural features that distinguish it from other minerals of this family.« less

  10. Viscosity of TiO2-FeO-Ti2O3-SiO2-MgO-CaO-Al2O3 for High-Titania Slag Smelting Process

    NASA Astrophysics Data System (ADS)

    Hu, Kai; Lv, Xuewei; Li, Shengping; Lv, Wei; Song, Bing; Han, Kexi

    2018-05-01

    The present study demonstrates the dependence of viscosity on chemical composition and temperature of high-titania slag, a very important raw material for producing titanium dioxide. The results indicated that completely molten high-titania slag exhibits a viscosity of less than 1 dPa s with negligible dependence on temperature. However, it increases dramatically with decreasing temperature slightly below the critical temperature, i.e., the solidus temperature of the slag. Above the critical temperature, the slag samples displayed the same order of viscosity at 0.6 dPa s, regardless of their compositional variation. However, the FeO, CaO, and MgO were confirmed to decrease viscosity, while SiO2 and Ti2O3 increase it. The apparent activation energy for viscosity-temperature relation and liquidus temperature based on experiments and thermodynamic calculations are also presented. Conclusively, the critical temperatures of the slags are on average 15 K below their corresponding calculated liquidus temperatures. The increase in FeO content was found to considerably lower the critical temperature, while the increase in both Ti2O3 and TiO2 contents increases it. The main phases of the slag in solid state, as indicated by X-ray diffraction, are (Fe, Mg) x Ti y O5 (x + y = 3, pseudobrookite) and rutile.

  11. Multifield Control of Domains in a Room-Temperature Multiferroic 0.85BiTi0.1Fe0.8Mg0.1O3-0.15CaTiO3 Thin Film.

    PubMed

    Jia, Tingting; Fan, Ziran; Yao, Junxiang; Liu, Cong; Li, Yuhao; Yu, Junxi; Fu, Bi; Zhao, Hongyang; Osada, Minoru; Esfahani, Ehsan Nasr; Yang, Yaodong; Wang, Yuanxu; Li, Jiang-Yu; Kimura, Hideo; Cheng, Zhenxiang

    2018-06-20

    Single-phase materials that combine electric polarization and magnetization are promising for applications in multifunctional sensors, information storage, spintronic devices, etc. Following the idea of a percolating network of magnetic ions (e.g., Fe) with strong superexchange interactions within a structural scaffold with a polar lattice, a solid solution thin film with perovskite structure at a morphotropic phase boundary with a high level of Fe atoms on the B site of perovskite structure is deposited to combine both ferroelectric and ferromagnetic ordering at room temperature with magnetoelectric coupling. In this work, a 0.85BiTi 0.1 Fe 0.8 Mg 0.1 O 3 -0.15CaTiO 3 thin film has been deposited by pulsed laser deposition (PLD). Both the ferroelectricity and the magnetism were characterized at room temperature. Large polarization and a large piezoelectric effective coefficient d 33 were obtained. Multifield coupling of the thin film has been characterized by scanning force microscopy. Ferroelectric domains and magnetic domains could be switched by magnetic field ( H), electric field ( E), mechanical force ( F), and, indicating that complex cross-coupling exists among the electric polarization, magnetic ordering and elastic deformation in 0.85BiTi 0.1 F e0.8 Mg 0.1 O 3 -0.15CaTiO 3 thin film at room temperature. This work also shows the possibility of writing information with electric field, magnetic field, and mechanical force and then reading data by magnetic field. We expect that this work will benefit information applications.

  12. Multiple caloric effects in (Ba0.865Ca0.135Zr0.1089Ti0.8811Fe0.01)O3 ferroelectric ceramic

    NASA Astrophysics Data System (ADS)

    Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul

    2015-07-01

    Multiple caloric effects have been investigated for Fe-doped bulk (Ba0.865Ca0.135Zr0.1089Ti0.8811Fe0.01)O3 (BCZTO-Fe) ferroelectric ceramic. Indirect predictions were made using Maxwell's relations in conjunction with data from experimental observations. It was revealed that bulk BCZTO-Fe has huge untapped potential for solid-state refrigeration. A peak electrocaloric effect of 0.45 K (347 K) was predicted for 0-3 kV.mm-1 electric field, significantly higher than other BCZTO based materials. A maximum elastocaloric cooling of 1.4 K (298 K) was achieved for applied stress of 0-200 MPa. Finally, an unforeseen component of electric field driven caloric effect has been reported as inverse piezocaloric effect, with a maximum temperature change of 0.28 K (298 K).

  13. Enhanced collectivity along the N = Z line: Lifetime measurements in 44Ti, 48Cr, and 52Fe

    NASA Astrophysics Data System (ADS)

    Arnswald, K.; Braunroth, T.; Seidlitz, M.; Coraggio, L.; Reiter, P.; Birkenbach, B.; Blazhev, A.; Dewald, A.; Fransen, C.; Fu, B.; Gargano, A.; Hess, H.; Hirsch, R.; Itaco, N.; Lenzi, S. M.; Lewandowski, L.; Litzinger, J.; Müller-Gatermann, C.; Queiser, M.; Rosiak, D.; Schneiders, D.; Siebeck, B.; Steinbach, T.; Vogt, A.; Wolf, K.; Zell, K. O.

    2017-09-01

    Lifetimes of the 21+ states in 44Ti, 48,50Cr, and 52Fe were determined with high accuracy exploiting the recoil distance Doppler-shift method. The reduced E2 transition strengths of 44Ti and 52Fe differ considerably from previously known values. A systematic increase in collectivity is found for the N = Z nuclei compared to neighboring isotopes. The B (E2) values along the Ti, Cr, and Fe isotopic chains are compared to shell-model calculations employing established interactions for the 0 f 1 p shell, as well as a novel effective shell-model Hamiltonian starting from a realistic nucleon-nucleon potential. The theoretical approaches underestimate the B (E2) values for the lower-mass Ti isotopes. Strong indication is found for particle-hole cross-shell configurations, recently corroborated by similar results for the neighboring isotone 42Ca.

  14. [Spatial heterogeneity of surface soil mineral components in a small catchment in Karst peak-cluster depression area, South China].

    PubMed

    Gao, Peng; Fu, Tong-Gang; Wang, Ke-Lin; Chen, Hong-Song; Zeng, Fu-Ping

    2013-11-01

    A total of 163 soil samples (0-20 cm layer) were collected from the grid sampling plots (80 m x 80 m) in Huanjiang Observation and Research Station of Karst Ecosystem in a small catchment in Karst cluster-peak depression area, South China. By using classical statistics and geostatistics, the spatial heterogeneity of mineral components (SiO2, Fe2O3, CaO, MgO, Al2O3, MnO, and TiO2) in the soils were studied. The contents of the seven soil mineral components in the study area differed greatly, being in the order of SiO2 > Al2O3 > CaO > MgO > Fe2O3 > TiO2 > MnO, and the variance coefficients also varied obviously, in the order of CaO > MgO > Fe2O3 > TiO2 > SiO2 > Al2O3 > MnO. The seven mineral components accounted for 69.4% of the total soil mass. The spatial patterns and the fittest models of the seven soil mineral components differed from each other. All the seven soil mineral components had a strong spatial autocorrelation, with shorter variation ranges and stronger spatial dependence. The Kriging contour maps indicated that the distribution patterns of soil SiO2, Fe2O3, Al2O3, MnO, and TiO2 were similar, being higher in south and east, lower in north and west, higher in depression, and lower in slope, while the distribution patterns of soil CaO and MgO were in adverse. Natural conditions (vegetation, bare rock rate, slope degree, and slope aspect, etc. ) and human disturbance were the most important factors affecting the spatial patterns of the soil mineral components.

  15. Uniformly Porous Nanocrystalline CaMgFe1.33Ti3O12 Ceramic Derived Electro-Ceramic Nanocomposite for Impedance Type Humidity Sensor

    PubMed Central

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Since humidity sensors have been widely used in many sectors, a suitable humidity sensing material with improved sensitivity, faster response and recovery times, better stability and low hysteresis is necessary to be developed. Here, we fabricate a uniformly porous humidity sensor using Ca, Ti substituted Mg ferrites with chemical formula of CaMgFe1.33Ti3O12 as humidity sensing materials by solid-sate step-sintering technique. This synthesis technique is useful to control the grain size with increased porosity to enhance the hydrophilic characteristics of the CaMgFe1.33Ti3O12 nanoceramic based sintered electro-ceramic nanocomposites. The highest porosity, lowest density and excellent surface-hydrophilicity properties were obtained at 1050 °C sintered ceramic. The performance of this impedance type humidity sensor was evaluated by electrical characterizations using alternating current (AC) in the 33%–95% relative humidity (RH) range at 25 °C. Compared with existing conventional resistive humidity sensors, the present sintered electro-ceramic nanocomposite based humidity sensor showed faster response time (20 s) and recovery time (40 s). This newly developed sensor showed extremely high sensitivity (%S) and small hysteresis of <3.4%. Long-term stability of the sensor had been determined by testing for 30 consecutive days. Therefore, the high performance sensing behavior of the present electro-ceramic nanocomposites would be suitable for a potential use in advanced humidity sensors. PMID:27916913

  16. Adsorption of CO on oxide and water ice surfaces - Implications for the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Leu, M.-T.; Blamont, J. E.; Anbar, A. D.; Keyser, L. F.; Sander, S. P.

    1992-01-01

    The adsorption of carbon monoxide (CO) on water ice and on the oxides Fe2O3, Fe3O4, Al2O3, SiO2, CaO, MgO, and TiO2 (rutile and anatase) has been investigated in a flow reactor. A mass spectrometer was employed as a detector to monitor the temporal concentrations of CO. Adsorption coefficients as large as 1 x 10 exp -4 were measured for CO on TiO2 solids in helium at 196 K. The fractional surface coverage for CO on TiO2 solids in helium was also determined to be approximately 10 percent at 196 K. The upper limits of the fractional surface coverage for the other oxides (Fe2O3, Fe3O4, Al2O3, SiO2, CaO, and MgO) and water ice were also measured to be less than 1 percent. The implications for the stability of CO2 in the Martian atmosphere and the 'CO hole' observed by the Phobos/ISM experiment are discussed.

  17. Ferroic phase transition of tetragonal Pb0.6-xCaxBi0.4(Ti0.75Zn0.15Fe0.1)O3 ceramics: Factors determining Curie temperature

    NASA Astrophysics Data System (ADS)

    Yu, Jian; An, Fei-fei; Cao, Fei

    2014-05-01

    In this paper, ferroelectric phase transitions of Pb0.6-xCaxBi0.4(Ti0.75Zn0.15Fe0.1)O3 with x ≤ 0.20 ceramics were experimentally measured and a change from first-order to relaxor was found at a critical composition x ˜ 0.19. With increasing Ca content of x ≤ 0.18, Curie temperature and tetragonality was found decrease but piezoelectric constant and dielectric constant increase in a quadratic polynomial relationship as a function of x, while the ferroic Curie temperature and ferroelastic ordering parameter of tetragonality are correlated in a quadratic polynomial relationship. Near the critical composition of ferroic phase transition from first-order to relaxor, the Pb0.42Ca0.18Bi0.4(Ti0.75Zn0.15Fe0.1)O3 and 1 mol % Nb + 0.5 mol % Mg co-doped Pb0.44Ca0.16Bi0.4(Ti0.75Zn0.15Fe0.1)O3 ceramics exhibit a better anisotropic piezoelectric properties than those commercial piezoceramics of modified-PbTiO3 and PbNb2O6. At last, those factors including reduced mass of unit cell, mismatch between cation size and anion cage size, which affect ferroic Curie temperature and ferroelastic ordering parameter (tetragonality) of tetragonal ABO3 perovskites, are analyzed on the basis of first principle effective Hamiltonian and the reduced mass of unit cell is argued a more universal variable than concentration to determine Curie temperature in a quadratic polynomial relationship over various perovskite-structured solid solutions.

  18. Trace element composition and cathodoluminescence of kyanite and its petrogenetic implications

    NASA Astrophysics Data System (ADS)

    Müller, Axel; van den Kerkhof, Alfons M.; Selbekk, Rune S.; Broekmans, Maarten A. T. M.

    2016-09-01

    Kyanite crystals from fourteen localities worldwide were analysed for their abundances of the trace elements Na, Mg, K, Ca, Ti, V, Cr, Mn, and Fe and cathodoluminescence (CL) properties. Based on protolith type, metamorphic setting, and distinctive trace element fingerprints, a genetic classification of kyanite-bearing rocks is suggested: (A) Al-rich metasediments which commonly contain coarse-grained quartz-kyanite segregations; (B) metamorphosed granitic rocks, specifically granulites; (C) metamorphosed argillic alteration zones hosted originally in felsic igneous rocks; (D) metamorphosed argillic alteration zones hosted originally in mafic igneous rocks; and (E) metamorphosed mafic to ultramafic rocks, specifically eclogites. Vanadium and Cr concentrations reflect both protolith and host rock compositions and therefore may provide a geochemical fingerprint for the nature of the protolith. The incorporation of Fe into kyanite is largely controlled by oxygen fugacity during kyanite formation, and therefore, in most cases, its concentration cannot be related to that of the protolith. From our results, Ti concentration appears to be related to metamorphic grade, particularly formation temperature. If proven by further studies, Ti-in-kyanite may provide a useful geothermometer. Correlation of trace element abundances with CL spectra confirms that common red CL, which is composed of the spectral bands centred at 1.69 eV (734 nm), 1.75 eV (708 nm), and 1.80 eV (689 nm), is related to Cr3+ defects. CL spectra of most kyanites show in addition a low-intensity blue emission centred at 2.56 eV (485 nm). Correlation of the intensity of the blue emission with Ti suggests that it is related to or sensitized by Ti4+ or Ti3+ defects. Kyanites with >3200 µgg-1 Fe show generally no detectable CL due to the CL-quenching effect of Fe2+. Our findings provide new criteria in the exploration for and quality assessment of new kyanite deposits. The Ti content, one of the critical contaminants of kyanite products, besides Fe, Ca, and Mg, appears predictable from the observed correlation of Ti with formation temperature. Iron will be hard to predict because its incorporation is mainly controlled by the oxidizing conditions during kyanite formation and the estimation of these conditions requires advanced analytical methods. Magnesium and Ca are consistently low in all investigated samples. From a regional exploration viewpoint, group C and D kyanites have the lowest Ti and relative low Fe and, therefore, will be most refractory. Due to their attractive blue colour, kyanite-bearing rocks of group C have potential as ornamental or dimension stone.

  19. EVIDENCE FOR GAS FROM A DISINTEGRATING EXTRASOLAR ASTEROID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S.; Jura, M.; Zuckerman, B.

    We report high-resolution spectroscopic observations of WD 1145+017—a white dwarf that was recently found to be transitted by multiple asteroid-sized objects within its tidal radius. We discovered numerous circumstellar absorption lines with linewidths of ∼300 km s{sup −1} from Mg, Ca, Ti, Cr, Mn, Fe, and Ni, possibly from several gas streams produced by collisions among the actively disintegrating objects. The atmosphere of WD 1145+017 is polluted with 11 heavy elements, including O, Mg, Al, Si, Ca, Ti, V:, Cr, Mn, Fe, and Ni. Evidently, we are witnessing the active disintegration and subsequent accretion of an extrasolar asteroid.

  20. Enhanced collectivity along the N = Z line: lifetime measurements in 44Ti, 48Cr, and 52Fe

    NASA Astrophysics Data System (ADS)

    Arnswald, K.; Reiter, P.; Coraggio, L.; Birkenbach, B.; Blazhev, A.; Braunroth, T.; Dewald, A.; Fransen, C.; Fu, B.; Gargano, A.; Hess, H.; Hirsch, R.; Itaco, N.; Lenzi, S. M.; Lewandowski, L.; Litzinger, J.; Müller-Gatermann, C.; Queiser, M.; Rosiak, D.; Schneiders, D.; Seidlitz, M.; Siebeck, B.; Steinbach, T.; Vogt, A.; Wolf, K.; Zell, K. O.

    2018-02-01

    Lifetimes of the {2}1+ states in 44Ti, 48,50Cr, and 52Fe were determined with high accuracy exploiting the recoil distance Doppler-shift method. The reduced E2 transition strengths of 44Ti and 52 Fe differ considerably from previously known values. A systematic increase in collectivity is found for the N = Z nuclei compared to neighboring isotopes. The B(E2) values along the Ti, Cr, and Fe isotopic chains are compared to shell-model calculations employing established interactions for the 0f 1p shell, as well as a novel effective shell-model Hamiltonian starting from a realistic nucleon-nucleon potential. The theoretical approaches underestimate the B(E2) values for the lower-mass Ti isotopes. Strong indication is found for particle-hole cross-shell configurations, recently corroborated by similar results for the neighboring isotone 42 Ca. A detailed manuscript has meanwhile been published in Physics Letters B [1].

  1. Molecular field coefficients and cation distribution of substituted yttrium iron garnets

    NASA Astrophysics Data System (ADS)

    Röschmann, P.; Hansen, P.

    1981-10-01

    The saturation magnetization Ms(T) of Ga, Al, Sc, and CaVBi substituted Y3Fe5O12 (YIG) single crystals and of polycrystalline Ca/Ge and Ca/Ti substituted YIG has been investigated for 4.2 K ⩽T⩽TC. The samples were repeatedly annealed and quenched at different equilibrium temperatures 773 K⩽Te ⩽1523 K. The attained site exchange of Fe and the substituents between the a and d sites resulted in considerable changes of Ms(T). From a fit of the Néel molecular field theory to the Ms(T) data the dependence of the magnetic moments at T = 0 K and of the molecular field coefficients on the amount of nonmagnetic substitutions on the a and d sites were determined. It turned out that ion-specific sets of equations are required accounting for the ''particular ion effect'' of different cation species. The cation distributions inferred from the magnetic data have been analyzed along with a thermodynamic equilibrium model. The derived site stabilizing energies for the mixed Fe-Ga and Fe-Al garnets agree well with recently reported data. New results are presented for the site stabilizing energies in Ca/Ge:YIG and for the substituents Sc and Ti with octahedral site preference.

  2. Diffuse Phase Transitions and Giant Electrostrictive Coefficients in Lead-Free Fe3+-Doped 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 Ferroelectric Ceramics.

    PubMed

    Jin, Li; Huo, Renjie; Guo, Runping; Li, Fei; Wang, Dawei; Tian, Ye; Hu, Qingyuan; Wei, Xiaoyong; He, Zhanbing; Yan, Yan; Liu, Gang

    2016-11-16

    The electrostrictive effect has some advantages over the piezoelectric effect, including temperature stability and hysteresis-free character. In the present work, we report the diffuse phase transitions and electrostrictive properties in lead-free Fe 3+ -doped 0.5Ba(Zr 0.2 Ti 0.8 )O 3 -0.5(Ba 0.7 Ca 0.3 )TiO 3 (BZT-0.5BCT) ferroelectric ceramics. The doping concentration was set from 0.25 to 2 mol %. It is found that by introducing Fe 3+ ion into BZT-0.5BCT, the temperature corresponding to permittivity maximum T m was shifted toward lower temperature monotonically by 37 °C per mol % Fe 3+ ion. Simultaneously, the phase transitions gradually changed from classical ferroelectric-to-paraelectric phase transitions into diffuse phase transitions with a weak relaxor characteristic. Purely electrostrictive responses with giant electrostrictive coefficient Q 33 between 0.04 and 0.05 m 4 /C 2 are observed from 25 to 100 °C for the compositions doped with 1-2 mol % Fe 3+ ion. The Q 33 of Fe 3+ -doped BZT-0.5BCT ceramics is almost twice the Q 33 of other ferroelectric ceramics. These observations suggest that the present system can be considered as a potential lead-free material for the applications in electrostrictive area and that BT-based ferroelectric ceramics would have giant electrostrictive coefficient over other ferroelectric systems.

  3. A new (Ba, Ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect

    PubMed Central

    Naveed-Ul-Haq, M.; Shvartsman, Vladimir V.; Salamon, Soma; Wende, Heiko; Trivedi, Harsh; Mumtaz, Arif; Lupascu, Doru C.

    2016-01-01

    The lead-free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3 − 0.5(Ba0.7Ca0.3)TiO3 (BCZT) is a promising component for multifunctional multiferroics due to its excellent room temperature piezoelectric properties. Having a composition close to the polymorphic phase boundary between the orthorhombic and tetragonal phases, it deserves a case study for analysis of its potential for modern electronics applications. To obtain magnetoelectric coupling, the piezoelectric phase needs to be combined with a suitable magnetostrictive phase. In the current article, we report on the synthesis, dielectric, magnetic, and magnetoelectric characterization of a new magnetoelectric multiferroic composite consisting of BCZT as a piezoelectric phase and CoFe2O4 (CFO) as the magnetostrictive phase. We found that this material is multiferroic at room temperature and manifests a magnetoelectric effect larger than that of BaTiO3 −CoFe2O4 bulk composites with similar content of the ferrite phase. PMID:27555563

  4. A new (Ba, Ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect

    NASA Astrophysics Data System (ADS)

    Naveed-Ul-Haq, M.; Shvartsman, Vladimir V.; Salamon, Soma; Wende, Heiko; Trivedi, Harsh; Mumtaz, Arif; Lupascu, Doru C.

    2016-08-01

    The lead-free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3 - 0.5(Ba0.7Ca0.3)TiO3 (BCZT) is a promising component for multifunctional multiferroics due to its excellent room temperature piezoelectric properties. Having a composition close to the polymorphic phase boundary between the orthorhombic and tetragonal phases, it deserves a case study for analysis of its potential for modern electronics applications. To obtain magnetoelectric coupling, the piezoelectric phase needs to be combined with a suitable magnetostrictive phase. In the current article, we report on the synthesis, dielectric, magnetic, and magnetoelectric characterization of a new magnetoelectric multiferroic composite consisting of BCZT as a piezoelectric phase and CoFe2O4 (CFO) as the magnetostrictive phase. We found that this material is multiferroic at room temperature and manifests a magnetoelectric effect larger than that of BaTiO3 -CoFe2O4 bulk composites with similar content of the ferrite phase.

  5. Investigation on Viscosity and Nonisothermal Crystallization Behavior of P-Bearing Steelmaking Slags with Varying TiO2 Content

    NASA Astrophysics Data System (ADS)

    Wang, Zhanjun; Sun, Yongqi; Sridrar, Seetharaman; Zhang, Mei; Zhang, Zuotai

    2017-02-01

    The viscous flow and crystallization behavior of CaO-SiO2-MgO-Al2O3-FetO-P2O5-TiO2 steelmaking slags have been investigated over a wide range of temperatures under Ar (High purity, >99.999 pct) atmosphere, and the relationship between viscosity and structure was determined. The results indicated that the viscosity of the slags slightly decreased with increasing TiO2 content. The constructed nonisothermal continuous cooling transformation (CCT) diagrams revealed that the addition of TiO2 lowered the crystallization temperature. This can mainly be ascribed to that addition of TiO2 promotes the formation of [TiO6]-octahedra units and, consequently, the formation of MgFe2O4-Mg2TiO4 solid solution. Moreover, the decreasing viscosity has a significant effect on enhancing the diffusion of ion units, such as Ca2+ and [TiO4]-tetrahedra, from bulk melts to the crystal-melt interface. The crystallization of CaTiO3 and CaSiTiO5 was consequently accelerated, which can improve the phosphorus content in P-enriched phase ( n2CaO·SiO2-3CaO·P2O5). Finally, the nonisothermal crystallization kinetics was characterized and the activation energy for the primary crystal growth was derived such that the activation energy increases from -265.93 to -185.41 KJ·mol-1 with the addition of TiO2 content, suggesting that TiO2 lowered the tendency for the slags to crystallize.

  6. Effect of BiFeO3 doping on the structural, dielectric and electrical properties of CaCu3Ti4O12 ceramics

    NASA Astrophysics Data System (ADS)

    Dai, Haiyang; Liu, Dewei; Chen, Jing; Xue, Renzhong; Li, Tao; Xiang, Huiwen; Chen, Zhenping; Liu, Haizeng

    2015-04-01

    (1 - x)CaCu3Ti4O12- xBiFeO3 ( x = 0, 0.003, 0.006, 0.010 and 0.015) ceramics have been fabricated by the solid-state reaction method. The effects of BiFeO3 (BFO) doping on the microstructure, dielectric and electrical properties of CaCu3Ti4O12 (CCTO) ceramics were investigated. It is found that BFO doping can affect the microstructure of the CCTO ceramics, and some properties of CCTO ceramics can hence be improved by BFO doping. The XRD and Raman results show that no phase transition has occurred in the doping content range, but BFO doping induces the crystal structure distortion. Analysis of microstructure indicates that the grain morphology varies significantly with increasing BFO content, and an appropriate amount of BFO can promote the grain growth. Impedance spectroscopy results show that the dielectric constant and loss of the BFO-doped CCTO samples are stable with frequency. The dielectric constant and nonohmic properties can be enhanced markedly in an appropriate doping content. The dielectric loss of all BFO-doped samples was lower than that of undoped CCTO sample in low frequencies. The related mechanism is also discussed in the paper.

  7. Solid-State Reaction Between Fe-Al-Ca Alloy and Al2O3-CaO-FeO Oxide During Heat Treatment at 1473 K (1200 °C)

    NASA Astrophysics Data System (ADS)

    Liu, Chengsong; Yang, Shufeng; Li, Jingshe; Ni, Hongwei; Zhang, Xueliang

    2017-04-01

    The aim of this study was to control the physicochemical characteristics of inclusions in steel through appropriate heat treatment. Using a confocal scanning laser microscope (CSLM) and pipe furnace, the solid-state reactions between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide during heat treatment at 1473 K (1200 °C) and the influence of these reactions on the compositions of and phases in the alloy and oxide were investigated by the diffusion couple method. Suitable pretreatment of the oxide using a CSLM and production of the diffusion couple of Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide gave good contact between the alloy and oxide. The diffusion couple was then sealed in a quartz tube with a piece of Ti foil to lower oxygen partial pressure and a block of Fe-Al-Ca alloy was introduced to conduct heat treatment experiments. Solid-state reactions between the alloy and oxide during heat treatment at 1473 K (1200 °C) were analyzed and discussed. A dynamic model to calculate the width of the particle precipitation zone based on the Wagner model of internal oxidation of metal was proposed. This model was helpful to understand the solid-state reaction mechanism between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide.

  8. Mg, Al, Si, Ca, Ti, Fe, and Ni abundance for a sample of solar analogues

    NASA Astrophysics Data System (ADS)

    López-Valdivia, Ricardo; Bertone, Emanuele; Chávez, Miguel

    2017-05-01

    We report on the determination of chemical abundances of 38 solar analogues, including 11 objects previously identified as super-metal-rich stars. We have measured the equivalent widths for 34 lines of 7 different chemical elements (Mg, Al, Si, Ca, Ti, Fe and Ni) in high-resolution (R ˜ 80 000) spectroscopic images, obtained at the Observatorio Astrofísico Guillermo Haro (Sonora, Mexico), with the Cananea High-resolution Spectrograph. We derived chemical abundances using atlas12 model atmospheres and the Fortran code moog. We confirmed the super-metallicity status of six solar analogues. Within our sample, BD+60 600 is the most metal rich star ([Fe/H] = +0.35 dex), while for HD 166991, we obtained the lowest iron abundance ([Fe/H] = -0.53 dex). We also computed the so-called [Ref] index for 25 of our solar analogues, and we found that BD+60 600 ([Ref] = +0.42) and BD+28 3198 ([Ref] = +0.34) are good targets for exoplanet search.

  9. Characterization of La/Fe/TiO2 and Its Photocatalytic Performance in Ammonia Nitrogen Wastewater

    PubMed Central

    Luo, Xianping; Chen, Chunfei; Yang, Jing; Wang, Junyu; Yan, Qun; Shi, Huquan; Wang, Chunying

    2015-01-01

    La/Fe/TiO2 composite photocatalysts were synthesized by Sol-Gel method and well characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen-physical adsorption, and UV-Vis diffuse reflectance spectra (UV-Vis DRS). It is interesting that the doped catalysts were in anatase phase while the pure TiO2 was in rutile phase. In addition, the composites possessed better physical chemical properties in photocatalytic activity than pure TiO2: stronger visible-light-response ability, larger specific surface area, and more regular shape in morphology. The photodegradation results of ammonia nitrogen indicate that: the La/Fe/TiO2 had higher catalytic activity to ammonia nitrogen waste water compared pure TiO2 and the other single metal-doped TiO2. pH 10 and 2 mmol/L H2O2 were all beneficial to the removal of ammonia nitrogen by La/Fe/TiO2. However, the common inorganic ions of Cl−, NO3−, SO42−, HCO3−/CO32−, Na+, K+, Ca2+ and Mg2+ in water all inhibited the degradation of ammonia nitrogen. By balance calculation, at least 20% of ammonia nitrogen was converted to N2 during the 64.6% removal efficiency of ammonia nitrogen. PMID:26593929

  10. Carbothermic reduction behaviors of Ti-Nb-bearing Fe concentrate from Bayan Obo ore in China

    NASA Astrophysics Data System (ADS)

    Wang, Guang; Du, Ya-xing; Wang, Jing-song; Xue, Qing-guo

    2018-01-01

    To support the development of technology to utilize low-grade Ti-Nb-bearing Fe concentrate, the reduction of the concentrate by coal was systematically investigated in the present paper. A liquid phase formed when the Ti-Nb-bearing Fe concentrate/coal composite pellet was reduced at temperatures greater than 1100°C. The addition of CaCO3 improved the reduction rate when the slag basicity was less than 1.0 and inhibited the formation of the liquid phase. Mechanical milling obviously increased the metallization degree compared with that of the standard pellet when reduced under the same conditions. Evolution of the mineral phase composition and microstructure of the reduced Ti-Nb-bearing Fe concentrate/coal composite pellet at 1100°C were analyzed by X-ray diffraction and scanning electron microscopy-energy-dispersive spectroscopy. The volume shrinkage value of the reduced Ti-Nb-bearing Fe concentrate/coal composite pellet with a basicity of 1.0 was approximately 35.2% when the pellet was reduced at 1100°C for 20 min, which enhanced the external heat transfer to the lower layers when reduced in a practical rotary hearth furnace. The present work provides key parameters and mechanism understanding for the development of carbothermic reduction technology of a Ti-Nb-bearing Fe concentrate incorporated in a pyrometallurgical utilization flow sheet.

  11. Determining baseline element composition of lichens. I. Parmelia sulcata at Theodore Roosevelt national park, North Dakota

    USGS Publications Warehouse

    Gough, L.P.; Severson, R.C.; Jackson, L.L.

    1988-01-01

    Element-concentration baselines are given for Parmelia sulcata and associated soils. Parmelia chlorochroa was found sporadically and therefore only representative concentration ranges are reported for this species. Element data include (1) for lichens; Al, As, Ba, B, Ca, Cr, Cu, Fe, Hg, Mn, Ni, P, Sr, S, Ti, V, Y, and Zn; and (2) for soils: Al, Ba, Be, Ca, Cs, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Nb, P, Pb, Sr, S, Ti, V, Y, and Zn. Very little (usually 7.2 km); thus, P sulcata is, in general, chemically similar throughout the park. This same uniformity was found for soil geochemistry. Numerous samples collected at close intervals would be required, therefore, to produce detailed element-concentration maps for P. sulcata and soils. No instances of elemental phytotoxic conditions were found; however, P. sulcata apparently possesses large concentrations of Ba, Cu, Fe, Pb, S, V, and possibly Zn.

  12. Apatite-hosted melt inclusions in Damiao massif anorthosite complex, North China

    NASA Astrophysics Data System (ADS)

    Wang, M.; Veksler, I. V.; Zhang, Z.

    2014-12-01

    Models for the nelsonite formation are currently highly contentious, with liquid immiscibility and fractional crystallization as frequently proposed formation mechanisms. The nelsonites in the Damiao massif anorthosite complex in the North China Craton and experimental evidence are revisited for the existence of silica-free CaO-FeO-Fe2O3-TiO2-P2O5 immiscible nelsonitic liquids. Our results of differential scanning calorimetry (DSC) demonstrate that nelsonite with the composition of one-third apatite and two-thirds Fe-Ti oxides by weight completely melts well above 1450 ºC, which is in good agreement with numerous experimental studies of the CaO-P2O5-FexO system in connection to metallurgy. Thus, the composition cannot be molten at temperatures relevant for crystallization of the Damiao magma. A review of experimental studies of liquid immiscibility and analyses of natural immiscible glasses show that all the liquids on the Fe- and P-rich side of the miscibility gap have at least 20 wt. % of aluminosilicate components. Main results of this study come from the analyses of apatite-hosted melt inclusions in Damiao nelsonite. The inclusions range from ~3 to 200 μm in diameter. They are ubiquitous and meet all the morphological criteria of primary melt inclusions crystallised into assemblages of daughter minerals. Almost all of them contain vermiculite and chlorite, and some contain biotite, amphibole, phlogopite and Fe-Ti oxides. Out of dozens analysed inclusions, only three have high contents of SiO2 (62.1-73.8 wt. %) and low contents of FeO (0.25-2.35 wt. %). Bulk compositions of other inclusions show large variations in SiO2 (20.79-50.16 wt. %) and FeOt (13.44-32.78 wt. %). With a few exceptions, the inclusions are very low in CaO (0.04-1.51 wt. %, and high in Al2O3 (10-21.17 wt. %). Despite the high Fe content, the compositions differ from those of the typical immiscible Fe-rich melts. It appears that the cumulus apatite crystallised from Fe-rich, hydrated silicate melt. We propose that the inclusions at Damiao record a trend of intercumulus melt evolution, which was strongly affected by separation of a hydrothermal fluid phase and the losses of alkali and Ca silicate components from the melt into the fluid.

  13. Static and dynamic strain coupling behaviour of ferroic and multiferroic perovskites from resonant ultrasound spectroscopy.

    PubMed

    Carpenter, M A

    2015-07-08

    Resonant ultrasound spectroscopy (RUS) provides a window on the pervasive influence of strain coupling at phase transitions in perovskites through determination of elastic and anelastic relaxations across wide temperature intervals and with the application of external fields. In particular, large variations of elastic constants occur at structural, ferroelectric and electronic transitions and, because of the relatively long interaction length provided by strain fields in a crystal, Landau theory provides an effective formal framework for characterizing their form and magnitude. At the same time, the Debye equations provide a robust description of dynamic relaxational processes involving the mobility of defects which are coupled with strain. Improper ferroelastic transitions driven by octahedral tilting in KMnF3, LaAlO3, (Ca,Sr)TiO3, Sr(Ti,Zr)O3 and BaCeO3 are accompanied by elastic softening of tens of % and characteristic patterns of acoustic loss due to the mobility of twin walls. RUS data for ferroelectrics and ferroelectric relaxors, including BaTiO3, (K,Na)NbO3,Pb(Mg1/3Nb2/3)O3 (PMN), Pb(Sc1/2Ta1/2)O3 (PST), (Pb(Zn1/3Nb2/3)O3)0.955(PbTiO3)0.045 (PZN-PT) and (Pb(In1/2Nb1/2)O3)0.26(Pb(Mg1/3Nb2/3)O3)0.44(PbTiO3)0.30 (PIN-PMN-PT) show similar patterns of softening and attenuation but also have precursor softening associated with the development of polar nano regions. Defect-induced ferroelectricity occurs in KTaO3, without the development of long range ordering. By way of contrast, spin-lattice coupling is much more variable in strength, as reflected in a greater range of softening behaviour for Pr0.48Ca0.52MnO3 and Sm0.6Y0.4MnO3 as well as for the multiferroic perovskites EuTiO3,BiFeO3, Bi0.9Sm0.1FeO3, Bi0.9Nd0.1FeO3, (BiFeO3)0.64(CaFeO2.5)0.36, (Pb(Fe0.5Ti0.5)O3)0.4(Pb(Zr0.53Ti0.47)O3)0.6. A characteristic feature of transitions in which there is a significant Jahn-Teller component is softening as the transition point is approached from above, as illustrated by PrAlO3, and this is suppressed by application of an external magnetic field in the colossal magnetoresistive manganite Pr0.48Ca0.52MnO3 or by reducing grain size in La0.5Ca0.5MnO3. Spin state transitions for Co(3+) in LaCoO3, NdCoO3 and GdCoO3 produce changes in the shear modulus that scale with a spin state order parameter, which is itself coupled with the order parameter(s) for octahedral tilting in a linear-quadratic manner. A new class of phase transitions in perovskites, due to orientational or conformational ordering of organic molecules on the crystallographic A-site of metal organic frameworks, is illustrated for [(CH3)2NH2]Co(HCOO)3 and [(CH2)3NH2]Mn(HCOO)3 which also display elastic and anelastic anomalies due to the influence of intrinsic and extrinsic strain relaxation behaviour.

  14. Origin of Ti-rich garnets in the groundmass of Wajrakarur field kimberlites, southern India: insights from EPMA and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Dongre, Ashish N.; Viljoen, K. S.; Rao, N. V. Chalapathi; Gucsik, A.

    2016-04-01

    Although Ti-rich garnets are commonly encountered in the groundmass of many alkaline igneous rocks, they are comparatively rare in kimberlites. Here we report on the occurrence of Ti-rich garnets in the groundmass of the P-15 and KL-3 kimberlites from the diamondiferous Wajrakarur field in the Eastern Dharwar craton of southern India. These garnets contain considerable Ti (11.7-23.9 wt.% TiO2), Ca (31.3-35.8 wt.% CaO), Fe (6.8-15.5 wt.% FeOT) and Cr (0.04-9.7 wt.% Cr2O3), but have low Al (0.2-5.7 wt.% Al2O3). In the case of the P-15 kimberlite they display a range in compositions from andradite to schorlomite, with a low proportion of grossular (andradite(17.7-49.9)schorlomite(34.6-49.5)-grossular(3.7-22.8)-pyrope(1.9-10.4)). A few grains also contain significant chromium and represent a solid solution between schorlomite and uvarovite. The Ti-rich garnets in the KL-3 kimberlite, in contrast, are mostly schorlomitic (54.9-90.9 mol %) in composition. The Ti-rich garnets in the groundmass of these two kimberlites are intimately associated with chromian spinels, perhaps suggesting that the garnet formed through the replacement of spinel. From the textural evidence, it appears unlikely that the garnets could have originated through secondary alteration, but rather seem to have formed through a process in which early magmatic spinels have reacted with late circulating, residual fluids in the final stages of crystallization of the kimberlite magma. Raman spectroscopy provides evidence for low crystallinity in the spinels which is likely to be a result of their partial transformation into andradite during their reaction with a late-stage magmatic (kimberlitic) fluid. The close chemical association of these Ti-rich garnets in TiO2-FeO-CaO space with those reported from ultramafic lamprophyres (UML) is also consistent with results predicted by experimental studies, and possibly implies a genetic link between kimberlite and UML magmas. The occurrence of Ti-rich garnets of similar composition in the Swartruggens orangeite on the Kaapvaal craton in South Africa, as well as in other kimberlites with an orangeitic affinity (e.g. the P-15 kimberlite on the Eastern Dharwar craton in southern India), is inferred to be a reflection of the high Ca- and high Ti-, and the low Al-nature, of the parent magma (i.e. Group II kimberlites).

  15. Photocatalysis applications of some hybrid polymeric composites incorporating TiO2 nanoparticles and their combinations with SiO2/Fe2O3

    PubMed Central

    Buruiana, Tinca; Melinte, Violeta; Buruiana, Emil C

    2017-01-01

    Polymer nanocomposites containing titanium oxide nanoparticles (TiO2 NPs) combined with other inorganic components (Si–O–Si or/and γ-Fe2O3) were prepared by the dispersion of premade NPs (nanocrystalline TiO2, TiO2/SiO2, TiO2/Fe2O3, TiO2/SiO2/Fe2O3) within a photopolymerizable urethane dimethacrylate (polytetrahydrofuran-urethane dimethacrylate, PTHF-UDMA). The physicochemical characterization of nanoparticles and hybrid polymeric composites with 10 wt % NPs (S1–S4) was realized through XRD, TEM and FTIR analyses. The mean size (10–30 nm) and the crystallinity of the NPs varied as a function of the inorganic constituent. The catalytic activity of these hybrid films was tested for the photodegradation of phenol, hydroquinone and dopamine in aqueous solution under UV or visible-light irradiation. The best results were obtained for the films with TiO2/Fe2O3 or TiO2/SiO2/Fe2O3 NPs. The degradation of the mentioned model pollutants varied between 71% and 100% (after 250 min of irradiation) depending on the composition of the hybrid film tested and the light applied (UV–visible light). Also, it was established that such hybrid films can be reused at least for five cycles, without losing too much of the photocatalytic efficiency (ca. 7%). These findings could have implications in the development of new nanocatalysts. PMID:28243566

  16. Formation of multiferroic PbTiO3/PbFe12O19 composite by exceeding the solubility limit of Fe in PbTiO3

    NASA Astrophysics Data System (ADS)

    Jaffari, G. Hassnain; Bilal, M.; Ur Rahman, Jamil; Lee, Soonil

    2017-09-01

    PbTiO3/PbFe12O19 composites have been synthesized by keeping the Fe concentration (x) in PbFexTi1-xO3 beyond solubility limit, i.e., x > 0.1% and 5% Pb excess. Both these factors have been successfully utilized to extract Fe doped PbTiO3 tetragonal phase which is composited with Magnetoplumbite (PbFe12O19) phase. A systematic evolution of the tetragonality of the former and improved stoichiometry of the later constituent has been observed. As x increases, emergence of additional Raman mode around 650 cm-1 with Fe addition was observed. Systematic increase in the relative intensity of this mode with x, showed that this mode corresponds to the magnetoplumbite phase. In addition to that resultant composite exhibited noticeable systematic decrease in the value of the energy gap as a function of x. Increasing Fe concentration in PbTiO3 constituent, led to monotonic decrease in c/a and increase in strain experienced by PbTiO3. Increase in the value of the saturation polarization was observed up to x = 0.4, which is identified to be associated with the strain induced by the dopant. A comprehensive magnetic characterization revealed monotonic decrease in magnetization with temperature for all compositions. Finally, we found an anomalous temperature dependent trend in the magnetic coercivity which is explained in terms of low temperature decrease in effective magnetic anisotropy by including magneto-electric coupling. Both constituent phases in the composite being ferroelectric and ferromagnetic at room temperature led to formation of better multiferroic properties and exhibited tunable physical properties with x.

  17. 47,49Ti NMR: hyperfine interactions in oxides and metals.

    PubMed

    Bastow, T J; Gibson, M A; Forwood, C T

    1998-10-01

    A 47,49Ti NMR characterisation is given of various polymorphs of TiO2 (anatase, rutile and brookite), Ti2O3, perovskites CaTiO3 and BaTiO3, FeTiO3, TiB2, titanium metal, the titanium aluminides Ti3Al, TiAl, TiAl2, TiAl3, and TiAg. Values of chemical or Knight shift, nuclear quadrupole coupling constant and asymmetry parameter were derived from the (1/2, -1/2) powder lineshapes. For TiB2, titanium metal, TiAl, and TiAl3, where +/- (1/2, 3/2), and higher satellite transitions were observed, a value for the axial component of the Knight shift was obtained.

  18. Study of new sheep bone and Zn/Ca ratio around TiAlV screw: PIXE RBS analysis

    NASA Astrophysics Data System (ADS)

    Guibert, G.; Munnik, F.; Langhoff, J. D.; Von Rechenberg, B.; Buffat, Ph. A.; Laub, D.; Faber, L.; Ducret, F.; Gerber, I.; Mikhailov, S.

    2008-03-01

    This study reports on in vivo particle induced X-ray emission (PIXE) measurements combined with Rutherford backscattering spectroscopy (RBS) analyses of new remodeled sheep bone formed around TiAlV screws. The implants (screws) were anodized by a modified TiMax™ process. The interface between the implant and the bone was carefully investigated. [Zn]/[Ca] in-depth composition profiles as well as Ca, Fe elemental maps were recorded. The thickness of new bone formed around the screw reached 300-400 μm. Osteon and Osteoid phases were identified in the new bone. A higher [Zn]/[Ca] ratio was observed in the new bone as compared to the mature bone. Blood vessels were observed in the bone in close contact with the screw. This study shows the potential of ion beam analysis for biological and biomedical characterization.

  19. Temperature controlled evolution of monoclinic to super-tetragonal phase of epitaxial BiFeO3 thin films on La0.67Sr0.33MnO3 buffered SrTiO3 substrate

    NASA Astrophysics Data System (ADS)

    Singh, Anar; Kaifeng, Dong; Chen, Jing-Sheng

    2018-03-01

    Epitaxial BiFeO3 thin films of 130nm were deposited by pulsed laser deposition (PLD) technique on La0.67Sr0.33MnO3 buffered SrTiO3 (001) substrate at various temperatures under different ambient oxygen pressures. Reciprocal space mapping reveals that, with decreasing temperature and oxygen pressure, the broadly reported monoclinic phase (MA) of BiFeO3 thin film initially transforms to a tetragonal phase (T1) with c/a =1.05 (1) in a narrow girth of deposition condition and then to a super-tetragonal phase (T2) with giant c/a = 1.24 (1), as confirmed by reciprocal space mapping using high resolution x-ray diffraction. The surface morphology of the films reveals the island growth of the BiFeO3 films deposited at low temperatures. We propose that the transformation from monoclinic to the super-tetragonal phase is essentially due to the manifestation of excess local strain as a result of the island growth. This study offers a recipe to grow the super-tetragonal phase of BiFeO3, with giant c/a =1.24 (1) which exhibits exceptionally large ferroelectric polarization, on ferromagnetic layer La0.67Sr0.33MnO3. This phase of BiFeO3 can be utilized for the ferroelectric control of magnetism at the interface of BiFeO3 and La0.67Sr0.33MnO3.

  20. Perovskites in the comb roof base of hornets: their possible function.

    PubMed

    Ishay, J S; Joseph, Z; Galushko, D; Ermakov, N; Bergman, D J; Barkay, Z; Stokroos, I; van der Want, J

    2005-04-01

    On the ceiling of the Oriental hornet comb cell, there are mineral granules of polycrystalline material known to belong to the group of perovskites. In a comb cell intended to house a worker hornet, the roof base usually carries one or several such perovskite granules containing titanium (Ti), whereas in the roof base of a cell housing a developing queen, there are usually several granules containing a high percentage of silicon (Si), aluminum (Al), calcium (Ca), and iron (Fe), but very little if any Ti. In worker comb cells, Ti usually appears as ilmenite (FeTiO3). Besides documenting the above-mentioned facts, this report discusses possible reasons for the appearance of ilmenite crystals in worker cells only and not in queen cells. (c) 2005 Wiley-Liss, Inc.

  1. Dietary marker effects on fecal microbial ecology, fecal VFA, nutrient digestibility coefficients, and growth performance in finishing pigs.

    PubMed

    Kerr, B J; Weber, T E; Ziemer, C J

    2015-05-01

    Use of indigestible markers such as Cr2O3, Fe2O3, and TiO2 are commonly used in animal studies to evaluate digesta rate of passage and nutrient digestibility. Yet, the potential impact of indigestible markers on fecal microbial ecology and subsequent VFA generation is not known. Two experiments utilizing a total of 72 individually fed finishing pigs were conducted to describe the impact of dietary markers on fecal microbial ecology, fecal ammonia and VFA concentrations, nutrient digestibility, and pig performance. All pigs were fed a common diet with no marker or with 0.5% Cr2O3, Fe2O3, or TiO2. In Exp. 1, after 33 d of feeding, fresh fecal samples were collected for evaluation of microbial ecology, fecal ammonia and VFA concentrations, and nutrient digestibility, along with measures of animal performance. No differences were noted in total microbes or bacterial counts in pig feces obtained from pigs fed the different dietary markers while Archaea counts were decreased (P = 0.07) in feces obtained from pigs fed the diet containing Fe2O 3compared to pigs fed the control diet. Feeding Cr2O3, Fe2O3, or TiO2 increased fecal bacterial richness (P = 0.03, 0.01, and 0.10; respectively) when compared to pigs fed diets containing no marker, but no dietary marker effects were noted on fecal microbial evenness or the Shannon-Wiener index. Analysis of denaturing gradient gel electrophoresis gels did not reveal band pattern alterations due to inclusion of dietary markers in pig diets. There was no effect of dietary marker on fecal DM, ammonia, or VFA concentrations. Pigs fed diets containing Cr2O3 had greater Ca, Cu, Fe, and P (P ≤ 0.02), but lower Ti ( P= 0.08) digestibility compared to pigs fed the control diet. Pigs fed diets containing Fe2O3 had greater Ca (P = 0.08) but lower Ti (P = 0.01) digestibility compared to pigs fed the control diet. Pigs fed diets containing TiO2 had greater Fe and Zn (P ≤ 0.09), but lower Ti ( P= 0.01) digestibility compared to pigs fed the control diet. In Exp. 2, no effect of dietary marker on pig performance was noted. Overall, the data indicate that the inclusion of Cr2O3, Fe2O3, or TiO2 as digestibility markers have little to no impact on microbial ecology, fecal ammonia or VFA concentrations, nutrient digestibility, or pig growth performance indicating they are suitable for use in digestion studies.

  2. Chevkinite-group minerals from granulite-facies metamorphic rocks and associated pegmatites of East Antarctica and South India

    USGS Publications Warehouse

    Belkin, H.E.; Macdonald, R.; Grew, E.S.

    2009-01-01

    Electron microprobe data are presented for chevkinite-group minerals from granulite-facies rocks and associated pegmatites of the Napier Complex and Mawson Station charnockite in East Antarctica and from the Eastern Ghats, South India. Their compositions conform to the general formula for this group, viz. A4BC2D2Si4O22 where, in the analysed specimens A = (rare-earth elements (REE), Ca, Y, Th), B = Fe2+, Mg, C = (Al, Mg, Ti, Fe2+, Fe3+, Zr) and D = Ti and plot within the perrierite field of the total Fe (as FeO) (wt.%) vs. CaO (wt.%) discriminator diagram of Macdonald and Belkin (2002). In contrast to most chevkinite-group minerals, the A site shows unusual enrichment in the MREE and HREE relative to the LREE and Ca. In one sample from the Napier Complex, Y is the dominant cation among the total REE + Y in the A site, the first reported case of Y-dominance in the chevkinite group. The minerals include the most Al-rich yet reported in the chevkinite group (49.15 wt.% Al2O3), sufficient to fill the C site in two samples. Conversely, the amount of Ti in these samples does not fill the D site, and, thus, some of the Al could be making up the deficiency at D, a situation not previously reported in the chevkinite group. Fe abundances are low, requiring Mg to occupy up to 45% of the B site. The chevkinite-group minerals analysed originated from three distinct parageneses: (1) pegmatites containing hornblende and orthopyroxene or garnet; (2) orthopyroxene-bearing gneiss and granulite; (3) highly aluminous paragneisses in which the associated minerals are relatively magnesian or aluminous. Chevkinite-group minerals from the first two parageneses have relatively high FeO content and low MgO and Al2O3 contents; their compositions plot in the field for mafic and intermediate igneous rocks. In contrast, chevkinite-group minerals from the third paragenesis are notably more aluminous and have greater Mg/Fe ratios. ?? 2009 The Mineralogical Society.

  3. Chevkinite-group minerals from granulite-facies metamorphic rocks and associated pegmatites of East Antarctica and South India

    USGS Publications Warehouse

    Belkin, Harvey E.; Macdonald, R.; Grew, E.S.

    2009-01-01

    Electron microprobe data are presented for chevkinite-group minerals from granulite-facies rocks and associated pegmatites of the Napier Complex and Mawson Station charnockite in East Antarctica and from the Eastern Ghats, South India. Their compositions conform to the general formula for this group, viz. A4BC2D2Si4O22 where, in the analysed specimens A = (rare-earth elements (REE), Ca, Y, Th), B = Fe2+, Mg, C = (Al, Mg, Ti, Fe2+, Fe3+, Zr) and D = Ti and plot within the perrierite field of the total Fe (as FeO) (wt.%) vs. CaO (wt.%) discriminator diagram of Macdonald and Belkin (2002). In contrast to most chevkinite-group minerals, the A site shows unusual enrichment in the MREE and HREE relative to the LREE and Ca. In one sample from the Napier Complex, Y is the dominant cation among the total REE + Y in the A site, the first reported case of Y-dominance in the chevkinite group. The minerals include the most Al-rich yet reported in the chevkinite group (≤9.15 wt.% Al2O3), sufficient to fill the C site in two samples. Conversely, the amount of Ti in these samples does not fill the D site, and, thus, some of the Al could be making up the deficiency at D, a situation not previously reported in the chevkinite group. Fe abundances are low, requiring Mg to occupy up to 45% of the B site. The chevkinite-group minerals analysed originated from three distinct parageneses: (1) pegmatites containing hornblende and orthopyroxene or garnet; (2) orthopyroxene-bearing gneiss and granulite; (3) highly aluminous paragneisses in which the associated minerals are relatively magnesian or aluminous. Chevkinite-group minerals from the first two parageneses have relatively high FeO content and low MgO and Al2O3 contents; their compositions plot in the field for mafic and intermediate igneous rocks. In contrast, chevkinite-group minerals from the third paragenesis are notably more aluminous and have greater Mg/Fe ratios

  4. Perrierite-(La), (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8, a new mineral species from the Eifel volcanic district, Germany

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Blass, G.; Pekov, I. V.; Belakovskiy, D. I.; Van, K. V.; Rastsvetaeva, R. K.; Aksenov, S. M.

    2012-12-01

    Non-metamict perrierite-(La) discovered in the Dellen pumice quarry, near Mendig, in the Eifel volcanic district, Rheinland-Pfalz, Germany has been approved as a new mineral species (IMA no. 2010-089). The mineral was found in the late assemblage of sanidine, phlogopite, pyrophanite, zirconolite, members of the jacobsite-magnetite series, fluorcalciopyrochlore, and zircon. Perrierite-(La) occurs as isolated prismatic crystals up to 0.5 × 1 mm in size within cavities in sanidinite. The new mineral is black with brown streak; it is brittle, with the Mohs hardness of 6 and distinct cleavage parallel to (001). The calculated density is 4.791 g/cm3. The IR spectrum does not contain absorption bands that correspond to H2O and OH groups. Perrierite-(La) is biaxial (-), α = 1.94(1), β = 2.020(15), γ = 2.040(15), 2 V meas = 50(10)°, 2 V calc = 51°. The chemical composition (electron microprobe, average of seven point analyses, the Fe2+/Fe3+ ratio determined from the X-ray structural data, wt %) is as follows: 3.26 CaO, 22.92 La2O3, 19.64 Ce2O3, 0.83 Pr2O2, 2.09 Nd2O3, 0.25 MgO, 2.25 MnO, 3.16 FeO, 5.28 Fe2O3, 2.59 Al2O3, 16.13 TiO2, 0.75 Nb2O5, and 20.06 SiO2, total is 99.21. The empirical formula is (La1.70Ce1.45Nd0.15Pr0.06Ca0.70)Σ4.06(Fe{0.53/2+}Mn0.38Mg0.08)Σ0.99(Ti2.44Fe{0.80/3+}Al0.62Nb0.07)Σ3.93Si4.04O22. The simplified formula is (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8. The crystal structure was determined by a single crystal. Perrierite-(La) is monoclinic, space group P21/ a, and the unit-cell dimensions are as follows: a =13.668(1), b = 5.6601(6), c = 11.743(1) Å, β = 113.64(1)°; V = 832.2(2) Å3, Z = 2. The strong reflections in the X-ray powder diffraction pattern are [ d, Å ( I, %) ( hkl)]: 5.19 (40) (110), 3.53 (40) (overline 3 11), 2.96 (100) (overline 3 13, 311), 2.80 (50) (020), 2.14 (50) (overline 4 22, overline 3 15, 313), 1.947 (50) (024, 223), 1.657 (40) (overline 4 07, overline 4 33, 331). The holotype specimen of perrierite-(La) is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia, with the registration number 4059/1.

  5. Abundances in metal-rich stars. Detailed abundance analysis of 47 G and K dwarf stars with [Me/H] > 0.10 dex

    NASA Astrophysics Data System (ADS)

    Feltzing, S.; Gustafsson, B.

    1998-04-01

    We have derived elemental abundances of O, Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Co, Ni as well as for a number of s-elements for 47 G and K dwarf, with [Me/H]>0.1 dex. The selection of stars was based on their kinematics as well as on their uvby-beta photometry. One sample of stars on rather eccentric orbits traces the chemical evolution interior to the solar orbit and another, on circular orbits, the evolution around the solar orbit. A few Extreme Population I stars were included in the latter sample. The stars have -0.1 dex < [Fe/H] < 0.42 dex. The spectroscopic [Fe/H] correlate well with the [Me/H] derived from uvby-beta photometry. We find that the elemental abundances of Mg, Al, Si, Ca, Ti, Cr and Ni all follow [Fe/H]. Our data put further constraints on models of galactic chemical evolution, in particular of Cr, Mn and Co which have not previously been studied for dwarf stars with [Me/H] >0.1 dex. The increase in [Na/Fe] and [Al/Fe] as a function of [Fe/H] found previously by \\cite[Edvardsson et al. (1993a)]{Edv93} has been confirmed for [Na/Fe]. This upturning relation, and the scatter around it, are shown not to be due to a mixture of populations with different mean distances to the galactic centre. We do not confirm the same trend for aluminium, which is somewhat surprising since both these elements are thought to be produced in the same environments in the pre-supernova stars. Nor have we been able to trace any tendency for relative abundances of O, Si, and Ti relative to Fe to vary with the stellar velocities, i.e. the stars present mean distance to the galactic centre. These results imply that there is no significant difference in the chemical evolution of the different stellar populations for stars with [Me/H]>0.1 dex. We find that [O/Fe] continue to decline with increasing [Fe/H] and that oxygen and europium correlate well. However [Si/Fe] and [Ca/Fe] seem to stay constant. A real (``cosmic'') scatter in [Ti/Fe] at given [Fe/H] is suggested as well as a decreasing abundance of the s-elements relative to iron for the most metal-rich dwarf stars. We discuss our results in the context of recent models of galactic chemical evolution. In our sample we have included a few very metal rich stars, sometimes called SMR (super metal rich) stars. We find these stars to be among the most iron-rich in our sample but far from as metal-rich as indicated by their photometric metallicities. SMR stars on highly eccentric orbits, alleged to trace the evolution of the chemical evolution in the galactic Bulge, have previously been found overabundant in O, Mg and Si. We have included three such stars from the study by \\cite[Barbuy & Grenon (1990)]{Bar90}. We find them to be less metal rich and the other elemental abundances remain puzzling. Detailed spectroscopic abundance analyses of K dwarf stars are rare. Our study includes 5 K dwarf stars and has revealed what appears to be a striking example of overionization. The overionization is especially prominent for Ca, Cr and Fe. The origin of this apparent overionization is not clear and we discuss different explanations in some detail. Based on observations at the McDonald Observatory.

  6. The lick-index calibration of the Gemini multi-object spectrographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puzia, Thomas H.; Miller, Bryan W.; Trancho, Gelys

    2013-06-01

    We present the calibration of the spectroscopic Lick/IDS standard line-index system for measurements obtained with the Gemini Multi-Object Spectrographs known as GMOS-North and GMOS-South. We provide linear correction functions for each of the 25 standard Lick line indices for the B600 grism and two instrumental setups, one with 0.''5 slit width and 1 × 1 CCD pixel binning (corresponding to ∼2.5 Å spectral resolution) and the other with 0.''75 slit width and 2 × 2 binning (∼4 Å). We find small and well-defined correction terms for the set of Balmer indices Hβ, Hγ {sub A}, and Hδ {sub A} alongmore » with the metallicity sensitive indices Fe5015, Fe5270, Fe5335, Fe5406, Mg{sub 2}, and Mgb that are widely used for stellar population diagnostics of distant stellar systems. We find other indices that sample molecular absorption bands, such as TiO{sub 1} and TiO{sub 2}, with very wide wavelength coverage or indices that sample very weak molecular and atomic absorption features, such as Mg{sub 1}, as well as indices with particularly narrow passband definitions, such as Fe4384, Ca4455, Fe4531, Ca4227, and Fe5782, which are less robustly calibrated. These indices should be used with caution.« less

  7. Electron backscatter diffraction as a domain analysis technique in BiFeO(3)-PbTiO(3) single crystals.

    PubMed

    Burnett, T L; Comyn, T P; Merson, E; Bell, A J; Mingard, K; Hegarty, T; Cain, M

    2008-05-01

    xBiFeO(3)-(1-x)PbTiO(3) single crystals were grown via a flux method for a range of compositions. Presented here is a study of the domain configuration in the 0.5BiFeO(3)-0.5PbTiO(3) composition using electron backscatter diffraction to demonstrate the ability of the technique to map ferroelastic domain structures at the micron and submicron scale. The micron-scale domains exhibit an angle of approximately 85 degrees between each variant, indicative of a ferroelastic domain wall in a tetragonal system with a spontaneous strain, c/a - 1 of 0.10, in excellent agreement with the lattice parameters derived from x-ray diffraction. Contrast seen in forescatter images is attributed to variations in the direction of the electrical polarization vector, providing images of ferroelectric domain patterns.

  8. Metals geochemistry and mass export from the Mississippi-Atchafalaya River system to the Northern Gulf of Mexico.

    PubMed

    Reiman, Jeremy H; Xu, Y Jun; He, Songjie; DelDuco, Emily M

    2018-08-01

    Discharging 680 km 3 of freshwater annually to the Northern Gulf of Mexico (NGOM), the Mississippi-Atchafalaya River System (MARS) plays a significant role in transporting major and trace elements to the ocean. In this study, we analyzed total recoverable concentrations of thirty-one metals from water samples collected at five locations along the MARS during 2013-2016 to quantify their seasonal mass exports. The Atchafalaya River flows through a large swamp floodplain, allowing us to also test the hypothesis that floodplains function as a sink for metals. We found that the seven major elements (Ca, Na, Mg, Si, K, Al, and Fe) constituted 99% of the total annual mass load of metals (7.38 × 10 7 tons) from the MARS. Higher concentrations of Al, Ba, B, Ca, Fe, Mg, Mn, Ag, and Ti were found in the Mississippi River, while significantly higher Si and Na concentrations were found in the Atchafalaya River. Significant relationships were found between daily discharge and daily loads of Ba, Ca, Fe, K, Sr, and Ti in both rivers, while significant relationships were also found for Al, Mg, Mn, V, and Zn in the Atchafalaya River and B in the Mississippi River. Overall, the Mississippi River contributed 64-76% of the total annual loading of metals from the MARS to the NGOM. Daily loads of Al, Ba, B, Fe, Li, Mn, P, K, Si, Ag, Ti, V, and Zn regularly decreased upstream to downstream in the Atchafalaya River, partially accepting the initial hypothesis on metals transport in river floodplains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effects of anodic oxidation and hydrothermal treatment on surface characteristics and biocompatibility of Ti-30Nb-1Fe-1Hf alloy

    NASA Astrophysics Data System (ADS)

    Ou, Shih-Fu; Chou, Hsin-Hua; Lin, Chao-Sung; Shih, Ching-Jui; Wang, Kuang-Kuo; Pan, Yung-Ning

    2012-06-01

    Anodic oxidation followed by hydrothermal treatment has been widely applied for surface modification of titanium alloys to precipitate a crystalline hydroxyapatite (HA) layer in order to achieve improved osteoconduction. A majority of the studies in the literature imposed relatively high powers to enhance Ca and P in the anodic oxide film (AOF). However, high powers have been found to cause deterioration of the adhesive strength in one of the author's previous study. In this study, a new electrolyte comprising calcium acetate monohydrate (CA), β-glycerophosphate disodium pentahydrate (β-GP) and HA powder was developed, and the Ti-30Nb-1Fe-1Hf alloy was anodized in this HA-containing electrolyte to a relatively low voltage. Results show that the AOF anodized in the HA-containing electrolyte exhibits a better HA forming ability during hydrothermal treatment, attributing to the presence of HA powder in the electrolyte that effectively enhances both the Ca content and Ca/P ratio in the AOF. On the other hand, the adhesive strength was little affected due to the decrease in size of the craters residing in the AOF. With respect to the biological responses, not much difference in biocompatibility of the treated and untreated Ti-Nb surfaces was obtained. However, the anodized and hydrothermally treated surface promotes the attachment of cells.

  10. Effects of smelting parameters on the slag/metal separation behaviors of Hongge vanadium-bearing titanomagnetite metallized pellets obtained from the gas-based direct reduction process

    NASA Astrophysics Data System (ADS)

    Feng, Cong; Chu, Man-sheng; Tang, Jue; Liu, Zheng-gen

    2018-06-01

    Smelting separations of Hongge vanadium-bearing titanomagnetite metallized pellets (HVTMP) prepared by gas-based direct reduction were investigated, and the effects of smelting parameters on the slag/metal separation behaviors were analyzed. Relevant mechanisms were elucidated using X-ray diffraction analysis, FACTSAGE 7.0 calculations, and scanning electron microscopy observations. The results show that, when the smelting temperature, time, and C/O ratio are increased, the recoveries of V and Cr of HVTMP in pig iron are improved, the recovery of Fe initially increases and subsequently decreases, and the recovery of TiO2 in slag decreases. When the smelting CaO/SiO2 ratio is increased, the recoveries of Fe, V, and Cr in pig iron increase and the recovery of TiO2 in slag initially increases and subsequently decreases. The appropriate smelting separation parameters for HVTMP are as follows: smelting temperature of 1873 K; smelting time of 30-50 min; C/O ratio of 1.25; and CaO/SiO2 ratio of 0.50. With these optimized parameters (smelting time: 30 min), the recoveries of Fe, V, Cr, and TiO2 are 99.5%, 91.24%, 92.41%, and 94.86%, respectively.

  11. Project VeSElkA: abundance analysis of chemical species in HD 41076 and HD 148330

    NASA Astrophysics Data System (ADS)

    Khalack, V.; Gallant, G.; Thibeault, C.

    2017-10-01

    A new semi-automatic approach is employed to carry out the abundance analysis of high-resolution spectra of HD 41076 and HD 148330 obtained recently with the spectropolarimetre Echelle SpectroPolarimetric Device for Observations of Stars at the Canada-France-Hawaii Telescope. This approach allows to prepare in a semi-automatic mode the input data for the modified zeeman2 code and to analyse several hundreds of line profiles in sequence during a single run. It also provides more information on abundance distribution for each chemical element at the deeper atmospheric layers. Our analysis of the Balmer profiles observed in the spectra of HD 41076 and HD 148330 has resulted in the estimates of their effective temperature, gravity, metallicity and radial velocity. The respective models of stellar atmosphere have been calculated with the code phoenix and used to carry out abundance analysis employing the modified zeeman2 code. The analysis shows a deficit of the C, N, F, Mg, Ca, Ti, V, Cu, Y, Mo, Sm and Gd, and overabundance of Cr, Mn, Fe, Co, Ni, Sr, Zr, Ba, Ce, Nd and Dy in the stellar atmosphere of HD 41076. In the atmosphere of HD 148330, the C, N and Mo appear to be underabundant, while the Ne, Na, Al, Si, P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Sr, Y, Zr, Ba, Ce, Pr, Nd, Sm, Eu, Gd and Dy are overabundant. We also have found signatures of vertical abundance stratification of Fe, Ti, Cr and Mn in HD 41076, and of Fe, Ti, V, Cr, Mn, Y, Zr, Ce, Nd, Sm and Gd in HD 148330.

  12. Room-Temperature Multiferroics and Thermal Conductivity of 0.85BiFe1-2xTixMgxO3-0.15CaTiO3 Epitaxial Thin Films (x = 0.1 and 0.2).

    PubMed

    Zhang, Ji; Sun, Wei; Zhao, Jiangtao; Sun, Lei; Li, Lei; Yan, Xue-Jun; Wang, Ke; Gu, Zheng-Bin; Luo, Zhen-Lin; Chen, Yanbin; Yuan, Guo-Liang; Lu, Ming-Hui; Zhang, Shan-Tao

    2017-08-02

    Thin films of 0.85BiFe 1-2x Ti x Mg x O 3 -0.15CaTiO 3 (x = 0.1 and 0.2, abbreviated to C-1 and C-2, respectively) have been fabricated on (001) SrTiO 3 substrate with and without a conductive La 0.7 Sr 0.3 MnO 3 buffer layer. The X-ray θ-2θ and ϕ scans, atomic force microscopy, and cross-sectional transmission electron microscopy confirm the (001) epitaxial nature of the thin films with very high growth quality. Both the C-1 and C-2 thin films show well-shaped magnetization-magnetic field hysteresis at room temperature, with enhanced switchable magnetization values of 145.3 and 42.5 emu/cm 3 , respectively. The polarization-electric loops and piezoresponse force microscopy measurements confirm the room-temperature ferroelectric nature of both films. However, the C-1 films illustrate a relatively weak ferroelectric behavior and the poled states are easy to relax, whereas the C-2 films show a relatively better ferroelectric behavior with stable poled states. More interestingly, the room-temperature thermal conductivity of C-1 and C-2 films are measured to be 1.10 and 0.77 W/(m·K), respectively. These self-consistent multiferroic properties and thermal conductivities are discussed by considering the composition-dependent content and migration of Fe-induced electrons and/or charged point defects. This study not only provides multifunctional materials with excellent room-temperature magnetic, ferroelectric, and thermal conductivity properties but may also stimulate further work to develop BiFeO 3 -based materials with unusual multifunctional properties.

  13. Magnetodielectric effect in (1 - x)(Ba0.88Ca0.12)(Ti0.88Zr0.12)O3 - xCoFe2O4

    NASA Astrophysics Data System (ADS)

    Pan, Pengfei; Tao, Jin; Ma, Fusheng; Zhang, Ning

    2018-05-01

    Magnetodielectric (MD) materials have attracted considerable attention due to their intriguing physics and potential future applications. In this work, polycrystalline (1 - x)(Ba0.88Ca0.12)(Ti0.88Zr0.12)O3 - xCoFe2O4 (x = 0.10, 0.20, 0.30, 0.40) ceramic have been prepared via sol-gel method. The room temperature magnetic and ferroelectric behaviors of the synthesized composites were investigated. For the composite with x = 0.40, a MD ratio of 5.37% was achieved under a magnetic field of 1.5 T at f = 1 kHz. The measured "butterfly hysteresis" MD curves exhibit an obvious dielectric anomaly. Theoretical analysis suggests that the observed magnetodielectric effect is attributed to the magnetoresistance effect and magnetoelectric coupling.

  14. Influence of substrate material and surface finishing on the morphology of the calcium-phosphate coating.

    PubMed

    Leitão, E; Barbosa, M A; de Groot, K

    1997-07-01

    The formation of an apatite-like layer was achieved by immersing Ti-6A1-4V, Ti-Al-2.5Fe, and 316 L stainless-steel substrata in Hank's balanced salt solution (HBSS). The layer was characterized by surface analysis techniques, namely X-ray microanalysis and X-ray diffraction, and the morphology was observed by scanning electron microscopy and atomic force microscopy. The concentrations of Ca and P were monitored as a function of time. The morphology of the precipitate layer seems to be dependent both on the type of metal substrate and its surface finish. Polished Ti-6A1-4V and Ti-Al-2.5Fe surfaces exhibit a plate precipitate morphology, whereas rougher surfaces show scattered crystal-like precipitation. The results suggest that the layer produced by immersion of polished titanium alloys in HBSS is constituted by an amorphous apatite.

  15. Total reflection X-ray fluorescence spectrometric determination of elements in water hyacinth from the Lerma River

    NASA Astrophysics Data System (ADS)

    Tejeda, S.; Zarazúa, G.; Ávila-Pérez, P.; Carapia-Morales, L.; Martínez, T.

    2010-06-01

    The Lerma River is one of the most polluted body water in Mexico. For this reason, only the highly resistant organisms such as water hyacinth are able to reproduce in this river. The aim of this work was to evaluate the concentration of K, S, Fe, Ca, Mn, Ti, Zn, Sr, Rb, Cu, Cr, Ni, Pb and Br in roots of water hyacinth ( Eichhornia crassipes) from the Lerma River. The samples were collected from five sites in the river and analyzed in triplicate using a TXRF Spectrometer 'TX-2000 Ital Structures' with a Si(Li) detector and a resolution of 140 eV (FWHM) at Mn Kα. A Mo tube (40 kV, 30 mA) with 17.4 KeV excitation energy was used for a counting time of 500 s. Results show that the average metal concentration in the water hyacinth roots decrease in the following order: K (9698.2 µg/g) > S (7593.3 µg/g) > Fe (4406.6 µg/g) > Ca (2601.8 µg/g) > Mn (604.2 µg/g) > Ti (230.7 µg/g) > Zn (51.65 µg/g) > Sr (43.55 µg/g) > Rb (18.61 µg/g) > Cu (12.78 µg/g) > Cr (6.45 µg/g) > Ni (4.68 µg/g) > Pb (4.32 µg/g) > Br (4.31 µg/g) and the bioconcentration factors in the water hyacinth decrease in the sequence: Ti > Fe > Mn > Cu > Ni > Zn > S > Pb > Rb > K > Cr > Sr > Br > Ca. The concentrations in roots of water hyacinth reflect the high pollution level of the river.

  16. Density functional theory computational study of ferroelectricity and piezoelectricity in BaTiO3/PbTiO3 (0 1 1) superlattices

    NASA Astrophysics Data System (ADS)

    Lou, Yaoding; Deng, Junkai; Zhe Liu, Jefferson

    2018-04-01

    The structure, ferroelectricity (FE), and piezoelectricity of epitaxial BaTiO3/PbTiO3 (BTO/PTO) (0 1 1) superlattices are studied using density functional theory calculations. Our results show that compressive strain arising from the SrTiO3 (0 1 1) substrate stabilizes the (BTO) m /(PTO) n (0 1 1) superlattices in orthorhombic phase with the FE polarization along [0 1 1] direction. Tuning the BTO contents significantly changes the structural, ferroelectric and piezoelectric properties. The FE polarization of superlattices significantly drops with increasing BTO contents, which can be attributed to depolarization of the PTO layers. The averaged c/a ratio of the whole superlattices exhibits anomalous non-monotonic relation with respect to BTO contents. Interestingly, our results predict the (0 1 1) superlattices can enhance the piezoelectric coefficient e 33 with a maximum value at ~67% BTO concentration. This result suggests a potential avenue to design high performance piezoelectric materials with less Pb contents. In-depth analysis reveals the B-site Ti cation as the origin for the enhanced e 33 value, which implies the potential of B-site cation engineering in perovskite heterostructure designs.

  17. An attempt to diagnose cancer by PIXE

    NASA Astrophysics Data System (ADS)

    Uda, M.; Maeda, K.; Sasa, Y.; Kusuyama, H.; Yokode, Y.

    1987-03-01

    PIXE is suitable especially for trace elemental analysis for atoms with high atomic numbers, which are contained in matrices composed mainly of light elements such as biological materials. An attempt has been made to distinguish elemental concentrations of cancer tissues from those of normal ones. Kidney, testis and urinary bladder cancer tissues were examined by PIXE. Key elements to diagnose these cancers were Ca, Ti, Cr, Fe and Zn. Enrichment of Fe and Ti, and deficiency of Zn could be seen in the kidney cancer. An opposite tendency was observed in the testicular cancer. Imbalance of these elemental concentrations in characteristic organs might give us a possibility for cancer diagnosis.

  18. Geochemistry of cumulates from the Bjerkreim Sokndal layered intrusion (S. Norway). Part I: Constraints from major elements on the mechanism of cumulate formation and on the jotunite liquid line of descent

    NASA Astrophysics Data System (ADS)

    Duchesne, J. C.; Charlier, B.

    2005-08-01

    Whole-rock major element compositions are investigated in 99 cumulates from the Proterozoic Bjerkreim-Sokndal layered intrusion (Rogaland Anorthosite Province, SW Norway), which results from the crystallization of a jotunite (Fe-Ti-P-rich hypersthene monzodiorite) parental magma. The scattering of cumulate compositions covers three types of cumulates: (1) ilmenite-leuconorite with plagioclase, ilmenite and Ca-poor pyroxene as cumulus minerals, (2) magnetite-leuconorite with the same minerals plus magnetite, and (3) gabbronorite made up of plagioclase, Ca-poor and Ca-rich pyroxenes, ilmenite, Ti-magnetite and apatite. Each type of cumulate displays a linear trend in variation diagrams. One pole of the linear trends is represented by plagioclase, and the other by a mixture of the mafic minerals in constant proportion. The mafic minerals were not sorted during cumulate formation though they display large density differences. This suggests that crystal settling did not operate during cumulate formation, and that in situ crystallization with variable nucleation rate for plagioclase was the dominant formation mechanism. The trapped liquid fraction of the cumulate plays a negligible role for the cumulate major element composition. Each linear trend is a locus for the cotectic composition of the cumulates. This property permits reconstruction by graphical mass balance calculation of the first two stages of the liquid line of descent, starting from a primitive jotunite, the Tjörn parental magma. Another type of cumulate, called jotunite cumulate and defined by the mineral association from the Transition Zone of the intrusion, has to be subtracted to simulate the most evolved part of the liquid line of descent. The proposed model demonstrates that average cumulate compositions represent cotectic compositions when the number of samples is large (> 40). The model, however, does not account for the K 2O evolution, suggesting that the system was open to contamination by roof melts. The liquid line of descent corresponding to the Bjerkreim-Sokndal cumulates differs slightly from that obtained for jotunitic dykes in that the most Ti-, P- and Fe-rich melts (evolved jotunite) are lacking. The constant composition of the mafic poles during intervals where cryptic layering is conspicuous is explained by a compositional balance between the Fe-Ti oxide minerals, which decrease in Fe content in favour of Ti, and the pyroxenes which increase in Fe.

  19. Ca-Fe and Alkali-Halide Alteration of an Allende Type B CAI: Aqueous Alteration in Nebular or Asteroidal Settings

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Simon, J. I.; Simon, S. B.; Grossman, L.

    2012-01-01

    Ca-Fe and alkali-halide alteration of CAIs is often attributed to aqueous alteration by fluids circulating on asteroidal parent bodies after the various chondritic components have been assembled, although debate continues about the roles of asteroidal vs. nebular modification processes [1-7]. Here we report de-tailed observations of alteration products in a large Type B2 CAI, TS4 from Allende, one of the oxidized subgroup of CV3s, and propose a speculative model for aqueous alteration of CAIs in a nebular setting. Ca-Fe alteration in this CAI consists predominantly of end-member hedenbergite, end-member andradite, and compositionally variable, magnesian high-Ca pyroxene. These phases are strongly concentrated in an unusual "nodule" enclosed within the interior of the CAI (Fig. 1). The Ca, Fe-rich nodule superficially resembles a clast that pre-dated and was engulfed by the CAI, but closer inspection shows that relic spinel grains are enclosed in the nodule, and corroded CAI primary phases interfinger with the Fe-rich phases at the nodule s margins. This CAI also contains abundant sodalite and nepheline (alkali-halide) alteration that occurs around the rims of the CAI, but also penetrates more deeply into the CAI. The two types of alteration (Ca-Fe and alkali-halide) are adjacent, and very fine-grained Fe-rich phases are associated with sodalite-rich regions. Both types of alteration appear to be replacive; if that is true, it would require substantial introduction of Fe, and transport of elements (Ti, Al and Mg) out of the nodule, and introduction of Na and Cl into alkali-halide rich zones. Parts of the CAI have been extensively metasomatized.

  20. Investigation of primary static recrystallization in a NiTiFe shape memory alloy subjected to cold canning compression using the coupling crystal plasticity finite element method with cellular automaton

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Jiang, Shuyong; Hu, Li; Zhao, Yanan; Sun, Dong

    2017-10-01

    The behavior of primary static recrystallization (SRX) in a NiTiFe shape memory alloy (SMA) subjected to cold canning compression was investigated using the coupling crystal plasticity finite element method (CPFEM) with the cellular automaton (CA) method, where the distribution of the dislocation density and the deformed grain topology quantified by CPFEM were used as the input for the subsequent SRX simulation performed using the CA method. The simulation results were confirmed by the experimental ones in terms of microstructures, average grain size and recrystallization fraction, which indicates that the proposed coupling method is well able to describe the SRX behavior of the NiTiFe SMA. The results show that the dislocation density exhibits an inhomogeneous distribution in the deformed sample and the recrystallization nuclei mainly concentrate on zones where the dislocation density is relatively higher. An increase in the compressive deformation degree leads to an increase in nucleation rate and a decrease in grain boundary spaces in the compression direction, which reduces the growth spaces for the SRX nuclei and impedes their further growth. In addition, both the mechanisms of local grain refinement in the incomplete SRX and the influence of compressive deformation degree on the grain size of SRX were vividly illustrated by the corresponding physical models.

  1. Green Synthesis, Characterization, and Application of Metal-based Nanomaterials

    NASA Astrophysics Data System (ADS)

    Lewis, Crystal Shenandoa

    Metal-based nanomaterials have attracted significant research interest due to their unique size-dependent optical, magnetic, electronic, thermal, mechanical, and chemical properties as compared with their bulk counterparts. These advantageous and tailorable properties render these materials as ideal candidates for catalysis, photovoltaics, and even biomedical applications. However, nanomaterials are typically synthesized via chemical or physical processes, which are continuing to rise in cost, complexity, and toxicity. As a result, 'milder' and more environmentally benign nanoscale synthetic methodologies, particularly U-tube double diffusion, molten salt, and hydrothermal techniques, have been utilized to mitigate for these drawbacks. Moreover, these efficient and facile techniques coupled with the unique attributes of nanomaterials will aid in a more practical translation from the lab scale to industry with potential applications spanning from electronics, energy, to medicine. In this thesis, we will discuss the sustainable synthesis of crystalline elemental copper (Cu), nickel (Ni), magnetic spinel ferrites (MFe2O 4 wherein M is Co, Ni, or Zn), rare earth ion doped-calcium titanate (RE-CaTiO3), and hematite (alpha-Fe2O3) as well as our ability to tailor the size and/or morphology and hence tune their properties for potential applications in solar cells and biomedicine. Specifically, for the Cu and Ni nanowires (NWs), the diameters have been dictated by the various template diameters used in the U-tube double diffusion technique. Subsequently, their photocatalytic properties were observed when coupled with TiO2 NPs. For MFe2O4, RE-CaTiO3, and alpha-Fe2O3 nanostructures, the hydrothermal method was employed wherein various parameters such as reaction temperature, concentration, and addition of surfactant were varied to influence their morphology and/or composition. For example, as the reaction temperature was increased, ultrasmall MFe2O4 particles transformed from amorphous to crystalline species, and these were subsequently investigated for their magnetic properties as well as for their potential as photocatalysts. Regarding RE-CaTiO 3, a comparison and correlation between their preparative synthetic techniques (i.e. hydrothermal and molten salt) and photoluminescent properties were explored. Moreover, quantum dots (QDs) were coupled onto RE-CaTiO 3 to observe possible charge transfer effects. Lastly for alpha-Fe 2O3, microglial uptake of NPs, activation, and possible cytotoxic effects were all probed.

  2. Compositional variations of zirconolite from the Evate apatite deposit (Mozambique) as an indicator of magmatic-hydrothermal conditions during post-orogenic collapse of Gondwana

    NASA Astrophysics Data System (ADS)

    Hurai, Vratislav; Huraiová, Monika; Gajdošová, Michaela; Konečný, Patrik; Slobodník, Marek; Siegfried, Pete R.

    2018-06-01

    Zirconolite is documented from the Evate apatite-magnetite-carbonate deposit in the circular Monapo Klippe (eastern Mozambique)—a relic of Neoproterozoic nappe thrusted over the Mesoproterozoic basement of the Nampula block. Zirconolite enriched in rare earth elements—REE = Y + Lu+ΣLa-Yb (up to 24.11 wt% REE2O3, 0.596 apfu REE) creates thin rims around spinel and magnetite grains, whereas zirconolite enriched in U and Th (up to 18.88 wt% ThO2 + UO2, 0.293 apfu Th + U) replace the Late Ediacaran ( 590 Ma) zircon and baddeleyite along contacts with pyrrhotite and magnetite. Both types of zirconolite contain locally increased Nb and Ta concentrations (up to 7.58 wt% Nb2O5 + Ta2O5, 0.202 apfu Nb + Ta). Typical substitutions in zirconolite from Evate involve REE + U,Th → Ca, and M 2++ M 5+→Ti + M 3+ ( M 2+ = Fe2++Mg, M 3+ = Fe3+, M 5+ = Nb5++Ta5+). In addition, REE-zirconolite is typical of the REE + M 2+ → Ca + M 3+ substitution ( M 2+ = Mg, M 3+ = Fe3++Al3+). Hence, Fe3+ predominates over Fe2+ in all types of zirconolite, thus enabling the high REE content in Nb-poor zirconolites to be stored in locally dominant REEZrTiFe3+O7 component known so far only as a synthetic analogue of natural zirconolite. Other types of zirconolite from Evate are dominated by the common CaZrTi2O7 end member, but the aforementioned "synthetic" REEZrTiFe3+O7 accompanied by another `synthetic' (U,Th)ZrFe3 + 2O7 component are also abundant. The U,Pb,Th concentrations in U,Th-zirconolites plot discordantly to theoretical isochrons, thus indicating 440 ppm of non-radiogenic excess lead in earlier Nb-rich zirconolite contrasting with secondary Pb loss from later Nb-poor zirconolite. The non-radiogenic Pb-corrected age of the early zirconolite corresponded to 485 ± 9 Ma, within uncertainty limit identical with the 493 ± 10 Ma age of the associated uranothorianite. The variegated chemical composition of zirconolites reflects the complex history of the Evate deposit. Compositional and substitution trends of the REE-zirconolite overlaps that genetically linked with carbonatites, syenites and mafic igneous rocks, whereas the U,Th-zirconolite is reminiscent of hydrothermal-metasomatic deposits. The predominance of trivalent iron in zirconolite most likely reflects strongly oxidizing parental fluids that percolated during episodic Late Ordovician to Late Cambrian rifting of Gondwana.

  3. Bonanza: An extremely large dust grain from a supernova

    NASA Astrophysics Data System (ADS)

    Gyngard, Frank; Jadhav, Manavi; Nittler, Larry R.; Stroud, Rhonda M.; Zinner, Ernst

    2018-01-01

    We report the morphology, microstructure, and isotopic composition of the largest SiC stardust grain known to have condensed from a supernova. The 25-μm diameter grain, termed Bonanza, was found in an acid-resistant residue of the Murchison meteorite. Grains of such large size have neither been observed around supernovae nor predicted to form in stellar environments. The large size of Bonanza has allowed the measurement of the isotopic composition of more elements in it than any other previous presolar grain, including: Li, B, C, N, Mg, Al, Si, S, Ca, Ti, Fe, and Ni. Bonanza exhibits large isotopic anomalies in the elements C, N, Mg, Si, Ca, Ti, Fe, and Ni typical of an astrophysical origin in ejecta of a Type II core-collapse supernova and comparable to those previously observed for other presolar SiC grains of type X. Additionally, we extracted multiple focused ion beam lift-out sections from different regions of the grain. Our transmission electron microscopy demonstrates that the crystalline order varies at the micrometer scale, and includes rare, higher order polytype domains (e.g., 15 R). Analyses with STEM-EDS show Bonanza contains a heterogeneous distribution of subgrains with sizes ranging from <10 nm to >100 nm of Ti(N, C); Fe, Ni-rich grains with variable Fe:Ni; and (Al, Mg)N. Bonanza also has the highest ever inferred initial 26Al/27Al ratio, consistent with its supernova origin. This unique grain affords us the largest expanse of data, both microstructurally and isotopically, to compare with detailed calculations of nucleosynthesis and dust condensation in supernovae.

  4. Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: Insights into magma degassing and fumarolic processes

    NASA Astrophysics Data System (ADS)

    Symonds, Robert B.; Reed, Mark H.; Rose, William I.

    1992-02-01

    Thermochemical modeling predicts that trace elements in the Augustine gas are transported from near-surface magma as simple chloride (NaCl, KCl, FeCl 2, ZnCl 2, PbCl 2, CuCl, SbCl 3, LiCl, MnCl 2, NiCl 2, BiCl, SrCl 2), oxychloride (MoO 2Cl 2), sulfide (AsS), and elemental (Cd) gas species. However, Si, Ca, Al, Mg, Ti, V, and Cr are actually more concentrated in solids, beta-quartz (SiO 2), wollastonite (CaSiO 3), anorthite (CaAl 2Si 2O 8), diopside (CaMgSi 2O 6), sphene (CaTiSiO 5), V 2O 3(c), and Cr 2O 3(c), respectively, than in their most abundant gaseous species, SiF 4, CaCl 2, AlF 2O, MgCl 2 TiCl 4, VOCl 3, and CrO 2Cl 2. These computed solids are not degassing products, but reflect contaminants in our gas condensates or possible problems with our modeling due to "missing" gas species in the thermochemical data base. Using the calculated distribution of gas species and the COSPEC SO 2 fluxes, we have estimated the emission rates for many species (e.g., COS, NaCl, KCl, HBr, AsS, CuCl). Such forecasts could be useful to evaluate the effects of these trace species on atmospheric chemistry. Because of the high volatility of metal chlorides (e.g., FeCl 2, NaCl, KCl, MnCl 2, CuCl), the extremely HCl-rich Augustine volcanic gases are favorable for transporting metals from magma. Thermochemical modeling shows that equilibrium degassing of magma near 870°C can account for the concentrations of Fe, Na, K, Mn, Cu, Ni and part of the Mg in the gases escaping from the dome fumaroles on the 1986 lava dome. These calculations also explain why gases escaping from the lower temperature but highly oxidized moat vents on the 1976 lava dome should transport less Fe, Na, K, Mn and Ni, but more Cu; oxidation may also account for the larger concentrations of Zn and Mo in the moat gases. Nonvolatile elements (e.g., Al, Ca, Ti, Si) in the gas condensates came from eroded rock particles that dissolved in our samples or, for Si, from contamination from the silica sampling tube. Only a very small amount of rock contamination occurred (water/rock ratios between 10 4 and 10 6). Erosion is more prevalent in the pyroclastic flow fumaroles than in the summit vents, reflecting physical differences in the fumarole walls: ash vs. lava. Trace element contents of volcanic gases show enormous variability because of differences in the intensive parameters of degassing magma and variable amounts of wall rock erosion in volcanic fumaroles.

  5. Formation and composition of the moon. [carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1974-01-01

    Many of the properties of the moon are discussed including the enrichment in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the depletion in Fe, Rb, K, Na and other volatiles which could be understood if the moon represents a high temperature condensate from the solar nebula. Thermodynamic calculations show that Ca, Al and Ti rich compounds condense first in a cooling nebula. The initial high temperature mineralogy is gehlenite, spinel, perovskite, Ca-Al-rich pyroxenes and anorthite. Inclusions in Type III carbonaceous chondrites such as the Allende meteorite are composed primarily of these minerals and, in addition, are highly enriched in refractories such as REE relative to carbonaceous chondrites. These inclusions can yield basalt and anorthosite in the proportions required to eliminate the europium anomaly, leaving a residual spinel-melilite interior.

  6. The Universal Cpx Jd-Di barometer for mantle peridotite eclogite and pyroxenites and it using for the mantle petrology

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor

    2015-04-01

    The Jd-Di exchange in clinopyroxenes used for the calibration of pyroxene barometer (Ashchepkov, 2000;2002; Ashchepkov et al 2010;2011;2012) was transformed to make one universal equation for mantle peridotite eclogites and pyroxenites. The original barometer (Ashchepkov, 2002) calibrated on pressures produced by Opx barometry (McGregor , 1974) was transformed (Ashchepkov et al ., 2004; 2010; 2011) to satisfy the increasing data bases for the mantle xenoliths and experimental values 530 in peridotitic and 650 in elcogitic systems . The obtained difference Pd =Pcpx- Pexp were studied for the dependence on each component and their combination . Instead of the common activities we used the temperature-dependent empirical equations. The three separate equations for the common peridotites, pyroxenites and eclogites (Ashchepkov et al., 2010) were checked and complex To and Al-Na-Fe dependent universal coefficients were received. The KD is determined as follows: KD=Na/AlCr*Mg/Ca The logarithmic dependence between P and KD was transformed to a linear one. Final pressure equations are: AlCr=(Al-0.01) *((T-600)/700)**0.75+Cr*(ToK-100)/1000+(4*Ti-0.0125)/ (T0-801)*650 +0.55*((Fe-0.23) *(T0-900)/10000-K) P=0.26*(5+12*(Al+0.30*Na)KD* ToK**0.75 /(1+Fe+ Fe*(ToK-600)/1000)-ln(1273/ ToK))*40*(7*Na-Al-15*Ti+10*Cr+Mg/4)+7.5*Si-20*( Al*Na*Mg/Ca/(Al-2*Ti+Na-2*Fe/(Fe+Mg))+50*(Na+0.1*Al-2*Ti+0.05*Mg-0.22*Ca-0.7*Na)/Ca). Obtained equation in combination with the (Nimis,Taylor, 2000) thermometer allow to reconstruct position of the magma feeder systems of the alkali basaltic magma withing the mantle diapirs in modern platforms like in Vitim plateau (Ashchepkov et al., 2011) and now was applicated to reconstruct the deep seated magma conduits beneath the mountain collision systems, island arcs ocean plateaus etc. This equation allows to receive the positions of the major groups of eclogites mantle sections and to find out the regularities of their behavior. The Fe rich eclogites commonly trace he boundary between the lower upper part of subcontinental lithospheric mantle (SCLM) at 3 -4 GPa marking pyroxenite eclogites layer. Ca- rich eclogites and especially grospydites in SCLM beneath Precambrian kimberlites occurs near pyroxenite layer but in younger mantle sections they became common in the lower parts marking presence of the subducted sediments. The Mg Cr- less group eclogites commonly diamondiferous and referring to the ancient island arc complexes are also common in the middle part of mantle sections and near 5-6 GPa. The group is often dominated in the young kimberlites and sometimes is highly diamondiferous. Commonly P-Fe# for eclogites in the lower SCLM part show rising Fe# with decreasing pressures which very of then reflect the differentiation of the magmatic systems commonly rather significant. Commonly the Fe#-values for the eclogites show that they can't be simple subucted oceanic basalts but material remelted not only during the low angle "hot"subduction but also under the influence of the kimberlite melts including protokimberlite magmas. The Mg - rich and Fe rich pyroxenites also show the extending in pressures trends which suggest the anatexic melting under the influence of volatiles or under the plum magma hybridization. RBRF grants 05-05-64718, 03-05-64146; 11 -05-00060a; 11-05-91060-PICS. Projects 77-2, 65-03, 02-05 IGM SD RAS and ALROSA Stock Company.

  7. Microstrain engineered magnetic properties in Bi1-x Ca x Fe1-y Ti y O3-δ nanoparticles: deviation from Néel’s 1/d size-dependent magnetization behaviour

    NASA Astrophysics Data System (ADS)

    Mocherla, Pavana S. V.; Sahana, M. B.; Gopalan, R.; Ramachandra Rao, M. S.; Nanda, B. R. K.; Sudakar, C.

    2017-10-01

    Magnetization of antiferromagnetic nanoparticles is known to generally scale up inversely to their diameter (d) according to Néel’s model. Here we report a deviation from this conventional linear 1/d dependence, altered significantly by the microstrain, in Ca and Ti substituted BiFeO3 nanoparticles. Magnetic properties of microstrain-controlled Bi1-x Ca x Fe1-y Ti y O3-δ (y  =  0 and x  =  y) nanoparticles are analyzed as a function of their size ranging from 18 nm to 200 nm. A complex interdependence of doping concentration (x or y), annealing temperature (T), microstrain (ɛ) and particle size (d) is established. X-ray diffraction studies reveal a linear variation of microstrain with inverse particle size, 1/d nm-1 (i.e. ɛ · d  =  16.5 nm·%). A rapid increase in the saturation magnetization below a critical size d c ~ 35 nm, exhibiting a (1/d) α (α  ≈  2.6) dependence, is attributed to the influence of microstrain. We propose an empirical formula M \\propto (1/d)ɛ β (β  ≈  1.6) to highlight the contributions from both the size and microstrain towards the total magnetization in the doped systems. The magnetization observed in nanoparticles is thus, a result of the competing magnetic contribution from the terminated spin cycloid on the surface and counteracting microstrain present at a given size.

  8. Paleohydrology Reconstruction of the Tropical South America for the Past 1.6 Million Years.

    NASA Astrophysics Data System (ADS)

    Oliveira, A. S.; Baker, P. A.; Silva, C. G.; Dwyer, G. S.; Rigsby, C. A.; Chiessi, C. M.

    2016-12-01

    The western Atlantic equatorial margin has been recognized as an important part of global climate change. It is responsible for the transfer of moisture to South America and, heat and fresh water to the northern hemisphere. It might hold answers to past and present global climate. We reconstructed the last 1.6 million years of the paleoclimatic record of the Tropical South American to assess a long period of oceanic and atmospheric variability, which still remains unknown to science. Paleoclimate reconstructions of the Tropical South American are determined on a sediment core located on the Brazilian continental slope. High-resolution XRF analyses of Fe, Ti, K and Ca are used to define the paleohydrologic evolution. Here we present elemental ratios of Ti/Ca and Fe/K, to determine variability in Tropical South America. Differences in sediment input observed on Fe/K and Ti/Ca ratios suggest periods of increased chemical weathering and precipitation. Comparison of our data with the Cariaco basin Molybdenum (Mo) records, suggests that the Intertropical Convergence Zone (ITCZ) is triggering wet periods on Tropical South America, distinguishing a clear North-South anti-phase over the last 600 ka. Southward displacement of the ITCZ in the Mid-Pleistocene Transition, indicates changes in the variability mode of the ITCZ N-S excursion, modulating the precipitation over Tropical South America. We also show that extensive northward migration of Antarctic Polar Front induces a drastic change in the Tropical South America hydrological system, triggering long periods of drought, potentially driven by cooler sea surface temperature of the South Atlantic. This study is funded by Capes- IODP 38/2014 and the Duke University.

  9. Measurement of Ti[superscript +3] / Ti[superscript +4] ratios in pyroxene in Wark-Loveing rims: Evidence for formation in a reducing solar nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, S.B.; Sutton, S.R.; Grossman, L.

    2006-12-13

    Ti-bearing clinopyroxene, known as fassaite, is a major phase in the interiors of coarse-grained, Ca-, Al-rich refractory inclusions (CAIs). Electron microprobe (EMP) analyses of such pyroxene yield low cation sums when normalized to six oxygen anions if it is assumed that all Ti is present as Ti{sup 4+}. Instead, we can assume that there is one Ca cation [1] and two tetrahedral cations present per six oxygens, and can then calculate a Ti{sup 3+}/(Ti{sup 3+} + Ti{sup 4+}), or Ti{sup 3+}/Ti{sup tot}, ratio that gives exactly one cation in the remaining site and a total of exactly four cations permore » six oxygens. Additional evidence for the presence of Ti in multiple valence states includes: pleochroism in Ti-rich crystals with negligible amounts of other multivalent elements; results from measurements of optical spectra [2]; and X-ray absorption near-edge structure (XANES) analysis [3]. Calculation of accurate Ti{sup 3+}/Ti{sup tot} ratios from EMP analyses is generally limited to analyses with >4 wt% TiO{sub 2}{sup tot} (all Ti as TiO{sub 2}), because at low Ti contents the analytical uncertainties approach the magnitude of the cation deficit caused by assuming all Ti is Ti{sup 4+}. Many refractory inclusions are enclosed in sequences of mineralogically distinct layers, first described by [4], that must have formed after the host inclusions did. In most cases, from the CAI outward, the sequence consists of a layer of spinel {+-} perovskite; voids, melilite, or alteration products; clinopyroxene; and hedenbergite. The pyroxene layer may be immediately adjacent to spinel and is commonly zoned from Ti-rich fassaite nearest the spinel layer to Ti-poor aluminous diopside over distances of {approx}10 {micro}m [4]. A recent study of the pyroxene in the rims of one Allende and two Leoville inclusions [5] found that most points analyzed by electron probe had between 4 and 7 wt% TiO{sub 2}{sup tot} and 0.7-1.7 wt% FeO. Those authors also found < 1 Ca cation, but very close to 4 total cations, per 6 oxygen ions, and therefore little or no Ti{sup 3+}. They kindly loaned us one of their samples for analysis, and we also found low Ca contents, high FeO contents ({approx}1 wt%) and undetectable to low Ti{sup 3+} contents compared to fassaite found in the interiors of CAIs. The low-Ca analyses would seem to reflect the presence of an enstatite component in addition to the standard fassaite components [1], but despite inclusion of such a component in our calculations we have not been able to satisfactorily resolve the analyses into pyroxene endmembers. This is a hint that pyroxene analysis spots are contaminated with another phase, a serious problem for stoichiometrydependent calculation of Ti{sup 3+}/Ti{sup tot} ratios. We need to know whether or not rim pyroxene contains Ti{sup 3+} because of its importance as a recorder of nebular oxygen fugacity, but we are unsure of how to normalize EMP analyses in this case, so we cannot calculate Ti{sup 3+}/Ti{sup tot} accurately. We therefore decided to measure the Ti{sup 3+}/Ti{sup tot} of rim pyroxene directly, by XANES. We have conducted a detailed study of pyroxene in the rim on TS24, a fluffy Type A inclusion from Allende. This inclusion is large and very irregularly shaped, giving it a relatively high surface area. It has a well-developed rim sequence, from the CAI outward, of spinel, clinopyroxene zoned from Ti-, Al-rich to nearly pure diopside over {approx}20 {micro}m, and hedenbergite. The spinel-pyroxene and diopside-hedenbergite contacts are sharp.« less

  10. Near-infrared line-strengths in elliptical galaxies: evidence for initial mass function variations?

    NASA Astrophysics Data System (ADS)

    Cenarro, A. J.; Gorgas, J.; Vazdekis, A.; Cardiel, N.; Peletier, R. F.

    2003-02-01

    We present new relations between recently defined line-strength indices in the near-infrared (CaT*, CaT, PaT, MgI and sTiO) and central velocity dispersion (σ0) for a sample of 35 early-type galaxies, showing evidence for significant anti-correlations between CaII triplet indices (CaT* and CaT) and log σ0. These relations are interpreted in the light of our recent evolutionary synthesis model predictions, suggesting the existence of important Ca underabundances with respect to Fe and/or an increase of the dwarf to giant stars ratio along the mass sequence of elliptical galaxies.

  11. Giant Polarization and High Temperature Monoclinic Phase in a Lead-Free Perovskite of Bi(Zn 0.5Ti 0.5)O 3-BiFeO 3

    DOE PAGES

    Pan, Zhao; Chen, Jun; Yu, Runze; ...

    2016-09-15

    Lead-free piezoelectrics have attracted increasing attention due to the awareness of lead toxicity to the environment. Here, a new Bi-based lead-free perovskite of (1-x)Bi(Zn 0.5Ti 0.5)O 3-xBiFeO 3 has been synthesized via high-pressure and high-temperature method. It exhibits interest-ing properties of giant polarization, morphotropic phase boundary (MPB), and monoclinic phase. In particular, large tetragonality ( c/a = 1.228) and giant spontaneous polariza-tion of 110 μC/cm 2 has been obtained in 0.6Bi(Zn 0.5Ti 0.5)O 3-0.4BiFeO 3, which is much higher than most available lead-free materials and conventional Pb(Zr,Ti)O 3. MPB is clearly identified to be constituted by tetragonal and monoclinic phasesmore » at x = 0.5. Notably, a single monoclinic phase has been observed at x = 0.6, which exhibits an intriguing high temperature property. In conclusion, the present results are helpful to explore new lead-free MPB systems in bismuth-based compounds.« less

  12. [Determination of multi-element contents in gypsum by ICP-AES].

    PubMed

    Guo, Zhong-bao; Bai, Yong-zhi; Cui, Jin-hua; Mei, Yi-fei; Ma, Zhen-zhu

    2014-08-01

    The content of multi-element in gypsum was determined by ICP-AES. The sample was pretreated by acid-soluble method or alkali-fusion method. Acid-soluble method is suitable for the determination of CaO, SOs, Al2O3, Fe2O3, MgO, K2O, Na2O, TiO2, P2O5, MnO, SrO and BaO. Alkali-fusion method is suitable for the determination of CaO, SO3, SiO2, Al2O3, Fe2O3, MgO, TiO2, P2O5, MnO, SrO, BaO and B2O3. Different series standard solutions were prepared considering the properties and content of elements and solution matrix. The limit of detection and quantification were confirmed for each element under their best analysis spectral lines. The recoveries of the two pretreatment methods were from 93% to 110%, besides that for TiO2 was 81%-87% as pretreated by acid-soluble method. All RSDs (n=6) of tests were from 0.70%-3.42%. The accuracies of CaO and SO3 with ICP-AES method were less than the chemical analysis method. The determination of CaO and SO3 with ICP-AES method is only suitable for the case of low accuracy requirement. The results showed that the method can be used for the determination of multi-element contents in gypsum, with simple operation, fast analysis and reliable results. Total elements can be analysed with both acid-soluble method and alkali-fusion method.

  13. Chemistry of impact events on Mercury

    NASA Astrophysics Data System (ADS)

    Berezhnoy, Alexey A.

    2018-01-01

    Based on the equilibrium thermochemical approach and quenching theory, formation of molecules and dust grains in impact-produced clouds formed after collisions between meteoroids and Mercury is considered. Based on observations of Al, Fe, and Mn atoms in the exosphere of Mercury and new results of studies of the elemental composition of the surface of Mercury, quenching temperatures and pressures of main chemical reactions and condensation of dust particles were estimated. The behavior of the main Na-, K-, Ca-, Fe-, Al-, Mn-, Mg-, Si-, Ti, Ni-, Cr-, Co, Zn-, O-, H-, S-, C-, Cl-, N-, and P-containing species delivered to the Hermean exosphere during meteoroid impacts was studied. The importance of meteoroid bombardment as a source of Na, K, Ca, Fe, Al, Mn, Mg, and O atoms in the exosphere of Mercury is discussed.

  14. AAuAl (A = Ca, Sc, and Ti): Peierls Distortion, Atomic Coloring, and Structural Competition

    DOE PAGES

    Pham, Joyce; Miller, Gordon J.

    2018-04-02

    Using density functional theory, the crystal structure variation of AAuAl (A = Ca, Sc, and Ti) from orthorhombic Co 2Si-type to distorted hexagonal Fe 2P-type and then Ni 2In-type structures is shown to correlate with their electronic structures and valence electron counts, sizes of the active metals A, and site preferences for Au and Al atoms, which are arranged to maximize Au–Al nearest neighbor contacts. An evaluation of chemical pressure imposed by the varying A metals using total energy vs volume calculations indicates that larger unit cell volumes favor the orthorhombic structure, whereas smaller volumes favor the hexagonal structures. Themore » electronic origin of the Mg 2Ga-type crystal structure of ScAuAl, refined as a distorted Fe 2P-type supercell doubled along the c-axis, indicates a Peierls-type distortion mechanism of the Au chains along the c-axis.« less

  15. AAuAl (A = Ca, Sc, and Ti): Peierls Distortion, Atomic Coloring, and Structural Competition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Joyce; Miller, Gordon J.

    Using density functional theory, the crystal structure variation of AAuAl (A = Ca, Sc, and Ti) from orthorhombic Co 2Si-type to distorted hexagonal Fe 2P-type and then Ni 2In-type structures is shown to correlate with their electronic structures and valence electron counts, sizes of the active metals A, and site preferences for Au and Al atoms, which are arranged to maximize Au–Al nearest neighbor contacts. An evaluation of chemical pressure imposed by the varying A metals using total energy vs volume calculations indicates that larger unit cell volumes favor the orthorhombic structure, whereas smaller volumes favor the hexagonal structures. Themore » electronic origin of the Mg 2Ga-type crystal structure of ScAuAl, refined as a distorted Fe 2P-type supercell doubled along the c-axis, indicates a Peierls-type distortion mechanism of the Au chains along the c-axis.« less

  16. Abundances of disk and bulge giants from high-resolution optical spectra. II. O, Mg, Ca, and Ti in the bulge sample

    NASA Astrophysics Data System (ADS)

    Jönsson, H.; Ryde, N.; Schultheis, M.; Zoccali, M.

    2017-02-01

    Context. Determining elemental abundances of bulge stars can, via chemical evolution modeling, help to understand the formation and evolution of the bulge. Recently there have been claims both for and against the bulge having a different [α/Fe] versus [Fe/H] trend as compared to the local thick disk. This could possibly indicate a faster, or at least different, formation timescale of the bulge as compared to the local thick disk. Aims: We aim to determine the abundances of oxygen, magnesium, calcium, and titanium in a sample of 46 bulge K giants, 35 of which have been analyzed for oxygen and magnesium in previous works, and compare this sample to homogeneously determined elemental abundances of a local disk sample of 291 K giants. Methods: We used spectral synthesis to determine both the stellar parameters and elemental abundances of the bulge stars analyzed here. We used the exact same method that we used to analyze the comparison sample of 291 local K giants in Paper I of this series. Results: Compared to the previous analysis of the 35 stars in our sample, we find lower [Mg/Fe] for [Fe/H] >-0.5, and therefore contradict the conclusion about a declining [O/Mg] for increasing [Fe/H]. We instead see a constant [O/Mg] over all the observed [Fe/H] in the bulge. Furthermore, we find no evidence for a different behavior of the alpha-iron trends in the bulge as compared to the local thick disk from our two samples. Note to the reader: following the publication of the corrigendum, the subtitle of the article was corrected on April 6, 2017. "O, Mg, Co, and Ti" has been replaced by "O, Mg, Ca, and Ti".Based on observations collected at the European Southern Observatory, Chile (ESO programs 71.B-0617(A), 073.B-0074(A), and 085.B-0552(A)).

  17. Cool DZ white dwarfs II: compositions and evolution of old remnant planetary systems

    NASA Astrophysics Data System (ADS)

    Hollands, M. A.; Gänsicke, B. T.; Koester, D.

    2018-06-01

    In a previous study, we analysed the spectra of 230 cool (Teff < 9000 K) white dwarfs exhibiting strong metal contamination, measuring abundances for Ca, Mg, Fe and in some cases Na, Cr, Ti, or Ni. Here, we interpret these abundances in terms of the accretion of debris from extrasolar planetesimals, and infer parent body compositions ranging from crust-like (rich in Ca and Ti) to core-like (rich in Fe and Ni). In particular, two white dwarfs, SDSS J0823+0546 and SDSS J0741+3146, which show log [Fe/Ca] > 1.9 dex, and Fe to Ni ratios similar to the bulk Earth, have accreted by far the most core-like exoplanetesimals discovered to date. With cooling ages in the range 1-8 Gyr, these white dwarfs are among the oldest stellar remnants in the Milky Way, making it possible to probe the long-term evolution of their ancient planetary systems. From the decrease in maximum abundances as a function of cooling age, we find evidence that the arrival rate of material on to the white dwarfs decreases by three orders of magnitude over a ≃ 6.5 Gyr span in white dwarf cooling ages, indicating that the mass-reservoirs of post-main sequence planetary systems are depleted on a ≃ 1 Gyr e-folding time-scale. Finally, we find that two white dwarfs in our sample are members of wide binaries, and both exhibit atypically high abundances, thus providing strong evidence that distant binary companions can dynamically perturb white dwarf planetary systems.

  18. Kassite from the Diamond Jo quarry, Magnet Cove, Hot Spring County, Arkansas: the problem of cafetite and kassite.

    USGS Publications Warehouse

    Evans, H.T.; Dwornik, E.J.; Milton, C.

    1986-01-01

    Small (<0.5 mm), brownish-pink platy rosettes and yellow spherules, in cavities in nepheline syenite at the Diamond Jo quarry, Magnet Cove, have been identified as kassite, CaTi2O4(OH)2, a mineral previously known only from the Kola Peninsula, USSR. The X-ray powder and single-crystal data and density of the Magnet Cove kassite correspond with those reported by earlier workers for cafetite, (Ca,Mg)(Fe,Al)2Ti4O12.4H2O, from Kola, but the chemical and physical properties correspond with those given in their description of kassite.-J.A.Z.

  19. Temperature and composition dependencies of trace element partitioning - Olivine/melt and low-Ca pyroxene/melt

    NASA Technical Reports Server (NTRS)

    Colson, R. O.; Mckay, G. A.; Taylor, L. A.

    1988-01-01

    This paper presents a systematic thermodynamic analysis of the effects of temperature and composition on olivine/melt and low-Ca pyroxene/melt partitioning. Experiments were conducted in several synthetic basalts with a wide range of Fe/Mg, determining partition coefficients for Eu, Ca, Mn, Fe, Ni, Sm, Cd, Y, Yb, Sc, Al, Zr, and Ti and modeling accurately the changes in free energy for trace element exchange between crystal and melt as functions of the trace element size and charge. On the basis of this model, partition coefficients for olivine/melt and low-Ca pyroxene/melt can be predicted for a wide range of elements over a variety of basaltic bulk compositions and temperatures. Moreover, variations in partition coeffeicients during crystallization or melting can be modeled on the basis of changes in temperature and major element chemistry.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.; Cruickshank, Laura A.

    The crystal structure of an optically anisotropic kimzeyite garnet from Magnet Cove, Arkansas, USA, where it was first discovered, was refined with the Rietveld method, cubic space group, Ia\\overline 3 d, and monochromatic [λ = 0.41422 (2) Å] synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. The Rietveld refinement reduced χ 2and overallR(F 2) values are 1.840 and 0.0647, respectively. The sample, with the general garnet formula [8]X 3 [6]Y 2 [4]Z 3 [4]O 12, contains an intergrowth of two cubic phases that occur initially as oscillatory growth zoning, and patchy intergrowths arise later from fluid-enhanced dissolution and re-precipitation. The twomore » compositions obtained with electron-probe microanalyses (EPMA) are Ca 3.00(Zr 1.31Ti 4+ 0.46Fe 3+ 0.22Mn 3+ 0.01) Σ2[Al 0.76Fe 3+ 1.01Si 1.23] Σ3O 12for phase 1aand Ca 2.99(Zr 1.48Ti 4+ 0.37Fe 3+ 0.15) Σ2[Al 0.87Fe 3+ 0.98Si 1.15] Σ3O 12for phase 1b. The weight percentage, unit-cell parameter (Å), distances (Å), and site occupancy factors (s.o.f.s) for phase 1aare as follows: 42.6 (2)%,a= 12.46553 (3) Å, average = 2.482,Y—O = 2.059 (2),Z—O = 1.761 (2) Å, Ca (Xs.o.f.) = 0.960 (4), Zr (Ys.o.f.) = 0.809 (3), and Fe (Zs.o.f.) = 0.623 (2). The corresponding values for phase 1bare 57.4 (2)%,a= 12.47691 (2) Å, average = 2.482,Y—O = 2.062 (1),Z—O = 1.762 (1) Å, Ca (Xs.o.f.) = 0.957 (3), Zr (Ys.o.f.) = 0.828 (2) and Fe (Zs.o.f.) = 0.617 (2). The main structural differences between the two phases are in the unit-cell parameter, Δa= 0.01138 Å,Y(s.o.f.), andY—O distance. Structural mismatch between the two cubic phases in a crystal gives rise to strain-induced optical anisotropy.« less

  1. Composition and Elution Behavior of Various Elements from Printed Circuit Boards, Cathode-ray Tube Glass, and Liquid-crystal Displays in Waste Consumer Electronics.

    PubMed

    Inaba, Kazuho; Murata, Tomoyoshi; Yamamura, Shigeki; Nagano, Masaaki; Iwasaki, Kazuhiro; Nakajima, Daisuke; Takigami, Hidetaka

    2018-01-01

    The contents and elution behavior of metals in consumer electronics parts were determined so as to understand their maximum environmental risk. Elements contained most in printed-circuit boards were Cu, Si, Br, Ca, Al, Sn, Pb, Sb, Ba, Fe, Ni, Ti, and Zn; in cathode-ray tube glass were Si, Pb, Ba, Sr, Zn, Zr, Ca, and Sb; in arsenic contained liquid-crystal displays were Si, Ca, Sr, Ba, As, and Fe; and in antimony contained liquid-crystal displays were Si, Ba, Ca, Sb, Sr, Fe, and Sn. The elements eluted most from printed-circuit boards were Zn, Pb, and Cu; from cathode-ray tube glass were Pb, Zn, B, Ba, and Si; and from liquid-crystal displays were B and Si, and the toxic As and Sb. The amount eluted was greatest at acidic pH. It was revealed that officially recommended 6-h-shaking with a pure water test was insufficient to understand the real environmental risk of waste electronics.

  2. Synthesis of Nano-Ilmenite (FeTiO3) doped TiO2/Ti Electrode for Photoelectrocatalytic System

    NASA Astrophysics Data System (ADS)

    Hikmawati; Watoni, A. H.; Wibowo, D.; Maulidiyah; Nurdin, M.

    2017-11-01

    Ilmenite (FeTiO3) doped on Ti and TiO2/Ti electrodes were successfully prepared by using the sol-gel method. The structure, morphology, and optical properties of FeTiO3 are characterized by XRD, UV-Vis DRS, and SEM. The FeTiO3 and TiO2 greatly affect the photoelectrocatalysis performance characterized by Linear Sweep Voltammetry (LSV) and Cyclic Voltammetry (CV). The characterization result shows a band gap of FeTiO3 is 2.94 eV. XRD data showed that FeTiO3 formed at 2θ were 35.1° (110), 49.9° (024), and 61.2° (214). The morphology of FeTiO3/Ti and FeTiO3.TiO2/Ti using SEM shows that the formation of FeTiO3 thin layer signifies the Liquid Phase Deposition method effectively in the coating process. Photoelectrochemical (PEC) test showed that FeTiO3.TiO2/Ti electrode was highly oxidation responsive under visible light compared to the FeTiO3/Ti electrodes i.e. 7.87×10-4 A and 9.87×10-5 A. Degradation test of FeTiO3/Ti and FeTiO3.TiO2/Ti electrodes on titan yellow showed that the percentages of degradation with photoelectrocatalysis at 0.5 mg/L were 41% and 43%, respectively.

  3. Synthesis and structural analysis of Fe doped TiO2 nanoparticles using Williamson Hall and Scherer Model

    NASA Astrophysics Data System (ADS)

    Patle, L. B.; Labhane, P. K.; Huse, V. R.; Gaikwad, K. D.; Chaudhari, A. L.

    2018-05-01

    The nanoparticles of Pure and doped Ti1-xFexO were synthesized by modified co-precipitation method successfully with nominal composite of x=0.0, 0.01, 0.03 and 0.05 at room temperature. The precursors were further calcined at 500°C for 6hrs in muffle furnace which results in the formation of different TiO2 phase compositions. The structural analysis carried out by XRD (Bruker D8 Cu-Kα1). X-ray peak broadening analysis was used to evaluate the crystalline sizes, the lattice parameters, atomic packing fraction, c/a ratio, X-ray density and Volume of unit cell. The Williamson Hall analysis is used to find grain size and Strain of prepared TiO2 nano particles. Crystalline TiO2 with a Tetragonal Anatase phase is confirmed by XRD results. The grain size of pure and Fe doped samples were found in the range of 10nm to 18nm. All the physical parameters of anatase tetragonal TiO2 nanoparticles were calculated more precisely using modified W-H plot a uniform deformation model (UDM). The results calculated from both the techniques were approximately similar.

  4. Ca. 2.7 Ga ferropicritic magmatism: A record of Fe-rich heterogeneities during Neoarchean global mantle melting

    NASA Astrophysics Data System (ADS)

    Milidragovic, Dejan; Francis, Don

    2016-07-01

    Although terrestrial picritic magmas with FeOTOT ⩾13 wt.% are rare in the geological record, they were relatively common ca. 2.7 Ga during the Neoarchean episode of enhanced global growth of continental crust. Recent evidence that ferropicritic underplating played an important role in the ca. 2.74-2.70 Ga reworking of the Ungava craton provides the impetus for a comparison of ca. 2.7 Ga ferropicrite occurrences in the global Neoarchean magmatic record. In addition to the Fe-rich plutons of the Ungava craton, volumetrically minor ferropicritic flows, pyroclastic deposits, and intrusive rocks form parts of the Neoarchean greenstone belt stratigraphy of the Abitibi, Wawa, Wabigoon and Vermillion domains of the southern and western Superior Province. Neoarchean ferropicritic rocks also occur on five other Archean cratons: West Churchill, Slave, Yilgarn, Kaapvaal, and Karelia; suggesting that ca. 2.7 Ga Fe-rich magmatism was globally widespread. Neoarchean ferropicrites form two distinct groups in terms of their trace element geochemistry. Alkaline ferropicrites have fractionated REE profiles and show no systematic HFSE anomalies, broadly resembling the trace element character of modern-day ocean island basalt (OIB) magmas. Magmas parental to ca. 2.7 Ga alkaline ferropicrites also had high Nb/YPM (>2), low Al2O3/TiO2 (<8) and Sc/Fe (⩽3 × 10-4) ratios, and were enriched in Ni relative to primary pyrolite mantle-derived melts. The high Ni contents of the alkaline ferropicrites coupled with the low Sc/Fe ratios are consistent with derivation from olivine-free garnet-pyroxenite sources. The second ferropicrite group is characterized by decisively non-alkaline primary trace element profiles that range from flat to LREE-depleted, resembling Archean tholeiitic basalts and komatiites. In contrast to the alkaline ferropicrites, the magmas parental to the subalkaline ferropicrites had flat HREE, lower Nb/YPM (<2), higher Al2O3/TiO2 (8-25) and Sc/Fe (⩾4 × 10-4) ratios, and were depleted in Ni relative to melts of pyrolitic peridotite; suggesting they were derived from garnet-free peridotite sources. Neodymium isotopic evidence indicates that the source of alkaline ferropicrites was metasomatically enriched shortly before magma generation (⩽3.0 Ga), but the subalkaline ferropicrites do not show evidence of precursor metasomatism. The metasomatic enrichment of the alkaline ferropicrite sources may have been accompanied by conversion of Fe-rich peridotite to secondary garnet-pyroxenite. Melting experiments on ;pyrolitic; compositions and consideration of the dependence of the density of silicate liquids on pressure and temperature, suggest that ferropicrites cannot originate by melting of normal terrestrial mantle (Mg-number = 0.88-0.92) at high pressures and temperatures. The geochemical similarity between the subalkaline ferropicrites and the shergottite-nakhlite-chassigny (SNC) and howardite-eucrite-diogenite (HED) differentiated meteorites suggests, however, that the Fe-rich mantle may originate from the infall of Fe-rich chondritic meteorites. The occurrence of ca. 2.7 Ga Fe-rich rocks on at least six cratons that are commonly coeval with the more ubiquitous komatiites and Mg-tholeiites is consistent with the existence of heterogeneous Fe-rich ;plums; throughout the Neoarchean mantle. The paucity of ferropicrites in the post-2.7 Ga geological record suggests that majority of these Fe-rich plums have been melted out during the global Neoarchean melting of the mantle.

  5. Element-based prognostics of occupational pneumoconiosis using micro-proton-induced X-ray emission analysis.

    PubMed

    He, Xiaodong; Shen, Hao; Chen, Zidan; Rong, Caicai; Ren, Minqin; Hou, Likun; Wu, Chunyan; Mao, Ling; Lu, Quan; Su, Bo

    2017-12-01

    Pneumoconiosis is an occupational disease accompanied by long-term lung impairment, for which prediction of prognosis is poorly understood because of the complexity of the inhaled particles. Micro-proton-induced X-ray emission (micro-PIXE) analysis, which is advantageous for high-sensitivity, two-dimensional element mapping of lung tissues, was used to investigate element-based predictive factors of prognosis in Chinese patients with welder's and coal miner's pneumoconiosis. Chest radiographs and lung function tests showed that most of the coal miners deteriorated, whereas symptoms in some welders were alleviated after 5 yr, as determined by comparing percent vital capacity (%VC) and forced expiratory volume in the 1st second over forced vital capacity (FEV1.0/FVC) to values taken at the initial diagnosis. Micro-PIXE analysis suggested that the most abundant particulates in welder's pneumoconiosis were Fe, Mn, and Ti (metallic oxide),which were accompanied by particulates containing Si, Al, and Ca (aluminum silicate) or only Si (SiO 2 ); the most abundant particulates in coal miner's pneumoconiosis were composed of C, Si, Al, K, and Ti, which were accompanied by particulates containing Ca or Fe. Particulates containing Al, Si, S, K, Ca, and Ti (orthoclase and anorthite) were correlated with severity of fibrosis. Multivariable linear regression suggested that long-term FEV1.0/FVC decrease was independently associated with Si and smoking index, whereas %VC decrease was associated with Si and Ti. A risk index comprised of these factors was developed to predict the prognosis of pneumoconiosis. Micro-PIXE analysis is feasible for the evaluation of elemental composition and dust exposure, especially for patients whose exposure is mixed or uncertain. Copyright © 2017 the American Physiological Society.

  6. ESCA studies of lunar surface chemistry. [Electron Spectroscopic Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.

    1975-01-01

    We have used ESCA to compare the composition of the natural exterior surface in lunar fines samples with that of the interior surface exposed by crushing. Even though the exterior surfaces have been exposed to air a significant amount of Fe in them is reduced. In addition, Ca, Al, and Mg are strongly depleted in exterior surfaces relative to Si, Ti, and Fe. Preferential sputtering by the solar wind is a possible explanation for these changes.

  7. 10 CFR Appendix E to Part 835 - Values for Establishing Sealed Radioactive Source Accountability and Radioactive Material Posting...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...+05 C-14 4.6E+06 Na-22 1.9E+01 Al-26 1.5E+01 Si-32 4.9E+04 S-35 2.4E+06 Cl-36 5.2E+05 K-40 2.7E+02 Ca-41 9.3E+06 Ca-45 1.1E+06 Sc-46 6.2E+01 Ti-44 1.5E+02 V-49 1.0E+08 Mn-53 7.5E+07 Mn-54 6.5E+01 Fe-55 2.9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E...

  8. 10 CFR Appendix E to Part 835 - Values for Establishing Sealed Radioactive Source Accountability and Radioactive Material Posting...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...+05 C-14 4.6E+06 Na-22 1.9E+01 Al-26 1.5E+01 Si-32 4.9E+04 S-35 2.4E+06 Cl-36 5.2E+05 K-40 2.7E+02 Ca-41 9.3E+06 Ca-45 1.1E+06 Sc-46 6.2E+01 Ti-44 1.5E+02 V-49 1.0E+08 Mn-53 7.5E+07 Mn-54 6.5E+01 Fe-55 2.9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E...

  9. 10 CFR Appendix E to Part 835 - Values for Establishing Sealed Radioactive Source Accountability and Radioactive Material Posting...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...+05 C-14 4.6E+06 Na-22 1.9E+01 Al-26 1.5E+01 Si-32 4.9E+04 S-35 2.4E+06 Cl-36 5.2E+05 K-40 2.7E+02 Ca-41 9.3E+06 Ca-45 1.1E+06 Sc-46 6.2E+01 Ti-44 1.5E+02 V-49 1.0E+08 Mn-53 7.5E+07 Mn-54 6.5E+01 Fe-55 2.9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E...

  10. SEM, EDX, Infrared and Raman spectroscopic characterization of the silicate mineral yuksporite

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Theiss, Frederick L.; Romano, Antônio Wilson

    2015-02-01

    The mineral yuksporite (K,Ba)NaCa2(Si,Ti)4O11(F,OH)ṡH2O has been studied using the combination of SEM with EDX and vibrational spectroscopic techniques of Raman and infrared spectroscopy. Scanning electron microscopy shows a single pure phase with cleavage fragment up to 1.0 mm. Chemical analysis gave Si, Al, K, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and REE. Raman bands are observed at 808, 871, 930, 954, 980 and 1087 cm-1 and are typical bands for a natural zeolite. Intense Raman bands are observed at 514, 643 and 668 cm-1. A very sharp band is observed at 3668 cm-1 and is attributed to the OH stretching vibration of OH units associated with Si and Ti. Raman bands resolved at 3298, 3460, 3562 and 3628 cm-1 are assigned to water stretching vibrations.

  11. Chemical variations in the Triple Group of the Skaergaard intrusion: insights for the mineralization and crystallization process

    NASA Astrophysics Data System (ADS)

    Nielsen, T. F.; Bernstein, S.

    2009-12-01

    The 54 Ma. old Skaergaard intrusion ( East Greenland) is a type example for fractionation of basaltic melt along the Fenner Trend. The Triple Group is the upper most 100 m of the Middle Zone and consists of FeTi-oxide rich layered gabbro with three distinct leugabbro layers 2-5 m thick ( L-layers; L1-L3, 2-5m thick) and a less marked layer (L0) c.20 m below L1. These are the most marked of many such layers. Apart from the pronounced layering the lower part of the Triple Group also hosts a world class Au-PGE mineralization. The mineralization is perfectly concordant with the L-layers, and the Triple Group invites investigation of the relationship between host and mineralization. The mineralization includes 5 main levels defined by palladium concentration. The chemical variation across the mineralization is covered by ca. 250 bulk major and trace element compositions, each representing 25cm of stratigraphy giving a continuum of ca. 60m. Proportions of normative plagioclase (plag) and pyroxene (px, including cpx and opx) are complementary, except in mineralized gabbro which is rich in FeTi-oxides. Cumulus ilmenite (ilm) is strongly enriched in layers (7m apart). They occur in both plag- and px-rich gabbro, whereas magnetite (mt) shows no simple correlation with ilm and is mainly a poikilitic intercumulus phase. The L-layers are composed of an upper part rich in plag and px and poor in FeTi-oxides, and a lower part rich in plag and FeTi-oxides and poor in px. The marked breaks in the mineralogy in the L-layers separate one layered succession from the next. The layered successions consist of a lower oxide-poor px-plag adcumulate, followed by complex mesocratic orthocumulate with poikilitic interstitial FeTi-oxide, and an upper part of increasingly simple plag-rich adcumulate with decreasing content of interstitial mt. The Au-PGE mineralized levels are found in the complex FeTi-rich gabbros at and in the base of the leucogabbro layers. The stratigraphic variation in density and densities of melt and liquidus phases suggest plag to have neutral buoyancy (floating), whereas all other phases would sink. The repeated successions are suggested to be the result of repeated “self-stratification” in the mush zone at the crystallization front, characterized by separation of px and plag leaving a transitional zone enriched in Fe-rich melt. In this melt, crystallization of mt led to S-saturation and formation of immiscible sulfide globules (30µm) in which PGE-minerals crystallize. During solidification, residual or immiscible Si-rich melt and volatiles rose from the transitional zone and took Au, Ag, Pt, Te, As, Pb, Sb, Sn, a.o. along to the main magma above and at late stage to granophyric veins. The Fe-enriched gabbros in the transitional zone are commonly accepted as average gabbros, but are in the Triple Group mixes of cumulus phases and evolved Fe-rich melt and should be used with care in the modeling of lines of liquid descent.

  12. High-Energy Neutrons from the Moon

    NASA Astrophysics Data System (ADS)

    Maurice, S.; Feldman, W. C.; Lawrence, D. J.; Elphic, R. E.; Gasnault, O.; dUston, C.; Lucey, P. G.

    1999-01-01

    Galactic cosmic rays that impact the lunar soil produce neutrons with energies from fractions of eV's to about 100 MeV. The high-energy band from 0.6 to 8.0 MeV is referred as the "fast neutron" band, which is measured by Lunar Prospector (LP) Gamma Ray Spectrometer. Fast neutrons play an important role in neutron spectroscopy that may be summarized as follows: Fast neutrons define the total neutron input to the moderating process toward low-energy populations, so that epithermal and thermal neutron leakage currents must be normalized to the leakage of fast neutrons; they allow the determination of the burial depth of H, a measure necessary to understand characteristics of water deposits; they provide information on the surface content in heavy elements, such as Ti and Fe; and they provide a direct insight into the evaporation process. As discussed hereafter, fast neutrons may yield information on other oxides, such as Si02. missing data. Mare have numerous features, that are resolved in fast neutrons. For instance, the region extending northwest of Aristarchus (23.7 deg N, 47.4 W) is clearly separated from Montes Harbinger (27.0N, 41.0W) by a high-emission channel, and Mare Vaporum (13.3 N, 3.6 E) is separated from Sinus Aestuun (10.9N, 8.8W) by a low-emission area. We present a new technique to extract information on soil composition from the fast-neutron measurements. The analysis is applied to the central mare region. There are two steps for the development of the technique. 1. For the first step, which has been fully completed, we assume that variations of fast-neutron counting rates are due solely to TiO. and FeO. Upon this assumption, we correlate Clementine Spectral Reflectance Fe and Ti oxide maps with fast measurements. Above 16.5% of FeO, effects of Ti02 variations show in LP data. Below 6.5% of FeO, Fe cannot be discriminated; this is the region of most highland terrains. Under assumption of only two oxides to modulate the signal, we show that fast counts are 3.2x more sensitive to FeO than to Ti02. The resolution in FeO is 1.2 wt% in Ti02 it is 3.8. These results are very satisfying, specially for the distribution of FeO. However, they do not permit reproduction of Clementine Ti02 map from the residual of the fast counting rates and Clementine FeO correlation. Particularly, the discrimination between hi-Ti and low-Ti mare is not striking. 2. The second step is still under development. We assume that variations of fast-neutron counting rates are primarily due to FeO, but also to TiO2, SiO2, CaO, A12O3, MgO, and Na2O. This simulation is for a FAN soil. It will have to be refined and iteratively adapted to the soil composition. With information on TiO2 and FeO distributions from Clementine and the coefficient above, we know the global soil content in the other oxides (weighted by Gasnault et al. coefficients). On the other hand, we have from return samples estimates of correlation between oxide concentrations. We demonstrate that such processing allows estimations of SiO2 variations in the lunar regolith. Additional information contained in original.

  13. Formation and composition of the moon

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1977-01-01

    Many of the properties of the Moon, including the enrichment in Ca, Al, Ti, U, Th, Ba, Sr, and the REE and the depletion in Fe, Rb, K, Na, and other volatiles can be understood if the Moon represents a high-temperature condensate from the solar nebula. Thermodynamic calculations show that Ca-, Al-, and Ti-rich compounds condense first in a cooling nebula. The initial high temperature mineralogy is gehlenite, spinel, perovskite, Ca-Al-rich pyroxenes, and anorthite. Inclusions in carbonaceous chondrites such as the Allende meteorite are composed primarily of these minerals and, in addition, are highly enriched in refractories such as REE relative to carbonaceous chondrites. These inclusions can yield basalt and anorthosite in the proportions required to eliminate the europium anomaly, leaving a residual spinel-melilite interior. A deep interior high in Ca-Al does not imply an unacceptable mean density or moment of inertia for the Moon. The inferred high-U content of the lunar interior, both from the Allende analog and the high heat flow, indicates a high-temperature interior. The model is consistent with extensive early melting, with shallow melting at 3 AE, and with presently high deep internal temperatures. It is predicted that the outer 250 km is rich in plagioclase and FeO. The low iron content of the interior in this model raises the interior temperatures estimated from electrical conductivity by some 800 C.

  14. The flat bottomed lines of Vega

    NASA Astrophysics Data System (ADS)

    Monier, R.; Gebran, M.; Royer, F.; Kılıcoǧlu, T.

    2017-12-01

    Using one high dispersion high quality spectrum of Vega (HR7001, A0V) obtained with the échelle spectrograph SOPHIE at Observatoire de Haute Provence, we have measured the centroids of 149 flat bottomed lines. The model atmosphere and spectrum synthesis modeling of the spectrum of Vega allows us to provide identifications for all these lines. Most of these lines are due to C I, O I, Mg I, Al I, Ca I, Sc II,Ti II, Cr I, Cr II, Mn I, Fe I, Fe II, Sr II, Ba II, the large majority being due to neutral species, in particular Fe I.

  15. Calcium deficiency and CaCO/sub 3/ on micronutrient status of plants grown in solution culture. [Lycopersicon esculentum, Phaseolus vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, A.; Cha, J.W.; Alexander, G.V.

    Plants were grown in solution culture with different levels of Ca to further evaluate Ca relationships to trace metal uptake and to toxicity of trace metals. When tomato plants (Lycopersicon esculentum L., Tropic) were grown at a low level of Ca, the Zn, Cu, Fe, Mn, Al, and Ti concentrations of leaves, stems, and roots were considerably increased. The use of an excess of CaCO/sub 3/ which increased pH did not influence the trace metal concentrations of plants any more than did Ca/sup + +/. In a factorial experiment with bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen) with Camore » (10/sup -4/, 10/sup -2/, 10/sup -2/N) and Ni (0, 2 x 10/sup -6/ M, 2 x 10/sup -5/ M), Ni phytotoxicity and Ni uptake were decreased somewhat at the highest Ca level. High Ni tended to decrease the Ca concentration in leaves. High Ca and Ni both tended to decrease Fe, Cu, Zn, and Mn concentrations in leaves. The Ni had some interactions on the P concentrations of shoots.« less

  16. Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig

    NASA Astrophysics Data System (ADS)

    Fomba, Khanneh Wadinga; van Pinxteren, Dominik; Müller, Konrad; Spindler, Gerald; Herrmann, Hartmut

    2018-03-01

    Size-resolved trace metal concentrations at four sites in Leipzig (Germany) and its surrounding were assessed between the winter of 2013 and the summer of 2015. The measurements were performed in parallel at; traffic dominated (Leipzig - Mitte, LMI), traffic and residential dominated (Eisenbahnstrasse, EIB), urban background (TROPOS, TRO) and regional background (Melpitz, MEL) sites. In total, 19 trace metals, i.e. K, Ca, Ti, Mn, Fe, Cu, Zn, As, Se, Ba, V, Pb, Ni, Cr, Sr, Sn, Sb, Co and Rb were analysed using total reflection x-ray fluorescence (TXRF). The major metals were Fe, K and Ca with concentrations ranging between; 31-440 ng/m3, 42-153 ng/m3 and 24-322 ng/m3, respectively, while the trace metals with the lowest concentrations were Co, Rb and Se with concentrations of; < 0.3 ng/m3, <0.5 ng/m3 and 0.5-0.7 ng/m3, respectively. PM10 trace metal concentrations during easterly air mass inflow especially at the background sites were in average 70% higher in the winter and 30% higher in the summer in comparison to westerly air mass inflow. Traffic at LMI contributed to about 75% of Cr, Ba, Cu, Sb, Sn, Ca, Co, Mn, Fe and Ti concentrations while regional activities contributed to more than 70% of K, Rb, Pb, Se, As and V concentrations. Traffic dominated trace metals were often observed in the coarse mode while the regional background dominated trace metals were often observed in the fine mode. Trace metal sources were related to crustal matter and road dust re-suspension for metals such as Ca, Fe, Co, Sr, and Ti, brake and tire wear (Cu, Sb, Ba, Fe, Zn, Pb), biomass burning (K, Rb), oil and coal combustion (V, Zn, As, Pb). Crustal matter contributed 5-12% in winter and 8-19% in summer of the PM10 mass. Using Cu and Zn as markers for brake and tire wear, respectively, the estimated brake and tire wear contributions to the PM10 mass were 0.1-0.8% and 1.7-2.9%, respectively. The higher contributions were observed at the traffic sites while the lower contributions were observed at the regional background site. In total, non-exhaust emissions could account for about 10-22% of the PM10 mass in the summer and about 7-15% of the PM10 mass in the winter.

  17. Disproportionation of marokite at high pressures and temperatures with geophysical implications

    NASA Astrophysics Data System (ADS)

    Liu, Lin-gun

    1983-07-01

    Natural marokite (CaMn 2O 4) has been studied at high pressures and temperatures using a diamond-anvil press coupled with laser heating in the pressure range 100-250 kbar. A mixture of marokite, CaMnO 3 (perovskite) and MnO (rocksalt) has been observed in all runs in the above pressure range by X-ray diffraction study of the quenched samples. It was interpreted that marokite disproportionates into the mixture CaMnO 3 (perovskite) + MnO (rocksalt) at pressures below 100 kbar. A general comparison of the molar volume for all known compounds having the marokite-related structures (including CaFe 2O 4 and CaTi 2O 4) with those for a mixture of perovskite plus rocksalt structures suggested that the mixture is more stable than the marokite-related structures at high pressures, as confirmed by the present experimental result. The CaFe 2O 4-modification of common nepheline (NaAlSiO 4) is also suggested to be unstable relative to the component oxides of α-NaAlO 2 + SiO 2 (stishovite) at high pressures.

  18. The presence of Ti(II) centers in doped nanoscale TiO2 and TiO2-xNx

    NASA Astrophysics Data System (ADS)

    Mikulas, Tanya; Fang, Zongtang; Gole, James L.; White, Mark G.; Dixon, David A.

    2012-06-01

    Unusual trends are observed in the Ti (2s, 2p) XPS spectra of Fe(II) doped TiO2 and TiO2-xNx. The binding energy of Ti (2s, 2p) initially decreases with increasing Fe(II) concentration, as expected, but increases at higher Fe(II) doping levels. Density functional theory is used to analyze the results. The observed VB-XPS and core level XPS spectra are consistent with the facile charge transfer sequence Ti(IV) + Fe(II) → Ti(III) + Fe(III) followed by Ti(III) + Fe(II) → Ti(II) + Fe(III). The formed Ti(II) sites may be relevant to nanoparticle catalysis on TiO2 surfaces.

  19. Iron hydrides formation in interstellar clouds

    NASA Astrophysics Data System (ADS)

    Bar-Nun, A.; Pasternak, M.; Barrett, P. H.

    1980-07-01

    A recent Moessbauer study with Fe-57 in a solid hydrogen or hydrogen-argon matrix demonstrated the formation of an iron hydride molecule (FeH2) at 2.5-5 K. Following this and other studies, the possible existence of iron hydride molecules in interstellar clouds is proposed. In clouds, the iron hydrides FeH and FeH2 would be formed only on grains, by encounters of H atoms or H2 molecules with Fe atoms which are adsorbed on the grains. The other transition metals, Sc, Ti, V, Cr, Mn, Co, N, Cd and also Cu and Ca form hydrides of the type M-H, which could be responsible, at least in part, for the depletion of these metals in clouds.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan; Zhang, Weiguo; Qian, Yu

    This study investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn inPhragmites australisroot system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils.Phragmites australissamples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in the root epidermis and thatmore » other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  1. Laser-Induced Breakdown Spectroscopy of Trace Metals

    NASA Technical Reports Server (NTRS)

    Simons, Stephen (Technical Monitor); VanderWal, Randall L.; Ticich, Thomas M.; West, Joseph R., Jr.

    2004-01-01

    An alternative approach for laser-induced breakdown spectroscopy (LIBS) determination of trace metal determination in liquids is demonstrated. The limits of detection (LOD) for the technique ranged from 10 ppb to 10 ppm for 15 metals metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) tested.

  2. Sintered silicon carbide molded body and method for its production

    NASA Technical Reports Server (NTRS)

    Omori, M.; Sendai, M.; Ohira, K.

    1984-01-01

    Sintered silicon carbide shapes are described. They are produced by using a composition containing an oxide of at least one element chosen from the group: Li, Be, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, Ba, Tc, Ta, W and Th as a supplement to known sintering aids.

  3. NGC 6705 a young α-enhanced open cluster from OCCASO data

    NASA Astrophysics Data System (ADS)

    Casamiquela, L.; Carrera, R.; Balaguer-Núñez, L.; Jordi, C.; Chiappini, C.; Anders, F.; Antoja, T.; Miret-Roig, N.; Romero-Gomez, M.; Blanco-Cuaresma, S.; Pancino, E.; Aguado, D. S.; del Pino, A.; Diaz-Perez, L.; Gallart, C.

    2018-03-01

    Context. The stellar [α/Fe] abundance is sometimes used as a proxy for stellar age, following standard chemical evolution models for the Galaxy, as seen by different observational results. Aim. In this work, we aim to show that the open cluster NGC 6705/M 11 has a significant α-enhancement [α/Fe] > 0.1 dex, despite its young age ( 300 Myr), challenging the current paradigm. Methods: We used high resolution (R > 65 000) high signal-to-noise ( 70) spectra of eight red clump stars, acquired within the OCCASO survey. We determined very accurate chemical abundances of several α elements, using an equivalent width methodology (Si, Ca and Ti), and spectral synthesis fits (Mg and O). Results: We obtain [Si/Fe] = 0.13 ± 0.05, [Mg/Fe] = 0.14 ± 0.07, [O/Fe] = 0.17 ± 0.07, [Ca/Fe] = 0.06 ± 0.05, and [Ti/Fe] = 0.03 ± 0.03. Our results place these clusters within the group of young [α/Fe]-enhanced field stars recently found by several authors in the literature. The ages of our stars have an uncertainty of around 50 Myr, much more precise than for field stars. By integrating the cluster's orbit in several non-axisymmetric Galactic potentials, we establish the M 11's most likely birth radius as lying between 6.8-7.5 kpc from the Galactic centre, not far from its current position. Conclusions: With the robust open cluster age scale, our results prove that a moderate [α/Fe]-enhancement is no guarantee for a star to be old, and that not all α-enhanced stars can be explained with an evolved blue straggler scenario. Based on our orbit calculations, we further argue against a Galactic bar origin of M 11. Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A66

  4. Synthesis, morphological, electromechanical characterization of (CaMgFex)Fe1-xTi3O12-δ/PDMS nanocomposite thin films for energy storage application

    NASA Astrophysics Data System (ADS)

    Tripathy, Ashis; Sharma, Priyaranjan; Sahoo, Narayan

    2018-03-01

    At the present time, flexible and stretchable electronics has intended to use the new cutting-edge technologies for advanced electronic application. Currently, Polymers are being employed for such applications but they are not effective due to their low dielectric constant. To enhance the dielectric properties of polymer for energy storage application, it is necessary to add ceramic material of high dielectric constant to synthesize a polymer-ceramic composite. Therefore, a novel attempt has been made to enhance the dielectric properties of the Polydimethylsiloxane (PDMS) polymer by adding (CaMgFex)Fe1-xTi3O12-δ(0 90%), which can make it a potential material for advanced flexible electronic devices, energy storage and biomedical applications.

  5. Radioactivities in returned lunar materials

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Ar37, Ar39, and H3 were measured at four depths (from 0 to 19.5 cm) of the deep core from Apollo 16 and in four other Apollo 16 samples. The Ar37 increased steadily from 40 dpm/kg at the top of the core to 68 dpm/kg at 19-cm depth. The comparison of the Ar37 in the core with that in rock 15555 shows that the solar flare at the time of the Apollo 16 mission was approximately an order of magnitude less intense than solar flares of 24 January 1971 and 2 November 1969, which occurred before the Apollo 14 and 12 missions. The Ar39 activities in the top 19 cm of the deep core varied little with depth. Because the Apollo 16 samples have a much higher Ca content and much lower Fe and Ti contents than do the documented rocks from previous missions, the Ar39 in the Fe, Ca, and K can be determined from Ar39 measurements on lunar material if a Ti cross section is assumed.

  6. Anode materials for lithium ion batteries

    DOEpatents

    Abouimrane, Ali; Amine, Khalil

    2017-04-11

    An electrochemical device includes a composite material of general Formula (1-x)J-(x)Q wherein: J is a metal carbon alloy of formula Sn.sub.zSi.sub.z'Met.sub.wMet'.sub.w'C.sub.t; Q is a metal oxide of formula A.sub..gamma.M.sub..alpha.M'.sub..alpha.'O.sub..beta.; and wherein: A is Li, Na, or K; M and M' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; Met and Met' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; 0

  7. New calibration of Ji - Di clinopyroxene barometer for Eclogites, pyroxenites and peridotites and eclogite - pyroxenite mantle geotherms.

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor; Vishnyakova, Elena

    2010-05-01

    Checking the universe clinopyroxene JD-Di barometer on the experimental system showed that it better to use the separate schemes for the eclogite and peridotite systems. The clinopyroxene barometer based on the internal exchange of Jd-Di components for the Al. It allow using the temperature calculated with the (Krogh, 1988) method for the The barometer was calibrated on the 200 experimental runs for the eclogitic system (Yaxley,Brey,2004; Spandler ea, 2008; Konzett ea, 2008; Hanrahan ea, 2009 and references there in). It reproduces the pressure range to 120 kbar with the r= 0.91 (S=8) for 180 experimental runs. P(Ash2010 Ecl)=0.32 (1-0.215*Na/Al+0.012*Fe/Na)*Kd^3/4*ToK/(1+Fe)*(1+5*Fe)- 35*ln(1273/ToK)*(Al+Ti+2.5Na+1.5Fe3+)+(0.9-xx(2,8))*10+xx(2,9)/xx(2,3)* ToK /200-1.5 P1=(0.00004*P^3-0.0091*P^2+1.3936*P)*1.05 Where KD = Na*Mg/xAlCr*/Ca; XAlCr= Al+Cr+4*Ti-K-(Fe-0.21)*0.75 The tests on the natural associations form the eclogitic xenoliths with and without the diamonds and omphacite diamond inclusions (Taylor ea, 2006; Shatsky ea, 2008; Jacob ea, 2009) have shown very good agreement with the position of the Graphite -Diamond (Kennedy, Kennedy, 1977) boundary and to the conductive geotherms which are close to 34-36mvm-2 geotherms while for the South Africa they are more close to 40mvm-2 geotherms. For the zonal omphacites it produces the range of the nearly equal pressures or more rarely advective paths. The levels of the maximum enrichments in eclogites which are close to 50-60 kabr beneath 360ma Siberian kimberlites coincides with the levels of heating according to the monomineral and polymineral thermobarometry. South Africa eclogite geotherms often split into 2-3 branches: subductional (35) conductive (40) for Paleozoic-Mesozoic mantle lithosphere and the hottest advective close o 45 mv/m-2. For the pyroxenite compositions the barometer was rearranged to by the adding the temperature influence on Al , Ta, Fe exactly in KD as following: P(Ash2010 Per-Pxt)=0.275*(1-0.17*Na/Al+0.0115*Fe/Na)*Kd^3/4*ToK/(1+Fe)* (1+5*Fe*(ToK-600)/50)-35*ln(1273/ToK)*(Al+Ti+2.5Na+1.5Fe3+)+(0.9-xx(2,8))*10+xx(2,9)/xx(2,3)* ToK /300-4*(Fe*33.2-4) -(Al-5.5)*( ToK -1300)/70-( ToK -1200)*0.015 with the second correction P=P*0.65+10+Mg*Al*( ToK -1400)/500 Where KD = Na*Mg/xAlCr*/Ca; XAlCr= Al*((T0-800)/800)**0.25+Cr-K+(4*Ti-0.0125)/(T0-600)*400+(Fe-0.21)*(T0-600)/14000 This equations reproduces the experimental pressures for 300 experimental runs with the R=0.84 and for the best set of the experimental data (Walter, 1999; Taylor ea 1998; Brey Kohler, 1990; 2009) with the E=0.95 (s=7) within the 100 kbar interval. They allow to work with the wide range of the pyroxenite compositions giving the practically coinciding PT parameters with the pressures determined for ilmenites and chromites as well as the (Brey, Kohler, 1900) pressure estimates. The PT parameters reconstructed for the mantle lithosphere beneath > 120 pipes from Yakutia , Baltica, Africa , North America and other world wide kimberlites have shown very good coincidence with the estimates from the other methods of monomineral (Nimis, Taylor, 2000; McGregor, 1974; Ashchepkov ea. 2009 ) and Gar-Opx barometers (Brey, Kohler, 1900; Nickel, Green, 1975). For the garnet and spinel xenoliths of the alkali basalts representing fertile or regenerated peridotites with high Al content of the clinopyroxenes the modified equation allows to determine the pressures together for megacrysts, pyroxeniets and peridotites using the following equation P=0.035*Kd*ToK)/(1+3.5*Fe)- 50*ln(1273/(ToK-100)*(Al+5*Na-Ti+2*Cr) -(Na-0.050)*(ToK-1200)*(Ca-0.85)/7000+5 Where KD = Na*Mg/xAlCr*/Ca; xAlCr= (Al+Si-2)*((ToK-700)/900)^0.35+Cr+Fe3-K +(4*Ti-0.0125)/(ToK-600)*700 +(Fe-0.21)*(ToK-400)/17000 This equations also very good reproduce the experimental runs in the pressure interval from 10 to 80 kbar but better to 50 kbars (R=0.92) (S=5) for 170 experimental runs (Putirka ea, 1996; Fallon ea, 1999; Taylor ea, 1998; Drapper Green, 1997; Lambart ea 2009) in this pressure range.

  8. Evaluation of elemental enrichments in surface sediments off southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Tung; Kandasamy, Selvaraj

    2008-05-01

    Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O{3/T} suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C-S-Fe relationship owing to authigenic precipitation of Fe-Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.

  9. Submicron-scale mineralogy of lithotypes and the implications for trace element associations: Blue Gem coal, Knox County, Kentucky

    DOE PAGES

    Hower, James C.; Berti, Debora; Hochella, Michael F.; ...

    2018-04-16

    Transmission electron microscopy accompanied by energy-dispersive spectroscopy and selected area electron diffraction of density-gradient separates from two lithotypes of the low-ash, low-sulfur Blue Gem coal, eastern Kentucky, revealed an array of previously unrecognized (in this coal, and arguable in most others) sub-micron minerals, some <10 nm in size. The first sample representing the 1.22–1.24 specific gravity fraction of the middle bench contains a mineral identified as a La-, Ce-, Nd-bearing monazite; other minerals with CrFe, CuFeS, FeZn-S, and Pb; and areas, probably comprising agglomerates of several grains, if not several minerals, with concentrations of Mg, Ca, Ti, Fe, Zn, Zr,more » and Mo. The second sample representing the 1.30–1.31 specific gravity fraction of the basal lithotype has aggregates of particles enriched in Mg, Ca, Ti, and Fe. Individual grains not specifically quantified include CrNiMnCuFeS, AgS, and CuS. Detailed investigation of one area (most of the variation within a <4 μm 2 region) demonstrates the presence of greenockite (CdS); minute phases containing NiCoGe and AgCdBi, the latter with a more evident S association than the former; metallic Bi; nisnite (Ni 3Sn); silver cadmium; manganosite (MnO); and siderite. Some minerals, such as the monazite, are most likely of detrital or tuffaceous origin. Many of the other assemblages could be of hydrothermal origin, a hypothesis supported by known regional geochemical and coal rank trends, but not previously demonstrated in mineral assemblages at the 10's of nm scale in this region.« less

  10. Submicron-scale mineralogy of lithotypes and the implications for trace element associations: Blue Gem coal, Knox County, Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hower, James C.; Berti, Debora; Hochella, Michael F.

    Transmission electron microscopy accompanied by energy-dispersive spectroscopy and selected area electron diffraction of density-gradient separates from two lithotypes of the low-ash, low-sulfur Blue Gem coal, eastern Kentucky, revealed an array of previously unrecognized (in this coal, and arguable in most others) sub-micron minerals, some <10 nm in size. The first sample representing the 1.22–1.24 specific gravity fraction of the middle bench contains a mineral identified as a La-, Ce-, Nd-bearing monazite; other minerals with CrFe, CuFeS, FeZn-S, and Pb; and areas, probably comprising agglomerates of several grains, if not several minerals, with concentrations of Mg, Ca, Ti, Fe, Zn, Zr,more » and Mo. The second sample representing the 1.30–1.31 specific gravity fraction of the basal lithotype has aggregates of particles enriched in Mg, Ca, Ti, and Fe. Individual grains not specifically quantified include CrNiMnCuFeS, AgS, and CuS. Detailed investigation of one area (most of the variation within a <4 μm 2 region) demonstrates the presence of greenockite (CdS); minute phases containing NiCoGe and AgCdBi, the latter with a more evident S association than the former; metallic Bi; nisnite (Ni 3Sn); silver cadmium; manganosite (MnO); and siderite. Some minerals, such as the monazite, are most likely of detrital or tuffaceous origin. Many of the other assemblages could be of hydrothermal origin, a hypothesis supported by known regional geochemical and coal rank trends, but not previously demonstrated in mineral assemblages at the 10's of nm scale in this region.« less

  11. Nonstoichiometry of Epitaxial FeTiO(3+delta) Films

    DTIC Science & Technology

    2003-01-01

    nonstoichiometry of the FeTiO3 +8 films was probably produced by cation vacancies and disarrangement of Fe3+ and Ti4 ions, which randomly occupied both interstitial...and substitutional sites of the FeTiO 3 related structure. INTRODUCTION Solid solutions of ot-Fe20 3- FeTiO3 (hematite-ilmenite) series are known to...tried to confirm preparation conditions of stoichiometric FeTiO 3 films. According to a literature on bulk crystal growth of FeTiO3 [5], very low oxygen

  12. Efficient Photocatalytic Degradation of Norfloxacin in Aqueous Media by Hydrothermally Synthesized Immobilized TiO2/Ti Films with Exposed {001} Facets.

    PubMed

    Sayed, Murtaza; Shah, Luqman Ali; Khan, Javed Ali; Shah, Noor S; Nisar, Jan; Khan, Hasan M; Zhang, Pengyi; Khan, Abdur Rahman

    2016-12-22

    In this study, a novel immobilized TiO 2 /Ti film with exposed {001} facets was prepared via a facile one-pot hydrothermal route for the degradation of norfloxacin from aqueous media. The effects of various hydrothermal conditions (i.e., solution pH, hydrothermal time (H T ) and HF concentration) on the growth of {001} faceted TiO 2 /Ti film were investigated. The maximum photocatalytic performance of {001} faceted TiO 2 /Ti film was observed when prepared at pH 2.62, H T of 3 h and at HF concentration of 0.02 M. The as-prepared {001} faceted TiO 2 /Ti films were fully characterized by field-emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM), and X-ray photoelectron spectroscopy (XPS). More importantly, the as-prepared {001} faceted TiO 2 /Ti film exhibited excellent photocatalytic performance toward degradation of norfloxacin in various water matrices (Milli-Q water, tap water, river water and synthetic wastewater). The individual influence of various anions (SO 4 2- , HCO 3 - , NO 3 - , Cl - ) and cations (K + , Ca 2+ , Mg 2+ , Cu 2+ , Na + , Fe 3+ ) usually present in the real water samples on the photocatalytic performance of as-prepared TiO 2 /Ti film with exposed {001} facet was investigated. The mechanistic studies revealed that • OH is mainly involved in the photocatalytic degradation of norfloxacin by {001} faceted TiO 2 /Ti film. In addition, norfloxacin degradation byproducts were investigated, on the basis of which degradation schemes were proposed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin–Indiana–Yale–NOAO 3.5 m telescope. M53 is of interest because previous studies based on the morphology of the cluster’s horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the secondmore » generation (SG) stars. Our sample has an average [Fe/H] = −2.07 with a standard deviation of 0.07 dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na–O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.« less

  14. Iron insertion and hematite segregation on Fe-doped TiO2 nanoparticles obtained from sol-gel and hydrothermal methods.

    PubMed

    Santos, Reginaldo da S; Faria, Guilherme A; Giles, Carlos; Leite, Carlos A P; Barbosa, Herbert de S; Arruda, Marco A Z; Longo, Claudia

    2012-10-24

    Iron-doped TiO(2) (Fe:TiO(2)) nanoparticles were synthesized by the sol-gel method (with Fe/Ti molar ratio corresponding to 1, 3, and 5%), followed by hydrothermal treatment, drying, and annealing. A similar methodology was used to synthesize TiO(2) and α-Fe(2)O(3) nanoparticles. For comparison, a mixture hematite/titania, with Fe/Ti = 4% was also investigated. Characterization of the samples using Rietveld refinement of X-ray diffraction data revealed that TiO(2) consisted of 82% anatase and 18% brookite; for Fe:TiO(2), brookite increased to 30% and hematite was also identified (0.5, 1.0, and 1.2 wt % for samples prepared with 1, 3, and 5% of Fe/Ti). For hematite/titania mixture, Fe/Ti was estimated as 4.4%, indicating the Rietveld method reliability for estimation of phase composition. Because the band gap energy, estimated as 3.2 eV for TiO(2), gradually ranged from 3.0 to 2.7 eV with increasing Fe content at Fe:TiO(2), it can be assumed that a Fe fraction was also inserted as dopant in the TiO(2) lattice. Extended X-ray absorption fine structure spectra obtained for the Ti K-edge and Fe K-edge indicated that absorbing Fe occupied a Ti site in the TiO(2) lattice, but hematite features were not observed. Hematite particles also could not be identified in the images obtained by transmission electron microscopy, in spite of iron identification by elemental mapping, suggesting that hematite can be segregated at the grain boundaries of Fe:TiO(2).

  15. Extraction processes for the production of aluminum, titanium, iron, magnesium, and oxygen and nonterrestrial sources

    NASA Technical Reports Server (NTRS)

    Rao, D. B.; Choudary, U. V.; Erstfeld, T. E.; Williams, R. J.; Chang, Y. A.

    1979-01-01

    The suitability of existing terrestrial extractive metallurgical processes for the production of Al, Ti, Fe, Mg, and O2 from nonterrestrial resources is examined from both thermodynamic and kinetic points of view. Carbochlorination of lunar anorthite concentrate in conjunction with Alcoa electrolysis process for Al; carbochlorination of lunar ilmenite concentrate followed by Ca reduction of TiO2; and subsequent reduction of Fe2O3 by H2 for Ti and Fe, respectively, are suggested. Silicothermic reduction of olivine concentrate was found to be attractive for the extraction of Mg becaue of the technological knowhow of the process. Aluminothermic reduction of olivine is the other possible alternative for the production of magnesium. The large quantities of carbon monoxide generated in the metal extraction processes can be used to recover carbon and oxygen by a combination of the following methods: (1) simple disproportionation of CO,(2) methanation of CO and electrolysis of H2O, and (3) solid-state electrolysis of gas mixtures containing CO, CO2, and H2O. The research needed for the adoption of earth-based extraction processes for lunar and asteroidal minerals is outlined.

  16. Structural, dielectric and impedance characteristics of lanthanum-modified BiFeO3-PbTiO3 electronic system

    NASA Astrophysics Data System (ADS)

    Pradhan, S. K.; Das, S. N.; Bhuyan, S.; Behera, C.; Padhee, R.; Choudhary, R. N. P.

    2016-06-01

    A lanthanum-modified BiFeO3-PbTiO3 binary electronic system has been fabricated by a high-temperature solid-state reaction technique. The structural, dielectric and electrical properties of a single phase of multicomponent system are investigated to understand its ferroelectrics as well as relaxation behavior. The X-ray diffraction structural analysis substantiates the formation of a new stable phase of tetragonal system (with a large c/a ratio 1.23) without any trace of impurity phase. The electrical behavior of the processed material is characterized through impedance spectroscopy in a wide frequency range (1 kHz-1 MHz) over a temperature range of 25-500 °C. It is observed that the substitution of lanthanum-modified PbTiO3 (PT) into BiFeO3 (BFO) reveals enviable multiferroic property which is evident from the ME coefficient measurement and ferroelectric loop. It also reduces the electrical leakage current or tangent loss. The ac conductivity of the solid solution increases with increase in frequency in the low-temperature region. The impedance spectroscopy of the synthesized material reflects the dielectric relaxation of non-Debye type.

  17. Technical and economic aspects of hydrogen storage in metal hydrides

    NASA Technical Reports Server (NTRS)

    Schmitt, R.

    1981-01-01

    The recovery of hydrogen from such metal hydrides as LiH, MgH2, TiH2, CaH2 and FeTiH compounds is studied, with the aim of evaluating the viability of the technique for the storage of hydrogen fuel. The pressure-temperature dependence of the reactions, enthalpies of formation, the kinetics of the hydrogen absorption and desorption, and the mechanical and chemical stability of the metal hydrides are taken into account in the evaluation. Economic aspects are considered. Development of portable metal hydride hydrogen storage reservoirs is also mentioned.

  18. Experimental partitioning of Zr, Ti, and Nb between silicate liquid and a complex noble metal alloy and the partitioning of Ti between perovskite and platinum metal

    NASA Technical Reports Server (NTRS)

    Jurewicz, Stephen R.; Jones, John H.

    1993-01-01

    El Goresy et al.'s observation of Nb, Zr, and Ta in refractory platinum metal nuggets (RPMN's) from Ca-Al-rich inclusions (CAI's) in the Allende meteorite led them to propose that these lithophile elements alloyed in the metallic state with noble metals in the early solar nebula. However, Grossman pointed out that the thermodynamic stability of Zr in the oxide phase is vastly greater than metallic Zr at estimated solar nebula conditions. Jones and Burnett suggested this discrepancy may be explained by the very non-ideal behavior of some lithophile transition elements in noble metal solutions and/or intermetallic compounds. Subsequently, Fegley and Kornacki used thermodynamic data taken from the literature to predict the stability of several of these intermetallic compounds at estimated solar nebula conditions. Palme and Schmitt and Treiman et al. conducted experiments to quantify the partitioning behavior of certain lithophile elements between silicate liquid and Pt-metal. Although their results were somewhat variable, they did suggest that Zr partition coefficients were too small to explain the observed 'percent' levels in some RPMN's. Palme and Schmitt also observed large partition coefficients for Nb and Ta. No intermetallic phases were identified. Following the work of Treiman et al., Jurewicz and Jones performed experiments to examine Zr, Nb, and Ti partitioning near solar nebula conditions. Their results showed that Zr, Nb, and Ti all have an affinity for the platinum metal, with Nb and Ti having a very strong preference for the metal. The intermetallic phases (Zr,Fe)Pt3, (Nb,Fe)Pt3, and (Ti,Fe)Pt3 were identified. Curiously, although both experiments and calculations indicate that Ti should partition strongly into Pt-metal (possibly as TiPt3), no Ti has ever been observed in any RPMN's. Fegley and Kornacki also noticed this discrepancy and hypothesized that the Ti was stabilized in perovskite which is a common phase in Allende CAI's.

  19. A-site- and/or B-site-modified PbZrTiO3 materials and (Pb, Sr, Ca, Ba, Mg) (Zr, Ti, Nb, Ta)O3 films having utility in ferroelectric random access memories and high performance thin film microactuators

    NASA Technical Reports Server (NTRS)

    Bilodeau, Steven (Inventor); Baum, Thomas H. (Inventor); Roeder, Jeffrey F. (Inventor); Chen, Ing-Shin (Inventor)

    2001-01-01

    A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels.

  20. Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals - II. Application to Fe2+ --> Ti4+ charge transfer transitions in oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1987-01-01

    A molecular orbital description, based on Xα-Scattered wave calculations on a (FeTiO10)14− cluster, is given for Fe2+ → Ti4+ charge transfer transitions in minerals. The calculated energy for the lowest Fe2+ → Ti4+ metal-metal charge transfer transition is 18040 cm−1 in reasonable agreement with energies observed in the optical spectra of Fe-Ti oxides and silicates. As in the case of Fe2+ → Fe3+ charge transfer in mixed-valence iron oxides and silicates, Fe2+ → Ti4+ charge transfer is associated with Fe-Ti bonding across shared polyhedral edges. Such bonding results from the overlap of the Fe(t 2g ) and Ti(t 2g ) 3d orbitals.

  1. Presumed Multiple Metasomatism underneath the Colorado Plateau; Decoding from Chemistry and Inclusion/Lamella Mineralogy of Diverse Garnets from the Garnet Ridge, Northern Arizona

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Ogasawara, Y.

    2015-12-01

    Various garnets containing the information on mantle petrology and related metasomatism occur at the Garnet Ridge, Colorado Plateau. The origins of garnets range from deep mantle to shallow continental crust. These garnets were delivered by kimberlitic diatreme of 30 Ma (Smith et al. 2004). We have classified the garnets into 10 groups (A to J, see figure) by naked eye observation, major chemistry, minor Na-Ti-P, inclusion/lamella mineralogy. Among them, groups A to D are of mantle origin, E to G of subducted oceanic crust origin, and H to J of continental crust origin. We summarized results as in the followings. A: Cr and pyrope-rich garnet has Cr2O3(0.8-6.3 wt.%) and inclusions of Ol, Cpx, Opx, Ti-Chu/Chn and carbonates, indicating carbonated garnet lherzolites as host. Cr contents negatively correlates with Na-Ti-P contents and occurrence of exsolved Rt, Ilm and crichtonite. This indicates Cr-rich end-member is the most "primitive" mantle garnet before metasomatism. B: Pyrope-rich reddish brown garnet of peridotitic origins was subdivided into 4 subgroups (B1 to B4, see figure). Compositional range in Ca-Mg-Fe triangle expands to Fe-rich side from group A. Exsolved Na-bearing amphibole and inclusions of Ap, carbonates and fluid were identified. These indicate metasomatism of group A. C: Garnet megacryst is coarse-grained garnet (2-10 cm across) with crystal faces. This garnet has wide chemical variation plotted in the center area of Ca-Mg-Fe triangle. D: Garnet aggregate has similar chemistry of group C and is composed of several grains. Grain boundaries of garnet were recognized by Rt, Ilm and other minerals and oscillatory zonings of Ca, Mg, Fe and Na-Ti-P. Fluid inclusions of groups C and D suggest these garnets might crystalized from fluid. E: Garnet in eclogite and F: Garnet in metasomatized eclogite are xenolith samples (the Fallaron Plate origin?). Aggregate of Zo+Ab contained in group E indicates decomposed precursor lawsonite inclusion. G: Quartz lamella-bearing garnet (relatively high Na2O: 0.03-0.06 wt.%) contains inclusions of Omp and Zrn and oriented lamellae of Qtz, Rt and Ap. These suggest eclogitic origins deeper than groups E and F. Above features in garnets from the Garnet Ridge constrain their formations by multistage and wide range intensity of metasomatisms underneath the Colorado Plateau.

  2. Theoretical studies on the synthesis of SHE 290-302Og (Z=118) using 48Ca, 45Sc, 50Ti, 51V, 54Cr, 55Mn, 58Fe, 59Co and 64Ni induced reactions

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Safoora, V.

    2018-05-01

    Using the phenomenological model for production cross section (PMPC), the production cross sections for the synthesis of isotopes of superheavy element Og ( Z = 118) using the fusion reactions 48Ca+249-254Cf → 297-302Og, 45Sc+247,249Bk → 292,294Og, 50Ti + 242-248,250Cm → 292-298,300Og, 51V+241,243Am → 292,294Og, 54Cr + 238-242,244Pu → 292-296,298Og, 55Mn + 235-237Np → 290-292Og, 58Fe + 232-236, 238U → 290-294,296Og, 59Co + 231Pa → 290Og, and 64Ni + 228-230,232Cm → 292-294,296Og in xn (x=3,4,5) evaporation channel have been systematically studied at energies near and above the Coulomb barrier. We have predicted most suitable projectile-target combinations for the synthesis of isotopes 290-302Og among these reactions. Our calculated evaporation residue (ER) cross section values for the reaction 48Ca + 249Cf → 297Og is in excellent agreement with available experimental values. For the synthesis of Og, among all the reactions mentioned above, the 3n channel cross section (2458 fb) is larger for 48Ca + 251Cf → 299Og; 4n channel cross section (212 fb) is larger for 48Ca + 252Cf → 300Og and 5n channel cross section (34 fb) is larger for 48Ca + 253Cf → 301Og. The second largest 3n channel cross section (1143 fb) is obtained for the reaction, 50Ti + 245Cm → 295Og. Our studies will be useful for the future experiments to synthesize the isotopes of element Og which are not synthesized so far. We have also studied the effect of the use of mass values and shell correction of the Warsaw group which leads to a smaller ER cross section compared to the Moller group.

  3. Microstructural evolution with various Ti contents in Fe-based hardfacing alloys using a GTAW technique

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Chun; Liu, Yi-Chia; Wang, Jia-Siang; Wu, Weite

    2014-07-01

    The aim of this study is to discuss the effect of microstructural development with different Ti contents in Fe-based hardfacing alloys. A series of Fe-Cr-C-Si-Mn-xTi alloy fillers was deposited on SS400 low carbon steel substrate using oscillating gas tungsten arc welding. The microstructure in the Fe-based hardfacing alloy without Ti content addition included: the primary γ, eutectic γ+(Fe,Cr)3C, eutectic γ+(Fe,Cr)2C and martensite. With increasing Ti contents, the microstructures showed the primary TiC carbide, γ phase and eutectic γ+(Fe,Cr,Ti)3C. The amount and size of TiC carbide in the hardfacing layers increased as the Ti content increased. However, the eutectic γ+(Fe,Cr,Ti)3C content decreased as the Ti content increased. According to the results of the hardness test, the lowest hardness value (HRC 54.93) was found with 0% wt% Ti and the highest hardness (HRC 60.29) was observed with 4.87 wt% Ti.

  4. Development of ultrafine Ti-Fe-Sn in-situ composite with enhanced plasticity

    NASA Astrophysics Data System (ADS)

    Mondal, B.; Samal, S.; Biswas, K.; Govind

    2012-01-01

    The present investigation is aimed at developing ultrafine eutectic/dendrite Ti-Fe-Sn in-situ composite with balanced combination of strength and plasticity. It also studies the microstructure evolution in the series of hypereutectic Ti-Fe-Sn ternary alloys. Sn concentration of these alloys has been varied from 0 - 10 atom% in the binary alloy (Ti71Fe29) keeping the Ti concentration fixed. These alloys have been prepared by arc melting under an Ar atmosphere on a water-cooled Cu hearth, which are subsequently suction cast in a split Cu-mold under an Ar atmosphere. Detailed X-ray diffraction (XRD) study shows the presence of TiFe, β-Ti, and Ti3Sn phases. The SEM micrographs reveal that the microstructures consist of fine scale eutectic matrix (β-Ti and TiFe) with primary dendrite phases (TiFe and/or Ti3Sn) depending on concentration of Sn. α -Ti forms as a eutectoid reaction product of β-Ti. The room temperature uniaxial compressive test reveals simultaneous improvement in the strength (1942 MPa) and plasticity (13.1 %) for Ti71Fe26Sn3 ternary alloy. The fracture surface indicates a ductile mode of fracture for the alloy.

  5. Characterization of α-Fe-Free Heteroepitaxial NdFe12- x Ti x Thin-Film Materials with a Novel Cubic Laves Fe2Ti Phase

    NASA Astrophysics Data System (ADS)

    Hadorn, Jason Paul; Hirayama, Yusuke; Ohkubo, Tadakatsu

    2018-01-01

    Thin films with compositions of NdFe12 and NdFe11Ti1 were fabricated on W-buffered MgO(001) substrates of varying roughness. In this study, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the films microstructurally, chemically, and crystallographically. This study revealed successful heteroepitaxial synthesis of the tetragonal NdFe12 and NdFe12- x Ti x phases in the Ti-free and Ti-containing films, respectively, both with surface-normal c-axis orientation. It also revealed the presence of other phases within the magnetic layer. The NdFe12 films contained many α-Fe particles, which preferentially precipitated at locally rough regions of the W-buffer interface. The NdFe11Ti1 film showed the ubiquitous presence of an Fe2Ti phase, which covered most of the buffer thereby preventing the formation of α-Fe. This phase was determined to have a novel Cu2Mg-type cubic Laves ( C15) crystal structure with fourfold interfacial symmetry, good coherency, and a low mismatch with the W-buffer, thus rendering itself as being an ideal interface for the heteroepitaxial synthesis of NdFe12- x Ti x crystals. It is proposed that successful application of a cubic Fe2Ti underlayer on W can contribute to the development of a fabrication strategy for NdFe12 thin films without the presence of soft magnetic α-Fe.

  6. Isospin diffusion in binary collisions of 32S+Ca,4840 and 32S+48Ti at 17.7 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Piantelli, S.; Valdré, S.; Barlini, S.; Casini, G.; Colonna, M.; Baiocco, G.; Bini, M.; Bruno, M.; Camaiani, A.; Carboni, S.; Cicerchia, M.; Cinausero, M.; D'Agostino, M.; Degerlier, M.; Fabris, D.; Gelli, N.; Gramegna, F.; Gruyer, D.; Kravchuk, V. L.; Mabiala, J.; Marchi, T.; Morelli, L.; Olmi, A.; Ottanelli, P.; Pasquali, G.; Pastore, G.

    2017-09-01

    The systems 32S+Ca,4840 and 32S+48Ti at 17.7 MeV/nucleon were investigated with the setup general array for fragment identification and for emitted light particles in dissipative collisions (GARFIELD) plus ring counter (RCo) at Laboratori Nazionali di Legnaro (LNL) of Istituto Nazionale di Fisica Nucleare (INFN). Fusion evaporation (FE), fusion fission (FF), and deep inelastic (DIC) events were identified, also through the comparison with the prediction of a transport model (stochastic mean field, SMF), coupled to GEMINI++ as an afterburner. This work mainly deals with the study of isospin transport phenomena in DIC events. In particular, the isospin diffusion is highlighted by comparing the average isotopic content of the quasiprojectile (QP) remnants observed when the target is the N =Z nucleus 40Ca and when it is the neutron-rich 48Ca. Also, the d /p and t /p ratios for particles forward emitted with respect to the QP were found to increase with increasing N /Z of the target.

  7. Evidence from an Ice Core of a Large Impact Circa 1443 A.D.

    NASA Astrophysics Data System (ADS)

    Abbott, D.; Biscaye, P.; Cole-Dai, J.; Breger, D.

    2005-12-01

    Published data on melt water from the Siple Dome ice core show distinct anomalies at 1443.16 A.D. The Ca value is 111 ppb, over 9 times the next highest Ca value between 850-1760 A.D. The K value is 20 ppb, about 1.4 times the next highest K value. The Ca anomaly may be due to partial dissolution of CaCO3 microfossils from the 24 km Mahuika bolide impact crater on the southern New Zealand shelf. Deep-sea samples of the Mahuika ejecta layer contain >98% carbonate microfossils. The Mahuika impact may have produced tsunami runups of 130 meters in Jervis Bay, Australia. The Australian megatsunami deposits date to 1450±50 A.D. We analyzed the melt water from 8 ice-core samples from the West Antarctic Siple Dome ice core that date from 1440-1448 A.D. The 1443 A.D. level contained a peak in K of 53 ppb as compared to a background of ~6-7 ppb. Ca was high at 26 ppb but this is not as pronounced as reported earlier. We extracted solid material from the melt water. Except for the 1443 A.D. horizon and one fractured grain at the 1442 A.D. level, most samples were barren except for typical dust. At the 1443 A.D. level, we found 5 carbonate microfossils (coccoliths?) from 5 to 20 microns across. Two were round and solid. One microfossil appeared either caught during mitosis or broken during deformation and elongation. Another carbonate microfossil was unbroken, but appeared deformed into a square. We found a Cu grain with a small amount of oxygen. It is most likely a grain of native copper with an oxidized surface. Deformed microfossils and native minerals are both characteristic of bolide impacts. We also found many microcrystalline magnetite cubes, with an average crystal size of 0.3 microns or less. The high magnetic susceptibility of impact ejacta layers is caused by microcrystalline magnetite. We found a grain of conchoidally fractured feldspar ~15 microns long. A semi-quantitive EDAX analysis found 21% Si, 55% O, 9% Al, 5% Na, 3% K, 2% Fe, and 1% Ca (atomic %), well within the range of K-feldspar compositions. Because Fe does not fit into the feldspar structure, its occurrence implies either that the Fe-bearing feldspar is a glass, or that the Fe is in microcracks within the grain. As ice is not Fe-rich, the former is more likely. Because conchoidal fracture is characteristic of glass, this suggests that the feldspar is a glass (maskelynite) derived from an impact onto continental crust. We also found Al Fe oxide, Ti Al oxide, and amphibole. A semi-quantitative EDAX analysis of the latter found 53% O, 20% Si, 5% Na, 4% Al, Mg, and Fe, 3% Ca, and 0.5% K (atomic %) with trace Ti, S and Cl, close to the composition of the alkali amphibole richterite, which forms in contact metamorphosed limestones (skarns). The Al Fe oxide is most likely hercynite, a spinel that forms in contact metamorphic aureoles in silica-poor environments. All mineral grains had distinct edges. We also found radiating, fibrous crystals of a Ca Na silicate. An EDAX analysis of the mineral found 59% O, 13% Ca, 8% Si, 3% Na, and 1% Mg (atomic %). The Ca Na silicate is most likely pectolite (NaCa2Si3O8), which has radiating, fibrous crystals and forms in skarns. The presence of minerals characteristic of contact metamorphism is important as we have found abundant skarn facies minerals in the Mahuika ejecta layer within deep sea sediment. Thus, our data taken together are most consistent with an impact ejecta layer within the Siple Dome ice core that comes from the Mahuika impact event about 4044 kilometers away; providing a well-constrained date for the event around 1443 A.D.

  8. Effects of cation contaminants in conductive TiO2 ceramics

    NASA Astrophysics Data System (ADS)

    Yan, M. F.; Rhodes, W. W.

    1982-12-01

    Ten cation contaminants, namely Al, Ga, Co, Fe, Mg, Zn, Zr, Ca, Sr, and Ba were investigated for their effects on the electrical properties, microstructures, and discoloration of conductive TiO2 ceramics. It was found that Al, Ga, Co, Fe, and Mg cause discoloration and increase the electrical resistivity by a factor of 104 to 106 in Nb-doped TiO2 ceramics. The other dopants do not introduce such changes in TiO2. The electrical properties, microstructures, and discoloration were measured in specimens of AlxNb0.007Ti0.993-xO2 with 0≤x≤0.01. When the Al content exceeds a critical value, ranging from 0.48% at 1400 °C to 0.25% at 1200 °C, the electrical resistivities and grain size increase rapidly, and the specimen is discolored from the original black to an ivory white color. Color boundary migration induced by Al diffusion in Nb-doped TiO2 was quantitatively measured. From the kinetics of the boundary migration, the Al diffusivity (D) was calculated to be D=2.67 exp(-53.3 kcal/mole/RT) cm2/s in the temperature range of 1200 to 1400 °C. The rapid diffusion of the small cations, namely Al, Ga, Co, Fe, and Mg, results from an interstitial diffusion mechanism. However, other cations, having a radius larger than the interstitial channel (˜0.77 Å radius), cannot diffuse by this mechanism. Defect reactions are proposed to explain the increase in the electrical resistivity and microstructural changes due to Al diffusion. These defect reactions also show that the problem of acceptor contamination cannot be avoided by adding an excess quantity of donor dopant if the solubility of the donor is much less than that of the acceptor contaminant.

  9. Enhancing the photocatalytic degradation of Fe-Ti over SiO2 nanocomposite material for paraquat removal

    NASA Astrophysics Data System (ADS)

    Kruanetr, Senee; Wanchanthuek, Ratchaneekorn

    2018-05-01

    The effect of Fe and Ti loaded over SiO2 (called FeTi/SiO2) in paraquat degradation was studied for both the catalytic activity and the catalyst surface properties. Sufficient characterization techniques were used to obtain the physical and chemical properties of the FeTi/SiO2 system, such as the adsorption-desorption isotherm, surface area and porous structure, XRD diffraction, FTIR spectroscopy, UV–vis diffuse reflection spectrometry and XPS spectroscopy. The catalytic activity in paraquat degradation studies showed that the bimetallic Fe-Ti over SiO2 had higher activity than the monometallic of either Fe or Ti over SiO2 and also the order of the Fe and Ti loading was the significant parameter affecting the activity. The XPS showed that the level of Fe3+ over the catalyst was related to the obtained activity. Moreover, the optimum Fe:Ti ratio in the FeTi/SiO2 system was 1:1 (by weight). Finally, the effect of the support pretreatment (SiO2 pretreatment) was studied and showed a negative effect on the expressed activity.

  10. FeOx-TiO2 Film with Different Microstructures Leading to Femtosecond Transients with Different Properties: Biological Implications under Visible Light

    PubMed Central

    Rtimi, Sami; Pulgarin, Cesar; Nadtochenko, Victor A.; Gostev, Fedor E.; Shelaev, Ivan V.; Kiwi, John

    2016-01-01

    This study presents the first report addressing the effect of FeOx-TiO2 films microstructure on the transients detected by fast spectroscopy related to the long-range bacterial inactivation performance. The different fast kinetic femtosecond transient spectroscopy is reported for each FeOx+TiO2 microstructure. The lifetime of the short transient-species and the oxidative intermediate radicals generated under light were identified. Co-sputtered FeOx-TiO2 on polyethylene films presenting random distribution for both oxides were compared with sequentially sputtered FeOx/TiO2 films made up only by FeOx in the topmost layers. The ratio FeOx:TiO2 was optimized to attain the highest photo-conversion. By X-ray fluorescence, the Fe:Ti ration was found to be ~1.4 in the film bulk and by XPS-etching a ratio of 4:1 was found on the photocatalyst top-most layers. For co-sputtered FeOx-TiO2-PE films, the FeOx-TiO2 heterojunction led to electron injection from the FeOx to lower-lying TiO2 trapping states. The film optical properties, particle size, roughness, hydrophobic-hydrophilic shift and temporal evolution of the transient redox states were characterized in detail. Films with different microstructure led to different antibacterial activity. This suggests that the FeOx-TiO2-PE microstructure and not the position of the potential energy level of the semiconductors FeOx and TiO2 control the charge transfer under light irradiation. PMID:27443505

  11. FeOx-TiO2 Film with Different Microstructures Leading to Femtosecond Transients with Different Properties: Biological Implications under Visible Light.

    PubMed

    Rtimi, Sami; Pulgarin, Cesar; Nadtochenko, Victor A; Gostev, Fedor E; Shelaev, Ivan V; Kiwi, John

    2016-07-22

    This study presents the first report addressing the effect of FeOx-TiO2 films microstructure on the transients detected by fast spectroscopy related to the long-range bacterial inactivation performance. The different fast kinetic femtosecond transient spectroscopy is reported for each FeOx+TiO2 microstructure. The lifetime of the short transient-species and the oxidative intermediate radicals generated under light were identified. Co-sputtered FeOx-TiO2 on polyethylene films presenting random distribution for both oxides were compared with sequentially sputtered FeOx/TiO2 films made up only by FeOx in the topmost layers. The ratio FeOx:TiO2 was optimized to attain the highest photo-conversion. By X-ray fluorescence, the Fe:Ti ration was found to be ~1.4 in the film bulk and by XPS-etching a ratio of 4:1 was found on the photocatalyst top-most layers. For co-sputtered FeOx-TiO2-PE films, the FeOx-TiO2 heterojunction led to electron injection from the FeOx to lower-lying TiO2 trapping states. The film optical properties, particle size, roughness, hydrophobic-hydrophilic shift and temporal evolution of the transient redox states were characterized in detail. Films with different microstructure led to different antibacterial activity. This suggests that the FeOx-TiO2-PE microstructure and not the position of the potential energy level of the semiconductors FeOx and TiO2 control the charge transfer under light irradiation.

  12. FeOx-TiO2 Film with Different Microstructures Leading to Femtosecond Transients with Different Properties: Biological Implications under Visible Light

    NASA Astrophysics Data System (ADS)

    Rtimi, Sami; Pulgarin, Cesar; Nadtochenko, Victor A.; Gostev, Fedor E.; Shelaev, Ivan V.; Kiwi, John

    2016-07-01

    This study presents the first report addressing the effect of FeOx-TiO2 films microstructure on the transients detected by fast spectroscopy related to the long-range bacterial inactivation performance. The different fast kinetic femtosecond transient spectroscopy is reported for each FeOx+TiO2 microstructure. The lifetime of the short transient-species and the oxidative intermediate radicals generated under light were identified. Co-sputtered FeOx-TiO2 on polyethylene films presenting random distribution for both oxides were compared with sequentially sputtered FeOx/TiO2 films made up only by FeOx in the topmost layers. The ratio FeOx:TiO2 was optimized to attain the highest photo-conversion. By X-ray fluorescence, the Fe:Ti ration was found to be ~1.4 in the film bulk and by XPS-etching a ratio of 4:1 was found on the photocatalyst top-most layers. For co-sputtered FeOx-TiO2-PE films, the FeOx-TiO2 heterojunction led to electron injection from the FeOx to lower-lying TiO2 trapping states. The film optical properties, particle size, roughness, hydrophobic-hydrophilic shift and temporal evolution of the transient redox states were characterized in detail. Films with different microstructure led to different antibacterial activity. This suggests that the FeOx-TiO2-PE microstructure and not the position of the potential energy level of the semiconductors FeOx and TiO2 control the charge transfer under light irradiation.

  13. Assessment of spatial variability of heavy metals in Metropolitan Zone of Toluca Valley, Mexico, using the biomonitoring technique in mosses and TXRF analysis.

    PubMed

    Zarazúa-Ortega, Graciela; Poblano-Bata, Josefina; Tejeda-Vega, Samuel; Ávila-Pérez, Pedro; Zepeda-Gómez, Carmen; Ortiz-Oliveros, Huemantzin; Macedo-Miranda, Guadalupe

    2013-01-01

    This study is aimed at assessing atmospheric deposition of heavy metals using the epiphytic moss genera Fabronia ciliaris collected from six urban sites in the Metropolitan Zone of the Toluca Valley in Mexico. The concentrations of K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr, and Pb were determined by total reflection X-ray fluorescence technique. Results show that the average metal concentration decrease in the following order: Fe (8207 mg/Kg) > Ca (7315 mg/Kg) > K (3842 mg/Kg) > Ti (387 mg/Kg) > Mn, Zn (191 mg/Kg) > Sr (71 mg/Kg) > Pb (59 mg/Kg) > Cu, V (32 mg/Kg) > Cr (24 mg/Kg) > Rb (13 mg/Kg) > Ni (10 mg/Kg). Enrichment factors show a high enrichment for Cr, Cu, Zn, and Pb which provides an evidence of anthropogenic impact in the industrial and urban areas, mainly due to the intense vehicular traffic and the fossil fuel combustion. Monitoring techniques in mosses have proved to be a powerful tool for determining the deposition of heavy metals coming from diverse point sources of pollution.

  14. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption

    PubMed Central

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%–95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors. PMID:27455263

  15. Trace elemental analysis in cancer-afflicted tissues of penis and testis by PIXE technique

    NASA Astrophysics Data System (ADS)

    Naga Raju, G. J.; John Charles, M.; Bhuloka Reddy, S.; Sarita, P.; Seetharami Reddy, B.; Rama Lakshmi, P. V. B.; Vijayan, V.

    2005-04-01

    PIXE technique was employed to estimate the trace elemental concentrations in the biological samples of cancerous penis and testis. A 3 MeV proton beam was employed to excite the samples. From the present results it can be seen that the concentrations of Cl, Fe and Co are lower in the cancerous tissue of the penis when compared with those in normal tissue while the concentrations of Cu, Zn and As are relatively higher. The concentrations of K, Ca, Ti, Cr, Mn, Br, Sr and Pb are in agreement within standard deviations in both cancerous and normal tissues. In the cancerous tissue of testis, the concentrations of K, Cr and Cu are higher while the concentrations of Fe, Co and Zn are lower when compared to those in normal tissue of testis. The concentrations of Cl, Ca, Ti and Mn are in agreement in both cancerous and normal tissues of testis. The higher levels of Cu lead to the development of tumor. Our results also support the underlying hypothesis of an anticopper, antiangiogenic approach to cancer therapy. The Cu/Zn ratios of both penis and testis were higher in cancer tissues compared to that of normal.

  16. Measurement of trace elements in tree rings using the PIXE method

    NASA Astrophysics Data System (ADS)

    Aoki, Toru; Katayama, Yukio; Kagawa, Akira; Koh, Susumu; Yoshida, Kohji

    1998-03-01

    Standard materials were prepared in order to calculate element concentrations in tree samples using the particle induced X-ray emission (PIXE) method. Five standard solutions (1) Ti, Fe, Cu, As, Rb, Sr; (2) Ca, V, Co, Zn, As, Rb; (3) Ti, Mn, Ni, As, Sr; (4) K, Mn, Co, As, Rb, Sr; and (5) Ca, Mn, Cu, As, Rb, Sr, were added to filter papers. The dried filter papers were used as standard samples. Pellets of Pepperbush leaves (National Institute for Environmental Studies (NIES)) and Peach leaves (National Institute of Standards and Technology (NIST)) were used as references. The peak counts of Ca, Mn, Cu, Zn, Rb, and Sr in samples taken from a kaki ( Diospros kaki Thunb.) were measured and the concentrations (ppm) of the elements were calculated using the yield curve obtained from the standard filter papers. The concentrations of Mn, Zn, Rb, and Ca were compared with the data obtained from a separate INAA analysis. Concentrations of Mn, Zn, and Ca obtained by both methods were almost the same, but the concentrations of Rb differed slightly. The amounts of trace elements in samples taken from a sugi ( Cryptomeria japonica D. Don) were also measured.

  17. Phase Constituents and Microstructure of Ti3Al/Fe3Al + TiN/TiB2 Composite Coating on Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Li, Jianing; Chen, Chuanzhong; Zhang, Cuifang

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.

  18. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. II. EXPANDING THE METALLICITY RANGE FOR OLD CLUSTERS AND UPDATED ANALYSIS TECHNIQUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew

    2017-01-10

    We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ∼0.1 dex for GCs with metallicities as high as [Fe/H] = −0.3, but the abundances measured for more metal-rich clustersmore » may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na i, Mg i, Al i, Si i, Ca i, Ti i, Ti ii, Sc ii, V i, Cr i, Mn i, Co i, Ni i, Cu i, Y ii, Zr i, Ba ii, La ii, Nd ii, and Eu ii. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe i, Ca i, Si i, Ni i, and Ba ii. The elements that show the greatest differences include Mg i and Zr i. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements.« less

  19. Iron deposition as acidic groundwater encounters carbonates in the alluvium of Pinal Creek, Arizona, U.S.A.

    USGS Publications Warehouse

    Lind, Carol J.; Oscarson, R.L.

    1997-01-01

    In a column experiment, acidic groundwater from Pinal Creek Arizona, a Cu mining area, was eluted through a composited alluvial sample obtained from a core that had been removed from a well downgradient of the acidic groundwater. The minerals present in typical grains and flakes in the alluvium before and after the elution were determined by X-ray diffraction (XRD), scanning electron microscopy, and energy dispersive multichannel analyses (EDX). The concentrations of Fe, Ti, Mn, Si, Al, Na, Ca, K, Mg and S in these grains and flakes and in their microcrystalline surface coatings were measured by EDX. In addition to magnetite, hematite, and Fe-Ti oxides, Fe was most concentrated in micas (especially biotite-like flakes) and in the microcrystalline coatings. The measured elements in these microcrystalline coatings were primarily K, Fe, Al, and Si. The microcrystalline coatings on the mica flakes also contained Mg. The approximate 1:3 Mg:Si atomic ratios (ARs) of the biotite-like flakes both before and after the elution would suggest that the Fe deposited during the elution had not substituted for Mg in these flakes. As a result of the elution, assuming no loss of Si, the averaged recorded Fe:Si AR of the microcrystalline coatings increased from (0,46 to 0.58):3.00. Iron deposition on the typical grains and flakes may relate to the presence of Fe in the particle on which it is deposited or to the presence of Fe in the microcrystalline surface coatings before elution. The data here are not sufficient for a statistical evaluation, but elution caused the following trends: (1) The Fe:Si A R increased in the (K,Fe,Al,Si)-microcrystalline surface coatings; (2) For the mica flakes, there was more than a 2-fold increase in the Fe:Si AR for the microcrystalline surface coatings of the Fe-rich biotite-like flakes but no measurable increase of the Fe:Si AR for the microcrystalline surface coatings of the muscovite-like flakes that contained 3-5 times less Fe; (3) Also for the biotite-like flakes, the increase in Fe:Si AR was greater in the flakes that had a higher Fe:Si AR; (4) The Fe deposition on the Fe-rich microcrystalline surface coatings of the feldspar was much greater than on the Fe-poor, beige quartz and feldspar grains that, prior to elution, had only CaSO4 microcrystalline coatings; and (5) No Fe was deposited on Fe-poor grains with no microcrystalline surface coating.

  20. Elephant Moraine 87521 - The first lunar meteorite composed of predominantly mare material

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.; Kallemeyn, Gregory W.

    1989-01-01

    This paper presents the results of trace-element analyses and detailed petrography obtained for the Elephant Moraine 87521 meteorite (EET87521) found recently in Antarctica. Its high values found for the Fe/Mn ratio and the bulk-Co content indicate that the EET87521 is not, as was originally classified, a eucrite. Moreover, its low Ga/Al and Na/Ca ratios exclude the possibility that it is an SNC meteorite. These and other characteristics (e.g., a very low Ti content) of the EET87521 suggest its affinity with very-low-Ti high-alumina varieties of lunar mare basalt.

  1. Further characterization of spectral features attributable to titanium on the moon

    NASA Technical Reports Server (NTRS)

    Burns, R. G.; Parkin, K. M.; Loeffler, B. M.; Leung, I. S.; Abu-Eid, R. M.

    1976-01-01

    The following transitions are observed in the electronic absorption spectra of lunar titanaugites: Fe(2+) spin-allowed and spin-forbidden crystal field; Ti(3+) spin allowed and Jahn-Teller split crystal field; Ti(3+)-Ti(4+) CT; Fe(2+)-Ti(4+) CT; and O(2-)-Fe(2+), Ti(3+), Ti(4+) CT. Of these, the transitions involving Ti(3+) are unique to lunar or nonferric-bearing titanaugites. All titanaugites have the Fe(2+) crystal field and Fe(2+)-Ti(4+) CT transitions in common. These features in the diffuse reflectance spectra of lunar materials give rise to the '1.0 band' and to the observed absorption around 0.5-0.6 micron, respectively. Since regolith contains a variety of phases with coexisting Fe(2+), Ti(3+), and Ti(4+) ions, several metal-metal charge transfer processes are possible.

  2. High calcination of ferroelectric BaTiO₃ doped Fe nanoceramics prepared by a solid-state sintering method.

    PubMed

    Samuvel, K; Ramachandran, K

    2015-07-05

    This study examined the effects of the combination of starting materials on the properties of solid-state reacted BaTiO3 using two different types of BaCO3 and TiO2. In addition, the effect of mechanochemical activation by high energy milling and the Ba/Ti molar ratio on the reaction temperature, particle size and tetragonality were investigated. The TiO2 phase and size plays a major role in increasing the reaction temperature and particle size. With the optimum selection of starting materials and processing conditions, BaTiO3 with a particle size <200 nm (Scherrer's formula) and a tetragonality c/a of approximately 1.007 was obtained. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. From the X-ray diffraction analysis it was found that the newly obtained BaTi0.5Fe0.5O3 ceramics consist of two chemically different phases. The electric modulus M∗ formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the ε∗(ω) representation. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in solid state routed samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Abiotic and biotic responses to Milankovitch-forced megamonsoon and glacial cycles recorded in South China at the end of the Late Paleozoic Ice Age

    NASA Astrophysics Data System (ADS)

    Fang, Qiang; Wu, Huaichun; Hinnov, Linda A.; Tian, Wenqian; Wang, Xunlian; Yang, Tianshui; Li, Haiyan; Zhang, Shihong

    2018-04-01

    At the end of the Late Paleozoic Ice Age (LPIA) from late Early Permian to early Late Permian, the global climate was impacted by a prevailing megamonsoon and Gondwanan deglaciation. To better understand the abiotic and biotic responses to Milankovitch-forced climate changes during this time period, multi-element X-ray fluorescence (XRF) geochemistry analyses were conducted on 948 samples from the late Early-late Middle Permian Maokou Formation at Shangsi, South China. The Fe/Ti, S/Ti, Ba/Ti and Ca time series, which were calibrated with an existing "floating" astronomical time scale (ATS), show the entire suite of Milankovitch rhythms including 405 kyr long eccentricity, 128 and 95 kyr short eccentricity, 33 kyr obliquity and 20 kyr precession. Spectral coherency and cross-phase analysis reveals that chemical weathering (monitored by Fe/Ti) and upwelling (captured by S/Ti and Ba/Ti) are nearly antiphase in the precession band, which suggests a contrast between summer and winter monsoon intensities. Strong obliquity signal in the Ba/Ti series is proposed to derive from changes in thermohaline circulation intensity from glaciation dynamics in southern Gondwana. The abundance of foraminifer, brachiopod and ostracod faunas within the Maokou Formation were mainly controlled by the 1.1 Myr obliquity modulation cycle. The obliquity-forced high-nutrient and oxygen-depleted conditions generally produced a benthic foraminifer bloom, but threatened the brachiopod and ostracod faunas.

  4. High calcination of ferroelectric BaTiO3 doped Fe nanoceramics prepared by a solid-state sintering method

    NASA Astrophysics Data System (ADS)

    Samuvel, K.; Ramachandran, K.

    2015-07-01

    This study examined the effects of the combination of starting materials on the properties of solid-state reacted BaTiO3 using two different types of BaCO3 and TiO2. In addition, the effect of mechanochemical activation by high energy milling and the Ba/Ti molar ratio on the reaction temperature, particle size and tetragonality were investigated. The TiO2 phase and size plays a major role in increasing the reaction temperature and particle size. With the optimum selection of starting materials and processing conditions, BaTiO3 with a particle size <200 nm (Scherrer's formula) and a tetragonality c/a of approximately 1.007 was obtained. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. From the X-ray diffraction analysis it was found that the newly obtained BaTi0.5Fe0.5O3 ceramics consist of two chemically different phases. The electric modulus M∗ formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the ε∗(ω) representation. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in solid state routed samples.

  5. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan; Zhang, Weiguo; Qian, Yu

    2016-06-15

    This study investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn inPhragmites australisroot system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils.Phragmites australissamples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in the root epidermis and thatmore » other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  6. Metallic elements occurrences within metallic fragments in the municipal waste incineration bottom ash

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr; Kasina, Monika; Michalik, Marek

    2017-04-01

    Bottom ash (BA) from municipal solid waste incineration (MSWI) is composed of grainy ash material, residual components and metallic fragments (from few µm up to 3-5 cm). Its mineral and chemical composition is related to the composition of the waste stream in the incinerator operational area. Wide use of thermal techniques in management of solid waste makes important the studies on valuable components and their distribution within the material in terms of their further processing. By using various valorization or extraction techniques it is possible to extend the range of its possible further application. To investigate metallic elements distribution within metallic fragments of the MSWI BA material produced in municipal waste incineration plant in Poland were collected in 2015 and 2016. BA and its components were investigated using spectroscopic methods of chemical analysis: ICP-OES, ICP-MS, LECO and EDS (used for microanalysis during SEM observations). BA is a material rich in Si (22.5 wt%), Ca (13.4 wt%), Fe (4 wt%), Al (5.2 wt%) and Na (3.5 wt%), composed of equal part of amorphous (silicate glass dominated) and crystalline phase (rich in silicates, aluminosilicates, oxides of non- and metallic elements and sulphates). The content of metallic elements (Al, Fe, Mg, Ti, Mn, Cr, Ni, Sc, Mo, Cu, Pb, Zn, Sn) is 11.5 wt% with domination of Al (5.2 wt%) and Fe (4 wt%) and elevated values of Mg (1 wt%), Ti (0.54 wt%), Cu (0.26 wt%) and Zn (0.27 wt%) (Kowalski et al., 2016). They were mostly concentrated in the form of metallic fragments, mainly as metallic inclusions in the size of 1-20 µm and separated metallic grains in the size of 50-300 µm. Metallic fragments present in the BA are characterized by their composition heterogeneity and various oxygen content. Fragments are rarely composed of single metallic element and usually in their composition up to few main elements dominated over others. The most common were Fe-, Al- and Zn-rich fragments forming respectively 70%, 15% and 5% of the total amount of fragments. Fe occurred mainly as component of metallic inclusions and separate grains. Al was mostly present in metallic fragments on grains boundaries and also and as separate grains (often oxidised), moreover Al was important component of aluminosilicates and amorphous phase. Zn-rich metallic fragments were mostly in the form of separate grains. In complex composition of metallic fragments some regularities in elements co-occurrences were observed: Fe often co-existed with Si, Ca, P, Al and Ti; Al co-occurred with Fe, Si and Ca; Zn co-existed with Ca, Al and Si. Forms and composition of metallic fragments allows to evaluate them as potential polymetallic resource, however an economically reasonable extraction techniques must be applied. Acknowledgment Research was funded by Polish National Science Centre (NCN). Scientific grant No. UMO-2014/15/B/ST10/04171. Reference Kowalski, P.R., Kasina, M. and Michalik M.: Metallic elements fractionation in municipal solid waste incineration residues, Energy Procedia, 97, 31-36, doi: 10.1016/j.egypro.2016.10.013, 2016.

  7. The fate of olivine in the lower crust: Pseudomorphs after olivine in coronitic metagabbro from the Grenville Orogen, Ontario

    NASA Astrophysics Data System (ADS)

    Kendrick, J. L.; Jamieson, R. A.

    2016-09-01

    Orthopyroxene-oxide symplectites after olivine are among the most enigmatic features of corona assemblages in metagabbros. Two coronitic metagabbro bodies from the Algonquin suite in the Grenville Orogen, Ontario, contain exceptionally well preserved orthopyroxene + Fe-Ti oxide symplectite formed during prograde Ottawan (ca. 1060 Ma) granulite-facies metamorphism. Based on textural evidence, we propose a new hypothesis for the formation of these symplectites. Under oxidising conditions associated with fluid infiltration, magmatic olivine and ilmenite underwent a coupled reaction whereby magnetite produced by oxidation of olivine replaced adjacent igneous ilmenite. Ilmenite was re-precipitated as a fine-grained intergrowth with orthopyroxene and some magnetite in the former olivine sites. This hypothesis is supported by textural evidence showing partial replacement of magmatic ilmenite by magnetite and a close spatial association between magmatic oxides and orthopyroxene + Fe-Ti oxide symplectite, which locally radiates from ilmenite into olivine. Measured orthopyroxene/oxide ratios in the symplectite (20-35% oxides) agree with the ratio predicted from the proposed reaction (ca. 30%). Coronas and pseudomorphs formed during high-grade metamorphism, with increasing fO2 interpreted to result from fluid infiltration at near-peak conditions of ca. 13 kbar, 800 °C. The same samples contain red-brown fine-grained aggregates interpreted as iddingsite pseudomorphs after olivine. Raman spectroscopy suggests that the iddingsite consists largely of amorphous silica and Fe-hydroxide; textural evidence indicates that it formed by late-stage oxidation and hydration of olivine that survived earlier metamorphism. The unusual co-occurrence of granulite-facies pseudomorphs after olivine with an alteration product formed at near-surface conditions indicates that some olivine may survive protracted high-grade metamorphism in environments where fluid access is limited.

  8. Interpreting Assemblages with Titanite (Sphene): It Does not have to be Greek to You.

    NASA Technical Reports Server (NTRS)

    Xirouchakis, Dimitrios M.; Lindsley, Donald H.; McKay, Gordon A. (Technical Monitor)

    2000-01-01

    Assemblages with titanite, pyroxene(s), olivine, ilmenite, magnetite, and quartz can be used to constrain the intensive and compositional variables that operate during crystallization. Such assemblages are relatively rare in metamorphic rocks, but they are more common in igneous rocks and more frequently reported in plutonic than volcanic rocks. We used the program QUILF, enhanced with thermodynamic data for titanite, to compute stable reactions among titanite (CaTiOSiO4), Fe-Mg-Ti ilmenite and magnetite (hereafter ilmenite and magnetite), Ca-Mg-Fe pyroxenes and olivine, and quartz, and to evaluate some of the factors that control titanite stability. Calculations at 1, 3, and 6 Kbar and 650, 850, 1100 0 C, in the system CaO - MgO - FeO Fe2O3 - TiO2 - SiO2, suggest that the reactions: Augitc + Ilmenite = Titanite + Magnetite + Quartz and Augite + Ilmenite + Quartz = Titanite + Orthopyroxene, impose well defined fugacity of O2, alpha(sub SiO2), , and compositional restrictions to the assemblages: (1) Titanite + Magnetite + Quartz, (2) Titanite + Orthopyroxene, (3) Augite + Ilmenite, and consequently titanite stability. From our calculations in this system we can draw the following general conclusions: (1) The assemblage Titanite + Magnetite + Quartz is always a good indicator of relatively high fugacity of O2, and it is likely more common in relatively iron-rich bulk compositions and for decreasing temperature and pressure conditions. (2) At high temperatures (>= 650 C) titanite is not stable in quartz-saturated rocks that contain the assemblage Orthopyroxene + Augite + Ilmenite + Magnetite. (3) In quartz-saturated rocks the coexistence of titanite and magnetite with either orthopyroxene or olivine requires a confluence of conditions relating bulk composition, fugacity of O2, and slow cooling. Thus, such assemblages must be rare. (4) Regardless of T and fugacity of O2 conditions, and bulk-composition, titanite is not stable in quartz-absent rocks that contain Olivine + Orthopyroxene + Augite + Ilmenite + Magnetite. Decreasing temperature and pressure conditions appear to favor titanite crystallization, thus, it is not unsurprising that titanite is frequently observed in slowly cooled rocks, albeit, in association with amphibole. We argue that the titanite + amphibole association is likely favored by high water activity, regardless of oxygen fugacity. Because water activity increases during crystallization of a pluton, the association titanite + amphibole, and consequently titanite, is likely to be more common in plutonic rocks than in volcanic rocks.

  9. In situ synthesis of Fe-based alloy clad coatings containing TiB2-TiN-(h-BN)

    NASA Astrophysics Data System (ADS)

    Jiang, Shao-qun; Wang, Gang; Ren, Qing-wen; Yang, Chuan-duo; Wang, Ze-hua; Zhou, Ze-hua

    2015-06-01

    Fe-based alloy coatings containing TiB2-TiN-(h-BN) were synthesized in situ on Q235 steel substrates by a plasma cladding process using the powders of Fe901 alloy, Ti, and h-BN as raw materials. The effects of Ti/h-BN mass ratio on interfacial bonds between the coating and substrate along with the microstructures and microhardnesses of the coatings were investigated. The results show that the Ti/h-BN mass ratio is a vital factor in the formation of the coatings. Free h-BN can be introduced into the coatings by adding an excess amount of h-BN into the precursor. Decreases in the Ti/h-BN mass ratio improve the microstructural uniformity and compactness and enhance the interfacial bonds of the coatings. At a Ti/h-BN mass ratio of 10/20, the coating is free of cracks and micropores, and mainly consists of Fe-Cr, Fe3B, TiB2, TiN, Ti2N, TiB, FeN, FeB, Fe2B, and h-BN phases. Its average microhardness in the zone between 0.1-2.8 mm from the coating surface is about Hv0.2 551.5.

  10. Effect of Thermal Processes on the Electrical and Optical Properties of Fe2TiO5 Ceramics

    NASA Astrophysics Data System (ADS)

    Fajarin, R.; Widyastuti; Baqiya, M. A.; Putri, I. Y. S.

    2017-05-01

    Pseudobrookite (Fe2TiO5) is one of the Fe-Ti oxides that have been commonly studied. It is the most stable phase among the Fe-titanates. The multiferroic properties of Fe2TiO5 make the material can be used as a potential candidate for new applications due to the combination of semiconducting, magnetic, dielectric, and optical properties. In this research, Fe2TiO5 ceramics were synthesized using mechanical milling method for 7 h with various temperatures of 1100 °C, 1200 °C, and 1300 °C. Scanning electron microscopy (SEM) observation and x-ray diffraction (XRD) measurements were performed to analyze the microstructures and crystal structures of the Fe2TiO5 ceramics. In order to investigate the band gap of the Fe2TiO5, the UV-Vis Diffuse Reflectance measurements were conducted. It has been found that the Fe2TiO5 ceramic can be applied as a promising candidate for semiconducting devices in which the electrical conductivity and the band gap of the Fe2TiO5 ceramic were 1.73 × 10-7 Ω-1.cm-1 and 1.71 eV, respectively.

  11. Chemical looping combustion: A new low-dioxin energy conversion technology.

    PubMed

    Hua, Xiuning; Wang, Wei

    2015-06-01

    Dioxin production is a worldwide concern because of its persistence and carcinogenic, teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to traditional solid waste incineration developed to reduce the dioxin production. Based on the equilibrium composition of the Deacon reaction, pyrolysis gas oxidized by seven common oxygen carriers, namely, CuO, NiO, CaSO4, CoO, Fe2O3, Mn3O4, and FeTiO3, is studied and compared with the pyrolysis gas directly combusted by air. The result shows that the activity of the Deacon reaction for oxygen carriers is lower than that for air. For four typical oxygen carriers (CuO, NiO, Fe2O3, and FeTiO3), the influences of temperature, pressure, gas composition, and tar on the Deacon reaction are discussed in detail. According to these simulation results, the dioxin production in China, Europe, the United States, and Japan is predicted for solid waste disposal by the pyrolysis-chemical looping combustion process. Thermodynamic analysis results in this paper show that chemical looping combustion can reduce dioxin production in the disposal of solid waste. Copyright © 2015. Published by Elsevier B.V.

  12. Impedance of (CoFeZr)0,559(PbZrTiO3)0,441 nanocomposite annealed in a tubular furnace

    NASA Astrophysics Data System (ADS)

    Boiko, Oleksandr

    2016-12-01

    The objective of the present research has been to determine the influence of annealing in tubular furnace on capacity of (CoFeZr)0,559(PbZrTiO3)0,441 nanocomposite produced by ion beam sputtering using combined argon and oxygen beam. The phase angle of the nanocomposite directly after preparing demonstrates negative values, which indicates the capacitive type of electrical conductivity of the material. The rapid increase of conductivity when frequency increases indicates hopping conductance in the material. The additional polarization of the nanocomposite occurs with its extinction in the area of high frequencies. The electrons relaxation time has been defined as of ca τ = 1,25×10-4 s. Annealing of nanocomposite sample x = 55.9 at.% at temperature Ta = 548 K causes phase angle obtains positive values in high frequency area, which indicates the change of conduction type from capacitive to inductive. The voltage resonance phenomenon occurs in the material. Annealing in temperature of Ta = 648 K causes changes of the nanomaterials capacity. The additional oxidization of CoFeZr metallic phase nanograins which provides to the potential barrier formation around potential wells (CoFeZr nanoparticles).

  13. Timescales between mantle metasomatism and kimberlite ascent indicated by diffusion profiles in garnet crystals from peridotite xenoliths

    NASA Astrophysics Data System (ADS)

    Jollands, Michael C.; Hanger, Brendan J.; Yaxley, Gregory M.; Hermann, Jörg; Kilburn, Matthew R.

    2018-01-01

    Rare garnet crystals from a peridotite xenolith from the Wesselton kimberlite, South Africa, have distinct zones related to two separate episodes of mantle metasomatism. The garnet cores were firstly depleted through melt extraction, then equilibrated during metasomatism by a potentially diamond-forming carbonate-bearing or proto-kimberlitic fluid at 1100-1300 °C and 4.5-5.5 GPa. The garnet rim chemistry, in contrast, is consistent with later overgrowth in equilibrium with a kimberlite at around 1025 ± 25 °C and 4.2 ± 0.5 GPa. This suggests that the rock was physically moved upwards by up to tens of kilometres between the two metasomatic episodes. Preserved high Ca, Al and Cr contents in orthopyroxenes suggest this uplift was tectonic, rather than magmatic. Diffusion profiles were measured over the transitions between garnet cores and rims using electron microprobe (Mg, Ca, Fe for modelling, plus Cr, Mn, Ti, Na, Al) and nano Secondary Ion Mass Spectrometry (NanoSIMS; 89Y, along with 23Na, Ca, Cr, Fe, Mn and Ti) analyses. The short profile lengths (generally <10 μm) and low Y concentrations (0.2-60 ppm) make the NanoSIMS approach preferable. Diffusion profiles at the interface between the zones yield constraints on the timescale between the second metasomatic event and eruption of the kimberlite magma that brought the xenolith to the surface. The time taken to form the diffusion profiles is on the order of 25 days to 400 yr, primarily based on modelling of Y diffusion along with Ca, Fe and Mg (multicomponent diffusion) profiles. These timescales are too long to be produced by the interaction of the mantle xenolith with the host kimberlite magma during a single-stage ascent to the crust (hours to days). The samples offer a rare opportunity to study metasomatic processes associated with failed eruption attempts in the cratonic lithosphere.

  14. Exploring ferroelectric and magnetic properties of Tb-substituted m = 5 layered Aurivillius phase thin films

    NASA Astrophysics Data System (ADS)

    Faraz, Ahmad; Ricote, Jesus; Jimenez, Ricardo; Maity, Tuhin; Schmidt, Michael; Deepak, Nitin; Roy, Saibal; Pemble, Martyn E.; Keeney, Lynette

    2018-03-01

    Here, we report the effect of A-site substitution of Tb at the expense of Bi on the ferroelectric and magnetic properties in m = 5 layered 2-D Aurivillius Bi6Ti3Fe2O18 thin films. The nominal stoichiometry of the prepared compound is Tb0.40Bi5.6Fe2Ti3O18, Tb0.90Bi5.1Fe2Ti3O18, and Bi6Ti3Fe2O18. Phase examination reveals that only 0.40 mol. % is successfully substituted forming Tb0.40Bi5.6Fe2Ti3O18 thin films. Lateral and vertical piezoresponse switching loops up to 200 °C reveal responses for Bi6Ti3Fe2O18, Tb substituted Tb0.40Bi5.6Fe2Ti3O18, and Tb0.90Bi5.1Fe2Ti3O18 thin films along the in-plane (±42.31 pm/V, 88 pm/V and ±134 pm/V, respectively) compared with the out-of-plane (±6.15 pm/V, 19.83 pm/V and ±37.52 pm/V, respectively). The macroscopic in-plane polarization loops reveal in-plane saturation (Ps) and remanence polarization (Pr) for Bi6Ti3Fe2O18 of ±26.16 μC/cm2 and ±22 μC/cm2, whereas, ±32.75 μC/cm2 and ±22.11 μC/cm2, ±40.30 μC/cm2 and ±28.5 μC/cm2 for Tb0.40Bi5.6Fe2Ti3O18 and Tb0.90Bi5.1Fe2Ti3O18 thin films, respectively. No ferromagnetic signatures were observed for Bi6Ti3Fe2O18 and Tb0.40Bi5.6Fe2Ti3O18. However, a weak response was observed for the Tb0.90Bi5.1Fe2Ti3O18 at 2 K. Microstructural analysis of Tb0.90Bi5.1Fe2Ti3O18 revealed that it contains 4 vol. % Fe:Tb rich areas forming FexTbyOz, which accounts for the observed magnetic moment. This study demonstrates the importance of thorough microstructural analysis when determining whether magnetic signatures can be reliably assigned to the single-phase system. We conclude that Tb0.40Bi5.6Fe2Ti3O18 and Tb0.90Bi5.1Fe2Ti3O18 samples are not multiferroic but demonstrate the potential for Fe-RAM applications.

  15. Structure and magnetism of new rare-earth-free intermetallic compounds: Fe 3+xCo 3-xTi 2 (0 ≤ x ≤ 3)

    DOE PAGES

    Balasubramanian, Balamurugan; Das, Bhaskar; Nguyen, Manh Cuong; ...

    2016-11-28

    Here, we report the fabrication of a set of new rare-earth-free magnetic compounds, which form the Fe 3Co 3Ti 2-type hexagonal structure with P-6m2 symmetry. Neutron powder diffraction shows a significant Fe/Co anti-site mixing in the Fe 3Co 3Ti 2 structure, which has a strong effect on the magnetocrystalline anisotropy as revealed by first-principle calculations. Increasing substitution of Fe atoms for Co in the Fe 3Co 3Ti 2 lattice leads to the formation of Fe 4Co 2Ti 2, Fe 5CoTi, and Fe 6Ti 2 with significantly improved permanent-magnet properties. A high magnetic anisotropy (13.0 Mergs/cm 3) and saturation magnetic polarizationmore » (11.4 kG) are achieved at 10 K by altering the atomic arrangements and decreasing Fe/Co occupancy disorder.« less

  16. Determination of Elemental Composition of Malabar spinach, Lettuce, Spinach, Hyacinth Bean, and Cauliflower Vegetables Using Proton Induced X-Ray Emission Technique at Savar Subdistrict in Bangladesh

    PubMed Central

    Fahad, S. M.; Islam, A. F. M. Mahmudul; Ahmed, Mahiuddin; Alam, Md. Rezaul; Alam, Md. Ferdous; Khalik, Md. Farhan; Hossain, Md. Lokman; Abedin, Md. Joynal

    2015-01-01

    The concentrations of 18 different elements (K, Ca, Fe, Cl, P, Zn, S, Mn, Ti, Cr, Rb, Co, Br, Sr, Ru, Si, Ni, and Cu) were analyzed in five selected vegetables through Proton Induced X-ray Emission (PIXE) technique. The objective of this study was to provide updated information on concentrations of elements in vegetables available in the local markets at Savar subdistrict in Bangladesh. These elements were found in varying concentrations in the studied vegetables. The results also indicated that P, Cl, K, Ca, Mn, Fe, and Zn were found in all vegetables. Overall, K and Ca exhibited the highest concentrations. Cu and Ni exhibited the lowest concentrations in vegetables. The necessity of these elements was also evaluated, based on the established limits of regulatory standards. The findings of this study suggest that the consumption of these vegetables is not completely free of health risks. PMID:26229953

  17. High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Lee, Shu Chin; Lintang, Hendrik O; Yuliati, Leny

    2017-01-01

    Two series of Fe 2 O 3 /TiO 2 samples were prepared via impregnation and photodeposition methods. The effect of preparation method on the properties and performance of Fe 2 O 3 /TiO 2 for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under UV light irradiation was examined. The Fe 2 O 3 /TiO 2 nanocomposites prepared by impregnation showed lower activity than the unmodified TiO 2 , mainly due to lower specific surface area caused by heat treatment. On the other hand, the Fe 2 O 3 /TiO 2 nanocomposites prepared by photodeposition showed higher photocatalytic activity than the unmodified TiO 2 . Three times higher photocatalytic activity was obtained on the best photocatalyst, Fe 2 O 3 (0.5)/TiO 2 . The improved activity of TiO 2 after photodeposition of Fe 2 O 3 was contributed to the formation of a heterojunction between the Fe 2 O 3 and TiO 2 nanoparticles that improved charge transfer and suppressed electron-hole recombination. A further investigation on the role of the active species on Fe 2 O 3 /TiO 2 confirmed that the crucial active species were both holes and superoxide radicals. The Fe 2 O 3 (0.5)/TiO 2 sample also showed good stability and reusability, suggesting its potential for water purification applications.

  18. Characteristics and anticorrosion performance of Fe-doped TiO2 films by liquid phase deposition method

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Xu, Chao; Feng, ZuDe

    2014-09-01

    Fe-doped TiO2 thin films were fabricated by liquid phase deposition (LPD) method, using Fe(III) nitrate as both Fe element source and fluoride scavenger instead of commonly-used boric acid (H3BO3). Scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-vis spectrum were employed to examine the effects of Fe element on morphology, structure and optical characteristics of TiO2 films. The as-prepared films were served as photoanode applied to photogenerated cathodic protection of SUS304 stainless steel (304SS). It was observed that the photoelectrochemical properties of the as-prepared films were enhanced with the addition of Fe element compared to the undoped TiO2 film. The highest photoactivity was achieved for Ti13Fe (Fe/Ti = 3 molar ratio) film prepared in precursor bath containing 0.02 M TiF4 + 0.06 M Fe(NO3)3 under white-light illumination. The effective anticorrosion behaviors can be attributed to the Fe element incorporation which decreases the probability of photogenerated charge-carrier recombination and extends the light response range of Fe-doped TiO2 films appeared to visible-light region.

  19. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China

    NASA Astrophysics Data System (ADS)

    Song, Xie-Yan; Qi, Hua-Wen; Hu, Rui-Zhong; Chen, Lie-Meng; Yu, Song-Yue; Zhang, Jia-Fei

    2013-03-01

    Panzhihua intrusion is one of the largest layered intrusions that hosts huge stratiform Fe-Ti oxide layers in the central part of the Emeishan large igneous province, SW China. Up to 60 m thick stratiform massive Fe-Ti oxide layers containing 85 modal% of magnetite and ilmenite and overlying magnetite gabbro compose cyclic units of the Lower Zone of the intrusion. The cyclic units of the Middle Zone consist of magnetite gabbro and overlying gabbro. In these cyclic units, contents of Fe2O3(t), TiO2 and Cr and Fe3+/Ti4+ ratio of the rocks decrease upward, Cr content of magnetite and forsterite percentage of olivine decrease as well. The Upper Zone consists of apatite gabbro characterized by enrichment of incompatible elements (e.g., 12-18 ppm La, 20-28 ppm Y) and increasing of Fe3+/Ti4+ ratio (from 1.3 to 2.3) upward. These features indicate that the Panzhihua intrusion was repeatedly recharged by more primitive magma and evolved magmas had been extracted. Calculations using MELTS indicate that extensive fractionation of olivine and clinopyroxene in deep level resulted in increasing Fe and Ti contents in the magma. When these Fe-Ti-enriched magmas were emplaced along the base of the Panzhihua intrusion, Fe-Ti oxides became an early crystallization phase, leading to a residual magma of lower density. We propose that the unusually thick stratiform Fe-Ti oxide layers resulted from coupling of gravity settling and sorting of the crystallized Fe-Ti oxides from Fe-Ti-enriched magmas and frequent magma replenishment along the floor of the magma chamber.

  20. Light, alpha, and Fe-peak element abundances in the galactic bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki

    2014-10-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,–3.02) and (0,–12). The (+5.25,–3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ∼ 20,000), high signal-to-noise ration (S/N ≳ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did notmore » show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] ≳ –0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M {sub ☉} are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge field stars. However, the star-to-star scatter and mean [Na/Fe] ratios appear higher in the cluster, perhaps indicating additional self-enrichment.« less

  1. Determination of Metal Elements in Wine Using Laser-Induced Breakdown Spectroscopy (LIBS).

    PubMed

    Bocková, Jana; Tian, Ye; Yin, Hualiang; Delepine-Gilon, Nicole; Chen, Yanping; Veis, Pavel; Yu, Jin

    2017-08-01

    We developed a method for sensitive elemental analysis of wines using laser-induced breakdown spectroscopy (LIBS). In order to overcome the inefficiency of direct ablation of bulk wine (an organic liquid), a thin layer of wine residue was prepared on a metallic target according to an appropriated heating procedure applied to an amount of liquid wine dropped on the target surface. The obtained ensemble was thus ablated. Such a sample preparation procedure used a very small volume of 2 mL of wine and took only 30 min without reagent or solvent. The results show the detection of tens of metal and non-metal elements including majors (Na, Mg, K, Ca), minors, and traces (Li, B, Si, P, Ti, Mn, Fe, Cu, Zn, Rb, Sr, Ba, and Pb) in wines purchased from local supermarkets and from different production places in France. Commercially available wines were then spiked with certified standard solutions of Ti and Fe. Three series of laboratory reference samples were thus prepared using three different wines (a red wine and a white wine from a same production region and a red wine from another production region) with concentrations of Ti and Fe in the range of 1-40 mg/L. Calibration graphs established with the spiked samples allowed extracting the figures-of-merit parameters of the method for wine analysis such as the coefficient of determination ( R 2 ) and the limits of detection and quantification (LOD and LOQ). The calibration curves built with the three wines were then compared. We studied the residual matrix effect between these wines in the determination of the concentrations of Ti and Fe.

  2. Radiation-induced synthesis of Fe-doped TiO 2: Characterization and catalytic properties

    NASA Astrophysics Data System (ADS)

    Bzdon, Sylwia; Góralski, Jacek; Maniukiewicz, Waldemar; Perkowski, Jan; Rogowski, Jacek; Szadkowska-Nicze, Magdalena

    2012-03-01

    Fe-doped TiO 2 catalyst was prepared by wet impregnation, using TiO 2 P25 Degussa as a precursor and Fe(NO 3) 3 as a dopant, followed by irradiation with an electron beam or γ-rays. Surface properties of Fe/TiO 2 samples were examined by BET, XRD, ToF-SIMS, and TPR methods. The photocatalytic activity towards destruction of the anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), in aqueous solutions was higher for the irradiated Fe/TiO 2 catalysts than for bare TiO 2 P25 or that calcined at 500 °C. The results show that irradiated catalysts exhibit a more uniform texture with high dispersion of iron species. An enhancement of the activity of irradiated Fe/TiO 2 systems can be attributed to the synergetic effects of small crystallite size and homogenous distribution of iron species including FeTiO 3 phase.

  3. Dielectric and magnetic properties of FE- and Nb-doped CaCu3Ti4O12.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grubbs, Robert K.; Clem, Paul Gilbert; Samara, George A.

    2005-08-01

    Detailed studies of the properties of ceramic CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) have clarified the physics of this interesting material and revealed several features not reported before. The dielectric relaxational properties of CCTO are explained in terms of a capacitive-layer model, as for an inhomogeneous semiconductor, consisting of semiconducting grains and insulating grain boundaries as also concluded by others. The kinetics of the main [low-temperature (T)] relaxation reveal that two different thermally activated processes in CCTO grains control the dynamics. A likely candidate defect responsible for the two processes is the oxygen vacancy which is a double donor. A higher-Tmore » relaxation is determined by grain boundary conduction. Both Nb and Fe doping lowered both the apparent dielectric constant {var_epsilon}{prime} and the dielectric loss, but increased Fe doping led to more dramatic effects. At 3 at.% Fe doping, the anomalous {var_epsilon}{prime}(T) response was removed, making the CCTO an intrinsic, very-low-loss dielectric. The intrinsic {var_epsilon}{prime}({approx}75) and its T dependence are measured and shown to be largely determined by a low-lying soft TO phonon. At low T, cubic CCTO transforms into an antiferromagnetic phase at T{sub N} = 25 K. T{sub N} is essentially independent of Nb doping (up to 4 at.%) and of hydrostatic pressure (up to {approx}7 kbar), but decreases significantly with Fe doping. Analysis of the high-T dependence of the magnetic susceptibility provided insight into the role of Fe as a dopant. Finally, an {var_epsilon}{prime}(T) anomaly associated with the onset of antiferromagnetic order has been discovered, providing evidence for coupling between the polarization and sublattice magnetization. The possible origin of this coupling is discussed.« less

  4. Synthesis and characterization of Fe-Ti-Sb intermetallic compounds: Discovery of a new Slater-Pauling phase

    NASA Astrophysics Data System (ADS)

    Naghibolashrafi, N.; Keshavarz, S.; Hegde, Vinay I.; Gupta, A.; Butler, W. H.; Romero, J.; Munira, K.; LeClair, P.; Mazumdar, D.; Ma, J.; Ghosh, A. W.; Wolverton, C.

    2016-03-01

    Compounds of Fe, Ti, and Sb were prepared using arc melting and vacuum annealing. Fe2TiSb , expected to be a full Heusler compound crystallizing in the L 21 structure, was shown by XRD and SEM analyses to be composed of weakly magnetic grains of nominal composition Fe1.5TiSb with iron-rich precipitates in the grain boundaries. FeTiSb, a composition consistent with the formation of a half-Heusler compound, also decomposed into Fe1.5TiSb grains with Ti-Sb rich precipitates and was weakly magnetic. The dominant Fe1.5TiSb phase appears to crystallize in a defective L 21 -like structure with iron vacancies. Based on this finding, a first-principles DFT-based binary cluster expansion of Fe and vacancies on the Fe sublattice of the L 21 structure was performed. Using the cluster expansion, we computationally scanned >103 configurations and predict a novel, stable, nonmagnetic semiconductor phase to be the zero-temperature ground state. This new structure is an ordered arrangement of Fe and vacancies, belonging to the space group R 3 m , with composition Fe1.5TiSb , i.e., between the full- and half-Heusler compositions. This phase can be visualized as alternate layers of L 21 phase Fe2TiSb and C 1b phase FeTiSb, with layering along the [111] direction of the original cubic phases. Our experimental results on annealed samples support this predicted ground-state composition, but further work is required to confirm that the R 3 m structure is the ground state.

  5. Metal-rich, Metal-poor: Updated Stellar Population Models for Old Stellar Systems

    NASA Astrophysics Data System (ADS)

    Conroy, Charlie; Villaume, Alexa; van Dokkum, Pieter G.; Lind, Karin

    2018-02-01

    We present updated stellar population models appropriate for old ages (>1 Gyr) and covering a wide range in metallicities (‑1.5 ≲ [Fe/H] ≲ 0.3). These models predict the full spectral variation associated with individual element abundance variation as a function of metallicity and age. The models span the optical–NIR wavelength range (0.37–2.4 μm), include a range of initial mass functions, and contain the flexibility to vary 18 individual elements including C, N, O, Mg, Si, Ca, Ti, and Fe. To test the fidelity of the models, we fit them to integrated light optical spectra of 41 Galactic globular clusters (GCs). The value of testing models against GCs is that their ages, metallicities, and detailed abundance patterns have been derived from the Hertzsprung–Russell diagram in combination with high-resolution spectroscopy of individual stars. We determine stellar population parameters from fits to all wavelengths simultaneously (“full spectrum fitting”), and demonstrate explicitly with mock tests that this approach produces smaller uncertainties at fixed signal-to-noise ratio than fitting a standard set of 14 line indices. Comparison of our integrated-light results to literature values reveals good agreement in metallicity, [Fe/H]. When restricting to GCs without prominent blue horizontal branch populations, we also find good agreement with literature values for ages, [Mg/Fe], [Si/Fe], and [Ti/Fe].

  6. Fe doped BaTiO3 sensitized by Fe3O4 nanoparticles for improved photoelectrochemical response

    NASA Astrophysics Data System (ADS)

    Upadhyay, Rishibrind Kumar; Sharma, Dipika

    2018-01-01

    Nanostructured powders of pristine Fe3O4, BaTiO3, and Fe-BaTiO3 were synthesized using hydrothermal method and BaTiO3/Fe3O4 and Fe-BaTiO3/Fe3O4 composite sample were also prepared by mixing the appropriate amount of pristine powders. All samples were characterized using x-ray diffraction, SEM and UV-vis spectrometry. Photoelectrochemical properties were investigated in a three-electrode cell system. Maximum photocurrent density of 2.1 mA cm-2 at 0.95 V/SCE was observed for Fe-BaTiO3/Fe3O4 composite sample. Increased photocurrent density offered by composite may be attributed to improved conductivity and better separation of the photogenerated charge carriers at interface.

  7. Magnetic properties and element concentrations in lichens exposed to airborne pollutants released during cement production.

    PubMed

    Paoli, Luca; Winkler, Aldo; Guttová, Anna; Sagnotti, Leonardo; Grassi, Alice; Lackovičová, Anna; Senko, Dušan; Loppi, Stefano

    2017-05-01

    The content of selected elements (Al, As, Ca, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, S, Ti, V and Zn) was measured in samples of the lichen Evernia prunastri exposed for 30, 90 and 180 days around a cement mill, limestone and basalt quarries and urban and agricultural areas in SW Slovakia. Lichens transplanted around the investigated quarries and the cement mill rapidly (30 days) reflected the deposition of dust-associated elements, namely Ca (at the cement mill and the limestone quarry) and Fe, Ti and V (around the cement mill and the basalt quarry), and their content remained significantly higher throughout the whole period (30-180 days) with respect to the surrounding environment. Airborne pollutants (such as S) progressively increased in the study area from 30 to 180 days. The magnetic properties of lichen transplants exposed for 180 days have been characterized and compared with those of native lichens (Xanthoria parietina) and neighbouring bark, soil and rock samples, in order to test the suitability of native and transplanted samples as air pollution magnetic biomonitors. The magnetic mineralogy was homogeneous in all samples, with the exception of the samples from the basalt quarry. The transplants showed excellent correlations between the saturation remanent magnetization (Mrs) and the content of Fe. Native samples had a similar magnetic signature, but the values of the concentration-dependent magnetic parameters were up to two orders of magnitude higher, reflecting higher concentrations of magnetic particles. The concentrations of As, Ca and Cr in lichens correlated with Mrs values after neglecting the samples from the basalt quarry, which showed distinct magnetic properties, suggesting the cement mill as a likely source. Conversely, Ti and Mn were mostly (but not exclusively) associated with dust from the basalt quarry. It is suggested that the natural geological characteristics of the substrate may strongly affect the magnetic properties of lichen thalli. Taking this into account, the results of this study point out the suitability of lichens as air pollution magnetic biomonitors.

  8. Vacuum Brazing TC4 Titanium Alloy to 304 Stainless Steel with Cu-Ti-Ni-Zr-V Amorphous Alloy Foil

    NASA Astrophysics Data System (ADS)

    Dong, Honggang; Yang, Zhonglin; Wang, Zengrui; Deng, Dewei; Dong, Chuang

    2014-10-01

    Dissimilar metal vacuum brazing between TC4 titanium alloy and 304 stainless steel was conducted with newly designed Cu-Ti-Ni-Zr-V amorphous alloy foils as filler metals. Solid joints were obtained due to excellent compatibility between the filler metal and stainless steel substrate. Partial dissolution of stainless steel substrate occurred during brazing. The shear strength of the joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil was 105 MPa and that with Cu37.5Ti25Ni12.5Zr12.5V12.5 was 116 MPa. All the joints fractured through the gray layer in the brazed seam, revealing brittle fracture features. Cr4Ti, Cu0.8FeTi, Fe8TiZr3 and Al2NiTi3C compounds were found in the fractured joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil, and Fe2Ti, TiCu, Fe8TiZr3 and NiTi0.8Zr0.3 compounds were detected in the joint brazed with Cu37.5Ti25Ni12.5Zr12.5V12.5 foil. The existence of Cr-Ti, Fe-Ti, Cu-Fe-Ti, and Fe-Ti-V intermetallic compounds in the brazed seam caused fracture of the resultant joints.

  9. Transparent nanostructured Fe-doped TiO2 thin films prepared by ultrasonic assisted spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Rasoulnezhad, Hossein; Hosseinzadeh, Ghader; Ghasemian, Naser; Hosseinzadeh, Reza; Homayoun Keihan, Amir

    2018-05-01

    Nanostructured TiO2 and Fe-doped TiO2 thin films with high transparency were deposited on glass substrate through ultrasonic-assisted spray pyrolysis technique and were used in the visible light photocatalytic degradation of MB dye. The resulting thin films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence spectroscopy, x-ray diffraction (XRD), and UV-visible absorption spectroscopy techniques. Based on Raman spectroscopy results, both of the TiO2 and Fe-doped TiO2 films have anatase crystal structure, however, because of the insertion of Fe in the structure of TiO2 some point defects and oxygen vacancies are formed in the Fe-doped TiO2 thin film. Presence of Fe in the structure of TiO2 decreases the band gap energy of TiO2 and also reduces the electron–hole recombination rate. Decreasing of the electron–hole recombination rate and band gap energy result in the enhancement of the visible light photocatalytic activity of the Fe-doped TiO2 thin film.

  10. Photoeffects of Semiconductor Electrolyte Interfaces

    DTIC Science & Technology

    1985-03-01

    effect of FeTiO3 had very’ little effect on the overall properties "of Fe 0? single crystals. On the other hand the effect on the Fe/Ti oxide thin...transfer alloy of Fe20 3 and FeTiO3 as an interesting candidate for use as a photoelectrode. a-iron oxide and iron titanate crystallize’in essentially...the same rhombohedral space group (RSC/R•) with similar lattice constants. Conse- quently Fe?( 3 and- FeTiO3 form a solid solution over the whole

  11. Fe-Al interface intermixing and the role of Ti, V, and Zr as a stabilizing interlayer at the interface

    NASA Astrophysics Data System (ADS)

    Priyantha, W.; Smith, R. J.; Chen, H.; Kopczyk, M.; Lerch, M.; Key, C.; Nachimuthu, P.; Jiang, W.

    2009-03-01

    Fe-Al bilayer interfaces with and without interface stabilizing layers (Ti, V, Zr) were fabricated using dc magnetron sputtering. Intermixing layer thickness and the effectiveness of the stabilizing layer (Ti, V, Zr) at the interface were studied using Rutherford backscattering spectrometry (RBS) and x-ray reflectometry (XRR). The result for the intermixing thickness of the AlFe layer is always higher when Fe is deposited on Al as compared to when Al is deposited on Fe. By comparing measurements with computer simulations, the thicknesses of the AlFe layers were determined to be 20.6 Å and 41.1 Å for Al/Fe and Fe/Al bilayer systems, respectively. The introduction of Ti and V stabilizing layers at the Fe-Al interface reduced the amount of intermixing between Al and Fe, consistent with the predictions of model calculations. The Zr interlayer, however, was ineffective in stabilizing the Fe-Al interface in spite of the chemical similarities between Ti and Zr. In addition, analysis suggests that the Ti interlayer is not effective in stabilizing the Fe-Al interface when the Ti interlayer is extremely thin (˜3 Å) for these sputtered metallic films.

  12. First-principles calculation of the structure and electronic properties of Fe-substituted Bi2Ti2O7

    NASA Astrophysics Data System (ADS)

    Huang, Jin-Dou; Zhang, Zhenyi; Lin, Feng; Dong, Bin

    2017-12-01

    We performed first-principles calculations to investigate the formation energy, geometry structure, and electronic property of Fe-doped Bi2Ti2O7 systems with different Fe doping content. The calculated formation energies indicate that the substitutional configurations of Fe-doping Bi2Ti2O7 are easy to obtain under O-rich growth condition, but their thermodynamic stability decreases with the increase of Fe content. The calculated spin-resolved density of states and band structures indicate that the introduction of Fe into Bi2Ti2O7 brings high spin polarization. The spin-down impurity levels in Fe x Bi2-x Ti2O7 and spin-up impurity levels in Fe x Bi2Ti2-x O7 systems locate in the bottom of conduction band and narrow the band gap significantly, thus leading to the absorption of visible light. Interestingly, the impurity states in Fe x Bi2-x Ti2O7 are the efficient separation center of photogenerated electron and hole, and less affected by Fe doping content, in comparison, the levels of impurity band in Fe x Bi2Ti2-x O7 systems are largely effected by the Fe doping content, and high Fe doping content is the key factor to improve the separating rate of photogenerated electron and hole.

  13. Structural, magnetic and Mossbauer studies of TI doped Gd2Fe17-xTix and Gd2Fe16Ga1-xTix (0≤x≤1)

    NASA Astrophysics Data System (ADS)

    Pokharel, G.; Syed Ali, K. S.; Mishra, S. R.

    2015-05-01

    Magnetic compounds of the type Gd2Fe17-xTix and Gd2Fe16Ga1-xTix (x=0.0-1.0) were prepared by arc melting and their structural and magnetic properties were studied by X-ray diffraction (XRD), magnetometery and Mossbauer spectroscopy. The Rietveld analysis of X-ray data shows that these α-Fe free solid-solutions crystallize with Th2Ni17-type structure as main phase along with GdFe2 and TiFe2 as additional phases at higher, x≥0.5 contents. The unit cell volume expands with Ga and Ti content. The Rietveld analysis indicate that both Ti and Ga atoms prefer 12j and 12k sites in both compounds. The effect of Ti and co-substituted Ga-Ti on the bond length are quite different. The saturation magnetization Ms, at 300 K for Gd2Fe17-xTix and Gd2Fe16Ga1-xTix was found to decrease linearly with increasing Ti content. The Ms in both compounds at x=1 reduced by 9% as compared to their parent compounds at x=0. The Curie temperature, Tc, for Gd2Fe17-xTix increased from 513 K (x=0) to 544 K (x=1) while Tc for Gd2Fe16Ga1-xTix reduced from 560 (x=0) to 544 K (x=1) with increase in Ti content. Thus the observed variation in Tc follows Gd2Fe17

  14. Major, minor, trace and rare earth elements in sediments of the Bijagós archipelago, Guinea-Bissau.

    PubMed

    Carvalho, Lina; Figueira, Paula; Monteiro, Rui; Reis, Ana Teresa; Almeida, Joana; Catry, Teresa; Lourenço, Pedro Miguel; Catry, Paulo; Barbosa, Castro; Catry, Inês; Pereira, Eduarda; Granadeiro, José Pedro; Vale, Carlos

    2018-04-01

    Sixty sediment samples from four sites in the Bijagós archipelago were characterized for fine fraction, loss on ignition, major, minor and trace elemental composition (Al, Fe, Ca, Mg, Ti, P, Zr, Mn, Cr, Sr, Ba, B, V, Li, Zn, Ni, Pb, As, Co, U, Cu, Cs and Cd), and the elements of the La-Lu series. Element concentrations were largely explained by the Al content and the proportion of fine fraction content, with the exception of Ca and Sr. Sediments showed enhanced Ti, U, Cr, As and Cd concentrations with respect to estimated upper crust values, most likely mirroring a regional signature. Rare earth elements were in deficit relatively to the North American Shale Composite (NASC), mainly in coarser material. No pronounced Ce-anomaly was observed, while Eu-anomalies were positive in most analyzed sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A-SITE-AND/OR B-SITE-MODIFIED PBZRTIO3 MATERIALS AND (PB, SR, CA, BA, MG) (ZR, TI,NB, TA)O3 FILMS HAVING UTILITY IN FERROELECTRIC RANDOM ACCESS MEMORIES AND HIGH PERFORMANCE THIN FILM MICROACTUATORS

    NASA Technical Reports Server (NTRS)

    Bilodeau, Steven (Inventor); Baum, Thomas H. (Inventor); Roeder, Jeffrey F. (Inventor); Chen, Ing-Shin (Inventor)

    2004-01-01

    A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels.

  16. Titanium as a Beneficial Element for Crop Production

    PubMed Central

    Lyu, Shiheng; Wei, Xiangying; Chen, Jianjun; Wang, Cun; Wang, Xiaoming; Pan, Dongming

    2017-01-01

    Titanium (Ti) is considered a beneficial element for plant growth. Ti applied via roots or leaves at low concentrations has been documented to improve crop performance through stimulating the activity of certain enzymes, enhancing chlorophyll content and photosynthesis, promoting nutrient uptake, strengthening stress tolerance, and improving crop yield and quality. Commercial fertilizers containing Ti, such as Tytanit and Mg-Titanit, have been used as biostimulants for improving crop production; however, mechanisms underlying the beneficial effects still remain unclear. In this article, we propose that the beneficial roles Ti plays in plants lie in its interaction with other nutrient elements primarily iron (Fe). Fe and Ti have synergistic and antagonistic relationships. When plants experience Fe deficiency, Ti helps induce the expression of genes related to Fe acquisition, thereby enhancing Fe uptake and utilization and subsequently improving plant growth. Plants may have proteins that either specifically or nonspecifically bind with Ti. When Ti concentration is high in plants, Ti competes with Fe for ligands or proteins. The competition could be severe, resulting in Ti phytotoxicity. As a result, the beneficial effects of Ti become more pronounced during the time when plants experience low or deficient Fe supply. PMID:28487709

  17. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone

    DOE PAGES

    Feng, Huan; Zhang, Weiguo; Qian, Yu; ...

    2016-06-15

    This paper investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn in Phragmites australis root system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils. Phragmites australis samples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in themore » root epidermis and that other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  18. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan; Zhang, Weiguo; Qian, Yu

    This paper investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn in Phragmites australis root system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils. Phragmites australis samples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in themore » root epidermis and that other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  19. Geochemistry and mineralogy of fly-ash from the Mae Moh lignite deposit, Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, B.R.; Powell, M.A.; Fyfe, W.S.

    The concentration of 21 elements in fly ash from three boilers (75 MW, 150 MW, and 300 MW) at the EGAT power plant, Mae Moh, Thailand, were determined by INAA. The concentration of 10 major elements was determined by XRF. As, Co, Cr, Ni, Mo, and Sb generally increase in concentration going from bottom ash (BA) through the sequence of electrostatic precipitator ashes (ESPA) and reach maxima of As (352 ppm), Co (45 ppm), Cr (105 ppm), Mo (32 ppm), Ni (106 ppm), and Sb (15 ppm) in the ESPA. Ce, Cs, Fe, Hf, La, Sc, Ta, Tb, and Ybmore » did not exhibit concentration trends or are variable except in the case of one boiler, which showed an increase going from BA to ESPA. Only Br decreased in composition going from BA to ESPA. Rb, Sm, U, and Th showed marked variation in trends. The major elements identified by EDS were Al, Si, S, K, Ca, Fe, and Ba, with minor amounts of Mg, Na, Ti, Mn, and Sr. Al, Si, K, and Ca occur together and are present in most of the fly-ash particles. Ba was found as a major component with Ca, Al, and Si. Fe and Ca are usually associated with sulfur. Some small spheres (< 5 {mu}m) are comprised almost entirely of Fe (probably as oxide). Symplectite textures are noted in high-Fe phases. All elements except Br are significantly enriched in the fly ash relative to the coal, which contains 35% ash. Particle chemistry is consistent with the major mineral phases identified by XRD, which include: quartz, magnetite, mullite, gehlenite, anorthite, hematite, anhydrite, and clinopyroxene.« less

  20. The Strings of Eta Carina: The HST/STIS Spectra and [Ca II

    NASA Technical Reports Server (NTRS)

    Melendez, M. B.; Gull, T. R.; Bautista, M. A.; Badnell, N. R.

    2006-01-01

    Long linear, filamentary ejecta, are found to move at very high velocity external to the Homunculus, the circumstellar hourglass-shaped ejecta surrounding Eta Carinae. The origin of the strings is a puzzle. As an example, the Weigelt Blobs have N at 10X solar and C, O at 0.01X solar abundance, along with He/H significantly enhanced. This abundance pattern is evidence for extreme CNO-processing. Similarly, the Strontium Filament has Ti/Ni at 100X solar, presumably due to the lack of oxygen to form Ti-oxide precipitates onto dust grains. We have obtained 2-D spectra with the HST/STIS of the Strontium Filament and a portion of a string. These deep spectral exposures, at moderate dispersion, span much of the near red spectral region from 5000 to 9000A. We have identified twelve emission lines in these spectra with proper velocities and spatial structure of this string and obtained line ratios for [Ca II] (7293/7325A) and [Fe Ill (7157/8619A) which are useful for determining physical conditions in this nebulosity. In an attempt to use the [Ca II] ratio to determine the physical parameters, and ultimately the abundances in the strings, we have constructed a statistical equilibrium model for Ca II , including radiative and collisional rates. These results incorporate our newly calculated atomic data for levels n = 3,4,5 and 6 configurations of Ca II. The aim is to compute the [Ca II] line ratios and use them as a diagnostic of the physical parameters. Using the [Fe II] ratio we find that for Te=10,000 K, the electron density is Ne approx.10(exp 6)/cu cm. We plan to use the [Ca II] ratio to confirm this result. Then, we will extend the use of this multilevel model Ca II atom to study the physical conditions of the Strontium filament where eight lines of Ca II, both allowed and forbidden, had been identified. With the physical conditions determined, we will be able to derive reliable estimates for the gas phase abundances in the strings.

  1. Sampling and major element chemistry of the recent (A.D. 1631-1944) Vesuvius activity

    USGS Publications Warehouse

    Belkin, H.E.; Kilburn, C.R.J.; de Vivo, B.

    1993-01-01

    Detailed sampling of the Vesuvius lavas erupted in the period A.D. 1631-1944 provides a suite of samples for comprehensive chemical analyses and related studies. Major elements (Si, Ti, Al, Fetotal, Mn, Mg, Ca, Na, K and P), volatile species (Cl, F, S, H2O+, H2O- and CO2), and ferrous iron (Fe2+) were determined for one hundred and forty-nine lavas and five tephra from the A.D. 1631-1944 Vesuvius activity. The lavas represent a relatively homogeneous suite with respect to SiO2, TiO2, FeOtotal, MnO and P2O5, but show systematic variations among MgO, K2O, Na2O, Al2O3 and CaO. The average SiO2 content is 48.0 wt.% and the rocks are classified as tephriphonolites according to their content of alkalis. All of the lavas are silica-undersaturated and are nepheline, leucite, and olivine normative. There is no systematic variation in major-element composition with time, over the period A.D. 1631-1944. The inter-eruption and intra-eruption compositional differences are the same magnitude. The lavas are highly porphyritic with clinopyroxene and leucite as the major phases. Fractionation effects are not reflected in the silica content of the lavas. The variability of MgO, K2O, Na2O, and CaO can be modelled as a relative depletion or accumulation of clinopyroxene. ?? 1993.

  2. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system.

    PubMed

    Yang, Xiaoling; Chen, Wei; Huang, Jianfei; Zhou, Ying; Zhu, Yihua; Li, Chunzhong

    2015-05-22

    Herein, a ternary nanocomposite with TiO2 nanoparticles anchored on reduced graphene oxide (rGO)-encapsulated Fe3O4 spheres (Fe3O4@rGO@TiO2) is presented as a high efficient heterogeneous catalyst for photo-Fenton degradation of recalcitrant pollutants under neutral pH. Fe3O4@rGO@TiO2 was synthesized by depositing TiO2 nanoparticles on the surface of the Fe3O4 spheres wrapped by graphene oxide (GO) which was obtained by an electrostatic layer-by-layer method. This as-prepared catalyst reflected good ferromagnetism and superior stability which makes it convenient to be separated and recycled. Due to the synergic effects between the different components composed the catalyst, swift reduction of Fe(3+) can be achieved to regenerate Fe(2+). Fe3O4@rGO@TiO2 exhibited enhancing catalytic activity for the degradation of azo-dyes compared with Fe3O4, Fe3O4@SiO2@TiO2 or SiO2@rGO@TiO2, further conforming the rapid redox reaction between Fe(2+) and Fe(3+). All these merits indicate that the composite catalyst possesses great potential for visible-light driven destruction of organic compounds.

  3. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system

    PubMed Central

    Yang, Xiaoling; Chen, Wei; Huang, Jianfei; Zhou, Ying; Zhu, Yihua; Li, Chunzhong

    2015-01-01

    Herein, a ternary nanocomposite with TiO2 nanoparticles anchored on reduced graphene oxide (rGO)-encapsulated Fe3O4 spheres (Fe3O4@rGO@TiO2) is presented as a high efficient heterogeneous catalyst for photo-Fenton degradation of recalcitrant pollutants under neutral pH. Fe3O4@rGO@TiO2 was synthesized by depositing TiO2 nanoparticles on the surface of the Fe3O4 spheres wrapped by graphene oxide (GO) which was obtained by an electrostatic layer-by-layer method. This as-prepared catalyst reflected good ferromagnetism and superior stability which makes it convenient to be separated and recycled. Due to the synergic effects between the different components composed the catalyst, swift reduction of Fe3+ can be achieved to regenerate Fe2+. Fe3O4@rGO@TiO2 exhibited enhancing catalytic activity for the degradation of azo-dyes compared with Fe3O4, Fe3O4@SiO2@TiO2 or SiO2@rGO@TiO2, further conforming the rapid redox reaction between Fe2+ and Fe3+. All these merits indicate that the composite catalyst possesses great potential for visible-light driven destruction of organic compounds. PMID:26000975

  4. Mineralogical, geochemical, and magnetic signatures of surface sediments from the Canadian Beaufort Shelf and Amundsen Gulf (Canadian Arctic)

    NASA Astrophysics Data System (ADS)

    Gamboa, Adriana; Montero-Serrano, Jean-Carlos; St-Onge, Guillaume; Rochon, André; Desiage, Pierre-Arnaud

    2017-02-01

    Mineralogical, geochemical, magnetic, and siliciclastic grain-size signatures of 34 surface sediment samples from the Mackenzie-Beaufort Sea Slope and Amundsen Gulf were studied in order to better constrain the redox status, detrital particle provenance, and sediment dynamics in the western Canadian Arctic. Redox-sensitive elements (Mn, Fe, V, Cr, Zn) indicate that modern sedimentary deposition within the Mackenzie-Beaufort Sea Slope and Amundsen Gulf took place under oxic bottom-water conditions, with more turbulent mixing conditions and thus a well-oxygenated water column prevailing within the Amundsen Gulf. The analytical data obtained, combined with multivariate statistical (notably, principal component and fuzzy c-means clustering analyses) and spatial analyses, allowed the division of the study area into four provinces with distinct sedimentary compositions: (1) the Mackenzie Trough-Canadian Beaufort Shelf with high phyllosilicate-Fe oxide-magnetite and Al-K-Ti-Fe-Cr-V-Zn-P contents; (2) Southwestern Banks Island, characterized by high dolomite-K-feldspar and Ca-Mg-LOI contents; (3) the Central Amundsen Gulf, a transitional zone typified by intermediate phyllosilicate-magnetite-K-feldspar-dolomite and Al-K-Ti-Fe-Mn-V-Zn-Sr-Ca-Mg-LOI contents; and (4) mud volcanoes on the Canadian Beaufort Shelf distinguished by poorly sorted coarse-silt with high quartz-plagioclase-authigenic carbonate and Si-Zr contents, as well as high magnetic susceptibility. Our results also confirm that the present-day sedimentary dynamics on the Canadian Beaufort Shelf is mainly controlled by sediment supply from the Mackenzie River. Overall, these insights provide a basis for future studies using mineralogical, geochemical, and magnetic signatures of Canadian Arctic sediments in order to reconstruct past variations in sediment inputs and transport pathways related to late Quaternary climate and oceanographic changes.

  5. Globular Cluster Abundances from High-resolution, Integrated-light Spectroscopy. II. Expanding the Metallicity Range for Old Clusters and Updated Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew

    2017-01-01

    We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ˜0.1 dex for GCs with metallicities as high as [Fe/H] = -0.3, but the abundances measured for more metal-rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na I, Mg I, Al I, Si I, Ca I, Ti I, Ti II, Sc II, V I, Cr I, Mn I, Co I, Ni I, Cu I, Y II, Zr I, Ba II, La II, Nd II, and Eu II. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe I, Ca I, Si I, Ni I, and Ba II. The elements that show the greatest differences include Mg I and Zr I. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  6. Half-metallic magnetism in Ti 3Co 5-xFe xB 2

    DOE PAGES

    Pathak, Rohit; Ahamed, Imran; Zhang, W. Y.; ...

    2017-02-08

    Here, bulk alloys and thin films of Fe-substituted Ti 3Co 5B 2 have been investigated by first-principle density-functional calculations. The series, which is of interest in the context of alnico magnetism and spin electronics, has been experimentally realized in nanostructures but not in the bulk. Our bulk calculations predict paramagnetism for Ti 3Co 5B 2, Ti 3Co 4FeB 2 and Ti 3CoFe 4B 2, whereas Ti 3Fe 5B 2 is predicted to be ferromagnetic. The thin films are all ferromagnetic, indicating that moment formation may be facilitated at nanostructural grain boundaries. One member of the thin-film series, namely Ti 3CoFemore » 4B 2, is half-metallic and exhibits perpendicular easy-axis magnetic anisotropy. The half-metallicity reflects the hybridization of the Ti, Fe and Co 3d orbitals, which causes a band gap in minority spin channel, and the limited equilibrium solubility of Fe in bulk Ti 3Co 5B 2 may be linked to the emerging half-metallicity due to Fe substitution.« less

  7. Half-metallic magnetism in Ti 3Co 5-xFe xB 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Rohit; Ahamed, Imran; Zhang, W. Y.

    Here, bulk alloys and thin films of Fe-substituted Ti 3Co 5B 2 have been investigated by first-principle density-functional calculations. The series, which is of interest in the context of alnico magnetism and spin electronics, has been experimentally realized in nanostructures but not in the bulk. Our bulk calculations predict paramagnetism for Ti 3Co 5B 2, Ti 3Co 4FeB 2 and Ti 3CoFe 4B 2, whereas Ti 3Fe 5B 2 is predicted to be ferromagnetic. The thin films are all ferromagnetic, indicating that moment formation may be facilitated at nanostructural grain boundaries. One member of the thin-film series, namely Ti 3CoFemore » 4B 2, is half-metallic and exhibits perpendicular easy-axis magnetic anisotropy. The half-metallicity reflects the hybridization of the Ti, Fe and Co 3d orbitals, which causes a band gap in minority spin channel, and the limited equilibrium solubility of Fe in bulk Ti 3Co 5B 2 may be linked to the emerging half-metallicity due to Fe substitution.« less

  8. Effect of the carbon coating in Fe-C-TiO(2) photocatalyst on phenol decomposition under UV irradiation via photo-Fenton process.

    PubMed

    Tryba, Beata; Morawski, Antoni W; Inagaki, Michio; Toyoda, Masahiro

    2006-08-01

    Fe-C-TiO(2) photocatalysts which contained the residue carbon (0.2-3.3 mass%) were prepared from a mixture of TiO(2) and FeC(2)O(4) through the heating at 673-1173 K in Ar. These photocatalysts did not show a high adsorption of phenol, but they were active in photo-Fenton reactions during decomposition of phenol under UV irradiation with addition of H(2)O(2). It was proved that Fe(2+) governed the photoactivity of Fe-C-TiO(2) photocatalysts, it decreased with heat-treatment temperature above 773 K. For comparison, Fe-TiO(2) photocatalyst was prepared by heating TiO(2) and FeC(2)O(4) at 823 K in air for 3h. Phenol decomposition was going much slower on Fe-TiO(2) photocatalyst in comparison with Fe-C-TiO(2), of which mechanism was different, on the former phenol was decomposed by the radical reaction, on the latter through a complex reaction with iron and intermediates of phenol decomposition. Therefore carbon-coating TiO(2) was found to be advantageous for mounting iron and its application for the phenol decomposition via photo-Fenton process.

  9. Compositions of HIMU, EM1, and EM2 from Global Trends between Radiogenic Isotopes and Major Elements in Ocean Island Basalts

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Dasgupta, R.

    2008-12-01

    Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO2, TiO2, FeO, Al2O3 and K2O) and major elements ratios (CaO/Al2O3 and K2O/TiO2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'ì' = 238U/204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al2O3, FeOT, and TiO2 and low SiO2 and Al2O3. EM1 (enriched mantle 1; intermediate 87Sr/86Sr and low 206Pb/204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/86Sr and intermediate 206Pb/204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K2O concentrations and K2O/TiO2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al2O3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al2O3 vs K2O/TiO2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent- daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial melt compositions to place constraints on the lithological characteristics of the mantle end members.

  10. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew G.; Dasgupta, Rajdeep

    2008-11-01

    Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO 2, TiO 2, FeO, Al 2O 3 and K 2O) and major elements ratios (CaO/Al 2O 3 and K 2O/TiO 2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'μ' = 238U/ 204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/ 86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al 2O 3, FeO T, and TiO 2 and low SiO 2 and Al 2O 3. EM1 (enriched mantle 1; intermediate 87Sr/ 86Sr and low 206Pb/ 204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/ 86Sr and intermediate 206Pb/ 204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K 2O concentrations and K 2O/TiO 2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al 2O 3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al 2O 3 vs K 2O/TiO 2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent-daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial melt compositions to place constraints on the lithological characteristics of the mantle end members.

  11. Synthesis and photochemical properties of ferrotitanate In4FeTi3O13.5 with layer structure

    NASA Astrophysics Data System (ADS)

    Liu, Xuanxuan; Huang, Yanlin; Qin, Chuanxiang; Seo, Hyo Jin

    2018-01-01

    In4FeTi3O13.5 (InTi0.75Fe0.25O3.375) semiconductor was prepared via sol-gel citrate-complexation synthesis. This ferrotitanate derives from a solid-solution with InFeO3:In2Ti2O7 = 2:3. Phase formation and crystal structure of the sample were confirmed via XRD Rietveld refinement. Structural analyses indicated that there were two dimensional layers in the structure. The mutual repulsion in the layers induces great displacements of oxygen ions. The optical properties of In4FeTi3O13.5 nanoparticles were investigated. The direct allowed band gap (2.56 eV) shows a characteristic charge-transfer (CT) transitions of (O2p + Fe3d) → (Ti/Fe)3d in visible-light region. The band structure and energy positions were discussed. In4FeTi3O13.5 nanoparticles are demonstrated to be efficient for the photodegradation of Rhodamine B (RhB) under visible light irradiation (λ > 420 nm). The photocatalytic activities were attributed to the special layer structure and the catalytic mediators of multivalent Ti4+/3+ and Fe3+/2+ confirmed by XPS measurements.

  12. Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2

    NASA Astrophysics Data System (ADS)

    Sun, Qiong; Hong, Yong; Liu, Qiuhong; Dong, Lifeng

    2018-02-01

    The magnetic Fe3O4 loaded anatase TiO2 photocatalysts with different mass ratios were successfully synthesized by a one-step convenient calcining method. The morphology and structure analysis revealed that Fe3O4 was formed in TiO2 with very fine-grained particles. After a small amount of Fe3O4 loaded onto TiO2, the photocatalytic property enhanced obviously for the degradation of organic dye. Furthermore, the photo-Fenton-like catalysis of the iron-containing samples could also be induced after the addition of hydrogen peroxide. The apparent kinetic constant of the reaction that catalyzed by Fe-TiO2 was about 5.3 and 8.3 times of that catalyzed by TiO2 or Fe3O4 only, respectively, proving an effective synergistic contribution of the photocatalysis and Fenton reaction in the composite. Compared with Fe3O4 or free Fe3+ ions, only 13% of iron in TiO2 dissolved into acidic solution (25% for Fe3O4 and 100% for Fe3+) after the reaction, which confirmed the iron had been well immobilized onto TiO2. In addition, the extremely stable photocatalytic activity in cycling experiments proved the immobilized iron had been tightly attached onto TiO2, indicating the great potential of the catalyst for practical applications.

  13. Chemical profile of size-fractionated soils collected in a semiarid industrial area of Argentina

    NASA Astrophysics Data System (ADS)

    Morales Del Mastro, Anabella; Pereyra, Marcelo; Londonio, Agustín; Pereyra, Victoria; Rebagliati, Raúl Jiménez; Dawidowski, Laura; Gómez, Darío; Smichowski, Patricia

    2014-12-01

    A study was undertaken to assess the chemical profile of soil collected in Bahía Blanca (Argentina). In this industrial city, semiarid soils are affected by different industrial and agricultural activities, the presence of a saltpeter extraction facility, traffic and increasing urbanization. Sixteen soil samples (superficial and sub-superficial) were collected. Samples were sieved in two fractions (A < 37 μm, and 37 < B < 50 μm) before elemental analysis. Major, minor and trace elements namely, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Ti, V and Zn were determined by inductively coupled plasma optical emission spectrometry (ICP OES). Anions (Cl-, F-, SO42-) and cations (K+, Na+ and NH4+) were determined by high performance liquid chromatography (HPLC) after an aqueous extraction. As expected, crustal elements namely, Al, Ca, Fe, Mg and Ti exhibited the highest concentrations. Mean elemental concentration ranged from <0.3 μg g-1 (Sb) to 14.6 ± 0.6% (Ca). Ions concentrations in the soluble fraction measured at mg g-1 levels were in the order Cl- > Na+ ≅ SO42- > K+ > NO3-. Three indicators, namely, (i) coefficient of variation, (ii) coefficient of divergence and (iii) ratio of elemental concentration with respect to Ca were used to assess chemical, spatial and inter-profile variability. Chloride > Ca > Na+ > Mo > SO42-, dominated the variability indicating that these are key chemical markers for future assessment of crustal contribution to airborne particles in the area. The ratios Xi/Ca allowed discriminating the soil of the semi-arid region surrounding Bahía Blanca. The chemical profiles obtained in this study, particularly those of topsoil, will be a key input to characterize soil resuspension and its contribution to airborne particulate matter in a forthcoming receptor model analysis.

  14. Petrology and Geochemistry of D'Orbigny, Geochemistry of Sahara 99555, and the Origin of Angrites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Killgore, Marvin; Lee, Michael T.

    2001-01-01

    We have done detailed petrologic study of the angrite, D'Orbigny, and geochemical study of it and Sahara 99555. D'Orbigny is an igneous-textured rock composed of Ca-rich olivine, Al-Ti-diopside-hedenbergite, subcalcic kirschsteinite, two generations of hercynitic spinel and anorthite, with the mesostasis phases ulv6spinel, Ca-phosphate, a silicophosphate phase and Fe-sulfide. We report an unknown Fe-Ca-Al-Ti-silicate phase in the mesostasis not previously found in angrites. One hercynitic spinel is a large, rounded homogeneous grain of a different composition than the euhedral and zoned grains. We believe the former is a xenocryst, the first such described from angrites. The mafic phases are highly zoned; mg# of cores for olivine are approx.64, and for clinopyroxene approx.58, and both are zoned to Mg-free rims. The Ca content of olivine increases with decreasing mg#, until olivine with approx.20 mole% Ca is overgrown by subcalcic kirschsteinite with Ca approx.30-35 mole%. Detailed zoning sequences in olivine-subcalcic kirschsteinite and clinopyroxene show slight compositional reversals. There is no mineralogic control that can explain these reversals, and we believe they were likely caused by local additions of more primitive melt during crystallization of D'Orbigny. D'Orbigny is the most ferroan angrite with a bulk rock mg# of 32. Compositionally, it is virtually identical to Sahara 99555; the first set of compositionally identical angrites. Comparison with the other angrites shows that there is no simple petrogenetic sequence, partial melting with or without fractional crystallization, that can explain the angrite suite. Angra dos Reis remains a very anomalous angrite. Angrites show no evidence for the brecciation, shock, or impact or thermal metamorphism that affected the HED suite and ordinary chondrites. This suggests the angrite parent body may have followed a fundamentally different evolutionary path than did these other parent bodies.

  15. Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers.

    PubMed

    Lin, Lu; Wang, Huiyao; Jiang, Wenbin; Mkaouar, Ahmed Radhi; Xu, Pei

    2017-07-05

    Incorporating reduced graphene oxide (rGO) or Fe 3+ ions in TiO 2 photocatalyst could enhance photocatalytic degradation of organic contaminants in aqueous solutions. This study characterized the photocatalytic activities of TiO 2 -Fe and TiO 2 -rGO nanocomposites immobilized on optical fibers synthesized by polymer assisted hydrothermal deposition method. The photocatalysts presented a mixture phase of anatase and rutile in the TiO 2 -rGO and TiO 2 -Fe nanocomposites. Doping Fe into TiO 2 particles (2.40eV) could reduce more band gap energy than incorporating rGO (2.85eV), thereby enhancing utilization efficiency of visible light. Incorporating Fe and rGO in TiO 2 decreased significantly the intensity of TiO 2 photoluminescence signals and enhanced the separation rate of photo-induced charge carriers. Photocatalytic performance of the synthesized nanocomposites was measured by the degradation of three pharmaceuticals under UV and visible light irradiation, including carbamazepine, ibuprofen, and sulfamethoxazole. TiO 2 -rGO exhibited higher photocatalytic activity for the degradation of pharmaceuticals under UV irradiation, while TiO 2 -Fe demonstrated more suitable for visible light oxidation. The results suggested that the enhanced photocatalytic performance of TiO 2 -rGO could be attributed to reduced recombination rate of photoexcited electrons-hole pairs, but for TiO 2 -Fe nanocomposite, narrower band gap would contribute to increased photocatalytic activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Microstructures and Mechanical Properties of NiTiFeAlCu High-Entropy Alloys with Exceptional Nano-precipitates

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Wang, Sibing; Jiang, Shuyong; Zhu, Xiaoming; Sun, Dong

    2017-01-01

    Three novel NiTiFeAlCu high-entropy alloys, which consist of nano-precipitates with face-centered cubic structure and matrix with body-centered cubic structure, were fabricated to investigate microstructures and mechanical properties. With the increase in Ni and Ti contents, the strength of NiTiFeAlCu alloy is enhanced, while the plasticity of NiTiFeAlCu alloy is lowered. Plenty of dislocations can be observed in the Ni32Ti32Fe12Al12Cu12 high-entropy alloy. The size of nano-precipitates decreases with the increase in Ni and Ti contents, while lattice distortion becomes more and more severe with the increase in Ni and Ti contents. The existence of nano-precipitates, dislocations and lattice distortion is responsible for the increase in the strength of NiTiFeAlCu alloy, but it has an adverse influence on the plasticity of NiTiFeAlCu alloy. Ni20Ti20Fe20Al20Cu20 alloy exhibits the substantial ability of plastic deformation and a characteristic of steady flow at 850 and 1000 °C. This phenomenon is attributed to a competition between the increase in the dislocation density induced by plastic strain and the decrease in the dislocation density due to the dynamic recrystallization.

  17. Optimal integrated abundances for chemical tagging of extragalactic globular clusters

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Venn, Kim; Shetrone, Matthew; Dotter, Aaron; Mackey, Dougal

    2014-09-01

    High-resolution integrated light (IL) spectroscopy provides detailed abundances of distant globular clusters whose stars cannot be resolved. Abundance comparisons with other systems (e.g. for chemical tagging) require understanding the systematic offsets that can occur between clusters, such as those due to uncertainties in the underlying stellar population. This paper analyses high-resolution IL spectra of the Galactic globular clusters 47 Tuc, M3, M13, NGC 7006, and M15 to (1) quantify potential systematic uncertainties in Fe, Ca, Ti, Ni, Ba, and Eu and (2) identify the most stable abundance ratios that will be useful in future analyses of unresolved targets. When stellar populations are well modelled, uncertainties are ˜0.1-0.2 dex based on sensitivities to the atmospheric parameters alone; in the worst-case scenarios, uncertainties can rise to 0.2-0.4 dex. The [Ca I/Fe I] ratio is identified as the optimal integrated [α/Fe] indicator (with offsets ≲ 0.1 dex), while [Ni I/Fe I] is also extremely stable to within ≲ 0.1 dex. The [Ba II/Eu II] ratios are also stable when the underlying populations are well modelled and may also be useful for chemical tagging.

  18. Phase transitions and domain structures in multiferroics

    NASA Astrophysics Data System (ADS)

    Vlahos, Eftihia

    2011-12-01

    Thin film ferroelectrics and multiferroics are two important classes of materials interesting both from a scientific and a technological prospective. The volatility of lead and bismuth as well as environmental issues regarding the toxicity of lead are two disadvantages of the most commonly used ferroelectric random access memory (FeRAM) materials such as Pb(Zr,Ti)O3 and SrBi2Ta2O9. Therefore lead-free thin film ferroelectrics are promising substitutes as long as (a) they can be grown on technologically important substrates such as silicon, and (b) their T c and Pr become comparable to that of well established ferroelectrics. On the other hand, the development of functional room temperature ferroelectric ferromagnetic multiferroics could lead to very interesting phenomena such as control of magnetism with electric fields and control of electrical polarization with magnetic fields. This thesis focuses on the understanding of material structure-property relations using nonlinear optical spectroscopy. Nonlinear spectroscopy is an excellent tool for probing the onset of ferroelectricity, and domain dynamics in strained ferroelectrics and multiferroics. Second harmonic generation was used to detect ferroelectricity and the antiferrodistortive phase transition in thin film SrTiO3. Incipient ferroelectric CaTiO3 has been shown to become ferroelectric when strained with a combination of SHG and dielectric measurements. The tensorial nature of the induced nonlinear polarization allows for probing of the BaTiO3 and SrTiO3 polarization contributions in nanoscale BaTiO3/SrTiO3 superlattices. In addition, nonlinear optics was used to demonstrate ferroelectricity in multiferroic EuTiO3. Finally, confocal SHG and Raman microscopy were utilized to visualize polar domains in incipient ferroelectric and ferroelastic CaTiO3.

  19. Enrichment of Sc2O3 and TiO2 from bauxite ore residues.

    PubMed

    Deng, Bona; Li, Guanghui; Luo, Jun; Ye, Qing; Liu, Mingxia; Peng, Zhiwei; Jiang, Tao

    2017-06-05

    As a major byproduct generated in the alumina industry, bauxite ore residue is an important reserve of scandium and titanium. In this study, the feasibility and mechanism of enriching Sc 2 O 3 and TiO 2 from a non-magnetic material, which was obtained from carbothermal reductive roasting and magnetic separation of bauxite ore residue, were investigated based on a two-step (acidic and alkali) leaching process. It was revealed that approximately 78% SiO 2 and 30-40% of CaO, FeO and Al 2 O 3 were removed from a non-magnetic material with 0.0134wt.% Sc 2 O 3 and 7.64wt.% TiO 2 by phosphoric acidic leaching, while about 95% Al 2 O 3 and P 2 O 5 were further leached by subsequent sodium hydroxide leaching of the upper-stream leach residue. A Sc 2 O 3 -, TiO 2 - rich material containing 0.044wt.% Sc 2 O 3 and 25.5wt.% TiO 2 was obtained, the recovery and the enrichment factor of Sc 2 O 3 and TiO 2 were about 85% and 5, respectively. The enrichment of Sc 2 O 3 was attributed to higher pH (>3.3) of phosphoric acid solution than its dissolution pH 0 , and the enrichment of TiO 2 was mainly associated with the insoluble perovskite (CaTiO 3 ) in the acidic solution at ambient temperature. As Sc 2 O 3 and TiO 2 cannot be dissolved in the alkali solution, they were further enriched in the leach residue. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Synthesis and Characterizations of Novel Ca-Mg-Ti-Fe-Oxides Based Ceramic Nanocrystals and Flexible Film of Polydimethylsiloxane Composite with Improved Mechanical and Dielectric Properties for Sensors

    PubMed Central

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Azrin Shah, Nabila Farhana; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Armalcolite, a rare ceramic mineral and normally found in the lunar earth, was synthesized by solid-state step-sintering. The in situ phase-changed novel ceramic nanocrystals of Ca-Mg-Ti-Fe based oxide (CMTFOx), their chemical reactions and bonding with polydimethylsiloxane (PDMS) were determined by X-ray diffraction, infrared spectroscopy, and microscopy. Water absorption of all the CMTFOx was high. The lower dielectric loss tangent value (0.155 at 1 MHz) was obtained for the ceramic sintered at 1050 °C (S1050) and it became lowest for the S1050/PDMS nanocomposite (0.002 at 1 MHz) film, which was made by spin coating at 3000 rpm. The excellent flexibility (static modulus ≈ 0.27 MPa and elongation > 90%), viscoelastic property (tanδ = E″/E′: 0.225) and glass transition temperature (Tg: −58.5 °C) were obtained for S1050/PDMS film. Parallel-plate capacitive and flexible resistive humidity sensors have been developed successfully. The best sensing performance of the present S1050 (3000%) and its flexible S1050/PDMS composite film (306%) based humidity sensors was found to be at 100 Hz, better than conventional materials. PMID:26927116

  1. Drift pumice in the Central Indian Ocean Basin: Geochemical evidence

    NASA Astrophysics Data System (ADS)

    Pattan, J. N.; Mudholkar, A. V.; Jai Sankar, S.; Ilangovan, D.

    2008-03-01

    Abundant white to light grey-coloured pumice without ferromanganese oxide coating occurs within the Quaternary sediments of the Central Indian Ocean Basin (CIOB). Two distinct groups of pumice are identified from their geochemical composition, which allow one to define two different origins linked to two separate eruptions. One group of pumice is a dacitic type characterized by high Fe, Ti, Mg, Al and Ca with comparatively low contents of Si, rare-earth elements (∑REE, 69 ppm), Rb, Sr, U, Th, Ba, V, Nb, Sc, Mo and Co, which strongly suggest an origin from the 1883 Krakatau eruption. The other group is rhyolitic and is characterized by low contents of Fe, Ti, Mg and Ca and high Si, ∑REE content (121 ppm), Rb, Sr, U, Th, Ba, V, Nb, Mo, Co, and Sc and correlates well with the composition of the Youngest Toba Tuff (YTT) eruption of ˜74 ka from Northern Sumatra and is being reported for the first time. Therefore, correlation of the pumice to the 1883 Krakatau and YTT eruptions indicates that the pumice drifted to the CIOB and eventually sank when it became waterlogged. However, physical properties such as density, specific gravity, porosity and degree of saturation required for sinking of pumice for both 1883 Krakatau and YTT are almost similar.

  2. Dielectric characteristics of CaCu3Ti4O12/P(VDF-TrFE) nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Shan, Xiaobing; Wu, Peixuan; Cheng, Z.-Y.

    2012-06-01

    Composite thin film is highly desirable for the dielectric applications. In order to develop composite thin film, a nanocomposite, in which nanosized CaCu3Ti4O12 (CCTO) particles are used as filler and P(VDF-TrFE) 55/45 mol% copolymer is used as polymer matrix, is investigated. The contents of CCTO in the nanocomposites range from 0% to 50 vol%. The dielectric property of these nanocomposites was characterized at frequencies ranging from 100 Hz to 1 MHz and at temperatures ranging from 200 K to 370 K. A dielectric constant of 62 with a loss of 0.05 was obtained in nanocomposite with 50 vol% CCTO at room temperature at 1 kHz. At the phase transition temperature (˜340 K) of the copolymer, a dielectric constant of 150 with a loss less than 0.1 was obtained in this nanocomposite. It is found that the dielectric loss of the nanocomposites is dominated by the polymer which has a relaxation process. Comparing to composites made using microsized CCTO, the nanocomposites exhibit a much lower dielectric loss and a lower dielectric constant. This indicates that the nanosized CCTO particles have a lower dielectric constant than the microsized CCTO particles.

  3. Synthesis and Characterizations of Novel Ca-Mg-Ti-Fe-Oxides Based Ceramic Nanocrystals and Flexible Film of Polydimethylsiloxane Composite with Improved Mechanical and Dielectric Properties for Sensors.

    PubMed

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Shah, Nabila Farhana Azrin; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-02-27

    Armalcolite, a rare ceramic mineral and normally found in the lunar earth, was synthesized by solid-state step-sintering. The in situ phase-changed novel ceramic nanocrystals of Ca-Mg-Ti-Fe based oxide (CMTFOx), their chemical reactions and bonding with polydimethylsiloxane (PDMS) were determined by X-ray diffraction, infrared spectroscopy, and microscopy. Water absorption of all the CMTFOx was high. The lower dielectric loss tangent value (0.155 at 1 MHz) was obtained for the ceramic sintered at 1050 °C (S1050) and it became lowest for the S1050/PDMS nanocomposite (0.002 at 1 MHz) film, which was made by spin coating at 3000 rpm. The excellent flexibility (static modulus ≈ 0.27 MPa and elongation > 90%), viscoelastic property (tanδ = E″/E': 0.225) and glass transition temperature (Tg: -58.5 °C) were obtained for S1050/PDMS film. Parallel-plate capacitive and flexible resistive humidity sensors have been developed successfully. The best sensing performance of the present S1050 (3000%) and its flexible S1050/PDMS composite film (306%) based humidity sensors was found to be at 100 Hz, better than conventional materials.

  4. Impact of Fe doping on the electronic structure of SrTiO3 thin films determined by resonant photoemission

    NASA Astrophysics Data System (ADS)

    Kubacki, J.; Kajewski, D.; Goraus, J.; Szot, K.; Koehl, A.; Lenser, Ch.; Dittmann, R.; Szade, J.

    2018-04-01

    Epitaxial thin films of Fe doped SrTiO3 have been studied by the use of resonant photoemission. This technique allowed us to identify contributions of the Fe and Ti originating electronic states to the valence band. Two valence states of iron Fe2+ and Fe3+, detected on the base of x-ray absorption studies spectra, appeared to form quite different contributions to the valence band of SrTiO3. The electronic states within the in-gap region can be attributed to Fe and Ti ions. The Fe2+ originating states which can be connected to the presence of oxygen vacancies form a broad band reaching binding energies of about 0.5 eV below the conduction band, while Fe3+ states form in the gap a sharp feature localized just above the top of the valence band. These structures were also confirmed by calculations performed with the use of the FP-LAPW/APW+lo method including Coulomb correlations within the d shell. It has been shown that Fe doping induced Ti originating states in the energy gap which can be related to the hybridization of Ti and Fe 3d orbitals.

  5. Preliminary Results from the Viking X-ray Fluorescence Experiment: The First Sample from Chryse Planitia, Mars.

    PubMed

    Toulmin, P; Clark, B C; Baird, A K; Keil, K; Rose, H J

    1976-10-01

    Iron, calcium, aluminum, silicon, and sulfur are major elements in the first surface sample of Mars that has been analyzed by the Viking x-ray fluorescence spectrometer. Titanium is present in minor quantities. This is consistent with the sample being a mixture of fine silicate and oxide mineral grains, with a significant proportion of sulfates, possibly hydrated. Ferric oxide is regarded as the red pigmenting agent on the martian surface, but if it coats silicate grains, the coatings must be very thin (

  6. Preliminary results from the Viking X-ray fluorescence experiment - The first sample from Chryse Planitia, Mars

    NASA Technical Reports Server (NTRS)

    Toulmin, P., III; Rose, H. J., Jr.; Clark, B. C.; Baird, A. K.; Keil, K.

    1976-01-01

    Iron, calcium, aluminum, silicon, and sulfur are major elements in the first surface sample of Mars that has been analyzed by the Viking X-ray fluorescence spectrometer. Titanium is present in minor quantities. This is consistent with the sample's being a mixture of fine silicate and oxide mineral grains, with a significant proportion of sulfates, possibly hydrated. Ferric oxide is regarded as the red pigmenting agent on the Martian surface, but if it coats silicate grains, the coatings must be very thin or discontinuous. A high abundance of Fe, relatively low abundances of Al, Rb, Sr, and Zr, and a high Ca/K ratio are distinctive features of the spectra. Preliminary determinations indicate the following abundances (as percentages by weight): Fe, 14 plus or minus 2; Ti, less than 1; S, 2 to 5; the Ca/K ratio by weight is greater than 5.

  7. Preliminary results from the viking x-ray fluorescence experiment: The first sample from chryse planitia, Mars

    USGS Publications Warehouse

    Toulmin, P.; Clark, B. C.; Baird, A.K.; Keil, Klaus; Rose, H.J.

    1976-01-01

    Iron, calcium, aluminum, silicon, and sulfur are major elements in the first surface sample of Mars that has been analyzed by the Viking x-ray fluorescence spectrometer. Titanium is present in minor quantities. This is consistent with the sample being a mixture of fine silicate and oxide mineral grains, with a significant proportion of sulfates, possibly hydrated. Ferric oxide is regarded as the red pigmenting agent on the martian surface, but if it coats silicate grains, the coatings must be very thin (??? 2 micrometers) or discontinuous. A high abundance of Fe, relatively low abundances of Al, Rb, Sr, and Zr, and a high Ca/K ratio are distinctive features of the spectra. Preliminary determinations indicate the following abundances (as percentages by weight): Fe, 14 ?? 2; Ti < 1; S, 2 to 5; the Ca/K ratio by weight is greater than 5.

  8. Surface coating changes the physiological and biochemical impacts of nano-TiO2 in basil (Ocimum basilicum) plants.

    PubMed

    Tan, Wenjuan; Du, Wenchao; Barrios, Ana C; Armendariz, Raul; Zuverza-Mena, Nubia; Ji, Zhaoxia; Chang, Chong Hyun; Zink, Jeffrey I; Hernandez-Viezcas, Jose A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2017-03-01

    Little is known about the effects of surface coating on the interaction of engineered nanoparticles (ENPs) with plants. In this study, basil (Ocimum basilicum) was cultivated for 65 days in soil amended with unmodified, hydrophobic (coated with aluminum oxide and dimethicone), and hydrophilic (coated with aluminum oxide and glycerol) titanium dioxide nanoparticles (nano-TiO 2 ) at 125, 250, 500, and 750 mg nano-TiO 2 kg -1 soil. ICP-OES/MS, SPAD meter, and UV/Vis spectrometry were used to determine Ti and essential elements in tissues, relative chlorophyll content, carbohydrates, and antioxidant response, respectively. Compared with control, hydrophobic and hydrophilic nano-TiO 2 significantly reduced seed germination by 41% and 59%, respectively, while unmodified and hydrophobic nano-TiO 2 significantly decreased shoot biomass by 31% and 37%, respectively (p ≤ 0.05). Roots exposed to hydrophobic particles at 750 mg kg -1 had 87% and 40% more Ti than the pristine and hydrophilic nano-TiO 2 ; however, no differences were found in shoots. The three types of particles affected the homeostasis of essential elements: at 500 mg kg - 1 , unmodified particles increased Cu (104%) and Fe (90%); hydrophilic increased Fe (90%); while hydrophobic increased Mn (339%) but reduced Ca (71%), Cu (58%), and P (40%). However, only hydrophobic particles significantly reduced root elongation by 53%. Unmodified, hydrophobic, and hydrophilic particles significantly reduced total sugar by 39%, 38%, and 66%, respectively, compared with control. Moreover, unmodified particles significantly decreased reducing sugar (34%), while hydrophobic particles significantly reduced starch (35%). Although the three particles affected basil plants, coated particles impacted the most its nutritional quality, since they altered more essential elements, starch, and reducing sugars. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Origin of Fe-Ti Oxide Mineralization in the Middle Paleoproterozoic Elet'ozero Syenite-Gabbro Intrusive Complex (Northern Karelia, Russia)

    NASA Astrophysics Data System (ADS)

    Sharkov, E. V.; Chistyakov, A. V.; Shchiptsov, V. V.; Bogina, M. M.; Frolov, P. V.

    2018-03-01

    Magmatic oxide mineralization widely developed in syenite-gabbro intrusive complexes is an important Fe and Ti resource. However, its origin is hotly debatable. Some researchers believe that the oxide ores were formed through precipitation of dense Ti-magnetite in an initial ferrogabbroic magma (Bai et al., 2012), whereas others consider them as a product of immiscible splitting of Fe-rich liquid during crystallization of Fe-Ti basaltic magma (Zhou et al., 2013). We consider this problem with a study of the Middle Paleoproterozoic (2086 ± 30 Ma) Elet'ozero Ti-bearing layered intrusive complex in northern Karelia (Baltic Shield). The first ore-bearing phase of the complex is mainly made up of diverse ferrogabbros, with subordinate clinopyroxenites and peridotites. Fe-Ti oxides (magnetite, Ti-magnetite, and ilmenite) usually account for 10-15 vol %, reaching 30-70% in ore varieties. The second intrusive phase is formed by alkaline and nepheline syenites. Petrographical, mineralogical, and geochemical data indicate that the first phase of the intrusion was derived from a moderately alkaline Fe-Ti basaltic melt, while the parental melt of the second phase was close in composition to alkaline trachyte. The orebodies comprise disseminated and massive ores. The disseminated Fe-Ti oxide ores make up lenses and layers conformable to general layering. Massive ores occur in subordinate amounts as layers and lenses, as well as cross-cutting veins. Elevated Nb and Ta contents in Fe-Ti oxides makes it possible to consider them complex ores. It is shown that the Fe-Ti oxide mineralization is related to the formation of a residual (Fe,Ti)-rich liquid, which lasted for the entire solidification history of the first intrusive phase. The liquid originated through multiple enrichment of Fe and Ti in the crystallization zone of the intrusion owing to the following processes: (1) precipitation of silicate minerals in the crystallization zone with a corresponding increase in the Fe and Ti contents in an interstitial melt; and (2) periodic accumulation of the residual melt in front of this zone. Unlike liquid immiscibility leading to melt splitting into two phases, this liquid dissolved the residual components of the melt. Correspondingly, such an Fe-rich liquid has unusual properties and requires further study.

  10. Tourmalines from the siderite-quartz-sulphide hydrothermal veins, Gemeric unit, western Carpathians, Slovakia: crystal chemistry and evolution

    NASA Astrophysics Data System (ADS)

    Bačík, P.; Uher, P.; Dikej, J.; Puškelová, Ľ.

    2018-02-01

    Tourmaline is an important gangue mineral in a large number of Cretaceous siderite-quartz-sulphide hydrothermal veins in the Gemeric Unit, Slovak Ore Mountains, Slovakia, such as Dobšiná, Vlachovo, Rožňavské Bystré, Hnilčík, Rakovnica, Novoveská Huta, Gretla, Rudňany, and Bindt. In this study we combine by electron microprobe analysis, powder X-ray diffraction, Mössbauer and optical emission spectroscopy to determine the range of tourmaline compositions in the deposits and constrain the mechanisms of its precipitation. Selected samples from the mentioned deposits belong mostly to the alkali group, schorl to dravite series, rarely dominant X-site vacant foititic tourmaline (Vlachovo and Bindt) and oxy-dravite compositions (Hnilčík) were detected. Rim zones of some schorlitic tourmalines show high concentrations of Ti (up to 2.35 wt.% TiO2, 0.30 apfu; Rožňavské Bystré). The chemical composition is mostly controlled by alkali-deficient X □AlNa-1(Mg,Fe2+)-1 and proton-deficient AlO(Mg,Fe2+)-1(OH)-1 substitutions. Titanium is incorporated into the structure by Y Ti Y (Mg,Fe) Y Al-2, Y Ti Z Mg Y Al-1 Z Al-1, Y TiO( Y AlOH), and X Ca Y Ti Z MgO2 X □-1 Y,Z Al-2(OH)-2 substitutions. Along trace elements, Sr and V attain concentrations of 80-450 and 70-320 ppm, respectively. The unit-cell parameter a varies between 15.960 and 15.985 Å; variations in c are larger, between 7.177 and 7.236 Å indicating the presence of Fe3+ and Mg2+ at Z site. Mössbauer spectroscopy has shown variable Fe3+ proportions (0.17 -0.55 apfu) in all samples. The gathered dataset suggests some qualitative considerations on the mechanisms controlling tourmaline compositions at the regional scale. The highest Fe3+ concentrations occur in samples from Rudňany and Gretla in the external part of Gemeric unit, suggesting higher oxidation during longer transport of fluids. We propose that the determined XFe in the samples are correlated with the compositions of the host rocks, as schorlitic to foititic tourmalines occur in veins located in the meta-rhyolites host, and tourmalines with the highest Mg contents occur in metabasalts.

  11. CdS Nanoparticle-Modified α-Fe2O3/TiO2 Nanorod Array Photoanode for Efficient Photoelectrochemical Water Oxidation.

    PubMed

    Yin, Ruiyang; Liu, Mingyang; Tang, Rui; Yin, Longwei

    2017-09-02

    In this work, we demonstrate a facile successive ionic layer adsorption and reaction process accompanied by hydrothermal method to synthesize CdS nanoparticle-modified α-Fe 2 O 3 /TiO 2 nanorod array for efficient photoelectrochemical (PEC) water oxidation. By integrating CdS/α-Fe 2 O 3 /TiO 2 ternary system, light absorption ability of the photoanode can be effectively improved with an obviously broadened optical-response to visible light region, greatly facilitates the separation of photogenerated carriers, giving rise to the enhancement of PEC water oxidation performance. Importantly, for the designed abnormal type-II heterostructure between Fe 2 O 3 /TiO 2 , the conduction band position of Fe 2 O 3 is higher than that of TiO 2 , the photogenerated electrons from Fe 2 O 3 will rapidly recombine with the photogenerated holes from TiO 2 , thus leads to an efficient separation of photogenerated electrons from Fe 2 O 3 /holes from TiO 2 at the Fe 2 O 3 /TiO 2 interface, greatly improving the separation efficiency of photogenerated holes within Fe 2 O 3 and enhances the photogenerated electron injection efficiency in TiO 2 . Working as the photoanodes of PEC water oxidation, CdS/α-Fe 2 O 3 /TiO 2 heterostucture electrode exhibits improved photocurrent density of 0.62 mA cm - 2 at 1.23 V vs. reversible hydrogen electrode (RHE) in alkaline electrolyte, with an obviously negatively shifted onset potential of 80 mV. This work provides promising methods to enhance the PEC water oxidation performance of the TiO 2 -based heterostructure photoanodes.

  12. Integrated photooxidative extractive deep desulfurization using metal doped TiO2 and eutectic based ionic liquid

    NASA Astrophysics Data System (ADS)

    Zaid, Hayyiratul Fatimah Mohd; Kait, Chong Fai; Mutalib, Mohamed Ibrahim Abdul

    2016-11-01

    A series of metal doped TiO2 namely Fe/TiO2, Cu/TiO2 and Cu-Fe/TiO2 were synthesized and characterized, to be used as a photocatalyst in the integrated photooxidative extractive deep desulfurization for model oil (dodecane) and diesel fuel. The order of the photocatalytic activity was Cu-Fe/TiO2 followed by Cu/TiO2 and then Fe/TiO2. Cu-Fe/TiO2 was an effective photocatalyst for sulfur conversion at ambient atmospheric pressure. Hydrogen peroxide was used as the source of oxidant and eutectic-based ionic liquid as the extractant. Sulfur conversion in model oil reached 100%. Removal of sulfur from model oil was done by two times extraction with a removal of 97.06% in the first run and 2.94% in the second run.

  13. Coercivity and nanostructure of melt-spun Ti-Fe-Co-B-based alloys

    DOE PAGES

    Zhang, W. Y.; Skomski, R.; Kashyap, A.; ...

    2016-02-18

    Nanocrystalline Ti-Fe-Co-B-based alloys, prepared by melt spinning and subsequent annealing, have been characterized structurally and magnetically. X-ray diffraction and thermomagnetic measurements show that the ribbons consist of tetragonal Ti 3(Fe,Co) 5B 2, FeCo-rich bcc, and NiAl-rich L2 1 phases; Ti 3(Fe,Co) 5B 2, is a new substitutional alloy series whose end members Ti 3Co 5B 2 and Ti 3Fe 5B 2 have never been investigated magnetically and may not even exist, respectively. Two compositions are considered, namely Ti 11+xFe 37.5-0.5xCo 37.5–0.5xB 14 (x = 0, 4) and alnico-like Ti 11Fe 26Co 26Ni 10Al 11Cu 2B 14, the latter also containingmore » an L2 1-type alloy. The volume fraction of the Ti 3(Fe,Co) 5B 2 phase increases with x, which leads to a coercivity increase from 221 Oe for x = 0 to 452 Oe for x = 4. Since the grains are nearly equiaxed, there is little or no shape anisotropy, and the coercivity is largely due to the magnetocrystallineanisotropy of the tetragonal Ti 3(Fe,Co) 5B 2 phase. The alloy containing Ni,Al, and Cu exhibits a magnetization of 10.6 kG and a remanence ratio of 0.59. Lastly, our results indicate that magnetocrystallineanisotropy can be introduced in alnico-like magnets, adding to shape anisotropy that may be induced by field annealing.« less

  14. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge

    USGS Publications Warehouse

    Audetat, Andreas; Garbe-Schonberg, Dieter; Kronz, Andreas; Pettke, Thomas; Rusk, Brian G.; Donovan, John J.; Lowers, Heather

    2015-01-01

    A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium-in-quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g-1), Al (154 ± 15 μg g-1), Li (30 ± 2 μg g-1), Fe (2.2 ± 0.3 μg g-1), Mn (0.34 ± 0.04 μg g-1), Ge (1.7 ± 0.2 μg g-1) and Ga (0.020 ± 0.002 μg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.

  15. Promotion of osteogenic differentiation of stem cells and increase of bone-bonding ability in vivo using urease-treated titanium coated with calcium phosphate and gelatin.

    PubMed

    Huang, Zhong-Ming; Qi, Yi-Ying; Du, Shao-Hua; Feng, Gang; Unuma, Hidero; Yan, Wei-Qi

    2013-10-01

    Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro . The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti ( p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control ( n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo , suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.

  16. Promotion of osteogenic differentiation of stem cells and increase of bone-bonding ability in vivo using urease-treated titanium coated with calcium phosphate and gelatin

    NASA Astrophysics Data System (ADS)

    Huang, Zhong-Ming; Qi, Yi-Ying; Du, Shao-Hua; Feng, Gang; Unuma, Hidero; Yan, Wei-Qi

    2013-10-01

    Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro. The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti (p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control (n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo, suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.

  17. Rational Design of Multifunctional Fe@γ-Fe2 O3 @H-TiO2 Nanocomposites with Enhanced Magnetic and Photoconversion Effects for Wide Applications: From Photocatalysis to Imaging-Guided Photothermal Cancer Therapy.

    PubMed

    Wang, Meifang; Deng, Kerong; Lü, Wei; Deng, Xiaoran; Li, Kai; Shi, Yanshu; Ding, Binbin; Cheng, Ziyong; Xing, Bengang; Han, Gang; Hou, Zhiyao; Lin, Jun

    2018-03-01

    Titanium dioxide (TiO 2 ) has been widely investigated and used in many areas due to its high refractive index and ultraviolet light absorption, but the lack of absorption in the visible-near infrared (Vis-NIR) region limits its application. Herein, multifunctional Fe@γ-Fe 2 O 3 @H-TiO 2 nanocomposites (NCs) with multilayer-structure are synthesized by one-step hydrogen reduction, which show remarkably improved magnetic and photoconversion effects as a promising generalists for photocatalysis, bioimaging, and photothermal therapy (PTT). Hydrogenation is used to turn white TiO 2 in to hydrogenated TiO 2 (H-TiO 2 ), thus improving the absorption in the Vis-NIR region. Based on the excellent solar-driven photocatalytic activities of the H-TiO 2 shell, the Fe@γ-Fe 2 O 3 magnetic core is introduced to make it convenient for separating and recovering the catalytic agents. More importantly, Fe@γ-Fe 2 O 3 @H-TiO 2 NCs show enhanced photothermal conversion efficiency due to more circuit loops for electron transitions between H-TiO 2 and γ-Fe 2 O 3 , and the electronic structures of Fe@γ-Fe 2 O 3 @H-TiO 2 NCs are calculated using the Vienna ab initio simulation package based on the density functional theory to account for the results. The reported core-shell NCs can serve as an NIR-responsive photothermal agent for magnetic-targeted photothermal therapy and as a multimodal imaging probe for cancer including infrared photothermal imaging, magnetic resonance imaging, and photoacoustic imaging. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Influence of humic acid concentration on nTiO2 attachment to quartz sand and Fe-coated quartz sand

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Wu, Y.

    2016-12-01

    The transport of nano-scale or micro-scale titanium dioxide particles (nTiO2) in subsurface environments are strongly influenced by nTiO2 attachment to sediment grains. The objective of this study is to investigate the role of humic acid (HA) in the attachment of nTiO2 to sand at low HA concentrations that are relevant to typical groundwater conditions, so that mechanisms that control nTiO2 immobilization and transport in groundwater can be elucidated. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the transport of negatively-charged colloids, may influence nTiO2 in different manners. Attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand are experimentally measured under a range of HA concentrations at fixed pH. Experimental results show that at pH 5, negatively-charged HA strongly adsorbs to positively-charged nTiO2 and Fe oxyhydroxide, which, at low HA concentrations, partially neutralizes the positive charges on nTiO2 and Fe oxyhydroxide, and therefore decreases the repulsive electrostatic forces between the surfaces, resulting in relatively high nTiO2 attachment. At high HA concentrations, adsorbed HA reverses the surface charges of nTiO2 and Fe oxyhydroxide, and makes nTiO2 and Fe oxyhydroxide strongly negatively charged, resulting in low nTiO2 attachment. At pH 9, HA, nTiO2, and Fe oxyhydroxide are all negatively charged, and HA adsorption is low and does not have a strong impact on the attachment of nTiO2. This study demonstrates that the changes in surface charges of nTiO2 and Fe oxyhydroxide coating caused by HA adsorption could be a key factor that controls the attachment of nTiO2 to sediment grains.

  19. Ultra-fine structures of Pd-Ag-HAp nanoparticle deposition on protruded TiO2 barrier layer for dental implant

    NASA Astrophysics Data System (ADS)

    Jang, Jae-Myung; Kim, Seung-Dai; Park, Tae-Eon; Choe, Han-Cheol

    2018-02-01

    The biocompatibility structure of an implant surface is of great importance to the formation of new bone tissue around the dental implant and also has a significant chemical reaction in the osseointegration process. Thus, ultra-fine Pd-Ag-HAp nanoparticles have been electrodeposited on protruded TiO2 barrier layer in mixed electrolyte solutions. Unusual protrusions patterns, which are assigned to Pd-Ag-HAp nanoparticles, can be clearly differentiated from a TiO2 nanotube oxide layer formed by an anodizing process. In the chemical bonding state, the surface characteristics of Pd/Ag/HAp compounds have been investigated by FE-SEM, EDS mapping analysis, and XPS analysis. The mapping dots of the elements including Ti, Ca, Pd, Ag, and P showed a homogeneous distribution throughout the entire surface when deposited onto the protruded TiO2 barrier layer. The XPS spectra of Ti-2p, O-1S, Pd-3d, and Ag-3d have been investigated, with the major XPS peak indicating Pd-3d. The Ag-3d level was clearly observed with further scanning of the Ca-2p region. Based on the results of the chemical states, the structural properties of the protrusion patterns were also examined after being deposited onto the barrier oxide film, resulting in the representative protrusion patterns being mainly composed of Pd-Ag-HAp compounds. The results of the soaking evaluation showed that the protrusion patterns and the protruded TiO2 barrier layer were all effective in regards to biocompatibility.

  20. Soft X-ray absorption spectroscopy investigations of Bi{sub 6}FeCoTi{sub 3}O{sub 18} and LaBi{sub 5}FeCoTi{sub 3}O{sub 18} epitaxial thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Zhangzhang; Huang, Haoliang; Fu, Zhengping

    High-quality single-crystalline Bi{sub 6}FeCoTi{sub 3}O{sub 18} and LaBi{sub 5}FeCoTi{sub 3}O{sub 18} thin films were prepared by pulsed laser deposition. X-ray diffraction characterizations indicate a more disordered lattice structure of the LaBi{sub 5}FeCoTi{sub 3}O{sub 18} film. The magnetic measurement results demonstrated significantly enhanced ferromagnetism in the LaBi{sub 5}FeCoTi{sub 3}O{sub 18} film. The modulation of oxidation and hybridization states caused by substituting Bi with La was studied using the soft X-ray absorption spectroscopy. The spectroscopic results revealed the reduced concentration of oxygen vacancies and the more distorted lattice structure in the LaBi{sub 5}FeCoTi{sub 3}O{sub 18} film, which explained the enhanced ferromagnetism.

  1. Strained enabled Ferroelectricity in CaTiO3 Thin Films Probed by Nonlinear Optics and Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Vlahos, Eftihia; Kumar, Amit; Denev, Sava; Brooks, Charles; Schlom, Darrell; Eklund, Carl-Johan; Rabe, Karin M.; Fennie, Craig J.; Gopalan, Venkatraman

    2009-03-01

    Calcium titanate, CaTiO3 is not a ferroelectric in its bulk form. However, first principles calculations predict that biaxially tensile strained CaTiO3 thin films should become ferroelectric. Here, we indeed confirm that strained CaTiO3 films become ferroelectric with a Curie temperature of ˜125K. Optical second harmonic generation (SHG) measurements, polarization studies, and in-situ electric-field measurements for a number of films with different strain values will be presented: CaTiO3/DyScO3(110), CaTiO3/SrTiO3 (100),CaTiO3/GdScO3/NdGaO3(110), CaTiO3/LaSrAlO3(001) as well as for a single crystal CaTiO3. From these studies, we conclude that strained CaTiO3 films are ferroelectric with a point group symmetry of mm2, and show reversible domain switching characteristics under an electric field. We also present results of variable temperature piezoelectric force microscopy for imaging the polar domains in the ferroelectric phase. These results suggest that strain is a valuable tool for inducing polar, long range ferroelectric order in even non-polar ceramic materials such as CaTiO3.

  2. FABRICATION OF IN SITUFe-Ti-B COMPOSITE COATING BY LASER CLADDING

    NASA Astrophysics Data System (ADS)

    Du, Baoshuai

    2013-06-01

    Laser cladding was applied to deposit in situFe-Ti-B composite coatings on mild carbon steel with precursor of ferrotitanium, ferroboron and pure Fe alloy powders. The composite coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA). Wear resistance of the laser-cladded Fe-Ti-B coatings was evaluated under dry sliding condition at room temperature using block-on-ring wear tester. Results indicate that in situ reinforcements of TiB2 and Fe2B can be synthesized in the Fe-Ti-B coatings. The amount of TiB2 increases with the increase of content of ferrotitanium and ferroboron in the precursor. Reinforcements are formed through the liquid-precipitation route following the solidification path of the Fe-Ti-B system. Hardness and wear properties of the coatings improved significantly in comparison to the as-received substrate due to the presence of hard reinforcements.

  3. Determination of COD based on Photoelectrocatalysis of FeTiO3.TiO2/Ti Electrode

    NASA Astrophysics Data System (ADS)

    Wibowo, D.; Ruslan; Maulidiyah; Nurdin, M.

    2017-11-01

    Iron infrastructure technology of (Fe)-doped TiO2 nanotubes arrays (NTAs) was prepared for COD photoelectrocatalysis sensor. Fe-TiO2 NTAs was prepared using sol-gel method and coated with TiO2/Ti electrode by immersion technique. The optimization of COD photoelectrocatalytic sensor against Rhodamine B, Methyl Orange, and Methylene Blue organic dyes using photoelectrochemical system in a batch reactor. The high ordered FeTiO3.TiO2/Ti NTAs to determine COD value showed the high photocurrent response linearity and sensitivity to MO organic dye from the concentration of 5 ppm to 75 ppm with an average RSD value of 3.35. The development in this research is to utilize ilmenite mineral as model applied to COD sensor.

  4. EXPLORING ANTICORRELATIONS AND LIGHT ELEMENT VARIATIONS IN NORTHERN GLOBULAR CLUSTERS OBSERVED BY THE APOGEE SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mészáros, Szabolcs; Martell, Sarah L.; Shetrone, Matthew

    We investigate the light-element behavior of red giant stars in northern globular clusters (GCs) observed by the SDSS-III Apache Point Observatory Galactic Evolution Experiment. We derive abundances of 9 elements (Fe, C, N, O, Mg, Al, Si, Ca, and Ti) for 428 red giant stars in 10 GCs. The intrinsic abundance range relative to measurement errors is examined, and the well-known C–N and Mg–Al anticorrelations are explored using an extreme-deconvolution code for the first time in a consistent way. We find that Mg and Al drive the population membership in most clusters, except in M107 and M71, the two mostmore » metal-rich clusters in our study, where the grouping is most sensitive to N. We also find a diversity in the abundance distributions, with some clusters exhibiting clear abundance bimodalities (for example M3 and M53) while others show extended distributions. The spread of Al abundances increases significantly as cluster average metallicity decreases as previously found by other works, which we take as evidence that low metallicity, intermediate mass AGB polluters were more common in the more metal-poor clusters. The statistically significant correlation of [Al/Fe] with [Si/Fe] in M15 suggests that {sup 28}Si leakage has occurred in this cluster. We also present C, N, and O abundances for stars cooler than 4500 K and examine the behavior of A(C+N+O) in each cluster as a function of temperature and [Al/Fe]. The scatter of A(C+N+O) is close to its estimated uncertainty in all clusters and independent of stellar temperature. A(C+N+O) exhibits small correlations and anticorrelations with [Al/Fe] in M3 and M13, but we cannot be certain about these relations given the size of our abundance uncertainties. Star-to-star variations of α-element (Si, Ca, Ti) abundances are comparable to our estimated errors in all clusters.« less

  5. Exploring Anticorrelations and Light Element Variations in Northern Globular Clusters Observed by the APOGEE Survey

    NASA Astrophysics Data System (ADS)

    Mészáros, Szabolcs; Martell, Sarah L.; Shetrone, Matthew; Lucatello, Sara; Troup, Nicholas W.; Bovy, Jo; Cunha, Katia; García-Hernández, Domingo A.; Overbeek, Jamie C.; Allende Prieto, Carlos; Beers, Timothy C.; Frinchaboy, Peter M.; García Pérez, Ana E.; Hearty, Fred R.; Holtzman, Jon; Majewski, Steven R.; Nidever, David L.; Schiavon, Ricardo P.; Schneider, Donald P.; Sobeck, Jennifer S.; Smith, Verne V.; Zamora, Olga; Zasowski, Gail

    2015-05-01

    We investigate the light-element behavior of red giant stars in northern globular clusters (GCs) observed by the SDSS-III Apache Point Observatory Galactic Evolution Experiment. We derive abundances of 9 elements (Fe, C, N, O, Mg, Al, Si, Ca, and Ti) for 428 red giant stars in 10 GCs. The intrinsic abundance range relative to measurement errors is examined, and the well-known C-N and Mg-Al anticorrelations are explored using an extreme-deconvolution code for the first time in a consistent way. We find that Mg and Al drive the population membership in most clusters, except in M107 and M71, the two most metal-rich clusters in our study, where the grouping is most sensitive to N. We also find a diversity in the abundance distributions, with some clusters exhibiting clear abundance bimodalities (for example M3 and M53) while others show extended distributions. The spread of Al abundances increases significantly as cluster average metallicity decreases as previously found by other works, which we take as evidence that low metallicity, intermediate mass AGB polluters were more common in the more metal-poor clusters. The statistically significant correlation of [Al/Fe] with [Si/Fe] in M15 suggests that 28Si leakage has occurred in this cluster. We also present C, N, and O abundances for stars cooler than 4500 K and examine the behavior of A(C+N+O) in each cluster as a function of temperature and [Al/Fe]. The scatter of A(C+N+O) is close to its estimated uncertainty in all clusters and independent of stellar temperature. A(C+N+O) exhibits small correlations and anticorrelations with [Al/Fe] in M3 and M13, but we cannot be certain about these relations given the size of our abundance uncertainties. Star-to-star variations of α-element (Si, Ca, Ti) abundances are comparable to our estimated errors in all clusters.

  6. BaFe2As2/Fe Bilayers with [001]-tilt Grain Boundary on MgO and SrTiO3 Bicrystal Substrates

    NASA Astrophysics Data System (ADS)

    Iida, K.; Haindl, S.; Kurth, F.; Hänisch, J.; Schulz, L.; Holzapfel, B.

    Co-doped BaFe2As2 (Ba-122) can be realized on both MgO and SrTiO3 bicrystal substrates with [001]-tilt grain boundary by employing Fe buffer layers. However, an additional spinel (i.e. MgAl2O4) buffer between Fe and SrTiO3 is necessary since an epitaxial, smooth surface of Fe layer can not be grown on bare SrTiO3. Both types of bicrystal films show good crystalline quality.

  7. XRD analysis of undoped and Fe doped TiO{sub 2} nanoparticles by Williamson Hall method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharti, Bandna; Barman, P. B.; Kumar, Rajesh, E-mail: rajesh.kumar@juit.ac.in

    2015-08-28

    Undoped and Fe doped titanium dioxide (TiO{sub 2}) nanoparticles were synthesized by sol-gel method at room temperature. The synthesized samples were annealed at 500°C. For structural analysis, the prepared samples were characterized by X-ray diffraction (XRD). The crystallite size of TiO{sub 2} and Fe doped TiO{sub 2} nanoparticles were calculated by Scherer’s formula, and was found to be 15 nm and 11 nm, respectively. Reduction in crystallite size of TiO{sub 2} with Fe doping was observed. The anatase phase of Fe-doped TiO{sub 2} nanoparticles was also confirmed by X-ray diffraction. By using Williamson-Hall method, lattice strain and crystallite size weremore » also calculated. Williamson–Hall plot indicates the presence of compressive strain for TiO{sub 2} and tensile strain for Fe-TiO{sub 2} nanoparticles annealed at 500°C.« less

  8. Preparation and photocatalytic properties of nanometer-sized magnetic TiO2/SiO2/CoFe2O4 composites.

    PubMed

    Li, Hansheng; Zhang, Yaping; Wu, Qin; Wang, Xitao; Liu, Changhao

    2011-11-01

    Magnetic TiO2/SiO2/CoFe2O4 nanoparticles (TiO2/SCFs) were prepared by a sol-gel process in a reverse microemulsion combined with solvent-thermal technique. TiO2/SCFs were characterized by Fourier transform infrared spectrometry, thermogravimetric analysis-differential scanning calorimetry, X-ray diffraction, Raman spectrometry, TEM, BET specific surface area measurement, and magnetic analysis. Structure analyses indicated that TiO2/SCFs presented a core-shell structure with TiO2 uniformly coating on SiO2/CoFe2O4 nanomagnets (SCFs) and typical ferromagnetic hysteresis. TiO2/SCFs showed larger specific surface area and better photocatalytic activities than TiO2 and TiO2/CoFe2O4 photocatalysts prepared by the same method. The doping interaction between TiO2 and CoFe2O4 reduced thanks to the inert SiO2 mesosphere.

  9. Crystal structure of a birefringent andradite-grossular from Crowsnest Pass, Alberta, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.; Klincker, Allison M.

    2014-02-20

    The structure of a birefringent andradite–grossular sample was refined using single-crystal X-ray diffraction (SCD) and synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe results indicate a homogeneous composition of {Ca 2.88Mn 2+ 0.06Mg 0.04Fe 2+ 0.03} Σ3[Fe 3+ 1.29Al 0.49Ti 4+ 0.17Fe 2+ 0.06] Σ2(Si 2.89Al 0.11) Σ3O 12. The Rietveld refinement reduced χ 2 = 1.384 and overall R (F 2) = 0.0315. The HRPXRD data show that the sample contains three phases. For phase-1, the weight %, unit-cell parameter (Å), distances (Å), and site occupancy factor (sof) are 62.85(7)%, a = 12.000 06(2), average = 2.4196, Fe–O =more » 1.9882(5), Si–O = 1.6542(6) Å, Ca(sof) = 0.970(2), Fe(sof) = 0.763(1), and Si(sof) = 0.954(2). The corresponding data for phase-2 are 19.14(9)%, a = 12.049 51(2), average = 2.427, Fe–O = 1.999(1), Si–O = 1.665(1) Å, Ca(sof) = 0.928(4), Fe(sof) = 0.825(3), and Si(sof) = 0.964(4). The corresponding data for phase-3 are 18.01(9)%, a = 12.019 68(3), average = 2.424, Fe–O = 1.992(2), Si–O = 1.658(2) Å, Ca(sof) = 0.896(5), Fe(sof) = 0.754(4), and Si(sof) = 0.936(5). The fine-scale coexistence of the three phases causes strain that arises from the unit-cell and bond distances differences, and gives rise to strain-induced birefringence. The results from the SCD are similar to the dominant phase-1 obtained by the HRPXRD, but the SCD misses the minor phases.« less

  10. The role of double TiO 2 layers at the interface of FeSe/SrTiO 3 superconductors

    DOE PAGES

    Zou, Ke; Bozovic, Ian; Mandal, Subhasish; ...

    2016-05-16

    We determine the surface reconstruction of SrTiO 3 used to achieve superconducting FeSe films in experiments, which is different from the 1×1 TiO 2-terminated SrTiO 3 assumed by most previous theoretical studies. In particular, we identify the existence of a double TiO 2 layer at the FeSe/SrTiO 3 interface that plays two important roles. First, it facilitates the epitaxial growth of FeSe. Second, ab initio calculations reveal a strong tendency for electrons to transfer from an oxygen deficient SrTiO 3 surface to FeSe when the double TiO 2 layer is present. The double layer helps to remove the hole pocketmore » in the FeSe at the Γ point of the Brillouin zone and leads to a band structure characteristic of superconducting samples. The characterization of the interface structure presented here is a key step towards the resolution of many open questions about this superconductor.« less

  11. Development and characterization of (Ti, Mo)C carbides reinforced Fe-based surface composite coating produced by laser cladding

    NASA Astrophysics Data System (ADS)

    Wang, Xinhong; Zhang, Min; Qu, Shiyao

    2010-09-01

    In this study, in situ multiple carbides reinforced Fe-based surface composite coatings were fabricated successfully by laser cladding a precursor mixture of graphite, ferrotitanium (Fe-Ti) and ferromolybdenum (Fe-Mo) powders. The results showed that (Ti, Mo)C particles with flower-like and cuboidal shapes were in situ formed during the solidification and most shapes of (Ti, Mo)C particles were diversiform according to different contents of Fe-Mo powder in the Fe-Ti-Mo-C system. The growth morphology of the reinforcing (Ti, Mo)C carbide has typically faceted features, indicating that the lateral growth mechanism is still predominant growth mode under rapid solidification conditions. Increasing the amount of Fe-Mo in the reactants led to a decrease of carbide size and an increase of volume fraction of carbides. The coatings had good cracking resistance when the amounts of Fe-Mo were controlled within a range of 15 wt%.

  12. Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids

    NASA Technical Reports Server (NTRS)

    Eick, M. J.; Grossl, P. R.; Golden, D. C.; Sparks, D. L.; Ming, D. W.

    1996-01-01

    The dissolution kinetics of a simulated lunar glass were examined at pH 3, 5, and 7. Additionally, the pH 7 experiments were conducted in the presence of citric and oxalic acid at concentrations of 2 and 20 mM. The organic acids were buffered at pH 7 to examine the effect of each molecule in their dissociated form. At pH 3, 5, and 7, the dissolution of the synthetic lunar glass was observed to proceed via a two-stage process. The first stage involved the parabolic release of Ca, Mg, Al, and Fe, and the linear release of Si. Dissolution was incongruent, creating a leached layer rich in Si and Ti which was verified by transmission electron microscopy (TEM). During the second stage the release of Ca, Mg, Al, and Fe was linear. A coupled diffusion/surface dissolution model was proposed for dissolution of the simulated lunar glass at pH 3, 5, and 7. During the first stage the initial release of mobile cations (i.e., Ca, Mg, Al, Fe) was limited by diffusion through the surface leached layer of the glass (parabolic release), while Si release was controlled by the hydrolysis of the Si-O-Al bonds at the glass surface (linear release). As dissolution continued, the mobile cations diffused from greater depths within the glass surface. A steady-state was then reached where the diffusion rate across the increased path lengths equalled the Si release rate from the surface. In the presence of the organic acids, the dissolution of the synthetic lunar glass proceeded by a one stage process. The release of Ca, Mg, Al, and Fe followed a parabolic relationship, while the release of Si was linear. The relative reactivity of the organic acids used in the experiments was citrate > oxalate. A thinner leached layer rich in Si/Ti, as compared to the pH experiments, was observed using TEM. Rate data suggest that the chemisorption of the organic anion to the surface silanol groups was responsible for enhanced dissolution in the presence of the organic acids. It is proposed that the increased rate of Si release is responsible for the one stage parabolic release of mobile cations and the relatively thin leached layer compared to experiments at pH 3 and 5.

  13. Highly ordered Fe3+/TiO2 nanotube arrays for efficient photocataltyic degradation of nitrobenzene

    NASA Astrophysics Data System (ADS)

    Zhang, Yiyang; Gu, Di; Zhu, Lingyue; Wang, Baohui

    2017-10-01

    Highly ordered TiO2 nanotube arrays (TiO2 NTs) were prepared through a facile two-step electrochemical anodization, subsequently, active iron ions were introduced into the TiO2 NTs via a direct impregnation method. The XPS results showed that the iron elements existed in TiO2 NTs in the form of Fe3+ ions. Compared with the undoped TiO2 NTs, the absorption edge of Fe3+/TiO2 NTs showed an overt red shift and the photocurrent improved obviously, which indicated that Fe3+/TiO2 had a much higher photocatalytic activity. The optimal doping content was tested to be 0.1 mol/L which could make the photocatalytic activity of TiO2 NTs obviously improves under both visible and ultraviolent light. The prepared samples were adopted as photocatalyst to degrade nitrobenzene (NB). The reaction rate constants ks under UV light were in the order kone-stepTiO2NTs = 0.00338

  14. Fe doped TiO{sub 2} photocatalyst for the removal of As(III) under visible radiation and its potential application on the treatment of As-contaminated groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza-Arévalo, J.I.; García-Montes, I.; Reyes, M.Hinojosa

    2016-01-15

    Highlights: • Incorporation of Fe in TiO{sub 2} lattice extended absorption to visible light region. • TiO{sub 2}–Fe 1.0 in anatase crystalline form was synthesized by sol–gel method. • TiO{sub 2}–Fe 1.0 showed the highest photocatalytic activity for As(III) oxidation. • TiO{sub 2}–Fe 1.0 had the highest adsorption capacity for the removal of generated As(V). • TiO{sub 2}–Fe is a promising material on the treatment of As contaminated groundwater. - Abstract: The Fe doped TiO{sub 2} catalyst was evaluated under visible radiation for As(III) removal. The TiO{sub 2}–Fe was synthesized by sol–gel technique at 0.0, 1.0, 2.5, 5.0 and 10.0more » wt% iron doping concentrations. The semiconductors were characterized by X-ray diffraction, diffuse reflectance UV–vis, Raman spectroscopy, nitrogen physisorption, SEM–EDS and potentiometric titration for point of zero charge determination. The photocatalytic oxidation of As(III) was assessed in aqueous suspension contained 5 mg L{sup −1} As(III) at pH 7 with 0.25 g L{sup −1} catalyst loading. The incorporation of iron ions in TiO{sub 2} lattice extended the absorption to visible light region and create surface oxygen vacancies which favor photocatalytic oxidation reaction of As(III) using a small doping amount of Fe (1.0 wt%) in TiO{sub 2} powder. Additionally, TiO{sub 2}–Fe 1.0 showed the highest adsorption capacity for As(V) removal compared to sol–gel TiO{sub 2} and P25 indicating that this catalyst is a promising material for As contaminated groundwater treatment.« less

  15. Investigations into Ti-(Nb,Ta)-Fe alloys for biomedical applications.

    PubMed

    Biesiekierski, Arne; Lin, Jixing; Li, Yuncang; Ping, Dehai; Yamabe-Mitarai, Yoko; Wen, Cuie

    2016-03-01

    In this study, a Ti-(Ta,Nb)-Fe system was investigated with aims toward the development of high strength, biocompatible titanium alloy suitable for the development of porous orthopedic biomaterials with minimal processing. Notable findings include yield strengths of 740, 1250 and 1360 MPa for the Ti-12Nb-5Fe, Ti-7Ta-5Fe and Ti-10Ta-4Fe alloys, respectively, with elastic moduli comparable to existing Ti-alloys, yielding admissible strains of 0.9 ± 0.3, 1.2 ± 0.2 and 1.13 ± 0.02% for the Ti-12Nb-5Fe, Ti-7Ta-5Fe and Ti-10Ta-4Fe alloys, respectively; more than twice that of human bone. Observed microstructure varied significantly depending on alloy; near pure β-phase was seen in Ti-12Nb-5Fe, β with some ω precipitation in Ti-10Ta-4Fe, and a duplex α+β structure was observed throughout the Ti-7Ta-5Fe. In addition to suitable mechanical parameters, all investigated alloys exhibited promising corrosion potentials on the order of -0.24 V SCE, equalling that seen for a C.P.-Ti control at -0.25V SCE, and substantially more noble than that seen for Ti-6Al-4V. Electrochemical corrosion rates of 0.5-3 μm/year were likewise seen to agree well with that measured for C.P.-Ti. Further, no statistically significant difference could be seen between any of the alloys relative to a C.P.-Ti control regards to cell proliferation, as investigated via MTS assay and confocal microscopy. As such, the combination of high admissible strain and low corrosion indicate all investigated alloys show significant promise as potential porous biomaterials while in the as-cast state, with the Ti-10Ta-4Fe alloy identified as the most promising composition investigated. The findings of this paper are of significance to the field of metallic biomaterials as they detail the development of alloys of satisfactory biocompatibility and electrochemical behaviour, that furthermore display exceptional mechanical properties. Notably, both extremely high compressive yield strengths and admissible strains, up to 1.36 GPa and 1.2% respectively, are reported, exceeding or rivalling that seen in traditional alloys such as Ti-6Al-4V, which typically displays compressive yield strengths and admissible strains on the order of 895 MPa and 0.81% respectively, as well as modern alloys such as Gum Metal or TNZT. That this is achieved in the absence of thermomechanical processing represents a significant and novel outcome of substantial benefit for application as a porous biomaterial. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Thermomechanical testing of FeNiCoTi shape memory alloy for active confinement of concrete

    NASA Astrophysics Data System (ADS)

    Chen, Qiwen; Andrawes, Bassem; Sehitoglu, Huseyin

    2014-05-01

    The thermomechanical properties of a new type of shape memory alloy (SMA), FeNiCoTi, are explored in this paper with the aim of examining the feasibility of using this new material as transverse reinforcement for concrete structures subjected to earthquake loading. One advantage of using FeNiCoTi alloy is its cost effectiveness compared to commonly studied NiTi alloy. Differential scanning calorimetry (DSC) tests are conducted to investigate the transformation temperatures of FeNiCoTi alloy under different heat treatment methods and prestrain schemes. First, a heat treatment method is established to produce FeNiCoTi alloy with wide thermal hysteresis that is pertinent to civil structural applications. Next, recovery stress tests are conducted to explore the effect of parameters including heating method, heating temperature, heating rate, heating protocol and prestrain level on the recovery stress. An optimum prestrain level is determined based on the recovery stress results. Moreover, cyclic tests are carried out to examine the cyclic response of FeNiCoTi alloy after stress recovery. Thermal cyclic tests are also carried out on the FeNiCoTi alloy to better understand the effect of temperature variation on the recovery stress. In addition, reheating of the FeNiCoTi alloy after deformation is conducted to examine the reusability of the material after being subjected to excessive deformation. Test results of the FeNiCoTi alloy indicate that this cost-effective SMA can potentially be a promising new material for civil structural applications.

  17. Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions

    NASA Astrophysics Data System (ADS)

    Su, Jianwei; Zhang, Yunxia; Xu, Sichao; Wang, Shuan; Ding, Hualin; Pan, Shusheng; Wang, Guozhong; Li, Guanghai; Zhao, Huijun

    2014-04-01

    Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2 (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, the as-obtained amorphous triple-shelled Ag@Fe3O4@SiO2@TiO2 hierarchical nanospheres exhibit a markedly enhanced visible light or sunlight photocatalytic activity towards the photodegradation of methylene blue and photoreduction of hexavalent chromium ions in wastewater. The outstanding photocatalytic activities of the plasmonic photocatalyst are mainly due to the enhanced light harvesting, reduced transport paths for both mass and charge transport, reduced recombination probability of photogenerated electrons/holes, near field electromagnetic enhancement and efficient scattering from the plasmonic nanostructure, increased surface-to-volume ratio and active sites in three dimensional (3D) hierarchical porous nanostructures, and improved photo/chemical stability. More importantly, the hierarchical nanostructured Ag@Fe3O4@SiO2@TiO2 photocatalysts could be easily collected and separated by applying an external magnetic field and reused at least five times without any appreciable reduction in photocatalytic efficiency. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, make these multifunctional nanostructures promising candidates to remediate aquatic contaminants and meet the demands of future environmental issues.Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2 (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, the as-obtained amorphous triple-shelled Ag@Fe3O4@SiO2@TiO2 hierarchical nanospheres exhibit a markedly enhanced visible light or sunlight photocatalytic activity towards the photodegradation of methylene blue and photoreduction of hexavalent chromium ions in wastewater. The outstanding photocatalytic activities of the plasmonic photocatalyst are mainly due to the enhanced light harvesting, reduced transport paths for both mass and charge transport, reduced recombination probability of photogenerated electrons/holes, near field electromagnetic enhancement and efficient scattering from the plasmonic nanostructure, increased surface-to-volume ratio and active sites in three dimensional (3D) hierarchical porous nanostructures, and improved photo/chemical stability. More importantly, the hierarchical nanostructured Ag@Fe3O4@SiO2@TiO2 photocatalysts could be easily collected and separated by applying an external magnetic field and reused at least five times without any appreciable reduction in photocatalytic efficiency. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, make these multifunctional nanostructures promising candidates to remediate aquatic contaminants and meet the demands of future environmental issues. Electronic supplementary information (ESI) available: Synthesis of TiO2 microspheres; synthesis of Fe3O4@SiO2@TiO2 nanospheres; synthesis of Ag@Fe3O4@TiO2 nanospheres; SEM images of the as-prepared products: (a) Ag@Fe3O4, (b) Ag@Fe3O4@SiO2 and (c) Ag@Fe3O4@SiO2@TiO2 (Fig. S1); TEM images of the Ag@Fe3O4@SiO2 synthesized with adding different amount of TEOS (Fig. S2); SEM, TEM and EDS spectrum of Fe3O4@SiO2@TiO2 NPs (Fig. S3); SEM and TEM images of as-prepared TiO2 microspheres (Fig. S4); nitrogen adsorption-desorption isotherm and pore size distribution plot for as-prepared Fe3O4@SiO2@TiO2 and TiO2 microspheres (Fig. S5); adsorption rate curve of MB in dark for Ag@Fe3O4@SiO2@TiO2 samples (Fig. S6); photocatalytic degradation of MB over unannealed Ag@Fe3O4@SiO2@TiO2 (3 mg) and P25 (10 mg) under Xe lamp illumination (Fig. S7). See DOI: 10.1039/c4nr00534a

  18. Spin-glass behaviors in carrier polarity controlled Fe{sub 3−x}Ti{sub x}O{sub 4} semiconductor thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamahara, H., E-mail: yamahara@bioxide.t.u-tokyo.ac.jp; Seki, M.; Adachi, M.

    2015-08-14

    Carrier-type control of spin-glass (cluster spin-glass) is studied in order to engineer basic magnetic semiconductor elements using the memory functions of spin-glass. A key of carrier-polarity control in magnetite is the valence engineering between Fe(II) and Fe(III) that is achieved by Ti(IV) substitution. Single phases of (001)-oriented Fe{sub 3−x}Ti{sub x}O{sub 4} thin films have been obtained on spinel MgAl{sub 2}O{sub 4} substrates by pulsed laser deposition. Thermoelectric power measurements reveal that Ti-rich films (x = 0.8) show p-type conduction, while Ti-poor films (x = 0.6–0.75) show n-type conduction. The systematic Fe(III) reduction to Fe(II) followed by Ti(IV) substitution in the octahedral sublattice is confirmedmore » by the X-ray absorption spectra. All of the Fe{sub 3−x}Ti{sub x}O{sub 4} films (x = 0.6–0.8) exhibit ferrimagnetism above room temperature. Next, the spin-glass behaviors of Ti-rich Fe{sub 2.2}Ti{sub 0.8}O{sub 4} film are studied, since this magnetically diluted system is expected to exhibit the spin-glass behaviors. The DC magnetization and AC susceptibility measurements for the Ti-rich Fe{sub 2.2}Ti{sub 0.8}O{sub 4} film reveal the presence of the spin glass phase. Thermal- and magnetic-field-history memory effects are observed and are attributed to the long time-decay nature of remanent magnetization. The detailed analysis of the time-dependent thermoremanent magnetization reveals the presence of the cluster spin glass state.« less

  19. Pressure-induced phase transition in titanium alloys

    NASA Astrophysics Data System (ADS)

    Murugeswari, R.; Rajeswarapalanichamy, R.; Benial, A. Milton Franklin

    2018-05-01

    The structural, elastic, magnetic and electronic properties of titanium-based ferromagnetic (FM) TiX (X = Fe, Co, Ni) alloys are investigated by the first principles calculations based on density functional theory using the Vienna ab initio simulation code. At ambient pressure, all the three alloys TiFe, TiCo and TiNi are highly stable in CsCl structure. The calculated lattice parameters and ground state properties are in good agreement with the available theoretical and experimental results. The density of states explains that these alloys possess the metallic nature at normal and high pressures. A pressure-induced structural phase transitions from CsCl to NaCl phase at 46 GPa and NaCl to ZB phase at 49 GPa in TiFe, CsCl to ZB phase in TiCo at 52 GPa, CsCl to hexagonal phase at 22 GPa and hexagonal to ZB phase at 66 GPa in TiNi are observed. The calculated Debye temperatures of TiX (X = Fe, Co, Ni) alloys are in good agreement with earlier reports. Binding energy shows that the TiCo is the most stable alloy. The magnetic property of TiX (X = Fe, Co, Ni) alloys reveals that TiFe is stable in nonmagnetic phase and the other two alloys, TiCo and TiNi, are stable in FM phase at normal pressure.

  20. Determining the Differential Emission Measure from EIS, XRT, and AIA

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy R.; Warren, H.P.; Schmelz, J.

    2010-01-01

    This viewgraph presentation determines the Differential Emission Measure (DEM) from the EUV Imaging Spectrometer (EIS), X Ray Telescope (XRT), and Atmospheric Imaging Array (AIA). Common observations with Fe, Si, and Ca EIS lines are shown along with observations with Al-mesh, Ti-poly Al-thick and Be-thick XRT filters. Results from these observations are shown to determine what lines and filters are important to better constrain the hot component.

  1. Effect of Fe substitution on the structural, magnetic and electron-transport properties of half-metallic Co 2TiSi

    DOE PAGES

    Jin, Y.; Waybright, J.; Kharel, P.; ...

    2017-01-11

    The structural, magnetic and electron-transport properties of Co 2Ti 1-xFe xSi (x = 0, 0.25, 0.5) ribbons prepared by arc-melting and melt-spinning were investigated. The rapidly quenched Co 2Ti 0.5Fe 0.5Si crystallized in the cubic L2 1 structure whereas Co 2Ti 0.75Fe 0.25Si and Co 2TiFe 0Si showed various degrees of B2-type disorder. At room temperature, all the samples are ferromagnetic, and the Curie temperature increased from 360 K for Co 2TiSi to about 800 K for Co 2Ti 0.5Fe 0.5Si. The measured magnetization also increased due to partial substitution of Fe for Ti atoms. The ribbons are moderately conductingmore » and show positive temperature coefficient of resistivity with the room temperature resistivity being between 360 μΩcm and 440 μΩcm. The experimentally observed structural and magnetic properties are consistent with the results of first-principle calculations. Our calculations also indicate that the Co 2Ti 1-xFe xSi compound remains nearly half-metallic for x ≤ 0.5. In conclusion, the predicted large band gaps and high Curie temperatures much above room temperature make these materials promising for room temperature spintronic and magnetic applications.« less

  2. Studies on the Fe3+ Doping Effect on Structural, Optical and Catalytic Properties of Hydrothermally Synthesized TiO2 Photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamble, Ravi; Sabale, Sandip; Chikode, Prashant

    2017-08-01

    Pure TiO2 and Fe3+-TiO2 nanoparticles have been prepared by simple hydrothermal method with different Fe3+ concentrations. The synthesized nanoparticles are analysed to determine its structural, optical, morphological and compositional properties using X-ray diffraction, Raman, UV-DRS, photoluminescence, Mossbauer, XPS, TEM and SEM/EDS. The EDS micrograph confirms the existence of Fe3+ atoms in the TiO2 matrix with 0.85, 1.52 and 1.87 weight percent. The crystallite size and band gap decrease with increase in Fe3+concentration. The average particle size obtained from TEM is 7-11 nm which is in good agreement with XRD results. Raman bands at 640 cm-1, 517 cm-1 and 398 cm-1more » further confirm pure phase anatase in all samples. XPS shows the proper substitutions of few sites of Ti4+ ions by Fe3+ ions in the TiO2 host lattice. The intensity of PL spectra for Fe3+-TiO2 shows a gradual decrease in the peak intensity with increasing Fe3+ concentration in TiO2, and it indicates lower recombination rate as Fe3+ ions increases. These nanoparticles are further studied for its photocatalytic activities using malachite green dye under UV light, visible light and sunlight.« less

  3. Oxidation of Sulfonamides in Aqueous Solution by UV-TiO2-Fe(VI).

    PubMed

    Ma, Yan; Zhang, Kejia; Li, Cong; Zhang, Tuqiao; Gao, Naiyun

    2015-01-01

    The photocatalytic degradation of sulfonamides in aqueous TiO2 suspension under UV irradiation has been investigated using potassium ferrate as electron acceptors. The results showed that the stability of Fe(VI) is dependent on pH significantly, and the stability reduces obviously in the presence of UV-TiO2. The experiments indicated that Fe(VI) could effectively scavenge the conduction band electrons from the surface of TiO2. The photocatalytic oxidation of sulfonamides with Fe(VI) was found to be much faster than that without Fe(VI). The SD, SM, and SMX concentration was greatly reduced by 89.2%, 83.4%, and 82.0%, respectively, after 10 min with UV-TiO2-Fe(VI), comparing to 65.2%, 66.0%, and 71.9%, respectively, with Fe(VI) only in the dark and 71.3%, 72.7%, and 76.0%, respectively, with UV-TiO2. The pH value of solution significantly influenced the sulfonamides degradation in UV-TiO2-Fe(VI) system. The degradation amount of sulfonamides after 10 min was a maximum at pH 7. The intermediate products of sulfonamides oxidation by UV-TiO2-Fe(VI) were analysed by LC-HESI-MS-MS and the results suggested that a majority of sulfonamides turned into large-molecule products without complete mineralization.

  4. Oxidation of Sulfonamides in Aqueous Solution by UV-TiO2-Fe(VI)

    PubMed Central

    Ma, Yan; Zhang, Kejia; Li, Cong; Zhang, Tuqiao; Gao, Naiyun

    2015-01-01

    The photocatalytic degradation of sulfonamides in aqueous TiO2 suspension under UV irradiation has been investigated using potassium ferrate as electron acceptors. The results showed that the stability of Fe(VI) is dependent on pH significantly, and the stability reduces obviously in the presence of UV-TiO2. The experiments indicated that Fe(VI) could effectively scavenge the conduction band electrons from the surface of TiO2. The photocatalytic oxidation of sulfonamides with Fe(VI) was found to be much faster than that without Fe(VI). The SD, SM, and SMX concentration was greatly reduced by 89.2%, 83.4%, and 82.0%, respectively, after 10 min with UV-TiO2-Fe(VI), comparing to 65.2%, 66.0%, and 71.9%, respectively, with Fe(VI) only in the dark and 71.3%, 72.7%, and 76.0%, respectively, with UV-TiO2. The pH value of solution significantly influenced the sulfonamides degradation in UV-TiO2-Fe(VI) system. The degradation amount of sulfonamides after 10 min was a maximum at pH 7. The intermediate products of sulfonamides oxidation by UV-TiO2-Fe(VI) were analysed by LC-HESI-MS-MS and the results suggested that a majority of sulfonamides turned into large-molecule products without complete mineralization. PMID:26347888

  5. Periodic table of 3d-metal dimers and their ions.

    PubMed

    Gutsev, G L; Mochena, M D; Jena, P; Bauschlicher, C W; Partridge, H

    2004-10-08

    The ground states of the mixed 3d-metal dimers TiV, TiCr, TiMn, TiFe, TiCo, TiNi, TiCu, TiZn, VCr, VMn, VFe, VCo, VNi, VCu, VZn, CrMn, CrFe, CrCo, CrNi, CrCu, CrZn, MnFe, MnCo, MnNi, MnCu, MnZn, FeCo, FeNi, FeCu, FeZn, CoNi, CoCu, CoZn, NiCu, NiZn, and CuZn along with their singly negatively and positively charged ions are assigned based on the results of computations using density functional theory with generalized gradient approximation for the exchange-correlation functional. Except for TiCo and CrMn, our assignment agrees with experiment. Computed spectroscopic constants (r(e),omega(e),D(o)) are in fair agreement with experiment. The ground-state spin multiplicities of all the ions are found to differ from the spin multiplicities of the corresponding neutral parents by +/-1. Except for TiV, MnFe, and MnCu, the number of unpaired electrons, N, in a neutral ground-state dimer is either N(1)+N(2) or mid R:N(1)-N(2)mid R:, where N(1) and N(2) are the numbers of unpaired 3d electrons in the 3d(n)4s(1) occupation of the constituent atoms. Combining the present and previous results obtained at the same level of theory for homonuclear 3d-metal and ScX (X=Ti-Zn) dimers allows one to construct "periodic" tables of all 3d-metal dimers along with their singly charged ions.

  6. Hierarchical FeTiO3-TiO2 hollow spheres for efficient simulated sunlight-driven water oxidation.

    PubMed

    Han, Taoran; Chen, Yajie; Tian, Guohui; Wang, Jian-Qiang; Ren, Zhiyu; Zhou, Wei; Fu, Honggang

    2015-10-14

    Oxygen generation is the key step for the photocatalytic overall water splitting and considered to be kinetically more challenging than hydrogen generation. Here, an effective water oxidation catalyst of hierarchical FeTiO3-TiO2 hollow spheres are prepared via a two-step sequential solvothermal processes and followed by thermal treatment. The existence of an effective heterointerface and built-in electric field in the surface space charge region in FeTiO3-TiO2 hollow spheres plays a positive role in promoting the separation of photoinduced electron-hole pairs. Surface photovoltage, transient-state photovoltage, fluorescence and electrochemical characterization are used to investigate the transfer process of photoinduced charge carriers. The photogenerated charge carriers in the hierarchical FeTiO3-TiO2 hollow spheres with a proper molar ratio display much higher separation efficiency and longer lifetime than those in the FeTiO3 alone. Moreover, it is suggested that the hierarchical porous hollow structure can contribute to the enhancement of light utilization, surface active sites and material transportation through the framework walls. This specific synergy significantly contributes to the remarkable improvement of the photocatalytic water oxidation activity of the hierarchical FeTiO3-TiO2 hollow spheres under simulated sunlight (AM1.5).

  7. Trace Element Compositions of Pallasite Olivine Grains and Pallasite Origin

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Herrin, J. S.

    2010-01-01

    Pallasites are mixtures of metal with magnesian olivine. Most have similar metal compositions and olivine oxygen isotopic compositions; these are the main-group pallasites (PMG). The Eagle Station grouplet of pallasites (PES) have distinctive metal and olivine compositions and oxygen isotopic compositions. Pallasites are thought to have formed at the core-mantle boundary of their parent asteroids by mixing molten metal with solid olivine of either cumulatic or restitic origin. We have continued our investigation of pallasite olivines by doing in situ trace element analyses in order to further constrain their origin. We determined Al, P, Ca, Ga and first row transition element contents of olivine grains from suite of PMG and PES by LA-ICP-MS at JSC. Included in the PMG suite are some that have anomalous metal compositions (PMG-am) and atypically ferroan olivines (PMG-as). Our EMPA work has shown that there are unanticipated variations in olivine Fe/Mn, even within those PMG that have uni-form Fe/Mg. Manganese is homologous with Fe2+, and thus can be used the same way to investigate magmatic fractionation processes. It has an advantage for pallasite studies in that it is unaffected by redox exchange with the metal. PMG can be divided into three clusters on the basis of Mn/Mg; low, medium and high that can be thought of as less, typically and more fractionated in an igneous sense. The majority of PMG have medium Mn/Mg ratios. PMG-am occur in all three clusters; there does not seem to be any relationship between putative olivine igneous fractionation and metal composition. The PMG-as and one PMG-am make up the high Mn/Mg cluster; no PMG are in this cluster. The high Mn/Mg cluster ought to be the most fractionated (equivalent to the most Fe-rich in igneous suites), yet they have among the lowest contents of incompatible lithophile elements Al and Ti and the two PMG-as in this cluster also have low Ca and Sc contents. This is inconsistent with simple igneous fractionation on a single, initially homogeneous parent asteroid. For Al and Ti, the low and high Mn/Mg clusters have generally uniform contents, while the medium cluster has wide ranges. This is also true of analyses of duplicate grains from the medium cluster pallasites which can have very different Al and Ti contents. Those from the low and high clusters do not. These observations suggest that pallasite olivines are not cumulates, but rather are restites from high degrees of melting. The moderately siderophile elements P and Ga show wide ranges in the high Mn/Mg cluster, but very uniform compositions in the medium cluster, opposite the case for Al and Ti. There is no correlation of P or Ga and Fe/Mn as might be expected if redox processes controlled the contents of moderately siderophile elements in the olivines. The lack of correlation of P could reflect equilibration with phosphates, although there is no correlation of Ca with P as might be expected

  8. Large lattice mismatch effects on the epitaxial growth and magnetic properties of FePt films

    NASA Astrophysics Data System (ADS)

    Deng, Jinyu; Dong, Kaifeng; Yang, Ping; Peng, Yingguo; Ju, Ganping; Hu, Jiangfeng; Chow, Gan Moog; Chen, Jingsheng

    2018-01-01

    Heteroepitaxial film growth is crucial for magnetic and electronic devices. In this work, we reported the effects of the large lattice mismatch and film thickness on the epitaxial growth and magnetic properties of FePt films on ZrxTi1-xN (0 0 1) intermediate layer. FePt films with different thickness were deposited on ZrTiN intermediate layers with various doping concentration of TiN in ZrN. The increase in doping concentration of TiN caused a decrease in the lattice parameters of ZrTiN intermediate layer. It was found that (0 0 1) epitaxy of FePt 10 nm films was only achieved on ZrTiN intermediate layer when the TiN composition was ≥25 vol%, while (0 0 1) texture of 5 nm films was achieved on ZrTiN intermediate layer with a minimum of 50 vol% TiN composition. The in-plane lattice constants of FePt and Zr0.70Ti0.30N (25 vol% TiN) were 3.870 Å and 4.476 Å, respectively, which resulted in a lattice mismatch as large as 15.7%. These large lattice mismatch heterostructures adopted 7/6 domain matching epitaxy. The magneto-crystalline anisotropy of FePt films was improved with the increase in lattice mismatch. Intrinsic magnetic properties were extrapolated for FePt (30 nm)/Zr0.70Ti0.30N (30 nm)/TaN (30 nm)/MgO, and the Ms(0 K) and K1(0 K) were 1042 emu/cc and 5.10 × 107 erg/cc, respectively, which is comparable to that of bulk L10 FePt.

  9. Hydrogen kinetics studies of MgH2-FeTi composites

    NASA Astrophysics Data System (ADS)

    Meena, Priyanka; Jangir, Mukesh; Singh, Ramvir; Sharma, V. K.; Jain, I. P.

    2018-05-01

    MgH2 + x wt% FeTi (x=10, 25, 50) nano composites were ball milled to get nano structured material and characterized for structural, morphological and thermal properties. XRD of the milled samples revealed the formation of MgH2, FeTi, Fe2Ti and H0.06FeTi phases. Morphological studies by SEM were undertaken to investigate the effect of hydrogenation of nanostructure alloy. EDX confirmed elemental composition of the as-prepared alloy. TGA studies showed higher desorption temperature for milled MgH2 compared to x wt% FeTi added MgH2. Activation energy for hydrogen desorption was found to be -177.90, -215.69, -162.46 and -87.93 kJ/mol for milled MgH2 and Mg2+x wt% FeTi (10, 25, 50), showing 89.97 kJ/ mol reduction in activation energy for 50 wt% alloy additives resulting in improved hydrogen storage capacity. DSC investigations were carried out to investigate the effect of alloy on hydrogen absorption behavior of MgH2.

  10. Visible light-degradation of azo dye methyl orange using TiO2/β-FeOOH as a heterogeneous photo-Fenton-like catalyst.

    PubMed

    Xu, Zhihui; Zhang, Ming; Wu, Jingyu; Liang, Jianru; Zhou, Lixiang; L, Bo

    2013-01-01

    In this study, a novel TiO2/β-FeOOH composite photocatalyst was synthesized by a hydrothermal method. X-ray diffraction, Fourier transform infrared spectrum, UV-vis diffuse reflectance spectra and scanning electron microscopy (SEM) were used to characterize the composite photocatalyst. The photocatalytic activity of the prepared composite photocatalyst was evaluated in a heterogeneous photo-Fenton-like process using methyl orange (MO) as target pollutant. The TiO2/β-FeOOH composites exhibited higher photocatalytic activity than pure β-FeOOH and TiO2 under visible-light irradiation. The enhanced photocatalytic activity can be ascribed to the formation of TiO2/β-FeOOH heterostructure, which plays an important role in expanding the photoactivity to the visible light region and in effectively prolonging the lifetime of photoinduced electrons and holes. Further investigation revealed that the 25TiO2/β-FeOOH composite synthesized with the TiO2/Fe(3+) in a mole ratio of 25:75 showed the highest catalytic activity.

  11. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits

    USGS Publications Warehouse

    Rehkamper, M.; Frank, M.; Hein, J.R.; Porcelli, D.; Halliday, A.; Ingri, J.; Liebetrau, V.

    2002-01-01

    Results are presented for the first in-depth investigation of TI isotope variations in marine materials. The TI isotopic measurements were conducted by multiple collector-inductively coupled plasma mass spectrometry for a comprehensive suite of hydrogenetic ferromanganese crusts, diagenetic Fe-Mn nodules, hydrothermal manganese deposits and seawater samples. The natural variability of TI isotope compositions in these samples exceeds the analytical reproducibility (?? 0.05???) by more than a factor of 40. Hydrogenetic Fe-Mn crusts have ??205TI of + 10 to + 14, whereas seawater is characterized by values as low as -8 (??205TI represents the deviation of the 205TI/203TI ratio of a sample from the NIST SRM 997 TI isotope standard in parts per 104). This ~ 2??? difference in isotope composition is thought to result from the isotope fractionation that accompanies the adsorption of TI onto ferromanganese particles. An equilibrium fractionation factor of ?? ~ 1.0021 is calculated for this process. Ferromanganese nodules and hydrothermal manganese deposits have variable TI isotope compositions that range between the values obtained for seawater and hydrogenetic Fe-Mn crusts. The variability in ??205TI in diagenetic nodules appears to be caused by the adsorption of TI from pore fluids, which act as a closed-system reservoir with a TI isotope composition that is inferred to be similar to seawater. Nodules with ??205TI values similar to seawater are found if the scavenging of TI is nearly quantitative. Hydrothermal manganese deposits display a positive correlation between ??205TI and Mn/Fe. This trend is thought to be due to the derivation of TI from distinct hydrothermal sources. Deposits with low Mn/Fe ratios and low ??205TI are produced by the adsorption of TI from fluids that are sampled close to hydrothermal sources. Such fluids have low Mn/Fe ratios and relatively high temperatures, such that only minor isotope fractionation occurs during adsorption. Hydrothermal manganese deposits with high Mn/Fe and high ??205Ti are generated by scavenging of TI from colder, more distal hydrothermal fluids. Under such conditions, adsorption is associated with significant isotope fractionation, and this produces deposits with higher ??205TI values coupled with high Mn/Fe. ?? 2002 Elsevier Science B.V. All rights reserved.

  12. Globular Cluster Abundances from High-Resolution Integrated-Light Spectra. I. 47 Tuc

    NASA Astrophysics Data System (ADS)

    McWilliam, Andrew; Bernstein, Rebecca A.

    2008-09-01

    We describe the detailed chemical abundance analysis of a high-resolution (R ~ 35,000), integrated-light (IL), spectrum of the core of the Galactic globular cluster 47 Tuc, obtained using the du Pont echelle at Las Campanas. We develop an abundance analysis strategy that can be applied to spatial unresolved extragalactic clusters. We have computed abundances for Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Ba, La, Nd, and Eu. For an analysis with the known color-magnitude diagram (CMD) for 47 Tuc we obtain a mean [Fe/H] value of -0.75 +/- 0.026 +/- 0.045 dex (random and systematic error), in good agreement with the mean of five recent high-resolution abundance studies, at -0.70 dex. Typical random errors on our mean [X/Fe] ratios are 0.07-0.10 dex, similar to studies of individual stars in 47 Tuc. Na and Al appear enhanced, perhaps due to proton burning in the most luminous cluster stars. Our IL abundance analysis with an unknown CMD employed theoretical Teramo isochrones; however, we apply zero-point abundance corrections to account for the factor of 3 underprediction of stars at the AGB bump luminosity. While line diagnostics alone provide only mild constraints on the cluster age (ruling out ages younger than ~2 Gyr), when theoretical IL B - V colors are combined with metallicity derived from the Fe I lines, the age is constrained to 10-15 Gyr and we obtain [ Fe/H ] = - 0.70 +/- 0.021 +/- 0.052 dex. We find that Fe I line diagnostics may also be used to constrain the horizontal-branch morphology of an unresolved cluster. Lastly, our spectrum synthesis of 5.4 million TiO lines indicates that the 7300-7600 Å TiO window should be useful for estimating the effect of M giants on the IL abundances, and important for clusters more metal-rich than 47 Tuc.

  13. Ferrobasalt-rhyolite immiscibility in tholeiitic volcanic and plutonic series (Invited)

    NASA Astrophysics Data System (ADS)

    Charlier, B.; Namur, O.; Kamenetsky, V. S.; Grove, T. L.

    2013-12-01

    One atmosphere experiments show that silicate liquid immiscibility develops between Fe-rich and Si-rich melts below 1000-1020°C in compositionally diverse lavas that represent classical tholeiitic trends, such as Mull, Iceland, Snake River Plain and Sept Iles. Extreme iron enrichment along the evolution trend is not necessary; immiscibility also develops during iron depletion and silica enrichment after Fe-Ti oxide saturation. Natural liquid lines of descent for major tholeiitic series also approach or intersect the experimentally-defined compositional space of immiscibility. The importance of ferrobasalt-rhyolite unmixing in both volcanic and plutonic environments is supported by worldwide occurrence of immiscible globules in the mesostasis of erupted basalts, and by unmixed melt inclusions in cumulus phases of major layered intrusions such as Sept Iles, Skaergaard and Sudbury. A clear case of liquid immiscibility is also recorded in intrusive tholeiitic gabbros from the Siberian Large Igneous Province and is evidenced by textures and compositions of millimeter-sized silicate melt pools trapped in native iron. An important implication of immiscibility in natural ferrobasaltic provinces is the development of a compositional gap characterized by the absence of intermediate compositions, a major feature observed in many tholeiitic provinces and referred to as the Daly gap. The compositions of experimental silica-rich immiscible melts coincide with those of natural rhyolites with high FeOtot and low Al2O3, which suggests a potential role for large-scale immiscibility in the petrogenesis of late-stage ferroan silicic melts. No evidence for the paired ferrobasaltic melt is observed in volcanic provinces, probably because of its uneruptable characteristics. Instead, Fe-Ti×P-rich gabbros crystallized at depth and are the cumulate products of immiscible Fe-rich melts in plutonic settings, a feature clearly evidenced in the Sept Iles intrusion. The production of immiscible Fe-Ti-Ca-P liquids has also important implications for the formation of some iron deposits associated with alkaline lavas.

  14. Sm5(Fe,Ti)17 melt-spun ribbons with high coercivity

    NASA Astrophysics Data System (ADS)

    Saito, Tetsuji; Horita, Toru

    2018-05-01

    It has previously been reported that annealing of amorphous Sm5Fe17 melt-spun ribbon resulted in the formation of the Sm5Fe17 phase and the resultant Sm5Fe17 melt-spun ribbon exhibited a high coercivity. However, the annealing condition of the amorphous Sm5Fe17 melt-spun ribbon was somewhat critical and it was not easy to obtain Sm5Fe17 grains with high coercivity. In the present study, it was found that the small substitution of Ti for Fe in the Sm5Fe17 melt-spun ribbon stabilized the Sm5Fe17 phase. Annealed Sm5Fe16.7Ti0.3 melt-spun ribbon consisted of small and homogeneous Sm5(Fe,Ti)17 grains and exhibited a higher coercivity than the annealed Sm5Fe17 melt-spun ribbon.

  15. Preparation, characterization, and antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Allafchian, Alireza; Jalali, Seyed Amir Hossein; Bahramian, Hamid; Ahmadvand, Hossein

    2016-04-01

    We have described a facile fabrication of silver deposited on the TiO2, Poly Acrylonitrile Co Maleic Anhydride (PAMA) polymer and nickel ferrite composite (NiFe2O4/PAMA/Ag-TiO2) through a three-step procedure. A pre-synthesized NiFe2O4 was first coated with PAMA polymer and then Ag-TiO2 was deposited on the surface of PAMA polymer shell. After the characterization of this three-component composite by various techniques, such as FTIR, XRD, FESEM, BET, TEM and VSM, it was impregnated in standard antibiotic discs. The antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite was investigated against some gram positive and gram negative bacteria by employing disc diffusion assay and then compared with that of naked NiFe2O4, NiFe2O4/Ag, AgNPs and NiFe2O4/PAMA. The results demonstrated that the AgNPs, when embedded in TiO2 and combined with NiFe2O4/PAMA, became an excellent antibacterial agent. The NiFe2O4/PAMA/Ag-TiO2 nanocomposite could be readily separated from water solution after the disinfection process by applying an external magnetic field.

  16. CORRELATION OF {sup 48}Ca, {sup 50}Ti, AND {sup 138}La HETEROGENEITY IN THE ALLENDE REFRACTORY INCLUSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsin-Wei; Lee, Typhoon; Lee, Der-Chuen

    2015-06-10

    Precise determinations of {sup 48}Ca anomalies in Allende calcium–aluminum-rich inclusions (CAIs) are reported in this work. There are endemic positive {sup 48}Ca/{sup 44}Ca anomalies in all analyzed CAIs after normalization to {sup 42}Ca/{sup 44}Ca, and it is clearly shown that there is no simple correlation between {sup 48}Ca/{sup 44}Ca and {sup 50}Ti/{sup 48}Ti anomalies, in agreement with Jungck et al. Compared to the {sup 48}Ca/{sup 44}Ca versus {sup 50}Ti/{sup 48}Ti correlation line defined by differentiated meteorites, reported by Chen et al., the CAIs plot to elevated {sup 50}Ti/{sup 48}Ti. Assuming the {sup 48}Ca/{sup 44}Ca anomalies of both CAIs and differentiatedmore » meteorites came from the same source, excess {sup 50}Ti anomalies in CAIs can be calculated by subtracting the part associated with {sup 48}Ca/{sup 44}Ca. These excesses show a linear correlation with {sup 138}La anomalies, a neutrino-process nuclide. According to current stellar nucleosynthetic models, we therefore suggest that the solar system {sup 48}Ca, {sup 50}Ti, and {sup 138}La isotopic variations are made of mixtures between grains condensed from ejecta of neutron-rich accretion-induced SNe Ia and the O/Ne–O/C zone of core-collapse SNe II.« less

  17. Molecular dynamics studies of displacement cascades in Fe-Y{sub 2}TiO{sub 5} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dholakia, Manan, E-mail: manan@igcar.gov.in; Chandra, Sharat; Jaya, S. Mathi

    The effect of displacement cascade on Fe-Y{sub 2}TiO{sub 5} bilayer is studied using classical molecular dynamics simulations. Different PKA species – Fe, Y, Ti and O – with the same PKA energy of 8 keV are used to produce displacement cascades that encompass the interface. It is shown that Ti atom has the highest movement in the ballistic regime of cascades which can lead to Ti atoms moving out of the oxide clusters into the Fe matrix in ODS alloys.

  18. Antiferromagnetic Order in Epitaxial FeSe Films on SrTiO3

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Miao, L.; Wang, P.; Zhu, F. F.; Jiang, W. X.; Jiang, S. W.; Zhang, Y.; Lei, B.; Chen, X. H.; Ding, H. F.; Zheng, Hao; Zhang, W. T.; Jia, Jin-feng; Qian, Dong; Wu, D.

    2018-03-01

    Single monolayer FeSe film grown on a Nb-doped SrTiO3 (001 ) substrate shows the highest superconducting transition temperature (TC˜100 K ) among the iron-based superconductors (iron pnictides), while the TC value of bulk FeSe is only ˜8 K . Although bulk FeSe does not show antiferromagnetic order, calculations suggest that the parent FeSe /SrTi O3 films are antiferromagnetic. Experimentally, because of a lack of a direct probe, the magnetic state of FeSe /SrTi O3 films remains mysterious. Here, we report direct evidence of antiferromagnetic order in the parent FeSe /SrTi O3 films by the magnetic exchange bias effect measurements. The magnetic blocking temperature is ˜140 K for a single monolayer film. The antiferromagnetic order disappears after electron doping.

  19. Geochemistry and mineralogy of the older (> 40 ka) ignimbrites in the Campanian Plain, southern Italy

    NASA Astrophysics Data System (ADS)

    Belkin, Harvey E.; Raia, Federica; Rolandi, Giuseppe; Jackson, John C.; de Vivo, Benedetto

    2010-05-01

    The Campanian Plain in southern Italy has been volcanically active during the last 600 ka. The largest and best known eruption at 39 ka formed the Campanian Ignimbrite (CI), which has the largest volume (~310 km3) and the greatest areal extent. However, significant, but scattered deposits of older ignimbrites underlie the CI and document a long history of trachytic eruptions. We examined the geochemistry and mineralogy of 11 older ignimbrite strata by optical petrography, electron microprobe, scanning electron microscope, X-ray diffraction, and various whole-rock geochemical techniques. Strata at Durazzano (116.1 ka), Moschiano (184.7 ka), Seiano Valley A (245.9 ka), Seiano Valley B (289.6 ka), Taurano 7 (205.6 and 210.4 ka), Taurano 9 (183.8 ka), and Taurano 14 (157.4 ka) have been previously dated by the 40Ar/39Ar technique (Rolandi et al., 2003, Min. & Pet., 79) on hand-picked sanidine. The older ignimbrites are trachytic, but are highly altered with LOI from 8 to 17 wt%. Whole-rock compositions reflect variable element mobility during weathering; TiO2, Al2O3, Fe-oxide, and CaO tend to be enriched relative to average CI composition, whereas Na2O and K2O are depleted. X-ray diffraction identified major chabazite, kaolinite, and illite-smectite alteration products in some samples. The phenocryst mineralogy in all of the strata is typical for trachyte magma and consists of plagioclase (~An80 to ~An40), potassium feldspar (~Or50 to ~Or80), biotite (TiO2 = ~4.6 wt%, BaO = ~0.70 wt%, F = ~0.65 wt%), diopside (~Ca47Mg48Fe5 to ~Ca48Mg34Fe18), titanomagnetite, and uncommon Ca-amphibole. Relatively immobile trace elements Zr, Hf, Nb, and Th display similar abundance, linear trends, and ratios as those measured in the Campanian Ignimbrite: Th/Hf = ~4, Zr/Hf = ~50, and Zr/Nb = ~6. The similarity of trace element systematics and phenocryst mineralogy among the Campanian Ignimbrite and the older ignimbrites suggests that the magmagenesis processes and parental source have been relatively constant during the long period of trachyte volcanism in the Campanian Plain.

  20. Microstructure and properties of Ti-Fe-Y alloy fabricated by laser-aided direct metal deposition

    NASA Astrophysics Data System (ADS)

    Wang, Cunshan; Han, Liying

    2018-04-01

    Ti-Fe-Y alloys were designed using a "cluster-plus-glue-atom" model and then were prepared by laser-aided direct metal deposition (LDMD) on a pure titanium substrate. The influence of the Y addition on the microstructure and properties of the alloys were investigated. The results show that the alloys are composed of β-Ti solid solution and FeTi compound. The addition of Y not only suppresses the formation of Ti4Fe2O oxide but also increases the supercooling degree of the melt, leading to the grain refinement and the increase in the solid solution of the β-Ti. Meanwhile, the microstructure changes sequentially from eutectic to hypereutectic to hypoeutectic with the increasing of the Y addition. The strengest Ti-Fe-Y alloy has a dispersed eutectic structure and exhibits a good combination of mechanical, tribological, and forming properties, which is superior to that obtained for the binary Ti70.6Fe29.4 eutectic alloy. This makes the alloy a promising candidate as a LDMD material.

  1. [Experimental study and correction of the absorption and enhancement effect between Ti, V and Fe].

    PubMed

    Tuo, Xian-Guo; Mu, Ke-Liang; Li, Zhe; Wang, Hong-Hui; Luo, Hui; Yang, Jian-Bo

    2009-11-01

    The absorption and enhancement effects in X-ray fluorescence analysis for Ti, V and Fe elements were studied in the present paper. Three bogus duality systems of Ti-V/Ti-Fe/V-Fe samples were confected and measured by X-ray fluorescence analysis technique using HPGe semiconductor detector, and the relation curve between unitary coefficient (R(K)) of element count rate and element content (W(K)) were obtained after the experiment. Having analyzed the degree of absorption and enhancement effect between every two elements, the authors get the result, and that is the absorption and enhancement effect between Ti and V is relatively distinctness, while it's not so distinctness in Ti-Fe and V-Fe. After that, a mathematics correction method of exponential fitting was used to fit the R(K)-W(K) curve and get a function equation of X-ray fluorescence count rate and content. Three groups of Ti-V duality samples were used to test the fitting method and the relative errors of Ti and V were less than 0.2% as compared to the actual results.

  2. Thermodynamic evaluation of oxygen behavior in Ti powder deoxidized by Ca reductant

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Joong; Oh, Jung-Min; Lim, Jae-Won

    2016-07-01

    To produce low oxygen Ti powder of less than 1000 mass ppm, commercial Ti powder was deoxidized by two types of Ca reductants: a solid Ca and a Ca vapor. Compared with the iso-oxygen partial pressure in the Ti-O binary phase diagram, the PO2 in the raw Ti powder increased with temperature compared to the reduction reaction of Ca. Therefore, the O2 content in the Ti powder decreased as the deoxidation temperature increased from 873 K, showing a local minima at 1273 K. The oxygen concentration at 1373 K was greater than that at 1273 K because the oxygen solubility of the Ti powder was increased by the equilibrium relation between Ca and CaO. On the basis of the thermodynamic assessment, the deoxidation of Ti powder can be improved by increasing the temperature and lowering the oxygen solubility with the saturation of CaO.

  3. Synthesis of CaCu3Ti4O12 by modified Sol-gel method with Hydrothermal process

    NASA Astrophysics Data System (ADS)

    Masingboon, C.; Rungruang, S.

    2017-09-01

    CaCu3Ti4O12 powders were synthesized by modified Sol-gel method with Hydrothermal process using Ca(NO3)2· 4H2O, Cu(NO3)2·3H2O, Ti(OC3H7)4 and freshly extracted egg white (ovalbumin) in aqueous medium. The precursor was calcined at 800, 900 and 1000 °C in air for 8 h to obtain nanocrystalline powders of CaCu3Ti4O12. The calcined CaCu3Ti4O12 powders were characterized by XRD, TEM and EDX. The XRD results indicated that all calcined samples have a typical perovskite CaCu3Ti4O12 structure and a small amount of CaTiO3, CuO and TiO2. TEM micrographs showed particle size 100 - 500 nm and EDX results showed elements of CaCu3Ti4O12 powders have calcium, copper, titanium and oxygen.

  4. Preparation and optical properties of iron-modified titanium dioxide obtained by sol-gel method

    NASA Astrophysics Data System (ADS)

    Hreniak, Agnieszka; Gryzło, Katarzyna; Boharewicz, Bartosz; Sikora, Andrzej; Chmielowiec, Jacek; Iwan, Agnieszka

    2015-08-01

    In this paper twelve TiO2:Fe powders prepared by sol-gel method were analyzed being into consideration the kind of iron compound applied. As a precursor titanium (IV) isopropoxide (TIPO) was used, while as source of iron Fe(NO3)3 or FeCl3 were tested. Fe doped TiO2 was obtained using two methods of synthesis, where different amount of iron was added (1, 5 or 10% w/w). The size of obtained TiO2:Fe particles depends on the iron compound applied and was found in the range 80-300 nm as it was confirmed by SEM technique. TiO2:Fe particles were additionally investigated by dynamic light scattering (DLS) method. Additionally, for the TiO2:Fe particles UV-vis absorption and the zeta potential were analyzed. Selected powders were additionally investigated by magnetic force microscopy (MFM) and X-ray diffraction techniques. Photocatalytic ability of Fe doped TiO2 powders was evaluated by means of cholesteryl hemisuccinate (CHOL) degradation experiment conducted under the 30 min irradiation of simulated solar light.

  5. High-Resolution Spectroscopic Study of Extremely Metal-Poor Star Candidates from the SkyMapper Survey

    NASA Astrophysics Data System (ADS)

    Jacobson, Heather R.; Keller, Stefan; Frebel, Anna; Casey, Andrew R.; Asplund, Martin; Bessell, Michael S.; Da Costa, Gary S.; Lind, Karin; Marino, Anna F.; Norris, John E.; Peña, José M.; Schmidt, Brian P.; Tisserand, Patrick; Walsh, Jennifer M.; Yong, David; Yu, Qinsi

    2015-07-01

    The SkyMapper Southern Sky Survey is carrying out a search for the most metal-poor stars in the Galaxy. It identifies candidates by way of its unique filter set which allows for estimation of stellar atmospheric parameters. The set includes a narrow filter centered on the Ca ii K 3933 Å line, enabling a robust estimate of stellar metallicity. Promising candidates are then confirmed with spectroscopy. We present the analysis of Magellan Inamori Kyocera Echelle high-resolution spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years of commissioning observations. Forty-one stars have [{Fe}/{{H}}]≤slant -3.0. Nine have [{Fe}/{{H}}]≤slant -3.5, with three at [{Fe}/{{H}}]∼ -4. A 1D LTE abundance analysis of the elements Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba, and Eu shows these stars have [X/Fe] ratios typical of other halo stars. One star with low [X/Fe] values appears to be “Fe-enhanced,” while another star has an extremely large [Sr/Ba] ratio: \\gt 2. Only one other star is known to have a comparable value. Seven stars are “CEMP-no” stars ([{{C}}/{Fe}]\\gt 0.7, [{Ba}/{Fe}]\\lt 0). 21 stars exhibit mild r-process element enhancements (0.3≤slant [{Eu}/{Fe}]\\lt 1.0), while four stars have [{Eu}/{Fe}]≥slant 1.0. These results demonstrate the ability to identify extremely metal-poor stars from SkyMapper photometry, pointing to increased sample sizes and a better characterization of the metal-poor tail of the halo metallicity distribution function in the future. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  6. Magnetic properties of mixed spinel BaTiO{sub 3}-NiFe{sub 2}O{sub 4} composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Babusona; Dalal, Biswajit; Dev Ashok, Vishal

    2014-03-28

    Solid solution of nickel ferrite (NiFe{sub 2}O{sub 4}) and barium titanate (BaTiO{sub 3}), (100-x)BaTiO{sub 3}–(x) NiFe{sub 2}O{sub 4} has been prepared by solid state reaction. Compressive strain is developed in NiFe{sub 2}O{sub 4} due to mutual structural interaction across the interface of NiFe{sub 2}O{sub 4} and BaTiO{sub 3} phases. Quantitative analysis of X-ray diffraction and X-ray photo electron spectrum suggest mixed spinel structure of NiFe{sub 2}O{sub 4}. A systematic study of composition dependence of composite indicates BaTiO{sub 3} causes a random distribution of Fe and Ni cations among octahedral and tetrahedral sites during non-equilibrium growth of NiFe{sub 2}O{sub 4}. Themore » degree of inversion decreases monotonically from 0.97 to 0.75 with increase of BaTiO{sub 3} content. Temperature dependence of magnetization has been analyzed by four sublattice model to describe complex magnetic exchange interactions in mixed spinel phase. Curie temperature and saturation magnetization decrease with increase of BaTiO{sub 3} concentration. Enhancement of strain and larger occupancy of Ni{sup 2+} at tetrahedral site increase coercivity up to 200 Oe. Magnetostructual coupling induced by BaTiO{sub 3} improves coercivity in NiFe{sub 2}O{sub 4}. An increase in the demagnetization and homogeneity in magnetization process in NiFe{sub 2}O{sub 4} is observed due to the interaction with diamagnetic BaTiO{sub 3}.« less

  7. Quantitative evaluation of the effect of H2O degassing on the oxidation state of magmas

    NASA Astrophysics Data System (ADS)

    Lange, R. A.; Waters, L.

    2014-12-01

    The extent to which degassing of the H2O component affects the oxidation state of hydrous magmas is widely debated. Several researchers have examined how degassing of mixed H-C-O-S-Cl fluids may change the Fe3+/FeT ratio of various magmas, whereas our focus is on the H2O component. There are two ways that degassing of H2O by itself may cause oxidation: (1) the reaction: H2O (melt) + 2FeO (melt) = H2 (fluid) + Fe2O3 (melt), and/or (2) if dissolved water preferentially enhances the activity of ferrous vs. ferric iron in magmatic liquids. In this study, a comparison is made between the pre-eruptive oxidation states of 14 crystal-poor, jet-black obsidian samples (obtained from two Fe-Ti oxides) and their post-eruptive values (analyzed with the Wilson 1960 titration method tested against USGS standards). The obsidians are from Medicine Lake (CA), Long Valley (CA), and the western Mexican arc; all have low FeOT (1.1-2.1 wt%), rendering their Fe2+/Fe3+ ratios highly sensitive to the possible effects of substantial H2O degassing. The Fe-Ti oxide thermometer/oxybarometer of Ghiorso and Evans, (2008) gave temperatures for the 14 samples that range for 720 to 940°C and ΔNNO values of -0.9 to +1.4. With temperature known, the plagioclase-liquid hygrometer was applied and show that ≤ 6.5 wt% H2O was dissolved in the melts prior to eruption. In addition, pre-eruptive Cl and S concentrations were constrained on the basis of apatite analyses (Webster et al., 2009) and sulfur concentrations needed for saturation with pyrrhotite (Clemente et al., 2004), respectively. Maximum pre-eruptive chlorine and sulfur contents are 6000 and 200 ppm, respectively. After eruption, the rhyolites lost nearly all of their volatiles. Our results indicate no detectable change between pre- and post-eruptive Fe2+ concentrations, with an average deviation of ± 0.1 wt % FeO. Although degassing of large concentrations of S and/or Cl may affect the oxidation state of magmas, at the pre-eruptive levels in these 14 rhyolitic magmas, no effect is detected. Therefore, it can be robustly concluded that degassing of substantial amounts of the H2O component (≤ 6.5 wt%), by itself, does not induce oxidation in erupted magmas, particularly those more iron-rich than rhyolites (e.g., arc basalts).

  8. Hematite (α-Fe2O3) - A potential Ce4+ carrier in red mud.

    PubMed

    Bolanz, Ralph M; Kiefer, Stefan; Göttlicher, Jörg; Steininger, Ralph

    2018-05-01

    Cerium is the most abundant rare earth element (REE) within the waste product of alumina production (red mud), but its speciation in this complex material is still barely understood. Previous studies showed evidence for a correlation between Ce and the main constituent of red mud, iron oxides, which led us to investigate the most abundant iron oxide in red mud, hematite, as possible carrier phase for Ce. Synthetic hematite can incorporate up to 1.70±0.01wt% Ce, which leads to a systematical increase of all unit cell parameters. Investigations by extended X-ray absorption fine structure spectroscopy suggest an incorporation of Ce 4+ O 6 into the hematite structure by a novel atomic arrangement, fundamentally different from the close-range order around Fe 3+ in hematite. Samples of red mud were taken in Lauta (Saxony), Germany and analyzed by powder X-ray diffraction, inductively coupled plasma mass and optical emission spectrometry, electron microprobe analysis and X-ray absorption near-edge structure spectroscopy. Red mud samples consist of hematite (Fe 2 O 3 ) (34-58wt%), sodalite (Na 8 Al 6 Si 6 O 24 Cl 2 ) (4-30wt%), gibbsite (Al(OH) 3 ) (0-25wt%), goethite (FeOOH) (10-23wt%), böhmite (AlOOH) (0-11wt%), rutile (TiO 2 ) (4-8wt%), cancrinite (Na 6 Ca 2 Al 6 Si 6 O 24 (CO 3 ) 2 ) (0-5wt%), nordstrandite (Al(OH) 3 ) (0-5wt%) and quartz (SiO 2 ) (0-4wt%). While the main elemental composition is Fe>Al>Na>Ti>Ca (Si not included), the average concentration of REE is 1109±6mg/kg with an average Ce concentration of 464±3mg/kg. The main carrier of Ce was located in the Fe-rich fine-grained fraction of red mud (0.10wt% Ce 2 O 3 ), while other potential Ce carriers like monazite, lead oxides, secondary Ce-minerals and particles of potentially anthropogenic origin are of subordinated relevance. Cerium in red mud occurs predominantly as Ce 4+ , which further excludes Ce 3+ minerals as relevant sources. Copyright © 2017. Published by Elsevier B.V.

  9. Metal-to-metal charge transfer transitions - Interpretation of visible-region spectra of the moon and lunar materials

    NASA Technical Reports Server (NTRS)

    Loeffler, B. M.; Burns, R. G.; Tossell, J. A.

    1975-01-01

    Prominent bands in the spectral profiles of Fe-Ti phases in lunar samples have been attributed to charge-transfer transitions between Fe and Ti cations, and a model is presented for calculating charge transfer energies from energy levels computed by the SCF-X(alpha) scattered wave molecular orbital method for isolated MO6 octahedral coordination clusters containing Fe(2+), Fe(3+), Ti(3+), and Ti(4+) cations. The calculated charge transfer energy for the Fe(2+) to Ti(4+) transition correlates well with a measured spectral feature around 0.6 micron in ilmenite, and, since ilmenite is a major constituent of mare basalts and dark-mantling material, the observed darkness and blueness of the regolith in lunar black spots is attributed primarily to this transition. The Ti(3+) to Ti(4+) transition is thought to contribute to some phases.

  10. Expanding the Therapeutic Potential of the Iron Chelator Deferasirox in the Development of Aqueous Stable Ti(IV) Anticancer Complexes.

    PubMed

    Loza-Rosas, Sergio A; Vázquez-Salgado, Alexandra M; Rivero, Kennett I; Negrón, Lenny J; Delgado, Yamixa; Benjamín-Rivera, Josué A; Vázquez-Maldonado, Angel L; Parks, Timothy B; Munet-Colón, Charlene; Tinoco, Arthur D

    2017-07-17

    The recent X-ray structure of titanium(IV)-bound human serum transferrin (STf) exhibiting citrate as a synergistic anion reveals a difference in Ti(IV) coordination versus iron(III), the metal endogenously delivered by the protein to cells. This finding enriches our bioinspired drug design strategy for Ti(IV)-based anticancer therapeutics, which applies a family of Fe(III) chelators termed chemical transferrin mimetic (cTfm) ligands to inhibit Fe bioavailability in cancer cells. Deferasirox, a drug used for iron overload disease, is a cTfm ligand that models STf coordination to Fe(III), favoring Fe(III) binding versus Ti(IV). This metal affinity preference drives deferasirox to facilitate the release of cytotoxic Ti(IV) intracellularly in exchange for Fe(III). An aqueous speciation study performed by potentiometric titration from pH 4 to 8 with micromolar levels of Ti(IV) deferasirox at a 1:2 ratio reveals exclusively Ti(deferasirox) 2 in solution. The predominant complex at pH 7.4, [Ti(deferasirox) 2 ] 2- , exhibits the one of the highest aqueous stabilities observed for a potent cytotoxic Ti(IV) species, demonstrating little dissociation even after 1 month in cell culture media. UV-vis and 1 H NMR studies show that the stability is unaffected by the presence of biomolecular Ti(IV) binders such as citrate, STf, and albumin, which have been shown to induce dissociation or regulate cellular uptake and can alter the activity of other antiproliferative Ti(IV) complexes. Kinetic studies on [Ti(deferasirox) 2 ] 2- transmetalation with Fe(III) show that a labile Fe(III) source is required to induce this process. The initial step of this process occurs on the time scale of minutes, and equilibrium for the complete transmetalation is reached on a time scale of hours to a day. This work reveals a mechanism to deliver Ti(IV) compounds into cells and trigger Ti(IV) release by a labile Fe(III) species. Cellular studies including other cTfm ligands confirm the Fe(III) depletion mechanism of these compounds and show their ability to induce early and late apoptosis.

  11. The 15th Internatonal Conference Quality in Resarch (Qir) 2017 Preparation and Ionic Conductivity of Li3.9Ca0.1Ti5O12 Using Waste Chicken Eggshells as ca Source for Anode Material of Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Subhan, Achmad; Setiawan, Dedy; Ahmiatri Saptari, Sitti

    2018-03-01

    Li3.9Ca0.1Ti5O12 has been synthesized as anode material for lithium-ion batteries parallel with Li4Ti5O12 anode material using solid state reaction method in an air atmosphere. LiOH.H2O, TiO2, and waste chicken eggshells in the form of CaCO3 were chosen as sources of Li, Ti, and Ca respectively and prepared using stoichiometric. The phase structure, morphology, and electrochemical impedance of as-prepared samples were characterized using XRD, SEM, and EIS. The XRD characterization revealed that in Li3.9Ca0.1Ti5O12 sample, all amount of dopant had entered the lattice structure of Li4Ti5O12. The EDX image also detect the existence of Ca in the structure of Li3.9Ca0.1Ti5O12. The EIS characterization revealed that the Li3.9Ca0.1Ti5O12 sample had lower electrochemical impedance compared to the Li4Ti5O12 sample. The diffusion coefficient were obtained by Faraday’s method, and exhibited that the Li3.9Ca0.1Ti5O12 sample (1.46986 × 10-12 cm2/s) had higher ionic conductivity than the Li4Ti5O12 sample (4.40995 × 10-16 cm2/s). According to the cycle performance test, the Li3.9Ca0.1Ti5O12 sample also had higher charge-discharge capacity and stability compared to the Li4Ti5O12 sample.

  12. Complexly zoned Ti-rich melanite-schorlomite garnets from Ambadungar carbonatite-alkalic complex, Deccan Igneous Province, Gujarat State, Western India

    NASA Astrophysics Data System (ADS)

    Gwalani, L. G.; Rock, N. M. S.; Ramasamy, R.; Griffin, B. J.; Mulai, B. P.

    2000-04-01

    Ti-rich garnet phenocrysts from a tephrite ('nephelinite') plug in the Ambadungar complex situated in the Chhota Udaipur alkalic subprovince show concentric zoning. Based on paired orthogonal traverses across three selected crystals (total 81 step-scan point analyses), andradite content ranges from 55 to 86 mol% (the remainder being almost entirely schorlomite), corresponding to the following wt% oxide variations: TiO 2 5.5-15.8, CaO 29.6-32.5, MgO 0.3-1.6, Fe 2O 3 20-26, Al 2O 3 0.7-3.5%; MnO, V 2O 3, Na 2O and ZrO 2 each rarely exceeds 0.5%. Zoning patterns in individual grains from this one rock differ considerably in several ways: (1) there may be 2-5 alternating pale and dark zones, the pale generally being more andradite-rich enriched in Ti, Mg and usually Zr but impoverished in Al; (2) the two orthogonal traverse may or may not be mirror images; (3) monotonic trends (decreasing Ca, Al, increasing Mg, Zr from core to rim) may or may not be present; (4) oscillatory zoning varies in amplitude; and (5) apparent substitutions differ, although all crystals clearly show the Si-Ti substitution inferred for Ti-rich garnets elsewhere. An idealized case is developed from an observed complexly zoned phenocryst population to piece together a history of the alkaline host magma that experienced several events such as polybaric differentiation, magma-mixing, and kinetic effects.

  13. Tribo-Mechanical Properties of HVOF Deposited Fe3Al Coatings Reinforced with TiB2 Particles for Wear-Resistant Applications

    PubMed Central

    Amiriyan, Mahdi; Blais, Carl; Savoie, Sylvio; Schulz, Robert; Gariépy, Mario; Alamdari, Houshang

    2016-01-01

    This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. PMID:28787917

  14. Highly efficient enrichment of phosphopeptides from HeLa cells using hollow magnetic macro/mesoporous TiO2 nanoparticles.

    PubMed

    Hong, Yayun; Zhan, Qiliang; Pu, Chenlu; Sheng, Qianying; Zhao, Hongli; Lan, Minbo

    2018-09-01

    In this work, hollow magnetic macro/mesoporous TiO 2 nanoparticles (denoted as Fe 3 O 4 @H-fTiO 2 ) were synthesized by a facile "hydrothermal etching assisted crystallization" route to improve the phosphopeptide enrichment efficiency. The porous nanostructure of TiO 2 shell and large hollow space endowed the Fe 3 O 4 @H-fTiO 2 with a high surface area (144.71 m 2 g -1 ) and a large pore volume (0.52 cm 3 g -1 ), which could provide more affinity sites for phosphopeptide enrichment. Besides, the large pore size of TiO 2 nanosheets and large hollow space could effectively prevent the "shadow effect", thereby facilitating the diffusion and release of phosphopeptides. Compared with the hollow magnetic mesoporous TiO 2 with small and deep pores (denoted as Fe 3 O 4 @H-mTiO 2 ) and solid magnetic macro/mesoporous TiO 2 , the Fe 3 O 4 @H-fTiO 2 nanoparticles showed a better selectivity (molar ratio of α-casein/BSA up to 1:10000) and a higher sensitivity (0.2 fmol/μL α-casein) for phosphopeptide enrichment. Furthermore, 1485 unique phosphopeptides derived from 660 phosphoproteins were identified from HeLa cell extracts after enrichment with Fe 3 O 4 @H-fTiO 2 nanoparticles, further demonstrating that the Fe 3 O 4 @H-fTiO 2 nanoparticles had a high-efficiency performance for phosphopeptide enrichment. Taken together, the Fe 3 O 4 @H-fTiO 2 nanoparticles will have unique advantages in phosphoproteomics analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Preparation and characterization of TiO2 coated Fe nanofibers for electromagnetic wave absorber.

    PubMed

    Jang, Dae-Hwan; Song, Hanbok; Lee, Young-In; Lee, Kun-Jae; Kim, Ki Hyeon; Oh, Sung-Tag; Lee, Sang-Kwan; Choa, Yong-Ho

    2011-01-01

    Recently, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) have become serious problems due to the growth of electronic device and next generation telecommunication. It is necessary to develop new electromagnetic wave absorbing material to overcome the limitation of electromagnetic wave shielding materials. The EMI attenuation is normally related to magnetic loss and dielectric loss. Therefore, magnetic material coating dielectric materials are required in this reason. In this study, TiO2 coated Fe nanofibers were prepared to improve their properties for electromagnetic wave absorption. Poly(vinylpyrrolidone) (PVP) and Iron (III) nitrate nonahydrate (Fe(NO3)3 x 9H2O) were used as starting materials for the synthesis of Fe oxide nanofibers. Fe oxide nanofibers were prepared by electrospinning in an electric field and heat treatment. TiO2 layer was coated on the surface of Fe oxide nanofibers using sol-gel process. After the reduction of TiO2 coated Fe oxide nanofibers, Fe nanofibers with a TiO2 coating layer of about 10 nm were successfully obtained. The morphology and structure of fibers were characterized by SEM, TEM, and XRD. In addition, the absorption properties of TiO2 coated Fe nanofibers were measured by network analyzer.

  16. Single crystal absorption spectra of synthetic Ti, Fe-substituted pyropes

    NASA Astrophysics Data System (ADS)

    Khomenko, V. M.; Langer, K.; Andrut, M.; Koch-Müller, M.; Vishnevsky, A. A.

    1994-11-01

    Synthetic pyrope crystals up to 0.5 mm in diameter, substituted by titanium or by titanium plus iron, were grown under defined conditions of P, T, f_{O_2 } in the presence of water using a piston-cylinder device. The crystals were characterized by X-ray and microprobe techniques. Their single-crystal optical absorption spectra were measured by means of a microscope-spectrometer. Two absorption bands at 16100 and 22300 cm{cm-1} in the spectra of pale-blue Fe-free Ti-bearing pyropes, grown under reduced conditions, were identified as originating from spin-allowed transitions, derived from 2 T 2g → 2 E g of octahedral Ti3+ ions. The splitting value of the excited 2E g state, 6200 cm-1, and the crystal field parameter of Ti3+ in pyrope Δ 0 = 19 200 cm-1 are both in agreement with literature data. In spectra of brown Fe, Ti-bearing garnets, a broad band at 23000 cm-1 was interpreted as a Fe2+[8] → Ti4+[6] charge-transfer band. The spectral position and width of this band agree with those observed for a FeTi charge transfer band in natural garnets. Fe, Ti-containing garnets synthesized at relatively high oxygen fugacity (10-11,0 atm), which permits a fraction of Fe3+ to enter the garnet, show an additional Fe2+[8] → Fe3+[6] charge transfer band at 19800 cm-1.

  17. Siudaite, Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O: a new eudialyte-group mineral from the Khibiny alkaline massif, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Chukanov, Nikita V.; Rastsvetaeva, Ramiza K.; Kruszewski, Łukasz; Aksenov, Sergey M.; Rusakov, Vyacheslav S.; Britvin, Sergey N.; Vozchikova, Svetlana A.

    2018-03-01

    The new eudialyte-group mineral siudaite, ideally Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O, was discovered in a peralkaline pegmatite situated at the Eveslogchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia. The associated minerals are aegirine, albite, microcline, nepheline, astrophyllite, and loparite-(Ce). Siudaite forms yellow to brownish-yellow equant anhedral grains up to 1.5 cm across. Its lustre is vitreous, and the streak is white. Cleavage is none observed. The Mohs' hardness is 4½. Density measured by hydrostatic weighing is 2.96(1) g/cm3. Density calculated using the empirical formula is equal to 2.973 g/cm3. Siudaite is nonpleochroic, optically uniaxial, negative, with ω = 1.635(1) and ɛ = 1.626(1) (λ = 589 nm). The IR spectrum is given. The chemical composition of siudaite is (wt%; electron microprobe, H2O determined by HCN analysis): Na2O 8.40, K2O 0.62, CaO 9.81, La2O3 1.03, Ce2O3 1.62, Pr2O3 0.21, Nd2O3 0.29, MnO 6.45, Fe2O3 4.51. TiO2 0.54, ZrO2 11.67, HfO2 0.29, Nb2O5 2.76, SiO2 47.20, Cl 0.54, H2O 3.5, -O = Cl - 0.12, total 99.32. According to Mössbauer spectroscopy data, all iron is trivalent. The empirical formula (based on 24.5 Si atoms pfu, in accordance with structural data) is [Na7.57(H2O)1.43]Σ9(Mn1.11Na0.88Ce0.31La0.20Nd0.05Pr0.04K0.41)Σ3(H2O)1.8(Ca5.46Mn0.54)Σ6(Fe3+ 1.76Mn2+ 1.19)Σ2.95Nb0.65(Ti0.20Si0.50)Σ0.71(Zr2.95Hf0.04Ti0.01)Σ3Si24.00Cl0.47O70(OH)2Cl0.47·1.82H2O. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3m, with a = 14.1885(26) Å, c = 29.831(7) Å, V = 5200.8(23) Å3 and Z = 3. Siudaite is chemically related to georgbarsanovite and is its analogue with Fe3+-dominant M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.38 (60) (-114), 4.29 (55) (-225), 3.389 (47) (131), 3.191 (63) (-228). 2.963 (100) (4-15), 2.843 (99) (-444), 2.577 (49) (3-39). Siudaite is named after the Polish mineralogist and geochemist Rafał Siuda (b. 1975).

  18. Prediction of possible CaMnO3 modifications using an ab initio minimization data-mining approach.

    PubMed

    Zagorac, Jelena; Zagorac, Dejan; Zarubica, Aleksandra; Schön, J Christian; Djuris, Katarina; Matovic, Branko

    2014-10-01

    We have performed a crystal structure prediction study of CaMnO3 focusing on structures generated by octahedral tilting according to group-subgroup relations from the ideal perovskite type (Pm\\overline 3 m), which is the aristotype of the experimentally known CaMnO3 compound in the Pnma space group. Furthermore, additional structure candidates have been obtained using data mining. For each of the structure candidates, a local optimization on the ab initio level using density-functional theory (LDA, hybrid B3LYP) and the Hartree--Fock (HF) method was performed, and we find that several of the modifications may be experimentally accessible. In the high-pressure regime, we identify a post-perovskite phase in the CaIrO3 type, not previously observed in CaMnO3. Similarly, calculations at effective negative pressure predict a phase transition from the orthorhombic perovskite to an ilmenite-type (FeTiO3) modification of CaMnO3.

  19. Carbonate Mineral Assemblages as Inclusions in Yakutian Diamonds: TEM Verifications

    NASA Astrophysics Data System (ADS)

    Logvinova, A. M.; Wirth, R.; Sobolev, N. V.; Taylor, L. A.

    2014-12-01

    Carbonate mineral inclusions are quite rare in diamonds from the upper mantle, but are evidence for a carbonate abundance in the mantle. It is believed that such carbonatitic inclusions originated from high-density fluids (HDFs) that were enclosed in diamond during its growth. Using TEM and EPMA, several kinds of carbonate inclusions have been identified in Yakutian diamonds : aragonite, dolomite, magnesite, Ba-, Sr-, and Fe-rich carbonates. Most of them are represented by multi-phase inclusions of various chemically distinct carbonates, rich in Ca, Mg, and K and associated with minor amounts of silicate, oxide, saline, and volatile phases. Volatiles, leaving some porosity, played a significant role in the diamond growth. A single crystal of aragonite (60μm) is herein reported for the first time. This inclusion is located in the center of a diamond from the Komsomolskaya pipe. Careful CL imaging reveals the total absence of cracks around the aragonite inclusion - i.e., closed system. This inclusion has been identified by X-ray diffraction and microprobe analysis. At temperatures above 1000 0C, aragonite is only stable at high pressures of 5-6 GPa. Inside this aragonite, we observed nanocrystalline inclusions of titanite, Ni-rich sulfide, magnetite, water-bearing Mg-silicate, and fluid bubbles. Dolomite is common in carbonate multi-phase inclusions in diamonds from the Internatsionalnaya, Yubileinaya, and Udachnaya kimberlite pipes. Alluvial diamonds of the northeastern Siberian Platform are divided into two groups based on the composition of HDFs: 1) Mg-rich multi-phase inclusions (60% magnesite + dolomite + Fe-spinel + Ti-silicate + fluid bubbles); and 2) Ca-rich multi-phase inclusions (Ca,Ba-, Ca,Sr-, Ca,Fe-carbonates + Ti-silicate + Ba-apatite + fluid bubbles). High-density fluids also contain K. Volatiles in the fluid bubbles are represented by water, Cl, F, S, CO2, CH4, and heavy hydrocarbons. Origin of the second group of HDFs may be related to the non-silicate carbonatitic melt. We consider the primary hydrous, Сa-rich and Mg-poor carbonate melts as having formed in subducted oceanic crust. Variations of carbonate-inclusion compositions among diamonds indicate the variability in the source media during the formation of diamond and may be the result of metasomatic interaction with host rocks.

  20. Preparation of Fe2O3-TiO2 composite from Sukabumi iron sand through magnetic separation, pyrometallurgy, and hydrometallurgy

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Pranata, H. P.; Hanif, Q. A.; Ismoyo, Y. A.; Ichsan, K. F.

    2016-11-01

    Preparation of Fe2O3/TiO2 composite from Sukabumi iron sand by magnetic separation, roasting, leaching and precipitation treatment has been carried out. Magnetic separation can separate magnetic particles and non-magnetic particles of iron sand content, while the non-magnetic particles (wustite (FeO), hematite (α-Fe2O3), maghemite (γ-Fe2O3) and magnetite (Fe3O4)) was washing with oxalic acid 1 M. The result product then was roasted at 800 °C treated by sodium carbonate (Na2CO3) addition of 1:1; 2:1 and 1:2 (w/w) of iron sand to Na2CO3 weight ratio, respectively. The X-Ray Fluorescence (XRF) analysis result shown that Sukabumi iron sand have hematite (Fe2O3) and titanium dioxide (TiO2) content about 72.17% dan 14.42%. XRD analysis of roasted iron sand shown the rutile (TiO2), Hematite (Fe2O3), NaFeO2, FeO, and Na2TiO3. Leaching of roasted iron sand using sulphuric acid (H2SO4) have influenced by concentrations of the H2SO4 solution. The optimum iron sand dissolution occurred in H2SO4 9 M, which condensation product of the leachant have a weight ratio of Fe:Ti = 1:1 (w/w). Meanwhile, the settling back-filtrate result of second condensation was obtained a ratio of Fe2O3: TiO2 of 3: 1 (w/w).

  1. Composition and origin of the Dewar geochemical anomaly

    USGS Publications Warehouse

    Lawrence, S.J.; Hawke, B.R.; Gillis-Davis, J. J.; Taylor, G.J.; Lawrence, D.J.; Cahill, J.T.; Hagerty, J.J.; Lucey, P.G.; Smith, G.A.; Keil, Klaus

    2008-01-01

    Dewar crater is a 50-km diameter impact structure located in the highlands northwest of the South Pole–Aitken basin on the lunar farside. A low-albedo area with enhanced Th and Sm values is centered east-northeast of Dewar crater. This area also exhibits elevated FeO abundances (9.0–16.6 wt %) and TiO2 values (0.6–2 wt %). The range of FeO and TiO2 abundances determined for the darkest portions of the geochemical anomaly overlap the range of FeO and TiO2 values determined for nearside mare basalt deposits. Analysis of Clementine spectra obtained from the darkest portions of the Dewar geochemical anomaly indicates that the low-albedo materials contain large amounts of high-Ca clinopyroxene consistent with the presence of major amounts of mare basalt. Cryptomare deposits have played an important role in the formation of the Dewar geochemical anomaly. The evidence indicates that buried basalt, or cryptomare, was excavated from depth during impact events that formed dark-haloed craters in the region. We show that an early Imbrian- or Nectarian-age, low-TiO2 mare basalt deposit with enhanced Th concentrations (6–7 μg/g) exists in the Dewar region. This ancient mare unit was buried by ejecta from Dewar crater, creating a cryptomare. Although most mare units on the central farside of the Moon exhibit low Th abundances, the enhanced Th values associated with the Dewar cryptomare deposit indicate that at least some portions of the underlying lunar interior (mantle and crust) on the farside of the Moon were not Th poor.

  2. Stability of nTiO2 particles and their attachment to sand: Effects of humic acid at different pH.

    PubMed

    Wu, Yang; Cheng, Tao

    2016-01-15

    The fate and transport of nano-scale or micro-scale titanium dioxide particles (nTiO2) in subsurface environments are strongly influenced by the stability of nTiO2 and their attachment to sediment grains. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the stability and transport of negatively-charged colloids, may influence nTiO2 in different manners. The objective of this study is to investigate the effects of pH and humic acid (HA) on the stability and attachment of nTiO2 to sand at HA concentrations that are relevant to typical groundwater conditions, so that mechanisms that control nTiO2 immobilization and transport in natural systems can be elucidated. Stability and attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand are experimentally measured under a range of HA concentrations at pH5 and 9. Results show that at pH5, negatively-charged HA strongly adsorbs to positively-charged nTiO2 and Fe oxyhydroxide, which, at low HA concentrations, partially neutralizes the positive charges on nTiO2 and Fe oxyhydroxide, and therefore decreases the repulsive electrostatic forces between the surfaces, resulting in nTiO2 aggregation and attachment. At high HA concentrations, adsorbed HA reverses the surface charges of nTiO2 and Fe oxyhydroxide, and makes nTiO2 and Fe oxyhydroxide strongly negatively charged, resulting in stable nTiO2 suspension and low nTiO2 attachment. At pH9, HA, nTiO2, and Fe oxyhydroxide are all negatively charged, and HA adsorption is low and does not have a strong impact on the stability and attachment of nTiO2. Overall, this study shows that changes in surface charges of nTiO2 and Fe oxyhydroxide coating caused by HA adsorption is a key factor that influences the stability and attachment of nTiO2. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Research on microstructure properties of the TiC/Ni-Fe-Al coating prepared by laser cladding technology

    NASA Astrophysics Data System (ADS)

    Jiao, Junke; Xu, Zifa; Zan, Shaoping; Zhang, Wenwu; Sheng, Liyuan

    2017-10-01

    In this paper, the laser cladding method was used to preparation the TiC reinforced Ni-Fe-Al coating on the Ni base superalloy. The Ti/Ni-Fe-Al powder was preset on the Ni base superalloy and the powder layer thickness is 0.5mm. A fiber laser was used the melting Ti/Ni-Fe-Al powder in an inert gas environment. The shape of the cladding layer was tested using laser scanning confocal microscope (LSCM) under different cladding parameters such as the laser power, the melting velocity and the defocused amount. The microstructure, the micro-hardness was tested by LSCM, SEM, Vickers hardness tester. The test result showed that the TiC particles was distributed uniformly in the cladding layer and hardness of the cladding layer was improved from 180HV to 320HV compared with the Ni-Fe-Al cladding layer without TiC powder reinforced, and a metallurgical bonding was produced between the cladding layer and the base metal. The TiC powder could make the Ni-Fe-Al cladding layer grain refining, and the more TiC powder added in the Ni-Fe-Al powder, the smaller grain size was in the cladding layer.

  4. Microstructure and properties of Fe-based composite coating by laser cladding Fe-Ti-V-Cr-C-CeO2 powder

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zou, Yong; Zou, Zengda; Wu, Dongting

    2015-01-01

    In situ TiC-VC reinforced Fe-based cladding layer was obtained on low carbon steel surface by laser cladding with Fe-Ti-V-Cr-C-CeO2 alloy powder. The microstructure, phases and properties of the cladding layer were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), transmission electron microscopy (TEM), potentio-dynamic polarization and electro-chemical impedance spectroscopy (EIS). Results showed Fe-Ti-V-Cr-C-CeO2 alloy powder formed a good cladding layer without defects such as cracks and pores. The phases of the cladding layer were α-Fe, γ-Fe, TiC, VC and TiVC2. The microstructures of the cladding layer matrix were lath martensite and retained austenite. The carbides were polygonal blocks with a size of 0.5-2 μm and distributed uniformly in the cladding layer. High resolution transmission electron microscopy showed the carbide was a complex matter composed of nano TiC, VC and TiVC2. The cladding layer with a hardness of 1030 HV0.2 possessed good wear and corrosion resistance, which was about 16.85 and 9.06 times than that of the substrate respectively.

  5. Phase transition behavior of (K,Na)NbO3-based high-performance lead-free piezoelectric ceramic composite with different phase compositions depending on Na fraction

    NASA Astrophysics Data System (ADS)

    Yamada, Hideto; Matsuoka, Takayuki; Yamazaki, Masato; Ohbayashi, Kazushige; Ida, Takashi

    2018-01-01

    The structures of the main (K1- x Na x )NbO3 perovskite in a high-performance lead-free piezoelectric ceramic composite (K1- x Na x )0.86Ca0.04Li0.02Nb0.85O3-δ-K0.85Ti0.85Nb1.15O5-BaZrO3-MgO-Fe2O3 (x = 0.52 and 0.70) with trace amounts of LiMgFeTiO4 inverse spinel and (Li,K)2(Mg,Fe,Ti,Nb)6O13 layered structure have been investigated by transmission electron microscopy (TEM) and synchrotron powder X-ray diffractometry (XRD) with varying temperatures. The bright-field TEM images have shown tetragonal 90°-domain contrasts at 80 and 40 °C, and the XRD profile has been simulated by adding an average structure of two differently oriented tetragonal structures bound by a 90°-domain wall for the x = 0.52 sample. Aggregates of tilted NbO6 nanodomains have been observed in a high-resolution TEM image, and the crossover of P4mm-Amm2 features from 60 to 20 °C and diffuse 2 × 2 × 2 superlattice reflections of the tilted NbO6 Imm2 structure have been observed in XRD data for the x = 0.70 sample.

  6. Comparative study of diethyl phthalate degradation by UV/H2O2 and UV/TiO2: kinetics, mechanism, and effects of operational parameters.

    PubMed

    Song, Chengjie; Wang, Liping; Ren, Jie; Lv, Bo; Sun, Zhonghao; Yan, Jing; Li, Xinying; Liu, Jingjing

    2016-02-01

    The photodegradation of diethyl phthalate (DEP) by UV/H2O2 and UV/TiO2 is studied. The DEP degradation kinetics and multiple crucial factors effecting the clearance of DEP are investigated, including initial DEP concentration ([DEP]0), initial pH values (pH0), UV light intensity, anions (Cl(-), NO(3-), SO4 (2-), HCO3 (-), and CO3 (2-)), cations (Mg(2+), Ca(2+), Mn(2+), and Fe(3+)), and humic acid (HA). Total organic carbon (TOC) removal is tested by two treatments. And, cytotoxicity evolution of DEP degradation intermediates is detected. The relationship between molar ratio ([H2O2]/[DEP] or [TiO2]/[DEP]) and degradation kinetic constant (K) is also studied. And, the cytotoxicity tests of DEP and its degradation intermediates in UV/H2O2 and UV/TiO2 treatments are researched. The DEP removal efficiency of UV/H2O2 treatment is higher than UV/TiO2 treatment. The DEP degradation fitted a pseudo-first-order kinetic pattern under experimental conditions. The K linearly related with molar ratio in UV/H2O2 treatment while nature exponential relationship is observed in the case of UV/TiO2. However, K fitted corresponding trends better in H2O2 treatment than in TiO2 treatment. The Cl(-) is in favor of the DEP degradation in UV/H2O2 treatment; in contrast, it is disadvantageous to the DEP degradation in UV/TiO2 treatment. Other anions are all disadvantageous to the DEP degradation in two treatments. Fe(3+) promotes the degradation rates significantly. And, all other cations in question inhibit the degradation of DEP. HA hinders DEP degradation in two treatments. The intermediates of DEP degradation in UV/TiO2 treatment are less toxic to biological cell than that in UV/H2O2 treatment.

  7. Thermodynamic Simulation of Viscosity of TiO2-Ti2O3-CaO Ternary Slag

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Ma, W. H.; Zhang, S. J.; Lei, Y.; Wen, J. H.

    2017-12-01

    The viscosity of high titanium slag at high temperature is one of the key factors of slag-iron separation. Based on the Einstein-Roscoe equation, thermodynamic simulation of viscosity of TiO2-Ti2O3-CaO ternary slag is studied by using FactSage® software, and the effects of temperature, CaO content and solid-phase particles on the viscosity of slag were studied. The results show that the increase of CaO content has the effect of reducing melting temperature and viscosity of TiO2-Ti2O3-CaO ternary slag. After the TiO2-Ti2O3-CaO ternary slag is completely melted, the increase of temperature has little effect on viscosity of slag, and the viscosity is about 110~125mPa·s. When the temperature is lower than melting temperature, TiO2-Ti2O3-CaO ternary slag will precipitate solid-phase particles, and the precipitation process is carried out in stages, and with the decrease of temperature, the precipitation will increase and the viscosity will sharply increase. TiO2-Ti2O3-CaO ternary titanium slag has obvious characteristics of short slag.

  8. Chemical Composition by the APXS along the Downhill Traverse of the Mars Exploration Rover Spirit at Gusev Crater

    NASA Technical Reports Server (NTRS)

    Bruckner, J.; Dreibus, G.; Gellert, R.; Clark, B.C.; Cohen, B.; McCoy, T.; Ming, D.W.; Mittlefehldt, D.W.; Yen, A.; Athena Science Team

    2006-01-01

    The Alpha Particle X-ray Spectrometer (APXS) onboard the Mars Exploration Rover Spirit continues to determine the elemental composition of samples at Gusev Crater. Starting around sol 600 the rover descended Husband Hill, which is part of the Columbia Hills, visited the inner basin with a large dune field, called 'El Dorado', and parked at Low Ridge to conserve energy during the martian winter. Many unique samples were discovered by the instruments onboard Spirit during her downhill traverse. Here, we report only on the chemical data obtained by the APXS. The compositions of some of the soil samples are comparable to the mean soil determined along the earlier traverse. However, a light-toned subsurface sample (disturbed by the rover wheels), called Dead Sea Samra , showed the highest sulfur content of all soil samples, the lowest Na, Mg, Al, Cl, K, Ca, Ti, Mn, and Zn, among the lowest Si and P, and among the highest Cr, Fe and Ni. Assuming ferric sulfate as a major mineral, large amounts of a pure silica phase must be present. Color and quantity of Dead Sea Samra resemble somewhat an earlier soil called Paso Robles , though the latter is a mixture of sulfates with phosphate-rich soil. Manganese in Dead Sea Samra is so low that the Fe/Mn ratio exceeds 300, a value that has never been found previously on Mars (Fe/Mn ratio of 46 for Gusev basalts), indicating that only Fe(3+) occurs. The dune field El Dorado contained granulated material that exhibited the highest Mg and Ni concentrations and the lowest S and Cl compared to all other soils implying an enrichment of olivine-rich sands. Two outcrops, called Algonquin and Comanche , revealed compositions that differ significantly from those of earlier outcrops as they have the highest concentrations of Mg, Fe, and Ni (except for Ni in Independence) and the lowest of Al, K (detection limit), Ca, and Ti of all brushed and almost all abraded rocks. Normative estimates assign them the highest olivine contents ever found for martian rocks and a very mafic nature based on their high Mg/(Mg+Fe) and low Al, Ca and Na. Their significantly high Ni contents point to a different source than the Gusev plains basalts. The elemental compositions of samples encountered during the downhill traverse revealed a larger chemical diversity of the Columbia Hills than the uphill trek already published.

  9. A 3D heterogeneous FeTiO3/TiO2@C fiber membrane as a self-standing anode for power Li-ion battery

    NASA Astrophysics Data System (ADS)

    Li, Jing-quan; Jing, Mao-xiang; Han, Chong; Yao, Shan-shan; Zhai, Hong-ai; Chen, Li-li; Shen, Xiang-qian; Xiao, Ke-song

    2018-04-01

    A three-dimensional (3D) networking FeTiO3/TiO2@C flexible fiber membrane was successfully fabricated by an electrospinning process and a controlled hot-press sintering method. This FeTiO3/TiO2@C fiber membrane displays a long-range continuous conductive networks, which can be directly used as self-standing anodes. The electrode sintered at 750 °C for 3 h possesses a reversible capacity of 205.4 mAh/g after 100 cycles at a current density of 300 mA/g. The superior cycle and rate performance can be attributed to the synergistic effect of little volume variation of TiO2 matrix, high capacity of FeTiO3 and good electrical conductivity of 3D networking.

  10. Fabrication and Characterization of (100),(001)-Oriented Reduction-Resistant Lead-Free Piezoelectric (Ba,Ca)TiO3 Ceramics Using Platelike Seed Crystals

    NASA Astrophysics Data System (ADS)

    Ichikawa, Hiroki; Sakamoto, Wataru; Akiyama, Yoshikazu; Maiwa, Hiroshi; Moriya, Makoto; Yogo, Toshinobu

    2013-09-01

    The preparation of reduction-resistant (Ba,Ca)TiO3 ceramics as lead-free piezoelectric materials was studied. To improve their electrical properties, (100),(001)-oriented (Ba0.85Ca0.15)TiO3 ceramics were fabricated by the reactive templated grain growth method using a mixture of platelike CaTiO3 and BaTiO3 particles. The platelike CaTiO3 and BaTiO3 particles were prepared through a topochemical microcrystal conversion process using CaBi4Ti4O15 and BaBi4Ti4O15 plate-like precursor crystals. The 100 orientation degree of the grain-oriented (Ba0.85Ca0.15)TiO3 ceramics was 92%, as estimated by Lotgering's equation. In addition, 1 mol % Ba excess and 1 mol % Mn-doped (Ba0.85Ca0.15)TiO3 sintered bodies, which were sintered at 1350 °C in an Ar flow containing H2 (0.3%), had sufficient resistivity to allow the characterization of electrical properties. The ferroelectric and field-induced strain properties of the (Ba0.85Ca0.15)TiO3 ceramics, sintered in the reducing atmosphere, were markedly improved as a result of fabricating grain-oriented samples. The field-induced strain coefficient (estimated from the slope of the unipolar strain loop) of the nonreducible (100),(001)-oriented (Ba0.85Ca0.15)TiO3 ceramics reached 570 pm/V, which was higher than that of polycrystals (260 pm/V) with no preferential orientation.

  11. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl: A rare example of Ti(IV) in a square pyramidal oxygen coordination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batuk, Maria, E-mail: Maria.Batuk@uantwerpen.be; Batuk, Dmitry; Abakumov, Artem M.

    A new oxychloride Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl has been synthesized using the solid state method. Its crystal and magnetic structure was investigated in the 1.5–550 K temperature range using electron diffraction, high angle annular dark field scanning transmission electron microscopy, atomic resolution energy dispersive X-ray spectroscopy, neutron and X-ray powder diffraction. At room temperature Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl crystallizes in the P4/mmm space group with the unit cell parameters a=3.91803(3) Å and c=19.3345(2) Å. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is a new n=4 member of the oxychloride perovskite-based homologous series A{sub n+1}B{sub n}O{sub 3n−1}Cl. The structure is built of truncated Pb{submore » 3}Fe{sub 3}TiO{sub 11} quadruple perovskite blocks separated by CsCl-type Pb{sub 2}Cl slabs. The perovskite blocks consist of two layers of (Fe,Ti)O{sub 6} octahedra sandwiched between two layers of (Fe,Ti)O{sub 5} square pyramids. The Ti{sup 4+} cations are preferentially located in the octahedral layers, however, the presence of a noticeable amount of Ti{sup 4+} in a five-fold coordination environment has been undoubtedly proven using neutron powder diffraction and atomic resolution compositional mapping. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is antiferromagnetically ordered below 450(10) K. The ordered Fe magnetic moments at 1.5 K are 4.06(4) μ{sub B} and 3.86(5) μ{sub B} on the octahedral and square-pyramidal sites, respectively. - Highlights: • Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl has been synthesized using the solid state method. • The structure has been refined using neutron powder diffraction data at 1.5–550 K. • It is a new n=4 member of the perovskite-related homologous series A{sub n+1}B{sub n}O{sub 3n−1}Cl. • Ti{sup 4+} cations have both octahedral and square-pyramidal coordination environment. • Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is antiferromagnetically ordered below T{sub N}≈450 K.« less

  12. Sol-Gel Synthesis of Fe-Doped TiO2 Nanocrystals

    NASA Astrophysics Data System (ADS)

    Marami, Mohammad Bagher; Farahmandjou, Majid; Khoshnevisan, Bahram

    2018-03-01

    Fe-doped TiO2 powders were synthesized by the sol-gel method using titanium (IV) isopropoxide (TTIP) as the starting material, ethanol as solvent, and ethylene glycol (EG) as stabilizer. These prepared samples were characterized by x-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), Fourier-transform infrared (FTIR) spectroscopy, diffuse reflection spectroscopy (DRS), energy-dispersive x-ray spectroscopy (EDX), and photoluminescence (PL) analyses to study their structure, morphology, and optical properties. The particle size of Fe-doped TiO2 was in the range of 18-39 nm and the minimum crystallite size was achieved for 4 mol.% of Fe. The XRD result of the samples that were doped with Fe showed a tetragonal structure. It also revealed the coexistence of the anatase and rutile phases, and showed that their ratio changed with various molar concentrations of Fe dopant. FTIR spectroscopy showed the presence of the Ti-O vibration band in the samples. PL analysis revealed the PL property in the UV region. Visible irradiation and the intensity of PL spectra were both reduced by doping TiO2 with 3 mol.% of Fe as compared to the pure variety. The spectra from the DRS showed a red shift and a reduction of 2.6 eV in the band gap energy for 4 mol.% Fe-doped TiO2. The optimum level of impurity (4 mol.%) for Fe-doped TiO2 nanoparticles (NPs), which improve the optical and electrical properties by using new precursors and can be used in solar cells and electronic devices, was determined. The novelty of this work consists of: the Fe/TiO2 NPs are synthesized by new precursors from sol-gel synthesis of iron and TTIP using acetic acid-catalyzed solvolysis (original idea) and the optical properties optimized with a mixture of phases (anatase/rutile) of Fe-doped TiO2 by this facile method.

  13. Sol-Gel Synthesis of Fe-Doped TiO2 Nanocrystals

    NASA Astrophysics Data System (ADS)

    Marami, Mohammad Bagher; Farahmandjou, Majid; Khoshnevisan, Bahram

    2018-07-01

    Fe-doped TiO2 powders were synthesized by the sol-gel method using titanium (IV) isopropoxide (TTIP) as the starting material, ethanol as solvent, and ethylene glycol (EG) as stabilizer. These prepared samples were characterized by x-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), Fourier-transform infrared (FTIR) spectroscopy, diffuse reflection spectroscopy (DRS), energy-dispersive x-ray spectroscopy (EDX), and photoluminescence (PL) analyses to study their structure, morphology, and optical properties. The particle size of Fe-doped TiO2 was in the range of 18-39 nm and the minimum crystallite size was achieved for 4 mol.% of Fe. The XRD result of the samples that were doped with Fe showed a tetragonal structure. It also revealed the coexistence of the anatase and rutile phases, and showed that their ratio changed with various molar concentrations of Fe dopant. FTIR spectroscopy showed the presence of the Ti-O vibration band in the samples. PL analysis revealed the PL property in the UV region. Visible irradiation and the intensity of PL spectra were both reduced by doping TiO2 with 3 mol.% of Fe as compared to the pure variety. The spectra from the DRS showed a red shift and a reduction of 2.6 eV in the band gap energy for 4 mol.% Fe-doped TiO2. The optimum level of impurity (4 mol.%) for Fe-doped TiO2 nanoparticles (NPs), which improve the optical and electrical properties by using new precursors and can be used in solar cells and electronic devices, was determined. The novelty of this work consists of: the Fe/TiO2 NPs are synthesized by new precursors from sol-gel synthesis of iron and TTIP using acetic acid-catalyzed solvolysis (original idea) and the optical properties optimized with a mixture of phases (anatase /rutile) of Fe-doped TiO2 by this facile method.

  14. The Eclogite-Garnetite transformation in the MORB + H 2O system

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazuaki; Maruyama, Shigenori

    2004-08-01

    To decipher phase relations of oceanic crust in the coldest slab at the mantle transition zone, multi-anvil experiments were conducted in the MORB+H 2O system at pressures of 10-19 GPa, and temperatures of 700-1500 °C. Garnet and stishovite were recognized in all run charges. Above 15 GPa, garnet drastically increases NaSi (Na 2MSi 5O 12) component (M = Ca, Mg, Fe 2+), jadeite occurs instead of omphacite. Na-, K-hollandite containing 7 mol% NaAlSi 3O 8 and Ca-perovskite with 60 mol% CaTiO 3, were observed at P>17 GPa. With decomposition of omphacite and increase of modal ratio of garnet, there is a sharp increase of density at 440 km. The density increase due to appearance of Ca-perovskite at 570 km, is estimated approximately 100 km shallower than that of previous estimation.

  15. Fe 2O 3–TiO 2 core–shell nanorod arrays for visible light photocatalytic applications

    DOE PAGES

    Yao, Kun; Basnet, Pradip; Sessions, Henry; ...

    2015-11-11

    By using the glancing angle deposition technique and post-deposition annealing, Fe 2O 3–TiO 2 core-shell nanorod arrays with specific crystalline states can be designed and fabricated. The Fe 2O 3–TiO 2 core-shell samples annealed at temperatures greater than 450°C formed α-Fe 2O 3 and anatase TiO 2, and showed higher catalytic efficiency for the degradation of methylene blue (MB) under visible light illumination when compared with pure anatase TiO 2 or α-Fe 2O 3 nanorod arrays. Solar conversion of carbon dioxide and water vapor in the presence of Fe 2O 3–TiO 2 core-shell nanorod arrays was also investigated. Carbon monoxide,more » hydrogen, methane, and methanol along with other hydrocarbons were produced after only several hours’ exposure under ambient sunlight. It was determined that the core-shell structure showed greater efficiency for solar CO 2 conversion than the pure TiO 2 nanorod arrays.« less

  16. Effects of B and Mo on the magnetic properties of NdFeTi-nitrides with ThMn[sub 12]-type structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y.B.; Kim, H.T.; Kim, C.S.

    1993-11-01

    The alloys having nearly single phase of ThMn[sub 12]-type structure (1-12 phase) have been successfully synthesized in NdFe[sub 10.7]Ti[sub 1.3[minus]y]M[sub y] (M = B/Mo) alloy systems by substituting B or Mo up to 23% of Ti (y=0.3). After nitrification, the unit cell volume of 1--12 phase has increased by about 2--3% and a-Fe phase of 5--15 wt.% has been formed depending on the substitutional elements. The nitrides, NdFe[sub 10.7]TiB[sub 0.3]N[sub x] and Nd Fe[sub 10.7]TiMo[sub 0.3]N[sub x], were confirmed to have uniaxial anisotropy by X-ray diffractometry. The results of magnetic measurements for the nitrides have shown that B is verymore » effective for the increase of both Curie temperature and magnetization. On the other band, Mo is effective for the increase of anisotropy field, but it decreases the magnetization. The Curie temperature and magnetization of NdFe[sub 10.7]TiB[sub 0.3]N[sub x] are 560 C and 148 Am[sup 2] /kg, respectively, by about 20% and 15% higher than those of NdFe[sub 10.7]Ti[sub 1.3]N[sub x]. The anisotropy field of NdFe[sub 10.7]TiMo[sub 0.3]N[sub x] is about 7960 kA/m (100 kOe) which is about 25% higher than that of NdFe[sub 10.7]Ti[sub 1.3]N[sub x].« less

  17. The laser microprobe mass analyser for determining partitioning of minor and trace elements among intimately associated macerals: an example from the Swallow Wood coal bed, Yorkshire, UK

    USGS Publications Warehouse

    Lyons, P.C.; Morelli, J.J.; Hercules, D.M.; Lineman, D.; Thompson-Rizer, C. L.; Dulong, F.T.

    1990-01-01

    A study of the elemental composition of intimately associated coal macerals in the English Swallow Wood coal bed was conducted using a laser microprobe mass analyser, and indicated a similar trace and minor elemental chemistry in the vitrinite and cutinite and a different elemental signature in the fusinite. Three to six sites were analysed within each maceral during the study by laser micro mass spectrometry (LAMMS). Al, Ba, Ca, Cl, Cr, Dy, F, Fe, Ga, K, Li, Mg, Na, S, Si, Sr, Ti, V, and Y were detected by LAMMS in all three macerals but not necessarily at each site analysed. The signal intensities of major isotopic peaks were normalized to the signal intensity of the m z 85 peak (C7H) to determine the relative minor- and trace-element concentrations among the three dominant macerals. The vitrinite and the cutinite were depleted in Ba, Ca, Dy, Li, Mg, Sr, and Y relative to their concentrations observed in the fusinite. The cutinite was distinguished over vitrinite by less Ti, V, Cr and Ca, and K Ca $ ??1 (relative signal intensities). The fusinite, relative to the cutinite and vitrinite, was relatively depleted in Cr, Sc, Ti, and V. The fusinite, as compared with both the cutinite and vitrinite, was relatively enriched in Ba, Ca, Dy, Li, Mg, Sr, and Y, and also showed the most intense m z 64, 65, 66 signals (possibly S2+, HS2+, H2S2+, respectively). The LAMMS data indicate a common source for most elements and selective loss from the maceral precursors in the peat or entrapment of certain elements as mineral matter, most likely during the peat stage or during early diagenesis. The relatively high amounts of Ba, Ca, Dy, Li, Mg, Sr, and Y in the fusinite are consistent with micron and submicron mineral-matter inclusions such as carbonates and Ca-Al phosphates (probably crandallite group minerals). Mineralogical data on the whole coal, the LAMMS chemistry of the vitrinite and cutinite, and scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDAX) of the elements in the macerals are consistent with the presence of micron and submicron inclusions of clays such as kaolinite, illite, and Ca-rich or Ca-bearing minerals (e.g. calcite, Ca-Al phosphates, and illite) which are different in kind and proportions in the three macerals. The variance as measured by the F-statistic for all three macerals indicates generally a nonuniform distribution of minor and trace elements in all three macerals, thus supporting a mineral-matter (inorganic) origin of the elements analysed. Exceptions are Al, K, Fe, Ga, and Sr in the vitrinite and cutinite, which is consistent with organic complexing or a uniform distribution of micron or submicron mineral matter such as illite and phosphate(s). ?? 1990.

  18. Surface Properties of the IN SITU Formed Ceramics Reinforced Composite Coatings on TI-3AL-2V Alloys

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Guo, Wei; Hu, Dakui; Luo, Hui; Zhang, Yuanbin

    2012-04-01

    The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.

  19. Anoxia-induced release of colloid- and nanoparticle-bound phosphorus in grassland soils.

    PubMed

    Henderson, R; Kabengi, N; Mantripragada, N; Cabrera, M; Hassan, S; Thompson, A

    2012-11-06

    Particle-facilitated transport is a key mechanism of phosphorus (P) loss in agroecosystems. We assessed contributions of colloid- and nanoparticle-bound P (nPP; 1-415 nm) to total P released from grassland soils receiving biannual poultry litter applications since 1995. In laboratory incubations, soils were subjected to 7 days of anoxic conditions or equilibrated at pH 6 and 8 under oxic conditions and then the extract was size fractionated by differential centrifugation/ultrafiltration for analysis of P, Al, Fe, Si, Ti, and Ca. Selected samples were characterized by transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS) and field flow fractionation (FFF-ICP-MS). Particles released were present as nanoaggregates with a mean diameter of 200-250 nm, composed of ~50-nm aluminosilicate flakes studded with Fe and Ti-rich clusters (<10 nm) that contained most of the P detected by EDS. Anoxic incubation of stimulated nPP release with seasonally saturated soils released more nPP and Fe(2+)(aq) than well-drained soils; whereas, nonreductive particle dispersion, accomplished by raising the pH, yielded no increase in nPP release. This suggests Fe acts as a cementing agent, binding to the bulk soil P-bearing colloids that can be released during reducing conditions. Furthermore, it suggests prior periodic exposure to anoxic conditions increases susceptibility to redox-induced P mobilization.

  20. The Influence of Fe2O3 Addition on the Tio2 Structure and Photoactivity Properties

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Prasetyawati, L.; Saputri, L. N. M. Z.; Ichsan, S.; Kristiawan, Y. R.

    2018-03-01

    The influence of Fe2O3 addition on the TiO2 structure and photoactivity properties have been studied. The addition of Fe2O3 on the TiO2 done by TiO2-Fe2O3 synthesized with variation of annealing temperature. The result showed that peak of anatase TiO2 at 2θ = 25.35° and Fe2O3 at 2θ = 54.20°. The XRD of TiO2 show annealing temperature at 400°C is anatase phase and the composite with annealing at temperature 150°C, 300°C, 400°C and 500°C is crystalline anatase phase, due to the addition of Fe2O3. Photodegradation of Rhodamin B with TiO2 at 400°C annealing temperature showed optimum degradation 36.2 %, and the composite with annealing at 400°C showed optimum degradation 44.3% for 300 minutes irradiation.

  1. Synthesis and Characterization of Photocatalytic TiO 2 -ZnFe 2 O 4 Nanoparticles

    DOE PAGES

    Srinivasan, Sesha S.; Wade, Jeremy; Stefanakos, Elias K.

    2006-01-01

    A new coprecipimore » tation/hydrolysis synthesis route is used to create a TiO 2 -ZnFe 2 O 4 nanocomposite that is directed towards extending the photoresponse of TiO 2 from UV to visible wavelengths ( > 400   nm ). The effect of TiO 2 's accelerated anatase-rutile phase transformation due to the presence of the coupled ZnFe 2 O 4 narrow-bandgap semiconductor is evaluated. The transformation's dependence on pH, calcinations temperature, particle size, and ZnFe 2 O 4 concentration has been analyzed using XRD, SEM, and UV-visible spectrometry. The requirements for retaining the highly photoactive anatase phase present in a ZnFe 2 O 4 nanocomposite are outlined. The visible-light-activated photocatalytic activity of the TiO 2 -ZnFe 2 O 4 nanocomposites has been compared to an Aldrich TiO 2 reference catalyst, using a solar-simulated photoreactor for the degradation of phenol.« less

  2. First principles study on Fe based ferromagnetic quaternary Heusler alloys

    NASA Astrophysics Data System (ADS)

    Amudhavalli, A.; Rajeswarapalanichamy, R.; Iyakutti, K.

    2017-11-01

    The study of stable half-metallic ferromagnetic materials is important from various fundamental and application points of view in condensed matter Physics. Structural phase stability, electronic structure, mechanical and magnetic properties of Fe-based quaternary Heusler alloys XX‧YZ (X = Co, Ni; X‧ = Fe; Y = Ti; Z = Si, Ge, As) for three different phases namely α, β and γ phases of LiMgPdSn crystal structure have been studied by density functional theory with generalized gradient approximation formulated by Perdew, Burke and Ernzerhof (GGA-PBE) and the Hubbard formalism (GGA-PBE + U). This work aims to identify the ferromagnetic and half-metallic properties of XX‧YZ (X = Co, Ni, X‧ = Fe; Y = Ti; Z = Si, Ge, As) quaternary Heusler alloys. The predicted phase stability shows that α-phase is found to be the lowest energy phase at ambient pressure. A pressure-induced structural phase transition is observed in CoFeTiSi, CoFeTiGe, CoFeTiAs, NiFeTiSi, NiFeTiGe and NiFeTiAs at the pressures of 151.6 GPa, 33.7 GPa, 76.4 GPa, 85.3 GPa, 87.7 GPa and 96.5 GPa respectively. The electronic structure reveals that these materials are half metals at normal pressure whereas metals at high pressure. The investigation of electronic structure and magnetic properties are performed to reveal the underlying mechanism of half metallicity. The spin polarized calculations concede that these quaternary Heusler compounds may exhibit the potential candidate in spintronics application. The magnetic moments for these quaternary Heusler alloys in all the three different phases (α, β and γ) are estimated.

  3. Heterogeneous UV/Fenton degradation of bisphenol A catalyzed by synergistic effects of FeCo2O4/TiO2/GO.

    PubMed

    Bai, Xue; Lyu, Lingling; Ma, Wenqiang; Ye, Zhengfang

    2016-11-01

    A new method for bisphenol A (BPA) degradation in aqueous solution was developed. The characteristics of BPA degradation in a heterogeneous ultraviolet (UV)/Fenton reaction catalyzed by FeCo 2 O 4 /TiO 2 /graphite oxide (GO) were studied. The properties of the synthesized catalysts were characterized using scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometry. FeCo 2 O 4 and TiO 2 were grown as spherical shape, rough surface, and relatively uniform on the surface of GO (FeCo 2 O 4 /TiO 2 /GO). Batch tests were conducted to evaluate the effects of the initial pH, FeCo 2 O 4 /TiO 2 /GO dosage, and H 2 O 2 concentration on BPA degradation. In a system with 0.5 g L -1 of FeCo 2 O 4 /TiO 2 /GO and 10 mmol L -1 of H 2 O 2 , approximately 90 % of BPA (20 mg L -1 ) was degraded within 240 min of UV irradiation at pH 6.0. The reused FeCo 2 O 4 /TiO 2 /GO catalyst retained its activity after three cycles, which indicates that it is stable and reusable. The heterogeneous UV/Fenton reaction catalyzed by FeCo 2 O 4 /TiO 2 /GO is a promising advanced oxidation technology for treating wastewater that contains BPA.

  4. Highly efficient and porous TiO2-coated Ag@Fe3O4@C-Au microspheres for degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Shen, Mao; Chen, Suqing; Jia, Wenping; Fan, Guodong; Jin, Yanxian; Liang, Huading

    2016-12-01

    In this paper, we reported a novel hierarchical porous Ag@Fe3O4@C-Au@TiO2 core@shell microspheres with a highly photocatalytic activity and magnetically separable properties. The synthesis method is included of a Fe3O4 magnetic embedded Ag core (Ag@Fe3O4), an interlayer of carbon modified by PEI to form sufficient amounts of amine functional groups (Ag@Fe3O4@C-PEI), the grafting of Au nanoparticles on the surface of Ag@Fe3O4@C-PEI (Ag@Fe3O4@C-Au), and an ordered porous TiO2 structured shell. As an example of the applications, the photocatalytic activities of the samples were investigated by the reduction of Rhodamine B (RhB) under visible-light irradiation. The results show that the porous Ag@Fe3O4@C-Au@TiO2 core@shell microspheres display higher adsorption and photocatalytic activities compared to the pure porous TiO2 and Ag@Fe3O4@C@TiO2 microspheres, which are attributed to the local surface plasmon resonance (LSPR) by the Ag and Au nanoparticles and the high specific surface area.

  5. Effect of low Fe3+ doping on characteristics, sonocatalytic activity and reusability of TiO2 nanotubes catalysts for removal of Rhodamine B from water.

    PubMed

    Pang, Yean Ling; Abdullah, Ahmad Zuhairi

    2012-10-15

    Fe-doped titanium dioxide (TiO(2)) nanotubes were prepared using sol-gel followed by hydrothermal methods and characterized using various methods. The sonocatalytic activity was evaluated based on oxidation of Rhodamine B under ultrasonic irradiation. Iron ions (Fe(3+)) might incorporate into the lattice and intercalated in the interlayer spaces of TiO(2) nanotubes. The catalysts showed narrower band gap energies, higher specific surface areas, more active surface oxygen vacancies and significantly improved sonocatalytic activity. The optimum Fe doping at Fe:Ti=0.005 showed the highest sonocatalytic activity and exceeded that of un-doped TiO(2) nanotubes by a factor of 2.3 times. It was believed that Fe(3+) doping induced the formation of new states close to the valence band and conduction bands and accelerated the separation of charge carriers. Leached Fe(3+) could catalyze Fenton-like reaction and led to an increase in the hydroxyl radical (OH) generation. Fe-doped TiO(2) nanotubes could retain high degradation efficiency even after being reused for 4 cycles with minimal loss of Fe from the surface of the catalyst. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Elements and inorganic ions as source tracers in recent Greenland snow

    NASA Astrophysics Data System (ADS)

    Lai, Alexandra M.; Shafer, Martin M.; Dibb, Jack E.; Polashenski, Chris M.; Schauer, James J.

    2017-09-01

    Atmospheric transport of aerosols leads to deposition of impurities in snow, even in areas of the Arctic as remote as Greenland. Major ions (e.g. Na+, Ca2+, NH4+, K+, SO42-) are frequently used as tracers for common aerosol sources (e.g. sea spray, dust, biomass burning, anthropogenic emissions). Trace element data can supplement tracer ion data by providing additional information about sources. Although many studies have considered either trace elements or major ions, few have reported both. This study determined total and water-soluble concentrations of 31 elements (Al, As, Ca, Cd, Ce, Co, Cr, Dy, Eu, Fe, Gd, K, La, Mg, Mn, Na, Nb, Nd, Pb, Pr, S, Sb, Si, Sm, Sn, Sr, Ti, V, U, Y, Zn) in shallow snow pits at 22 sampling sites in Greenland, along a transect from Summit Station to sites in the northwest. Black carbon (BC) and inorganic ions were measured in colocated samples. Sodium, which is typically used as a tracer of sea spray, did not appear to have any non-marine sources. The rare earth elements, alkaline earth elements (Mg, Ca, Sr), and other crustal elements (Fe, Si, Ti, V) were not enriched above crustal abundances relative to Al, indicating that these elements are primarily dust sourced. Calculated ratios of non-sea salt Ca (nssCa) to estimated dust mass affirm the use of nssCa as a dust tracer, but suggest up to 50% uncertainty in that estimate in the absence of other crustal element data. Crustal enrichment factors indicated that As, Cd, Pb, non-sea-salt S, Sb, Sn, and Zn were enriched in these samples, likely by anthropogenic sources. Principal component analysis indicated more than one crustal factor, and a variety of factors related to anthropogenically enriched elements. Analysis of trace elements alongside major tracer ions does not change interpretation of ion-based source attribution for sources that are well-characterized by ions, but is valuable for assessing uncertainty in source attribution and identifying sources not represented by major ions.

  7. Production of Lunar Oxygen Through Vacuum Pyrolysis

    DTIC Science & Technology

    2006-01-26

    bars Titanium Dioxide Titanium forms a number of oxides: TiO2, Ti3O5, Ti2O3, and TiO. Titanium oxide is commonly found as ilmenite ( FeTiO3 ) in...1 10-Jan Zn 5m - < 1x10-4 5 ~900 - 2a 7-Mar FeTiO3 10 min 800 < 1x10-4 1.1x10-1 620 - 2b 7-Mar FeTiO3 15 min 945 < 1x10-4 2x10-2 >800 0.16% 3 18...Apr FeTiO3 ~20 min 890 6.0x10-1 8x10-1 700 0.37% 4 3-May MgSiO3 əmin 955 4.4x10-2 4.4x10-2 548 0.05% 5 6-Jun MgSiO3 ~30 min 940 1.4x10-1 2.3x10-1

  8. Chemical data and statistical interpretations for rocks and ores from the Ranger uranium mine, Northern Territory, Australia

    USGS Publications Warehouse

    Nash, J. Thomas; Frishman, David

    1983-01-01

    Analytical results for 61 elements in 370 samples from the Ranger Mine area are reported. Most of the rocks come from drill core in the Ranger No. 1 and Ranger No. 3 deposits, but 20 samples are from unmineralized drill core more than 1 km from ore. Statistical tests show that the elements Mg, Fe, F, Be, Co, Li, Ni, Pb, Sc, Th, Ti, V, CI, As, Br, Au, Ce, Dy, La Sc, Eu, Tb, Yb, and Tb have positive association with uranium, and Si, Ca, Na, K, Sr, Ba, Ce, and Cs have negative association. For most lithologic subsets Mg, Fe, Li, Cr, Ni, Pb, V, Y, Sm, Sc, Eu, and Yb are significantly enriched in ore-bearing rocks, whereas Ca, Na, K, Sr, Ba, Mn, Ce, and Cs are significantly depleted. These results are consistent with petrographic observations on altered rocks. Lithogeochemistry can aid exploration, but for these rocks requires methods that are expensive and not amenable to routine use.

  9. Photocatalytic degradation of Rhodamine B dye using Fe doped TiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Barkhade, Tejal; Banerjee, Indrani

    2018-05-01

    The unique properties of titanium dioxide (TiO2) such as high photo catalytic activity, high chemical stability and low toxicity have made it a suitable photocatalyst in recent decades. The effect of modification of TiO2 with doping of iron on its characteristics and photo catalytic efficiency was studied. The change in band gap energy of TiO2 nanoparticles after doping with Fe has been studied. Significant enhancement in photo catalytic property of TiO2 after Fe doping under light exposure conditions has been investigated. Acute exposure to non-biodegradable Rhodamine B resulted in many health problems like burning of eyes, skin irritation, nasal burning, and chest pain etc. Therefore, degradation of this dye is needed to save environment and animals. Considering the similar radius of Fe3+ and Ti4+ ions (respectively 0.64 Å and 0.68 Å), titanium position in the lattice of TiO2 can be replaced by iron cations easily. The undoped and Fe doped TiO2 nano composites were synthesized by sol-gel method, in which 1.0M% of Fe was doped with TiO2 and then the samples were characterized by using FE-SEM, UV-Visible diffuse spectroscopy, Raman Spectroscopy, and FTIR. Photo catalytic degradation of Rhodamine B dye experiment was carried out in visible light range. After 90 min time duration pink colour of dye turned colourless, indicating significant degradation rate with time.

  10. Synergistic effect of surface self-doping and Fe species-grafting for enhanced photocatalytic activity of TiO2 under visible-light

    NASA Astrophysics Data System (ADS)

    Kong, Lina; Wang, Changhua; Wan, Fangxu; Zheng, Han; Zhang, Xintong

    2017-02-01

    Surface grafting of transition-metal complexes or oxides is an appealing way to enhance the photocatalytic activity of TiO2 under visible-light excitation. However, the performance of these co-catalysts assistant TiO2 photocatalysts is still not sufficient enough due to their relatively weak visible-light absorption. Herein, we report a simple impregnation treatment with ferric ethoxide/ethanol solvent, followed with mild heating which can significantly enhance the visible-light absorption and photocatalytic activity of TiO2. XPS and EPR analyses manifest that the oxygen vacancies (VOs) and Fe-species are simultaneously introduced to the surface of TiO2. The chemical state and photocatalytic activity of the Fe-species-grafted TiO2 - x is dependent on the heating temperature after impregnation. The sample heat-treated at 250 °C exhibits the optimal photocatalytic performance for β-naphthol degradation with rate constant 6.0, 2.7, and 3.9 times higher than that of TiO2, TiO2 - x, and Fe-TiO2, respectively. The activity enhancement is discussed on the basis of the synergistic effect and energy-level matching of surface VOs and Fe-species co-catalyst, i.e. the VOs defects states increase the visible-light absorption and the Fe-species in the form of FeOOH promote the consumption of photo-generated electrons through multi-electron reduction of adsorbed molecule oxygen.

  11. Investigation of TiO2 photocatalyst performance for decolorization in the presence of hydrodynamic cavitation as hybrid AOP.

    PubMed

    Bethi, Bhaskar; Sonawane, S H; Rohit, G S; Holkar, C R; Pinjari, D V; Bhanvase, B A; Pandit, A B

    2016-01-01

    In this article, an acoustic cavitation engineered novel approach for the synthesis of TiO2, cerium and Fe doped TiO2 nanophotocatalysts is reported. The prepared TiO2, cerium and Fe doped TiO2 nanophotocatalysts were characterized by XRD and TEM analysis to evaluate its structure and morphology. Photo catalytic performance of undoped TiO2 catalyst was investigated for the decolorization of crystal violet dye in aqueous solution at pH of 6.5 in the presence of hydro dynamic cavitation. Effect of catalyst doping with Fe and Ce was also studied for the decolorization of crystal violet dye. The results shows that, 0.8% of Fe-doped TiO2 exhibits maximum photocatalytic activity in the decolorization study of crystal violet dye due to the presence of Fe in the TiO2 and it may acts as a fenton reagent. Kinetic studies have also been reported for the hybrid AOP (HAOP) that followed the pseudo first-order reaction kinetics. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Linking Barbados Mineral Dust Aerosols to North African Sources Using Elemental Composition and Radiogenic Sr, Nd, and Pb Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Bozlaker, Ayse; Prospero, Joseph M.; Price, Jim; Chellam, Shankararaman

    2018-01-01

    Large quantities of African dust are carried across the Atlantic to the Caribbean Basin and southern United States where it plays an important role in the biogeochemistry of soils and waters and in air quality. Dusts' elemental and isotopic composition was comprehensively characterized in Barbados during the summers of 2013 and 2014, the season of maximum dust transport. Although total suspended insoluble particulate matter (TSIP) mass concentrations varied significantly daily and between the two summers, the abundances (μg element/g TSIP) of 50 elements during "high-dust days" (HDD) were similar. Aerosols were regularly enriched in Na, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, and W relative to the upper continental crust. Enrichment of these elements, many of which are anthropogenically emitted, was significantly reduced during HDD, attributed to mixing and dilution with desert dust over source regions. Generally, Ti/Al, Si/Al, Ca/Al, Ti/Fe, Si/Fe, and Ca/Fe ratios during HDD differed from their respective values in hypothesized North African source regions. Nd isotope composition was relatively invariant for "low-dust days" (LDD) and HDD. In contrast, HDD-aerosols were more radiogenic exhibiting higher 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios compared to LDD. Generally, Barbados aerosols' composition ranged within narrow limits and was much more homogeneous than that of hypothesized African source soils. Our results suggest that summertime Barbados aerosols are dominated by a mixture of particles originating from sources in the Sahara-Sahel regions. The Bodélé Depression, long suspected as a major source, appears to be an insignificant contributor of summertime western Atlantic dust.

  13. Systematic study of probable projectile-target combinations for the synthesis of the superheavy nucleus 302120

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Safoora, V.

    2016-08-01

    Probable projectile-target combinations for the synthesis of the superheavy element 302120 have been studied taking the Coulomb and proximity potential as the interaction barrier. The probabilities of the compound nucleus formation PCN for the projectile-target combinations found in the cold reaction valley of 302120 are estimated. At energies near and above the Coulomb barrier, we have calculated the capture, fusion, and evaporation residue cross sections for the reactions of all probable projectile-target combinations so as to predict the most promising projectile-target combinations for the synthesis of the superheavy element 302120 in heavy-ion fusion reactions. The calculated fusion and evaporation cross sections for the more asymmetric ("hotter") projectile-target combination is found to be higher than the less asymmetric ("colder") combination. It can be seen from the nature of the quasifission barrier height, mass asymmetry, the probability of compound nucleus formation, survival probability, and excitation energy, the systems 44Ar+258No , 46Ar+256No , 48Ca+254Fm , 50Ca+252Fm , 54Ti+248Cf , and 58Cr+244Cm in deep region I of the cold reaction valley and the systems 62Fe+240Pu , 64Fe+238Pu , 68Ni+234U , 70Ni+232U , 72Ni+230U , and 74Zn+228Th in the other cold valleys are identified as the better projectile-target combinations for the synthesis of 302120. Our predictions on the synthesis of 302120 superheavy nuclei using the combinations 54Cr+248Cm , 58Fe+244Pu , 64Ni+238U , and 50Ti+249Cf are compared with available experimental data and other theoretical predictions.

  14. An ion microprobe study of CAIs from CO3 meteorites. [Abstract only

    NASA Technical Reports Server (NTRS)

    Russell, S. S.; Greenwood, R. C.; Fahey, A. J.; Huss, G. R.; Wasserburg, G. J.

    1994-01-01

    When attempting to interpret the history of Ca, Al-rich inclusions (CAIs) it is often difficult to distinguish between primary features inherited from the nebula and those produced during secondary processing on the parent body. We have undertaken a systematic study of CAIs from 10 CO chondrites, believed to represent a metamorphic sequence with the goal of distinguishing primary and secondary features. ALHA 77307 (3.0), Colony (3.0), Kainsaz (3.1), Felix (3.2), ALH 82101 (3.3), Ornans (3.3), Lance (3.4), ALHA 77003 (3.5), Warrenton (3.6), and Isna (3.7) were examined by Scanning Electron Microscopy (SEM) and optical microscopy. We have identified 141 CAIs within these samples, and studied in detail the petrology of 34 inclusions. The primary phases in the lower petrologic types are spinel, melilite, and hibonite. Perovskite, FeS, ilmenite, anorthite, kirschsteinite, and metallic Fe are present as minor phases. Melilite becomes less abundant in higher petrologic types and was not detected in chondrites of type 3.5 and above, confirming previous reports that this mineral easily breaks down during heating. Iron, an element that would not be expected to condense at high temperatures, has a lower abundance in spinel from low-petrologic-type meteorites than those of higher grade, and CaTiO3 is replaced by FeTiO3 in meteorites of higher petrologic type. The abundance of CAIs is similar in each meteorite. Eight inclusions have been analyzed by ion probe. The results are summarized. The results obtained to date show that CAIs in CO meteorites, like those from other meteorite classes, contain Mg* and that Mg in some inclusions has been redistributed.

  15. Cathodoluminescence microscopy and spectroscopy of forsterite from Kaba meteorite: An application to the study of hydrothermal alteration of parent body

    NASA Astrophysics Data System (ADS)

    Gucsik, Arnold; Endo, Taro; Nishido, Hirotsugu; Ninagawa, Kiyotaka; Kayama, Masahiro; Bérczi, Szaniszló; Nagy, Szabolcs; Ábrahám, Péter; Kimura, Yuki; Miura, Hitoshi; Gyollai, Ildikó; Simonia, Irakli; Rózsa, Péter; Posta, József; Apai, Dániel; Mihályi, Krisztián; Nagy, Mihály; Ott, Ulrich

    2013-12-01

    Highly forsteritic olivine (Fo: 99.2-99.7) in the Kaba meteorite emits bright cathodoluminescence (CL). CL spectra of red luminescent forsterite grains have two broad emission bands at approximately 630 nm (impurity center of divalent Mn ions) in the red region and above 700 nm (trivalent Cr ions) in the red-IR region. The cores of the grains show CL blue luminescence giving a characteristic broad band emission at 400 nm, also associated with minor red emissions related to Mn and Cr ions. CL color variation of Kaba forsterite is attributed to structural defects. Electron probe microanalyzer (EPMA) analysis shows concentrations of Ca, Al, and Ti in the center of the forsterite grain. The migration of diffusible ions of Mn, Cr, and Fe to the rim of the Kaba meteoritic forsterite was controlled by the hydrothermal alteration at relatively low temperature (estimated at about 250 °C), while Ca and Al ions might still lie in the core. A very unusual phase of FeO (wüstite) was also observed, which may be a terrestrial alteration product of FeNi-metal.

  16. Preparation of Fe3O4/TiO2 magnetic mesoporous composites for photocatalytic degradation of organic pollutants.

    PubMed

    Zhang, Hongfeng; He, Xiu; Zhao, Weiwei; Peng, Yu; Sun, Donglan; Li, Hao; Wang, Xiaocong

    2017-04-01

    Fe 3 O 4 /TiO 2 magnetic mesoporous composites were synthesized through a sol-gel method with tetra-n-butyl titanate as precursor and surfactant P123 as template. The as-prepared Fe 3 O 4 /TiO 2 composites were characterized by X-ray diffraction, diffuse reflectance spectroscopy, nitrogen adsorption-desorption isotherm and pore size distribution. The as-synthesized products were applied as photocatalysis for the degradation of Acid Black ATT and tannery wastewater under UV lamp irradiation. Fe 3 O 4 /TiO 2 -8 composites containing Fe 3 O 4 of 8 wt% were selected as model catalysts. The optimal catalyst dosage was 3 g/L in this photocalytic system. The magnetic Fe 3 O 4 /TiO 2 composites possessed good photocatalytic stability and durability. This approach may provide a platform to prepare a magnetic composite to optimize the catalytic ability.

  17. Structure and magnetic properties of spinel-perovskite nanocomposite thin films on SrTiO3 (111) substrates

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hun; Yang, Junho; Kim, Min Seok; Kim, Tae Cheol

    2016-09-01

    Epitaxial CoFe2O4-BiFeO3 nanocomposite thin films were synthesized on perovskite structured SrTiO3 (001) and (111) substrates by combinatorial pulsed laser deposition and characterized using scanning electron microscopy, x-ray diffraction, and vibrating sample magnetometer. Triangular BiFeO3 nanopillars were formed in a CoFe2O4 matrix on (111) oriented SrTiO3 substrates, while CoFe2O4 nanopillars with rectangular or square top surfaces grew in a BiFeO3 matrix on (001) substrates. The magnetic hysteresis loops of nanocomposites on (111) oriented SrTiO3 substrates showed isotropic properties due to the strain relaxation while those of films on SrTiO3 (001) substrates exhibited a strong out-of-plane anisotropy originated from shape and strain effects.

  18. Synthesis of GO supported Fe2O3-TiO2 nanocomposites for enhanced visible-light photocatalytic applications.

    PubMed

    Jo, Wan-Kuen; Selvam, N Clament Sagaya

    2015-09-28

    This article reports novel ternary composites consisting of Fe2O3 nanorods, TiO2 nanoparticles, and graphene oxide (GO) flakes that provide enhanced photocatalytic performance and stability. Fe2O3 nanorods grow evenly and embed themselves on the agglomerated TiO2/GO surface, which facilitate the formation of heterojunctions for effective migration of charge carriers at the interface of Fe2O3/TiO2 in the ternary composites. The formation of heterostructured Fe2O3-TiO2/GO composites and the effect of GO addition on the photophysical properties of the composites were systematically investigated using various spectroscopic techniques. The photocatalytic performance of Fe2O3 was improved by coupling with TiO2 in the presence of GO, suggesting uncommon electron transfer from the conduction band of Fe2O3 to that of TiO2via GO under visible-light irradiation. An improved charge separation in the composite materials compared with that in bare Fe2O3 was confirmed by drastic fluorescence quenching and stronger absorption in the visible range. The optimum content of GO in the ternary composite was 1.0 wt%, which exhibited enhanced photocatalytic activity. The synergistic effect, heterostructured composite and role of GO, as an electron transporter, in the ternary composites account for the enhanced photocatalytic activity.

  19. Synthesis and Molecular Structure of a Novel Compound Containing a Carbonate-Bridged Hexacalcium Cluster Cation Assembled on a Trimeric Trititanium(IV)-Substituted Wells-Dawson Polyoxometalate.

    PubMed

    Hoshino, Takahiro; Isobe, Rina; Kaneko, Takuya; Matsuki, Yusuke; Nomiya, Kenji

    2017-08-21

    A novel compound containing a hexacalcium cluster cation, one carbonate anion, and one calcium cation assembled on a trimeric trititanium(IV)-substituted Wells-Dawson polyoxometalate (POM), [{Ca 6 (CO 3 )(μ 3 -OH)(OH 2 ) 18 }(P 2 W 15 Ti 3 O 61 ) 3 Ca(OH 2 ) 3 ] 19- (Ca 7 Ti 9 Trimer), was obtained as the Na 7 Ca 6 salt (NaCa-Ca 7 Ti 9 Trimer) by the reaction of calcium chloride with the monomeric trititanium(IV)-substituted Wells-Dawson POM species "[P 2 W 15 Ti 3 O 59 (OH) 3 ] 9- " (Ti 3 Monomer). Ti 3 Monomer was generated in situ under basic conditions from the separately prepared tetrameric species with bridging Ti(OH 2 ) 3 groups and an encapsulated Cl - ion, [{P 2 W 15 Ti 3 O 59 (OH) 3 } 4 {μ 3 -Ti(H 2 O) 3 } 4 Cl] 21- (Ti 16 Tetramer). The Na 7 Ca 6 salt of Ca 7 Ti 9 Trimer was characterized by complete elemental analysis, thermogravimetric (TG) and differential thermal analyses (DTA), FTIR, single-crystal X-ray structure analysis, and solution 183 W and 31 P NMR spectroscopy. X-ray crystallography revealed that the [Ca 6 (CO 3 )(μ 3 -OH)(OH 2 ) 18 ] 9+ cluster cation was composed of six calcium cations linked by one μ 6 -carbonato anion and one μ 3 -OH - anion. The cluster cation was assembled, together with one calcium ion, on a trimeric species composed of three tri-Ti(IV)-substituted Wells-Dawson subunits linked by Ti-O-Ti bonds. Ca 7 Ti 9 Trimer is an unprecedented POM species containing an alkaline-earth-metal cluster cation and is the first example of alkaline-earth-metal ions clustered around a titanium(IV)-substituted POM.

  20. Microstructure, Mechanical Properties, and Electrochemical Behavior of Ti-Nb-Fe Alloys Applied as Biomaterials

    NASA Astrophysics Data System (ADS)

    Lopes, Éder Sócrates Najar; Salvador, Camilo Augusto Fernandes; Andrade, Denis Renato; Cremasco, Alessandra; Campo, Kaio Niitsu; Caram, Rubens

    2016-06-01

    New β metastable Ti alloys based on Ti-30Nb alloy with the addition of 1, 3, or 5 wt pct Fe have been developed using the bond order and the metal d-orbital energy level ( overline{{Bo}} {-} overline{{Md}} ) design theory. The samples were prepared by arc melting, hot working, and solution heat treatment above the β transus followed by water quenching (WQ) or furnace cooling (FC). The effect of the cooling rate on the microstructure of Ti-30Nb-3Fe wt pct was investigated in detail using a modified Jominy end quench test. The results show that Fe acts as a strong β-stabilizing alloying element. The addition of Fe also leads to a reduction in the ω and α phases volumetric fractions, although the ω phase was still detected in the WQ Ti-30Nb-5Fe samples, as shown by TEM, and α phase clusters were detected by SEM in the FC Ti-30Nb-3Fe samples. Among the WQ samples, the addition of 5 wt pct Fe improves the ultimate tensile strength (from 601 to 689 MPa), reduces the final elongation (from 28 to 16 pct), and impairs the electrochemical corrosion resistance, as evaluated by potentiodynamic polarization tests in Ringer's solution. The microstructural variation arising from the addition of Fe did not change the elastic modulus (approximately 80 GPa for all experimental WQ samples). This study shows that small Fe additions can tailor the microstructure of Ti-Nb alloys, modifying α and ω phase precipitation and improving mechanical strength.

  1. Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)

    1996-01-01

    A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.

  2. The role of nano-perovskite in the negligible thorium release in seawater from Greek bauxite residue (red mud)

    PubMed Central

    Gamaletsos, Platon N.; Godelitsas, Athanasios; Kasama, Takeshi; Kuzmin, Alexei; Lagos, Markus; Mertzimekis, Theo J.; Göttlicher, Jörg; Steininger, Ralph; Xanthos, Stelios; Pontikes, Yiannis; Angelopoulos, George N.; Zarkadas, Charalampos; Komelkov, Aleksandr; Tzamos, Evangelos; Filippidis, Anestis

    2016-01-01

    We present new data about the chemical and structural characteristics of bauxite residue (BR) from Greek Al industry, using a combination of microscopic, analytical, and spectroscopic techniques. SEM-EDS indicated a homogeneous dominant “Al-Fe-Ca-Ti-Si-Na-Cr matrix”, appearing at the microscale. The bulk chemical analyses showed considerable levels of Th (111 μg g−1), along with minor U (15 μg g−1), which are responsible for radioactivity (355 and 133 Bq kg−1 for 232Th and 238U, respectively) with a total dose rate of 295 nGy h−1. Leaching experiments, in conjunction with SF-ICP-MS, using Mediterranean seawater from Greece, indicated significant release of V, depending on S/L ratio, and negligible release of Th at least after 12 months leaching. STEM-EDS/EELS & HR-STEM-HAADF study of the leached BR at the nanoscale revealed that the significant immobility of Th4+ is due to its incorporation into an insoluble perovskite-type phase with major composition of Ca0.8Na0.2TiO3 and crystallites observed in nanoscale. The Th LIII-edge EXAFS spectra demonstrated that Th4+ ions, which are hosted in this novel nano-perovskite of BR, occupy Ca2+ sites, rather than Ti4+ sites. That is most likely the reason of no Th release in Mediterranean seawater. PMID:26899139

  3. Synthesis and characterization of Zn-Ti layered double hydroxide intercalated with cinnamic acid for cosmetic application

    NASA Astrophysics Data System (ADS)

    Li, Yong; Tang, Liping; Ma, Xinxu; Wang, Xinrui; Zhou, Wei; Bai, Dongsheng

    2017-08-01

    The use of sunscreen is recently growing and their efficacy and safety must be taken into account since they are applied on the skin frequently. In this work, an organic ultraviolet (UV) ray absorbent, cinnamic acid (CA) was intercalated into Zn-Ti layered double hydroxide (LDH) by anion-exchange reaction. ZnTi-CA-LDH, a new type of host-guest UV-blocking material has been synthesized. Detailed structural and surface morphology of ZnTi-CA-LDH were characterized by XRD, FT-IR, SEM and TEM. ZnTi-CA-LDH exhibits a superior UV blocking ability compared to pure CA and ZnTi-CO3-LDH. The thermal stability of the intercalated ZnTi-CA-LDH was investigated by TG-DTA, which showed that the thermostability of CA was markedly enhanced after intercalation into ZnTi-CO3-LDH. The EPR data showed greatly decreased photocatalytic activity compared to common inorganic UV blocking agents TiO2 and ZnO. Furthermore, the sample was formulated in a sunscreen cream to study the matrix protective effect towards UV rays.

  4. A low-cost visible light activeBiFeWO6/TiO2nanocompositewith an efficient photocatalytic and photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Priya, A.; Arunachalam, Prabhakarn; Selvi, A.; Madhavan, J.; Al-Mayouf, Abdullah M.; Ghanem, Mohamed A.

    2018-07-01

    Herein, visible-light driven BiFeWO6/TiO2 nanocomposites photocatalysts were successfully synthesized by an incipient wet-impregnation method. The as-synthesized BiFeWO6/TiO2 nanocomposites were explored by using various techniques of X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, UV-vis diffuse reflection spectroscopy (DRS), photoluminescence (PL), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoelectrochemical (PEC) studies to investigate the material formation, surface morphology, electrochemical and optical behaviors. Furthermore, the photocatalytic efficiency of fabricated BiFeWO6/TiO2 nanocomposites was also evaluated towards the degradation of acid orange 7 (AO7). From the degradation results, it revealed that 1% BiFeWO6/TiO2 nanocomposite demonstrated superior photocatalytic performance than its comparison with pure components. This optimized 1% BiFeWO6/TiO2 nanocomposite was found to achieve complete degradation of AO7 within 60 min and also it showing a rate constant value of0.054 min-1 which is much superior to the pure TiO2. This improvement might be credited to its strong light absorption ability in a visible-light region and the low recombination rate of hole-electron pairs. Also, the BiFeWO6/TiO2 nanocomposite has an exceptional photostability and reusability character along with an excellent photo-electrochemical activity. Therefore, it can be well useful material for removing organic pollutants in the aqueous environment. Finally, a probable mechanism is suggested for the photodegradation of AO7 over as-synthesized BiFeWO6/TiO2nanocomposite material.

  5. How Should Iron and Titanium be Combined in Oxides to Improve Photoelectrochemical Properties?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, Sarah; Melissen, Sigismund T. A. G.; Duclaux, Loraine

    We discuss here for the first time how to combine iron and titanium metal ions to achieve a high photo-electrochemical activity for TiO 2-based photo-anodes in water splitting devices. To do so, a wide range of photoelectrode materials with tailored Ti/Fe ratio and element vicinity were synthesized by using the versatility of aqueous sol–gel chemistry in combination with a microwave-assisted crystallization process. At low ferric concentrations, single phase TiO 2 anatase doped with various Fe amounts were prepared. Strikingly, at higher ferric concentrations, we observed the concomitant crystallization of two polymorphs of Fe 2TiO 5. The as-synthesized compounds were testedmore » as photoelectrode and compared with pure nanoparticles of TiO 2, Fe 2TiO 5 and α- or γ-Fe 2O 3 and with corresponding nanocomposites. When TiO 2 is slightly doped by Fe, the performance of this photo-electrode improves particularly in the low-bias region (< 1.0 V vs. reversible hydrogen electrode.) The photoanode exhibits a higher photocurrent than nanocomposite with TiO 2/Fe 2O 3 and FeTi 2O 5, and more cathodic onset potential. The former can be partly explained by a lower bandgap and a hole with a longer lifetime. For the latter, we propose that the nature of the heterojunction impacts charge carrier recombination. Here, the results presented herein not only answer whether iron and titanium should be combined in the same structure or into heterostructured systems, but also on the importance of the arrangement of ions in the structure to improve the performances of the photoanode.« less

  6. How Should Iron and Titanium be Combined in Oxides to Improve Photoelectrochemical Properties?

    DOE PAGES

    Petit, Sarah; Melissen, Sigismund T. A. G.; Duclaux, Loraine; ...

    2016-10-04

    We discuss here for the first time how to combine iron and titanium metal ions to achieve a high photo-electrochemical activity for TiO 2-based photo-anodes in water splitting devices. To do so, a wide range of photoelectrode materials with tailored Ti/Fe ratio and element vicinity were synthesized by using the versatility of aqueous sol–gel chemistry in combination with a microwave-assisted crystallization process. At low ferric concentrations, single phase TiO 2 anatase doped with various Fe amounts were prepared. Strikingly, at higher ferric concentrations, we observed the concomitant crystallization of two polymorphs of Fe 2TiO 5. The as-synthesized compounds were testedmore » as photoelectrode and compared with pure nanoparticles of TiO 2, Fe 2TiO 5 and α- or γ-Fe 2O 3 and with corresponding nanocomposites. When TiO 2 is slightly doped by Fe, the performance of this photo-electrode improves particularly in the low-bias region (< 1.0 V vs. reversible hydrogen electrode.) The photoanode exhibits a higher photocurrent than nanocomposite with TiO 2/Fe 2O 3 and FeTi 2O 5, and more cathodic onset potential. The former can be partly explained by a lower bandgap and a hole with a longer lifetime. For the latter, we propose that the nature of the heterojunction impacts charge carrier recombination. Here, the results presented herein not only answer whether iron and titanium should be combined in the same structure or into heterostructured systems, but also on the importance of the arrangement of ions in the structure to improve the performances of the photoanode.« less

  7. Well-isolated FePt grains with high coercivity on TiN underlayers for heat-assisted magnetic recording media

    NASA Astrophysics Data System (ADS)

    Santos, Tiffany; Jain, Shikha; Hirotsune, Akemi; Hellwig, Olav

    2015-03-01

    MgO is the underlayer material of choice for granular FePt thin film media for heat assisted magnetic recording, because MgO (001) seeds L10-ordered FePt with c-axis perpendicular to the film plane and high perpendicular magnetic anisotropy. MgO is also an effective diffusion barrier between the FePt grains and the metallic underlayers beneath the MgO. However, there are possible concerns associated with using MgO in the media structure. MgO is highly sensitive to moisture, and hydration of MgO could potentially degrade film properties. In addition, many particulates are incorporated into the film during the RF-sputter process, which can be sources of delamination, pinholes and damage to the low-flying recording heads. TiN is an attractive alternative to MgO because it is chemically and mechanically robust, and TiN can be DC-sputtered, which produces fewer particles and has a faster deposition rate. Even though TiN has the same rocksalt crystal structure and lattice constant as MgO, the higher surface energy of TiN causes more wetting of the FePt grains on the TiN surface. As a result, deposition of granular FePt on TiN most often produces inter-connected, worm-like grains with low coercivity. We will show that by optimizing the deposition of FePt and segregant material on the TiN underlayer, we are able to fabricate FePt media with well-isolated grains and high coercivity reaching nearly 4 Tesla. In addition, the FePt has excellent structural properties with a high degree of L10 atomic ordering and minimal c-axis in-plane oriented grains.

  8. Pressure induced para-antiferromagnetic switching in BiFeO3-PbTiO3 as determined using in-situ neutron diffraction

    NASA Astrophysics Data System (ADS)

    Comyn, Tim P.; Stevenson, Tim; Al-Jawad, Maisoon; Marshall, William G.; Smith, Ronald I.; Herrero-Albillos, Julia; Cywinski, Robert; Bell, Andrew J.

    2013-05-01

    BiFeO3-PbTiO3 exhibits both ferroelectric and antiferromagnetic order, depending on the composition. Moderate hydrostatic pressures have been used at room temperature to transform the crystallographic phase from P4mm to R3c for the compositions 0.7BiFeO3-0.3PbTiO3 and 0.65BiFeO3-0.35PbTiO3, as determined using in-situ neutron diffraction. Using Rietveld refinements, the resultant data showed that, for both compositions, a transformation from para- to G-type antiferromagnetic order accompanied the structural transition. The transformation occurred over the range 0.4-0.77 and 0.67-0.88 GPa for 0.7BiFeO3-0.3PbTiO3 and 0.65BiFeO3-0.35PbTiO3, respectively; at intermediate pressures, a mixture of P4mm and R3c phases were evident. These pressures are far lower than required to induce a phase transition in either the BiFeO3 or PbTiO3 end members. The driving force for this pressure induced first order phase transition is a significant difference in volume between the two phases, P4mm > R3c of 4%-5%, at ambient pressure. Upon removal of the pressure, 0.65BiFeO3-0.35PbTiO3 returned to the paramagnetic tetragonal state, whereas in 0.7BiFeO3-0.3PbTiO3 antiferromagnetic ordering persisted, and the structural phase remained rhombohedral. Using conventional laboratory x-ray diffraction with a hot-stage, the phase readily reverted back to a tetragonal phase, at temperatures between 100 and 310 °C for 0.7BiFeO3-0.3PbTiO3, far lower than the ferroelectric Curie point for this composition of 632 °C. To our knowledge, the reported pressure induced para- to antiferromagnetic transition is unique in the literature.

  9. Significant role of antiferromagnetic GdFeO3 on multiferroism of bilayer thin films

    NASA Astrophysics Data System (ADS)

    Shah, Jyoti; Bhatt, Priyanka; Dayas, K. Diana Diana; Kotnala, R. K.

    2018-02-01

    Inversion of BaTiO3 and GdFeO3 thin films in bilayer configuration has been deposited by pulsed laser deposition technique. A significant effect of strain on thin film has been observed by X-ray diffraction analysis. Tensile strain of 1.04% and 0.23% has been calculated by X-ray diffraction results. Higher polarization value 70.4 μC cm-2 has been observed by strained BaTiO3 film in GdFeO3/BaTiO3 bilayer film. Strained GdFeO3 film in BaTiO3/GdFeO3 bilayer configuration exhibited ferromagnetic behaviour showed maximum magnetization value of 50 emu gm-1. Magnetoelectric coupling coefficient of bilayer films have been carried out by dynamic method. Room temperature magnetoelectric coupling 2500 mV cm-1-Oe has been obtained for BaTiO3/GdFeO3 bilayer film. The high ME coupling of the BaTiO3/GdFeO3 bilayer film reveals strong interfacial coupling between ferroelectric and ferromagnetic dipoles. On magnetoelectric coupling coefficient effect of ferromagnetic GdFeO3 layer has a significant role. Such high value of ME coupling may be useful in realization of magnetoelectric RAM (MeRAM) application.

  10. Synthesis and characterization of anionic/nonionic surfactant-interceded iron-doped TiO{sub 2} to enhance sorbent/photo-catalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Ajit; Lee, Byeong-Kyu, E-mail: bklee@ulsan.ac.kr

    2015-09-15

    We investigated the synthesis, characterization, and application of surfactant-interceded Fe nanoparticle-doped TiO{sub 2} (TiO{sub 2}/Fe-S1 and TiO{sub 2}/Fe-S2) that were used as adsorbents and photo-catalysts for the removal of As(V) ions from aqueous media. Two types of surfactant (anionic (sodium dodecyl sulfate), S1 and non-ionic (Triton X-100), S2) were used to obtain the separation and mono-dispersion of Fe(III) ions in the reaction solution. The nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), UV–vis, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) and elemental mapping analysis before and after As(V) removal. The Langmuir capacities (q{submore » e}, mg/g) of the sodium dodecyl sulfate (SDS) and Triton X-100 interceded nanocomposites (TiO{sub 2}/Fe-S1 and TiO{sub 2}/Fe-S2, respectively) for arsenic removal were determined to be 65.79 and 50.76 mg/g, respectively, in aqueous media with As(V) concentration ranges of 0–10 mg/L at pH 6.5. - Highlights: • Fe(III) doped TiO{sub 2} nanocomposite was prepared with surfactant. • Anionic surfactant SDS enhanced the transfer of Fe(III) ions to TiO{sub 2}. • Surfactant-interceded nanocomposite enhanced As(V) removal. • Arsenic removal efficiency was as follows: dark phase>visible phase>UV region.« less

  11. A novel synthesis method for TiO2 particles with magnetic Fe3O4 cores.

    PubMed

    Dong, Qi; Zhang, Keqiang; An, Yi

    2014-01-01

    TiO2@(AC/Fe3O4) (AC is activated carbon) was prepared by using AC and Fe3O4 as joint support. The morphological features, crystal structure, and magnetism of the final product were characterized. The results indicate that TiO2 particles formed on the surface of AC and Fe3O4; the sizes of TiO2 and Fe3O4 were 0.5 and 0.7 μm respectively, and that of AC fell within a wide range. The highly crystalline cubic structures of the TiO2 particles was in accord with the standard X-ray diffractometry spectrum of magnetite and anatase. The maximum saturation magnetization of TiO2@(AC/Fe3O4) was 75 emu g(-1), which was enough to support magnetic recovery. The rate of methylene blue (MB) removal photocatalyzed by TiO2@(AC/Fe3O4) was higher by 50% than that achieved with AC/Fe3O4 photocatalysis, and similar to that achieved with TiO2@AC. The removal rate (kobs) decreased drastically from 1.77 × 10(-2) to 9.36 × 10(-3)min(-1) when the initial concentration of MB solution increased from 2.0 to 5.0 mg L(-1). The kobs value increased from 9.41 × 10(-3) to 1.34 × 10(-2)min(-1) with increasing photocatalyst dosage from 0.2 to 1.0 g, then slightly decreased to 1.33 × 10(-2)min(-1) at 2.0 g dosage.

  12. Ionic mechanisms of transient inward current in the absence of Na(+)-Ca2+ exchange in rabbit cardiac Purkinje fibres.

    PubMed Central

    Han, X; Ferrier, G R

    1992-01-01

    1. Membrane currents were measured with a two-microelectrode technique in voltage clamped rabbit cardiac Purkinje fibres under conditions known to cause intracellular calcium overload and to eliminate or minimize Na(+)-Ca2+ exchange. 2. Increasing [Ca2+]o from 2.5 to 5 mM or above and substituting external sodium with either sucrose, choline or Li+ induced an oscillatory transient inward current (TI) which peaked 200-300 ms after repolarization from a previous depolarizing pulse. The TI quickly disappeared upon return to normal Tyrode solution. Both the rate and configuration of action potentials of Purkinje fibres also returned to control upon return to Tyrode solution after 30 min of high Ca2+ exposure, if the Ca2+ concentration was 30 mM or less. 3. The TI in Na(+)-free solution was Ca2+ dependent. Either zero or low (2.5 mM) [Ca2+]o, or replacement of [Ca2+]o by BaCl prevented induction of the TI current upon repolarization from a previous depolarizing pulse. 4. In the presence of 30 mM-CaCl2 and with choline chloride as the substitute for NaCl, TI had a distinct reversal potential (Erev) of -25 mV. The time-to-peak TI, either inward or outward, did not shift significantly with change in voltage. Both inward and outward TI were simultaneously abolished by exposure to 1 microM-ryanodine, suggesting they were both activated by transient release of Ca2+ from the sarcoplasmic reticulum. The occurrence of TI in the absence of [Na+]o is not compatible with an electrogenic Na(+)-Ca2+ exchange mechanism. The existence of a clear-cut reversal potential suggests that an ionic channel may be responsible for the TI under these conditions. 5. Both the magnitude of peak TI and the Erev were affected by changes of CaCl2 concentration. (i) Under steady-state conditions, peak inward TI was significantly increased when the [Ca2+]o was elevated from 5 to 15 mM. The peak TI in the outward direction was significantly increased when [Ca2+]o was elevated from 15 to 30 mM; however, the difference in peak inward TI at 15 and 30 mM [Ca2+]o was small. (ii) Clear-cut reversals of TI were found at Ca2+ concentrations of 10 mM (Erev = -19.5 mV) or greater, and elevation of [Ca2+]o to 20, 30, 50 and 105 mM shifted the Erev to more negative potentials. (iii) In the presence of 5 mM [Ca2+]o the inward TI declined to zero at about -30 mV, and test voltages between -55 and +5 mV failed to reveal a distinct outward TI.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1284077

  13. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.

    2012-08-01

    Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban Environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter <2.5 μm) resolved Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie FP7-EU framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the unique approach used is the simultaneous PIXE measurements at two monitoring sites: urban background (UB) and a street canyon traffic road site (RS). Elements related to primary non exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (secondary sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non exhaust brake dust (Fe-Cu) - 7%), and three types industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%). The validity of the PMF solution of the PIXE data is supported by strong correlations with external single particle mass spectrometry measurements. Beside apportioning the aerosol sources, some important air quality related conclusions can be drawn about the PM2.5 fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both monitoring sites at similar concentrations regardless their different ventilation conditions; (2) by contrast, local industrial aerosol plumes associated with shipping oil combustion and smelters activities have a higher impact on the more ventilated UB site; (3) a unique source of Pb-Cl (associated with industrial combustion emissions) is found a to be the major (82%) source of Cl in the urban agglomerate; (4) PM2.5 traffic brake dust (Fe-Cu) is mainly primarily emitted and not resuspended, whereas PM2.5 urban crustal dust (Ca) is found mainly resuspended by both traffic vortex and sea breeze; (5) urban dust (Ca) is found the aerosol source most affected by land wetness, reduced by a factor of eight during rainy days and suggesting that wet roads may be a solution for reducing dust concentrations in road sites, far more effective than street sweeping activities.

  14. Novel technique for preparing Ca- and P-containing ceramic coating on Ti-6Al-4V by micro-arc oxidation.

    PubMed

    Yu, Sirong; Yang, Xizhen; Yang, Long; Liu, Yaohui; Yu, Yingjie

    2007-11-01

    A novel technique for preparing the Ca- and P-containing ceramic coating on Ti-6Al-4V alloy by micro-arc oxidation (MAO) was developed successfully in this paper. In the new technique, Ti alloy first was micro-arc oxidated in P-containing electrolyte, and then it was micro-arc oxidated in Ca-containing electrolyte. This technique can avoid the undesired chemical reaction between Ca-containing salt and P-containing salt in electrolyte. The surface morphologies, composition, and phases of MAO coatings were studied by means of SEM, EDS, and XRD. The results show that the P- and Ca-containing coating on Ti-6Al-4V alloy contains Ti, TiO(2) (rutile), alpha-Ca(PO(3))(2), CaTiO(3), and AlTi(3). There are many small and uniform pores in the coating. Most of these pores are coterminous. The microhardness of the coating is 720 HV and higher than that of Ti-6Al-4V alloy (220 HV). The coating is more wear-resistant than Ti-6Al-4V alloy under the lubricant of the artificial saliva and not easy to desquamate from the substrate of Ti-6Al-4V alloy.

  15. Adsorption process of fluoride from drinking water with magnetic core-shell Ce-Ti@Fe3O4 and Ce-Ti oxide nanoparticles.

    PubMed

    Abo Markeb, Ahmad; Alonso, Amanda; Sánchez, Antoni; Font, Xavier

    2017-11-15

    Synthesized magnetic core-shell Ce-Ti@Fe 3 O 4 nanoparticles were tested, as an adsorbent, for fluoride removal and the adsorption studies were optimized. Adsorption capacity was compared with the synthesized Ce-Ti oxide nanoparticles. The adsorption equilibrium for the Ce-Ti@Fe 3 O 4 adsorbent was found to occur in <15min and it was demonstrated to be stable and efficient in a wide pH range of 5-11 with high fluoride removal efficiency over 80% of all cases. Furthermore, isotherm data were fitted using Langmuir and Freundlich models, and the adsorption capacities resulted in 44.37 and 91.04mg/g, at pH7, for Ce-Ti oxides and Ce-Ti@Fe 3 O 4 nanoparticles, respectively. The physical sorption mechanism was estimated using the Dubinin-Radushkevich model. An anionic exchange process between the OH - group on the surface of the Ce-Ti@Fe 3 O 4 nanomaterial and the F - was involved in the adsorption. Moreover, thermodynamic parameters proved the spontaneous process for the adsorption of fluoride on Ce-Ti@Fe 3 O 4 nanoparticles. The reusability of the material through magnetic recovery was demonstrated for five cycles of adsorption-desorption. Although the nanoparticles suffer slight structure modifications after their reusability, they keep their adsorption capacity. Likewise, the efficiency of the Ce-Ti@Fe 3 O 4 was demonstrated when applied to real water to obtain a residual concentration of F - below the maximum contaminated level, 1.5mg/L (WHO, 2006). Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Discovery of composite diopside-magnetite lamellae in discrete olivine crytals from Colorado Plateau diatremes: indication of former hydrous ringwoodite

    NASA Astrophysics Data System (ADS)

    Sakamaki, K.; Sato, Y.; Marshall, E. W., IV; Ogasawara, Y.

    2016-12-01

    We investigate composite diopside (Di) + magnetite (Mt) lamellae in olivine crystals from Oligocene diatremes of serpentinized ultramafic microbreccia located at Buell Park (AZ) and Green Knobs (NM) in the Colorado Plateau, and propose their genesis as breakdown products of precursor hydrous ringwoodite (γ-olivine) lamellae coexisting with α-olivine host. Among a hundred olivines (2-5 mm across, Fo89-93 in mol%) from both localities, the Di + Mt composite lamellae are recognized in only 15 of relatively Fe-rich grains (Fo89-91.5). The olivine host contains minor amounts of Ca (< 0.01 wt% CaO), Mn, Ni, and Co. Lamellar Di (Di95) contains minor amounts of Al, Na, Cr, Mn, and Ni. Lamellar Mt contains Cr (5.0-43.0 wt% Cr2O3) with minor amounts of Si, Ti, Al, Mn, Ni, and Co. The area fractions of olivine host and the lamellae in a typical grain (sample no. BP02-3) were measured at 98.8 % of the host and 1.2 % of the lamellae that are composed of Di:Mt = 85:15 to 53:47, average 66:34. The estimated average CaO content in a lamella reaches 17 wt% and the reintegrated CaO in the host and the lamellae is 0.22 wt%.We propose that Fe3+ in lamellar Mt was produced by dehydration of hydrous precursor phase via the reaction, Fe2+ + OH- = Fe3+ + O2- + 1/2H2. Converting Fe3+ into Fe2+ in the precursor phase based on this reaction, the composition satisfies the stoichiometry of olivine (X2TO4). Thus, the pre-existing phase certainly is of hydrous and contains Ca and other components with olivine stoichiometry. The most likely phase is lamellar hydrous ringwoodite. The precursor phase, hydrous ringwoodite, might have occurred as lamellae with α-olivine host and have probably decomposed by the following reaction, (1+X+Y+Z) hydrous ringwoodite → α-olivine + X Di + Y Mt + Z H2 (where X:Y:Z=2:1:1). The composite Di-Mt lamellae after hydrous ringwoodite lamellae in α-olivine host certainly suggest the materials originated from a deep mantle setting at least 300 km.

  17. Soft x-ray absorption spectra of ilmenite family.

    PubMed

    Agui, A; Mizumaki, M; Saitoh, Y; Matsushita, T; Nakatani, T; Fukaya, A; Torikai, E

    2001-03-01

    We have carried out soft x-ray absorption spectroscopy to study the electronic structure of ilmenite family, such as MnTiO3, FeTiO3, and CoTiO3 at the soft x-ray beamline, BL23SU, at the SPring-8. The Ti and M L2,3 absorption spectra of MTiO3 (M=Mn, Fe, and Co) show spectra of Ti4+ and M2+ electron configurations, respectively. Except the Fe L2,3 spectrum, those spectra were understood within the O(h) symmetry around the transition metal ions. The Fe L3-edge spectrum clearly shows a doublet peak at the L3 edge, which is attributed to Fe2+ state, moreover the very high-resolution the L-edge spectra of transition metals show fine structures. The spectra of those ilmenites are compared.

  18. Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles.

    PubMed

    Arora, Priya; Fermah, Alisha; Rajput, Jaspreet Kaur; Singh, Harminder; Badhan, Jigyasa

    2017-08-01

    In this work, Cu-loaded Fe 3 O 4 @TiO 2 core shell nanoparticles were prepared in a single pot by coating of TiO 2 on Fe 3 O 4 nanoparticles followed by Cu loading. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), Brunauer-Emmett- Teller (BET), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and valence band X-ray photoelectron spectroscopy (VB XPS) techniques were used for characterization of as prepared nanoparticles. Synergism between copper and titania was evaluated by studying the solar light-driven photodegradation of Congo red dye solution in the presence of Fe 3 O 4 @TiO 2 nanoparticles on one side and Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles on the other side. The latter performed better than the former catalyst, indicating the enhanced activity of copper-loaded catalyst. Further photodegradation was studied by three means, i.e., under ultraviolet (UV), refluxing, and solar radiations. Cu-loaded Fe 3 O 4 @TiO 2 enhanced the degradation efficiency of Congo red dye. Thus, Cu act possibly by reducing the band gap of TiO 2 and widening the optical response of semiconductor, as a result of which solar light could be used to carry out photocatalysis. Graphical abstract Photodegradation of congo red over Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles.

  19. Impact of NLTE on research of early chemical enrichment of the dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Mashonkina, Lyudmila

    2015-08-01

    The individual stars observed in the dwarf galaxies orbiting the Milky Way are presumably red giants. Their chemical abundances are commonly determined under the classical LTE assumption, despite its validity is questionable for atmospheres of giant, in particular, metal-poor stars. Exactly metal-poor objects are important for understanding the early chemical enrichment processes of the host galaxy and the onset of star formation. We selected a sample of the -4 < [Fe/H] < -2 stars in the dwarf spheroidal (dSph) galaxies Sculptor, Sextans, and Fornax and the ultra-faint galaxies Bootes I and Segue I, with the high-resolution observational data available, and revised abundances of up to 12 chemical species based on the non-local thermodynamic equilibrium (NLTE) line formation. Stellar parameters taken from the literature were checked through the NLTE analysis of lines of iron observed in the two ionisation stages, Fe I and Fe II. For the Scl, Sex, and Fnx stars, with effective temperatures and surface gravities derived from the photometry and known distance (Jablonka et al. 2015; Tafelmeyer et al. 2010), the Fe I/Fe II ionisation equilibrium was found to be fulfilled, when applying a scaling factor of SH = 0.5 to the Drawinian rates of Fe+H collisions. Pronounced NLTE effects were calculated for lines of Na I and Al I resulting in up to 0.5 dex lower [Na/Fe] ratios and up to 0.65 dex higher [Al/Fe] ratios compared with the corresponding LTE values. For the six Scl stars, the scatter of data on Mg/Na is much smaller in NLTE, with the mean [Mg/Na] = 0.61 +- 0.11, than LTE, where [Mg/Na] = 0.42 +- 0.21. We computed a grid of the NLTE abundance corrections for an extensive list of the Ca I, Ti I-Ti II, and Fe I lines in the MARCS models of cool giants, 4000 K <= Teff <= 4750 K, 0.5 <= log g <= 2.5, -4 <= [M/H] <= 0.

  20. The effect of crystal structure of TiO2 nanotubes on the formation of calcium phosphate coatings during biomimetic deposition

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Kim, Sun; McLeod, John A.; Li, Jun; Guo, Xiaoxuan; Sham, Tsun-Kong; Liu, Lijia

    2017-02-01

    The crystallization process of bioactive calcium phosphate (CaP) species via biomimetic deposition onto anodic TiO2 nanotubes is investigated. The porous surface of nanostructured TiO2 provides an ideal substrate for CaP crystallization. The compositions of CaP coatings are studied using X-ray absorption near-edge structures (XANES) at the Ca K-edge. Using detection modes with different probing depths, both the surface of the CaP coating and the CaP-TiO2 interface are simultaneously analyzed. Calcium phosphate (CaP) species, such as hydroxyapatite (HAp), octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O, OCP), brushite (CaHPO4·2H2O, DCPD), and amorphous calcium phosphate (ACP), are found in the CaP coatings. TiO2 nanotubes of amorphous and anatase phases are comparatively studied to determine their effect on the efficiency of CaP formation and the phase transformation among CaP species in prolonged deposition time. It is found the composition of CaP coating has a strong dependency on the crystal structure of TiO2 substrate and the kinetics (deposition time).

  1. Synchrotron radiation determination of elemental concentrations in coal

    USGS Publications Warehouse

    Chen, J.R.; Martys, N.; Chao, E.C.T.; Minkin, J.A.; Thompson, C.L.; Hanson, A.L.; Kraner, H.W.; Jones, K.W.; Gordon, B.M.; Mills, R.E.

    1984-01-01

    The variations with depth of the elemental concentrations in vitrinites in a series of vitrites have been determined using radiation from the Cornell high energy synchrotron source. All of the vitrites were selected from a single drill core sample of coal from the Emery coalfield, Utah. The results are compared with similar determinations using the Heidelberg proton microprobe. The advantages and disadvantages of the two techniques are discussed. Results are reported for S, Ca, Ti, Fe, Zn, Br, and Sr. For example, it is found that Fe increases from top to bottom of the coal bed in contrast to S, which decreases from top to bottom of the bed. Other features of the two data sets are also described. ?? 1984.

  2. The major-element composition of Mercury's surface from MESSENGER X-ray spectrometry.

    PubMed

    Nittler, Larry R; Starr, Richard D; Weider, Shoshana Z; McCoy, Timothy J; Boynton, William V; Ebel, Denton S; Ernst, Carolyn M; Evans, Larry G; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Schlemm, Charles E; Solomon, Sean C; Sprague, Ann L

    2011-09-30

    X-ray fluorescence spectra obtained by the MESSENGER spacecraft orbiting Mercury indicate that the planet's surface differs in composition from those of other terrestrial planets. Relatively high Mg/Si and low Al/Si and Ca/Si ratios rule out a lunarlike feldspar-rich crust. The sulfur abundance is at least 10 times higher than that of the silicate portion of Earth or the Moon, and this observation, together with a low surface Fe abundance, supports the view that Mercury formed from highly reduced precursor materials, perhaps akin to enstatite chondrite meteorites or anhydrous cometary dust particles. Low Fe and Ti abundances do not support the proposal that opaque oxides of these elements contribute substantially to Mercury's low and variable surface reflectance.

  3. The soils of Mars

    NASA Technical Reports Server (NTRS)

    Banin, A.

    1988-01-01

    A mineralogical model for the Mars fine soil that includes as major components smectite clays absorbed and coated with amorphous iron oxyhydroxides and perhaps mixed with small amounts of better-crystalized iron oxides as separate phases is proposed. Also present as accessory minerals are sulfate minerals such as kieserite (MgSO4.H2O) and/or anhydrite (CaSO4), rutile (TiO2), and maghemite (Fe2O3) or magnetite (Fe3O4), the last two as magnetic components. Carbonates may be present at low concentrations only (less than 1 to 2 pct). However, a prime question to be addressed by a Mars Sample Return Mission shall be related to the mineralogical composition of the soil, and its spatial variability.

  4. Microstructure and optical properties of TiO2 nanocrystallites-CaTiO3:Pr3+ hybrid thick films

    NASA Astrophysics Data System (ADS)

    Xia, Chang-Kui; Gao, Xiang-Dong; Yu, Changjiang; Yu, Aimin; Li, Xiaomin; Gao, Dongsheng; Shi, Ying

    Long afterglow CaTiO3:Pr3+ ceramic powders were integrated with hydrothermal TiO2 nanocrystallites via “doctor-blade” and TiO2-CaTiO3:Pr3+ hybrid thick films on FTO substrate were fabricated. Effects of the Pr3+ doping level (0.06%, 0.3%) and the CaTiO3:Pr3+/TiO2 weight ratio (0.23, 0.92) on the crystallinity, morphologies, optical transmittance and photoluminescence (PL) properties were investigated. Results showed that the crystallinity of the hybrid films originated from both TiO2 nanocrystallites and CaTiO3:Pr3+ ceramic particles, affected little by the integrating process. The film surface became denser and coarser due to the incorporation of CaTiO3:Pr3+ micron/submicron particles, and the film thickness varied little (˜2.2μm). The optical transmittance of the hybrid film decreased sharply (<20% for 0.92 incorporation level) due to the scattering effects of the CaTiO3:Pr3+ micron/submicron particles to the incident light. All the hybrid films exhibited strong PL at ˜613nm when excited with 332-335nm, and the film with the Ca0.997TiO3:Pr0.0033+/TiO2 weight ratio of 0.23 showed the highest emission. In addition, the film exhibited a photoresponce to a broad ultraviolet excitation ranging from 288-369nm and a long emission decay time up to 30min at 613nm, possible for use in the ultraviolet detectors, solar cells and other photoelectrical devices.

  5. Preparation and characterization of epitaxial Fe{sub 2-x}Ti{sub x}O{sub 3} films with various Ti concentrations (0.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takada, Y.; Nakanishi, M.; Fujii, T.

    2008-08-01

    An ilmenite-hematite solid solution (Fe{sub 2-x}Ti{sub x}O{sub 3}) is one of the candidates for practical magnetic semiconductors with a high Curie temperature. We have prepared well-crystallized epitaxial Fe{sub 2-x}Ti{sub x}O{sub 3} films with a wide range of Ti concentrations--x=0.50, 0.60, 0.65, 0.76, 0.87, and 0.94--on {alpha}-Al{sub 2}O{sub 3}(001) substrates. The films are prepared by a reactive helicon plasma sputtering technique to evaporate Fe and TiO targets simultaneously under optimized oxygen pressure conditions. The structural characterizations of the films reveal that all films have a single phase of the ordered structure with R3 symmetry, where Ti-rich and Fe-rich layers are stackedmore » alternately along the c axis. All films have large ferrimagnetic moments at low temperature, and room temperature magnetization is clearly observed at x<0.7. The inverse temperature dependence of the resistivities of the films indicates their semiconducting behavior. The film resistivities decrease with decreasing Ti concentration.« less

  6. Structural study of Ti-doped CoFe{sub 2}O{sub 4} mixed spinel ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, P., E-mail: pankaj.7007@rediffmail.com; Sharma, P.; Dar, M. A.

    2016-05-06

    We present the results on atomic and lattice structure of the polycrystalline spinel ferrites system Co{sub 1-x} Ti{sub x}Fe{sub 2}O{sub 4} (x = 0.0, 0.25, 0.50) synthesized by following the conventional solid-state reaction route. The observed X-ray diffraction (XRD) data confirms that all the prepared samples are indexed in cubic crystal structure (space group Fd3m). Diffraction pattern showed TiO{sub 2} phase due to presence of Ti{sup +4} ions. Four Raman active phonon modes are observed for CoFe{sub 2}O{sub 4} sample existing around 295, 462, 585, 689, cm{sup −1} as Eg, T{sub 2g}(2), T{sub 2g}(3), and A{sub 1g}, respectively. With 25more » % Ti ion doping, the peak T{sub 2g}(3) disappears, while to that T{sub 2g}(1) emerges. This is an indication of presence of TiO{sub 2} phase in Co{sub 0.75}Ti{sub 0.25}Fe{sub 2}O{sub 4} and Co{sub 0.5}Ti{sub 0.5}Fe{sub 2}O{sub 4} ceramics.« less

  7. TiO2 Nanorods Preparation from Titanyl Sulphate Produced by Dissolution of Ilmenite

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Rinawati, L.; Munifa, R. M. I.; Ramelan, A. H.; Sulistyono, Eko

    2017-02-01

    One-dimensional titanium oxides (TiO2) nanorods have substantial applications in photocatalytic, nanoelectronic, and photoelectrochemical solar cells. These applications require large quantities of materials and a production technique suitable for future industry fabrication. We demonstrate here a new method of TiO2 nanorods production from ilmenite sands (FeTiO3). In this process, the roasted ilmenite sand was separated from the iron content and dissolved in the sulphuric acid solution. Separation process of TiO2 from ilmenite has been carried out by roasting, leaching and precipitation processes. The roasting process was conducted by the addition of Na2S at a temperature of 800°C that had been deomposed ilmenite into hematite (Fe2O3), anatase TiO2, rutile TiO2, Na2SO4, NaFeS2 and NaFeO2. Separation TiO2 from titanyl sulfate (TiOSO4) after leaching in H2SO4 solution was conducted by hydrolysis-condensation step and complexation step of Fe2+ content. KCNS solution was used as a complexing agent. The xerogel synthesized TiO2 then was prepared to 1-D nanostructure of TiO2 nanorods by hydrothermal process under alkaline condition. By the two-step method, we finally gain the 1D nanorods TiO2 extracted from ilmenite sand. The characterization using the Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) obtained the nanorod morphology at a diameter about 9.6 nm.

  8. P(VDF-TrFE)/BaTiO3 Nanoparticle Composite Films Mediate Piezoelectric Stimulation and Promote Differentiation of SH-SY5Y Neuroblastoma Cells.

    PubMed

    Genchi, Giada Graziana; Ceseracciu, Luca; Marino, Attilio; Labardi, Massimiliano; Marras, Sergio; Pignatelli, Francesca; Bruschini, Luca; Mattoli, Virgilio; Ciofani, Gianni

    2016-07-01

    Poly(vinylidene fluoride-trifluoroethylene, P(VDF-TrFE)) and P(VDF-TrFE)/barium titanate nanoparticle (BTNP) films are prepared and tested as substrates for neuronal stimulation through direct piezoelectric effect. Films are characterized in terms of surface, mechanical, and piezoelectric features before in vitro testing on SH-SY5Y cells. In particular, BTNPs significantly improve piezoelectric properties of the films (4.5-fold increased d31 ). Both kinds of films support good SH-SY5Y viability and differentiation. Ultrasound (US) stimulation is proven to elicit Ca(2+) transients and to enhance differentiation in cells grown on the piezoelectric substrates. For the first time in the literature, this study demonstrates the suitability of polymer/ceramic composite films and US for neuronal stimulation through direct piezoelectric effect. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Reduction of iron-bearing lunar minerals for the production of oxygen

    NASA Technical Reports Server (NTRS)

    Massieon, Charles; Cutler, Andrew; Shadman, Farhang

    1992-01-01

    The kinetics and mechanism of the reduction of simulants of the iron-bearing lunar minerals olivine ((Fe,Mg)2SiO4), pyroxene ((Fe,Mg,Ca)SiO3), and ilmenite (FeTiO3) are investigated, extending previous work with ilmenite. Fayalite is reduced by H2 at 1070 K to 1480 K. A layer of mixed silica glass and iron forms around an unreacted core. Reaction kinetics are influenced by permeation of hydrogen through this layer and a reaction step involving dissociated hydrogen. Reaction mechanisms are independent of Mg content. Augite, hypersthene, and hedenbergite are reduced in H2 at the same temperatures. The products are iron metal and lower iron silicates mixed throughout the mineral. Activation energy rises with calcium content. Ilmenite and fayalite are reduced with carbon deposited on partially reduced minerals via the CO disproportionation reaction. Reduction with carbon is rapid, showing the carbothermal reduction of lunar minerals is possible.

  10. Nanoscale Titanium Dioxide (nTiO2) Transport in Water-Saturated Natural Sediments: Influence of Soil Organic Matter and Fe/Al Oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Fisher-Power, L.; Cheng, T.

    2017-12-01

    Transport of engineered nanoparticles (ENP) in subsurface environments has important implications to water quality and soil contamination. Although extensive research has been conducted to understand the effects of water chemistry on ENP transport, less attention has been paid to influences from the transport medium/matrix. The objective of this research is to investigate the effects of natural organic matter (NOM) and Fe/Al oxyhydroxides in a natural sediment on ENP transport. A sediment was collected and separated into four portions, one of which was unmodified, and the others treated to remove specific components (organic matter, Fe/Al oxyhydroxides, or both organic matter and Fe/Al oxyhydroxides). Transport of nanoscale titanium dioxide (nTiO2) in columns packed with quartz sand and each of the four types of the sediment under water-saturated conditions was studied. Our results showed that nTiO2 transport was strongly influenced by pH and sediment composition. When influent pH = 5, nTiO2 transport in all the sediments was low, as positively-charged nTiO2 was attracted to negatively charged NOM, quartz, and other minerals. nTiO2 transport was slightly enhanced in columns packed with untreated sediment or Fe/Al oxyhydroxides removed sediment due to dissolved organic matter generated by the partial dissolution of NOM, which adsorbed onto nTiO2 surface and reversed its zeta potential to negative. When influent pH = 9, nTiO2 transport was generally high since negatively-charged nTiO2 was repelled by negatively charged transport medium. However, in columns packed with the organic matter removed sediment or the Fe/Al oxyhydroxides removed sediment, nTiO2 transport was low. This was attributable to pH buffering by the sediment, which decreased pore water pH in the column, resulting in zeta potential change and electrostatic attraction between Fe/Al oxyhydroxides and nTiO2. This research demonstrates that electrostatic forces between nTiO2 and mineral/organic components in natural sediments is a key factor that controls nTiO2 retention and transport, and that both NOM and Fe/Al oxyhydroxides may substantially influence nTiO2 transport.

  11. Synthesis of the new compound CaFe(CO 3) 2 and experimental constraints on the (Ca,Fe)CO 3 join

    NASA Astrophysics Data System (ADS)

    Davidson, Paula M.; Symmes, Gregory H.; Cohen, Barbara A.; Reeder, Richard J.; Lindsley, Donald H.

    1993-12-01

    Synthesis of the new (disordered) compound CaFe(CO 3) 2 has been achieved with the use of Fe-substituted CaCO 3(Cc ss) + Ca-substituted FeCO 3(Sid ss) as starting materials, and high CO 2 pressures. High pressure (20-30 kbar) is needed to stabilize FeCO 3 to sufficiently high temperatures for disordered CaFe(CO 3) 2 to form. Experiments provide reversed compositions of coexisting disordered phases in the CaFe join and locate the solvus temperature for CaFe(C) 3) 2 between 815 and 845°C at 30 kbars. Calculated phase relations predict that the stability of ordered CaFe(CO 3) 2 is limited to T < ˜450°C by the breakdown to Cc ss + Sid ss. A comparison of the unit-cell volume measured for disordered CaFe(CO 3) 2 vs. that estimated for ordered CaFe(CO 3) 2 suggests that increasing pressure stabilizes the disordered phase.

  12. Elemental Mercury Oxidation over Fe-Ti-Mn Spinel: Performance, Mechanism, and Reaction Kinetics.

    PubMed

    Xiong, Shangchao; Xiao, Xin; Huang, Nan; Dang, Hao; Liao, Yong; Zou, Sijie; Yang, Shijian

    2017-01-03

    The design of a high-performance catalyst for Hg 0 oxidation and predicting the extent of Hg 0 oxidation are both extremely limited due to the uncertainties of the reaction mechanism and the reaction kinetics. In this work, Fe-Ti-Mn spinel was developed as a high-performance catalyst for Hg 0 oxidation, and the reaction mechanism and the reaction kinetics of Hg 0 oxidation over Fe-Ti-Mn spinel were studied. The reaction orders of Hg 0 oxidation over Fe-Ti-Mn spinel with respect to gaseous Hg 0 concentration and gaseous HCl concentration were approximately 1 and 0, respectively. Therefore, Hg 0 oxidation over Fe-Ti-Mn spinel mainly followed the Eley-Rideal mechanism (i.e., the reaction of gaseous Hg 0 with adsorbed HCl), and the rate of Hg 0 oxidation mainly depended on Cl • concentration on the surface. As H 2 O, SO 2 , and NO not only inhibited Cl • formation on the surface but also interfered with the interface reaction between gaseous Hg 0 and Cl • on the surface, Hg 0 oxidation over Fe-Ti-Mn spinel was obviously inhibited in the presence of H 2 O, SO 2 , and NO. Furthermore, the extent of Hg 0 oxidation over Fe-Ti-Mn spinel can be predicted according to the kinetic parameter k E-R , and the predicted result was consistent with the experimental result.

  13. Stability and Elastic, Electronic, and Thermodynamic Properties of Fe2TiSi1- x Sn x Compounds

    NASA Astrophysics Data System (ADS)

    Jong, Ju-Yong; Yan, Jihong; Zhu, Jingchuan; Kim, Chol-Jin

    2017-10-01

    We have systematically studied the structural, phase, and mechanical stability and elastic, electronic, and thermodynamic properties of Fe2TiSi1- x Sn x ( x = 0, 0.25, 0.5, 0.75, 1) compounds using first-principles calculations. The structural and phase stability and elastic properties of Fe2TiSi1- x Sn x ( x = 0, 0.25, 0.5, 0.75, 1) indicated that all of the compounds are thermodynamically and mechanically stable. The shear modulus, bulk modulus, Young's modulus, Poisson's ratio, electronic band structure, density of states, Debye temperature, and Grüneisen parameter of all the substituted compounds were studied. The results show that Sn substitution in Fe2TiSi enhances its stability and mechanical and thermoelectric properties. The Fe2TiSi1- x Sn x compounds have narrow bandgap from 0.144 eV and 0.472 eV for Sn substitution from 0 to 1. The calculated band structure and density of states (DOS) of Fe2TiSi1- x Sn x show that the thermoelectric properties can be improved at substituent concentration x of 0.75. The lattice thermal conductivity was significantly decreased in the Sn-substituted compounds, and all the results indicate that Fe2TiSi0.25Sn0.75 could be a new candidate high-performance thermoelectric material.

  14. Preparation of (Fe, N)-doped TiO2 powders and their antibacterial activities under visible light irradiation.

    PubMed

    He, Rong-Liang; Wei, Yi; Cao, Wen-Bin

    2009-02-01

    Yellowish (Fe, N)-doped nanocrystalline TiO2 powders have been prepared using TiOSO4, CO(NH2)2, Fe(NO3)3.9H2O and CN3H5.HCl as precursors by hydrothermal method. The as-synthesized powders were anatase in phase and the grain size was about 10 nm according to the TEM photos. The ratio of Fe/Ti is 2.2 at% and N/O is 0.8 at% respectively. TiO2 powders were mixed with organic silicon and acrylic syrup to test their antibacterial performance by the colony counting method. The results show that the sterilization ratio of E. coli by the heat-treated (Fe, N)-doped nanocrystalline TiO2 powders is reached up to 94.5% while that of the powders without any heat treatment is 91.1% by 8 hours-400 lux-Visible-light irradiation with humidity of 55% RH.

  15. Fouling Resistant CA/PVA/TiO2 Imprinted Membranes for Selective Recognition and Separation Salicylic Acid from Waste Water

    PubMed Central

    Yu, Xiaopeng; Mi, Xueyang; He, Zhihui; Meng, Minjia; Li, Hongji; Yan, Yongsheng

    2017-01-01

    Highly selective cellulose acetate (CA)/poly (vinyl alcohol) (PVA)/titanium dioxide (TiO2) imprinted membranes were synthesized by phase inversion and dip coating technique. The CA blend imprinted membrane was synthesized by phase inversion technique with CA as membrane matrix, polyethyleneimine (PEI) as the functional polymer, and the salicylic acid (SA) as the template molecule. The CA/PVA/TiO2 imprinted membranes were synthesized by dip coating of CA blend imprinted membrane in PVA and different concentration (0.05, 0.1, 0.2, 0.4 wt %) of TiO2 nanoparticles aqueous solution. The SEM analysis showed that the surface morphology of membrane was strongly influenced by the concentration of TiO2 nanoparticles. Compared with CA/PVA-TiO2(0.05, 0.1, 0.2%)-MIM, the CA/PVA-TiO2(0.4%)-MIM possessed higher membrane flux, kinetic equilibrium adsorption amount, binding capacity and better selectivity for SA. It was found that the pseudo-second-order kinetic model was studied to describe the kinetic of CA/PVA-TiO2(0.2%)-MIM judging by multiple regression analysis. Adsorption isotherm analysis indicated that the maximum adsorption capacity for SA were 24.43 mg g−1. Moreover, the selectivity coefficients of CA/PVA-TiO2 (0.2%)-MIM for SA relative to p-hydroxybenzoic acid (p-HB) and methyl salicylate (MS) were 3.87 and 3.55, respectively. PMID:28184369

  16. Chemical abundances in the globular clusters NGC6229 and NGC6779

    NASA Astrophysics Data System (ADS)

    Khamidullina, D. A.; Sharina, M. E.; Shimansky, V. V.; Davoust, E.

    2014-10-01

    Long-slit medium-resolution spectra of the Galactic globular clusters (GCs) NGC6229 and NGC6779, obtained with the CARELEC spectrograph at the 1.93-m telescope of the Haute-Provence observatory, have been used to determine the age, helium abundance (Y), and metallicity [Fe/H] as well as the first estimate of the abundances of C, N, O, Mg, Ca, Ti, and Cr for these objects. We solved this task by comparing the observed spectra and the integrated synthetic spectra, calculated with the use of the stellar atmosphere models with the parameters preset for the stars from these clusters. The model mass estimates, T eff, and log g were derived by comparing the observed "color-magnitude" diagrams and the theoretical isochrones. The summing-up of the synthetic blanketed stellar spectra was conducted according to the Chabrier mass function. To test the accuracy of the results, we estimated the chemical abundances, [Fe/H], log t, and Y for the NGC5904 and NGC6254 clusters, which, according to the literature, are considered to be the closest analogues of the two GCs of our study. Using the medium-resolution spectra from the library of Schiavon et al., we obtained for these two clusters a satisfactory agreement with the reported estimates for all the parameters within the errors. We derived the following cluster parameters. NGC6229: [Fe/H] = -1.65 dex, t = 12.6 Gyr, Y = 0.26, [ α/Fe] = 0.28 dex; NGC6779: [Fe/H] = -1.9 dex, t = 12.6 Gyr, Y = 0.23, [ α/Fe] = 0.08 dex; NGC5904: [Fe/H] = -1.6 dex, t = 12.6 Gyr, Y = 0.30, [ α/Fe] = 0.35 dex; NGC6254: [Fe/H] = -1.52 dex, t = 11.2 Gyr, Y = 0.30, [ α/Fe] = 0.025 dex. The value [ α/Fe] denotes the average of the Ca and Mg abundances.

  17. Morphology control of rutile TiO2 with tunable bandgap by preformed β-FeOOH nanoparticles.

    PubMed

    Chen, Zheming; Wang, Feng; Balachandran, Subramanian; Li, Gen; Liu, Peng; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu

    2018-03-23

    Rutile TiO 2 are widely used for applications of coatings, cosmetics, photoelectric devices and so on. However, effective control of well-defined morphology, size and composition of rutile TiO 2 nanoparticles from agglomeration has always been a challenge. A new synthesis strategy was proposed to prepare rutile TiO 2 with controllable morphology varied from flower-like structures to single-separated nanorods. The β-FeOOH nanoparticles were generated by the hydrolysis of FeCl 3 solution and could prevent the aggregation of TiO 2 nanocrystals at early stages of the reaction; thus, could control the morphology of rutile nanoparticles. The morphology of rutile TiO 2 nanoparticles could be controllably regulated from flower-like structures to individually separated nanorods. Meanwhile, the preformed β-FeOOH also played a role of dopant. Fe ions were substitutionally doped into the bulk lattice of TiO 2 nanocrystals and reduced the bandgap, which extended the solar radiation absorption range of rutile TiO 2 . The prepared TiO 2 may be suitable for novel UV-blue light shielding agents and many other applications in photoelectric devices, photocatalysis, and so on due to its small size, unprecedented discrete rod-like structure and unique UV-vis light permeability.

  18. Morphology control of rutile TiO2 with tunable bandgap by preformed β-FeOOH nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Zheming; Wang, Feng; Balachandran, Subramanian; Li, Gen; Liu, Peng; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu

    2018-03-01

    Rutile TiO2 are widely used for applications of coatings, cosmetics, photoelectric devices and so on. However, effective control of well-defined morphology, size and composition of rutile TiO2 nanoparticles from agglomeration has always been a challenge. A new synthesis strategy was proposed to prepare rutile TiO2 with controllable morphology varied from flower-like structures to single-separated nanorods. The β-FeOOH nanoparticles were generated by the hydrolysis of FeCl3 solution and could prevent the aggregation of TiO2 nanocrystals at early stages of the reaction; thus, could control the morphology of rutile nanoparticles. The morphology of rutile TiO2 nanoparticles could be controllably regulated from flower-like structures to individually separated nanorods. Meanwhile, the preformed β-FeOOH also played a role of dopant. Fe ions were substitutionally doped into the bulk lattice of TiO2 nanocrystals and reduced the bandgap, which extended the solar radiation absorption range of rutile TiO2. The prepared TiO2 may be suitable for novel UV-blue light shielding agents and many other applications in photoelectric devices, photocatalysis, and so on due to its small size, unprecedented discrete rod-like structure and unique UV-vis light permeability.

  19. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shulei; Zheng, Shili; Wang, Zheming

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li 2TiO 3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x ≤ 0.15, Fe-doping led to grain shrinkage as compared to Limore » 2TiO 3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g -1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH solutions (1.8 g L -1 Li, pH 12) reached 53.3 mg g -1 within 24 h, which was higher than that of pristine Li 2TiO 3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less

  20. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shulei; Zheng, Shili; Wang, Zheming

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li2TiO3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x0.15, Fe-doping led to grain shrinkage as compared to Li2TiO3 and at the samemore » time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g-1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH 2 solutions (1.8 g L-1 Li, pH 12) reached 53.3 mg g-1 within 24 h, which was higher than that of pristine Li2TiO3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less

  1. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    DOE PAGES

    Wang, Shulei; Zheng, Shili; Wang, Zheming; ...

    2018-09-09

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li 2TiO 3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x ≤ 0.15, Fe-doping led to grain shrinkage as compared to Limore » 2TiO 3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g -1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH solutions (1.8 g L -1 Li, pH 12) reached 53.3 mg g -1 within 24 h, which was higher than that of pristine Li 2TiO 3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less

  2. Enhancement of the red emission in CaTiO 3:Pr 3+ by addition of rare earth oxides

    NASA Astrophysics Data System (ADS)

    Zhang, Xianmin; Zhang, Jiahua; Zhang, Xia; Chen, Li; Luo, Yongshi; Wang, Xiao-jun

    2007-02-01

    Enhancement of the 1D 2- 3H 4 red emission of CaTiO 3:Pr 3+ with addition of rare earth oxides Ln 2O 3 (Ln = Lu, La, Gd) is reported. Ca 2+ and Ti 4+ in CaTiO 3 can be substituted by Ln 3+ ions as donors and acceptors, respectively. Ca 2+ and Ti 4+ vacancies, as quenching centers in the host, are effectively suppressed by the self-compensation, leading to the increase of lifetimes and then the emission efficiency of 1D 2. The red fluorescence intensity for CaTiO 3:Pr 3+ phosphor co-doped with 5 mol% Lu 2O 3 is nearly 3 times greater than that of the Lu-free samples.

  3. Constructing hierarchical interfaces: TiO 2-supported PtFe-FeO x nanowires for room temperature CO oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Huiyuan; Wu, Zili; Dong, Su

    2015-08-05

    This is a report of a facile approach to constructing catalytic active hierarchical interfaces in one-dimensional (1D) nanostructure, exemplified by the synthesis of TiO 2-supported PtFe–FeO x nanowires (NWs). The hierarchical interface, constituting atomic level interactions between PtFe and FeO x within each NW and the interactions between NWs and support (TiO 2), enables CO oxidation with 100% conversion at room temperature. We identify the role of the two interfaces by probing the CO oxidation reaction with isotopic labeling experiments. Both the oxygen atoms (Os) in FeO x and TiO 2 participate in the initial CO oxidation, facilitating the reactionmore » through a redox pathway. Moreover, the intact 1D structure leads to the high stability of the catalyst. After 30 h in the reaction stream, the PtFe–FeO x/TiO2 catalyst exhibits no activity decay. These results provide a general approach and new insights into the construction of hierarchical interfaces for advanced catalysis.« less

  4. Fe doped TiO2 nanofibers on the surface of graphene sheets for photovoltaics applications

    NASA Astrophysics Data System (ADS)

    Farhangi, Nasrin; Medina-Gonzalez, Yaocihuatl; Charpentier, Paul A.

    2011-08-01

    Highly ordered, visible light driven TiO2 nanowire arrays doped with Fe photocatalysts were grown on the surface of functionalized graphene sheets (FGSs) using a sol-gel method with titanium isopropoxide (TIP) monomer, acetic acid (HAc) as the polycondensation agent and iron chloride in the green solvent, supercritical carbon dioxide (scCO2). The morphology of the synthesized materials was studied by SEM and TEM, which showed uniform formation of Fe doped TiO2 nanofibers on the surface of graphene sheets, which acted as a template for nanowire growth through surface -COOH functionalities. Increasing Fe content in the nanowires did not change the morphology significantly. Optical properties of the synthesized composites were examined by UV spectroscopy which showed a significant reduction in band gap with increasing Fe content, i.e. 2.25 eV at 0.6% Fe. The enhancement of the optical properties of synthesized materials was confirmed by photocurrent measurement. The optimum sample containing 0.6% Fe doped TiO2 on the graphene sheets increased the power conversation efficiency by 6-fold in comparison to TiO2 alone.

  5. Experimental determination of activities in FeTiO3-MnTiO3 ilmenite solid solution by redox reversals

    NASA Astrophysics Data System (ADS)

    Feenstra, A.; Peters, Tjerk

    1996-12-01

    Solid solutions of (Fe,Mn)TiO3 were synthesized, mostly at 0.10 XMn intervals, at 1 bar, 900°C and log f O 2 = 17.50. Analysis by EMP indicate an ideal stoichiometry for the Fe-Mn ilmenites with (Fe+Mn) = Ti = 1.000 when normalized to 3 oxygens. Their unit cell volume increases linearly with XMn. The composition of Fe-Mn ilmenite coexisting with metallic Fe and rutile was reversed at 1 bar, 700 900°C and fixed f O 2 in a gas-mixing furnace. Oxygen fugacity was controlled by mixing CO2 and H2 gas and was continuously monitored with an yttrium-stabilized zirconia electrolyte. Solution properties of Fe-Mn ilmenite were derived from the experimental data by mathematical programming (Engi and Feenstra, in preparation) including notably the results of Fe-Mn exchange experiments between ilmenite and garnet (Feenstra and Engi, submitted) and anchoring the standard state properties to the updated thermodynamic dataset of Berman and Aranovich (1996). The thermodynamic analysis resulted in positive deviations from ideality for (Fe,Mn)TiO3 ilmenite, which is well described by an asymmetric Margules model with WH FeFeMn = 9.703 and WH FeMnMn = 23.234 kJ/mol, WS FeFeMn = 19.65 and WS FeMnMn = 22.06 J/(K·mol). The excess free energy for Fe-Mn ilmenite derived from the redox reversals is larger than in the symmetric ilmenite model (WG FeMn = +2.2 kJ/mol) determined by O'Neill et al. from emf measurements on the assemblage iron-rutile-(Fe,Mn)ilmenite.

  6. Study on nanomagnets supported TiO2 photocatalysts prepared by a sol-gel process in reverse microemulsion combining with solvent-thermal technique.

    PubMed

    Li, Hansheng; Zhang, Yaping; Wang, Shiying; Wu, Qin; Liu, Changhao

    2009-09-30

    A sol-gel process in reverse microemulsion combined with solvent-thermal technique was developed for synthesizing a series of nanomagnets supported TiO(2) (TiO(2)/NMs) photocatalysts in this study. The structure of TiO(2)/NMs photocatalysts was characterized by Fourier transform infrared (FTIR), TG-DSC, X-ray diffraction (XRD), Raman spectrometry, TEM, BET, and VSM. The influence of CoFe(2)O(4) dosage on the photocatalytic activity and magnetism of TiO(2)/NMs photocatalysts was investigated. The results showed that nanosized anatase TiO(2) were uniformly coated on spinel CoFe(2)O(4) in the prepared TiO(2)/NMs photocatalysts. They possessed typical ferromagnetic hysteresis and performed better photocatalytic activity in degradation of methylene blue than TiO(2) prepared by the same method. The existence of CoFe(2)O(4) nanomagnets played an important role on the crystalline grain size of TiO(2) and the specific surface area of the prepared TiO(2)/NMs photocatalysts, thus had an important influence on its photocatalytic performance and magnetism. The photocatalytic performance of TiO(2)/NMs photocatalysts is related to their specific surface area, crystalline grain sizes of TiO(2) and particle size, as well as the doping effect of Fe(3+). The highest photocatalytic activity in degradation of methylene blue for TiO(2)/NMs photocatalysts at the CoFe(2)O(4) content of 20wt.% was achieved, with k(p) 28.32% higher than that of pure TiO(2) photocatalyst. Moreover, the experiments on recycled use of TiO(2)/NMs photocatalyst demonstrated a good repeatability of the photocatalytic activity.

  7. Recent Compositional Trends within the Murray Formation, Gale Crater, Mars, as seen by APXS: Implications for Sedimentary, Diagenetic and Alteration History.

    NASA Astrophysics Data System (ADS)

    Thompson, L. M.; Yen, A.; Spray, J. G.; Johnson, J. R.; Fraeman, A. A.; Berger, J. A.; Gellert, R.; Boyd, N.; Desouza, E.; O'Connell-Cooper, C.; VanBommel, S.

    2017-12-01

    The >230 m thick Murray Formation is the lower-most unit of the Mount Sharp Group, and interpreted as primarily lacustrine. Representative mudstone, siltstone and fine sandstone targets, encountered above -4330 m elevation, trend to lower Si, Al, Ti, Cr and Ca, and higher Fe, Mn, Zn, P and Mg than the Murray below. Less common, distinctive, coarser grained sandstone lenses tend to exhibit slightly different compositions to the more typical Murray but, overall, show similar elemental trends with elevation, albeit exaggerated. This suggests that the variations observed with elevation in Al, Ti, Cr, K, Fe, Mn, Zn and P within both the coarser sandstones and finer grained Murray are the result of diagenetic and/or alteration processes rather than provenance or physical sedimentary processes such as sorting. This is supported by the chemistry of obvious diagenetic, dark grey nodules, and other potential diagenetic/alteration features within this section, which show variations in the same element concentrations (i.e., P, Mn, Fe, Zn, Mg, Ca and S), distinct from diagenetic features lower down in the stratigraphy, indicating mobility of these elements within this section and changing fluid chemistry. Trends in FeO/MnO generally mimic the presence of ferric absorption features observed in visible/near infrared passive spectra from the ChemCam instrument and from CRISM orbital data, which may be consistent with changes in redox conditions as we climb up section towards Vera Rubin Ridge (Hematite Ridge). Layer-parallel CaSO4 is also common, and not observed below -4330 m. This may represent syndepositional evaporite layers, or late bedding/laminae parallel veins emplaced after lithification, in conjunction with cross-cutting veins. The overall differences in composition between the sandstone targets and finer grained Murray are attributed to distinct provenances and/or sorting during transport. We will discuss the implications of the trends and composition of the Murray above -4330 m elevation and how this pertains to the history and evolution of the Murray Formation as a whole, climatic conditions during the formation of the Murray and the nature of Gale crater lake. Also, what do the trends imply about how circulating fluids have evolved within the Murray sediments and pH, redox, salinity conditions of these fluids?

  8. N/Fe-TiO2 doped nanoparticles loaded on bentonite for increased photocatalytic activity for the degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Espenilla, Mel Bryan L.; Magyaya, Ryan Carl S.; Conato, Marlon T.

    2018-05-01

    Photocatalyst materials based on Philippine bentonite-titanium oxide composites and their ability to degrade organic pollutants is reported. Nanosized-titanium dioxide (TiO2) was synthesized by sol-gel method from titanium tetraisopropoxide. This was then incorporated in the Philippine bentonite via hydrothermal methods. In order to shift the absorbance of the TiO2 to the visible region doping was done using iron and nitrogen ions. The hydrodynamic radius of the synthesized TiO2 was analyzed using a zeta-sizer and was found to be around 70 nm. The photocatalytic efficiency of the TiO2/bentonite, N-TiO2/bentonite, Fe-TiO2/bentonite and N-Fe-TiO2/bentonite was evaluated using a photocatalytic reactor. It was found out that the N-Fe-TiO2/bentonite to be the most efficient with 22% degradation of the model pollutant after 80 minutes. FT-IR analysis was done to determine the bonding of the different components. Scanning electron microscopy and atomic force microscopy analysis was also performed to characterize the products.

  9. First-principles study on the stability and magnetoelectric properties of multiferroic materials XTiO3 (X = Mn, Fe, Co, Ni)

    NASA Astrophysics Data System (ADS)

    Chen, Xing-Yuan; Lai, Guo-Xia; Gu, Di; Zhu, Wei-Ling; Lai, Tian-Shu; Zhao, Yu-Jun

    2018-04-01

    The XTiO3 (X = Mn, Fe, Co and Ni) materials with R3c structure could be grown under critical conditions based on first-principles calculations and thermodynamic stability analysis. FeTiO3 and MnTiO3 could be synthesized relatively easily under metal-rich and O-poor conditions, while NiTiO3 could be stable under Ni-rich, O-rich and Ti-poor conditions. The predicted R3c CoTiO3 under thermodynamic equilibrium conditions is suggested to be synthesized under Co-rich, O-rich and Ti-poor conditions, but the calculated phonon dispersion indicates R3c CoTiO3 becomes unstable under the dynamical conditions. The ferroelectric behavior in the XTiO3 (X = Mn, Fe, Co and Ni) system could be dominated by the Ti ion with d0 state and the strong hybridization between Ti and O, while the magnetic property is mainly caused by the contribution of 3d transition metal.

  10. Retention Mechanisms of Citric Acid in Ternary Kaolinite-Fe(III)-Citrate Acid Systems Using Fe K-edge EXAFS and L3,2-edge XANES Spectroscopy

    PubMed Central

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-01-01

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils. PMID:27212680

  11. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L 3,2-edge XANES spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jianjun; Wang, Jian; Pan, Weinan

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  12. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L 3,2-edge XANES spectroscopy

    DOE PAGES

    Yang, Jianjun; Wang, Jian; Pan, Weinan; ...

    2016-05-23

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  13. Chemical Compositions of Kinematically Selected Outer Halo Stars

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Ishigaki, Miho; Aoki, Wako; Zhao, Gang; Chiba, Masashi

    2009-12-01

    Chemical abundances of 26 metal-poor dwarfs and giants are determined from high-resolution and high signal-to-noise ratio spectra obtained with the Subaru/High Dispersion Spectrograph. The sample is selected so that most of the objects have outer-halo kinematics. Self-consistent atmospheric parameters were determined by an iterative procedure based on spectroscopic analysis. Abundances of 13 elements, including α-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc), iron-peak elements (Cr, Mn, Fe, Ni, Zn), and neutron-capture elements (Y, Ba), are determined by two independent data reduction and local thermodynamic equillibrium analysis procedures, confirming the consistency of the stellar parameters and abundances results. We find a decreasing trend of [α/Fe] with increasing [Fe/H] for the range of -3.5< [Fe/H] <-1, as found by Stephens & Boesgaard. [Zn/Fe] values of most objects in our sample are slightly lower than the bulk of halo stars previously studied. These results are discussed as possible chemical properties of the outer halo in the Galaxy. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  14. Electrospun Fe3O4/TiO2 hybrid nanofibers and their in vitro biocompatibility: prospective matrix for satellite cell adhesion and cultivation.

    PubMed

    Amna, Touseef; Hassan, M Shamshi; Van Ba, Hoa; Khil, Myung-Seob; Lee, Hak-Kyo; Hwang, I H

    2013-03-01

    We report the fabrication of novel Fe3O4/TiO2 hybrid nanofibers with the improved cellular response for potential tissue engineering applications. In this study, Fe3O4/TiO2 hybrid nanofibers were prepared by facile sol-gel electrospinning using titanium isopropoxide and iron(III) nitrate nonahydrate as precursors. The obtained electrospun nanofibers were vacuum dried at 80 °C and then calcined at 500 °C. The physicochemical characterization of the synthesized composite nanofibers was carried out by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray diffraction pattern. To examine the in vitro cytotoxicity, satellite cells were treated with as-prepared Fe3O4/TiO2 and the viability of cells was analyzed by Cell Counting Kit-8 assay at regular time intervals. The morphological features of unexposed satellite cells and exposed to Fe3O4/TiO2 composite were examined with a phase contrast microscope whereas the quantification of cell viability was carried out via confocal laser scanning microscopy. The morphology of the cells attached to hybrid matrix was observed by Bio-SEM. Cytotoxicity experiments indicated that the satellite cells could attach to the Fe3O4/TiO2 composite nanofibers after being cultured. We observed that Fe3O4-TiO2 composite nanofibers could support cell adhesion and growth. Results from this study therefore suggest that Fe3O4/TiO2 composite scaffold with small diameters (approximately 200 nm) can mimic the natural extracellular matrix well and provide possibilities for diverse applications in the field of tissue engineering and regenerative medicine. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Synthesis of double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Tan, Li; Wang, Ge; Yang, Mu

    2015-03-01

    Double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe3O4/TiO2 support by a in situ reduction of HAuCl4 with NaBH4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe3O4/TiO2 microspheres. The sea urchin-like structure composed of TiO2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe3O4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe3O4/TiO2/Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min-1 and turnover frequency is 5457 h-1.

  16. Determination of Heavy Metals in Almonds and Mistletoe as a Parasite Growing on the Almond Tree Using ICP-OES or ICP-MS.

    PubMed

    Kamar, Veysi; Dağalp, Rukiye; Taştekin, Mustafa

    2017-12-28

    In this study, the elements of Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Ni, Sr, Pb, Ti, and Zn were determined in the leaves, fruits, and branches of mistletoe, (Viscum albüm L.), used as a medicinal plant, and in the leaves, branches and barks of almond tree which mistletoe grows on. The aim of the study is to investigate whether the mistletoe are more absorbent than the almond tree in terms of the heavy metal contents and the determination of the amount of the elements penetrated into the mistletoe from the almond tree. ICP-MS (inductively coupled plasma-mass spectrometry) was used for the analysis of As, Cd, Mo, and Pb, whereas ICP-OES (inductively coupled plasma optical emission spectrometry) was used for the other elements. The results obtained were statistically evaluated at 95% confidence level. Within the results obtained in this study, it was determined whether there is a significant difference between metal elements in almond tree and mistletoe, or not. As a result, it was observed that there were higher contents of B, Ba, K, Mg, and Zn in the mistletoe than in the almond tree. K was found much higher than other elements in the mistletoe. On the other hand, Al, As, Ca, Cd, Cr, Cu, Fe, Mo, Ni, Sr, Pb, and Ti contents were determined to be more in almond tree than mistletoe.

  17. High-capacity FeTiO3/C negative electrode for sodium-ion batteries with ultralong cycle life

    NASA Astrophysics Data System (ADS)

    Ding, Changsheng; Nohira, Toshiyuki; Hagiwara, Rika

    2018-06-01

    The development of electrode materials which improve both the energy density and cycle life is one of the most challenging issues facing the practical application of sodium-ion batteries today. In this work, FeTiO3/C nanoparticles are synthesized as negative electrode materials for sodium-ion batteries. The electrochemical performance and charge-discharge mechanism of the FeTiO3/C negative electrode are investigated in an ionic liquid electrolyte at 90 °C. The FeTiO3/C negative electrode delivers a high reversible capacity of 403 mAh g-1 at a current rate of 10 mA g-1, and exhibits high rate capability and excellent cycling stability for up to 2000 cycles. The results indicate that FeTiO3/C is a promising negative electrode material for sodium-ion batteries.

  18. Synthesis and characterization of UV-treated Fe-doped bismuth lanthanum titanate-doped TiO2 layers in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Song, Myoung Geun; Bark, Chung Wung

    2016-06-01

    Dye-sensitized solar cells (DSSCs) based on titanium dioxide (TiO2) have been extensively studied because they constitute promising low-cost alternatives to their conventional semiconductor-based counterparts. However, much of the effort aimed at achieving high conversion efficiencies has focused on dye and liquid electrolytes. In this work, we report the photovoltaic characteristics of DSSCs fabricated by mixing TiO2 with Fe-doped bismuth lanthanum titanate (Fe-BLT). These nanosized Fe-BLT powders were prepared by using a high-energy ball-milling process. In addition, we used a UV radiation-ozone (UV-O3) treatment to change the surface wettability of TiO2 from hydrophobic to hydrophilic and thereby prevented the easy separation of the Fe-BLT-mixed TiO2 from the fluorine-doped tin-oxide (FTO) coating glass.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Shun; School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083; Lin Yuanhua

    Anatase titania-coated bismuth ferrite nanocomposites (BiFeO{sub 3}/TiO{sub 2}) have been fabricated via a hydrothermal approach combined with a hydrolysis precipitation processing. Analysis of the microstructure and phase composition reveals that a core-shell BiFeO{sub 3}/TiO{sub 2} structure can be formed, which results in a significant redshift in the UV-vis absorption spectra as compared to a simple mechanical mixture of BiFeO{sub 3}-TiO{sub 2} nanopowders. The core-shell structured BiFeO{sub 3}/TiO{sub 2} nanocomposites exhibit higher photocatalytic activity for photodegradation of Congo red under visible-light ({lambda}>400 nm) irradiation, which should be attributed to the enhancement of the quantum efficiency by separating the electrons and holesmore » effectively. The obtained BiFeO{sub 3}/TiO{sub 2} nanocomposites can be used as potential visible-light driven photocatalysts.« less

  20. Synthesis and electronic properties of Fe 2TiO 5 epitaxial thin films

    DOE PAGES

    Osada, Motoki; Nishio, Kazunori; Hwang, Harold Y.; ...

    2018-05-02

    Here, we investigate the growth phase diagram of pseudobrookite Fe 2TiO 5 epitaxial thin films on LaAlO 3 (001) substrates using pulsed laser deposition. Control of the oxygen partial pressure and temperature during deposition enabled selective stabilization of (100)- and (230)-oriented films. In this regime, we find an optical gap of 2.1 eV and room temperature resistivity in the range of 20–80 Ω cm, which are significantly lower than α-Fe 2O 3, making Fe 2TiO 5 potentially an ideal inexpensive visible-light harvesting semiconductor. These results provide a basis to incorporate Fe 2TiO 5 in oxide heterostructures for photocatalytic and photoelectrochemicalmore » applications.« less

  1. Synthesis and electronic properties of Fe2TiO5 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Osada, Motoki; Nishio, Kazunori; Hwang, Harold Y.; Hikita, Yasuyuki

    2018-05-01

    We investigate the growth phase diagram of pseudobrookite Fe2TiO5 epitaxial thin films on LaAlO3 (001) substrates using pulsed laser deposition. Control of the oxygen partial pressure and temperature during deposition enabled selective stabilization of (100)- and (230)-oriented films. In this regime, we find an optical gap of 2.1 eV and room temperature resistivity in the range of 20-80 Ω cm, which are significantly lower than α-Fe2O3, making Fe2TiO5 potentially an ideal inexpensive visible-light harvesting semiconductor. These results provide a basis to incorporate Fe2TiO5 in oxide heterostructures for photocatalytic and photoelectrochemical applications.

  2. A refractory inclusion returned by Stardust from comet 81P/Wild 2

    NASA Astrophysics Data System (ADS)

    Simon, S. B.; Joswiak, D. J.; Ishii, H. A.; Bradley, J. P.; Chi, M.; Grossman, L.; AlÉOn, J.; Brownlee, D. E.; Fallon, S.; Hutcheon, I. D.; Matrajt, G.; McKeegan, K. D.

    2008-11-01

    Among the samples returned from comet 81P/Wild 2 by the Stardust spacecraft is a suite of particles from one impact track (Track 25) that are Ca-, Al-rich and FeO-free. We studied three particles from this track that range in size from 5.3 × 3.2 μ to 15 × 10 μ. Scanning and transmission electron microscopy show that they consist of very fine-grained (typically from ˜0.5 to ˜2 μ) Al-rich, Ti-bearing and Ti-free clinopyroxene, Mg-Al spinel and anorthite, with trace amounts of fine perovskite, FeNi metal and osbornite (TiN) grains. In addition to these phases, the terminal particle, named "Inti", also contains melilite. All of these phases, with the exception of osbornite, are common in refractory inclusions and are predicted to condense at high temperature from a gas of solar composition. Osbornite, though very rare, has also been found in meteoritic refractory inclusions, and could have formed in a region of the nebula where carbon became enriched relative to oxygen compared to solar composition. Compositions of Ti-pyroxene in Inti are similar, but not identical, to those of fassaite from Allende inclusions. Electron energy loss spectroscopy shows that Ti-rich pyroxene in Inti has Ti3+/Ti4+within the range of typical meteoritic fassaite, consistent with formation under reducing conditions comparable to those of a system of solar composition. Inti is 16O-rich, with δ18O?δ17O?-40%0, like unaltered phases in refractory inclusions and refractory IDPs. With grain sizes, mineralogy, mineral chemistry, and an oxygen isotopic composition like those of refractory inclusions, we conclude that Inti is a refractory inclusion that formed in the inner solar nebula. Identification of a particle that formed in the inner solar system among the comet samples demonstrates that there was transport of materials from the inner to the outer nebula, probably either in a bipolar outflow or by turbulence.

  3. Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing

    NASA Astrophysics Data System (ADS)

    Tan, Jihua; Duan, Jingchun; Zhen, Naijia; He, Kebin; Hao, Jiming

    2016-01-01

    The abundance, behavior, and source of chemical species in size-fractionated atmospheric particle were studied with a 13-stage low pressure impactor (ELPI) during high polluted winter episode in Beijing. Thirty three elements (Al, Ca, Fe, K, Mg, Na, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, and Pb) and eight water soluble ions (Cl-, NO3-, SO42 -, NH4+, Na+, K+, Ca2 +, and Mg2 +) were determined by ICP/MS and IC, respectively. The size distribution of TC (OC + EC) was reconstructed. Averagely, 51.5 ± 5.3% and 74.1 ± 3.7% of the total aerosol mass was distributed in the sub-micron (PM1) and fine particle (PM2.5), respectively. A significant shift to larger fractions during heavy pollution episode was observed for aerosol mass, NH4+, SO42 -, NO3-, K, Fe, Cu, Zn, Cd, and Pb. The mass size distributions of NH4+, SO42 -, NO3-, and K were dominated by accumulation mode. Size distributions of elements were classified into four main types: (I) elements were enriched within the accumulation mode (< 1 μm, Ge, Se, Ag, Sn, Sb, Cs, Hg, Ti, and Pb); (II) those mass (K, Cr, Mn, Cu, Zn, As, Mo, and Cd) was resided mainly within the accumulation mode, ranged from 1 to 2 μm; (III) Na, V, Co, Ni, and Ga were distributed among fine, intermediate, and coarse modes; and (IV) those which were mainly found within particles larger than 2.7 μm (Al, Mg, Si, Ca, Sc, Tl, Fe, Sr, Zr, and Ba). [H+]cor showed an accumulation mode at 600-700 nm and the role of Ca2 + should be fully considered in the estimation of acidity. The acidity in accumulation mode particles suggested that generally gaseous NH3 was not enough to neutralize sulfate completely. PMF method was applied for source apportionment of elements combined with water soluble ions. Dust, vehicle, aged coal combustion, and sea salt were identified, and the size resolved source apportionments were discussed. Aged coal combustion was the important source of fine particles and dust contributed most to coarse particle.

  4. Magnesium dititanate (MgTi2O5) with pseudobrookite structure: a review.

    PubMed

    Suzuki, Yoshikazu; Shinoda, Yutaka

    2011-06-01

    Magnesium dititanate (MgTi 2 O 5 , MT 2 ) has been synthesized since the early 1930s. It has the pseudobrookite structure (general formula Me 3 O 5 ), corresponding to the Mg-enriched artificial endmember of the Fe 2 TiO 5 (pseudobrookite)-FeTi 2 O 5 (ferropseudobrookite)-Mg 0.5 Fe 0.5 Ti 2 O 5 (armalcolite) solid solution. Since MgTi 2 O 5 has relativity high thermal stability among pseudobrookite-type phases, it is expected to be a well-balanced low-thermal-expansion material. Here we review both the historical and recent studies on MgTi 2 O 5 , particularly on its crystal structure, cation order-disorder, physical properties and synthesis methods.

  5. Enhanced photoluminescence and thermal stability of divalent ions (Zn2+, Mg2+) assisted CaTiO3:Eu3+ perovskite phosphors for lighting applications

    NASA Astrophysics Data System (ADS)

    Singh, Dhananjay Kumar; Manam, J.

    2018-03-01

    Current study proposes the improved red emission of Zn2+ and Mg2+ ions incorporated CaTiO3:Eu3+ phosphors synthesized via the well-known solid-state reaction method. Under the 397 nm UV excitation, the Zn2+- and Mg2+-incorporated CaTiO3:0.15Eu3+ phosphor having orthorhombic structure with space group Pbnm exhibited an intense red emission at 619 nm. This can be credited to the hypersensitive 5D0 → 7F2 transition of Eu3+ ions, which is also indicative of the fact that the Eu3+ ions populated the non-inversion symmetry sites in the CaTiO3 lattices. The optimized composition CaTiO3:0.15Eu3+, 0.20Zn2+ and CaTiO3:0.15Eu3+, 0.10Mg2+ phosphors, pronounces in a magnificent enhancement of PL intensity by 5.5 and 2.5 times, respectively, as compared to CaTiO3:0.15 Eu3+ phosphor. From the temperature-dependent emission spectra, ΔEa were enunciated to be 0.101 and 0.086 eV for CaTiO3:0.15Eu3+, 0.20Zn2+ and CaTiO3:0.15Eu3+, 0.10Mg2+ phosphors, respectively, for thermal quenching. In addition, it can be better understood as related to the adequate thermal stability of 60% even at 450 and 420 K, respectively. Furthermore, the Judd-Ofelt theory was used to study the radiative intensity parameters of Eu3+ ions in the CaTiO3 lattices. The experimental results incited the bright prospects of synthesized ceramics as a promising candidate for lighting applications.

  6. Influence of Basicity on High-Chromium Vanadium-Titanium Magnetite Sinter Properties, Productivity, and Mineralogy

    NASA Astrophysics Data System (ADS)

    Zhou, Mi; Yang, Songtao; Jiang, Tao; Xue, Xiangxin

    2015-05-01

    The effect of basicity on high-chromium vanadium-titanium magnetite (V-Ti-Cr) sintering was studied via sintering pot tests. The sinter rate, yield, and productivity were calculated before determining sinter strength (TI) and reduction degradation index (RDI). Furthermore, the effect of basicity on V-Ti-Cr sinter mineralogy was clarified using metallographic microscopy, x-ray diffraction, and scanning electron microscopy-energy-dispersive x-ray spectroscopy. The results indicate that increasing basicity quickly increases the sintering rate from 25.4 mm min-1 to 28.9 mm min-1, yield from 75.3% to 87.2%, TI from 55.4% to 64.8%, and productivity from 1.83 t (m2 h)-1 to 1.94 t (m2 h)-1 before experiencing a slight drop. The V-Ti-Cr sinter shows complex mineral composition, with main mineral phases such as magnetite, hematite, silicate (dicalcium silicate, Ca-Fe olivine, glass), calcium and aluminum silico-ferrite (SFCA/SFCAI) and perovskite. Perovskite is notable because it lowers the V-Ti sinter strength and RDI. The well intergrowths between magnetite and SFCA/SFCAI, and the decrease in perovskite and secondary skeletal hematite are the key for improving TI and RDI. Finally, a comprehensive index was calculated, and the optimal V-Ti-Cr sinter basicity also for industrial application was 2.55.

  7. Improved ferroelectric polarization of V-doped Bi{sub 6}Fe{sub 2}Ti{sub 3}O{sub 18} thin films prepared by a chemical solution deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, D. P.; University of Science and Technology of China, Hefei 230026; Yang, J., E-mail: jyang@issp.ac.cn

    We prepared V-doped Bi{sub 6}Fe{sub 2}Ti{sub 3}O{sub 18} thin films on Pt/Ti/SiO{sub 2}/Si (100) substrates by using a chemical solution deposition route and investigated the doping effect on the microstructure, dielectric, leakage, and ferroelectric properties of Bi{sub 6}Fe{sub 2}Ti{sub 3}O{sub 18} thin films. The Bi{sub 5.97}Fe{sub 2}Ti{sub 2.91}V{sub 0.09}O{sub 18} thin film exhibits improved dielectric properties, leakage current, and ferroelectric properties. The incorporation of vanadium resulted in a substantially enhanced remnant polarization (2P{sub r}) over 30 μC/cm{sup 2} in Bi{sub 5.97}Fe{sub 2}Ti{sub 2.91}V{sub 0.09}O{sub 18} thin film compared with 10 μC/cm{sup 2} in Bi{sub 6}Fe{sub 2}Ti{sub 3}O{sub 18} thin film. It ismore » demonstrated that the improved properties may stem from the improvement of crystallinity of the films with the contribution of suppressed oxygen vacancies and decreased mobility of oxygen vacancies caused by the V-doping. The results will provide a guidance to optimize the ferroelectric properties in Bi{sub 6}Fe{sub 2}Ti{sub 3}O{sub 18} thin films by chemical solution deposition, which is important to further explore single-phase multiferroics in the n = 5 Aurivillius thin films.« less

  8. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation

    USGS Publications Warehouse

    Rusk, B.G.; Lowers, H.A.; Reed, M.H.

    2008-01-01

    High-resolution electron microprobe maps show the distribution of Ti, Al, Ca, K, and Fe among quartz growth zones revealed by scanning electron microscope-cathodoluminescence (SEM-CL) from 12 hydrothermal ore deposits formed between ???100 and e1750 ??C. The maps clearly show the relationships between trace elements and CL intensity in quartz. Among all samples, no single trace element consistently correlates with variations in CL intensity. However in vein quartz from five porphyry-Cu (Mo-Au) deposits, CL intensity always correlates positively with Ti concentrations, suggesting that Ti is a CL activator in quartz formed at >400 ??C. Ti concentrations in most rutile-bearing vein quartz from porphyry copper deposits indicate reasonable formation temperatures of 2000 ppm, but in high-temperature quartz, Al concentrations are consistently in the range of several hundred ppm. Aluminum concentrations in quartz refl ect the Al solubility in hydrothermal fluids, which is strongly dependent on pH. Aluminum concentrations in quartz therefore reflect fluctuations in pH that may drive metal-sulfide precipitation in hydrothermal systems. ?? 2008 The Geological Society of America.

  9. Origin of colossal dielectric response of CaCu3Ti4O12 studied by using CaTiO3/CaCu3Ti4O12/CaTiO3 multilayer thin films

    NASA Astrophysics Data System (ADS)

    Mitsugi, Masakazu; Asanuma, Shutaro; Uesu, Yoshiaki; Fukunaga, Mamoru; Kobayashi, Wataru; Terasaki, Ichiro

    2007-06-01

    To elucidate the origin of the colossal dielectric response (CDR) of CaCu3Ti4O12 (CCTO), multilayer thin films of CCTO interposed in insulating CaTiO3 (CTO) were synthesized using a pulsed laser deposition technique. The capacitance C of CTO/CCTO/CTO films with different layer thicknesses is measured. After removing the capacitance of CTO by extrapolating C to zero CTO thickness, the real part of dielectric constant of CCTO is estimated to be 329-435, which is much smaller than the reported value for CCTO thin films. This fact indicates that the CDR of CCTO is extrinsic and originates from an internal barrier layer capacitor.

  10. The Impact of Fe-Ti Oxide Concentration on the Structural Rigidity of the Lower Oceanic Crust, Atlantis Bank, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Deans, J. R.; Winkler, D. A.

    2017-12-01

    Fe-Ti oxides are important components of oceanic core complexes (OCC) formed at slow-spreading ridges, since Fe-Ti oxide phases form throughout the crustal column and are weaker than silicate phases. This study investigated the predicted relationship between the presence and concentration of Fe-Ti oxides and the presence/intensity of crystal-plastic deformation in samples from Atlantis Bank, Southwest Indian Ridge (SWIR). Atlantis Bank is an OCC that formed through the exhumation of lower oceanic crust along a detachment shear zone/fault. OCCs form along slow-spreading ridges and are characterized by the complex interactions between magmatism and crustal extension, thus, making them more susceptible to crystal-plastic deformation at higher temperatures and for weaker phases like Fe-Ti oxides to preferentially partition strain. Atlantis Bank has been the focus of many scientific expeditions to various sites including; Ocean Drilling Program (ODP) Holes 735B and 1105A, and the International Oceanic Discovery Program (IODP) Hole U1473A. A total of 589 thin sections from all three holes were analyzed using the software package Fiji to calculate the Fe-Ti oxide concentration within the thin sections. The Fe-Ti oxide percentage was correlated with the crystal-plastic fabric (CPF) intensity, from 0-5 (no foliation - ultramylonite), for each thin section using the statistical software R. All three holes show a positive correlation between the abundance of Fe-Ti oxides and the CPF intensity. Specifically, 76.3% of samples with a concentration of 5% or more Fe-Ti oxides have a corresponding CPF intensity value of 2 or more (porphyroclastic foliation - ultramylonitic). The positive correlation may be explained by the Fe-Ti oxides preferentially partitioning strain, especially at temperatures below where dry plagioclase can recrystallize. This allows for a mechanism of continued slip along the shear zone or form new shear zones at amphibolite grade conditions while the lower crust is being exhumed. Additionally, IODP U1473A and ODP 1105A had similar correlation values of 0.11 (on a scale of -1 to 1), whereas ODP Hole 735B had double the correlation value of 0.24. Since ODP Hole 735B has older rocks than the other two holes, it may have recorded more deformation comparatively speaking.

  11. The cross sections of fusion-evaporation reactions: the most promising route to superheavy elements beyond Z=118

    NASA Astrophysics Data System (ADS)

    Jadambaa, Khuyagbaatar

    2017-11-01

    The synthesis of superheavy elements beyond oganesson (Og), which has atomic number Z = 118, is currently one of the main topics in nuclear physics. An absence of sufficient amounts of target material with atomic numbers heavier than californium (Z = 98) forces the use of projectiles heavier than 48Ca (Z = 20), which has been successfully used for the discoveries of elements with Z = 114 - 118 in complete fusion reactions. Experimental cross sections of 48Ca with actinide targets behave very differently to "cold" and "hot" fusion-evaporation reactions, where doubly-magic lead and deformed actinides are used as targets, respectively. The known cross sections of these reactions have been analysed compared to calculated fission barriers. It has been suggested that observed discrepancies between the cross sections of 48Ca-induced and other fusionevaporation reactions originate from the shell structure of the compound nucleus, which lies in the island of the stability. Besides scarcely known data on other reactions involving heavier projectiles, the most promising projectile for the synthesis of the elements beyond Og seems to be 50Ti. However, detailed studies of 50Ti, 54Cr, 58Fe and 64Ni-induced reactions are necessary to be performed in order to fully understand the complexities of superheavy element formation.

  12. Investigation of embedded perovskite nanoparticles for enhanced capacitor permittivities.

    PubMed

    Krause, Andreas; Weber, Walter M; Pohl, Darius; Rellinghaus, Bernd; Verheijen, Marcel; Mikolajick, Thomas

    2014-11-26

    Growth experiments show significant differences in the crystallization of ultrathin CaTiO3 layers on polycrystalline Pt surfaces. While the deposition of ultrathin layers below crystallization temperature inhibits the full layer crystallization, local epitaxial growth of CaTiO3 crystals on top of specific oriented Pt crystals occurs. The result is a formation of crystals embedded in an amorphous matrix. An epitaxial alignment of the cubic CaTiO3 ⟨111⟩ direction on top of the underlying Pt {111} surface has been observed. A reduced forming energy is attributed to an interplay of surface energies at the {111} interface of both materials and CaTiO3 nanocrystallites facets. The preferential texturing of CaTiO3 layers on top of Pt has been used in the preparation of ultrathin metal-insulator-metal capacitors with 5-30 nm oxide thickness. The effective CaTiO3 permittivity in the capacitor stack increases to 55 compared to capacitors with amorphous layers and a permittivity of 28. The isolated CaTiO3 crystals exhibit a passivation of the CaTiO3 grain surfaces by the surrounding amorphous matrix, which keeps the capacitor leakage current at ideally low values comparable for those of amorphous thin film capacitors.

  13. Non-Metallic Ti Oxides and MnS/FeS2 Complex Precipitation in Ti-Killed Steel

    NASA Astrophysics Data System (ADS)

    Chen, Jieyun; Zhao, Dan; Li, Huigai; Zheng, Shaobo

    Titanium deoxidized experiments can be carried in vacuum induction furnace by adding Ti-Fe alloy in molten steel to simulate strip casting. Sub-rapid solidification samples were obtained in the method of suing copper mold. The morphology, the chemical composition and the structures of nanometer precipitations were carried out to investigate by transmission electron microscope (TEM) with Energy Dispersive X ray Spectrum (EDX) and by collecting diffraction patterns with carbon extraction specimens. It has been found that titanium oxides were TiO monoclinic, Ti4O7 anorthic and TiO2 orthogonal structure in one nanometer inclusion, as the composite oxide was precipitated MnS/FeS2 cubic structure during sub-rapid solidification. Thermodynamic calculation analysis showed that it was possible to precipitate different kinds of nonstoichiometric TiOx. The solid solution between MnS/FeS2 will precipitate on the surface of titanium oxides because of good coherency relationship.

  14. A multiproxy study between the Río de la Plata and the adjacent South-western Atlantic inner shelf to assess the sediment footprint of river vs. marineinfluence

    NASA Astrophysics Data System (ADS)

    Burone, Leticia; Ortega, Leonardo; Franco-Fraguas, Paula; Mahiques, Michel; García-Rodriguez, Felipe; Venturini, Natalia; Marin, Yamandú; Brugnoli, Ernesto; Nagai, Renata; Muniz, Pablo; Bícego, Marcia; Figueira, Rubens; Salaroli, Alexandre

    2013-03-01

    Proxies of terrigenous versus marine input (Al and Ti, Fe/Ca and Ti/Ca ratios), origin of organic matter (δ13C, δ15N and C/N ratio), productivity (Corg; Nt; CaCO3, P, Ca, and Ba content; and Ba/Al and Ba/Ti ratios), hydrodynamics (grain size, mean diameter and sorting) and biological records of the main features of the environment (benthic foraminifera assemblage distribution) were used to assess the sediment footprint of river vs. marine influence along the salinity gradient between the Rio de la Plata (RdlP) estuary and the adjacent South Western Atlantic Shelf. These criteria permitted characterisation and interpretation of the sedimentary processes influencing transition between three known environments: tidal river, estuarine and marine zones. Increases in sand and clay content at the transition between tidal river and proper estuarine zones indicate resuspension/deposition processes associated with the maximum turbidity zone (MTZ). The MTZ was also characterised by an increase in mixed organic matter content indicated by stable carbon and nitrogen isotope values, an increment in productivity proxies (Corg, Nt and CaCO3) and the substitution of the Miliammina fusca assemblage (brackish environments) for the Ammonia tepida assemblage (estuarine environments). The transition between estuarine and marine environments was characterised by a sharp (up to 99%) increase in sand content, reflecting the progradation of modern RdlP sediments toward relict continental shelf sediment. C/N values typical of the marine environment, decreased trace element concentrations and the distribution of the Buliminella elegantissima assemblage (a more marine assemblage) also highlight the marine environment. This paper is particularly important as a tool both to better understand sedimentological dynamics in salinity fronts (along the shelf sediment of large estuaries) and to elaborate more precise palaeoenvironmental and palaeoceanographic reconstructions.

  15. Investigations of the effect of nonmagnetic Ca substitution for magnetic Dy on spin-freezing in Dy₂Ti₂O₇.

    PubMed

    Anand, V K; Tennant, D A; Lake, B

    2015-11-04

    Physical properties of partially Ca substituted hole-doped Dy2Ti2O7 have been investigated by ac magnetic susceptibility χ(ac)(T), dc magnetic susceptibility χ(T), isothermal magnetization M(H) and heat capacity C(p)(T) measurements on Dy1.8Ca0.2Ti2O7. The spin-ice system Dy2Ti2O7 exhibits a spin-glass type freezing behavior near 16 K. Our frequency dependent χ(ac)(T) data of Dy1.8Ca0.2Ti2O7 show that the spin-freezing behavior is significantly influenced by Ca substitution. The effect of partial nonmagnetic Ca(2+) substitution for magnetic Dy(3+) is similar to the previous study on nonmagnetic isovalent Y(3+) substituted Dy(2-x)Y(x) Ti2O7 (for low levels of dilution), however the suppression of spin-freezing behavior is substantially stronger for Ca than Y. The Cole-Cole plot analysis reveals semicircular character and a single relaxation mode in Dy1.8Ca0.2Ti2O7 as for Dy2Ti2O7. No noticeable change in the insulating behavior of Dy2Ti2O7 results from the holes produced by 10% Ca(2+) substitution for Dy(3+) ions.

  16. Surface structure of MgO underlayer with Ti diffusion for (002) oriented L10 FePt-based heat assisted magnetic recording media

    NASA Astrophysics Data System (ADS)

    Hinata, Sintaro; Jo, Shin; Saito, Shin

    2018-05-01

    Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm)/Cr80Mn20 (0-30 nm)/Cr50Ti50 (0-50 nm)/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW) on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.

  17. Deposition of vaporized species onto glassy fallout from a near-surface nuclear test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.

    In a near-surface nuclear explosion where the resultant fireball can interact with the surface, vaporized materials from the nuclear device can be incorporated into molten soil and other carrier materials from that surface. This mixed material becomes a source of glassy fallout upon quenching and is locally deposited. Fallout formation models have been proposed; however, the specific mechanisms and physical conditions by which soil and other carrier materials interact in the fireball, as well as the subsequent incorporation of device materials with carrier materials, are not well constrained. We observe a surface deposition layer preserved at interfaces where two aerodynamicmore » fallout glasses agglomerated and fused, and characterized 11 such boundaries using spatial analyses to better understand the vaporization and condensation behavior of species in the fireball. Using nanoscale secondary ion mass spectrometry (NanoSIMS), we identify higher enrichments of uranium from the device ( 235U/ 238U ratio >7.5) in 8 of the interface layers. Major element analysis of the interfaces reveals the deposition layer to be enriched in Fe, Ca, Mg, Mn, and Na-bearing species and depleted in Ti and Al-bearing species. Most notably, the Fe and Ca-bearing species are enriched approximately 50% at the interface layer relative to the average concentrations measured within the fallout glasses, while Ti and Al-bearing species are depleted by approximately 20%. SiO 2 is found to be relatively invariable across the samples and interfaces (~3% standard deviation). The notable depletion of Al, a refractory oxide abundant in the soil, together with the enrichment of 235U and Fe, suggests an anthropogenic source of the enriched species or an unexpected vaporization/condensation behavior. The presence of both refractory (e.g., Ca and U) and volatile (e.g., Na) species approximately co-located in most of the observed layers (within 1.5 μm) suggests a continuous condensation process may also be occurring. Lastly, these fallout formation processes deviate from historical models of fallout formation, and have not been previously recognized in the literature.« less

  18. Deposition of vaporized species onto glassy fallout from a near-surface nuclear test

    NASA Astrophysics Data System (ADS)

    Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; Knight, Kim B.; Isselhardt, Brett H.; Matzel, Jennifer E.; Weber, Peter K.; Prussin, Stan G.; Hutcheon, Ian D.

    2017-03-01

    In a near-surface nuclear explosion where the resultant fireball can interact with the surface, vaporized materials from the nuclear device can be incorporated into molten soil and other carrier materials from that surface. This mixed material becomes a source of glassy fallout upon quenching and is locally deposited. Fallout formation models have been proposed; however, the specific mechanisms and physical conditions by which soil and other carrier materials interact in the fireball, as well as the subsequent incorporation of device materials with carrier materials, are not well constrained. We observe a surface deposition layer preserved at interfaces where two aerodynamic fallout glasses agglomerated and fused, and characterized 11 such boundaries using spatial analyses to better understand the vaporization and condensation behavior of species in the fireball. Using nanoscale secondary ion mass spectrometry (NanoSIMS), we identify higher enrichments of uranium from the device (235U/238U ratio >7.5) in 8 of the interface layers. Major element analysis of the interfaces reveals the deposition layer to be enriched in Fe, Ca, Mg, Mn, and Na-bearing species and depleted in Ti and Al-bearing species. Most notably, the Fe and Ca-bearing species are enriched approximately 50% at the interface layer relative to the average concentrations measured within the fallout glasses, while Ti and Al-bearing species are depleted by approximately 20%. SiO2 is found to be relatively invariable across the samples and interfaces (∼3% standard deviation). The notable depletion of Al, a refractory oxide abundant in the soil, together with the enrichment of 235U and Fe, suggests an anthropogenic source of the enriched species or an unexpected vaporization/condensation behavior. The presence of both refractory (e.g., Ca and U) and volatile (e.g., Na) species approximately co-located in most of the observed layers (within 1.5 μm) suggests a continuous condensation process may also be occurring. These fallout formation processes deviate from historical models of fallout formation, and have not been previously recognized in the literature.

  19. Deposition of vaporized species onto glassy fallout from a near-surface nuclear test

    DOE PAGES

    Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; ...

    2016-10-29

    In a near-surface nuclear explosion where the resultant fireball can interact with the surface, vaporized materials from the nuclear device can be incorporated into molten soil and other carrier materials from that surface. This mixed material becomes a source of glassy fallout upon quenching and is locally deposited. Fallout formation models have been proposed; however, the specific mechanisms and physical conditions by which soil and other carrier materials interact in the fireball, as well as the subsequent incorporation of device materials with carrier materials, are not well constrained. We observe a surface deposition layer preserved at interfaces where two aerodynamicmore » fallout glasses agglomerated and fused, and characterized 11 such boundaries using spatial analyses to better understand the vaporization and condensation behavior of species in the fireball. Using nanoscale secondary ion mass spectrometry (NanoSIMS), we identify higher enrichments of uranium from the device ( 235U/ 238U ratio >7.5) in 8 of the interface layers. Major element analysis of the interfaces reveals the deposition layer to be enriched in Fe, Ca, Mg, Mn, and Na-bearing species and depleted in Ti and Al-bearing species. Most notably, the Fe and Ca-bearing species are enriched approximately 50% at the interface layer relative to the average concentrations measured within the fallout glasses, while Ti and Al-bearing species are depleted by approximately 20%. SiO 2 is found to be relatively invariable across the samples and interfaces (~3% standard deviation). The notable depletion of Al, a refractory oxide abundant in the soil, together with the enrichment of 235U and Fe, suggests an anthropogenic source of the enriched species or an unexpected vaporization/condensation behavior. The presence of both refractory (e.g., Ca and U) and volatile (e.g., Na) species approximately co-located in most of the observed layers (within 1.5 μm) suggests a continuous condensation process may also be occurring. Lastly, these fallout formation processes deviate from historical models of fallout formation, and have not been previously recognized in the literature.« less

  20. The effect of sintering temperature on electrical characteristics of Fe2TiO5/Nb2O5 ceramics for NTC thermistor

    NASA Astrophysics Data System (ADS)

    Wiendartun, Risdiana, Fitrilawati, Siregar, R. E.

    2016-02-01

    A study on the fabrication of Iron Titanium Oxide (Fe2TiO5) ceramics for negative temperature coefficient (NTC) thermistors has been carried out, in order to know the effect of sintering temperature on the electrical characteristic of 1.0 % mole Nb2O5 doped Fe2TiO5 ceramics.These ceramics were made by mixing commercial powders of Fe2O3, TiO2 and Nb2O5 with proportional composition to produce Fe2TiO5 based ceramic. The raw pellet was sintered at 1000 °C, 1100 °C and 1200 °C temperature for 2 hours in air. Analysis of the microstructure and crystal structure were performed by using a scanning electron microscope (SEM) and x-ray diffraction (XRD) respectively. XRD spectra showed that the crystal structure of all ceramics of Fe2TiO5 made at various sintering temperatures are orthorhombic. The SEM images showed that the grain size of pellet ceramics increase with increasing sintering temperatures. From electrical resistances data that was measured at temperature 30-300 °C, it is found that the value of thermistor constant (B), activation energy (Ea), thermistor sensitivity (α) and room temperature resistance (RRT) decreases with respect to the increasing of sintering temperature. The fabricated Fe2TiO5 ceramics have thermistor constants (B = 6394-6959 K). This can be applied as temperature sensor, and will fulfill the market requirement.

  1. Petrogenesis and metallogenesis of the Wajilitag and Puchang Fe-Ti oxide-rich intrusive complexes, northwestern Tarim Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Zhang, Dongyang; Zhang, Zhaochong; Huang, He; Cheng, Zhiguo; Charlier, Bernard

    2018-04-01

    The Wajilitag and Puchang intrusive complexes of the Tarim large igneous province (TLIP) are associated with significant resources of Fe-Ti oxide ores. These two mafic-ultramafic intrusions show differences in lithology and mineral chemistry. Clinopyroxenite and melagabbro are the dominant rock types in the Wajilitag complex, whereas the Puchang complex is generally gabbroic and anorthositic in composition with minor plagioclase-bearing clinopyroxenites in the marginal zone. Disseminated Fe-Ti oxide ores are found in the Wajilitag complex and closely associated with clinopyroxenites, whereas the Puchang complex hosts massive to disseminated Fe-Ti oxide ores mainly within its gabbroic rocks. The Wajilitag intrusive rocks are characterized by a restricted range of initial 87Sr/86Sr ratios (0.7038-0.7048) and positive εNd(t) (+0.04 - +3.01), indicating insignificant involvement of continental crustal contamination. The slightly higher initial 87Sr/86Sr ratios (0.7039-0.7059) and lower εNd(t) values (-1.05 - +2.35) of the Puchang intrusive rocks also suggest that the isotopic characteristics was controlled primarily by their mantle source, rather than by crustal contamination. Both complexes have Sr-Nd isotopic compositions close the neighboring kimberlitic rocks and their hosted mantle xenoliths in the TLIP. This indicates that the ferrobasaltic parental magmas were most probably originated from partial melting of a metasomatized subcontinental lithospheric mantle, modified recently with subduction-related materials by the impingement of the ascending mantle plume. The recycled subduction-related materials preserved in the lithospheric mantle could play a key role in the formation of the parental Fe-rich magmas in the context of an overall LIP system. The distinct variations in mineral assemblage for each complex and modeled results indicated that the Wajilitag and Puchang complexes experienced different crystallization path. Fe-Ti oxides in Wajilitag joined the liquidus earlier in the crystallization sequence, especially relative to the crystallization of plagioclase. This is attributed to the relatively high TFeO, TiO2 and initial H2O contents of the parental magma. In combination with definitive field and petrological evidence, the enrichment of highly incompatible elements (e.g., Zr, Hf, Nb and Ta) and the depletion of rare earth elements in the Fe-Ti oxide ores is consistent with the plausible interpretation that the ores could be formed by fractional crystallization and crystal accumulation of the Fe-Ti oxide crystals from the ferrobasaltic parental magmas. A considerable amount of the Fe-Ti oxides in the Puchang has transported and sunk from higher up in the chamber to the underlying unconsolidated silicate crystal pile. The highly dense Fe-Ti oxide crystal slurries further tended to effective accumulate Fe-Ti oxides to form high-grade Fe-Ti oxide ore bodies, and subsequent rapid collapse and intrusive into lower lithologies within the complex under a H2O-rich environment during the late-stage of magmatic differentiation. The development of massive Fe-Ti oxide ores in the case of the Puchang, could plausibly result from a combination of the protracted differentiation history of a Fe highly enriched parental magma and the later addition of external H2O from the country rocks (e.g., carbonates) to the slowly cooling magma chamber.

  2. The local structure and ferromagnetism in Fe-implanted SrTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Lobacheva, O.; Chavarha, M.; Yiu, Y. M.; Sham, T. K.; Goncharova, L. V.

    2014-07-01

    We report a connection between the local structure of low-level Fe impurities and vacancies as the cause of ferromagnetic behavior observed in strontium titanate single crystals (STO), which were implanted with Fe and Si ions at different doses then annealed in oxygen. The effects of Fe doping and post-implantation annealing of STO were studied by X-ray Absorption Near Edge Structure (XANES) spectroscopy and Superconducting Quantum Interference Device magnetometry. XANES spectra for Fe and Ti K- and L-edge reveal the changes in the local environment of Fe and Ti following the implantation and annealing steps. The annealing in oxygen atmosphere partially healed implantation damages and changed the oxidation state of the implanted iron from metallic Fe0 to Fe2+/Fe3+ oxide. The STO single crystals were weak ferromagnets prior to implantation. The maximum saturation moment was obtained after our highest implantation dose of 2 × 1016 Fe atom/cm2, which could be correlated with the metallic Fe0 phases in addition to the presence of O/Ti vacancies. After recrystallization annealing, the ferromagnetic response disappears. Iron oxide phases with Fe2+ and Fe3+ corresponding to this regime were identified and confirmed by calculations using Real Space Multiple Scattering program (FEFF9).

  3. Fe-C-Si ternary composite coating on CP-titanium and its tribological properties

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Saffina, W.; Ahmed, A. S.; Ali, M. Y.

    2017-03-01

    This study focused on the development of ternary composite coating through incorporation of Fe-C-Si ternary powder mixtures on CP-Ti substrate and characterizes the microstructure, hardness and wears behavior in presence of Jatropha oil. In this work, the surface of commercial purity titanium (CP-Ti) was modified using a tungsten inert gas (TIG) surface melting technique. The wear behavior of coated CP-titanium was performed using pin-on-disk machine. The results showed that the melt track has dendritic microstructure which was homogenously distributed throughout the melt pool. This Fe-C-Si ternary composite coating enhanced the surface hardness of CP-Ti significantly from 175 HV for the untreated substrate to ∼800 HV for the Fe-C-Si coated CP-Ti due to the formation of intermetallic compounds.. The wear results showed that less wear volume loss was observed on the composite coated CP-Ti in presence of Jatropha-biodiesel compared to uncoated CP-Ti. The achievement of this hard Fe-C-Si composite coating on the surface of CP-Ti can broadened new prospect for many engineering applications that use biodiesel under different tribological variables.

  4. Formation, Phase, and Elemental Composition of Micro- and Nano-Dimensional Particles of the Fe-Ti System

    NASA Astrophysics Data System (ADS)

    Dresvyannikov, A. F.; Kolpakov, M. E.

    2018-05-01

    X-ray fluorescence, X-ray phase analysis, and transmission Mössbauer and NGR spectrometry are used to study the formation, phase, and elemental composition of Fe-Ti particles. The interaction between Fe(III) ions and dispersed titanium in an aqueous solution containing chloride ions and HF is studied. It is shown that the resulting Fe-Ti samples are a set of core-shell microparticles with titanium cores coated with micro- and nanosized α-Fe nucleation centers with the thinness outer layer of iron(III) oxide characterized by a developed surface.

  5. Tetragonal Almandine, (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12, a New High-Pressure Mineral from the Shergotty Impact on Mars: an Integrated FESEM-EPMA-Synchrotron Diffraction Investigation

    NASA Astrophysics Data System (ADS)

    Ma, C.; Tschauner, O. D.

    2016-12-01

    The combination of FESEM-EDS-EBSD, EPMA, and synchrotron microdiffraction is developing into a powerful tool for identification of micron-scale minerals in rocks such as high-pressure phases in shocked meteorites. During a nanomineralogy investigation of the Shergotty meteorite using this approach, we have identified a new shock-induced high-pressure silicate, majoritic almandine with a tetragonal I41/a structure, in an impact melt pocket. The Shergotty meteorite, which fell in the Gaya district, Bihar, India in 1865, is a Martian basaltic shergottite with shock features. Tetragonal almandine in Shergotty occurs as aggregates of subhedral crystals, 0.8 - 2.5 µm in diameter, along with stishovite in the central region of a shock melt pocket, showing an empirical formula of (Fe1.16Ca0.75Mg0.61Na0.42Mn0.03K0.01)(Al1.16Si0.63Mg0.19Ti0.02)Si3O12. Its general formula is (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12. EBSD indicated this phase has a garnet-related structure. Synchrotron X-ray diffraction revealed that this garnet has actually a tetragonal structure (I41/a) with unit cell dimensions: a = 11.585(9) Å, c = 11.63(4) Å, V = 1561(7) Å3, and Z = 8. Tetragonal almandine is the polymorph of cubic almandine, a new high-pressure garnet mineral, formed by shock metamorphism via the Shergotty impact event on Mars. It apparently crystallized from Fe-rich shock-induced melt under high-pressure and high-temperature conditions.

  6. Improving the sodium storage capacity of tunnel structured NaxFexTi2-xO4 (x = 1, 0.9 & 0.8) anode materials by tuning sodium deficiency

    NASA Astrophysics Data System (ADS)

    Bhange, Deu S.; Ali, Ghulam; Kim, Ji-Young; Chung, Kyung Yoon; Nam, Kyung-Wan

    2017-10-01

    Due to their abundance and environmentally benign nature, iron and titanium present as the most attractive potential elements for use in rechargeable sodium-ion batteries (SIBs). Accordingly, two structurally different Fe and Ti based compounds, stoichiometric NaFeTiO4 and sodium deficient NaxFexTi2-xO4 (where x = 0.9, and 0.8), are explored as anode materials for SIBs. Their structure and sodium storage capacity are systematically investigated by using combined structural and electrochemical analysis. Rietveld refinement analysis reveals that the sodium deficiency leads to the structural transformation from a single-tunnel structure (NaFeTiO4) to a zigzag-type double-tunnel structure (Na0.9Fe0.9Ti1.1O4 and Na0.8Fe0.8Ti1.2O4). The series of sodium deficient compounds bears systematic sodium ion vacancies in their structure up to 20%. Sodium deficiency in the NaxFexTi2-xO4 logically provides additional space for accommodating the excess sodium ions as such the NaxFexTi2-xO4 compounds with higher level of sodium deficiency show higher specific capacities than the stoichiometric NaFeTiO4. All the compounds exhibited very good electrochemical cycling stability, with minimal capacity loss during cycling. The present approach is a model example of improvement in the sodium storage capacity of the anode materials by tuning the chemical composition, and could facilitate the performance improvement of known or new electrode materials for SIBs.

  7. Dripping and evolution behavior of primary slag bearing TiO2 through the coke packed bed in a blast-furnace hearth

    NASA Astrophysics Data System (ADS)

    Liu, Yan-xiang; Zhang, Jian-liang; Wang, Zhi-yu; Jiao, Ke-xin; Zhang, Guo-hua; Chou, Kuo-chih

    2017-02-01

    To investigate the flow of primary slag bearing TiO2 in the cohesive zone of blast furnaces, experiments were carried out based on the laboratory-scale packed bed systems. It is concluded that the initial temperature of slag dripping increases with decreasing FeO content and increasing TiO2 content. The slag holdup decreases when the FeO content is in the range of 5wt%-10wt%, whereas it increases when the FeO content exceeds 10wt%. Meanwhile, the slag holdup decreases when the TiO2 content increases from 5wt% to 10wt% but increases when the TiO2 content exceeds 10wt%. Moreover, slag/coke interface analysis shows that the reaction between FeO and TiO2 occurs between the slag and the coke. The slag/coke interface is divided into three layers: slag layer, iron-rich layer, and coke layer. TiO2 in the slag is reduced by carbon, and the generated Ti diffuses into iron.

  8. Key concepts behind forming-free resistive switching incorporated with rectifying transport properties

    PubMed Central

    Shuai, Yao; Ou, Xin; Luo, Wenbo; Mücklich, Arndt; Bürger, Danilo; Zhou, Shengqiang; Wu, Chuangui; Chen, Yuanfu; Zhang, Wanli; Helm, Manfred; Mikolajick, Thomas; Schmidt, Oliver G.; Schmidt, Heidemarie

    2013-01-01

    This work reports the effect of Ti diffusion on the bipolar resistive switching in Au/BiFeO3/Pt/Ti capacitor-like structures. Polycrystalline BiFeO3 thin films are deposited by pulsed laser deposition at different temperatures on Pt/Ti/SiO2/Si substrates. From the energy filtered transmission electron microscopy and Rutherford backscattering spectrometry it is observed that Ti diffusion occurs if the deposition temperature is above 600°C. The current-voltage (I–V) curves indicate that resistive switching can only be achieved in Au/BiFeO3/Pt/Ti capacitor-like structures where this Ti diffusion occurs. The effect of Ti diffusion is confirmed by the BiFeO3 thin films deposited on Pt/sapphire and Pt/Ti/sapphire substrates. The resistive switching needs no electroforming process, and is incorporated with rectifying properties which is potentially useful to suppress the sneak current in a crossbar architecture. Those specific features open a promising alternative concept for nonvolatile memory devices as well as for other memristive devices like synapses in neuromorphic circuits. PMID:23860408

  9. The Effect of Fe-Ti-rich Cumulate Overturn on Evolution of the Lunar Interior

    NASA Astrophysics Data System (ADS)

    Mallik, A.; Ejaz, T.; Shcheka, S.; Garapic, G.; Petitgirard, S.; Blanchard, I.

    2017-12-01

    The last 5% of magma ocean crystallized Fe-Ti rich cumulates (FTC) emplaced below the anorthitic crust [1]. Due to gravitational instability, FTC underwent diapiric downwelling [2], associated with overturn of the lunar mantle. Petrological studies on Apollo basalts with variable TiO2 place their sources between 1.5-3 GPa. This indicates the presence of heterogeneous Ti-rich domains in the lunar interior which could either be produced by inefficient overturn and mixing [3], or due to post-overturn upwelling of FTC from the core-mantle boundary (CMB) [4]. Also, a seismically attenuating layer at the CMB ( 4.5 GPa) maybe associated with partial melt of overturned FTC [5]. Thus, it is important to investigate the phase equilibria of FTC with and without assimilation with the surrounding mantle, to understand better the effect of the overturn process on lunar evolution. We performed phase equilibria experiments at 2 and 4.5 GPa, 1230 to 1700 °C using a multi-anvil apparatus on FTC and a 1:1 mixture of FTC and mantle composition. FTC produced Fe-Ti rich (FeO 13-26 wt.%, TiO2 11-18 wt.%), Mg-poor (MgO 6-10 wt.%) basalts with residues of clinopyroxene+quartz+Fe-metal±spinel, while the mixture of FTC and mantle produced Fe-Ti-Mg rich (FeO 10-13 wt.%, TiO2 5-11 wt.% and MgO 20-30 wt.%) basalts with residues of orthopyroxene+olivine+Fe-metal±spinel±garnet. We find that partial melting of overturned cumulates within the lunar mantle can reproduce certain chemical attributes of Apollo high Ti basalts. Also, to test whether the partial melt of overturned cumulates can be stable at the CMB to produce the attenuating layer, we estimated the densities of these melt compositions using the published range of KT and K' of high Fe-Ti picrites. We find that the densities obtained from the published spread in K' and KT values yield inconclusive results about the stability of these partial melts at the CMB. This is being resolved by in-situ experimental determination of the densities of the high Fe-Ti melt compositions, currently underway. If these partial melts are indeed stable at the CMB, they bracket the present-day CMB temperature between 1300-1490 °C (5 to 30% partial melting [5]).[1] Snyder et al. (1992), GCA [2] Hess & Permentier (1995), EPSL [3] Brown & Grove (2015), GCA [4] Zhong et al. (2000), EPSL [5] Weber et al. (2011), Science

  10. Photocatalyst of Perovskite CaTiO3 Nanopowder Synthesized from CaO derived from Snail Shell in Comparison with The Use of CaO and CaCO3

    NASA Astrophysics Data System (ADS)

    Fatimah, I.; Rahmadianti, Y.; Pudiasari, R. A.

    2018-04-01

    Calcium titanate belongs to the important group of compounds with a perovskite structure having high dielectric loss for various applications including photocatalysis mechanism. Refer to the principles of green chemistry, in this work preparation of CaTiO3 was conducted by using CaO derived from snail shell. Aim of this research are to study the physicochemical character of perovskite derived from snail shell and its comparison with CaO and CaCO3 as Ca sources. Material preparation was performed by solid reaction of Ca sources with TiO2 under comparison with CaO and CaCO3 precursors. Mixture of Ca sources with TiO2 in certain proportion were ground and calcined at the temperature of 200 °C for 2 hs. Materials were characterized by using X-ray diffractometer (XRD), Fourier Transform-Infra Red (FTIR) and the photocatalytic activity was tested by using methylene blue photooxidation. Perovskite synthesized using CaO derived from snail shell exhibits the similar XRD pattern with that were prepared by using CaO and CaCO3. From the photooxidation activity test, it is proven that CaTiO3 shows similar photocatalytic activity correspond to that were prepared by CaO and CaCO3. Utilazation of shell as agricultural waste of the synthesis of CaTiO3 perovskite is the novelty of this work. Furthermore, the study on material structure and photoactivity is the main focuses for the application in industry and environment.

  11. Electronic Reconstruction at the Isopolar LaTiO3/LaFeO3 Interface: An X-Ray Photoemission and Density-Functional Theory Study

    NASA Astrophysics Data System (ADS)

    Kleibeuker, J. E.; Zhong, Z.; Nishikawa, H.; Gabel, J.; Müller, A.; Pfaff, F.; Sing, M.; Held, K.; Claessen, R.; Koster, G.; Rijnders, G.

    2014-12-01

    We report the formation of a nonmagnetic band insulator at the isopolar interface between the antiferromagnetic Mott-Hubbard insulator LaTiO3 and the antiferromagnetic charge transfer insulator LaFeO3. By density-functional theory calculations, we find that the formation of this interface state is driven by the combination of O band alignment and crystal field splitting energy of the t2 g and eg bands. As a result of these two driving forces, the Fe 3 d bands rearrange and electrons are transferred from Ti to Fe. This picture is supported by x-ray photoelectron spectroscopy, which confirms the rearrangement of the Fe 3 d bands and reveals an unprecedented charge transfer up to 1.2 ±0.2 e-/interface unit cell in our LaTiO3/LaFeO3 heterostructures.

  12. Liquid-phase deposition of TiO2 nanoparticles on core-shell Fe3O4@SiO2 spheres: preparation, characterization, and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ma, Jian-Qi; Guo, Shao-Bo; Guo, Xiao-Hua; Ge, Hong-Guang

    2015-07-01

    To prevent and avoid magnetic loss caused by magnetite core phase transition involving in high-temperature crystallization of amorphous sol-gel TiO2, core-shell Fe3O4@SiO2@TiO2 composite spheres were synthesized via non-thermal process of TiO2. First, core-shell Fe3O4@SiO2 particles were synthesized through a solvothermal method followed by a sol-gel process. Second, anatase TiO2 nanoparticles (NPs) were directly coated on Fe3O4@SiO2 surface by liquid-phase deposition method, which uses (NH4)2TiF6 as Ti source for TiO2 and H3BO3 as scavenger for F- ions at 50 °C. The morphology, structure, composition, and magnetism of the resulting composites were characterized and their photocatalytic activities were also evaluated. The results demonstrate that TiO2 NPs with an average size of 6-8 nm were uniformly deposited on the Fe3O4@SiO2 surface. Magnetic hysteresis curves indicate that the composite spheres exhibit superparamagnetic characteristics with a magnetic saturation of 32.5 emu/g at room temperature. The magnetic TiO2 composites show high photocatalytic performance and can be recycled five times by magnetic separation without major loss of activity, which meant that they can be used as efficient and conveniently renewable photocatalyst.

  13. TiC-Fe-Based Composite Coating Prepared by Self-Propagating High-Temperature Synthesis

    NASA Astrophysics Data System (ADS)

    He, Shen; Fan, Xi'an; Chang, Qingming; Xiao, Lixiang

    2017-06-01

    TiC-Fe-based composite coatings were prepared in situ by self-propagating high-temperature synthesis combined with vacuum expendable pattern casting process. The band-like TiC phase embedded in a continuous Fe binder. There were no obvious defects and impurities at the interface between coatings and matrices. Fe presented consecutively in the coating zones and substrate zones without interruption and the microhardness in the cross-sectional area of the coating-matrix reduces continuously from the coating to the matrix area, indicating a good metallurgical bonding between the coatings and matrices. The effect of casting temperature on the microstructure and hardness of TiC-Fe-based composite coating was investigated in detail. The TiC particles formed at low casting temperature were nearly spherical in shape, and the size of TiC particles increased with increasing casting temperature due to more agglomeration. The hardness of the coatings increased first and then decreased with increasing casting temperature, and reached the highest value of 68 HRC when the casting temperature was 1773 K (1500 °C), which was twice more than that of the matrix.

  14. Determination of the electrostatic potential distribution in Pt/Fe:SrTiO3/Nb:SrTiO3 thin-film structures by electron holography

    NASA Astrophysics Data System (ADS)

    Marchewka, Astrid; Cooper, David; Lenser, Christian; Menzel, Stephan; Du, Hongchu; Dittmann, Regina; Dunin-Borkowski, Rafal E.; Waser, Rainer

    2014-11-01

    We determined the electrostatic potential distribution in pristine Pt/Fe:SrTiO3/Nb:SrTiO3 structures by electron holography experiments, revealing the existence of a depletion layer extending into the Nb-doped bottom electrode. Simulations of potential profiles in metal-insulator-metal structures were conducted assuming different types and distributions of dopants. It is found that the presence of acceptor-type dopant concentrations at the Fe:SrTiO3/Nb:SrTiO3 interface with a donor-doped insulating layer provides a good match to the measured profile. Such acceptor-type interface concentrations may be associated with Sr vacancies on the Nb:SrTiO3 side of the bottom interface.

  15. Determination of the electrostatic potential distribution in Pt/Fe:SrTiO₃/Nb:SrTiO₃ thin-film structures by electron holography.

    PubMed

    Marchewka, Astrid; Cooper, David; Lenser, Christian; Menzel, Stephan; Du, Hongchu; Dittmann, Regina; Dunin-Borkowski, Rafal E; Waser, Rainer

    2014-11-10

    We determined the electrostatic potential distribution in pristine Pt/Fe:SrTiO3/Nb:SrTiO3 structures by electron holography experiments, revealing the existence of a depletion layer extending into the Nb-doped bottom electrode. Simulations of potential profiles in metal-insulator-metal structures were conducted assuming different types and distributions of dopants. It is found that the presence of acceptor-type dopant concentrations at the Fe:SrTiO3/Nb:SrTiO3 interface with a donor-doped insulating layer provides a good match to the measured profile. Such acceptor-type interface concentrations may be associated with Sr vacancies on the Nb:SrTiO3 side of the bottom interface.

  16. Degradation of 4-nitrophenol (4-NP) using Fe-TiO2 as a heterogeneous photo-Fenton catalyst.

    PubMed

    Zhao, Binxia; Mele, Giuseppe; Pio, Iolanda; Li, Jun; Palmisano, Leonardo; Vasapollo, Giuseppe

    2010-04-15

    Photocatalytic degradation of 4-nitrophenol was investigated using Fe-doped (1, 3, 5 and 8 wt.% Fe) TiO(2) catalysts under UV light irradiation in aqueous dispersions in the presence of H(2)O(2). Photocatalysts with the lowest Fe content (1%) showed a considerably better behavior with respect to the unloaded TiO(2) and the catalysts with higher Fe contents. Photocatalytic degradation was studied under different conditions such as amounts of 1% Fe-TiO(2) catalyst, H(2)O(2) dose and initial pH of 4-NP solution. The results indicated that about 67.53% total organic carbon of a solution containing 20 mg L(-1) 4-NP was removed at pH 6.17 by using 4.9 mM of H(2)O(2) and 0.4 g L(-1) of the catalyst in a 2-L batch photo-reactor, the complete degradation of 4-NP occurring after 60 min. It was also observed that catalytic behavior could be reproduced in consecutive experiments without a considerable decrease of the UV/Fe-TiO(2)/H(2)O(2) process efficiency. 2009 Elsevier B.V. All rights reserved.

  17. Multifunctional BiFeO{sub 3}/TiO{sub 2} nano-heterostructure: Photo-ferroelectricity, rectifying transport, and nonvolatile resistive switching property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Ayan; Khan, Gobinda Gopal, E-mail: gobinda.gk@gmail.com; Chaudhuri, Arka

    Multifunctional BiFeO{sub 3} nanostructure anchored TiO{sub 2} nanotubes are fabricated by coupling wet chemical and electrochemical routes. BiFeO{sub 3}/TiO{sub 2} nano-heterostructure exhibits white-light-induced ferroelectricity at room temperature. Studies reveal that the photogenerated electrons trapped at the domain/grain boundaries tune the ferroelectric polarization in BiFeO{sub 3} nanostructures. The photon controlled saturation and remnant polarization opens up the possibility to design ferroelectric devices based on BiFeO{sub 3.} The nano-heterostructure also exhibits substantial photovoltaic effect and rectifying characteristics. Photovoltaic property is found to be correlated with the ferroelectric polarization. Furthermore, the nonvolatile resistive switching in BiFeO{sub 3}/TiO{sub 2} nano-heterostructure has been studied, whichmore » demonstrates that the observed resistive switching is most likely caused by the electric-field-induced carrier injection/migration and trapping/detrapping process at the hetero-interfaces. Therefore, BiFeO{sub 3}/TiO{sub 2} nano-heterostructure coupled with logic, photovoltaics and memory characteristics holds promises for long-term technological applications in nanoelectronics devices.« less

  18. Effects of strain on the half-metallicity and spin gapless feature of Ti2YSi (Y = Fe, Co) alloys

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoguang; Li, Jincheng; Jin, Yingjiu

    2018-05-01

    Half-metals and spin gapless semiconductors (SGSs), which exhibit 100% spin polarization at the Fermi level, are considered important candidates for spintronics. Using first-principles calculations, we have investigated the effects of uniform strain and tetragonal distortion on the half-metallicity and spin gapless feature of inverse Heusler Ti2YSi (Y = Fe and Co) alloys. Results show that for uniform strains, the half-metallicity occurs in the ranges of lattice parameters from 5.938 Å to 6.535 Å for Ti2FeSi and from 5.924 Å to 6.840 Å for Ti2CoSi. Tetragonal distortions over the ranges of ‑2.0% to +2.5% and ‑2.6% to +4.1% could destroy the half-metallicity for Ti2FeSi and Ti2CoSi, respectively. On the other hand, Ti2CoSi is an SGS at lattice constants of 5.968-6.023 Å. An interesting finding is that Ti2CoSi reproduces the SGS character with increasing the lattice parameters to 6.784-6.840 Å. Small tetragonal distortions with ±0.2% will destroy the SGS character of Ti2CoSi.

  19. Epitaxial integration of CoFe2O4 thin films on Si (001) surfaces using TiN buffer layers

    NASA Astrophysics Data System (ADS)

    Prieto, Pilar; Marco, José F.; Prieto, José E.; Ruiz-Gomez, Sandra; Perez, Lucas; del Real, Rafael P.; Vázquez, Manuel; de la Figuera, Juan

    2018-04-01

    Epitaxial cobalt ferrite thin films with strong in-plane magnetic anisotropy have been grown on Si (001) substrates using a TiN buffer layer. The epitaxial films have been grown by ion beam sputtering using either metallic, CoFe2, or ceramic, CoFe2O4, targets. X-ray diffraction (XRD) and Rutherford spectrometry (RBS) in random and channeling configuration have been used to determine the epitaxial relationship CoFe2O4 [100]/TiN [100]/Si [100]. Mössbauer spectroscopy, in combination with XRD and RBS, has been used to determine the composition and structure of the cobalt ferrite thin films. The TiN buffer layer induces a compressive strain in the cobalt ferrite thin films giving rise to an in-plane magnetic anisotropy. The degree of in-plane anisotropy depends on the lattice mismatch between CoFe2O4 and TiN, which is larger for CoFe2O4 thin films grown on the reactive sputtering process with ceramic targets.

  20. Brazing characteristics of a Zr-Ti-Cu-Fe eutectic alloy filler metal for Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Lee, Jung G.; Lim, C. H.; Kim, K. H.; Park, S. S.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    A Zr-Ti-Cu-Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr-Cu-Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  1. A facile one-step electrochemical strategy of doping iron, nitrogen, and fluorine into titania nanotube arrays with enhanced visible light photoactivity.

    PubMed

    Hua, Zulin; Dai, Zhangyan; Bai, Xue; Ye, Zhengfang; Gu, Haixin; Huang, Xin

    2015-08-15

    Highly ordered iron, nitrogen, and fluorine tri-doped TiO2 (Fe, (N, F)-TiO2) nanotube arrays were successfully synthesized by a facile one-step electrochemical method in an NH4F electrolyte containing Fe ions. The morphology, structure, composition, and photoelectrochemical property of the as-prepared nanotube arrays were characterized by various methods. The photoactivities of the samples were evaluated by the degradation of phenol in an aqueous solution under visible light. Tri-doped TiO2 showed higher photoactivities than undoped TiO2 under visible light. The optimum Fe(3+) doping amount at 0.005M exhibited the highest photoactivity and exceeded that of undoped TiO2 by a factor of 20 times under visible light. The formation of N 2p level near the valence band (VB) contributed to visible light absorption. Doping fluorine and appropriate Fe(3+) ions reduced the photogenerated electrons-holes recombination rate and enhanced visible light photoactivity. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results indicated the presence of synergistic effects in Fe, N, and F tri-doped TiO2, which enhanced visible light photoactivity. The Fe, (N, F)-TiO2 photocatalyst exhibited high stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Precipitation of Secondary Phases from the Dissolution of Silicate Glasses

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Golden, D. C.

    2004-01-01

    Basaltic and anorthositic glasses were subjected to aqueous weathering conditions in the laboratory where the variables were pH, temperature, glass composition, solution composition, and time. Leached layers formed at the surfaces of glasses followed by the precipitation of X-ray amorphous iron and titanium oxides in acidic and neutral solutions at 25 C over time. Glass under oxidative hydrothermal treatments at 150 C yielded a three-layered surface; which included an outer smectite layer, a Fe-Ti oxide layer and an innermost thin leached layer. The introduction of Mg into solutions facilitated the formation of phyllosilicates. Aqueous hydrothermal treatment of anorthositic glasses (high Ca, low Ti) at 200 C readily formed smectite, whereas, the basaltic glasses (high Ti) were more resistant to alteration and smectite was not observed. Alkaline hydrothermal treatment at 2000e produced zeolites and smectites; only smectites formed at 200 C in neutral solutions. These mineralogical changes, although observed under controlled conditions, have direct applications in interpreting planetary (e.g., meteorite parent bodies) and terrestrial aqueous alteration processes.

  3. A vibrational spectroscopic study of the silicate mineral lomonosovite Na5Ti2(Si2O7)(PO4)O2

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Theiss, Frederick L.; Graça, Leonardo M.; Scholz, Ricardo

    2015-01-01

    The mineral lomonosovite has been studied using a combination of scanning electron microscopy with energy dispersive X-ray analysis and vibrational spectroscopy. Qualitative chemical analysis gave Si, P, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and Al. The mineral lomonosovite has a formula Na5Ti2(Si2O7)(PO4)O2. Raman bands observed at 909, 925 and 939 cm-1 are associated with phosphate units. Raman bands found at 975, 999, 1070, 1080 and 1084 cm-1 are attributed to siloxane stretching vibrations. The observation of multiple bands in both the phosphate stretching and bending regions supports the concept that the symmetry of the phosphate anion in the structure of lomonosovite is significantly reduced. Infrared spectroscopy identifies bands in the water stretching and bending regions, thus suggesting that water is involved with the structure of lomonosovite either through adsorption on the surface or by bonding to the phosphate units.

  4. Determination of palladium and platinum by atomic absorption

    USGS Publications Warehouse

    Schnepfe, M.M.; Grimaldi, F.S.

    1969-01-01

    Palladium and platinum are determined by atomic absorption after fire-assay concentration into a gold bead. The limit of determination is ~0??06 ppm in a 20-g sample. Serious depressive interelement interferences are removed by buffering the solutions with a mixture of cadmium and copper sulphates with cadmium and copper concentrations each at 0??5%. Substantial amounts of Ag, Al, Au, Bi, Ca, Co, Cr, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn, and the platinum metals do not interfere in the atomic-absorption determination. ?? 1969.

  5. Dissolved organic matter degradation by sunlight coagulates organo-mineral colloids and produces low-molecular weight fraction of metals in boreal humic waters

    NASA Astrophysics Data System (ADS)

    Oleinikova, Olga V.; Drozdova, Olga Yu.; Lapitskiy, Sergey A.; Demin, Vladimir V.; Bychkov, Andrey Yu.; Pokrovsky, Oleg S.

    2017-08-01

    Photochemical degradation of dissolved organic matter (DOM) is recognized as the major driver of CO2 emission to the atmosphere from the inland waters of high latitudes. In contrast to numerous studies of photo-induced DOM transformation, the behavior of trace element (TE) during photodegradation of boreal DOM remains virtually unknown. Towards a better understanding of concentration, size fractionation and speciation change of DOM and TE in boreal waters subjected to solar radiation, we conducted on-site photo-degradation experiments in stream and bog water collected from a pristine zone of the Northern Karelia (Russian subarctic). The removal of Fe and Al occurred only in the bog water (90% and 50% respectively, over 5 days of reaction), whereas no detectable decrease of dissolved (<0.22 μm) Al and Fe concentration was observed in the boreal stream. A number of low-soluble TE linked to Fe-rich organo-mineral colloids followed the behavior of Fe during bog water exposure to sunlight: Al, P, Ti, V, Cr, As, Y, Zr, REEs, Hf, Th, Pb and U. The second group of elements (Li, B, Mg, Ca, Sr, Ba, Na, K, Rb, Si, Mn, Ni, Cu, Co, Cd, Sb) was indifferent to photodegradation of DOM and exhibited a non-systematic variation (±10-15% from the control) of <0.22 μm fraction in the course of sunlight exposure. The bog water insolation yielded a factor of 3 ± 1 increase of low molecular weight (LMW < 1 kDa) fraction of organic carbon, Al, Fe, U, Mg, Ca, Mn, Co, Ni, Sr, Cd and Ba after 200 h of sunlight exposure compared to the dark control. The LMW< 1 kDa fraction was preferentially enriched in Fe, Al, Ca, Mg and other divalent metals relative to Corg. The climate warming leading to water temperature rise in the boreal zone will intensify the Fe and Al hydroxide coagulation while increasing the production of LMW organic ligands and free metals and metal - organic complexes.

  6. Removal of chromium (VI) ions from aqueous solutions using amine-impregnated TiO2 nanoparticles modified cellulose acetate membranes.

    PubMed

    Gebru, Kibrom Alebel; Das, Chandan

    2018-01-01

    In this work, TiO 2 nanoparticles (NPs) were modified using tetraethylenepentamine (TEPA), ethylenediamine (EDA), and hexamethylenetetramine (HMTA) amines using impregnation process. The prepared amine modified TiO 2 samples were explored as an additive to fabricate ultrafiltration membranes with enhanced capacity towards the removal of chromium ions from aqueous solution. Modified membranes were prepared from cellulose acetate (CA) polymer blended with polyethylene glycol (PEG) additive, and amine modified TiO 2 by using phase inversion technique. Fourier transform infrared spectroscopy (FTIR), zeta potential (ζ), thermo gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), water contact angle (WCA), and atomic absorption spectrophotometer (AAS) studies were done to characterize the membranes in terms of chemical structure, electric charge, thermal stability, morphology, hydrophilicity, and removal performance. The pure water permeability and Cr (VI) ion removal efficiency of the unmodified (i.e. CA/U-Ti) and the amine modified (CA/Ti-HMTA, CA/Ti-EDA, and CA/Ti-TEPA) membranes were dependent on pH and metal ion concentration. Incorporation of amine modified TiO 2 composite to the CA polymer was found to improve the fouling and removal characteristics of the membranes during the chromium ultrafiltration process. The maximum removal efficiency result of Cr (VI) ions at pH of 3.5 using CA/Ti-TEPA membrane was 99.8%. The washing/regeneration cycle results in this study described as an essential part for prospect industrial applications of the prepared membranes. The maximum Cr (VI) removal results by using CA/Ti-TEPA membrane for four washing/regeneration cycles are 99.6%, 99.5%, 98.6% and, 96.6%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. First-principles analysis of X-ray magnetic circular dichroism for transition metal complex oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeno, Hidekazu, E-mail: h-ikeno@21c.osakafu-u.ac.jp

    2016-10-14

    X-ray magnetic circular dichroism (XMCD) is widely used for the characterization of magnetism of materials. However, information from XMCD related to the atomic, electronic, and magnetic structures is not fully utilized due to the lack of reliable theoretical tools for spectral analysis. In this work, the first-principles configuration interaction (CI) calculations for X-ray absorption spectra developed by the author were extended for the calculation of XMCD, where the Zeeman energy was taken into the Hamiltonian of the CI to mimic magnetic polarization in the solid state. This technique was applied to interpret the L{sub 2,3} XMCD from 3d transition metalmore » complex oxides, such as NiFe{sub 2}O{sub 4} and FeTiO{sub 3}. The experimental XMCD spectra were quantitatively reproduced using this method. The oxidation states as well as the magnetic ordering between transition metal ions on crystallographically different sites in NiFe{sub 2}O{sub 4} can be unambiguously determined. A first-principles analysis of XMCD in FeTiO{sub 3} revealed the presence of Fe{sup 3+} and Ti{sup 3+} ions, which indicates that the charge transfer from Fe to Ti ions occurs. The origin of magnetic polarization of Ti ions in FeTiO{sub 3} was also discussed.« less

  8. Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi x High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Guo, Jun; Huang, Xuefei; Huang, Weigang

    2017-07-01

    FeCrMoVTi x ( x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.

  9. Al-TiC composites in situ-processed by ingot metallurgy and rapid solidification technology. Part 2: Mechanical behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, X.C.; Fang, H.S.

    1998-03-01

    In Part 2 of this article, the high-strength Al-Si/TiC composite and the elevated-temperature-resistant Al-Fe(-V-Si)/TiC composite, developed on the basis of the in situ Al-TiC composites (Part 1 of the article), have been evaluated for their room- and elevated-temperature mechanical behavior. The microstructural characteristics of ingot metallurgy (IM) or rapid solidification (RS) Al-Si/TiC and Al-Fe(-V-Si)/TiC composites could be thought of as a combination of the related alloy matrix microstructures and the IM or RS Al/TiC composites. The IM Al/TiC and the Al-Si/TiC composites show superior strength and ductility to the relevant aluminum-based composites. The RS Al/TiC and the Al-Fe-V-Si/TiC exhibit highmore » Young`s moduli and substantial improvements in room- and elevated-temperature tensile properties compared to those of rapidly solidified alloys and conventional composites. The Young`s modulus values of RS Al/TiC and Al-Fe-V-Si/TiC composites are well within Hashin-Shtrikman (H-S) limits, in keeping with the strong interfacial bonding. In the micromechanics approach, the principal strengthening mechanisms for the present dispersed, particle-hardened RS in situ Al-TiC composites would include Orowan strengthening, grain-size and substructure strengthening, and solid-solution strengthening.« less

  10. Fusion of 48Ti+58Fe and 58Ni+54Fe below the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Stefanini, A. M.; Montagnoli, G.; Corradi, L.; Courtin, S.; Bourgin, D.; Fioretto, E.; Goasduff, A.; Grebosz, J.; Haas, F.; Mazzocco, M.; Mijatović, T.; Montanari, D.; Pagliaroli, M.; Parascandolo, C.; Scarlassara, F.; Strano, E.; Szilner, S.; Toniolo, N.; Torresi, D.

    2015-12-01

    Background: No data on the fusion excitation function of 48Ti+58Fe in the energy region near the Coulomb barrier existed prior to the present work, while fusion of 58Ni+54Fe was investigated in detail some years ago, down to very low energies, and clear evidence of fusion hindrance was noticed at relatively high cross sections. 48Ti and 58Fe are soft and have a low-lying quadrupole excitation lying at ≈800 -900 keV only. Instead, 58Ni and 54Fe have a closed shell (protons and neutrons, respectively) and are rather rigid. Purpose: We aim to investigate (1) the possible influence of the different structures of the involved nuclei on the fusion excitation functions far below the barrier and, in particular, (2) whether hindrance is observed in 48Ti+58Fe , and to compare the results with current coupled-channels models. Methods: 48Ti beams from the XTU Tandem accelerator of INFN-Laboratori Nazionali di Legnaro were used. The experimental setup was based on an electrostatic beam separator, and fusion-evaporation residues (ERs) were detected at very forward angles. Angular distributions of ERs were measured. Results: Fusion cross sections of 48Ti+58Fe have been obtained in a range of nearly six orders of magnitude around the Coulomb barrier, down to σ ≃2 μ b . The sub-barrier cross sections of 48Ti+58Fe are much larger than those of 58Ni+54Fe . Significant differences are also observed in the logarithmic derivatives and astrophysical S factors. No evidence of hindrance is observed, because coupled-channels calculations using a standard Woods-Saxon potential are able to reproduce the data in the whole measured energy range. Analogous calculations for 58Ni+54Fe predict clearly too large cross sections at low energies. The two fusion barrier distributions are wide and display a complex structure that is only qualitatively fit by calculations. Conclusions: It is pointed out that all these different trends originate from the dissimilar low-energy nuclear structures of the involved nuclei. In particular, the strong quadrupole excitations in 48Ti and 58Fe produce the relative cross section enhancement and make the barrier distribution ≈2 MeV wider, thus probably pushing the threshold for hindrance below the measured limit.

  11. Microwave absorption properties of polypyrrole-SrFe12O19-TiO2-epoxy resin nanocomposites: Optimization using response surface methodology

    NASA Astrophysics Data System (ADS)

    Seyed Dorraji, M. S.; Rasoulifard, M. H.; Amani-Ghadim, A. R.; Khodabandeloo, M. H.; Felekari, M.; Khoshrou, M. R.; hajimiri, I.

    2016-10-01

    At a few works are discussed about formation of heterogeneous composites with different distribution of particle shape and size that are used for electromagnetic absorption purposes. In this study a novel heterogeneous nanocpmposites is investigated. The nanocomposite has been successfully prepared based on epoxy resin including various nano-metal oxides (TiO2, SrFe12O19) and polypyrrole (PPy) by sol-gel and the solution chemistry method, respectively. The performance of prepared nanocomposite in absorption of microwave in X-band range was investigated and transmission line method by X-band waveguide straight was used to measure EM parameters of nanocomposites. The Response surface methodology (RSM) with central composite design (CCD) was utilized to study the effects of the wt.% TiO2 in SrFe12O19, wt.% Tio2-SrFe12O19 in PPy and wt.% TiO2-SrFe12O19-PPy in epoxy resin, on the microwave absorption properties with the absorber thickness of only 2 mm. The proposed quadratic model was in accordance with the experimental results with correlation coefficient of 96.5%. The optimum condition for maximum microwave absorption efficiency were wt.% TiO2 in SrFe12O19 of 70, wt.% TiO2-SrFe12O19 in PPy of 10 and wt.% TiO2-SrFe12O19-PPy in epoxy of 25. The sample prepared in optimal conditions indicated reflection loss of -15 dB corresponding to 97% absorption, at the range of 9.2-10.8 GHz.

  12. Influence of Humic Acid on Stability and Attachment of nTiO2 Particles to Sand at Different pH

    NASA Astrophysics Data System (ADS)

    Cheng, T.

    2015-12-01

    Stability of nano-scale or micro-scale titanium dioxide particles (nTiO2) and their attachment to sediment grains have important implications to the fate and transport of nTiO2 in subsurface environments. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the stability and transport of negatively charged colloids, may influence nTiO2 in different manners. The objective of this study is to investigate the effects of pH and humic acid (HA) on the stability and attachment of nTiO2 to sand, with special attention to low HA concentration ranges that are relevant to groundwater conditions. Stability and attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand were experimentally measured under a range of low HA concentrations at pH 5 and 9. Results showed that HA can either promote or hinder nTiO2 stability, depending on pH and HA concentration. We also found that HA can either enhance or reduce nTiO2 attachment to Fe oxyhydroxide coating at pH 5, depending on HA concentration. Results further showed that at pH 5, Fe oxyhydroxide coating reduced nTiO2 attachment to sand in the absence of HA but increased nTiO2 attachment in the presence of low concentration of HA. Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was invoked to analyze particle-to-particle and particle-to-sand interactions in order to elucidate the roles of pH, HA, quartz, and Fe coating in nTiO2 stability and attachment. Overall, this study showed that changes in zeta potential of nTiO2 and Fe coating due to pH changes and/or HA adsorption are the key factors that influence stability and attachment of nTiO2.

  13. Raman spectroscopic study of synthesized Na-bearing majoritic garnets

    NASA Astrophysics Data System (ADS)

    Okamoto, K.

    2003-12-01

    Majoritic garnets in diamond have been considered as the sample from mantle transition zone (e.g. Moore and Gurney, 1985). For non-destructive, in-situ Raman analysis, Gillet et al. (2002) systematically checked chemistry and Raman peak of various majoritic garnets in diamond. They treated majoritic component as number of excess-silica than 3.0 per formula unit. However, in the basaltic system, majorite garnets also have significant amounts of Na. Na substitution is coupled with Si and Ti as follows; Na +Ti = Ca +Al (Ringwood and Lovering, 1970), Na +Si = Ca + Al (Sobolev and Labrentav, 1971; Ringwood and Major, 1971) or Na + Si = Mg + Al (Gasparik, 1989). Each component in garnet is defined as follows; Mj (majorite) component = ((Si-3)-Na)/2), NaSi (Na2MSi5O12 where M= Ca, Mg, Fe2+) component = (Na-T)/2, and NaTi component = Ti/2. Okamoto and Maruyama (2003) conducted UHP experiments in the MORB + H2O system (KNCFMATSH) at 10-19 GPa. They show that 1) Mj and NaTi component are constant and lower than 0.1 at T = 900 \\deg C, and 2) NaSi component increases drastically above 15 GPa although it is neglibly small at P<15 GPa. Raman spectra was newly analyzed using Okamoto and Maruyama (2003)'s run charges. Above 15 GPa, there is a characteristic sharp peak at 910 cm-1 and broad shoulder between 800 and 900 cm-1 as well as broad band near 960 cm-1. Gillet et at (2002) concluded that the former peak at 910cm-1 is the only reliable signature for the majoritic garnet (Si>3). They also implied that the latter two broad peaks are diagnostic feature for Ti rich garnet (> 1wt% of TiO2) as well as peak at 1030 cm-1. However, in all P range (10-19 GPa) of the present study, TiO2 is higher than 1wt%, and there is a peak at 1030 cm-1. Additional Ti-free experiment at 16 GPa, 1200 \\deg C clearly revealed that Na-bearing majoritic garnet has a significant shoulder at 800-900 cm-1. Ref; Gasparik (1989) CMP, 102,389, Gillet et al. (2002) Am.Min., 87, 312, Moore and Gurney (1985)Nature, 318, 553, Okamoto and Maruyama (2003)PEPI, in press, Ringwood and Lovering (1970) EPSL, 7, 371, Ringwood and Major (1971)EPSL, 12, 411, Sobolev and Labrentav (1971)CMP, 31, 1.

  14. Enhanced photochemical catalysis of TiO2 inverse opals by modification with ZnO or Fe2O3 using ALD and the hydrothermal method

    NASA Astrophysics Data System (ADS)

    Liu, Jiatong; Sun, Cuifeng; Fu, Ming; Long, Jie; He, Dawei; Wang, Yongsheng

    2018-02-01

    The development of porous materials exhibiting photon regulation abilities for improved photoelectrochemical catalysis performance is always one of the important goals of solar energy harvesting. In this study, methods to improve the photocatalytic activity of TiO2 inverse opals were discussed. TiO2 inverse opals were prepared by atomic layer deposition (ALD) using colloidal crystal templates. In addition, TiO2 inverse opal heterostructures were fabricated using colloidal heterocrystals by repeated vertical deposition using different colloidal spheres. The hydrothermal method and ALD were used to prepare ZnO- or Fe2O3-modified TiO2 inverse opals on the internal surfaces of the TiO2 porous structures. Although the photonic reflection band was not significantly varied by oxide modification, the presence of Fe2O3 in the TiO2 inverse opals enhanced their visible absorption. The conformally modified oxides on the TiO2 inverse opals could also form energy barriers and avoid the recombination of electrons and holes. The fabrication of the TiO2 photonic crystal heterostructures and modification with ZnO or Fe2O3 can enhance the photocatalytic activity of TiO2 inverse opals.

  15. Structural analysis and ferroelectric properties of Fe doped BaTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Ashutosh, E-mail: a.mansuri14@gmail.com, E-mail: amishra1960@yahoo.co.in; Mansuri, Amantulla, E-mail: a.mansuri14@gmail.com, E-mail: amishra1960@yahoo.co.in; Dwivedi, J. P.

    2016-05-23

    The polycrystalline samples of Fe doped BaTiO{sub 3} (BTO) with compositional formula BaTi{sub 1-x}Fe{sub x}O{sub 3} (x = 0, 0.03, 0.04 and 0.05) were prepared by solid-state reaction route. The influence of the Fe content on the structural, vibrational and electric properties of BaTiO{sub 3} was investigated using X-ray powder diffraction (XRD), Raman spectroscopy and Polarization techniques. XRD analysis indicates the formation of single-phase tetragonal structure for all the prepared samples. Tetragonal cubic structure with space group P4mm of all samples is further approved by Rietveld refinement. Room temperature Raman spectra of pure BaTiO{sub 3} show four active modes ofmore » vibration whose intensity decreases with increasing Fe doping. Small shift in Raman modes and increment in the line width has been observed with the doping ions. The hysteresis loop is very well performed with regular sharp characteristic of ferroelectric materials.« less

  16. Electric field gradient in FeTiO3 by nuclear magnetic resonance and ab initio calculations.

    PubMed

    Procházka, V; Stěpánková, H; Chlan, V; Tuček, J; Cuda, J; Kouřil, K; Filip, J; Zbořil, R

    2011-05-25

    Temperature dependence of nuclear magnetic resonance (NMR) spectra of (47)Ti and (49)Ti in polycrystalline ilmenite FeTiO(3) was measured in the range from 5 to 300 K under an external magnetic field of 9.401 T. NMR spectra collected between 300 and 77 K exhibit a resolved quadrupole splitting. The electric field gradient (EFG) tensor was evaluated for Ti nuclei and the ratio of (47)Ti and (49)Ti nuclear quadrupole moments was refined during the fitting procedure. Below 77 K, the fine structure of quadrupole splitting disappears due to the enormous increase of anisotropy. As a counterpart, ab initio calculations were performed using full potential augmented plane waves + local orbitals. The calculated EFG tensors for Ti and Fe were compared to the experimental ones evaluated from NMR and the Mössbauer spectroscopy experiments.

  17. Phase equilibria and geochemical constraints on the petrogenesis of high-Ti picrite from the Paleogene East Greenland flood basalt province

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Shen; Hou, Tong; Veksler, Ilya V.; Lesher, Charles E.; Namur, Olivier

    2018-02-01

    Phase equilibrium experiments have been performed on an extremely high-Ti (5.4 wt.% TiO2) picrite from the base of the Paleogene ( 55 Ma) East Greenland Flood Basalt Province. This sample has a high CaO/Al2O3 ratio (1.14), a steep rare-earth elements (REE) profile, is enriched in incompatible trace elements, and is in chemical equilibrium with highly primitive olivine. This all suggests that the picrite is a near-primary melt that did not suffer major chemical evolution during ascent from the mantle source and through the crust. Near-liquidus phase relations were determined over the pressure range of 1 atm, 1 to 1.5 GPa and at temperatures from 1094 to 1400°C. They provide an important constraint on the petrogenesis of these lavas. The high-Ti picritic melt is multi-saturated with olivine (Ol) + orthopyroxene (Opx) at 1 GPa but has only Ol or Opx on the liquidus at lower and higher pressures, respectively. This indicates the primitive melt was last equilibrated with its mantle source at relatively shallow pressure ( 1 GPa). Melting probably started at 2-3 GPa and the picritic melt was produced by 15-30% melting of the mantle source. Such a degree of partial melting requires a mantle with a high potential temperature (1480-1530˚C). The relatively low CaO content and high FeO/MnO ratios of the most primitive East Greenland picrites, the high Ni content of olivine phenocrysts and the presence of low-Ca pyroxene (i.e., pigeonite) at high pressure in our experiments all suggest that the mantle source contained a major component of garnet pyroxenite. Residual garnet in the source could adequately explain the low Al2O3 content (7.92 wt.%) and steep REE patterns of the picrite sample. However, simple melting of a lherzolitic source, even with a major pyroxenite component, cannot explain the formation of magmas with the very high Ti contents observed in some East Greenland basalts. We therefore propose that magmas highly-enriched in Ti were produced by melting of a metasomatized mantle source containing Ti-enriched amphibole and/or phlogopite.

  18. Yolk-like Fe3O4@C-Au@void@TiO2-Pd hierarchical microspheres with visible light-assisted enhanced photocatalytic degradation of dye

    NASA Astrophysics Data System (ADS)

    Chen, Suqing; Liang, Huading; Shen, Mao; Jin, Yanxian

    2018-04-01

    In this paper, we present the design and implementation of a type of yolk-like Fe3O4@C-Au@void@TiO2-Pd hierarchical microspheres with visible light-assisted enhanced photocatalytic degradation of dye and rapid magnetic separation. The resulting composite microspheres exhibited yolk-like hierarchical structures with a 236.3 m2 g-1 surface area and a high-saturation magnetization of 31.5 emu g-1. As an example of applications, the photodegradation of Rhodamine B (RhB) in the presence of NaBH4 was investigated under simulated sunlight irradiation. The results show that the photocatalytic activity of the yolk-like Fe3O4@C-Au@void@TiO2-Pd microcomposites in the RhB photodegradation is higher than the Fe3O4@C-Au@void@TiO2 and Fe3O4@C@TiO2 microcomposites, as they can degrade RhB with 40 min of irradiation time. In addition, by magnetic separation, the as-prepared yolk-like Fe3O4@C-Au@void@TiO2-Pd hierarchical microcomposites can be completely separated and reused for four times.

  19. Structure Evolution and Multiferroic Properties in Cobalt Doped Bi4NdTi3Fe1-xCoxO15-Bi3NdTi2Fe1-xCoxO12-δ Intergrowth Aurivillius Compounds

    PubMed Central

    Zhang, D. L.; Huang, W. C.; Chen, Z. W.; Zhao, W. B.; Feng, L.; Li, M.; Yin, Y. W.; Dong, S. N.; Li, X. G.

    2017-01-01

    Here, we report the structure evolution, magnetic and ferroelectric properties in Co-doped 4- and 3-layered intergrowth Aurivillius compounds Bi4NdTi3Fe1-xCoxO15-Bi3NdTi2Fe1-xCoxO12-δ. The compounds suffer a structure evolution from the parent 4-layered phase (Bi4NdTi3FeO15) to 3-layered phase (Bi3NdTi2CoO12-δ) with increasing cobalt doping level from 0 to 1. Meanwhile the remanent magnetization and polarization show opposite variation tendencies against the doping level, and the sample with x = 0.3 has the largest remanent magnetization and the smallest polarization. It is believed that the Co concentration dependent magnetic properties are related to the population of the Fe3+ -O-Co3+ bonds, while the suppressed ferroelectric polarization is due to the enhanced leakage current caused by the increasing Co concentration. Furthermore, the samples (x = 0.1–0.7) with ferromagnetism show magnetoelectric coupling effects at room temperature. The results indicate that it is an effective method to create new multiferroic materials through modifying natural superlattices. PMID:28272495

  20. Menzerite-(Y) a New Species {(Y REE)(Ca Fe2plus)2}[(Mg Fe2plus)(Fe3plus Al)](Si3)O12 from a Felsic Granulite Parry Sound Ontario and a New Garnet End-member (Y2Ca)Mg2(SiO4)3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Grew; J Marsh; M Yates

    2011-12-31

    Menzerite-(Y), a new mineral species, forms reddish brown cores, n = 1.844 (20), up to 70 {micro}m across, rimmed successively by euhedral almandine containing up to 2.7 wt% Y{sub 2}O{sub 3} and by K-feldspar in a felsic granulite on Bonnet Island in the interior Parry Sound domain, Grenville Orogenic Province, Canada. It is named after Georg Menzer (1897-1989), the German crystallographer who solved the crystal structure of garnet. Single-crystal X-ray-diffraction results yielded space group Ia3d, a = 11.9947(6) {angstrom}. An electron-microprobe analysis of the grain richest in Y (16.93 wt% Y{sub 2}O{sub 3}) gave the following formula, normalized to eightmore » cations and 12 oxygen atoms: {l_brace}Y{sub 0.83}Gd{sub 0.01}Dy{sub 0.05}Ho{sub 0.02}Er{sub 0.07}Tm{sub 0.01}Yb{sub 0.06}Lu{sub 0.02}Ca{sub 1.37}Fe{sub 0.49}{sup 2+}Mn{sub 0.07}{r_brace} [Mg{sub 0.55}Fe{sub 0.42}{sup 2+}Fe{sub 0.58}{sup 3+}Al{sub 0.35} V{sub 0.01}Sc{sub 0.01}Ti{sub 0.08}](Si{sub 2.82}Al{sub 0.18})O{sub 12}, or {l_brace}(Y,REE)(Ca,Fe{sup 2+}){sub 2}{r_brace}[(Mg,Fe{sup 2+})(Fe{sup 3+},Al)](Si{sub 3})O{sub 12}. Synchrotron micro-XANES data gave Fe{sup 3+}/{Sigma}Fe = 0.56(10) versus 0.39(2) calculated from stoichiometry. The scattering power refined at the octahedral Y site, 17.68 epfu, indicates that a relatively light element contributes to its occupancy. Magnesium, as determined by electron-microprobe analyses, would be a proper candidate. In addition, considering the complex occupancy of this site, the average Y-O bond length of 2.0244(16) {angstrom} is in accord with a partial occupancy by Mg. The dominance of divalent cations with Mg > Fe{sup 2+} and the absence of Si at the octahedral Y site (in square brackets) are the primary criteria for distinguishing menzerite-(Y) from other silicate garnet species; the menzerite-(Y) end-member is {l_brace}Y{sub 2}Ca{r_brace}[Mg{sub 2}](Si{sub 3})O{sub 12}. The contacts of menzerite-(Y) with almandine are generally sharp and, in places, cuspate. It is interpreted to have equilibrated with ferrosilite, augite, quartz, oligoclase, allanite-(Ce), magnetite, ilmenite and fluorapatite, in the absence of almandine, on the prograde path at 7-8.5 kbar and T {approx} 700-800 C, and subsequently dissolved incongruently in an anatectic melt to form almandine, most likely, at P {approx} 8.5-9.5 kbar and T {approx} 800-850 C.« less

  1. Time-series analysis of two hydrothermal plumes at 9°50'N East Pacific Rise reveals distinct, heterogeneous bacterial populations.

    PubMed

    Sylvan, J B; Pyenson, B C; Rouxel, O; German, C R; Edwards, K J

    2012-03-01

    We deployed sediment traps adjacent to two active hydrothermal vents at 9°50'N on the East Pacific Rise (EPR) to assess the variability in bacterial community structure associated with plume particles on the timescale of weeks to months, to determine whether an endemic population of plume microbes exists, and to establish ecological relationships between bacterial populations and vent chemistry. Automated rRNA intergenic spacer analysis (ARISA) indicated that there are separate communities at the two different vents and temporal community variations between each vent. Correlation analysis between chemistry and microbiology indicated that shifts in the coarse particulate (>1 mm) Fe/(Fe+Mn+Al), Cu, V, Ca, Al, (232) Th, and Ti as well as fine-grained particulate (<1 mm) Fe/(Fe+Mn+Al), Fe, Ca, and Co are reflected in shifts in microbial populations. 16S rRNA clone libraries from each trap at three time points revealed a high percentage of Epsilonproteobacteria clones and hyperthermophilic Aquificae. There is a shift toward the end of the experiment to more Gammaproteobacteria and Alphaproteobacteria, many of whom likely participate in Fe and S cycling. The particle-attached plume environment is genetically distinct from the surrounding seawater. While work to date in hydrothermal environments has focused on determining the microbial communities on hydrothermal chimneys and the basaltic lavas that form the surrounding seafloor, little comparable data exist on the plume environment that physically and chemically connects them. By employing sediment traps for a time-series approach to sampling, we show that bacterial community composition on plume particles changes on timescales much shorter than previously known. © 2012 Blackwell Publishing Ltd.

  2. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    NASA Astrophysics Data System (ADS)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  3. Phosphorus mitigation during springtime runoff by amendments applied to grassed soil.

    PubMed

    Uusi-Kämppä, J; Turtola, E; Närvänen, A; Jauhiainen, L; Uusitalo, R

    2012-01-01

    Permanent grass vegetation on sloping soils is an option to protect fields from erosion, but decaying grass may liberate considerable amounts of dissolved reactive P (DRP) in springtime runoff. We studied the effects of freezing and thawing of grassed soil on surface runoff P concentrations by indoor rainfall simulations and tested whether the peak P concentrations could be reduced by amending the soil with P-binding materials containing Ca or Fe. Forty grass-vegetated soil blocks (surface area 0.045 m, depth 0.07 m) were retrieved from two permanent buffer zones on a clay and loam soil in southwest Finland. Four replicates were amended with either: (i) gypsum from phosphoric acid processing (CaSO × 2HO, 6 t ha), (ii) chalk powder (CaCO, 3.3 t ha), (iii) Fe-gypsum (6 t ha) from TiO processing, or (iv) granulated ferric sulfate (Fe[SO], 0.7 t ha), with four replicates serving as untreated controls. Rainfall (3.3 h × 5 mm h) was applied on presaturated samples set at a slope of 5% and the surface runoff was analyzed for DRP, total dissolved P (TDP), total P (TP), and suspended solids. Rainfall simulation was repeated twice after the samples were frozen. Freezing and thawing of the samples increased the surface runoff DRP concentration of the control treatment from 0.19 to 0.46 mg L, up to 2.6-3.7 mg L, with DRP being the main P form in surface runoff. Compared with the controls, surface runoff from soils amended with Fe compounds had 57 to 80% and 47 to 72% lower concentrations of DRP and TP, respectively, but the gypsum and chalk powder did not affect the P concentrations. Thus, amendments containing Fe might be an option to improve DRP retention in, e.g., buffer zones. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Different Topological Quantum States in Ternary Zintl compounds: BaCaX (X = Si, Ge, Sn and Pb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lin-Lin; Kaminski, Adam; Canfield, Paul C.

    Topological quantum states require stringent combination of crystal symmetry and spin–orbit coupling (SOC) strength. Here in this paper, we report that the ternary Zintl compound series BaCaX (X = Si, Ge, Sn and Pb, Group IV) in the same crystal structure having eight valence electrons per formula unit can host two different topological quantum phases, controlled by atomic size and SOC strength. BaCaSi is a nodal-line semimetal (NLSM) with band inversion protected by mirror symmetry and hosts a strong topological insulator (TI) state when SOC is turned on, thus, a NLSM-TI phase. Moving to larger atomic sizes and heavier atoms,more » BaCaGe and BaCaSn are normal insulators (NIs); then, with the strongest SOC in BaCaPb, a different band inversion is induced, giving a strong TI phase without the need of NLSM. Thus, we also predict two types of topological transitions in a phase diagram for BaCaX: (1) NLSM-TI to NI, then to TI by tuning atomic size and SOC strength via alloying, and (2) NI or TI to NLSM-TI via pressure.« less

  5. Different Topological Quantum States in Ternary Zintl compounds: BaCaX (X = Si, Ge, Sn and Pb)

    DOE PAGES

    Wang, Lin-Lin; Kaminski, Adam; Canfield, Paul C.; ...

    2017-12-14

    Topological quantum states require stringent combination of crystal symmetry and spin–orbit coupling (SOC) strength. Here in this paper, we report that the ternary Zintl compound series BaCaX (X = Si, Ge, Sn and Pb, Group IV) in the same crystal structure having eight valence electrons per formula unit can host two different topological quantum phases, controlled by atomic size and SOC strength. BaCaSi is a nodal-line semimetal (NLSM) with band inversion protected by mirror symmetry and hosts a strong topological insulator (TI) state when SOC is turned on, thus, a NLSM-TI phase. Moving to larger atomic sizes and heavier atoms,more » BaCaGe and BaCaSn are normal insulators (NIs); then, with the strongest SOC in BaCaPb, a different band inversion is induced, giving a strong TI phase without the need of NLSM. Thus, we also predict two types of topological transitions in a phase diagram for BaCaX: (1) NLSM-TI to NI, then to TI by tuning atomic size and SOC strength via alloying, and (2) NI or TI to NLSM-TI via pressure.« less

  6. Rutile solubility in hydrous rhyolite melts at 750-900 °C and 2 kbar, with application to titanium-in-quartz (TitaniQ) thermobarometry

    NASA Astrophysics Data System (ADS)

    Kularatne, Kanchana; Audétat, Andreas

    2014-01-01

    The solubility of rutile in water-saturated haplogranite melts with molar Al/(Na + K)-ratios ranging from 0.84 to 1.25 was determined at 750-900 °C and 2 kbar in cold-seal pressure vessel experiments. Due to the low diffusivity of Ti at these conditions a new method was developed to determine TiO2 solubility. In this method, glasses with TiO2 gradients were used as starting material, and after the experiments the TiO2 content was measured at the contact between rutile-bearing and rutile-free glass. The glasses were either directly equilibrated at the desired P-T conditions (i.e., crystallization experiments), or first treated at 50-150 °C lower temperatures and then subjected to the desired conditions (i.e., dissolution experiments). The results obtained in crystallization and dissolution experiments agree well with each other, suggesting that equilibrium was attained. Rutile solubility in peralkaline melts strongly increases with temperature and the amount of excess alkalies according to the relation: log TiO2 (wt%)=(1.8∗ΔANK-0.53)∗10,000/T-(12.8∗ΔANK-4.3) in which ΔANK is the deviation of the molar Al/(Na + K)-ratio from unity and T is given in Kelvin. Excess alumina does not seem to promote TiO2 solubility. For natural melt compositions it was found that if Ca, Mg and Fe are assumed to be 10 times less effective in promoting TiO2 solubility than excess Na and K, good fits to previous solubility data in silicic (⩾70 wt% SiO2) melts at upper crustal pressures (⩽10 kbar) are obtained. Application of this extended TiO2 solubility model to natural melt inclusions in quartz phenocrysts from five silicic volcanic systems returns TiO2 activities that are similar to those calculated with a previous experiment-based model and to those calculated from pairs of coexisting Fe-Ti-oxides, but are up to 2.9 times higher than those calculated with MELTS and rhyolite-MELTS. Pressures calculated from Ti concentrations in the host quartz using the most recent calibration of the TitaniQ thermobarometer are in good agreement with independent pressure estimates, suggesting that at upper crustal conditions this calibration is valid.

  7. Ordered Fe(II)Ti(IV)O3 Mixed Monolayer Oxide on Rutile TiO2(011).

    PubMed

    Halpegamage, Sandamali; Ding, Pan; Gong, Xue-Qing; Batzill, Matthias

    2015-08-25

    Oxide monolayers supported or intermixed with an oxide support are potential nanocatalysts whose properties are determined by the interplay with the support. For fundamental studies of monolayer oxides on metal oxide supports, well-defined systems are needed, but so far, the synthesis of monolayer oxides with long-range order on single-crystal oxide surfaces is rare. Here, we show by a combination of scanning tunneling microscopy, photoemission spectroscopy, and density functional theory (DFT)-based computational analysis that the rutile TiO2(011) surface supports the formation of an ordered mixed FeTiO3 monolayer. Deposition of iron in a slightly oxidizing atmosphere (10(-8) Torr O2) and annealing to 300 °C results in a well-ordered surface structure with Fe in a 2+ charge state and Ti in a 4+ charge states. Low-energy ion scattering suggests that the cation surface composition is close to half Fe and half Ti. This surface is stable in ultrahigh vacuum to annealing temperatures of 300 °C before the iron is reduced. DFT simulations confirm that a surface structure with coverage of 50% FeO units is stable and forms an ordered structure. Although distinct from known bulk phases of the iron-titanium oxide systems, the FeTiO3 monolayer exhibits some resemblance to the ilmenite structure, which may suggest that a variety of different mixed oxide phases (of systems that exist in a bulk ilmenite phase) may be synthesized in this way on the rutile TiO2(011) substrate.

  8. Silicate-Oxide Equilibria in the Wilson Lake Terrane, Labrador - Evidence for a Pre- Metamorphic Oxidizing Event

    NASA Astrophysics Data System (ADS)

    Korhonen, F. J.; Stout, J. H.

    2006-05-01

    The presence of Fe3+ and Ti in silicates and their presumed equilibration with Fe2+-Fe3+-Ti oxide minerals has long been recognized as an important factor in metamorphic phase equilibria. The Red Wine Mountains massif is a granulite facies unit in the Wilson Lake terrane of central Labrador, where this equilibration is especially important for estimating both temperature and fO2 during peak metamorphism. Peak assemblages are sapphirine + quartz, and orthopyroxene + sillimanite + quartz. The coexisting oxides, which are largely responsible for the pronounced aeromagnetic high of the massif, consist of nearly pure magnetite and an exsolved titanohematite. Estimates of fO2 based on magnetite + integrated titanohematite compositions are slightly below that defined by the pure magnetite-hematite buffer. This assemblage is also responsible for the magnetic signature of metagabbro and metanorite dikes, a fact which challenges the conventional wisdom that the high Fe3+ content of the host paragneisses was inherited from a highly oxidized ferruginous shale. We suggest here that prior to granulite facies metamorphism, an oxidizing hydrothermal event either coeval or following the emplacement of mafic dikes into the paragneiss host was responsible for the highly oxidized nature of the massif as a whole. Subsequent metamorphism then produced the observed assemblages. This scenario is supported by recent U-Pb zircon and monazite ages of ca. 1626 ± 10 Ma, which indicate that both metagabbro dikes and host paragneiss were metamorphosed at the same time. Dike emplacement and the oxidizing event must have preceded 1626 Ma. The implications of this pre-metamorphic oxidizing event is that Fe3+ becomes an inherent and fixed component in the chemical system during metamorphism. Phase relationships, preliminary thermodynamic modeling, and geothermobarometric constraints indicate that peak temperatures are lower than those previously determined for Fe3+-absent systems. More appropriate modeling of these rocks would benefit from a sapphirine mixing model involving Fe3+.

  9. Electrical Conduction of Ba(Ti0.99Fe0.01)O3-δ Ceramic at High Temperatures

    NASA Astrophysics Data System (ADS)

    Yu, Zi-De; Chen, Xiao-Ming

    2018-03-01

    BaTiO3 and Ba(Ti0.99Fe0.01)O3-δ ceramics with dense microstructure have been synthesized by a solid-state reaction method, and their electrical conduction investigated by broadband electrical impedance spectroscopy at frequencies from 0.05 Hz to 3 × 106 Hz and temperatures from 200°C to 400°C. Compared with BaTiO3, the real part of the permittivity and the phase-transition temperature of Ba(Ti0.99Fe0.01)O3-δ decreased. Relaxation peaks appeared in the curves of the imaginary part of the permittivity as a function of frequency. With increase in frequency, the peaks gradually shifted towards higher frequency and their height increased. Conductivity was closely related to frequency and temperature. Frequency-dependent conductivity was analyzed using the Jonscher double power law. Compared with BaTO3, Ba(Ti0.99Fe0.01)O3-δ exhibited high impedance at given frequency and temperature. Impedance Cole-Cole plots displayed two semicircles, which could be well fit using two parallel RC equivalent circuit models. The conductivity activation energy was found to be around 1 eV. For Ba(Ti0.99Fe0.01)O3-δ , the electrical modulus curve versus frequency displayed two peaks.

  10. Electrical Conduction of Ba(Ti0.99Fe0.01)O3- δ Ceramic at High Temperatures

    NASA Astrophysics Data System (ADS)

    Yu, Zi-De; Chen, Xiao-Ming

    2018-07-01

    BaTiO3 and Ba(Ti0.99Fe0.01)O3- δ ceramics with dense microstructure have been synthesized by a solid-state reaction method, and their electrical conduction investigated by broadband electrical impedance spectroscopy at frequencies from 0.05 Hz to 3 × 106 Hz and temperatures from 200°C to 400°C. Compared with BaTiO3, the real part of the permittivity and the phase-transition temperature of Ba(Ti0.99Fe0.01)O3- δ decreased. Relaxation peaks appeared in the curves of the imaginary part of the permittivity as a function of frequency. With increase in frequency, the peaks gradually shifted towards higher frequency and their height increased. Conductivity was closely related to frequency and temperature. Frequency-dependent conductivity was analyzed using the Jonscher double power law. Compared with BaTO3, Ba(Ti0.99Fe0.01)O3- δ exhibited high impedance at given frequency and temperature. Impedance Cole-Cole plots displayed two semicircles, which could be well fit using two parallel RC equivalent circuit models. The conductivity activation energy was found to be around 1 eV. For Ba(Ti0.99Fe0.01)O3- δ , the electrical modulus curve versus frequency displayed two peaks.

  11. A perspective of stepwise utilisation of Bayer red mud: Step two--Extracting and recovering Ti from Ti-enriched tailing with acid leaching and precipitate flotation.

    PubMed

    Huang, Yanfang; Chai, Wencui; Han, Guihong; Wang, Wenjuan; Yang, Shuzhen; Liu, Jiongtian

    2016-04-15

    The extraction and recovery of Ti from Ti-enriched tailing with acid leaching and precipitate flotation, as one of the critical steps, was proposed for the stepwise utilization of red mud. The factors influencing acid leaching and precipitate flotation were examined by factorial design. The leaching thermodynamics, kinetics of Ti(4+), Al(3+) and Fe(3+), and the mechanism of selectively Fe(3+) removal using [Hbet][Tf2N] as precipitating reagent were discussed. The extracting of Ti(4+), Al(3+) and Fe(3+) in concentrated H2SO4 is controlled by diffusion reactions, depending mainly upon leaching time and temperature. The maximum extracting efficiency of Ti(4+) is approximately 92.3%, whereas Al(3+) and Fe(3+) leaching are respectively 75.8% and 84.2%. [Hbet][Tf2N], as a precipitating reagent, operates through a coordination mechanism in flotation. The pH value is the key factor influencing the flotation recovery of Ti(4+), whereas the dosage of precipitating reagent is that for Al(3+) recovery. The maximum flotation recovery of Ti(4+) is 92.7%, whereas the maximum Al(3+) recovery is 93.5%. The total recovery rate for extracting and recovering titanium is 85.5%. The liquor with Ti(4+) of 15.5g/L, Al(3+) of 30.4g/L and Fe(3+) of 0.48g/L was obtained for the following hydrolysis step in the integrated process for red mud utilisation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Evaluation of the combined solar TiO2/photo-Fenton process using multivariate analysis.

    PubMed

    Nogueira, R F P; Trovó, A G; Paterlini, W C

    2004-01-01

    The effect of combining the photocatalytic processes using TiO2 and the photo-Fenton reaction with Fe3+ or ferrioxalate as a source of Fe2+ was investigated in the degradation of 4-chlorophenol (4CP) and dichloroacetic acid (DCA) using solar irradiation. Multivariate analysis was used to evaluate the role of three variables: iron, H2O2 and TiO2 concentrations. The results show that TiO2 plays a minor role when compared to iron and H2O2 in the solar degradation of 4CP and DCA in the studied conditions. However, its presence can improve TOC removal when H2O2 is totally consumed. Iron and peroxide play major roles, especially when Fe(NO3)3 is used in the degradation of 4CP. No significant synergistic effect was observed by the addition of TiO2 in this process. On the other hand, synergistic effects were observed between FeOx and TiO2 and between H2O2 and TiO2 in the degradation of DCA.

  13. GPU-Accelerated Optical Coherence Tomography Signal Processing and Visualization

    NASA Astrophysics Data System (ADS)

    Darbrazi, Seyed Hamid Hosseiny

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  14. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS - diurnal variations and PMF receptor modelling

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.

    2013-04-01

    Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter < 2.5 μm) resolved aerosol samples analysed by Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie European Union framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the approach used is the simultaneous sampling at two monitoring sites in Barcelona (Spain) during September-October 2010: an urban background site (UB) and a street canyon traffic road site (RS). Elements related to primary non-exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (regional sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non-exhaust brake dust (Fe-Cu) - 7%), and three types of industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%, percentages presented are average source contributions to the total elemental mass measured). The validity of the PMF solution of the PIXE data is supported by very good correlations with external single particle mass spectrometry measurements. Some important conclusions can be drawn about the PM2.5 mass fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both monitoring sites at similar concentrations regardless their different ventilation conditions; (2) by contrast, local industrial aerosol plumes associated with shipping oil combustion and smelters activities have a higher impact on the more ventilated UB site; (3) a unique source of Pb-Cl (associated with combustion emissions) is found to be the major (82%) source of fine Cl in the urban agglomerate; (4) the mean diurnal variation of PM2.5 primary traffic non-exhaust brake dust (Fe-Cu) suggests that this source is mainly emitted and not resuspended, whereas PM2.5 urban dust (Ca) is found mainly resuspended by both traffic vortex and sea breeze; (5) urban dust (Ca) is found the aerosol source most affected by land wetness, reduced by a factor of eight during rainy days and suggesting that wet roads may be a solution for reducing urban dust concentrations.

  15. Albumin and fibronectin adsorption and osteoblast adhesion on titanium oxides

    NASA Astrophysics Data System (ADS)

    Freitas, Susana Maria Ribeiro e. Sousa Mendes de

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  16. Birefringence and Bragg grating control in femtosecond laser written optical circuits

    NASA Astrophysics Data System (ADS)

    Fernandes, Luis A.

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  17. Single Point Incremental Forming and Multi-Stage Incremental Forming on Aluminium Alloy 1050

    NASA Astrophysics Data System (ADS)

    Suriyaprakan, Premika

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  18. Magnetism at the nanoscale: Nanoparticles, nanowires, nanotubes and their ordered arrays

    NASA Astrophysics Data System (ADS)

    Proenca, Mariana Jesus Paiva

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  19. Improving the characteristics of foundry alloys AlSiCuMg during manufacturing

    NASA Astrophysics Data System (ADS)

    Fragoso, Bruno Filipe Marques

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  20. Seismic assessment of reinforced concrete frame structures with a new flexibility based element

    NASA Astrophysics Data System (ADS)

    Arede, Antonio Jose Coelho Dias

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  1. Viscoelastic nanocapsules under flow in microdevices

    NASA Astrophysics Data System (ADS)

    Cordeiro, Ana Lucinda Teixeira

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  2. Stellar activity in high-precision photometric and spectroscopic transit observations

    NASA Astrophysics Data System (ADS)

    Oshagh, Mahmoudreza

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  3. Starch and polyethylene based bone-analogue composite biomaterials

    NASA Astrophysics Data System (ADS)

    Reis, Rui Luis Goncalves dos

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  4. Clinopyroxene based glasses and glass-ceramics for functional applications

    NASA Astrophysics Data System (ADS)

    Goel, Ashutosh

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  5. Impedance and dielectric relaxation spectroscopy studies on the calcium modified Na0.5Bi0.44Ca0.06TiO2.97 ceramics

    NASA Astrophysics Data System (ADS)

    Wang, W. G.; Li, X. Y.

    2017-12-01

    Na0.5Bi0.44Ca0.06TiO2.97 ceramics were synthetized by conventional solid-state reaction. XRD measurement analysis shows that the Na0.5Bi0.44Ca0.06TiO2.97 sample is the single perovskite structures. The oxide ion conductivity of the Na0.5Bi0.44Ca0.06TiO2.97 sample was investigated by AC impedance spectroscopy measurement. The bulk conductivity of Na0.5Bi0.44Ca0.06TiO2.97 sample can arrive at 2.22×10-4 S/cm at 573 K in air atmosphere. By changing measuring temperature of dielectric frequency spectroscopy measurement, the activation energy E and pre-exponential factor τ0 are E= 0.81 eV, τ0=1.5×10-13 s for Na0.5Bi0.44Ca0.06TiO2.97 sample, respectively. Judging from the relaxation parameters, the dielectric loss peaks correspond to oxide ion via vacancies diffusion in Na0.5Bi0.44Ca0.06TiO2.97 sample. Compared with the same dopant amount Na0.5Bi0.5Ti0.94Mg0.06O2.94 compound, the better oxygen vacancy mobility and larger specific free volume Vsf might be responsible for the favourable oxide ion conductivity in the Na0.5Bi0.44Ca0.06TiO2.97 sample, indicating that calcium modified Na0.5Bi0.5TiO3 materials are promising for intermediate-temperature solid electrochemical devices.

  6. The mineralogy of Ba- and Zr-rich alkaline pegmatites from Gordon Butte, Crazy Mountains (Montana, USA): comparisons between potassic and sodic agpaitic pegmatites

    NASA Astrophysics Data System (ADS)

    Chakhmouradian, Anton; Mitchell, Roger

    2002-01-01

    At Gordon Butte (Crazy Mountains, Montana), agpaitic nepheline-syenite pegmatites intrude potassic alkaline rocks (principally, malignites and nepheline microsyenites). All pegmatite veins are composed predominantly of potassium feldspar, nepheline, prismatic aegirine, barytolamprophyllite, wadeite, eudialyte, loparite-(Ce) and altered rinkite ("vudyavrite") embedded in spherulitic and fibrous aegirine. Well-differentiated veins contain "pockets" filled with calcite, fluorapatite, mangan-neptunite, Mn-Ti-enriched prismatic aegirine, calcium catapleiite, and an unidentified Ca-Ti silicate. The potassium feldspar corresponds to Ba-rich sanidine with relatively low Na contents. The nepheline contains low levels of SiO2 and elevated Fe contents. The compositions of nepheline cluster in the lower portion of the Morozewicz-Buerger convergence field, indicating low-temperature crystallization and/or chemical re-equilibration of this mineral. The association of sanidine with nearly stoichiometric nepheline is unusual for agpaitic rocks and probably reflects inhibition of Al/Si ordering in the feldspar by Ba. At least four types of clinopyroxene can be distinguished on the basis of their morphology and composition. All these types correspond to Al- and Ca-poor aegirine (typically <0.6 and 2.6 wt% Al2O3 and CaO, respectively). The overall evolutionary trend of clinopyroxene in the Gordon Butte rocks is from Fe-poor diopside to aegirine-augite in the malignites and nepheline microsyenites, and culminates with the pegmatitic aegirine. This trend is characteristic for potassic alkaline complexes and results from preferential partitioning of Fe2+ into biotite during the magmatic crystallization. Barytolamprophyllite in the pegmatites is primary (as opposed to deuteric); only a few crystals contain a core composed of lamprophyllite. The evolutionary history of the Gordon Butte pegmatites can be subdivided into primary, agpaitic, and deuteric stages. The earliest paragenesis to crystallize included accessory zircon and thorite. Sr-rich loparite also precipitated relatively early serving as a major repository for Sr, REE, and Nb. During the agpaitic stage, diverse titano- and zircono-silicates (barytolamprophyllite, eudialyte, wadeite, and rinkite, among others) consumed most of the Ba, Sr, Ti, Zr, and Nb still remaining in the melt. The final stage in the evolution of the pegmatites involved interaction of the earlier-formed mineral assemblages with deuteric fluids. In common with the Rocky Boy pegmatites, Sr-REE-Na-rich fluorapatite, Ba-Fe titanates and REE-bearing carbonates (ancylite, calcio-ancylite, and bastnäsite-parisite series) are chief products of the deuteric stage. The alteration of the primary mineral assemblages by deuteric fluids also produced muscovite-zeolite pseudomorphs after nepheline, replacement of wadeite and eudialyte by catapleiite-group minerals, re-deposition of Ba in the form of hyalophane, baotite, and benitoite, and cation leaching from rinkite, eudialyte, and loparite. The mineralogy of the pegmatites from Gordon Butte, other potassic complexes, and sodic agpaitic occurrences is compared in detail.

  7. The effects of ion implantation on the tribology of perfluoropolyether-lubricated 440C stainless steel couples

    NASA Technical Reports Server (NTRS)

    Shogrin, Bradley; Jones, William R., Jr.; Wilbur, Paul J.; Pilar, Herrera-Fierro; Williamson, Don L.

    1995-01-01

    The lubricating lifetime of thin films of a perfluoropolyether (PFPE) based on hexafluoropropene oxide in the presence of ion implanted 440C stainless steel is presented. Stainless steel discs, either unimplanted or implanted with N2, C, Ti, Ti + N2, or Ti + C had a thin film of PFPE (60-400 A) applied to them reproducibly (+/- 20 percent) and uniformly (+/- 15 percent) using a device developed for this study. The lifetimes of these films were quantified by measuring the number of sliding-wear cycles required to induce an increase in the friction coefficient from an initial value characteristic of the lubricated wear couple to a final, or failure value, characteristic of an unlubricated, unimplanted couple. The tests were performed in a dry nitrogen atmosphere (less than 1 percent RH) at room temperature using a 3 N normal load with a relative sliding speed of 0.05 m/s. The lubricated lifetime of the 440C couple was increased by an order of magnitude by implanting the disc with Ti. Ranked from most to least effective, the implanted species were: Ti; Ti+C; unimplanted; N2; C approximately equals Ti+N2. The mechanism postulated to explain these results involves the formation of a passivating or reactive layer which inhibits or facilitates the production of active sites. The corresponding surface microstructures induced by ion implantation, obtained using x-ray diffraction and conversion electron Mossbauer spectroscopy, ranked from most to least effective in enhancing lubricant lifetime were: amorphous Fe-Cr-Ti; amorphous Fe-Cr-Ti-C + TiC; unimplanted; epsilon-(Fe,Cr)(sub x)N, x = 2 or 3; amorphous Fe-Cr-C approximately equals amorphous Fe-Cr-Ti-N.

  8. On melt solutions for the growth of CaTiO3 crystals

    NASA Astrophysics Data System (ADS)

    Klimm, Detlef; Schmidt, Max; Wolff, Nora; Guguschev, Christo; Ganschow, Steffen

    2018-03-01

    When calcium titanate crystals are grown from stoichiometric melts, they crystallize in the cubic perovskite structure. Upon cooling to room temperature they undergo subsequent phase transitions to tetragonal and orthorhombic modifications. These phase transitions are disruptive and result in severely damaged crystals. This paper presents differential thermal analysis data for several prospective solvents, with the aim to identify a system offering the possibility to perform crystal growth of undistorted CaTiO3 crystals by crystallizing them significantly below the melting point directly in the low temperature modification. From mixtures CaF2:TiO2:CaTiO3 = 3:1:1 (molar ratio) the growth of undistorted, at least millimeter-sized CaTiO3 crystals is possible.

  9. Calculation of Oxygen Fugacity in High Pressure Metal-Silicate Experiments and Comparison to Standard Approaches

    NASA Technical Reports Server (NTRS)

    Righter, K.; Ghiorso, M.

    2009-01-01

    Calculation of oxygen fugacity in high pressure and temperature experiments in metal-silicate systems is usually approximated by the ratio of Fe in the metal and FeO in the silicate melt: (Delta)IW=2*log(X(sub Fe)/X(sub FeO)), where IW is the iron-wustite reference oxygen buffer. Although this is a quick and easy calculation to make, it has been applied to a huge variety of metallic (Fe- Ni-S-C-O-Si systems) and silicate liquids (SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O systems). This approach has surely led to values that have little meaning, yet are applied with great confidence, for example, to a terrestrial mantle at "IW-2". Although fO2 can be circumvented in some cases by consideration of Fe-M distribution coefficient, these do not eliminate the effects of alloy or silicate liquid compositional variation, or the specific chemical effects of S in the silicate liquid, for example. In order to address the issue of what the actual value of fO2 is in any given experiment, we have calculated fO2 from the equilibria 2Fe (metal) + SiO2 (liq) + O2 = Fe2SiO4 (liq).

  10. Sodium citrate functionalized reusable Fe3O4@TiO2 photocatalyst for water purification

    NASA Astrophysics Data System (ADS)

    Li, Wenyu; Wu, Haoyi

    2017-10-01

    Easy-recycle photocatalysts are new materials for water treatment technologies. In order to improve the recyclable ability, we employed Fe3O4 particles, which were functionalized by sodium citrate, to serve as a substrate core to attract the deposition of a shell of TiO2 particles. When compared to the calcining process for preparing the composite, the TiO2 distributed homogeneously on the sodium citrate treated Fe3O4, forming a mesoporous shell layer. Due to the mesoporous structure, this Fe3O4@TiO2 exhibited high photocatalytic degradation activity to Rhodamine B, and it was easily recycled using a magnetic field to recover the catalyst from solution.

  11. Photodecomposition of dyes on Fe-C-TiO(2) photocatalysts under UV radiation supported by photo-Fenton process.

    PubMed

    Tryba, B; Piszcz, M; Grzmil, B; Pattek-Janczyk, A; Morawski, A W

    2009-02-15

    Fe-C-TiO(2) photocatalysts were prepared by mechanical mixing of commercial anatase TiO(2) precursor with FeC(2)O(4) and heating at 500-800 degrees C under argon flow. These photocatalysts were tested for dyes decomposition: Methylene Blue (MB), Reactive Black (RB) and Acid Red (AR). The preliminary adsorption of dyes on the photocatalysts surface was performed. Modification of anatase by FeC(2)O(4) caused reducing of zeta potential of the photocatalyst surface from +12 to -7mV and decreasing of their adsorption ability towards RB and AR, which were negatively charged, -46.8 and -39.7, respectively. Therefore, unmodified TiO(2) showed the highest degree of RB and AR decompositions in the combination of dyes adsorption and UV irradiation. Methylene Blue, which had zeta potential of +4.3 in the aqueous solution was poorly adsorbed on all the tested photocatalysts and also slowly decomposed under UV irradiation. The high rate of dyes decomposition was noted on Fe-C-TiO(2) photocatalysts under UV irradiation with addition of H(2)O(2). It was observed, that at lower temperatures of heat treatment such as 500 degrees C higher content of carbon is remained in the sample, blocking the built in of iron into the TiO(2) lattice. This iron is reactive in the photo-Fenton process resulting in high production of OH radicals and also high activity of the photocatalyst. At higher temperatures of heat treatment, less active FeTiO(3) phase is formed, therefore Fe-C-TiO(2) sample prepared at 800 degrees C showed low photocatalytic activity for dyes decomposition. Fe-C-TiO(2) photocatalysts are active under visible light irradiation, however, the efficiency of a dye decomposition is lower than under UV light. In a dark Fenton process there is observed an insignificant generation of OH radicals and very little decomposition of a dye, what suggests the powerful of photo-Fenton process in the dyes decomposition.

  12. Magnetically separable {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped TiO{sub 2} core-shell nanocomposites: Fabrication and visible-light-driven photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Minqiang, E-mail: jbmwgkc@126.com; Li, Di; Jiang, Deli

    2012-08-15

    Novel visible-light-induced {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite photocatalysts capable of magnetic separation have been synthesized by a facile sol-gel and after-annealing process. The as-obtained core-shell nanocomposite is composed of a central {gamma}-Fe{sub 2}O{sub 3} core with a strong response to external fields, an interlayer of SiO{sub 2}, and an outer layer of Ce-doped TiO{sub 2} nanocrystals. UV-vis spectra analysis indicates that Ce doping in the compound results in a red-shift of the absorption edge, thus offering increased visible light absorption. We show that such a {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite with appreciated Ce doping amount exhibitsmore » much higher visible-light photocatalytic activity than bare TiO{sub 2} and undoped {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-TiO{sub 2} core-shell nanocomposite toward the degradation of rhodamine B (RhB). Moreover, the {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite photocatalysts could be easily separated and reused from the treated water under application of an external magnetic field. - Graphical abstract: Novel {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core/shell nanocomposite photocatalysts with enhanced photocatalytic activity and fast magnetic separability were prepared. Highlights: Black-Right-Pointing-Pointer Novel {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped TiO{sub 2} core/shell composite photocatalysts were prepared. Black-Right-Pointing-Pointer The resulting core/shell composite show high visible light photocatalytic activity. Black-Right-Pointing-Pointer The nanocomposite photocatalysts can be easily recycled with excellent durability.« less

  13. On stoichiometry and intermixing at the spinel/perovskite interface in CoFe2O4/BaTiO3 thin films.

    PubMed

    Tileli, Vasiliki; Duchamp, Martial; Axelsson, Anna-Karin; Valant, Matjaz; Dunin-Borkowski, Rafal E; Alford, Neil McN

    2015-01-07

    The performance of complex oxide heterostructures depends primarily on the interfacial coupling of the two component structures. This interface character inherently varies with the synthesis method and conditions used since even small composition variations can alter the electronic, ferroelectric, or magnetic functional properties of the system. The focus of this article is placed on the interface character of a pulsed laser deposited CoFe2O4/BaTiO3 thin film. Using a range of state-of-the-art transmission electron microscopy methodologies, the roles of substrate morphology, interface stoichiometry, and cation intermixing are determined on the atomic level. The results reveal a surprisingly uneven BaTiO3 substrate surface formed after the film deposition and Fe atom incorporation in the top few monolayers inside the unit cell of the BaTiO3 crystal. Towards the CoFe2O4 side, a disordered region extending several nanometers from the interface was revealed and both Ba and Ti from the substrate were found to diffuse into the spinel layer. The analysis also shows that within this somehow incompatible composite interface, a different phase is formed corresponding to the compound Ba2Fe3Ti5O15, which belongs to the ilmenite crystal structure of FeTiO3 type. The results suggest a chemical activity between these two oxides, which could lead to the synthesis of complex engineered interfaces.

  14. Fracture characteristics, microstructure, and tissue reaction of Ti-5Al-2.5Fe for orthopedic surgery

    NASA Astrophysics Data System (ADS)

    Niinomi, Mitsuo; Kobayashi, Toshiro; Toriyama, Osamu; Kawakami, Noriaki; Ishida, Yoshihito; Matsuyama, Yukihiro

    1996-12-01

    The microstructure of Ti-5Al-2.5Fe, which is expected to be used widely as an implant material not only for artificial hip joints but also for instrumentations of scoliosis surgery, was variously changed by heat treatments. The effect of the microstructure on mechanical properties, fracture toughness, and rotating-bending fatigue strength in the air and simulated body environment, that is, Ringer’s solution, was then investigated. Furthermore, the effect of the living body environment on mechanical properties and fracture toughness in Ti-5Al-2.5Fe were investigated on the specimens implanted into rabbit for about 11 months. The data of Ti-5Al-2.5Fe were compared with those of Ti-6Al-4V ELI, which has been used as an implant material mainly for artificial hip joints, and SUS 316L, which has been used as an implant material for many parts, including the instrumentation of scoliosis surgery. The equiaxed α structure, which is formed by annealing at a temperature below β transus, gives the best balance of strength and ductility in Ti-5Al-2.5Fe. The coarse Widmanstätten α structure, which is formed by solutionizing over β transus followed by air cooling and aging, gives the greatest fracture toughness in Ti-5Al-2.5Fe. This trend is similar to that reported in Ti-6Al-4V ELI. The rotating-bending fatigue strength is the greatest in the equiaxed α structure, which is formed by solutionizing below β transus followed by air cooling and aging in Ti-5Al-2.5Fe. Ti-5Al-2.5Fe exhibits much greater rotating-bending fatigue strength compared with SUS 316L, and equivalent rotating-bending fatigue strength to that of Ti-6Al-4V ELI in both the air and simulated body environments. The rotating-bending fatigue strength of SUS 316L is degraded in the simulated body environment. The corrosion fatigue, therefore, occurs in SUS 316L in the simulated body environment. Fatigue strength of Ti-5Al-2.5Fe in the simulated body environment is degraded by lowering oxygen content in the simulated body environment because the formability of oxide on the specimen surface is considered to be lowered comparing with that in air. The mechanical property and fracture toughness of Ti-5Al-2.5Fe and Ti-6Al-4V ELI are not changed in the living body environment. The hard-surface corrosion layer is, however, formed on the surface of SUS 316L in the living body environment. The C1 peak is detected from the hard-surface corrosion layer by energy-dispersive X-ray (EDX) analysis. These facts suggests a possibility for corrosion fatigue to occur in the living body environment when SUS 316L is used. The fibrous connective tissue and new bone formation are formed beside all metals. There is, however, no big difference between tissue morphology around each implant material.

  15. Effect of replacement of Ca by Zn on the structure and optical property of CaTiO3:Eu(3+) red phosphor prepared by sol-gel method.

    PubMed

    Wang, Yulong; Zhang, Wentao; Zhang, Peicong; Li, Junfeng; Long, Jianping

    2015-08-01

    Eu(3+)-doped calcium titanate red phosphors, Ca(1-x)Znx TiO3:Eu(3+), were prepared by the sol-gel method. The structure of prepared Ca(1-x)Znx TiO3:Eu(3+) phosphors were investigated by X-ray diffraction and infrared spectra. Due to the (5) D0  → (7) F1-3 electron transitions of Eu(3+) ions, photoluminescence spectra showed a red emission at about 619 nm under excitation of 397 nm and 465 nm, respectively. When zinc was added to the host, the luminescent intensity of Ca(1-x)ZnxTiO3:Eu(3+) was markedly improved several fold compared with that of CaTiO3:Eu(3+). Ca0.9Zn0.1TiO3:Eu(3+) also had higher luminescence intensity than the commercially available Y2 O3:Eu(3+) phosphors under UV light excitation. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Influence of Cu-doping on the structural and optical properties of CaTiO{sub 3} powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, L.H.; Moura, A.P. de; La Porta, F.A., E-mail: felipe_laporta@yahoo.com.br

    2016-09-15

    Highlights: • Ca{sub 1−x}Cu{sub x}TiO{sub 3} powders were successfully synthesized via a polymeric precursor method. • Effects of Cu incorporated on the Ca-site into the CaTiO{sub 3} lattice as host matrix has been investigated. • The optical behavior reveals that the Ca{sub 1−x}Cu{sub x}TiO{sub 3} powders have potential applications in emerging technologies. - Abstract: Here, we report on the effect of chemical substitution on the structural and optical properties of Cu-doped CaTiO{sub 3} (CTO) polycrystalline powders synthesized by the polymeric precursor method. Our findings are discussed based on the structural order-disorder effects originating from the modification of the Ca{sub 1−x}Cu{submore » x}TiO{sub 3} microcrystal matrix. These results may elucidate the compositional modulation and methods of controlling the structural design, as well as reveal the changes in the optical behavior of this system at an atomic level.« less

  17. Semimicro chemical and x-ray fluorescence analysis of lunar samples

    USGS Publications Warehouse

    Rose, H.J.; Cuttitta, F.; Dwornik, E.J.; Carron, M.K.; Christian, R.P.; Lindsay, J.R.; Ligon, D.T.; Larson, R.R.

    1970-01-01

    Major and selected minor elements were determined in seven whole rock fragments, five portions of pulverized lunar rock, and the lunar soil. Three different rock types were represented: vesicular, fine-grained basaltic rocks; medium-to coarse-grained, vuggy gabbroic rocks; and breccia. The ranges (in percent) for the major constituents of the lunar samples are: SiO2, 38 to 42; Al2O3, 8 to 14; total iron as FeO, 15 to 20; MgO, 6 to 8; CaO, 10 to 12; Na2O, 0.5 to 1; K2O, 0.05 to 0.4; TiO2, 8 to 13; MnO, 0.2 to 0.3; and Cr2O3, 0.2 to 0.4. The high reducing capacity of the samples strongly suggests the presence of Ti(III).

  18. Titanium magnetic polarization at the Fe/BaTiO3 interfaces: An effect of ferroelectric polarization discontinuity

    NASA Astrophysics Data System (ADS)

    Paul, Amitesh; Zheng, Jian-Guo; Aoki, Toshihiro

    2017-10-01

    The exotic magnetic phenomena and the associated functionalities have attracted extensive scientific interest in fundamental physics and cater to the purpose of the novel material search. In this article, with a combination of the electron energy-loss spectroscopy and the X-ray absorption spectroscopy, we have investigated the interfacial Fe atoms and the induced ferromagnetic moment of Ti atoms in Fe/BaTiO3 (BTO) heterostructures. The samples were grown with two different BTO thicknesses, thus resulting in two different states of distorted oxygen environments or different electrostatic potentials. We demonstrate that in these systems, the electronic and magnetic proximity effects remain coupled as the ferroelectric polar discontinuity is held responsible for an induced transfer of the interface electrons. These electrons migrate from the Fe2+ layers to the Ti(4+)-δ layers with the hybridization via O-2p oxide orbitals into Ti orbitals to screen the ferroelectric polarization. These findings, in charge neutral BaO-TiO2 and FeO layers or nonpolar/nopolar interface, essentially underline the central role of the covalent bonding in defining the spin-electronic properties.

  19. Evolution of the N = 40 neutron subshell in 20 ≤ Z ≤ 30 nuclei within the dispersive optical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bespalova, O. V., E-mail: besp@sinp.msu.ru; Ermakova, T. A.; Klimochkina, A. A.

    2016-07-15

    The evolution of single-particle neutron spectra in the N = 40 isotones {sup 60}Ca, {sup 62}Ti, {sup 64}Cr, {sup 66}Fe, {sup 68}Ni, and {sup 70}Zn is calculated on the basis of the mean-field model featuring a dispersive optical potential. The results of these calculations agree with the idea that the degree of collectivity becomes higher in the {sup 64}Сr nucleus and that the coupling of single-particle motion to this collectivity becomes stronger, as well as with available experimental data, which are indicative of the closure of the N = 40 subshell in {sup 68}Ni and of the trend toward thismore » closure in {sup 60}Ca.« less

  20. Amorphous surface layers in Ti-implanted Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, J.A.; Follstaedt, D.M.; Picraux, S.T.

    1979-01-01

    Implanting Ti into high-purity Fe results in an amorphous surface layer which is composed of not only Fe and Ti, but also C. Implantations were carried out at room temperature over the energy range 90 to 190 keV and fluence range 1 to 2 x 10/sup 16/ at/cm/sup 2/. The Ti-implanted Fe system has been characterized using transmission electron microscopy (TEM), ion backscattering and channeling analysis, and (d,p) nuclear reaction analysis. The amorphous layer was observed to form at the surface and grow inward with increasing Ti fluence. For an implant of 1 x 10/sup 17/ Ti/cm/sup 2/ at 180more » keV the layer thickness was 150 A, while the measured range of the implanted Ti was approx. 550 A. This difference is due to the incorporation of C into the amorphous alloy by C being deposited on the surface during implantation and subsequently diffusing into the solid. Our results indicate that C is an essential constituent of the amorphous phase for Ti concentrations less than or equal to 10 at. %. For the 1 x 10/sup 17/ Ti/cm/sup 2/ implant, the concentration of C in the amorphous phase was approx. 25 at. %, while that of Ti was only approx. 3 at. %. A higher fluence implant of 2 x 10/sup 17/ Ti/cm/sup 2/ produced an amorphous layer with a lower C concentration of approx. 10 at. % and a Ti concentration of approx. 20 at. %.« less

Top