DOE Office of Scientific and Technical Information (OSTI.GOV)
Gou, Gaoyang; Charles, Nenian; Shi, Jing
2017-09-11
The double perovskite CaMnTi2O6, is a rare A site ordered perovskite oxide that exhibits a sizable ferroelectric polarization and relatively high Curie temperature. Using first-principles calculations combined with detailed symmetry analyses, we identify the origin of the ferroelectricity in CaMnTi2O6. We further explore the material properties of CaMnTi2O6, including its ferroelectric polarization, dielectric and piezoelectric responses, magnetic order, electronic structure, and optical absorption coefficient. It is found that CaMnTi2O6 exhibits room-temperature-stable ferroelectricity and moderate piezoelectric responses. Moreover, CaMnTi2O6 is predicted to have a semiconducting energy band gap similar to that of BiFeO3, and its band gap can further be tuned-viamore » distortions of the planar Mn-O bond lengths. CaMnTi2O6 exemplifies a new class of single-phase semiconducting ferroelectric perovskites for potential applications in ferroelectric photovoltaic solar cells.« less
Study of the electronic structure and half-metallicity of CaMnO3/BaTiO3 superlattice
NASA Astrophysics Data System (ADS)
Wang, Kai; Jiang, Wei; Chen, Jun-Nan; Huang, Jian-Qi
2016-09-01
In this paper, the electronic structure, magnetic properties and half-metallicity of the CaMnO3/BaTiO3 superlattice are investigated by employing the first-principle calculation based on density functional theory within the GGA or GGA + U exchange-correlation functional. The CaMnO3/BaTiO3 superlattice is constructed by the cubic CaMnO3 and the tetragonal ferroelectric BaTiO3 growing alternately along (0 0 1) direction. The cubic CaMnO3 presents a robust half-metallicity and a metastable ferromagnetic phase. Its magnetic moment is an integral number of 3.000 μB per unit cell. However, the CaMnO3/BaTiO3 superlattice has a stable ferromagnetic phase, for which the magnetic moment is 12.000 μB per unit cell. It also retains the robust half-metallicity which mainly results from the strong hybridization between Mn and O atoms. The results show that the constructed CaMnO3/BaTiO3 superlattice exhibits superior magnetoelectric properties. It may provide a theoretical reference for the design and preparation of new multiferroic materials.
Preparation and Properties of (YCa)(TiMn)O3−δ Ceramics Interconnect of Solid Oxide Fuel Cells
Liou, Yi-Cheng; Tsai, Wen-Chou; Yen, Hao-Hsuan; Chang, Yung-Chia
2015-01-01
(YCa)(TiMn)O3–δ ceramics prepared using a reaction-sintering process were investigated. Without any calcination involved, the mixture of raw materials was pressed and sintered directly. Y2Ti2O7 instead of YTiO3 formed when a mixture of Y2O3 and TiO2 with Y/Ti ratio 1/1 were sintered in air. Y2Ti2O7, YTiO2.085 and some unknown phases were detected in Y0.6Ca0.4Ti0.6Mn0.4O3–δ. Monophasic Y0.6Ca0.4Ti0.4Mn0.6O3–δ ceramics were obtained after 1400–1500 °C sintering. Dense Y0.6Ca0.4Ti0.4Mn0.6O3–δ with a density 4.69 g/cm3 was observed after 1500 °C/4 h sintering. Log σ for Y0.6Ca0.4Ti0.6Mn0.4O3–δ increased from –3.73 Scm–1 at 350 °C to –2.14 Scm–1 at 700 °C. Log σ for Y0.6Ca0.4Ti0.4Mn0.6O3–δ increased from –2.1 Scm–1 at 350 °C to –1.36 Scm–1 at 700 °C. Increasing Mn content decreased activation energy Ea and increased electrical conductivity. Reaction-sintering process is proved to be a simple and effective method to obtain (YCa)(TiMn)O3–δ ceramics for interconnects in solid oxide fuel cells. PMID:28793436
NASA Astrophysics Data System (ADS)
Đorđević, Vesna; Brik, Mikhail G.; Srivastava, Alok M.; Medić, Mina; Vulić, Predrag; Glais, Estelle; Viana, Bruno; Dramićanin, Miroslav D.
2017-12-01
Herein, the synthesis, structural and crystal field analysis and optical spectroscopy of Mn4+ doped metal titanates ATiO3 (A = Ca, Mg) are presented. Materials of desired phase were prepared by molten salt assisted sol-gel method in the powder form. Crystallographic data of samples were obtained by refinement of X-ray diffraction measurements. From experimental excitation and emission spectra and structural data, crystal field parameters and energy levels of Mn4+ in CaTiO3 and MgTiO3 were calculated by the exchange charge model of crystal-field theory. It is found that crystalline field strength is lower (Dq = 1831 cm-1) in the rhombohedral Ilmenite MgTiO3 structure due to the relatively longer average Mn4+sbnd O2- bond distance (2.059 Å), and higher (Dq = 2017 cm-1) in orthorhombic CaTiO3 which possess shorter average Mn4+sbnd O2- bond distance (1.956 Å). Spectral positions of the Mn4+2Eg → 4A2g transition maxima is 709 nm in MgTiO3 and 717 nm in CaTiO3 respectively in good agreement with calculated values.
NASA Astrophysics Data System (ADS)
Wang, J. F.; Jiang, Y. C.; Chen, M. G.; Gao, J.
2013-12-01
Heterojunctions composed of La0.5Ca0.5MnO3 and Nb doped SrTiO3 were fabricated, and the effects of the Nb doping level on their electronic transport, photoelectric effect, and magnetoresistance were investigated. A lower doping concentration of Nb led to better rectifying properties and higher open circuit voltages. The I-V curves for La0.5Ca0.5MnO3/0.7 wt. % Nb-SrTiO3 showed a negligible response to magnetic fields for all temperatures, whereas La0.5Ca0.5MnO3/0.05 wt. % Nb-SrTiO3 exhibited distinct magnetoresistance, which depended on both the bias voltage and temperature. These results are discussed with the assistance of conventional semiconductor theories.
NASA Astrophysics Data System (ADS)
Gao, Bin; Huang, Fei-Ting; Wang, Yazhong; Kim, Jae-Wook; Wang, Lihai; Lim, Seong-Joon; Cheong, Sang-Wook
2017-05-01
Ca3Mn2O7 and Ca3Ti2O7 have been proposed as the prototypical hybrid improper ferroelectrics (HIFs), and a significant magnetoelectric (ME) coupling in magnetic Ca3Mn2O7 is, in fact, reported theoretically and experimentally. Although the switchability of polarization is confirmed in Ca3Ti2O7 and other non-magnetic HIFs, there is no report of switchable polarization in the isostructural Ca3Mn2O7. We constructed the phase diagram of Ca3Mn2-xTixO7 through our systematic study of a series of single crystalline Ca3Mn2-xTixO7 (x = 0, 0.1, 1, 1.5, and 2). Using transmission electron microscopy, we have unveiled the unique domain structure of Ca3Mn2O7: the high-density 90° stacking of a- and b-domains along the c-axis due to the phase transition through an intermediate Acca phase and the in-plane irregular wavy ferroelastic twin domains. The interrelation between domain structures and physical properties is unprecedented: the stacking along the c-axis prevents the switching of polarization and causes the irregular in-plane ferroelastic domain pattern. In addition, we have determined the magnetic phase diagram and found complex magnetism of Ca3Mn2O7 with isotropic canted moments. These results lead to negligible observable ME coupling in Ca3Mn2O7 and guide us to explore multiferroics with large ME coupling.
NASA Technical Reports Server (NTRS)
Smith, J. V.; Hansen, E. C.; Steele, I. M.
1980-01-01
Lunar olivines from anorthosites, granulitic impactites, and rocks in the Mg-rich plutonic trend were subjected to electron probe measurements for Al, P, Ca, Ti, Cr and Mn, which show that the FeO/MnO ratio for lunar olivines lies between 80 and 110 with little difference among the rock types. The low values of Ca in lunar olivines indicate slow cooling to subsolidus temperatures, with blocking temperatures of about 750 C for 67667 and 1000 C for 60255,73-alpha determined by the Finnerty and Boyd (1978) experiments. An important paradox is noted in the low Ti content of Fe-rich olivines from anorthosites, although both Ti and Fe tend to become enriched in liquid during fractional distillation. Except for Ca and Mn, olivine from anorthosites has lower minor element values than other rock types. Formation from a chemically distinct system is therefore implied.
Improper origin of polar displacements at CaTiO3 and CaMnO3 twin walls
NASA Astrophysics Data System (ADS)
Barone, Paolo; Di Sante, Domenico; Picozzi, Silvia
2014-04-01
Recent interest in novel functionalities arising at domain walls of ferroic materials naturally calls for a microscopic understanding. To this end, first-principles calculations have been performed in order to provide solid evidence of polar distortions in the twin walls of nonpolar CaTiO3 and magnetic CaMnO3. We show that such polar displacements arise from rotation and/or tilting octahedral distortions—cooperatively acting at the twin wall in both considered systems—rather than from a proper secondary ferroelectric instability, as often believed. Our results are in excellent agreement with experimental observations of domain walls in CaTiO3. In addition, we show that magnetic properties at the twin wall in CaMnO3 are also modified, thus suggesting an unexplored route to achieve and detect multiferroic ordering in a single-phase material.
Interfacial magnetism in CaRuO3/CaMnO3 superlattices grown on (001) SrTiO3
NASA Astrophysics Data System (ADS)
He, C.; Zhai, X.; Mehta, V. V.; Wong, F. J.; Suzuki, Y.
2011-04-01
We have studied epitaxially grown superlattices of CaRuO3/CaMnO3 as well as an alloy film of CaMn0.5Ru0.5O3 on (001) SrTiO3 substrates. In contrast to previous experiments, we have studied CRO/CMO superlattices with a constant CRO thickness and variable CMO thickness. All superlattices exhibit Curie temperatures (TC) of 110 K. The saturated magnetization per interfacial Mn cation has been found to be 1.1 μB/Mn ion. The TC's of the superlattices are much lower than the TC of the alloy film while the saturated magnetization values are larger than that of the alloy film. These observations suggest that interdiffusion alone cannot account for ferromagnetism in the superlattices and that double exchange induced FM must play a role at the interfaces.
Phase separation enhanced magneto-electric coupling in La0.7Ca0.3MnO3/BaTiO3 ultra-thin films
Alberca, A.; Munuera, C.; Azpeitia, J.; Kirby, B.; Nemes, N. M.; Perez-Muñoz, A. M.; Tornos, J.; Mompean, F. J.; Leon, C.; Santamaria, J.; Garcia-Hernandez, M.
2015-01-01
We study the origin of the magnetoelectric coupling in manganite films on ferroelectric substrates. We find large magnetoelectric coupling in La0.7Ca0.3MnO3/BaTiO3 ultra-thin films in experiments based on the converse magnetoelectric effect. The magnetization changes by around 30–40% upon applying electric fields on the order of 1 kV/cm to the BaTiO3 substrate, corresponding to magnetoelectric coupling constants on the order of α = (2–5)·10−7 s/m. Magnetic anisotropy is also affected by the electric field induced strain, resulting in a considerable reduction of coercive fields. We compare the magnetoelectric effect in pre-poled and unpoled BaTiO3 substrates. Polarized neutron reflectometry reveals a two-layer behavior with a depressed magnetic layer of around 30 Å at the interface. Magnetic force microscopy (MFM) shows a granular magnetic structure of the La0.7Ca0.3MnO3. The magnetic granularity of the La0.7Ca0.3MnO3 film and the robust magnetoelastic coupling at the La0.7Ca0.3MnO3/BaTiO3 interface are at the origin of the large magnetoelectric coupling, which is enhanced by phase separation in the manganite. PMID:26648002
NASA Astrophysics Data System (ADS)
Guber, C. R.; Richter, P.; Wendt, M.
2018-01-01
Aims: We aim to investigate the dust depletion properties of optically thick gas in and around galaxies and its origin we study in detail the dust depletion patterns of Ti, Mn, and Ca in the multi-component damped Lymanα (DLA) absorber at zabs = 0.313 toward the quasar PKS 1127-145. Methods: We performed a detailed spectral analysis of the absorption profiles of Ca II, Mn II, Ti II, and Na I associated with the DLA toward PKS 1127-145, based on optical high-resolution data obtained with the UVES instrument at the Very Large Telescope. We obtained column densities and Doppler-parameters for the ions listed above and determine their gas-phase abundances, from which we conclude on their dust depletion properties. We compared the Ca and Ti depletion properties of this DLA with that of other DLAs. Results: One of the six analyzed absorption components (component 3) shows a striking underabundance of Ti and Mn in the gas-phase, indicating the effect of dust depletion for these elements and a locally enhanced dust-to-gas ratio. In this DLA and in other similar absorbers, the Mn II abundance follows that of Ti II very closely, implying that both ions are equally sensitive to the dust depletion effects. Conclusions: Our analysis indicates that the DLA toward PKS 1127-145 has multiple origins. With its narrow line width and its strong dust depletion, component 3 points toward the presence of a neutral gas disk from a faint LSB galaxy in front of PKS 1127-145, while the other, more diffuse and dust-poor, absorption components possibly are related to tidal gas features from the interaction between the various, optically confirmed galaxy-group members. In general, the Mn/Ca II ratio in sub-DLAs and DLAs possibly serves as an important indicator to discriminate between dust-rich and dust-poor in neutral gas in and around galaxies.
NASA Technical Reports Server (NTRS)
Walton, J. R.; Heymann, D.; Yaniv, A.; Edgerley, D.; Rowe, M. W.
1976-01-01
Stacks of thin Mg, Al, Si, Ca, CaF2, Ti, and stainless steel foils were bombarded in twelve irradiations by a variable energy cyclotron. Cross sections are reported for He and Ne in natural Mg, Al, and Si, and for He in CaF2, and for Ar in natural Ca, as determined from mass spectrometer analysis of the inert gases. In addition, cross sections of Na-22 in natural Al and Si, of V-48 in natural Ti, and of Cr-51, Mn-52, and Co-57 in stainless steel are reported. From these were deduced Cr-51 and Mn-52 cross sections in natural Cr.
Hybrid improper ferroelectricity in Ruddlesden-Popper Ca{sub 3}(Ti,Mn){sub 2}O{sub 7} ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X. Q., E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn; Wu, J. W.; Shi, X. X.
2015-05-18
The hybrid improper ferroelectricity (HIF) has been proposed as a promising way to create multiferroic materials with strong magnetoelectric coupling by the first-principle calculation, and the experimental evidences of HIF in Ruddlesden-Poper Ca{sub 3}(Ti{sub 1−x}Mn{sub x}){sub 2}O{sub 7} (x = 0, 0.05, 0.1, and 0.15) ceramics have been shown in the present work. The room temperature ferroelectric hysteresis loops are observed in these ceramics, and a polar orthorhombic structure with two oxygen tilting modes has been confirmed by the X-ray powder diffraction. A first-order phase transition around 1100 K in Ca{sub 3}Ti{sub 2}O{sub 7} was evidenced, and the temperatures of phase transitions decreasemore » linearly with increasing of the contents of Mn{sup 4+} ions. Based on the result of first-principle calculations, the polarization should be reversed by switching through the mediated Amam phase in Ca{sub 3}Ti{sub 2}O{sub 7} ceramics.« less
Wang, Jian; Evangelou, Bill P.; Nielsen, Mark T.
1992-01-01
Surface chemical characteristics of root cell walls extracted from two tobacco genotypes exhibiting differential tolerance to Mn toxicity were studied using potentiometric pH titration and Fourier transform infrared spectroscopy. The Mn-sensitive genotype KY 14 showed a stronger interaction of its cell wall surface with metal ions than did the Mn-tolerant genotype Tobacco Introduction (T.I.) 1112. This observation may be attributed to the relatively higher ratio of COO− to COOH in KY 14 cell walls than that found in the cell walls of T.I. 1112 in the pH range of 4 to 10. For both genotypes, the strength of binding between metal ions and cell wall surface was in the order of Cu > Ca > Mn > Mg > Na. However, a slightly higher preference of Ca over Mn was observed with the T.I. 1112 cell wall. This may explain the high accumulation of Mn in the leaves of Mn-tolerant genotype T.I. 1112 rather than the high accumulation of Mn in roots, as occurred in Mn-sensitive KY 14. It is concluded that surface chemical characteristics of cell walls may play an important role in plant metal ion uptake and tolerance. PMID:16652989
Raman study of transition-metal oxides with perovskite-like structure
NASA Astrophysics Data System (ADS)
Kolev, Nikolay Iliev
Perovskite-like oxides exhibit a rich variety of properties of fundamental scientific interest and potential application value. The motivation for this work is to contribute to our knowledge of perovskite-like systems and strongly correlated systems in general. The polarized Raman spectra of single crystal and thin film CaCu3Ti4O12, single crystal and thin film CaRuO3, microcrystals of La0.5Ca 0.5MnO3, and ceramic and thin film CaMnO3 have been investigated. In close comparison to results from lattice dynamics calculations most of the Raman lines in the CaCu3Ti4O12, CaRuO3, La0.5Ca0.5MnO3 and CaMnO 3 spectra, have been assigned to definite phonon modes. The validity of the model for twin orientation in the Pnma structure for CaRuO3 and La0.5Ca0.5MnO3 is confirmed. The analysis of the CaMnO3 spectra contributed to the development of a model, based on four basic distortions of the (distorted) perovskite structure. The temperature behavior of the CaCu3Ti4O 12 spectra shows that there is no evidence for structural phase transition in the temperature range 20--600 K, so such a transition cannot be responsible for the sharp drop in the dielectric constant below 100 K. The Raman spectra indirectly support the mechanism of formation of barrier layer capacitances in CaCu3Ti4O12.The observation of additional Raman mode of nominal Ag symmetry is discussed in terms of coexistence of domains of different atomic arrangement, or alternatively of non-stoichiometry (Cu deficiency). In the case of the thin film, the tetragonal distortions could be responsible for the greater separation of the additional Ag line. No anomalies in the temperature behavior of the Raman lines of CaRuO3 is observed, which is an indirect evidence for its lack of long-range magnetic ordering at low temperatures (depending on whether this ordering would be observable by Raman spectroscopy through spin-phonon coupling). In La0.5Ca0.5MnO 3 the appearance of several Raman lines below TN is analyzed in terms of ordering and freezing of the Jahn-Teller distortions in a superstructure. Polarized Raman spectra confirmed their usefulness in studying thin films and their properties.
Measurement of trace elements in tree rings using the PIXE method
NASA Astrophysics Data System (ADS)
Aoki, Toru; Katayama, Yukio; Kagawa, Akira; Koh, Susumu; Yoshida, Kohji
1998-03-01
Standard materials were prepared in order to calculate element concentrations in tree samples using the particle induced X-ray emission (PIXE) method. Five standard solutions (1) Ti, Fe, Cu, As, Rb, Sr; (2) Ca, V, Co, Zn, As, Rb; (3) Ti, Mn, Ni, As, Sr; (4) K, Mn, Co, As, Rb, Sr; and (5) Ca, Mn, Cu, As, Rb, Sr, were added to filter papers. The dried filter papers were used as standard samples. Pellets of Pepperbush leaves (National Institute for Environmental Studies (NIES)) and Peach leaves (National Institute of Standards and Technology (NIST)) were used as references. The peak counts of Ca, Mn, Cu, Zn, Rb, and Sr in samples taken from a kaki ( Diospros kaki Thunb.) were measured and the concentrations (ppm) of the elements were calculated using the yield curve obtained from the standard filter papers. The concentrations of Mn, Zn, Rb, and Ca were compared with the data obtained from a separate INAA analysis. Concentrations of Mn, Zn, and Ca obtained by both methods were almost the same, but the concentrations of Rb differed slightly. The amounts of trace elements in samples taken from a sugi ( Cryptomeria japonica D. Don) were also measured.
NASA Astrophysics Data System (ADS)
Park, Seon-Yeong; Choe, Han-Cheol
2018-02-01
In this study, Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetrons sputtering for dental applications were studied using different experimental techniques. Mn coating films were formed on Ti-29Nb-xHf alloys by a radio frequency magnetron sputtering technique for 0, 1, 3, and 5 min at 45 W. The microstructure, composition, and phase structure of the coated alloys were examined by optical microscopy, field emission scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The microstructure of Ti-29Nb alloy showed α" phase in the needle-like structure and Ti-29Nb-15Hf alloy showed β phase in the equiaxed structure. As the sputtering time increased, the circular particles of Mn coatings on the Ti-29Nb alloy increased at inside and outside surfaces. As the sputtering time increased, [Mn + Ca/P] ratio of the plasma electrolytic oxidized films in Ti- 29Nb-xHf alloys increased. The corrosion potential (Ecorr) of Mn coatings on the Ti-29Nb alloy showed higher than that of Mn coatings on the Ti-29Nb-15Hf alloy. The passive current density (Ipass) of the Mn coating on the Ti-29Nb alloy and Mn coatings on the Ti-29Nb-15Hf alloy was less noble than the non-Mn coated Ti-29Nb and Ti-29Nb-15Hf alloys surface.
Optical magnetoelectric effect at CaRuO3-CaMnO3 interfaces as a polar ferromagnet
NASA Astrophysics Data System (ADS)
Yamada, Hiroyuki; Sato, H.; Akoh, H.; Kida, N.; Arima, T.; Kawasaki, M.; Tokura, Y.
2008-02-01
A correlated electron interface between paramagnetic CaRuO3 and antiferromagnetic CaMnO3 has been characterized with optical magnetoelectric (OME) effect as an interface-selective probe for spin and charge states. To detect the OME effect, i.e., nonreciprocal directional dichroism for visible or near-infrared light, we have constructed a "tricolor" superlattice with artificially broken inversion symmetry by stacking CaRuO3, CaMnO3, and CaTiO3, and patterned a grating structure with 4μm period on the superlattice. The observed intensity modulation (0.3% at 50K) in the Bragg diffraction verifies a charge transfer and concomitant ferromagnetism at the CaRuO3-CaMnO3 interface.
Four-state non-volatile memory in a multiferroic spin filter tunnel junction
NASA Astrophysics Data System (ADS)
Ruan, Jieji; Li, Chen; Yuan, Zhoushen; Wang, Peng; Li, Aidong; Wu, Di
2016-12-01
We report a spin filter type multiferroic tunnel junction with a ferromagnetic/ferroelectric bilayer barrier. Memory functions of a spin filter magnetic tunnel junction and a ferroelectric tunnel junction are combined in this single device, producing four non-volatile resistive states that can be read out in a non-destructive manner. This concept is demonstrated in a LaNiO3/Pr0.8Ca0.2MnO3/BaTiO3/La0.7Sr0.3MnO3 all-oxide tunnel junction. The ferromagnetic insulator Pr0.8Ca0.2MnO3 serves as the spin filter and the ferromagnetic metal La0.7Sr0.3MnO3 is the spin analyzer. The ferroelectric polarization reversal in the BaTiO3 barrier switches the tunneling barrier height to produce a tunneling electroresistance. The ferroelectric switching also modulates the spin polarization and the spin filtering efficiency in Pr0.8Ca0.2MnO3.
Effect of Ti4+ doping on magnetic properties of charge ordered Bi0.3Ca0.7MnO3
NASA Astrophysics Data System (ADS)
Yadav, Kamlesh; Singh, M. P.; Razavi, F. S.; Varma, G. D.
2017-07-01
The effect of Ti doping in Bi0.3Ca0.7Mn1-x Ti x O3 (where x = 0.0, 0.015, 0.03, 0.05, 0.08, 0.12 and 0.16) on structural, magnetic and transport properties have been studied. The charge-ordering temperature (T CO) decreases gradually with increasing Ti doping content, and finally disappears completely for x = 0.12. The Neel temperature (T N) also decreases with increasing Ti doping content. A transition to a cluster glass like state is observed at T ⩽ T N. The zero field cooled/field cooled (ZFC/FC) magnetization decreases at high temperature (T > 200 K) with increasing Ti content, whereas an opposite trend is observed at low temperature (T < 200 K). Small exchange bias effect is also observed for x = 0.08 at 10 K. The resistivity increases with increasing Ti doping content. The disorder induced by Ti doping on the Mn site plays a key role in explaining the observed magnetic and electrical properties.
Perpendicular magnetic anisotropy of La0.67Sr0.33MnO3 thin films grown on CaMnO3 buffered SrTiO3
NASA Astrophysics Data System (ADS)
Wang, Zhi-Hong; Cristiani, G.; Habermeier, H.-U.; Zhang, Zhen-Rong; Han, Bao-Shan
2003-10-01
La0.67Sr0.33MnO3(LSMO) thin films were grown onto CaMnO3(CMO) buffered SrTiO3(100) by pulsed laser deposition. Because of the in-plane compressive strain induced by the lattice mismatch between CMO and LSMO, a perpendicular magnetic anisotropy (PMA) was obtained in the overlayer LSMO. Using the magnetic force microscopy, stripe magnetic domains in association with the PMA were observed at room temperature. Furthermore, the magnetoresistance with in-plane magnetic field parallel and vertical to the measuring current was studied at 5 and 300 K, and its correlation with the magnetic anisotropy has been discussed.
NASA Astrophysics Data System (ADS)
Gatta, G. Diego; Rotiroti, Nicola; Cámara, Fernando; Meven, Martin
2018-03-01
The crystal chemistry of a cafarsite sample from the fengitic orthogneisses of the Mt. Leone-Arbola nappe (Lower Penninic), forming the central body of Mount Cervandone and cropping out both in Switzerland and Italy (Alpe Devero area, Verbano-Cusio-Ossola province), was investigated by electron microprobe analysis in wavelength-dispersive mode (EPMA-WDS), single-crystal Raman spectroscopy, and single-crystal X-ray and neutron diffraction at 293 K. The sample of cafarsite of this study was found experimentally to be anhydrous and the chemical formula obtained on the basis of the EPMA-WDS data and structural refinements is the following: Ca1,Ca2 (Ca15.56Na0.44)Σ16 Fe1 (Na0.53Fe2+ 0.17REE0.30)Σ1.00 Mn1,Ti,Fe2 (Ti7.46Fe3+ 4.47Fe2+ 3.20Mn2+ 0.85Al0.11) Σ16.11 As1,As2,As3 (AsO3)28 F F, with the general chemical formula Ca16(Na,Fe2+,REE)(Ti, Fe3+,Fe2+,Mn2+,Al)16(AsO3)28F [or Ca16(Na,Fe2+,REE)(Ti,Fe3+,Al)12(Fe2+,Mn)4(AsO3)28F]. Our experimental findings show that fluorine, which was unconsidered in the previous studies, is a key element. The anhydrous nature of this sample is also confirmed by its Raman spectrum, which does not show any evidence of active bands ascribable to the O-H stretching region. The X-ray and neutron structure refinements provide a structure model that is partially in agreement with the previous experimental findings. The space group (i.e. Pn3) and the unit-cell constant [i.e. 15.9507(4) Å] are conform to the literature data, but the structure of cafarsite, here refined, contains the following building units: three independent AsO3 groups (trigonal pyramids), one CaO6F polyhedron, one CaO8 polyhedron, two independent (Ti,Fe)O6 octahedra, one (Na,Fe,REE)O8 polyhedron, and one (Mn,Fe)O6 octahedron. Connections among polyhedra are mainly due to edge- or vertex-sharing; the AsO3 groups are not connected to each other.
Effect of Mn doping on the temperature-dependent anomalous giant dielectric behavior of CaCu3Ti4O12
NASA Astrophysics Data System (ADS)
Kim, C. H.; Jang, Y. H.; Seo, S. J.; Song, C. H.; Son, J. Y.; Yang, Y. S.; Cho, J. H.
2012-06-01
We report dielectric properties and dielectric relaxation behaviors of Mn-substituted CaCu3Ti4O12 (CCTO) on Cu sites. While CCTO exhibits the giant dielectric constant and low dielectric loss in a wide temperature range, drastic suppression of the dielectric constant in Mn-doped CCTO (CCMTO) samples have been observed in temperature and frequency dependencies of dielectric properties with two possible origins as Mn doping increases. The observed suppression of dielectric response in the low Mn doping differs from the heavy doping of Mn in CCMTO samples. The low-Mn-doped CCMTO samples (x=0.01 and 0.02) show that the relaxation time and the activation energy Ea were slightly reduced due to a decreased contribution from the density of the dipolar effect. However, in heavily doped CCMTO samples (x=0.03, 0.04, and 0.05), the dielectric response, relaxation time, and Ea were significantly decreased, suggesting Mn doping plays a significant role in the destruction of the intrinsic dipolar effect.
NASA Astrophysics Data System (ADS)
Xin, Deqiong; Chen, Qiang; Wu, Jiagang; Bao, Shaoming; Zhang, Wen; Xiao, Dingquan; Zhu, Jianguo
2016-07-01
Bismuth-layered structured ceramics Ca0.85(Li,Ce)0.075Bi4Ti4- x Nb x O15-0.01MnCO3 were prepared by the conventional solid-state reaction method. The evolution of microstructure and corresponding electrical properties were studied. All the samples presented a single bismuth layered-structural phase with m = 4, indicating that (Li, Ce)4+, Nb5+ and Mn2+ adequately enter into the pseudo-perovskite structure and form solid solutions. It was found that Ca0.85(Li,Ce)0.075Bi4Ti3.98Nb0.02O15-0.01MnCO3 (CBTLCM-0.02Nb) ceramics possess the optimum electrical properties. The piezoelectric coefficient d 33, dielectric constant ɛ r, loss tan δ, planar electromechanical coupling factor k p and Curie-temperature T C of CBTLCM-0.02Nb ceramics were found to be ˜19.6 pC/N, 160, 0.16%, 8.1% and 767°C, respectively. Furthermore, the thermal depoling behavior demonstrates that the d 33 value of x = 0.02 content remains at 16.8 pC/N after annealing at 500°C. These results suggest that the (Li, Ce)4+-, Nb5+- and Mn2+-doped CBT-based ceramics are promising candidates for high-temperature piezoelectric applications.
Gao, Peng; Fu, Tong-Gang; Wang, Ke-Lin; Chen, Hong-Song; Zeng, Fu-Ping
2013-11-01
A total of 163 soil samples (0-20 cm layer) were collected from the grid sampling plots (80 m x 80 m) in Huanjiang Observation and Research Station of Karst Ecosystem in a small catchment in Karst cluster-peak depression area, South China. By using classical statistics and geostatistics, the spatial heterogeneity of mineral components (SiO2, Fe2O3, CaO, MgO, Al2O3, MnO, and TiO2) in the soils were studied. The contents of the seven soil mineral components in the study area differed greatly, being in the order of SiO2 > Al2O3 > CaO > MgO > Fe2O3 > TiO2 > MnO, and the variance coefficients also varied obviously, in the order of CaO > MgO > Fe2O3 > TiO2 > SiO2 > Al2O3 > MnO. The seven mineral components accounted for 69.4% of the total soil mass. The spatial patterns and the fittest models of the seven soil mineral components differed from each other. All the seven soil mineral components had a strong spatial autocorrelation, with shorter variation ranges and stronger spatial dependence. The Kriging contour maps indicated that the distribution patterns of soil SiO2, Fe2O3, Al2O3, MnO, and TiO2 were similar, being higher in south and east, lower in north and west, higher in depression, and lower in slope, while the distribution patterns of soil CaO and MgO were in adverse. Natural conditions (vegetation, bare rock rate, slope degree, and slope aspect, etc. ) and human disturbance were the most important factors affecting the spatial patterns of the soil mineral components.
Prediction of possible CaMnO3 modifications using an ab initio minimization data-mining approach.
Zagorac, Jelena; Zagorac, Dejan; Zarubica, Aleksandra; Schön, J Christian; Djuris, Katarina; Matovic, Branko
2014-10-01
We have performed a crystal structure prediction study of CaMnO3 focusing on structures generated by octahedral tilting according to group-subgroup relations from the ideal perovskite type (Pm\\overline 3 m), which is the aristotype of the experimentally known CaMnO3 compound in the Pnma space group. Furthermore, additional structure candidates have been obtained using data mining. For each of the structure candidates, a local optimization on the ab initio level using density-functional theory (LDA, hybrid B3LYP) and the Hartree--Fock (HF) method was performed, and we find that several of the modifications may be experimentally accessible. In the high-pressure regime, we identify a post-perovskite phase in the CaIrO3 type, not previously observed in CaMnO3. Similarly, calculations at effective negative pressure predict a phase transition from the orthorhombic perovskite to an ilmenite-type (FeTiO3) modification of CaMnO3.
Rectifying and photovoltaic properties of the heterojunction composed of CaMnO3 and Nb-doped SrTiO3
NASA Astrophysics Data System (ADS)
Sun, J. R.; Zhang, S. Y.; Shen, B. G.; Wong, H. K.
2005-01-01
A heterojunction composed of CaMnO3 (CMO) and Nb-doped SrTiO3 (STON) was fabricated and its properties were studied and compared with La0.67Ca0.33MnO3/STON and LaMnO3+δ/STON p-n, junctions. This CMO/STON junction exhibits an asymmetric current-voltage relation similar to a p-n junction. The most remarkable discovery is that the magnetic state of the manganites has a strong impact on the rectifying behaviors. The diffusion voltage, which is the critical voltage for the current rush, shows a tendency to decrease/increase with the establishment of the antiferromagnetic/ferromagnetic order in the manganites of the junction. Similar to other manganite p-n junctions, CMO/STON also exhibits a significant photovoltaic effect, and the maximum photovoltage is ˜2.2mV under the illumination of ˜7mW light (λ=460nm). A qualitative explanation is given based on an analysis on the band diagram of the junctions.
Anisotropic electrical conduction in ferromagnetic-antiferromagnetic-ferromagnetic oxide trilayers
NASA Astrophysics Data System (ADS)
Padhan, P.; Prellier, W.
2007-07-01
An antiferromagnetic layer of an insulator PrMnO3 , CaMnO3 , or Pr0.5Ca0.5MnO3 has been sandwiched between two layers of ferromagnetic SrRuO3 on (001)-oriented SrTiO3 and LaAlO3 substrates using the pulsed laser deposition technique. Magnetotransport measurements reveal a change of anisotropy in the case of trilayers having a Pr0.5Ca0.5MnO3 or a CaMnO3 spacer layer as compared to that of 20unit cells thick film of SrRuO3 , while in the case of PrMnO3 spacer layer, the change of anisotropy is negligible. In addition, two switching magnetic fields are observed with the trilayer made of PrMnO3 spacer layer in the field-dependent anisotropic magnetoresistance. The results are discussed using the concept of spin-orbit coupling and spin mixing conduction process at the interfaces.
EVIDENCE FOR GAS FROM A DISINTEGRATING EXTRASOLAR ASTEROID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, S.; Jura, M.; Zuckerman, B.
We report high-resolution spectroscopic observations of WD 1145+017—a white dwarf that was recently found to be transitted by multiple asteroid-sized objects within its tidal radius. We discovered numerous circumstellar absorption lines with linewidths of ∼300 km s{sup −1} from Mg, Ca, Ti, Cr, Mn, Fe, and Ni, possibly from several gas streams produced by collisions among the actively disintegrating objects. The atmosphere of WD 1145+017 is polluted with 11 heavy elements, including O, Mg, Al, Si, Ca, Ti, V:, Cr, Mn, Fe, and Ni. Evidently, we are witnessing the active disintegration and subsequent accretion of an extrasolar asteroid.
NASA Astrophysics Data System (ADS)
Yan, Lei; Niu, H. J.; Rosseinsky, M. J.
2011-03-01
The (AO)(A BO3)n Ruddlesden-Popper structure is an archetypal complex oxide consisting of two distinct structural units, an (AO) rock salt layer separating an n-octahedra thick perovskite block. Conventional high-temperature oxide synthesis methods cannot access members with n > 3 , butlowtemperaturelayer - by - layerthinfilmmethodsallowthepreparationofmaterialswiththickerperovskiteblocks , exploitinghighsurfacemobilityandlatticematchingwiththesubstrate . Thispresentationdescribesthegrowthofann = 6 memberCaO / (ABO 3)n (ABO 3 : CaMnO 3 , La 0.67 Ca 0.33 MnO 3 orCa 0.85 Sm 0.15 MnO 3) epitaxialsinglecrystalfilmsonthe (001) SrTiO 3 substrates by pulsed laser deposition with the assistance of a reflection high energy electron diffraction (RHEED).
NASA Astrophysics Data System (ADS)
Ichikawa, Hiroki; Sakamoto, Wataru; Akiyama, Yoshikazu; Maiwa, Hiroshi; Moriya, Makoto; Yogo, Toshinobu
2013-09-01
The preparation of reduction-resistant (Ba,Ca)TiO3 ceramics as lead-free piezoelectric materials was studied. To improve their electrical properties, (100),(001)-oriented (Ba0.85Ca0.15)TiO3 ceramics were fabricated by the reactive templated grain growth method using a mixture of platelike CaTiO3 and BaTiO3 particles. The platelike CaTiO3 and BaTiO3 particles were prepared through a topochemical microcrystal conversion process using CaBi4Ti4O15 and BaBi4Ti4O15 plate-like precursor crystals. The 100 orientation degree of the grain-oriented (Ba0.85Ca0.15)TiO3 ceramics was 92%, as estimated by Lotgering's equation. In addition, 1 mol % Ba excess and 1 mol % Mn-doped (Ba0.85Ca0.15)TiO3 sintered bodies, which were sintered at 1350 °C in an Ar flow containing H2 (0.3%), had sufficient resistivity to allow the characterization of electrical properties. The ferroelectric and field-induced strain properties of the (Ba0.85Ca0.15)TiO3 ceramics, sintered in the reducing atmosphere, were markedly improved as a result of fabricating grain-oriented samples. The field-induced strain coefficient (estimated from the slope of the unipolar strain loop) of the nonreducible (100),(001)-oriented (Ba0.85Ca0.15)TiO3 ceramics reached 570 pm/V, which was higher than that of polycrystals (260 pm/V) with no preferential orientation.
Disproportionation of marokite at high pressures and temperatures with geophysical implications
NASA Astrophysics Data System (ADS)
Liu, Lin-gun
1983-07-01
Natural marokite (CaMn 2O 4) has been studied at high pressures and temperatures using a diamond-anvil press coupled with laser heating in the pressure range 100-250 kbar. A mixture of marokite, CaMnO 3 (perovskite) and MnO (rocksalt) has been observed in all runs in the above pressure range by X-ray diffraction study of the quenched samples. It was interpreted that marokite disproportionates into the mixture CaMnO 3 (perovskite) + MnO (rocksalt) at pressures below 100 kbar. A general comparison of the molar volume for all known compounds having the marokite-related structures (including CaFe 2O 4 and CaTi 2O 4) with those for a mixture of perovskite plus rocksalt structures suggested that the mixture is more stable than the marokite-related structures at high pressures, as confirmed by the present experimental result. The CaFe 2O 4-modification of common nepheline (NaAlSiO 4) is also suggested to be unstable relative to the component oxides of α-NaAlO 2 + SiO 2 (stishovite) at high pressures.
Soft antiphase tilt of oxygen octahedra in the hybrid improper multiferroic Ca3Mn1.9Ti0.1O7
NASA Astrophysics Data System (ADS)
Ye, Feng; Wang, Jinchen; Sheng, Jieming; Hoffmann, C.; Gu, T.; Xiang, H. J.; Tian, Wei; Molaison, J. J.; dos Santos, A. M.; Matsuda, M.; Chakoumakos, B. C.; Fernandez-Baca, J. A.; Tong, X.; Gao, Bin; Kim, Jae Wook; Cheong, S.-W.
2018-01-01
We report a single crystal neutron and x-ray diffraction study of the hybrid improper multiferroic Ca3Mn1.9Ti0.1O7 (CMTO), a prototypical system where the electric polarization arises from the condensation of two lattice distortion modes. With increasing temperature (T ), the out-of-plane, antiphase tilt of MnO6 decreases in amplitude while the in-plane, in-phase rotation remains robust and experiences abrupt changes across the first-order structural transition. Application of hydrostatic pressure (P ) to CMTO at room temperature shows a similar effect. The consistent behavior under both T and P reveals the softness of antiphase tilt and highlights the role of the partially occupied d orbital of the transition-metal ions in determining the stability of the octahedral distortion. Polarized neutron analysis indicates the symmetry-allowed canted ferromagnetic moment is less than the 0.04 μB/Mn site, despite a substantial out-of-plane tilt of the MnO6 octahedra.
NASA Astrophysics Data System (ADS)
Román Acevedo, W.; Ferreyra, C.; Sánchez, M. J.; Acha, C.; Gay, R.; Rubi, D.
2018-03-01
The development of reliable redox-based resistive random-access memory devices requires understanding and disentangling concurrent effects present at memristive interfaces. We report on the fabrication and electrical characterization of TiO x /La1/3Ca2/3MnO3-x microstructured interfaces and on the modeling of their memristive behavior. We show that a careful tuning of the applied external electrical stimuli allows controlling the redox process between both layers, obtaining multilevel non-volatile resistance states. We simulate the oxygen vacancies dynamics at the interface between both oxides, and successfully reproduce the experimental electrical behavior after the inclusion of an electronic effect, related to the presence of an n-p diode at the interface. The formation of the diode is due to the n- and p-character of TiO x and La1/3Ca2/3MnO3-x , respectively. Our analysis indicates that oxygen vacancies migration between both layers is triggered after the diode is polarized either in forward mode or in reverse mode above breakdown. Electrical measurements at different temperatures suggest that the diode can be characterized as Zener-type. The advantages of our junctions for their implementation in RRAM devices are finally discussed.
NASA Astrophysics Data System (ADS)
Md. Sadaf, Sharif; Mostafa Bourim, El; Liu, Xinjun; Hasan Choudhury, Sakeb; Kim, Dong-Wook; Hwang, Hyunsang
2012-03-01
We investigated the effect of a ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin film on the generation of resistive switching in a stacked Pr0.7Ca0.3MnO3 (PCMO)/Nb-doped SrTiO3 (Nb:STO) heterostructure forming a p-n junction. To promote the ferroelectric effect, the thin PZT active layer was deposited on an epitaxially grown p-type PCMO film on a lattice-matched n-type Nb:STO single crystal. It was concluded that the observed resistive switching behavior in the all-perovskite Pt/PZT/PCMO/Nb:STO heterostructure was related to the modulation of PCMO/Nb:STO p-n junction's depletion width, which was caused either by the PZT ferroelectric polarization field effect, the electrochemical drift of oxygen ions under an electric field, or both simultaneously.
Chen, Binbin; Chen, Pingfan; Xu, Haoran; Jin, Feng; Guo, Zhuang; Lan, Da; Wan, Siyuan; Gao, Guanyin; Chen, Feng; Wu, Wenbin
2016-12-21
Controlling functionalities in oxide heterostructures remains challenging for the rather complex interfacial interactions. Here, by modifying the interface properties with chemical doping, we achieve a nontrivial control over the ferromagnetism in ultrathin La 0.67 Ca 0.33 MnO 3 (LCMO) layer sandwiched between CaRu 1-x Ti x O 3 [CRTO(x)] epilayers. The Ti doping suppresses the interfacial electron transfer from CRTO(x) to LCMO side; as a result, a steadily decreased Curie temperature with increasing x, from 262 K at x = 0 to 186 K at x = 0.8, is observed for the structures with LCMO fixed at 3.2 nm. Moreover, for more insulating CRTO(x ≥ 0.5), the electron confinement induces an interfacial Mn-e g (x 2 -y 2 ) orbital order in LCMO which further attenuates the ferromagnetism. Also, in order to characterize the heterointerfaces, for the first time the doping- and thickness-dependent metal-insulator transitions in CRTO(x) films are examined. Our results demonstrate that the LCMO/CRTO(x) heterostructure could be a model system for investigating the interfacial multiple interactions in correlated oxides.
Influence of the dynamic lattice strain on the transport behavior of oxide heterojunctions
NASA Astrophysics Data System (ADS)
Wang, J.; Hu, F. X.; Chen, L.; Zhao, Y. Y.; Lu, H. X.; Sun, J. R.; Shen, B. G.
2013-01-01
All-perovskite oxide heterojunctions composed of electron-doped titanate LaxSr1 - xTiO3 (x = 0.1, 0.15) and hole-doped manganite La0.67Ca0.33MnO3 films were fabricated on piezoelectric substrate of (001)-0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT). Taking advantage of the excellent converse piezoelectric effect of PMN-PT, we investigated the influence of the dynamic lattice strain on transport properties of the heterojunctions by applying external bias electric fields on the PMN-PT substrate. Photovoltaic experiments were carried out to characterize the interfacial barrier of the heterojunction. A linear reduction in the barrier height was observed with the increase of the bias field applied on PMN-PT. The value of the barrier height reduces from ˜1.55 (˜1.30) to 1.02 (1.08) eV as the bias field increases from 0 to 12 kV/cm for the junction of La0.10Sr0.9TiO3/La0.67Ca0.33MnO3 (La0.15Sr0.85TiO3/La0.67Ca0.33MnO3). The observed dependency of barrier height on external field can be ascribed to the increasing release of trapped carriers by strain modulation, which results in a suppression of the depletion layer and increases the opportunity for electron tunneling across the depletion area.
Electric Field Control of Interfacial Ferromagnetism in CaMnO3/CaRuO3 Heterostructures
NASA Astrophysics Data System (ADS)
Grutter, A. J.; Kirby, B. J.; Gray, M. T.; Flint, C. L.; Alaan, U. S.; Suzuki, Y.; Borchers, J. A.
2015-07-01
New mechanisms for achieving direct electric field control of ferromagnetism are highly desirable in the development of functional magnetic interfaces. To that end, we have probed the electric field dependence of the emergent ferromagnetic layer at CaRuO3/CaMnO3 interfaces in bilayers fabricated on SrTiO3. Using polarized neutron reflectometry, we are able to detect the ferromagnetic signal arising from a single atomic monolayer of CaMnO3, manifested as a spin asymmetry in the reflectivity. We find that the application of an electric field of 600 kV /m across the bilayer induces a significant increase in this spin asymmetry. Modeling of the reflectivity suggests that this increase corresponds to a transition from canted antiferromagnetism to full ferromagnetic alignment of the Mn4 + ions at the interface. This increase from 1 μB to 2.5 - 3.0 μB per Mn is indicative of a strong magnetoelectric coupling effect, and such direct electric field control of the magnetization at an interface has significant potential for spintronic applications.
NASA Astrophysics Data System (ADS)
Ren, Shaokai; Chen, Zhi; Yan, Tianxiang; Han, Feifei; Kuang, Xiaojun; Fang, Liang; Liu, Laijun
2018-07-01
Transition elements Nb, Mn and Zr were selected to substitute Ti of 0.4(Ba0.8Ca0.2)TiO3 -0.6Bi(Mg0.5Ti0.5)O3 (BCT-BMT) ceramic in order to extend its operation temperature and decrease its dielectric loss for the application of high-temperature capacitors. Nb and Mn play an opposite role on the defect compensation, decreasing and increasing the concentration of oxygen vacancies, respectively. The temperature of the maximum relative permittivity, Tm, decreases from 140 °C to 90 °C for the Nb and Zr modified BCT-BMT ceramics. The permittivity (εr) peak of the former exhibits a broad and stable relative permittivity ∼600 (±5% variation) from 50 °C to 520 °C with the dielectric loss ≤0.02 from 60 °C to 440 °C (1 kHz). The modified Curie-Weiss law indicates that the doping elements result in an enhancement of diffuse phase transition. Activation energies of relaxation frequency and conduction of the samples were characterized by the impedance spectroscopy. A clear relationship between the magnitude of activation energy and the concentration of oxygen vacancies was revealed.
Huang, Yong; Ding, Qiongqiong; Han, Shuguang; Yan, Yajing; Pang, Xiaofeng
2013-08-01
This work elucidated the corrosion resistance and in vitro bioactivity of electroplated manganese-doped hydroxyapatite (MnHAp) film on NaOH-treated titanium (Ti). The NaOH treatment process was performed on Ti surface to enhance the adhesion of the MnHAp coating on Ti. Scanning electron microscopy images showed that the MnHAp coating had needle-like apatite crystals, and the approximately 10 μm thick layer was denser than HAp. Energy-dispersive X-ray spectroscopy analysis revealed that the MnHAp crystals were Ca-deficient and the Mn/P molar ratio was 0.048. X-ray diffraction confirmed the presence of single-phase MnHAp, which was aligned vertically to the substrate. Fourier transform infrared spectroscopy indicated the presence of phosphate bands ranging from 500 to 650 and 900 to 1,100 cm(-1), and a hydroxyl band at 3,571 cm(-1), which was characteristic of HAp. Bond strength test revealed that adhesion for the MnHAp coating was more enhanced than that of the HAp coating. Potentiodynamic polarisation test showed that the MnHAp-coated surface exhibited superior corrosion resistance over the HAp single-coated surface. Bioactivity test conducted by immersing the coatings in simulated body fluid showed that MnHAp coating can rapidly induce bone-like apatite nucleation and growth. Osteoblast cellular tests revealed that the MnHAp coating was better at improving the in vitro biocompatibility of Ti than the HAp coating.
NASA Astrophysics Data System (ADS)
Tejeda, S.; Zarazúa, G.; Ávila-Pérez, P.; Carapia-Morales, L.; Martínez, T.
2010-06-01
The Lerma River is one of the most polluted body water in Mexico. For this reason, only the highly resistant organisms such as water hyacinth are able to reproduce in this river. The aim of this work was to evaluate the concentration of K, S, Fe, Ca, Mn, Ti, Zn, Sr, Rb, Cu, Cr, Ni, Pb and Br in roots of water hyacinth ( Eichhornia crassipes) from the Lerma River. The samples were collected from five sites in the river and analyzed in triplicate using a TXRF Spectrometer 'TX-2000 Ital Structures' with a Si(Li) detector and a resolution of 140 eV (FWHM) at Mn Kα. A Mo tube (40 kV, 30 mA) with 17.4 KeV excitation energy was used for a counting time of 500 s. Results show that the average metal concentration in the water hyacinth roots decrease in the following order: K (9698.2 µg/g) > S (7593.3 µg/g) > Fe (4406.6 µg/g) > Ca (2601.8 µg/g) > Mn (604.2 µg/g) > Ti (230.7 µg/g) > Zn (51.65 µg/g) > Sr (43.55 µg/g) > Rb (18.61 µg/g) > Cu (12.78 µg/g) > Cr (6.45 µg/g) > Ni (4.68 µg/g) > Pb (4.32 µg/g) > Br (4.31 µg/g) and the bioconcentration factors in the water hyacinth decrease in the sequence: Ti > Fe > Mn > Cu > Ni > Zn > S > Pb > Rb > K > Cr > Sr > Br > Ca. The concentrations in roots of water hyacinth reflect the high pollution level of the river.
NASA Astrophysics Data System (ADS)
Kim, Dae Ho; Christen, Hans M.; Varela, Maria; Lee, Ho Nyung; Lowndes, Douglas H.
2006-05-01
The effect of epitaxial strain on the charge order (CO) transition in Bi0.4Ca0.6MnO3 films was studied by varying the strain's strength and symmetry via the use of SrTiO3 and LaAlO3 substrates having different crystallographic orientations. The film on pseudocubic (001) LaAlO3, under symmetric compressive strain, exhibits a clear CO transition. In the film on a (001) SrTiO3 substrate, under symmetric tensile strain, highly segregated line-shaped features in the Bi distribution are seen in Z-contrast scanning transmission microscopy, accompanied by a strongly broadened CO transition. The asymmetric tensile stress on (011) SrTiO3 results in an apparent compressive strain state with a deviation from tetragonality (i.e., γ ≠90°), accompanied by the sharpest CO transition. These comparisons illustrate the importance of considering both the strength and symmetry of epitaxial strain.
Carpenter, M A
2015-07-08
Resonant ultrasound spectroscopy (RUS) provides a window on the pervasive influence of strain coupling at phase transitions in perovskites through determination of elastic and anelastic relaxations across wide temperature intervals and with the application of external fields. In particular, large variations of elastic constants occur at structural, ferroelectric and electronic transitions and, because of the relatively long interaction length provided by strain fields in a crystal, Landau theory provides an effective formal framework for characterizing their form and magnitude. At the same time, the Debye equations provide a robust description of dynamic relaxational processes involving the mobility of defects which are coupled with strain. Improper ferroelastic transitions driven by octahedral tilting in KMnF3, LaAlO3, (Ca,Sr)TiO3, Sr(Ti,Zr)O3 and BaCeO3 are accompanied by elastic softening of tens of % and characteristic patterns of acoustic loss due to the mobility of twin walls. RUS data for ferroelectrics and ferroelectric relaxors, including BaTiO3, (K,Na)NbO3,Pb(Mg1/3Nb2/3)O3 (PMN), Pb(Sc1/2Ta1/2)O3 (PST), (Pb(Zn1/3Nb2/3)O3)0.955(PbTiO3)0.045 (PZN-PT) and (Pb(In1/2Nb1/2)O3)0.26(Pb(Mg1/3Nb2/3)O3)0.44(PbTiO3)0.30 (PIN-PMN-PT) show similar patterns of softening and attenuation but also have precursor softening associated with the development of polar nano regions. Defect-induced ferroelectricity occurs in KTaO3, without the development of long range ordering. By way of contrast, spin-lattice coupling is much more variable in strength, as reflected in a greater range of softening behaviour for Pr0.48Ca0.52MnO3 and Sm0.6Y0.4MnO3 as well as for the multiferroic perovskites EuTiO3,BiFeO3, Bi0.9Sm0.1FeO3, Bi0.9Nd0.1FeO3, (BiFeO3)0.64(CaFeO2.5)0.36, (Pb(Fe0.5Ti0.5)O3)0.4(Pb(Zr0.53Ti0.47)O3)0.6. A characteristic feature of transitions in which there is a significant Jahn-Teller component is softening as the transition point is approached from above, as illustrated by PrAlO3, and this is suppressed by application of an external magnetic field in the colossal magnetoresistive manganite Pr0.48Ca0.52MnO3 or by reducing grain size in La0.5Ca0.5MnO3. Spin state transitions for Co(3+) in LaCoO3, NdCoO3 and GdCoO3 produce changes in the shear modulus that scale with a spin state order parameter, which is itself coupled with the order parameter(s) for octahedral tilting in a linear-quadratic manner. A new class of phase transitions in perovskites, due to orientational or conformational ordering of organic molecules on the crystallographic A-site of metal organic frameworks, is illustrated for [(CH3)2NH2]Co(HCOO)3 and [(CH2)3NH2]Mn(HCOO)3 which also display elastic and anelastic anomalies due to the influence of intrinsic and extrinsic strain relaxation behaviour.
Electric Field Control of the Ferromagnetic CaRuO3 /CaMnO3 Interface
NASA Astrophysics Data System (ADS)
Grutter, Alexander; Kirby, Brian; Gray, Matthew; Flint, Charles; Suzuki, Yuri; Borchers, Julie
2015-03-01
Electric field control of magnetism has been recognized as one of the most important goals in nanoscale magnetics research. The most popular routes towards achieving magnetoelectric (ME) coupling have focused on heterostructures incorporating multiferroics or ferroelectrics. Such studies often rely on voltage induced distortion to induce strain in the magnetic film and alter the magnetic properties. However, successful attempts to induce ME coupling without multiferroicity or magnetoelasticity remain relatively rare. The ferromagnetic interface between the antiferromagnetic insulator CaMnO3 and the paramagnetic metal CaRuO3 is a promising candidate for direct magnetization control. This interfacial ferroagnetism is stabilized through the competition between interfacial double exchange and antiferromagnetic superexchange between adjacent Mn4+ so that the system is expected to be very sensitive to small changes in interfacial carrier density. Using polarized neutron reflectometry, we have probed the electric field dependence of the interfacial magnetization of CaRuO3/CaMnO3 bilayers deposited on SrTiO3. We find that electric fields of +/-8 kV/m are sufficient to switch the interfaces from largely ferromagnetic to completely antiferromagnetic.
Project VeSElkA: abundance analysis of chemical species in HD 41076 and HD 148330
NASA Astrophysics Data System (ADS)
Khalack, V.; Gallant, G.; Thibeault, C.
2017-10-01
A new semi-automatic approach is employed to carry out the abundance analysis of high-resolution spectra of HD 41076 and HD 148330 obtained recently with the spectropolarimetre Echelle SpectroPolarimetric Device for Observations of Stars at the Canada-France-Hawaii Telescope. This approach allows to prepare in a semi-automatic mode the input data for the modified zeeman2 code and to analyse several hundreds of line profiles in sequence during a single run. It also provides more information on abundance distribution for each chemical element at the deeper atmospheric layers. Our analysis of the Balmer profiles observed in the spectra of HD 41076 and HD 148330 has resulted in the estimates of their effective temperature, gravity, metallicity and radial velocity. The respective models of stellar atmosphere have been calculated with the code phoenix and used to carry out abundance analysis employing the modified zeeman2 code. The analysis shows a deficit of the C, N, F, Mg, Ca, Ti, V, Cu, Y, Mo, Sm and Gd, and overabundance of Cr, Mn, Fe, Co, Ni, Sr, Zr, Ba, Ce, Nd and Dy in the stellar atmosphere of HD 41076. In the atmosphere of HD 148330, the C, N and Mo appear to be underabundant, while the Ne, Na, Al, Si, P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Sr, Y, Zr, Ba, Ce, Pr, Nd, Sm, Eu, Gd and Dy are overabundant. We also have found signatures of vertical abundance stratification of Fe, Ti, Cr and Mn in HD 41076, and of Fe, Ti, V, Cr, Mn, Y, Zr, Ce, Nd, Sm and Gd in HD 148330.
A Modified CIPW Norm Calculation for Lunar Mare Basalts
NASA Technical Reports Server (NTRS)
Milliken, R. E.; Basu, A.
2000-01-01
CIPW norms of lunar mare basalts are anomalously low in pyroxene. A modified norm calculation allowing higher Ca, Ti, Al, Cr, and Mn in di' and hy' obtains closer matches between normative and modal mineralogy.
Gough, L.P.; Severson, R.C.; Jackson, L.L.
1988-01-01
Element-concentration baselines are given for Parmelia sulcata and associated soils. Parmelia chlorochroa was found sporadically and therefore only representative concentration ranges are reported for this species. Element data include (1) for lichens; Al, As, Ba, B, Ca, Cr, Cu, Fe, Hg, Mn, Ni, P, Sr, S, Ti, V, Y, and Zn; and (2) for soils: Al, Ba, Be, Ca, Cs, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Nb, P, Pb, Sr, S, Ti, V, Y, and Zn. Very little (usually 7.2 km); thus, P sulcata is, in general, chemically similar throughout the park. This same uniformity was found for soil geochemistry. Numerous samples collected at close intervals would be required, therefore, to produce detailed element-concentration maps for P. sulcata and soils. No instances of elemental phytotoxic conditions were found; however, P. sulcata apparently possesses large concentrations of Ba, Cu, Fe, Pb, S, V, and possibly Zn.
Decontamination System Utilizing Hydrogen Peroxide, UV Light and Catalytic Surfaces
1992-02-01
Min %DMO RecoveredDisk# Catalyst (relative to control) 1 Ag 2 0 5.4 2 Ag2 0 10.1 4 FeTiO3 56 5 FeTio3 48 7 None 558 None 56 Control None 100 Ag 2 0...Std. Ag2 0 44 FeTiO3 Std. FeTiO3 100 Reference 87 - 36 - Table 9g. Experiment U, 1-09-91, 50% H2 02 , No UV Light, Run Time - 40 Min % DMO...Ag 2 0 2 7.8 44 1-09 T FeTiO3 2 52 100 1-09 U MnO 2 59 921-09 U Mn304 2 62 89 1-21 Y Ag 2 S/CaCO3 2 36 103 1-21 Y Ag 2 S 2 39 100 1-21 Z FeS2 2 6.0
STUDY OF BIFERROIC PROPERTIES IN THE La0.37Ca0.17Ba0.43Mn0.52Ti0.44Zr0.04O3 COMPLEX PEROVSKITE
NASA Astrophysics Data System (ADS)
Cardona-Vásquez, J. A.; Gómez, M. E.; Landínez-Téllez, D. A.; Roa-Rojas, J.
2013-10-01
In this paper, details of synthesis and structural, morphological, electrical, and magnetic characterization of the new La0.37Ca0.17Ba0.43Mn0.52Ti0.44Zr0.04O3 multiferroic complex perovskite are reported. Mixtures with 50% mass of ferromagnetic lanthanum calcium manganite La0.67Ca0.33MnO3 and ferroelectric barium-lanthanum zirconate titanate Ba0.9La0.067Ti0.91Zr0.09 O3 were prepared by the solid state reaction technique. Patterns of X-ray diffraction showed that the materials have reacted resulting in a new perovskite-like structure with tetragonal symmetry, space group P4mm(#99). The structure of the material was refined using the Rietveld method through the GSAS code. ZFC and FC magnetization curves show the occurrence of two phase transitions at 42.25 K and 203.9 K which have been associated with two different magnetic regimes. Hysteresis curves measured confirm that the relationship between the applied field and the magnetization does not evidence a linear behavior. These curves also show that in the low temperature regime the magnetic memory of the material is greater than in the high temperature region. AC impedance as a function of temperature measurements show the same two regions observed in the magnetization curves. The ferroelectric behavior with relative permittivity of 153.12 is observed by polarization curves performed at room temperature in the synthesized materials.
Study on TL and OSL characteristics of indigenously developed CaF 2:Mn phosphor
NASA Astrophysics Data System (ADS)
Bakshi, A. K.; Dhabekar, Bhushan; Rawat, N. S.; Singh, S. G.; Joshi, V. J.; Kumar, Vijay
2009-02-01
CaF 2:Mn phosphor is known for its high thermoluminescent sensitivity and dose linearity up to few kGy. In the present study CaF 2 phosphor with different concentration of Mn dopant was prepared and was characterized through different techniques. The phosphor was prepared through chemical root using CaCO 3, HF acid and MnCl 2 as raw materials following co-precipitation method. TL sensitivity of the prepared phosphor was compared with other well established phosphors used for radiation dosimetry. It was found that the TL sensitivity is higher by a factor of 10 with respect to LiF:Mg, Ti, TLD-100 and half to that of CaSO 4:Dy (0.05 mol%) phosphor. X-ray diffraction, TL emission spectrum and ESR spectrum taken of the prepared phosphor confirms the crystal structure, Mn 2+ emission and incorporation Mn in the crystal, respectively. No significant fading of the dosimetric peak was observed of the prepared phosphor for a storage period of 45 days. The dose linearity of the phosphor was found to be in the range of 50 Gy-3 kGy within an uncertainty of about 10%. An attempt was made to determine the kinetic parameters of TL glow curve and the parameters related to optically stimulated luminescence. In view of its long range of dose linearity, it can be used for the dosimetry of commercial irradiator generally used for the irradiation of food and grains in our country.
Chemistry of impact events on Mercury
NASA Astrophysics Data System (ADS)
Berezhnoy, Alexey A.
2018-01-01
Based on the equilibrium thermochemical approach and quenching theory, formation of molecules and dust grains in impact-produced clouds formed after collisions between meteoroids and Mercury is considered. Based on observations of Al, Fe, and Mn atoms in the exosphere of Mercury and new results of studies of the elemental composition of the surface of Mercury, quenching temperatures and pressures of main chemical reactions and condensation of dust particles were estimated. The behavior of the main Na-, K-, Ca-, Fe-, Al-, Mn-, Mg-, Si-, Ti, Ni-, Cr-, Co, Zn-, O-, H-, S-, C-, Cl-, N-, and P-containing species delivered to the Hermean exosphere during meteoroid impacts was studied. The importance of meteoroid bombardment as a source of Na, K, Ca, Fe, Al, Mn, Mg, and O atoms in the exosphere of Mercury is discussed.
NASA Astrophysics Data System (ADS)
Tsai, Cheng-Che; Chao, Wei-Hsiang; Chu, Sheng-Yuan; Hong, Cheng-Shong; Weng, Chung-Ming; Su, Hsiu-Hsien
2016-12-01
In this work, the process of two-stage modifications for (Ba0.97Ca0.03)(Ti0.96Sn0.04-xHfx)O3 (BCTS4-100xH100x) ceramics was studied. The trade-off composition was obtained by Hf substitution for Sn and MnO2 doping (two-stage modification) which improves the temperature stability and piezoelectric properties. The phase structure ratio, microstructure, and dielectric, piezoelectric, ferroelectric, and temperature stability properties were systematically investigated. Results showed that BCTS4-100xH100x piezoelectric ceramics with x=0.035 had a relatively high Curie temperature (TC) of about 112 °C, a piezoelectric charge constant (d33) of 313 pC/N, an electromechanical coupling factor (kp) of 0.49, a mechanical quality factor (Qm) of 122, and a remnant polarization (Pr) of 19 μ C /cm2 . In addition, the temperature stability of the resonant frequency (fr), kp, and aging d33 could be tuned via Hf content. Good piezoelectric temperature stability (up to 110 °C) was found with x =0.035. BCTS0.5H3.5 + a mol% Mn (BCTSH + a Mn) piezoelectric ceramics with a = 2 had a high TC of about 123 °C, kp ˜ 0.39, d33 ˜ 230 pC/N, Qm ˜ 341, and high temperature stability due to the produced oxygen vacancies. This mechanism can be depicted using the complex impedance analysis associated with a valence compensation model on electric properties. Two-stage modification for lead-free (Ba0.97Ca0.03)(Ti0.96Sn0.04)O3 ceramics suitably adjusts the compositions for applications in piezoelectric motors and actuators.
NASA Astrophysics Data System (ADS)
Singh, Anar; Kaifeng, Dong; Chen, Jing-Sheng
2018-03-01
Epitaxial BiFeO3 thin films of 130nm were deposited by pulsed laser deposition (PLD) technique on La0.67Sr0.33MnO3 buffered SrTiO3 (001) substrate at various temperatures under different ambient oxygen pressures. Reciprocal space mapping reveals that, with decreasing temperature and oxygen pressure, the broadly reported monoclinic phase (MA) of BiFeO3 thin film initially transforms to a tetragonal phase (T1) with c/a =1.05 (1) in a narrow girth of deposition condition and then to a super-tetragonal phase (T2) with giant c/a = 1.24 (1), as confirmed by reciprocal space mapping using high resolution x-ray diffraction. The surface morphology of the films reveals the island growth of the BiFeO3 films deposited at low temperatures. We propose that the transformation from monoclinic to the super-tetragonal phase is essentially due to the manifestation of excess local strain as a result of the island growth. This study offers a recipe to grow the super-tetragonal phase of BiFeO3, with giant c/a =1.24 (1) which exhibits exceptionally large ferroelectric polarization, on ferromagnetic layer La0.67Sr0.33MnO3. This phase of BiFeO3 can be utilized for the ferroelectric control of magnetism at the interface of BiFeO3 and La0.67Sr0.33MnO3.
Reiman, Jeremy H; Xu, Y Jun; He, Songjie; DelDuco, Emily M
2018-08-01
Discharging 680 km 3 of freshwater annually to the Northern Gulf of Mexico (NGOM), the Mississippi-Atchafalaya River System (MARS) plays a significant role in transporting major and trace elements to the ocean. In this study, we analyzed total recoverable concentrations of thirty-one metals from water samples collected at five locations along the MARS during 2013-2016 to quantify their seasonal mass exports. The Atchafalaya River flows through a large swamp floodplain, allowing us to also test the hypothesis that floodplains function as a sink for metals. We found that the seven major elements (Ca, Na, Mg, Si, K, Al, and Fe) constituted 99% of the total annual mass load of metals (7.38 × 10 7 tons) from the MARS. Higher concentrations of Al, Ba, B, Ca, Fe, Mg, Mn, Ag, and Ti were found in the Mississippi River, while significantly higher Si and Na concentrations were found in the Atchafalaya River. Significant relationships were found between daily discharge and daily loads of Ba, Ca, Fe, K, Sr, and Ti in both rivers, while significant relationships were also found for Al, Mg, Mn, V, and Zn in the Atchafalaya River and B in the Mississippi River. Overall, the Mississippi River contributed 64-76% of the total annual loading of metals from the MARS to the NGOM. Daily loads of Al, Ba, B, Fe, Li, Mn, P, K, Si, Ag, Ti, V, and Zn regularly decreased upstream to downstream in the Atchafalaya River, partially accepting the initial hypothesis on metals transport in river floodplains. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Ti-Mn system revisited: experimental investigation and thermodynamic modelling.
Khan, A U; Brož, P; Premović, M; Pavlů, J; Vřeštál, J; Yan, X; Maccio, D; Saccone, A; Giester, G; Rogl, P
2016-08-17
As the Ti-Mn phase diagram is part of numerous ternary and higher order systems of technological importance, the present paper defines phase relations which have been experimentally established throughout this work from 800 °C to the melting range based on Differential Thermal Analyses (DTA), X-ray powder diffraction, metallography and Electron Probe Micro Analysis (EPMA) techniques on ∼50 alloys, which were prepared by arc melting or high frequency melting under high purity argon starting from freshly cleaned metal ingots. Novel compounds were identified and reaction isotherms were redefined accordingly. In the Ti-rich region a novel compound TiMn was detected, sandwiched between the known phases: TiMn1-x (∼45 at% Mn) and TiMn1+x (∼55 at% Mn). In the Mn-rich region the hitherto unknown crystal structure of TiMn∼3 was solved from X-ray single crystal diffraction data and found to be of a unique structure type Ti6(Ti1-xMnx)6Mn25 (x = 0.462; space group Pbam (#55); a = 0.79081(3) nm, b = 2.58557(9) nm, c = 0.47931(2) nm), which consists of two consecutive layers of the hexagonal MgZn2-type Laves phase (TiMn2) and a combined layer of alternate structure blocks of MgZn2 type and Zr4Al3 type. Whereas TiMn can be considered as a line compound (solubility range <∼1 at%), the homogeneity regions of the Ti-Mn compounds are significant (determined by EPMA): TiMn1-x (44.0 to 46.6 at% Mn), TiMn1+x (54.6 to 56.3 at% Mn), Ti1+xMn2-x (MgZn2-type, 59 to 69 at% Mn at 1000 °C: -0.08 < x < 0.23), TiMn∼3 (unique type; 74 to 76.5 at% Mn) and TiMn∼4 (R-phase: Ti8(TixMn1-x)6Mn39, 80 to 84 at% Ti). Supported by ab initio calculations of the ground state energy for the Laves phase, the new experimental results enabled thermodynamic modelling of the entire Ti-Mn phase diagram providing a complete and novel set of thermodynamic data thus providing a sound basis for future thermodynamic predictions of higher order Ti-Mn-X-Y systems.
NASA Astrophysics Data System (ADS)
Zou, Xiaodong; Zhao, Dapeng; Sun, Jincheng; Wang, Cong; Matsuura, Hiroyuki
2018-04-01
Inclusion evolution behaviors, in terms of composition, size, and number density, and associated influence on the microstructures of the as-cast slabs, rolled plates, and simulated welded samples of plain EH36 and EH36-Mg shipbuilding steels have been systematically investigated. The results indicate that the inclusions in the as-cast plain EH36 are almost Al-Ca-S-O-(Mn) complex oxides with sizes ranging from 1.0 to 2.0 μm. After Mg addition, a large amount of individually fine MnS precipitates and Mg-containing Ti-Al-Mg-O-(Mn-S) complex inclusions are generated, which significantly refine the microstructure and are conducive to the nucleation of acicular ferrite in the rolled and welded sample. Moreover, after rolling and welding thermal simulation, the number of individual MnS decreases gradually due to its precipitation on the surface of Ti-Al-Mg-O oxides.
NASA Astrophysics Data System (ADS)
Symonds, Robert B.; Reed, Mark H.; Rose, William I.
1992-02-01
Thermochemical modeling predicts that trace elements in the Augustine gas are transported from near-surface magma as simple chloride (NaCl, KCl, FeCl 2, ZnCl 2, PbCl 2, CuCl, SbCl 3, LiCl, MnCl 2, NiCl 2, BiCl, SrCl 2), oxychloride (MoO 2Cl 2), sulfide (AsS), and elemental (Cd) gas species. However, Si, Ca, Al, Mg, Ti, V, and Cr are actually more concentrated in solids, beta-quartz (SiO 2), wollastonite (CaSiO 3), anorthite (CaAl 2Si 2O 8), diopside (CaMgSi 2O 6), sphene (CaTiSiO 5), V 2O 3(c), and Cr 2O 3(c), respectively, than in their most abundant gaseous species, SiF 4, CaCl 2, AlF 2O, MgCl 2 TiCl 4, VOCl 3, and CrO 2Cl 2. These computed solids are not degassing products, but reflect contaminants in our gas condensates or possible problems with our modeling due to "missing" gas species in the thermochemical data base. Using the calculated distribution of gas species and the COSPEC SO 2 fluxes, we have estimated the emission rates for many species (e.g., COS, NaCl, KCl, HBr, AsS, CuCl). Such forecasts could be useful to evaluate the effects of these trace species on atmospheric chemistry. Because of the high volatility of metal chlorides (e.g., FeCl 2, NaCl, KCl, MnCl 2, CuCl), the extremely HCl-rich Augustine volcanic gases are favorable for transporting metals from magma. Thermochemical modeling shows that equilibrium degassing of magma near 870°C can account for the concentrations of Fe, Na, K, Mn, Cu, Ni and part of the Mg in the gases escaping from the dome fumaroles on the 1986 lava dome. These calculations also explain why gases escaping from the lower temperature but highly oxidized moat vents on the 1976 lava dome should transport less Fe, Na, K, Mn and Ni, but more Cu; oxidation may also account for the larger concentrations of Zn and Mo in the moat gases. Nonvolatile elements (e.g., Al, Ca, Ti, Si) in the gas condensates came from eroded rock particles that dissolved in our samples or, for Si, from contamination from the silica sampling tube. Only a very small amount of rock contamination occurred (water/rock ratios between 10 4 and 10 6). Erosion is more prevalent in the pyroclastic flow fumaroles than in the summit vents, reflecting physical differences in the fumarole walls: ash vs. lava. Trace element contents of volcanic gases show enormous variability because of differences in the intensive parameters of degassing magma and variable amounts of wall rock erosion in volcanic fumaroles.
Cho, Ahra; Han, Chan Su; Kang, Meenjoo; Choi, Wooseok; Lee, Jihwan; Jeon, Jaecheol; Yu, Sujae; Jung, Ye Seul; Cho, Yong Soo
2018-05-09
Colossal dielectric constant CaCu 3 Ti 4 O 12 has been recognized as one of the rare materials having intrinsic interfacial polarization and thus unusual dielectric characteristics, in which the electrical state of the grain boundary is critical. Here, the direct correlation between the grain boundary potential and relative permittivity is proposed for the CaCu 3 Ti 4 O 12 thin films doped with Zn, Ga, Mn, and Ag as characterized by Kelvin probe force microscopy. The dopants are intended to provide the examples of variable grain boundary potentials that are driven by chemical states including Cu + , Ti 3+ , and oxygen vacancy. Grain boundary potential is nearly linearly proportional to the dielectric constant. This effect is attributed to the increased charge accumulation near the grain boundary, depending on the choice of the dopant. As an example, 1 mol % Ag-doped CaCu 3 Ti 4 O 12 thin films demonstrate the best relative permittivity as associated with a higher grain boundary potential of 120.3 mV compared with 82.6 mV for the reference film. The chemical states across grain boundaries were further verified by using spherical aberration-corrected scanning transmission electron microscopy with the simultaneous electron energy loss spectroscopy.
NASA Astrophysics Data System (ADS)
Tsuji, Kosuke; Chen, Wei-Ting; Guo, Hanzheng; Lee, Wen-Hsi; Guillemet-Fritsch, Sophie; Randall, Clive A.
2017-02-01
The d.c. conduction is investigated in the two different types of internal barrier layer capacitors, namely, (Mn, Nb)-doped SrTiO3 (STO) and CaCu3Ti4O12 (CCTO). Scanning electron microscopy (SEM) and Capacitance - Voltage (C-V) analysis are performed to estimate the effective electric field at a grain boundary, EGB. Then, the d.c. conduction mechanism is discussed based on the J (Current density)-EGB characteristics. Three different conduction mechanisms are successively observed with the increase of EGB in both systems. In (Mn, Nb)-doped STO, non-linear J-EGB characteristics is temperature dependent at the intermediate EGB and becomes relatively insensitive to the temperature at the higher EGB. The J- EGB at each regime is explained by the Schottky emission (SE) followed by Fowler-Nordheim (F-N) tunneling. Based on the F-N tunneling, the breakdown voltage is then scaled by the function of the depletion layer thickness and Schottky barrier height at the average grain boundary. The proposed function shows a clear linear relationship with the breakdown. On the other hand, F-N tunneling was not observed in CCTO in our measurement. Ohmic, Poole-Frenkel (P-F), and SE are successively observed in CCTO. The transition point from P-F and SE depends on EGB and temperature. A charge-based deep level transient spectroscopy study reveals that 3 types of trap states exist in CCTO. The trap one with Et ˜ 0.65 eV below the conduction band is found to be responsible for the P-F conduction.
[Determination of multi-element contents in gypsum by ICP-AES].
Guo, Zhong-bao; Bai, Yong-zhi; Cui, Jin-hua; Mei, Yi-fei; Ma, Zhen-zhu
2014-08-01
The content of multi-element in gypsum was determined by ICP-AES. The sample was pretreated by acid-soluble method or alkali-fusion method. Acid-soluble method is suitable for the determination of CaO, SOs, Al2O3, Fe2O3, MgO, K2O, Na2O, TiO2, P2O5, MnO, SrO and BaO. Alkali-fusion method is suitable for the determination of CaO, SO3, SiO2, Al2O3, Fe2O3, MgO, TiO2, P2O5, MnO, SrO, BaO and B2O3. Different series standard solutions were prepared considering the properties and content of elements and solution matrix. The limit of detection and quantification were confirmed for each element under their best analysis spectral lines. The recoveries of the two pretreatment methods were from 93% to 110%, besides that for TiO2 was 81%-87% as pretreated by acid-soluble method. All RSDs (n=6) of tests were from 0.70%-3.42%. The accuracies of CaO and SO3 with ICP-AES method were less than the chemical analysis method. The determination of CaO and SO3 with ICP-AES method is only suitable for the case of low accuracy requirement. The results showed that the method can be used for the determination of multi-element contents in gypsum, with simple operation, fast analysis and reliable results. Total elements can be analysed with both acid-soluble method and alkali-fusion method.
NASA Astrophysics Data System (ADS)
Yan, Jian-Min; Gao, Guan-Yin; Liu, Yu-Kuai; Wang, Fei-Fei; Zheng, Ren-Kui
2017-10-01
We report the fabrication of lead-free multiferroic structures by depositing ferromagnetic La0.7Sr0.3MnO3 (LSMO) polycrystalline films on polished 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 (BZT-BCT) piezoelectric ceramic substrates. By applying electric fields to the BZT-BCT along the thickness direction, the resistivity of LSMO films can be effectively manipulated via the piezoelectric strain of the BZT-BCT. Moreover, the LSMO polycrystalline films exhibit almost temperature independent and significantly enhanced magnetoresistance (MR) below TC. At T = 2 K and H = 8 T, the MR of polycrystalline films is approximately two orders of magnitude higher than that of LSMO epitaxial films grown on (LaAlO3)0.3(SrAl1/2Ta1/2O3)0.7 single-crystal substrates. The enhanced MR mainly results from the spin-polarized tunneling of charge carriers across grain boundaries. The LSMO/BZT-BCT structures with electric-field controllable modulation of resistivity and enhanced MR effect may have potential applications in low-energy consumption and environmentally friendly electronic devices.
Trace Element Compositions of Pallasite Olivine Grains and Pallasite Origin
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Herrin, J. S.
2010-01-01
Pallasites are mixtures of metal with magnesian olivine. Most have similar metal compositions and olivine oxygen isotopic compositions; these are the main-group pallasites (PMG). The Eagle Station grouplet of pallasites (PES) have distinctive metal and olivine compositions and oxygen isotopic compositions. Pallasites are thought to have formed at the core-mantle boundary of their parent asteroids by mixing molten metal with solid olivine of either cumulatic or restitic origin. We have continued our investigation of pallasite olivines by doing in situ trace element analyses in order to further constrain their origin. We determined Al, P, Ca, Ga and first row transition element contents of olivine grains from suite of PMG and PES by LA-ICP-MS at JSC. Included in the PMG suite are some that have anomalous metal compositions (PMG-am) and atypically ferroan olivines (PMG-as). Our EMPA work has shown that there are unanticipated variations in olivine Fe/Mn, even within those PMG that have uni-form Fe/Mg. Manganese is homologous with Fe2+, and thus can be used the same way to investigate magmatic fractionation processes. It has an advantage for pallasite studies in that it is unaffected by redox exchange with the metal. PMG can be divided into three clusters on the basis of Mn/Mg; low, medium and high that can be thought of as less, typically and more fractionated in an igneous sense. The majority of PMG have medium Mn/Mg ratios. PMG-am occur in all three clusters; there does not seem to be any relationship between putative olivine igneous fractionation and metal composition. The PMG-as and one PMG-am make up the high Mn/Mg cluster; no PMG are in this cluster. The high Mn/Mg cluster ought to be the most fractionated (equivalent to the most Fe-rich in igneous suites), yet they have among the lowest contents of incompatible lithophile elements Al and Ti and the two PMG-as in this cluster also have low Ca and Sc contents. This is inconsistent with simple igneous fractionation on a single, initially homogeneous parent asteroid. For Al and Ti, the low and high Mn/Mg clusters have generally uniform contents, while the medium cluster has wide ranges. This is also true of analyses of duplicate grains from the medium cluster pallasites which can have very different Al and Ti contents. Those from the low and high clusters do not. These observations suggest that pallasite olivines are not cumulates, but rather are restites from high degrees of melting. The moderately siderophile elements P and Ga show wide ranges in the high Mn/Mg cluster, but very uniform compositions in the medium cluster, opposite the case for Al and Ti. There is no correlation of P or Ga and Fe/Mn as might be expected if redox processes controlled the contents of moderately siderophile elements in the olivines. The lack of correlation of P could reflect equilibration with phosphates, although there is no correlation of Ca with P as might be expected
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, A.; Cha, J.W.; Alexander, G.V.
Plants were grown in solution culture with different levels of Ca to further evaluate Ca relationships to trace metal uptake and to toxicity of trace metals. When tomato plants (Lycopersicon esculentum L., Tropic) were grown at a low level of Ca, the Zn, Cu, Fe, Mn, Al, and Ti concentrations of leaves, stems, and roots were considerably increased. The use of an excess of CaCO/sub 3/ which increased pH did not influence the trace metal concentrations of plants any more than did Ca/sup + +/. In a factorial experiment with bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen) with Camore » (10/sup -4/, 10/sup -2/, 10/sup -2/N) and Ni (0, 2 x 10/sup -6/ M, 2 x 10/sup -5/ M), Ni phytotoxicity and Ni uptake were decreased somewhat at the highest Ca level. High Ni tended to decrease the Ca concentration in leaves. High Ca and Ni both tended to decrease Fe, Cu, Zn, and Mn concentrations in leaves. The Ni had some interactions on the P concentrations of shoots.« less
Thickness dependence of the exchange bias in epitaxial manganite bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobrinskii, A. L.; Goldman, A. M.; Varela del Arco, Maria
Exchange bias has been studied in a series of La{sub 2/3}Ca{sub 1/3}MnO{sub 3}/La{sub 1/3}Ca{sub 2/3}MnO{sub 3} bilayers grown on (001) SrTiO{sub 3} substrates by ozone-assisted molecular-beam epitaxy. The high crystalline quality of the samples and interfaces has been verified using high-resolution x-ray diffractometry and Z-contrast scanning transmission electron microscopy with electron-energy-loss spectroscopy. The dependence of exchange bias on the thickness of the antiferromagnetic layer has been investigated. A critical value for the onset of the hysteresis loop shift has been determined. An antiferromagnetic anisotropy constant has been obtained by fitting the results to the generalized Meiklejohn-Bean model.
Sintered silicon carbide molded body and method for its production
NASA Technical Reports Server (NTRS)
Omori, M.; Sendai, M.; Ohira, K.
1984-01-01
Sintered silicon carbide shapes are described. They are produced by using a composition containing an oxide of at least one element chosen from the group: Li, Be, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, Ba, Tc, Ta, W and Th as a supplement to known sintering aids.
Anode materials for lithium ion batteries
Abouimrane, Ali; Amine, Khalil
2017-04-11
An electrochemical device includes a composite material of general Formula (1-x)J-(x)Q wherein: J is a metal carbon alloy of formula Sn.sub.zSi.sub.z'Met.sub.wMet'.sub.w'C.sub.t; Q is a metal oxide of formula A.sub..gamma.M.sub..alpha.M'.sub..alpha.'O.sub..beta.; and wherein: A is Li, Na, or K; M and M' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; Met and Met' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; 0
NASA Astrophysics Data System (ADS)
Kurniawan, B.; Ruli, F.; Imaduddin, A.; Kamila, R.
2018-05-01
In this paper, we investigate the transport properties and magnetoresistance effect of La0.8Ca0.13Ag0.07MnO3 perovskite manganite synthesized by sol-gel method. The XRD pattern of the sample shows a rhombohedral perovskite structure with space group R3¯c. The EDX analysis confirms that the sample contains all expected chemical elements without any additional impurity. The temperature dependence of electrical resistivity was measured using a cryogenic magnetometer. The results show a metal-insulator transition temperature (TM-I ) at 280 K. The resistivity of the sample increases with an increase of temperature below TM-I . Theoretical analyses of the temperature dependence of resistivity suggest that the resistivity due to electron-electron scattering is predominant below TI-M. The resistivity of the sample decreases when applied magnetic field 1 T at a temperature range of 10 K to 300 K. The magnetoresistance of La0.8Ca0.13Ag0.07MnO3 emanates from spin-polarized tunneling process at the grain boundary.
SEM, EDX, Infrared and Raman spectroscopic characterization of the silicate mineral yuksporite
NASA Astrophysics Data System (ADS)
Frost, Ray L.; López, Andrés; Scholz, Ricardo; Theiss, Frederick L.; Romano, Antônio Wilson
2015-02-01
The mineral yuksporite (K,Ba)NaCa2(Si,Ti)4O11(F,OH)ṡH2O has been studied using the combination of SEM with EDX and vibrational spectroscopic techniques of Raman and infrared spectroscopy. Scanning electron microscopy shows a single pure phase with cleavage fragment up to 1.0 mm. Chemical analysis gave Si, Al, K, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and REE. Raman bands are observed at 808, 871, 930, 954, 980 and 1087 cm-1 and are typical bands for a natural zeolite. Intense Raman bands are observed at 514, 643 and 668 cm-1. A very sharp band is observed at 3668 cm-1 and is attributed to the OH stretching vibration of OH units associated with Si and Ti. Raman bands resolved at 3298, 3460, 3562 and 3628 cm-1 are assigned to water stretching vibrations.
NASA Astrophysics Data System (ADS)
Pal, Kamalesh; Jana, Rajkumar; Dey, Arka; Ray, Partha P.; Seikh, Md Motin; Gayen, Arup
2018-05-01
We report the synthesis of nanosized (40-50 nm) CaCu3-xMnxTi4-xMnxO12 (x = 0, 0.5 and 1) quadruple perovskite (QP) semiconductor via a modified combustion method for use as Schottky barrier diode (SBD) at the Al/QP junction. The fabricated SBD is analysed on the basis of thermionic emission theory to observe its quality and some important diode parameters. For insight analysis of charge transport mechanism through metal-semiconductor junction, theory of space charge limited currents is applied and discussed in the light of parameters like carrier concentration, mobility-lifetime product and diffusion length. The Mn-doped exhibit better device performance compared to parent material.
Induced Ti magnetization at La 0.7Sr 0.3MnO 3 and BaTiO 3 interfaces
Liu, Yaohua; Tornos, J.; te Velthuis, S. G. E.; ...
2016-04-01
In artificial multiferroics hybrids consisting of ferromagnetic La 0.7Sr 0.3MnO 3 (LSMO) and ferroelectric BaTiO 3 epitaxial layers, net Ti moments are found from polarized resonant soft x-ray reflectivity and absorption. The Ti dichroic reflectivity follows the Mn signal during the magnetization reversal, indicating exchange coupling between the Ti and Mn ions. However, the Ti dichroic reflectivity shows stronger temperature dependence than the Mn dichroic signal. Lastly, besides a reduced ferromagnetic exchange coupling in the interfacial LSMO layer, this may also be attributed to a weak Ti-Mn exchange coupling that is insufficient to overcome the thermal energy at elevated temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Zhihui; Liu, Shilong; Wang, Xuemin, E-mail: wxm@mater.ustb.edu.cn
2015-08-15
A new method based on electron back scattered diffraction (EBSD) is proposed to determine the structure of titanium oxide/MnS complex inclusion which induced the formation of intragranular acicular ferrite (IAF) in heat-affected zone (HAZ) in steel processed by oxide metallurgy route. It was found that the complex inclusion was Ti{sub 2}O{sub 3}/MnS, the orientation relationship between Ti{sub 2}O{sub 3} and MnS was also examined, and the crystallographic orientation relationship among IAF, Ti{sub 2}O{sub 3}/MnS complex inclusion, austenite, bainite formed at lower temperature is researched systematically. It was observed that MnS precipitated on Ti{sub 2}O{sub 3} at specific habit plane andmore » direction and MnS had a specific orientation relationship ((0001) Ti{sub 2}O{sub 3}//(111) MnS), <10–10> Ti{sub 2}O{sub 3}//<110> MnS) with respect to Ti{sub 2}O{sub 3}. Intragranular acicular ferrite (IAF) nucleated on MnS part of the Ti{sub 2}O{sub 3}/MnS complex inclusion had no specific orientation relationship with MnS. IAF and the surrounding bainite had different Bain groups, so that there was an increase in high angle boundaries, which was beneficial for the toughness of HAZ. - Highlights: • The inclusion of TiO{sub x}/MnS that induced IAF formation is identified to be Ti{sub 2}O{sub 3}/MnS. • The inclusion is identified based on electron back scattered diffraction (EBSD). • MnS and Ti{sub 2}O{sub 3} had specific orientation relationship of Ti{sub 2}O{sub 3}/MnS complex inclusion. • The IAFs formed on the same inclusion tend to be in one Bain group. • IAF and the surrounding bainite tend to be in different Bain groups.« less
Anti-site-induced diverse diluted magnetism in LiMgPdSb-type CoMnTiSi alloy
NASA Astrophysics Data System (ADS)
Lin, T. T.; Dai, X. F.; Guo, R. K.; Cheng, Z. X.; Wang, L. Y.; Wang, X. T.; Liu, G. D.
2017-02-01
The effect of three kinds of anti-site disorder to electronic structure and magnetic properties of the LiMgPdSb-type CoMnTiSi alloy are investigated. It was found the Mn-Ti anti-site disorder can induce the diluted magnetism in CoMnTiSi matrix. The magnetic structure has an oscillation between the ferromagnetic and antiferromagnetic states with the different degree of Mn-Ti anti-site disorder. Two novel characteristics: the diluted antiferromagnetic half-metallicity and the diluted zero-gap half-metallity are found in the different degree range of the Mn-Ti anti-site disorder. The Co-Mn and Co-Ti anti-site disorder have little effect on the magnetic properties. The width of energy gap and the intensity of DOS at the Fermi level can be adjusted by the degree of Co-Mn or Co-Ti anti-site disorder. The independent control to the carrier concentration and magnetization can be realized by introducing the different anti-site disorder.
Evaluation of elemental enrichments in surface sediments off southwestern Taiwan
NASA Astrophysics Data System (ADS)
Chen, Chen-Tung; Kandasamy, Selvaraj
2008-05-01
Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O{3/T} suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C-S-Fe relationship owing to authigenic precipitation of Fe-Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.
Zhou, Shanshan; Yuan, Haodong; Ma, Xiaoling; Liu, Ying
2017-01-01
Women have an increased risk for chemical element deficiencies during reproductive age, particularly due to higher chemical element requirements and poor diets. Twenty-one chemical elements (Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Se, Si, Sn, Sr, Ti, V and Zn) in hair samples, which were collected from 71 non-pregnant and 236 pregnant women living in the West Ujimqin Banner, central Inner Mongolia, China, were measured, and the environment, dietary habits and ethnic group influence factors associated with the biomarker were analyzed. The results indicated that the average values of the chemical element contents from hair were greatly different compared to those from other areas, especially the Al, Cd, Pb, Ca and Sr contents. There was no significant difference among the three ethnicities for any element except Mn and Ti in non-pregnant women. Compared to non-pregnant women, in the first trimester group, the levels of nine chemical elements (Ba, Cd, Cu, Pb, Se, Si, Sn and Ti) decreased, while the others increased, and the contents of all of the chemical elements decreased in the second trimester group, while in the third trimester, there was a slight increase. Three chemical elements (Cu, Mn and Zn) displayed a synergistic correlation between each other in the third trimester group, which may protect the placenta from some oxidant damage. The high levels of Cd and Pb in hair likely originate from house renovations and traffic pollution. This study provided basic and useful information on the levels of chemical elements in reproductive-age women, and the results of this study are helpful to control the contents and improve the health of pregnant and non-pregnant women. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Duan, Sheng-chao; Li, Chuang; Guo, Han-jie; Guo, Jing; Han, Shao-wei; Yang, Wen-sheng
2018-04-01
The demanganization reaction kinetics of carbon-saturated liquid iron with an eight-component slag consisting of CaO-SiO2-MgO-FeO-MnO-Al2O3-TiO2-CaF2 was investigated at 1553, 1623, and 1673 K in this study. The rate-controlling step (RCS) for the demanganization reaction with regard to the hot metal pretreatment conditions was studied via kinetics analysis based on the fundamental equation of heterogeneous reaction kinetics. From the temperature dependence of the mass transfer coefficient of a transition-metal oxide (MnO), the apparent activation energy of the demanganization reaction was estimated to be 189.46 kJ·mol-1 in the current study, which indicated that the mass transfer of MnO in the molten slag controlled the overall rate of the demanganization reaction. The calculated apparent activation energy was slightly lower than the values reported in the literature for mass transfer in a slag phase. This difference was attributed to an increase in the "specific reaction interface" (SRI) value, either as a result of turbulence at the reaction interface or a decrease of the absolute amount of slag phase during sampling, and to the addition of calcium fluoride to the slag.
Wang, Pengwei; Zhao, Guofeng; Wang, Yu; Lu, Yong
2017-01-01
Oxidative coupling of methane (OCM) is a promising method for the direct conversion of methane to ethene and ethane (C2 products). Among the catalysts reported previously, Mn2O3-Na2WO4/SiO2 showed the highest conversion and selectivity, but only at 800° to 900°C, which represents a substantial challenge for commercialization. We report a TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst by using Ti-MWW zeolite as TiO2 dopant as well as SiO2 support, enabling OCM with 26% conversion and 76% C2-C3 selectivity at 720°C because of MnTiO3 formation. MnTiO3 triggers the low-temperature Mn2+↔Mn3+ cycle for O2 activation while working synergistically with Na2WO4 to selectively convert methane to C2-C3. We also prepared a practical Mn2O3-TiO2-Na2WO4/SiO2 catalyst in a ball mill. This catalyst can be transformed in situ into MnTiO3-Na2WO4/SiO2, yielding 22% conversion and 62% selectivity at 650°C. Our results will stimulate attempts to understand more fully the chemistry of MnTiO3-governed low-temperature activity, which might lead to commercial exploitation of a low-temperature OCM process. PMID:28630917
Periodic table of 3d-metal dimers and their ions.
Gutsev, G L; Mochena, M D; Jena, P; Bauschlicher, C W; Partridge, H
2004-10-08
The ground states of the mixed 3d-metal dimers TiV, TiCr, TiMn, TiFe, TiCo, TiNi, TiCu, TiZn, VCr, VMn, VFe, VCo, VNi, VCu, VZn, CrMn, CrFe, CrCo, CrNi, CrCu, CrZn, MnFe, MnCo, MnNi, MnCu, MnZn, FeCo, FeNi, FeCu, FeZn, CoNi, CoCu, CoZn, NiCu, NiZn, and CuZn along with their singly negatively and positively charged ions are assigned based on the results of computations using density functional theory with generalized gradient approximation for the exchange-correlation functional. Except for TiCo and CrMn, our assignment agrees with experiment. Computed spectroscopic constants (r(e),omega(e),D(o)) are in fair agreement with experiment. The ground-state spin multiplicities of all the ions are found to differ from the spin multiplicities of the corresponding neutral parents by +/-1. Except for TiV, MnFe, and MnCu, the number of unpaired electrons, N, in a neutral ground-state dimer is either N(1)+N(2) or mid R:N(1)-N(2)mid R:, where N(1) and N(2) are the numbers of unpaired 3d electrons in the 3d(n)4s(1) occupation of the constituent atoms. Combining the present and previous results obtained at the same level of theory for homonuclear 3d-metal and ScX (X=Ti-Zn) dimers allows one to construct "periodic" tables of all 3d-metal dimers along with their singly charged ions.
Precipitation Behaviors of TiN Inclusion in GCr15 Bearing Steel Billet
NASA Astrophysics Data System (ADS)
Tian, Qianren; Wang, Guocheng; Zhao, Yang; Li, Jing; Wang, Qi
2018-06-01
There are many types of non-metallic TiN-based inclusions observed in GCr15 bearing steel, including single-particle TiN, multi-particle polymerized TiN, and complex inclusions like TiN-MnS, TiN-MgO-MgAl2O4 (TiN-MgO-MA), and TiN-MgAl2O4-MnS (TiN-MA-MnS). Thermodynamic calculations suggest that single-particle TiN precipitates dominate the mushy zone of GCr15 bearing steel. Kinetic calculations regarding TiN growth suggest that the final size of the single-particle TiN ranges between 1 and 6 μm in the initial concentration range of [pct Ti] = 0.0060 to 0.0079 and [pct N] = 0.0049 to 0.0070, at 1620 to 1640 K and a local cooling rate of 0.5 to 10 K/s. The multi-particle polymerized TiN are formed by single TiN particles in three stages: single-particle TiN inclusions approach each other drawn by the cavity bridge force (CBF), local active angles consolidate, and neck region sintering occurs. Based on the thermodynamic calculations of TiN, MnS, and MgO precipitation, the formation behaviors of complex inclusions of TiN-MnS, TiN-MgO-MA, and TiN-MA-MnS were investigated.
Shin, Byeongkil; Kim, Sangmin; Lee, Heesoo; Park, Hyun
2013-08-01
The TiO₂-system powders were investigated with respect to the crystallinity and the microstructure. The biocidal activity increased from TiO₂ to binary MnOx-TiO₂ to ternary MnOx-WO₃-TiO₂ against Vibrio fischeri as a model of Gram-negative bacteria. Anatase and rutile TiO₂ were not toxic even at 200 mg/L, but anatase has been observed in bacterial growth inhibition due to the different electronic band (lattice) structure. All materials containing manganese oxides were toxic: the toxicity correlation (EC₅₀) of MnOx-WO₃ and MnOx-WO₃-TiO₂ was 7.0, 1.8 ppm, respectively. The high antifouling activity of MnOx-WO₃-TiO₂ was attributed to its redox potential and soluble metal ions originating from tungsten oxides according to the improvements in the powder characteristics.
NASA Astrophysics Data System (ADS)
Zhang, Yu Xin; Kuang, Min; Hao, Xiao Dong; Liu, Yan; Huang, Ming; Guo, Xiao Long; Yan, Jing; Han, Gen Quan; Li, Jing
2014-12-01
A facile and large-scale strategy of mesoporous birnessite-type manganese dioxide (MnO2) nanosheets on one-dimension (1D) H2Ti3O7 and anatase/TiO2 (B) nanowires (NWs) is developed for high performance supercapacitors. The morphological characteristics of MnO2 nanoflakes on H2Ti3O7 and anatase/TiO2 (B) NWs could be rationally designed with various characteristics (e.g., the sheet thickness, surface area). Interestingly, the MnO2/TiO2 NWs exhibit a more optimized electrochemical performance with specific capacitance of 120 F g-1 at current density of 0.1 A g-1 (based on MnO2 + TiO2) than MnO2/H2Ti3O7 NWs. An asymmetric supercapacitor of MnO2/TiO2//activated graphene (AG) yields a better energy density of 29.8 Wh kg-1 than MnO2/H2Ti3O7//AG asymmetric supercapacitor, while maintaining desirable cycling stability. Indeed, the pseudocapacitive difference is related to the substrates, unique structure and surface area. Especially, the anatase/TiO2 (B) mixed-phase system can provide good electronic conductivity and high utilization of MnO2 nanosheets.
Electrical Transport and Magnetoresistance Properties of Tensile-Strained CaMnO3 Thin Films
NASA Astrophysics Data System (ADS)
Ullery, Dustin; Lawson, Bridget; Zimmerman, William; Neubauer, Samuel; Chaudhry, Adeel; Hart, Cacie; Yong, Grace; Smolyaninova, Vera; Kolagani, Rajeswari
We will present our studies of the electrical transport and magnetoresistance properties of tensile strained CaMnO3 thin films. We observe that the resistivity decreases significantly as the film thickness decreases which is opposite to what is observed in thin films of hole doped manganites. The decrease in resistivity is more pronounced in the films on (100) SrTiO3, with resistivity of the thinnest films being about 3 orders of magnitude lower than that of bulk CaMnO3. Structural changes accompanying resistivity changes cannot be fully explained as due to tensile strain, and indicate the presence of oxygen vacancies. These results also suggest a coupling between tensile strain and oxygen deficiency, consistent with predictions from models based on density functional theory calculations. We observe a change in resistance under the application of moderate magnetic field. Experiments are underway to understand the origin of the magnetoresistance and its possible relation to the tensile strain effects. We acknowledge support from: Towson Office of University Undergraduate Research, Fisher Endowment Grant and Undergraduate Research Grants from the Fisher College of Science and Mathematics, and Seed Funding Grant from the School of Emerging technologies.
Zarazúa-Ortega, Graciela; Poblano-Bata, Josefina; Tejeda-Vega, Samuel; Ávila-Pérez, Pedro; Zepeda-Gómez, Carmen; Ortiz-Oliveros, Huemantzin; Macedo-Miranda, Guadalupe
2013-01-01
This study is aimed at assessing atmospheric deposition of heavy metals using the epiphytic moss genera Fabronia ciliaris collected from six urban sites in the Metropolitan Zone of the Toluca Valley in Mexico. The concentrations of K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr, and Pb were determined by total reflection X-ray fluorescence technique. Results show that the average metal concentration decrease in the following order: Fe (8207 mg/Kg) > Ca (7315 mg/Kg) > K (3842 mg/Kg) > Ti (387 mg/Kg) > Mn, Zn (191 mg/Kg) > Sr (71 mg/Kg) > Pb (59 mg/Kg) > Cu, V (32 mg/Kg) > Cr (24 mg/Kg) > Rb (13 mg/Kg) > Ni (10 mg/Kg). Enrichment factors show a high enrichment for Cr, Cu, Zn, and Pb which provides an evidence of anthropogenic impact in the industrial and urban areas, mainly due to the intense vehicular traffic and the fossil fuel combustion. Monitoring techniques in mosses have proved to be a powerful tool for determining the deposition of heavy metals coming from diverse point sources of pollution.
Trace elemental analysis in cancer-afflicted tissues of penis and testis by PIXE technique
NASA Astrophysics Data System (ADS)
Naga Raju, G. J.; John Charles, M.; Bhuloka Reddy, S.; Sarita, P.; Seetharami Reddy, B.; Rama Lakshmi, P. V. B.; Vijayan, V.
2005-04-01
PIXE technique was employed to estimate the trace elemental concentrations in the biological samples of cancerous penis and testis. A 3 MeV proton beam was employed to excite the samples. From the present results it can be seen that the concentrations of Cl, Fe and Co are lower in the cancerous tissue of the penis when compared with those in normal tissue while the concentrations of Cu, Zn and As are relatively higher. The concentrations of K, Ca, Ti, Cr, Mn, Br, Sr and Pb are in agreement within standard deviations in both cancerous and normal tissues. In the cancerous tissue of testis, the concentrations of K, Cr and Cu are higher while the concentrations of Fe, Co and Zn are lower when compared to those in normal tissue of testis. The concentrations of Cl, Ca, Ti and Mn are in agreement in both cancerous and normal tissues of testis. The higher levels of Cu lead to the development of tumor. Our results also support the underlying hypothesis of an anticopper, antiangiogenic approach to cancer therapy. The Cu/Zn ratios of both penis and testis were higher in cancer tissues compared to that of normal.
NASA Astrophysics Data System (ADS)
Bose, Esa; Taran, S.; Karmakar, S.; Chaudhuri, B. K.; Pal, S.; Sun, C. P.; Yang, H. D.
2007-07-01
A ferromagnetic/ferroelectric composite system, viz. (100- x)La 0.7Ca 0.3 MnO 3 [LCMO]/( x) BaTiO 3 [BTO] (with x=0.0%, 1.0%, 5.0%, 7.5%, 10.0% and 15.0%, in wt%) has been synthesized and the temperature-dependent DC magnetization M( T), resistivity ρ( T), magnetoresistance (MR), and thermoelectric power S( T) have been studied. Both metal-insulator transition temperature ( TMI) and the corresponding Curie temperature ( TC) decrease whereas peak resistivity at TMI increases as x is enhanced from 0.0% to 10.0%. For x>10.0%, this trend of variation is reversed. A maximum three-fold increase of magnetoresistance (MR) is observed (for sample with x=10.0%) due to the addition of ferroelectric (non-magnetic) perovskite BTO (compared to the mother compound LCMO). Interestingly, thermoelectric power S( T) shows a pronounced depression (dip) near the magnetic transition region for the composite samples. The above results have been analyzed considering strain induced by the LCMO/BTO grain boundary layer (BL).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacotte, M.; David, A.; Pravarthana, D.
2014-12-28
The local epitaxial growth of pulsed laser deposited Ca{sub 2}MnO{sub 4} films on polycrystalline spark plasma sintered Sr{sub 2}TiO{sub 4} substrates was investigated to determine phase formation and preferred epitaxial orientation relationships (ORs) for isostructural Ruddlesden-Popper (RP) heteroepitaxy, further developing the high-throughput synthetic approach called Combinatorial Substrate Epitaxy (CSE). Both grazing incidence X-ray diffraction and electron backscatter diffraction patterns of the film and substrate were indexable as single-phase RP-structured compounds. The optimal growth temperature (between 650 °C and 800 °C) was found to be 750 °C using the maximum value of the average image quality of the backscattered diffraction patterns. Films grew inmore » a grain-over-grain pattern such that each Ca{sub 2}MnO{sub 4} grain had a single OR with the Sr{sub 2}TiO{sub 4} grain on which it grew. Three primary ORs described 47 out of 49 grain pairs that covered nearly all of RP orientation space. The first OR, found for 20 of the 49, was the expected RP unit-cell over RP unit-cell OR, expressed as [100][001]{sub film}||[100][001]{sub sub}. The other two ORs were essentially rotated from the first by 90°, with one (observed for 17 of 49 pairs) being rotated about the [100] and the other (observed for 10 of 49 pairs) being rotated about the [110] (and not exactly by 90°). These results indicate that only a small number of ORs are needed to describe isostructural RP heteroepitaxy and further demonstrate the potential of CSE in the design and growth of a wide range of complex functional oxides.« less
NASA Astrophysics Data System (ADS)
Santhosh, K. P.; Safoora, V.
2018-05-01
Using the phenomenological model for production cross section (PMPC), the production cross sections for the synthesis of isotopes of superheavy element Og ( Z = 118) using the fusion reactions 48Ca+249-254Cf → 297-302Og, 45Sc+247,249Bk → 292,294Og, 50Ti + 242-248,250Cm → 292-298,300Og, 51V+241,243Am → 292,294Og, 54Cr + 238-242,244Pu → 292-296,298Og, 55Mn + 235-237Np → 290-292Og, 58Fe + 232-236, 238U → 290-294,296Og, 59Co + 231Pa → 290Og, and 64Ni + 228-230,232Cm → 292-294,296Og in xn (x=3,4,5) evaporation channel have been systematically studied at energies near and above the Coulomb barrier. We have predicted most suitable projectile-target combinations for the synthesis of isotopes 290-302Og among these reactions. Our calculated evaporation residue (ER) cross section values for the reaction 48Ca + 249Cf → 297Og is in excellent agreement with available experimental values. For the synthesis of Og, among all the reactions mentioned above, the 3n channel cross section (2458 fb) is larger for 48Ca + 251Cf → 299Og; 4n channel cross section (212 fb) is larger for 48Ca + 252Cf → 300Og and 5n channel cross section (34 fb) is larger for 48Ca + 253Cf → 301Og. The second largest 3n channel cross section (1143 fb) is obtained for the reaction, 50Ti + 245Cm → 295Og. Our studies will be useful for the future experiments to synthesize the isotopes of element Og which are not synthesized so far. We have also studied the effect of the use of mass values and shell correction of the Warsaw group which leads to a smaller ER cross section compared to the Moller group.
Shin, Dongjoon; Shin, Jungho; Yeo, Taehan; Hwang, Hayoung; Park, Seonghyun; Choi, Wonjoon
2018-03-01
Core-shell nanostructures of metal oxides and carbon-based materials have emerged as outstanding electrode materials for supercapacitors and batteries. However, their synthesis requires complex procedures that incur high costs and long processing times. Herein, a new route is proposed for synthesizing triple-core-shell nanoparticles of TiO 2 @MnO 2 @C using structure-guided combustion waves (SGCWs), which originate from incomplete combustion inside chemical-fuel-wrapped nanostructures, and their application in supercapacitor electrodes. SGCWs transform TiO 2 to TiO 2 @C and TiO 2 @MnO 2 to TiO 2 @MnO 2 @C via the incompletely combusted carbonaceous fuels under an open-air atmosphere, in seconds. The synthesized carbon layers act as templates for MnO 2 shells in TiO 2 @C and organic shells of TiO 2 @MnO 2 @C. The TiO 2 @MnO 2 @C-based electrodes exhibit a greater specific capacitance (488 F g -1 at 5 mV s -1 ) and capacitance retention (97.4% after 10 000 cycles at 1.0 V s -1 ), while the absence of MnO 2 and carbon shells reveals a severe degradation in the specific capacitance and capacitance retention. Because the core-TiO 2 nanoparticles and carbon shell prevent the deformation of the inner and outer sides of the MnO 2 shell, the nanostructures of the TiO 2 @MnO 2 @C are preserved despite the long-term cycling, giving the superior performance. This SGCW-driven fabrication enables the scalable synthesis of multiple-core-shell structures applicable to diverse electrochemical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Minor elements in lunar olivine as a petrologic indicator
NASA Technical Reports Server (NTRS)
Steele, I. M.; Smith, J. V.
1975-01-01
Accurate electron microprobe analyses (approximately 50 ppm) were made for Al, Ca, Ti, Cr, Mn, and Ni in Mg-rich olivines which may derive from early lunar crust or deeper environments. Low-Ca contents consistently occur only in olivines from dunitic and troctolitic breccia: spinel troctolite and other rock types have high-Ca olivines suggesting derivation by near-surface processes. Rock 15445 has olivine with distinctly low CaO (approximately 0.01 wt.%). Chromium ranges to higher values (max.0.2 oxide wt.%) than for terrestrial harzburgites and lherzolites but is similar to the range in terrestrial komatiites. Divalent chromium may be indicated over trivalent Cr because olivines lack sufficient other elements for charge balance of the latter. NiO values in lunar specimens range from 0.00 to 0.07 wt.% and a weak anticorrelation with Cr2O3 suggests an oxidation state effect. Al2O3 values are mostly below 0.04-wt.% and show no obvious correlation with fragment type. TiO2 values lie below 0.13-wt.% and seem to correlate best with crystallization rate and plagioclase content of the host rock. High values of Al2O3 and TiO2 reported by other workers have not been confirmed, and are probably wrong.
NASA Astrophysics Data System (ADS)
Kamble, Ravi; Sabale, Sandip; Chikode, Prashant; Puri, Vijaya; Mahajan, Smita
2016-11-01
Pure TiO2 and Mn2+-TiO2 nanoparticles have been prepared by simple hydrothermal method with different Mn2+ concentrations. Obtained samples were analysed to determine it’s structural, optical, morphological and compositional properties using x-ray diffraction, UV-DRS, Raman, photoluminescence, XPS, TEM and EDS analysis. The EDS micrograph confirms the existence of Mn2+ atoms in TiO2 matrix with 0.86, 1.60 and 1.90 wt%. The crystallite size as well as band gap decreases with increase in Mn2+ concentration. The average particle size obtained from TEM was found 8-11 nm which is in good agreement with XRD results. Raman bands at 640, 518 and 398 cm-1 further confirmed pure phase anatase in all samples. XPS shows the proper substitutions of few sites of Ti4+ ions by Mn2+ ions in the TiO2 host lattice. The intensity of PL spectra for Mn2+-TiO2 shows a gradual decrease in the peak intensity with increasing Mn2+ concentration in TiO2, it implies lower electron-hole recombination rate as Mn2+ ions increases. The obtained samples were further studied for its photocatalytic activities using malachite green dye under UV light and visible light.
Controllable piezoelectricity of Pb(Zr0.2Ti0.8)O3 film via in situ misfit strain
NASA Astrophysics Data System (ADS)
Lee, Hyeon Jun; Guo, Er-Jia; Kwak, Jeong Hun; Hwang, Seung Hyun; Dörr, Kathrin; Lee, Jun Hee; Young Jo, Ji
2017-01-01
The tetragonality (c/a) of a PbZr0.2Ti0.8O3 (PZT) thin film on La0.7Sr0.3MnO3/ 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PMN-PT) substrates was controlled by applying an electric field on the PMN-PT substrate. The piezoelectric response of the PZT thin film under various biaxial strains was observed using time-resolved micro X-ray diffraction. The longitudinal piezoelectric coefficient (d33) was reduced from 29.5 to 14.9 pm/V when the c/a ratio of the PZT film slightly changed from 1.051 to 1.056. Our results demonstrate that the tetragonality of the PZT thin film plays a critical role in determining d33, and in situ strain engineering using electromechanical substrate is useful in excluding the extrinsic effect resulting from the variation in the film thickness or the interface between substrate.
Code of Federal Regulations, 2012 CFR
2012-01-01
...+05 C-14 4.6E+06 Na-22 1.9E+01 Al-26 1.5E+01 Si-32 4.9E+04 S-35 2.4E+06 Cl-36 5.2E+05 K-40 2.7E+02 Ca-41 9.3E+06 Ca-45 1.1E+06 Sc-46 6.2E+01 Ti-44 1.5E+02 V-49 1.0E+08 Mn-53 7.5E+07 Mn-54 6.5E+01 Fe-55 2.9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E...
Code of Federal Regulations, 2013 CFR
2013-01-01
...+05 C-14 4.6E+06 Na-22 1.9E+01 Al-26 1.5E+01 Si-32 4.9E+04 S-35 2.4E+06 Cl-36 5.2E+05 K-40 2.7E+02 Ca-41 9.3E+06 Ca-45 1.1E+06 Sc-46 6.2E+01 Ti-44 1.5E+02 V-49 1.0E+08 Mn-53 7.5E+07 Mn-54 6.5E+01 Fe-55 2.9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E...
Code of Federal Regulations, 2014 CFR
2014-01-01
...+05 C-14 4.6E+06 Na-22 1.9E+01 Al-26 1.5E+01 Si-32 4.9E+04 S-35 2.4E+06 Cl-36 5.2E+05 K-40 2.7E+02 Ca-41 9.3E+06 Ca-45 1.1E+06 Sc-46 6.2E+01 Ti-44 1.5E+02 V-49 1.0E+08 Mn-53 7.5E+07 Mn-54 6.5E+01 Fe-55 2.9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E...
All-oxide-based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal
NASA Astrophysics Data System (ADS)
Chen, Binbin; Xu, Haoran; Ma, Chao; Mattauch, Stefan; Lan, Da; Jin, Feng; Guo, Zhuang; Wan, Siyuan; Chen, Pingfan; Gao, Guanyin; Chen, Feng; Su, Yixi; Wu, Wenbin
2017-07-01
Synthesizing antiferromagnets with correlated oxides has been challenging, owing partly to the markedly degraded ferromagnetism of the magnetic layer at nanoscale thicknesses. Here we report on the engineering of an antiferromagnetic interlayer exchange coupling (AF-IEC) between ultrathin but ferromagnetic La2/3Ca1/3MnO3 layers across an insulating CaRu1/2Ti1/2O3 spacer. The layer-resolved magnetic switching leads to sharp steplike hysteresis loops with magnetization plateaus depending on the repetition number of the stacking bilayers. The magnetization configurations can be switched at moderate fields of hundreds of oersted. Moreover, the AF-IEC can also be realized with an alternative magnetic layer of La2/3Sr1/3MnO3 that possesses a Curie temperature near room temperature. The findings will add functionalities to devices with correlated-oxide interfaces.
Fahad, S. M.; Islam, A. F. M. Mahmudul; Ahmed, Mahiuddin; Alam, Md. Rezaul; Alam, Md. Ferdous; Khalik, Md. Farhan; Hossain, Md. Lokman; Abedin, Md. Joynal
2015-01-01
The concentrations of 18 different elements (K, Ca, Fe, Cl, P, Zn, S, Mn, Ti, Cr, Rb, Co, Br, Sr, Ru, Si, Ni, and Cu) were analyzed in five selected vegetables through Proton Induced X-ray Emission (PIXE) technique. The objective of this study was to provide updated information on concentrations of elements in vegetables available in the local markets at Savar subdistrict in Bangladesh. These elements were found in varying concentrations in the studied vegetables. The results also indicated that P, Cl, K, Ca, Mn, Fe, and Zn were found in all vegetables. Overall, K and Ca exhibited the highest concentrations. Cu and Ni exhibited the lowest concentrations in vegetables. The necessity of these elements was also evaluated, based on the established limits of regulatory standards. The findings of this study suggest that the consumption of these vegetables is not completely free of health risks. PMID:26229953
NASA Astrophysics Data System (ADS)
Chukanov, N. V.; Blass, G.; Pekov, I. V.; Belakovskiy, D. I.; Van, K. V.; Rastsvetaeva, R. K.; Aksenov, S. M.
2012-12-01
Non-metamict perrierite-(La) discovered in the Dellen pumice quarry, near Mendig, in the Eifel volcanic district, Rheinland-Pfalz, Germany has been approved as a new mineral species (IMA no. 2010-089). The mineral was found in the late assemblage of sanidine, phlogopite, pyrophanite, zirconolite, members of the jacobsite-magnetite series, fluorcalciopyrochlore, and zircon. Perrierite-(La) occurs as isolated prismatic crystals up to 0.5 × 1 mm in size within cavities in sanidinite. The new mineral is black with brown streak; it is brittle, with the Mohs hardness of 6 and distinct cleavage parallel to (001). The calculated density is 4.791 g/cm3. The IR spectrum does not contain absorption bands that correspond to H2O and OH groups. Perrierite-(La) is biaxial (-), α = 1.94(1), β = 2.020(15), γ = 2.040(15), 2 V meas = 50(10)°, 2 V calc = 51°. The chemical composition (electron microprobe, average of seven point analyses, the Fe2+/Fe3+ ratio determined from the X-ray structural data, wt %) is as follows: 3.26 CaO, 22.92 La2O3, 19.64 Ce2O3, 0.83 Pr2O2, 2.09 Nd2O3, 0.25 MgO, 2.25 MnO, 3.16 FeO, 5.28 Fe2O3, 2.59 Al2O3, 16.13 TiO2, 0.75 Nb2O5, and 20.06 SiO2, total is 99.21. The empirical formula is (La1.70Ce1.45Nd0.15Pr0.06Ca0.70)Σ4.06(Fe{0.53/2+}Mn0.38Mg0.08)Σ0.99(Ti2.44Fe{0.80/3+}Al0.62Nb0.07)Σ3.93Si4.04O22. The simplified formula is (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8. The crystal structure was determined by a single crystal. Perrierite-(La) is monoclinic, space group P21/ a, and the unit-cell dimensions are as follows: a =13.668(1), b = 5.6601(6), c = 11.743(1) Å, β = 113.64(1)°; V = 832.2(2) Å3, Z = 2. The strong reflections in the X-ray powder diffraction pattern are [ d, Å ( I, %) ( hkl)]: 5.19 (40) (110), 3.53 (40) (overline 3 11), 2.96 (100) (overline 3 13, 311), 2.80 (50) (020), 2.14 (50) (overline 4 22, overline 3 15, 313), 1.947 (50) (024, 223), 1.657 (40) (overline 4 07, overline 4 33, 331). The holotype specimen of perrierite-(La) is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia, with the registration number 4059/1.
Elephant Moraine 87521 - The first lunar meteorite composed of predominantly mare material
NASA Technical Reports Server (NTRS)
Warren, Paul H.; Kallemeyn, Gregory W.
1989-01-01
This paper presents the results of trace-element analyses and detailed petrography obtained for the Elephant Moraine 87521 meteorite (EET87521) found recently in Antarctica. Its high values found for the Fe/Mn ratio and the bulk-Co content indicate that the EET87521 is not, as was originally classified, a eucrite. Moreover, its low Ga/Al and Na/Ca ratios exclude the possibility that it is an SNC meteorite. These and other characteristics (e.g., a very low Ti content) of the EET87521 suggest its affinity with very-low-Ti high-alumina varieties of lunar mare basalt.
Atomistic simulation and XAS investigation of Mn induced defects in Bi{sub 12}TiO{sub 20}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezende, Marcos V dos S.; Santos, Denise J.; Jackson, Robert A.
2016-06-15
This work reports an investigation of the valence and site occupancy of Mn dopants in Bi{sub 12}TiO{sub 20} (BTO: Mn) host using X-ray Absorption (XAS) and atomistic simulation techniques based on energy minimisation. X-ray Absorption Near Edge Structure (XANES) at the Mn K-edges gave typical results for Mn ions with mixed valences of 3+ and 4+. Extended X-ray Absorption Fine Structure (EXAFS) results indicated that Mn ions are probably substituted at Ti sites. Atomistic simulation was performed assuming the incorporation of Mn{sup 2+}, Mn{sup 3+} and Mn{sup 4+} ions at either Bi{sup 3+} or Ti{sup 4+} sites, and the resultsmore » were compared to XANES and EXAFS measurements. Electrical conductivity for pure and doped samples was used to evaluate the consistency of the proposed model. - Graphical abstract: The structure of Bi{sub 12}TiO{sub 20} (BTO). Display Omitted - Highlights: • Pure and Mn-doped Bi{sub 12}TiO{sub 20} samples were studied by experimental techniques combined with atomistic simulation. • Good agreement between experimental and simulation results was obtained. • XANES results suggest a mixture of 3+ and 4+ valences for Mn, occupying the Ti4+ site in both cases. • Charge compensation by holes is most energetically favoured, explaining the enhancement observed in AC dark conductivity.« less
NASA Astrophysics Data System (ADS)
Chukanov, Nikita V.; Rastsvetaeva, Ramiza K.; Kruszewski, Łukasz; Aksenov, Sergey M.; Rusakov, Vyacheslav S.; Britvin, Sergey N.; Vozchikova, Svetlana A.
2018-03-01
The new eudialyte-group mineral siudaite, ideally Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O, was discovered in a peralkaline pegmatite situated at the Eveslogchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia. The associated minerals are aegirine, albite, microcline, nepheline, astrophyllite, and loparite-(Ce). Siudaite forms yellow to brownish-yellow equant anhedral grains up to 1.5 cm across. Its lustre is vitreous, and the streak is white. Cleavage is none observed. The Mohs' hardness is 4½. Density measured by hydrostatic weighing is 2.96(1) g/cm3. Density calculated using the empirical formula is equal to 2.973 g/cm3. Siudaite is nonpleochroic, optically uniaxial, negative, with ω = 1.635(1) and ɛ = 1.626(1) (λ = 589 nm). The IR spectrum is given. The chemical composition of siudaite is (wt%; electron microprobe, H2O determined by HCN analysis): Na2O 8.40, K2O 0.62, CaO 9.81, La2O3 1.03, Ce2O3 1.62, Pr2O3 0.21, Nd2O3 0.29, MnO 6.45, Fe2O3 4.51. TiO2 0.54, ZrO2 11.67, HfO2 0.29, Nb2O5 2.76, SiO2 47.20, Cl 0.54, H2O 3.5, -O = Cl - 0.12, total 99.32. According to Mössbauer spectroscopy data, all iron is trivalent. The empirical formula (based on 24.5 Si atoms pfu, in accordance with structural data) is [Na7.57(H2O)1.43]Σ9(Mn1.11Na0.88Ce0.31La0.20Nd0.05Pr0.04K0.41)Σ3(H2O)1.8(Ca5.46Mn0.54)Σ6(Fe3+ 1.76Mn2+ 1.19)Σ2.95Nb0.65(Ti0.20Si0.50)Σ0.71(Zr2.95Hf0.04Ti0.01)Σ3Si24.00Cl0.47O70(OH)2Cl0.47·1.82H2O. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3m, with a = 14.1885(26) Å, c = 29.831(7) Å, V = 5200.8(23) Å3 and Z = 3. Siudaite is chemically related to georgbarsanovite and is its analogue with Fe3+-dominant M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.38 (60) (-114), 4.29 (55) (-225), 3.389 (47) (131), 3.191 (63) (-228). 2.963 (100) (4-15), 2.843 (99) (-444), 2.577 (49) (3-39). Siudaite is named after the Polish mineralogist and geochemist Rafał Siuda (b. 1975).
NASA Astrophysics Data System (ADS)
Phan, The-Long; Zhang, P.; Grinting, D.; Yu, S. C.; Nghia, N. X.; Dang, N. V.; Lam, V. D.
2012-07-01
Polycrystalline samples of BaTiO3 doped with 2.0 at. % Mn were prepared by solid-state reaction at various temperatures (Tan) ranging from 500 to 1350 °C, used high-pure powders of BaCO3, TiO2, and MnCO3 as precursors. Experimental results obtained from x-ray diffraction patterns and Raman scattering spectra reveal that tetragonal Mn-doped BaTiO3 starts constituting as Tan ≈ 500 °C. The Tan increase leads to the development of this phase. Interestingly, there is the tetragonal-hexagonal transformation in the crystal structure of BaTiO3 as Tan ≈ 1100 °C. Such the variations influence directly magnetic properties of the samples. Besides paramagnetic contributions of Mn2+ centers traced to electron spin resonance, the room-temperature ferromagnetism found in the samples is assigned to exchange interactions taking place between Mn3+ and Mn4+ ions located in tetragonal BaTiO3 crystals.
Structural and thermoelectric properties of n-type Sr1- x Ti x MnO3- δ perovskite system
NASA Astrophysics Data System (ADS)
Kim, C. M.; Seo, J. W.; Choi, S.-M.; Seo, W.-S.; Lee, S.; Lim, Y. S.; Park, K.
2015-03-01
A series of Sr1- x Ti x MnO3- δ (0.05 ≤ x ≤ 0.3) was fabricated by the solid-state reaction method. We studied the structural and thermoelectric properties of Sr1- x Ti x MnO3- δ , with respect to the partial substitution of Ti4+ for Sr2+. The sintered Sr1- x Ti x MnO3- δ crystallized in the hexagonal perovskite-type structure with a space group of P6 3 / mmc. For x ≤ 0.1, the partial substitution of Ti4+ for Sr2+ led to increases in the electrical conductivity and the absolute value of the Seebeck coefficient, thus enhancing the power factor. The highest power factor (2.5 × 10-5 Wm-1K-2) was obtained for Sr0.9Ti0.1MnO3- δ at 800°C. The partial substitution of Ti4+ for Sr2+ in SrMnO3- δ led to a significant improvement in the thermoelectric properties. [Figure not available: see fulltext.
Competition between structural instabilities in strained ABO3 nanostructures
NASA Astrophysics Data System (ADS)
Bousquet, E.
2010-03-01
In spite of their simple structure, the family of ABO3 compounds present a large variety of phase transitions involving polar and non polar distortions as well as magnetic orders. Here we will discuss the microscopic origin of these properties and how they are affected in nanostructures through the concept of structural instabilities. We will from the fact that the ferroelectric (FE) and the antiferrodistortive (AFD) instabilities are in competition at the bulk level and are strongly sensitive to pressure and strain. From these considerations we will describe the possibilities to tune this FE/AFD competition by playing with strain and interface engineering. To that end we will first consider the effect of epitaxial strain on BaTiO3, SrTiO3, PbTiO3 and CaTiO3 thin films. In all of these compounds, the epitaxial strain can strongly modify the phase diagrams giving rise to different pure or mixed FE/AFD ground states. We will also extend the discussion on magnetic perovskites like CaMnO3 and will present the different strategies to induce or tune multiferroic properties. Second we will focus on the interface effects as present in bicolor superlattices. As an example we will examine the case of PbTiO3/SrTiO3 superlattice and will show that it exhibits totally unique properties arising from unexpected FE/AFD couplings at the interface between the layers. We will then investigate to which extent similar types of FE/AFD couplings can be induced in other artificially layered systems. We will consider different bicolor superlattices obtained from the combination of PbTiO3, SrTiO3, CaTiO3 and BaTiO3 and discuss how the intrinsic tendency of these compounds to favor either the FE or the AFD instabilities shifts or even suppresses the FE/AFD coupling.
NASA Astrophysics Data System (ADS)
Yudasari, N.; Prasetyo, S.; Suliyanti, M. M.
2018-03-01
The laser-induced breakdown spectroscopy (LIBS) technique was applied to detect the nutrient elements contained in fresh carrot. Nd:YAG laser the wavelength of 1064 nm was employed in the experiments for ablation. Employing simple set-up of LIBS and preparing the sample with less step method, we are able to detect 18 chemical elements including some fundamental element of carrot, i.e Mg, Al, Fe, Mn, Ti, Ca, and Mn. By applying normalized profiles calculation on some of the element, we are able to compare the concentration level of each element of the outer and inner part of carrot.
Complex doping chemistry owing to Mn incorporation in nanocrystalline anatase TiO2 powders.
Guo, Meilan; Gao, Yun; Shao, G
2016-01-28
Mn-doped TiO2 powders with a wide range of nominal doping levels were fabricated using a one-step hydrothermal method followed by 400 °C annealing. Anatase powders with a uniform size distribution below 10 nm were obtained. The maximum solubility of Mn in the TiO2 lattice was around 30%, beyond which the Mn3O4 compound appeared as a secondary phase. The optical absorption edges for Mn-doped anatase TiO2 were red-shifted effectively through increasing Mn content. Alloying chemistry and associated elemental valences were elaborated through combining X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and theoretical simulation in the framework of density functional theory (DFT). The results showed that the Mn species exhibited mixed valence states of 3+ and 4+ in anatase TiO2, with the latter being the key to remarkable photocatalytic performance.
PIXE and ICP-MS Analysis of Andrographis Paniculata Medicinal Plant
NASA Astrophysics Data System (ADS)
Chandrasekhar Rao, J.; Naidu, B. G.; Sarita, P.; Srikanth, S.; Naga Raju, G. J.
2017-08-01
The concentrations of elements Li, Be, Al, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Ag, Cd, Ba, Pb and U in Andrographis Paniculata medicinal plant used in the treatment of Diabetes Mellitus were determined by using Particle Induced X-ray Emission (PIXE) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) techniques. This plant was collected from four different geographical locations in Andhra Pradesh, India in order to assess the regional variation of elemental concentrations. Appreciable levels of K, Ca, Cr, Mn, Cu and Zn determined in this plant can be correlated to the antidiabetic property of Andrographis Paniculata since these elements are known to regulate and potentiate insulin action. Presence of toxic elements As, Cd and Pb necessitates the adoption of precautionary measures while prescribing dosage of the herbal medicine prepared from this plant for the treatment diabetes mellitus.
NASA Astrophysics Data System (ADS)
Ma, Ji; Zhang, Hui; Chen, Qingming; Liu, Xiang
2013-07-01
La0.67Ca0.33MnO3 thin films have been prepared on vicinal cut LaAlO3, (LaAlO3)0.3-(SrAlTaO6)0.7, and SrTiO3 (001) substrates by pulsed laser deposition. The influence of the substrate on the electrical transport properties and laser induced voltage (LIV) effect of the films was investigated. The high insulator to metal transition temperature Tp (263.6 K) and large peak voltage of LIV signal (2.328 V) were observed in the film grown on LaAlO3 substrate. The compressive strain and large Seebeck coefficient anisotropy ΔS (3.62 μV/K) induced by LaAlO3 are thought to be responsible for this result.
Rehkamper, M.; Frank, M.; Hein, J.R.; Porcelli, D.; Halliday, A.; Ingri, J.; Liebetrau, V.
2002-01-01
Results are presented for the first in-depth investigation of TI isotope variations in marine materials. The TI isotopic measurements were conducted by multiple collector-inductively coupled plasma mass spectrometry for a comprehensive suite of hydrogenetic ferromanganese crusts, diagenetic Fe-Mn nodules, hydrothermal manganese deposits and seawater samples. The natural variability of TI isotope compositions in these samples exceeds the analytical reproducibility (?? 0.05???) by more than a factor of 40. Hydrogenetic Fe-Mn crusts have ??205TI of + 10 to + 14, whereas seawater is characterized by values as low as -8 (??205TI represents the deviation of the 205TI/203TI ratio of a sample from the NIST SRM 997 TI isotope standard in parts per 104). This ~ 2??? difference in isotope composition is thought to result from the isotope fractionation that accompanies the adsorption of TI onto ferromanganese particles. An equilibrium fractionation factor of ?? ~ 1.0021 is calculated for this process. Ferromanganese nodules and hydrothermal manganese deposits have variable TI isotope compositions that range between the values obtained for seawater and hydrogenetic Fe-Mn crusts. The variability in ??205TI in diagenetic nodules appears to be caused by the adsorption of TI from pore fluids, which act as a closed-system reservoir with a TI isotope composition that is inferred to be similar to seawater. Nodules with ??205TI values similar to seawater are found if the scavenging of TI is nearly quantitative. Hydrothermal manganese deposits display a positive correlation between ??205TI and Mn/Fe. This trend is thought to be due to the derivation of TI from distinct hydrothermal sources. Deposits with low Mn/Fe ratios and low ??205TI are produced by the adsorption of TI from fluids that are sampled close to hydrothermal sources. Such fluids have low Mn/Fe ratios and relatively high temperatures, such that only minor isotope fractionation occurs during adsorption. Hydrothermal manganese deposits with high Mn/Fe and high ??205Ti are generated by scavenging of TI from colder, more distal hydrothermal fluids. Under such conditions, adsorption is associated with significant isotope fractionation, and this produces deposits with higher ??205TI values coupled with high Mn/Fe. ?? 2002 Elsevier Science B.V. All rights reserved.
Kibe, Taiga; Nagata, Hajime
2017-01-01
Continuous ultrasonic in-situ monitoring for industrial applications is difficult owing to the high operating temperatures in industrial fields. It is expected that ultrasonic transducers consisting of a CaBi4Ti4O15(CBT)/Pb(Zr,Ti)O3(PZT) sol-gel composite could be one solution for ultrasonic nondestructive testing (NDT) above 500 °C because no couplant is required and CBT has a high Curie temperature. To verify the high temperature durability, CBT/PZT sol-gel composite films were fabricated on titanium substrates by spray coating, and the CBT/PZT samples were tested in a furnace at various temperatures. Reflected echoes with a high signal-to-noise ratio were observed up to 600 °C. A thermal cycle test was conducted from room temperature to 600 °C, and no significant deterioration was found after the second thermal cycle. To investigate the long-term high-temperature durability, a CBT/PZT ultrasonic transducer was tested in the furnace at 600 °C for 36 h. Ultrasonic responses were recorded every 3 h, and the sensitivity and signal-to-noise ratio were stable throughout the experiment. PMID:29186910
Sampling and major element chemistry of the recent (A.D. 1631-1944) Vesuvius activity
Belkin, H.E.; Kilburn, C.R.J.; de Vivo, B.
1993-01-01
Detailed sampling of the Vesuvius lavas erupted in the period A.D. 1631-1944 provides a suite of samples for comprehensive chemical analyses and related studies. Major elements (Si, Ti, Al, Fetotal, Mn, Mg, Ca, Na, K and P), volatile species (Cl, F, S, H2O+, H2O- and CO2), and ferrous iron (Fe2+) were determined for one hundred and forty-nine lavas and five tephra from the A.D. 1631-1944 Vesuvius activity. The lavas represent a relatively homogeneous suite with respect to SiO2, TiO2, FeOtotal, MnO and P2O5, but show systematic variations among MgO, K2O, Na2O, Al2O3 and CaO. The average SiO2 content is 48.0 wt.% and the rocks are classified as tephriphonolites according to their content of alkalis. All of the lavas are silica-undersaturated and are nepheline, leucite, and olivine normative. There is no systematic variation in major-element composition with time, over the period A.D. 1631-1944. The inter-eruption and intra-eruption compositional differences are the same magnitude. The lavas are highly porphyritic with clinopyroxene and leucite as the major phases. Fractionation effects are not reflected in the silica content of the lavas. The variability of MgO, K2O, Na2O, and CaO can be modelled as a relative depletion or accumulation of clinopyroxene. ?? 1993.
Audetat, Andreas; Garbe-Schonberg, Dieter; Kronz, Andreas; Pettke, Thomas; Rusk, Brian G.; Donovan, John J.; Lowers, Heather
2015-01-01
A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium-in-quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g-1), Al (154 ± 15 μg g-1), Li (30 ± 2 μg g-1), Fe (2.2 ± 0.3 μg g-1), Mn (0.34 ± 0.04 μg g-1), Ge (1.7 ± 0.2 μg g-1) and Ga (0.020 ± 0.002 μg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.
First-principles analysis of ferroelectric transition in MnSnO3 and MnTiO3 perovskites
NASA Astrophysics Data System (ADS)
Kang, Sung Gu
2018-06-01
The ferroelectric instabilities of an artificially adopted Pnma structure in low tolerance perovskites have been explored (Kang et al., 2017) [4], where an unstable A-site environment was reported to be the major driving source for the low tolerance perovskites to exhibit ferroelectric instability. This study examined the ferroelectric transition of two magnetic perovskite materials, MnSnO3 and MnTiO3, in Pnma phase. Phase transitions to the Pnma phase at elevated pressures were observed. MnSnO3, which has a lower (larger) tolerance factor (B-site cation radius), showed a higher ferroelectric mode amplitude than MnTiO3. The distribution of the bond length of Mn-O and the mean quadratic elongation (QE) of octahedra (SnO6 or TiO6) were investigated for structural analysis. However, MnTiO3 showed a larger spontaneous polarization than MnSnO3 due to high Born effective charges of titanium. This study is useful because it provides a valuable pathway to the design of promising multiferroic materials.
NASA Astrophysics Data System (ADS)
Alvarez, Inmaculada; Biskup, Neven; Lopez, Maria; Garcia-Hernandez, Mar; Veiga, Luisa; Varela, Maria; UCM Collaboration; ORNL Collaboration; CSIC Collaboration
2013-03-01
We report on visualizing the chemical and structural order of double perovskite Sr2-xGdxMnTiO6. The antisite disorder of Mn and Ti is detected even at atomic scale at all x, resulting in Mn-rich and Ti-rich regions. For x ?0.75, the majority of manganese ions are in Mn3+ state and are centered in Jahn-Teller distorted MnO6octahedra. The Fourier transformation of atomic resolution images along the [110] zone axis reveals a superstructure that corresponds to the tilting of oxygen octahedra and that doubles the unit cell along [001]c. This superstructure is spatially inhomogeneous and coincides with the regions where B-site ion (Mn/Ti) is displaced along the [110] direction. We discuss these findings in the frame of possible local ferroelectricity and in the light of strong electroresistance observed in Sr1.25Gd0.75MnTiO6. Research at ORNL supported by the U.S. DOE-BES, Materials Sciences and Engineering Division, and also by ORNL's ShaRE User Program (sponsored by DOE-BES). Research at UCM supported by the ERC Starting Investigator Award and MAT2010-20117.
Major, minor, trace and rare earth elements in sediments of the Bijagós archipelago, Guinea-Bissau.
Carvalho, Lina; Figueira, Paula; Monteiro, Rui; Reis, Ana Teresa; Almeida, Joana; Catry, Teresa; Lourenço, Pedro Miguel; Catry, Paulo; Barbosa, Castro; Catry, Inês; Pereira, Eduarda; Granadeiro, José Pedro; Vale, Carlos
2018-04-01
Sixty sediment samples from four sites in the Bijagós archipelago were characterized for fine fraction, loss on ignition, major, minor and trace elemental composition (Al, Fe, Ca, Mg, Ti, P, Zr, Mn, Cr, Sr, Ba, B, V, Li, Zn, Ni, Pb, As, Co, U, Cu, Cs and Cd), and the elements of the La-Lu series. Element concentrations were largely explained by the Al content and the proportion of fine fraction content, with the exception of Ca and Sr. Sediments showed enhanced Ti, U, Cr, As and Cd concentrations with respect to estimated upper crust values, most likely mirroring a regional signature. Rare earth elements were in deficit relatively to the North American Shale Composite (NASC), mainly in coarser material. No pronounced Ce-anomaly was observed, while Eu-anomalies were positive in most analyzed sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Santos, Pedro Fernandes; Niinomi, Mitsuo; Liu, Huihong; Cho, Ken; Nakai, Masaaki; Itoh, Yoshinori; Narushima, Takayuki; Ikeda, Masahiko
2016-06-01
Titanium and its alloys are suitable for biomedical applications owing to their good mechanical properties and biocompatibility. Beta-type Ti-Mn alloys (8-17 mass% Mn) were fabricated by metal injection molding (MIM) as a potential low cost material for use in biomedical applications. The microstructures and mechanical properties of the alloys were evaluated. For up to 13 mass% Mn, the tensile strength (1162-938MPa) and hardness (308-294HV) of the MIM fabricated alloys are comparable to those of Ti-Mn alloys fabricated by cold crucible levitation melting. Ti-9Mn exhibits the best balance of ultimate tensile strength (1046MPa) and elongation (4.7%) among the tested alloys, and has a Young's modulus of 89GPa. The observed low elongation of the alloys is attributed to the combined effects of high oxygen content, with the presence of interconnected pores and titanium carbides, the formation of which is due to carbon pickup during the debinding process. The elongation and tensile strength of the alloys decrease with increasing Mn content. The Ti-Mn alloys show good compressive properties, with Ti-17Mn showing a compressive 0.2% proof stress of 1034MPa, and a compressive strain of 50%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of Mn-doping on the giant magnetocaloric effect of EuTiO3 compound
NASA Astrophysics Data System (ADS)
Mo, Zhao-Jun; Sun, Qi-Lei; Han, Sheng; Zhao, Yun; Chen, Xing; Li, Lan; Liu, Guo-Dong; Meng, Fan-Bin; Shen, Jun
2018-06-01
The magnetic properties and magnetocaloric effect of EuTi1-xMnxO3 (x = 0-0.1) compounds are investigated. When the Ti4+ was substituted by Mn2+, the lattice constants were changed, the Eu3+ state and the oxygen vacancy generated. The exchange mechanisms were more complex among the Mn2+ 3d, the Eu 5d and Eu2+ 4f. The FM phase was dominant between AFM and FM as Mn substitute for Ti, which improve the MCE under low magnetic field. The values of -ΔSMmax are evaluated to 11.7 and 11.1 J/kg K for EuTi0.975Mn0.025O3 and EuTi0.95Mn0.05O3 compounds, under a magnetic field change of 1 T. And, the values of RC were obviously enhanced under the magnetic field changes of 1 and 2 T. Therefore, the giant reversible MCE makes these compounds promising candidates for magnetic refrigeration.
Bioaccumulation of elements in three selected mushroom species from southwest Poland.
Mleczek, Mirosław; Siwulski, Marek; Mikołajczak, Patrycja; Goliński, Piotr; Gąsecka, Monika; Sobieralski, Krzysztof; Dawidowicz, Luiza; Szymańczyk, Mateusz
2015-01-01
The contents of 16 minerals and trace elements (Ag, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Pt, Ti and Zn) were analyzed in edible mushrooms (Leccinum scabrum, Boletus edulis and Boletus badius) collected in southwest Poland. Content of Co, Ni and Pb was similar in all tested mushroom species, while content of Ag, Ca, Cd, Hg and Ti was significantly higher in B. edulis than in L. scabrum and B. badius. The largest differences between these species were observed for Fe and Zn accumulation. The highest contents of these elements were noted in B. badius bodies (202 ± 88 and 137 ± 24 mg kg(-1) dry matter, respectively), lower in B. edulis (131 ± 99 and 89 ± 26 mg kg(-1) dry matter, respectively) and lowest in L. scabrum. Differences in As, Cu and Cr content between tested species were observed mainly between L. scabrum and B. badius fruiting bodies. Content of Pt was below 0.01 mg kg(-1) dry matter). In the case of Mg and Mn accumulation, differences between B. edulis and B. badius were not observed (478 and 440 mg kg(-1) dry matter for Mg and 23 and 19 mg kg(-1) dry matter for Mn), and the results showed significantly higher content of these elements than in L. scabrum bodies (312 and 10 mg kg(-1) dry matter, respectively). It is worth underlining that clear accumulation shown by the bioconcentration factor (BCF>1) observed for all three mushroom species was noted in the case of elements Ag, Cd, Co, Cu, Hg, Ni and Zn only.
Thickness dependent charge transport in ferroelectric BaTiO3 heterojunctions
NASA Astrophysics Data System (ADS)
Singh, Pooja; Rout, P. K.; Singh, Manju; Rakshit, R. K.; Dogra, Anjana
2015-09-01
We have investigated the effect of ferroelectric barium titanate (BaTiO3) film thickness on the charge transport mechanism in pulsed laser deposited epitaxial metal-ferroelectric semiconductor junctions. The current (I)-voltage (V) measurements across the junctions comprising of 20-500 nm thick BaTiO3 and conducting bottom electrode (Nb: SrTiO3 substrate or La2/3Ca1/3MnO3 buffer layer) demonstrate the space charge limited conduction. Further analysis indicates a reduction in the ratio of free to trapped carriers with increasing thickness in spite of decreasing trap density. Such behaviour arises the deepening of the shallow trap levels (<0.65 eV) below conduction band with increasing thickness. Moreover, the observed hysteresis in I-V curves implies a bipolar resistive switching behaviour, which can be explained in terms of charge trapping and de-trapping process.
Controllable piezoelectricity of Pb(Zr 0.2Ti 0.8)O 3 film via in situ misfit strain
Lee, Hyeon Jun; Guo, Er-Jia; Martin Luther Univ. of Halle-Wittenberg, Halle; ...
2017-01-18
In this paper, the tetragonality (c/a) of a PbZr 0.2Ti 0.8O 3 (PZT) thin film on La 0.7Sr 0.3MnO 3/0.72Pb(Mg 1/3Nb 2/3)O 3-0.28PbTiO 3 (PMN-PT) substrates was controlled by applying an electric field on the PMN-PT substrate. The piezoelectric response of the PZT thin film under various biaxial strains was observed using time-resolved micro X-ray diffraction. The longitudinal piezoelectric coefficient (d 33) was reduced from 29.5 to 14.9 pm/V when the c/a ratio of the PZT film slightly changed from 1.051 to 1.056. Finally, our results demonstrate that the tetragonality of the PZT thin film plays a critical role inmore » determining d 33, and in situ strain engineering using electromechanical substrate is useful in excluding the extrinsic effect resulting from the variation in the film thickness or the interface between substrate.« less
Controllable piezoelectricity of Pb(Zr 0.2Ti 0.8)O 3 film via in situ misfit strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyeon Jun; Guo, Er-Jia; Martin Luther Univ. of Halle-Wittenberg, Halle
In this paper, the tetragonality (c/a) of a PbZr 0.2Ti 0.8O 3 (PZT) thin film on La 0.7Sr 0.3MnO 3/0.72Pb(Mg 1/3Nb 2/3)O 3-0.28PbTiO 3 (PMN-PT) substrates was controlled by applying an electric field on the PMN-PT substrate. The piezoelectric response of the PZT thin film under various biaxial strains was observed using time-resolved micro X-ray diffraction. The longitudinal piezoelectric coefficient (d 33) was reduced from 29.5 to 14.9 pm/V when the c/a ratio of the PZT film slightly changed from 1.051 to 1.056. Finally, our results demonstrate that the tetragonality of the PZT thin film plays a critical role inmore » determining d 33, and in situ strain engineering using electromechanical substrate is useful in excluding the extrinsic effect resulting from the variation in the film thickness or the interface between substrate.« less
NASA Astrophysics Data System (ADS)
Zhou, He; Zhang, Yanrong
2014-12-01
The deposition of MnO2 spheres on a TiO2 nanotube arrays substrate are achieved via a sequential chemical bath deposition (SCBD) method for an application of anode materials in supercapacitors. The electrochemical performance of the MnO2-TiO2 composite electrode is observed to show a strong dependence on the MnO2 loading mass, which could be adjusted by repeating the SCBD treatment for several cycles. The optimized doses of MnO2 loaded MnO2-TiO2 and MnO2-Ti samples are compared in terms of their areal capacitance studies and the former is of 175 and 101 mF cm-2 at a scan rate of 10 and 100 mV s-1, respectively, which are 1.52-fold and 1.51-fold of that of the latter sample at corresponding scan rates. The enhancement in areal capacitance has been accounted to the progressive effect of the TiO2 tubular substrate on the capacitive behavior of the loaded MnO2 rather than the different MnO2 loading mass on these two substrates. Impedance analysis reveals this enhanced electrochemical activity is owing to the tubular structure of the TiO2 substrate provides an increased reaction area and facilitates the contact of electrolyte with the active MnO2 material. This work justified the suitability of using the TiO2 nanotube arrays for constructing high-performance supercapacitors.
Oxygen-storage behavior and local structure in Ti-substituted YMnO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, I., E-mail: igor.levin@nist.gov; Krayzman, V.; Vanderah, T.A.
Hexagonal manganates RMnO{sub 3} (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn{sub 1−x}Ti{sub x})O{sub 3} solid solutions exhibit facile oxygen absorption/desorption via reversible Ti{sup 3+}↔Ti{sup 4+} and Mn{sup 3+}↔Mn{sup 4+} reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn{sup 3+}{sub 1−x-y}Mn{sup 4+}{sub y}Ti{sup 4+}{sub x}O{submore » 3+δ}. The presence of Ti promotes the oxidation of Mn{sup 3+} to Mn{sup 4+}, which is almost negligible for YMnO{sub 3} in air, thereby increasing the uptake of oxygen beyond that required for a given Ti{sup 4+} concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO{sub 5}] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO{sub 3} structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO{sub 5}] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti{sup 4+}(and Mn{sup 4+}) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded host oxygen atoms play a key part in this lattice-relaxation process, facilitating reversible exchange of significant amounts of oxygen with atmosphere. - Graphical abstract: Concurrent redox reactions involving Ti and Mn yield facile absorption/desorption of excess oxygen. - Highlights: • Concurrent redox reactions involving Ti and Mn yield oxygen absorption/desorption. • Excess oxygen is accommodated as interstitials via correlated atomic shifts. • Oxygen breathing is facilitated by the under-bonding of host Mn and O atoms.« less
Magneto-transport in LaTi1-xMnxO3/SrTiO3 oxide heterostructures
NASA Astrophysics Data System (ADS)
Kumar, Pramod; Dogra, Anjana; Budhani, R. C.
2014-04-01
We report the growth of ultrathin film of Mn doped LaTiO3 on TiO2 terminated SrTiO3 (001) substrate by pulsed laser deposition (PLD) and their electrical transport characteristics including magnetoresistance (MR). Though the replacement of Mn in LaTiO3 at the Ti site in dilute limit does not affect the metallic behaviour of films but variation in resistance is observed. Normalised resistance behaviour is explained on the basis of variation in charge carriers and increased interaction between Mn atoms in the system under investigation.
NASA Astrophysics Data System (ADS)
Annese, E.; Mori, T. J. A.; Schio, P.; Rache Salles, B.; Cezar, J. C.
2018-04-01
The implementation of La0.67Sr0.33MnO3 thin films in multilayered structures in organic and inorganic spintronics devices requires the optimization of their electronic and magnetic properties. In this work we report the structural, morphological, electronic and magnetic characterizations of La0.67Sr0.33MnO3 epitaxial thin films on SrTiO3 substrates, grown by pulsed laser deposition under different growing conditions. We show that the fluence of laser shots and in situ post-annealing conditions are important parameters to control the tetragonality (c/a) of the thin films. The distortion of the structure has a remarkable impact on both surface and bulk magnetism, allowing the tunability of the materials properties for use in different applications.
Yoo, Hyo-Sang; Kim, Yong-Ho; Lee, Seong-Hee; Son, Hyeon-Taek
2018-09-01
The microstructure and mechanical properties of as-extruded Al-0.1 wt%Si-0.2 wt%Fe- 0.4 wt%Cu-0.04 wt%Zr-xMn-xAlTiB (x = 1.0 wt%) alloys under various annealing processes were investigated and compared. After the as-cast billets were kept at 400 °C for 1 hr, hot extrusion was carried out with a reduction ratio of 38:1. In the case of the as-extruded Al-Si-Fe-Cu-Zr alloy at annealed at 620 °C, large equiaxed grain was observed. When the Mn content is 1.0 wt%, the phase exhibits a skeleton morphology, the phase formation in which Mn participated. Also, the volume fraction of the intermetallic compounds increased with Mn and AlTiB addition. For the Al-0.1Si-0.2Fe-0.4Cu-0.04Zr alloy with Mn and AlTiB addition from 1.0 wt%, the ultimate tensile strength increased from 100.47 to 119.41 to 110.49 MPa. The tensile strength of the as-extruded alloys improved with the addition of Mn and AlTiB due to the formation of Mn and AlTiB-containing intermetallic compounds.
Yabuta, Hisato; Tanaka, Hidenori; Furuta, Tatsuo; Watanabe, Takayuki; Kubota, Makoto; Matsuda, Takanori; Ifuku, Toshihiro; Yoneda, Yasuhiro
2017-01-01
To stabilise ferroelectric-tetragonal phase of BaTiO3, the double-doping of Bi and Mn up to 0.5 mol% was studied. Upon increasing the Bi content in BaTiO3:Mn:Bi, the tetragonal crystal-lattice-constants a and c shrank and elongated, respectively, resulting in an enhancement of tetragonal anisotropy, and the temperature-range of the ferroelectric tetragonal phase expanded. X-ray absorption fine structure measurements confirmed that Bi and Mn were located at the A(Ba)-site and B(Ti)-site, respectively, and Bi was markedly displaced from the centrosymmetric position in the BiO12 cluster. This A-site substitution of Bi also caused fluctuations of B-site atoms. Magnetic susceptibility measurements revealed a change in the Mn valence from +4 to +3 upon addition of the same molar amount of Bi as Mn, probably resulting from a compensating behaviour of the Mn at Ti4+ sites for donor doping of Bi3+ into the Ba2+ site. Because addition of La3+ instead of Bi3+ showed neither the enhancement of the tetragonal anisotropy nor the stabilisation of the tetragonal phase, these phenomena in BaTiO3:Mn:Bi were not caused by the Jahn-Teller effect of Mn3+ in the MnO6 octahedron, but caused by the Bi-displacement, probably resulting from the effect of the 6 s lone-pair electrons in Bi3+. PMID:28367973
NASA Astrophysics Data System (ADS)
Wang, F.; Dong, B. J.; Zhang, Y. Q.; Liu, W.; Zhang, H. R.; Bai, Y.; Li, S. K.; Yang, T.; Sun, J. R.; Wang, Z. J.; Zhang, Z. D.
2017-09-01
The detailed crystal structure and antiferromagnetic properties of a 42 nm thick CaMnO3 film grown on a LaAlO3 substrate with a 9 nm La0.67Ca0.33MnO3 buffer layer have been investigated. Compared with a CaMnO3 film directly grown on a LaAlO3 substrate, only one kind of orthorhombic b axis orientation along the [100] axis of the substrate is observed in the CaMnO3 film with a La0.67Ca0.33MnO3 buffer layer. To determine the antiferromagnetic ordering type of our CaMnO3 film with a buffer layer, the first-principles calculations were carried out with the results, indicating that the CaMnO3 film, even under a tensile strain of 1.9%, is still a compensated G-type antiferromagnetic order, the same as the bulk. Moreover, the exchange bias effect is observed at the interface of the CaMnO3/La0.67Ca0.33MnO3 film, further confirming the antiferromagnetic ordering of the CaMnO3 film with a buffer layer. In addition, it is concluded that the exchange bias effect originates from the spin glass state at the La0.67Ca0.33MnO3/CaMnO3 interface, which arises from a competition between the double-exchange ferromagnetic La0.67Ca0.33MnO3 and super-exchange antiferromagnetic CaMnO3 below the spin glass freezing temperature.
First-principles study of Mn-S codoped anatase TiO2
NASA Astrophysics Data System (ADS)
Li, Senlin; Huang, Jinliang; Ning, Xiangmei; Chen, Yongcha; Shi, Qingkui
2018-04-01
In this work, the CASTEP program in Materials Studio 2017 software package was applied to calculate the electronic structures and optical properties of pure anatase TiO2, S-doped, Mn-doped and Mn-S co-doped anatase TiO2 by GGA + U methods based on the density function theory (DFT). The results indicate that the lattice is distorted and the lattice constant is reduce due to doping. The doping also introduces impurity energy levels into the forbidden band. After substitution of Mn for Ti atom, band gap narrowing of anatase TiO2 is caused by the impurity energy levels appearance in the near Fermi surface, which are contributed by Mn-3d orbital, Ti-3d orbital and O-2p orbital hybridization. After substitution of S for O atom, band gap narrowing is creited with the shallow accepter level under the conduction hand of S-3p orbital. The Mn-S co-doped anatase TiO2 could be a potential candidate for a photocatalyst because of tis enhanced absorption ability of visible light. The results can well explain the immanent cause of a band gap narrowing as well as a red shift in the spectrum for doped anatase TiO2.
Experimental determination of activities in FeTiO3-MnTiO3 ilmenite solid solution by redox reversals
NASA Astrophysics Data System (ADS)
Feenstra, A.; Peters, Tjerk
1996-12-01
Solid solutions of (Fe,Mn)TiO3 were synthesized, mostly at 0.10 XMn intervals, at 1 bar, 900°C and log f O 2 = 17.50. Analysis by EMP indicate an ideal stoichiometry for the Fe-Mn ilmenites with (Fe+Mn) = Ti = 1.000 when normalized to 3 oxygens. Their unit cell volume increases linearly with XMn. The composition of Fe-Mn ilmenite coexisting with metallic Fe and rutile was reversed at 1 bar, 700 900°C and fixed f O 2 in a gas-mixing furnace. Oxygen fugacity was controlled by mixing CO2 and H2 gas and was continuously monitored with an yttrium-stabilized zirconia electrolyte. Solution properties of Fe-Mn ilmenite were derived from the experimental data by mathematical programming (Engi and Feenstra, in preparation) including notably the results of Fe-Mn exchange experiments between ilmenite and garnet (Feenstra and Engi, submitted) and anchoring the standard state properties to the updated thermodynamic dataset of Berman and Aranovich (1996). The thermodynamic analysis resulted in positive deviations from ideality for (Fe,Mn)TiO3 ilmenite, which is well described by an asymmetric Margules model with WH FeFeMn = 9.703 and WH FeMnMn = 23.234 kJ/mol, WS FeFeMn = 19.65 and WS FeMnMn = 22.06 J/(K·mol). The excess free energy for Fe-Mn ilmenite derived from the redox reversals is larger than in the symmetric ilmenite model (WG FeMn = +2.2 kJ/mol) determined by O'Neill et al. from emf measurements on the assemblage iron-rutile-(Fe,Mn)ilmenite.
Low temperature NH3-SCR of NO over an unexpected Mn-based catalyst: Promotional effect of Mg doping
NASA Astrophysics Data System (ADS)
Fang, De; He, Feng; Liu, Xiaoqing; Qi, Kai; Xie, Junlin; Li, Fengxiang; Yu, Chongqinq
2018-01-01
MnOx/TiO2 catalysts doped with Mg have been prepared with the impregnation method. Surprisingly, 7% Mg-MnOx/TiO2 catalyst containing more Mn3+ ions showed superior low-temperature SCR activity and stability. Mg doping resulted in some adverse effects on the phases, BET surface areas, reducibility, NH3 adsorption, and morphology structures. However, according to the SCR performance, these effects were thought to be rather limited in comparison with the catalytic properties of MgMn2O4 which might stem from the enhancement of NH3-SCR activity and stability. Meanwhile, based on the in situ DRIFTS tests, the NH3-SCR reaction route of MnOx/TiO2 and Mg doped MnOx/TiO2 catalysts depended on the kind of gas (NH3 or NO) pre-adsorbed on the catalyst.
NASA Astrophysics Data System (ADS)
Wang, Zhengliang; Yang, Zhiyu; Tan, Huiying; Brik, Mikhail G.; Zhou, Qiang; Chen, Guo; Liang, Hongbin
2017-10-01
Red-emitting phosphor plays a critical role in improving performance of the phosphor-converted white light-emitting diodes (pc-WLEDs). Herein, a red-emitting phosphor, Rb2TiF6:Mn4+, was synthesized via the ion exchange method under mild condition. The crystal structure and morphology were characterized by the powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The Rietveld refinements of Rb2TiF6:Mn4+ indicate that this sample is of single phase with hexagonal crystal structure. The as-prepared Rb2TiF6:Mn4+ has sharp red emissions with broad excitation band at ∼460 nm. The luminescent behavior of Mn4+ was discussed in detail. The temperature-dependent emission spectra of Rb2TiF6:Mn4+ indicate that this phosphor shares high thermal quenching resistance and excellent color stability. A series of WLEDs with tunable color rendering index and color temperature were fabricated by combining commercial Y3Al5O12:Ce3+ and Rb2TiF6:Mn4+ on blue GaN-LED chips. With the addition of Rb2TiF6:Mn4+, WLED with wide gamut was obtained with low color temperature (3123 K), high color rendering index (91.5) and high luminous efficacy (187.9 lm/W). These findings show this phosphor could be a promising commercial red phosphor in wide color-gamut WLEDs.
Interfacial Ferromagnetism and Exchange Bias in CaRuO3/CaMnO3 Superlattices
NASA Astrophysics Data System (ADS)
He, C.; Grutter, A. J.; Gu, M.; Browning, N. D.; Takamura, Y.; Kirby, B. J.; Borchers, J. A.; Kim, J. W.; Fitzsimmons, M. R.; Zhai, X.; Mehta, V. V.; Wong, F. J.; Suzuki, Y.
2012-11-01
We have found ferromagnetism in epitaxially grown superlattices of CaRuO3/CaMnO3 that arises in one unit cell at the interface. Scanning transmission electron microscopy and electron energy loss spectroscopy indicate that the difference in magnitude of the Mn valence states between the center of the CaMnO3 layer and the interface region is consistent with double exchange interaction among the Mn ions at the interface. Polarized neutron reflectivity and the CaMnO3 thickness dependence of the exchange bias field together indicate that the interfacial ferromagnetism is only limited to one unit cell of CaMnO3 at each interface. The interfacial moment alternates between the 1μB/interface Mn ion for even CaMnO3 layers and the 0.5μB/interface Mn ion for odd CaMnO3 layers. This modulation, combined with the exchange bias, suggests the presence of a modulating interlayer coupling between neighboring ferromagnetic interfaces via the antiferromagnetic CaMnO3 layers.
Oxygen-storage behavior and local structure in Ti-substituted YMnO3
NASA Astrophysics Data System (ADS)
Levin, I.; Krayzman, V.; Vanderah, T. A.; Tomczyk, M.; Wu, H.; Tucker, M. G.; Playford, H. Y.; Woicik, J. C.; Dennis, C. L.; Vilarinho, P. M.
2017-02-01
Hexagonal manganates RMnO3 (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn1-xTix)O3 solid solutions exhibit facile oxygen absorption/desorption via reversible Ti3+↔Ti4+ and Mn3+↔Mn4+ reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn3+1-x-yMn4+yTi4+xO3+δ. The presence of Ti promotes the oxidation of Mn3+ to Mn4+, which is almost negligible for YMnO3 in air, thereby increasing the uptake of oxygen beyond that required for a given Ti4+ concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO5] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO3 structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO5] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti4+(and Mn4+) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded host oxygen atoms play a key part in this lattice-relaxation process, facilitating reversible exchange of significant amounts of oxygen with atmosphere.
Oxygen-storage behavior and local structure in Ti-substituted YMnO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, I.; Krayzman, V.; Vanderah, T. A.
Hexagonal manganates RMnO3 (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn1-xTix)O3 solid solutions exhibit facile oxygen absorption/desorption via reversible Ti3+↔Ti4+ and Mn3+↔Mn4+ reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn3+1-x-yMn4+yTi4+xO3+δ. The presence of Ti promotes the oxidation of Mn3+ to Mn4+, which is almostmore » negligible for YMnO3 in air, thereby increasing the uptake of oxygen beyond that required for a given Ti4+ concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO5] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO3 structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO5] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti4+(and Mn4+) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded host oxygen atoms play a key part in this lattice-relaxation process, facilitating reversible exchange of significant amounts of oxygen with atmosphere.« less
NASA Astrophysics Data System (ADS)
Yoon, Seok-Hyun; Randall, Clive A.; Hur, Kang-Heon
2010-09-01
The difference in the resistance degradation behavior was investigated between fixed valence acceptor (Mg) and the variable valence acceptor (Mn)-doped BaTiO3 ceramics with an increase of each acceptor concentration. Coarse-grained specimens with uniform grain sizes and different acceptor concentrations were prepared. In the case of Mg-doped BaTiO3, the time to degradation systematically decreased with the increase in Mg concentration. In contrast, there is a systematically increased time to degradation with the increase in Mn concentration in Mn-doped BaTiO3. The fast degradation by the increase in Mg concentration directly corresponded to an increase in the Warburg impedance and ionic transference number (tion) associated with an increase in oxygen vacancy concentration ([VO••]). On the other hand, no distinct Warburg impedance or ionic conduction contribution could be observed with the increase in Mn concentration. It is supposed that the increase in [VO••] is negligible in spite of the increase in acceptor Mn concentration, when it is compared to Mg-doped BaTiO3. The much lower [VO••] and more dominant electron/hole trapping effect due to multivalence nature of Mn are supposed to cause such a contrary degradation behavior between Mg and Mn-doped BaTiO3. Reoxidation in a slightly reducing atmosphere (N2) showed better resistance to degradation behavior than in a oxidizing air atmosphere in both Mg and Mn-doped BaTiO3, which is anticipated to be an increase in the electron/hole trapping sites. All these behaviors could be explained by the low temperature defect chemical model that shows difference in the defect structure between Mg and Mn-doped BaTiO3, and its dependence on the oxygen partial pressure (pO2) during reoxidation and cooling. Not only the [VO••], but also the density of electron/hole trap sites, are believed to be crucial in controlling resistance degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xuyao; Zhou, Xiaosong, E-mail: zxs801213@163.com; Li, Xiaoyu, E-mail: lixiaoyu@iga.ac.cn
2014-11-15
Highlights: • MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposites are prepared by electrodeposition. • MnO{sub 2}/TiO{sub 2} exhibits high visible light photocatalytic activity. • The results of XRD show the depositions are attributed to α-MnO{sub 2}. • A photocatalytic mechanism is discussed under visible light irradiation. - Abstract: MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposite photocatalysts have been synthesized through an electrodeposition method. X-ray powder diffraction analysis and X-ray photoelectron spectroscopy measurements reveal that the products of electrodeposition method are MnO{sub 2}. Scanning electron microscopy measurements suggest that the depositions are deposited on the surface or internal of the nanotube. UV–vis lightmore » absorbance spectra demonstrate the excellent adsorption properties of MnO{sub 2}/TiO{sub 2} over the whole region of visible light, which enables this novel photocatalytic material to possess remarkable activity in the photocatalytic degradation of acid Orange II under visible light radiation. Moreover, a possible photocatalytic mechanism is discussed.« less
Trends in (LaMnO3)n/(SrTiO3)m superlattices with varying layer thicknesses
Jilili, J.; Cossu, F.; Schwingenschlögl, U.
2015-01-01
We investigate the thickness dependence of the structural, electronic, and magnetic properties of (LaMnO3)n/(SrTiO3)m (n, m = 2, 4, 6, 8) superlattices using density functional theory. The electronic structure turns out to be highly sensitive to the onsite Coulomb interaction. In contrast to bulk SrTiO3, strongly distorted O octahedra are observed in the SrTiO3 layers with a systematic off centering of the Ti atoms. The systems favour ferromagnetic spin ordering rather than the antiferromagnetic spin ordering of bulk LaMnO3 and all show half-metallicity, while a systematic reduction of the minority spin band gaps as a function of the LaMnO3 and SrTiO3 layer thicknesses originates from modifications of the Ti dxy states. PMID:26323361
Elemental Mercury Oxidation over Fe-Ti-Mn Spinel: Performance, Mechanism, and Reaction Kinetics.
Xiong, Shangchao; Xiao, Xin; Huang, Nan; Dang, Hao; Liao, Yong; Zou, Sijie; Yang, Shijian
2017-01-03
The design of a high-performance catalyst for Hg 0 oxidation and predicting the extent of Hg 0 oxidation are both extremely limited due to the uncertainties of the reaction mechanism and the reaction kinetics. In this work, Fe-Ti-Mn spinel was developed as a high-performance catalyst for Hg 0 oxidation, and the reaction mechanism and the reaction kinetics of Hg 0 oxidation over Fe-Ti-Mn spinel were studied. The reaction orders of Hg 0 oxidation over Fe-Ti-Mn spinel with respect to gaseous Hg 0 concentration and gaseous HCl concentration were approximately 1 and 0, respectively. Therefore, Hg 0 oxidation over Fe-Ti-Mn spinel mainly followed the Eley-Rideal mechanism (i.e., the reaction of gaseous Hg 0 with adsorbed HCl), and the rate of Hg 0 oxidation mainly depended on Cl • concentration on the surface. As H 2 O, SO 2 , and NO not only inhibited Cl • formation on the surface but also interfered with the interface reaction between gaseous Hg 0 and Cl • on the surface, Hg 0 oxidation over Fe-Ti-Mn spinel was obviously inhibited in the presence of H 2 O, SO 2 , and NO. Furthermore, the extent of Hg 0 oxidation over Fe-Ti-Mn spinel can be predicted according to the kinetic parameter k E-R , and the predicted result was consistent with the experimental result.
NASA Astrophysics Data System (ADS)
Shi, Yan; Li, Yunfeng; Liu, Jia; Yuan, Zhenyu
2018-02-01
In this study, a gradient composite coating was manufactured on 20CrMnTi alloy steel by laser cladding. The laser power, cladding scan velocity and powder flow rate were selected as influencing factors of the orthogonal cladding experiments. The influencing factors were optimized by the comprehensive analysis of Taguchi OA and TOPSIS method. The high significant parameters and the predicted results were confirmed by the ANOVA method. The macromorphology and microstructures are characterized by using laser microscope, SEM, XRD and microhardness tester. Comparison tests of wear resistance of gradient composite coating, 20CrMnTi cemented quenching sample and the 20CrMnTi sample were conducted on the friction-wear tester. The results show that the phases are γ-Co solid solution, Co3B, M23C6 and etc. The interlayers and wear-resisting layer also contain new hard phases as WC, W2C. The microhardness of the gradient coating was increased to 3 times as compared with that of the 20CrMnTi substrate. The wear resistance of the gradient composite coating and 20CrMnTi cemented quenching sample was enhanced to 36.4 and 15.9 times as compared with that of the 20CrMnTi.
NASA Astrophysics Data System (ADS)
Gucsik, Arnold; Endo, Taro; Nishido, Hirotsugu; Ninagawa, Kiyotaka; Kayama, Masahiro; Bérczi, Szaniszló; Nagy, Szabolcs; Ábrahám, Péter; Kimura, Yuki; Miura, Hitoshi; Gyollai, Ildikó; Simonia, Irakli; Rózsa, Péter; Posta, József; Apai, Dániel; Mihályi, Krisztián; Nagy, Mihály; Ott, Ulrich
2013-12-01
Highly forsteritic olivine (Fo: 99.2-99.7) in the Kaba meteorite emits bright cathodoluminescence (CL). CL spectra of red luminescent forsterite grains have two broad emission bands at approximately 630 nm (impurity center of divalent Mn ions) in the red region and above 700 nm (trivalent Cr ions) in the red-IR region. The cores of the grains show CL blue luminescence giving a characteristic broad band emission at 400 nm, also associated with minor red emissions related to Mn and Cr ions. CL color variation of Kaba forsterite is attributed to structural defects. Electron probe microanalyzer (EPMA) analysis shows concentrations of Ca, Al, and Ti in the center of the forsterite grain. The migration of diffusible ions of Mn, Cr, and Fe to the rim of the Kaba meteoritic forsterite was controlled by the hydrothermal alteration at relatively low temperature (estimated at about 250 °C), while Ca and Al ions might still lie in the core. A very unusual phase of FeO (wüstite) was also observed, which may be a terrestrial alteration product of FeNi-metal.
NASA Astrophysics Data System (ADS)
Freitas, M. C.; Pacheco, A. M. G.; Dionísio, I.; Sarmento, S.; Baptista, M. S.; Vasconcelos, M. T. S. D.; Cabral, J. P.
2006-08-01
Elemental contents of atmospheric biomonitors—epiphytic lichens and tree bark, exposed in continuous and discontinuous modes—have been assessed through k0-standardised instrumental neutron activation analysis ( k0-INAA) (two different institutions), inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS). Certified reference materials—ISE-921 (river clay), NIST-1547 (peach leaves), ICHTJ-INCT-TL-1 (tea leaves; TL-1 hereinafter) and IAEA-336 (lichen material), and nonparametric statistics—rank-order correlations (Spearman RS) and enhanced-sign tests (Wilcoxon T)—were used for analytical control and data comparison, respectively. In general, quality of procedures was deemed good, except for k0-INAA in determining Br, Cu and Na, all likely affected by high counting statistics, and/or contamination issues (the latter). Results for Cu, Ni, Pb and Sr (by both ICP-MS and AAS) revealed that, despite an outstanding correlation (asymptotic p=0.000), they could be viewed as statistically equal for Cu only: AAS tended to yield higher values for Pb and Ni, and lower ones for Sr. The comparison between ICP-MS and k0-INAA data from TUDelft, for Al, Ca, Cu, Mg, Mn, Na, Ti and V, showed an excellent correlation (as above) and random (relative) magnitude for Cu, Mg, Mn and Ti only: ICP-MS tended to yield higher values for Al, Na and V, and lower ones for Ca, whereas between k0-INAA data from TUDelft and ITN, for Br, Ca and Na, resulted in systematically higher [Br] and [Ca] variates from TUDelft, even if all corresponding data sets were found to correlate at stringent significance levels. In a few cases, though—Ca, Sr in lichens; Pb in bark—matrix effects did appear to interfere in the outcome of matched-pairs, signed-rank tests, since random hierarchy of variates could be asserted just when lichen and bark data sets were processed separately.
Enhance D. C. resistivity of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} ceramic by acceptor (Mn) doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Hakikat, E-mail: sharmahakikat@yahoo.in; Arya, G. S.; Pramar, Kusum
2015-05-15
In the present work, we prepared Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} and Mn (2 and 3 at % on Ti site) doped Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} ceramic by sol- gel method. The samples were characterized by X-ray diffraction (XRD). The XRD patterns reveled that Mn ions did not change the perovskite structure of BST (70/30). The dielectric measurements proved that dielectric constant decreased with Mn doping. The dc resistivity was studied by using I-V measurements. The dc resistivity of the BST increased with Mn doping, which suppressed the leakage current.
Ozmen, Murat; Güngördü, Abbas; Erdemoglu, Sema; Ozmen, Nesrin; Asilturk, Meltem
2015-08-01
The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO2. Undoped and Mn-doped TiO2 nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV-vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO2 was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO2 nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO2 increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2-4h of degradation. However, biochemical assays showed that both Mn-doped TiO2 and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn-doped TiO2 should be considered due to nanomaterial applications and for spilled nanoparticles in an aquatic ecosystem. Also, the risk of nanoparticles should be considered using indicator reference biochemical markers to verify the environmental health impacts. Copyright © 2015 Elsevier B.V. All rights reserved.
Manganese containing layer for magnetic recording media
Lambeth, David N.; Lee, Li-Lien; Laughlin, David E.
1999-01-01
The present invention provides for a magnetic recording media incorporating Mn-containing layers between a substrate and a magnetic layer to provide media having increased coercivity and lower noise. The Mn-containing layer can be incorporated in a rotating, translating or stationary recording media to operate in conjunction with magnetic transducing heads for recording and reading of magnetic data, as well as other applications. The magnetic recording medium of the invention preferably includes a Co or Co alloy film magnetic layer, and Mn-containing layer, preferably comprised of VMn, TiMn, MnZn, CrMnMo, CrMnW, CrMnV, and CrMnTi, and most preferably a CrMn alloy, disposed between the substrate and the magnetic layer to promote an epitaxial crystalline structure in the magnetic layer. The medium can further include seed layers, preferably polycrystalline MgO for longitudinal media, underlayers, and intermediate layers. Underlayers and intermediate layers are comprised of materials having either an A2 structure or a B2-ordered crystalline structure disposed between the seed layer and the magnetic layer. Materials having an A2 structure are preferably Cr or Cr alloys, such as CrV, CrMo, CrW and CrTi. Materials having a B2-ordered structure having a lattice constant that is substantially comparable to that of Cr, such as those preferably selected from the group consisting of NiAl, AILCo, FeAl, FeTi, CoFe, CoTi, CoHf, CoZr, NiTi, CuBe, CuZn, A-LMn, AlRe, AgMg, and Al.sub.2 FeMn.sub.2, and is most preferably FeAl or NiAl.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, B.; Yang, J., E-mail: jyang@issp.ac.cn; Zuo, X. Z.
We have successfully synthesized the Aurivillius compounds SrBi{sub 5}Ti{sub 4}MnO{sub 18} and SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} using a modified Pechini method. Both samples have an orthorhombic structure with the space group B2cb. The valence state of Mn is suggested to be +3 and the doped Co ions exist in the form of Co{sup 2+} and Co{sup 3+} based on the results of x-ray photoelectron spectroscopy. The sample SrBi{sub 5}Ti{sub 4}MnO{sub 18} exhibits a dominant paramagnetic state with the existence of superparamagnetic state as evidenced by the electron paramagnetic resonance results, whereas SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} undergoesmore » a ferrimagnetic transition at 161 K originating from the antiferromagnetic coupling of Co-based and Mn-based sublattices, and a ferromagnetic transition at 45 K arising from the Mn{sup 3+}-O-Co{sup 3+} (low spin) interaction. The sample SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} exhibits two dielectric anomalies. One corresponds to a relaxor-like dielectric relaxation which follows the Vogel-Fulcher function and the other dielectric relaxation obeys the Arrhenius law arising from the collective motion of oxygen vacancies. In addition, the sample SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} exhibits a magnetodielectric effect caused by the Maxwell-Wagner effect because of the conductivity of the sample. This is demonstrated by the fact that the activation energy in dielectric loss process is close to that for dc conductivity and the magnetodielectric effect is sensitive to the measured frequency.« less
Stable Water Oxidation in Acid Using Manganese-Modified TiO2 Protective Coatings.
Siddiqi, Georges; Luo, Zhenya; Xie, Yujun; Pan, Zhenhua; Zhu, Qianhong; Röhr, Jason A; Cha, Judy J; Hu, Shu
2018-06-06
Accomplishing acid-stable water oxidation is a critical matter for achieving both long-lasting water-splitting devices and other fuel-forming electro- and photocatalytic processes. Because water oxidation releases protons into the local electrolytic environment, it becomes increasingly acidic during device operation, which leads to corrosion of the photoactive component and hence loss in device performance and lifetime. In this work, we show that thin films of manganese-modified titania, (Ti,Mn)O x , topped with an iridium catalyst, can be used in a coating stabilization scheme for acid-stable water oxidation. We achieved a device lifetime of more than 100 h in pH = 0 acid. We successfully grew (Ti,Mn)O x coatings with uniform elemental distributions over a wide range of manganese compositions using atomic layer deposition (ALD), and using X-ray photoelectron spectroscopy, we show that (Ti,Mn)O x films grown in this manner give rise to closer-to-valence-band Fermi levels, which can be further tuned with annealing. In contrast to the normally n-type or intrinsic TiO 2 coatings, annealed (Ti,Mn)O x films can make direct charge transfer to a Fe(CN) 6 3-/4- redox couple dissolved in aqueous electrolytes. Using the Fe(CN) 6 3-/4- redox, we further demonstrated anodic charge transfer through the (Ti,Mn)O x films to high work function metals, such as iridium and gold, which is not previously possible with ALD-grown TiO 2 . We correlated changes in the crystallinity (amorphous to rutile TiO 2 ) and oxidation state (2+ to 3+) of the annealed (Ti,Mn)O x films to their hole conductivity and electrochemical stability in acid. Finally, by combining (Ti,Mn)O x coatings with iridium, an acid-stable water-oxidation anode, using acid-sensitive conductive fluorine-doped tin oxides, was achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunanto, Y. E., E-mail: yohanes.gunanto@uph.edu; Cahyadi, L., E-mail: lina.cahyadi@uph.edu; Adi, W. Ari, E-mail: dwisnuaa@batan.go.id
2016-04-19
The synthesis and characterization of composition Ba{sub 0.6}Sr{sub 0.4}Fe{sub 11-z}MnTi{sub z}O{sub 19} (z = 0; 1; 2 and 3) compound by solid state reaction using mechanical milling have been performed. The raw materials were BaCO{sub 3}, SrCO{sub 3}, Fe{sub 2}O{sub 3}, MnCO{sub 3}, and TiO{sub 2}. The mixed powder was compacted and sintered at 1000°C for 5 hours. X-ray diffraction studies indicate expansion of hexagonal unit cell and compression of atomic density with substitution of Mn{sup 2+} and Ti{sup 4+} ions. Effect of substitution upon magnetic properties revealed that total magnetization, remanence, and coercivity changed with substitution due to preferentialmore » site occupancy of substituted Mn{sup 2+} and Ti{sup 4+} ions. Since the coercivity and total magnetization may be controlled by substitution while maintaining resistive properties, this material is useful for microwave absorber.« less
Sajnóg, Adam; Hanć, Anetta; Koczorowski, Ryszard; Barałkiewicz, Danuta
2017-12-01
A new procedure for determination of elements derived from titanium implants and physiological elements in soft tissues by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is presented. The analytical procedure was developed which involved preparation of in-house matrix matched solid standards with analyte addition based on certified reference material (CRM) MODAS-4 Cormorant Tissue. Addition of gelatin, serving as a binding agent, essentially improved physical properties of standards. Performance of the analytical method was assayed and validated by calculating parameters like precision, detection limits, trueness and recovery of analyte addition using additional CRM - ERM-BB184 Bovine Muscle. Analyte addition was additionally confirmed by microwave digestion of solid standards and analysis by solution nebulization ICP-MS. The detection limits are in range 1.8μgg -1 to 450μgg -1 for Mn and Ca respectively. The precision values range from 7.3% to 42% for Al and Zn respectively. The estimated recoveries of analyte addition line within scope of 83%-153% for Mn and Cu respectively. Oral mucosa samples taken from patients treated with titanium dental implants were examined using developed analytical method. Standards and tissue samples were cryocut into 30µm thin sections. LA-ICP-MS allowed to obtain two-dimensional maps of distribution of elements in tested samples which revealed high content of Ti and Al derived from implants. Photographs from optical microscope displayed numerous particles with µm size in oral mucosa samples which suggests that they are residues from implantation procedure. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Xing-Yuan; Lai, Guo-Xia; Gu, Di; Zhu, Wei-Ling; Lai, Tian-Shu; Zhao, Yu-Jun
2018-04-01
The XTiO3 (X = Mn, Fe, Co and Ni) materials with R3c structure could be grown under critical conditions based on first-principles calculations and thermodynamic stability analysis. FeTiO3 and MnTiO3 could be synthesized relatively easily under metal-rich and O-poor conditions, while NiTiO3 could be stable under Ni-rich, O-rich and Ti-poor conditions. The predicted R3c CoTiO3 under thermodynamic equilibrium conditions is suggested to be synthesized under Co-rich, O-rich and Ti-poor conditions, but the calculated phonon dispersion indicates R3c CoTiO3 becomes unstable under the dynamical conditions. The ferroelectric behavior in the XTiO3 (X = Mn, Fe, Co and Ni) system could be dominated by the Ti ion with d0 state and the strong hybridization between Ti and O, while the magnetic property is mainly caused by the contribution of 3d transition metal.
Alaimo, Alysha A; Koumousi, Evangelia S; Cunha-Silva, Luís; McCormick, Laura J; Teat, Simon J; Psycharis, Vassilis; Raptopoulou, Catherine P; Mukherjee, Shreya; Li, Chaoran; Gupta, Sayak Das; Escuer, Albert; Christou, George; Stamatatos, Theocharis C
2017-09-05
One-pot reactions between the [Mn 3 O(O 2 CPh) 6 (py) x ] +/0 triangular precursors and either CaBr 2 ·xH 2 O or CaCl 2 ·6H 2 O, in the presence of salicylhydroxamic acid (shaH 2 ), have afforded the heterometallic complexes [Mn III 4 Ca 2 (O 2 CPh) 4 (shi) 4 (H 2 O) 3 (Me 2 CO)] (1) and (pyH)[Mn II 2 Mn III 4 Ca 2 Cl 2 (O 2 CPh) 7 (shi) 4 (py) 4 ] (2), respectively, in good yields. Further reactions but using a more flexible synthetic scheme comprising the Mn(NO 3 ) 2 ·4H 2 O/Ca(NO 3 ) 2 ·4H 2 O and Mn(O 2 CPh) 2 ·2H 2 O/Ca(ClO 4 ) 2 ·4H 2 O "metal blends" and shaH 2 , in the presence of external base NEt 3 , led to the new complexes (NHEt 3 ) 2 [Mn III 4 Mn IV 4 Ca(OEt) 2 (shi) 10 (EtOH) 2 ] (3) and (NHEt 3 ) 4 [Mn III 8 Ca 2 (CO 3 ) 4 (shi) 8 ] (4), respectively. In all reported compounds, the anion of the tetradentate (N,O,O,O)-chelating/bridging ligand salicylhydroxime (shi 3- ), resulting from the in situ metal-ion-assisted amide-iminol tautomerism of shaH 2 , was found to bridge both Mn and Ca atoms. Complexes 1-4 exhibit a variety of different structures, metal stoichiometries, and Mn oxidation-state descriptions; 1 possesses an overall octahedral metal arrangement, 2 can be described as a Mn 4 Ca 2 octahedron bound to an additional Mn 2 unit, 3 consists of a Mn 8 "ring" surrounding a Ca II atom, and 4 adopts a rectangular cuboidal motif of eight Mn atoms accommodating two Ca II atoms. Solid-state direct-current magnetic susceptibility studies revealed the presence of predominant antiferromagnetic exchange interactions between the Mn centers, leading to S = 0 spin ground-state values for all complexes. From a bioinorganic chemistry perspective, the reported compounds may demonstrate some relevance to both high-valent scheme (3) and lower-oxidation-level species (1, 2, and 4) of the catalytic cycle of the oxygen-evolving complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Jihoon; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712; Azad, Abul K.
2015-03-15
The Ti and Mn replaced complex perovskites, Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (Ln: La, Nd and Sm), were reported as potential anode materials for high temperature-operating solid oxide fuel cells (HT-SOFCs). For the present research study, synthesis, crystallographic, thermal and electrical conductivity properties of Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} complex perovskites were investigated using X-ray diffraction (XRD), Rietveld method, thermogravimetric analysis (TGA) and electrical conductivity to apply these oxide materials for the HT-SOFC anode materials. XRD results showed that Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} oxide systems synthesized as single phases did not react with 8 mol% yttriamore » stabilized zirconia (8YSZ) and 10 mol% Gd-doped cerium oxide (CGO91) up to 1500 °C and did not decompose under dry 3.9% hydrogen at 850 °C. The crystal structures of La{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (LSTM), Nd{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (NSTM) and Sm{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (SSTM) showed orthorhombic symmetry with the space group Pbnm and SSTM showed a more distorted structure. Thermogravimetric analysis (TGA) proved weight gains in these three sample occurred under oxidizing conditions and weight loss under reducing conditions. Electrical conductivity values of NSTM were higher than those of LSTM and SSTM under oxidizing and reducing conditions. - Graphical abstract: The B-site cations (Ti/Mn) are surrounded by regular octahedra of oxygen in Nd{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d}(NSTM). These octahedra are linked together in a corner sharing three dimensional framework, while Nd/Sr ion occupies 12-coordinated A-site between these octahedra. The Ti/Mn–O{sub 6} octahedra are elongated along the c-axis. The crystal structure distortion was due to the smaller ionic radius of the A-site cations, which force the (Ti/Mn)–O{sub 6} octahedra to tilt in order to optimize the A–O bond distances. The same structural symmetry was found when the samples were reduced in 3.9% H{sub 2} in Ar at 900 °C for 12 h. - Highlights: • Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} oxide systems do not react with 8YSZ and CGO91. • LSTM, NSTM and SSTM show orthorhombic symmetry with the space group Pbnm. • LSTM shows relatively lower onset temperature in Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d}. • Electrical conductivity values of NSTM are higher than those of LSTM and SSTM.« less
Soft ferromagnetism in mixed valence Sr(1-x)La(x)Ti(0.5)Mn(0.5)O₃ perovskites.
Qasim, Ilyas; Blanchard, Peter E R; Kennedy, Brendan J; Ling, Chris D; Jang, Ling-Yun; Kamiyama, Takashi; Miao, Ping; Torii, Shuki
2014-05-14
The structural, magnetic and electrical properties of the mixed Ti-Mn oxides Sr(1-x)La(x)Ti(0.5)Mn(0.5)O3 (0 ≤ x ≤ 0.5) are reported. At room temperature the oxides have a cubic structure in space group Pm3m for x ≤ 0.25 and rhombohedral in R3c for 0.3 ≤ x ≤ 0.50. X-ray absorption spectroscopic measurements demonstrate the addition of La(3+) is compensated by the partial reduction of Mn(4+) to Mn(3+). Variable temperature neutron diffraction measurements show that cooling Sr(0.6)La(0.4)Ti(0.5)Mn(0.5)O3 results in a first order transition from rhombohedra to an orthorhombic structure in Imma. Complex magnetic behaviour is observed. The magnetic behaviour of the mixed valent (Mn(3+/4+)) examples is dominated by ferromagnetic interactions, although cation disorder frustrates long range magnetic ordering.
NASA Astrophysics Data System (ADS)
Smirnova, N.; Petrik, I.; Vorobets, V.; Kolbasov, G.; Eremenko, A.
2017-03-01
Mesoporous nanosized titania films modified with Co2+, Ni2+, Mn3+, and Cu2+ ions have been produced by templated sol-gel method and characterized by optical spectroscopy, X-ray diffraction (XRD), and Brunauer, Emmett, and Teller (BET) surface area measurement. Band gap energy and the position of flat band potentials were estimated by photoelectrochemical measurements. The films doped with transition metals possessed higher photocurrent quantum yield, as well as photo- and electrochemical activity compared to undoped samples. Mn+/TiO2 (M-Co, Ni, Mn, Cu) electrodes with low dopant content demonstrate high efficiency in electrocatalytic reduction of dissolved oxygen. Polarization curves of TiO2, TiO2/Ni2+, TiO2/Co2+/3+, and TiO2/Mn3+ electrodes contain only one current wave (oxygen reduction current). It means that reaction proceeds without the formation of an intermediate product H2O2.
Effect of Ni and Ti substitutions on Li1.05Mn2O4-δ electrical conductivities at high temperature
NASA Astrophysics Data System (ADS)
Abe, Satoko; Iwasaki, Shoko; Shimonishi, Yuta; Komine, Shigeki; Munakata, Fumio
2016-10-01
Samples of Li1.05Mn2O4-δ, Li1.05Mn1.5Ni0.5O4-δ, and Li1.05Mn1.0Ni0.5Ti0.5O4-δ were prepared by a solid-state reaction technique and ultimately refined to a space group Fd-3m of spinel structure by the Rietveld method using synchrotron powder X-ray diffraction data. Comparison of lattice constants suggested that Ni-substitution increased the covalency in the bonding of MO6 (M: metal ion at 16d site) octahedrals, but Ni/Ti co-substitution decreased the covalency of M-O bonds and introduced structural distortion. Electrical conductivity measurements by a four-probe method resulted in the determination that electrical conduction (within all samples) exhibits a nonadiabatic hopping process at high temperatures. The activation energies of Li1.05Mn2O4-δ and Li1.05Mn1.5Ni0.5O4-δ were found to be of similar values. The Ni/Ti co-substituted sample of Li1.05Mn1.0Ni0.5Ti0.5O4-δ, on the other hand, showed the highest activation energy among all the measured samples. Substitution reduced the electrical conductivity relative to Li1.05Mn2O4-δ; furthermore, both the substituted samples (Li1.05Mn1.5Ni0.5O4-δ and Li1.05Mn1.0Ni0.5Ti0.5O4-δ) were found to exhibit functional independence from oxygen partial pressure (PO2).
Semin, B К; Davletshina, L N; Seibert, M; Rubin, A B
2018-01-01
Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2 Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH5.7) than at neutral pH (3Mn/RC are extracted at pH6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extract only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster. Also we found that the presence of Fe cations in a heteronuclear cluster (2Mn/2Fe) increases the resistance of the remaining Mn cations to H 2 Q action, since H 2 Q can extract Mn cations from homonuclear Mn clusters of PSII(-Ca,4Mn) and PSII(-Ca,2Mn) membranes but not from the heteronuclear cluster in PSII(-Ca,2Mn,2Fe) membranes. H 2 Q also cannot extract Mn from PSII membranes obtained by incubation of PSII(-Ca,4Mn) membranes with Fe(II) cations at pH5.7, which suggests the formation of a heteronuclear 3Mn/1Fe cluster in the OEC. Functional activity of PSII with a 3Mn/1Fe cluster was investigated. PSII preparations with a 3Mn/1Fe cluster in the OEC are able to photoreduce the exogenous electron acceptor 2,6-dichlorophenolindophenol, possibly due to incomplete oxidation of water molecules as is the case with PSII(-Ca,2Mn,2Fe) samples. However, in the contrast to PSII(-Ca,2Mn,2Fe) samples PSII(-Ca,3Mn,1Fe) membranes can evolve O 2 at a low rate in the presence of exogenous Ca 2+ (at about 27% of the rate of O 2 evolution in native PSII membranes). The explanation for this phenomenon (either water splitting and production of molecular O 2 by the 3Mn/1Fe cluster or apparent O 2 evolution due to minor contamination of PSII(3Mn,1Fe) samples with PSII(-Ca,4Mn) membranes) is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Guangyao; Kang, Juyun; Wang, Shusen; Wang, Shihua; Lu, Xionggang; Li, Chonghe
2018-04-01
In this study, the thermo-mechanical treatment process for low-cost Ti-4.5Al-6.9Cr-2.3Mn alloy were designed on the basis of assessment of Ti-Al-Cr-Mn thermodynamic system. The microstructure and mechanical properties of Ti-4.5Al-6.9Cr-2.3Mn forging and sheet were investigated by using the OM, SEM and universal tensile testing machine. The results show that both the forging and sheet were consisted of α + β phase, which is consistent with the expectation, and no element Cr and Mn existed in the grain boundaries of the sheet after quenching, and the C14 laves phase was not detected. The average ultimate tensile strength (σ b), 0.2% proof strength (σ 0.2) and elongation (EI) of alloy sheet after quenching can reach 1059 MPa, 1051 MPa and 24.6 Pct., respectively. Moreover, the average ultimate tensile strength of Ti-4.5Al-6.9Cr-2.3Mn forgings can reach 1599 MPa and the average elongation can reach 11.2 Pct., and a more excellent property of Ti-4.5Al-6.9Cr-2.3Mn forging is achieved than that of TC4 forging. It provides a theoretical support for further developing this low-cost alloy.
NASA Astrophysics Data System (ADS)
Wang, Bingxin; Liu, Xianghua; Wang, Guodong
2018-06-01
X80 steel weld metals with Ti contents of 0.003 to 0.13 pct were prepared by the single-pass submerged-arc welding process. The effects of Ti content in weld metals on the constituent phases of inclusions and chemical compositions of the constituent phases, as well as the potency of acicular ferrite (AF) nucleation on the inclusions were investigated. Moreover, the crystallographic orientation relationship between the AF and inclusion was examined. The results show that with an increase in Ti content, the primary constituent phases of the inclusions change from the (Mn-Al-Si-O) compound to a mixture of spinel and pseudobrookite solid solutions, and eventually to pseudobrookite. The spinel solid solution is characterized by the MnTi2O4 constituent. Compared to pseudobrookite, spinel has a lower Ti concentration, but a significantly higher Mn content. In the case of the presence of a considerable amount of spinel, the Mn element is enriched strongly in the inclusions, resulting in the development of a Mn-depleted zone (MDZ) in the matrix around the inclusions, which enhances the driving force for AF formation. AF shows the Baker-Nutting orientation relationship with MnTi2O4. The formation of MDZ and the presence of the Baker-Nutting orientation relationship promote the ability of inclusions to nucleate the intragranular AF.
NASA Astrophysics Data System (ADS)
Wang, Bingxin; Liu, Xianghua; Wang, Guodong
2018-03-01
X80 steel weld metals with Ti contents of 0.003 to 0.13 pct were prepared by the single-pass submerged-arc welding process. The effects of Ti content in weld metals on the constituent phases of inclusions and chemical compositions of the constituent phases, as well as the potency of acicular ferrite (AF) nucleation on the inclusions were investigated. Moreover, the crystallographic orientation relationship between the AF and inclusion was examined. The results show that with an increase in Ti content, the primary constituent phases of the inclusions change from the (Mn-Al-Si-O) compound to a mixture of spinel and pseudobrookite solid solutions, and eventually to pseudobrookite. The spinel solid solution is characterized by the MnTi2O4 constituent. Compared to pseudobrookite, spinel has a lower Ti concentration, but a significantly higher Mn content. In the case of the presence of a considerable amount of spinel, the Mn element is enriched strongly in the inclusions, resulting in the development of a Mn-depleted zone (MDZ) in the matrix around the inclusions, which enhances the driving force for AF formation. AF shows the Baker-Nutting orientation relationship with MnTi2O4. The formation of MDZ and the presence of the Baker-Nutting orientation relationship promote the ability of inclusions to nucleate the intragranular AF.
NASA Technical Reports Server (NTRS)
Colson, R. O.; Mckay, G. A.; Taylor, L. A.
1988-01-01
This paper presents a systematic thermodynamic analysis of the effects of temperature and composition on olivine/melt and low-Ca pyroxene/melt partitioning. Experiments were conducted in several synthetic basalts with a wide range of Fe/Mg, determining partition coefficients for Eu, Ca, Mn, Fe, Ni, Sm, Cd, Y, Yb, Sc, Al, Zr, and Ti and modeling accurately the changes in free energy for trace element exchange between crystal and melt as functions of the trace element size and charge. On the basis of this model, partition coefficients for olivine/melt and low-Ca pyroxene/melt can be predicted for a wide range of elements over a variety of basaltic bulk compositions and temperatures. Moreover, variations in partition coeffeicients during crystallization or melting can be modeled on the basis of changes in temperature and major element chemistry.
Manganese in the shell of the bivalve Mytilus edulis: Seawater Mn or physiological control?
NASA Astrophysics Data System (ADS)
Freitas, Pedro S.; Clarke, Leon J.; Kennedy, Hilary; Richardson, Christopher A.
2016-12-01
Manganese in the shell calcite of marine bivalves has been suggested to reflect ambient seawater Mn concentrations, thus providing a high-resolution archive of past seawater Mn concentrations. However, a quantitative relationship between seawater Mn and shell Mn/Ca ratios, as well as clear understanding of which process(es) control(s) shell Mn/Ca, are still lacking. Blue mussels, Mytilus edulis, were grown in a one-year duration field experiment in the Menai Strait, U.K., to study the relationship between seawater particulate and dissolved Mn2+ concentrations and shell calcite Mn/Ca ratios. Shell Mn/Ca showed a well-defined intra-annual double-peak, with maximum values during early spring and early summer and low values during autumn and winter. Seawater particulate Mn peaked during winter and autumn, with a series of smaller peaks during spring and summer, whereas dissolved Mn2+ exhibited a marked single maximum during late-spring to early-summer, being low during the remainder of the year. Consequently, neither seawater particulate Mn nor dissolved Mn2+ concentrations explain the intra-annual variation of shell Mn/Ca ratios. A physiological control on shell Mn/Ca ratios is evident from the strong similarity and timing of the double-peaked intra-annual variations of Mn/Ca and shell growth rate (SGR), the latter corresponding to periods of increased metabolic activity (as indicated by respiration rate). It is thus likely that in M. edulis SGR influences shell Mn/Ca by altering the concentration or activity of Mn2+ within the extra-pallial fluid (EPF), by changing the flux of Mn into or the proportion of protein bound Mn within the EPF. By linking shell Mn/Ca ratios to the endogenous and environmental factors that determine growth and metabolic activity, this study helps to explain the lack of a consistent relationship between shell Mn/Ca in marine bivalve shell calcite and seawater particulate and dissolved Mn2+ concentrations. The use of Mn content from M. edulis shell calcite as a proxy for the dissolved and/or particulate Mn concentrations, and thus the biogeochemical processes that control them, remains elusive.
NASA Astrophysics Data System (ADS)
Hung Vu, Ngoc; Arunkumar, Paulraj; Bin Im, Won
2017-03-01
Recently, composite materials based on Li-Mn-Ti-O system were developed to target low cost and environmentally benign cathodes for Li-ion batteries. The spinel-layered Li1.5MnTiO4+δ bulk particles showed excellent cycle stability but poor rate performance. To address this drawback, ultralong nanofibers of a Li1.5MnTiO4+δ spinel-layered heterostructure were synthesized by electrospinning. Uniform nanofibers with diameters of about 80 nm were formed of tiny octahedral particles wrapped together into 30 μm long fibers. The Li1.5MnTiO4+δ nanofibers exhibited an improved rate capability compared to both Li1.5MnTiO4+δ nanoparticles and bulk particles. The uniform one-dimensional nanostructure of the composite cathode exhibited enhanced capacities of 235 and 170 mAh g-1 at C/5 and 1 C rates, respectively. Its unique structure provided a large effective contact area for Li+ diffusion, and low charge transfer resistance. Moreover, the layered phase contributed to its capacity in over 3 V region, which increased specific energy (726 Wh kg-1) compared to the bulk particles (534 Wh kg-1).
Oseghe, Ekemena Oghenovoh; Ndungu, Patrick Gathura; Jonnalagadda, Sreekanth Babu
2015-01-01
Mesoporous 20 wt% Mn/TiO2 nanocomposites were synthesized adopting modified sol-gel method at different pH (pH = 2, 7 and 11) conditions and calcined at 400 °C. Based on the characteristics of the 20 wt% Mn/TiO2 nanocomposites synthesized at pH 11, same procedure was adopted for the synthesis of different wt% Mn/TiO2. The nanocomposite samples and their surface properties were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), mapping, inductively coupled plasma optical emission spectrometry (ICP-OES), Fourier transform infrared (FTIR), and fluorescence spectrometry. The nanocomposites existed in the anatase phase of TiO2 with no peak assigned to Mn on the diffractogram. The photocatalytic activities of the materials were evaluated by monitoring degradation of a model dye (methylene blue (MB)) in presence of visible light and ozone. The nanocomposite synthesized under neutral condition (pH = 7) exhibited the best photocatalytic activity resulting from its relatively smaller crystal size (5.98 nm) and larger pore volume (0.30 cm(3)/g). One percentage of weight Mn/TiO2 showed 100% decolouration of MB in the presence of O3 after 100 min.
Molecular design of TiO2 for gigantic red shift via sublattice substitution.
Shao, Guosheng; Deng, Quanrong; Wan, Lin; Guo, Meilan; Xia, Xiaohong; Gao, Yun
2010-11-01
The effects of 3d transition metal doping in TiO2 phases have been simulated in detail. The results of modelling indicate that Mn has the biggest potential among 3d transition metals, for the reduction of energy gap and the introduction of effective intermediate bands to allow multi-band optical absorption. On the basis of theoretical formulation, we have incorporated considerable amount of Mn in nano-crystalline TiO2 materials. Mn doped samples demonstrate significant red shift in the optical absorption edge, with a secondary absorption edge corresponding to theoretically predicted intermediate bands/states. The gigantic red shift achievable in Mn-doped TiO2 is expected to extend the useful TiO2 functionalities well beyond the UV threshold via the optical absorption of both visible and infrared photon irradiance.
NASA Astrophysics Data System (ADS)
Thompson, L. M.; Yen, A.; Spray, J. G.; Johnson, J. R.; Fraeman, A. A.; Berger, J. A.; Gellert, R.; Boyd, N.; Desouza, E.; O'Connell-Cooper, C.; VanBommel, S.
2017-12-01
The >230 m thick Murray Formation is the lower-most unit of the Mount Sharp Group, and interpreted as primarily lacustrine. Representative mudstone, siltstone and fine sandstone targets, encountered above -4330 m elevation, trend to lower Si, Al, Ti, Cr and Ca, and higher Fe, Mn, Zn, P and Mg than the Murray below. Less common, distinctive, coarser grained sandstone lenses tend to exhibit slightly different compositions to the more typical Murray but, overall, show similar elemental trends with elevation, albeit exaggerated. This suggests that the variations observed with elevation in Al, Ti, Cr, K, Fe, Mn, Zn and P within both the coarser sandstones and finer grained Murray are the result of diagenetic and/or alteration processes rather than provenance or physical sedimentary processes such as sorting. This is supported by the chemistry of obvious diagenetic, dark grey nodules, and other potential diagenetic/alteration features within this section, which show variations in the same element concentrations (i.e., P, Mn, Fe, Zn, Mg, Ca and S), distinct from diagenetic features lower down in the stratigraphy, indicating mobility of these elements within this section and changing fluid chemistry. Trends in FeO/MnO generally mimic the presence of ferric absorption features observed in visible/near infrared passive spectra from the ChemCam instrument and from CRISM orbital data, which may be consistent with changes in redox conditions as we climb up section towards Vera Rubin Ridge (Hematite Ridge). Layer-parallel CaSO4 is also common, and not observed below -4330 m. This may represent syndepositional evaporite layers, or late bedding/laminae parallel veins emplaced after lithification, in conjunction with cross-cutting veins. The overall differences in composition between the sandstone targets and finer grained Murray are attributed to distinct provenances and/or sorting during transport. We will discuss the implications of the trends and composition of the Murray above -4330 m elevation and how this pertains to the history and evolution of the Murray Formation as a whole, climatic conditions during the formation of the Murray and the nature of Gale crater lake. Also, what do the trends imply about how circulating fluids have evolved within the Murray sediments and pH, redox, salinity conditions of these fluids?
Novel photoinduced phase transitions in transition metal oxides and diluted magnetic semiconductors.
Mizokawa, Takashi
2012-10-23
Some transition metal oxides have frustrated electronic states under multiphase competition due to strongly correlated d electrons with spin, charge, and orbital degrees of freedom and exhibit drastic responses to external stimuli such as optical excitation. Here, we present photoemission studies on Pr0.55(Ca1 - ySry)0.45MnO3 (y = 0.25), SrTiO3, and Ti1 - xCoxO2 (x = 0.05, 0.10) under laser illumination and discuss electronic structural changes induced by optical excitation in these strongly correlated oxides. We discuss the novel photoinduced phase transitions in these transition metal oxides and diluted magnetic semiconductors on the basis of polaronic pictures such as orbital, ferromagnetic, and ferroelectric polarons.
Calculation of the Ti(C y N1- y )-Ti4C2S2-MnS-austenite equilibrium in Ti-bearing steels
NASA Astrophysics Data System (ADS)
Liu, W. J.; Jonas, J. J.
1989-08-01
A thermodynamic model is presented for the equilibria among various precipitates (Ti(C y N1- y ), Ti4C2S2, and MnS) and austenite containing six alloying elements (C, Mn, N, S, Si, and Ti). This model is applied to four microalloyed steels with Ti levels of 0.05, 0.11, 0.18, and 0.25 pct. The calculations show that the Ti in these steels cannot be completely dissolved over the austenite temperature range. However, the compositions of the undissolved Ti carbonitrides differ significantly from pure TiN, as 10 to 40 pct of the nitrogen is replaced by carbon. An expression for the Gibbs energy for the formation of Ti4C2S2 in austenite is estimated. The present predictions are compared with those of the Hudd, Jones, and Kale (HJK) model; considerable differences are observed at temperatures below 1250°C.
NASA Astrophysics Data System (ADS)
Gwalani, L. G.; Rock, N. M. S.; Ramasamy, R.; Griffin, B. J.; Mulai, B. P.
2000-04-01
Ti-rich garnet phenocrysts from a tephrite ('nephelinite') plug in the Ambadungar complex situated in the Chhota Udaipur alkalic subprovince show concentric zoning. Based on paired orthogonal traverses across three selected crystals (total 81 step-scan point analyses), andradite content ranges from 55 to 86 mol% (the remainder being almost entirely schorlomite), corresponding to the following wt% oxide variations: TiO 2 5.5-15.8, CaO 29.6-32.5, MgO 0.3-1.6, Fe 2O 3 20-26, Al 2O 3 0.7-3.5%; MnO, V 2O 3, Na 2O and ZrO 2 each rarely exceeds 0.5%. Zoning patterns in individual grains from this one rock differ considerably in several ways: (1) there may be 2-5 alternating pale and dark zones, the pale generally being more andradite-rich enriched in Ti, Mg and usually Zr but impoverished in Al; (2) the two orthogonal traverse may or may not be mirror images; (3) monotonic trends (decreasing Ca, Al, increasing Mg, Zr from core to rim) may or may not be present; (4) oscillatory zoning varies in amplitude; and (5) apparent substitutions differ, although all crystals clearly show the Si-Ti substitution inferred for Ti-rich garnets elsewhere. An idealized case is developed from an observed complexly zoned phenocryst population to piece together a history of the alkaline host magma that experienced several events such as polybaric differentiation, magma-mixing, and kinetic effects.
Half-metallicity in new Heusler alloys NaTO2 (T=Sc, Ti, V, Cr, and Mn): A first-principles study
NASA Astrophysics Data System (ADS)
Rajabi, Kh; Ahmadian, F.
2018-03-01
On the basis of the full-potential linearized augmented plane wave (FPLAPW) method within density functional theory (DFT), electronic structure and magnetic properties of Heusler alloys NaTO2 (T = Sc, Ti, V, Cr, and Mn) were investigated. The negative values of formation energy showed that these compounds can be experimentally synthesized. Results showed that in all compounds, AlCu2Mn-type structure was the most favorable one. The NaTO2 (T = Sc, Ti, V, Cr, and Mn) alloys were HM ferromagnets except NaScO2 (in both structures which were nonmagnetic semiconductors) and NaVO2 (in AlCu2Mn-type structure which was a magnetic semiconductor). The origin of half-metallicity was also verified in HM alloys. NaCrO2 and NaVO2 alloys had higher half-metallic band gaps in comparison with Heusler alloys including and excluding transition metals. The total magnetic moments of HM NaTO2 (T = Ti, V, Cr, and Mn) alloys obeyed Slater-Pauling rule (Mtot = Ztot-12). Among NaTO2 (T = Sc, Ti, V, Cr, and Mn) alloys, NaCrO2 had the highest robustness of half-metallicity with variation of lattice constant in both structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Lifen; Chen, Zhen; Liu, Guokui
2015-01-01
The formation mechanism for red phosphors K 2TiF 6:Mn 4+synthesized at room temperature has been discussed. The luminescence intensity has been improved by optimizing the synthetic process. Encapsulation of the red phosphor K 2TiF 6:Mn 4+with YAG:Ce on a GaN layer produces “warm” white LEDs with color rendering 86 at 3251 K.
Wang, Yuesheng; Liu, Jue; Lee, Byungju; ...
2015-03-25
The aqueous sodium-ion battery system is a safe and low-cost solution for large-scale energy storage, due to the abundance of sodium and inexpensive aqueous electrolytes. Although several positive electrode materials, e.g., Na 0.44MnO 2, were proposed, few negative electrode materials, e.g., activated carbon and NaTi 2(PO 4) 3, are available. Here we show that Ti-substituted Na 0.44MnO 2 (Na 0.44[Mn 1-xTi x]O 2) with tunnel structure can be used as a negative electrode material for aqueous sodium-ion batteries. This material exhibits superior cyclability even without the special treatment of oxygen removal from the aqueous solution. Atomic-scale characterizations based on sphericalmore » aberration-corrected electron microscopy and ab initio calculations are utilized to accurately identify the Ti substitution sites and sodium storage mechanism. Ti substitution tunes the charge ordering property and reaction pathway, significantly smoothing the discharge/charge profiles and lowering the storage voltage. Both the fundamental understanding and practical demonstrations suggest that Na 0.44[Mn 1-xTi x]O 2 is a promising negative electrode material for aqueous sodium-ion batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandjean, Didier; Morales, Fernando; Mens, Ad
2007-02-02
Combination of in situ X-ray absorption spectroscopy (XAFS) at the Co and Mn K-edges with electron microscopy (STEM-EELS) has allowed to unravel the complex structure of a series of unpromoted and Mn promoted TiO2-supported cobalt Fischer-Tropsch catalysts prepared by homogeneous deposition precipitation (HDP), both in their calcined and reduced states. After calcination the catalysts are generally composed of large Co3O4 aggregates (13-20 nm) and a MnO2-type phase that is either dispersed on the TiO2 surface or, for the major part, covering the Co3O4 particles. Additionally Mn is also forming a spinel-type Co3-xMnxO4 solid solution at the surface of the Co3O4more » particles. In pure Co or when small amount of this spinel-type phase are formed during calcination, reduction in H2 at 350 deg. C produces Co0 particles of variable sizes (3.5-15 nm) otherwise Co reduction is limited to the Co2+ state. Manganese that exists entirely in a Mn2+ state in the reduced catalysts is forming (1) a highly dispersed Ti2MnO4-type phase at the TiO2 surface, (2) a less dispersed MnO phase close to the cobalt particles that coexists with (3) a rock salt-type Mn1-xCoxO solid solution. Similarly, large amount of spinel solid solution in the calcined state favors the formation of Mn1-xCoxO-type solid solution during reduction showing that one of the main roles of the Mn promoter is to limit Co reducibility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, M., E-mail: jiangmin@ustb.edu.cn; Wang, X.H.; Hu, Z.Y.
2015-10-15
The present study focused on microstructure refinement in Ti–Al complex deoxidized low alloy structural steel by developing IAF on inclusions. The goal was to establish more determined relation between Ti, Al in steel and the produced microstructures. In steel sample with Ti and Al contents of 0.0035% and 0.0004%, respectively, IAF was well developed by inclusions characterized by TiO{sub x}–MnO oxide cores enwrapped by (MnO–SiO{sub 2}–Al{sub 2}O{sub 3})–MnS or (MnO–SiO{sub 2})–MnS surface layers. With the rise of Ti and Al contents, IAF volume decreased greatly because of different inclusion chemistry, TiO{sub x} + MnS, TiO{sub x}–Al{sub 2}O{sub 3} or Al{submore » 2}O{sub 3}, which inhibit the formation of IAF. Thermodynamic calculations were carried out for optimal Ti and Al contents in steel to target inclusions with proper chemistry for nucleating IAF. These laboratorial findings were successfully applied and reproducibly observed in pilot trials. It was indicated that low temperature impact toughness at 0 °C and − 20 °C of the produced medium plate was effectively improved despite lower Ti contents than common process, which was very meaningful in saving the cost of high Ti content steels. - Highlights: • IAF volume showed close relationship to Ti or Al contents. • To target IAF, there is no need to add too many titanium alloys. • Optimal Ti and Al were about 0.0020–0.0060% and 0.0005–0.0020%, respectively. • Impact toughness of steel plate at 0 °C and − 20 °C was successfully improved.« less
Bakshi, Madhurima; Ram, S S; Ghosh, Somdeep; Chakraborty, Anindita; Sudarshan, M; Chaudhuri, Punarbasu
2017-05-01
This work describes the micro-spatial variation of elemental distribution in estuarine sediment and bioaccumulation of those elements in different mangrove species of the Indian Sundarbans. The potential ecological risk due to such elemental load on this mangrove-dominated habitat is also discussed. The concentrations of elements in mangrove leaves and sediments were determined using energy-dispersive X-ray fluorescence spectroscopy. Sediment quality and potential ecological risks were assessed from the calculated indices. Our data reflects higher concentration of elements, e.g., Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb, in the sediment, as compared to that reported by earlier workers. Biological concentration factors for K, Ca, Mn, Fe, Cu, and Zn in different mangroves indicated gradual elemental bioaccumulation in leaf tissues (0.002-1.442). Significant variation was observed for elements, e.g., Ni, Mn, and Ca, in the sediments of all the sites, whereas in the plants, significant variation was found for P, S, Cl, K, Ca, Mn, Fe, Cu, and Zn. This was mostly due to the differences in uptake and accumulation potential of the plants. Various sediment quality indices suggested the surface sediments to be moderately contaminated and suffering from progressive deterioration. Cu, Cr, Zn, Mn, and Ni showed higher enrichment factors (0.658-1.469), contamination factors (1.02-2.7), and geo-accumulation index (0.043-0.846) values. The potential ecological risk index values considering Cu, Cr, Pb, and Zn were found to be within "low ecological risk" category (20.04-24.01). However, Cr and Ni in the Sundarban mangroves exceeded the effect range low and probable effect level limits. Strong correlation of Zn with Fe and K was observed, reflecting their similar transportation and accumulation process in both sediment and plant systems. The plant-sediment elemental correlation was found to be highly non-linear, suggesting role of some physiological and edaphic factors in the accumulation process. Overall, the study of micro-spatial distribution of elements can act as a useful tool for determining health of estuarine ecosystem.
NASA Astrophysics Data System (ADS)
Jollands, Michael C.; Hanger, Brendan J.; Yaxley, Gregory M.; Hermann, Jörg; Kilburn, Matthew R.
2018-01-01
Rare garnet crystals from a peridotite xenolith from the Wesselton kimberlite, South Africa, have distinct zones related to two separate episodes of mantle metasomatism. The garnet cores were firstly depleted through melt extraction, then equilibrated during metasomatism by a potentially diamond-forming carbonate-bearing or proto-kimberlitic fluid at 1100-1300 °C and 4.5-5.5 GPa. The garnet rim chemistry, in contrast, is consistent with later overgrowth in equilibrium with a kimberlite at around 1025 ± 25 °C and 4.2 ± 0.5 GPa. This suggests that the rock was physically moved upwards by up to tens of kilometres between the two metasomatic episodes. Preserved high Ca, Al and Cr contents in orthopyroxenes suggest this uplift was tectonic, rather than magmatic. Diffusion profiles were measured over the transitions between garnet cores and rims using electron microprobe (Mg, Ca, Fe for modelling, plus Cr, Mn, Ti, Na, Al) and nano Secondary Ion Mass Spectrometry (NanoSIMS; 89Y, along with 23Na, Ca, Cr, Fe, Mn and Ti) analyses. The short profile lengths (generally <10 μm) and low Y concentrations (0.2-60 ppm) make the NanoSIMS approach preferable. Diffusion profiles at the interface between the zones yield constraints on the timescale between the second metasomatic event and eruption of the kimberlite magma that brought the xenolith to the surface. The time taken to form the diffusion profiles is on the order of 25 days to 400 yr, primarily based on modelling of Y diffusion along with Ca, Fe and Mg (multicomponent diffusion) profiles. These timescales are too long to be produced by the interaction of the mantle xenolith with the host kimberlite magma during a single-stage ascent to the crust (hours to days). The samples offer a rare opportunity to study metasomatic processes associated with failed eruption attempts in the cratonic lithosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin-Chao; Hu, Enyuan; Pan, Yang
Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na 0.66Co xMn 0.66–xTi 0.34O 2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na+ and vacancy ordering. An interesting structure change of Na 0.66Co xMn 0.66–xTi 0.34O 2 from orthorhombic to hexagonal is revealed when Co content increases from x = 0 to 0.33. In particular, Na 0.66Co 0.22Mn 0.44Ti 0.34O 2 with a P2-type layered structure delivers a reversible capacity of 120more » mAh g -1 at 0.1 C. When the current density increases to 10 C, a reversible capacity of 63.2 mAh g -1 can still be obtained, indicating a promising rate capability. The low valence Co 2+ substitution results in the formation of average Mn 3.7+ valence state in Na 0.66Co 0.22Mn 0.44Ti 0.34O 2, effectively suppressing the Mn3+-induced Jahn–Teller distortion, and in turn stabilizing the layered structure. X-ray absorption spectroscopy results suggest that the charge compensation of Na 0.66Co 0.22Mn 0.44Ti 0.34O 2 during charge/discharge is contributed by Co 2.2+/Co 3+ and Mn 3.3+/Mn 4+ redox couples. This is the first time that the highly reversible Co 2+/Co 3+ redox couple is observed in P2-layered cathodes for sodium-ion batteries. This finding may open new approaches to design advanced intercalation-type cathode materials.« less
Wang, Qin-Chao; Hu, Enyuan; Pan, Yang; ...
2017-07-06
Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na 0.66Co xMn 0.66–xTi 0.34O 2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na+ and vacancy ordering. An interesting structure change of Na 0.66Co xMn 0.66–xTi 0.34O 2 from orthorhombic to hexagonal is revealed when Co content increases from x = 0 to 0.33. In particular, Na 0.66Co 0.22Mn 0.44Ti 0.34O 2 with a P2-type layered structure delivers a reversible capacity of 120more » mAh g -1 at 0.1 C. When the current density increases to 10 C, a reversible capacity of 63.2 mAh g -1 can still be obtained, indicating a promising rate capability. The low valence Co 2+ substitution results in the formation of average Mn 3.7+ valence state in Na 0.66Co 0.22Mn 0.44Ti 0.34O 2, effectively suppressing the Mn3+-induced Jahn–Teller distortion, and in turn stabilizing the layered structure. X-ray absorption spectroscopy results suggest that the charge compensation of Na 0.66Co 0.22Mn 0.44Ti 0.34O 2 during charge/discharge is contributed by Co 2.2+/Co 3+ and Mn 3.3+/Mn 4+ redox couples. This is the first time that the highly reversible Co 2+/Co 3+ redox couple is observed in P2-layered cathodes for sodium-ion batteries. This finding may open new approaches to design advanced intercalation-type cathode materials.« less
Wang, Qin-Chao; Hu, Enyuan; Pan, Yang; Xiao, Na; Hong, Fan; Fu, Zheng-Wen; Wu, Xiao-Jing; Bak, Seong-Min; Yang, Xiao-Qing; Zhou, Yong-Ning
2017-11-01
Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na 0.66 Co x Mn 0.66- x Ti 0.34 O 2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na + and vacancy ordering. An interesting structure change of Na 0.66 Co x Mn 0.66- x Ti 0.34 O 2 from orthorhombic to hexagonal is revealed when Co content increases from x = 0 to 0.33. In particular, Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 with a P2-type layered structure delivers a reversible capacity of 120 mAh g -1 at 0.1 C. When the current density increases to 10 C, a reversible capacity of 63.2 mAh g -1 can still be obtained, indicating a promising rate capability. The low valence Co 2+ substitution results in the formation of average Mn 3.7+ valence state in Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 , effectively suppressing the Mn 3+ -induced Jahn-Teller distortion, and in turn stabilizing the layered structure. X-ray absorption spectroscopy results suggest that the charge compensation of Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 during charge/discharge is contributed by Co 2.2+ /Co 3+ and Mn 3.3+ /Mn 4+ redox couples. This is the first time that the highly reversible Co 2+ /Co 3+ redox couple is observed in P2-layered cathodes for sodium-ion batteries. This finding may open new approaches to design advanced intercalation-type cathode materials.
Acid treatment and formation of MnWO4 belts for NH3-SCR performance of MnWOx/TiO2 catalysts
NASA Astrophysics Data System (ADS)
Zhang, Zekai; Lu, Weizhe; Zhang, Xinying; Liu, Huayan; Lu, Hanfeng
2018-06-01
NH3-SCR is an important technology to remove NOx, and non-V based catalysts development is still a hot topic in the field. To improve N2 selectivity, acid treatment was carried out to modify the properties of a MnWOx/TiO2 catalyst. Influences of acid concentration, time and temperature on the catalyst were investigated. The TEM results showed that the acid treatment removed more MnO2 species than Mn2O3 and MnWO4 and disclosed more crystal faces of the active species. The active species even formed hollow structures by Ostwald ripening mechanism, which was then corroded by acid to form the nanobelts on the surface. The working temperature window of the MnWOx/TiO2 catalyst was thereby moved to the high temperature attitude and the N2 selectivity is clearly improved.
Effect of Tin, Copper and Boron on the Hot Ductility of 20CrMnTi Steel between 650 °C and 1100 °C
NASA Astrophysics Data System (ADS)
Peng, Hong-bing; Chen, Wei-qing; Chen, Lie; Guo, Dong
2015-02-01
The hot ductility of 20CrMnTi steel with x% tin, y% copper and z ppm boron (x = 0, 0.02; y = 0, 0.2; z = 0, 60) was investigated. The results show that tin and copper in 20CrMnTi steel are detrimental to its hot ductility while adding boron can eliminate the adverse effect and enhance hot ductility greatly. Tin is found to segregate to the boundaries tested by EPMA in 20CrMnTi steel containing tin and copper and tin-segregation is suppressed by adding boron, moreover, copper was found not to segregate to boundaries, however, fine copper sulfide was found from carbon extraction replicas using TEM. The adverse effect of tin and copper on the hot ductility was due mainly to tin segregation and fine copper sulfide in the steel. The proeutectoid ferrite film precipitating along the austenite grain boundary causes the ductility trough of the three examined steels. Tin and copper in 20CrMnTi steel can retard the occurrence of dynamic recrystallization (DRX) while boron-addition can compensate for that change. The beneficial effect of boron on 20CrMnTi steel containing tin and copper might be ascribed to the fact that boron segregates to grain boundaries, accelerates onset of DRX, retards austenite/ferrite transformation and promotes intragranular nucleation of ferrite.
Schipper, Desmond E; Zhao, Zhenhuan; Leitner, Andrew P; Xie, Lixin; Qin, Fan; Alam, Md Kamrul; Chen, Shuo; Wang, Dezhi; Ren, Zhifeng; Wang, Zhiming; Bao, Jiming; Whitmire, Kenton H
2017-04-25
A variety of catalysts have recently been developed for electrocatalytic oxygen evolution, but very few of them can be readily integrated with semiconducting light absorbers for photoelectrochemical or photocatalytic water splitting. Here, we demonstrate an efficient core/shell photoanode with a highly active oxygen evolution electrocatalyst shell (FeMnP) and semiconductor core (rutile TiO 2 ) for photoelectrochemical oxygen evolution reaction. Metal-organic chemical vapor deposition from a single-source precursor was used to ensure good contact between the FeMnP and the TiO 2 . The TiO 2 /FeMnP core/shell photoanode reaches the theoretical photocurrent density for rutile TiO 2 of 1.8 mA cm -2 at 1.23 V vs reversible hydrogen electrode under simulated 100 mW cm -2 (1 sun) irradiation. The dramatic enhancement is a result of the synergistic effects of the high oxygen evolution reaction activity of FeMnP (delivering an overpotential of 300 mV with a Tafel slope of 65 mV dec -1 in 1 M KOH) and the conductive interlayer between the surface active sites and semiconductor core which boosts the interfacial charge transfer and photocarrier collection. The facile fabrication of the TiO 2 /FeMnP core/shell nanorod array photoanode offers a compelling strategy for preparing highly efficient photoelectrochemical solar energy conversion devices.
Richardson, J B
2017-03-01
Manganese (Mn) cycling in the Critical Zone is important because of its role as an essential nutrient and potential toxicity to plants and organisms. Quantifying Mn enrichment in terrestrial environments has been limited since Mn is monoisotopic. However, elemental ratios of Mn/Ca ratios may be used to determine spatial Mn enrichment and in aboveground and belowground pools. The objectives of this study were to quantify the spatial variation in Mn concentrations and Mn/Ca ratios in foliage, bolewood, forest floor, and mineral soil horizons across the northeastern United States and compare Mn/Ca ratios to estimate enrichment. Forest floor and mineral soil samples were collected from 26 study sites across the northeastern United States and analyzed by strong acid digestion. Foliage and bolewood was collected from 12 of the 26 sites and analyzed for total Mn and Ca. Our results show forest floor and mineral soil horizon Mn concentrations and Mn/Ca ratios were higher at Pennsylvania and New York sites than New Hampshire and Vermont sites. Using a modified isotope equation, enrichment factors (EF) for Mn/Ca ratios were calculated to be ~3.6 in the forest floor, upper and lower mineral soil horizons at sites in New York and Pennsylvania compared to reference sites in New Hampshire and Vermont. Foliar and bolewood Mn concentrations also decreased from Pennsylvania towards New Hampshire. Moreover, foliar and bolewood Mn concentrations were strongly correlated to forest floor, upper, and lower mineral soil Mn concentrations. It was hypothesized that internal cycling (uptake, throughfall, and litterfall) of Mn controls retention of enriched Mn in forests. Geologic influences from a lithologic gradient and soil pH gradient could also influence Mn enrichment in addition to Mn pollution. Ratios of Mn/Ca and other elemental ratios hold promise as geochemical tracers but require further development. Copyright © 2016 Elsevier B.V. All rights reserved.
Interfacial Ferromagnetism and Exchange Bias in CaRuO3/CaMnO3 Superlattices
2012-11-07
microscopy and electron energy loss spectroscopy indicate that the difference in magnitude of the Mn valence states between the center of the CaMnO3 layer...CaMnO3 thickness dependence of the exchange bias field together indicate that the interfacial 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...superlattices of CaRuO3/CaMnO3 that arises in one unit cell at the interface. Scanning transmission electron microscopy and electron energy loss
NASA Astrophysics Data System (ADS)
Okuda, Tetsuji; Hata, Hiroto; Eto, Takahiro; Sobaru, Shogo; Oda, Ryosuke; Kaji, Hiroki; Nishina, Kousuke; Kuwahara, Hideki; Nakamura, Mitsutaka; Kajimoto, Ryoichi
2016-09-01
We studied how Mn substitution affects the thermoelectric properties and thermal excitations of the electron-doped perovskite Sr1-xLaxTiO3 by measuring its electrical and thermal transport properties, magnetization, specific heat, and inelastic neutron scattering. Slight Mn substitution with the lattice defects enhanced the Seebeck coefficient, perhaps because of coupling between itinerant electrons and localized spins or between itinerant electrons and local lattice distortion around Mn3+ ions, while it enhanced anharmonic lattice vibrations, which effectively suppressed thermal conductivity in a state of high electrical conductivity. Consequently, slight Mn substitution increased the dimensionless thermoelectric figure of merit for Sr1-xLaxTiO3 near room temperature.
Multivalent Mn-doped TiO2 thin films
NASA Astrophysics Data System (ADS)
Lin, C. Y. W.; Channei, D.; Koshy, P.; Nakaruk, A.; Sorrell, C. C.
2012-07-01
Thin films of TiO2 doped with Mn were deposited on F-doped SnO2-coated glass using spin coating. The concentration of the dopant was in the range 0-7 wt% Mn (metal basis). The films were examined in terms of the structural, chemical, and optical properties. Glancing angle X-ray diffraction data show that the films consisted of the anatase polymorph of TiO2, without any contaminant phases. The X-ray photoelectron spectroscopy data indicate the presence of Mn3+ and Mn4+ in the doped films as well as atomic disorder and associated structural distortion. Ultraviolet-visible spectrophotometry data show that the optical indirect band gap of the films decreased significantly with increasing manganese doping, from 3.32 eV for the undoped composition to 2.90 eV for that doped with 7 wt% Mn.
Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Shiratsuyu, Kousuke; Sakabe, Yukio
2007-12-01
Abstract-The high-power piezoelectric characteristics in h001i oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi(2)Nb(2)O(9) (SBN), (Bi,La)(4)Ti(3)O(12) (BLT), and CaBi(4)Ti(4)O(15) (CBT), were studied by a constant voltage driving method. These textured ceramics were fabricated by a templated grain growth (TGG) method, and their Lotgering factors were 95%, 97%, and 99%, respectively. The vibration velocities of the longitudinal mode (33-mode) increased proportionally to an applied electric field up to 2.5 m/s in these textured BLSF ceramics, although, the vibration velocity of the 33-mode was saturated at more than 1.0 m/s in the Pb(Mn,Nb)O(3)-PZT ceramics. The resonant frequencies were constant up to the vibration velocity of 2.5 m/s in the SBN and CBT textured ceramics; however, the resonant frequency decreased with increasing over the vibration velocity of 1.5 m/s in the BLT textured ceramics. The dissipation power density of the BLT was almost the same as that of the Pb(Mn,Nb)O(3)-PZT ceramics. However, the dissipation power densities of the SBN and CBT were lower than those of the BLT and Pb(Mn,Nb)O(3)-PZT ceramics. The textured SBN and CBT ceramics are good candidates for high-power piezoelectric applications.
Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States
Nadoll, Patrick; Mauk, Jeffrey L.; LeVeille, Richard A.; Koenig, Alan E.
2015-01-01
A combination of petrographic observations, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and statistical data exploration was used in this study to determine compositional variations in hydrothermal and igneous magnetite from five porphyry Cu–Mo and skarn deposits in the southwestern United States, and igneous magnetite from the unmineralized, granodioritic Inner Zone Batholith, Japan. The most important overall discriminators for the minor and trace element chemistry of magnetite from the investigated porphyry and skarn deposits are Mg, Al, Ti, V, Mn, Co, Zn, and Ga—of these the elements with the highest variance for (I) igneous magnetite are Mg, Al, Ti, V, Mn, Zn, for (II) hydrothermal porphyry magnetite are Mg, Ti, V, Mn, Co, Zn, and for (III) hydrothermal skarn magnetite are Mg, Ti, Mn, Zn, and Ga. Nickel could only be detected at levels above the limit of reporting (LOR) in two igneous magnetites. Equally, Cr could only be detected in one igneous occurrence. Copper, As, Mo, Ag, Au, and Pb have been reported in magnetite by other authors but could not be detected at levels greater than their respective LORs in our samples. Comparison with the chemical signature of igneous magnetite from the barren Inner Zone Batholith, Japan, suggests that V, Mn, Co, and Ga concentrations are relatively depleted in magnetite from the porphyry and skarn deposits. Higher formation conditions in combination with distinct differences between melt and hydrothermal fluid compositions are reflected in Al, Ti, V, and Ga concentrations that are, on average, higher in igneous magnetite than in hydrothermal magnetite (including porphyry and skarn magnetite). Low Ti and V concentrations in combination with high Mn concentrations are characteristic features of magnetite from skarn deposits. High Mg concentrations (<1,000 ppm) are characteristic for magnetite from magnesian skarn and likely reflect extensive fluid/rock interaction. In porphyry deposits, hydrothermal magnetite from different vein types can be distinguished by varying Ti, V, Mn, and Zn contents. Titanium and V concentrations are highly variable among hydrothermal and igneous magnetites, but Ti concentrations above 3,560 ppm could only be detected in igneous magnetite, and V concentrations are on average lower in hydrothermal magnetite. The highest Ti concentrations are present in igneous magnetite from gabbro and monzonite. The lowest Ti concentrations were recorded in igneous magnetite from granodiorite and granodiorite breccia and largely overlap with Ti concentrations found in hydrothermal porphyry magnetite. Magnesium and Mn concentrations vary between magnetite from different skarn deposits but are generally greater than in hydrothermal magnetite from the porphyry deposits. High Mg, and low Ti and V concentrations characterize hydrothermal magnetite from magnesian skarn deposits and follow a trend that indicates that magnetite from skarn (calcic and magnesian) commonly has low Ti and V concentrations.
Paoli, Luca; Winkler, Aldo; Guttová, Anna; Sagnotti, Leonardo; Grassi, Alice; Lackovičová, Anna; Senko, Dušan; Loppi, Stefano
2017-05-01
The content of selected elements (Al, As, Ca, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, S, Ti, V and Zn) was measured in samples of the lichen Evernia prunastri exposed for 30, 90 and 180 days around a cement mill, limestone and basalt quarries and urban and agricultural areas in SW Slovakia. Lichens transplanted around the investigated quarries and the cement mill rapidly (30 days) reflected the deposition of dust-associated elements, namely Ca (at the cement mill and the limestone quarry) and Fe, Ti and V (around the cement mill and the basalt quarry), and their content remained significantly higher throughout the whole period (30-180 days) with respect to the surrounding environment. Airborne pollutants (such as S) progressively increased in the study area from 30 to 180 days. The magnetic properties of lichen transplants exposed for 180 days have been characterized and compared with those of native lichens (Xanthoria parietina) and neighbouring bark, soil and rock samples, in order to test the suitability of native and transplanted samples as air pollution magnetic biomonitors. The magnetic mineralogy was homogeneous in all samples, with the exception of the samples from the basalt quarry. The transplants showed excellent correlations between the saturation remanent magnetization (Mrs) and the content of Fe. Native samples had a similar magnetic signature, but the values of the concentration-dependent magnetic parameters were up to two orders of magnitude higher, reflecting higher concentrations of magnetic particles. The concentrations of As, Ca and Cr in lichens correlated with Mrs values after neglecting the samples from the basalt quarry, which showed distinct magnetic properties, suggesting the cement mill as a likely source. Conversely, Ti and Mn were mostly (but not exclusively) associated with dust from the basalt quarry. It is suggested that the natural geological characteristics of the substrate may strongly affect the magnetic properties of lichen thalli. Taking this into account, the results of this study point out the suitability of lichens as air pollution magnetic biomonitors.
Study on novel and promising NH3-SCR catalysts on glass fiber cloth for industrial applications
NASA Astrophysics Data System (ADS)
Xie, Junlin; Li, Fengxiang; Hu, Hua; Qi, Kai; He, Feng; Fang, De
2017-05-01
MnO x , Mn/TiO2 and Fe-Mn/TiO2 catalysts were prepared by precipitation-impregnation method. The MnO x catalyst shows the highest activity for the reduction of NO with NH3 at the temperature range of 80 °C to 140 °C, and achieves more than 98% of NO conversion at 140 °C. The MnO x catalyst loaded on glass fiber cloth (GFC) was prepared by impregnation method, and the effects of preparation conditions were studied. It turns out that the catalyst particle size, loading capacity and catalyst varieties make a great difference to catalytic performance. In addition, the catalyst with aluminum sol as a binder has the higher catalytic activity but poor ability of anti-sulfur and anti-water poisoning, compared with the catalyst using silica sol binder. Further, MnO x , Mn/TiO2 and Fe-Mn/TiO2 powders were loaded onto GFC using XRD, HRTEM, TGA, SEM, BET, H2-TPR and NH3-TPD to systematically characterize the various physico-chemical properties and denitrition activity. The results indicate that the changes of active components, specific surface area, microstructure, reducibility and suface acidity of the three kinds of catalysts lead to different catalytic activities.
Gowrishankar, Ramadurai; Kumar, Manish; Menon, Vinay; Divi, Sai Mangala; Saravanan, M; Magudapathy, P; Panigrahi, B K; Nair, K G M; Venkataramaniah, K
2010-03-01
Traditionally, Tinospora cordifolia (Willd.) Hook. F. & Thomson (Menispermaceae), Ocimum sanctum L. (Lamiaceae), Moringa oleifera Lam. (Moringaceae), and Phyllanthus niruri L. (Euphorbiaceae) are some of the commonly used medicinal plants in India for curing ailments ranging from common cold, skin diseases, and dental infections to major disorders like diabetes, hypertension, jaundice, rheumatism, etc. To understand and correlate their medicinal use, trace element studies on the aqueous extract of these medicinal plants have been carried out using particle-induced X-ray emission technique. A 2-MeV proton beam was used to identify and characterize major and minor elements namely Cl, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, and Sr in them. Results have revealed that these elements are present in varying concentrations in the selected plants. Notable results include very high concentrations of Cl, K, and Ca in all the leaf samples, appreciable levels of Mn in all plants, high Zn content in T. cordifolia, and the aqueous extract of Moringa leaves compared to others and relative higher concentrations of Cr in all the plants.
Calcium EXAFS Establishes the Mn-Ca Cluster in the Oxygen-Evolving Complex of Photosystem II†
Cinco, Roehl M.; Holman, Karen L. McFarlane; Robblee, John H.; Yano, Junko; Pizarro, Shelly A.; Bellacchio, Emanuele; Sauer, Kenneth; Yachandra, Vittal K.
2014-01-01
The proximity of Ca to the Mn cluster of the photosynthetic water-oxidation complex is demonstrated by X-ray absorption spectroscopy. We have collected EXAFS data at the Ca K-edge using active PS II membrane samples that contain approximately 2 Ca per 4 Mn. These samples are much less perturbed than previously investigated Sr-substituted samples, which were prepared subsequent to Ca depletion. The new Ca EXAFS clearly shows backscattering from Mn at 3.4 Å, a distance that agrees with that surmised from previously recorded Mn EXAFS. This result is also consistent with earlier related experiments at the Sr K-edge, using samples that contained functional Sr, that show Mn is ~ 3.5 Å distant from Sr. The totality of the evidence clearly advances the notion that the catalytic center of oxygen evolution is a Mn-Ca heteronuclear cluster. PMID:12390018
He, Xiaodong; Shen, Hao; Chen, Zidan; Rong, Caicai; Ren, Minqin; Hou, Likun; Wu, Chunyan; Mao, Ling; Lu, Quan; Su, Bo
2017-12-01
Pneumoconiosis is an occupational disease accompanied by long-term lung impairment, for which prediction of prognosis is poorly understood because of the complexity of the inhaled particles. Micro-proton-induced X-ray emission (micro-PIXE) analysis, which is advantageous for high-sensitivity, two-dimensional element mapping of lung tissues, was used to investigate element-based predictive factors of prognosis in Chinese patients with welder's and coal miner's pneumoconiosis. Chest radiographs and lung function tests showed that most of the coal miners deteriorated, whereas symptoms in some welders were alleviated after 5 yr, as determined by comparing percent vital capacity (%VC) and forced expiratory volume in the 1st second over forced vital capacity (FEV1.0/FVC) to values taken at the initial diagnosis. Micro-PIXE analysis suggested that the most abundant particulates in welder's pneumoconiosis were Fe, Mn, and Ti (metallic oxide),which were accompanied by particulates containing Si, Al, and Ca (aluminum silicate) or only Si (SiO 2 ); the most abundant particulates in coal miner's pneumoconiosis were composed of C, Si, Al, K, and Ti, which were accompanied by particulates containing Ca or Fe. Particulates containing Al, Si, S, K, Ca, and Ti (orthoclase and anorthite) were correlated with severity of fibrosis. Multivariable linear regression suggested that long-term FEV1.0/FVC decrease was independently associated with Si and smoking index, whereas %VC decrease was associated with Si and Ti. A risk index comprised of these factors was developed to predict the prognosis of pneumoconiosis. Micro-PIXE analysis is feasible for the evaluation of elemental composition and dust exposure, especially for patients whose exposure is mixed or uncertain. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Orlandi, Paolo; Biagioni, Cristian; Pasero, Marco; Mellini, Marcello
2013-03-01
The new mineral species lavoisierite, ideally Mn2+ 8[Al10(Mn3+Mg)][Si11P]O44(OH)12, has been discovered in piemontite-bearing micaschists belonging to the Piedmontese Nappe from Punta Gensane, Viù Valley, Western Alps, Italy. It occurs as yellow-orange acicular to prismatic-tabular crystals up to a few millimeters in length, with white streak and vitreous luster, elongated along [010] and flattened on {001}. Lavoisierite is associated with quartz, "mica," sursassite, piemontite, spessartine, braunite, and "tourmaline." Calculated density is 3.576 g cm-3. In plane-polarized light, it is transparent, pleochroic, with pale yellow parallel to [010] and yellow-orange normal to this direction; extinction is parallel and elongation is positive. Birefringence is moderate; the calculated average refraction index n is 1.750. Lavoisierite is orthorhombic, space group Pnmm, with a 8.6891(10), b 5.7755(3), c 36.9504(20) Å, V 1854.3(2) Å3, Z = 2. Calculated main diffraction lines of the X-ray powder diffraction pattern are [ d in Å, ( I), ( hkl); relative intensities are visually estimated]: 4.62 (m) (112), 2.931 (vs) (11 10), 2.765 (s) (11 11), 2.598 (s) (310), 2.448 (ms) (028). Chemical analyses by electron microprobe give (in wt%) P2O5 2.08, V2O5 0.37, SiO2 34.81, TiO2 0.13, Al2O3 22.92, Cr2O3 0.32, Fe2O3 0.86, Mn2O3 6.92, MnO 19.09, MgO 5.73, CaO 1.94, Na2O 0.01, H2O 5.44, sum 100.62 wt%. H2O content was calculated from structure refinement. The empirical formula, based on 56 anions, is (Mn{5.340/2+}Mg1.810Ca0.686Na0.006)Σ=7.852(Al8.921Mn{1.739/3+}Mg1.010Fe{0.214/3+}Cr0.084Ti0.032)Σ=12.000(Si11.496P0.582V0.081)Σ=12.159O43.995(OH)12.005. The crystal structure of lavoisierite was solved by direct methods and refined on the basis of 1743 observed reflections to R 1 = 4.6 %. The structure is characterized by columns of edge-sharing octahedra running along [010] and linked to each other by means of [SiO4], [Si2O7], and [Si3O10] groups. Lavoisierite, named after the French chemist and biologist Antoine-Laurent de Lavoisier (1743-1794), displays an unprecedented kind of structure, related to those of "ardennite" and sursassite.
Colossal dielectric behavior of semiconducting Sr2TiMnO6 ceramics
NASA Astrophysics Data System (ADS)
Meher, K. R. S. Preethi; Varma, K. B. R.
2009-02-01
Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as ˜105 in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.
Influences of Ru-doping on the magnetic properties of Ca0.85Pr0.15Mn1- x Ru x O3
NASA Astrophysics Data System (ADS)
Phan, T. L.; Zhang, Y. D.; Yu, S. C.; Thanh, P. Q.; Yen, P. D. H.
2012-11-01
CaMnO3 is an antiferromagnet, in which the super-exchange interaction taking place between Mn4+ ions plays an important role. The doping of a small amount of 15% Pr into the Ca site, Ca0.85Pr0.15MnO3, leads to the appearance of Mn3+ ions, and introduces the ferromagnetic (FM) double-exchange interaction between Mn3+ and Mn4+ ions, which is dominant in a narrow temperature range of 90 ˜ 115 K. The FM interaction becomes strong for Ca0.85Pr0.15MnO3 doped with 4 and 8% Ru into the Mn site ( i.e., Ca0.85Pr0.15Mn1- x Ru x O3 with x = 0.04 and 0.08). The Curie temperature obtained for x = 0.04 and 0.08 are about 135 and 180 K, respectively. While the FM interaction in the former is dominant due to Mn3+-Mn4+ exchange pairs, the latter has the contribution of Ru ions. This results in remarkable differences in the features of their FM-paramagnetic phase transitions and their coercive fields H c .
NASA Astrophysics Data System (ADS)
Thakur, S.; Maiti, S.; Acharya, A.; Paul, T.; Besra, N.; Sarkar, S.; Chattopadhyay, K. K.
2018-04-01
Possibility of integration of manifold functionalities coupled with novel interface phenomenon generation in geometrically intricate hierarchical nanoform has made them greatly pertinent from both research and technological point of view. Here, oxide based hybrid has been realized by integrating 1D TiO2 nanorod with 2D MnO2 nanoflake via low temperature chemical route. Meticulous tunability over the hierarchical morphology was achieved by subtle variation of reaction parameter which in turn created difference in MnO2 growth over TiO2. Morphological features of the samples were examined by FESEM and TEM. Hybrid samples exhibited high electrochemical performance than pristine TiO2 nanorods. Registered electrochemical performance from TiO2-MnO2 hybrid was found to be ˜1024F/g at a current density of 0.66A/g which is ˜100 fold than TiO2 at same current density. Such enhanced performance is accounted from higher surface area and electrical conductivity of the hybrid.
Phases of LiMn1.84V0.06Ti0.1O4 cathode material
NASA Astrophysics Data System (ADS)
Zainol, N. H.; Kamarulzaman, N.; Osman, Z.; Fadzil, A. F. M.; Yahya, N. F.
2017-09-01
In this work, LiMn1.84V0.06Ti0.1O4 was prepared via a combustion method using citric acid as a reductant. The precursor obtained was annealed at 700 °C for 24h in a furnace. The thermal profile of the precursor was obtained by simultaneous thermogravimetric analysis (STA). The observed material was characterized by X-ray Diffraction (XRD) and found to be pure and single-phase of cubic structure. The electrochemical performance of LiMn1.84V0.06Ti0.1O4 cathode material was studied by applying a constant current of 1.0 mA at a voltage range of 4.2 to 2.5 V. The specific capacity of LiMn1.84V0.06Ti0.1O4 cathode material at the 1st cycle shows the value of 95mAh/g which is less than the specific capacity of LiMn2O4, which is 117 mAh/g.
Compression behavior of quaternary and higher order solid-solution L1(2) trialuminides
NASA Technical Reports Server (NTRS)
Kumar, K. S.; Brown, S. A.
1992-01-01
Results from preliminary studies undertaken to evaluate the existence of single-phase L1(2) solid solutions between pairs of ternary L1(2) trialuminides are presented. Two-kilogram ingots of selected quaternary compositions were cast, homogenized and forged into pancakes; compression specimens were machined from the forgings and tested as a function of temperature. The results are compared against existing data for the ternary alloys. The ternary L1(2) trialuminides Al66Ti25Mn9, Al67Ti25Cr8, and Al22Ti8Fe3 were found to exhibit continuous solubility in one another. The quaternary Cr-Mn composition does not indicate any strength advantage over its ternary counterparts. The continuous replacement of Mn with Fe enhances the strength of the quaternary compound over the ternary Al66Ti25 Mn9.
Determination of palladium and platinum by atomic absorption
Schnepfe, M.M.; Grimaldi, F.S.
1969-01-01
Palladium and platinum are determined by atomic absorption after fire-assay concentration into a gold bead. The limit of determination is ~0??06 ppm in a 20-g sample. Serious depressive interelement interferences are removed by buffering the solutions with a mixture of cadmium and copper sulphates with cadmium and copper concentrations each at 0??5%. Substantial amounts of Ag, Al, Au, Bi, Ca, Co, Cr, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn, and the platinum metals do not interfere in the atomic-absorption determination. ?? 1969.
Enhanced strain effect of aged acceptor-doped BaTiO3 ceramics with clamping domain structures
NASA Astrophysics Data System (ADS)
Wang, Lei; Zhou, Zhiyong; Zhao, Xiaobo; Liu, Zhen; Liang, Ruihong; Dong, Xianlin
2017-03-01
A clamping domain structure is proposed to improve the amount of non-180° domain switching in BaTiO3 based piezoelectric ceramics. Experimental results show a large unipolar strain of 0.23% at 5 kV/mm in aged 0.5 mol. % Mn doped BaTiO3 ceramics with clamping domain structures, and the normalized strain (d33*= Smax/Emax) reaches 600 pm/V at low electric fields of 2 or 3 kV/mm. In contrast, pure BaTiO3 ceramics with clamping domain structures exhibit no clear polarization constriction or strain enhancement at 3 kV/mm. Electron paramagnetic resonance spectra verify the existence of titanium vacancies, Mn2+ and Mn4+, in 0.5 mol. % Mn doped BaTiO3 ceramics. These results indicate that the enhanced strain effect can be attributed to the combined effect of the clamping domain structure and stabilization of defect dipoles. This method provides a general way to obtain large strain in ferroelectrics.
Manganese Recovery by Silicothermic Reduction of MnO in BaO-MnO-MgO-CaF2 (-SiO2) Slags
NASA Astrophysics Data System (ADS)
Heo, Jung Ho; Park, Joo Hyun
2018-04-01
The effects of reducing agent, CaF2 content, and reaction temperature upon the silicothermic reduction of MnO in the BaO-MnO-MgO-CaF2 (-SiO2) slags were investigated. Mn recovery was proportional to Si activity in the molten alloy. Moreover, 90 pct yield of Mn recovery was obtained under 5 mass pct CaF2 content and 1873 K (1600 °C) reaction temperature. Increasing CaF2 content above 5 pct yielded little or no further increase in Mn recovery, because it was accompanied by increased slag viscosity owing to the precipitation of high melting point compounds such as Ba2SiO4.
Manganese-dependent carboanhydrase activity of photosystem II proteins.
Shitov, A V; Pobeguts, O V; Smolova, T N; Allakhverdiev, S I; Klimov, V V
2009-05-01
Four sources of carbonic anhydrase (CA) activity in submembrane preparations of photosystem II (PS II) isolated from pea leaves were examined. Three of them belong to the hydrophilic proteins of the oxygen-evolving complex of PS II with molecular mass 33 kDa (protein PsbO), 24 kDa (protein PsbP), and 18 kDa (protein PsbQ). The fourth source of CA activity is associated with a pigment-protein complex of PS II after removing three hydrophilic proteins by salt treatment. Except for protein PsbQ, the CA activity of all these proteins depends on the presence of Mn2+: the purified protein PsbO did not show CA activity before adding Mn2+ into the medium (concentration of Mn2+ required for 50% effect, EC(50), was 670 microM); CA activity of protein mixture composed of PsbP and PsbQ increased more than 5-fold upon adding Mn2+ (EC(50) was 45 microM). CA activity of purified protein PsbP increased 2-fold in the presence of 200 microM Mn2+. As indicated for the mixture of two proteins (PsbP and PsbQ), Mg2+, Ca2+, and Zn2+, in contrast to Mn2+, suppressed CA activity (both initial and Mn2+-induced activity). Since the found sources of CA activity demonstrated properties different from ones of typical CA (need for Mn2+, insensitivity or low sensitivity to acetazolamide or ethoxyzolamide) and such CA activity was found only among PS II proteins, we cannot exclude that they belong to the type of Mn-dependent CA associated with PS II.
Ilyukhinite (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2 • 3H2O, a New Mineral of the Eudialyte Group
NASA Astrophysics Data System (ADS)
Chukanov, N. V.; Rastsvetaeva, R. K.; Rozenberg, K. A.; Aksenov, S. M.; Pekov, I. V.; Belakovsky, D. I.; Kristiansen, R.; Van, K. V.
2017-12-01
A new eudialyte-group mineral, ilyukhinite, ideally (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2 · 3H2O, has been found in peralkaline pegmatite at Mt. Kukisvumchorr, Khibiny alkaline pluton, Kola Peninsula, Russia. It occurs as brownish orange, with vitreous luster anhedral grains up to 1 mm across in hydrothermally altered peralkaline rock, in association with aegirine, murmanite, albite, microcline, rhabdophane-(Ce), fluorite, sphalerite and molybdenite. The Mohs hardness is 5; cleavage is not observed. D meas 2.67(2), D calc 2.703 g/cm3. Ilyukhinite is optically uniaxial (-): ω = 1.585(2), ɛ = 1.584(2). The IR spectrum is given. The average chemical composition of ilyukhinite (wt %; electron microprobe, ranges given in parentheses; H2O determined by gas chromatography) is as follows: 3.07 (3.63-4.43) Na2O, 0.32 (0.28-0.52) K2O, 10.63 (10.26-10.90) CaO, 3.06 (2.74-3.22) MnO, 1.15 (0.93-1.37) FeO, 0.79 (0.51-0.89) La2O3, 1.21 (0.97-1.44) Ce2O3, 0.41 (0.30-0.56) Nd2O3, 0.90 (0.77-1.12) TiO2, 10.94 (10.15-11.21) ZrO2, 1.40 (0.76-1.68) Nb2O5, 51.24 (49.98-52.28) SiO2, 1.14 (0.89-1.37) SO3, 0.27 (0.19—0.38) Cl, 10.9(5 )H2O,-0.06-O = C1, total is 98.27. The empirical formula is H36.04(Na3.82K0.20)(Ca5.65Ce0.22La0.14Nd0.07)(Mn1.285Fe0.48)(Zr2.645Ti0.34)Nb0.31Si25.41S0.42Cl0.23O86.82. The crystal structure has been solved ( R = 0.046). Ilyukhinite is trigonal, R3 m; a = 14.1695(6) Å, b = 31.026(1) Å, V = 5394.7(7) Å3, Z = 3. The strongest XRD reflections [ d, Å (I, %) ( hkl)] are 11.44 (82) (101), 7.09 (70) (110), 6.02 (44) (021), 4.371 (89) 205), 3.805 (47) (303, 033), 3.376 (41) (131), 2.985 (100) (315, 128), 2.852 (92) (404). Ilyukhinite was named in memory of Vladimir V. Ilyukhin (1934-1982), an outstanding Soviet crystallographer. The type specimen of ilyukhinite has been deposited in the collection of the Natural History Museum, University of Oslo, Norway.
Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys.
Hong, Daeho; Chou, Da-Tren; Velikokhatnyi, Oleg I; Roy, Abhijit; Lee, Boeun; Swink, Isaac; Issaev, Ilona; Kuhn, Howard A; Kumta, Prashant N
2016-11-01
3D printing of various biomaterials including titanium and stainless steel has been studied for treating patients with cranio-maxillofacial bone defect. The potential long term complications with use of inert biometals have opened the opportunities for use of biodegradable metals in the clinical arena. The authors previously reported that binder-jet 3D printing technique enhanced the degradation rates of biodegradable Fe-Mn alloy by creating engineered micropores rendering the system attractive as biodegradable implantable devices. In the present study, the authors employed CALPHAD modeling to systematically study and modify the Fe-Mn alloy composition to achieve enhanced degradation rates. Accordingly, Ca and Mg addition to Fe-35wt% Mn solid solution predicted increase in degradation rates. In order to validate the CALPHAD results, Fe - (35-y)wt% Mn - ywt% X (X=Ca, Mg, and y=0, 1, 2) were synthesized by using high energy mechanical alloying (HEMA). Sintered pellets of Fe-Mn-Ca and Fe-Mn-Mg were then subjected to potentiodynamic polarization (PDP) and live/dead cell viability tests. Sintered pellets of Fe-Mn, Fe-Mn-Ca, and Fe-Mn-Mg also exhibited MC3T3 murine pre-osteoblast cells viability in the live/dead assay results. Fe-Mn and Fe-Mn-1Ca were thus accordingly selected for 3D printing and the results further confirmed enhanced degradation of Ca addition to 3D printed constructs validating the theoretical and alloy development studies. Live/dead and MTT cell viability results also confirmed good cytocompatibility of the 3D-printed Fe-Mn and Fe-Mn-1Ca constructs. Bone grafting is widely used for the treatment of cranio-maxillofacial bone injuries. 3D printing of biodegradable Fe alloy is anticipated to be advantageous over current bone grafting techniques. 3D printing offers the fabrication of precise and tailored bone grafts to fit the patient specific bone defect needs. Biodegradable Fe alloy is a good candidate for 3D printing synthetic grafts to regenerate bone tissue without eliciting complications. CALPHAD theoretical models were used to develop new Fe-Mn-Ca/Mg alloys to enhance the degradation rates of traditional Fe-Mn alloys. In vitro experimental results also showed enhanced degradation rates and good cytocompatibility of sintered Fe-Mn-Ca/Mg compacts. 3D printing of Fe-Mn and Fe-Mn-1Ca alloys further demonstrated their feasibility as potentially viable bone grafts for the future. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Huang, Zhong-Ming; Qi, Yi-Ying; Du, Shao-Hua; Feng, Gang; Unuma, Hidero; Yan, Wei-Qi
2013-10-01
Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro . The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti ( p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control ( n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo , suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.
NASA Astrophysics Data System (ADS)
Huang, Zhong-Ming; Qi, Yi-Ying; Du, Shao-Hua; Feng, Gang; Unuma, Hidero; Yan, Wei-Qi
2013-10-01
Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro. The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti (p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control (n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo, suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Ya Fei; Li, Can, E-mail: canli1983@gmail.com; Lu, Song
2016-03-15
The crystal phase structure, surface morphology, chemical states and optical properties of Mn, N mono-doped and co-doped TiO{sub 2} nanoparticles were investigated by X-ray powder diffractometry, Raman spectra, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectroscopy. Meanwhile, geometry structures, formation energies, electronic and optical properties of all systems have been also analyzed by density functional theory. The results showed that the band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and themore » carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light. Especially, the photocatalytic activity of Mn-2N co-doped TiO{sub 2} beyond three-fold than that of pure TiO{sub 2} under visible-light. - Graphical abstract: The ILs formed by N-2p orbital in N single doped specimen lie above the VB, while the ILs formed by Mn-3d orbital in Mn single doped specimen appear below the CB. However, a large amount of ILs formed by N-2p orbital and Mn-3d orbital in N and Mn codoped specimens. The band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and the carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light.« less
NASA Astrophysics Data System (ADS)
Lysyuk, G. N.
2011-10-01
Manganese oxides, which are widespread and of great practical importance, are formed and transformed by the active role of microorganisms. Manganese aggregates occur as both crystallized varieties and disordered fine-grained phases with significant ore grade and up to 50-60 vol % of X-ray amorphous components. X-ray amorphous nanosizedMn oxides in Fe-Mn nodules from the Pacific Ocean floor were examined from the standpoint of their biogenic origin. SEM examination showed abundant mineralized biofilms on the studied samples. The chemical composition of bacterial mass is as follows (wt %): 28.34 MnO, 17.14 Fe2O3, 7.11 SiO2, 2.41 CaO, 17.90 TiO2, 1.74Na2O,1.73 A12O3,1.30 MgO, 1.25P2O5,1.25 SO3,0.68 CoO, 0.54 CuO, 0.53 NiO, and 0.50 K2O. The chemical composition of fossilized cyanobacterial mats within the interlayer space of nodules is as follows (wt %): 48.35 MnO, 6.23 Fe2O3, 8.76 MgO, 5.05 A12O3, 4.45 SiO2, 3.63 NiO, 2.30 Na2O, 2.19 CuO, 1.31 CaO, and 0.68 K2O is direct evidence for participation of bacteria in Mn oxide formation. This phase consists of mineralized glycocalix consisting of nanosized flakes of todorokite. Native metals (Cu, Fe, and Zn) as inclusions 10-20 μm in size were identified in ferromanganese nodules as well. The formation of native metals can be explained by their crystallization at highly reducing conditions maintained by organic matter.
Synthesis and Characterization of Titanium Slag from Ilmenite by Thermal Plasma Processing
NASA Astrophysics Data System (ADS)
Samal, Sneha
2016-09-01
Titanium rich slag has emerged as a raw material for alternative titanium source. Ilmenite contains 42-50% TiO2 as the mineralogical composition depending on the geographical resources. Application of titanium in paper, plastic, pigment and other various industries is increasing day by day. Due to the scarcity of natural raw mineral rutile (TiO2), ilmenite is considered as precursor for the extraction of TiO2. Ilmenite is reduced at the initial stage for the conversion of complex iron oxide into simpler form. Therefore, pre-reduction of ilmenite concentrate is essential to minimize the energy consumption during thermal plasma process. Thermal plasma processing of ilmenite for the production of titania rich slag is considered to be the direct route to meet the current demand of industrial needs of titanium. Titania rich slag contains 70-80% TiO2 as the major component with some other minor impurities, like oxide phases of Si, Al, Cr, Mg, Mn, Ca, etc. Usually titanium is present in tetravalent forms with globular metallic iron in the slag. Titania rich slag undergoes leaching for the removal of iron and transforming the slag into synthetic rutile having 85-95% of TiO2.
Substituting Fe for two of the four Mn ions in photosystem II-effects on water-oxidation.
Semin, Boris K; Seibert, Michael
2016-06-01
We have investigated the interaction of Fe(II) cations with Ca-depleted PSII membranes (PSII[-Ca,4Mn]) in the dark and found that Fe(II) incubation removes 2 of 4 Mn ions from the tetranuclear Mn cluster of the photosynthetic O2-evolving complex (OEC). The reduction of Mn ions in PSII(-Ca,4Mn) by Fe(II) and the concomitant release of two Mn(II) cations is accompanied by the binding of newly generated Fe(III) in at least one vacated Mn site. Flash-induced chlorophyll (Chl) fluorescence yield measurements of this new 2Mn/nFe cluster (PSII[-Ca,2Mn,nFe]) show that charge recombination in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) occurs between Qa (-) and the remaining Mn/Fe cluster (but not YZ (●)) in the OEC, and extraction of 2 Mn occurs uniformly in all PSII complexes. No O2 evolution is observed, but the heteronuclear metal cluster in PSII(-Ca,2Mn,nFe) samples is still able to supply electrons for reduction of the exogenous electron acceptor, 2,6-dichlorophrenolindophenol, by photooxidizing water and producing H2O2 in the absence of an exogenous donor as seen previously with PSII(-Ca,4Mn). Selective extraction of Mn or Fe cations from the 2Mn/nFe heteronuclear cluster demonstrates that the high-affinity Mn-binding site is occupied by one of the iron cations. It is notable that partial water-oxidation function still occurs when only two Mn cations are present in the PSII OEC.
NASA Astrophysics Data System (ADS)
Vlahos, Eftihia; Kumar, Amit; Denev, Sava; Brooks, Charles; Schlom, Darrell; Eklund, Carl-Johan; Rabe, Karin M.; Fennie, Craig J.; Gopalan, Venkatraman
2009-03-01
Calcium titanate, CaTiO3 is not a ferroelectric in its bulk form. However, first principles calculations predict that biaxially tensile strained CaTiO3 thin films should become ferroelectric. Here, we indeed confirm that strained CaTiO3 films become ferroelectric with a Curie temperature of ˜125K. Optical second harmonic generation (SHG) measurements, polarization studies, and in-situ electric-field measurements for a number of films with different strain values will be presented: CaTiO3/DyScO3(110), CaTiO3/SrTiO3 (100),CaTiO3/GdScO3/NdGaO3(110), CaTiO3/LaSrAlO3(001) as well as for a single crystal CaTiO3. From these studies, we conclude that strained CaTiO3 films are ferroelectric with a point group symmetry of mm2, and show reversible domain switching characteristics under an electric field. We also present results of variable temperature piezoelectric force microscopy for imaging the polar domains in the ferroelectric phase. These results suggest that strain is a valuable tool for inducing polar, long range ferroelectric order in even non-polar ceramic materials such as CaTiO3.
Semin, Boris K; Davletshina, Lira N; Rubin, Andrei B
2015-08-01
Effects of pH, Ca(2+), and Cl(-) ions on the extraction of Mn cations from oxygen-evolving complex (OEC) in Ca-depleted photosystem II (PSII(-Ca)) by exogenous reductants hydroquinone (H2Q) and H2O2 were studied. Two of 4 Mn cations are released by H2Q and H2O2 at pHs 5.7, 6.5, and 7.5, and their extraction does not depend on the presence of Ca(2+) and Cl(-) ions. One of Mn cations ("resistant" Mn cation) cannot be extracted by H2Q and H2O2 at any pH. Extraction of 4th Mn ion ("flexible" Mn cation) is sensitive to pH, Ca(2+), and Cl(-). This Mn cation is released by reductants at pH 6.5 but not at pHs 5.7 and 7.5. A pH dependence curve of the oxygen-evolving activity in PSII(-Ca) membranes (in the presence of exogenous Ca(2+)) has a bell-shaped form with the maximum at pH 6.5. Thus, the increase in the resistance of flexible Mn cation in OEC to the action of reductants at acidic and alkaline pHs coincides with the decrease in oxygen evolution activity at these pHs. Exogenous Ca(2+) protects the extraction of flexible Mn cation at pH 6.5. High concentration of Cl(-) anions (100 mM) shifts the pH optimum of oxygen evolution to alkaline region (around pH 7.5), while the pH of flexible Mn extraction is also shifted to alkaline pH. This result suggests that flexible Mn cation plays a key role in the water-splitting reaction. The obtained results also demonstrate that only one Mn cation in Mn4 cluster is under strong control of calcium. The change in the flexible Mn cation resistance to exogenous reductants in the presence of Ca(2+) suggests that Ca(2+) can control the redox potential of this cation.
Thermochemical generation of hydrogen and oxygen from water. [NaMnO/sub 2/ and TiO/sub 2/
Robinson, P.R.; Bamberger, C.E.
1980-02-08
A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO/sub 2/) and titanium dioxide (TiO/sub 2/) to form sodium titanate (Na/sub 2/TiO/sub 3/), manganese (II) titanate (MnTiO/sub 3/) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmood, A.; Materials Research Laboratory, Institute of Physics & Electronics, University of Peshawar, 25120; Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD
2015-12-15
Highlights: • Solid state processing of the (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1−x}O{sub 3} ceramics. • Mn incorporated on the Ti-site into the host lattice of (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1−x}O{sub 3}. • NTCR behavior was observed in the sintered samples. - Abstract: (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1-x}O{sub 3} (x = 0.00, 0.013, 0.015 and 0.05) ceramics were prepared by solid state sintering route at the 1500 °C for 6 h in air. Effect of Mn substitution on the structure of Ba{sub 0.3}Sr{sub 0.7}(Ti0{sub .9}Zr{sub 0.1}){sub 1−x}O{sub 3} perovskite was investigated systematically. Dielectric and impedancemore » spectroscopic studies were conducted to understand the electronic microstructure of the Ba{sub 0.3}Sr{sub 0.7}(Ti0{sub .9}Zr{sub 0.1}){sub 1−x}O{sub 3} ceramics. Sample with x = 0.05 showed the highest dielectric constant (ϵ{sub r} = 1826) and low dielectric loss (tanδ = 0.001) at 10 kHz, around the room temperature, while the sample with x = 0.00 showed good microwave (MW) dielectric properties (Qf{sub o} = 838 and ϵ{sub r} = 550). The impedance spectroscopic analysis confirmed the electrical homogeneity of the samples with x = 0.013, 0.015 and 0.05, where grain boundaries dominated the conduction mechanism. Similarly, the sample with x = 0.00 was found to possess both grain boundary and bulk resistive contributions.« less
Influence of Ce Doping on Structural and Transport Properties of Ca1- x Ce x MnO3 ( x=0.2) Manganite
NASA Astrophysics Data System (ADS)
Varshney, Dinesh; Mansuri, Irfan
2011-01-01
We have investigated structural, electric, magnetic and thermal transport properties of electron doped Ca1- x Ce x MnO3 ( x=0.2) manganites. The Cerium substitution for Ca2+causes electron doping into insulating CaMnO3 without e g electron. At room temperature the polycrystalline Ca0.8Ce0.2MnO3 is in the crystallographic orthorhombic structure, with Pnma space group symmetry from the refinement of x-ray powder diffraction patterns. The electrical resistivity data infers that Ca0.8Ce0.2MnO3 manganite is in the semiconducting phase. A smooth linear behavior of log plot values is obtained and is well fitted with adiabatic small polaron conduction model. Nearest-neighbor hopping of a small polaron leads to a mobility with a thermally activated form. The negative values of thermopower infer electron as carriers in Ca0.8Ce0.2MnO3. From susceptibility measurements the Ce doped CaMnO3 shows a transition from antiferromagnetic (AFM) to paramagnetic (PM) phase.
Composition and structure of acid leached LiMn 2-yTi yO 4 (0.2≤ y≤1.5) spinels
NASA Astrophysics Data System (ADS)
Avdeev, Georgi; Amarilla, José Manuel; Rojo, José María; Petrov, Kostadin; Rojas, Rosa María
2009-12-01
Lithium manganese titanium spinels, LiMn 2-yTi yO 4, (0.2≤ y≤1.5) have been synthesized by solid-state reaction between TiO 2 (anatase), Li 2CO 3 and MnCO 3. Li + was leached from the powdered reaction products by treatment in excess of 0.2 N HCl at 85 °C for 6 h, under reflux. The elemental composition of the acidic solution and solid residues of leaching has been determined by complexometric titration, atomic absorption spectroscopy and X-ray fluorescence analysis. Powder X-ray diffraction was used for structural characterization of the crystalline fraction of the solid residues. It has been found that the amount of Li + leached from LiMn 2-yTi yO 4 decreases monotonically with increasing y in the interval 0.2≤ y≤1.0 and abruptly drops to negligibly small values for y>1.0. The content of Mn and Li in the liquid phase and of Mn and Ti in the solid (amorphous plus crystalline) residue, were related to the composition and cation distribution in the pristine compounds. A new formal chemical equation describing the process of leaching and a mechanism of the structural transformation undergone by the initial solids as a result of Li + removal has been proposed.
Napruszewska, Bogna D; Michalik-Zym, Alicja; Rogowska, Melania; Bielańska, Elżbieta; Rojek, Wojciech; Gaweł, Adam; Wójcik-Bania, Monika; Bahranowski, Krzysztof; Serwicka, Ewa M
2017-11-19
A novel design of combustion catalysts is proposed, in which clay/TiO₂/MnAl-mixed oxide composites are formed by intermixing exfoliated organo-montmorillonite with oxide precursors (hydrotalcite-like in the case of Mn-Al oxide) obtained by an inverse microemulsion method. In order to assess the catalysts' thermal stability, two calcination temperatures were employed: 450 and 600 °C. The composites were characterized with XRF (X-ray fluorescence), XRD (X-ray diffraction), HR SEM (high resolution scanning electron microscopy, N₂ adsorption/desorption at -196 °C, and H₂ TPR (temperature programmed reduction). Profound differences in structural, textural and redox properties of the materials were observed, depending on the presence of the TiO₂ component, the type of neutralization agent used in the titania nanoparticles preparation (NaOH or NH₃ (aq)), and the temperature of calcination. Catalytic tests of toluene combustion revealed that the clay/TiO₂/MnAl-mixed oxide composites prepared with the use of ammonia showed excellent activity, the composites obtained from MnAl hydrotalcite nanoparticles trapped between the organoclay layers were less active, but displayed spectacular thermal stability, while the clay/TiO₂/MnAl-mixed oxide materials obtained with the aid of NaOH were least active. The observed patterns of catalytic activity bear a direct relation to the materials' composition and their structural, textural, and redox properties.
Mn-Site Doped CaMnO 3: Creation of the CMR Effect
NASA Astrophysics Data System (ADS)
Raveau, B.; Zhao, Y. M.; Martin, C.; Hervieu, M.; Maignan, A.
2000-01-01
The doping of CaMnO3-δ at Mn sites with pentavalent and hexavalent d0 elements - Nb, Ta, W, Mo - modifies the resistivity behavior of this phase, extending the insulating domain and increasing significantly the resistivity at low temperature as the doping element content increases. The higher valency of the doping element introduces electrons; i.e., Mn3+ species are formed in the Mn4+ matrix. Double exchange phenomena then allow ferromagnetic interactions, by application of external magnetic fields which are similar to those observed for electron-doped manganites Ca1-xLnxMnO3 (x≤0.15), but with smaller magnetic moments. Consequently, this Mn site doping induces CMR properties with resistivity ratios considerably larger than those for CaMnO3-δ.
NASA Astrophysics Data System (ADS)
Lee, Sang-Hoon; Na, Hye-Sung; Park, Gi-Deok; Kim, Byung-Hoon; Song, Sang-Woo; Kang, Chung-Yun
2013-09-01
The effect of Ti on the ferrite-phase transformation in the middle portion of high-thickness Cr-Mo steel vessels was studied. The phase diagrams and ferrite continuous cooling transformation (CCT) curves were calculated thermodynamically, and dilatometry tests were performed to determine the start and finish times of the ferrite transformation. When the Ti concentration was 0.015 mass%, Δ( F s - F f ) of ferrite CCT curve decreased owing to an increase in the concentration of Mn dissolved as a result of (Mn, Ti) oxide formation. When the Ti concentration was 0.03 mass% or greater, the ferrite CCT curves shifted considerably to the right along the time axis owing to an increase in Ti oxide formation and the precipitation of Ti4C2S2, both of which affect the concentration of Mn dissolved in the austenite matrix. As a result, a completely bainitic structure was obtained when the Ti concentration was 0.03 mass% or greater.
Non-Metallic Ti Oxides and MnS/FeS2 Complex Precipitation in Ti-Killed Steel
NASA Astrophysics Data System (ADS)
Chen, Jieyun; Zhao, Dan; Li, Huigai; Zheng, Shaobo
Titanium deoxidized experiments can be carried in vacuum induction furnace by adding Ti-Fe alloy in molten steel to simulate strip casting. Sub-rapid solidification samples were obtained in the method of suing copper mold. The morphology, the chemical composition and the structures of nanometer precipitations were carried out to investigate by transmission electron microscope (TEM) with Energy Dispersive X ray Spectrum (EDX) and by collecting diffraction patterns with carbon extraction specimens. It has been found that titanium oxides were TiO monoclinic, Ti4O7 anorthic and TiO2 orthogonal structure in one nanometer inclusion, as the composite oxide was precipitated MnS/FeS2 cubic structure during sub-rapid solidification. Thermodynamic calculation analysis showed that it was possible to precipitate different kinds of nonstoichiometric TiOx. The solid solution between MnS/FeS2 will precipitate on the surface of titanium oxides because of good coherency relationship.
Above room temperature ferromagnetism in Si:Mn and TiO(2-delta)Co.
Granovsky, A; Orlov, A; Perov, N; Gan'shina, E; Semisalova, A; Balagurov, L; Kulemanov, I; Sapelkin, A; Rogalev, A; Smekhova, A
2012-09-01
We present recent experimental results on the structural, electrical, magnetic, and magneto-optical properties of Mn-implanted Si and Co-doped TiO(2-delta) magnetic oxides. Si wafers, both n- and p-type, with high and low resistivity, were used as the starting materials for implantation with Mn ions at the fluencies up to 5 x 10(16) cm(-2). The saturation magnetization was found to show the lack of any regular dependence on the Si conductivity type, type of impurity and the short post-implantation annealing. According to XMCD Mn impurity in Si does not bear any appreciable magnetic moment at room temperature. The obtained results indicate that above room temperature ferromagnetism in Mn-implanted Si originates not from Mn impurity but rather from structural defects in Si. The TiO(2-delta):Co thin films were deposited on LaAlO3 (001) substrates by magnetron sputtering in the argon-oxygen atmosphere at oxygen partial pressure of 2 x 10(-6)-2 x 10(-4) Torr. The obtained transverse Kerr effect spectra at the visible and XMCD spectra indicate on intrinsic room temperature ferromagnetism in TiO(2-delta):Co thin films at low (< 1%) volume fraction of Co.
A vibrational spectroscopic study of the silicate mineral lomonosovite Na5Ti2(Si2O7)(PO4)O2
NASA Astrophysics Data System (ADS)
Frost, Ray L.; López, Andrés; Theiss, Frederick L.; Graça, Leonardo M.; Scholz, Ricardo
2015-01-01
The mineral lomonosovite has been studied using a combination of scanning electron microscopy with energy dispersive X-ray analysis and vibrational spectroscopy. Qualitative chemical analysis gave Si, P, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and Al. The mineral lomonosovite has a formula Na5Ti2(Si2O7)(PO4)O2. Raman bands observed at 909, 925 and 939 cm-1 are associated with phosphate units. Raman bands found at 975, 999, 1070, 1080 and 1084 cm-1 are attributed to siloxane stretching vibrations. The observation of multiple bands in both the phosphate stretching and bending regions supports the concept that the symmetry of the phosphate anion in the structure of lomonosovite is significantly reduced. Infrared spectroscopy identifies bands in the water stretching and bending regions, thus suggesting that water is involved with the structure of lomonosovite either through adsorption on the surface or by bonding to the phosphate units.
Large magnetoresistance in antiferromagnetic CaMnO3-δ
NASA Astrophysics Data System (ADS)
Zeng, Z.; Greenblatt, M.; Croft, M.
1999-04-01
CaMnO3-δ with δ=0, 0.06, and 0.11 was prepared by the Pechini citrate gel process at 1100 °C. Oxygen defects were created by quenching the sample from high temperature. Chemical analysis and x-ray absorption show that the formal valence of Mn in CaMnO3 is close to 4+, and that Mn(III) is created in the quenched samples. Moreover the x-ray absorption near-edge spectra results support the creation of two Mn(III) five coordinate sites for each O vacancy. CaMnO3-δ (δ=0-0.11) are n-type semiconductors and order antiferromagnatically with Néel temperatures close to 125 K. The activation energy decreases with increasing δ. A relatively large (~40%) negative magnetoresistance (MR) is observed for CaMnO2.89. This result shows that a substantial MR can occur in these G-type antiferromagnetic materials.
NASA Astrophysics Data System (ADS)
Okuda, T.; Hata, H.; Eto, T.; Nishina, K.; Kuwahara, H.; Nakamura, M.; Kajimoto, R.
2014-12-01
We have tried to improve the n-type thermoelectric properties of the electron- doped Perovskite Sr1-xLaxTiO3 by a Mn substitution. The 1 ~ 2 % Mn substitution enhances the Seebeck coefficient (S) and reduces the thermal conductivity (κ) by about 50 % at room temperature (RT) without largely increasing the resistivity for the 5 % electron-doped SrTiO3. Consequently, the power factor at RT keeps a large value comparable to that of Bi2Te3 and the dimensionless figure-of-merits at RT increases twofold by the slight Mn substitution. Such a large reduction of κ at RT is perhaps due to the effect of Jahn-Teller active Mn3+ ions, around which dynamical local lattice distortion may occur.
H-TiO2/C/MnO2 nanocomposite materials for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Di, Jing; Fu, Xincui; Zheng, Huajun; Jia, Yi
2015-06-01
Functionalized TiO2 nanotube arrays with decoration of MnO2 nanoparticles (denoted as H-TiO2/C/MnO2) have been synthesized in the application of electrochemical capacitors. To improve both areal and gravimetric capacitance, hydrogen treatment and carbon coating process were conducted on TiO2 nanotube arrays. By scanning electron microscopy and X-ray photoelectron spectroscopy, it is confirmed that the nanostructure is formed by the uniform incorporation of MnO2 nanoparticles growing round the surface of the TiO2 nanotube arrays. Impedance analysis proves that the enhanced capacitive is due to the decrease of charge transfer resistance and diffusion resistance. Electrochemical measurements performed on this H-TiO2/C/MnO2 nanocomposite when used as an electrode material for an electrochemical pseudocapacitor presents quasi-rectangular shaped cyclic voltammetry curves up to 100 mV/s, with a large specific capacitance (SC) of 299.8 F g-1 at the current density of 0.5 A g-1 in 1 M Na2SO4 electrolyte. More importantly, the electrode also exhibits long-term cycling stability, only 13 % of SC loss after 2000 continuous charge-discharge cycles. Based on the concept of integrating active materials on highly ordered nanostructure framework, this method can be widely applied to the synthesis of high-performance electrode materials for energy storage.
Semin, B. K.; Davletshina, L. N.; Seibert, M.; ...
2017-11-11
Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH 5.7) than at neutral pH (3Mn/RC are extracted at pH 6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH 6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extractmore » only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semin, B. K.; Davletshina, L. N.; Seibert, M.
Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH 5.7) than at neutral pH (3Mn/RC are extracted at pH 6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH 6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extractmore » only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster.« less
Interdiffusion between the L1(2) trialuminides Al66Ti25Mn9 and Al67Ti25Cr8
NASA Technical Reports Server (NTRS)
Kumar, K. S.; Whittenberger, J. D.
1992-01-01
Concentration-distance profiles obtained from Al66Ti25Mn9/Al67Ti25Cr8 diffusion couples are used to determine the interdiffusion coeffients in the temperature range 1373-1073 K. The couples are treated as pseudobinaries, and the diffusion coefficients are determined using the Matano approach. The results are then used to compute the activation energies for diffusion, and a comparison is made with some existing data for the activation energy for creep of Al22Ti8Fe3.
Wolff-Goodrich, Silas; Xin, Huolin L.; Lin, Feng; ...
2015-07-30
The present research aims to provide insights into the behavior of LiNi0.4Mn0.4Co0.2O2 (NMC442) and LiNi 0.4Mn 0.4Co 0.2O₂ (NMC442-Ti02) cathode materials under galvanostatic cycling to high potentials, in the context of previous work which predicted that Ti-substituted variants should deliver higher capacities and exhibit better cycling stability than the unsubstituted compounds. It is found that NMC cathodes containing Ti show equivalent capacity fading but greater specific capacity than those without Ti in the same potential range. When repeatedly charged to the same degree of delithiation, NMC cathodes containing Ti showed better capacity retention. Soft x-ray absorption spectroscopy (XAS) spectra formore » Mn and Co indicated increased reduction in these elements for NMC cathodes without Ti, indicating that the substitution of Ti for Co acts to suppress the formation of a high impedance rock salt phase at the surface of NMC cathode particles. The results of this study validate the adoption of a facile change to existing NMC chemistries to improve cathode capacity retention under high voltage cycling conditions.« less
Li, Hailong; Wu, Chang-Yu; Li, Ying; Li, Liqing; Zhao, Yongchun; Zhang, Junying
2012-12-01
MnO(x)-CeO(2) mixed-oxide supported on TiO(2) (Mn-Ce/Ti) was synthesized by an ultrasound-assisted impregnation method and employed to oxidize elemental mercury (Hg(0)) at 200°C in simulated coal combustion flue gas. Over 90% of Hg(0) oxidation was achieved on the Mn-Ce/Ti catalyst at 200°C under simulated flue gas representing those from burning low-rank coals with a high gas hourly space velocity of 60,000 h(-1). Gas-phase O(2) regenerated the lattice oxygen and replenished the chemisorbed oxygen, which facilitated Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. 10 ppm HCl plus 4% O(2) resulted in 100% Hg(0) oxidation under the experimental conditions. SO(2) competed with Hg(0) for active sites, thus deactivating the catalyst's capability in oxidizing Hg(0). NO covered the active sites and consumed surface oxygen active for Hg(0) oxidation, hence limiting Hg(0) oxidation. Water vapor showed prohibitive effect on Hg(0) oxidation due to its competition with HCl and Hg(0) for active adsorption sites. This study provides information about the promotional or inhibitory effects of individual flue gas components on Hg(0) oxidation over a highly effective Mn-Ce/Ti catalyst. Such knowledge is of fundamental importance for industrial applications of the Mn-Ce/Ti catalyst in coal-fired power plants. Copyright © 2012 Elsevier B.V. All rights reserved.
Coral Cd/Ca and Mn/Ca records of ENSO variability in the Gulf of California
NASA Astrophysics Data System (ADS)
Carriquiry, J. D.; Villaescusa, J. A.
2010-06-01
We analyzed the trace element ratios Cd/Ca and Mn/Ca in three coral colonies (Porites panamensis (1967-1989), Pavona clivosa (1967-1989) and Pavona gigantea (1979-1989)) from Cabo Pulmo reef, Southern Gulf of California, Mexico, to assess the oceanographic changes caused by El Niño - Southern Oscillation (ENSO) events in the Eastern Tropical North Pacific (ETNP). Interannual variations in the coral Cd/Ca and Mn/Ca ratios showed clear evidence that incorporation of Cd and Mn in the coral skeleton was influenced by ENSO conditions, but the response for each metal was controlled by different processes. The Mn/Ca ratios were significantly higher during ENSO years (p<0.05) relative to non-ENSO years for the three species of coral. In contrast, the Cd/Ca was systematically lower during ENSO years, but the difference was significant (p<0.05) only in Pavona gigantea. A decrease in the incorporation of Cd and a marked increase in Mn indicated strongly reduced vertical mixing in the Gulf of California during the mature phase of El Niño. The oceanic warming during El Niño events produces a relaxation of upwelling and a stabilization of the thermocline, which may act as a physical barrier limiting the transport of Cd from deeper waters into the surface layer. In turn, this oceanic condition can increase the residence time of particulate-Mn in surface waters, allowing an increase in the photo-reduction of particulate-Mn and the release of available Mn into the dissolved phase. These results support the use of Mn/Ca and Cd/Ca ratios in biogenic carbonates as tracers of increases in ocean stratification and trade wind weakening and/or collapse in the ETNP during ENSO episodes.
Coral Cd/Ca and Mn/Ca records of El Niño variability in the Gulf of California
NASA Astrophysics Data System (ADS)
Carriquiry, J. D.; Villaescusa, J. A.
2010-02-01
We analyzed the trace element ratios Cd/Ca and Mn/Ca in three coral colonies (Pavona gigantea, Pavona clivosa and Porites panamensis) from Cabo Pulmo reef, Southern Gulf of California, Mexico, to assess the oceanographic changes caused by El Niño - Southern Oscillation (ENSO) events in the Eastern Tropical North Pacific (ETNP). The interannual variations in the coral Cd/Ca and Mn/Ca ratios show clear evidence that incorporation of Cd and Mn in the coral skeleton are influenced by ENSO conditions, but the response for each metal is controlled by different process. The Mn/Ca ratios were significantly higher during ENSO years (p<0.05) relative to non-ENSO years for the three species of coral. In contrast, the Cd/Ca was systematically lower during ENSO years, but it was significant (p<0.05) only in P. gigantea. The decrease in the incorporation of Cd, and the marked increase in Mn during the mature phase of El Niño indicate strongly reduced vertical mixing in the Gulf of California. The oceanic warming during El Niño events produces a relaxation of upwelling and a stabilization of the thermocline which acts as a physical barrier limiting the transport of Cd from deeper waters into the surface layer. In turn, this oceanic condition can increase the residence time of particulate-Mn in surface waters, which in turn increases the photo-reduction of particulate-Mn and the release of the available Mn into the dissolved phase. These results provide validation for using Mn/Ca and Cd/Ca in biogenic carbonates as tracers of changes in ocean stratification and trade wind weakening and/or collapse in the ETNP during ENSO episodes.
Tholkappian, M; Ravisankar, R; Chandrasekaran, A; Jebakumar, J Prince Prakash; Kanagasabapathy, K V; Prasad, M V R; Satapathy, K K
2018-01-01
The concentration of some heavy metals: Al, Ca, K, Fe, Ti, Mg, Mn, V, Cr, Zn, Ni and Co in sediments from Pulicat Lake to Vadanemmeli along Chennai Coast, Tamil Nadu has been determined using EDXRF technique. The mean concentrations of Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni, and Zn were found to be 1918, 25436, 9832, 9859, 2109, 8209, 41.58, 34.14, 160.80, 2.85. 18.79 and 29.12 mg kg -1 respectively. These mean concentrations do not exceed the world crustal average. The level of pollution attributed to heavy metals was evaluated using several pollution indicators in order to determine anthropogenically derived contaminations. Enrichment Factor (EF), Geoaccumulation Index (I geo ), Contamination Factor (CF) and Pollution Load Index (PLI) were used in evaluating the contamination status of sediments. Enrichment Factors (EF) reveal the anthropogenic sources of V, Cr, Ni and Zn Geoaccumulation Index (I geo ) results reveal that the study area is not contaminated by the heavy metals. Similar results were also obtained by using pollution load index (PLI). The results of pollution indices indicates that most of the locations were not polluted by heavy metals. Multivariate statistical analysis performed using principal components and clustering techniques were used to identify the source of the heavy metals. The result of statistical procedures indicate that heavy metals in sediments are mainly of natural origin. This study provides a relatively novel technique for identifying and mapping the distribution of metal pollutants and their sources in sediment.
Essential and toxic elements in seaweeds for human consumption.
Desideri, D; Cantaluppi, C; Ceccotto, F; Meli, M A; Roselli, C; Feduzi, L
2016-01-01
Essential elements (K, Ca, P, S, Cl, Mn, Fe, Cu, Zn, Ni, Br, and I) and nonessential or toxic elements (Al, Ti, Si, Rb, Sr, As, Cd, Sn, and Pb) were determined by energy-dispersive polarized x-ray fluorescence spectrometry in 14 seaweeds purchased in local specialty stores in Italy and consumed by humans. The differences in elements between the algae species reached up to 2-4 orders of magnitude. Lithothamnium calcareum showed the highest levels of Ca, Al, Si, Fe, and Ti. Palmaria palmata showed the highest concentrations of K, Rb, and Cl. The highest content of S was in Chondrus crispus. Laminaria digitata contained the highest concentrations of total As, Cd, Sn, Br, and I. The highest concentration of Zn was in Chlorella pyrenoidosa. Ulva lactuca displayed the highest levels of Cu, Ni, Mn, and Pb. Iodine levels ranged from 3.4 in Chlorella pyrenoidosa to 7316 mg/kg(dry) in Laminaria digitata. The nutrimental importance of essential elements was assessed using nutritional requirements. The results showed that the consumption of algae might serve as an important source of the essential elements. Health risk due to the toxic elements present in seaweed was estimated using risk estimators. Total As, Cd, and Pb concentrations ranged from <1 to 67.6, to 7.2 and to 6.7 mg/kg(dry) respectively; therefore, their contribution to total elemental intake does not appear to pose any threat to the consumers, but the concentrations of these elements should be controlled to protect the consumer against potential adverse health risks.
Compositional variability of the aerosols collected on Kerkennah Islands (central Tunisia)
NASA Astrophysics Data System (ADS)
Trabelsi, A.; Masmoudi, M.; Quisefit, J. P.; Alfaro, S. C.
2016-03-01
The aim of the present study is to investigate the seasonal variability of the aerosol concentrations and origins in central Tunisia. Four field campaigns were carried out in 2010/2011 to collect air-suspended particles on the Kerkennah Islands. The elemental composition (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Pb, Ni, V, and As) of the particles collected in summer (June and July), autumn (September and November), winter (February and March), and spring (April and May) is determined by X-ray fluorescence analysis. Examination of the enrichment factors (EF) of all elements indicate that Al, Fe, Si, Ca, Ti, Mn, and Cr are mainly derived from soil sources, whereas Na and Cl are mostly of marine origin. Other elements such as K and Mg or S and P have multiple origins (Marine/crustal and crustal/anthropogenic, respectively). Finally, V, Cu, Ni, As, and Pb appear to be produced by anthropogenic activities. Based on the inter-elemental correlations, the mass concentrations of mineral dust (MD), sea-salt (SS) and anthropogenic (non-crustal and non-marine) sulfates (NSS) are quantified. MD, SS and NSS display significant inter-seasonal differences: on the one hand, MD and SS are the highest in spring and the lowest in winter, probably because of the seasonal change in meteorological conditions. On the other hand, NSS and Cu concentrations are above their autumn and winter values in spring and summer, which suggests the existence of a common source of the combustion type for these two pollutants.
Thermoelectric and Magnetic Properties of Ca0.98RE0.02MnO3- δ (RE = Sm, Gd, and Dy)
NASA Astrophysics Data System (ADS)
Bhaskar, Ankam; Liu, Chia-Jyi; Yuan, J. J.
2012-09-01
Polycrystalline samples of Ca0.98RE0.02MnO3- δ (RE = Sm, Gd, and Dy) have been prepared by conventional solid-state reactions and their properties measured at 300 K to 700 K. All samples were single phase with orthorhombic structure. The average valence and oxygen content of Ca0.98RE0.02MnO3- δ were determined by iodometric titration. Doping at the Ca site by rare-earth metals causes a strong decrease of electrical resistivity due to the creation of charge carrier content by Mn3+ in the Mn4+ matrix, as evidenced by iodometric titration results. The Seebeck coefficient of all the samples was negative, indicating that the predominant carriers are electrons over the entire temperature range. Among the doped samples, Ca0.98Dy0.02MnO3- δ had the highest dimensionless figure of merit of 0.073 at 612 K, representing an improvement of about 115% with respect to the undoped CaMnO3- δ sample at the same temperature. All the samples exhibited an antiferromagnetic transition with Néel temperature of around 120 K. Magnetization measurements indicated that Ca0.98RE0.02 MnO3- δ samples exhibited a high-spin state of Mn3+.
Magnetic dimers and trimers in the disordered S =3/2 spin system BaTi1/2Mn1/2O3
NASA Astrophysics Data System (ADS)
Garcia, F. A.; Kaneko, U. F.; Granado, E.; Sichelschmidt, J.; Hölzel, M.; Duque, J. G. S.; Nunes, C. A. J.; Amaral, R. P.; Marques-Ferreira, P.; Lora-Serrano, R.
2015-06-01
We report a structural-magnetic investigation by x-ray absorption spectroscopy (XAS), neutron diffraction, dc susceptibility (χdc), and electron spin resonance (ESR) of the 12R-type perovskite BaTi1/2Mn1/2O3 . Our structural analysis by neutron diffraction supports the existence of structural trimers with chemically disordered occupancy of Mn4+ and Ti4+ ions, with the valence of the Mn ions confirmed by the XAS measurements. The magnetic properties are explored by combining dc-susceptibility and X -band (9.4 GHz) electron spin resonance, both in the temperature interval of 2 ≤T ≤1000 K. A scenario is presented under which the magnetism is explained by considering magnetic dimers and trimers, with exchange constants Ja/kB=200 (2 ) K and Jb/kB=130 (10 ) K, and orphan spins. Thus, BaTi1/2Mn1/2O3 is proposed as a rare case of an intrinsically disordered S =3/2 spin gap system with a frustrated ground state.
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.; Devletian, J. H.
1981-01-01
Mechanical properties of weldments in two Fe-12Mn experimental alloys designed for cryogenic service were evaluated. Weldments were made using the GTA welding process. Tests to evaluate the weldments were conducted at -196 C and included: equivalent energy fracture toughness tests; autogenous transverse weld, notched transverse weld, and longitudinal weld tensile tests; and all-weld-metal tensile tests. The Fe-12Mn-0.2Ti and Fe-12Mn-1Mo-0.2Ti alloys proved weldable for cryogenic service, with weld metal and heat-affected zone properties comparable with those of the base metal. Optimum properties were achieved in the base alloys, weld metals, and heat-affected zones after a two-step heat treatment consisting of austenitizing at 900 C followed by tempering at 500 C. The Mo-containing alloy offered a marked improvement in cryogenic properties over those of the Mo-free alloy. Molybdenum increased the amount of retained austenite and reduced the amount of epsilon martensite observed in the microstructure of the two alloys.
Optical and Structural Properties of Zn2TiO4:Mn2+
NASA Astrophysics Data System (ADS)
Sosman, L. P.; López, A.; Camara, A. R.; Pedro, S. S.; Carvalho, I. C. S.; Cella, N.
2017-12-01
Polycrystalline Zn2TiO4 samples with Mn2+ doping level of 0%, 0.1%, 1.0%, and 5.0% have been produced by conventional solid-state method and their optical and structural properties investigated. Rietveld refinement of x-ray diffraction patterns revealed the formed phases and the crystallographic parameters. The chemical composition was obtained by x-ray fluorescence measurements. The optical properties were studied by photoluminescence, excitation, reflectance, and photoacoustic spectroscopy. All measurements were performed at room temperature. The photoluminescence spectrum of the pure sample (0% Mn2+) showed a band in the red region associated with Zn2TiO4, while the sample with 0.1% Mn2+ exhibited two bands, in the green and red spectral regions, assigned to Mn2+ ions at tetrahedral and octahedral sites. No emission was observed for the samples with 1.0% or 5.0% Mn2+. The excitation results for the sample with 0.1% Mn2+ ions showed characteristic peaks of Mn2+ transitions. Tanabe-Sugano theory was used to obtain the crystal field Dq, B, and C Racah parameters from the energy peak positions in the excitation spectrum of the sample with 0.1% Mn2+. Photoacoustic measurements revealed a broad band, characteristic of semiconductor materials, hiding the Mn2+ transitions.
Semimicro chemical and x-ray fluorescence analysis of lunar samples
Rose, H.J.; Cuttitta, F.; Dwornik, E.J.; Carron, M.K.; Christian, R.P.; Lindsay, J.R.; Ligon, D.T.; Larson, R.R.
1970-01-01
Major and selected minor elements were determined in seven whole rock fragments, five portions of pulverized lunar rock, and the lunar soil. Three different rock types were represented: vesicular, fine-grained basaltic rocks; medium-to coarse-grained, vuggy gabbroic rocks; and breccia. The ranges (in percent) for the major constituents of the lunar samples are: SiO2, 38 to 42; Al2O3, 8 to 14; total iron as FeO, 15 to 20; MgO, 6 to 8; CaO, 10 to 12; Na2O, 0.5 to 1; K2O, 0.05 to 0.4; TiO2, 8 to 13; MnO, 0.2 to 0.3; and Cr2O3, 0.2 to 0.4. The high reducing capacity of the samples strongly suggests the presence of Ti(III).
Artificial synthetic Mn(IV)Ca-oxido complexes mimic the oxygen-evolving complex in photosystem II.
Chen, Changhui; Zhang, Chunxi; Dong, Hongxing; Zhao, Jingquan
2015-03-14
A novel family of heteronuclear Mn(IV)Ca-oxido complexes containing Mn(IV)Ca-oxido cuboidal moieties and reactive water molecules on Ca(2+) have been synthesized and characterized to mimic the oxygen-evolving complex (OEC) of photosystem II (PSII) in nature.
NASA Astrophysics Data System (ADS)
Wang, Meiyan; Wang, Wei; Ji, Min; Cheng, Xinlu
2018-05-01
Using density functional theory (DFT), we present a theoretical investigation of phenol (C6H5OH) and hydrazine (N2H4) on pristine and decorated MoS2 monolayer. In our work, we first focus on the interactions between several metal atoms and MoS2 monolayer and then choose the MoS2 nanosheet decorated by Sc, Ti, Cr and Mn to be the substrate. Furthermore, the properties of phenol and N2H4 on pure and X-doped (X = Sc, Ti, Cr and Mn) MoS2 base materials are discussed in terms of adsorption energy, adsorption distance, charge transfer, charge density difference, HOMO and LUMO molecular orbitals and density of states (DOS). The results predict that the adsorption of phenol and hydrazine upon X-decorated MoS2 monolayers are more favorable than the adsorption on isolated ones, which demonstrating that Sc, Ti, Cr and Mn doping help to improve the adsorption abilities. Calculations also show shorter adsorption distance and more charge transfer for Sc-, Ti-, Cr- and Mn-doped systems than the pristine one. The results confirm that X-doped MoS2 monolayer can be used as effective and potential adsorbents for toxic phenol and hydrazine.
Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185 nm VUV irradiation.
Shu, Yajie; Xu, Yin; Huang, Haibao; Ji, Jian; Liang, Shimin; Wu, Muyan; Leung, Dennis Y C
2018-06-04
Volatile organic compounds (VOCs) are regarded as the major contributors to air pollution, and should be strictly regulated. Photocatalytic oxidation (PCO) is of great interest for the removal of VOCs owing to its strong oxidation capability. However, its application is greatly limited by catalytic deactivation. Vacuum Ultraviolet (VUV) irradiation provides a novel way to improve the photocatalytic activity while much O 3 will be generated which may cause secondary pollution. In this study, a multi-functional catalyst of Mn/TiO 2 /activated carbon (AC) was developed to eliminate and utilize O 3 , as well as enhance catalytic oxidation of VOC degradation via ozone-assisted catalytic oxidation (OZCO). The results indicate that Mn modified TiO 2 /AC (i.e. 0.1%Mn/20%TiO 2 /AC) achieved a toluene removal efficiency of nearly 86% with 100% elimination rate of O 3 . With the help of Mn/TiO 2 /AC catalyst, O 3 was catalytically decomposed and transformed into active species of O ( 1 D) and OH, thus enhancing toluene removal. The combination of VUV irradiation with multi-functional catalyst provides a novel and efficient way for the degradation of VOCs. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hsin-Wei; Lee, Typhoon; Lee, Der-Chuen
2015-06-10
Precise determinations of {sup 48}Ca anomalies in Allende calcium–aluminum-rich inclusions (CAIs) are reported in this work. There are endemic positive {sup 48}Ca/{sup 44}Ca anomalies in all analyzed CAIs after normalization to {sup 42}Ca/{sup 44}Ca, and it is clearly shown that there is no simple correlation between {sup 48}Ca/{sup 44}Ca and {sup 50}Ti/{sup 48}Ti anomalies, in agreement with Jungck et al. Compared to the {sup 48}Ca/{sup 44}Ca versus {sup 50}Ti/{sup 48}Ti correlation line defined by differentiated meteorites, reported by Chen et al., the CAIs plot to elevated {sup 50}Ti/{sup 48}Ti. Assuming the {sup 48}Ca/{sup 44}Ca anomalies of both CAIs and differentiatedmore » meteorites came from the same source, excess {sup 50}Ti anomalies in CAIs can be calculated by subtracting the part associated with {sup 48}Ca/{sup 44}Ca. These excesses show a linear correlation with {sup 138}La anomalies, a neutrino-process nuclide. According to current stellar nucleosynthetic models, we therefore suggest that the solar system {sup 48}Ca, {sup 50}Ti, and {sup 138}La isotopic variations are made of mixtures between grains condensed from ejecta of neutron-rich accretion-induced SNe Ia and the O/Ne–O/C zone of core-collapse SNe II.« less
Tebo, Bradley M.
2017-01-01
Manganese(IV) oxides, believed to form primarily through microbial activities, are extremely important mineral phases in marine environments where they scavenge a variety of trace elements and thereby control their distributions. The presence of various ions common in seawater are known to influence Mn oxide mineralogy yet little is known about the effect of these ions on the kinetics of bacterial Mn(II) oxidation and Mn oxide formation. We examined factors affecting bacterial Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1 in natural and artificial seawater of varying ionic conditions. Ca2+ concentration dramatically affected Mn(II) oxidation, while Mg2+, Sr2+, K+, Na+ and NO3− ions had no effect. The rate of Mn(II) oxidation at 10mM Ca2+ (seawater composition) was four or five times that without Ca2+. The relationship between Ca2+ content and oxidation rate demonstrates that the equilibrium constant is small (on the order of 0.1) and the binding coefficient is 0.5. The pH optimum for Mn(II) oxidation changed depending on the amount of Ca2+ present, suggesting that Ca2+ exerts a direct effect on the enzyme perhaps as a stabilizing bridge between polypeptide components. We also examined the effect of varying concentrations of NaCl or KNO3 (0 mM – 2000 mM) on the kinetics of Mn(II) oxidation in solutions containing 10 mM Ca2+. Mn(II) oxidation was unaffected by changes in ionic strength (I) below 0.2, but it was inhibited by increasing salt concentrations above this value. Our results suggest that the critical coagulation concentration is around 200 mM of salt (I = ca. 0.2), and that the ionic strength of seawater (I > 0.2) accelerates the precipitation of Mn oxides around the spores. Under these conditions, the aggregation of Mn oxides reduces the supply of dissolved O2 and/or Mn2+ and inhibits the Mn(II) -> Mn(III) step controlling the enzymatic oxidation of Mn(II). Our results suggest that the hardness and ionic strength of the aquatic environment at circumneutral pH strongly influences the rate of biologically mediated Mn(II) oxidation. PMID:29176910
NASA Astrophysics Data System (ADS)
Benjwal, Poonam; De, Bibekananda; Kar, Kamal K.
2018-01-01
Morphology and electronic bandgap of titania (TiO2) are considered to be the primary factors for determining the photocatalytic efficiency, as they determine the number of active sites for the photocatalytic reactions. In the present study, two different morphologies of TiO2 (nanosphere and nanorod) with varying Zn and Mn co-doping were synthesized by solvothermal and hydrothermal methods to examine their photocatalytic efficiency by methylene blue degradation. The co-doped photocatalysts were characterized by XRD, XPS, SEM, TEM, Raman, FTIR and UV-vis DRS. Further, a comparison has been made with co-doped TiO2 nanospheres and TiO2 nanorods, where Zn, Mn co-doped TiO2 nanorods show higher photocatalytic activity compared to nanospheres. This higher photocatalytic activity of co-doped TiO2 is attributed to its polymorphic phases, as they act as heterojunctions for TiO2. Further, being 1-D nanostructure, the TiO2 nanorods exhibit the straight diffusion path for charge carriers, which reduces the recombination possibilities. The obtained results suggest that the photocatalysis efficiency of TiO2 can be significantly enhanced by tailoring the shape and co-doping concentration, which enforce a new concept for developing the new nanostructures of TiO2.
Enhancement in electrical and magnetic properties with Ti-doping in Bi0.5La0.5Fe0.5Mn0.5O3
NASA Astrophysics Data System (ADS)
Singh, Rahul; Gupta, Prince Kumar; Kumar, Shiv; Joshi, Amish G.; Ghosh, A. K.; Patil, S.; Chatterjee, Sandip
2017-04-01
In this investigation, we have synthesized Bi0.5La0.5Fe0.5Mn0.5-xTixO3 (where x = 0 and 0.05) samples. The Rietveld refinement of X-ray diffraction (XRD) patterns shows that the systems crystallize in the orthorhombic phase with the Pnma space group. The observed Raman modes support the XRD results. The appearance of prominent A1-3 and weak E-2 modes in Bi0.5La0.5Fe0.5Mn0.45Ti0.05O3 indicates the presence of chemically more active Bi-O covalent bonds. Ferromagnetism of Bi0.5La0.5Fe0.5Mn0.5O3 is enhanced by Ti doping at the Mn-site, indicating that these particular samples might be interesting for device applications.
Thermodynamic evaluation of oxygen behavior in Ti powder deoxidized by Ca reductant
NASA Astrophysics Data System (ADS)
Kim, Sun-Joong; Oh, Jung-Min; Lim, Jae-Won
2016-07-01
To produce low oxygen Ti powder of less than 1000 mass ppm, commercial Ti powder was deoxidized by two types of Ca reductants: a solid Ca and a Ca vapor. Compared with the iso-oxygen partial pressure in the Ti-O binary phase diagram, the PO2 in the raw Ti powder increased with temperature compared to the reduction reaction of Ca. Therefore, the O2 content in the Ti powder decreased as the deoxidation temperature increased from 873 K, showing a local minima at 1273 K. The oxygen concentration at 1373 K was greater than that at 1273 K because the oxygen solubility of the Ti powder was increased by the equilibrium relation between Ca and CaO. On the basis of the thermodynamic assessment, the deoxidation of Ti powder can be improved by increasing the temperature and lowering the oxygen solubility with the saturation of CaO.
High-pressure compressibility and vibrational properties of (Ca,Mn)CO 3
Liu, Jin; Caracas, Razvan; Fan, Dawei; ...
2016-12-01
Knowledge of potential carbon carriers such as carbonates is critical for our understanding of the deep-carbon cycle and related geological processes within the planet. Here we investigated the high-pressure behavior of (Ca,Mn)CO 3 up to 75 GPa by synchrotron single-crystal X-ray diffraction, laser Raman spectroscopy, and theoretical calculations. MnCO 3-rich carbonate underwent a structural phase transition from the CaCO 3-I structure into the CaCO 3-VI structure at 45–48 GPa, while CaCO 3-rich carbonate transformed into CaCO 3-III and CaCO 3-VI at approximately 2 and 15 GPa, respectively. The equation of state and vibrational properties of MnCO 3-rich and CaCO 3-richmore » carbonates changed dramatically across the phase transition. The CaCO 3-VI-structured CaCO 3-rich and MnCO 3-rich carbonates were stable at room temperature up to at least 53 and 75 GPa, respectively. In conclusion, the addition of smaller cations (e.g., Mn 2+, Mg 2+, and Fe 2+) can enlarge the stability field of the CaCO 3-I phase as well as increase the pressure of the structural transition into the CaCO 3-VI phase.« less
Direct evidence of the existence of Mn3+ ions in MnTiO3
NASA Astrophysics Data System (ADS)
Maurya, R. K.; Sharma, Priyamedha; Patel, Ashutosh; Bindu, R.
2017-08-01
We investigate the room temperature electronic properties of MnTiO3 synthesised by different preparation conditions. For this purpose, we prepared MnTiO3 under two different cooling rates, one is naturally cooled while the other is quenched in liq.nitrogen. The samples were studied using optical absorbance, photoemission spectroscopy and band structure calculations. We observe significant changes in the structural parameters as a result of quenching. Interestingly, in the parent compound, our combined core level, valence band and optical absorbance studies give evidence of the Mn existence in both 2+ and 3+ states. The fraction of Mn3+ ions has been found to increase on quenching MnTiO3 suggests an increase in oxygen non-stoichiometry. The increase in the fraction of the Mn3+ ions has been manifested a) as slight enhancement in the intensity of the optical absorbance in the visible region. There occurs persistent photo-resistance when the incident light is terminated after shining; b) in the behaviour of the features (close to Fermi level) in the valence band spectra. Hence, the combined analysis of the core level, valence band and optical absorbance spectra suggests that the charge carriers are hole like which further leads to the increase in the electrical conductivity of the quenched sample. The present results provide a recipe to tune the optical absorption in the visible range for its applications in optical sensors, solar cell, etc.
Coupling catalytic hydrolysis and oxidation on Mn/TiO2-Al2O3 for HCN removal
NASA Astrophysics Data System (ADS)
Wang, Langlang; Wang, Xueqian; Cheng, Jinhuan; Ning, Ping; Lin, Yilong
2018-05-01
The manganese-modified titania-alumina (Mn/TiO2-Al2O3) catalyst synthesized by sol-gol method was used to remove hydrogen cyanide (HCN) from simulated flue gas. Further, effects of the mass ratios of Ti/Al, Mn loading, calcination temperature, and relative humidity on HCN conversion efficiency and catalytic activity were systematically investigated. The results indicated that the Mn/TiO2-Al2O3 catalyst exhibited significantly enhanced HCN removal efficiency, and the maximum yield of N2 increased to 68.02% without the participation of water vapor. When water vapor was added into the flue gas, the yield of N2 decreased and the formation of NOx was also inhibited. The XRD and XPS results indicated that Mn was mainly present in the form of Mn2+, Mn3+, and Mn4+ on the surface of catalyst and chemisorbed oxygen played a major role in the HCN catalytic oxidation process. The results of DSC-TGA analysis and H2-TPR indicated that the catalyst also exhibited a good thermal and chemical stability. NH3-TPD and CO2-TPD indicated that the surface of the catalyst mainly contained acidic sites. During the reaction, part of NH3 was adsorbed by Brönsted and Lewis acid sites. NH3 adsorbed on Lewis acid sites participated in NH3-SCR, which reduced the amount of NOx produced and resulted in a high N2 yield.
Synthesis of CaCu3Ti4O12 by modified Sol-gel method with Hydrothermal process
NASA Astrophysics Data System (ADS)
Masingboon, C.; Rungruang, S.
2017-09-01
CaCu3Ti4O12 powders were synthesized by modified Sol-gel method with Hydrothermal process using Ca(NO3)2· 4H2O, Cu(NO3)2·3H2O, Ti(OC3H7)4 and freshly extracted egg white (ovalbumin) in aqueous medium. The precursor was calcined at 800, 900 and 1000 °C in air for 8 h to obtain nanocrystalline powders of CaCu3Ti4O12. The calcined CaCu3Ti4O12 powders were characterized by XRD, TEM and EDX. The XRD results indicated that all calcined samples have a typical perovskite CaCu3Ti4O12 structure and a small amount of CaTiO3, CuO and TiO2. TEM micrographs showed particle size 100 - 500 nm and EDX results showed elements of CaCu3Ti4O12 powders have calcium, copper, titanium and oxygen.
MacLaren, I.; Sala, B.; Andersson, S. M. L.; ...
2015-10-17
Here, the atomic structure and chemistry of thin films of Bi(Fe,Mn)O 3 (BFMO) films with a target composition of Bi 2FeMnO 6 on SrTiO 3 are studied using scanning transmission electron microscopy imaging and electron energy loss spectroscopy. It is shown that Mn4+-rich antiphase boundaries are locally nucleated right at the film substrate and then form stepped structures that are approximately pyramidal in three dimensions. These have the effect of confining the material below the pyramids in a highly strained state with an out-of-plane lattice parameter close to 4.1 Å. Outside the area enclosed by the antiphase boundaries, the out-of-planemore » lattice parameter is much closer to bulk values for BFMO. This suggests that to improve the crystallographic perfection of the films whilst retaining the strain state through as much of the film as possible, ways need to be found to prevent nucleation of the antiphase boundaries. Since the antiphase boundaries seem to form from the interaction of Mn with the Ti in the substrate, one route to perform this would be to grow a thin buffer layer of pure BiFeO 3 on the SrTiO 3 substrate to minimise any Mn-Ti interactions.« less
Characterization of CaMn2O4 By X-Ray Magnetic Linear Dichroism
NASA Astrophysics Data System (ADS)
Holroyd, Johnathon; Bhatkar, Harshawardhan; Arenholz, Elke; White, Ben; Neumeier, John; Idzerda, Yves
2008-05-01
Perovskite manganite such as LaxCa(1-x)MnO3 (LCMO) have recently drawn attention for their useful electronic and magnetic properties such as Colossal Magnetoresistance. It has been shown that under stress, LCMO thin films show changes in La and Ca concentrations near the interface. One potential impurity under La depleted conditions is antiferromagnetic CaMn2O4. In order to better understand the range of properties available within LCMO systems, it is important to be able to identify and characterize CaMn2O4 within LCMO thin films. X-ray absorption spectroscopy (XAS) and X-ray magnetic linear dichroism (XMLD) are well suited to this task due to their element specificity, sensitivity, and ability to characterize the measure the magnetic properties of antiferromagnetic systems. XAS and XMLD were measured on high quality single crystals of CaMn2O4. These spectra are distinguished from CaMnO3 and demonstrate antiferromagnetic structure.
NASA Astrophysics Data System (ADS)
Zhang, Kuibao; Wen, Guanjun; Yin, Dan; Zhang, Haibin
2015-12-01
Synroc is recognized as the second generation waste form for the immobilization of high-level radioactive waste (HLW). Zirconolite-rich (CaZrTi2O7) Synroc minerals were attempted by self-propagating high-temperature synthesis (SHS) using Fe2O3, CrO3, Ca(NO3)2 as the oxidants and Ti as the reductant. All designed reactions were ignited and sustained using Ca(NO3)2 as the oxidant, and zirconolite-rich ceramic matrices were successfully prepared with pyrochlore (Ca2Ti2O6), perovskite (CaTiO3) and rutile (TiO2) as the minor phases. The sample CN-4, which was designed using Ca(NO3)2 as the oxidant with TiO2/Ti ratio of 7:9, was readily solidified with density of 4.62 g/cm3 and Vickers hardness of 1052 HV. CeO2 was successfully stabilized by the CN-4 sample with resultant phase constituent of 2M-CaZrTi2O7 and CaTiO3.
NASA Astrophysics Data System (ADS)
Subhan, Achmad; Setiawan, Dedy; Ahmiatri Saptari, Sitti
2018-03-01
Li3.9Ca0.1Ti5O12 has been synthesized as anode material for lithium-ion batteries parallel with Li4Ti5O12 anode material using solid state reaction method in an air atmosphere. LiOH.H2O, TiO2, and waste chicken eggshells in the form of CaCO3 were chosen as sources of Li, Ti, and Ca respectively and prepared using stoichiometric. The phase structure, morphology, and electrochemical impedance of as-prepared samples were characterized using XRD, SEM, and EIS. The XRD characterization revealed that in Li3.9Ca0.1Ti5O12 sample, all amount of dopant had entered the lattice structure of Li4Ti5O12. The EDX image also detect the existence of Ca in the structure of Li3.9Ca0.1Ti5O12. The EIS characterization revealed that the Li3.9Ca0.1Ti5O12 sample had lower electrochemical impedance compared to the Li4Ti5O12 sample. The diffusion coefficient were obtained by Faraday’s method, and exhibited that the Li3.9Ca0.1Ti5O12 sample (1.46986 × 10-12 cm2/s) had higher ionic conductivity than the Li4Ti5O12 sample (4.40995 × 10-16 cm2/s). According to the cycle performance test, the Li3.9Ca0.1Ti5O12 sample also had higher charge-discharge capacity and stability compared to the Li4Ti5O12 sample.
Mn/Ca intra- and inter-test variability in the benthic foraminifer Ammonia tepida
NASA Astrophysics Data System (ADS)
Petersen, Jassin; Barras, Christine; Bézos, Antoine; La, Carole; de Nooijer, Lennart J.; Meysman, Filip J. R.; Mouret, Aurélia; Slomp, Caroline P.; Jorissen, Frans J.
2018-01-01
The adaptation of some benthic foraminiferal species to low-oxygen conditions provides the prospect of using the chemical composition of their tests as proxies for bottom water oxygenation. Manganese may be particularly suitable as such a geochemical proxy because this redox element is soluble in reduced form (Mn2+) and hence can be incorporated into benthic foraminiferal tests under low-oxygen conditions. Therefore, intra- and inter-test differences in foraminiferal Mn/Ca ratios may hold important information about short-term variability in pore water Mn2+ concentrations and sediment redox conditions. Here, we studied Mn/Ca intra- and inter-test variability in living individuals of the shallow infaunal foraminifer Ammonia tepida sampled in Lake Grevelingen (the Netherlands) in three different months of 2012. The deeper parts of this lake are characterized by seasonal hypoxia/anoxia with associated shifts in microbial activity and sediment geochemistry, leading to seasonal Mn2+ accumulation in the pore water. Earlier laboratory experiments with similar seawater Mn2+ concentrations as encountered in the pore waters of Lake Grevelingen suggest that intra-test variability due to ontogenetic trends (i.e. size-related effects) and/or other vital effects occurring during calcification in A. tepida (11-25 % relative SD, RSD) is responsible for part of the observed variability in Mn/Ca. Our present results show that the seasonally highly dynamic environmental conditions in the study area lead to a strongly increased Mn/Ca intra- and inter-test variability (average of 45 % RSD). Within single specimens, both increasing and decreasing trends in Mn/Ca ratios with size are observed. Our results suggest that the variability in successive single-chamber Mn/Ca ratios reflects the temporal variability in pore water Mn2+. Additionally, active or passive migration of the foraminifera in the surface sediment may explain part of the observed Mn/Ca variability.
Zhao, Rixiao; Jin, Dongdong; Yang, Hangsheng; Lu, Shengyong; Potter, Phillip M; Du, Cuicui; Peng, Yaqi; Li, Xiaodong; Yan, Jianhua
2016-10-07
In this study, a reliable and steady PCDD/F generation system was utilized to investigate the performance of catalysts, in which 130 congeners of tetra- to octapolychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) vapors were studied under simulated flue gas with/without O 3 . TiO 2 and carbon nanotubes (CNTs) supported vanadium oxides (VO X /TiO 2 -CNTs) modified with MnO X and CuO X , which were reported to be beneficial to the decomposition of model molecules, were found to have a negative effect on the removal of real PCDD/Fs in the simulated flue gas without O 3 . Moreover, the addition of MnO X presented different effects depending on whether CuO X existed in catalysts or not, which was also contrary to its effects on the degradation of model molecules. In an O 3 -containing atmosphere, low chlorination level PCDD/Fs congeners were removed well over VO X -MnO X /TiO 2 -CNTs, while high chlorination level PCDD/Fs congeners were removed well over VO X -CuO X /TiO 2 -CNTs. Fortunately, all PCDD/Fs congeners decomposed well over VO X -MnO X -CuO X /TiO 2 -CNTs. Finally, the effects of tetra- to octachlorination level for the adsorption and degradation behaviors of PCDD/Fs congeners were also investigated.
Zhang, Jun; Xie, Kui; Wei, Haoshan; Qin, Qingqing; Qi, Wentao; Yang, Liming; Ruan, Cong; Wu, Yucheng
2014-01-01
In this work, redox-active Mn or Cr is introduced to the B site of redox stable perovskite Sr0.95Ti0.9Nb0.1O3.00 to create oxygen vacancies in situ after reduction for high-temperature CO2 electrolysis. Combined analysis using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis confirms the change of the chemical formula from oxidized Sr0.95Ti0.9Nb0.1O3.00 to reduced Sr0.95Ti0.9Nb0.1O2.90 for the bare sample. By contrast, a significant concentration of oxygen vacancy is additionally formed in situ for Mn- or Cr-doped samples by reducing the oxidized Sr0.95Ti0.8Nb0.1M0.1O3.00 (M = Mn, Cr) to Sr0.95Ti0.8Nb0.1M0.1O2.85. The ionic conductivities of the Mn- and Cr-doped titanate improve by approximately 2 times higher than bare titanate in an oxidizing atmosphere and 3–6 times higher in a reducing atmosphere at intermediate temperatures. A remarkable chemical accommodation of CO2 molecules is achieved on the surface of the reduced and doped titanate, and the chemical desorption temperature reaches a common carbonate decomposition temperature. The electrical properties of the cathode materials are investigated and correlated with the electrochemical performance of the composite electrodes. Direct CO2 electrolysis at composite cathodes is investigated in solid-oxide electrolyzers. The electrode polarizations and current efficiencies are observed to be significantly improved with the Mn- or Cr-doped titanate cathodes. PMID:25403738
NASA Astrophysics Data System (ADS)
Yin, Ke-Di; Zhang, Xi-Tong; Huang, Qing; Xue, Jian-Ming
2017-06-01
Ternary {M}n+1{{AX}}n phases with layered hexagonal structures, as candidate materials used for next-generation nuclear reactors, have shown great potential in tolerating radiation damage due to their unique combination of ceramic and metallic properties. However, {M}n+1{{AX}}n materials behave differently in amorphization when exposed to energetic neutron and ion irradiations in experiment. We first analyze the irradiation tolerances of different {M}n+1{{AX}}n (MAX) phases in terms of electronic structure, including the density of states (DOS) and charge density map. Then a new method based on the Bader analysis with the first-principle calculation is used to estimate the stabilities of MAX phases under irradiation. Our calculations show that the substitution of Cr/V/Ta/Nb by Ti and Si/Ge/Ga by Al can increase the ionicities of the bonds, thus strengthening the radiation tolerance. It is also shown that there is no obvious difference in radiation tolerance between {M}n+1A{{{C}}}n and {M}n+1A{{{N}}}n due to the similar charge transfer values of C and N atoms. In addition, the improved radiation tolerance from Ti3AlC2 to Ti2AlC (Ti3AlC2 and Ti2AlC have the same chemical elements), can be understood in terms of the increased Al/TiC layer ratio. Criteria based on the quantified charge transfer can be further used to explore other {M}n+1{{AX}}n phases with respect to their radiation tolerance, playing a critical role in choosing appropriate MAX phases before they are subjected to irradiation in experimental test for future nuclear reactors. Project supported by the National Natural Science Foundation of China (Grant Nos. 91226202 and 91426304).
Singh, Ajit T; Laluraj, C M; Sharma, Parmanand; Patel, Lavkush K; Thamban, Meloth
2017-10-12
The hydrochemistry of meltwater from the Sutri Dhaka Glacier, Western Himalaya, has been studied to understand the influence of the factors controlling the weathering processes of the glaciers during the peak ablation period. The high solar irradiance prompted intense melting, which has raised the stream flow of the glacier. The meltwater has been observed as slightly alkaline (mean pH 8.2) and contains the major anions (HCO 3 - > SO 4 2- > NO 3 - > Cl - ) and cations (Ca 2+ > Mg 2+ > K + > Na + > NH 4 + ) with Ca 2+ (78.5%) and HCO 3 - (74.5%) as the dominant species. The piper diagram indicates the category of stream meltwater as Ca 2+ -HCO 3 - type. In addition, it is evident from the Gibbs diagram that the interaction between the meltwater and bedrock controls the ionic concentrations of the glacial meltwater. The high ratio value (~ 0.75) of HCO 3 - /(HCO 3 - + SO 4 2- ) indicates that the carbonate weathering is dominant. Fe and Al followed by Mn, Sr, and Ti are the most dominant trace elements present in the meltwater. The significant negative correlation exhibited by the major ions and Sr with the discharge is recommended for the enrichment of these solutes during the lean discharge periods. However, the insignificant correlation of Fe, Al, Mn, and Ti with discharge suggests their physicochemical control. The principal component analysis (PCA) carried has highlighted three dominant composites, i.e., the water-rock interaction, atmospheric dust inputs, and physicochemical changes in the meltwater. Hence, the present study elucidates the export of geochemical solutes from Sutri Dhaka Glacier and factors governing the water chemistry, which helps in the better understanding of hydrochemical processes of the Himalayan glaciers and substantial improvement of our understanding about the glacio-hydrological environments and their response in the scenario of global warming.
Microstructure and fracture toughness of Mn-stabilized cubic titanium trialuminide
NASA Astrophysics Data System (ADS)
Zbroniec, Leszek Ireneusz
This thesis project is related to the fracture toughness aspects of the mechanical behavior of the selected Mn-modified cubic Ll2 titanium trialuminicles. Fracture toughness was evaluated using two specimen types: Single-Edge-Precracked-Beam (SEPB) and Chevron-Notched-Beam (CNB). The material tested was in cast, homogenized and HIP-ed condition. In the preliminary stage of the project due to lack of the ASTM Standard for fracture toughness testing of the chevron-notched specimens in bending the analyses of the CNB configuration were done to establish the optimal chevron notch dimensions. Two types of alloys were investigated: (a) boron-free and boron doped low-Mn (9at.% Mn), as well as (b) boron-free and boron-doped high-Mn (14at.% Mn). Toughness was investigated in the temperature range from room temperature to 1000°C and was calculated from the maximum load. It has been found that toughness of coarse-grained "base" 9Mn-25Ti alloy exhibits a broad peak at the 200--500°C temperature range and then decreases with increasing temperature, reaching its room temperature value at 10000°C. However, the work of fracture (gammaWOF) and the stress intensity factor calculated from it (KIWOF) increases continuously with increasing temperature. Also the fracture mode dependence on temperature has been established. To understand the effect of environment on the fracture toughness of coarse-grained "base", boron-free 9Mn-25Ti alloy, the tests were carried out in vacuum (˜1.3 x 10-5 Pa), argon, oxygen, water and liquid nitrogen. It has been shown that fracture toughness at ambient temperature is not affected by the environments containing moisture (water vapor). It seems that at ambient temperatures these materials are completely immune to the water-vapor hydrogen embrittlement and their cause of brittleness is other than environment. To explore the influence of the grain size on fracture toughness the fracture toughness tests were also performed on the dynamically recrystallized "base", boron-free 9Mn-25Ti material with the average grain size of 45 mum. Further refinement of the grain size was obtained by ball-milling of powders in order to obtain a nanostructure material. These were subsequently consolidated by hot pressing with the objective of retaining the nanostructure to the largest extent possible. The estimated grain size of the powder compact was ˜50--200 mum. The indentation microcracking fracture toughness measurements were performed on the powder compacts. It has been found that fracture toughness is independent of the grain size in the range ˜1300--45 mum and that for the finest grains (˜50--200 mum) it drops substantially and is equal to half of that for coarse-grained material. A beneficial effect of boron doping, high-(Mn+Ti) concentration and combination of both, on the fracture toughness was observed at room and elevated temperatures. The addition of boron to a "base" 9at.% Mn-25at.% Ti trialuminicle improves the room temperature fracture toughness by 25--50%. Addition of boron to a high (Mn+Ti) trialuminide improves the room temperature fracture toughness by 100% with respect to a "base" 9Mn-25Ti alloy. Depending on the Mn+Ti concentrations and the level of boron doping, improvements of fracture toughness at 200--600°C and 800--1000°C ranges are also observed.
NASA Astrophysics Data System (ADS)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
2018-05-01
We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.
Determination of iridium in mafic rocks by atomic absorption
Grimaldi, F.S.; Schnepfe, M.M.
1970-01-01
Iridium is determined in mineralized mafic rocks by atomic absorption after fire-assay concentration into a gold bead. Interelement interferences in the atomic-absorption determination are removed and Ir sensitivity is increased by buffering the solutions with a mixture of copper and sodium sulphates. Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated in the atomic-absorption determination. The sensitivity and detection limits are 3.2 and 0.25 ppm of Ir, respectively. ?? 1970.
The flat bottomed lines of Vega
NASA Astrophysics Data System (ADS)
Monier, R.; Gebran, M.; Royer, F.; Kılıcoǧlu, T.
2017-12-01
Using one high dispersion high quality spectrum of Vega (HR7001, A0V) obtained with the échelle spectrograph SOPHIE at Observatoire de Haute Provence, we have measured the centroids of 149 flat bottomed lines. The model atmosphere and spectrum synthesis modeling of the spectrum of Vega allows us to provide identifications for all these lines. Most of these lines are due to C I, O I, Mg I, Al I, Ca I, Sc II,Ti II, Cr I, Cr II, Mn I, Fe I, Fe II, Sr II, Ba II, the large majority being due to neutral species, in particular Fe I.
Handbook of Isotopes in the Cosmos
NASA Astrophysics Data System (ADS)
Clayton, Donald
2007-08-01
List of illustrations; Preface; Introduction; 1. Hydrogen (H); 2. Helium (He); 3. Lithium (Li); 4. Beryllium (Be); 5. Boron (B); 6. Carbon (C); 7. Nitrogen (N); 8. Oxygen (O); 9. Fluorine (F); 10. Neon (Ne); 11. Sodium (Na); 12. Magnesium (Mg); 13. Aluminium (Al); 14. Silicon (Si); 15. Phosphorous (P); 16. Sulphur (S); 17. Chlorine (Cl); 18. Argon (Ar); 19. Potassium (K); 20. Calcium (Ca); 21. Scandium (Sc); 22. Titanium (Ti); 23. Vanadium (V); 24. Chromium (Cr); 25. Manganese (Mn); 26. Iron (Fe); 27. Cobalt (Co); 28. Nickel (Ni); 29. Copper (Cu); 30. Zinc (Zn); 31. Gallium (Ga); Glossary.
Handbook of Isotopes in the Cosmos
NASA Astrophysics Data System (ADS)
Clayton, Donald
2003-09-01
List of illustrations; Preface; Introduction; 1. Hydrogen (H); 2. Helium (He); 3. Lithium (Li); 4. Beryllium (Be); 5. Boron (B); 6. Carbon (C); 7. Nitrogen (N); 8. Oxygen (O); 9. Fluorine (F); 10. Neon (Ne); 11. Sodium (Na); 12. Magnesium (Mg); 13. Aluminium (Al); 14. Silicon (Si); 15. Phosphorous (P); 16. Sulphur (S); 17. Chlorine (Cl); 18. Argon (Ar); 19. Potassium (K); 20. Calcium (Ca); 21. Scandium (Sc); 22. Titanium (Ti); 23. Vanadium (V); 24. Chromium (Cr); 25. Manganese (Mn); 26. Iron (Fe); 27. Cobalt (Co); 28. Nickel (Ni); 29. Copper (Cu); 30. Zinc (Zn); 31. Gallium (Ga); Glossary.
Growth and giant coercive field of spinel-structured Co3- x Mn x O4 thin films
NASA Astrophysics Data System (ADS)
Kwak, Yongsu; Song, Jonghyun; Koo, Taeyeong
2016-08-01
We grew epitaxial thin films of CoMn2O4 and Co2MnO4 on Nb-doped SrTiO3(011) and SrTiO3(001) single crystal substrates using pulsed laser deposition. The magnetic Curie temperature ( T c ) of the Co2MnO4 thin films was ~176 K, which is higher than that of the bulk whereas CoMn2O4 thin films exhibited a value of T c (~151 K) lower than that of the bulk. For the Co2MnO4 thin films, the M - H loop showed a coercive field of ~0.7 T at 10 K, similar to the value for the bulk. However, the M -H loop of the CoMn2O4(0 ll) thin film grown on a Nb-doped SrTiO3(011) substrate exhibited a coercive field of ~4.5 T at 30 K, which is significantly higher than those of the Co2MnO4 thin film and bulk. This giant coercive field, only observed for the CoMn2O4(0 ll) thin film, can be attributed to the shape anisotropy and strong spin-orbit coupling.
NASA Astrophysics Data System (ADS)
Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.
2012-08-01
Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban Environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter <2.5 μm) resolved Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie FP7-EU framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the unique approach used is the simultaneous PIXE measurements at two monitoring sites: urban background (UB) and a street canyon traffic road site (RS). Elements related to primary non exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (secondary sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non exhaust brake dust (Fe-Cu) - 7%), and three types industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%). The validity of the PMF solution of the PIXE data is supported by strong correlations with external single particle mass spectrometry measurements. Beside apportioning the aerosol sources, some important air quality related conclusions can be drawn about the PM2.5 fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both monitoring sites at similar concentrations regardless their different ventilation conditions; (2) by contrast, local industrial aerosol plumes associated with shipping oil combustion and smelters activities have a higher impact on the more ventilated UB site; (3) a unique source of Pb-Cl (associated with industrial combustion emissions) is found a to be the major (82%) source of Cl in the urban agglomerate; (4) PM2.5 traffic brake dust (Fe-Cu) is mainly primarily emitted and not resuspended, whereas PM2.5 urban crustal dust (Ca) is found mainly resuspended by both traffic vortex and sea breeze; (5) urban dust (Ca) is found the aerosol source most affected by land wetness, reduced by a factor of eight during rainy days and suggesting that wet roads may be a solution for reducing dust concentrations in road sites, far more effective than street sweeping activities.
Dielectric relaxation in epitaxial films of paraelectric-magnetic SrTiO3-SrMnO3 solid solution
NASA Astrophysics Data System (ADS)
Savinov, M.; Bovtun, V.; Tereshina-Chitrova, E.; Stupakov, A.; Dejneka, A.; Tyunina, M.
2018-01-01
Magneto-dielectric properties of (A2+)MnO3-type perovskites are attractive for applications and stimulate extensive studies of these materials. Here, the complex dielectric and magnetic responses are investigated as in epitaxial films of SrTi0.6Mn0.4O3, solid solution of paraelectric SrTiO3 and magnetic SrMnO3. The impedance and resonance measurements at frequencies of 10-2-1010 Hz and temperatures of 10-500 K reveal broad dielectric anomalies centered at 100-200 K, while the films are paramagnetic at all temperatures. Analysis shows polaronic electrical conductivity behind the observed behavior. Electron-phonon correlations, rather than spin-phonon correlations, are suggested to produce the apparent magneto-dielectric responses in many multiferroic manganites.
Magnetic and magnetotransport properties of the orthorhombic perovskites (Lu,Ca)MnO3
NASA Astrophysics Data System (ADS)
Imamura, N.; Karppinen, M.; Motohashi, T.; Yamauchi, H.
2008-01-01
Here we extend the research of the (R,Ca)MnO3 perovskites to the smallest- R end member (Lu,Ca)MnO3 . Magnetic and magnetotransport properties of the (Lu1-xCax)MnO3 system are systematically investigated in regard to carrier doping. It is found that hole doping into the antiferromagnetic x=0.0 phase, LuMnO3 , causes a spin-glass-like magnetic competition in the wide doping range of 0.1≤x≤0.6 , whereas electron doping into the antiferromagnetic x=1.0 phase, CaMnO3 , induces a large magnetoresistance effect for 0.8≤x≤0.95 .
Thermally stimulated luminescence studies of undoped, Cu- and Mn-doped CaSO4 compounds
NASA Astrophysics Data System (ADS)
Manam, J.; Das, S.
Thermally stimulated luminescence (TSL) of undoped and doped CaSO4 with activators such as Cu and Mn has been investigated. The polycrystalline samples of undoped and doped CaSO4 are prepared by the melting method. The formation of CaSO4 compound is confirmed by X-ray diffraction and Fourier transform infrared studies. Scanning electron microscopic studies of CaSO4 are also carried out. The TSL glow curves of undoped CaSO4, Cu- and Mn-doped CaSO4 are studied. Comparison of the thermoluminescence (TL) intensity of the most intensive glow peak of Cu-doped CaSO4 compound with that of undoped CaSO4 shows that addition of Cu impurity in CaSO4 compound enhances the TL intensity by about four times. However, the addition of Mn impurity to undoped CaSO4 increases the TL intensity by about three times when compared with that of undoped CaSO4. The TL-dose dependence of all three samples was studied and was observed to be almost linear in the studied range of irradiation time. Among the samples studied, namely undoped CaSO4 and Cu- and Mn-doped CaSO4, Cu-doped CaSO4 is found to be the most sensitive. The trap parameters, namely order of kinetics (b), activation energy (E) and frequency factor (s) associated with the most intensive glow peaks of CaSO4:Mn, CaSO4:Cu and CaSO4 phosphors were determined using the glow curve shape (Chen's) method.
Dulani Dhanapala, B; Mannino, Natalie A; Mendoza, Laura M; Tauni Dissanayake, K; Martin, Philip D; Suescun, Leopoldo; Rabuffetti, Federico A
2017-01-31
Owing to their potential as single-source precursors for compositionally complex materials, there is growing interest in the rational design of multimetallic compounds containing fluorinated ligands. In this work, we show that chemical and structural principles for a materials-by-design approach to bimetallic trifluoroacetates can be established through a systematic investigation of the crystal-chemistry of their monometallic counterparts. A(CF 3 COO) 2 ·nH 2 O (A = Mg, Ca, Sr, Ba, Mn) monometallic trifluoroacetates were employed to demonstrate the feasibility of this approach. The crystal-chemistry of monometallic trifluoroacetates was mapped using variable-temperature single-crystal X-ray diffraction, powder X-ray diffraction, and thermal analysis. The evolution with temperature of the previously unknown crystal structure of Mg(CF 3 COO) 2 ·4H 2 O was found to be identical to that of Mn(CF 3 COO) 2 ·4H 2 O. More important, the flexibility of Mn x (CF 3 COO) 2x ·4H 2 O (x = 1, 3) to adopt two structures, one isostructural to Mg(CF 3 COO) 2 ·4H 2 O, the other isostructural to Ca 3 (CF 3 COO) 6 ·4H 2 O, enabled the synthesis of Mg-Mn and Ca-Mn bimetallic trifluoroacetates. Mg 0.45 Mn 0.55 (CF 3 COO) 2 ·4H 2 O was found to be isostructural to Mg(CF 3 COO) 2 ·4H 2 O and exhibited isolated metal-oxygen octahedra with Mg 2+ and Mn 2+ nearly equally distributed over the metal sites (Mg/Mn: 45/55). Ca 1.72 Mn 1.28 (CF 3 COO) 6 ·4H 2 O was isostructural to Ca 3 (CF 3 COO) 6 ·4H 2 O and displayed trimers of metal-oxygen corner-sharing octahedra; Ca 2+ and Mn 2+ were unequally distributed over the central (Ca/Mn: 96/4) and terminal (Ca/Mn: 38/62) octahedral sites.
NASA Astrophysics Data System (ADS)
Hossain, S.; Hachinohe, S.; Ishiyama, T.; Hamamoto, H.; Oguchi, C. T.
2014-12-01
Heavy metals release from sediment may occur due to sediment water interaction under different changing environmental conditions. This has substantial influence on groundwater quality. However, identification of potentially mobile fractions of metals like Cu, Cr, Ni, Pb, Zn, Fe, Mn and Ti requires for the sustainable land and groundwater development and pollution management. 44 sediment and pore water samples at 1 m interval were analyzed from a vertical profile beneath the Naka river at the bottom of Central Kanto plain, Japan. Sequential extraction method was applied to determine potentially mobile forms of metals such as water soluble, ion exchangeable, acid soluble and Fe-Mn oxide bound. Metals were determined using X-Ray Fluorescence, Inductively coupled plasma atomic emission and mass spectrometer. Analyses show that potential mobility is high in river bed, volcanic ash mix, marine and transitional clayey silt. Metal mobility was higher in lower gravelly aquifer than upper sandy aquifer. Potential mobility and bioavailability of Zn, Cu, Ni, Pb and Mn are very high in river bed sediment which may pose threat to river bottom aquatic system. Zn, Cu and Ni concentration in pore water is high in river bed and peat bearing sediment. In pore water of marine and transitional sediment ion concentration such as Ca2+ and SO42- is very high indicating high mobility of Calcium and Sulfur from sediment as no significant variation observed in total content. In vertical profile, potential mobility tendency of metal in sediment trends to be Zn > Cu > Ni > Cr > Pb > Mn > Fe > Ti. Current study indicates low potential mobility and pollution risk to groundwater due to overall low metal concentration in pore water and high portion of metals attached with sediment as Fe-Mn oxide bound. More over under strong reducing condition considerable amount of metals will release and pollute groundwater.
Thermodynamic Simulation of Viscosity of TiO2-Ti2O3-CaO Ternary Slag
NASA Astrophysics Data System (ADS)
Zhang, P.; Ma, W. H.; Zhang, S. J.; Lei, Y.; Wen, J. H.
2017-12-01
The viscosity of high titanium slag at high temperature is one of the key factors of slag-iron separation. Based on the Einstein-Roscoe equation, thermodynamic simulation of viscosity of TiO2-Ti2O3-CaO ternary slag is studied by using FactSage® software, and the effects of temperature, CaO content and solid-phase particles on the viscosity of slag were studied. The results show that the increase of CaO content has the effect of reducing melting temperature and viscosity of TiO2-Ti2O3-CaO ternary slag. After the TiO2-Ti2O3-CaO ternary slag is completely melted, the increase of temperature has little effect on viscosity of slag, and the viscosity is about 110~125mPa·s. When the temperature is lower than melting temperature, TiO2-Ti2O3-CaO ternary slag will precipitate solid-phase particles, and the precipitation process is carried out in stages, and with the decrease of temperature, the precipitation will increase and the viscosity will sharply increase. TiO2-Ti2O3-CaO ternary titanium slag has obvious characteristics of short slag.
Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig
NASA Astrophysics Data System (ADS)
Fomba, Khanneh Wadinga; van Pinxteren, Dominik; Müller, Konrad; Spindler, Gerald; Herrmann, Hartmut
2018-03-01
Size-resolved trace metal concentrations at four sites in Leipzig (Germany) and its surrounding were assessed between the winter of 2013 and the summer of 2015. The measurements were performed in parallel at; traffic dominated (Leipzig - Mitte, LMI), traffic and residential dominated (Eisenbahnstrasse, EIB), urban background (TROPOS, TRO) and regional background (Melpitz, MEL) sites. In total, 19 trace metals, i.e. K, Ca, Ti, Mn, Fe, Cu, Zn, As, Se, Ba, V, Pb, Ni, Cr, Sr, Sn, Sb, Co and Rb were analysed using total reflection x-ray fluorescence (TXRF). The major metals were Fe, K and Ca with concentrations ranging between; 31-440 ng/m3, 42-153 ng/m3 and 24-322 ng/m3, respectively, while the trace metals with the lowest concentrations were Co, Rb and Se with concentrations of; < 0.3 ng/m3, <0.5 ng/m3 and 0.5-0.7 ng/m3, respectively. PM10 trace metal concentrations during easterly air mass inflow especially at the background sites were in average 70% higher in the winter and 30% higher in the summer in comparison to westerly air mass inflow. Traffic at LMI contributed to about 75% of Cr, Ba, Cu, Sb, Sn, Ca, Co, Mn, Fe and Ti concentrations while regional activities contributed to more than 70% of K, Rb, Pb, Se, As and V concentrations. Traffic dominated trace metals were often observed in the coarse mode while the regional background dominated trace metals were often observed in the fine mode. Trace metal sources were related to crustal matter and road dust re-suspension for metals such as Ca, Fe, Co, Sr, and Ti, brake and tire wear (Cu, Sb, Ba, Fe, Zn, Pb), biomass burning (K, Rb), oil and coal combustion (V, Zn, As, Pb). Crustal matter contributed 5-12% in winter and 8-19% in summer of the PM10 mass. Using Cu and Zn as markers for brake and tire wear, respectively, the estimated brake and tire wear contributions to the PM10 mass were 0.1-0.8% and 1.7-2.9%, respectively. The higher contributions were observed at the traffic sites while the lower contributions were observed at the regional background site. In total, non-exhaust emissions could account for about 10-22% of the PM10 mass in the summer and about 7-15% of the PM10 mass in the winter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, Priya, E-mail: priyathakur1191@gmail.com; Thakur, Anjna; Yadav, Kamlesh, E-mail: kamlesh.yadav001@gmail.com
In this paper(LaMnO{sub 3}){sub 1−x}/ (TiO{sub 2}) {sub x} (where x = 0.0, 0.1, 0.2, 0.3 and 0.4) nanocomposite are prepared by mixing the LaMnO{sub 3} and TiO{sub 2} (Sigma Chemicals, particle size ∼21 nm) nanoparticle in appropriate ratio. These samples were characterized by using FESEM, EDS and FTIR to study the optical properties. Field Emission Scanning Electron Microscopy (FESEM) image of pure LaMnO{sub 3} sample shows that the uniform particle size distribution is observed. The average particle size of the LaMnO{sub 3} nanoparticles is 43 nm. The crystallite size increases from 16-24 nm with increasing the weight percentage of TiO{sub 2} inmore » LaMnO{sub 3}/TiO{sub 2} nanocomposite up to x = 0.4. The Fourier transform infrared spectroscopy (FTIR) spectra show that the absorption peaks appear at 450 cm{sup −1} and 491 cm{sup −1} which represent the Mn-O bending and Ti-O stretching mode respectively. The broadening of these peaks with increasing the concentration of TiO{sub 2} is also observed. It gives an evidence for the formation of metal oxygen bond. The absorption band at 600 cm{sup −1} corresponds to the stretching mode, which indicates the pervoskite phase present in the sample. The values of band gap are found 2.1, 1.9, 1.5, 1.3 and 1.2 eV for the x = 0.0, 0.1, 0.2, 0.3, and 0.4 respectively. Thus, the decrease in band gap and increase in refractive index with increasing concentration of TiO{sub 2} has been observed. These prepared nanocomposites can be used in the energy applications, to make the electrical devices and as a catalyst for photocatalytic processes e.g. hydrogenation.« less
Band gap tuning in transition metal oxides by site-specific substitution
Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok
2013-12-24
A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.
Disappearance of Ising nature in Ca3ZnMnO6 studied by high-field ESR.
Ruan, M Y; Ouyang, Z W; Guo, Y M; Cheng, J J; Sun, Y C; Xia, Z C; Rao, G H; Okubo, S; Ohta, H
2014-06-11
High-field electron spin resonance measurements of an antiferromagnet Ca3ZnMnO6 isostructure, with the Ising-chain multiferroic Ca3CoMnO6, have been carried out. Two distinct resonance modes were observed below TN = 25 K, which is well explained by conventional antiferromagnetic resonance theory with easy-plane anisotropy. The zero-field spin gap is derived to be about 166 GHz, originating from the easy-plane anisotropy and exchange interaction. Our result suggests that the Dzyaloshinsky-Moriya interaction, which may induce spin canting, is absent. Disappearance of Ising anisotropy in Ca3ZnMnO6 suggests that the Co(4+) ion, as well as the Co-Mn superexchange, plays an important role for the Ising nature in Ca3CoMnO6.
Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process
NASA Astrophysics Data System (ADS)
Park, Kyeongsoon; Lee, Ga Won
2011-10-01
High-quality Ca0.8Dy0.2MnO3 nano-powders were synthesized by the solution combustion process. The size of the synthesized Ca0.8Dy0.2MnO3 powders was approximately 23 nm. The green pellets were sintered at 1150-1300°C at a step size of 50°C. Sintered Ca0.8Dy0.2MnO3 bodies crystallized in the perovskite structure with an orthorhombic symmetry. The sintering temperature did not affect the Seebeck coefficient, but significantly affected the electrical conductivity. The electrical conductivity of Ca0.8Dy0.2MnO3 increased with increasing temperature, indicating a semiconducting behavior. The absolute value of the Seebeck coefficient gradually increased with an increase in temperature. The highest power factor (3.7 × 10-5 Wm-1 K-2 at 800°C) was obtained for Ca0.8Dy0.2MnO3 sintered at 1,250°C. In this study, we investigated the microstructure and thermoelectric properties of Ca0.8Dy0.2MnO3, depending on sintering temperature.
Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process
2011-01-01
High-quality Ca0.8Dy0.2MnO3 nano-powders were synthesized by the solution combustion process. The size of the synthesized Ca0.8Dy0.2MnO3 powders was approximately 23 nm. The green pellets were sintered at 1150-1300°C at a step size of 50°C. Sintered Ca0.8Dy0.2MnO3 bodies crystallized in the perovskite structure with an orthorhombic symmetry. The sintering temperature did not affect the Seebeck coefficient, but significantly affected the electrical conductivity. The electrical conductivity of Ca0.8Dy0.2MnO3 increased with increasing temperature, indicating a semiconducting behavior. The absolute value of the Seebeck coefficient gradually increased with an increase in temperature. The highest power factor (3.7 × 10-5 Wm-1 K-2 at 800°C) was obtained for Ca0.8Dy0.2MnO3 sintered at 1,250°C. In this study, we investigated the microstructure and thermoelectric properties of Ca0.8Dy0.2MnO3, depending on sintering temperature. PMID:21974984
Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process.
Park, Kyeongsoon; Lee, Ga Won
2011-10-05
High-quality Ca0.8Dy0.2MnO3 nano-powders were synthesized by the solution combustion process. The size of the synthesized Ca0.8Dy0.2MnO3 powders was approximately 23 nm. The green pellets were sintered at 1150-1300°C at a step size of 50°C. Sintered Ca0.8Dy0.2MnO3 bodies crystallized in the perovskite structure with an orthorhombic symmetry. The sintering temperature did not affect the Seebeck coefficient, but significantly affected the electrical conductivity. The electrical conductivity of Ca0.8Dy0.2MnO3 increased with increasing temperature, indicating a semiconducting behavior. The absolute value of the Seebeck coefficient gradually increased with an increase in temperature. The highest power factor (3.7 × 10-5 Wm-1 K-2 at 800°C) was obtained for Ca0.8Dy0.2MnO3 sintered at 1,250°C. In this study, we investigated the microstructure and thermoelectric properties of Ca0.8Dy0.2MnO3, depending on sintering temperature.
Wu, Qiuli; Li, Yiping; Tang, Meng; Ye, Boping; Wang, Dayong
2012-01-01
With growing concerns of the safety of nanotechnology, the in vivo toxicity of nanoparticles (NPs) at environmental relevant concentrations has drawn increasing attentions. We investigated the possible molecular mechanisms of titanium nanoparticles (Ti-NPs) in the induction of toxicity at predicted environmental relevant concentrations. In nematodes, small sizes (4 nm and 10 nm) of TiO2-NPs induced more severe toxicities than large sizes (60 nm and 90 nm) of TiO2-NPs on animals using lethality, growth, reproduction, locomotion behavior, intestinal autofluorescence, and reactive oxygen species (ROS) production as endpoints. Locomotion behaviors could be significantly decreased by exposure to 4-nm and 10-nm TiO2-NPs at concentration of 1 ng/L in nematodes. Among genes required for the control of oxidative stress, only the expression patterns of sod-2 and sod-3 genes encoding Mn-SODs in animals exposed to small sizes of TiO2-NPs were significantly different from those in animals exposed to large sizes of TiO2-NPs. sod-2 and sod-3 gene expressions were closely correlated with lethality, growth, reproduction, locomotion behavior, intestinal autofluorescence, and ROS production in TiO2-NPs-exposed animals. Ectopically expression of human and nematode Mn-SODs genes effectively prevented the induction of ROS production and the development of toxicity of TiO2-NPs. Therefore, the altered expression patterns of Mn-SODs may explain the toxicity formation for different sizes of TiO2-NPs at predicted environmental relevant concentrations. In addition, we demonstrated here a strategy to investigate the toxicological effects of exposure to NPs upon humans by generating transgenic strains in nematodes for specific human genes. PMID:22973466
Band gap depiction of quaternary FeMnTiAl alloy using Hubbard (U) potential
NASA Astrophysics Data System (ADS)
Bhat, Tahir Mohiuddin; Yousuf, Saleem; Khandy, Shakeel Ahmad; Gupta, Dinesh C.
2018-05-01
We have employed self-consistent ab-initio calculations to investigate new quaternary alloy FeMnTiAl by applying Hubbard potential (U). The alloy is found to be stable in ferromagnetic phase with cubic structure. The alloy shows half-metallic (HM) ferromagnet character. The values of minority band gap FeMnTiAl are found to be 0.33 eV respectively. Electronic charge density reveals that both types of bonds covalent as well as ionic are present in the alloy. Thus the new quaternary alloy can be proved as vital contender for spin valves and spin generator devices.
NASA Astrophysics Data System (ADS)
Zhang, Yi-Shen; Hou, Tong; Veksler, Ilya V.; Lesher, Charles E.; Namur, Olivier
2018-02-01
Phase equilibrium experiments have been performed on an extremely high-Ti (5.4 wt.% TiO2) picrite from the base of the Paleogene ( 55 Ma) East Greenland Flood Basalt Province. This sample has a high CaO/Al2O3 ratio (1.14), a steep rare-earth elements (REE) profile, is enriched in incompatible trace elements, and is in chemical equilibrium with highly primitive olivine. This all suggests that the picrite is a near-primary melt that did not suffer major chemical evolution during ascent from the mantle source and through the crust. Near-liquidus phase relations were determined over the pressure range of 1 atm, 1 to 1.5 GPa and at temperatures from 1094 to 1400°C. They provide an important constraint on the petrogenesis of these lavas. The high-Ti picritic melt is multi-saturated with olivine (Ol) + orthopyroxene (Opx) at 1 GPa but has only Ol or Opx on the liquidus at lower and higher pressures, respectively. This indicates the primitive melt was last equilibrated with its mantle source at relatively shallow pressure ( 1 GPa). Melting probably started at 2-3 GPa and the picritic melt was produced by 15-30% melting of the mantle source. Such a degree of partial melting requires a mantle with a high potential temperature (1480-1530˚C). The relatively low CaO content and high FeO/MnO ratios of the most primitive East Greenland picrites, the high Ni content of olivine phenocrysts and the presence of low-Ca pyroxene (i.e., pigeonite) at high pressure in our experiments all suggest that the mantle source contained a major component of garnet pyroxenite. Residual garnet in the source could adequately explain the low Al2O3 content (7.92 wt.%) and steep REE patterns of the picrite sample. However, simple melting of a lherzolitic source, even with a major pyroxenite component, cannot explain the formation of magmas with the very high Ti contents observed in some East Greenland basalts. We therefore propose that magmas highly-enriched in Ti were produced by melting of a metasomatized mantle source containing Ti-enriched amphibole and/or phlogopite.
Berik, Pelin; Maurya, Deepam; Kumar, Prashant; Kang, Min Gyu; Priya, Shashank
2017-01-01
Abstract This paper is concerned with the development of a piezoelectric d 15 shear-induced torsion actuator made of a lead-free piezoceramic material exhibiting giant piezoelectric shear stress coefficient (e 15) and piezoelectric transverse shear actuation force comparable to that of lead-based shear-mode piezoceramics. The Mn-modified 0.93(Na0.5Bi0.5TiO3)-0.07BaTiO3 (NBT-BT-Mn) composition exhibited excellent properties as a torsional transducer with piezoelectric shear stress coefficient on the order of 11.6 C m–2. The torsional transducer, consisting of two oppositely polarized NBT-BT-Mn d 15 mode piezoceramic shear patches, provided a rate of twist of 0.08 mm m–1 V–1 under quasi-static 150 V drive. The high value of piezoelectric shear d 15 coefficient in NBT-BT-Mn sample further demonstrated its potential in practical applications. These results confirm that the lead-free piezoceramics can be as effective as their lead-based counterparts. PMID:28179958
Trace element composition and cathodoluminescence of kyanite and its petrogenetic implications
NASA Astrophysics Data System (ADS)
Müller, Axel; van den Kerkhof, Alfons M.; Selbekk, Rune S.; Broekmans, Maarten A. T. M.
2016-09-01
Kyanite crystals from fourteen localities worldwide were analysed for their abundances of the trace elements Na, Mg, K, Ca, Ti, V, Cr, Mn, and Fe and cathodoluminescence (CL) properties. Based on protolith type, metamorphic setting, and distinctive trace element fingerprints, a genetic classification of kyanite-bearing rocks is suggested: (A) Al-rich metasediments which commonly contain coarse-grained quartz-kyanite segregations; (B) metamorphosed granitic rocks, specifically granulites; (C) metamorphosed argillic alteration zones hosted originally in felsic igneous rocks; (D) metamorphosed argillic alteration zones hosted originally in mafic igneous rocks; and (E) metamorphosed mafic to ultramafic rocks, specifically eclogites. Vanadium and Cr concentrations reflect both protolith and host rock compositions and therefore may provide a geochemical fingerprint for the nature of the protolith. The incorporation of Fe into kyanite is largely controlled by oxygen fugacity during kyanite formation, and therefore, in most cases, its concentration cannot be related to that of the protolith. From our results, Ti concentration appears to be related to metamorphic grade, particularly formation temperature. If proven by further studies, Ti-in-kyanite may provide a useful geothermometer. Correlation of trace element abundances with CL spectra confirms that common red CL, which is composed of the spectral bands centred at 1.69 eV (734 nm), 1.75 eV (708 nm), and 1.80 eV (689 nm), is related to Cr3+ defects. CL spectra of most kyanites show in addition a low-intensity blue emission centred at 2.56 eV (485 nm). Correlation of the intensity of the blue emission with Ti suggests that it is related to or sensitized by Ti4+ or Ti3+ defects. Kyanites with >3200 µgg-1 Fe show generally no detectable CL due to the CL-quenching effect of Fe2+. Our findings provide new criteria in the exploration for and quality assessment of new kyanite deposits. The Ti content, one of the critical contaminants of kyanite products, besides Fe, Ca, and Mg, appears predictable from the observed correlation of Ti with formation temperature. Iron will be hard to predict because its incorporation is mainly controlled by the oxidizing conditions during kyanite formation and the estimation of these conditions requires advanced analytical methods. Magnesium and Ca are consistently low in all investigated samples. From a regional exploration viewpoint, group C and D kyanites have the lowest Ti and relative low Fe and, therefore, will be most refractory. Due to their attractive blue colour, kyanite-bearing rocks of group C have potential as ornamental or dimension stone.
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Paciorek, K. J. L.; Harris, D. H.; Smythe, M. E.; Nakahara, J. H.; Kratzer, R. H.
1985-01-01
Thermal oxidative degradation studies were performed on unbranched perfluoroalkylethers at 288 C in oxygen. Metals and alloys studied included Ti, Al, and Ti (4 Al, 4 Mn). The mechanism of degradation was by chain scission. Ti and Al promoted less degradation than Ti (4 Al, 4 Mn). The two inhibitors investigated (a perfluorophenyl phosphine and a phosphatriazine) reduced degradation rates by several orders of magnitude. Both inhibitors were effective for the same duration (75 to 100 hours). The phosphatriazine appeared to provide more surface protection.
Carbide and nitride precipitation during laser cladding of Inconel 718 alloy coatings
NASA Astrophysics Data System (ADS)
Zhang, Yaocheng; Li, Zhuguo; Nie, Pulin; Wu, Yixiong
2013-11-01
The microstructure of the laser clad Inconel 718 alloy coating was observed by scanning electron microscope (SEM). The chemical composition of precipitation phases was investigated by energy dispersive spectrometer (EDS) and solid phase microextraction (SPME). The crystal structure and lattice constants of precipitation are determined by transmission electron microscope (TEM). Vickers hardness of the coatings and the nanohardness of the interstitial phases were measured. The insular carbide (MC) and the tetragonal nitride (MN) with face-centered cubic (FCC) structure are rich in Ti and Nb but depleted in Ni, Fe and Cr due to the interdiffusion and redistribution of alloying elements between MC and MN and supersaturated matrix. MC and MN were precipitated in the forms of (Nb0.12Ti0.88)C1.5 and (Nb0.88Ti0.12)N1.5, and the Gibbs free energies of formation can be expressed as Δ G [ (Nb0.12Ti0.88)C1.5 ] 0 = - 122.654 - 3.1332 T (kJ /mol) and Δ G [ (Nb0.88Ti0.12)N1.5 ] 0 = - 157.814 - 3.0251 T (kJ /mol). The nanohardness and Young's modulus of the MC and MN were much higher than the matrix, and the plastic deformation energy of interstitial phases was lower than the matrix. The precipitation of MC and MN is beneficial to the mechanical properties of coating.
Lohmiller, Thomas; Shelby, Megan L; Long, Xi; Yachandra, Vittal K; Yano, Junko
2015-10-29
Ca(2+)-depleted and Ca(2+)-reconstituted spinach photosystem II was studied using polarized X-ray absorption spectroscopy of oriented PS II preparations to investigate the structural and functional role of the Ca(2+) ion in the Mn4O5Ca cluster of the oxygen-evolving complex (OEC). Samples were prepared by low pH/citrate treatment as one-dimensionally ordered membrane layers and poised in the Ca(2+)-depleted S1 (S1') and S2 (S2') states, the S2'YZ(•) state, at which point the catalytic cycle of water oxidation is inhibited, and the Ca(2+)-reconstituted S1 state. Polarized Mn K-edge XANES and EXAFS spectra exhibit pronounced dichroism. Polarized EXAFS data of all states of Ca(2+)-depleted PS II investigated show only minor changes in distances and orientations of the Mn-Mn vectors compared to the Ca(2+)-containing OEC, which may be attributed to some loss of rigidity of the core structure. Thus, removal of the Ca(2+) ion does not lead to fundamental distortion or rearrangement of the tetranuclear Mn cluster, which indicates that the Ca(2+) ion in the OEC is not critical for structural maintenance of the cluster, at least in the S1 and S2 states, but fulfills a crucial catalytic function in the mechanism of the water oxidation reaction. On the basis of this structural information, reasons for the inhibitory effect of Ca(2+) removal are discussed, attributing to the Ca(2+) ion a fundamental role in organizing the surrounding (substrate) water framework and in proton-coupled electron transfer to YZ(•) (D1-Tyr161).
Dielectric characteristics of Mn-doped LaTiO3+δ ceramics
NASA Astrophysics Data System (ADS)
Chen, Yan; Cui, Yimin
A series of ceramic composites of Mn-doped La1- x MnxTiO3+ δ and LaMnxTi1- x O3+ δ (x = 0.1, 0.2) were synthesized by conventional solid-state reaction method. The low-frequency complex dielectric properties of the composites were investigated as functions of temperature (77 K <= T <= 360 K) and frequency (100 Hz <= f <= 1 MHz), respectively. The dielectric constant of A-site doped samples is higher than that of B-site doped samples. The loss tangent of low doped samples is much less than that of high doped samples. The A-site doped composites exhibit intrinsic dielectric response with a dielectric constant of 40 in the temperature below 250 K. Interestingly, the dielectric constants of B-site doped ceramics increase slightly in the temperature range from 77 to 360 K. And it is clearly observed that extraordinarily high dielectric loss tangent ( 6) appear at low frequency (100 Hz) in LaMn0.2Ti0.8O3+ δ , which is 8 times larger than that of LaMn0.1Ti0.9O3+ δ , which indicates that the doped content can affect the intrinsic dielectric characteristics significantly.
Influence of Ti on the Hot Ductility of High-manganese Austenitic Steels
NASA Astrophysics Data System (ADS)
Liu, Hongbo; Liu, Jianhua; Wu, Bowei; Su, Xiaofeng; Li, Shiqi; Ding, Hao
2017-07-01
The influence of Ti addition ( 0.10 wt%) on hot ductility of as-cast high-manganese austenitic steels has been examined over the temperature range 650-1,250 °C under a constant strain rate of 10-3 s-1 using Gleeble3500 thermal simulation testing machine. The fracture surfaces and particles precipitated at different tensile temperatures were characterized by means of scanning electron microscope and X-ray energy dispersive spectrometry (SEM-EDS). Hot ductility as a function of reduction curves shows that adding 0.10 wt% Ti made the ductility worse in the almost entire range of testing temperatures. The phases' equilibrium diagrams of precipitates in Ti-bearing high-Mn austenitic steel were calculated by the Thermo-Calc software. The calculation result shows that 0.1 wt% Ti addition would cause Ti(C,N) precipitated at 1,499 °C, which is higher than the liquidus temperature of high-Mn austenitic steel. It indicated that Ti(C,N) particles start forming in the liquid high-Mn austenitic steel. The SEM-EDS results show that Ti(C,N) and TiC particles could be found along the austenite grain boundaries or at triple junction, and they would accelerate the extension of the cracks along the grain boundaries.
Shinde, K N; Dhoble, S J
2013-01-01
A series of Ca6AlP5O20 doped with rare earths (Eu and Ce) and co-doped (Eu, Ce and Eu,Mn) were prepared by combustion synthesis. Under Hg-free excitation, Ca6AlP5O20:Eu exhibited Eu(2+) (486 nm) emission in the blue region of the spectrum and under near Hg excitation (245 nm), Ca6AlP5O20:Ce phosphor exhibited Ce(3+) emission (357 nm) in the UV range. Photoluminescence (PL) peak intensity increased in Ca6AlP5O20:Eu,Ce and Ca6AlP5O20:Eu, Mn phosphors due to co-activators of Ce(3+) and Mn(2+) ions. As a result, these ions played an important role in PL emission in the present matrix. Ca6AlP5O20:Eu, Ce and Ca6AlP5O20:Eu, Mn phosphors provided energy transfer mechanisms via Ce(3+) → Eu(2+) and Eu(2+) → Mn(2+), respectively. Eu ions acted as activators and Ce ions acted as sensitizers. Ce emission energy was well matched with Eu excitation energy in the case of Ca6AlP5O20:Eu, Ce and Eu ions acted as activators and Mn ions acted as sensitizers in Ca6AlP5O20:Eu, Mn. This study included synthesis of new and efficient phosphate phosphors. The impact of doping and co-doping on photoluminescence properties and energy transfer mechanisms were investigated and we propose a feasible interpretation. Copyright © 2012 John Wiley & Sons, Ltd.
CaSO4:DY,Mn: A new and highly sensitive thermoluminescence phosphor for versatile dosimetry
NASA Astrophysics Data System (ADS)
Bahl, Shaila; Lochab, S. P.; Kumar, Pratik
2016-02-01
With the advent of newer techniques for dose reduction coupled with the development of more sensitive detectors, the radiation doses in radiological medical investigation are decreasing. Nevertheless, keeping the tenet in mind that all radiation doses could entail risk, there is a need to develop more sensitive dosimeters capable of measuring low doses. This paper gives the account of the development of a new and sensitive phosphor CaSO4:Dy,Mn and its characterization. The standard production procedure based on the recrystallization method was used to prepare CaSO4:Dy,Mn. The Thermoluminescence (TL) studies were carried out by exposing it with gamma radiation (Cs-137) from 10 μGy to 100 Gy. The theoretical studies to determine the number of peaks and kinetic parameters related to the TL glow peaks in CaSO4:Dy,Mn was performed using the Computerized Glow Curve Deconvolution (CGCD) method. Experiments were performed to determine optimum concentration of the dopants Dysprosium (Dy) and Mangnese (Mn) in the host CaSO4 so that maximum sensitivity of the phosphor may be achieved. The optimum dopant concentration turned out to be 0.1 mol%. As there were two dopants Dy and Mn their relative ratio were varied in steps of 0.025 keeping the concentration of total dopant (Dy and Mn) 0.1 mol% always. The maximum TL intensity was seen in the CaSO4:Dy(0.025),Mn(0.075) combination. The TL sensitivity of this phosphor was found to be about 2 and 1.8 times higher than that of popular phosphor CaSO4:Dy and LiF:Mg,Cu,P (TLD-700H) respectively. This new phosphor CaSO4:Dy,Mn showed fading of 11% which is similar to that of the standard phosphor CaSO4:Dy. The paper concludes that the new, highly sensitive TL phosphor CaSO4:Dy,Mn has shown higher sensitivity and hence the potential to replace commonly used CaSO4:Dy.
Membranes for separation of carbon dioxide
Ku, Anthony Yu-Chung [Rexford, NY; Ruud, James Anthony [Delmar, NY; Ramaswamy, Vidya [Niskayuna, NY; Willson, Patrick Daniel [Latham, NY; Gao, Yan [Niskayuna, NY
2011-03-01
Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.
Zhang, Xuming; Peng, Xiang; Li, Wan; Li, Limin; Gao, Biao; Wu, Guosong; Huo, Kaifu; Chu, Paul K
2015-04-17
A coaxial electrode structure composed of manganese oxide-decorated TiC/C core/shell nanofiber arrays is produced hydrothermally in a KMnO4 solution. The pristine TiC/C core/shell structure prepared on the Ti alloy substrate provides the self-sacrificing carbon shell and highly conductive TiC core, thus greatly simplifying the fabrication process without requiring an additional reduction source and conductive additive. The as-prepared electrode exhibits a high specific capacitance of 645 F g(-1) at a discharging current density of 1 A g(-1) attributable to the highly conductive TiC/C and amorphous MnO2 shell with fast ion diffusion. In the charging/discharging cycling test, the as-prepared electrode shows high stability and 99% capacity retention after 5000 cycles. Although the thermal treatment conducted on the as-prepared electrode decreases the initial capacitance, the electrode undergoes capacitance recovery through structural transformation from the crystalline cluster to layered birnessite type MnO2 nanosheets as a result of dissolution and further electrodeposition in the cycling. 96.5% of the initial capacitance is retained after 1000 cycles at high charging/discharging current density of 25 A g(-1). This study demonstrates a novel scaffold to construct MnO2 based SCs with high specific capacitance as well as excellent mechanical and cycling stability boding well for future design of high-performance MnO2-based SCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Harikrishnan, N; Ravisankar, R; Chandrasekaran, A; Suresh Gandhi, M; Kanagasabapathy, K V; Prasad, M V R; Satapathy, K K
2017-08-15
The aim of this study was to determine the concentration of heavy metals in the sediments of Periyakalapet to Parangipettai coast, east coast of Tamil Nadu, by using energy-dispersive X-ray fluorescence (EDXRF) technique. The average heavy metal concentrations in the sediment samples were found in the order Al>Fe>Ca>Ti>K>Mg>Mn>Ba>V>Cr>Zn>La>Ni>Pb>Co>Cd>Cu. The average heavy metal concentrations were below the world crustal average. The degree of contamination by heavy metals was evaluated using pollution indices. The results of pollution indices revealed that titanium (Ti) and cadmium (Cd) were significantly enriched in sediments. Pearson correlation analysis was performed among heavy metal concentrations to know the existing relationship between them. Multivariate statistical technique was employed to identify the heavy metal pollution sources. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dimensionally stable metallic hydride composition
Heung, Leung K.
1994-01-01
A stable, metallic hydride composition and a process for making such a composition. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lecointre, A., E-mail: lecointre.aurelie@gmail.com; Bessière, A., E-mail: aurelie-bessiere@chimie-paristech.fr; Department of Physics, Goa University, Taleigao Plateau, Goa 403 206
Highlights: ► Long-lasting phosphorescence of CaMgSi{sub 2}O{sub 6}:Mn is studied for bioimaging application. ► CaMgSi{sub 2}O{sub 6}:Mn yields orange and red luminescence of Mn{sup II}{sub Ca} and Mn{sup II}{sub Mg}, respectively. ► Red Mn{sup II}{sub Mg} emission dominates long-lasting phosphorescence spectra. ► Mn mainly substitutes Mg. ► Mn{sup II}{sub Mg} plays the role of hole trap in the persistent luminescence mechanism. - Abstract: Materials with red long-lasting phosphorescence, such as Mn{sup II}-doped diopsides, can be used for small animal in vivo imaging. CaMgSi{sub 2}O{sub 6}:Mn powders with various amounts of Mn were prepared by sol–gel to investigate their long-lasting phosphorescencemore » mechanism. X-ray diffraction, X-ray absorption fine and near-edge structure and electron paramagnetic resonance showed that manganese is quantitatively introduced in the structure as Mn{sup II}. Most of the Mn doping ions substitute Mg and possess a highly elongated octahedral environment. While photoluminescence and X-ray excited optical luminescence spectra show both orange (585 nm) and red (685 nm) {sup 4}T{sub 1} ({sup 4}G) → {sup 6}A{sub 1} ({sup 6}S) emission of Mn{sup II}{sub Ca} and Mn{sup II}{sub Mg}, respectively, Mn{sup II}{sub Mg} red emission dominates long-lasting phosphorescence and thermally stimulated luminescence spectra. These results point to Mn{sup II}{sub Mg} as the preferential hole trap and recombination center in the long-lasting phosphorescence mechanism. An intense persistent red emission suitable for in vivo imaging probes is obtained for the highest nominal Mn content (7.5%)« less
Chandrasekaran, A; Ravisankar, R; Harikrishnan, N; Satapathy, K K; Prasad, M V R; Kanagasabapathy, K V
2015-02-25
Anthropogenic activities increase the accumulation of heavy metals in the soil environment. Soil pollution significantly reduces environmental quality and affects the human health. In the present study soil samples were collected at different locations of Yelagiri Hills, Tamilnadu, India for heavy metal analysis. The samples were analyzed for twelve selected heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn) using energy dispersive X-ray fluorescence (EDXRF) spectroscopy. Heavy metals concentration in soil were investigated using enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI) to determine metal accumulation, distribution and its pollution status. Heavy metal toxicity risk was assessed using soil quality guidelines (SQGs) given by target and intervention values of Dutch soil standards. The concentration of Ni, Co, Zn, Cr, Mn, Fe, Ti, K, Al, Mg were mainly controlled by natural sources. Multivariate statistical methods such as correlation matrix, principal component analysis and cluster analysis were applied for the identification of heavy metal sources (anthropogenic/natural origin). Geo-statistical methods such as kirging identified hot spots of metal contamination in road areas influenced mainly by presence of natural rocks. Copyright © 2014 Elsevier B.V. All rights reserved.
Hoshino, Takahiro; Isobe, Rina; Kaneko, Takuya; Matsuki, Yusuke; Nomiya, Kenji
2017-08-21
A novel compound containing a hexacalcium cluster cation, one carbonate anion, and one calcium cation assembled on a trimeric trititanium(IV)-substituted Wells-Dawson polyoxometalate (POM), [{Ca 6 (CO 3 )(μ 3 -OH)(OH 2 ) 18 }(P 2 W 15 Ti 3 O 61 ) 3 Ca(OH 2 ) 3 ] 19- (Ca 7 Ti 9 Trimer), was obtained as the Na 7 Ca 6 salt (NaCa-Ca 7 Ti 9 Trimer) by the reaction of calcium chloride with the monomeric trititanium(IV)-substituted Wells-Dawson POM species "[P 2 W 15 Ti 3 O 59 (OH) 3 ] 9- " (Ti 3 Monomer). Ti 3 Monomer was generated in situ under basic conditions from the separately prepared tetrameric species with bridging Ti(OH 2 ) 3 groups and an encapsulated Cl - ion, [{P 2 W 15 Ti 3 O 59 (OH) 3 } 4 {μ 3 -Ti(H 2 O) 3 } 4 Cl] 21- (Ti 16 Tetramer). The Na 7 Ca 6 salt of Ca 7 Ti 9 Trimer was characterized by complete elemental analysis, thermogravimetric (TG) and differential thermal analyses (DTA), FTIR, single-crystal X-ray structure analysis, and solution 183 W and 31 P NMR spectroscopy. X-ray crystallography revealed that the [Ca 6 (CO 3 )(μ 3 -OH)(OH 2 ) 18 ] 9+ cluster cation was composed of six calcium cations linked by one μ 6 -carbonato anion and one μ 3 -OH - anion. The cluster cation was assembled, together with one calcium ion, on a trimeric species composed of three tri-Ti(IV)-substituted Wells-Dawson subunits linked by Ti-O-Ti bonds. Ca 7 Ti 9 Trimer is an unprecedented POM species containing an alkaline-earth-metal cluster cation and is the first example of alkaline-earth-metal ions clustered around a titanium(IV)-substituted POM.
The Development of the Low-Cost Titanium Alloy Containing Cr and Mn Alloying Elements
NASA Astrophysics Data System (ADS)
Zhu, Kailiang; Gui, Na; Jiang, Tao; Zhu, Ming; Lu, Xionggang; Zhang, Jieyu; Li, Chonghe
2014-04-01
The α + β-type Ti-4.5Al-6.9Cr-2.3Mn alloy has been theoretically designed on the basis of assessment of the Ti-Al-Cr-Mn thermodynamic system and the relationship between the molybdenum equivalent and mechanical properties of titanium alloys. The alloy is successfully prepared by the split water-cooled copper crucible, and its microstructures and mechanical properties at room temperature are investigated using the OM, SEM, and the universal testing machine. The results show that the Ti-4.5Al-6.9Cr-2.3Mn alloy is an α + β-type alloy which is consistent with the expectation, and its fracture strength, yield strength, and elongation reach 1191.3, 928.4 MPa, and 10.7 pct, respectively. Although there is no strong segregation of alloying elements under the condition of as-cast, the segregation of Cr and Mn is obvious at the grain boundary after thermomechanical treatment.
Gagnon, Derek M.; Brophy, Megan Brunjes; Bowman, Sarah E. J.; Stich, Troy A.; Drennan, Catherine L.; Britt, R. David; Nolan, Elizabeth M.
2015-01-01
The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Herein, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimer is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin-echo envelope modulation and electron nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed 15N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by ca. two orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His6 site of human calprotectin. PMID:25597447
Hower, James C.; Berti, Debora; Hochella, Michael F.; ...
2018-04-16
Transmission electron microscopy accompanied by energy-dispersive spectroscopy and selected area electron diffraction of density-gradient separates from two lithotypes of the low-ash, low-sulfur Blue Gem coal, eastern Kentucky, revealed an array of previously unrecognized (in this coal, and arguable in most others) sub-micron minerals, some <10 nm in size. The first sample representing the 1.22–1.24 specific gravity fraction of the middle bench contains a mineral identified as a La-, Ce-, Nd-bearing monazite; other minerals with CrFe, CuFeS, FeZn-S, and Pb; and areas, probably comprising agglomerates of several grains, if not several minerals, with concentrations of Mg, Ca, Ti, Fe, Zn, Zr,more » and Mo. The second sample representing the 1.30–1.31 specific gravity fraction of the basal lithotype has aggregates of particles enriched in Mg, Ca, Ti, and Fe. Individual grains not specifically quantified include CrNiMnCuFeS, AgS, and CuS. Detailed investigation of one area (most of the variation within a <4 μm 2 region) demonstrates the presence of greenockite (CdS); minute phases containing NiCoGe and AgCdBi, the latter with a more evident S association than the former; metallic Bi; nisnite (Ni 3Sn); silver cadmium; manganosite (MnO); and siderite. Some minerals, such as the monazite, are most likely of detrital or tuffaceous origin. Many of the other assemblages could be of hydrothermal origin, a hypothesis supported by known regional geochemical and coal rank trends, but not previously demonstrated in mineral assemblages at the 10's of nm scale in this region.« less
Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12
NASA Astrophysics Data System (ADS)
Krohns, S.; Lu, J.; Lunkenheimer, P.; Brizé, V.; Autret-Lambert, C.; Gervais, M.; Gervais, F.; Bourée, F.; Porcher, É. F.; Loidl, A.
2009-11-01
The present work reports synthesis, as well as a detailed and careful characterization of structural, magnetic, and dielectric properties of differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this purpose, neutron and X-ray powder diffraction, SQUID measurements, and dielectric spectroscopy have been performed. Mn-, Fe-, and Ni-doped CCTO ceramics were investigated in great detail to document the influence of low-level doping with 3d metals on the antiferromagnetic structure and dielectric properties. In the light of possible magnetoelectric coupling in these doped ceramics, the dielectric measurements were also carried out in external magnetic fields up to 7 T. At low temperatures the dielectric constant shows a minor but significant dependence on the applied magnetic field. Undoped CCTO is well-known for its colossal dielectric constant in a broad frequency and temperature range. With the present extended characterization of doped as well as undoped CCTO, we want to address the question why doping with only 1% Mn or 0.5% Fe decreases the room-temperature dielectric constant of CCTO by a factor of ~100 with a concomitant reduction of the conductivity, whereas 0.5% Ni doping changes the dielectric properties only slightly. In addition, diffraction experiments and magnetic investigations were undertaken to check for possible correlations of the magnitude of the colossal dielectric constants with structural details or with magnetic properties like the magnetic ordering, the Curie-Weiss temperatures, or the paramagnetic moment. It is revealed, that while the magnetic ordering temperature and the effective moment of all investigated CCTO ceramics are rather similar, there is a dramatic influence of doping and tempering time on the Curie-Weiss constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hower, James C.; Berti, Debora; Hochella, Michael F.
Transmission electron microscopy accompanied by energy-dispersive spectroscopy and selected area electron diffraction of density-gradient separates from two lithotypes of the low-ash, low-sulfur Blue Gem coal, eastern Kentucky, revealed an array of previously unrecognized (in this coal, and arguable in most others) sub-micron minerals, some <10 nm in size. The first sample representing the 1.22–1.24 specific gravity fraction of the middle bench contains a mineral identified as a La-, Ce-, Nd-bearing monazite; other minerals with CrFe, CuFeS, FeZn-S, and Pb; and areas, probably comprising agglomerates of several grains, if not several minerals, with concentrations of Mg, Ca, Ti, Fe, Zn, Zr,more » and Mo. The second sample representing the 1.30–1.31 specific gravity fraction of the basal lithotype has aggregates of particles enriched in Mg, Ca, Ti, and Fe. Individual grains not specifically quantified include CrNiMnCuFeS, AgS, and CuS. Detailed investigation of one area (most of the variation within a <4 μm 2 region) demonstrates the presence of greenockite (CdS); minute phases containing NiCoGe and AgCdBi, the latter with a more evident S association than the former; metallic Bi; nisnite (Ni 3Sn); silver cadmium; manganosite (MnO); and siderite. Some minerals, such as the monazite, are most likely of detrital or tuffaceous origin. Many of the other assemblages could be of hydrothermal origin, a hypothesis supported by known regional geochemical and coal rank trends, but not previously demonstrated in mineral assemblages at the 10's of nm scale in this region.« less
NASA Astrophysics Data System (ADS)
Gamboa, Adriana; Montero-Serrano, Jean-Carlos; St-Onge, Guillaume; Rochon, André; Desiage, Pierre-Arnaud
2017-02-01
Mineralogical, geochemical, magnetic, and siliciclastic grain-size signatures of 34 surface sediment samples from the Mackenzie-Beaufort Sea Slope and Amundsen Gulf were studied in order to better constrain the redox status, detrital particle provenance, and sediment dynamics in the western Canadian Arctic. Redox-sensitive elements (Mn, Fe, V, Cr, Zn) indicate that modern sedimentary deposition within the Mackenzie-Beaufort Sea Slope and Amundsen Gulf took place under oxic bottom-water conditions, with more turbulent mixing conditions and thus a well-oxygenated water column prevailing within the Amundsen Gulf. The analytical data obtained, combined with multivariate statistical (notably, principal component and fuzzy c-means clustering analyses) and spatial analyses, allowed the division of the study area into four provinces with distinct sedimentary compositions: (1) the Mackenzie Trough-Canadian Beaufort Shelf with high phyllosilicate-Fe oxide-magnetite and Al-K-Ti-Fe-Cr-V-Zn-P contents; (2) Southwestern Banks Island, characterized by high dolomite-K-feldspar and Ca-Mg-LOI contents; (3) the Central Amundsen Gulf, a transitional zone typified by intermediate phyllosilicate-magnetite-K-feldspar-dolomite and Al-K-Ti-Fe-Mn-V-Zn-Sr-Ca-Mg-LOI contents; and (4) mud volcanoes on the Canadian Beaufort Shelf distinguished by poorly sorted coarse-silt with high quartz-plagioclase-authigenic carbonate and Si-Zr contents, as well as high magnetic susceptibility. Our results also confirm that the present-day sedimentary dynamics on the Canadian Beaufort Shelf is mainly controlled by sediment supply from the Mackenzie River. Overall, these insights provide a basis for future studies using mineralogical, geochemical, and magnetic signatures of Canadian Arctic sediments in order to reconstruct past variations in sediment inputs and transport pathways related to late Quaternary climate and oceanographic changes.
Magyari-Köpe, Blanka; Tendulkar, Mihir; Park, Seong-Geon; Lee, Hyung Dong; Nishi, Yoshio
2011-06-24
Resistance change random access memory (RRAM) cells, typically built as MIM capacitor structures, consist of insulating layers I sandwiched between metal layers M, where the insulator performs the resistance switching operation. These devices can be electrically switched between two or more stable resistance states at a speed of nanoseconds, with long retention times, high switching endurance, low read voltage, and large switching windows. They are attractive candidates for next-generation non-volatile memory, particularly as a flash successor, as the material properties can be scaled to the nanometer regime. Several resistance switching models have been suggested so far for transition metal oxide based devices, such as charge trapping, conductive filament formation, Schottky barrier modulation, and electrochemical migration of point defects. The underlying fundamental principles of the switching mechanism still lack a detailed understanding, i.e. how to control and modulate the electrical characteristics of devices incorporating defects and impurities, such as oxygen vacancies, metal interstitials, hydrogen, and other metallic atoms acting as dopants. In this paper, state of the art ab initio theoretical methods are employed to understand the effects that filamentary types of stable oxygen vacancy configurations in TiO(2) and NiO have on the electronic conduction. It is shown that strong electronic interactions between metal ions adjacent to oxygen vacancy sites results in the formation of a conductive path and thus can explain the 'ON' site conduction in these materials. Implication of hydrogen doping on electroforming is discussed for Pr(0.7)Ca(0.3)MnO(3) devices based on electrical characterization and FTIR measurements.
Magnetic order and polaron formation in hole-doped LaMnO_3
NASA Astrophysics Data System (ADS)
Terashita, Hirotoshi; Neumeier, John J.; Mitchell, J. F.
2003-03-01
We report the magnetic properties of hole-doped La_1-xCa_xMnO3 (0 <= x <= 0.14). A ferromagnetic saturation moment M_sat develops linearly with Mn^4+ concentration. The slope of M_sat versus Mn^4+ concentration is 27 μ_B/(Mn-ion) per substututed Mn^4+, which is about 3 times larger in magnitude than that of electron-doped CaMnO3 [1]. This result suggests differences in the formation of magnetic polarons of the A-type antiferromagnet LaMnO3 versus that of the G-type antiferromagnet CaMnO_3. Supported by NSF Grant DMR9982834 and the USDOE under contract W-31-109-ENG-38. [1] J. J. Neumeier and J. L. Cohn, Phys. Rev. B 61, 14319 (2000).
Thermoelectric properties of Ca(1-x-y)Dy(x)CeyMnO3 for power generation.
Park, K; Lee, G W; Jung, J; Kim, S-J; Lim, Y-S; Choi, S-M; Seo, W-S
2011-08-01
The sintered Ca(1-x-y)Dy(x)CeyMnO3 bodies were a single phase with a perovskite structure without any impurity phases. The calculated crystallite sizes of the Ca(1-x-y)Dy(x)CeyMnO3 were in the range of 43.3 to 63.3 nm. The composition significantly affected their microstructural and thermoelectric characteristics. The doped Dy led to both an increase in the electrical conductivity as well as the absolute value of the Seebeck coefficient, resulting in an enhanced power factor. The highest power factor (5.1 x 10(-4) Wm(-1) K(-2)) was obtained for Ca(0.8)Dy(0.2)MnO3 at 800 degrees C. In this study, we systematically discussed the thermoelectric properties of the Ca(1-x-y)Dy(x)CeyMnO3, with respect to the substitution of Dy and/or Ce for Ca.
Binary titanium alloys as dental implant materials-a review.
Liu, Xiaotian; Chen, Shuyang; Tsoi, James K H; Matinlinna, Jukka Pekka
2017-10-01
Titanium (Ti) has been used for long in dentistry and medicine for implant purpose. During the years, not only the commercially pure Ti but also some alloys such as binary and tertiary Ti alloys were used. The aim of this review is to describe and compare the current literature on binary Ti alloys, including Ti-Zr, Ti-In, Ti-Ag, Ti-Cu, Ti-Au, Ti-Pd, Ti-Nb, Ti-Mn, Ti-Mo, Ti-Cr, Ti-Co, Ti-Sn, Ti-Ge and Ti-Ga, in particular to mechanical, chemical and biological parameters related to implant application. Literature was searched using the PubMed and Web of Science databases, as well as google without limiting the year, but with principle key terms such as ' Ti alloy', 'binary Ti ', 'Ti-X' (with X is the alloy element), 'dental implant' and 'medical implant'. Only laboratory studies that intentionally for implant or biomedical applications were included. According to available literatures, we might conclude that most of the binary Ti alloys with alloying <20% elements of Zr, In, Ag, Cu, Au, Pd, Nb, Mn, Cr, Mo, Sn and Co have high potential as implant materials, due to good mechanical performance without compromising the biocompatibility and biological behaviour compare to cp-Ti.
NASA Astrophysics Data System (ADS)
Ding, Chong; Tang, Wanjun
2018-02-01
Single-phased Ca8ZnCe(PO4)7:Eu2+,Mn2+ phosphors with whitlockite-type structure have been prepared via the combustion-assisted synthesis technique. The XRD pattern show that the as-obtained phosphors crystallize in a trigonal phase with space group of R-3c (161). Ca8ZnCe(PO4)7 host is full of sensitizers (Ce3+) and the Ce3+ emission at different lattice sites has been discussed. The efficient energy transfers from Ce3+ ions to Eu2+/Mn2+ ions and from Eu2+ to Mn2+ have been validated. Under UV excitation, the emitting color of Ca8ZnCe(PO4)7:Eu2+/Mn2+ samples can be modulated from violet blue to green and from violet blue to red-orange by the energy transfers of Ce3+→Eu2+ and Ce3+→Mn2+, respectively. Additionally, white emission has been obtained through adjusting the relative concentrations of Eu2+ and Mn2+ ions in the Ca8ZnCe(PO4)7 host under UV excitation. These results indicate that as-prepared Ca8ZnCe(PO4)7:Eu2+,Mn2+ may be a potential candidate as color-tunable white light-emitting phosphors.
NASA Astrophysics Data System (ADS)
Li, Yong; Tang, Liping; Ma, Xinxu; Wang, Xinrui; Zhou, Wei; Bai, Dongsheng
2017-08-01
The use of sunscreen is recently growing and their efficacy and safety must be taken into account since they are applied on the skin frequently. In this work, an organic ultraviolet (UV) ray absorbent, cinnamic acid (CA) was intercalated into Zn-Ti layered double hydroxide (LDH) by anion-exchange reaction. ZnTi-CA-LDH, a new type of host-guest UV-blocking material has been synthesized. Detailed structural and surface morphology of ZnTi-CA-LDH were characterized by XRD, FT-IR, SEM and TEM. ZnTi-CA-LDH exhibits a superior UV blocking ability compared to pure CA and ZnTi-CO3-LDH. The thermal stability of the intercalated ZnTi-CA-LDH was investigated by TG-DTA, which showed that the thermostability of CA was markedly enhanced after intercalation into ZnTi-CO3-LDH. The EPR data showed greatly decreased photocatalytic activity compared to common inorganic UV blocking agents TiO2 and ZnO. Furthermore, the sample was formulated in a sunscreen cream to study the matrix protective effect towards UV rays.
Ab-initio calculations of the Ruddlesden Popper phases CaMnO3, CaO(CaMnO3) and CaO(CaMnO3)2
NASA Astrophysics Data System (ADS)
Cardoso, C.; Borges, R. P.; Gasche, T.; Godinho, M.
2008-01-01
The present work reports ab-initio density functional theory calculations for the Ruddlesden-Popper phase CaO(CaMnO3)n compounds. In order to study the evolution of the properties with the number of perovskite layers, a detailed analysis of the densities of states calculated for each compound and for several magnetic configurations was performed. The effect of distortions of the crystal structure on the magnetic ground state is also analysed and the exchange constants and transition temperatures are calculated for the three compounds using a mean field model. The calculated magnetic ground state structures and magnetic moments are in good agreement with experimental results and previous calculations.
Structure of the manganese complex in photosystem II: insights from X-ray spectroscopy.
Yachandra, Vittal K
2002-01-01
We have used Mn K-edge absorption and Kbeta emission spectroscopy to determine the oxidation states of the Mn complex in the various S states. We have started exploring the new technique of resonant inelastic X-ray scattering spectroscopy; this technique can be characterized as a Raman process that uses K-edge energies (1s to 4p, ca. 6550 eV) to obtain L-edge-like spectra (2p to 3d, ca. 650 eV). The relevance of these data to the oxidation states and structure of the Mn complex is presented. We have obtained extended X-ray absorption fine structure data from the S(0) and S(3) states and observed heterogeneity in the Mn-Mn distances leading us to conclude that there may be three rather than two di-mu-oxo-bridged units present per tetranuclear Mn cluster. In addition, we have obtained data using Ca and Sr X-ray spectroscopy that provide evidence for a heteronuclear Mn-Ca cluster. The possibility of three di-mu-oxo-bridged Mn-Mn moieties and the proximity of Ca is incorporated into developing structural models for the Mn cluster. The involvement of bridging and terminal O ligands of Mn in the mechanism of oxygen evolution is discussed in the context of our X-ray spectroscopy results. PMID:12437873
Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek
2018-03-01
We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.
NASA Astrophysics Data System (ADS)
Sadeghi, K. H.; Ahmadian, F.
2018-02-01
The first-principle density functional theory (DFT) calculations were employed to investigate the electronic structures, magnetic properties and half-metallicity of {Ti}2 {IrZ} (Z = B, Al, Ga, and In) Heusler alloys with {AlCu}2 {Mn}- and {CuHg}2 {Ti}-type structures within local density approximation and generalised gradient approximation for the exchange correlation potential. It was found that {CuHg}2 {Ti}-type structure in ferromagnetic state was energetically more favourable than {AlCu}2 {Mn}-type structure in all compounds except {Ti}2 {IrB} which was stable in {AlCu}2 {Mn}-type structure in non-magnetic state. {Ti}2 {IrZ} (Z = B, Al, Ga, and In) alloys in {CuHg}2 {Ti}-type structure were half-metallic ferromagnets at their equilibrium lattice constants. Half-metallic band gaps were respectively equal to 0.87, 0.79, 0.75, and 0.73 eV for {Ti}2 {IrB}, {Ti}2 {IrAl}, {Ti}2 {IrGa}, and {Ti}2 {IrIn}. The origin of half-metallicity was discussed for {Ti}2 {IrGa} using the energy band structure. The total magnetic moments of {Ti}2 {IrZ} (Z = B, Al, Ga, and In) compounds in {CuHg}2 {Ti}-type structure were obtained as 2μ B per formula unit, which were in agreement with Slater-Pauling rule (M_{tot} =Z_{tot}-18). All the four compounds were half-metals in a wide range of lattice constants indicating that they may be suitable and promising materials for future spintronic applications.
Aerosol characteristics and sources for the Amazon basin during the wet season
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artaxo, P.; Maenhaut, W.; Storms, H.
1990-09-20
Fine (< 2.0 {mu}m) and coarse (2.0 - 15 {mu}m) aerosol fractions were collected using stacked filter units, at three sites under the forest canopy and at three levels of a tower inside the jungle. Particle-induced x-ray emission (PIXE) was used to measure concentrations Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr, and Pb. Morphological and trace element measurements of individual particles were carried out by automated electron probe x-ray microanalysis. Gravimetric analysis was performed to obtain the fine and coarse aerosol mass concentration. The concentrations ofmore » soil dust related elements (Al, Si, Ti, Fe, Mn) were 5 times larger in the wet season compared to the 1985 ABLE 2A dry season experiment. Biogenic aerosol related elements in the fine fraction showed lower concentrations in the wet season. Fine aerosol mass concentration averaged only 2.1 {plus minus} 0.7 {mu}g m{sup {minus}3}, while the average coarse mass concentration was 6.1 {plus minus} 1.8 {mu}g m{sup {minus}3}. Sulfur concentrations averaged 76 {plus minus} 14 ng m{sup {minus}3} in the fine fraction and 37 {plus minus} 9 ng m{sup {minus}3} in the coarse fraction. Only two factors explained about 90% of the data variability for the fine and coarse aerosol fractions. These were soil dust (represented mainly by Al, Si, Ti, Mn, and Fe) and biogenic aerosol (represented by K, P, Cl, S, Zn, and the aerosol mass concentration). Biogenic particles account for 55-95% of the airborne concentrations and consisted of leaf fragments, pollen grains, fungi, algae, and other types of particles. It is possible that biogenic particles can play an important role in the global aerosol budget and in the global biogeochemical cycles of various elements.« less
Activation by divalent cations of a Ca2+-activated K+ channel from skeletal muscle membrane.
Oberhauser, A; Alvarez, O; Latorre, R
1988-07-01
Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.
Cuprian fraipontite and sauconite from the Defiance-Silver Bill mines, Gleeson, Arizona.
Foord, E.E.; Taggart, J.E.; Conklin, N.M.
1983-01-01
XRD studies have shown the fine-grained, light blue-green mineral previously identified as turquoise or chrysocolla to be the rare species fraipontite + or - admixed sauconite. Composite microprobe and XRF analyses gave SiO2 24.8, Al2O3 17.3, CaO 0.34, CuO 5.2, ZnO 40.95, H2O (ign. loss, 900oC) 12.8, = 101.39, yielding the formula (Zn1.84Al0.77Cu0.24box 0.13- Ca0.02)3.00(Si1.51Al0.49)2.00O5(OH)4. Semiquantitative emission spectrographic analysis showed Fe 0.007, Mg 0.01, Ca 0.07, Si 10, Al major, Na 0.015, Zn major, Cu 5%; Mn 15, B 150, Be 7, Ni 50, Pb 15, Sc 15, Ga 70 and Ag 1 ppm. It has a 5.331(8), b 9.23(1), c 7.275(6) A, beta 104.15o; H. 3.5-4; Dcalc 3.44, Dobs. 3.08- 3.10; mean refr. ind. approx 1.61. Much of the fraipontite is admixed with sauconite, which may be forming from the fraipontite. XRF analysis of this material gave SiO2 32.8, Al2O3 10.9, MgO < 0.1, CaO 1.51, Na2O < 0.2, K2O < 0.02, TiO2 < 0.02, P2O5 < 0.02, MnO < 0.02, CuO 4.65, ZnO 39.9, ign. loss 13.9, = 103.7.-G.W.R.
Wang, Nana; Yue, Jie; Chen, Liang; Qian, Yitai; Yang, Jian
2015-05-20
Rational design and delicate control on the component, structure, and surface of electrodes in lithium ion batteries are highly important to their performances in practical applications. Compared with various components and structures for electrodes, the choices for their surface are quite limited. The most widespread surface for numerous electrodes, a carbon shell, has its own issues, which stimulates the desire to find another alternative surface. Here, hydrogenated TiO2 is exemplified as an appealing surface for advanced anodes by the growth of ultrathin hydrogenated TiO2 branches on Mn3O4 nanorods. High theoretical capacity of Mn3O4 is well matched with low volume variation (∼4%), enhanced electrical conductivity, good cycling stability, and rate capability of hydrogenated TiO2, as demonstrated in their electrochemical performances. The proof-of-concept reveals the promising potential of hydrogenated TiO2 as a next-generation material for the surface in high-performance hybrid electrodes.
Han, X; Ferrier, G R
1992-01-01
1. Membrane currents were measured with a two-microelectrode technique in voltage clamped rabbit cardiac Purkinje fibres under conditions known to cause intracellular calcium overload and to eliminate or minimize Na(+)-Ca2+ exchange. 2. Increasing [Ca2+]o from 2.5 to 5 mM or above and substituting external sodium with either sucrose, choline or Li+ induced an oscillatory transient inward current (TI) which peaked 200-300 ms after repolarization from a previous depolarizing pulse. The TI quickly disappeared upon return to normal Tyrode solution. Both the rate and configuration of action potentials of Purkinje fibres also returned to control upon return to Tyrode solution after 30 min of high Ca2+ exposure, if the Ca2+ concentration was 30 mM or less. 3. The TI in Na(+)-free solution was Ca2+ dependent. Either zero or low (2.5 mM) [Ca2+]o, or replacement of [Ca2+]o by BaCl prevented induction of the TI current upon repolarization from a previous depolarizing pulse. 4. In the presence of 30 mM-CaCl2 and with choline chloride as the substitute for NaCl, TI had a distinct reversal potential (Erev) of -25 mV. The time-to-peak TI, either inward or outward, did not shift significantly with change in voltage. Both inward and outward TI were simultaneously abolished by exposure to 1 microM-ryanodine, suggesting they were both activated by transient release of Ca2+ from the sarcoplasmic reticulum. The occurrence of TI in the absence of [Na+]o is not compatible with an electrogenic Na(+)-Ca2+ exchange mechanism. The existence of a clear-cut reversal potential suggests that an ionic channel may be responsible for the TI under these conditions. 5. Both the magnitude of peak TI and the Erev were affected by changes of CaCl2 concentration. (i) Under steady-state conditions, peak inward TI was significantly increased when the [Ca2+]o was elevated from 5 to 15 mM. The peak TI in the outward direction was significantly increased when [Ca2+]o was elevated from 15 to 30 mM; however, the difference in peak inward TI at 15 and 30 mM [Ca2+]o was small. (ii) Clear-cut reversals of TI were found at Ca2+ concentrations of 10 mM (Erev = -19.5 mV) or greater, and elevation of [Ca2+]o to 20, 30, 50 and 105 mM shifted the Erev to more negative potentials. (iii) In the presence of 5 mM [Ca2+]o the inward TI declined to zero at about -30 mV, and test voltages between -55 and +5 mV failed to reveal a distinct outward TI.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1284077
Yu, Sirong; Yang, Xizhen; Yang, Long; Liu, Yaohui; Yu, Yingjie
2007-11-01
A novel technique for preparing the Ca- and P-containing ceramic coating on Ti-6Al-4V alloy by micro-arc oxidation (MAO) was developed successfully in this paper. In the new technique, Ti alloy first was micro-arc oxidated in P-containing electrolyte, and then it was micro-arc oxidated in Ca-containing electrolyte. This technique can avoid the undesired chemical reaction between Ca-containing salt and P-containing salt in electrolyte. The surface morphologies, composition, and phases of MAO coatings were studied by means of SEM, EDS, and XRD. The results show that the P- and Ca-containing coating on Ti-6Al-4V alloy contains Ti, TiO(2) (rutile), alpha-Ca(PO(3))(2), CaTiO(3), and AlTi(3). There are many small and uniform pores in the coating. Most of these pores are coterminous. The microhardness of the coating is 720 HV and higher than that of Ti-6Al-4V alloy (220 HV). The coating is more wear-resistant than Ti-6Al-4V alloy under the lubricant of the artificial saliva and not easy to desquamate from the substrate of Ti-6Al-4V alloy.
NASA Astrophysics Data System (ADS)
Hasenfratz, Adam P.; Martínez-García, Alfredo; Jaccard, Samuel L.; Vance, Derek; Wälle, Markus; Greaves, Mervyn; Haug, Gerald H.
2017-01-01
The occurrence of manganese-rich coatings on foraminifera can have a significant effect on their bulk Mg/Ca ratios thereby biasing seawater temperature reconstructions. The removal of this Mn phase requires a reductive cleaning step, but this has been suggested to preferentially dissolve Mg-rich biogenic carbonate, potentially introducing an analytical bias in paleotemperature estimates. In this study, the geochemical composition of foraminifera tests from Mn-rich sediments from the Antarctic Southern Ocean (ODP Site 1094) was investigated using solution-based and laser ablation ICP-MS in order to determine the amount of Mg incorporated into the coatings. The analysis of planktonic and benthic foraminifera revealed a nearly constant Mg/Mn ratio in the Mn coating of ∼0.2 mol/mol. Consequently, the coating Mg/Mn ratio can be used to correct for the Mg incorporated into the Mn phase by using the down core Mn/Ca values of samples that have not been reductively cleaned. The consistency of the coating Mg/Mn ratio obtained in this study, as well as that found in samples from the Panama Basin, suggests that spatial variation of Mg/Mn in foraminiferal Mn overgrowths may be smaller than expected from Mn nodules and Mn-Ca carbonates. However, a site-specific assessment of the Mg/Mn ratio in foraminiferal coatings is recommended to improve the accuracy of the correction.
NASA Astrophysics Data System (ADS)
Ackerson, M. R.; Tailby, N.; Watson, E. B.; Spear, F. S.
2013-12-01
Titanium concentrations in garnet vary over several orders of magnitude in natural systems-- from trace-element levels in continental metamorphic systems to several weight percent in garnets from mantle xenoliths. Broadly speaking the wide range of concentrations is due to crystallization from diverse environments. Understanding the crystallographic site and Ti-substitution mechanism in garnet is crucial to deciphering concentration trends and how these relate to the petrogenetic history. This study uses XANES spectroscopy to measure Ti coordination in natural and synthetic garnets known to crystallize over a wide range of conditions to investigate whether changes in Ti coordination and concentration correlate with changes T, P and bulk composition. Ti XANES spectroscopy utilizes shifts in the 1s-3d pre-edge feature, which shows systematic shifts in intensity and energy with coordination. Natural and synthetic garnets grown at >800 oC and >1 GPa incorporate Ti almost entirely on the octahedral site in garnet. It is possible that a small amount of Ti substitutes on the tetrahedral site in these garnets, but the concentration is too low to be observed in the spectra. The most feasible mechanism for octahedral substitution involves charge-balanced coupled substitution with an M2+ cation (where M2+=Mg, Fe, Ca, or Mn) resulting in a net loss of two Al for every Ti gained. Substitution of Al onto the tetrahedral site and Ti on the octahedral site is an other feasible mechanism, although the stoichiometric deficit of Al in experimental garnets suggests this mechanism could only account for a small percentage of Ti. Increases in Ti concentration correlate best with increasing Ca content in experimental garnets. Ti solubility also changes in response to T and P. These observations suggest that Ti incorporation on the octahedral site is dependent on the activities of Ti, Al and other M2+ cation system components. This helps to explain some of the differences in Ti concentration observed in garnets reported over a range of petrogenetic conditions. Garnets from sub-eclogite continental metamorphic systems-- in contrast to high P and T systems-- incorporate Ti onto both the octahedral and tetrahedral sites and display substantial coordination mixing (up to 75% tetrahedral Ti). This work is the first to directly observe significant Ti site mixing in garnet in response to the crystallization environment. Site mixing of Ti between octahedral and tetrahedral coordination reflects broad changes in T, P and composition. The behavior of Ti ions during garnet growth, which may show changes in both coordination and saturation, makes Ti-in-garnet a potentially powerful indicator of crystallization conditions.
NASA Astrophysics Data System (ADS)
Xie, Fei; Jia, Lijun; Shen, Qihang; Qiu, Hua; Zhang, Huaiwu
2018-03-01
Low firing temperature and excellent gyromagnetic properties such as high remanence square ratio and narrow ferromagnetic resonance line width are required for the application in nonreciprocal microwave ferrite devices based on low temperature cofired ceramics (LTCC) technology. In this research, Bi2O3-Li2CO3 mixture was introduced as the sintering agent to lower the sintering temperature of Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4 ferrite. The influence of Bi2O3-Li2CO3 mixture upon the phase composition, composite microstructures and gyromagnetic properties of LiZnTiMn ferrite sintered at low temperature has been investigated for LTCC integration applications. With a proper amount of Bi2O3-Li2CO3 mixture, the sintering temperature of LiZnTiMn ferrite successfully reduced to below 900°C from 1100°C without degradation of magnetic properties, meanwhile, both of saturation flux density and remanence square ratio were increased.
Fabrication of band gap engineered nanostructured tri-metallic (Mn-Co-Ti) oxide thin films
NASA Astrophysics Data System (ADS)
Mansoor, Muhammad Adil; Yusof, Farazila Binti; Nay-Ming, Huang
2018-04-01
In continuation of our previous studies on photoelectrochemical (PEC) properties of titanium based composite oxide thin films, an effort is made to develop thin films of 1:1:2 manganese-cobalt-titanium oxide composite, Mn2O3-Co2O3-4TiO2 (MCT), using Co(OAc)2 and a bimetallic manganese-titanium complex, [Mn2Ti4(TFA)8(THF)6(OH)4(O)2].0.4THF (1), where OAc = acetato, TFA = trifluoroacetato and THF = tetrahydrofuran, via aerosol-assisted chemical vapour deposition (AACVD) technique. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopic analyses confirmed formation of thin film of Mn2O3-Co2O3-4TiO2 composite material with uniformly distributed agglomerated particles. The average size of 39.5 nm, of the particles embedded inside agglomerates, was estimated by Scherer's equation. Further, UV-Vis spectroscopy was used to estimate the band gap of 2.62 eV for MCT composite thin film.
Lee, Sang Moon; Park, Kwang Hee; Kim, Sung Su; Kwon, Dong Wook; Hong, Sung Chang
2012-09-01
TiO2-supported manganese oxide catalysts formed using different calcination temperatures were prepared by using the wet-impregnation method and were investigated for their activity in the low-temperature selective catalytic reduction (SCR) of NO by NH3 with respect to the Mn valence and lattice oxygen behavior. The surface and bulk properties of these catalysts were examined using Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and temperature-programmed desorption (TPD). Catalysts prepared using lower calcination temperatures, which contained Mn4+ displayed high SCR activity at low temperatures and possessed several acid sites and active oxygen. The TPD analysis determined that the Brönsted and Lewis acid sites in the Mn/TiO2 catalysts were important for the low-temperature SCR at 80-160 and 200-350 degrees C, respectively. In addition, the available lattice oxygen was important for attaining high NO to NO2 oxidation at low temperatures. Recently, various Mn catalysts have been evaluated as SCR catalysts. However, there have been no studies on the relationship of adsorption and desorption properties and behavior of lattice oxygen according to the valence state for manganese oxides (MnO(x)). Therefore, in this study, the catalysts were prepared by the wet-impregnation method at different calcination temperatures in order to show the difference of manganese oxidation state. These catalysts were then characterized using various physicochemical techniques, including BET, XRD, TPR, and TPD, to understand the structure, oxidation state, redox properties, and adsorption and desorption properties of the Mn/TiO2 catalysts.
Nowlan, G.A.
1976-01-01
Correlation studies of 400 samples of sieved stream sediments and 325 samples of fluvial, concretionary Mn-Fe oxides from Maine resulted in the separation of elements into the following categories: (1) elements not scavenged by Mn-Fe oxides - B, Cr, K, Mg, Rb, Sc, Ti, V, and Zr; (2) elements probably not scavenged by Mn-Fe oxides - Ag, Be, Ca, Ga, La, Sb, and Y; (3) elements scavenged weakly by Mn-Fe oxides - Cu, Mo, Pb, and Sr; (4) elements scavenged strongly by Mn oxides - Ba, Cd, Co, Ni, Tl, and Zn; and (5) elements scavenged strongly by Fe oxides - As and In. Studies of the scavenged elements showed that the deviation from the mean is characteristically greater in oxide samples as compared to sieved sediments from the same locality. However, a significant increase in contrast between anomalous and background localities, when oxides are the sample medium, more than offsets the disadvantage of data scatter. The use of oxides as a sampling medium clearly and significantly accentuates anomalous localities. In general, non-ratioed data on oxides give very nearly the same results as data consisting of scavenged elements ratioed to Mn and Fe. However, ratioed data expand the geographic area of specific anomalies. Cd and Zn consistently show strong correlations with concretionary Mn-Fe oxides, but their concentrations in the oxides do not generally show as much contrast between anomalous and background localities as do Cu, Mo, and Pb. These latter elements are strongly scavenged where rocks are mineralized. ?? 1976.
Charge and magnetic ordering in the electron-doped magnetoresistive materials CaMnO3-δ (δ=0.06,0.11)
NASA Astrophysics Data System (ADS)
Wiebe, C. R.; Greedan, J. E.; Gardner, J. S.; Zeng, Z.; Greenblatt, M.
2001-08-01
The magnetoresistive ``electron''-doped materials CaMnO3-δ (δ=0.06,0.11) have been investigated using powder neutron diffraction. The two materials are n-type semiconductors which exhibit antiferromagnetic ordering at TN~125 K, but they have different magnetic structures. The CaMnO2.94 sample orders in a simple G-type antiferromagnetic structure, which is also observed in CaMnO3. The CaMnO2.89 sample, on the other hand, exhibits two magnetic features: the G-type reflections as noted above, and a set of reflections that can be indexed on a k=(0,0,14) ordering wave vector. A model for the magnetic structure is proposed which involves Mn3+/Mn4+ charge ordering concomitant with the magnetic ordering. The presence of a set of weak, temperature independent structural reflections which can also be indexed on a k=(0,0,14) supercell suggests an oxygen vacancy ordering which may play a role in the charge ordering.
Determination of Ca content of coral skeleton by analyte additive method using the LIBS technique
NASA Astrophysics Data System (ADS)
Haider, A. F. M. Y.; Khan, Z. H.
2012-09-01
Laser-induced breakdown spectroscopic (LIBS) technique was used to study the elemental profile of coral skeletons. Apart from calcium and carbon, which are the main elemental constituents of coral skeleton, elements like Sr, Na, Mg, Li, Si, Cu, Ti, K, Mn, Zn, Ba, Mo, Br and Fe were detected in the coral skeletons from the Inani Beach and the Saint Martin's island of Bangladesh and the coral from the Philippines. In addition to the qualitative analysis, the quantitative analysis of the main elemental constituent, calcium (Ca), was done. The result shows the presence of (36.15±1.43)% by weight of Ca in the coral skeleton collected from the Inani Beach, Cox's Bazar, Bangladesh. It was determined by using six calibration curves, drawn for six emission lines of Ca I (428.301 nm, 428.936 nm, 431.865 nm, 443.544 nm, 443.569 nm, and 445.589 nm), by standard analyte additive method. Also from AAS measurement the percentage content of Ca in the same sample of coral skeleton obtained was 39.87% by weight which compares fairly well with the result obtained by the analyte additive method.
Increased Curie Temperature Induced by Orbital Ordering in La0.67Sr0.33MnO3/BaTiO3 Superlattices.
Zhang, Fei; Wu, Biao; Zhou, Guowei; Quan, Zhi-Yong; Xu, Xiao-Hong
2018-01-17
Recent theoretical studies indicated that the Curie temperature of perovskite manganite thin films can be increased by more than an order of magnitude by applying appropriate interfacial strain to control orbital ordering. In this work, we demonstrate that the regular intercalation of BaTiO 3 layers between La 0.67 Sr 0.33 MnO 3 layers effectively enhances ferromagnetic order and increases the Curie temperature of La 0.67 Sr 0.33 MnO 3 /BaTiO 3 superlattices. The preferential orbital occupancy of e g (x 2 -y 2 ) in La 0.67 Sr 0.33 MnO 3 layers induced by the tensile strain of BaTiO 3 layers is identified by X-ray linear dichroism measurements. Our results reveal that controlling orbital ordering can effectively improve the Curie temperature of La 0.67 Sr 0.33 MnO 3 films and that in-plane orbital occupancy is beneficial to the double exchange ferromagnetic coupling of thin-film samples. These findings create new opportunities for the design and control of magnetism in artificial structures and pave the way to a variety of novel magnetoelectronic applications that operate far above room temperature.
NASA Astrophysics Data System (ADS)
Liu, Yi; Kim, Sun; McLeod, John A.; Li, Jun; Guo, Xiaoxuan; Sham, Tsun-Kong; Liu, Lijia
2017-02-01
The crystallization process of bioactive calcium phosphate (CaP) species via biomimetic deposition onto anodic TiO2 nanotubes is investigated. The porous surface of nanostructured TiO2 provides an ideal substrate for CaP crystallization. The compositions of CaP coatings are studied using X-ray absorption near-edge structures (XANES) at the Ca K-edge. Using detection modes with different probing depths, both the surface of the CaP coating and the CaP-TiO2 interface are simultaneously analyzed. Calcium phosphate (CaP) species, such as hydroxyapatite (HAp), octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O, OCP), brushite (CaHPO4·2H2O, DCPD), and amorphous calcium phosphate (ACP), are found in the CaP coatings. TiO2 nanotubes of amorphous and anatase phases are comparatively studied to determine their effect on the efficiency of CaP formation and the phase transformation among CaP species in prolonged deposition time. It is found the composition of CaP coating has a strong dependency on the crystal structure of TiO2 substrate and the kinetics (deposition time).
Microstructure and optical properties of TiO2 nanocrystallites-CaTiO3:Pr3+ hybrid thick films
NASA Astrophysics Data System (ADS)
Xia, Chang-Kui; Gao, Xiang-Dong; Yu, Changjiang; Yu, Aimin; Li, Xiaomin; Gao, Dongsheng; Shi, Ying
Long afterglow CaTiO3:Pr3+ ceramic powders were integrated with hydrothermal TiO2 nanocrystallites via “doctor-blade” and TiO2-CaTiO3:Pr3+ hybrid thick films on FTO substrate were fabricated. Effects of the Pr3+ doping level (0.06%, 0.3%) and the CaTiO3:Pr3+/TiO2 weight ratio (0.23, 0.92) on the crystallinity, morphologies, optical transmittance and photoluminescence (PL) properties were investigated. Results showed that the crystallinity of the hybrid films originated from both TiO2 nanocrystallites and CaTiO3:Pr3+ ceramic particles, affected little by the integrating process. The film surface became denser and coarser due to the incorporation of CaTiO3:Pr3+ micron/submicron particles, and the film thickness varied little (˜2.2μm). The optical transmittance of the hybrid film decreased sharply (<20% for 0.92 incorporation level) due to the scattering effects of the CaTiO3:Pr3+ micron/submicron particles to the incident light. All the hybrid films exhibited strong PL at ˜613nm when excited with 332-335nm, and the film with the Ca0.997TiO3:Pr0.0033+/TiO2 weight ratio of 0.23 showed the highest emission. In addition, the film exhibited a photoresponce to a broad ultraviolet excitation ranging from 288-369nm and a long emission decay time up to 30min at 613nm, possible for use in the ultraviolet detectors, solar cells and other photoelectrical devices.
NASA Astrophysics Data System (ADS)
Shi, Wujun; Muechler, Lukas; Manna, Kaustuv; Zhang, Yang; Koepernik, Klaus; Car, Roberto; van den Brink, Jeroen; Felser, Claudia; Sun, Yan
2018-02-01
We predict a magnetic Weyl semimetal in the inverse Heusler Ti2MnAl , a compensated ferrimagnet with a vanishing net magnetic moment and a Curie temperature of over 650 K. Despite the vanishing net magnetic moment, we calculate a large intrinsic anomalous Hall effect (AHE) of about 300 S/cm. It derives from the Berry curvature distribution of the Weyl points, which are only 14 meV away from the Fermi level and isolated from trivial bands. Different from antiferromagnets Mn3X (X =Ge , Sn, Ga, Ir, Rh, and Pt), where the AHE originates from the noncollinear magnetic structure, the AHE in Ti2MnAl stems directly from the Weyl points and is topologically protected. The large anomalous Hall conductivity (AHC) together with a low charge carrier concentration should give rise to a large anomalous Hall angle. In contrast to the Co-based ferromagnetic Heusler compounds, the Weyl nodes in Ti2MnAl do not derive from nodal lines due to the lack of mirror symmetries in the inverse Heusler structure. Since the magnetic structure breaks spin-rotation symmetry, the Weyl nodes are stable without SOC. Moreover, because of the large separation between Weyl points of opposite topological charge, the Fermi arcs extent up to 75 % of the reciprocal lattice vectors in length. This makes Ti2MnAl an excellent candidate for the comprehensive study of magnetic Weyl semimetals. It is the first example of a material with Weyl points, large anomalous Hall effect, and angle despite a vanishing net magnetic moment.
Zhang, Shibo; Zhao, Yongchun; Wang, Zonghua; Zhang, Junying; Wang, Lulu; Zheng, Chuguang
2017-03-01
A catalyst composed of manganese oxides supported on titania (MnO x /TiO 2 ) synthesized by a sol-gel method was selected to remove nitric oxide and mercury jointly at a relatively low temperature in simulated flue gas from coal-fired power plants. The physico-chemical characteristics of catalysts were investigated by X-ray fluorescence (XRF), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses, etc. The effects of Mn loading, reaction temperature and individual flue gas components on denitration and Hg 0 removal were examined. The results indicated that the optimal Mn/Ti molar ratio was 0.8 and the best working temperature was 240°C for NO conversion. O 2 and a proper ratio of [NH 3 ]/[NO] are essential for the denitration reaction. Both NO conversion and Hg 0 removal efficiency could reach more than 80% when NO and Hg 0 were removed simultaneously using Mn0.8Ti at 240°C. Hg 0 removal efficiency slightly declined as the Mn content increased in the catalysts. The reaction temperature had no significant effect on Hg 0 removal efficiency. O 2 and HCl had a promotional effect on Hg 0 removal. SO 2 and NH 3 were observed to weaken Hg 0 removal because of competitive adsorption. NO first facilitated Hg 0 removal and then had an inhibiting effect as NO concentration increased without O 2 , and it exhibited weak inhibition of Hg 0 removal efficiency in the presence of O 2 . The oxidation of Hg 0 on MnO x /TiO 2 follows the Mars-Maessen and Langmuir-Hinshelwood mechanisms. Copyright © 2016. Published by Elsevier B.V.
Fabrication of Mg-X-O (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn) barriers for magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Yakushiji, K.; Kitagawa, E.; Ochiai, T.; Kubota, H.; Shimomura, N.; Ito, J.; Yoda, H.; Yuasa, S.
2018-05-01
We fabricated magnetic tunnel junctions with a 3d-transition material(X)-doped MgO (Mg-X-O) barrier, and evaluated the effect of the doping on magnetoresistance (MR) and microstructure. Among the variations of X (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn), X = Fe and Mn showed a high MR ratio of more than 100%, even at a low resistance-area product of 3 Ωμm2. The microstructure analysis revealed that (001) textured orientation formed for X = Fe and Mn despite substantial doping (about 10 at%). The elemental mappings indicated that Fe atoms in the Mg-Fe-O barrier were segregated at the interfaces, while Mn atoms were evenly involved in the Mg-Mn-O barrier. This suggests that MgO has high adaptability for Fe and Mn dopants in terms of high MR ratio.
Chemical fluxes and origin of a manganese carbonate-oxide-silicate deposit in bedded chert
Huebner, J.S.; Flohr, M.J.K.; Grossman, J.N.
1992-01-01
Lens-like rhodochrosite-rich bodies within interbedded chert and shale are associated with basalt and/or graywacke in ophiolitic and orogenic zones. The Buckeye manganese mine in the Franciscan Complex of the California Coast Ranges is associated with metagraywacke. Despite blueschist-facies metamorphism, this deposit preserves the compositions and some textural features of its sedimentary protoliths. For this reason, it is a suitable deposit with which to compare more intensely altered deposits, or deposits originating in different paleoenvironments. Six Mn-rich and three Mn-poor minerals form monomineralic layers and mixtures: rhodochrosite, gageite, Mn-oxides (hausmannite, braunite), divalent Mn-silicates (caryopilite, taneyamalite), chlorite, quartz (metachert) and aegirine-augite. The Mn-rich protoliths have high Mn/Fe combined with relatively low concentrations of Ca, Al, Ti, Co, Ni, Cu, Th and REE. REE patterns of various protoliths are distinct. Rhodochrosite and gageite layers are depleted (seawater ?? 5 ?? 104) and flat, whereas patterns of metachert and the Mn-silicate-rich layers mimic the patterns of metashale and metagraywacke (seawater ?? 106). Hausmannite layers have flat patterns (seawater ?? 7 ?? 104) whereas braunite-rich layers are more enriched (seawater ?? 2 ?? 105) and show a distinct positive Ce anomaly. Factor analysis reveals components and fluxes attributed to sub-seafloor fluids (Ni, As, Zn, Sb, W, Mn), seawater (Mg, Au, V, Mo), detritus and veins (Ca, Ba, Sr). Silica is negatively correlated with the sub-seafloor factor. The observed variances indicate that water from the sediment column mixed with seawater, that deposition occurred near the sediment-seawater interface before mixtures of subsurface fluid and seawater homogenized, and that the system was not entirely closed during metamorphism. The variations in REE enrichment can be related to kinetics of deposition: rhodochrosite and gageite were precipitated most rapidly, and therefore were the protoliths that most effectively diluted the REE-rich background resulting from fine clastic material (derived from distal turbidites). The variation of the Ce anomaly and U/Th among diverse lithologies and the differences in Mn oxidation states are consistent with progressive dilution of reduced subsurface fluids with oxidized seawater. By this scheme, rhodochrosite, gageite and hausmannite were deposited from the most reduced fluids, braunite from intermediate mixtures, and Mn-silicates from the sub-seafloor fluids most diluted with fresh seawater. Comparison of the Buckeye with other lens-like and sheet-like deposits having high Mn/Fe and containing Mn3+ and/or Mn2+ suggests that each had three essential fluxes: a sub-seafloor source of Mn, a local source of very soluble silica and a source of relatively fresh, oxygenated water. Additional fluxes, such as clastics, appear to be more characteristic of the paleoenvironment than the three essential fluxes. ?? 1992.
NASA Astrophysics Data System (ADS)
Liu, Gaoyuan; Ji, Jian; Hu, Peng; Lin, Sixin; Huang, Haibao
2018-03-01
Odor pollution causes great harm to the atmospheric environment and human health. H2S, as an odor gas, is highly toxic and corrosive and thus requires removal efficiently. In this study, TiO2 catalysts modified by transition metals including Mn, Cu, Ni and Co, were prepared using a modified sol-gelatin method and tested under UV-PCO or VUV-PCO process. H2S degradation was great enhanced in VUV-PCO compared with conventional UV-PCO. Among the catalysts, 1 wt% Mn-TiO2 showed the highest removal efficiency of 89.9%, which is 30 times higher than that under 254 nm UV irradiation. Residual ozone in the outlet can be completely eliminated by Mn-TiO2. Photocatalytic oxidation, photolysis and ozone-assisted catalytic oxidation all involved in the VUV-PCO process and their contribution were determined by H2S removal efficiency.
Thabit, Mohamed; Liu, Huiling; Zhang, Jian; Wang, Bing
2017-10-01
Pd-MnO 2 /TiO 2 nanotube arrays (NTAs) photo-electrodes were successfully fabricated via anodization and electro deposition subsequently; the obtained Pd-MnO 2 /TiO 2 NTAs photo electrodes were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and characterized accordingly. Moreover, the light harvesting and absorption properties were investigated via ultraviolet-visible diffuse reflectance spectrum (DRS); photo degradation efficiency was investigated via analyzing the photo catalytic degradation of Rhodamine B under visible illumination (xenon light). The performed analyses illustrated that Pd-MnO 2 codoped particles were successfully deposited onto the surface of the TiO 2 nanotube arrays; DRS results showed significant improvement in visible light absorption which was between 400 and 700nm. Finally, the photo catalytic degradation efficiency results of the designated organic pollutant (Rhodamine B) illustrated a superior photocatalytic (PC) efficiency of approximately 95% compared to the bare TiO 2 NTAs, which only exhibited a photo catalytic degradation efficiency of approximately 61%, thus it indicated the significant enhancement of the light absorption properties of fabricated photo electrodes and their yield of OH radicals. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimura, Gen, E-mail: shimura.gen@b.mbox.nagoya-u.ac.jp; Shirako, Yuichi; Niwa, Ken
ABSTRACT: The synthesis of multicomponent perovskites (Ln{sub 0.25}Mn{sub 0.75})(Al{sub 0.25}Ti{sub 0.75})O{sub 3} (Ln=La, Pr, Nd, Sm, Gd, Tb, Dy, Y) have been investigated using a high-pressure and high-temperature (6 GPa, 1175 °C) technique. When Ln{sup 3+} is larger La{sup 3+}, Pr{sup 3+}, Nd{sup 3+}, the A-site ordered perovskites, LnMn{sub 3}(Al{sub 0.25}Ti{sub 0.75}){sub 4}O{sub 12} in Im-3, have been successfully synthesized. The A-site partially disordered one, (Sm{sub 0.80}Mn{sub 0.20})(Sm{sub 0.07}Mn{sub 0.93}){sub 3}(Al{sub 0.25}Ti{sub 0.75}){sub 4}O{sub 12} is also obtained. In the case of smaller Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, we have obtained no single phase but two decomposed perovskite phases.more » When Ln{sup 3+} is much smaller Y{sup 3+}, it is crystallized as an A-site disorder one in Pnma. The Rietveld structural refinements of the A-site ordered and partially disordered perovskites indicate that the tilting of (Al/Ti)O{sub 6} octahedrons for the A-site ions ordering is correlated with the (Al/Ti)–O and Ln–O bond lengths to optimize the coordination of the A- and A′-sites. The phase stability of the A-site ordered perovskites is discussed from the viewpoint of this correlation. - Graphical abstract: Ln{sup 3+} (VIII) ionic radius dependence of BO{sub 6} octahedron tilt angle and A/B–O distance of Im-3 perovskites (Ln{sub 0.25}Mn{sub 0.75})(Al{sub 0.25}Ti{sub 0.75})O{sub 3} (Ln=La-Sm).« less
Yu, Xiaopeng; Mi, Xueyang; He, Zhihui; Meng, Minjia; Li, Hongji; Yan, Yongsheng
2017-01-01
Highly selective cellulose acetate (CA)/poly (vinyl alcohol) (PVA)/titanium dioxide (TiO2) imprinted membranes were synthesized by phase inversion and dip coating technique. The CA blend imprinted membrane was synthesized by phase inversion technique with CA as membrane matrix, polyethyleneimine (PEI) as the functional polymer, and the salicylic acid (SA) as the template molecule. The CA/PVA/TiO2 imprinted membranes were synthesized by dip coating of CA blend imprinted membrane in PVA and different concentration (0.05, 0.1, 0.2, 0.4 wt %) of TiO2 nanoparticles aqueous solution. The SEM analysis showed that the surface morphology of membrane was strongly influenced by the concentration of TiO2 nanoparticles. Compared with CA/PVA-TiO2(0.05, 0.1, 0.2%)-MIM, the CA/PVA-TiO2(0.4%)-MIM possessed higher membrane flux, kinetic equilibrium adsorption amount, binding capacity and better selectivity for SA. It was found that the pseudo-second-order kinetic model was studied to describe the kinetic of CA/PVA-TiO2(0.2%)-MIM judging by multiple regression analysis. Adsorption isotherm analysis indicated that the maximum adsorption capacity for SA were 24.43 mg g−1. Moreover, the selectivity coefficients of CA/PVA-TiO2 (0.2%)-MIM for SA relative to p-hydroxybenzoic acid (p-HB) and methyl salicylate (MS) were 3.87 and 3.55, respectively. PMID:28184369
Strontium, barium, and manganese metabolism in isolated presynaptic nerve terminals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasgado-Flores, H.; Sanchez-Armass, S.; Blaustein, M.P.
1987-06-01
To gain insight into the mechanisms by which the divalent cations Sr, Ba, and Mn affect neurotransmitter release from presynaptic nerve terminals, the authors examined the sequestration of these cations, ion comparison to Ca, by mitochondrial and nonmitochondrial organelles and the extrusion of these cations from isolated nerve terminals. Sequestration was studied in synaptosomes made leaky to small ions by treatment with saponin; efflux was examined in intact synaptosomes that were preloaded with the divalent cations by incubation in depolarizing (K rich) media. The selectivity sequence for ATP-dependent mitochondrial uptake that they observed was Mn>>Ca>Sr>>Ba, whereas that for the SERmore » was Ca greater than or equal to Mn>Sr>>Ba. When synaptosomes that were preloaded with divalent cations were incubated in Na- and Ca-free media, there was little efflux of /sup 45/Ca, /sup 133/Ba, /sup 85/Sr, or /sup 54/Mn. When the incubation was carried out in media containing Na without Ca, there was substantial stimulation of Ca and Sr efflux, but only slight stimulation of Ba or Mn efflux. In Na-free media, the addition of 1 mM Ca promoted the efflux of all four divalent cations, probably via Ca-divalent cation exchange. In summary, the sequestration and extrusion data suggest that, with equal loads, Mn will be buffered to the greatest extent, whereas Ba will be least well buffered. These results may help to explain why Mn has a very long-lasting effect on transmitter release, while the effect of Sr is much briefer.« less
Photocatalytic activity of Fe-doped CaTiO₃ under UV-visible light.
Yang, He; Han, Chong; Xue, Xiangxin
2014-07-01
The photocatalytic degradation of methylene blue (MB) over Fe-doped CaTiO₃ under UV-visible light was investigated. The as-prepared samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) system, Fourier transform infrared spectra (FT-IR), and UV-visible diffuse reflectance spectroscopy (DRS). The results show that the doping with Fe significantly promoted the light absorption ability of CaTiO₃ in the visible light region. The Fe-doped CaTiO₃ exhibited higher photocatalytic activity than CaTiO₃ for the degradation of MB. However, the photocatalytic activity of the Fe-doped CaTiO₃ was greatly influenced by the calcination temperature during the preparation process. The Fe-doped CaTiO₃ prepared at 500°C exhibited the best photocatalytic activity, with degradation of almost 100% MB (10ppm) under UV-visible light for 180 min. Copyright © 2014. Published by Elsevier B.V.
Solid state proton and electron mediating membrane and use in catalytic membrane reactors
White, James H.; Schwartz, Michael; Sammells, Anthony F.
2001-01-01
Mixed electron- and proton-conducting metal oxide materials are provided. These materials are useful in fabrication of membranes for use in catalytic membrane reactions, particularly for promoting dehydrogenation of hydrocarbons, oligomerization of hydrocarbons and for the decomposition of hydrogen-containing gases. Membrane materials are perovskite compounds of the formula: AB.sub.1-x B'.sub.x O.sub.3-y where A=Ca, Sr, or Ba; B=Ce, Tb, Pr or Th; B'=Ti, V, Cr, Mn, Fe, Co, Ni or Cu; 0.2.ltoreq.x.ltoreq.0.5, and y is a number sufficient to neutralize the charge in the mixed metal oxide material.
Solid state proton and electron mediating membrane and use in catalytic membrane reactors
White, James H.; Schwartz, Michael; Sammells, Anthony F.
2000-01-01
Mixed electron- and proton-conducting metal oxide materials are provided. These materials are useful in fabrication of membranes for use in catalytic membrane reactions, particularly for promoting dehydrogenation of hydrocarbons, oligomerization of hydrocarbons and for the decomposition of hydrogen-containing gases. Membrane materials are perovskite compounds of the formula: AB.sub.1-x B'.sub.x O.sub.3-y where A=Ca, Sr, or Ba; B=Ce, Tb, Pr or Th; B'=Ti, V, Cr, Mn, Fe, Co, Ni or Cu; 0.2
Atomic-absorption determination of rhodium in chromite concentrates
Schnepfe, M.M.; Grimaldi, F.S.
1969-01-01
Rhodium is determined in chromite concentrates by atomic absorption after concentration either by co-precipitation with tellurium formed by the reduction of tellurite with tin(II) chloride or by fire assay into a gold bead. Interelement interferences in the atomic-absorption determination are removed by buffering the solutions with lanthanum sulphate (lanthanum concentration 1%). Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated. A lower limit of approximately 0.07 ppm Rh can be determined in a 3-g sample. ?? 1969.
Rare earth doped zinc oxide varistors
McMillan, A.D.; Modine, F.A.; Lauf, R.J.; Alim, M.A.; Mahan, G.D.; Bartkowiak, M.
1998-12-29
A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2--4.0% oxide of at least one rare earth element, 0.5--4.0% Co{sub 3}O{sub 4}, 0.05--0.4% K{sub 2}O, 0.05--0.2% Cr{sub 2}O{sub 3}, 0--0.2% CaO, 0.00005--0.01% Al{sub 2}O{sub 3}, 0--2% MnO, 0--0.05% MgO, 0--0.5% TiO{sub 3}, 0--0.2% SnO{sub 2}, 0--0.02% B{sub 2}O{sub 3}, balance ZnO. 4 figs.
Rare earth doped zinc oxide varistors
McMillan, April D.; Modine, Frank A.; Lauf, Robert J.; Alim, Mohammad A.; Mahan, Gerald D.; Bartkowiak, Miroslaw
1998-01-01
A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2-4.0% oxide of at least one rare earth element, 0.5-4.0% Co.sub.3 O.sub.4, 0.05-0.4% K.sub.2 O, 0.05-0.2% Cr.sub.2 O.sub.3, 0-0.2% CaO, 0.00005-0.01% Al.sub.2 O.sub.3, 0-2% MnO, 0-0.05% MgO, 0-0.5% TiO.sub.3, 0-0.2% SnO.sub.2, 0-0.02% B.sub.2 O.sub.3, balance ZnO.
Tourmaline (dravite) from the Boehls Butte anorthosite, Idaho, U.S.A.
Hietanen, A.
1987-01-01
Greenish black tourmaline occurs in small localized masses in the Boehls Butte layered, two-plagioclase anorthosite. Chemical analysis by S. Neil gave SiO2 36.6, TiO2 0.34, B2O3 10.7, Al2O3 33.6, V2O3 0.24, FeO 4.16, MnO 0.09, MgO 8.04, CaO 0.98, Na2O 1.74, F 0.03, H2O+ 3.06, less O = F 0.01, = 99.57; epsilon (pale reddish brown) 1.62, omega (brownish green) 1.647; a 15.9425, c 7.1883 A.-R.A.H.
Enhancement of the red emission in CaTiO 3:Pr 3+ by addition of rare earth oxides
NASA Astrophysics Data System (ADS)
Zhang, Xianmin; Zhang, Jiahua; Zhang, Xia; Chen, Li; Luo, Yongshi; Wang, Xiao-jun
2007-02-01
Enhancement of the 1D 2- 3H 4 red emission of CaTiO 3:Pr 3+ with addition of rare earth oxides Ln 2O 3 (Ln = Lu, La, Gd) is reported. Ca 2+ and Ti 4+ in CaTiO 3 can be substituted by Ln 3+ ions as donors and acceptors, respectively. Ca 2+ and Ti 4+ vacancies, as quenching centers in the host, are effectively suppressed by the self-compensation, leading to the increase of lifetimes and then the emission efficiency of 1D 2. The red fluorescence intensity for CaTiO 3:Pr 3+ phosphor co-doped with 5 mol% Lu 2O 3 is nearly 3 times greater than that of the Lu-free samples.
NASA Astrophysics Data System (ADS)
Freeland, J. W.; Chakhalian, J.; Boris, A. V.; Tonnerre, J.-M.; Kavich, J. J.; Yordanov, P.; Grenier, S.; Zschack, P.; Karapetrova, E.; Popovich, P.; Lee, H. N.; Keimer, B.
2010-03-01
A combination of spectroscopic probes was used to develop a detailed experimental description of the transport and magnetic properties of superlattices composed of the paramagnetic metal CaRuO3 and the antiferromagnetic insulator CaMnO3 . The charge-carrier density and Ru valence state in the superlattices are not significantly different from those of bulk CaRuO3 . The small charge transfer across the interface implied by these observations confirms predictions derived from density-functional calculations. However, a ferromagnetic polarization due to canted Mn spins penetrates 3-4 unit cells into CaMnO3 , far exceeding the corresponding predictions. The discrepancy may indicate the formation of magnetic polarons at the interface.
NASA Astrophysics Data System (ADS)
Li, Yong-Chao; Wu, Jun; Pan, Hai-Yang; Wang, Jue; Wang, Guang-Hou; Liu, Jun-Ming; Wan, Jian-Guo
2018-05-01
Mn:ZnO/Pb(Zr0.52Ti0.48)O3 (PZT) heterostructured films have been prepared on Pt/Ti/SiO2/Si wafers by a sol-gel process. Nonvolatile and reversible manipulation of the magnetism and resistance by electric fields has been realized. Compared with the saturation magnetic moment (Ms) in the +3.0 V case, the modulation gain of Ms can reach 270% in the -3.0 V case at room temperature. The resistance change is attributed to the interfacial potential barrier height variation and the formation of an accumulation (or depletion) layer at the Mn:ZnO/PZT interface, which can be regulated by the ferroelectric polarization direction. The magnetism of Mn:ZnO originates from bound magnetic polarons. The mobile carrier variation in Mn:ZnO, owing to interfacial polarization coupling and the ferroelectric field effect, enables the electric manipulation of the magnetism in the Mn:ZnO/PZT heterostructured films. This work presents an effective method for modulating the magnetism of magnetic semiconductors and provides a promising avenue for multifunctional devices with both electric and magnetic functionalities.
Gagnon, Derek M; Brophy, Megan Brunjes; Bowman, Sarah E J; Stich, Troy A; Drennan, Catherine L; Britt, R David; Nolan, Elizabeth M
2015-03-04
The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Herein, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimer is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin-echo envelope modulation and electron-nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed (15)N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by two to three orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His6 site of human calprotectin.
Gagnon, Derek M.; Brophy, Megan Brunjes; Bowman, Sarah E. J.; ...
2015-01-18
The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Here in this paper, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimermore » is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin–echo envelope modulation and electron–nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed 15N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by two to three orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His 6 site of human calprotectin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Derek M.; Brophy, Megan Brunjes; Bowman, Sarah E. J.
The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Here in this paper, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimermore » is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin–echo envelope modulation and electron–nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed 15N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by two to three orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His 6 site of human calprotectin.« less
Hydrogenated TiO2 nanotube arrays for supercapacitors.
Lu, Xihong; Wang, Gongming; Zhai, Teng; Yu, Minghao; Gan, Jiayong; Tong, Yexiang; Li, Yat
2012-03-14
We report a new and general strategy for improving the capacitive properties of TiO(2) materials for supercapacitors, involving the synthesis of hydrogenated TiO(2) nanotube arrays (NTAs). The hydrogenated TiO(2) (denoted as H-TiO(2)) were obtained by calcination of anodized TiO(2) NTAs in hydrogen atmosphere in a range of temperatures between 300 to 600 °C. The H-TiO(2) NTAs prepared at 400 °C yields the largest specific capacitance of 3.24 mF cm(-2) at a scan rate of 100 mV s(-1), which is 40 times higher than the capacitance obtained from air-annealed TiO(2) NTAs at the same conditions. Importantly, H-TiO(2) NTAs also show remarkable rate capability with 68% areal capacitance retained when the scan rate increase from 10 to 1000 mV s(-1), as well as outstanding long-term cycling stability with only 3.1% reduction of initial specific capacitance after 10,000 cycles. The prominent electrochemical capacitive properties of H-TiO(2) are attributed to the enhanced carrier density and increased density of hydroxyl group on TiO(2) surface, as a result of hydrogenation. Furthermore, we demonstrate that H-TiO(2) NTAs is a good scaffold to support MnO(2) nanoparticles. The capacitor electrodes made by electrochemical deposition of MnO(2) nanoparticles on H-TiO(2) NTAs achieve a remarkable specific capacitance of 912 F g(-1) at a scan rate of 10 mV s(-1) (based on the mass of MnO(2)). The ability to improve the capacitive properties of TiO(2) electrode materials should open up new opportunities for high-performance supercapacitors. © 2012 American Chemical Society
Lohmiller, Thomas; Shelby, Megan L.; Long, Xi; ...
2015-05-19
We studied Ca 2+ -depleted and Ca 2+ -reconstituted spinach photosystem II using polarized X-ray absorption spectroscopy of oriented PS II preparations to investigate the structural and functional role of the Ca 2+ ion in the Mn 4O 5Ca cluster of the oxygen-evolving complex (OEC). Samples were prepared by low pH/citrate treatment as one-dimensionally ordered membrane layers and poised in the Ca 2+ -depleted S 1 (S 1') and S 2 (S 2') states, the S 2'Y Z• state, at which point the catalytic cycle of water oxidation is inhibited, and the Ca 2+ -reconstituted S 1 state. Polarized Mnmore » K-edge XANES and EXAFS spectra exhibit pronounced dichroism. Polarized EXAFS data of all states of Ca 2+ -depleted PS II investigated show only minor changes in distances and orientations of the Mn-Mn vectors compared to the Ca 2+ -containing OEC, which may be attributed to some loss of rigidity of the core structure. Thus, removal of the Ca 2+ ion does not lead to fundamental distortion or rearrangement of the tetranuclear Mn cluster, which indicates that the Ca 2+ ion in the OEC is not critical for structural maintenance of the cluster, at least in the S 1 and S 2 states, but fulfills a crucial catalytic function in the mechanism of the water oxidation reaction. On the basis of this structural information, reasons for the inhibitory effect of Ca 2+ removal are discussed, attributing to the Ca 2+ ion a fundamental role in organizing the surrounding (substrate) water framework and in proton-coupled electron transfer to Y Z• (D1-Tyr161).« less
Growth of beta-MnO2 Films on TiO2(110) by Oxygen-Plasma-Assisted Molecular Beam Epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, Scott A.; Liang, Yong
Discusses the essential need to understand the heterogeneous chemistry of mineral surfaces at a molecular level for accurate modeling of surface complexion processes in natural environments. Describes the first MBE growth and characterization of ultrathin films of B-MnO2 on TiO2 (110).
Biaxial tensile strain modulates magnetic properties of the 3d transition metal doped stanene
NASA Astrophysics Data System (ADS)
Dai, Xian-Qi; Zhao, Ming-Yu; Zhao, Ru-Meng; Li, Wei
2017-06-01
Utilizing first-principle calculations, the biaxial tensile strain modulating magnetic states and electronic structures of transition metal (TM) (i.e., Mn, Fe, Sc, Ni and Ti) atoms doped in stanene are investigated. It shows that Mn and Fe doped stanene systems are magnetic, while the Sc, Ti and Ni doped stanene systems are nonmagnetic. When the biaxial tensile strain increases, a weaker antiferromagnetic coupling between the nearest neighbor (NN) Sn atoms and Mn (Fe, Ti) atom is observed. For Sc and Ni doped stanene systems, the biaxial strain doesn't introduce spin polarization for the TM atoms. In a word, the TM atoms doped stanene systems may manifest potential applications in nanoelectronics, spintronics and magnetic storage devices.
Influence of Oxygen Stoichiometry Variations on the Properties of CaMnO3 thin films
NASA Astrophysics Data System (ADS)
Goehringer, Tyler; Yong, Grace; Otouloumougoye, Brenda; Keshavarz, Camron; Sharma, Prahash; Tanyi, E. Kevin; Schaefer, David; Kolagani, Rajeswari
2013-03-01
The family of alkaline-earth doped rare earth manganese oxides RE1-xAExMnO3 exhibit a rich variety of electronic phases depending on the cation stoichiometry. In thin films of these materials, the oxygen stoichiometry is also a variable, and together with cation stoichiometry is known to play a key role in determining the equilibrium phase. The cation and oxygen stoichiometry variations influence electrical and magnetic properties through changes in the mixed valence state of Mn, i.e. the ratio of Mn3+ to Mn4+ ions. CaMnO3 is one of the end members of this family with x =1. Stoichiometric CaMnO3 is a canted antiferromagnetic insulator with the Mn ion in the Mn4+ valence state. We will present our results on the effects of oxygen content variation on the structural, electrical, and magnetoresistive properties CaMnO3 thin films grown by Pulsed Laser Deposition. These results will be compared to the effects of oxygen stoichiometry variation in thin films of its doped counter-part La1-xCaxMnO3. We will also discuss surface morphology changes associated with variation in oxygen stoichiometry which may be associated with different surface terminations. We acknowledge support from the NSF grant ECCS 1128586 at Towson University.
Zhang, Ji; Sun, Wei; Zhao, Jiangtao; Sun, Lei; Li, Lei; Yan, Xue-Jun; Wang, Ke; Gu, Zheng-Bin; Luo, Zhen-Lin; Chen, Yanbin; Yuan, Guo-Liang; Lu, Ming-Hui; Zhang, Shan-Tao
2017-08-02
Thin films of 0.85BiFe 1-2x Ti x Mg x O 3 -0.15CaTiO 3 (x = 0.1 and 0.2, abbreviated to C-1 and C-2, respectively) have been fabricated on (001) SrTiO 3 substrate with and without a conductive La 0.7 Sr 0.3 MnO 3 buffer layer. The X-ray θ-2θ and ϕ scans, atomic force microscopy, and cross-sectional transmission electron microscopy confirm the (001) epitaxial nature of the thin films with very high growth quality. Both the C-1 and C-2 thin films show well-shaped magnetization-magnetic field hysteresis at room temperature, with enhanced switchable magnetization values of 145.3 and 42.5 emu/cm 3 , respectively. The polarization-electric loops and piezoresponse force microscopy measurements confirm the room-temperature ferroelectric nature of both films. However, the C-1 films illustrate a relatively weak ferroelectric behavior and the poled states are easy to relax, whereas the C-2 films show a relatively better ferroelectric behavior with stable poled states. More interestingly, the room-temperature thermal conductivity of C-1 and C-2 films are measured to be 1.10 and 0.77 W/(m·K), respectively. These self-consistent multiferroic properties and thermal conductivities are discussed by considering the composition-dependent content and migration of Fe-induced electrons and/or charged point defects. This study not only provides multifunctional materials with excellent room-temperature magnetic, ferroelectric, and thermal conductivity properties but may also stimulate further work to develop BiFeO 3 -based materials with unusual multifunctional properties.
The design of an Fe-12Mn-O.2Ti alloy steel for low temperature use
NASA Technical Reports Server (NTRS)
Hwang, S. K.; Morris, J. W., Jr.
1977-01-01
An investigation was made to improve the low temperature mechanical properties of Fe-8 approximately 12% Mn-O 2Ti alloy steels. A two-phase(alpha + gamma) tempering in combination with cold working or hot working was identified as an effective treatment. A potential application as a Ni-free cryogenic steel was shown for this alloy. It was also shown that an Fe-8Mn steel could be grain-refined by a purely thermal treatment because of its dislocated martensitic structure and absence of epsilon phase. A significant reduction of the ductile-brittle transition temperature was obtained in this alloy. The nature and origin of brittle fracture in Fe-Mn alloys were also investigated. Two embrittling regions were found in a cooling curve of an Fe-12Mn-O 2Ti steel which was shown to be responsible for intergranular fracture. Auger electron spectroscopy identified no segregation during solution-annealing treatment. Avoiding the embrittling zones by controlled cooling led to a high cryogenic toughness in a solution-annealed condition.
Sangeetha, N. S.; Pandey, Abhishek; Benson, Zackery A.; ...
2016-09-15
Crystallographic, electronic transport, thermal, and magnetic properties are reported for SrMn 2As 2 and CaMn 2As 2 single crystals grown using Sn flux. Rietveld refinements of powder x-ray diffraction data show that the two compounds are isostructural and crystallize in the trigonal CaAl 2Si 2-type structure (space groupmore » $$P\\bar{3}$$ m1), in agreement with the literature. Electrical resistivity ρ versus temperature T measurements demonstrate insulating ground states for both compounds with activation energies of 85 meV for SrMn 2As 2 and 61 meV for CaMn 2As 2. In a local-moment picture, the Mn +2 3d 5 ions are expected to have high-spin S=5/2 with spectroscopic splitting factor g≈2. Magnetic susceptibility χ and heat capacity Cp measurements versus T reveal antiferromagnetic (AFM) transitions at T N=120(2) K and 62(3) K for SrMn 2As 2 and CaMn 2As 2, respectively. The anisotropic χ(T≤T N) data indicate that the hexagonal c axis is the hard axis and hence that the ordered Mn moments are aligned in the ab plane. Finally, the χ(T) data for both compounds and the Cp(T) for SrMn 2As 2 show strong dynamic short-range AFM correlations from T N up to at least 900 K, likely associated with quasi-two-dimensional connectivity of strong AFM exchange interactions between the Mn spins within the corrugated honeycomb Mn layers parallel to the ab plane.« less
NASA Astrophysics Data System (ADS)
Singh, Dhananjay Kumar; Manam, J.
2018-03-01
Current study proposes the improved red emission of Zn2+ and Mg2+ ions incorporated CaTiO3:Eu3+ phosphors synthesized via the well-known solid-state reaction method. Under the 397 nm UV excitation, the Zn2+- and Mg2+-incorporated CaTiO3:0.15Eu3+ phosphor having orthorhombic structure with space group Pbnm exhibited an intense red emission at 619 nm. This can be credited to the hypersensitive 5D0 → 7F2 transition of Eu3+ ions, which is also indicative of the fact that the Eu3+ ions populated the non-inversion symmetry sites in the CaTiO3 lattices. The optimized composition CaTiO3:0.15Eu3+, 0.20Zn2+ and CaTiO3:0.15Eu3+, 0.10Mg2+ phosphors, pronounces in a magnificent enhancement of PL intensity by 5.5 and 2.5 times, respectively, as compared to CaTiO3:0.15 Eu3+ phosphor. From the temperature-dependent emission spectra, ΔEa were enunciated to be 0.101 and 0.086 eV for CaTiO3:0.15Eu3+, 0.20Zn2+ and CaTiO3:0.15Eu3+, 0.10Mg2+ phosphors, respectively, for thermal quenching. In addition, it can be better understood as related to the adequate thermal stability of 60% even at 450 and 420 K, respectively. Furthermore, the Judd-Ofelt theory was used to study the radiative intensity parameters of Eu3+ ions in the CaTiO3 lattices. The experimental results incited the bright prospects of synthesized ceramics as a promising candidate for lighting applications.
NASA Astrophysics Data System (ADS)
Nithya, V. D.; Kalai Selvan, R.; Vediappan, Kumaran; Sharmila, S.; Lee, Chang Woo
2012-11-01
Sub-micrometer sized Li4Ti5-xMnxO12 (x = 0.0, 0.05 and 0.1) particles were synthesized by a single step molten salt method using LiCl-KCl as a flux. The synthesized material was structurally characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra. The XRD analysis revealed the particles to be highly crystalline and have a face-centered cubic spinel structure. The presence of possible functional group was confirmed through FTIR analysis. The FE-SEM images showed the particles to be polyhedral in shape with uniform size distribution. It was also revealed that there was a particle size reduction with the effect of Mn4+ dopant ions. The electrochemical studies performed using cyclic voltammogram (CV), charge-discharge, and electrochemical impedance analysis (EIS) indicate that Li4Ti4.9Mn0.1O4 possesses a better discharge capacity (305 mAh/g), cycling stability, and charge carrier conductivity than both Li4Ti4.95Mn0.05O12 (265 mAh/g) and Li4Ti5O12 (240 mAh/g). The cycling stability reveals that the acceptable capacity fading was observed even after 20th cycle. The results of electrochemical studies infer that Li4Ti4.9Mn0.1O4 could be utilized as a suitable anode material for Li-ion batteries.
NASA Astrophysics Data System (ADS)
Oumezzine, Marwène; Peña, Octavio; Kallel, Sami; Kallel, Nabil; Guizouarn, Thierry; Gouttefangeas, Francis; Oumezzine, Mohamed
2014-03-01
The effects of non-magnetic Ti4+ substitution on the structural, electrical and magnetic properties of La0.67Ba0.33Mn1- x Ti x O3 (0≤ x≤0.1) are investigated and compared to those existing in La0.67Ba0.33Mn1- x Cr x O3 (magnetic Cr3+). The structural refinement by the Rietveld method revealed that Ti-doped samples crystallize in the cubic lattice with space group , while samples with Cr crystallize in the hexagonal setting of the rhombohedral space group for identical contents of dopant. The most relevant structural features are an increase of the lattice parameters, of the cell volume and of the inter-ionic distances with increasing Ti doping level. Both series of samples show a decrease of the paramagnetic-ferromagnetic transition temperature when the amount of chromium or titanium increases. Transport measurements show that when increasing the metal doping, the resistivity increases whereas the metallic behavior of the parent compound La0.67Ba0.33MnO3 is destroyed. For a substitution higher than 5 at.% of Ti and 10 at.% of Cr, the samples exhibit a semiconducting behavior in the whole range of temperature, for which the electronic transport can be explained by variable range hopping and/or small polaron hopping models.
NASA Astrophysics Data System (ADS)
Li, Cuiqin; Chen, Qianlin; Yan, Yunan; Li, Yanan; Zhao, Ying
2018-02-01
A series of Ca0.92La0.04RE0.04MnO3 (RE = Sm, Dy and Yb) compounds are synthesized via a coprecipitation technique. The influence of La/RE dual doping on the phase structure, microstructure and thermoelectric properties of the CaMnO3 system is investigated. Increased material density with grain sizes of 1-2 μm and a homogeneous microstructure is realized. Dual doping decreases the electrical resistivity due to an increase in the carrier concentration and also decreases the thermal conductivity due to increased grain scattering, damping of local vibrations by heavier La/RE ions compared to Ca and lattice distortion. The Ca0.92La0.04Yb0.04MnO3 shows the highest power factor of 3.49 × 10-4 W m-1 K-2 and the highest dimensionless figure of merit ZT of 0.25 at 770 K, which is approximately 3 times larger than that obtained for the undoped CaMnO3 and significantly larger than that of single-doped CaMnO3 prepared by solid-state reaction. This work provides a basic foundation for the industrial application of this thermoelectric material.
NASA Astrophysics Data System (ADS)
Baisnab, Dipak Kumar; Sardar, Manas; Amaladass, E. P.; Vaidhyanathan, L. S.; Baskaran, R.
2018-07-01
Thin film multilayer heterostructure of alternate YBa2Cu3O7-δ (YBCO) and Pr0.5Ca0.5MnO3 (PCMO) with thickness of each layer ∼60 nm has been deposited on (100) oriented SrTiO3 substrate by Pulsed Laser Deposition technique. A half portion of the base YBCO layer was masked in situ using mechanical shadow mask and in the remaining half portion, five alternate layers of PCMO and YBCO thin films were deposited. Magnetoresistance measurements were carried out under externally applied magnetic field and injection current. A noticeable damped oscillation of the superconducting transition temperature (TC) of this multilayer with respect to magnetic field is seen. Curiously, the field at which the first minimum in TC occurs, decreases as an injection current is driven perpendicular/parallel to the multilayers. Both these phenomena indicate that ferromagnetic correlation can be induced in antiferromagnetic PCMO thin films by (1) external magnetic field, or (2) injection current. While (1) is well researched, our study indicates that ferromagnetism can be induced by small amount of current in PCMO thin films. This unusual behavior points towards the strongly correlated nature of electrons in PCMO.
Vural, Alaaddin
2015-08-01
Kırkpavli alteration area (Gümüşhane, Northeast Turkey) is contaminated by heavy metals such as Cd, Pb, As, Cu and Zn. The quantity of accumulation of heavy metal trace elements and macroelements in 32 leaves of Rosa canina of the Kırkpavli alteration area has been studied within the scope of geochemical studies. Element contents of samples were assessed using various parameters including descriptive statistics, factor analysis, correlation coefficients and bioaccumulation factor. Concentrations were detected in the acceptable range for Mo, Cu, Pb, Ni, As, Cd, Sb, P, Ti, Na, Se and Sn. Concentrations of Co, Mn, Ba and Hg were detected close to the acceptable values, whereas Zn, Fe, Sr, V, Ca, Cr, Mg, B, Al, K, W, Sc, Cs and Rb concentrations were detected above the acceptable values. Principal component analysis was used to identify the elements that have a close relationship with each other and/or similar origins. It has been concluded that Zn, Cu, As and Mo content of the plant were related to hydrothermal alteration process and they behaved together, whereas Mn and Fe were especially products of weathering conditions, also behaved together. In terms of macroelements, Ca, Mg and Na had similar behaviour, while P and K had the same correlation.
Akbaba, Giray B; Turkez, Hasan; Sönmez, Erdal; Tatar, Abdulgani; Yilmaz, Mehmet
2016-08-01
Lithium titanate (Li 2 TiO 3 ) nanoparticles (LTT NPs; <100 nm) are widely used in battery technology, porcelain enamels, and ceramic insulating bodies. With the increased applications of LTT NPs, the concerns about their potential human toxicity effects and their environmental impact were also increased. However, toxicity data for LTT NPs relating to human health are very limited. Therefore, the purpose of this study was to evaluate whether LTT NPs are able to induce genetic damage in human peripheral lymphocytes in vitro when taking into consideration that DNA damage plays an important role in carcinogenesis. With this aim, the chromosome aberrations (CA), sister chromatid exchanges (SCE), and micronucleus (MN) assays were used as genotoxicity end points. Human peripheral lymphocytes obtained from five healthy male volunteers were exposed to LTT NPs at final dispersed concentrations ranging from 0 to 1000 μg/mL for 72 h at 37°C. The obtained results indicated that LTT NPs compound did not induce DNA damage in human peripheral lymphocytes as depicted by CA/cell, SCE/cell, and MN/1000 cell values in all concentrations tested. In summary, our results revealed that exposure to LTT NPs is not capable of inducing DNA lesions in human peripheral lymphocytes for the first time. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Mitsugi, Masakazu; Asanuma, Shutaro; Uesu, Yoshiaki; Fukunaga, Mamoru; Kobayashi, Wataru; Terasaki, Ichiro
2007-06-01
To elucidate the origin of the colossal dielectric response (CDR) of CaCu3Ti4O12 (CCTO), multilayer thin films of CCTO interposed in insulating CaTiO3 (CTO) were synthesized using a pulsed laser deposition technique. The capacitance C of CTO/CCTO/CTO films with different layer thicknesses is measured. After removing the capacitance of CTO by extrapolating C to zero CTO thickness, the real part of dielectric constant of CCTO is estimated to be 329-435, which is much smaller than the reported value for CCTO thin films. This fact indicates that the CDR of CCTO is extrinsic and originates from an internal barrier layer capacitor.
Lu, Xihong; Yu, Minghao; Wang, Gongming; Zhai, Teng; Xie, Shilei; Ling, Yichuan; Tong, Yexiang; Li, Yat
2013-01-11
A flexible solid-state asymmetric supercapacitor device with H-TiO(2) @MnO(2) core-shell NWs as the positive electrode and H-TiO(2) @C core-shell NWs as the negative electrode is developed. This device operates in a 1.8 V voltage window and is able to deliver a high specific capacitance of 139.6 F g(-1) and maximum volumetric energy density of 0.30 mWh cm(-3) with excellent cycling performance and good flexibility. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Titanium nitride as a seed layer for Heusler compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niesen, Alessia, E-mail: aniesen@physik.uni-bielefeld.de; Glas, Manuel; Ludwig, Jana
Titanium nitride (TiN) shows low resistivity at room temperature (27 μΩ cm), high thermal stability and thus has the potential to serve as seed layer in magnetic tunnel junctions. High quality TiN thin films with regard to the crystallographic and electrical properties were grown and characterized by x-ray diffraction and 4-terminal transport measurements. Element specific x-ray absorption spectroscopy revealed pure TiN inside the thin films. To investigate the influence of a TiN seed layer on a ferro(i)magnetic bottom electrode in magnetic tunnel junctions, an out-of-plane magnetized Mn{sub 2.45}Ga as well as in- and out-of-plane magnetized Co{sub 2}FeAl thin films were depositedmore » on a TiN buffer, respectively. The magnetic properties were investigated using a superconducting quantum interference device and anomalous Hall effect for Mn{sub 2.45}Ga. Magneto optical Kerr effect measurements were carried out to investigate the magnetic properties of Co{sub 2}FeAl. TiN buffered Mn{sub 2.45}Ga thin films showed higher coercivity and squareness ratio compared to unbuffered samples. The Heusler compound Co{sub 2}FeAl showed already good crystallinity when grown at room temperature on a TiN seed-layer.« less
NASA Astrophysics Data System (ADS)
Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.
2013-04-01
Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter < 2.5 μm) resolved aerosol samples analysed by Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie European Union framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the approach used is the simultaneous sampling at two monitoring sites in Barcelona (Spain) during September-October 2010: an urban background site (UB) and a street canyon traffic road site (RS). Elements related to primary non-exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (regional sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non-exhaust brake dust (Fe-Cu) - 7%), and three types of industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%, percentages presented are average source contributions to the total elemental mass measured). The validity of the PMF solution of the PIXE data is supported by very good correlations with external single particle mass spectrometry measurements. Some important conclusions can be drawn about the PM2.5 mass fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both monitoring sites at similar concentrations regardless their different ventilation conditions; (2) by contrast, local industrial aerosol plumes associated with shipping oil combustion and smelters activities have a higher impact on the more ventilated UB site; (3) a unique source of Pb-Cl (associated with combustion emissions) is found to be the major (82%) source of fine Cl in the urban agglomerate; (4) the mean diurnal variation of PM2.5 primary traffic non-exhaust brake dust (Fe-Cu) suggests that this source is mainly emitted and not resuspended, whereas PM2.5 urban dust (Ca) is found mainly resuspended by both traffic vortex and sea breeze; (5) urban dust (Ca) is found the aerosol source most affected by land wetness, reduced by a factor of eight during rainy days and suggesting that wet roads may be a solution for reducing urban dust concentrations.
Oak Bole-Wood Chemistry Response to Fertilization at Two Ozark Sites
David R. DeWalle; William E. Sharpe; Bryan R. Swistock
2004-01-01
Bole-wood chemistry can be a useful indicator of the nutrient status of trees. Liming generally increases Ca and/or Mg and decreases Mn concentrations in bole-wood. Acidifying treatments, such as ammonium sulfate or nitrogen fertilizers without lime, generally cause Mn increases and concomitant decreases in Ca and Mg. Bole-wood concentration ratios of Ca/Mn have been...
NASA Astrophysics Data System (ADS)
Patle, L. B.; Huse, V. R.; Chaudhari, A. L.
2017-10-01
Nanocrystalline undoped and transition metal ion doped (TM:Cu2+, Mn2+ and Fe3+) TiO2 nanoparticles, with 1 mol% were synthesized by a simple and cost effective modified co-precipitation method at room temperature and were successfully used as photoanode for dye sensitized solar cell (DSSC). The effect of transition metal ions into TiO2 nano crystalline powder has been systematically investigated using x-ray diffraction (XRD), UV-Vis spectroscope, scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive x-ray spectroscopy (EDX). The results of XRD confirm nanocrystalline anatase tetragonal structure of prepared undoped and TM doped TiO2 semiconductor. The influence of doping on band edge movement has been estimated using UV-visible spectroscopy. The SEM results indicate that microscopic effect of doping on morphology of the TiO2. The peaks of EDX signify incorporation of transition metal cations into TiO2 lattice. The effect of doping on flat band potential was estimated using interpolation on Mott-Schottky plot. The performances of DSSCs of undoped and doped TiO2 photoelectrodes were investigated under light illumination. In comparison with undoped and (Cu2+, Fe3+) doped TiO2 photoanodes we found that incorporation of Mn2+ into TiO2 exhibits improvement in photoconversion efficiency (η). There is increase in photoconversion efficiency of DSSCs with Mn2+ doped TiO2 by 6% as compared to that of undoped TiO2 photoanode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeland, J. W.; Chakhalian, J.; Boris, A. V.
2010-01-01
A combination of spectroscopic probes was used to develop a detailed experimental description of the transport and magnetic properties of superlattices composed of the paramagnetic metal CaRuO3 and the antiferromagnetic insulator CaMnO3. The charge carrier density and Ru valence state in the superlattices are not significantly different from those of bulk CaRuO3. The small charge transfer across the interface implied by these observations confirms predictions derived from density functional calculations. However, a ferromagnetic polarization due to canted Mn spins penetrates 3-4 unit cells into CaMnO3, far exceeding the corresponding predictions. The discrepancy may indicate the formation of magnetic polarons atmore » the interface.« less
A simplified extraction schema to for the analytical characterization of apple orchard soils
NASA Astrophysics Data System (ADS)
Sager, Manfred
2014-05-01
In agriculture, soil analysis is mainly done to monitor available nutrients as well contaminants, in order to find the optimum fertilization resp. remediation strategy. Traditionally, available nutrients in soils have been obtained from a series of different extractions, some just for one single parameter. In order to simplify the entire procedures, multi-element techniques, like ICP-OES and ICP-MS, have been applied to a sequence of extracts obtained with 0,16M acetic acid and 0,1M oxalate buffer pH 3, which are more suitable for the plasma than traditional salt extractant solutions. Dilute acetic acid should characterize exchangeables plus carbonates, and oxalate buffer the pedogenic oxides. Aqua regia extractions in glass have been replaced by pressure digestion with KClO3 in dilute nitric acid, which yields results equivalent to aqua regia, and additionally permits the determination of total sulfur, as well as acid-leachable boron and silicon. Total digestion was done in PTFE beakers by fuming with HNO3/HClO4, subsequently with HF, and final uptake in 1+1 HCl. The results of total digestion could be verified by XRF analysis of the solid, Ti recovery was the most critical item. The method was applied to 34 soils from apple orchards of different soil types and climatic zones. P and K obtained from standard acetate-lactate extract as well as B obtained from the Baron extract correlated with the results from the acetic acid extract better than 0,9. Just Mg from the CaCl2 extract (Schachtschabel) was independent from all other Mg fractions. The results for Ca, Cu, Mg, Mn, Sr, Pb and Zn obtained from KClO3 digest and from totals, were strongly correlated. The Rare Earth elements formed a strongly intercorrelated group as well after total digestion as in the oxalate leach. Factor analysis was utilized to prove if the obtained fractions part into groups in a geochemically feasible way. The fraction mobilized by dilute acetic acid contained Ca-Mg-carbonates as well as the minority elements Al-B-Ba-K-Na-S in the first factor, whereas Fe-Mn-Ti-La-Li-Sr-Y formed a group of its own. Both groups were rather independent from nutrient P as well as from the pedogenic oxides, obtained from Al-Fe-Mn-Ti released in oxalate. The oxalate soluble fraction was independent form available nutrient levels, and parted into 5 groups, of which one contained the anions B-S-Si, another one the contaminants As-Cd-Pb. Finally, the relations of these soil data to apple leaves from May and August, apple blossom leaves and apple fruits grown at these sites will be discussed, covering 50 varieties. The proposed method permits to obtain informations about common cations including trace elements, and the non-metals phosphorus, silicon, sulfur, boron and iodine simultaneously, which could be a gate to find new relations among them.
Investigation of embedded perovskite nanoparticles for enhanced capacitor permittivities.
Krause, Andreas; Weber, Walter M; Pohl, Darius; Rellinghaus, Bernd; Verheijen, Marcel; Mikolajick, Thomas
2014-11-26
Growth experiments show significant differences in the crystallization of ultrathin CaTiO3 layers on polycrystalline Pt surfaces. While the deposition of ultrathin layers below crystallization temperature inhibits the full layer crystallization, local epitaxial growth of CaTiO3 crystals on top of specific oriented Pt crystals occurs. The result is a formation of crystals embedded in an amorphous matrix. An epitaxial alignment of the cubic CaTiO3 ⟨111⟩ direction on top of the underlying Pt {111} surface has been observed. A reduced forming energy is attributed to an interplay of surface energies at the {111} interface of both materials and CaTiO3 nanocrystallites facets. The preferential texturing of CaTiO3 layers on top of Pt has been used in the preparation of ultrathin metal-insulator-metal capacitors with 5-30 nm oxide thickness. The effective CaTiO3 permittivity in the capacitor stack increases to 55 compared to capacitors with amorphous layers and a permittivity of 28. The isolated CaTiO3 crystals exhibit a passivation of the CaTiO3 grain surfaces by the surrounding amorphous matrix, which keeps the capacitor leakage current at ideally low values comparable for those of amorphous thin film capacitors.
Anand, V K; Tennant, D A; Lake, B
2015-11-04
Physical properties of partially Ca substituted hole-doped Dy2Ti2O7 have been investigated by ac magnetic susceptibility χ(ac)(T), dc magnetic susceptibility χ(T), isothermal magnetization M(H) and heat capacity C(p)(T) measurements on Dy1.8Ca0.2Ti2O7. The spin-ice system Dy2Ti2O7 exhibits a spin-glass type freezing behavior near 16 K. Our frequency dependent χ(ac)(T) data of Dy1.8Ca0.2Ti2O7 show that the spin-freezing behavior is significantly influenced by Ca substitution. The effect of partial nonmagnetic Ca(2+) substitution for magnetic Dy(3+) is similar to the previous study on nonmagnetic isovalent Y(3+) substituted Dy(2-x)Y(x) Ti2O7 (for low levels of dilution), however the suppression of spin-freezing behavior is substantially stronger for Ca than Y. The Cole-Cole plot analysis reveals semicircular character and a single relaxation mode in Dy1.8Ca0.2Ti2O7 as for Dy2Ti2O7. No noticeable change in the insulating behavior of Dy2Ti2O7 results from the holes produced by 10% Ca(2+) substitution for Dy(3+) ions.
Far-infrared and dc magnetotransport of CaMnO3-CaRuO3 superlattices
NASA Astrophysics Data System (ADS)
Yordanov, P.; Boris, A. V.; Freeland, J. W.; Kavich, J. J.; Chakhalian, J.; Lee, H. N.; Keimer, B.
2011-07-01
We report temperature- and magnetic-field-dependent measurements of the dc resistivity and the far-infrared reflectivity (FIR) (photon energies ℏω=50-700 cm-1) of superlattices comprising ten consecutive unit cells of the antiferromagnetic insulator CaMnO3, and four to ten unit cells of the correlated paramagnetic metal CaRuO3. Below the Néel temperature of CaMnO3, the dc resistivity exhibits a logarithmic divergence upon cooling, which is associated with a large negative, isotropic magnetoresistance. The ω→0 extrapolation of the resistivity extracted from the FIR reflectivity, on the other hand, shows a much weaker temperature and field dependence. We attribute this behavior to scattering of itinerant charge carriers in CaRuO3 from sparse, spatially isolated magnetic defects at the CaMnO3-CaRuO3 interfaces. This field-tunable “transport bottleneck” effect may prove useful for functional metal-oxide devices.
Order-disorder phenomena in the low-temperature phase of BaTiO3
NASA Astrophysics Data System (ADS)
Völkel, G.; Müller, K. A.
2007-09-01
X - and Q -band electron paramagnetic resonance measurements are reported on Mn4+ -doped BaTiO3 single crystals in the rhombohedral low-temperature phase. The Mn4+ probe ion is statistically substitute for the isovalent Ti4+ ion. The critical line broadening observed when approaching the phase transition to the orthorhombic phase demonstrates the presence of order-disorder processes within the off-center Ti subsystem and the formation of dynamic precursor clusters with a structure compatible with one of the orthorhombic phase. From the data it is concluded that BaTiO3 shows a special type of phase transition where displacive and order-disorder character are not only present at the cubic-tetragonal transition, but also at the orthorhombic-rhombohedral transition at low temperatures. The disappearance of the Mn4+ spectrum in the orthorhombic, tetragonal, and cubic phases can be interpreted as the consequence of the strong line broadening caused by changes of the instantaneous off-center positions in time around the averaged off-center position along a body diagonal.
Effect of Bi(Mg1/2Ti1/2)O3 addition on the electrical properties of Si-Mn modified on SrTiO3
NASA Astrophysics Data System (ADS)
Roh, Yoon-ah; Masaki, Takaki; Yoon, Dae-Ho
2015-05-01
Single-Crystalline Strontium titanate (SrTiO3) has been widely used in many fields such as catalyst, semiconductors and dielectrics. SrTiO3 is a typical perovskite-type oxide, the physical properties of which strongly depend on its chemical composition, structure, shape, size, and crystallinity. In this work, the effects of Bi(Mg1/2Ti1/2)O3 addition on the nanostructure and the dielectric properties of Si-Mn modified SrTiO3 were investigated to develop nano-sized particles and low-temperature-fired SrTiO3-based ceramics with stable temperature characteristics. The dielectric constant of SrTiO3-Bi(Mg1/2Ti1/2)O3 was found to range from 900 to 1200 at 1 kHz for samples sintered at 1200°C. This new composition, SrTiO3-Bi(Mg1/2Ti1/2)O3, can be applied as a nano-sized dielectric materials in various fields.
Abdel-Malak, Rania; Ahearn, Gregory A
2014-03-01
Effects of luminal Ca(2+) and Mn(2+) on transmural mucosal to serosal (MS) transport of (3) H-L-leucine were characterized in the isolated and perfused intestine of the American lobster, Homarus americanus. (3) H-L-leucine MS transport in the presence of 20 µM Mn(2+) was a sigmoidal function of luminal amino acid concentration, following the Hill equation for multisite cooperative, carrier-mediated, transport. Luminal Ca(2+) was a non-competitive inhibitor of Mn(2+) -stimulated (3) H-L-leucine MS flux. Amino acid transport was hyperbolically stimulated by luminal Ca(2+) or Mn(2+). During 20 µM Mn(2+) -stimulation of (3) H-L-leucine MS flux, addition of 25 mM Ca(2+) strongly reduced amino acid transport Jmax , without affecting amino acid binding properties. Hyperbolic luminal Mn(2+) stimulation of 20 µM (3) H-L-leucine MS flux was also strongly inhibited by 25 mM luminal Ca(2+) , significantly reducing 20 µM (3) H-L-leucine Jmax . Increasing the luminal concentration of verapamil, a calcium channel blocker, significantly increased MS transport of 20 µM (3) H-L-leucine in the presence of 100 nM Mn(2+) by reducing diffusional Ca(2+) uptake into intestinal epithelial cells through verapamil-sensitive channels. A model is proposed supporting the concept of molecular mimicry, whereby (3) H-L-leucine enters lobster intestinal epithelial cells by one or more amino acid-specific transporters and by a dipeptide-like transporter that is capable of binding and transporting peptide molecular mimics (bis-complexes) between Ca(2+) or Mn(2+) and (3) H-L-leucine using the membrane potential as a major driving force for the transport event. According to the model, Ca(2+) entry through apical Ca(2+) channels regulates the magnitude of the membrane potential and therefore the size of the driving force for bis-complex uptake. © 2013 Wiley Periodicals, Inc.
Silverstein, Harlyn J.; Skoropata, Elizabeth; Sarte, Paul M.; ...
2016-02-19
In the last few years the magnetoelectric behavior of MnTiO 3 has been observed even though its been studied for many decades. We use neutron scattering on two separately grown single crystals and two powder samples to show the presence of a supercell that breaks R (3) over bar symmetry. We also present the temperature and field dependence of the dielectric constant and pyroelectric current and show evidence of nonzero off-diagonal magnetoelectric tensor elements (forbidden by R (3) over bar symmetry) followed by a polarization flop accompanying the spin flop transition at mu H-0(SF) = 6.5T. Mossbauer spectroscopy on MnTiOmore » 3 gently doped with Fe-57 was used to help shed light on the impact of the supercell on the observed behavior. Moreover, the full supercell structure could not be solved at this time due to a lack of visible reflections, the full scope of the results presented here suggest that the role of local spin-lattice coupling in the magnetoelectric properties of MnTiO 3 is likely more important than previously thought.« less
Non-enzymatic detection of glucose in fruits using TiO2-Mn3O4 hybrid nano interface
NASA Astrophysics Data System (ADS)
Jayanth Babu, K.; Sasya, Madhurantakam; Nesakumar, Noel; Shankar, Prabakaran; Gumpu, Manju Bhargavi; Ramachandra, Bhat Lakshmishri; Kulandaisamy, Arockia Jayalatha; Rayappan, John Bosco Balaguru
2017-08-01
Consumption of fruits leads to increase in glucose level in blood for diabetic patients, which in turn leads to peripheral, vascular, ocular complications and cardiac diseases. In this context, a non-enzymatic hybrid glucose biosensor was fabricated for the first time to detect glucose by immobilizing titanium oxide-manganese oxide (TiO2-Mn3O4) nanocomposite and chitosan membrane on to the surface of Pt working electrode (Pt/TiO2-Mn3O4/chitosan). TiO2-Mn3O4 nanocomposite catalyzed the oxidation of glucose to gluconolactone in the absence of glucose oxidase enzyme with high electron transfer rate, good biocompatibility and large surface coverage. Electrochemical measurements revealed the excellent sensing response of the developed biosensor towards glucose with a high sensitivity of 7.073 µA mM-1, linearity of 0.01-0.1 mM, low detection limit of 0.01 µM, reproducibility of 1.5% and stability of 98.8%. The electrochemical parameters estimated from the anodic process were subjected to linear regression models for the detection of unknown concentration of glucose in different fruit samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berik, Pelin; Maurya, Deepam; Kumar, Prashant
This paper is concerned with the development of a piezoelectric d 15 shear-induced torsion actuator made of a lead-free piezoceramic material exhibiting giant piezoelectric shear stress coefficient (e 15) and piezoelectric transverse shear actuation force comparable to that of leadbased shear-mode piezoceramics. The Mn-modified 0.93(Na 0.5Bi 0.5TiO 3)-0.07BaTiO 3 (NBT-BTMn) composition exhibited excellent properties as a torsional transducer with piezoelectric shear stress coefficient on the order of 11.6 C m –2. The torsional transducer, consisting of two oppositely polarized NBT-BT-Mn d 15 mode piezoceramic shear patches, provided a rate of twist of 0.08 mm m –1 V –1 under quasi-staticmore » 150 V drive. The high value of piezoelectric shear d 15 coefficient in NBT-BT-Mn sample further demonstrated its potential in practical applications. Lastly, these results confirm that the lead-free piezoceramics can be as effective as their lead-based counterparts.« less
Sakate, Daisuke; Iwazaki, Yoshiki; Kon, Yoshiaki; Yokoyama, Takaomi; Ohata, Masaki
2018-01-01
The mass transfer of additive elements during the sintering of barium titanate (BaTiO 3 ) ceramic was examined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in the present study. An analytical sample consisting of two pellets of BaTiO 3 with different concentrations of additive elements of manganese (Mn) and holmium (Ho) as well as silicon (Si) as a sintering reagent was prepared and measured by LA-ICP-MS with small laser irradiated diameter of 10 μm to evaluate the distributions and concentrations of additive elements in order to examine their mass transfers. As results, enrichments of Mn and Si as an additive element and a sintering reagent, respectively, were observed on the adhesive surface between two BaTiO 3 pellets, even though Ho did not show a similar phenomenon. The mass transfers of additive elements of Mn and Ho were also examined, and Mn seemed to show a larger mass transfer than that of Ho during the sintering process for BaTiO 3 ceramics. The results obtained in this study shows the effectives of LA-ICP-MS for the future improvement of MLCCs.
Berik, Pelin; Maurya, Deepam; Kumar, Prashant; ...
2017-01-09
This paper is concerned with the development of a piezoelectric d 15 shear-induced torsion actuator made of a lead-free piezoceramic material exhibiting giant piezoelectric shear stress coefficient (e 15) and piezoelectric transverse shear actuation force comparable to that of leadbased shear-mode piezoceramics. The Mn-modified 0.93(Na 0.5Bi 0.5TiO 3)-0.07BaTiO 3 (NBT-BTMn) composition exhibited excellent properties as a torsional transducer with piezoelectric shear stress coefficient on the order of 11.6 C m –2. The torsional transducer, consisting of two oppositely polarized NBT-BT-Mn d 15 mode piezoceramic shear patches, provided a rate of twist of 0.08 mm m –1 V –1 under quasi-staticmore » 150 V drive. The high value of piezoelectric shear d 15 coefficient in NBT-BT-Mn sample further demonstrated its potential in practical applications. Lastly, these results confirm that the lead-free piezoceramics can be as effective as their lead-based counterparts.« less
New functional materials AC3B4O12 (Review)
NASA Astrophysics Data System (ADS)
Vasil'ev, A. N.; Volkova, O. S.
2007-11-01
The physical properties of perovskites of the type AC3B4O12, whose structure derives from simple perovskites ABO3, are reviewed. The A position is subject to strong structural distortions and splits into two new positions A and C. In the structure of AC3B4O12 vacancies and any cations with a large radius, irrespective of their charge state, can be present in the icosahedral environment of A: Na +, Cd2+, Ca2+, Sr2+, Y3+, Ln3+, and Nd4+. The C position in the square environment of oxygen can be occupied only by the Jahn-Teller cations Cu2+ and Mn3+. Transition and nontransition metal ions—Mn3+, Fe3+, Al3+, Cr3+, Ti4+, Mn4+, Ge4+, Ru4+, Ir4+, Ta5+, Nb5+, Ta5+, Sb5+—can occupy the B position in an octahedral environment. Some members of the family of complex perovskites possess properties which are characteristic for systems with heavy fermions; collinear and noncollinear magnetic structures with high ordering temperatures occur in these materials; tunneling magnetoresistance and high permittivity are observed. The diversity and unique properties make these materials attractive for practical applications.
Spin-polarized current injection induced magnetic reconstruction at oxide interface
Fang, F.; Yin, Y. W.; Li, Qi; ...
2017-01-04
Electrical manipulation of magnetism presents a promising way towards using the spin degree of freedom in very fast, low-power electronic devices. Though there has been tremendous progress in electrical control of magnetic properties using ferromagnetic (FM) nanostructures, an opportunity of manipulating antiferromagnetic (AFM) states should offer another route for creating a broad range of new enabling technologies. Here we selectively probe the interface magnetization of SrTiO 3/La 0.5Ca 0.5MnO 3/La 0.7Sr 0.3MnO 3 heterojunctions and discover a new spin-polarized current injection induced interface magnetoelectric (ME) effect. The accumulation of majority spins at the interface causes a sudden, reversible transition ofmore » the spin alignment of interfacial Mn ions from AFM to FM exchange-coupled, while the injection of minority electron spins alters the interface magnetization from C-type to A-type AFM state. In contrast, the bulk magnetization remains unchanged. We attribute the current-induced interface ME effect to modulations of the strong double-exchange interaction between conducting electron spins and local magnetic moments. As a result, the effect is robust and may serve as a viable route for electronic and spintronic applications.« less
Spin-polarized current injection induced magnetic reconstruction at oxide interface
NASA Astrophysics Data System (ADS)
Fang, F.; Yin, Y. W.; Li, Qi; Lüpke, G.
2017-01-01
Electrical manipulation of magnetism presents a promising way towards using the spin degree of freedom in very fast, low-power electronic devices. Though there has been tremendous progress in electrical control of magnetic properties using ferromagnetic (FM) nanostructures, an opportunity of manipulating antiferromagnetic (AFM) states should offer another route for creating a broad range of new enabling technologies. Here we selectively probe the interface magnetization of SrTiO3/La0.5Ca0.5MnO3/La0.7Sr0.3MnO3 heterojunctions and discover a new spin-polarized current injection induced interface magnetoelectric (ME) effect. The accumulation of majority spins at the interface causes a sudden, reversible transition of the spin alignment of interfacial Mn ions from AFM to FM exchange-coupled, while the injection of minority electron spins alters the interface magnetization from C-type to A-type AFM state. In contrast, the bulk magnetization remains unchanged. We attribute the current-induced interface ME effect to modulations of the strong double-exchange interaction between conducting electron spins and local magnetic moments. The effect is robust and may serve as a viable route for electronic and spintronic applications.
NASA Astrophysics Data System (ADS)
Fatimah, I.; Rahmadianti, Y.; Pudiasari, R. A.
2018-04-01
Calcium titanate belongs to the important group of compounds with a perovskite structure having high dielectric loss for various applications including photocatalysis mechanism. Refer to the principles of green chemistry, in this work preparation of CaTiO3 was conducted by using CaO derived from snail shell. Aim of this research are to study the physicochemical character of perovskite derived from snail shell and its comparison with CaO and CaCO3 as Ca sources. Material preparation was performed by solid reaction of Ca sources with TiO2 under comparison with CaO and CaCO3 precursors. Mixture of Ca sources with TiO2 in certain proportion were ground and calcined at the temperature of 200 °C for 2 hs. Materials were characterized by using X-ray diffractometer (XRD), Fourier Transform-Infra Red (FTIR) and the photocatalytic activity was tested by using methylene blue photooxidation. Perovskite synthesized using CaO derived from snail shell exhibits the similar XRD pattern with that were prepared by using CaO and CaCO3. From the photooxidation activity test, it is proven that CaTiO3 shows similar photocatalytic activity correspond to that were prepared by CaO and CaCO3. Utilazation of shell as agricultural waste of the synthesis of CaTiO3 perovskite is the novelty of this work. Furthermore, the study on material structure and photoactivity is the main focuses for the application in industry and environment.
Sulfur resistance of Ce-Mn/TiO2 catalysts for low-temperature NH3–SCR
Yang, Wenjing; Cui, Shitong; Street, Jason; Luo, Yan
2018-01-01
Ce-Mn/TiO2 catalyst prepared using a simple impregnation method demonstrated a better low-temperature selective catalytic reduction of NO with NH3 (NH3–SCR) activity in comparison with the sol-gel method. The Ce-Mn/TiO2 catalyst loading with 20% Ce had the best low-temperature activity and achieved a NO conversion rate higher than 90% at 140–260°C with a 99.7% NO conversion rate at 180°C. The Ce-Mn/TiO2 catalyst only had a 6% NO conversion rate decrease after 100 ppm of SO2 was added to the stream. When SO2 was removed from the stream, the catalyst was able to recover completely. The crystal structure, morphology, textural properties and valence state of the metals involving the novel catalysts were investigated using X-ray diffraction, N2 adsorption and desorption analysis, X-ray photoelectron spectroscopy, scanning electron microscopy and energy dispersive spectroscopy, respectively. The decrease of NH3–SCR performance in the presence of 100 ppm SO2 was due to the decrease of the surface area, change of the pore structure, the decrease of Ce4+ and Mn4+ concentration and the formation of the sulfur phase chemicals which blocked the active sites and changed the valence status of the elements. PMID:29657791
Sulfur resistance of Ce-Mn/TiO2 catalysts for low-temperature NH3-SCR
NASA Astrophysics Data System (ADS)
Xu, Quan; Yang, Wenjing; Cui, Shitong; Street, Jason; Luo, Yan
2018-03-01
Ce-Mn/TiO2 catalyst prepared using a simple impregnation method demonstrated a better low-temperature selective catalytic reduction of NO with NH3 (NH3-SCR) activity in comparison with the sol-gel method. The Ce-Mn/TiO2 catalyst loading with 20% Ce had the best low-temperature activity and achieved a NO conversion rate higher than 90% at 140-260°C with a 99.7% NO conversion rate at 180°C. The Ce-Mn/TiO2 catalyst only had a 6% NO conversion rate decrease after 100 ppm of SO2 was added to the stream. When SO2 was removed from the stream, the catalyst was able to recover completely. The crystal structure, morphology, textural properties and valence state of the metals involving the novel catalysts were investigated using X-ray diffraction, N2 adsorption and desorption analysis, X-ray photoelectron spectroscopy, scanning electron microscopy and energy dispersive spectroscopy, respectively. The decrease of NH3-SCR performance in the presence of 100 ppm SO2 was due to the decrease of the surface area, change of the pore structure, the decrease of Ce4+ and Mn4+ concentration and the formation of the sulfur phase chemicals which blocked the active sites and changed the valence status of the elements.
Yachandra, Vittal K.; Yano, Junko
2011-01-01
This review describes the results from X-ray absorption spectroscopy studies that have contributed to an understanding of the role of Ca in the photosynthetic water oxidation reaction. The results include the first Mn, Ca and Sr X-ray spectroscopy studies using Ca or Sr-substituted PS II samples that established the presence of a MnCa heteronuclear structure and its orientation, and the most recent Sr X-ray spectroscopy study using biosynthetically prepared Sr-containing PS II in the various S-states that provide important insights into the requirement for Ca in the mechanism of the Mn4Ca catalytic center. PMID:21524917
NASA Astrophysics Data System (ADS)
Shames, A. I.; Auslender, M.; Rozenberg, E.; Gorodetsky, G.; Martin, C.; Maignan, A.
2005-05-01
X-band electron magnetic-resonance (EMR) measurements of polycrystalline CaMn1-yMoyO3 (0⩽y ⩽0.14) samples were performed at 120K⩽T⩽540K. The data obtained are compared with those of another electron-doped manganite system, CaMn1-xRuxO3 (0⩽x ⩽0.40). The observed anomalies of the EMR parameters correlate pretty well with the temperatures of antiferro-, ferromagneticlike, and orbital/charge-ordering transitions in these systems. However, a strong difference is observed between the resonant properties of Mo- and Ru doped series at both paramagnetic (PM) and magnetically ordered states. To describe such a difference, the energy-band diagrams, which comprise the deep impurity t2g-like states +eg-like conductive band for CaMn1-xRuxO3 and shallow impurity states+conductive band, both having eg-like symmetry, for CaMn1-yMoyO3, are proposed. Specific electrons' contribution to the EMR linewidth at PM temperatures is introduced for the considered systems.
NASA Technical Reports Server (NTRS)
Hwang, S. K.; Morris, J. W., Jr.
1979-01-01
An investigation has been made to improve the low temperature mechanical properties of Fe-8Mn and Fe-12Mn-0.2 Ti alloy steels. A reversion annealing heat treatment in the two-phase (alpha + gamma) region following cold working has been identified as an effective treatment. In an Fe-12Mn-0.2Ti alloy a promising combination of low temperature (-196 C) fracture toughness and yield strength was obtained by this method. The improvement of properties was attributed to the refinement of grain size and to the introduction of a uniform distribution of retained austenite (gamma). It was also shown that an Fe-8Mn steel could be grain-refined by a purely thermal treatment because of its dislocated alpha-prime martensitic structure and absence of epsilon martensite. As a result, a significant reduction of ductile to brittle transition temperature was obtained.
NASA Astrophysics Data System (ADS)
Jiang, Qiaowen; Cao, Zhimin; Wang, Daoru; Li, Yuanchao; Wu, Zhongjie; Ni, Jianyu
2017-12-01
Geochemical ratios in coral reef skeletons could be used as proxies to reconstruct past climatological and environmental records in data-poor regions. Using a 103-year data set (1902 to 2005), the annual variations in Ba/Ca and Mn/Ca ratios of Porites lutea skeletons at an eastern offshore area of Hainan Island (19°12´28.4´´N, 110°37´38.8´´E) were analyzed using inductively coupled plasma-optic emission spectrometry (ICP-OES). The analysis results showed that Ba/Ca ratios varied from a minimum of 3.120 μmol mol-1 in 1903 to a maximum of 10.064 μmol mol-1 in 1944, with an average of 5.256 μmol mol-1. Mn/Ca ratios varied from 0.206 to 5.708 μmol mol-1 with an annual average of 1.234 μmol mol-1, with peak values in 2001, 1964 and 1932, that correlated with strong rainfall events caused by typhoons. Variation in Ba/Ca and Mn/Ca ratios were compared with available river discharge and precipitation records, providing insight into past climatological events. Human activities and their indirect effects could impact the strength of the relationship between Ba/Ca and Mn/Ca ratios and observed precipitation and terrestrial input in the future.
NASA Astrophysics Data System (ADS)
Gu, P. C.; Ye, M.; Wei, H. J.; Wu, G. Y.; Guo, Z. Y.; Yang, H. Q.; He, Y. H.; Xie, S. S.; Zhou, L. P.
2016-05-01
The aims of this study were to monitor and contrast the diffusion of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles’ (NPs) penetration and accumulation in human normal endometrium (NE) tissues and uterine leiomyoma (UL) tissues combined with microneedles (MN) in vitro using optical coherence tomography (OCT) and diffuse reflectance (DR) spectral. Continuous OCT and DR spectra monitoring showed that, after application of ZnO or TiO2 NPs, the OCT signal intensities of NE and UL both increase with time, and the TiO2 NPs tend to produce a greater signal enhancement than ZnO NPs in the same type of tissue. And for the same type of NPs, they penetrate faster in NE tissue compared with UL tissue. In addition, the use of MN can significantly enhance the penetration of topically applied ZnO or TiO2 NPs in the tissue. The attenuation coefficients of NE tissue are about 5.01 ± 0.35 mm-1 for ZnO NPs treatment at 195 min and 4.62 ± 0.29 mm-1 for ZnO NPs/MN at 179 min, 4.73 ± 0.30 mm-1 for TiO2 NPs at 183 min, 4.05 ± 0.25 mm-1 for TiO2 NPs/MN at 147 min when the penetration process reached the stable state. And the attenuation coefficients of UL tissue are about 5.0 ± 0.34 mm-1 for ZnO NP treatment at 191 min and 4.20 ± 0.26 mm-1 for ZnO NPs/MN at 169 min, 4.33 ± 0.27 mm-1 for TiO2 NPs at 176 min, 3.53 ± 0.20 mm-1 for TiO2 NPs/MN at 141 min when the penetration process reached the stable state. This suggests that TiO2 NPs penetrate faster and reach the maximum amount of penetration earlier than ZnO NPs with the same condition. The results of attenuation coefficients and reflectance intensity of NE and UL tissue suggests that the accumulation of the TiO2 or ZnO NPs in both NE and UL tissue greatly influenced the tissue optical properties.
NASA Astrophysics Data System (ADS)
Jung, Jae-Hoon; Shin, Jung-Ho; Lee, Seok-Jae
2015-07-01
The anisotropic mechanical behavior of quenched and tempered 4340 steel with different Ca contents was investigated by means of a macro/micrograph analysis, Charpy impact test, and rotating bending fatigue test. The 4340 steel with Ca added formed small spherical (Ca,Mn)S inclusions and effectively decreased both the inclusion size and the aspect ratio (length to width) of the MnS inclusions as compared to the Ca-free 4340 steel. The anisotropic impact value and fatigue strength were effectively improved due to the Ca addition that prevented the growth of MnS inclusions, which provided increased resistance against deformation to maintain a spherical shape because the elongated MnS inclusions acted as a crack propagation path and promoted the crack propagation due to higher stress concentrations.
Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys
Ovshinsky, Stanford R.; Fetcenko, Michael A.
1996-01-01
An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.
Abundance Analysis of the Helium Weak Star 20-TAURI
NASA Astrophysics Data System (ADS)
Mon, M.; Hirata, R.; Sadakane, K.
An abundance analysis of the helium-weak star 20 Tauri is performed with a fully line-blanketed model atmosphere. The adopted atmospheric parameters are Teff =12600 K and log g=3.2. These values are lower by about 1000 K in Teff and 0.3 in log g than those used in previous investigations, and 20 Tau is the coolest star among the group of helium-weak star. A value of log N(He)/N(H)=-1.7 is found from the average of six He I lines. Mg, Si, Ca, and Ni are underabundant, while P and Mn are overabundant. The abundances of C, Ti, Cr, and Fe coincide with the solar values within ±0.3 dex. Upper limits of the abundances of S, Sc, and Sr are estimated and these elements are not overabundant. The observed abundance pattern in 20 Tau is quite different from those in other helium-weak stars, while it shows a mild characteristic of Mn-Hg stars.
NASA Astrophysics Data System (ADS)
Hashikuni, Katsuaki; Suekuni, Koichiro; Usui, Hidetomo; Ohta, Michihiro; Kuroki, Kazuhiko; Takabatake, Toshiro
2016-10-01
Thermoelectric properties and electronic structures of n-type thiospinels Cu2T r Ti3S8 composed of CuS4 tetrahedron and (Tr/Ti)S6 octahedron network have been studied for T r = Mn, Fe, Co, and Ni. The samples with T r = Mn, Co, and Ni exhibit metallic behaviors in the electrical resistivity (ρ) and rather large and negative thermopower (S), leading to a high power factor (S2/ρ) of 0.4-0.6 mW/K2 m at 650 K. In addition to the superior electrical properties, relatively low thermal conductivity of ˜2 W/Km gives rise to a dimensionless figure of merit ZT reaching 0.16-0.18 at 650 K. The analysis of the temperature dependent magnetic susceptibility indicates that the Mn, Fe, and Ni ions are in high-spin divalent states while the Co2+ ion is in a low-spin nonmagnetic state. This electronic state for the Co2+ in Cu2CoTi3S8 is consistent with our first-principles electronic structure calculation indicating that the Fermi level lies in the conduction bands composed mainly of Ti-3d, Co-3d, and S-3p orbitals. The Ti-3d and S-3p orbitals forming the octahedron network likely results in high power factors irrespective of Tr elements. The addition of Co-3d orbitals makes a peak with steep slope in the density of states near the Fermi level, leading to the further enhanced power factor.
NASA Technical Reports Server (NTRS)
Bruckner, J.; Dreibus, G.; Gellert, R.; Clark, B.C.; Cohen, B.; McCoy, T.; Ming, D.W.; Mittlefehldt, D.W.; Yen, A.; Athena Science Team
2006-01-01
The Alpha Particle X-ray Spectrometer (APXS) onboard the Mars Exploration Rover Spirit continues to determine the elemental composition of samples at Gusev Crater. Starting around sol 600 the rover descended Husband Hill, which is part of the Columbia Hills, visited the inner basin with a large dune field, called 'El Dorado', and parked at Low Ridge to conserve energy during the martian winter. Many unique samples were discovered by the instruments onboard Spirit during her downhill traverse. Here, we report only on the chemical data obtained by the APXS. The compositions of some of the soil samples are comparable to the mean soil determined along the earlier traverse. However, a light-toned subsurface sample (disturbed by the rover wheels), called Dead Sea Samra , showed the highest sulfur content of all soil samples, the lowest Na, Mg, Al, Cl, K, Ca, Ti, Mn, and Zn, among the lowest Si and P, and among the highest Cr, Fe and Ni. Assuming ferric sulfate as a major mineral, large amounts of a pure silica phase must be present. Color and quantity of Dead Sea Samra resemble somewhat an earlier soil called Paso Robles , though the latter is a mixture of sulfates with phosphate-rich soil. Manganese in Dead Sea Samra is so low that the Fe/Mn ratio exceeds 300, a value that has never been found previously on Mars (Fe/Mn ratio of 46 for Gusev basalts), indicating that only Fe(3+) occurs. The dune field El Dorado contained granulated material that exhibited the highest Mg and Ni concentrations and the lowest S and Cl compared to all other soils implying an enrichment of olivine-rich sands. Two outcrops, called Algonquin and Comanche , revealed compositions that differ significantly from those of earlier outcrops as they have the highest concentrations of Mg, Fe, and Ni (except for Ni in Independence) and the lowest of Al, K (detection limit), Ca, and Ti of all brushed and almost all abraded rocks. Normative estimates assign them the highest olivine contents ever found for martian rocks and a very mafic nature based on their high Mg/(Mg+Fe) and low Al, Ca and Na. Their significantly high Ni contents point to a different source than the Gusev plains basalts. The elemental compositions of samples encountered during the downhill traverse revealed a larger chemical diversity of the Columbia Hills than the uphill trek already published.
NASA Astrophysics Data System (ADS)
Duliu, Octavian G.; Cristache, Carmen; Florea, Nelida; Oaie, Gheorghe; Culicov, Otilia A.; Frontasyeva, Marina V.
2010-05-01
The content of eight major, rock forming elements (Na, Cl, Al, Si, K, Ca, Ti, Fe) and 34 trace elements (B, S, Sc, V, Cr, Mn, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Sn, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Yb, Hf, Ta, W, Th and U) were determined by Prompt Gamma and Epithermal Neutron Activation Analysis in 45 samples of the uppermost 50 cm of undisturbed sediments collected from an anoxic continental zone of the Black Sea at a depth of 600 m, off the City of Constanta. 137Cs geochronology has evidenced a sedimentation ratio of 0,42 ± 0,12 mm/y which, by extrapolation to the entire 50 cm column gave an age of 1300 ± 300 y for the oldest sediments. Principal Component Analysis (PCA), Sc-La-Th and Co-Hf-Th ternary diagrams as well as La/Th ratio were used to interpret these data in correlation with the corresponding ones for the Upper Continental Crust (UCC), North American Shale Composite (NASC), as well as Atlantic, Pacific and Indian MORBs. At the same time the Se/Al, Se/Sc, Se/Mn, Mo/Al, Mo/Sc and Mo/Mn, ratios were used as indicators for anoxic conditions along sedimentary core. Major components distribution showed, that excepting CaO, their contents are very close to UCC and NASC, while the Principal Component Analysis evidenced three clusters consisting of Na, K and Cl, Al, Ti and Fe and respectively Ca, in concordance with the sediments' mineralogical composition. The Trace Elements Distribution was also close to UCC except for redox sensitive metals Se and Mo whose contents were 10 to 100 times higher than the corresponding UCC ones, this fact reflecting the anoxic conditions along the entire column of sediments. Moreover, by using Se and Mo as proxies for an anoxic environment, we estimated a relative consistency of the local conditions for a period between 350 ± 60 and 1300 ± 300 BP followed by a more fluctuant one during the last 300 years, this peculiarity also being confirmed by PCA, as well as by the vertical distribution of La/Th ratio. A chondrite normalized plot of nine Rare Earth Elements (La, Ne, Nd, Sm, Eu, Gd, Tb, Dy and Yb) showed the presence of a weak Ce positive anomaly, explained by the existing anoxic environment as well as a significant Eu negative anomaly, confirming the continental origin of the sedimentary material.
Gebru, Kibrom Alebel; Das, Chandan
2018-01-01
In this work, TiO 2 nanoparticles (NPs) were modified using tetraethylenepentamine (TEPA), ethylenediamine (EDA), and hexamethylenetetramine (HMTA) amines using impregnation process. The prepared amine modified TiO 2 samples were explored as an additive to fabricate ultrafiltration membranes with enhanced capacity towards the removal of chromium ions from aqueous solution. Modified membranes were prepared from cellulose acetate (CA) polymer blended with polyethylene glycol (PEG) additive, and amine modified TiO 2 by using phase inversion technique. Fourier transform infrared spectroscopy (FTIR), zeta potential (ζ), thermo gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), water contact angle (WCA), and atomic absorption spectrophotometer (AAS) studies were done to characterize the membranes in terms of chemical structure, electric charge, thermal stability, morphology, hydrophilicity, and removal performance. The pure water permeability and Cr (VI) ion removal efficiency of the unmodified (i.e. CA/U-Ti) and the amine modified (CA/Ti-HMTA, CA/Ti-EDA, and CA/Ti-TEPA) membranes were dependent on pH and metal ion concentration. Incorporation of amine modified TiO 2 composite to the CA polymer was found to improve the fouling and removal characteristics of the membranes during the chromium ultrafiltration process. The maximum removal efficiency result of Cr (VI) ions at pH of 3.5 using CA/Ti-TEPA membrane was 99.8%. The washing/regeneration cycle results in this study described as an essential part for prospect industrial applications of the prepared membranes. The maximum Cr (VI) removal results by using CA/Ti-TEPA membrane for four washing/regeneration cycles are 99.6%, 99.5%, 98.6% and, 96.6%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tan, Jihua; Duan, Jingchun; Zhen, Naijia; He, Kebin; Hao, Jiming
2016-01-01
The abundance, behavior, and source of chemical species in size-fractionated atmospheric particle were studied with a 13-stage low pressure impactor (ELPI) during high polluted winter episode in Beijing. Thirty three elements (Al, Ca, Fe, K, Mg, Na, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, and Pb) and eight water soluble ions (Cl-, NO3-, SO42 -, NH4+, Na+, K+, Ca2 +, and Mg2 +) were determined by ICP/MS and IC, respectively. The size distribution of TC (OC + EC) was reconstructed. Averagely, 51.5 ± 5.3% and 74.1 ± 3.7% of the total aerosol mass was distributed in the sub-micron (PM1) and fine particle (PM2.5), respectively. A significant shift to larger fractions during heavy pollution episode was observed for aerosol mass, NH4+, SO42 -, NO3-, K, Fe, Cu, Zn, Cd, and Pb. The mass size distributions of NH4+, SO42 -, NO3-, and K were dominated by accumulation mode. Size distributions of elements were classified into four main types: (I) elements were enriched within the accumulation mode (< 1 μm, Ge, Se, Ag, Sn, Sb, Cs, Hg, Ti, and Pb); (II) those mass (K, Cr, Mn, Cu, Zn, As, Mo, and Cd) was resided mainly within the accumulation mode, ranged from 1 to 2 μm; (III) Na, V, Co, Ni, and Ga were distributed among fine, intermediate, and coarse modes; and (IV) those which were mainly found within particles larger than 2.7 μm (Al, Mg, Si, Ca, Sc, Tl, Fe, Sr, Zr, and Ba). [H+]cor showed an accumulation mode at 600-700 nm and the role of Ca2 + should be fully considered in the estimation of acidity. The acidity in accumulation mode particles suggested that generally gaseous NH3 was not enough to neutralize sulfate completely. PMF method was applied for source apportionment of elements combined with water soluble ions. Dust, vehicle, aged coal combustion, and sea salt were identified, and the size resolved source apportionments were discussed. Aged coal combustion was the important source of fine particles and dust contributed most to coarse particle.
Kumar, Ashok; Sidhu, Pardeep; Nautiyal, Jyoti; Rautray, T R; Sudarshan, M; Kumar, R; Singh, N; Garg, M L; Dhawan, D K
2007-01-01
Chemical composition of the aerosols is an important aspect of aerosol monitoring. The adverse effects on human heath due to different elements in aerosols depend on their concentrations. A comparative study of aerosol concentration and composition from an industrial town Mandi-Gobindgarh and a nearby (25 km away) non-industrial and comparatively less polluted town Morinda, in state Punjab (India) was carried out. Aerosol samples were analyzed by Particle Induced X-ray Emission (PIXE) technique at the Institute of Physics, Bhubaneshwar. Elemental concentrations were found to be much higher in Mandi-Gobindgarh as compared to Morinda. However, the large deviations from the mean concentrations, particularly in Mandi-Gobindgarh is suggestive of highly varying day to day industrial activity and changing weather conditions. Elements such as S, Br and Pb were found higher in the PM2.5 (particulate matter with = 2.5 microm aerodynamic diameter), which are related to burning of coal and oil in furnaces in Mandi-Gobindgarh. The elements related to natural dust such as K, Ca, Ti, Mn, and Fe are mainly distributed in PMcf (particulate matter with aerodynamic diameter between 2.5 and 10 microm) fraction in both the towns. High concentrations of Ti, Cr, Mn, Fe and Zn in the PMcf fraction from Mandi-Gobindgarh are likely due to the industrial activity of Steel rolling mills.
NASA Astrophysics Data System (ADS)
An, Ming; Weng, Yakui; Zhang, Huimin; Zhang, Jun-Jie; Zhang, Yang; Dong, Shuai
2017-12-01
The intrinsic magnetic state (ferromagnetic or antiferromagnetic) of ultrathin LaMnO3 films on the most commonly used SrTiO3 substrate is a long-existing question under debate. Either strain effect or nonstoichiometry was argued to be responsible for the experimental ferromagnetism. In a recent experiment [X. R. Wang, C. J. Li, W. M. Lü, T. R. Paudel, D. P. Leusink, M. Hoek, N. Poccia, A. Vailionis, T. Venkatesan, J. M. D. Coey, E. Y. Tsymbal, Ariando, and H. Hilgenkamp, Science 349, 716 (2015), 10.1126/science.aaa5198], one more mechanism, namely, the self-doping due to polar discontinuity, was argued to be the driving force of ferromagnetism beyond the critical thickness. Here systematic first-principles calculations have been performed to check these mechanisms in ultrathin LaMnO3 films as well as superlattices. Starting from the very precise descriptions of both LaMnO3 and SrTiO3, it is found that the compressive strain is the dominant force for the appearance of ferromagnetism, while the open surface with oxygen vacancies leads to the suppression of ferromagnetism. Within LaMnO3 layers, the charge reconstructions involve many competitive factors and certainly go beyond the intuitive polar catastrophe model established for LaAlO3/SrTiO3 heterostructures. Our paper not only explains the long-term puzzle regarding the magnetism of ultrathin LaMnO3 films but also sheds light on how to overcome the notorious magnetic dead layer in ultrathin manganites.
Studies of magnetism in rhenium and manganese based perovskite oxides
NASA Astrophysics Data System (ADS)
Wiebe, Christopher Ryan
The bulk of this thesis consists of studies of geometric frustration in S = ½ FCC perovskites based upon the chemical formula A2BReO 6. The magnetism of these materials is expected to exhibit geometric frustration, a situation in which the ideal spin arrangements cannot be achieved for antiferromagnetic interactions between adjacent spins. It is proposed that subtle quantum effects are driving these systems to unique ground states in the absence of chemical disorder. Both compounds Sr2CaReO 6 and Sr2MgReO6 exhibit spin glass behaviour at low temperatures (TG ˜ 14 K and TG ˜ 50 K respectively), in which the magnetic moments freeze out in random orientations instead of an ordered array. This work shows that these materials possess several unconventional properties, which suggest that interesting spin dynamics may be present. Other perovskite and perovskite-related materials studied in this thesis include the magnetoresistive CaMnO3-delta and the "pillared" material La5Re3MnO16. Neutron diffraction studies have shown that both CaMnO2.94 and CaMnO2.89 order at TN ˜ 125 K, but possess unique yet related magnetic structures. CaMnO2.94 orders into a simple G-type magnetic structure, as observed in the compound CaMnO3. The slightly more doped sample CaMnO2.89, on the other hand, orders into a magnetic structure related to the G-type, and involves a Mn3+/Mn 4+ charge ordering over every four lattice spacings. The new material La5Re3MnO16 consists of layers of corner shared ReO6 and MnO6 octahedra that are separated by layers of Re2O10 dimer units. Metal-metal bonding involving Re atoms have been postulated for these dimers which separate the Re/Mn layers by approximately 10 A. The magnetic behaviour exhibited by this new class of materials is rich and complex. Despite the large distances separating the perovskite layers, the Re and Mn magnetic moments order into a ferrimagnetic Q = (0, 0, ½) structure below a relatively high T N of 161 K. There may be an additional spin rearrangement at lower temperatures as evidenced by weak magnetic Bragg peaks below ˜50 K.
NASA Astrophysics Data System (ADS)
Klinkhammer, G. P.; Mix, A. C.; Benway, H. M.; Haley, B. A.
2004-12-01
The Mn/Ca ratio of the biogenic calcite preserved in deep-sea sediments has potential as a tracer of terrestrial input, upwelling, and carbon rain rate over geologic time scales. The basis for this potential lies in features of the Mn cycle in the oceans, which are well known. Manganese is a biogeochemically reactive element, but has a lower affinity for dissolved oxygen and organic matter than iron, making it more stable over short time scales, and less affected by speciation. Depth profiles of Mn in oligotrophic ocean waters show a sharp contrast between low concentrations in deep water (0.20 nM) and relatively high concentrations in the mixed layer (2-5 nM). Mn oxides are stable in high oxygen environments but reduced in the suboxic conditions found in the oxygen minimum zone (OMZ). This behavior makes the intermediate water to surface water concentration ratio of Mn sensitive to the intensity of the OMZ, an artifact of the carbon rain rate, and dust/river input. In sediments, suboxic dissolution is balanced by the formation of carbonate making Mn highly reactive during early diagenesis. These features of the Mn cycle in seawater make the Mn/Ca ratio of foraminifera an attractive paleoproxy, but only if the primary signature can be recovered after diagenetic alteration. Recently our laboratory developed a flow-through extraction system that gives us fresh insight into this problem by making it possible to separate mineral phases associated with the foraminiferal fraction by differences in their solubilities. This paper examines foraminiferal Mn/Ca ratios in core tops and down core records from the eastern equatorial Pacific determined with this new technique. We access the potential of flow-through Mn/Ca by comparing its record to those of Mg/Ca and stable isotopes.
Mishra, S. K.; Gupta, M. K.; Mittal, R.; ...
2016-06-22
Here, we report inelastic neutron scattering measurements over 7–1251 K in CaMnO 3 covering various phase transitions, and over 6–150 K in PrMnO 3 covering the magnetic transition. The excitations around 20 meV in CaMnO 3 and at 17 meV in PrMnO 3 at low temperatures are found to be associated with magnetic origin. We observe coherent magnetic neutron scattering in localized regions in reciprocal space and show it to arise from long-range correlated magnetic spin-waves below the magnetic transition temperature (TN) and short-range stochastic spin-spin fluctuations above T N. In spite of the similarity of the structure of themore » two compounds, the neutron inelastic spectrum of PrMnO 3 exhibits broad features at 150 K unlike well-defined peaks in the spectrum of CaMnO 3. This might result from the difference in the nature of interactions in the two compounds (magnetic and Jahn-Teller distortion). Ab initio phonon calculations have been used to interpret the observed phonon spectra. The ab initio calculations at high pressures show that the variations of Mn-O distances are isotropic for CaMnO 3 and highly anisotropic for PrMnO 3. The calculation in PrMnO 3 shows the suppression of Jahn-Teller distortion and simultaneous insulator-to-metal transition. It appears that this transition may not be associated with the occurrence of the tetragonal phase above 20 GPa as reported in the literature, since the tetragonal phase is found to be dynamically unstable, although it is found to be energetically favored over the orthorhombic phase above 20 GPa. CaMnO 3 does not show any phase transition up to 60 GPa.« less
NASA Astrophysics Data System (ADS)
Sager, Manfred; Erhart, Eva
2016-04-01
High quality biological waste treatment aims at producing compost in order to maintain a clean environment and to sustain soil organic carbon levels. Fertilization with compost as a source of organic carbon, nutrients, and accessory elements, as well as fertilization with mineral N- and PK fertilizer have been tested in a field experiment on a calcaric Fluvisol in the Danube wetlands, at 4 levels each. Yields of wheat were recorded, and grains and soils were sampled from each treatment, and analyzed for main and trace element composition. The corresponding soils were characterized by mobile phases, obtained by leaching with 0,16M acetic acid to cover exchangeables plus carbonates, and subsequently by 0,1M oxalate buffer pH 3 to dissolve the pedogenic oxides. Total amounts were obtained from digests with perchloric- nitric-hydrofluoric acid. For quasi-total amounts, aqua regia was replaced by pressure decomposition with KClO3 in dilute nitric acid. The proposed extraction sequence permits to analyze and interpret soil for main elements, trace elements, nutrients and anions simultaneously. Factor analyses of soil extracts obtained from dilute acetic acid revealed Ba-Be-Cd-Cu-Li-S (traces), Ca-Mg-Mn (main carbonates), Al-Fe-B, Y, and P-K (nutrients) as chemically feasible principal components. Subsequent soil extracts from oxalate contained Al-B-Co-K-Na-Pb-Si-V-S (maybe acid silicate weathering), Cr-Li-Ni-Sr-Ti (maybe basic silicate weathering), Be-Cu-Fe-P, Co-Mg-Mn-Zn (Mn-oxides) and Ba-Sc as principal components. Factor analyses of total element data distinguished the principal components Ce-La-Li-Sc-Y-P (rare earths), Al-Ca-Fe-K-Mg-Na-P (main elements), Cd-Co-Cr-Cu-Ni-Zn (trace elements), As-Pb (contaminants), Ba-Mn-Sr, and Ti, which looks chemically feasible also. Factor analyses of those soil fractions which presumably form the main fractions of exchangeables, carbonates, pedogenic oxides and silicates, showed no cross connections, except for P. Oxalate-soluble Fe together with P and S was independent from oxalate-soluble Al-Mn-Si. In the crops, all element levels were within a non-contaminated and non-deficient range, therefore correlations with concentrations as well as loads in the wheat grains where largely not pronounced. Maximum correlations between plant and soil data were obtained with Li and Be. The load data (concentration times yield, given in g/ha) were much more intercorrelated than the concentrations. Regarding the same element, correlation coefficients between loads and respective concentrations were larger than 0,800 for Al, Ba, Cd, Co, Cr, Li, Mo, Na, Ni, Se, and Sr, which means the transfer remained independent from the load. In case of Ca, Mg, P, S, Zn, however, correlation coefficients between loads and concentrations were < 0,500, thus the transfer was not constant because of obvious metabolic influences. The proposed method of soil characterization was applied at a field trial here for the first time, and offers new possibilities of intercorrelations between plant uptake and geochemical soil fractions.
HR 8844: A New Transition Object between the Am Stars and the HgMn Stars?
NASA Astrophysics Data System (ADS)
Monier, R.; Gebran, M.; Royer, F.; Kilicoglu, T.; Frémat, Y.
2018-02-01
While monitoring a sample of apparently slowly rotating superficially normal early-A stars, we have discovered that HR 8844 (A0 V) is actually a new chemically peculiar star. We first compared the high-resolution spectrum of HR 8844 with that of four slow rotators near A0V (ν Cap, ν Cnc, Sirius A, and HD 72660) to highlight similarities and differences. The lines of Ti II, Cr II, Sr II, and Ba II are conspicuous features in the high-resolution high signal-to-noise SOPHIE spectra of HR 8844 and much stronger than in the spectra of the normal star ν Cap. The Hg II line at 3983.93 Å is also present in a 3.5% blend. Selected unblended lines of 31 chemical elements from He up to Hg have been synthesized using model atmospheres computed with ATLAS9 and the spectrum synthesis code SYNSPEC48 including hyperfine structure of various isotopes when relevant. These synthetic spectra have been adjusted to the mean SOPHIE spectrum of HR 8844, and high-resolution spectra of the comparison stars. Chi-squares were minimized to derive abundances or upper limits to the abundances of these elements for HR 8844 and the comparison stars. HR 8844 is found to have underabundances of He, C, O, Mg, Ca, and Sc, mild enhancements of Ti, V, Cr, Mn, and distinct enhancements of the heavy elements Sr, Y, Zr, Ba, La, Pr, Sm, Eu, and Hg, the overabundances increasing steadily with atomic number. This chemical pattern suggests that HR 8844 may actually be a new transition object between the coolest HgMn stars and the Am stars.
NASA Astrophysics Data System (ADS)
Dar, M. A.; Sheikh, M. W.; Malla, M. S.; Varshney, Dinesh
2016-05-01
The composites of (1-x) La0.67Ba0.33MnO3 (LBMO) + xBaTiO3 (BTO) (x = 0, 0.25 and 1.0) were synthesized by conventional solid-state reaction method. Rietveld refinement was employed to characterize the structural information of the prepared ceramics. The result of the Rietveld refinement of X-ray powder diffraction of La0.67Ba0.33MnO3 and BaTiO3 shows that these compounds crystallize in rhombohedral (R3c) and tetragonal (P4mm), respectively. The structural parameters and the reliability factors for the LBMO-BTO composite ceramics were successfully determined by the Rietveld refinement. At room temperature, Raman active phonon modes predicted by the group theory were observed only in BaTiO3 and composite sample. Pure LBMO does not show any Raman active Phonon mode at room temperature.
Ren, Yumei; Xu, Qun; Zhang, Jianmin; Yang, Hongxia; Wang, Bo; Yang, Daoyuan; Hu, Junhua; Liu, Zhimin
2014-06-25
Functionalized porous carbon materials with hierarchical structure and developed porosity coming from natural and renewable biomass have been attracting tremendous attention recently. In this work, we present a facile and scalable method to synthesize MnO2 loaded carbonaceous aerogel (MnO2@CA) composites via the hydrothermal carbonaceous (HTC) process. We employ two reaction systems of the mixed metal ion precursors to study the optimal selective adsorption and further reaction of MnO2 precursor on CA. Our experimental results show that the system containing KMnO4 and Na2S2O3·5H2O exhibits better electrochemical properties compared with the reaction system of MnSO4·H2O and (NH4)2S2O8. For the former, the obtained MnO2@CA displays the specific capacitance of 123.5 F·g(-1). The enhanced supercapacitance of MnO2@CA nanocomposites could be ascribed to both electrochemical contributions of the loaded MnO2 nanoparticles and the porous structure of three-dimensional carbonaceous aerogels. This study not only indicates that it is vital for the reaction systems to match with porous carbonaceous materials, but also offers a new fabrication strategy to prepare lightweight and high-performance materials that can be used in energy storage devices.
Sun, Qiangqiang; Wang, Yu; Li, Laisheng; Bing, Jishuai; Wang, Yingxin; Yan, Huihua
2015-04-09
Comparative experiments were conducted to investigate the catalytic ability of MnO(x)/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O3/MnO(x)/SBA-15). Adsorption of CA and its intermediates by MnO(x)/SBA-15 was proved unimportant in O3/MnO(x)/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO3) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO(x)/SBA-15 facilitated the generation of hydroxyl radicals (OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO(x) on SBA-15 were believed to be the main active component in MnO(x)/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more OH. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chukanov, Nikita V.; Krzhizhanovskaya, Maria G.; Jančev, Simeon; Pekov, Igor V.; Varlamov, Dmitry A.; Göttlicher, Jörg; Rusakov, Vyacheslav S.; Polekhovsky, Yury S.; Chervonnyi, Alexandr D.; Ermolaeva, Vera N.
2018-02-01
A new mineral species zincovelesite-6N6S with the simplified formula Zn3(Fe3+,Mn3+,Al,Ti)8O15(OH) was discovered in the orogenetic zone related to the "Mixed Series" metamorphic complex near the Nežilovo village, Jacupica Mountains, Pelagonia mountain range, Republic of Macedonia. In oxide Zn-Fe-Mn ore, zincovelesite-6N6S forms lenticular aggregates up to 2 × 2 × 0.5 mm consisting of thin near-coplanar platelets up to 70 × 70 × 1 µm3 and associated with franklinite, gahnite, hetaerolite, zincochromite, ferricoronadite, baryte, As-rich fluorapatite, dolomite, Zn-bearing talc, almeidaite, hydroxycalcioroméite, zircon, quartz, and scheelite. In silicate-baryte zones of the metasomatic rock, uniaxial intergrowths of zincovelesite-6N6S with nežilovite are observed. The new mineral is opaque, black, with brownish-black streak. The lustre is strong submetallic to metallic. The micro-indentation hardness is 1118 kg/mm2 which corresponds to Mohs' hardness ca. 6½. Zincovelesite-6N6S is brittle, with uneven fracture. No cleavage or parting is observed. The density calculated from the empirical formula is 5.158 g/cm3. In reflected light zincovelesite-6N6S is light grey. The reflectance values [R max/R min, % (λ, nm)] are: 17.1/13.4 (470), 16.5/12.8 (546), 16.2/12.6 (589), 15.6/12.2 (650). The IR spectrum shows the presence of OH groups. According to the Mössbauer spectrum, all iron is trivalent. The Mn K-edge XANES spectroscopy shows that Mn is predominantly or completely trivalent. The average chemical composition is (wt%; electron microprobe, H2O determined by gas chromatography of ignition products): MgO 0.97, CuO 0.50, ZnO 30.80, Al2O3 8.17, Mn2O3 21.31, Fe2O3 29.44, TiO2 5.28, Sb2O5 3.74, H2O 1.1, total 101.31. The empirical formula based on 16 O atoms is H1.05Zn3.26Mg0.21Cu0.05Fe3+ 3.18Mn3+ 2.32Al1.38Ti0.57Sb0.20O16. Zincovelesite-6N6S is trigonal, probable space group P-3m1, a = 5.902(2) Å, c = 55.86(1) Å, V = 1684.8(9) Å3, Z = 6. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 2.952 (62) (110), 2.881 (61) (1.0.16), 2.515 (100) (204), 2.493 (88) (1.1.12), 2.451 (39) (1.0.20), 1.690 (19) (304, 2.1.16), 1.572 (19) (2.0.28), 1.475 (29) (221). Zincovelesite-6N6S is the first Fe3+-dominant member of the högbomite supergroup and, thus, can be considered as a parent species of a new mineral group. The rootname velesite is given for the discovery locality near the city of Veles.
Uptake of divalent ions (Mn+2 and Ca+2) by heat-set whey protein gels.
Oztop, Mecit H; McCarthy, Kathryn L; McCarthy, Michael J; Rosenberg, Moshe
2012-02-01
Divalent salts are used commonly for gelation of polymer molecules. Calcium, Ca(+2), is one of the most common divalent ions that is used in whey protein gels. Manganese, Mn(+2), is also divalent, but paramagnetic, enhancing relaxation decay rates in magnetic resonance imaging (MRI) and can be used as a probe to understand the behavior of Ca(+2) in whey protein gels. The objective of this study was to investigate the diffusion of Ca(+2) and Mn(+2) ions in heat-set whey protein gels by using MRI and nuclear magnetic resonance (NMR) relaxometry. Whey protein gels were immersed in solutions containing MnCl(2) and CaCl(2) at neutral pH. Images obtained with gels immersed in MnCl(2) solution revealed a relaxation sink region in the gel's surface and the thickness of the region increased with time. These "no signal" regions in the MR images were attributed to uptake of Mn(+2) by the gel. Results obtained with CaCl(2) solution indicated that since Ca(+2) did not have the paramagnetic effect, the regions where Ca(+2) diffused into the gel exhibited a slight decrease in signal intensity. The relaxation spectrums exhibited 3 populations of protons, for gels immersed in MnCl(2) solution, and 2 populations for gels in CaCl(2) solution. No significant change in T(2) distributions was observed for the gels immersed in CaCl(2) solution. The results demonstrated that MRI and NMR relaxometry can be used to understand the diffusion of ions into the whey protein gel, which is useful for designing gels of different physical properties for controlled release applications. Design of food systems for delivery of bioactive compounds requires knowledge of diffusion rates and structure. Utilizing magnetic resonance imaging the diffusion rates of ions can be measured. Relaxation spectra could yield information concerning molecular interactions. © 2012 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Zhou, Aiyi; Yu, Danqing; Yang, Liu; Sheng, Zhongyi
2016-08-01
A series of Mn-Ce/TiO2 catalysts were synthesized through an impregnation method and used for low temperature selective catalytic reduction (SCR) of NOx with ammonia (NH3). Na2SO4 was added into the catalyst to simulate the combined effects of alkali metal and SO2 in the flue gas. Experimental results showed that Na2SO4 had strong and fluctuant influence on the activity of Mn-Ce/TiO2, because the effect of Na2SO4 included pore occlusion and sulfation effect simultaneously. When Na2SO4 loading content increased from 0 to 1 wt.%, the SCR activities of Na2SO4-doped catalysts decreased greatly. With further increasing amount of Na2SO4, however, the catalytic activity increased gradually. XRD results showed that Na2SO4 doping could induce the crystallization of MnOx phases, which were also confirmed by TEM and SEM results. BET results showed that the surface areas decreased and a new bimodal mesoporous structure formed gradually with the increasing amount of Na2SO4. XPS results indicated that part of Ce4+ and Mn3+ were transferred to Ce3+ and Mn4+ due to the sulfation after Na2SO4 deposition on the surface of the catalysts. When the doped amounts of Na2SO4 increased, NH3-TPD results showed that the Lewis acid sites decreased and the Brønsted acid sites of Mn-Ce/TiO2 increased quickly, which could be considered as another reason for the observed changes in the catalytic activity. The decreased Mn and Ce atomic concentration, the changes of their oxidative states, and the variation in acidic properties on the surface of Na2SO4-doped catalysts could be the reasons for the fluctuant changes of the catalytic activity.
The structural and electrical properties of polycrystalline La0.8Ca0.17Ag0.03MnO3 manganites
NASA Astrophysics Data System (ADS)
Ruli, F.; Kurniawan, B.; Imaduddin, A.
2018-04-01
In this paper, the authors report the electrical properties of polycrystalline La0.8Ca0.17Ag0.03MnO3 manganites synthesized using sol-gel method. The X-ray diffraction (XRD) patterns of polycrystalline La0.8Ca0.17Ag0.03MnO3 samples reveal an orthorhombic perovskite structure with Pnma space group. Analysis using energy dispersive X-ray (EDX) confirms that the sample contains all expected chemical elements without any additional impurity. The measurement of resistivity versus temperature using cryogenic magnetometer was performed to investigate the electrical properties. The results show that the electrical resistivity of polycrystalline La0.8Ca0.17Ag0.03MnO3 exhibits metalic behavior below 244 K. The temperature dependence of electrical resistivity dominantly emanates from electron-electron scattering and the grain/domain boundary play a important role in conduction mechanism in polycrystalline La0.8Ca0.17Ag0.03MnO3.
NASA Astrophysics Data System (ADS)
Zhu, Yuanhu; Wang, Chunlei; Su, Wenbin; Liu, Jian; Li, Jichao; Du, Yanling; Zhang, Xinhua; Qin, Yalin; Mei, Liangmo
2015-01-01
Perovskite-type Ca0.98Dy0.02MnO3, Ca0.96Dy0.04MnO3, and Ca0.96Dy0.02 Re0.02MnO3 (Re = La, Nd, Sm) were prepared by solid-state reaction, and their thermoelectric properties were evaluated between 300 and 1000 K. All were single-phase, with an orthorhombic structure, and had metal-like temperature dependence of resistivity and Seebeck coefficient. The second doping element, Re = La, Nd, or Sm, introduced a larger carrier concentration, leading to a decrease in both resistivity and Seebeck coefficient. This contributed to lower thermal conductivity by introducing a second element into the system. The highest figure of merit, 0.20, was obtained for Re = La at 973 K; this was an increase of almost 100% compared with Ca0.98Dy0.02MnO3 at the same temperature.
Chemical profile of size-fractionated soils collected in a semiarid industrial area of Argentina
NASA Astrophysics Data System (ADS)
Morales Del Mastro, Anabella; Pereyra, Marcelo; Londonio, Agustín; Pereyra, Victoria; Rebagliati, Raúl Jiménez; Dawidowski, Laura; Gómez, Darío; Smichowski, Patricia
2014-12-01
A study was undertaken to assess the chemical profile of soil collected in Bahía Blanca (Argentina). In this industrial city, semiarid soils are affected by different industrial and agricultural activities, the presence of a saltpeter extraction facility, traffic and increasing urbanization. Sixteen soil samples (superficial and sub-superficial) were collected. Samples were sieved in two fractions (A < 37 μm, and 37 < B < 50 μm) before elemental analysis. Major, minor and trace elements namely, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Ti, V and Zn were determined by inductively coupled plasma optical emission spectrometry (ICP OES). Anions (Cl-, F-, SO42-) and cations (K+, Na+ and NH4+) were determined by high performance liquid chromatography (HPLC) after an aqueous extraction. As expected, crustal elements namely, Al, Ca, Fe, Mg and Ti exhibited the highest concentrations. Mean elemental concentration ranged from <0.3 μg g-1 (Sb) to 14.6 ± 0.6% (Ca). Ions concentrations in the soluble fraction measured at mg g-1 levels were in the order Cl- > Na+ ≅ SO42- > K+ > NO3-. Three indicators, namely, (i) coefficient of variation, (ii) coefficient of divergence and (iii) ratio of elemental concentration with respect to Ca were used to assess chemical, spatial and inter-profile variability. Chloride > Ca > Na+ > Mo > SO42-, dominated the variability indicating that these are key chemical markers for future assessment of crustal contribution to airborne particles in the area. The ratios Xi/Ca allowed discriminating the soil of the semi-arid region surrounding Bahía Blanca. The chemical profiles obtained in this study, particularly those of topsoil, will be a key input to characterize soil resuspension and its contribution to airborne particulate matter in a forthcoming receptor model analysis.
Interface ferromagnetism in oxide superlattices of CaMnO3/CaRuO3
NASA Astrophysics Data System (ADS)
Takahashi, K. S.; Kawasaki, M.; Tokura, Y.
2001-08-01
Oxide superlattices composed of antiferromagnetic insulator layers of CaMnO3 (10 unit cells) and paramagnetic metal layers of CaRuO3 (N unit cells) were fabricated on LaAlO3 substrates by pulsed-laser deposition. All the superlattices show ferromagnetic transitions at an almost identical temperature (TC˜95 K) and negative magnetoresistance below TC. Each magnetization and magnetoconductance of the whole superlattice at 5 K is constant and independent of CaRuO3 layer thickness when normalized by the number of the interfaces between CaMnO3 and CaRuO3. These results indicate that the ferromagnetism shows up only at the interface and is responsible for the magnetoresistance.
Sol gel synthesis and characterization studies of Cupromanganite CaCu3Mn4O12
NASA Astrophysics Data System (ADS)
Nurulhuda, A.; Warikh, A. R. M.; Hafizzal, Y.
2017-08-01
A single-phase CaCu3Mn4O12 electroceramic had been prepared via sol gel method and fairly well densified at relative low temperature under atmospheric condition where the crystallization of CaCu3Mn4O12 occurred due to amorphous polymeric mixture. The precursor was prepared by mixing the solutions with 0.6 M citric acid (C6H8O7) as a chelating reagent with the mol ratio 1:2. The precursor gel formed was calcined and sintered at range 400 °C to 800°C by varying dwell time. Material formations under the reported conditions have been confirmed by X-ray diffraction (XRD). The results show that the formation of CaCu3Mn4O12 started at 500 ° C and was formed completely at 700 ° C for 18 hours. The microstructure of all CaCu3Mn4O12 was analysed using field emission scanning electron microscopy (FESEM). A smaller particle size with higher grain boundary was obtained at sintering 700°C to 800°C. FESEM results show the significant influence of calcinations and sintering parameter on the microstructure behaviour of CaCu2Mn4O12.
NASA Astrophysics Data System (ADS)
Xiang, P.-H.; Yamada, H.; Sawa, A.; Akoh, H.
2010-03-01
We report on the transport properties of electron-doped manganite Ca1-xCexMnO3 (CCMO, 0≤x≤0.08) films and superlattices composed of insulating layers CaMnO3 (CMO) and Ca0.92Ce0.08MnO3 (CCMO8), deposited on nearly lattice-matched NdAlO3 substrates. The CCMO (x =0.06 and 0.07) films show colossal magnetoresistance (CMR) accompanied with magnetorelaxor behavior, which can be ascribed to the phase separation of canted G-type antiferromagnetic metal and C-type antiferromagnetic insulator. The (CMO)m/(CCMO8)n superlattices with 4≤m, n ≤8 (unit cells) resemble the solid-solution CCMO (x =0.06 and 0.07) films in CMR and magnetorelaxor behavior, suggesting that the phase separation takes place in the superlattices. The CMR and magnetorelaxor behavior of the (CMO)m/(CCMO8)n superlattices strongly depend on the thicknesses of constituent CMO and CCMO8 layers. The origin of the phase separation in the superlattices is discussed in terms of the charge transfer and the phase competition at the interfaces.
Magnetotransport study of Dirac fermions in YbMnBi2 and CaMnBi2
NASA Astrophysics Data System (ADS)
Wang, Aifeng; Zaliznyak, Igor; Graf, David; Ren, Weijun; Wang, Kefeng; Wu, Lijun; Garlea, Ovidiu; Warren, John; Bozin, Emil; Zhu, Yimei; Petrovic, Cedomir
It is well known that AMnBi2 (A = alkaline earth) with two dimensional (2D) bismuth layer host quasi-2D Dirac states similar to graphene and topological insulators. The Dirac state is significantly affected by the alkaline earth in the block layer. Angle-resolved photoemission spectroscopy (ARPES) indicates that YbMnBi2 could be the first Weyl semimetal with time-reversal symmetry breaking, whereas the anisotropic Dirac state in SrMnBi2 can host a valley-polarized interlayer current through magnetic valley control. Here, we study in-plane magnetotransport in YbMnBi2, and interlayer magnetotransport in CaMnBi2. The angular-dependent magnetoresistance, nonzero Berry phase, and small cyclotron mass confirm the presence of Dirac fermion and quasi-2D fermi surface in YbMnBi2. The interlayer electronic transport in CaMnBi2 suggest valley polarized conduction and a Dirac state on the side wall of the warped cylindrical Fermi surface of CaMnBi2. Work at BNL was supported by the U.S. Department of Energy-BES, Division of Materials Science and Engineering, under Contract No. DE-SC0012704. Work at the National High Magnetic Field Laboratory is supported by the NSF Cooperative Agreement No. DMR-06541.
Different Topological Quantum States in Ternary Zintl compounds: BaCaX (X = Si, Ge, Sn and Pb)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lin-Lin; Kaminski, Adam; Canfield, Paul C.
Topological quantum states require stringent combination of crystal symmetry and spin–orbit coupling (SOC) strength. Here in this paper, we report that the ternary Zintl compound series BaCaX (X = Si, Ge, Sn and Pb, Group IV) in the same crystal structure having eight valence electrons per formula unit can host two different topological quantum phases, controlled by atomic size and SOC strength. BaCaSi is a nodal-line semimetal (NLSM) with band inversion protected by mirror symmetry and hosts a strong topological insulator (TI) state when SOC is turned on, thus, a NLSM-TI phase. Moving to larger atomic sizes and heavier atoms,more » BaCaGe and BaCaSn are normal insulators (NIs); then, with the strongest SOC in BaCaPb, a different band inversion is induced, giving a strong TI phase without the need of NLSM. Thus, we also predict two types of topological transitions in a phase diagram for BaCaX: (1) NLSM-TI to NI, then to TI by tuning atomic size and SOC strength via alloying, and (2) NI or TI to NLSM-TI via pressure.« less
Different Topological Quantum States in Ternary Zintl compounds: BaCaX (X = Si, Ge, Sn and Pb)
Wang, Lin-Lin; Kaminski, Adam; Canfield, Paul C.; ...
2017-12-14
Topological quantum states require stringent combination of crystal symmetry and spin–orbit coupling (SOC) strength. Here in this paper, we report that the ternary Zintl compound series BaCaX (X = Si, Ge, Sn and Pb, Group IV) in the same crystal structure having eight valence electrons per formula unit can host two different topological quantum phases, controlled by atomic size and SOC strength. BaCaSi is a nodal-line semimetal (NLSM) with band inversion protected by mirror symmetry and hosts a strong topological insulator (TI) state when SOC is turned on, thus, a NLSM-TI phase. Moving to larger atomic sizes and heavier atoms,more » BaCaGe and BaCaSn are normal insulators (NIs); then, with the strongest SOC in BaCaPb, a different band inversion is induced, giving a strong TI phase without the need of NLSM. Thus, we also predict two types of topological transitions in a phase diagram for BaCaX: (1) NLSM-TI to NI, then to TI by tuning atomic size and SOC strength via alloying, and (2) NI or TI to NLSM-TI via pressure.« less
Magneto-optical properties of BaTiO3/La0.76Sr0.24MnO3/BaTiO3 heterostructures
NASA Astrophysics Data System (ADS)
Moog, M.; Singamaneni, S. R.; Prater, J. T.; Biegalski, M. D.; Tsui, F.
2018-05-01
The magnetic properties of epitaxial BaTiO3/La0.76Sr0.24MnO3/BaTiO3 (BTO/LSMO/BTO) heterostructures have been studied using magneto-optic Kerr effect (MOKE) technique. Both longitudinal and polar MOKE were probed as a function of magnetic field and temperature (in the range between 80 and 320 K) for epitaxial films of BTO/LSMO/BTO and LSMO grown on TiO2-terminated SrTiO3 (001) substrates by pulsed laser deposition technique. The LSMO film without the BTO layers exhibits nearly square field-dependent MOKE hysteresis loops with low saturation fields below a bulk-like Curie temperature (TC) of ˜ 350K. In contrast, the film with the BTO layers exhibits a significantly suppressed TC of 155 K, accompanied by significantly enhanced coercive fields and perpendicular magnetic anisotropy.
Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh.
Bhuiyan, Mohammad A H; Parvez, Lutfar; Islam, M A; Dampare, Samuel B; Suzuki, Shigeyuki
2010-01-15
Total concentrations of heavy metals in the soils of mine drainage and surrounding agricultural fields in the northern part of Bangladesh were determined to evaluate the level of contamination. The average concentrations of Ti, Mn, Zn, Pb, As, Fe, Rb, Sr, Nb and Zr exceeded the world normal averages and, in some cases, Mn, Zn, As and Pb exceeded the toxic limit of the respective metals. Soil pollution assessment was carried out using enrichment factor (EF), geoaccumulation index (I(geo)) and pollution load index (PLI). The soils show significant enrichment with Ti, Mn, Zn, Pb, As, Fe, Sr and Nb, indicating inputs from mining activities. The I(geo) values have revealed that Mn (1.24+/-0.38), Zn (1.49+/-0.58) and Pb (1.63+/-0.38) are significantly accumulated in the study area. The PLIs derived from contamination factors indicate that the distal part of the coal mine-affected area is the most polluted (PLI of 4.02). Multivariate statistical analyses, principal component and cluster analyses, suggest that Mn, Zn, Pb and Ti are derived from anthropogenic sources, particularly coal mining activities, and the extreme proximal and distal parts are heavily contaminated with maximum heavy metals.
NASA Astrophysics Data System (ADS)
Jadav, G. D.; Kanjariya, P. V.; Chavda, S. K.; Bhalodia, J. A.
2018-05-01
Manganite systems have been of considerable interest in the recent past due to their potential to operate in wide property range and also to serve as effective magnetic sensing and storing devices. We report a novel hybrid method, by which La0.7Sr0.3Mn1-xAxO3 (A = Al and Ti, x = 0.00 and 0.06) samples were synthesized at temperature 1100 °C. La0.7Sr0.3MnO3 was selected as a parent material because it has metal to insulator transition near to room temperature. The XRD confirms that all the samples were in single phase (with no detectable secondary phases) having a rhombohedral structure in hexagonal lattice having a space group R3¯c. Unit cell volume is affected by Al+3 and Ti+4 ions and this structural variation slows down the electron transfer through the Mn+3-O-2-Mn+4 network seriously. EDAX analysis shows that the weight percentage of prepared samples matches with the calculated weight percentage of all the samples. Scanning electron microscopy shows that each sample has fine and clear grain boundaries (GBs). Metal-insulator transition (TMI) was increased from 230 K to 275 K in Ti+4 doped sample while TMI remain unchanged in Al+3 substituted sample under the 8 T applied magnetic field. As a positive effect, enhancement in MR % was observed at room temperature. These results prove that Al and Ti substitution at Mn site enhances the various properties of this manganite system. These properties are important for application point of view.
NASA Astrophysics Data System (ADS)
Bendersky, L. A.; Wang, K.; Levin, I.; Newbury, D.; Young, K.; Chao, B.; Creuziger, A.
2012-11-01
The microstructures of a series of AB2-based metal hydride alloys (Ti12.5Zr21V10Cr8.5MnxCo1.5Ni46.5-x) designed to have different fractions of non-Laves secondary phases were studied by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, and electron backscatter diffraction. The results indicate that the alloys contain a majority of hydrogen storage Laves phases and a minority of fine-structured non-Laves phases. Formation of the phases is accomplished by dendritic growth of a hexagonal C14 Laves phase. The C14 phase is followed by either a peritectic solidification of a cubic C15 Laves phase (low Mn containing alloys) or a C14 phase of different composition (high Mn containing alloys), and finally a B2 phase formed in the interdendritic regions (IDR). The interdendritic regions may then undergo further solid-state transformation into Zr7Ni10-type, Zr9Ni11-type and TiNi-type phases. As the Mn content in the alloy increases, the fraction of the C14 phase increases, whereas the fraction of C15 decreases. In the IDRs when the alloy's Mn content increases the Zr9Ni11 phases and Zr7Ni10 phase fraction first increases and then decreases, while the TiNi-based phase fraction first increases and then stabilized at 0.02. IDR compositions can be generally expressed as (Ti,Zr,V,Cr,Mn,Co)50Ni50, which accounted for 7-10% of the overall alloy volume fraction.
Wang, Zhangwei; Wu, Margaret; Cai, Zhonghou; ...
2016-06-13
The microstructure and mechanical properties studies of a series of two-phase f.c.c./B2 (ordered b.c.c.) lamellar-structured, high entropy alloys (HEA) Fe 36Ni 18Mn 33Al 13Ti x with x up to 6 at. % Ti have been investigated. X-ray microanalysis in a TEM showed that the Ti resided mostly in the B2 phase. The lamellar spacing decreased significantly with increasing Ti content from 1.56 μm for the undoped alloy to 155 nm with an addition of 4 at. % Ti, leading to a sharp increase in room-temperature yield strength,σ y, from 270 MPa to 953 MPa, but with a concomitant decrease inmore » ductility from 22% elongation to 2.3%. Annealing at 1173 K for 20 h greatly increased the lamellar spacing of Fe 36Ni 18Mn 33Al 13Ti 4 to 577 nm, producing a corresponding decrease in σy to 511 MPa. The yield strengths of all the doped alloys decreased significantly when tensile tested at 973 K with a concomitant increase in ductility due to softening of the B2 phase. The fracture mode changed from cleavage at room temperature to a ductile dimple-type rupture at 973 K. Lastly, the results are discussed in terms of the Hall-Petch-type relationship.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhangwei; Wu, Margaret; Cai, Zhonghou
The microstructure and mechanical properties studies of a series of two-phase f.c.c./B2 (ordered b.c.c.) lamellar-structured, high entropy alloys (HEA) Fe 36Ni 18Mn 33Al 13Ti x with x up to 6 at. % Ti have been investigated. X-ray microanalysis in a TEM showed that the Ti resided mostly in the B2 phase. The lamellar spacing decreased significantly with increasing Ti content from 1.56 μm for the undoped alloy to 155 nm with an addition of 4 at. % Ti, leading to a sharp increase in room-temperature yield strength,σ y, from 270 MPa to 953 MPa, but with a concomitant decrease inmore » ductility from 22% elongation to 2.3%. Annealing at 1173 K for 20 h greatly increased the lamellar spacing of Fe 36Ni 18Mn 33Al 13Ti 4 to 577 nm, producing a corresponding decrease in σy to 511 MPa. The yield strengths of all the doped alloys decreased significantly when tensile tested at 973 K with a concomitant increase in ductility due to softening of the B2 phase. The fracture mode changed from cleavage at room temperature to a ductile dimple-type rupture at 973 K. Lastly, the results are discussed in terms of the Hall-Petch-type relationship.« less
Tan, Wenjuan; Du, Wenchao; Barrios, Ana C; Armendariz, Raul; Zuverza-Mena, Nubia; Ji, Zhaoxia; Chang, Chong Hyun; Zink, Jeffrey I; Hernandez-Viezcas, Jose A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L
2017-03-01
Little is known about the effects of surface coating on the interaction of engineered nanoparticles (ENPs) with plants. In this study, basil (Ocimum basilicum) was cultivated for 65 days in soil amended with unmodified, hydrophobic (coated with aluminum oxide and dimethicone), and hydrophilic (coated with aluminum oxide and glycerol) titanium dioxide nanoparticles (nano-TiO 2 ) at 125, 250, 500, and 750 mg nano-TiO 2 kg -1 soil. ICP-OES/MS, SPAD meter, and UV/Vis spectrometry were used to determine Ti and essential elements in tissues, relative chlorophyll content, carbohydrates, and antioxidant response, respectively. Compared with control, hydrophobic and hydrophilic nano-TiO 2 significantly reduced seed germination by 41% and 59%, respectively, while unmodified and hydrophobic nano-TiO 2 significantly decreased shoot biomass by 31% and 37%, respectively (p ≤ 0.05). Roots exposed to hydrophobic particles at 750 mg kg -1 had 87% and 40% more Ti than the pristine and hydrophilic nano-TiO 2 ; however, no differences were found in shoots. The three types of particles affected the homeostasis of essential elements: at 500 mg kg - 1 , unmodified particles increased Cu (104%) and Fe (90%); hydrophilic increased Fe (90%); while hydrophobic increased Mn (339%) but reduced Ca (71%), Cu (58%), and P (40%). However, only hydrophobic particles significantly reduced root elongation by 53%. Unmodified, hydrophobic, and hydrophilic particles significantly reduced total sugar by 39%, 38%, and 66%, respectively, compared with control. Moreover, unmodified particles significantly decreased reducing sugar (34%), while hydrophobic particles significantly reduced starch (35%). Although the three particles affected basil plants, coated particles impacted the most its nutritional quality, since they altered more essential elements, starch, and reducing sugars. Copyright © 2017 Elsevier Ltd. All rights reserved.
Magnetocaloric effect study of Pr0.67Ca0.33MnO3-La0.67Sr0.33MnO3 nanocomposite
NASA Astrophysics Data System (ADS)
Das, Kalipada; Roy Chowdhury, R.; Midda, S.; Sen, Pintu; Das, I.
2018-03-01
The present study involves investigaton of magnetocaloric effect of Pr0.67Ca0.33MnO3-La0.67Sr0.33MnO3 nanocomposite materials above room temperature. From application point of view in magnetic refrigeration our study highlights the enhancement of operating temperature region compared to the well known La0.67Sr0.33MnO3 refrigerant material above room temperature. Comparison has also been made with the magnetocaloric properties of La0.67Sr0.33MnO3 nanomaterials. The modification of the magnetocaloric entropy changes (broadening of the temperature dependent magnetic entropy change) is addressed due to the effect of the gradual melting of antiferromagnetic charge ordered state of the Pr0.67Ca0.33MnO3 nanoparticles in such nanocomposite materials.
NASA Astrophysics Data System (ADS)
Wang, W. G.; Li, X. Y.
2017-12-01
Na0.5Bi0.44Ca0.06TiO2.97 ceramics were synthetized by conventional solid-state reaction. XRD measurement analysis shows that the Na0.5Bi0.44Ca0.06TiO2.97 sample is the single perovskite structures. The oxide ion conductivity of the Na0.5Bi0.44Ca0.06TiO2.97 sample was investigated by AC impedance spectroscopy measurement. The bulk conductivity of Na0.5Bi0.44Ca0.06TiO2.97 sample can arrive at 2.22×10-4 S/cm at 573 K in air atmosphere. By changing measuring temperature of dielectric frequency spectroscopy measurement, the activation energy E and pre-exponential factor τ0 are E= 0.81 eV, τ0=1.5×10-13 s for Na0.5Bi0.44Ca0.06TiO2.97 sample, respectively. Judging from the relaxation parameters, the dielectric loss peaks correspond to oxide ion via vacancies diffusion in Na0.5Bi0.44Ca0.06TiO2.97 sample. Compared with the same dopant amount Na0.5Bi0.5Ti0.94Mg0.06O2.94 compound, the better oxygen vacancy mobility and larger specific free volume Vsf might be responsible for the favourable oxide ion conductivity in the Na0.5Bi0.44Ca0.06TiO2.97 sample, indicating that calcium modified Na0.5Bi0.5TiO3 materials are promising for intermediate-temperature solid electrochemical devices.
NASA Astrophysics Data System (ADS)
Bezel, V. S.; Koutzenogii, K. P.; Mukhacheva, S. V.; Chankina, O. V.; Savchenko, T. I.
2007-05-01
The Synchrotron radiation X-ray Fluorescence analysis (SRXRF) was used for estimation of "geochemical selection" of elements by small mammals, which belong to different trophic groups and inhabit polluted and background areas (the Middle Ural). The concentrations of K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Y, Cd, Pb in the diet and into hepar of a herbivorous ( bank vole) and carnivorous ( Laxmann's shrew) small mammals were compared. Herbivores play a particular role in chemical elements translocation between trophic levels, limiting element transition to consumers of the consequent levels. Whereas, insectivores concentrate most elements in their tissues under the same conditions.
Geochemical landscapes of the conterminous United States; new map presentations for 22 elements
Gustavsson, N.; Bolviken, B.; Smith, D.B.; Severson, R.C.
2001-01-01
Geochemical maps of the conterminous United States have been prepared for seven major elements (Al, Ca, Fe, K, Mg, Na, and Ti) and 15 trace elements (As, Ba, Cr, Cu, Hg, Li, Mn, Ni, Pb, Se, Sr, V, Y, Zn, and Zr). The maps are based on an ultra low-density geochemical survey consisting of 1,323 samples of soils and other surficial materials collected from approximately 1960-1975. The data were published by Boerngen and Shacklette (1981) and black-and-white point-symbol geochemical maps were published by Shacklette and Boerngen (1984). The data have been reprocessed using weighted-median and Bootstrap procedures for interpolation and smoothing.
Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry
Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.
1990-01-01
X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.
IBHVG2 (Interior Ballistics of High Velocity Guns, Version 2)--A User’s Guide
1987-07-01
AT GAGE LOCATIONS - BREECH, CA 0 38 -- > ORIGINAL PROJECTILE BASE, AND AT 10 INCHES OF TRAVEL CARD 39 -*SGUN CARD 40-- NAMEaE1SS-MN 198’ CNAMu1150...03 SAMIE AS RPT 0 Wr’C usr*s Un14lassile _____ V~nNAUS1&1 n c’’ e Isn D UA (301) 27蔶 SLCl3R- 10 -A DD FOM 147. . AR ;3 APF4 Z70tiQfli*m b mosw itw...004vlted xi t CAS .’Np~ A( All othof Eatt n$ 4( )M,’ UNCLASSI FIED Noec Lert lntentiontly bllank CONTENTS L INTRODUCTION ............. . . . . 4 IL
[Determination of twenty one elements in lithium hexafluorophosphate by ICP-AES].
Fang, Yi-wen; Hao, Zhi-feng; Song, Yi-bing; Sun, Chang-yong; Yu, Jian; Yu, Lin
2005-02-01
One gram (+/- 0.0001 g) of lithium hexafluorophosphate was weighed exactly under dry atmosphere and was dissolved with an adequate amount of dimethyl carbonate (DMC). After the sample solution was pretreated with a series of methods, Be, Cu, Pb, Ca, Zr, Co, Mg, V, Ti, Mo, Ni, Mn, Sr, Zn, K, Al, Ba, Cd, Fe, Cr and Na were determined by ICP-AES. The results show that the recoveries of standard addition were 93.3%-102.1%, and the relative standard deviations (n = 11) were 0%-3.56%. The method is efficient, accurate and easy to operate. It has been applied to the determination of lithium hexafluorophosphate products with satisfactory results.
Superconducting transition temperature in the Y(1-x)M(x)Ba2Cu3O(y) system
NASA Astrophysics Data System (ADS)
Suzuki, Takeyuki; Yamazaki, Tsutomu; Sekine, Ryuuta; Koukitsu, Akinori; Seki, Hisashi
1989-04-01
Experimental results are presented for the inclusion of compositional additives, M, to the sintered high-temperature superconductor Y(1-x)M(x)Ba2Cu3O(y); M can be the oxides of Mg, Ce, Gd, Yb, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Zn, B, Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi, and Te, as well as Li, Na, K, Ca, Sr, and La carbonates. Temperature dependence of the electrical resistance was measured down to about 80 K. Attention is given to the influence of ionic radius and the valence of the M species.
VizieR Online Data Catalog: Abundances in dwarfs, subgiants, and giants (da Silva+, 2015)
NASA Astrophysics Data System (ADS)
da Silva, R.; Milone, A. C.; Rocha-Pinto, H. J.
2015-05-01
Photospheric parameters mass, age, and the abundances of C, N, O, Na, Mg, Si, Ca, Ti, V, Mn, Fe, Ni, Cu, and Ba for a sample of FGK dwarfs, subgiants, and giants are derived. We used spectra of high-resolution (R~42,000) and high S/N (>150 on average) available in the ELODIE online database (Moultaka et al., 2004PASP..116..693M). These are spectra collected with the ELODIE high-resolution spectrograph (Baranne et al. 1996) of the Haute Provence Observatory (France). Only spectra with individual S/N>20 and with an image type classified as "object fibre only" (OBJO) were used. (7 data files).
On melt solutions for the growth of CaTiO3 crystals
NASA Astrophysics Data System (ADS)
Klimm, Detlef; Schmidt, Max; Wolff, Nora; Guguschev, Christo; Ganschow, Steffen
2018-03-01
When calcium titanate crystals are grown from stoichiometric melts, they crystallize in the cubic perovskite structure. Upon cooling to room temperature they undergo subsequent phase transitions to tetragonal and orthorhombic modifications. These phase transitions are disruptive and result in severely damaged crystals. This paper presents differential thermal analysis data for several prospective solvents, with the aim to identify a system offering the possibility to perform crystal growth of undistorted CaTiO3 crystals by crystallizing them significantly below the melting point directly in the low temperature modification. From mixtures CaF2:TiO2:CaTiO3 = 3:1:1 (molar ratio) the growth of undistorted, at least millimeter-sized CaTiO3 crystals is possible.
Low Temperature Specific Heat in Lightly Mn-Substituted Electron-Doped SrTiO3
NASA Astrophysics Data System (ADS)
Okuda, Tetsuji; Hata, Hiroto; Eto, Takahiro; Sobaru, Shogo; Oda, Ryosuke; Noda, Masaaki; Kuwahara, Hideki
2017-08-01
We found large changes in the low-temperature specific heat (low-T C) in the lightly Mn-substituted electron-doped perovskites Sr0.95La0.05Ti1-yMnzO3 with y = 0.02 and 0.04 by applying magnetic fields up to 9 T. The changes in the low-T C are qualitatively well explained by the Schottky specific heat (CSch) of localized spins of the Mn 3d electrons in weak internal magnetic fields via itinerant electrons. However, the actual numbers of localized spins estimated from CSch are about 30% smaller than the expected values. Part of the localized spins of the Mn 3d electrons may disappear due to Kondo coupling with the itinerant electrons.
Zhang, Miao; Bommer, Martin; Chatterjee, Ruchira; ...
2017-07-18
In plants, algae and cyanobacteria, Photosystem II (PSII) catalyzes the light-driven splitting of water at a protein-bound Mn 4CaO 5-cluster, the water-oxidizing complex (WOC). In the photosynthetic organisms, the light-driven formation of the WOC from dissolved metal ions is a key process because it is essential in both initial activation and continuous repair of PSII. Structural information is required for understanding of this chaperone-free metal-cluster assembly. For the first time, we obtained a structure of PSII from Thermosynechococcus elongatus without the Mn 4CaO 5-cluster. Surprisingly, cluster-removal leaves the positions of all coordinating amino acid residues and most nearby water moleculesmore » largely unaffected, resulting in a pre-organized ligand shell for kinetically competent and error-free photo-assembly of the Mn 4CaO 5-cluster. First experiments initiating (i) partial disassembly and (ii) partial re-assembly after complete depletion of the Mn4CaO5-cluster agree with a specific bi-manganese cluster, likely a di-µ-oxo bridged pair of Mn(III) ions, as an assembly intermediate.« less
Zhang, Miao; Bommer, Martin; Chatterjee, Ruchira; Hussein, Rana; Yano, Junko; Dau, Holger; Kern, Jan; Dobbek, Holger; Zouni, Athina
2017-07-18
In plants, algae and cyanobacteria, Photosystem II (PSII) catalyzes the light-driven splitting of water at a protein-bound Mn 4 CaO 5 -cluster, the water-oxidizing complex (WOC). In the photosynthetic organisms, the light-driven formation of the WOC from dissolved metal ions is a key process because it is essential in both initial activation and continuous repair of PSII. Structural information is required for understanding of this chaperone-free metal-cluster assembly. For the first time, we obtained a structure of PSII from Thermosynechococcus elongatus without the Mn 4 CaO 5 -cluster. Surprisingly, cluster-removal leaves the positions of all coordinating amino acid residues and most nearby water molecules largely unaffected, resulting in a pre-organized ligand shell for kinetically competent and error-free photo-assembly of the Mn 4 CaO 5 -cluster. First experiments initiating (i) partial disassembly and (ii) partial re-assembly after complete depletion of the Mn 4 CaO 5 -cluster agree with a specific bi-manganese cluster, likely a di-µ-oxo bridged pair of Mn(III) ions, as an assembly intermediate.
NASA Astrophysics Data System (ADS)
Okuda, T.; Fujii, Y.
2010-11-01
We have investigated magnetic, transport, and thermoelecric properties of polycrystalline Ca1-xSrxMn1-yMoyO3, and have tried to optimize the n-type thermoelectric response below room temperature. The Sr substitution enlarges a Mn-O-Mn bond angle and increases a crystal symmetry, which enhances one electron transfer of the electrons doped by the Mo substitution. This effect promotes the competition between correlations of a G-type antiferromagnetic (AF) order and a C-type AF order accompanying a 3d3z2-r2 orbital order, leading to the more complicated magnetic phase diagram of Ca0.75Sr0.25Mn1-yMoyO3 than that of CaMn1-yMoyO3. A subtle balance between the effects of the enhanced one electron transfer and the introduced disorder into the A(Ca)-site upon the transport properties enhances a dimensionless thermoelectric figure-of-merit ZT up to 0.03 at room temperature. However, a correlation of the 3d3z2-r2 orbital order is also promoted by the Sr substitution, which bounds a further enhancement of ZT.
Wang, Yulong; Zhang, Wentao; Zhang, Peicong; Li, Junfeng; Long, Jianping
2015-08-01
Eu(3+)-doped calcium titanate red phosphors, Ca(1-x)Znx TiO3:Eu(3+), were prepared by the sol-gel method. The structure of prepared Ca(1-x)Znx TiO3:Eu(3+) phosphors were investigated by X-ray diffraction and infrared spectra. Due to the (5) D0 → (7) F1-3 electron transitions of Eu(3+) ions, photoluminescence spectra showed a red emission at about 619 nm under excitation of 397 nm and 465 nm, respectively. When zinc was added to the host, the luminescent intensity of Ca(1-x)ZnxTiO3:Eu(3+) was markedly improved several fold compared with that of CaTiO3:Eu(3+). Ca0.9Zn0.1TiO3:Eu(3+) also had higher luminescence intensity than the commercially available Y2 O3:Eu(3+) phosphors under UV light excitation. Copyright © 2014 John Wiley & Sons, Ltd.
Influence of Cu-doping on the structural and optical properties of CaTiO{sub 3} powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, L.H.; Moura, A.P. de; La Porta, F.A., E-mail: felipe_laporta@yahoo.com.br
2016-09-15
Highlights: • Ca{sub 1−x}Cu{sub x}TiO{sub 3} powders were successfully synthesized via a polymeric precursor method. • Effects of Cu incorporated on the Ca-site into the CaTiO{sub 3} lattice as host matrix has been investigated. • The optical behavior reveals that the Ca{sub 1−x}Cu{sub x}TiO{sub 3} powders have potential applications in emerging technologies. - Abstract: Here, we report on the effect of chemical substitution on the structural and optical properties of Cu-doped CaTiO{sub 3} (CTO) polycrystalline powders synthesized by the polymeric precursor method. Our findings are discussed based on the structural order-disorder effects originating from the modification of the Ca{sub 1−x}Cu{submore » x}TiO{sub 3} microcrystal matrix. These results may elucidate the compositional modulation and methods of controlling the structural design, as well as reveal the changes in the optical behavior of this system at an atomic level.« less
PHYSICOCHEMICAL INTERACTION OF MANGANESE WITH NIOBIUM (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savitskii, E.M.; Kopetskii, Ch.V.
1960-03-01
Microstructural, x-ray phase, and thermal analyses as well as hardness and microhardness determinations were performed on different manganese alloys containing 2.26, with a small Nb content have a two-phase structure characteristic of a eutectic. With increasing Nb content, an increasing amount of an intermetallic compound is formed. With a 2.98 wt.% Nb alloy interference lines of only alpha -Mn with a lattice parameter a = 8.892 kX in the annealed state or of ore resistant t -Mn with a lattice parameter a = 6.290 kX in the molten state can be detected by x-ray analysis. With 5.64 wt.% Nb, linesmore » of a new phase can be detected whose intensities increase with increasing Nb content. This new phase is an intermetallic compound Mn/sub 2/Nb Laves phase with a structure of the MgZn/sub 2/ type. The lattice parameters of the Mn/sub 2/Nb phase are: a = 4.881 kX, c = 7.953 kX, c/a = 1.629. With increasing niobium content the hardness values fall from 900 to 950 hg/mm/sup 2/ for pure manganese to 650 to 700 kg/mm/sup 2/ for the 29.85 wt.% niobium alloy. The hardness of the intermetallic compound is less than the hardness of the alpha -Mn. Thermal analysis showed that additions of niobium to manganese significantly increased the temperature of the alpha = ore resistant t transition which is shifted from 727 tained C for pure manganese to 800 tained C for the alloys. A ore resistant t transition takes place at 1135 tained C by a peritectic reaction. Fusion of a eutectic mixture of -Mn and Mn/sub 2/ Nb occurs at 1220 tained C. The intermetallic compound MnNb melts at 1500 tained C. A phase diagram for the Mn-Nb system is constructed on the basis of these resuits. (TTT) Iodide-derived titanium (99.97%) and neodymium (99.8%) were fused in an electric arc furnace in a helium atmosphere to prepare nine alloys with a necdymium content of 0 to 10%. Smelted and forged samples were annealed in evacuated quartz ampoules for 25 hours at 1000 tained C and 100 hours at 850 tained C. Samples of alloys were quenched in water from temperatures of 600, 800, 850, 890, 920, 1000, and 1100 tained C to determine the state of the system at higher temperatures. Microscopic analyses of phases showed that addition of neodymium stabilizes the alpha -phase. The microhardness of the phase is about 70 kg/mm/sup 2/. Apparently, no intermetallic compounds are formed in the Ti-Nd system. The limiting saturation of the alpha -solid solution at 600 tained C is 1.8 wt.% Nd, as determined from microhardness values on quenched samples of variable neodymium composition. The solubility of neodymium is somewhat greater than the solubility of lanthanum and cerium in alpha -titunium because of the lanthanide contraction. Brinnell hardness values, yield strength, elongation, and reduction in cross- section area were also determined at room temperature. Neodymium is more effective than lanthanum or cerium in increasing the handness and strength of titanium. Small additions of Nd(0.5%) decrease the plasticity slightly. The addition of 1.2 wt.% Ce increases the yield strength of titanium from 32 to 38 to 40 hg/mm/sup 2/, while the same amount of neodymium increases the yield strength to 48 to 50 kg/mm/sup 2/. The strength of Ti-Nd alloys continues to increase even with the appearance of a second phase in the alloy, while in the TiLa and Ti- Ce systems a decrease in strength and a sharp drop in plasticity occurs upon the appearance of a second phase. The solubility of neodymium in alpha -titanium varies considerably with temperature. Hence, a noticeable aging effect can be expected, but this must be confirmed by experiment. (TTT)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianfang; Wang, Yan; Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei 230009
Via a facile one-step chemical bath deposition route, homogeneously dispersed Mn{sub 3}O{sub 4} nanoparticles have been successfully deposited onto the inner surface of TiO{sub 2} nanotube arrays (TNAs). The content and size of Mn{sub 3}O{sub 4} can be controlled by changing the deposition time. Field emission scanning electron microscopy and transmission electron microscopy analysis reveal the morphologies structures of Mn{sub 3}O{sub 4}/TNAs composites. The crystal-line structures are characterized by the X-ray diffraction patterns and Raman spectra. X-ray photoelectron spectroscopy further confirms the valence states of the sample elements. The electrochemical properties of Mn{sub 3}O{sub 4}/TNAs electrodes are systematically investigated bymore » the combine use of cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The resulting Mn{sub 3}O{sub 4}/TNAs electrode prepared by deposition time of 3 h shows the highest specific capacitance of 570 F g{sup −1} at a current density of 1 A g{sup −1}. And it also shows an excellent long-term cycling stability at a current density of 5 A g{sup −1}, which remaining 91.8% of the initial capacitance after 2000 cycles. Thus this kind of Mn{sub 3}O{sub 4} nanoparticles decorated TNAs may be considered as an alternative promising candidate for high performance supercapacitor electrodes. - Graphical abstract: Mn{sub 3}O{sub 4} nanoparticles have been uniformly deposited onto the inner surfaces of TiO{sub 2} nanotube arrays through a facile one-step chemical bath deposition method. As electrodes for supercapacitors, they exhibit a relatively high specific capacity and excellent cycling stability. - Highlights: • Mn{sub 3}O{sub 4} nanoparticles have been deposited onto TiO{sub 2} nanotube arrays by chemical bath deposition. • The Mn{sub 3}O{sub 4}/TNAs exhibits a highest specific capacitance of 570 F g{sup –1} at a current density of 1 A g{sup –1}. • The Mn{sub 3}O{sub 4}/TNAs electrode shows an excellent cycling stability of 91.8% after 2000 cycles.« less
NASA Astrophysics Data System (ADS)
Nomura, Kiyoshi; Suzuki, Shigeyo; Mizunuma, Tomoya; Koike, Yuya; Okazawa, Atsushi
2017-11-01
Magnetic properties of perovskite oxides, SrSn1- x Fe x O3- δ ( x ≤ 0.15), substituted with nonmagnetic Ca and Ti ions were studied. XRD patterns showed the orthorhombic structure (close to tetragonal) of (Sr1- y Ca y )(Sn1- x Fe x )O3- δ and Sr(Sn1- x- y Fe x Ti y )O3- δ . The cell volumes decreased with the increase of Ca and Ti doping rates. Although Ti-substituted Sr(Sn, Fe)O3- δ showed small saturation magnetizations as compared with non-Ti substituted one, the magnetization increased a little with Ti doping rates up to 15%. On the other hand, all Ca-substituted Sr(Sn, Fe)O3- δ showed larger saturation magnetization than non-Ca substituted one. Two doublets of Fe3+ and a doublet of Fe4+ were observed in Mössbauer spectra of Ca-substituted Sr(Sn, Fe)O3- δ with weak ferromagnetism, and two sextets of high spin Fe3+ were additionally observed in Mössbauer spectra of Ca-doped Sr(Sn, Fe)O3- δ with relatively strong ferromagnetism. When Sr(Sn, Fe)O3- δ were further codoped with Ca and Ti ions, they showed the stable and enhanced ferromagnetic properties. It is considered that magnetic polarons among high spin Fe3+ species are overlapped by shrinking or deforming the crystal structure of perovskite oxides. That is the magnetism induced by a chemical pressure of perovskite oxides.
Self-Organized TiO₂-MnO₂ Nanotube Arrays for Efficient Photocatalytic Degradation of Toluene.
Nevárez-Martínez, María C; Kobylański, Marek P; Mazierski, Paweł; Wółkiewicz, Jolanta; Trykowski, Grzegorz; Malankowska, Anna; Kozak, Magda; Espinoza-Montero, Patricio J; Zaleska-Medynska, Adriana
2017-03-31
Vertically oriented, self-organized TiO₂-MnO₂ nanotube arrays were successfully obtained by one-step anodic oxidation of Ti-Mn alloys in an ethylene glycol-based electrolyte. The as-prepared samples were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), UV-Vis absorption, photoluminescence spectroscopy, X-ray diffraction (XRD), and micro-Raman spectroscopy. The effect of the applied potential (30-50 V), manganese content in the alloy (5-15 wt. %) and water content in the electrolyte (2-10 vol. %) on the morphology and photocatalytic properties was investigated for the first time. The photoactivity was assessed in the toluene removal reaction under visible light, using low-powered LEDs as an irradiation source (λ max = 465 nm). Morphology analysis showed that samples consisted of auto-aligned nanotubes over the surface of the alloy, their dimensions were: diameter = 76-118 nm, length = 1.0-3.4 μm and wall thickness = 8-11 nm. It was found that the increase in the applied potential led to increase the dimensions while the increase in the content of manganese in the alloy brought to shorter nanotubes. Notably, all samples were photoactive under the influence of visible light and the highest degradation achieved after 60 min of irradiation was 43%. The excitation mechanism of TiO₂-MnO₂ NTs under visible light was presented, pointing out the importance of MnO₂ species for the generation of e - and h⁺.
NASA Astrophysics Data System (ADS)
Qiao, Huimin; He, Chao; Yuan, Feifei; Wang, Zujian; Li, Xiuzhi; Liu, Ying; Guo, Haiyan; Long, Xifa
2018-04-01
The acceptor doped relaxor-based ferroelectric materials are useful for high power applications such as probes in ultrasound-guided high intensity focused ultrasound therapy. In addition, a high Curie temperature is desired because of wider temperature usage and improved temperature stability. Previous investigations have focused on Pb(Mg1/3Nb2/3)O3-PbTiO3 and Pb(Zn1/3Nb2/3)O3-PbTiO3 systems, which have a ultrahigh piezoelectric coefficient and dielectric constant, but a relatively low Curie temperature. It is desirable to study the binary relaxor-based system with a high Curie temperature. Therefore, Pb(In1/2Nb1/2)O3-PbTiO3 (PINT) single crystals were chosen to study the Mn-doped influence on their electrical properties and domain configuration. The evolution of ferroelectric hysteresis loops for doped and virgin samples exhibit the pinning effect in Mn-doped PINT crystals. The relaxation behaviors of doped and virgin samples are studied by fit of the modified Curie-Weiss law and Volgel-Fucher relation. In addition, a short-range correlation length was fitted to study the behavior of polar nanoregions based on the domain configuration obtained by piezoresponse force microscopy. Complex domain structures and smaller short-range correlation lengths (100-150 nm for Mn-doped PINT and >400 nm for pure PINT) were obtained in the Mn-doped PINT single crystals.
NASA Astrophysics Data System (ADS)
Wang, Zhanjun; Sun, Yongqi; Sridrar, Seetharaman; Zhang, Mei; Zhang, Zuotai
2017-02-01
The viscous flow and crystallization behavior of CaO-SiO2-MgO-Al2O3-FetO-P2O5-TiO2 steelmaking slags have been investigated over a wide range of temperatures under Ar (High purity, >99.999 pct) atmosphere, and the relationship between viscosity and structure was determined. The results indicated that the viscosity of the slags slightly decreased with increasing TiO2 content. The constructed nonisothermal continuous cooling transformation (CCT) diagrams revealed that the addition of TiO2 lowered the crystallization temperature. This can mainly be ascribed to that addition of TiO2 promotes the formation of [TiO6]-octahedra units and, consequently, the formation of MgFe2O4-Mg2TiO4 solid solution. Moreover, the decreasing viscosity has a significant effect on enhancing the diffusion of ion units, such as Ca2+ and [TiO4]-tetrahedra, from bulk melts to the crystal-melt interface. The crystallization of CaTiO3 and CaSiTiO5 was consequently accelerated, which can improve the phosphorus content in P-enriched phase ( n2CaO·SiO2-3CaO·P2O5). Finally, the nonisothermal crystallization kinetics was characterized and the activation energy for the primary crystal growth was derived such that the activation energy increases from -265.93 to -185.41 KJ·mol-1 with the addition of TiO2 content, suggesting that TiO2 lowered the tendency for the slags to crystallize.
Functionalization of nanocrystalline diamond films with phthalocyanines
NASA Astrophysics Data System (ADS)
Petkov, Christo; Reintanz, Philipp M.; Kulisch, Wilhelm; Degenhardt, Anna Katharina; Weidner, Tobias; Baio, Joe E.; Merz, Rolf; Kopnarski, Michael; Siemeling, Ulrich; Reithmaier, Johann Peter; Popov, Cyril
2016-08-01
Phthalocyanine (Pc) derivatives containing different central metal atoms (Mn, Cu, Ti) and different peripheral chains were synthesized and comprehensively characterized. Their interaction with nanocrystalline diamond (NCD) films, as-grown by hot-filament chemical vapor deposition or after their modification with oxygen plasma to exchange the hydrogen termination with oxygen-containing groups, was studied by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The elemental composition as determined by XPS showed that the Pc were grafted on both as-grown and O-terminated NCD. Mn, Cu and Ti were detected together with N stemming from the Pc ring and S in case of the Ti-Pc from the peripheral ligands. The results for the elemental surface composition and the detailed study of the N 1s, S 2p and O 1s core spectra revealed that Ti-Pc grafted better on as-grown NCD but Cu-Pc and Mn-Pc on O-terminated films. Samples of Mn-Pc on as-grown and O-terminated NCD were further investigated by NEXAFS spectroscopy. The results showed ordering of the grafted molecules, laying flat on the H-terminated NCD surface while only the macrocycles were oriented parallel to the O-terminated surface with the peripheral chains perpendicular to it.
Wang, Qin-Chao; Qiu, Qi-Qi; Xiao, Na; ...
2018-03-13
Sodium-ion batteries (SIBs) are attracting significant research attentions for large-scale energy storage applications. Cathode material is the vital part of SIBs to determine the capacity and cycle performance. Here, a series of F-doped Na 0.66[Mn 0.66Ti 0.34]O 2-xF x (x < 0.1) cathodes with tunnel structure are designed and synthesized aiming to enlarge the sodium diffusion paths. The lattice parameters of unit cell are tuned successfully by adjusting F doping amount. Na 0.66[Mn 0.66Ti 0.34]O 1.94F 0.06 with the optimized stoichiometry exhibits a reversible capacity of 97 mAh g -1 and promising cycle performance (85 mAh g -1 is maintainedmore » at 2C after 1000 cycles) with extremely low voltage polarization. More significantly, Na 0.66[Mn 0.66Ti 0.34]O 1.94F 0.06 exhibits superior low temperature performance, owing to the much enhanced thermodynamics and kinetics benefited from F doping. In conclusion, this strategy may open new opportunities to design advanced intercalation-type cathode materials for sodium ion batteries, especially for low-temperature applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin-Chao; Qiu, Qi-Qi; Xiao, Na
Sodium-ion batteries (SIBs) are attracting significant research attentions for large-scale energy storage applications. Cathode material is the vital part of SIBs to determine the capacity and cycle performance. Here, a series of F-doped Na 0.66[Mn 0.66Ti 0.34]O 2-xF x (x < 0.1) cathodes with tunnel structure are designed and synthesized aiming to enlarge the sodium diffusion paths. The lattice parameters of unit cell are tuned successfully by adjusting F doping amount. Na 0.66[Mn 0.66Ti 0.34]O 1.94F 0.06 with the optimized stoichiometry exhibits a reversible capacity of 97 mAh g -1 and promising cycle performance (85 mAh g -1 is maintainedmore » at 2C after 1000 cycles) with extremely low voltage polarization. More significantly, Na 0.66[Mn 0.66Ti 0.34]O 1.94F 0.06 exhibits superior low temperature performance, owing to the much enhanced thermodynamics and kinetics benefited from F doping. In conclusion, this strategy may open new opportunities to design advanced intercalation-type cathode materials for sodium ion batteries, especially for low-temperature applications.« less
Miara, Lincoln; Windmüller, Anna; Tsai, Chih-Long; Richards, William D; Ma, Qianli; Uhlenbruck, Sven; Guillon, Olivier; Ceder, Gerbrand
2016-10-12
The reactivity of mixtures of high voltage spinel cathode materials Li 2 NiMn 3 O 8 , Li 2 FeMn 3 O 8 , and LiCoMnO 4 cosintered with Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 and Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 electrolytes is studied by thermal analysis using X-ray-diffraction and differential thermoanalysis and thermogravimetry coupled with mass spectrometry. The results are compared with predicted decomposition reactions from first-principles calculations. Decomposition of the mixtures begins at 600 °C, significantly lower than the decomposition temperature of any component, especially the electrolytes. For the cathode + Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 mixtures, lithium and oxygen from the electrolyte react with the cathodes to form highly stable Li 2 MnO 3 and then decompose to form stable and often insulating phases such as La 2 Zr 2 O 7 , La 2 O 3 , La 3 TaO 7 , TiO 2 , and LaMnO 3 which are likely to increase the interfacial impedance of a cathode composite. The decomposition reactions are identified with high fidelity by first-principles calculations. For the cathode + Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 mixtures, the Mn tends to oxidize to MnO 2 or Mn 2 O 3 , supplying lithium to the electrolyte for the formation of Li 3 PO 4 and metal phosphates such as AlPO 4 and LiMPO 4 (M = Mn, Ni). The results indicate that high temperature cosintering to form dense cathode composites between spinel cathodes and oxide electrolytes will produce high impedance interfacial products, complicating solid state battery manufacturing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Renping, E-mail: jxcrp@163.com; Chen, Guo; Yu, Xiaoguang
2014-12-15
A series of Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+}, Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, R{sup +}, and Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+}, R{sup +} (R{sup +}=Li{sup +}, Na{sup +}, and K{sup +}) phosphors are synthesized by solid-state reaction method in air. All phosphors show bright red emissions centered at ∼617 nm upon excitation with UV light of 397 nm. Bi{sup 3+} is a sensitizer for the luminescence of Eu{sup 3+}, and can improve significantly the PL intensity of Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+} phosphor due to energy transfer between Bi{sup 3+} andmore » Eu{sup 3+} ions. The sensitization mechanism is investigated and discussed by energy level diagrams of Bi{sup 3+} and Eu{sup 3+} ions. R{sup +} ion is used as the charge compensator to improve the luminescence intensity of Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+} and Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+} phosphors, and their PL intensities are enhanced in the sequence K{sup +}→Na{sup +}→Li{sup +}. These phosphors can be promising red emitting candidate for white LED with a ∼397 nm near UV chip excitation owing to the high brightness. - Graphical abstract: Energy transfer and charge compensation can enhance PL intensity of phosphors obviously. - Highlights: • Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+} phosphor is synthesized. • Energy transfer between Eu{sup 3+} and Bi{sup 3+} ions benefit PL intensity of Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+} phosphor. • Alkaline metal ions can further improve the PL intensity of Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+} phosphor. • Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+}, R{sup +} phosphor may be promising red emitting candidate for white LED.« less
NASA Astrophysics Data System (ADS)
Sakamaki, K.; Sato, Y.; Marshall, E. W., IV; Ogasawara, Y.
2016-12-01
We investigate composite diopside (Di) + magnetite (Mt) lamellae in olivine crystals from Oligocene diatremes of serpentinized ultramafic microbreccia located at Buell Park (AZ) and Green Knobs (NM) in the Colorado Plateau, and propose their genesis as breakdown products of precursor hydrous ringwoodite (γ-olivine) lamellae coexisting with α-olivine host. Among a hundred olivines (2-5 mm across, Fo89-93 in mol%) from both localities, the Di + Mt composite lamellae are recognized in only 15 of relatively Fe-rich grains (Fo89-91.5). The olivine host contains minor amounts of Ca (< 0.01 wt% CaO), Mn, Ni, and Co. Lamellar Di (Di95) contains minor amounts of Al, Na, Cr, Mn, and Ni. Lamellar Mt contains Cr (5.0-43.0 wt% Cr2O3) with minor amounts of Si, Ti, Al, Mn, Ni, and Co. The area fractions of olivine host and the lamellae in a typical grain (sample no. BP02-3) were measured at 98.8 % of the host and 1.2 % of the lamellae that are composed of Di:Mt = 85:15 to 53:47, average 66:34. The estimated average CaO content in a lamella reaches 17 wt% and the reintegrated CaO in the host and the lamellae is 0.22 wt%.We propose that Fe3+ in lamellar Mt was produced by dehydration of hydrous precursor phase via the reaction, Fe2+ + OH- = Fe3+ + O2- + 1/2H2. Converting Fe3+ into Fe2+ in the precursor phase based on this reaction, the composition satisfies the stoichiometry of olivine (X2TO4). Thus, the pre-existing phase certainly is of hydrous and contains Ca and other components with olivine stoichiometry. The most likely phase is lamellar hydrous ringwoodite. The precursor phase, hydrous ringwoodite, might have occurred as lamellae with α-olivine host and have probably decomposed by the following reaction, (1+X+Y+Z) hydrous ringwoodite → α-olivine + X Di + Y Mt + Z H2 (where X:Y:Z=2:1:1). The composite Di-Mt lamellae after hydrous ringwoodite lamellae in α-olivine host certainly suggest the materials originated from a deep mantle setting at least 300 km.
Soft x-ray absorption spectra of ilmenite family.
Agui, A; Mizumaki, M; Saitoh, Y; Matsushita, T; Nakatani, T; Fukaya, A; Torikai, E
2001-03-01
We have carried out soft x-ray absorption spectroscopy to study the electronic structure of ilmenite family, such as MnTiO3, FeTiO3, and CoTiO3 at the soft x-ray beamline, BL23SU, at the SPring-8. The Ti and M L2,3 absorption spectra of MTiO3 (M=Mn, Fe, and Co) show spectra of Ti4+ and M2+ electron configurations, respectively. Except the Fe L2,3 spectrum, those spectra were understood within the O(h) symmetry around the transition metal ions. The Fe L3-edge spectrum clearly shows a doublet peak at the L3 edge, which is attributed to Fe2+ state, moreover the very high-resolution the L-edge spectra of transition metals show fine structures. The spectra of those ilmenites are compared.
Biological properties of nanostructured Ti incorporated with Ca, P and Ag by electrochemical method.
Li, Baoe; Hao, Jingzu; Min, Yang; Xin, Shigang; Guo, Litong; He, Fei; Liang, Chunyong; Wang, Hongshui; Li, Haipeng
2015-06-01
TiO2 nanotube arrays were synthesized on Ti surface by anodic oxidation. The elements of Ca and P were simultaneously incorporated during nanotubes growth in SBF electrolyte, and then Ag was introduced to nanotube arrays by cathodic deposition, which endowed the good osseointegration and antibacterial property of Ti. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. And the antibacterial effect against Staphylococcus aureus was examined by the bacterial counting method. The results showed that the incorporation of Ca, P and Ag elements had no significant influence on the formation of nanotube arrays on Ti surface during electrochemical treatment. Compared to the polished or nanotubular Ti surface, TiO2 nanotube arrays incorporated with Ca, P and Ag increased the formation of bone-like apatite in simulated body fluid, enhanced cell adhesion and proliferation, and inhibited the bacterial growth. Based on these results, it can be concluded that the nanostructured Ti incorporated with Ca, P and Ag by electrochemical method has promising applications as implant material. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, M. F.; Du, Z. Z.; Xie, Y. L.; Li, X.; Yan, Z. B.; Liu, J. –M.
2015-01-01
The eg-orbital double-exchange mechanism as the core of physics of colossal magnetoresistance (CMR) manganites is well known, which usually covers up the role of super-exchange at the t2g-orbitals. The role of the double-exchange mechanism is maximized in La0.7Ca0.3MnO3, leading to the concurrent metal-insulator transition and ferromagnetic transition as well as CMR effect. In this work, by a set of synchronous Ru-substitution and Ca-substitution experiments on La0.7–yCa0.3+yMn1–yRuyO3, we demonstrate that the optimal ferromagnetism in La0.7Ca0.3MnO3 can be further enhanced. It is also found that the metal-insulator transition and magnetic transition can be separately modulated. By well-designed experimental schemes with which the Mn3+-Mn4+ double-exchange is damaged as weakly as possible, it is revealed that this ferromagnetism enhancement is attributed to the Mn-Ru t2g ferromagnetic super-exchange. The present work allows a platform on which the electro-transport and magnetism of rare-earth manganites can be controlled by means of the t2g-orbital physics of strongly correlated transition metal oxides. PMID:25909460
NASA Astrophysics Data System (ADS)
Dyl, K. A.; Young, E. D.
2009-12-01
We define the reaction space that controls changes in pyroxene composition in CAIs and Wark-Lovering (WL) rims in an oxidizing solar nebula. Ti-rich pyroxenes in CAIs record a sub-solar oxygen fugacity (Ti3+/Ti4+~1.5). WL rim pyroxenes in the CAI Leoville 144A have a distinctly lower oxidation state.This difference supports WL rim condensation in an environment of increasing O2(g) and Mg(g) (Simon et al. 2005). We used the following phase components to identify four linearly independent reactions (Thompson 1982): diopside, CaTs (Al2Mg-1Si-1), T3 (Ti3+AlMg-1Si-1), T4 (Ti4+Al2Mg-1Si-2), En (MgCa-1), perovskite, O(g), Mg(g), SiO(g), and Ca(g). Compositional variation in this system is dominated by two reactions. The first is oxidation of Ti3+ via reaction with O and Mg in the gas phase: 1.5 O(g) + Mg(g) → ¼ Di + [Ti4+Mg3/4Ti3+-1Ca-1/4Si-1/2] (1). Pyroxene is produced and En is introduced. The second reaction (2) is perovskite formation. It is observed in the WL rim of Leoville 144A, and experiments confirm that an elevated Ti component converts pyroxene to perovskite(Gupta et al. 1973). MgCa-1 is the third linearly independent reaction (3). They combine to give: ½ Di + x Ca(g)→ x Mg(g)+ Pv + [Mg1/2-xSiTi4+-1Ca-1/2+x](2,3). Unlike (1), pyroxene is consumed in this reaction. The parameter x defines the extent of Mg-Ca exchange. When x > 0.5, WL rim formation occurs in an environment where Mg is volatile and Ca condenses. The reaction space defined by reactions (1) and (2,3) describes the transition from CAI interior to WL rims. WL rim pyroxene Ti contents, [CaTs], and Ca < 1 pfu are all explained in this space. The fourth linearly independent reaction is SiO(g):1/8 Di + ¼ Mg(g)→ ¾ SiO(g) + [Mg3/8Ca1/8Ti4+Ti3+-1Si-1/2](4). Silica reduction forms Ti4+, releasing SiO(g). (4) does not describe the oxidation of Ti3+ in WL rim pyroxene, but (1) - (4) results in En formation directly from the gas phase. This may explain WL rim analyses that have Si contents in excess of those predicted from reactions (1) and (2,3). Simon et al. (2005) EPSL 41, 272-283; Thompson (1982)Rev. Min. 10, 33-52; Gupta et al. (1973) Contr. Mineral. Petrol. 41, 333-344 Reaction space for CAI pyroxene. Pyroxenes plotted using titanium contents.
Cubic structure and canted antiferromagnetism of CaMn7O12 doped with trivalent cations (Fe, Al, Cr)
NASA Astrophysics Data System (ADS)
Motin Seikh, Md.; Caignaert, V.; Lebedev, O. I.; Raveau, B.
2014-02-01
In this study, we show the dramatic effect of the doping of the octahedral sites with M3+ cations (Fe3+, Al3+ and Cr3+) upon the structure and magnetism of the rhombohedral double perovskite CaMn7O12. In the oxides CaMn7-xMxO12, charge ordering between Mn3+ and Mn4+ octahedral sites is destroyed leading to the cubic structure (Im-3), whereas the initial magnetic properties (TN~90 K) have disappeared leading to canted antiferromagnetism (TN≈50-70 K) for small x values (x ~0.2-1). A spin glass like behaviour is also observed for larger values (x~1) in the case of Fe substitution.
Zhong, Jiasong; Chen, Daqin; Chen, Xiao; Wang, Keyuan; Li, Xinyue; Zhu, Yiwen; Ji, Zhenguo
2018-05-08
Owing to its low-cost and satisfactory luminescent-emission performance in warm white light-emitting diodes (w-LEDs), the non-rare-earth Mn4+-activated red phosphor has become a promising competitor of commercial rare-earth doped phosphor. In this study, a series of novel red-light emitting phosphors based on Ca2YSbO6:Mn4+ have been developed successfully by a conventional solid-state reaction. The structural and luminescent properties of these phosphors are systematically investigated. The as-prepared Ca2YSbO6:Mn4+ product exhibits a broad excitation band ranging from 250 to 600 nm and an abnormal intense deep-red emission centered at 680 nm with a full width at half maximum (FWHM) of ∼46 nm. The optimal Mn4+ doping concentration is about 0.3 mol%, and the concentration quenching mechanism is determined to be a dipole-dipole interaction. Impressively, the Ca2YSbO6:0.003Mn4+ phosphor shows an outstanding quantum efficiency of 62.6% and an excellent thermal stability. In addition, the effect of Li+, Mg2+, Na+ and K+ dopants on the luminescent properties of Mn4+-doped Ca2YSbO6 phosphors is elucidated. Furthermore, by employing the as-prepared Ca2YSbO6:Mn4+ as a red component, a warm w-LED with high color rendering index (Ra = 87.5) and low correlated color temperature (CCT = 3255 K) can be acquired. It is believed that the present phosphor has a potential application as a supplement of the red component for warm w-LEDs.
Band structure modification of the thermoelectric Heusler-phase TiFe2Sn via Mn substitution.
Zou, Tianhua; Jia, Tiantian; Xie, Wenjie; Zhang, Yongsheng; Widenmeyer, Marc; Xiao, Xingxing; Weidenkaff, Anke
2017-07-19
Doping (or substitution)-induced modification of the electronic structure to increase the electronic density of states (eDOS) near the Fermi level is considered as an effective strategy to enhance the Seebeck coefficient, and may consequently boost the thermoelectric performance. Through density-functional theory calculations of Mn-substituted TiFe 2-x Mn x Sn compounds, we demonstrate that the d-states of the substituted Mn atoms induce a strong resonant level near the Fermi energy. Our experimental results are in good agreement with the calculations. They show that Mn substitution results in a large increase of the Seebeck coefficient, arising from an enhanced eDOS in Heusler compounds. The results prove that a proper substitution position and element selection can increase the eDOS, leading to a higher Seebeck coefficient and thermoelectric performance of ecofriendly materials.
Catalytic ozonation of aqueous phenol over metal-loaded HZSM-5.
Amin, Nor Aishah Saidina; Akhtar, Javaid; Rai, H K
2011-01-01
The performances of HZSM-5 and transition metal-loaded HZSM-5 (Mn, Cu, Fe, Ti) catalysts during catalytic ozonation of phenol have been investigated. It was observed the performance order for removal of phenol and COD was Mn/HZSM-5 > Fe/HZSM-5 > Cu/HZSM-5 > Ti/HZSM-5 > HZSM-5. The presence of metals on HZSM-5 enhanced the phenol removal capability of HZSM-5. Mn loading on HZSM-5 was optimized due to its high phenol removal capability amongst metal-loaded HZSM-5 catalysts. Experimental results suggested that low amount of Mn loading on HZSM-5 was sufficient for HZSM-5 to act as catalyst and adsorbent. A maximum of 95.8 wt% phenols and 70.2 wt% COD were removed over 2 wt% Mn/HZSM-5 in 120 min. It was supposed that transition metals mainly acted as ozone decomposers due to their multiple oxidation states that enhanced the ozonation of phenol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stengl, Vaclav, E-mail: stengl@iic.cas.cz; Bludska, Jana; Oplustil, Frantisek
Highlights: {yields} New nano-dispersive materials for warfare agents decontamination. {yields} 95% decontamination activities for sulphur mustard. {yields} New materials base on titanium and manganese oxides. -- Abstract: Titanium(IV)-manganese(IV) nano-dispersed oxides were prepared by a homogeneous hydrolysis of potassium permanganate and titanium(IV) oxo-sulphate with 2-chloroacetamide. Synthesised samples were characterised using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), and scanning electron microscopy (SEM). These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (HD or bis(2-chloroethyl)sulphide) and soman (GD or (3,3'-dimethylbutan-2-yl)-methylphosphonofluoridate). Mn{sup 4+} content affects the decontamination activity; with increasing Mn{supmore » 4+} content the activity increases for sulphur mustard and decreases for soman. The best decontamination activities for sulphur mustard and soman were observed for samples TiMn{sub 3}7 with 18.6 wt.% Mn and TiMn{sub 5} with 2.1 wt.% Mn, respectively.« less
Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heven Sze
To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular [Ca2+] during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionallymore » express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn homeostasis in post-Golgi compartments are critical for secretory activities. Moreover, perturbation of the secretory machinery limits growth possibly by upsetting the synthesis, processing and assembly of cell wall components. Analyses of whole genome transcriptome of pollen shows that a subset of Ca pump genes are developmentally regulated. Each ECA Ca pump is localized to distinct endomembrane compartments and regulate Ca and Mn homeostasis required for optimal growth and for tolerance to high Mn stress. Ca and Mn levels within endomembrane lumen appear to be critical for activities of the secretory machinery including post-Golgi compartments that coordinate membrane traffic and sorting of materials to the vacuole and the cell wall. Significance: Thus sorting of Ca/Mn by ECA pumps in endomembranes is critical for membrane trafficking pattern which serves as a central coordinator of plant growth, development and adaptation to abiotic and biotic stress.« less
NASA Astrophysics Data System (ADS)
Gomez, Maria Elena; Milena Diez, Sandra; Cuartas, Lina Maria; Marin, Lorena; Prieto, Pedro
2012-02-01
Isothermal magnetic field dependence of the resistance in La2/3Ca1/3MnO3 (F-LCMO)/ La1/3Ca2/3MnO3(AF-LCMO) bilayer and AF-LCMO/F-LCMO/AF-LCMO trilayer at temperatures below N'eel temperature of the antiferromagnetic layer were carried out to study the thickness layers influence on magneto transport properties. We grew multilayers using a high oxygen pressure sputtering technique. We systematically varied the thickness of the F-LCMO layer, tF, maintaining constant the thickness of the AF-LCMO layer, tAF. We studied the influence of the thickness ratio tF/tAF on the ZFC and FC magnetoresistance (MR) loops. HFC was varied from 100 Oe to 400 Oe. We found that MR has hysteretic behavior as observed in [La2/3Ca1/3MnO3/La1/3Ca2/3MnO3]N superlattices, where MR increases with the increasing field from H=0 to a maximum and then it decreases continuously. The position and magnitude of the maximum is not symmetric with respect to the axis H=0 for both FC and ZFC loops. We found that magnetoresistance behavior of the bilayer and trilayer is thickness-ratio dependent for both ZFC and FC loops.
Trace metal anomalies in bleached Porites coral at Meiji Reef, tropical South China Sea
NASA Astrophysics Data System (ADS)
Li, Shu; Yu, Kefu; Zhao, Jianxin; Feng, Yuexing; Chen, Tianran
2017-01-01
Coral bleaching has generally been recognized as the main reason for tropical coral reef degradation, but there are few long-term records of coral bleaching events. In this study, trace metals including chromium (Cr), copper (Cu), molybdenum (Mo), manganese (Mn), lead (Pb), tin (Sn), titanium (Ti), vanadium (V), and yttrium (Y), were analyzed in two Porites corals collected from Meiji Reef in the tropical South China Sea (SCS) to assess differences in trace metal concentrations in bleached compared with unbleached coral growth bands. Ti, V, Cr, and Mo generally showed irregular fluctuations in both corals. Bleached layers contained high concentrations of Mn, Cu, Sn, and Pb. Unbleached layers showed moderately high concentrations of Mn and Cu only. The different distribution of trace metals in Porites may be attributable to different selectivity on the basis of vital utility or toxicity. Ti, V, Cr, and Mo are discriminated against by both coral polyps and zooxanthellae, but Mn, Cu, Sn, and Pb are accumulated by zooxanthellae and only Mn and Cu are accumulated by polyps as essential elements. The marked increase in Cu, Mn, Pb, and Sn are associated with bleaching processes, including mucus secretion, tissue retraction, and zooxanthellae expulsion and occlusion. Variation in these trace elements within the coral skeleton can be used as potential tracers of short-lived bleaching events.
NASA Astrophysics Data System (ADS)
Wang, Rui; Yuan, Maohui; Zhang, Chaofan; Wang, Hongyan; Xu, Xiaojun
2018-05-01
Transition metal ions (e.g. Mn2+) and lanthanide co-doped upconversion (UC) materials have attracted wide attention in recent years due to their promising application in multicolor display. Here, we report the hydrothermal synthesis and characterization of Mn2+ doped monodisperse CaF2:Yb3+/Ho3+ microspheres. The results of X-ray diffraction (XRD) revealed that Mn2+ doping does not change the cubic phase of CaF2 material but will lead to diffraction peaks shifting slightly towards higher angle due to the substitution of larger Ca2+ by the relatively smaller Mn2+. Under the excitation of 980 nm continuous wave (CW) laser, these microspheres exhibit green-yellow-red tuning colors and remarkable enhancement of both red to green ratio (R/G) and red to blue ratio (R/B) when increasing Mn2+ concentration from 0 to 30 mol%. The energy migration process between Ho3+ and Mn2+ was proposed and supported by time-decay and power dependence measurements of Ho3+ UC emission. These upconversion materials may have potential applications in optical devices, color display, nanoscale lasers and biomedical imaging.
Jeong, H S; Kim, S H; Lee, K S; Jeong, J M; Yoo, T W; Kwon, M S; Yoo, K H; Kim, T W
2013-06-01
White organic light-emitting devices (OLEDs) were fabricated by combining a blue OLED with a color conversion layer made of mixed Y3Al5O12:Ce3+ green and Ca2AlO19:Mn4+ red phosphors. The X-ray diffraction patterns showed that Ce3+ ions in the Y3Al5O12:Ce3+ phosphors completely substituted for the Y3+ ions and the Mn4+ ions in the CaAl12O19:Mn4+ phosphors completely substituted for the Ca2+ ions. Electroluminescence spectra at 11 V for the OLEDs fabricated utilizing a color conversion layer showed that the Commission Internationale de l'Eclairage coordinates for the Y3Al5O12:Ce3+ and CaAl12O19:Mn4+ phosphors mixed at the ratio of 1:5 and 1:10 were (0.31, 0.34) and (0.32, 0.37), respectively, indicative of a good white color.
Ferroelectric control of a Mott insulator
Yamada, Hiroyuki; Marinova, Maya; Altuntas, Philippe; Crassous, Arnaud; Bégon-Lours, Laura; Fusil, Stéphane; Jacquet, Eric; Garcia, Vincent; Bouzehouane, Karim; Gloter, Alexandre; Villegas, Javier E.; Barthélémy, Agnès; Bibes, Manuel
2013-01-01
The electric field control of functional properties is an important goal in oxide-based electronics. To endow devices with memory, ferroelectric gating is interesting, but usually weak compared to volatile electrolyte gating. Here, we report a very large ferroelectric field-effect in perovskite heterostructures combining the Mott insulator CaMnO3 and the ferroelectric BiFeO3 in its “supertetragonal” phase. Upon polarization reversal of the BiFeO3 gate, the CaMnO3 channel resistance shows a fourfold variation around room temperature, and a tenfold change at ~200 K. This is accompanied by a carrier density modulation exceeding one order of magnitude. We have analyzed the results for various CaMnO3 thicknesses and explain them by the electrostatic doping of the CaMnO3 layer and the presence of a fixed dipole at the CaMnO3/BiFeO3 interface. Our results suggest the relevance of ferroelectric gates to control orbital- or spin-ordered phases, ubiquitous in Mott systems, and pave the way toward efficient Mott-tronics devices. PMID:24089020
NASA Astrophysics Data System (ADS)
Li, Shangshu; Zou, Xingli; Zheng, Kai; Lu, Xionggang; Chen, Chaoyi; Li, Xin; Xu, Qian; Zhou, Zhongfu
2018-04-01
Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl2. The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements, i.e., Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors can be typically divided into four periods, i.e., (i) the decomposition of initial Ca(Mg,Al)(Si,Al)2O6, (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti5Si3, TiC, and Ti3SiC2. It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.
Pošćić, Filip; Mattiello, Alessandro; Fellet, Guido; Miceli, Fabiano; Marchiol, Luca
2016-01-01
The implications of metal nanoparticles (MeNPs) are still unknown for many food crops. The purpose of this study was to evaluate the effects of cerium oxide (nCeO2) and titanium oxide (nTiO2) nanoparticles in soil at 0, 500 and 1000 mg·kg−1 on the nutritional parameters of barley (Hordeum vulgare L.) kernels. Mineral nutrients, amylose, β-glucans, amino acid and crude protein (CP) concentrations were measured in kernels. Whole flour samples were analyzed by ICP-AES/MS, HPLC and Elemental CHNS Analyzer. Results showed that Ce and Ti accumulation under MeNPs treatments did not differ from the control treatment. However, nCeO2 and nTiO2 had an impact on composition and nutritional quality of barley kernels in contrasting ways. Both MeNPs left β-glucans unaffected but reduced amylose content by approximately 21%. Most amino acids and CP increased. Among amino acids, lysine followed by proline saw the largest increase (51% and 37%, respectively). Potassium and S were both negatively impacted by MeNPs, while B was only affected by 500 mg nCeO2·kg−1. On the contrary Zn and Mn concentrations were improved by 500 mg nTiO2·kg−1, and Ca by both nTiO2 treatments. Generally, our findings demonstrated that kernels are negatively affected by nCeO2 while nTiO2 can potentially have beneficial effects. However, both MeNPs have the potential to negatively impact malt and feed production. PMID:27294945
Park, Su Kyung; Yun, Tae Kwan; Bae, Jae Young
2016-03-01
N/F-doping and CaCO3 surface modification was carried out in TiO2 photoelectrodes for dye-sensitized solar cells (DSSCs). The combined effect of the N/F doped TiO2 and the CaCO3 coating showed a great increase of the short-circuit current (J(sc)), and photoelectric conversion efficiency (η) of the prepared cells; the efficiency (η) was improved from 7.00% of a commercial TiO2 photoelectrode to 7.90% of an uncoated N/F-doped electrode, and to 9.09% of a N/F-doped and CaCO3 surface modified electrode. An enhanced photoresponse in N/F-doped TiO2 nanoparticles generate more photo-excited electrons, as supported by measured UV-Vis diffuse reflectance spectra. A successive CaCO3 surface modification then forms a barrier on the surface of the N/F-doped TiO2 particles; the higher basicity of the CaCO3 modified TiO2 facilitates the dye adsorption, as supported by the direct measurement of the amount of adsorbed dye.
The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)
NASA Technical Reports Server (NTRS)
Schuon, S. R.
1982-01-01
The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life.
Displacement-type ferroelectric transition with magnetic Mn ions in perovskite Sr1-xBaxMnO3
NASA Astrophysics Data System (ADS)
Sakai, Hideaki; Fujioka, Jun; Fukuda, Tatsuo; Okuyama, Daisuke; Hashizume, Daisuke; Kagawa, Fumitaka; Nakao, Hironori; Murakami, Youich; Arima, Takahisa; Baron, Alfred Q. R.; Taguchi, Yasujiro; Tokura, Yoshinori
2012-02-01
Almost all the proper ferroelectrics with a perovskite structure discovered so far have no d-electrons in the off-center transition metal site, as exemplified by BaTiO3 and Pb(Zr,Ti)O3. This empirical d^0 rule is incompatible with the emergence of magnetism and has significantly restricted the variety of multiferroic materials. In this work, we have discovered a displacement-type ferroelectric transition originating from off-center Mn^4+ ions in antiferromagnetic Mott insulators Sr1-xBaxMnO3. As Ba concentration increases, the perovskite lattice shows the typical soft mode dynamics, and the ferroelectricity shows up for x .45. In addition to the large polarization and high transition temperature comparable to BaTiO3, we demonstrate that the magnetic order suppresses the ferroelectric lattice dilation by ˜70% and increases the soft-phonon energy by ˜50%, indicating gigantic magnetoelectric effects [1]. This work was supported by the FIRST program on ``Quantum Science on Strong Correlation''. [4pt] [1] H. Sakai et al., Phys. Rev. Lett. 107, 137601 (2011).
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission factor(tons CO2/ton carbonate) Limestone—CaCO3 0.43971 Magnesite—MgCO3 0.52197 Dolomite—CaMg(CO3)2 0.47732 Siderite—FeCO3 0.37987 Ankerite—Ca(Fe, Mg, Mn)(CO3)2 0.47572 Rhodochrosite—MnCO3 0.38286...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kai; Chen, Daqin, E-mail: dqchen@fjirsm.ac.cn; Xu, Ju
2014-01-01
Graphical abstract: We have synthesized Eu{sup 2+} doped and Eu{sup 2+}/Mn{sup 2+} co-doped Ca{sub 3}(PO{sub 4}){sub 2} phosphors. The emitting color varies from blue to green with increasing of Eu{sup 2+} content for the Eu{sup 2+}-doped phosphor, and the quantum yield of the 0.05Eu{sup 2+}: Ca{sub 2.95}(PO{sub 4}){sub 2} sample reaches 56.7%. Interestingly, Mn{sup 2+} co-doping into Eu{sup 2+}: Ca{sub 3}(PO{sub 4}){sub 2} leads to its phase transition from orthorhombic to rhombohedral, and subsequently generates tunable multi-color luminescence from green to red via Eu{sup 2+} → Mn{sup 2+} energy transfer. - Highlights: • A series of novel Eu{sup 2+}: Ca{submore » 3}(PO{sub 4}){sub 2} phosphors were successfully synthesized. • Phase transition of Ca{sub 3}(PO{sub 4}){sub 2} from orthorhombic to rhombohedral occurred when Mn{sup 2+} ions were doped. • The phosphors exhibited tunable multi-color luminescence. • The quantum yield of 0.05Eu{sup 2+}: Ca{sub 2.95}(PO{sub 4}){sub 2} phosphor can reach 56.7%. • The analyses of phosphors were carried out by many measurements. - Abstract: Intense blue-green-emitting Eu{sup 2+}: Ca{sub 3}(PO{sub 4}){sub 2} and tunable multicolor-emitting Eu{sup 2+}/Mn{sup 2+}: Ca{sub 3}(PO{sub 4}){sub 2} phosphors are prepared via a solid-state reaction route. Eu{sup 2+}-doped orthorhombic Ca{sub 3}(PO{sub 4}){sub 2} phosphor exhibits a broad emission band in the wavelength range of 400–700 nm with a maximum quantum yield of 56.7%, and the emission peak red-shifts gradually from 479 to 520 nm with increase of Eu{sup 2+} doping content. Broad excitation spectrum (250–420 nm) of Eu{sup 2+}: Ca{sub 3}(PO{sub 4}){sub 2} matches well with the near-ultraviolet LED chip, indicating its potential applications as tri-color phosphors in white LEDs. Interestingly, Mn{sup 2+} co-doping into Eu{sup 2+}: Ca{sub 3}(PO{sub 4}){sub 2} leads to its phase transition from orthorhombic to rhombohedral, and subsequently generates tunable multi-color luminescence from green to red via Eu{sup 2+} → Mn{sup 2+} energy transfer, under 365 nm UV lamp excitation.« less
In Vitro Degradation Behaviors of Manganese-Calcium Phosphate Coatings on an Mg-Ca-Zn Alloy
Su, Yichang; Su, Yingchao; Zai, Wei
2018-01-01
In order to decrease the degradation rate of magnesium (Mg) alloys for the potential orthopedic applications, manganese-calcium phosphate coatings were prepared on an Mg-Ca-Zn alloy in calcium phosphating solutions with different addition of Mn2+. Influence of Mn content on degradation behaviors of phosphate coatings in the simulated body fluid was investigated to obtain the optimum coating. With the increasing Mn addition, the corrosion resistance of the manganese-calcium phosphate coatings was gradually improved. The optimum coating prepared in solution containing 0.05 mol/L Mn2+ had a uniform and compact microstructure and was composed of MnHPO4·3H2O, CaHPO4·2H2O, and Ca3(PO4)2. The electrochemical corrosion test in simulated body fluid revealed that polarization resistance of the optimum coating is 36273 Ωcm2, which is about 11 times higher than that of phosphate coating without Mn addition. The optimum coating also showed the most stable surface structure and lowest hydrogen release in the immersion test in simulated body fluid. PMID:29643970
Severson, R.C.; Gough, L.P.; van den Boom, G.
1992-01-01
Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.
Phosphates at the Surface of Mars: Primary Deposits and Alteration Products
NASA Technical Reports Server (NTRS)
Yen, Albert S.; Gellert, Ralf; Clark, Benton C.; Ming, Douglas W.; Mittlefehldt, David W.; Arvidson, Raymond E.; McSween, Harry Y., Jr.; Schroder, Christian
2014-01-01
Phosphorus is an essential element in terrestrial organisms and thus characterizing the occurrences of phosphate phases at the martian surface is crucial in the assessment of habitability. The Alpha Particle X-Ray Spectrometers onboard Spirit, Opportunity and Curiosity discovered a variety of primary and secondary phosphate phases allowing direct comparisons across the three landing sites. The Spirit rover at Gusev Crater encountered the "Wishstone/Watchtower" class of P-rich (up to 5.2 wt% P2O5) rocks interpreted to be alkaline volcanic rocks with a physical admixture of approximately 10 to 20% merrillite [Usui et al 2008]. These rocks are characterized by elevated Ti and Y and anomalously low Cr and Ni, which could largely reflect the nature of the protoliths: Evolved magmatic rocks. Many of these chemical signatures are also found in pyroclastic deposits at nearby "Home Plate" and in phosphate precipitates derived from fluid interactions with these rocks ("Paso Robles" soils). The Opportunity rover at Meridiani Planum recently analyzed approximately 4 cm clast in a fine-grained matrix, one of numerous rocks of similar appearance at the rim of Endeavour Crater. This clast, "Sarcobatus," has minor enrichments in Ca and P relative to the matrix, and like the P-rich rocks at Gusev, Sarcobatus also shows elevated Al and Ti. On the same segment of the Endeavour rim, subsurface samples were found with exceptional levels of Mn (approximately 3.5 wt% MnO). These secondary and likely aqueous deposits contain strong evidence for associated Mg-sulfate and Ca-phosphate phases. Finally, the Curiosity traverse at Gale crater encountered P-rich rocks compositionally comparable to Wishstone at Gusev, including elevated Y. Phosphorous-rich rocks with similar chemical characteristics are prevalent on Mars, and the trace and minor element signatures provide constraints on whether these are primary deposits, secondary products of physical weathering or secondary products of chemical weathering.
Multi-elemental analysis of Lentinula edodes mushrooms available in trade.
Mleczek, Mirosław; Siwulski, Marek; Rzymski, Piotr; Niedzielski, Przemysław; Gąsecka, Monika; Jasińska, Agnieszka; Budzyńska, Sylwia; Budka, Anna
2017-03-04
The present study investigated the content of 62 elements in the fruiting bodies of Lentinula edodes (Shiitake mushroom) cultivated commercially in Poland on various substrates from 2007-2015. The general mean content (mg kg -1 dry weight (DW)) of the studied elements ranked in the following order: K (26,335) > P (11,015) > Mg (2,284) > Ca (607) > Na (131) > Zn (112) > Fe (69) > Mn (33) > B (32) > Rb (17) > Cu (14.5) > Al (11.2) > Te (2.9) > As (1.80) > Cd (1.76) > Ag (1.73) > Nd (1.70) > Sr (1.46) > Se (1.41) > U (1.11) > Pt (0.90) > Ce (0.80) > Ba (0.61) > Co (0.59) > Tl (0.58) > Er (0.50) > Pb (0.42) > Li (0.40) > Pr (0.39) > Ir (0.37) > In (0.35) > Mo (0.31) > Cr (0.29) > Ni (0.28) > Sb (0.26) > Re (0.24) > Ti (0.19) > Bi (0.18) > Th (0.12) > La (0.10) = Pd (0.10) > Os (0.09) = Zr (0.09) > Rh (0.08) > Ho (0.07) > Ru (0.06) > Sm (0.04) = Eu (0.04) = Tm (0.04) > Gd (0.03) > Sc (0.02) = Y (0.02) > Lu (0.01) = Yb (0.01) = V (0.01). The contents of Au, Be, Dy, Ga, Ge, Hf, and Tb were below the limits of detection (0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.02 mg kg -1 respectively). The concentrations of Al, As, B, Ba, Ca, Cd, Cr, Er, Fe, In, Lu, Mn, Nd, Sr, Ti, Tm, and Zr were comparable over the period the mushrooms were cultivated. The study revealed that Lentinula edodes contained As and Cd at levels potentially adverse to human health. This highlights the need to monitor these elements in food products obtained from this mushroom species and ensure that only low levels of these elements are present in cultivation substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadarajah, Arunan
Among numerous methods of controlling the global warming effect, Chemical Looping Combustion is known to be the most viable option currently. A key factor to a successful chemical looping process is the presence of highly effective oxygen carriers that enable fuel combustion by going through oxidation and reduction in the presence of air and fuel respectively. In this study, CaMnO 3-δ was used as the base material and doped on the A-site (Sr or La) and B-site (Fe, Ti, Zn and Al) by 10 mol % of dopants. Solid state reaction followed by mechanical extrusion (optimized paste formula) was usedmore » as the preparation method A series of novel doped perovskite-type oxygen carrier particles (Ca xLa (Or Sa) 1-x Mn 1-yByO 3-δ (B-site = Fe, Ti, Al, or Zr)) were synthesized by the proposed extrusion formula. The produced samples were characterized with XRD, SEM, BET and TGA techniques. According to the results obtained from TGA analysis, the oxygen capacity of the samples ranged between 1.2 for CLMZ and 1.75 for CSMF. Reactivity and oxygen uncoupling behaviors of the prepared samples were also evaluated using a fluidized bed chemical looping reactor using methane as the fuel at four different temperatures (800, 850, 900, 950 °C). All of the oxygen carriers showed oxygen uncoupling behavior and they were able to capture and release oxygen. Mass-based conversion of the perovskites was calculated and temperature increase proved to increase the mass-based conversion rate in all of the samples under study. Gas yield was calculated at 950 °C as well, and results showed that CLMZ, CM and CSMF showed 100% gas yields and CLMF and CSMZ showed approximately 85% yield in fluidized bed reactor, which is a high and acceptable quantity. Based on extended reactor tests the modified calcium manganese perovskite structures (CSMF) can be a good candidate for future pilot tests.« less
NASA Astrophysics Data System (ADS)
Naga Raju, G. J.; Sarita, P.; Murthy, K. S. R.
2017-08-01
Particle Induced X-ray Emission (PIXE), an accelerator based analytical technique has been employed in this work for the analysis of trace elements in the cancerous and non-cancerous tissues of rectal cancer patients. A beam of 3 MeV protons generated from 3 MV Pelletron accelerator at the Ion Beam Laboratory of Institute of Physics, Bhubaneswar, India was used as projectile to excite the atoms present in the tissues samples. PIXE technique, with its capability to detect simultaneously several elements present at very low concentrations, offers an excellent tool for trace element analysis. The characteristic X-rays emitted by the samples were recorded by a high resolution Si (Li) detector. On the basis of the PIXE spectrum obtained for each sample, the elements Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Br were identified and their relative concentrations were estimated in the cancerous and non-cancerous tissues of rectum. The levels of Mn, Fe, Co, Cu, Zn, and As were higher (p < 0.005) while the levels of Ca, Cr and Ni were lower (p < 0.005) in the cancer tissues relative to the normal tissues. The alterations in the levels of the trace elements observed in the present work are discussed in this paper with respect to their potential role in the initiation, promotion and inhibition of cancer of the rectum.
NASA Astrophysics Data System (ADS)
Ifland, Benedikt; Hoffmann, Joerg; Kressdorf, Birte; Roddatis, Vladimir; Seibt, Michael; Jooss, Christian
2017-06-01
The effect of correlation effects on photovoltaic energy conversion at manganite/titanite heterojunctions is investigated. As a model system we choose a heterostructure consisting of the small polaron absorber Pr0.66Ca0.34MnO3 (PCMO) epitaxially grown on single-crystalline Nb-doped SrTi0.998Nb0.002O3 (STNO) substrates. The high structural and chemical quality of the interfaces is proved by detailed characterization using high-resolution transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) studies. Spectrally resolved and temperature-dependent photovoltaic measurements show pronounced contributions of both the Jahn-Teller (JT) excitations and the charge transfer (CT) transitions to the photovoltaic effect at different photon energies. A linear temperature dependence of the open-circuit voltage for an excitation in the PCMO manganite is only observed below the charge-ordering temperature, indicating that the diffusion length of the photocarrier exceeds the size of the space charge region. The photovoltaic response is compared to that of a heterojunction of lightly doped Pr0.05Ca0.95MnO3 (CMO)/STNO, where the JT transition is absent. Here, significant contributions of the CT transition to the photovoltaic effect set in below the Neel temperature. We conclude that polaronic correlations and ordering effects are essentials for photovoltaic energy conversion in manganites.
NASA Astrophysics Data System (ADS)
Levy, Pablo
2015-03-01
In the first part of my talk, I will describe the status of the experimental research in Condensed Matter Physics in Argentina, biased towards developments related to micro and nanotechnology. In the second part, I will describe the MeMOSat Project, a consortium aimed at producing non-volatile memory devices to work in aggressive environments, like those found in the aerospace and nuclear industries. Our devices rely on the Resistive Switching mechanism, which produces a permanent but reversible change in the electrical resistance across a metal-insulator-metal structure by means of a pulsed protocol of electrical stimuli. Our project is devoted to the study of Memory Mechanisms in Oxides (MeMO) in order to establish a technological platform that tests the Resistive RAM (ReRAM) technology for aerospace applications. A review of MeMOSat's activities is presented, covering the initial Proof of Concept in ceramic millimeter sized samples; the study of different oxide-metal couples including (LaPr)2/3Ca1/3MnO, La2/3Ca1/3MnO3, YBa2Cu3O7, TiO2, HfO2, MgO and CuO; and recent miniaturized arrays of micrometer sized devices controlled by in-house designed electronics, which were launched with the BugSat01 satellite in June2014 by the argentinian company Satellogic.
NASA Astrophysics Data System (ADS)
Kalgin, A. V.; Gridnev, S. A.
2018-03-01
The internal friction in particulate ceramic composites of (x)Mn0.4Zn0.6Fe2O4 –(1-x)PbZr0.53Ti0.47O3 (x = 0, 0.1, 0.2, 0.3, 0.4, and 0.6) in the vicinity of the phase transition temperatures was studied. We observed the influence of the composite composition on the exponent that characterizes a temperature dependence of the internal friction near the ferroelectric Curie point. The reason for this influence is shown to be the doping of the PbZr0.53Ti0.47O3 ferroelectric phase with atoms of the Mn04Zn0.6Fe2O4 ferrite phase that occurs during high- temperature sintering of composite samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krug, Ingo P.; Institut für Optik and Atomare Physik; Helmholtzzentrum für Materialien und Energie
2016-09-07
We employed a multitechnique approach using piezo-force response microscopy and photoemission microscopy to investigate a self-organizing polarization domain pattern in PbTiO{sub 3}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (PTO/LSMO) nanostructures. The polarization is correlated with the nanostructure morphology as well as with the thickness and Mn valence of the LSMO template layer. On the LSMO dots, the PTO is upwards polarized, whereas outside the nanodots, the polarization appears both strain and interface roughness dependent. The results suggest that the electronic structure and strain of the PTO/LSMO interface contribute to determining the internal bias of the ferroelectric layer.
A preliminary study for non-invasive quantification of manganese in human hand bones.
Aslam; Pejović-Milić, A; Chettle, D R; McNeill, F E; Pysklywec, M W; Oudyk, J
2008-10-07
Manganese (Mn) is a nutrient essential for regulating neurological and skeletal functions in the human body, but it is also toxic when humans are excessively exposed to Mn. Blood (or serum/plasma) and other body fluids reflect only the most recent exposure and rapidly return to within normal ranges, even when there has been a temporary excursion in response to exposure. In this context, we have been developing a non-invasive measurement of Mn stored in bone, using in vivo neutron activation analysis. Following feasibility studies, a first pilot study, using neutron activation analysis to measure Mn in the bones of the hand of ten healthy male human subjects, was conducted with the approval of the concerned research ethics boards. The participants of this study had no known history of exposure to Mn. Two volunteers were excluded from this study due to technical problems with their measurements. The inverse variance weighted mean value of Mn/Ca for the participants of this study is 0.12+/-0.68 microg Mn/g Ca which is comparable within uncertainties with the estimated range of 0.16-0.78 microg Mn/g Ca and mean value of 0.63+/-0.30 microg Mn/g Ca derived from cadaver data. It is recommended to investigate the use of the diagnostic technique for in vivo measurements of workers exposed occupationally to excessive amounts of Mn who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. The technique needs further development to improve the precision of in vivo measurements in the non-exposed population.
TiO2 Nanoparticle Uptake by the Water Flea Daphnia magna via Different Routes is Calcium-Dependent.
Tan, Ling-Yan; Huang, Bin; Xu, Shen; Wei, Zhong-Bo; Yang, Liu-Yan; Miao, Ai-Jun
2016-07-19
Calcium plays versatile roles in aquatic ecosystems. In this study, we investigated its effects on the uptake of polyacrylate-coated TiO2 nanoparticles (PAA-TiO2-NPs) by the water flea (cladoceran) Daphnia magna. Particle distribution in these daphnids was also visualized using synchrotron radiation-based micro X-ray fluorescence spectroscopy, transmission electron microscopy, and scanning electron microscopy. At low ambient Ca concentrations in the experimental medium ([Ca]dis), PAA-TiO2-NPs were well dispersed and distributed throughout the daphnid; the particle concentration was highest in the abdominal zone and the gut, as a result of endocytosis and passive drinking of the nanoparticles, respectively. Further, Ca induced PAA-TiO2-NP uptake as a result of the increased Ca influx. At a high [Ca]dis, the PAA-TiO2-NPs formed micrometer-sized aggregates that were ingested by D. magna and concentrated only in its gut, independent of the Ca influx. Our results demonstrated the multiple effects of Ca on nanoparticle bioaccumulation. Specifically, well-dispersed nanoparticles were taken up by D. magna through endocytosis and passive drinking whereas the uptake of micrometer-sized aggregates relied on active ingestion.
Calcium availability but not its content modulates metal toxicity in Scenedesmus quadricauda.
Kováčik, Jozef; Dresler, Sławomir
2018-01-01
Impact of calcium nutrition (pre-culture on solid medium with standard or elevated Ca dose, i. e. 0.17 and 4.40mM marked as low and high Ca) on acute metal toxicity (Cd, Mn and Pb, 24h of exposure to 10µM) in freshwater green alga Scenedesmus quadricauda was studied. Surprisingly, Ca content differed only slightly between low and high Ca samples and applied metals rather suppressed its amount. Na content was higher in metal-exposed high Ca samples, indicating that Ca/Na ratio may affect accumulation of metals. Content of heavy metals increased in order Cd < Mn < Pb and high Ca samples contained less metal than low Ca samples at least in absorbed fraction. Accumulation of ascorbic acid and thiols (GSH - glutathione and PC2 - phytochelatin 2) was affected mainly by Cd, GSH also by Mn and PC2 by Pb with often significant differences between low Ca and high Ca samples. Calcium nutrition also affected responses of algae to metals at the level of antioxidative enzyme activities (SOD, APX, and CAT) and elevated values were typically found in high Ca samples while ROS (hydrogen peroxide and superoxide radical) were mainly depleted in Mn treatment. These data confirm that Ca nutrition affects accumulation of metals in algae and metabolic parameters as observed in vascular plants but, unlike them, rather Ca/Na ratio than absolute Ca content seems to regulate the uptake of metals. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereloma, E.V.; Shekhter, A.; Miller, M.K.
2004-11-08
Changes in the solute distribution as well as the evolution of precipitation, microstructure and mechanical properties have been studied in an experimental maraging Fe-20Ni-1.8Mn-1.5Ti-0.59Al (wt%) alloy during ageing at 550 deg C. An initial hardening reaction within 5 s is reported, which is remarkable in terms of extent and rapidity. This strengthening was caused by the formation of complex multi-component atomic co-clusters containing primarily Ni-Ti-Al as well as some Mn. This cluster strengthened condition produced the optimum toughness observed throughout the ageing sequence. After 60 s ageing, the appearance of discrete precipitation of needle-shaped {eta}-Ni{sub 3}Ti particles was associated withmore » a second rise in hardness towards an eventual peak at 600 s. This precipitation hardening was accompanied by an increase in tensile strength and a decrease in ductility. A reverse transformation of martensite to austenite occurs progressively during ageing and this contributes to the initial and secondary softening.« less