Roth, Eric D.; Yu, Xintian; Rao, Geeta; Knierim, James J.
2012-01-01
Insight into the processing dynamics and other neurophysiological properties of different hippocampal subfields is critically important for understanding hippocampal function. In this study, we compared shifts in the center of mass (COM) of CA3 and CA1 place fields in a familiar and completely novel environment. Place fields in CA1 and CA3 were simultaneously recorded as rats ran along a closed loop track in a familiar room followed by a session in a completely novel room. This process was repeated each day over a 4-day period. CA3 place fields shifted backward (opposite to the direction of motion of the rat) only in novel environments. This backward shift gradually diminished across days, as the novel environment became more familiar with repeated exposures. Conversely, CA1 place fields shifted backward across all days in both familiar and novel environments. Prior studies demonstrated that CA1 place fields on average do not exhibit a backward shift during the first exposure to an environment in which the familiar cues are rearranged into a novel configuration, although CA3 place fields showed a strong backward shift. Under the completely novel conditions of the present study, no dissociation was observed between CA3 and CA1 during the first novel session (although a strong dissociation was observed in the familiar sessions and the later novel sessions). In summary, this is the first study to use simultaneous recordings in CA1 and CA3 to compare place field COM shift and other associated properties in truly novel and familiar environments. This study further demonstrates functional differentiation between CA1 and CA3 as the plasticity of CA1 place fields is affected differently by exposure to a completely novel environment in comparison to an altered, familiar environment, whereas the plasticity of CA3 place fields is affected similarly during both types of environmental novelty. PMID:22558316
Martig, Adria K; Mizumori, Sheri JY
2010-01-01
Hippocampus (HPC) receives dopaminergic (DA) projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences HPC dependent behaviors and place fields. We examined how efferent projections from VTA to HPC influence spatial working memory and place fields when the reward context changes. CA1 and CA3 process environmental context changes differently and VTA preferentially innervates CA1. Given these anatomical data and electrophysiological evidence that implicates DA in reward processing, we predicted that CA1 place fields would respond more strongly to both VTA disruption and changes in the reward context than CA3 place fields. Rats (N=9) were implanted with infusion cannula targeting VTA and recording tetrodes aimed at HPC. Then they were tested on a differential reward, win-shift working memory task. One recording session consisted of 5 baseline and 5 manipulation trials during which place cells in CA1/CA2 (N=167) and CA3 (N=94) were recorded. Prior to manipulation trials rats were infused with either baclofen or saline and then subjected to control or reward conditions during which the learned locations of large and small reward quantities were reversed. VTA disruption resulted in an increase in errors, and in CA1/CA2 place field reorganization. There were no changes in any measures of CA3 place field stability during VTA disruption. Reward manipulations did not affect performance or place field stability in CA1/CA2 or CA3; however, changes in the reward locations “rescued” performance and place field stability in CA1/CA2 when VTA activity was compromised, perhaps by trigging compensatory mechanisms. These data support the hypothesis that VTA contributes to spatial working memory performance perhaps specifically by maintaining place field stability selectively in CA1/CA2. PMID:20082295
The Influence of Objects on Place Field Expression and Size in Distal Hippocampal CA1
Burke, S.N.; Maurer, A.P.; Nematollahi, S.; Uprety, A.R.; Wallace, J.L.; Barnes, C.A.
2012-01-01
The perirhinal and lateral entorhinal cortices send prominent projections to the portion of the hippocampal CA1 subfield closest to the subiculum, but relatively little is known regarding the contributions of these cortical areas to hippocampal activity patterns. The anatomical connections of the lateral entorhinal and perirhinal cortices, as well as lesion data, suggest that these brain regions may contribute to the perception of complex stimuli such as objects. The current experiments investigated the degree to which 3-dimensional objects affect place field size and activity within the distal region (closest to the subiculum) of CA1. The activity of CA1 pyramidal cells was monitored as rats traversed a circular track that contained no objects in some conditions and 3-dimensial objects in other conditions. In the area of CA1 that receives direct lateral entorhinal input, three factors differentiated the objects-on-track conditions from the no-object conditions: more pyramidal cells expressed place fields when objects were present, adding or removing objects from the environment led to partial remapping in CA1, and the size of place fields decreased when objects were present. Additionally, a proportion of place fields remapped under conditions in which the object locations were shuffled, which suggests that at least some of the CA1 neurons’ firing patterns were sensitive to a particular object in a particular location. Together, these data suggest that the activity characteristics of neurons in the areas of CA1 receiving direct input from the perirhinal and lateral entorhinal cortices are modulated by non-spatial sensory input such as 3-dimensional objects. PMID:21365714
From grid cells to place cells with realistic field sizes
2017-01-01
While grid cells in the medial entorhinal cortex (MEC) of rodents have multiple, regularly arranged firing fields, place cells in the cornu ammonis (CA) regions of the hippocampus mostly have single spatial firing fields. Since there are extensive projections from MEC to the CA regions, many models have suggested that a feedforward network can transform grid cell firing into robust place cell firing. However, these models generate place fields that are consistently too small compared to those recorded in experiments. Here, we argue that it is implausible that grid cell activity alone can be transformed into place cells with robust place fields of realistic size in a feedforward network. We propose two solutions to this problem. Firstly, weakly spatially modulated cells, which are abundant throughout EC, provide input to downstream place cells along with grid cells. This simple model reproduces many place cell characteristics as well as results from lesion studies. Secondly, the recurrent connections between place cells in the CA3 network generate robust and realistic place fields. Both mechanisms could work in parallel in the hippocampal formation and this redundancy might account for the robustness of place cell responses to a range of disruptions of the hippocampal circuitry. PMID:28750005
ERIC Educational Resources Information Center
Lee, Inah; Knierim, James J.
2007-01-01
Subfields of the hippocampus display differential dynamics in processing a spatial environment, especially when changes are introduced to the environment. Specifically, when familiar cues in the environment are spatially rearranged, place cells in the CA3 subfield tend to rotate with a particular set of cues (e.g., proximal cues), maintaining a…
Galloway, Claire R; Ravipati, Kaushik; Singh, Suyashi; Lebois, Evan P; Cohen, Robert M; Levey, Allan I; Manns, Joseph R
2018-05-09
Alzheimer's disease (AD) is a neurodegenerative disease that disproportionately impacts memory and the hippocampus. However, it is unclear how AD pathology influences the activity of surviving neurons in the hippocampus to contribute to the memory symptoms in AD. One well-understood connection between spatial memory and neuronal activity in healthy brains is the activity of place cells, neurons in the hippocampus that fire preferentially in a specific location of a given environment (the place field of the place cell). In the present study, place cells were recorded from the hippocampus in a recently-developed rat model of AD (Tg-F344 AD) at an age (12-20 months) at which the AD rats showed marked spatial memory deficits. Place cells in the CA2 and CA3 pyramidal regions of the hippocampus in AD rats showed sharply reduced spatial fidelity relative to wild-type (WT) rats. In contrast, spiking activity of place cells recorded in region CA1 in AD rats showed good spatial fidelity that was similar to CA1 place cells in WT rats. Oral administration of the M 1 muscarinic acetylcholine receptor agonist VU0364572 impacted place cell firing rates in CA1 and CA2/3 hippocampal regions but did not improve the spatial fidelity of CA2/3 hippocampal place cells in AD rats. The results indicated that, to the extent the spatial memory impairment in AD rats was attributable to hippocampal dysfunction, the memory impairment was more attributable to dysfunction in hippocampal regions CA2 and CA3 rather than CA1. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Remembering to learn: independent place and journey coding mechanisms contribute to memory transfer.
Bahar, Amir S; Shapiro, Matthew L
2012-02-08
The neural mechanisms that integrate new episodes with established memories are unknown. When rats explore an environment, CA1 cells fire in place fields that indicate locations. In goal-directed spatial memory tasks, some place fields differentiate behavioral histories ("journey-dependent" place fields) while others do not ("journey-independent" place fields). To investigate how these signals inform learning and memory for new and familiar episodes, we recorded CA1 and CA3 activity in rats trained to perform a "standard" spatial memory task in a plus maze and in two new task variants. A "switch" task exchanged the start and goal locations in the same environment; an "altered environment" task contained unfamiliar local and distal cues. In the switch task, performance was mildly impaired, new firing maps were stable, but the proportion and stability of journey-dependent place fields declined. In the altered environment, overall performance was strongly impaired, new firing maps were unstable, and stable proportions of journey-dependent place fields were maintained. In both tasks, memory errors were accompanied by a decline in journey codes. The different dynamics of place and journey coding suggest that they reflect separate mechanisms and contribute to distinct memory computations. Stable place fields may represent familiar relationships among environmental features that are required for consistent memory performance. Journey-dependent activity may correspond with goal-directed behavioral sequences that reflect expectancies that generalize across environments. The complementary signals could help link current events with established memories, so that familiarity with either a behavioral strategy or an environment can inform goal-directed learning.
REMEMBERING TO LEARN: INDEPENDENT PLACE AND JOURNEY CODING MECHANISMS CONTRIBUTE TO MEMORY TRANSFER
Bahar, Amir S.; Shapiro, Matthew L.
2012-01-01
The neural mechanisms that integrate new episodes with established memories are unknown. When rats explore an environment, CA1 cells fire in place fields that indicate locations. In goal-directed spatial memory tasks, some place fields differentiate behavioral histories (journey-dependent place fields) while others do not (journey-independent place fields). To investigate how these signals inform learning and memory for new and familiar episodes, we recorded CA1 and CA3 activity in rats trained to perform a standard spatial memory task in a plus maze and in two new task variants. A switch task exchanged the start and goal locations in the same environment; an altered environment task contained unfamiliar local and distal cues. In the switch task, performance was mildly impaired, new firing maps were stable, but the proportion and stability of journey-dependent place fields declined. In the altered environment, overall performance was strongly impaired, new firing maps were unstable, and stable proportions of journey-dependent place fields were maintained. In both tasks, memory errors were accompanied by a decline in journey codes. The different dynamics of place and journey coding suggest that they reflect separate mechanisms and contribute to distinct memory computations. Stable place fields may represent familiar relationships among environmental features that are required for consistent memory performance. Journey-dependent activity may correspond with goal directed behavioral sequences that reflect expectancies that generalize across environments. The complementary signals could help link current events with established memories, so that familiarity with either a behavioral strategy or an environment can inform goal-directed learning. PMID:22323731
Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling.
Fernández-Ruiz, Antonio; Oliva, Azahara; Nagy, Gergő A; Maurer, Andrew P; Berényi, Antal; Buzsáki, György
2017-03-08
Theta-gamma phase coupling and spike timing within theta oscillations are prominent features of the hippocampus and are often related to navigation and memory. However, the mechanisms that give rise to these relationships are not well understood. Using high spatial resolution electrophysiology, we investigated the influence of CA3 and entorhinal inputs on the timing of CA1 neurons. The theta-phase preference and excitatory strength of the afferent CA3 and entorhinal inputs effectively timed the principal neuron activity, as well as regulated distinct CA1 interneuron populations in multiple tasks and behavioral states. Feedback potentiation of distal dendritic inhibition by CA1 place cells attenuated the excitatory entorhinal input at place field entry, coupled with feedback depression of proximal dendritic and perisomatic inhibition, allowing the CA3 input to gain control toward the exit. Thus, upstream inputs interact with local mechanisms to determine theta-phase timing of hippocampal neurons to support memory and spatial navigation. Copyright © 2017 Elsevier Inc. All rights reserved.
Cabral, Henrique O; Vinck, Martin; Fouquet, Celine; Pennartz, Cyriel M A; Rondi-Reig, Laure; Battaglia, Francesco P
2014-01-22
Place coding in the hippocampus requires flexible combination of sensory inputs (e.g., environmental and self-motion information) with memory of past events. We show that mouse CA1 hippocampal spatial representations may either be anchored to external landmarks (place memory) or reflect memorized sequences of cell assemblies depending on the behavioral strategy spontaneously selected. These computational modalities correspond to different CA1 dynamical states, as expressed by theta and low- and high-frequency gamma oscillations, when switching from place to sequence memory-based processing. These changes are consistent with a shift from entorhinal to CA3 input dominance on CA1. In mice with a deletion of forebrain NMDA receptors, the ability of place cells to maintain a map based on sequence memory is selectively impaired and oscillatory dynamics are correspondingly altered, suggesting that oscillations contribute to selecting behaviorally appropriate computations in the hippocampus and that NMDA receptors are crucial for this function. Copyright © 2014 Elsevier Inc. All rights reserved.
Subfield variations in hippocampal processing-components of a spatial navigation system.
Hartley, Matthew; Taylor, Neill; Taylor, John
2005-01-01
The hippocampus is a part of the brain strongly linked to spatial exploration. Within it exist 'place cells' which fire preferentially when an animal is in certain regions of physical space. Recent research has shown that these place cells and their corresponding representations of space behave differently in the CA3 and CA1 subfields of the hippocampus. We review this research and show, by simulation, that these differences can be explained by a combination of known physiological features of the hippocampus and proposed variations in the rate of synaptic plasticity and connection strength between different information pathways. We suggest possible reasons for these differences, namely use of the CA1 cell field for current spatial exploration, and CA3 for longer term spatial memory.
Calcium transient prevalence across the dendritic arbor predicts place field properties
Sheffield, Mark E. J.; Dombeck, Daniel A.
2014-01-01
Establishing the hippocampal cellular ensemble that represents an animal’s environment involves the emergence and disappearance of place fields in specific CA1 pyramidal neurons1–4, and the acquisition of different spatial firing properties across the active population5. While such firing flexibility and diversity have been linked to spatial memory, attention and task performance6,7, the cellular and network origin of these place cell features is unknown. Basic integrate-and-fire models of place firing propose that such features result solely from varying inputs to place cells8,9, but recent studies3,10 instead suggest that place cells themselves may play an active role through regenerative dendritic events. However, due to the difficulty of performing functional recordings from place cell dendrites, no direct evidence of regenerative dendritic events exists, leaving any possible connection to place coding unknown. Using multi-plane two-photon calcium imaging of CA1 place cell somata, axons, and dendrites in mice navigating a virtual environment, we show that regenerative dendritic events do exist in place cells of behaving mice and, surprisingly, their prevalence throughout the arbor is highly spatiotemporally variable. Further, we show that the prevalence of such events predicts the spatial precision and persistence or disappearance of place fields. This suggests that the dynamics of spiking throughout the dendritic arbor may play a key role in forming the hippocampal representation of space. PMID:25363782
Sasaki, Takuya; Piatti, Verónica C; Hwaun, Ernie; Ahmadi, Siavash; Lisman, John E; Leutgeb, Stefan; Leutgeb, Jill K
2018-02-01
Complex spatial working memory tasks have been shown to require both hippocampal sharp-wave ripple (SWR) activity and dentate gyrus (DG) neuronal activity. We therefore asked whether DG inputs to CA3 contribute to spatial working memory by promoting SWR generation. Recordings from DG and CA3 while rats performed a dentate-dependent working memory task on an eight-arm radial maze revealed that the activity of dentate neurons and the incidence rate of SWRs both increased during reward consumption. We then found reduced reward-related CA3 SWR generation without direct input from dentate granule neurons. Furthermore, CA3 cells with place fields in not-yet-visited arms preferentially fired during SWRs at reward locations, and these prospective CA3 firing patterns were more pronounced for correct trials and were dentate-dependent. These results indicate that coordination of CA3 neuronal activity patterns by DG is necessary for the generation of neuronal firing patterns that support goal-directed behavior and memory.
A quantitative theory of the functions of the hippocampal CA3 network in memory
Rolls, Edmund T.
2013-01-01
A quantitative computational theory of the operation of the hippocampal CA3 system as an autoassociation or attractor network used in episodic memory system is described. In this theory, the CA3 system operates as a single attractor or autoassociation network to enable rapid, one-trial, associations between any spatial location (place in rodents, or spatial view in primates) and an object or reward, and to provide for completion of the whole memory during recall from any part. The theory is extended to associations between time and object or reward to implement temporal order memory, also important in episodic memory. The dentate gyrus (DG) performs pattern separation by competitive learning to produce sparse representations suitable for setting up new representations in CA3 during learning, producing for example neurons with place-like fields from entorhinal cortex grid cells. The dentate granule cells produce by the very small number of mossy fiber (MF) connections to CA3 a randomizing pattern separation effect important during learning but not recall that separates out the patterns represented by CA3 firing to be very different from each other, which is optimal for an unstructured episodic memory system in which each memory must be kept distinct from other memories. The direct perforant path (pp) input to CA3 is quantitatively appropriate to provide the cue for recall in CA3, but not for learning. Tests of the theory including hippocampal subregion analyses and hippocampal NMDA receptor knockouts are described, and support the theory. PMID:23805074
Sparse orthogonal population representation of spatial context in the retrosplenial cortex.
Mao, Dun; Kandler, Steffen; McNaughton, Bruce L; Bonin, Vincent
2017-08-15
Sparse orthogonal coding is a key feature of hippocampal neural activity, which is believed to increase episodic memory capacity and to assist in navigation. Some retrosplenial cortex (RSC) neurons convey distributed spatial and navigational signals, but place-field representations such as observed in the hippocampus have not been reported. Combining cellular Ca 2+ imaging in RSC of mice with a head-fixed locomotion assay, we identified a population of RSC neurons, located predominantly in superficial layers, whose ensemble activity closely resembles that of hippocampal CA1 place cells during the same task. Like CA1 place cells, these RSC neurons fire in sequences during movement, and show narrowly tuned firing fields that form a sparse, orthogonal code correlated with location. RSC 'place' cell activity is robust to environmental manipulations, showing partial remapping similar to that observed in CA1. This population code for spatial context may assist the RSC in its role in memory and/or navigation.Neurons in the retrosplenial cortex (RSC) encode spatial and navigational signals. Here the authors use calcium imaging to show that, similar to the hippocampus, RSC neurons also encode place cell-like activity in a sparse orthogonal representation, partially anchored to the allocentric cues on the linear track.
Phencyclidine Discoordinates Hippocampal Network Activity But Not Place Fields
Kao, Hsin-Yi; Kenney, Jana; Kelemen, Eduard
2017-01-01
We used the psychotomimetic phencyclidine (PCP) to investigate the relationships among cognitive behavior, coordinated neural network function, and information processing within the hippocampus place cell system. We report in rats that PCP (5 mg/kg, i.p.) impairs a well learned, hippocampus-dependent place avoidance behavior in rats that requires cognitive control even when PCP is injected directly into dorsal hippocampus. PCP increases 60–100 Hz medium-freguency gamma oscillations in hippocampus CA1 and these increases correlate with the cognitive impairment caused by systemic PCP administration. PCP discoordinates theta-modulated medium-frequency and slow gamma oscillations in CA1 LFPs such that medium-frequency gamma oscillations become more theta-organized than slow gamma oscillations. CA1 place cell firing fields are preserved under PCP, but the drug discoordinates the subsecond temporal organization of discharge among place cells. This discoordination causes place cell ensemble representations of a familiar space to cease resembling pre-PCP representations despite preserved place fields. These findings point to the cognitive impairments caused by PCP arising from neural discoordination. PCP disrupts the timing of discharge with respect to the subsecond timescales of theta and gamma oscillations in the LFP. Because these oscillations arise from local inhibitory synaptic activity, these findings point to excitation–inhibition discoordination as the root of PCP-induced cognitive impairment. SIGNIFICANCE STATEMENT Hippocampal neural discharge is temporally coordinated on timescales of theta and gamma oscillations in the LFP and the discharge of a subset of pyramidal neurons called “place cells” is spatially organized such that discharge is restricted to locations called a cell's “place field.” Because this temporal coordination and spatial discharge organization is thought to represent spatial knowledge, we used the psychotomimetic phencyclidine (PCP) to disrupt cognitive behavior and assess the importance of neural coordination and place fields for spatial cognition. PCP impaired the judicious use of spatial information and discoordinated hippocampal discharge without disrupting firing fields. These findings dissociate place fields from spatial cognitive behavior and suggest that hippocampus discharge coordination is crucial to spatial cognition. PMID:29118102
Neural correlates of object-in-place learning in hippocampus and prefrontal cortex.
Kim, Jangjin; Delcasso, Sébastien; Lee, Inah
2011-11-23
Hippocampus and prefrontal cortex (PFC) process spatiotemporally discrete events while maintaining goal-directed task demands. Although some studies have reported that neural activities in the two regions are coordinated, such observations have rarely been reported in an object-place paired-associate (OPPA) task in which animals must learn an object-in-place rule. In this study, we recorded single units and local field potentials simultaneously from the CA1 subfield of the hippocampus and PFC as rats learned that Object A, but not Object B, was rewarded in Place 1, but not in Place 2 (vice versa for Object B). Both hippocampus and PFC are required for normal performance in this task. PFC neurons fired in association with the regularity of the occurrence of a certain type of event independent of space, whereas neuronal firing in CA1 was spatially localized for representing a discrete place. Importantly, the differential firing patterns were observed in tandem with common learning-related changes in both regions. Specifically, once OPPA learning occurred and rats used an object-in-place strategy, (1) both CA1 and PFC neurons exhibited spatially more similar and temporally more synchronized firing patterns, (2) spiking activities in both regions were more phase locked to theta rhythms, and (3) CA1-medial PFC coherence in theta oscillation was maximal before entering a critical place for decision making. The results demonstrate differential as well as common neural dynamics between hippocampus and PFC in acquiring the OPPA task and strongly suggest that both regions form a unified functional network for processing an episodic event.
Liu, Yudan; Harding, Meghan; Dore, Jules; Chen, Xihua
2017-04-03
Nicotine use is one of the most common forms of drug addiction. Although L-type calcium channels (LTCCs) are involved in nicotine addiction, the contribution of the two primary LTCC subtypes (Ca v 1.2 and 1.3) is unknown. This study aims to determine the contribution of these two LTCC subtypes to nicotine-induced conditioned place preference (CPP) responses by using transgenic mouse models that do not express Ca v 1.3 (Ca v 1.3 -/- ) or contain a mutation in the dihydropyridine (DHP) site of the Ca v 1.2 (Ca v 1.2DHP -/- ). We found a hyperbolic dose dependent nicotine (0.1-1mg/kg; 0.5mg/kg optimum) effect on place preference in wild type (WT) mice, that could be prevented by the DHP LTCC blocker nifedipine pretreatment. Similarly, Ca v 1.3 -/- mice showed nicotine-induced place preference which was antagonized by nifedipine. In contrast, nifedipine pretreatment of Ca v 1.2DHP -/- mice had no effect on nicotine-induced CPP responses, suggesting an involvement of Ca v 1.2 subtype in the nicotine-induced CPP response. Nifedipine alone failed to produce either conditioned place aversion or CPP in WT mice. These results collectively indicate Ca v 1.2, but not Ca v 1.3 LTCC subtype regulates, at least in part, the reinforcing effects of nicotine use. Copyright © 2017 Elsevier Inc. All rights reserved.
Influences of Ru-doping on the magnetic properties of Ca0.85Pr0.15Mn1- x Ru x O3
NASA Astrophysics Data System (ADS)
Phan, T. L.; Zhang, Y. D.; Yu, S. C.; Thanh, P. Q.; Yen, P. D. H.
2012-11-01
CaMnO3 is an antiferromagnet, in which the super-exchange interaction taking place between Mn4+ ions plays an important role. The doping of a small amount of 15% Pr into the Ca site, Ca0.85Pr0.15MnO3, leads to the appearance of Mn3+ ions, and introduces the ferromagnetic (FM) double-exchange interaction between Mn3+ and Mn4+ ions, which is dominant in a narrow temperature range of 90 ˜ 115 K. The FM interaction becomes strong for Ca0.85Pr0.15MnO3 doped with 4 and 8% Ru into the Mn site ( i.e., Ca0.85Pr0.15Mn1- x Ru x O3 with x = 0.04 and 0.08). The Curie temperature obtained for x = 0.04 and 0.08 are about 135 and 180 K, respectively. While the FM interaction in the former is dominant due to Mn3+-Mn4+ exchange pairs, the latter has the contribution of Ru ions. This results in remarkable differences in the features of their FM-paramagnetic phase transitions and their coercive fields H c .
Characterization of root agravitropism induced by genetic, chemical, and developmental constraints
NASA Technical Reports Server (NTRS)
Moore, R.; Fondren, W. M.; Marcum, H.
1987-01-01
The patterns and rates of organelle redistribution in columella (i.e., putative statocyte) cells of agravitropic agt mutants of Zea mays are not significantly different from those of columella cells in graviresponsive roots. Graviresponsive roots of Z. mays are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side. Horizontally-oriented roots of agt mutants exhibit only a minimal polar transport of 45Ca2+. Exogenously-induced asymmetries of Ca result in curvature of agt roots toward the Ca source. A similar curvature can be induced by a Ca asymmetry in normally nongraviresponsive (i.e., lateral) roots of Phaseolus vulgaris. Similarly, root curvature can be induced by placing the roots perpendicular to an electric field. This electrotropism increased with 1) currents between 8-35 mA, and 2) time between 1-9 hr when the current is constant. Electrotropism is reduced significantly by treating roots with triiodobenzoic acid (TIBA), an inhibitor of auxin transport. These results suggest that 1) if graviperception occurs via the sedimentation of amyloplasts in columella cells, then nongraviresponsive roots apparently sense gravity as do graviresponsive roots, 2) exogenously-induced asymmetries of a gravitropic effector (i.e., Ca) can induce curvature of normally nongraviresponsive roots, 3) the gravity-induced downward movement of exogenously-applied 45Ca2+ across tips of graviresponsive roots does not occur in nongraviresponsive roots, 4) placing roots in an electrical field (i.e., one favoring the movement of ions such as Ca2+) induces root curvature, and 5) electrically-induced curvature is apparently dependent on auxin transport. These results are discussed relative to a model to account for the lack of graviresponsiveness by these roots.
Douchamps, Vincent; Jeewajee, Ali; Blundell, Pam; Burgess, Neil; Lever, Colin
2013-01-01
The formation of new memories requires new information to be encoded in the face of proactive interference from the past. Two solutions have been proposed for hippocampal region CA1: 1) acetylcholine, released in novelty, selectively suppresses excitatory projections to CA1 from CA3 (mediating the products of retrieval), while sparing entorhinal inputs (mediating novel sensory information); 2) encoding preferentially occurs at the pyramidal-layer theta peak, coincident with input from entorhinal cortex, and retrieval occurs at the trough, coincident with input from CA3, consistent with theta-phase-dependent synaptic plasticity. We examined three predictions of these models: 1) In novel environments, the preferred theta phase of CA1 place cell firing should shift closer to the CA1 pyramidal-layer theta peak, shifting the encoding-retrieval balance towards encoding; 2) The encoding-related shift in novel environments should be disrupted by cholinergic antagonism; 3) In familiar environments, cholinergic antagonism should shift the preferred theta firing phase closer to the theta trough, shifting the encoding-retrieval balance even further towards retrieval. We tested these predictions by recording from CA1 pyramidal cells in freely moving rats as they foraged in open field environments under the influence of scopolamine (an amnestic cholinergic antagonist) or vehicle (saline). Results confirmed all three predictions, supporting both the theta phase and cholinergic models of encoding-vs-retrieval dynamics. Also consistent with cholinergic enhancement of encoding, scopolamine attenuated the formation of distinct spatial representations in a new environment, reducing the extent of place cell “remapping”. PMID:23678113
Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields
Rickgauer, John Peter; Deisseroth, Karl; Tank, David W.
2015-01-01
Linking neural microcircuit function to emergent properties of the mammalian brain requires fine-scale manipulation and measurement of neural activity during behavior, where each neuron’s coding and dynamics can be characterized. We developed an optical method for simultaneous cellular-resolution stimulation and large-scale recording of neuronal activity in behaving mice. Dual-wavelength two-photon excitation allowed largely independent functional imaging with a green fluorescent calcium sensor (GCaMP3, λ = 920 ± 6 nm) and single-neuron photostimulation with a red-shifted optogenetic probe (C1V1, λ = 1,064 ± 6 nm) in neurons coexpressing the two proteins. We manipulated task-modulated activity in individual hippocampal CA1 place cells during spatial navigation in a virtual reality environment, mimicking natural place-field activity, or ‘biasing’, to reveal subthreshold dynamics. Notably, manipulating single place-cell activity also affected activity in small groups of other place cells that were active around the same time in the task, suggesting a functional role for local place cell interactions in shaping firing fields. PMID:25402854
Calcium transient prevalence across the dendritic arbour predicts place field properties.
Sheffield, Mark E J; Dombeck, Daniel A
2015-01-08
Establishing the hippocampal cellular ensemble that represents an animal's environment involves the emergence and disappearance of place fields in specific CA1 pyramidal neurons, and the acquisition of different spatial firing properties across the active population. While such firing flexibility and diversity have been linked to spatial memory, attention and task performance, the cellular and network origin of these place cell features is unknown. Basic integrate-and-fire models of place firing propose that such features result solely from varying inputs to place cells, but recent studies suggest instead that place cells themselves may play an active role through regenerative dendritic events. However, owing to the difficulty of performing functional recordings from place cell dendrites, no direct evidence of regenerative dendritic events exists, leaving any possible connection to place coding unknown. Using multi-plane two-photon calcium imaging of CA1 place cell somata, axons and dendrites in mice navigating a virtual environment, here we show that regenerative dendritic events do exist in place cells of behaving mice, and, surprisingly, their prevalence throughout the arbour is highly spatiotemporally variable. Furthermore, we show that the prevalence of such events predicts the spatial precision and persistence or disappearance of place fields. This suggests that the dynamics of spiking throughout the dendritic arbour may play a key role in forming the hippocampal representation of space.
Zou, Dan; Nishimaru, Hiroshi; Matsumoto, Jumpei; Takamura, Yusaku; Ono, Taketoshi; Nishijo, Hisao
2017-01-01
The hippocampal formation (HF) is implicated in a comparator that detects sensory conflict (mismatch) among convergent inputs. This suggests that new place cells encoding the new configuration with sensory mismatch develop after the HF learns to accept the new configuration as a match. To investigate this issue, HF CA1 place cell activity in rats was analyzed after the adaptation of the rats to the same sensory mismatch condition. The rats were placed on a treadmill on a stage that was translocated in a figure 8-shaped pathway. We recorded HF neuronal activities under three conditions; (1) an initial control session, in which both the stage and the treadmill moved forward, (2) a backward (mismatch) session, in which the stage was translocated backward while the rats locomoted forward on the treadmill, and (3) the second control session. Of the 161 HF neurons, 56 place-differential activities were recorded from the HF CA1 subfield. These place-differential activities were categorized into four types; forward-related, backward-related, both-translocation-related, and session-dependent. Forward-related activities showed predominant spatial firings in the forward sessions, while backward-related activities showed predominant spatial firings in the backward sessions. Both-translocation-related activities showed consistent spatial firings in both the forward and backward conditions. On the other hand, session-dependent activities showed different spatial firings across the sessions. Detailed analyses of the place fields indicated that mean place field sizes were larger in the forward-related, backward-related, and both-translocation-related activities than in the session-dependent activities. Furthermore, firing rate distributions in the place fields were negatively skewed and asymmetric, which is similar to place field changes that occur after repeated experience. These results demonstrate that the HF encodes a naturally impossible new configuration of sensory inputs after adaptation, suggesting that the HF is capable of updating its stored memory to accept a new configuration as a match by repeated experience. PMID:28878682
Cohen, Jeremy D; Bolstad, Mark; Lee, Albert K
2017-01-01
The hippocampus is critical for producing stable representations of familiar spaces. How these representations arise is poorly understood, largely because changes to hippocampal inputs have not been measured during spatial learning. Here, using intracellular recording, we monitored inputs and plasticity-inducing complex spikes (CSs) in CA1 neurons while mice explored novel and familiar virtual environments. Inputs driving place field spiking increased in amplitude – often suddenly – during novel environment exploration. However, these increases were not sustained in familiar environments. Rather, the spatial tuning of inputs became increasingly similar across repeated traversals of the environment with experience – both within fields and throughout the whole environment. In novel environments, CSs were not necessary for place field formation. Our findings support a model in which initial inhomogeneities in inputs are amplified to produce robust place field activity, then plasticity refines this representation into one with less strongly modulated, but more stable, inputs for long-term storage. DOI: http://dx.doi.org/10.7554/eLife.23040.001 PMID:28742496
Influence of local objects on hippocampal representations: landmark vectors and memory
Deshmukh, Sachin S.; Knierim, James J.
2013-01-01
The hippocampus is thought to represent nonspatial information in the context of spatial information. An animal can derive both spatial information as well as nonspatial information from the objects (landmarks) it encounters as it moves around in an environment. Here, we demonstrate correlates of both object-derived spatial as well as nonspatial information in the hippocampus of rats foraging in the presence of objects. We describe a new form of CA1 place cells, called landmark-vector cells, that encode spatial locations as a vector relationship to local landmarks. Such landmark vector relationships can be dynamically encoded. Of the 26 CA1 neurons that developed new fields in the course of a day’s recording sessions, in 8 cases the new fields were located at a similar distance and direction from a landmark as the initial field was located relative to a different landmark. We also demonstrate object-location memory in the hippocampus. When objects were removed from an environment or moved to new locations, a small number of neurons in CA1 and CA3 increased firing at the locations where the objects used to be. In some neurons, this increase occurred only in one location, indicating object +place conjunctive memory; in other neurons the increase in firing was seen at multiple locations where an object used to be. Taken together, these results demonstrate that the spatially restricted firing of hippocampal neurons encode multiple types of information regarding the relationship between an animal’s location and the location of objects in its environment. PMID:23447419
Dynamic NMDAR-mediated properties of place cells during the object place memory task.
Faust, Thomas W; Robbiati, Sergio; Huerta, Tomás S; Huerta, Patricio T
2013-01-01
N-methyl-D-aspartate receptors (NMDAR) in the hippocampus participate in encoding and recalling the location of objects in the environment, but the ensemble mechanisms by which NMDARs mediate these processes have not been completely elucidated. To address this issue, we examined the firing patterns of place cells in the dorsal CA1 area of the hippocampus of mice (n = 7) that performed an object place memory (OPM) task, consisting of familiarization (T1), sample (T2), and choice (T3) trials, after systemic injection of 3-[(±)2-carboxypiperazin-4yl]propyl-1-phosphate (CPP), a specific NMDAR antagonist. Place cell properties under CPP (CPP-PCs) were compared to those after control saline injection (SAL-PCs) in the same mice. We analyzed place cells across the OPM task to determine whether they signaled the introduction or movement of objects by NMDAR-mediated changes of their spatial coding. On T2, when two objects were first introduced to a familiar chamber, CPP-PCs and SAL-PCs showed stable, vanishing or moving place fields in addition to changes in spatial information (SI). These metrics were comparable between groups. Remarkably, previously inactive CPP-PCs (with place fields emerging de novo on T2) had significantly weaker SI increases than SAL-PCs. On T3, when one object was moved, CPP-PCs showed reduced center-of-mass (COM) shift of their place fields. Indeed, a subset of SAL-PCs with large COM shifts (>7 cm) was largely absent in the CPP condition. Notably, for SAL-PCs that exhibited COM shifts, those initially close to the moving object followed the trajectory of the object, whereas those far from the object did the opposite. Our results strongly suggest that the SI changes and COM shifts of place fields that occur during the OPM task reflect key dynamic properties that are mediated by NMDARs and might be responsible for binding object identity with location.
Dynamic NMDAR-mediated properties of place cells during the object place memory task
Faust, Thomas W.; Robbiati, Sergio; Huerta, Tomás S.; Huerta, Patricio T.
2013-01-01
N-methyl-D-aspartate receptors (NMDAR) in the hippocampus participate in encoding and recalling the location of objects in the environment, but the ensemble mechanisms by which NMDARs mediate these processes have not been completely elucidated. To address this issue, we examined the firing patterns of place cells in the dorsal CA1 area of the hippocampus of mice (n = 7) that performed an object place memory (OPM) task, consisting of familiarization (T1), sample (T2), and choice (T3) trials, after systemic injection of 3-[(±)2-carboxypiperazin-4yl]propyl-1-phosphate (CPP), a specific NMDAR antagonist. Place cell properties under CPP (CPP–PCs) were compared to those after control saline injection (SAL–PCs) in the same mice. We analyzed place cells across the OPM task to determine whether they signaled the introduction or movement of objects by NMDAR-mediated changes of their spatial coding. On T2, when two objects were first introduced to a familiar chamber, CPP–PCs and SAL–PCs showed stable, vanishing or moving place fields in addition to changes in spatial information (SI). These metrics were comparable between groups. Remarkably, previously inactive CPP–PCs (with place fields emerging de novo on T2) had significantly weaker SI increases than SAL–PCs. On T3, when one object was moved, CPP–PCs showed reduced center-of-mass (COM) shift of their place fields. Indeed, a subset of SAL–PCs with large COM shifts (>7 cm) was largely absent in the CPP condition. Notably, for SAL–PCs that exhibited COM shifts, those initially close to the moving object followed the trajectory of the object, whereas those far from the object did the opposite. Our results strongly suggest that the SI changes and COM shifts of place fields that occur during the OPM task reflect key dynamic properties that are mediated by NMDARs and might be responsible for binding object identity with location. PMID:24381547
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, S. L.; Lin, H. H., E-mail: linhh@hstc.edu.cn, E-mail: qyzhang@scut.edu.cn; Yu, T.
2014-07-14
The phosphors Ca{sub 3}(PO{sub 4}){sub 2}:Tm{sup 3+} by co-doping Ce{sup 3+} have been synthesized by conventional high-temperature solid-state reaction method. Their spectroscopic properties in the UV-VIS-NIR range have been investigated. The first 5d crystal field level location and stokes shift have been determined from the UV excitation and emission spectra of Ca{sub 3}(PO{sub 4}){sub 2}:Ce{sup 3+}. The three-photon NIR quantum-cutting luminescence of Tm{sup 3+} assigned to the electronic transitions of {sup 1}G{sub 4}→{sup 3}H{sub 4}, {sup 3}H{sub 4}→{sup 3}F{sub 4} and {sup 3}F{sub 4}→{sup 3}H{sub 6} is observed, whether in Ca{sub 3}(PO{sub 4}){sub 2}:Tm{sup 3+} or Ca{sub 3}(PO{sub 4}){sub 2}:Tm{supmore » 3+},Ce{sup 3+}. The energy transfer from Ce{sup 3+} to Tm{sup 3+} takes place with energy-transfer efficiency up to 34.5% for the Ca{sub 3}(PO{sub 4}){sub 2}:Tm{sup 3+},Ce{sup 3+}. A cross relaxation scheme using the 5d states of Ce{sup 3+} and f-f transition of Tm{sup 3+} is proposed. The mechanism is revealed from energy level and decay measurements. The results show that the broadband absorption of Ce{sup 3+} sensitizer not only extends the spectrum conversion in UV region but also greatly enhances the photoluminescence intensities of the three-photon quantum cutting luminescence of Tm{sup 3+} doped Ca{sub 3}(PO{sub 4}){sub 2}.« less
NASA Astrophysics Data System (ADS)
Toyota, M.; Furuichi, T.; Tatsumi, H.; Sokabe, M.
Plants regulate their growth and morphology in response to gravity field known as gravitropism in general In the process of gravitropism gravity sensing will form the critical earliest event which is supposed to take place in specialized cells statocytes such as columella cells and shoot endodermal cells Although gravistimulation is assumed to be converted into certain intracellular signals the underlying transduction mechanisms have hardly been explored One of the potential candidates for the intracellular signals is an increase in the cytoplasmic free calcium concentration Ca 2 c Here we measured Ca 2 c changes induced by gravistimulation in seedlings of Arabidopsis thaliana expressing aequorin as a calcium reporter When a plate of seedlings was turned through 180 r Ca 2 c transiently increased within 50 s and decayed exponentially with a time constant of ca 60 s The amplitude of the Ca 2 c increase was independent of the angular velocity of the rotation The Ca 2 c increase was reversibly blocked by extracellularly applied potential mechanosensitive channel blockers La 3 Gd 3 or a Ca 2 chelator BAPTA indicating that it arose from Ca 2 -influx via Ca 2 -permeable channel s on the plasma membrane Furthermore the Ca 2 c increase was attenuated by actin-disrupting drugs latrunculin B cytochalasin B but not by microtuble-disrupting drugs oryzalin nocodazole indicating that the activation of
Lee, Inah; Park, Seong-Beom
2013-01-01
Objects and their locations can associatively define an event and a conjoint representation of object-place can form an event memory. Remembering how to respond to a certain object in a spatial context is dependent on both hippocampus and perirhinal cortex (PER). However, the relative functional contributions of the two regions are largely unknown in object-place associative memory. We investigated the PER influence on hippocampal firing in a goal-directed object-place memory task by comparing the firing patterns of CA1 and CA3 of the dorsal hippocampus between conditions of PER muscimol inactivation and vehicle control infusions. Rats were required to choose one of the two objects in a specific spatial context (regardless of the object positions in the context), which was shown to be dependent on both hippocampus and PER. Inactivation of PER with muscimol (MUS) severely disrupted performance of well-trained rats, resulting in response bias (i.e., choosing any object on a particular side). MUS did not significantly alter the baseline firing rates of hippocampal neurons. We measured the similarity in firing patterns between two trial conditions in which the same target objects were chosen on opposite sides within the same arm [object-in-place (O-P) strategy] and compared the results with the similarity in firing between two trial conditions in which the rat chose any object encountered on a particular side [response-in-place (R-P) strategy]. We found that the similarity in firing patterns for O-P trials was significantly reduced with MUS compared to control conditions (CTs). Importantly, this was largely because MUS injections affected the O-P firing patterns in CA1 neurons, but not in CA3. The results suggest that PER is critical for goal-directed organization of object-place associative memory in the hippocampus presumably by influencing how object information is associated with spatial information in CA1 according to task demand.
Progressive Functional Impairments of Hippocampal Neurons in a Tauopathy Mouse Model
Ciupek, Sarah M.; Cheng, Jingheng; Ali, Yousuf O.; Lu, Hui-Chen
2015-01-01
The age-dependent progression of tau pathology is a major characteristic of tauopathies, including Alzheimer's disease (AD), and plays an important role in the behavioral phenotypes of AD, including memory deficits. Despite extensive molecular and cellular studies on tau pathology, it remains to be determined how it alters the neural circuit functions underlying learning and memory in vivo. In rTg4510 mice, a Tau-P301L tauopathy model, hippocampal place fields that support spatial memories are abnormal at old age (7–9 months) when tau tangles and neurodegeneration are extensive. However, it is unclear how the abnormality in the hippocampal circuit function arises and progresses with the age-dependent progression of tau pathology. Here we show that in young (2–4 months of age) rTg4510 mice, place fields of hippocampal CA1 cells are largely normal, with only subtle differences from those of age-matched wild-type control mice. Second, high-frequency ripple oscillations of local field potentials in the hippocampal CA1 area are significantly reduced in young rTg4510 mice, and even further deteriorated in old rTg4510 mice. The ripple reduction is associated with less bursty firing and altered synchrony of CA1 cells. Together, the data indicate that deficits in ripples and neuronal synchronization occur before overt deficits in place fields in these mice. The results reveal a tau-pathology-induced progression of hippocampal functional changes in vivo. PMID:26019329
Stable carbon isotope ratio in atmospheric CO2 collected by new diffusive devices.
Proto, Antonio; Cucciniello, Raffaele; Rossi, Federico; Motta, Oriana
2014-02-01
In this paper, stable carbon isotope ratios (δ (13)C) were determined in the atmosphere by using a Ca-based sorbent, CaO/Ca12Al14O33 75:25 w/w, for passively collecting atmospheric CO2, in both field and laboratory experiments. Field measurements were conducted in three environments characterized by different carbon dioxide sources. In particular, the environments under consideration were a rather heavily trafficked road, where the source of CO2 is mostly vehicle exhaust, a rural unpolluted area, and a private kitchen where the major source of CO2 was gas combustion. Samplers were exposed to the free atmosphere for 3 days in order to allow collection of sufficient CO2 for δ(13)C analysis, then the collected CO2 was desorbed from the adsorbent with acid treatment, and directly analyzed by nondispersive infrared (NDIR) instrument. δ (13)C results confirmed that the samplers collected representative CO2 samples and no fractionation occurred during passive trapping, as also confirmed by an appositely designed experiment conducted in the laboratory. Passive sampling using CaO/Ca12Al14O33 75:25 w/w proved to be an easy and reliable method to collect atmospheric carbon dioxide for δ (13)C analysis in both indoor and outdoor places.
Place field assembly distribution encodes preferred locations
Mamad, Omar; Stumpp, Lars; McNamara, Harold M.; Ramakrishnan, Charu; Deisseroth, Karl; Reilly, Richard B.
2017-01-01
The hippocampus is the main locus of episodic memory formation and the neurons there encode the spatial map of the environment. Hippocampal place cells represent location, but their role in the learning of preferential location remains unclear. The hippocampus may encode locations independently from the stimuli and events that are associated with these locations. We have discovered a unique population code for the experience-dependent value of the context. The degree of reward-driven navigation preference highly correlates with the spatial distribution of the place fields recorded in the CA1 region of the hippocampus. We show place field clustering towards rewarded locations. Optogenetic manipulation of the ventral tegmental area demonstrates that the experience-dependent place field assembly distribution is directed by tegmental dopaminergic activity. The ability of the place cells to remap parallels the acquisition of reward context. Our findings present key evidence that the hippocampal neurons are not merely mapping the static environment but also store the concurrent context reward value, enabling episodic memory for past experience to support future adaptive behavior. PMID:28898248
Hippocampal place cell instability after lesions of the head direction cell network
NASA Technical Reports Server (NTRS)
Calton, Jeffrey L.; Stackman, Robert W.; Goodridge, Jeremy P.; Archey, William B.; Dudchenko, Paul A.; Taube, Jeffrey S.; Oman, C. M. (Principal Investigator)
2003-01-01
The occurrence of cells that encode spatial location (place cells) or head direction (HD cells) in the rat limbic system suggests that these cell types are important for spatial navigation. We sought to determine whether place fields of hippocampal CA1 place cells would be altered in animals receiving lesions of brain areas containing HD cells. Rats received bilateral lesions of anterodorsal thalamic nuclei (ADN), postsubiculum (PoS), or sham lesions, before place cell recording. Although place cells from lesioned animals did not differ from controls on many place-field characteristics, such as place-field size and infield firing rate, the signal was significantly degraded with respect to measures of outfield firing rate, spatial coherence, and information content. Surprisingly, place cells from lesioned animals were more likely modulated by the directional heading of the animal. Rotation of the landmark cue showed that place fields from PoS-lesioned animals were not controlled by the cue and shifted unpredictably between sessions. Although fields from ADN-lesioned animals tended to have less landmark control than fields from control animals, this impairment was mild compared with cells recorded from PoS-lesioned animals. Removal of the prominent visual cue also led to instability of place-field representations in PoS-lesioned, but not ADN-lesioned, animals. Together, these findings suggest that an intact HD system is not necessary for the maintenance of place fields, but lesions of brain areas that convey the HD signal can degrade this signal, and lesions of the PoS might lead to perceptual or mnemonic deficits, leading to place-field instability between sessions.
Shahidain, R; Mullins, R D; Sisken, J E
2001-02-01
To determine whether extremely low frequency electromagnetic fields can alter average free cytosolic calcium ion concentrations [Ca2+]i and transient increases in [Ca2+]i in populations of ROS 17/2.8 cells. Cells loaded with the calcium-selective luminescent photoprotein, aequorin, were placed in the bottom of a sample chamber, which was inserted into the gap of a previously described air gap reactor system where they were exposed either to sinusoidal magnetic fields at a variety of frequencies and flux densities or to sham conditions. Real-time recordings of photon counts due to aequorin luminescence were obtained and data were analysed with the use of probit plots. Probit plots of data obtained from cells exposed to the various magnetic fields were virtually superimposable over the data obtained for the same cultures during pre- and post-exposure sham or no-field periods. These experiments provided no evidence for any effects of ELF EMF, either positive or negative, on either average [Ca2+]i or on transient increases in [Ca2+]i.
Neural correlates of object-in-place learning in hippocampus and prefrontal cortex
Kim, Jangjin; Delcasso, Sébastien; Lee, Inah
2011-01-01
Hippocampus and prefrontal cortex (PFC) process spatiotemporally discrete events while maintaining goal-directed task demands. Although some studies have reported that neural activities in the two regions are coordinated, such observations have rarely been reported in an object-place paired-associate (OPPA) task in which animals must learn an object-in-place rule. In this study, we recorded single units and local field potentials simultaneously from the CA1 subfield of the hippocampus and PFC as rats learned that object A, but not object B, was rewarded in place 1, but not in place 2 (vice versa for object B). Both hippocampus and PFC are required for normal performance in this task. PFC neurons fired in association with the regularity of the occurrence of a certain type of event independent of space, whereas neuronal firing in CA1 was spatially localized for representing a discrete place. Importantly, the differential firing patterns were observed in tandem with common learning-related changes in both regions. Specifically, once OPPA learning occurred and rats used an object-in-place strategy, (i) both CA1 and PFC neurons exhibited spatially more similar and temporally more synchronized firing patterns, (ii) spiking activities in both regions were more phase-locked to theta rhythms, (iii) CA1-mPFC coherence in theta oscillation was maximal before entering a critical place for decision making. The results demonstrate differential as well as common neural dynamics between hippocampus and PFC in acquiring the OPPA task and strongly suggest that both regions form a unified functional network for processing an episodic event. PMID:22114269
Far-infrared and dc magnetotransport of CaMnO3-CaRuO3 superlattices
NASA Astrophysics Data System (ADS)
Yordanov, P.; Boris, A. V.; Freeland, J. W.; Kavich, J. J.; Chakhalian, J.; Lee, H. N.; Keimer, B.
2011-07-01
We report temperature- and magnetic-field-dependent measurements of the dc resistivity and the far-infrared reflectivity (FIR) (photon energies ℏω=50-700 cm-1) of superlattices comprising ten consecutive unit cells of the antiferromagnetic insulator CaMnO3, and four to ten unit cells of the correlated paramagnetic metal CaRuO3. Below the Néel temperature of CaMnO3, the dc resistivity exhibits a logarithmic divergence upon cooling, which is associated with a large negative, isotropic magnetoresistance. The ω→0 extrapolation of the resistivity extracted from the FIR reflectivity, on the other hand, shows a much weaker temperature and field dependence. We attribute this behavior to scattering of itinerant charge carriers in CaRuO3 from sparse, spatially isolated magnetic defects at the CaMnO3-CaRuO3 interfaces. This field-tunable “transport bottleneck” effect may prove useful for functional metal-oxide devices.
An Attractor Network in the Hippocampus: Theory and Neurophysiology
ERIC Educational Resources Information Center
Rolls, Edmund T.
2007-01-01
A quantitative computational theory of the operation of the CA3 system as an attractor or autoassociation network is described. Based on the proposal that CA3-CA3 autoassociative networks are important for episodic or event memory in which space is a component (place in rodents and spatial view in primates), it has been shown behaviorally that the…
Chibowski, Emil; Hołysz, Lucyna; Szcześ, Aleksandra
2003-11-01
Deposition of in situ precipitated calcium carbonate from Na(2)CO(3) and CaCl2 solutions on different substrates, i.e. stainless steel, copper, aluminium, and glass, was investigated at different temperatures, 20 degrees C, 40 degrees C, 60 degrees C and 80 degrees C, both in the absence and presence of S-S 0.1T magnetic field (MF). It was found that in quiescent conditions during 2h the amounts deposited firmly on the surfaces decreased with increasing temperature. If MF was present the deposition was reduced at all temperatures, and depended on the nature of the substrate. The largest MF effect was found on glass at 60 degrees C, which amounted 50% reduction of the deposit. However, at 80 degrees C no deposition was found in the presence of MF on aluminium surface. At this temperature the reproducibility of the experiments was poor, and an additional effect due to the metal surface corrosion (especially that of aluminium and copper) may be thought in alkaline environment of the experiments (pH ca. 10). Based on optical microscope photographs, it was concluded that the amounts of crystallographic forms of CaCO3 depended on the nature of substrate on which the precipitation and then the adhesion took place. To some extent the ratios of CaCO3 forms precipitated were different in the bulk phase than on the substrate surfaces at the same temperature, and this conclusion was based on the X-ray diffractograms. Some possible mechanisms causing MF effects are discussed.
Social and novel contexts modify hippocampal CA2 representations of space
Alexander, Georgia M.; Farris, Shannon; Pirone, Jason R.; Zheng, Chenguang; Colgin, Laura L.; Dudek, Serena M.
2016-01-01
The hippocampus supports a cognitive map of space and is critical for encoding declarative memory (who, what, when and where). Recent studies have implicated hippocampal subfield CA2 in social and contextual memory but how it does so remains unknown. Here we find that in adult male rats, presentation of a social stimulus (novel or familiar rat) or a novel object induces global remapping of place fields in CA2 with no effect on neuronal firing rate or immediate early gene expression. This remapping did not occur in CA1, suggesting this effect is specific for CA2. Thus, modification of existing spatial representations might be a potential mechanism by which CA2 encodes social and novel contextual information. PMID:26806606
Łuszczewska-Sierakowska, Iwona; Wawrzyniak-Gacek, Agata; Guz, Tomasz; Tatara, Marcin R; Charuta, Anna
2015-01-01
The aim of the study was a quantitative examination of neurons of hippocampal subfields (CA1-CA4) in mature male Arctic fox (Vulpes lagopus; syn. Alopex lagopus). The preparations were dyed using cresyl violet. Histological preparations were used to morphometricaly analyze the neurons of hippocampus. This analysis included the following parameters: average size of cells in μm, periphery of cells in μm, average cell area in μm2, percentage of cells in area and size of the largest and smallest cells in μm in CA1-CA4 fields. Morphometric observations show that the cells involved in hippocampal formation in polar fox in all layers CA1 -CA4 differ in size, shape, cell area and nucleus area. The size of the cell area in CA3 is the largest and fluctuates around 249.4 μm2, whereas in CA2 the cell area is 184.1 μm2. The cells of the CA2 field are densely arranged, pyramidal and contain a small amount of cytoplasm; their size fluctuates. Cells of CA2 and CA4 had the largest diameter of about 23.6 μm, whereas cells of the CA3 field had the smallest diameter of about 8.3 μm.
Electric Field Control of Interfacial Ferromagnetism in CaMnO3/CaRuO3 Heterostructures
NASA Astrophysics Data System (ADS)
Grutter, A. J.; Kirby, B. J.; Gray, M. T.; Flint, C. L.; Alaan, U. S.; Suzuki, Y.; Borchers, J. A.
2015-07-01
New mechanisms for achieving direct electric field control of ferromagnetism are highly desirable in the development of functional magnetic interfaces. To that end, we have probed the electric field dependence of the emergent ferromagnetic layer at CaRuO3/CaMnO3 interfaces in bilayers fabricated on SrTiO3. Using polarized neutron reflectometry, we are able to detect the ferromagnetic signal arising from a single atomic monolayer of CaMnO3, manifested as a spin asymmetry in the reflectivity. We find that the application of an electric field of 600 kV /m across the bilayer induces a significant increase in this spin asymmetry. Modeling of the reflectivity suggests that this increase corresponds to a transition from canted antiferromagnetism to full ferromagnetic alignment of the Mn4 + ions at the interface. This increase from 1 μB to 2.5 - 3.0 μB per Mn is indicative of a strong magnetoelectric coupling effect, and such direct electric field control of the magnetization at an interface has significant potential for spintronic applications.
NASA Astrophysics Data System (ADS)
Harlov, D. E.; Budzyn, B.
2008-12-01
Cl-CO3-scapolite [(Na,Ca)4[Al3 (Al,Si) 3 Si3 O24](Cl, CO3 , SO4 )] occurs as a common partial to total alteration of plagioclase in deep-crustal xenoliths, skarns, marbles, gabbros, metabasites, calc-silicate gneisses, as well as in quartzofeldspathic granulite-facies rocks in general (Moecher and Essene, 1990, J Petrol 31, 997). Alteration of plagioclase to Cl-CO3-scapolite is presumed due to metasomatism by CO2-NaCl-H2O fluids (Satish-Kumar and Santosh, 1998, Geol Mag 135, 27). Previous experimental work on CO3-scapolite has focused on reversing the equilibrium 3 CaAl2 Si2 O8 + CaCO3 = Ca4 Al6 Si6 O24 CO3 in either pure CO2 (Goldschmidt and Newton, 1977, Am Mineral 62, 1063) or in CO2-H2O (Huckenholz and Seiberl, 1989 Abs IGC 28, 2.79). These experiments have determined that the anorthite- calcite-scapolite equilibrium is nearly pressure-invariant in P-T space (200 to 1500 MPa) occurring at approximately 790 to 820 °C (Huckenholz and Seiberl, 1989). In this study, a series of experiments, involving the equilibrium 3 Plagioclase(An60) + 0.5 CaCO3 + 0.5 CaSO4 = [(Na,Ca)4[Al3 (Al,Si)3 Si3 O24](Cl, CO3, SO4 )] plus an NaCl brine (10/90, 20/80, 30/70, and 50/50 molar NaCl/H2O) have been done at 500, 1000, and 1500 MPa and 600 to 900 °C. Natural plagioclase and scapolite, along with synthetic calcite and anhydrite, were lightly ground together in equi-molar amounts in ethanol. The mineral mix (10 mg) + NaCl brine (5 mg), or pure H2O (1.5 mg), were loaded into 3 mm diameter/1.3 mm long Pt capsules which were arc-welded shut, folded, and placed horizontally in a CaF2 setup (with graphite oven), such that the thermocouple tip touched the Pt capsule, or placed in a hydrothermal autoclave (600 and 700 °C; 500 MPa) with an internal thermocouple. A series of duplicate experiments for the same mineral mix, at the same P-T conditions, were done utilizing pure H2O as the flux. The H2O-only experiments duplicated the P-T reversals of Huckenholz and Seiberl (1989). In contrast, the NaCl/H2 O experiments indicate that the stability field of Cl-CO3-scapolite (SiO2 =52.1, Al2O3=24.9, CaO=11.9, Na2O=7.60, Cl=1.86, CO3=2.00, SO4=0.45), relative to plagioclase, greatly expands in the presence of NaCl brines at NaCl concentrations above 10 percent NaCl such that Cl-CO2-scapolite is stable over 600 to 900 °C and 500 to 1500 MPa. This result further strengthens the proposition that NaCl brines, coupled with CO2-bearing fluids, can be and probably are involved during high-grade scapolitization of plagioclase-bearing rocks in the mid to lower crust and upper mantle.
Impaired hippocampal place cell dynamics in a mouse model of the 22q11.2 deletion
Zaremba, Jeffrey D; Diamantopoulou, Anastasia; Danielson, Nathan B; Grosmark, Andres D; Kaifosh, Patrick W; Bowler, John C; Liao, Zhenrui; Sparks, Fraser T; Gogos, Joseph A; Losonczy, Attila
2018-01-01
Hippocampal place cells represent the cellular substrate of episodic memory. Place cell ensembles reorganize to support learning but must also maintain stable representations to facilitate memory recall. Despite extensive research, the learning-related role of place cell dynamics in health and disease remains elusive. Using chronic two-photon Ca2+ imaging in hippocampal area CA1 of wild-type and Df(16)A+/− mice, an animal model of 22q11.2 deletion syndrome, one of the most common genetic risk factors for cognitive dysfunction and schizophrenia, we found that goal-oriented learning in wild-type mice was supported by stable spatial maps and robust remapping of place fields toward the goal location. Df(16)A+/− mice showed a significant learning deficit accompanied by reduced spatial map stability and the absence of goal-directed place cell reorganization. These results expand our understanding of the hippocampal ensemble dynamics supporting cognitive flexibility and demonstrate their importance in a model of 22q11.2-associated cognitive dysfunction. PMID:28869582
NASA Astrophysics Data System (ADS)
Gomez, M. E.; Marin, L.; Ramirez, G.; Prieto, P.
2011-03-01
We studied the isothermal magnetic field dependence of the resistance behavior in ferromagnetic--antiferromagnetic interface based on the Ca-doped lanthanum manganite system at temperatures below Neel temperature of the antiferromagnetic layer. We studied the influence of the thickness of the AF-layer, tAF , and F-layer, tF , on the ZFC and FC magnetoresistance (MR) in La 2/3 Ca 1/3 Mn O3 (tF) / La 1/3 Ca 2(3 Mn O3 (tAF) bilayers. HFC was 400 Oe and the applied magnetic field, H. We systematically varied the tF and tAF thickness, maintaining constant the total bilayer thickness (d = tF +tAF) . We found that MR has hysteretic behavior as observed in [ La 2/3 Ca 1/3 Mn O3 (tF) / La 1/3 Ca 2(3 Mn O3 (tAF) ]N superlattices, but; MR increases with the increasing field from H=0 to a maximum and then decreases continuously. This behavior also appears for negative fields in both ZFC and FC loops. The position and magnitude of the maximum is not symmetric with respect to the axis H=0. Work supported by CENM-COLCIENCIAS contract RC-0043-(2005).
Electric Field Control of the Ferromagnetic CaRuO3 /CaMnO3 Interface
NASA Astrophysics Data System (ADS)
Grutter, Alexander; Kirby, Brian; Gray, Matthew; Flint, Charles; Suzuki, Yuri; Borchers, Julie
2015-03-01
Electric field control of magnetism has been recognized as one of the most important goals in nanoscale magnetics research. The most popular routes towards achieving magnetoelectric (ME) coupling have focused on heterostructures incorporating multiferroics or ferroelectrics. Such studies often rely on voltage induced distortion to induce strain in the magnetic film and alter the magnetic properties. However, successful attempts to induce ME coupling without multiferroicity or magnetoelasticity remain relatively rare. The ferromagnetic interface between the antiferromagnetic insulator CaMnO3 and the paramagnetic metal CaRuO3 is a promising candidate for direct magnetization control. This interfacial ferroagnetism is stabilized through the competition between interfacial double exchange and antiferromagnetic superexchange between adjacent Mn4+ so that the system is expected to be very sensitive to small changes in interfacial carrier density. Using polarized neutron reflectometry, we have probed the electric field dependence of the interfacial magnetization of CaRuO3/CaMnO3 bilayers deposited on SrTiO3. We find that electric fields of +/-8 kV/m are sufficient to switch the interfaces from largely ferromagnetic to completely antiferromagnetic.
Disappearance of Ising nature in Ca3ZnMnO6 studied by high-field ESR.
Ruan, M Y; Ouyang, Z W; Guo, Y M; Cheng, J J; Sun, Y C; Xia, Z C; Rao, G H; Okubo, S; Ohta, H
2014-06-11
High-field electron spin resonance measurements of an antiferromagnet Ca3ZnMnO6 isostructure, with the Ising-chain multiferroic Ca3CoMnO6, have been carried out. Two distinct resonance modes were observed below TN = 25 K, which is well explained by conventional antiferromagnetic resonance theory with easy-plane anisotropy. The zero-field spin gap is derived to be about 166 GHz, originating from the easy-plane anisotropy and exchange interaction. Our result suggests that the Dzyaloshinsky-Moriya interaction, which may induce spin canting, is absent. Disappearance of Ising anisotropy in Ca3ZnMnO6 suggests that the Co(4+) ion, as well as the Co-Mn superexchange, plays an important role for the Ising nature in Ca3CoMnO6.
Theta phase precession of grid and place cell firing in open environments
Jeewajee, A.; Barry, C.; Douchamps, V.; Manson, D.; Lever, C.; Burgess, N.
2014-01-01
Place and grid cells in the rodent hippocampal formation tend to fire spikes at successively earlier phases relative to the local field potential theta rhythm as the animal runs through the cell's firing field on a linear track. However, this ‘phase precession’ effect is less well characterized during foraging in two-dimensional open field environments. Here, we mapped runs through the firing fields onto a unit circle to pool data from multiple runs. We asked which of seven behavioural and physiological variables show the best circular–linear correlation with the theta phase of spikes from place cells in hippocampal area CA1 and from grid cells from superficial layers of medial entorhinal cortex. The best correlate was the distance to the firing field peak projected onto the animal's current running direction. This was significantly stronger than other correlates, such as instantaneous firing rate and time-in-field, but similar in strength to correlates with other measures of distance travelled through the firing field. Phase precession was stronger in place cells than grid cells overall, and robust phase precession was seen in traversals through firing field peripheries (although somewhat less than in traversals through the centre), consistent with phase coding of displacement along the current direction. This type of phase coding, of place field distance ahead of or behind the animal, may be useful for allowing calculation of goal directions during navigation. PMID:24366140
Differing Presynaptic Contributions to LTP and Associative Learning in Behaving Mice
Madroñal, Noelia; Gruart, Agnès; Delgado-García, José M.
2009-01-01
The hippocampal CA3-CA1 synapse is an excellent experimental model for studying the interactions between short- and long-term plastic changes taking place following high-frequency stimulation (HFS) of Schaffer collaterals and during the acquisition and extinction of a classical eyeblink conditioning in behaving mice. Input/output curves and a full-range paired-pulse study enabled determining the optimal intensities and inter-stimulus intervals for evoking paired-pulse facilitation (PPF) or depression (PPD) at the CA3-CA1 synapse. Long-term potentiation (LTP) induced by HFS lasted ≈10 days. HFS-induced LTP evoked an initial depression of basal PPF. Recovery of PPF baseline values was a steady and progressive process lasting ≈20 days, i.e., longer than the total duration of the LTP. In a subsequent series of experiments, we checked whether PPF was affected similarly during activity-dependent synaptic changes. Animals were conditioned using a trace paradigm, with a tone as a conditioned stimulus (CS) and an electrical shock to the trigeminal nerve as an unconditioned stimulus (US). A pair of pulses (40 ms interval) was presented to the Schaffer collateral-commissural pathway to evoke field EPSPs (fEPSPs) during the CS-US interval. Basal PPF decreased steadily across conditioning sessions (i.e., in the opposite direction to that during LTP), reaching a minimum value during the 10th conditioning session. Thus, LTP and classical eyeblink conditioning share some presynaptic mechanisms, but with an opposite evolution. Furthermore, PPF and PPD might play a homeostatic role during long-term plastic changes at the CA3-CA1 synapse. PMID:19636387
NASA Astrophysics Data System (ADS)
Vlahos, Eftihia; Kumar, Amit; Denev, Sava; Brooks, Charles; Schlom, Darrell; Eklund, Carl-Johan; Rabe, Karin M.; Fennie, Craig J.; Gopalan, Venkatraman
2009-03-01
Calcium titanate, CaTiO3 is not a ferroelectric in its bulk form. However, first principles calculations predict that biaxially tensile strained CaTiO3 thin films should become ferroelectric. Here, we indeed confirm that strained CaTiO3 films become ferroelectric with a Curie temperature of ˜125K. Optical second harmonic generation (SHG) measurements, polarization studies, and in-situ electric-field measurements for a number of films with different strain values will be presented: CaTiO3/DyScO3(110), CaTiO3/SrTiO3 (100),CaTiO3/GdScO3/NdGaO3(110), CaTiO3/LaSrAlO3(001) as well as for a single crystal CaTiO3. From these studies, we conclude that strained CaTiO3 films are ferroelectric with a point group symmetry of mm2, and show reversible domain switching characteristics under an electric field. We also present results of variable temperature piezoelectric force microscopy for imaging the polar domains in the ferroelectric phase. These results suggest that strain is a valuable tool for inducing polar, long range ferroelectric order in even non-polar ceramic materials such as CaTiO3.
Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties.
Hu, Jin-Song; Ji, Heng-Xing; Cao, An-Min; Huang, Zheng-Xi; Zhang, Yang; Wan, Li-Jun; Xia, An-Dong; Yu, Da-Peng; Meng, Xiang-Min; Lee, Shuit-Tong
2007-08-07
A facile self-assembly growth route assisted by surfactant has been developed to synthesize tris(8-hydroxyquinoline)aluminium (Alq(3)) nanorods with regular hexagonal shape and good crystallinity, which exhibit field-emission characteristics with a very low turn-on field of ca. 3.1 V microm(-1) and a high field-enhancement factor of ca. 1300.
de Souza Silva, Maria A; Huston, Joseph P; Wang, An-Li; Petri, David; Chao, Owen Yuan-Hsin
2016-07-01
We asked whether episodic-like memory requires neural mechanisms independent of those that mediate its component memories for "what," "when," and "where," and if neuronal connectivity between the medial prefrontal cortex (mPFC) and the hippocampus (HPC) CA3 subregion is essential for episodic-like memory. Unilateral lesion of the mPFC was combined with unilateral lesion of the CA3 in the ipsi- or contralateral hemispheres in rats. Episodic-like memory was tested using a task, which assesses the integration of memories for "what, where, and when" concomitantly. Tests for novel object recognition (what), object place (where), and temporal order memory (when) were also applied. Bilateral disconnection of the mPFC-CA3 circuit by N-methyl-d-aspartate (NMDA) lesions disrupted episodic-like memory, but left the component memories for object, place, and temporal order, per se, intact. Furthermore, unilateral NMDA lesion of the CA3 plus injection of (6-cyano-7-nitroquinoxaline-2,3-dione) (CNQX) (AMPA/kainate receptor antagonist), but not AP-5 (NMDA receptor antagonist), into the contralateral mPFC also disrupted episodic-like memory, indicating the mPFC AMPA/kainate receptors as critical for this circuit. These results argue for a selective neural system that specifically subserves episodic memory, as it is not critically involved in the control of its component memories for object, place, and time. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Đorđević, Vesna; Brik, Mikhail G.; Srivastava, Alok M.; Medić, Mina; Vulić, Predrag; Glais, Estelle; Viana, Bruno; Dramićanin, Miroslav D.
2017-12-01
Herein, the synthesis, structural and crystal field analysis and optical spectroscopy of Mn4+ doped metal titanates ATiO3 (A = Ca, Mg) are presented. Materials of desired phase were prepared by molten salt assisted sol-gel method in the powder form. Crystallographic data of samples were obtained by refinement of X-ray diffraction measurements. From experimental excitation and emission spectra and structural data, crystal field parameters and energy levels of Mn4+ in CaTiO3 and MgTiO3 were calculated by the exchange charge model of crystal-field theory. It is found that crystalline field strength is lower (Dq = 1831 cm-1) in the rhombohedral Ilmenite MgTiO3 structure due to the relatively longer average Mn4+sbnd O2- bond distance (2.059 Å), and higher (Dq = 2017 cm-1) in orthorhombic CaTiO3 which possess shorter average Mn4+sbnd O2- bond distance (1.956 Å). Spectral positions of the Mn4+2Eg → 4A2g transition maxima is 709 nm in MgTiO3 and 717 nm in CaTiO3 respectively in good agreement with calculated values.
Angelovski, Goran; Gottschalk, Sven; Milošević, Milena; Engelmann, Jörn; Hagberg, Gisela E; Kadjane, Pascal; Andjus, Pavle; Logothetis, Nikos K
2014-05-21
Responsive or smart contrast agents (SCAs) represent a promising direction for development of novel functional MRI (fMRI) methods for the eventual noninvasive assessment of brain function. In particular, SCAs that respond to Ca(2+) may allow tracking neuronal activity independent of brain vasculature, thus avoiding the characteristic limitations of current fMRI techniques. Here we report an in vitro proof-of-principle study with a Ca(2+)-sensitive, Gd(3+)-based SCA in an attempt to validate its potential use as a functional in vivo marker. First, we quantified its relaxometric response in a complex 3D cell culture model. Subsequently, we examined potential changes in the functionality of primary glial cells following administration of this SCA. Monitoring intracellular Ca(2+) showed that, despite a reduction in the Ca(2+) level, transport of Ca(2+) through the plasma membrane remained unaffected, while stimulation with ATP induced Ca(2+)-transients suggested normal cellular signaling in the presence of low millimolar SCA concentrations. SCAs merely lowered the intracellular Ca(2+) level. Finally, we estimated the longitudinal relaxation times (T1) for an idealized in vivo fMRI experiment with SCA, for extracellular Ca(2+) concentration level changes expected during intense neuronal activity which takes place upon repetitive stimulation. The values we obtained indicate changes in T1 of around 1-6%, sufficient to be robustly detectable using modern MRI methods in high field scanners. Our results encourage further attempts to develop even more potent SCAs and appropriate fMRI protocols. This would result in novel methods that allow monitoring of essential physiological processes at the cellular and molecular level.
Determination of the electric field gradient in RbCaF3 near the phase transition
NASA Astrophysics Data System (ADS)
Hepp, M. A.; Man, P. P.; Trokiner, A.; Zanni, H.; Fraissard, J.
1992-12-01
The fluoroperovskite, RbCaF 3 undergoes a phase transition at 195.5K from a cubic to a tetragonal phase. The order parameter for this transition is directly related to the electric field gradient which arises in the tetragonal phase. In this work, we have used three NMR methods to measure the electric field gradient at the 87Rb site in a single crystal of RbCaF 3, very near this transition. These experiments are based on recent theoretical developments which allow the measurement of quadrupole parameters even for nuclei in a weak electric field gradient.
IP/sub 3/ stimulates CA/sup + +/ efflux from fusogenic carrot protoplasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rincon, M.; Boss, W.F.
1986-04-01
Polyphosphoinositide breakdown plays an important role in signal transduction in animal cells (Berridge and Irvine, 1984, Nature, 312:315). Upon stimulation, phospholipase C hydrolyzes phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate (IP/sub 3/) and diacylglycerol both of which act as cellular second messengers. IP/sub 3/ mobilizes Ca/sup + +/ from internal stores, hence the cytosolic free Ca/sup + +/ concentration increases and those physiological activities regulated by Ca/sup + +/ are stimulated. To test if plant cells also responded to IP/sub 3/, Ca/sup + +/ efflux studies were done with fusogenic carrot protoplasts released in EGTA. The protoplasts were preloaded with /sup 45/Ca/supmore » + +/ placed in a Ca/sup + +/-free medium, and efflux determined as /sup 45/Ca/sup + +/ loss from the protoplasts. IP/sub 3/ (10-20..mu..M) caused enhanced /sup 45/Ca/sup + +/ efflux and the response was sustained for at least 15 min. In plants, as in animals, the observed IP/sub 3/-enhanced /sup 45/Ca/sup + +/ efflux suggested that IP/sub 3/ released Ca/sup + +/ from internal stores, and the increased free cytosolic Ca/sup + +/ activated Ca/sup + +/ pumping mechanisms which restored the Ca/sup + +/ concentration in the cytosol to the normal level.« less
Modeling Closed Equilibrium Systems of H2O-Dissolved CO2-Solid CaCO3.
Tenno, Toomas; Uiga, Kalev; Mashirin, Alexsey; Zekker, Ivar; Rikmann, Ergo
2017-04-27
In many places in the world, including North Estonia, the bedrock is limestone, which consists mainly of CaCO 3 . Equilibrium processes in water involving dissolved CO 2 and solid CaCO 3 play a vital role in many biological and technological systems. The solubility of CaCO 3 in water is relatively low. Depending on the concentration of dissolved CO 2 , the solubility of CaCO 3 changes, which determines several important ground- and wastewater parameters, for example, Ca 2+ concentration and pH. The distribution of ions and molecules in the closed system solid H 2 O-dissolved CO 2 -solid CaCO 3 is described in terms of a structural scheme. Mathematical models were developed for the calculation of pH and concentrations of ions and molecules (Ca 2+ , CO 3 2- , HCO 3 - , H 2 CO 3 , CO 2 , H + , and OH - ) in the closed equilibrium system at different initial concentrations of CO 2 in the water phase using an iteration method. The developed models were then experimentally validated.
NASA Astrophysics Data System (ADS)
Duran, C.; Yazyi, J.; de La Cruz, F.; Bishop, D. J.; Mitzi, D. B.; Kapitulnik, A.
1991-10-01
We have used the high-Q mechanical-oscillator technique to probe the vortex-lattice structure in high-quality Bi-Sr-Ca-Cu-O single crystals over a wide range of magnetic fields (200 Oe to 40 kOe), and relative orientations θ between the magnetic field and the crystalline c^ axis. In addition to the large softening and dissipation peak previously observed and interpreted as due to flux-lattice melting, another distinctly different peak at higher temperatures is seen. The temperatures where the dissipation peaks take place are solely defined by the parallel component of the field cosθ, while the restoring force on the oscillator is due to both field components. We suggest that the two peaks are due to the softening of interplanar coupling at the low-temperature peak, and melting or depinning of the two-dimensional pancake vortices at the higher-temperature peak.
Spectroscopic and crystal-field analysis of new Yb-doped laser materials
NASA Astrophysics Data System (ADS)
Haumesser, Paul-Henri; Gaumé, Romain; Viana, Bruno; Antic-Fidancev, Elisabeth; Vivien, Daniel
2001-06-01
Crystal-field effects are very important as far as laser performances of Yb-doped materials are concerned. In order to simplify the interpretation of low-temperature spectra, two tools derived from a careful examination of crystal-field interaction are presented. Both approaches are successfully applied in the case of new Yb-doped materials, namely Ca3Y2(BO3)4 (CYB), Ca3Gd2(BO3)4 (CaGB), Sr3Y(BO3)3 (SrYBO), Ba3Lu(BO3)3 (BLuB), Y2SiO5 (YSO), Ca2Al2SiO7 (CAS) and SrY4(SiO4)3O (SYS). The 2F7/2 splitting is particularly large in these materials and favourable to a quasi-three-level laser operating scheme. Calculations performed using the point charge electrostatic model for these compounds and using a consistent set of effective atomic charges confirm the experimental results. This should permit to use this model in a predictive approach.
Fernández-Lamo, Iván; Sánchez-Campusano, Raudel; Gruart, Agnès; Delgado-García M, José M.
2016-01-01
Proper performance of acquired abilities can be disturbed by the unexpected occurrence of external changes. Rats trained with an operant conditioning task (to press a lever in order to obtain a food pellet) using a fixed-ratio (1:1) schedule were subsequently placed in a Skinner box in which the lever could be removed randomly. Field postsynaptic potentials (fPSPs) were chronically evoked in perforant pathway-hippocampal CA1 (PP-CA1), CA1-subiculum (CA1-SUB), CA1-medial prefrontal cortex (CA1-mPFC), mPFC-nucleus accumbens (mPFC-NAc), and mPFC-basolateral amygdala (mPFC-BLA) synapses during lever IN and lever OUT situations. While lever presses were accompanied by a significant increase in fPSP slopes at the five synapses, the unpredictable absence of the lever were accompanied by decreased fPSP slopes in all, except PP-CA1 synapses. Spectral analysis of local field potentials (LFPs) recorded when the animal approached the corresponding area in the lever OUT situation presented lower spectral powers than during lever IN occasions for all recording sites, apart from CA1. Thus, the unpredictable availability of a reward-related cue modified the activity of cortical and subcortical areas related with the acquisition of operant learning tasks, suggesting an immediate functional reorganization of these neural circuits to address the changed situation and to modify ongoing behaviors accordingly. PMID:27869181
2017-01-01
Studies comparing neuronal activity at the dorsal and ventral poles of the hippocampus have shown that the scale of spatial information increases and the precision with which space is represented declines from the dorsal to ventral end. These dorsoventral differences in neuronal output and spatial representation could arise due to differences in computations performed by dorsal and ventral CA1 neurons. In this study, we tested this hypothesis by quantifying the differences in dendritic integration and synaptic plasticity between dorsal and ventral CA1 pyramidal neurons of rat hippocampus. Using a combination of somatic and dendritic patch-clamp recordings, we show that the threshold for LTP induction is higher in dorsal CA1 neurons and that a G-protein-coupled inward-rectifying potassium channel mediated regulation of dendritic plateau potentials and dendritic excitability underlies this gating. By contrast, similar regulation of LTP is absent in ventral CA1 neurons. Additionally, we show that generation of plateau potentials and LTP induction in dorsal CA1 neurons depends on the coincident activation of Schaffer collateral and temporoammonic inputs at the distal apical dendrites. The ventral CA1 dendrites, however, can generate plateau potentials in response to temporally dispersed excitatory inputs. Overall, our results highlight the dorsoventral differences in dendritic computation that could account for the dorsoventral differences in spatial representation. SIGNIFICANCE STATEMENT The dorsal and ventral parts of the hippocampus encode spatial information at very different scales. Whereas the place-specific firing fields are small and precise at the dorsal end of the hippocampus, neurons at the ventral end have comparatively larger place fields. Here, we show that the dorsal CA1 neurons have a higher threshold for LTP induction and require coincident timing of excitatory synaptic inputs for the generation of dendritic plateau potentials. By contrast, ventral CA1 neurons can integrate temporally dispersed inputs and have a lower threshold for LTP. Together, these dorsoventral differences in the threshold for LTP induction could account for the differences in scale of spatial representation at the dorsal and ventral ends of the hippocampus. PMID:28280255
Malik, Ruchi; Johnston, Daniel
2017-04-05
Studies comparing neuronal activity at the dorsal and ventral poles of the hippocampus have shown that the scale of spatial information increases and the precision with which space is represented declines from the dorsal to ventral end. These dorsoventral differences in neuronal output and spatial representation could arise due to differences in computations performed by dorsal and ventral CA1 neurons. In this study, we tested this hypothesis by quantifying the differences in dendritic integration and synaptic plasticity between dorsal and ventral CA1 pyramidal neurons of rat hippocampus. Using a combination of somatic and dendritic patch-clamp recordings, we show that the threshold for LTP induction is higher in dorsal CA1 neurons and that a G-protein-coupled inward-rectifying potassium channel mediated regulation of dendritic plateau potentials and dendritic excitability underlies this gating. By contrast, similar regulation of LTP is absent in ventral CA1 neurons. Additionally, we show that generation of plateau potentials and LTP induction in dorsal CA1 neurons depends on the coincident activation of Schaffer collateral and temporoammonic inputs at the distal apical dendrites. The ventral CA1 dendrites, however, can generate plateau potentials in response to temporally dispersed excitatory inputs. Overall, our results highlight the dorsoventral differences in dendritic computation that could account for the dorsoventral differences in spatial representation. SIGNIFICANCE STATEMENT The dorsal and ventral parts of the hippocampus encode spatial information at very different scales. Whereas the place-specific firing fields are small and precise at the dorsal end of the hippocampus, neurons at the ventral end have comparatively larger place fields. Here, we show that the dorsal CA1 neurons have a higher threshold for LTP induction and require coincident timing of excitatory synaptic inputs for the generation of dendritic plateau potentials. By contrast, ventral CA1 neurons can integrate temporally dispersed inputs and have a lower threshold for LTP. Together, these dorsoventral differences in the threshold for LTP induction could account for the differences in scale of spatial representation at the dorsal and ventral ends of the hippocampus. Copyright © 2017 the authors 0270-6474/17/373940-16$15.00/0.
... Mail: 800-999-NORD (6673) Spastic Paraplegia Foundation 1605 Goularte Place Fremont CA Fremont, CA 94539-7241 ... Mail: 800-999-NORD (6673) Spastic Paraplegia Foundation 1605 Goularte Place Fremont CA Fremont, CA 94539-7241 ...
Interfacial Ferromagnetism and Exchange Bias in CaRuO3/CaMnO3 Superlattices
2012-11-07
microscopy and electron energy loss spectroscopy indicate that the difference in magnitude of the Mn valence states between the center of the CaMnO3 layer...CaMnO3 thickness dependence of the exchange bias field together indicate that the interfacial 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...superlattices of CaRuO3/CaMnO3 that arises in one unit cell at the interface. Scanning transmission electron microscopy and electron energy loss
Sharp wave ripples during learning stabilize hippocampal spatial map
Roux, Lisa; Hu, Bo; Eichler, Ronny; Stark, Eran; Buzsáki, György
2017-01-01
Cognitive representation of the environment requires a stable hippocampal map but the mechanisms maintaining map representation are unknown. Because sharp wave-ripples (SPW-R) orchestrate both retrospective and prospective spatial information, we hypothesized that disrupting neuronal activity during SPW-Rs affects spatial representation. Mice learned daily a new set of three goal locations on a multi-well maze. We used closed-loop SPW-R detection at goal locations to trigger optogenetic silencing of a subset of CA1 pyramidal neurons. Control place cells (non-silenced or silenced outside SPW-Rs) largely maintained the location of their place fields after learning and showed increased spatial information content. In contrast, the place fields of SPW-R-silenced place cells remapped, and their spatial information remained unaltered. SPW-R silencing did not impact the firing rates or the proportions of place cells. These results suggest that interference with SPW-R-associated activity during learning prevents the stabilization and refinement of the hippocampal map. PMID:28394323
Thermal conductivity of Ca3Co2O6 single crystals
NASA Astrophysics Data System (ADS)
Che, H. L.; Shi, J.; Wu, J. C.; Rao, X.; Liu, X. G.; Zhao, X.; Sun, X. F.
2018-05-01
Ca3Co2O6 is a rare example of one-dimensional Ising spin-chain material with the moments preferentially aligned along the c axis. In this work, we study the c-axis thermal conductivity (κc) of Ca3Co2O6 single crystal at low temperatures down to 0.3 K and in magnetic fields up to 14 T. The zero-field κc(T) shows a large phonon peak and can be well fitted by using the classical Debye model, which indicates that the heat transport is purely phononic. Moreover, the low-T κc(H) isotherms with H || c display a field-independent behavior. These results indicate that there is no contribution of magnetic excitations to the thermal conductivity in Ca3Co2O6, neither carrying heat nor scattering phonons, which can be attributed to the Ising-like spin anisotropy.
Synthesis and luminescent properties of CaCO3:Eu3+@SiO2 phosphors with core-shell structure
NASA Astrophysics Data System (ADS)
Liu, Min; Kang, Ming; Chen, Kexu; Mou, Yongren; Sun, Rong
2018-03-01
Integrating the processes of preparation of CaCO3:Eu3+ and its surface-coating, core-shell structured CaCO3:Eu3+@SiO2 phosphors with red emission were synthesized by the carbonation method and surface precipitation procedure using sodium silicate as silica source. The phase structure, thermal stability, morphology and luminescent property of the as-synthesized samples were characterized by X-ray diffraction, Fourier transform infrared spectrum, thermal analysis, field-emission scanning electron microscopy, transmission electron microscope and photoluminescence spectra. The experimental results show that Eu3+ ions as the luminescence center are divided into two types: one is at the surface of the CaCO3 and the other inhabits the site of Ca2+. For CaCO3:Eu3+@SiO2 phosphors, the SiO2 layers are continuously coated on the surface of CaCO3:Eu3+ and show a typical core-shell structure. After coated with SiO2 layer, the luminous intensity and the compatibility with the rubber matrix increase greatly. Additionally, the luminous intensity increases with the increasing of Eu3+ ions concentration in CaCO3 core and concentration quenching occurs when Eu3+ ions concentration exceeds 7.0 mol%, while it is 5.0 mol% for CaCO3:Eu3+ phosphors. Therefore, preparation of CaCO3:Eu3+@SiO2 phosphors can not only simplify the experimental process through integrating the preparation of CaCO3:Eu3+ and SiO2 layer, but also effectively increase the luminous intensities of CaCO3:Eu3+ phosphors. The as-obtained phosphors may have potential applications in the fields of optical materials and functional polymer composite materials, such as plastics and rubbers.
TL detectors for gamma ray dose measurements in criticality accidents.
Miljanić, Saveta; Zorko, Benjamin; Gregori, Beatriz; Knezević, Zeljka
2007-01-01
Determination of gamma ray dose in mixed neutron+gamma ray fields is still a demanding task. Dosemeters used for gamma ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from three different institutions: Ruder Bosković Institute (RBI), Croatia, JoZef Stefan Institute (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Three accidental scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'free in air'. Following types of TLDs were used: 7LiF (TLD-700), CaF2:Mn and Al2O3:Mg,Y-all from RBI; CaF2:Mn from JSI and 7LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the values obtained from the results of all participants. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed.
Commensurability and stability in nonperiodic systems
Fasano, Y.; De Seta, M.; Menghini, M.; Pastoriza, H.; de la Cruz, F.
2005-01-01
We have investigated the response of 3D Bi2Sr2CaCu2O8 vortex structures to a weak perturbation induced by 2D Fe pinning structures acting on one extremity of vortex lines. The pinning patterns were nano-engineered at the sample surface by means of either a Bitter decoration of the vortex lattice or electron-beam lithography. The commensurability conditions between 2D rigid pinning potentials and 3D elastic structures with short-range positional and long-range orientational correlation have been experimentally determined. When the 2D potential is a replica of the nonperiodic vortex structure an amplification of its interaction with the vortex structure takes place. This effect is detected only for the first matching field, becoming negligible for other matching fields. On the other hand, a periodic 2D perturbation is shown to transform the nonperiodic Bragg glass-like structure into an Abrikosov crystal with an effective Debye–Waller factor. PMID:16576763
Functional imaging of hippocampal place cells at cellular resolution during virtual navigation
Dombeck, Daniel A.; Harvey, Christopher D.; Tian, Lin; Looger, Loren L.; Tank, David W.
2010-01-01
Spatial navigation is a widely employed behavior in rodent studies of neuronal circuits underlying cognition, learning and memory. In vivo microscopy combined with genetically-encoded indicators provides important new tools to study neuronal circuits, but has been technically difficult to apply during navigation. We describe methods to image the activity of hippocampal CA1 neurons with sub-cellular resolution in behaving mice. Neurons expressing the genetically encoded calcium indicator GCaMP3 were imaged through a chronic hippocampal window. Head-fixed mice performed spatial behaviors within a setup combining a virtual reality system and a custom built two-photon microscope. Populations of place cells were optically identified, and the correlation between the location of their place fields in the virtual environment and their anatomical location in the local circuit was measured. The combination of virtual reality and high-resolution functional imaging should allow for a new generation of studies to probe neuronal circuit dynamics during behavior. PMID:20890294
Microstructure of calcite deformed by high-pressure torsion: An X-ray line profile study
NASA Astrophysics Data System (ADS)
Schuster, Roman; Schafler, Erhard; Schell, Norbert; Kunz, Martin; Abart, Rainer
2017-11-01
Calcite aggregates were deformed to high strain using high-pressure torsion and applying confining pressures of 1-6 GPa and temperatures between room temperature and 450 °C. The run products were characterized by X-ray diffraction, and key microstructural parameters were extracted employing X-ray line profile analysis. The dominant slip system was determined as r { 10 1 bar 4 } ⟨ 2 bar 021 ⟩ with edge dislocation character. The resulting dislocation density and the size of the coherently scattering domains (CSD) exhibit a systematic dependence on the P-T conditions of deformation. While high pressure generally impedes recovery through reducing point defect mobility, the picture is complicated by pressure-induced phase transformations in the CaCO3 system. Transition from the calcite stability field to those of the high-pressure polymorphs CaCO3-II, CaCO3-III and CaCO3-IIIb leads to a change of the microstructural evolution with deformation. At 450 °C and pressures within the calcite stability field, dislocation densities and CSD sizes saturate at shear strains exceeding 10 in agreement with earlier studies at lower pressures. In the stability field of CaCO3-II, the dislocation density exhibits a more complex behavior. Furthermore, at a given strain and strain rate, the dislocation density increases and the CSD size decreases with increasing pressure within the stability fields of either calcite or of the high-pressure polymorphs. There is, however, a jump from high dislocation densities and small CSDs in the upper pressure region of the calcite stability field to lower dislocation densities and larger CSDs in the low-pressure region of the CaCO3-II stability field. This jump is more pronounced at higher temperatures and less so at room temperature. The pressure influence on the deformation-induced evolution of dislocation densities implies that pressure variations may change the rheology of carbonate rocks. In particular, a weakening is expected to occur at the transition from the calcite to the CaCO3-II stability field, if aragonite does not form.
Mineral precipitation in north slope aufeis
NASA Technical Reports Server (NTRS)
Hall, D. K.
1978-01-01
The Canning and Shaviovik river aufeis fields were studied on the ground and with aircraft data. Powdered calcium carbonate (CaCO3) patches, a few cm in thickness, were found in discrete locations on both aufeis fields. This is indicative of chemical weathering of limestone bedrock which is known to underlie much of the eastern arctic coastal plain of Alaska. Spring or river water which remains unfrozen throughout much of the winter carries CaCO3 in solution; as the river ice freezes more deeply the CaCO3 in solution is forced upwards through cracks in the river ice. Upon exposure to the cold air CaCO3 is excluded as the water freezes, forming successive layers during aufeis growth. In the melt season CaCO3, slush/powder accumulates in patches on top of the ice as the aufeis melts downward.
NASA Astrophysics Data System (ADS)
Xu, Guang; Jiang, Zhouhua; Li, Yang
2016-08-01
The existing form of CaS inclusion in Ca-treated, Al-killed steel during secondary refining process was investigated with scanning electron microscopy and an energy-dispersive spectrometer (EDS). The results of 12 heats industrial tests showed that CaS has two kinds of precipitation forms. One form takes place by the direct reaction of Ca and S, and the other takes place by the reaction of CaO in calcium aluminates with dissolved Al and S in liquid steel. Thermodynamic research for different precipitation modes of CaS under different temperature was carried out. In particular, CaO-Al2O3-CaS isothermal section diagrams and component activities of calcium aluminates were calculated by the thermodynamic software FactSage. By thermodynamic calculation, a precipitation-area diagram of oxide-sulfide duplex inclusion was established by fixing the sulfur content. The quantity of CaS, which was precipitated in a reaction between [Al], [S] and (CaO), can be calculated and predicted based on the precipitation-area diagram of oxide-sulfide duplex inclusion. Electron probe microanalysis and EDS were used for observing rolling deformation of different types of CaS-bearing inclusions during the rolling process. Low modification of calcium aluminates wrapped by CaS has different degrees of harm to steel in the rolling process. A thick CaS layer can prevent some fragile calcium aluminates from being crushed during the rolling process. Some oxide-sulfide duplex inclusion contains little CaS performed better deformation during the rolling process, but when CaS in oxide-sulfide duplex inclusion becomes more, it will cause the whole inclusion to lose plastic yielding ability. The plastic deformation region of CaS-bearing inclusion in a CaO-Al2O3-CaS isothermal section diagram is confirmed.
Bulk and nanocrystalline electron doped Gd0.15Ca0.85MnO3: Synthesis and magnetic characterization
NASA Astrophysics Data System (ADS)
Dhal, Lakshman; Chattarpal; Nirmala, R.; Santhosh, P. N.; Kumary, T. Geetha; Nigam, A. K.
2014-09-01
Polycrystalline Gd0.15Ca0.85MnO3 sample was prepared by solid state reaction method and nanocrystalline samples of different grain sizes of the same were prepared by sol-gel method. Phase purity and composition were verified by room temperature X-ray diffraction and SEM-EDAX analysis. Magnetization data of bulk Gd0.15Ca0.85MnO3 in 5 kOe field shows a peak at 119 K (TN) suggesting an antiferromagnetic transition. Nanocrystalline Gd0.15Ca0.85MnO3 sample ( 54 nm size) also shows a cusp at 107 K and a broad thermal hysteresis between field cooled cooling (FCC) and field cooled warming (FCW) data around this temperature. This thermal hysteresis suggests possible crystal structural transition. Field variation of magnetization of bulk Gd0.15Ca0.85MnO3 at 5 K shows a tendency to saturate, but yields a magnetic moment value of only 1.12 μB/f.u. in 70 kOe. The value of magnetization of nanocrystalline sample at 5 K in 70 kOe field is slightly larger and is 1.38 μB/f.u. which is probably due to the surface moments of the nanoparticle samples. Both the samples show Curie-Weiss-like behaviour in their paramagnetic state.
Dale, Nicholas; Pearson, Tim; Frenguelli, Bruno G
2000-01-01
We have used an enzyme-based, twin-barrelled sensor to measure adenosine release during hypoxia in the CA1 region of rat hippocampal slices in conjunction with simultaneous extracellular field recordings of excitatory synaptic transmission. When loaded with a combination of adenosine deaminase, nucleoside phosphorylase and xanthine oxidase, the sensor responded linearly to exogenous adenosine over the concentration range 10 nM to 20 μM. Without enzymes, the sensor when placed on the surface of hippocampal slices recorded a very small net signal during hypoxia of 40 ± 43 pA (mean ±s.e.m.; n = 7). Only when one barrel was loaded with the complete sequence of enzymes and the other with the last two in the cascade did the sensor record a large net difference signal during hypoxia (1226 ± 423 pA; n = 7). This signal increased progressively during the hypoxic episode, scaled with the hypoxic depression of the simultaneously recorded field excitatory postsynaptic potential and was greatly reduced (67 ± 6.5 %; n = 9) by coformycin (0.5-2 μM), a selective inhibitor of adenosine deaminase, the first enzyme in the enzymic cascade within the sensor. For 5 min hypoxic episodes, the sensor recorded a peak concentration of adenosine of 5.6 ± 1.2 μM (n = 16) with an IC50 for the depression of transmission of approximately 3 μM. In slices pre-incubated for 3-6 h in nominally Ca2+-free artificial cerebrospinal fluid, 5 min of hypoxia resulted in an approximately 9-fold greater release of adenosine (48.9 ± 17.7 μM; n = 6). High extracellular Ca2+ (4 mM) both reduced the adenosine signal recorded by the sensor during hypoxia (3.5 ± 0.6 μM; n = 4) and delayed the hypoxic depression of excitatory synaptic transmission. PMID:10878107
NASA Technical Reports Server (NTRS)
Deguire, Mark R.; Bansal, Narottam P.; Farrell, David E.; Finan, Valerie; Kim, Cheol J.; Hills, Bethanie J.; Allen, Christopher J.
1989-01-01
Phase relations at 850 and 870 C, melting transitions in air, oxygen, and helium were studied for Bi(2.1)Sr(1.9) CuO6 and for the Bi2Sr2Ca(n-1) Cu(n)O(2n+4) for n = 1, 2, 3, 4, 5, and infinity (CaCuO2). Up to 870 C, the n = 2 composition resides in the compatibility tetrahedron bounded by Bi(2+x)(Sr,Ca)(3-y) Cu2O8, (Sr,Ca)14 Cu24O41, Ca2CuO3, and a Bi-Sr-Ca-O phase. The n is greater than or equal to 3 compositions reside in the compatibility tetrahedron Bi(2+x)(Sr,Ca)(3-y) Cu2O8 - (Sr,Ca)14 Cu24O41 - Ca2CuO3 - CuO up to 850 C. However, Bi(2+x)Sr(4-y) Cu3O10 forms for n is greater than or equal to 3 after extended heating at 870 C. Bi(2+x)Sr(2-y) CuO6 and Bi(2+x)(Sr,Ca)(3-y) Cu2O8 melt in air at 914 C and 895 C respectively. During melting, all of the compositions studied lose 1 to 2 percent by weight of oxygen from the reduction of copper. Bi(2+x)Sr(2-y) CuO6, Bi(2+n)(Sr,Ca)(3-y) Cu2O8, and Bi(2+x)(Sr,Ca)(4-y) Cu3O10 exhibit crystallographic alignment in a magnetic field, with the c-axes orienting parallel to the field.
Burger, Tomáš; Lucová, Marcela; Moritz, Regina E.; Oelschläger, Helmut H. A.; Druga, Rastislav; Burda, Hynek; Wiltschko, Wolfgang; Wiltschko, Roswitha; Němec, Pavel
2010-01-01
The neural substrate subserving magnetoreception and magnetic orientation in mammals is largely unknown. Previous experiments have demonstrated that the processing of magnetic sensory information takes place in the superior colliculus. Here, the effects of magnetic field conditions on neuronal activity in the rodent navigation circuit were assessed by quantifying c-Fos expression. Ansell's mole-rats (Fukomys anselli), a mammalian model to study the mechanisms of magnetic compass orientation, were subjected to natural, periodically changing, and shielded magnetic fields while exploring an unfamiliar circular arena. In the undisturbed local geomagnetic field, the exploration of the novel environment and/or nesting behaviour induced c-Fos expression throughout the head direction system and the entorhinal–hippocampal spatial representation system. This induction was significantly suppressed by exposure to periodically changing and/or shielded magnetic fields; discrete decreases in c-Fos were seen in the dorsal tegmental nucleus, the anterodorsal and the laterodorsal thalamic nuclei, the postsubiculum, the retrosplenial and entorhinal cortices, and the hippocampus. Moreover, in inactive animals, magnetic field intensity manipulation suppressed c-Fos expression in the CA1 and CA3 fields of the hippocampus and the dorsal subiculum, but induced expression in the polymorph layer of the dentate gyrus. These findings suggest that key constituents of the rodent navigation circuit contain populations of neurons responsive to magnetic stimuli. Thus, magnetic information may be integrated with multimodal sensory and motor information into a common spatial representation of allocentric space within this circuit. PMID:20219838
Burger, Tomás; Lucová, Marcela; Moritz, Regina E; Oelschläger, Helmut H A; Druga, Rastislav; Burda, Hynek; Wiltschko, Wolfgang; Wiltschko, Roswitha; Nemec, Pavel
2010-09-06
The neural substrate subserving magnetoreception and magnetic orientation in mammals is largely unknown. Previous experiments have demonstrated that the processing of magnetic sensory information takes place in the superior colliculus. Here, the effects of magnetic field conditions on neuronal activity in the rodent navigation circuit were assessed by quantifying c-Fos expression. Ansell's mole-rats (Fukomys anselli), a mammalian model to study the mechanisms of magnetic compass orientation, were subjected to natural, periodically changing, and shielded magnetic fields while exploring an unfamiliar circular arena. In the undisturbed local geomagnetic field, the exploration of the novel environment and/or nesting behaviour induced c-Fos expression throughout the head direction system and the entorhinal-hippocampal spatial representation system. This induction was significantly suppressed by exposure to periodically changing and/or shielded magnetic fields; discrete decreases in c-Fos were seen in the dorsal tegmental nucleus, the anterodorsal and the laterodorsal thalamic nuclei, the postsubiculum, the retrosplenial and entorhinal cortices, and the hippocampus. Moreover, in inactive animals, magnetic field intensity manipulation suppressed c-Fos expression in the CA1 and CA3 fields of the hippocampus and the dorsal subiculum, but induced expression in the polymorph layer of the dentate gyrus. These findings suggest that key constituents of the rodent navigation circuit contain populations of neurons responsive to magnetic stimuli. Thus, magnetic information may be integrated with multimodal sensory and motor information into a common spatial representation of allocentric space within this circuit.
Controlling Emergent Ferromagnetism at Complex Oxide Interfaces
NASA Astrophysics Data System (ADS)
Grutter, Alexander
The emergence of complex magnetic ground states at ABO3 perovskite heterostructure interfaces is among the most promising routes towards highly tunable nanoscale materials for spintronic device applications. Despite recent progress, isolating and controlling the underlying mechanisms behind these emergent properties remains a highly challenging materials physics problems. In particular, generating and tuning ferromagnetism localized at the interface of two non-ferromagnetic materials is of fundamental and technological interest. An ideal model system in which to study such effects is the CaRuO3/CaMnO3 interface, where the constituent materials are paramagnetic and antiferromagnetic in the bulk, respectively. Due to small fractional charge transfer to the CaMnO3 (0.07 e-/Mn) from the CaRuO3, the interfacial Mn ions are in a canted antiferromagnetic state. The delicate balance between antiferromagnetic superexchange and ferromagnetic double exchange results in a magnetic ground state which is extremely sensitive to perturbations. We exploit this sensitivity to achieve control of the magnetic interface, tipping the balance between ferromagnetic and antiferromagnetic interactions through octahedral connectivity modification. Such connectivity effects are typically tightly confined to interfaces, but by targeting a purely interfacial emergent magnetic system, we achieve drastic alterations to the magnetic ground state. These results demonstrate the extreme sensitivity of the magnetic state to the magnitude of the charge transfer, suggesting the potential for direct electric field control. We achieve such electric field control through direct back gating of a CaRuO3/CaMnO3 bilayer. Thus, the CaRuO3/CaMnO3 system provides new insight into how charge transfer, interfacial symmetry, and electric fields may be used to control ferromagnetism at the atomic scale.
Cyclotron-based of plant gravisensing
NASA Astrophysics Data System (ADS)
Kordyum, E.; Kalinina, Ia.; Bogatina, N.; Kondrachuk, A.
Roots exhibit positive gravitropism they grow in the direction of a gravitational vector while shoots respond negatively and grow opposite to a gravitational vector We first demonstrated the inversion of roots gravitropism from positive to negative one under gravistimulation in the weak combined magnetic field WCMF consisted of permanent magnetic field PMF with the magnitude of order of 50 mu T and altering magnetic field AMF with the 6 mu T magnitude and a frequency of 32 Hz It was found that the effect of inversion has a resonance nature It means that in the interval of frequencies 1-45 Hz inversion of root gravitropism occurs only at frequency 32 Hz 2-3-day old cress seedlings were gravistimulated in moist chambers which are placed in mu -metal shields Inside mu -metal shields combined magnetic fields have been created The magnitude of magnetic fields was measured by a flux-gate magnetometer Experiments were performed in darkness at temperature 20 pm 1 0 C We measured the divergence angle of a growing root from its horizontal position After 1 h of gravistimulation in the WCMF we observed negative gravitropism of cress roots i e they grow in the opposite direction to a gravitational vector Frequency of 32 Hz for the magnitude of the PMF applied formally corresponds to cyclotron frequency of Ca 2 ions This indicates possible participation of calcium ions in root gravitropism There are many evidences of resonance effects of the WCMF on the biological processes that involve Ca 2 but the nature of
Soares, Janir Alves; Leonardo, Mario Roberto; Tanomaru Filho, Mário; Silva, Léa Assed Bezerra da; Ito, Izabel Yoko
2007-01-01
The purpose of this study was to evaluate the residual antibacterial activity of several calcium hydroxide [Ca(OH)2]-based pastes, placed in root canals of dogs' teeth with induced chronic periapical lesions. Root canals were instrumented with the ProFile rotary system and filled with 4 pastes: G1 (n=16): Ca(OH)2 paste + anesthetic solution; G2 (n=20): Calen paste + camphorated p-monochlorophenol (CMCP); G3 (n=18): Calen; and G4 (n=18): Ca(OH)2 paste + 2% chlorhexidine digluconate. After 21 days, the pastes were removed with size 60 K-files and placed on Petri plates with agar inoculated with Micrococcus luteus ATCC 9341. Pastes that were not placed into root canals served as control. After pre-diffusion, incubation and optimization, the inhibition zones of bacterial growth were measured and analyzed by Mann-Whitney U test at 5% significance level. All pastes showed residual antibacterial activity. The control samples had larger halos (p<0.05). The mean residual antibacterial activity halos in G1, G2, G3 and G4 were 7.6; 10.4; 17.7 and 21.4 mm, respectively. The zones of bacterial growth of G4 were significantly larger than those of G1 and G2 (p<0.05). In conclusion, regardless of the vehicle and antiseptic, all Ca(OH)2-based pastes showed different degrees of measurable residual antibacterial activity. Furthermore, unlike CMCP, chlorhexidine increased significantly the antibacterial activity of Ca(OH)2.
NASA Astrophysics Data System (ADS)
Ichikawa, Hiroki; Sakamoto, Wataru; Akiyama, Yoshikazu; Maiwa, Hiroshi; Moriya, Makoto; Yogo, Toshinobu
2013-09-01
The preparation of reduction-resistant (Ba,Ca)TiO3 ceramics as lead-free piezoelectric materials was studied. To improve their electrical properties, (100),(001)-oriented (Ba0.85Ca0.15)TiO3 ceramics were fabricated by the reactive templated grain growth method using a mixture of platelike CaTiO3 and BaTiO3 particles. The platelike CaTiO3 and BaTiO3 particles were prepared through a topochemical microcrystal conversion process using CaBi4Ti4O15 and BaBi4Ti4O15 plate-like precursor crystals. The 100 orientation degree of the grain-oriented (Ba0.85Ca0.15)TiO3 ceramics was 92%, as estimated by Lotgering's equation. In addition, 1 mol % Ba excess and 1 mol % Mn-doped (Ba0.85Ca0.15)TiO3 sintered bodies, which were sintered at 1350 °C in an Ar flow containing H2 (0.3%), had sufficient resistivity to allow the characterization of electrical properties. The ferroelectric and field-induced strain properties of the (Ba0.85Ca0.15)TiO3 ceramics, sintered in the reducing atmosphere, were markedly improved as a result of fabricating grain-oriented samples. The field-induced strain coefficient (estimated from the slope of the unipolar strain loop) of the nonreducible (100),(001)-oriented (Ba0.85Ca0.15)TiO3 ceramics reached 570 pm/V, which was higher than that of polycrystals (260 pm/V) with no preferential orientation.
Phase Equilibria in the System "FeO"-CaO-SiO2-Al2O3-MgO at Different CaO/SiO2 Ratios
NASA Astrophysics Data System (ADS)
Jang, Kyoung-oh; Ma, Xiaodong; Zhu, Jinming; Xu, Haifa; Wang, Geoff; Zhao, Baojun
2017-06-01
The "FeO"-containing slags play an important role in the operation of an ironmaking blast furnace (BF), in particular the primary slags such as the system "FeO"-CaO-SiO2-Al2O3-2 mass pct MgO with CaO/SiO2 weight ratios of 1.3, 1.5, and 1.8 saturated with metallic iron. To investigate the characteristics of such a slag system and its behavior in BF, the phase equilibria and liquidus temperatures in the slag system have been experimentally determined using the high-temperature equilibration and quenching technique followed by an electron probe X-ray microanalysis (EPMA). Isotherms between 1553 K and 1603 K (1280 °C and 1330 °C) were determined in the primary phase fields of dicalcium silicate, melilite, spinel, and monoxide [(Mg,Fe2+)O]. Pseudo-ternary phase diagrams of (CaO + SiO2)-Al2O3-"FeO" with a fixed MgO concentration at 2 mass pct and at CaO/SiO2 ratios of 1.3, 1.5, and 1.8 have been discussed, respectively, simplifying the complexity of the slag system for easy understanding and applying in BF operation. It was found that the liquidus temperatures increase in melilite and spinel primary phase fields, but decrease in dicalcium silicate and monoxide primary phase fields with increasing Al2O3/(CaO + SiO2) ratio. In addition, the liquidus temperatures decrease with increasing "FeO" concentration in dicalcium silicate and melilite primary phase fields, while showing an increasing trend in the spinel and monoxide primary phase fields. The data resulted from this study can be used to improve and optimize currently available database of thermodynamic models used in FactSage.
Huang, Xiaokun; Zhang, Weiyi
2016-01-01
The misfit layered Bi2A2Co2O8 (A = Ca, Sr, Ba) compounds experience an insulator to metal transition as A’s ionic radius increases. This feature is contradictory to the conventional wisdom that larger lattice constant favors insulating rather than metallic state, and is also difficult to be reconciled using the Anderson weak localization theory. In this paper, we show from the first-principles calculation that an insulator-metal transition takes place from a nonmagnetic low-spin state of Co3+ ions to a hexagonally arranged intermediate-spin low-spin mixed-state in CoO2 plane when ionic radius increases from Ca to Ba. The predicted low-spin state of Bi2Ca2Co2O8 and Bi2Sr2Co2O8 and intermediate-spin low-spin mixed-state of Bi2Ba2Co2O8 are consistent not only with their measured transport properties, but also with the magnetic-field suppressed specific-heat peak observed at the transition temperature. In agreement with experiments, strong electronic correlation is required to stabilize the low-spin insulator and intermediate-spin low-spin metal. PMID:27901119
Huang, Xiaokun; Zhang, Weiyi
2016-11-30
The misfit layered Bi 2 A 2 Co 2 O 8 (A = Ca, Sr, Ba) compounds experience an insulator to metal transition as A's ionic radius increases. This feature is contradictory to the conventional wisdom that larger lattice constant favors insulating rather than metallic state, and is also difficult to be reconciled using the Anderson weak localization theory. In this paper, we show from the first-principles calculation that an insulator-metal transition takes place from a nonmagnetic low-spin state of Co 3+ ions to a hexagonally arranged intermediate-spin low-spin mixed-state in CoO 2 plane when ionic radius increases from Ca to Ba. The predicted low-spin state of Bi 2 Ca 2 Co 2 O 8 and Bi 2 Sr 2 Co 2 O 8 and intermediate-spin low-spin mixed-state of Bi 2 Ba 2 Co 2 O 8 are consistent not only with their measured transport properties, but also with the magnetic-field suppressed specific-heat peak observed at the transition temperature. In agreement with experiments, strong electronic correlation is required to stabilize the low-spin insulator and intermediate-spin low-spin metal.
Taruscio, Domenica; Baldi, Francesca; Carbone, Pietro; Neville, Amanda J; Rezza, Giovanni; Rizzo, Caterina; Mantovani, Alberto
2017-01-01
Congenital anomalies (CA) represent an important fraction of rare diseases, due to the critical role of non-genetic factors in their pathogenesis. CA are the main group of rare diseases in which primary prevention measures will have a beneficial impact. Indeed, since 2013 the European Union has endorsed a body of evidence-based recommendations for CA primary prevention; the recommendations aim at facilitating the inclusion of primary prevention actions the National Rare Disease Plans of EU Member States and encompass different public health fields, from environment through to maternal diseases and lifestyles.The chapter overviews and discusses the assessment of main risk factors for CA, such as environmental toxicants, maternal health and lifestyles and infections, with a special attention to issues that are emerging or need more knowledge.Overall, the availability of CA registries is important for estimating the health burden of CA, identifying possible hotspots, assessing the impact of interventions and addressing further, fit-to-purpose research.The integration of relevant public health actions that are already in place (e.g., control of noxious chemicals, vaccination programmes, public health services addressing chronic maternal conditions) can increase the affordability and sustainability of CA primary prevention. In developing countries with less primary prevention in place and limited overall resources, a first recognition phase may be pivotal in order to identify priority targets. In the meanwhile, policy makers should be made aware that primary prevention of RD supports publicly endorsed societal values like the knowledge-based promotion of health, empowerment, equity and social inclusiveness.
77 FR 31032 - National Institute on Aging; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-24
... applications. Place: Marina del Rey Hotel, 13534 Bali Way, Marina del Rey, CA 90292. Contact Person: Bita... applications. Place: Marina del Rey Hotel, 13534 Bali Way, Marina del Rey, CA 90292. Contact Person: Ramesh... and evaluate grant applications. Place: Marina del Rey Hotel, 13534 Bali Way, Marina del Rey, CA 90292...
The ternary system K2SO4MgSO4CaSO4
Rowe, J.J.; Morey, G.W.; Silber, C.C.
1967-01-01
Melting and subsolidus relations in the system K2SO4MgSO4CaSO4 were studied using heating-cooling curves, differential thermal analysis, optics, X-ray diffraction at room and high temperatures and by quenching techniques. Previous investigators were unable to study the binary MgSO4CaSO4 system and the adjacent area in the ternary system because of the decomposition of MgSO4 and CaSO4 at high temperatures. This problem was partly overcome by a novel sealed-tube quenching method, by hydrothermal synthesis, and by long-time heating in the solidus. As a result of this study, we found: (1) a new compound, CaSO4??3MgSO4 (m.p. 1201??C) with a field extending into the ternary system; (2) a high temperature form of MgSO4 with a sluggishly reversible inversion. An X-ray diffraction pattern for this polymorphic form is given; (3) the inversion of ??-CaSO4 (anhydrite) to ??-CaSO4 at 1195??C, in agreement with grahmann; (1) (4) the melting point of MgSO4 is 1136??C and that of CaSO4 is 1462??C (using sealed tube methods to prevent decomposition of the sulphates); (5) calcium langbeinite (K2SO4??2CaSO4) is the only compound in the K2SO4CaSO4 binary system. This resolved discrepancies in the results of previous investigators; (6) a continuous solid solution series between congruently melting K2SOP4??2MgSO4 (langbeinite) and incongruently melting K2SO4??2CaSO4 (calcium langbeinite); (7) the liquidus in the ternary system consists of primary phase fields of K2SO4, MgSO4, CaSO4, langbeinite-calcium langbeinite solid solution, and CaSO4??3MgSO4. The CaSO4 field extends over a large portion of the system. Previously reported fields for the compounds (K2SO4??MgSO4??nCaSO4), K2SO4??3CaSO4 and K2SO4??CaSO4 were not found; (8) a minimum in the ternary system at: 740??C, 25% MgSO4, 6% CaSO4, 69% K2SO4; and ternary eutectics at 882??C, 49% MgSO4, 19% CaSO4, 32% K2SO4; and 880??, 67??5% MgSO4, 5% CaSO4, 27??5% K2SO4. ?? 1967.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putro, Triswantoro, E-mail: tris@physics.its.ac.id; Endarko, E-mail: endarko@physics.its.ac.id
The influences of electron discharge and magnetic field on calcium carbonate (CaCO{sub 3}) precipitation in water have been successfully investigated. The study used three pairs of magnetic field 0.1 T whilst the electron discharge was generated from television flyback transformer type BW00607 and stainless steel SUS 304 as an electrode. The water sample with an initial condition of 230 mg/L placed in the reactor with flow rate 375 mL/minutes, result showed that the electron discharge can be reduced contain of calcium carbonate the water sample around 17.39% within 2 hours. Meanwhile for the same long period of treatment and flow rate, aroundmore » 56.69% from initial condition of 520 mg/L of calcium carbonate in the water sample can be achieved by three pairs of magnetic field 0.1 T. When the combination of three pairs of magnetic field 0.1 T and the electron discharge used for treatment, the result showed that the combination of electron discharge and magnetic field methods can be used to precipitate calcium carbonate in the water sample 300 mg/L around 76.66% for 2 hours of treatment. The study then investigated the influence of the polar position of the magnetic field on calcium carbonate precipitation. Two positions of magnetic field were tested namely the system with alternated polar magnetics and the system without inversion of the polar magnetics. The influence of the polar position showed that the percentage reduction in levels of calcium carbonate in the water sample (360 mg/L) is significant different. Result showed that the system without inversion of the polar magnetics is generally lower than the system with alternated polar magnetics, with reduction level at 30.55 and 57.69%, respectively.« less
NASA Technical Reports Server (NTRS)
Monson, C. B.; Horowitz, J. M.; Horwitz, B. A.
1988-01-01
1. In rats acclimated to 23 degrees C (RT rats) or 5 degrees C (CA rats), core temperature (Tc), tail temperature (Tt) and oxygen consumption (VO2) were measured during exposure to a hypergravic field. 2. Rats were exposed for 5.5 h to a 3 g field while ambient temperature (Ta) was varied. For the first 2 h, Ta was 25 degrees C; then Ta was raised to 34 degrees C for 1.5 h. During this period of warm exposure, Tc increased 4 degrees C in both RT and CA rats. Finally, Ta was returned to 25 degrees C for 2 h, and Tc decreased toward the levels measured prior to warm exposure. 3. In a second experiment at 3 g, RT and CA rats were exposed to cold (12 degrees C) after two hours at 25 degrees C. During the one hour cold exposure, Tc fell 1.5 degrees C in RT and 0.5 degree C in CA rats. After cold exposure, when ambient temperature was again 25 degrees C, Tc of RT and CA rats returned toward the levels measured prior to the thermal disturbance. 4. Rats appear to regulate their temperature, albeit at a lower level, in a 3 g field.
Preparation of epitaxial TlBa2Ca2Cu3O9 high Tc thin films on LaAlO3 (100) substrates
NASA Astrophysics Data System (ADS)
Piehler, A.; Reschauer, N.; Spreitzer, U.; Ströbel, J. P.; Schönberger, R.; Renk, K. F.; Saemann-Ischenko, G.
1994-09-01
Epitaxial TlBa2Ca2Cu3O9 high Tc thin films were prepared on LaAlO3 (100) substrates by a combination of laser ablation and thermal evaporation of thallium oxide. X-ray diffraction patterns of θ-2θ scans showed that the films consisted of highly c axis oriented TlBa2Ca2Cu3O9. φ scan measurements revealed an epitaxial growth of the TlBa2Ca2Cu3O9 thin films on the LaAlO3 (100) substrates. Ac inductive measurements indicated the onset of superconductivity at 110 K. At 6 K, the critical current density was 4×106 A/cm2 in zero magnetic field and 6×105 A/cm2 at a magnetic field of 3 T parallel to the c axis.
The right hippocampus leads the bilateral integration of gamma-parsed lateralized information
Benito, Nuria; Martín-Vázquez, Gonzalo; Makarova, Julia; Makarov, Valeri A; Herreras, Oscar
2016-01-01
It is unclear whether the two hippocampal lobes convey similar or different activities and how they cooperate. Spatial discrimination of electric fields in anesthetized rats allowed us to compare the pathway-specific field potentials corresponding to the gamma-paced CA3 output (CA1 Schaffer potentials) and CA3 somatic inhibition within and between sides. Bilateral excitatory Schaffer gamma waves are generally larger and lead from the right hemisphere with only moderate covariation of amplitude, and drive CA1 pyramidal units more strongly than unilateral waves. CA3 waves lock to the ipsilateral Schaffer potentials, although bilateral coherence was weak. Notably, Schaffer activity may run laterally, as seen after the disruption of the connecting pathways. Thus, asymmetric operations promote the entrainment of CA3-autonomous gamma oscillators bilaterally, synchronizing lateralized gamma strings to converge optimally on CA1 targets. The findings support the view that interhippocampal connections integrate different aspects of information that flow through the left and right lobes. DOI: http://dx.doi.org/10.7554/eLife.16658.001 PMID:27599221
Size-driven magnetic transitions in La1/3Ca2/3MnO3 nanoparticles
NASA Astrophysics Data System (ADS)
Markovich, V.; Fita, I.; Wisniewski, A.; Mogilyansky, D.; Puzniak, R.; Titelman, L.; Gorodetsky, G.
2010-09-01
Magnetic properties of electron-doped La1/3Ca2/3MnO3 manganite nanoparticles with average particle size ranging from 12 to 42 nm, prepared by the glycine-nitrate method, have been investigated in temperature range 5-300 K and in magnetic fields up to 90 kOe. Reduction in the particle size suppresses antiferromagnetism and decreases the Néel temperature. In contrast to bulk crystals, the charge ordering does not occur in all studied nanoparticles, while a weak ferromagnetism appears above 200 K. Low temperature magnetic hysteresis loops indicate upon exchange bias effect displayed by horizontal and vertical shifts in field cooled processes. The spontaneous and remanent magnetization at low temperature shows a relatively complex variation with particle size. The size-induced structural/magnetic disorder drives the La1/3Ca2/3MnO3 nanoparticles to a pronounced glassy behavior for the smallest 12 nm particles, as evidenced by large difference between zero field cooled and field cooled magnetization, frequency dependent ac-susceptibility, as well as characteristic slowing down in the spin dynamics. Time evolution of magnetization recorded in magnetic fields after field cooling to low temperatures exhibits pronounced relaxation and a very noisy behavior that may be caused by formation of some collective states. Magnetic properties of the nanoparticle samples are compared with those of La0.2Ca0.8MnO3 nanoparticles. These results shed some light on the coupling between charges and spin degrees of freedom in antiferromagnetic manganite nanoparticles.
An analysis of neural receptive field plasticity by point process adaptive filtering
Brown, Emery N.; Nguyen, David P.; Frank, Loren M.; Wilson, Matthew A.; Solo, Victor
2001-01-01
Neural receptive fields are plastic: with experience, neurons in many brain regions change their spiking responses to relevant stimuli. Analysis of receptive field plasticity from experimental measurements is crucial for understanding how neural systems adapt their representations of relevant biological information. Current analysis methods using histogram estimates of spike rate functions in nonoverlapping temporal windows do not track the evolution of receptive field plasticity on a fine time scale. Adaptive signal processing is an established engineering paradigm for estimating time-varying system parameters from experimental measurements. We present an adaptive filter algorithm for tracking neural receptive field plasticity based on point process models of spike train activity. We derive an instantaneous steepest descent algorithm by using as the criterion function the instantaneous log likelihood of a point process spike train model. We apply the point process adaptive filter algorithm in a study of spatial (place) receptive field properties of simulated and actual spike train data from rat CA1 hippocampal neurons. A stability analysis of the algorithm is sketched in the Appendix. The adaptive algorithm can update the place field parameter estimates on a millisecond time scale. It reliably tracked the migration, changes in scale, and changes in maximum firing rate characteristic of hippocampal place fields in a rat running on a linear track. Point process adaptive filtering offers an analytic method for studying the dynamics of neural receptive fields. PMID:11593043
15. NORTHEAST CORNER, SOLDIER FIELD, LOOKING SOUTHEAST TOWARD THE GYMNASIUM, ...
15. NORTHEAST CORNER, SOLDIER FIELD, LOOKING SOUTHEAST TOWARD THE GYMNASIUM, SHOWING EAST DITCH AND A SECTION OF LOW WALL. No date, probably ca. 1935. Photographer unknown. Original silver gelatin print measures 13.1 cm by 7.3 cm, flush mounted on mat board. - Presidio of Monterey, Soldier Field, Monterey, Monterey County, CA
Phase separation enhanced magneto-electric coupling in La0.7Ca0.3MnO3/BaTiO3 ultra-thin films
Alberca, A.; Munuera, C.; Azpeitia, J.; Kirby, B.; Nemes, N. M.; Perez-Muñoz, A. M.; Tornos, J.; Mompean, F. J.; Leon, C.; Santamaria, J.; Garcia-Hernandez, M.
2015-01-01
We study the origin of the magnetoelectric coupling in manganite films on ferroelectric substrates. We find large magnetoelectric coupling in La0.7Ca0.3MnO3/BaTiO3 ultra-thin films in experiments based on the converse magnetoelectric effect. The magnetization changes by around 30–40% upon applying electric fields on the order of 1 kV/cm to the BaTiO3 substrate, corresponding to magnetoelectric coupling constants on the order of α = (2–5)·10−7 s/m. Magnetic anisotropy is also affected by the electric field induced strain, resulting in a considerable reduction of coercive fields. We compare the magnetoelectric effect in pre-poled and unpoled BaTiO3 substrates. Polarized neutron reflectometry reveals a two-layer behavior with a depressed magnetic layer of around 30 Å at the interface. Magnetic force microscopy (MFM) shows a granular magnetic structure of the La0.7Ca0.3MnO3. The magnetic granularity of the La0.7Ca0.3MnO3 film and the robust magnetoelastic coupling at the La0.7Ca0.3MnO3/BaTiO3 interface are at the origin of the large magnetoelectric coupling, which is enhanced by phase separation in the manganite. PMID:26648002
Lee, Justin Quinn; LeDuke, Deryn O; Chua, Kate; McDonald, Robert J; Sutherland, Robert J
2018-06-01
The activity of CA1 neurons in the rodent hippocampus represents multiple aspects of learning episodes, including cue and place information. Previous reports on cue and place representation in CA1 have examined activity in single neurons and population recordings during free exploration of an environment or when actions are directed to either cue or place aspects of memory tasks. To better understand cue and place memory representation in CA1, and how these interact during goal-directed navigation, we investigated population activity in CA1 during memory encoding and retrieval in a novel water task with two visibly distinct platforms, using mRNA for immediate early genes Arc and Homer1a as markers of neural activity. After training, relocating cues to new places induces an extensive, perhaps global, remapping of the memory code that is accompanied by altered navigation and rapid learning of new cue-place information. In addition, we have found a significant relationship between the extent of reactivation and overall cue choice accuracy. These findings demonstrate an important relationship between population remapping in CA1 and memory-guided behavior. © 2018 Wiley Periodicals, Inc.
Ferroelectric control of a Mott insulator
Yamada, Hiroyuki; Marinova, Maya; Altuntas, Philippe; Crassous, Arnaud; Bégon-Lours, Laura; Fusil, Stéphane; Jacquet, Eric; Garcia, Vincent; Bouzehouane, Karim; Gloter, Alexandre; Villegas, Javier E.; Barthélémy, Agnès; Bibes, Manuel
2013-01-01
The electric field control of functional properties is an important goal in oxide-based electronics. To endow devices with memory, ferroelectric gating is interesting, but usually weak compared to volatile electrolyte gating. Here, we report a very large ferroelectric field-effect in perovskite heterostructures combining the Mott insulator CaMnO3 and the ferroelectric BiFeO3 in its “supertetragonal” phase. Upon polarization reversal of the BiFeO3 gate, the CaMnO3 channel resistance shows a fourfold variation around room temperature, and a tenfold change at ~200 K. This is accompanied by a carrier density modulation exceeding one order of magnitude. We have analyzed the results for various CaMnO3 thicknesses and explain them by the electrostatic doping of the CaMnO3 layer and the presence of a fixed dipole at the CaMnO3/BiFeO3 interface. Our results suggest the relevance of ferroelectric gates to control orbital- or spin-ordered phases, ubiquitous in Mott systems, and pave the way toward efficient Mott-tronics devices. PMID:24089020
NASA Astrophysics Data System (ADS)
Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni
2011-10-01
The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-S system have been determined experimentally in equilibrium with metallic iron. A pseudoternary section of the form ZnO-"FeO"-(Al2O3+CaO+SiO2) for CaO/SiO2 = 0.71 (weight), (CaO+SiO2)/Al2O3 = 5.0 (weight), and fixed 2.0 wt pct S concentration has been constructed. It was found that the addition of 2.0 wt pct S to the liquid extends the spinel primary phase field significantly and decreases the size of the wustite primary phase field. The liquidus temperature in the wustite primary phase field is decreased by approximately 80 K and the liquidus temperature in the spinel primary phase field is decreased by approximately 10 K with addition of 2.0 wt pct S in the composition range investigated. It was also found that iron-zinc sulfides are present in some samples in the spinel primary phase field, which are matte appearing at low zinc concentrations and sphalerite (Zn,Fe)S at higher zinc concentrations. The presence of sulfur in the slag has a minor effect on the partitioning of ZnO between the wustite and liquid phases but no effect on the partitioning of ZnO between the spinel and liquid phases.
Magnetic-field-dependent dielectric constant in La2/3Ca1/3MnO3
NASA Astrophysics Data System (ADS)
Rivas, J.; Mira, J.; Rivas-Murias, B.; Fondado, A.; Dec, J.; Kleemann, W.; Señarís-Rodríguez, M. A.
2006-06-01
We report a rather high dependence of the dielectric permittivity on the magnetic field in La2/3Ca1/3MnO3. The variation is maximum at around 270K, little above the Curie temperature TC, and it reaches a 35% under only 0.5T. We attribute this phenomenon to the space-charge or interfacial polarization produced between the insulator and the metallic regions segregated intrinsically in the material above TC.
Anisotropic electrical conduction in ferromagnetic-antiferromagnetic-ferromagnetic oxide trilayers
NASA Astrophysics Data System (ADS)
Padhan, P.; Prellier, W.
2007-07-01
An antiferromagnetic layer of an insulator PrMnO3 , CaMnO3 , or Pr0.5Ca0.5MnO3 has been sandwiched between two layers of ferromagnetic SrRuO3 on (001)-oriented SrTiO3 and LaAlO3 substrates using the pulsed laser deposition technique. Magnetotransport measurements reveal a change of anisotropy in the case of trilayers having a Pr0.5Ca0.5MnO3 or a CaMnO3 spacer layer as compared to that of 20unit cells thick film of SrRuO3 , while in the case of PrMnO3 spacer layer, the change of anisotropy is negligible. In addition, two switching magnetic fields are observed with the trilayer made of PrMnO3 spacer layer in the field-dependent anisotropic magnetoresistance. The results are discussed using the concept of spin-orbit coupling and spin mixing conduction process at the interfaces.
A weak combined magnetic field changes root gravitropism
NASA Astrophysics Data System (ADS)
Kordyum, E. L.; Bogatina, N. I.; Kalinina, Ja. M.; Sheykina, N. V.
Immobile higher plants are oriented in the gravitational field due to gravitropim that is a physiological growth reaction and consists of three phases: reception of a gravitational signal by statocytes, its transduction to the elongation zone, and finally the organ bending. According to the starch-statolith hypothesis, amyloplasts in the specialized graviperceptive cells - statocytes sediment in the direction of a gravitational vector in the distal part of a cell. The polar arrangement of organelles is maintained by means of the cytoskeleton. On the Kholodny-Went's, theory the root bending is provided by the polar movement of auxin from a root cap to the elongation zone. It is also known that gravistimulation initiates a rapid Ca2+ redistribution in a root apex. Calcium ions modify an activity of many cytoskeletal proteins and clustering of calcium channels may be directed by actin microfilaments. Although the available data show the Ca2+ and cytoskeleton participation in graviperception and signal transduction, the clear evidence with regard to the participation of cytoskeletal elements and calcium ions in these processes is therefore substantial but still circumstantial and requires new experimental data. Roots are characterized with positive gravitropism, i. e. they grow in the direction of a gravitational vector. It was first shown by us that roots change the direction of a gravitropic reaction under gravistimulation in the weak combined magnetic field with a frequency of 32 Hz. 2-3-day old cress seedlings were gravistimulated in moist chambers, which are placed in μ-metal shields. Inside μ -metal shields, combined magnetic fields have been created. Experiments were performed in darkness at temperature 20±10C. Measurements of the magnitude of magnetic fields were carried out with a flux-gate magnetometer. Cress roots reveal negative gravitropism, i. e. they grow in the opposite direction to a gravitational vector, during 2 h of gravistimulation and then roots begin to grow more or less parallel to the Earth's surface, i.e. they reveal plagiotropism. Since such combined magnetic field is adjusted to the cyclotron frequency of Ca2+ ions, these observations demonstrate the participation of calcium ions in root gravitropism. Cyclotron frequency of Ca2+ ions is the formal frequency of ion rotation in the static magnetic field. Simultaneous applying the altering magnetic field with the same frequency can provoke auto-oscillation in the system and consequently change the rate and/or the direction of Ca2+ ion flow in a root under gravistimulation. The data of light, electron, and confocal laser microscopy and kinetics of a gravitropic reaction, which have been obtained on such the new original model, are discussed in the light of current concepts of root gravitropism.
NASA Astrophysics Data System (ADS)
Gomez, Maria Elena; Milena Diez, Sandra; Cuartas, Lina Maria; Marin, Lorena; Prieto, Pedro
2012-02-01
Isothermal magnetic field dependence of the resistance in La2/3Ca1/3MnO3 (F-LCMO)/ La1/3Ca2/3MnO3(AF-LCMO) bilayer and AF-LCMO/F-LCMO/AF-LCMO trilayer at temperatures below N'eel temperature of the antiferromagnetic layer were carried out to study the thickness layers influence on magneto transport properties. We grew multilayers using a high oxygen pressure sputtering technique. We systematically varied the thickness of the F-LCMO layer, tF, maintaining constant the thickness of the AF-LCMO layer, tAF. We studied the influence of the thickness ratio tF/tAF on the ZFC and FC magnetoresistance (MR) loops. HFC was varied from 100 Oe to 400 Oe. We found that MR has hysteretic behavior as observed in [La2/3Ca1/3MnO3/La1/3Ca2/3MnO3]N superlattices, where MR increases with the increasing field from H=0 to a maximum and then it decreases continuously. The position and magnitude of the maximum is not symmetric with respect to the axis H=0 for both FC and ZFC loops. We found that magnetoresistance behavior of the bilayer and trilayer is thickness-ratio dependent for both ZFC and FC loops.
Turtle Bayou - 1936 to 1983: case history of a major gas field in south Louisiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronquist, C.
1983-01-01
Turtle Bayou field, located in the middle Miocene trend in S. Louisiana, is nearing the end of a productive life which spans over 30 yr. Discovered by Shell Oil Co. in 1949 after unsuccessful attempts by 2 other majors, the field is a typical, low relief, moderately faulted Gulf Coast structure, probably associated with deep salt movement. The productive interval includes 22 separate gas-bearing sands in a regressive sequence of sands and shales from approx. 6500 to 12,000 ft. Now estimated to have contained ca 1.2 trillion scf of gas in place, cumulative production through 1982 was 702 billion scf.more » Cumulative condensate-gas ratio has been 20 bbl/million. Recovery mechanisms in individual reservoirs include strong bottom water drive, partial edgewater drive, and pressure depletion. Recovery efficiencies in major reservoirs range from 40 to 75% of original gas in place.« less
The hydration dependence of CaCO3 absorption lines in the Far IR
NASA Astrophysics Data System (ADS)
Powell, Johnny; Emery, Logan P
2014-06-01
The far infrared (FIR) absorption lines of CaCO3 have been measured at a range of relative humidities (RH) between 33 and 92% RH using a Bruker 66v/S spectrometer. Hydration measurements on CaCO3 have been made in the mid-infrared (MIR) by [Al-Hosney, H.A. and Grassian, V.H., 2005, Phys. Chem. Chem. Phys., 7, 1266], and astrophysically-motivated temperature-dependent FIR measurements of CaCO3 in vacuum have also been reported [Posch, T., et al., 2007, Ap. J., 668, 993]. The custom sample cell constructed for these hydrated-FIR spectra is required because the 66v/S bench is under vacuum (3 mbar) during typical measurements. Briefly, the sample cell consists of two Thalium Bromoiodide (KRS-5) windows, four O-rings, a plastic ring for separating the windows and providing a volume for the saturated atmosphere. CaCO3 was deposited on KRS-5 windows using doubly-distilled water as an intermediary. The KRS-5 window with sample and assembled sample cell were placed in a desiccator with the appropriated saturated salt solution [Washburn, E.W. (Ed.), International Critical Tables of Numerical Data, Physics Chemistry and Technology, Vol. 1, (McGraw-Hill, New York, 1926), p. 67-68] and allowed to hydrate for 23 hours. For spectroscopy the desiccator was quickly opened and the second KRS-5 window placed in the cell to seal the chamber. A spectrum was then taken of the sample at the appropriate RH. The spectra taken characterize the adsorption of water vapor and CaCO3 that might occur in circumstellar environments [Melnick, G.J., et al. 2001, Nature, 412, 160].The MIR and FIR reflectance spectra of calcite (CaCO3) have been thoroughly studied by [Hellwege, K.H., et al., 1970, Z. Physik, 232, 61]. Five Lorentzian curves were fit to our data in the range from 378-222 cm-1/SUP> and each was able to be assigned to a known mode of CaCO3. The data does not support the conclusion of a hydration effect on these modes of CaCO3, but it does suggest a possible broadening of three modes peaked at 281 cm-1. The goal of this work is to bridge the body of work on CaCO3 in physical chemistry and previous laboratory astrophysical observations to aid interpretation of FIR spectra obtained by observatories such as the Spitzer Space Telescope.
Phase equilibria, crystal structures, and dielectric anomaly in the BaZrO 3-CaZrO 3 system
NASA Astrophysics Data System (ADS)
Levin, Igor; Amos, Tammy G.; Bell, Steven M.; Farber, Leon; Vanderah, Terrell A.; Roth, Robert S.; Toby, Brian H.
2003-11-01
Phase equilibria in the (1- x)BaZrO 3- xCaZrO 3 system were analyzed using a combination of X-ray and neutron powder diffraction, and transmission electron microscopy. The proposed phase diagram features two extended two-phase fields containing mixtures of a Ba-rich cubic phase and a tetragonal, or orthorhombic Ca-rich phase, all having perovskite-related structures. The symmetry differences in the Ca-rich phases are caused by different tilting patterns of the [ZrO 6] octahedra. In specimens quenched from 1650°C, CaZrO 3 dissolves only a few percent of Ba, whereas the solubility of Ca in BaZrO 3 is approximately 30 at% . The BaZrO 3-CaZrO 3 system features at least two tilting phase transitions, Pm3 m→ I4/ mcm and I4/ mcm→ Pbnm. Rietveld refinements of the Ba 0.8Ca 0.2ZrO 3 structure using variable-temperature neutron powder diffraction data confirmed that the Pm3 m→ I4/ mcm transition corresponds to a rotation of octahedra about one of the cubic axes; successive octahedra along this axis rotate in opposite directions. In situ variable-temperature electron diffraction studies indicated that the transition temperature increases with increasing Ca-substitution on the A-sites, from approximately -120°C at 5 at% Ca to 225°C at 20 at% Ca. Dielectric measurements revealed that the permittivity increases monotonically from 36 for BaZrO 3 to 53 for Ba 0.9Ca 0.1ZrO 3, and then decreases to 50 for Ba 0.8Ca 0.2ZrO 3. This later specimen was the Ca-richest composition for which pellets could be quenched from the single-phase cubic field with presently available equipment. Strongly non-monotonic behavior was also observed for the temperature coefficient of resonant frequency; however, in this case, the maximum occurred at a lower Ca concentration, 0.05⩽ x⩽0.1. The non-linear behavior of the dielectric properties was attributed to two competing structural effects: a positive effect associated with substitution of relatively small Ca cations on the A-sites, resulting in stretched Ca-O bonds, and a negative effect, related to the distortion of the A-site environment (bond strain relaxation) upon octahedral tilting.
Liquid toroidal drop under uniform electric field
NASA Astrophysics Data System (ADS)
Zabarankin, Michael
2017-06-01
The problem of a stationary liquid toroidal drop freely suspended in another fluid and subjected to an electric field uniform at infinity is addressed analytically. Taylor's discriminating function implies that, when the phases have equal viscosities and are assumed to be slightly conducting (leaky dielectrics), a spherical drop is stationary when Q=(2R2+3R+2)/(7R2), where R and Q are ratios of the phases' electric conductivities and dielectric constants, respectively. This condition holds for any electric capillary number, CaE, that defines the ratio of electric stress to surface tension. Pairam and Fernández-Nieves showed experimentally that, in the absence of external forces (CaE=0), a toroidal drop shrinks towards its centre, and, consequently, the drop can be stationary only for some CaE>0. This work finds Q and CaE such that, under the presence of an electric field and with equal viscosities of the phases, a toroidal drop having major radius ρ and volume 4π/3 is qualitatively stationary-the normal velocity of the drop's interface is minute and the interface coincides visually with a streamline. The found Q and CaE depend on R and ρ, and for large ρ, e.g. ρ≥3, they have simple approximations: Q˜(R2+R+1)/(3R2) and CaE∼3 √{3 π ρ / 2 } (6 ln ρ +2 ln [96 π ]-9 )/ (12 ln ρ +4 ln [96 π ]-17 ) (R+1 ) 2/ (R-1 ) 2.
A Hydrothermal Route to the Synthesis of CaTiO3 Nanocuboids Using P25 as the Titanium Source
NASA Astrophysics Data System (ADS)
Yan, Yuxiang; Yang, Hua; Zhao, Xinxin; Zhang, Haimin; Jiang, Jinlong
2018-03-01
CaTiO3 nanocuboids (width 0.3-0.5 μm, length 0.8-1.1 μm) have been synthesized by a hydrothermal route using commercial P25 as the titanium source. The as-prepared sample was systematically characterized by means of x-ray powder diffraction, field-emission scanning electron microscopy, field-emission transmission electron microscopy, x-ray photoelectron spectroscopy, Brunauer-Emmett-Teller, ultraviolet-visible diffuse reflectance spectroscopy and electrochemical impedance spectroscopy. The photocatalytic activity of the sample was evaluated by degrading rhodamine B under simulated sunlight irradiation. It is demonstrated that CaTiO3 nanocuboids exhibit superior photocatalytic activity when compared with CaTiO3 nanoparticles. By investigating the effect of scavengers on the dye degradation and the yield of hydroxyl (·OH) radicals, it is concluded that ·OH is the dominant reactive species.
How vision and movement combine in the hippocampal place code.
Chen, Guifen; King, John A; Burgess, Neil; O'Keefe, John
2013-01-02
How do external environmental and internal movement-related information combine to tell us where we are? We examined the neural representation of environmental location provided by hippocampal place cells while mice navigated a virtual reality environment in which both types of information could be manipulated. Extracellular recordings were made from region CA1 of head-fixed mice navigating a virtual linear track and running in a similar real environment. Despite the absence of vestibular motion signals, normal place cell firing and theta rhythmicity were found. Visual information alone was sufficient for localized firing in 25% of place cells and to maintain a local field potential theta rhythm (but with significantly reduced power). Additional movement-related information was required for normally localized firing by the remaining 75% of place cells. Trials in which movement and visual information were put into conflict showed that they combined nonlinearly to control firing location, and that the relative influence of movement versus visual information varied widely across place cells. However, within this heterogeneity, the behavior of fully half of the place cells conformed to a model of path integration in which the presence of visual cues at the start of each run together with subsequent movement-related updating of position was sufficient to maintain normal fields.
Zhang, Wenjun; Hubbard, Antony; Baca-Parkinson, Leslie; Stanislaw, Stacey; Vladich, Frank; Robida, Mark D; Grille, James G; Maxwell, Daniel; Tsao, Tsu-Shuen; Carroll, William; Gardner, Tracie; Clements, June; Singh, Shalini; Tang, Lei
2015-09-01
The PIK3CA gene at chromosome 3q26.32 was found to be amplified in up to 45% of patients with squamous cell carcinoma of the lung. The strong correlation between PIK3CA amplification and increased phosphatidylinositol 3-kinase (PI3K) pathway activities suggested that PIK3CA gene copy number is a potential predictive biomarker for PI3K inhibitors. Currently, all microscopic assessments of PIK3CA and chromosome 3 (CHR3) copy numbers use fluorescence in situ hybridization. PIK3CA probes are derived from bacterial artificial chromosomes whereas CHR3 probes are derived mainly from the plasmid pHS05. These manual fluorescence in situ hybridization assays mandate 12- to 18-hour hybridization and use of blocking DNA from human sources. Moreover, fluorescence in situ hybridization studies provide limited morphologic assessment and suffer from signal decay. We developed an oligonucleotide-based bright-field in situ hybridization assay that overcomes these shortcomings. This assay requires only a 1-hour hybridization with no need for blocking DNA followed by indirect chromogenic detection. Oligonucleotide probes produced discrete and uniform CHR3 stains superior to those from the pHS05 plasmid. This assay achieved successful staining in 100% of the 195 lung squamous cell carcinoma resections and in 94% of the 33 fine-needle aspirates. This robust automated bright-field dual in situ hybridization assay for the simultaneous detection of PIK3CA and CHR3 centromere provides a potential clinical diagnostic method to assess PIK3CA gene abnormality in lung tumors. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Adams, Stephanie L; Benayoun, Laurent; Tilton, Kathy; Mellott, Tiffany J; Seshadri, Sudha; Blusztajn, Jan Krzysztof; Delalle, Ivana
2018-01-01
The pathophysiology of Alzheimer's disease (AD) includes signaling defects mediated by the transforming growth factor β-bone morphogenetic protein-growth and differentiation factor (TGFβ-BMP-GDF) family of proteins. In animal models of AD, administration of BMP9/GDF2 improves memory and reduces amyloidosis. The best characterized type I receptor of BMP9 is ALK1. We characterized ALK1 expression in the hippocampus using immunohistochemistry. In the rat, ALK1 immunoreactivity was found in CA pyramidal neurons, most frequently and robustly in the CA2 and CA3 fields. In addition, there were sporadic ALK1-immunoreactive cells in the stratum oriens, mainly in CA1. The ALK1 expression pattern in human hippocampus was similar to that of rat. Pyramidal neurons within the CA2, CA3, and CA4 were strongly ALK1-immunoreactive in hippocampi of cognitively intact subjects with no neurofibrillary tangles. ALK1 signal was found in the axons of alveus and fimbria, and in the neuropil across CA fields. Relatively strongest ALK1 neuropil signal was observed in CA1 where pyramidal neurons were occasionally ALK1-immunoractive. As in the rat, horizontally oriented neurons in the stratum oriens of CA1 were both ALK1- and GAD67-immunoreactive. Analysis of ALK1 immunoreactivity across stages of AD pathology revealed that disease progression was characterized by overall reduction of the ALK1 signal in CA3 in advanced, but not early, stages of AD. These data suggest that the CA3 pyramidal neurons may remain responsive to the ALK1 ligands, e.g., BMP9, during initial stages of AD and that ALK1 may constitute a therapeutic target in early and moderate AD.
Interfacial Ferromagnetism and Exchange Bias in CaRuO3/CaMnO3 Superlattices
NASA Astrophysics Data System (ADS)
He, C.; Grutter, A. J.; Gu, M.; Browning, N. D.; Takamura, Y.; Kirby, B. J.; Borchers, J. A.; Kim, J. W.; Fitzsimmons, M. R.; Zhai, X.; Mehta, V. V.; Wong, F. J.; Suzuki, Y.
2012-11-01
We have found ferromagnetism in epitaxially grown superlattices of CaRuO3/CaMnO3 that arises in one unit cell at the interface. Scanning transmission electron microscopy and electron energy loss spectroscopy indicate that the difference in magnitude of the Mn valence states between the center of the CaMnO3 layer and the interface region is consistent with double exchange interaction among the Mn ions at the interface. Polarized neutron reflectivity and the CaMnO3 thickness dependence of the exchange bias field together indicate that the interfacial ferromagnetism is only limited to one unit cell of CaMnO3 at each interface. The interfacial moment alternates between the 1μB/interface Mn ion for even CaMnO3 layers and the 0.5μB/interface Mn ion for odd CaMnO3 layers. This modulation, combined with the exchange bias, suggests the presence of a modulating interlayer coupling between neighboring ferromagnetic interfaces via the antiferromagnetic CaMnO3 layers.
Field Validation of Supercritical CO 2 Reactivity with Basalts
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrail, B. Peter; Schaef, Herbert T.; Spane, Frank A.
2017-01-10
Continued global use of fossil fuels places a premium on developing technology solutions to minimize increases in atmospheric CO 2 levels. CO 2 storage in reactive basalts might be one of these solutions by permanently converting injected gaseous CO 2 into solid carbonates. Herein we report results from a field demonstration where ~1000 MT of CO 2 was injected into a natural basalt formation in Eastern Washington State. Following two years of post-injection monitoring, cores were obtained from within the injection zone and subjected to detailed physical and chemical analysis. Nodules found in vesicles throughout the cores were identified asmore » the carbonate mineral, ankerite Ca[Fe, Mg, Mn](CO 3) 2. Carbon isotope analysis showed the nodules are chemically distinct as compared with natural carbonates present in the basalt and clear correlation with the isotopic signature of the injected CO 2. These findings provide field validation of rapid mineralization rates observed from years of laboratory testing with basalts.« less
Changes in CaCO3 Burial Trump the Biological Pump
NASA Astrophysics Data System (ADS)
Toggweiler, J.; Dunne, J. P.
2008-12-01
The dramatic increases in atmospheric CO2 at the ends of ice ages are usually attributed to a one-two punch coming from the ocean. First, a weakened biological pump vents organically cycled CO2 from the deep ocean via changes in the ventilation of the deep ocean around Antarctica. The initial CO2 increase is then augmented by an enhancement of CaCO3 burial due to a process called CaCO3 compensation (after Broecker, W. S and T.-H. Peng, Global Biogeochem. Cycles, 1, 15-29, 1987). Here, we argue that the importance of the biological pump has been exaggerated. The main effect comes from circulation-induced changes in the burial of CaCO3. As shown in a recent paper by Andreas Schmittner and co-authors (Schmittner, A., E. Brook and J. Ahn, Impact of the ocean's overturning circulation on atmospheric CO2, in Ocean Circulation: Mechanisms and Impacts, Geophys. Monogr. 173, A. Schmittner, J. Chiang, and S. Hemming, eds., pp. 209-246, AGU, 2007) changes in the ventilation of the deep ocean around Antarctica gave rise to 20-30 ppm increases in atmospheric CO2 every 5,000-7,000 years during isotope stages 3 and 4 (30,000 to 70,000 years ago). None of these venting events gave rise to a compensation response. Meanwhile, Jaccard et al. (Science, 308, 1003-1006, 2005) show that all the big CO2 increases during terminations through stage 11 were accompanied by huge increases in CaCO3 burial. This suggests that the enhanced burial of CaCO3 is obligatory rather than compensatory with respect to the dramatic CO2 increases. Broecker and Peng's compensation idea is based on an assumption that the rain of CaCO3 to the sea floor is the same everywhere. More specifically, it assumes that there is no spatial correlation between the production of CaCO3 at the surface and the burial on the sea floor. We find instead that the production and burial of CaCO3 tend to be co-located in regional "hot spots" and that burial in the hot spots balances the input of Ca++ and HCO3- ions in rivers. The hot spots can also move from place to place in response to changes in circulation. The main hot spots today are the eastern Atlantic and southern Indian; the main hot spot during the last glacial was the equatorial Pacific. Renewed deep-water formation in the Atlantic at the end of the last ice age shifted the locus of CaCO3 burial back to the Atlantic and southern Indian and led to a huge drawdown in global alkalinity, which is ongoing today and accounts for most of the deglacial rise in atmospheric CO2.
NASA Astrophysics Data System (ADS)
Alzate-Cardona, J. D.; Barco-Rios, H.; Restrepo-Parra, E.
2018-02-01
The magnetocaloric behavior of La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3 for x = 0.00, 0.02, 0.03, 0.05, 0.07, 0.08 and 0.10 under the influence of an external magnetic field was simulated and analyzed. Simulations were carried out using the Monte Carlo method and the classical Heisenberg model under the Metropolis algorithm. These mixed valence manganites are characterized by having three types of magnetic ions corresponding to Mn4+≤ft(S=\\frac{3}{2}\\right) , which are bonded with Ca2+ , and Mneg3+ and Mneg\\prime3+ (S=2) , related to La3+ . The Fe ions were randomly included, replacing Mn ions. With this model, the magnetic entropy change, Δ S , in an isothermal process was determined. -Δ Sm showed maximum peaks around the paramagnetic-ferromagnetic transition temperature, which depends on Fe doping. Relative cooling power was computed for different Fe concentrations varying the magnetic applied field. Our model and results show that the Fe doping decreases the magnetocaloric effect in the La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3, making this a bad candidate for magnetic refrigeration. The strong dependence of the magnetocaloric behavior on Fe doping and the external magnetic field in La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3 can boost these materials for the future technological applications.
Yagi, Shunya; Drewczynski, Dimka; Wainwright, Steven R; Barha, Cindy K; Hershorn, Olivia; Galea, Liisa A M
2017-01-01
The hippocampus and dorsal striatum are important structures involved in place and response learning strategies respectively. Both sex and estrous cycle phase differences in learning strategy preference exist following cue competition paradigms. Furthermore, significant effects of sex and learning strategy on hippocampal neural plasticity have been reported. However, associations between learning strategy and immediate early gene (IEG) expression in the hippocampus and dorsal striatum are not completely understood. In the current study we investigated the effects of sex and estrous cycle phase on strategy choice and IEG expression in the hippocampus and dorsal striatum of rats following cue competition training in the Morris water maze. We found that proestrous rats were more likely to choose a place strategy than non-proestrous or male rats. Although male cue strategy users travelled greater distances than the other groups on the first day of training, there were no other sex or strategy differences in the ability to reach a hidden or a visible platform. Female place strategy users exhibited greater zif268 expression and male place strategy users exhibited greater cFos expression compared to all other groups in CA3. Furthermore, cue strategy users had greater expression of cFos in the dorsal striatum than place strategy users. Shorter distances to reach a visible platform were associated with less activation of cFos in CA3 and CA1 of male place strategy users. Our findings indicate multiple differences in brain activation with sex and strategy use, despite limited behavioral differences between the sexes on this cue competition paradigm. Copyright © 2016 Elsevier Inc. All rights reserved.
Hippocampal place-cell firing during movement in three-dimensional space
NASA Technical Reports Server (NTRS)
Knierim, J. J.; McNaughton, B. L.
2001-01-01
"Place" cells of the rat hippocampus are coupled to "head direction" cells of the thalamus and limbic cortex. Head direction cells are sensitive to head direction in the horizontal plane only, which leads to the question of whether place cells similarly encode locations in the horizontal plane only, ignoring the z axis, or whether they encode locations in three dimensions. This question was addressed by recording from ensembles of CA1 pyramidal cells while rats traversed a rectangular track that could be tilted and rotated to different three-dimensional orientations. Cells were analyzed to determine whether their firing was bound to the external, three-dimensional cues of the environment, to the two-dimensional rectangular surface, or to some combination of these cues. Tilting the track 45 degrees generally provoked a partial remapping of the rectangular surface in that some cells maintained their place fields, whereas other cells either gained new place fields, lost existing fields, or changed their firing locations arbitrarily. When the tilted track was rotated relative to the distal landmarks, most place fields remapped, but a number of cells maintained the same place field relative to the x-y coordinate frame of the laboratory, ignoring the z axis. No more cells were bound to the local reference frame of the recording apparatus than would be predicted by chance. The partial remapping demonstrated that the place cell system was sensitive to the three-dimensional manipulations of the recording apparatus. Nonetheless the results were not consistent with an explicit three-dimensional tuning of individual hippocampal neurons nor were they consistent with a model in which different sets of cells are tightly coupled to different sets of environmental cues. The results are most consistent with the statement that hippocampal neurons can change their "tuning functions" in arbitrary ways when features of the sensory input or behavioral context are altered. Understanding the rules that govern the remapping phenomenon holds promise for deciphering the neural circuitry underlying hippocampal function.
High-pressure compressibility and vibrational properties of (Ca,Mn)CO 3
Liu, Jin; Caracas, Razvan; Fan, Dawei; ...
2016-12-01
Knowledge of potential carbon carriers such as carbonates is critical for our understanding of the deep-carbon cycle and related geological processes within the planet. Here we investigated the high-pressure behavior of (Ca,Mn)CO 3 up to 75 GPa by synchrotron single-crystal X-ray diffraction, laser Raman spectroscopy, and theoretical calculations. MnCO 3-rich carbonate underwent a structural phase transition from the CaCO 3-I structure into the CaCO 3-VI structure at 45–48 GPa, while CaCO 3-rich carbonate transformed into CaCO 3-III and CaCO 3-VI at approximately 2 and 15 GPa, respectively. The equation of state and vibrational properties of MnCO 3-rich and CaCO 3-richmore » carbonates changed dramatically across the phase transition. The CaCO 3-VI-structured CaCO 3-rich and MnCO 3-rich carbonates were stable at room temperature up to at least 53 and 75 GPa, respectively. In conclusion, the addition of smaller cations (e.g., Mn 2+, Mg 2+, and Fe 2+) can enlarge the stability field of the CaCO 3-I phase as well as increase the pressure of the structural transition into the CaCO 3-VI phase.« less
SU-G-TeP1-13: Reclined Total Skin Electron Treatment Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, D; Gerbi, B
Purpose: The purpose is to describe a new reclined technique for treatment of weakened patients that require total skin electron irradiation. Methods: This technique is a modification of a previously published reclined technique differing in that all six patient positions are treated with the gantry angled 60° from vertically down. The patient is located at a treatment distance of 330 cm SSD along the CA of the beam. The 3/8′ thick Lexan beam spoiler is placed 25 cm from the most proximal surface of the patient for all patient treatment positions. To produce a flat, uniform field of ∼190 cmmore » length, the patient was moved longitudinally by an experimentally determined distance. Kodak EDR2 and EBT3 Radiochromic film were placed around the periphery of the phantom, and OSLs were placed every 30° around the phantom periphery to determine output and surface dose uniformity. A piece of Kodak EDR2 was sandwiched between the two slabs of the 30 cm diameter phantom to determine beam penetration. Results: Field uniformity shifting the patient ±75 cm was ±5% over a treatment span of 190 cm. The dose variation around the periphery of the 30 cm diameter phantom varied by <±5% with the maximum values observed at the 0°-300°, 60° locations with the minimum values at the 30°-330°, 60° locations. Results obtained using Kodak EDR2, EBT3 Radiochromic film, and OSLs agreed to within ±5%. Conclusion: This technique provides a very efficient and convenient means by which to treat the entire skin surface of patients incapable of standing for treatment. It provides a treatment field that is both large and uniform enough for adults along with a convenient way to treat four of the six patient treatment positions. The beam spoiler lies to the side of the patient allowing easy access for patient positioning.« less
1984-01-01
fac- turs are described as follows: (a) Basil stability -- Determination of horizontal movement in the slurry wall or the ground behind the wall...SG-l.2) M Acid mine drainage (FeSO4 pH 3) N Liqnin (in Ca++ solution) N Orqanic residues trom pesticide manutacture N Alcohol M/H asiqnificant
Archaeological Study of CA-VEN-110, Ventura, California.
1986-01-01
technoeconomic studies of artifacts, on the other. The recovery, analysis , and interpretation of the data to be sought will - constitute a major step toward...associated with plant processing will be immediately overwrapped and removed promptly from the field for technical analysis . The laboratory supervisor...Places. Preservation is recommended, with mitigation by data recov- ery and further analysis needed if total conservation is not possible
Naloxone injections into CA3 disrupt pattern completion associated with relapse from cocaine seeking
Kirk, Ryan A.; Clark, Jascha K.; Moore, Angela; Keefe, Kristen
2016-01-01
The goal of the present research was to assess the degree to which a pattern completion process operates in cue-induced relapse to cocaine-seeking behavior. Using a novel cue-preference version of the place preference task, rats were administered cocaine or saline, which resulted in a preference for the cocaine-paired cues. After 21 days of abstinence and prior to the preference test, for one group, PBS or naloxone was injected into the CA3 subregion of the hippocampus and for a second group, saline or naloxone was injected systemically. The results indicated that infusions of naloxone into CA3 or systemic injections produced a marked disruption for one and two cues, but had minimal disruptive effect for three or four cues, suggesting that naloxone injections disrupt CA3 function and trigger a deficit in a pattern completion process. Thus, it appears that cue-based activation of the dorsal CA3 might be a critical trigger via a pattern completion process. Based on additional analyses it appears that there is a disruption primarily for object touches for one cue naloxone injections into the CA3 or systemic injections, but no effect on time (spatial context). PMID:26815290
Li, Congmin; Lim, Sunghyuk; Braunewell, Karl H; Ames, James B
2016-01-01
Visinin-like protein 3 (VILIP-3) belongs to a family of Ca2+-myristoyl switch proteins that regulate signal transduction in the brain and retina. Here we analyze Ca2+ binding, characterize Ca2+-induced conformational changes, and determine the NMR structure of myristoylated VILIP-3. Three Ca2+ bind cooperatively to VILIP-3 at EF2, EF3 and EF4 (KD = 0.52 μM and Hill slope of 1.8). NMR assignments, mutagenesis and structural analysis indicate that the covalently attached myristoyl group is solvent exposed in Ca2+-bound VILIP-3, whereas Ca2+-free VILIP-3 contains a sequestered myristoyl group that interacts with protein residues (E26, Y64, V68), which are distinct from myristate contacts seen in other Ca2+-myristoyl switch proteins. The myristoyl group in VILIP-3 forms an unusual L-shaped structure that places the C14 methyl group inside a shallow protein groove, in contrast to the much deeper myristoyl binding pockets observed for recoverin, NCS-1 and GCAP1. Thus, the myristoylated VILIP-3 protein structure determined in this study is quite different from those of other known myristoyl switch proteins (recoverin, NCS-1, and GCAP1). We propose that myristoylation serves to fine tune the three-dimensional structures of neuronal calcium sensor proteins as a means of generating functional diversity.
1983-01-01
N00104-83-CA014 B C A 1 2 2 1361 000 AS DEPTH CHARGE EXPLOSIVE COMPO 8 A 3 4 J 018 1 B J 1 J 174 2 E JA116 4000 N00104-83-CA014 B C A 1 2 2 1386 000 A6... EXPLOSIVE ORD DISPOSAL TOOL- 8 A 6 4 J 018 1 B J 1 E 84 2 A JA116 1398 N00104-63-CA026 B C A 1 3 2 1361 000 AS DEPTH CHARGE EXPLOSIVE COMPO 8 A 3 4 J...CA088 B C A 1 2 2 1356 000 AS TORPEDO EXPLOSIVE COMPONENTS 8 A 3 5 A 1001 5 B J 1 H 195 2 G PAIOt A700 N00140-83-CBA83 B C Z 1 2 2 R414 000 51 MOT
Wang, Xue-mei; Zhang, Ji; Li, Tao; Li, Jie-qing; Wang, Yuan-zhong; Liu, Hong-gao
2015-05-01
P, Na, Ca, Cu, Fe, Mg, Zn, As, Cd, Co, Cr and Ni, contents have been examined in caps and stipes of Boletus tomentipes collected from different sites of Yunnan province, southwest China. The elements were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) with microwave digestion. P, Ca, Mg, Fe, Zn and Cu were the most abundant amongst elements determined in Boletus tomentipes. The caps were richer in P, Mg, Zn and Cd, and the stipes in Ca, Co and Ni. Cluster analysis showed a difference between Puer (BT7 and BT8) and other places. The PCA explained about 77% of the total variance, and the minerals differentiating these places were P (PC1) together with Ca, Cu, Fe, Mg, As and Ni, Na (PC2) together with Cd, and Zn (PC3). The results of this study imply that element concentrations of a mushroom are mutative when collected from the different bedrock soil geochemistry.
Kramerova, Irina; Torres, Jorge A; Eskin, Ascia; Nelson, Stanley F; Spencer, Melissa J
2018-01-01
Abstract Mutations in CAPN3 cause autosomal recessive limb girdle muscular dystrophy 2A. Calpain 3 (CAPN3) is a calcium dependent protease residing in the myofibrillar, cytosolic and triad fractions of skeletal muscle. At the triad, it colocalizes with calcium calmodulin kinase IIβ (CaMKIIβ). CAPN3 knock out mice (C3KO) show reduced triad integrity and blunted CaMKIIβ signaling, which correlates with impaired transcriptional activation of myofibrillar and oxidative metabolism genes in response to running exercise. These data suggest a role for CAPN3 and CaMKIIβ in gene regulation that takes place during adaptation to endurance exercise. To assess whether CAPN3- CaMKIIβ signaling influences skeletal muscle remodeling in other contexts, we subjected C3KO and wild type mice to hindlimb unloading and reloading and assessed CaMKIIβ signaling and gene expression by RNA-sequencing. After induced atrophy followed by 4 days of reloading, both CaMKIIβ activation and expression of inflammatory and cellular stress genes were increased. C3KO muscles failed to activate CaMKIIβ signaling, did not activate the same pattern of gene expression and demonstrated impaired growth at 4 days of reloading. Moreover, C3KO muscles failed to activate inducible HSP70, which was previously shown to be indispensible for the inflammatory response needed to promote muscle recovery. Likewise, C3KO showed diminished immune cell infiltration and decreased expression of pro-myogenic genes. These data support a role for CaMKIIβ signaling in induction of HSP70 and promotion of the inflammatory response during muscle growth and remodeling that occurs after atrophy, suggesting that CaMKIIβ regulates remodeling in multiple contexts: endurance exercise and growth after atrophy. PMID:29528394
Ab-initio calculations of the Ruddlesden Popper phases CaMnO3, CaO(CaMnO3) and CaO(CaMnO3)2
NASA Astrophysics Data System (ADS)
Cardoso, C.; Borges, R. P.; Gasche, T.; Godinho, M.
2008-01-01
The present work reports ab-initio density functional theory calculations for the Ruddlesden-Popper phase CaO(CaMnO3)n compounds. In order to study the evolution of the properties with the number of perovskite layers, a detailed analysis of the densities of states calculated for each compound and for several magnetic configurations was performed. The effect of distortions of the crystal structure on the magnetic ground state is also analysed and the exchange constants and transition temperatures are calculated for the three compounds using a mean field model. The calculated magnetic ground state structures and magnetic moments are in good agreement with experimental results and previous calculations.
Why Do Organisms in the Atlantic Ocean Produce So Much CaCO3?
NASA Astrophysics Data System (ADS)
Toggweiler, J. R.
2010-12-01
Sediments in the Atlantic are richer in CaCO3 than sediments in the other oceans. Sediment trap observations show that sinking particles in the Atlantic also tend to have more CaCO3 in relation to organic carbon than sinking particles elsewhere. The reason for the extra production of CaCO3 has never been very clear. The Atlantic is unusual because it receives much more than its share of the global input of river water. River water adds alkalinity to the surface ocean while the production of CaCO3 takes it away. In this presentation a new tracer, called Alk*, is derived from the surface alkalinity distribution to highlight the impact of river inputs and the production of CaCO3. If the production of CaCO3 were evenly distributed across the ocean one would expect the Atlantic to have a higher level of Alk* becaused of its river inputs. We find instead that Alk* is lower in the middle of the Atlantic than almost any place else. This, of course, is consistent with the fact that organisms in the Atlantic produce a lot of CaCO3. Comparison with other areas with especially low values of Alk* (Red Sea and northern Arabian Sea) shows that the production of CaCO3 is highly correlated across the ocean with the surface salinity. Hence, we argue that organisms in the Atlantic produce a lot of CaCO3 simply because the Atlantic is so salty. Salty waters, by definition, have more CO3= ions, which increase the supersaturation with respect to calcite and aragonite. This finding, while extremely simple, has major implifications for the impact of ocean acidification on calcifying organisms.
VIEW TO SOUTHEAST TOWARD QUARTERMASTER BUILDINGS GROUP AND RESERVOIR HILL, ...
VIEW TO SOUTHEAST TOWARD QUARTERMASTER BUILDINGS GROUP AND RESERVOIR HILL, FROM AMMUNITION (IGLOO) HILL. (Part 2 of a 3 view panorama; see also CA-2398-J-1 and CA-2398-16.) - Hamilton Field, East of Nave Drive, Novato, Marin County, CA
Critical current density of TlBa 2Ca 2Cu 3O 9 thin films on MgO (100) in magnetic fields
NASA Astrophysics Data System (ADS)
Piehler, A.; Ströbel, J. P.; Reschauer, N.; Löw, R.; Schönberger, R.; Renk, K. F.; Kraus, M.; Daniel, J.; Saemann-Ischenko, G.
1994-04-01
We report on the critical current density of TlBa 2Ca 2Cu 3O 9 thin films on (100) MgO substrates in magnetic fields. Single- phase and highly c-axis oriented thin films were prepared by laser ablation in combination with thermal evaporation of Tl 2O 3. Scanning electron microscope investigations indicated a flat plate-like microstructure and DC magnetization measurements showed the onset of superconductivity at ∼ 115 K. The critical current density jc was determined from magnetization cycles. Typical values of jc were 9 × 10 5 A/cm 2 at 6 K and 2.5 × 10 5 A/cm 2 at 77 K. In a magnetic field to 1 T applied parallel to the c-axis the critical current densities were 3 × 10 5 A/cm 2 at 6 K and 3 × 10 3 A/cm 2 at 77 K. The decrease of jc at higher magnetic fields is discussed and attributed to the microstructure of the TlBa 2Ca 2Cu 3O 9 thin films.
Exchange bias induced by the fully strained La{sub 2/3}Ca{sub 1/3}MnO{sub 3} dead layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Q. Y.; College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046; Wu, X. S., E-mail: xswu@nju.edu.cn
A pure compressively strained La{sub 2/3}Ca{sub 1/3}MnO{sub 3} (LCMO) dead layer grown on (001)-oriented LaAlO{sub 3} substrate can show all the rich phenomenon of large bias field shift, coercive field enhancement, and high blocking temperature. The obtained exchange bias field (∼350 Oe) and the enhanced coercivity of about 1160 Oe at 5 K under 500 Oe cooling field are superior to that have been reported in LCMO-based ferromagnetic/antiferromagnetic superlattices or nanoscale systems. Our results clearly demonstrate that the inhomogeneous magnetic dead layer of LCMO can induce a strong exchange bias effect, which may be exploited as a very simple structure for spin-valve device application.
Javadi, Parastoo; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra
2017-07-01
The aim of the present study was to examine the possible role of nicotinic acetylcholine receptors of the dorsal hippocampus (CA1 regions), the medial prefrontal cortex or the basolateral amygdala in the effect of acute or sub-chronic stress on nicotine-induced conditioned place preference. Our results indicated that subcutaneous administration of nicotine (0.2 mg/kg) induced significant conditioned place preference. Exposure to acute or sub-chronic elevated platform stress potentiated the response of an ineffective dose of nicotine. Pre-conditioning intra-CA1 (0.5-4 µg/rat) or intra-medial prefrontal cortex (0.2-0.3 µg/rat) microinjection of mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist) reversed acute stress-induced potentiation of nicotine reward as measured in the conditioned place preference paradigm. By contrast, pre-conditioning intra-basolateral amygdala microinjection of mecamylamine (4 µg/rat) potentiated the effects of acute stress on nicotine reward. Our findings also showed that intra-CA1 or intra-medial prefrontal cortex, but not intra-basolateral amygdala, microinjection of mecamylamine (4 µg/rat) prevented the effect of sub-chronic stress on nicotine reward. These findings suggest that exposure to elevated platform stress potentiates the rewarding effect of nicotine which may be associated with the involvement of nicotinic acetylcholine receptors. It seems that there is a different contribution of the basolateral amygdala, the medial prefrontal cortex or the CA1 nicotinic acetylcholine receptors in stress-induced potentiation of nicotine-induced conditioned place preference.
Goff, Jesse P; Koszewski, Nicholas J
2018-06-01
Most studies demonstrating that diets with low dietary cation-anion difference (DCAD) reduce hypocalcemia in cows add enough anions to the diet to reduce urine pH below 7.0. One objective of these experiments was to determine whether there is any benefit to periparturient plasma Ca concentration if diet anion addition results in a lesser degree of acidification of the cow and urine pH does not go below 7.0. Another method for reducing hypocalcemia involves feeding a prepartal diet that is Ca deficient. This places the cow in negative Ca balance before calving, stimulating parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D secretion before calving and thus promoting Ca homeostasis at calving. As practiced in the field, low-Ca diets are often about 0.5% Ca. Our second objective was to determine whether a 0.46% Ca diet would be sufficiently low in Ca to stimulate PTH secretion before calving. A meta-analysis of the literature suggests that a 0.5% Ca, low-DCAD diet will reduce hypocalcemia better than a 0.7% Ca diet. A third objective was to compare periparturient plasma Ca in cows fed 0.46 or 0.72% Ca diets with similar DCAD. In experiment 1, anions (primarily chloride) or anions plus Ca were added to a 1.4% K basal diet to create the following diets: 0.46% Ca and +167 mEq/kg of DCAD, 0.46% Ca and -13 mEq/kg of DCAD, and 0.72% Ca and -17 mEq/kg of DCAD. In experiment 2, the same amounts of anion were added to a 2.05% K basal diet to create the following diets: 0.46% Ca and +327 mEq/kg of DCAD, 0.46% Ca and +146 mEq/kg of DCAD, and 0.72% Ca and +140 mEq/kg of DCAD. In experiment 1, cows fed the diet with 0.46% Ca and +167 mEq/kg of DCAD had significantly lower plasma Ca concentration after calving than cows fed the 0.46 or 0.72% Ca diets with anions. Periparturient plasma Ca concentrations did not differ in cows fed the low-DCAD diets with 0.46 or 0.72% Ca. Urine pH was reduced from 8.27 in the diet with 0.46% Ca and +167 mEq/kg of DCAD to 7.07 and 7.41 in the 0.46 and 0.72% Ca anion diets, respectively. Precalving plasma PTH and 1,25-dihydroxyvitamin D concentrations were similar in cows fed the 0.46% Ca diets and the 0.72% Ca diets, suggesting that the 0.46% Ca diets were not low enough in Ca to place the cow in negative Ca balance before calving. In experiment 2, adding the anion supplements to a 2.05% K diet did not reduce urine pH below 8.0. Periparturient plasma Ca concentrations did not differ in cows in any group in experiment 2. Precalving diets that are 0.46% Ca fed ad libitum are too high in Ca to stimulate Ca homeostasis before calving. Adding anions to a diet can benefit periparturient cow plasma Ca concentration, but only if it alters acid-base status enough to reduce urine pH below 7.5. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Control of recollection by slow gamma dominating mid-frequency gamma in hippocampus CA1
Dvorak, Dino; Radwan, Basma; Sparks, Fraser T.; Talbot, Zoe Nicole
2018-01-01
Behavior is used to assess memory and cognitive deficits in animals like Fmr1-null mice that model Fragile X Syndrome, but behavior is a proxy for unknown neural events that define cognitive variables like recollection. We identified an electrophysiological signature of recollection in mouse dorsal Cornu Ammonis 1 (CA1) hippocampus. During a shocked-place avoidance task, slow gamma (SG) (30–50 Hz) dominates mid-frequency gamma (MG) (70–90 Hz) oscillations 2–3 s before successful avoidance, but not failures. Wild-type (WT) but not Fmr1-null mice rapidly adapt to relocating the shock; concurrently, SG/MG maxima (SGdom) decrease in WT but not in cognitively inflexible Fmr1-null mice. During SGdom, putative pyramidal cell ensembles represent distant locations; during place avoidance, these are avoided places. During shock relocation, WT ensembles represent distant locations near the currently correct shock zone, but Fmr1-null ensembles represent the formerly correct zone. These findings indicate that recollection occurs when CA1 SG dominates MG and that accurate recollection of inappropriate memories explains Fmr1-null cognitive inflexibility. PMID:29346381
1990-01-01
Using double-barreled, Ca2(+)-sensitive microelectrodes, we have examined the characteristics of the Ca2+ release by inositol 1,4,5- trisphosphate (Ins(1,4,5)P3) in the various layers of Xenopus laevis eggs in which the organelles had been stratified by centrifugation. Centrifugation of living eggs stratifies the organelles yet retains them in the normal cytoplasmic milieu. The local increase in intracellular free Ca2+ in each layer was directly measured under physiological conditions using theta-tubing, double-barreled, Ca2(+)- sensitive microelectrodes in which one barrel was filled with the Ca2+ sensor and the other was filled with Ins(1,4,5)P3 for microinjection. The two tips of these electrodes were very close to each other (3 microns apart) enabling us to measure the kinetics of both the highly localized intracellular Ca2+ release and its subsequent removal in response to Ins(1,4,5)P3 injection. Upon Ins(1,4,5)P3 injection, the ER- enriched layer exhibited the largest release of Ca2+ in a dosage- dependent manner, whereas the other layers, mitochondria, lipid, and yolk, released 10-fold less Ca2+ in a dosage-independent manner. The removal of released Ca2+ took place within approximately 1 min. The sensitivity to Ins(1,4,5)P3 and the time course of intracellular Ca2+ release in the unstratified (unactivated) egg is nearly identical to that observed in the ER layer of the stratified egg. Our data suggest that the ER is the major organelle of the Ins(1,4,5)P3-sensitive Ca2+ store in the egg of Xenopus laevis. PMID:2324195
NASA Astrophysics Data System (ADS)
Xiang, P.-H.; Yamada, H.; Sawa, A.; Akoh, H.
2010-03-01
We report on the transport properties of electron-doped manganite Ca1-xCexMnO3 (CCMO, 0≤x≤0.08) films and superlattices composed of insulating layers CaMnO3 (CMO) and Ca0.92Ce0.08MnO3 (CCMO8), deposited on nearly lattice-matched NdAlO3 substrates. The CCMO (x =0.06 and 0.07) films show colossal magnetoresistance (CMR) accompanied with magnetorelaxor behavior, which can be ascribed to the phase separation of canted G-type antiferromagnetic metal and C-type antiferromagnetic insulator. The (CMO)m/(CCMO8)n superlattices with 4≤m, n ≤8 (unit cells) resemble the solid-solution CCMO (x =0.06 and 0.07) films in CMR and magnetorelaxor behavior, suggesting that the phase separation takes place in the superlattices. The CMR and magnetorelaxor behavior of the (CMO)m/(CCMO8)n superlattices strongly depend on the thicknesses of constituent CMO and CCMO8 layers. The origin of the phase separation in the superlattices is discussed in terms of the charge transfer and the phase competition at the interfaces.
Exchange bias in multiferroic Ca3Mn2O7 effected by Dzyaloshinskii-Moriya interaction
NASA Astrophysics Data System (ADS)
Sahlot, Pooja; Jana, Anupam; Awasthi, A. M.
2018-04-01
Ruddlesden-Popper manganite Ca3Mn2O7 has been synthesized in single phase orthorhombic structure with Cmcm space group. Temperature dependent magnetization M(T) shows that Ca3Mn2O7 undergoes long range antiferromagnetic (AFM) transition below 123 K, with weak ferromagnetism (WFM) at lower temperatures. Field dependent magnetization M(H) confirms WFM character below ˜110 K in the AFM-base magnetic structure. Detailed analysis of the zero field cooled magnetic hysteresis loops reveals a measurable exchange bias (EB) effect in the sample. EB is attributed to the high anisotropy in the sample and the presence of Dzyaloshinskii-Moriya (D-M) interaction, responsible for the canted interfacial-spins that couple "FM-clusters" with the "AFM-matrix". Temperature dependence of horizontal shifts of the M(H) loops in terms of the coercive fields (Hc±) and vertical shifts in terms of the remnant magnetizations (Mr±) is presented.
Hippocampal CA1 local field potential oscillations induced by olfactory cue of liked food.
Samerphob, Nifareeda; Cheaha, Dania; Chatpun, Surapong; Kumarnsit, Ekkasit
2017-07-01
Eating motivation is induced not only by negative energy balance but also food related cues. However, neural processing for acquisition of learned food preference remains to be established. This study aimed to identify hippocampal neural signaling in response to olfactory cue (chocolate scent) after completion of repetitive chocolate sessions. Male Swiss albino mice implanted with intracranial electrode into the hippocampus were used for local field potential (LFP) recording. Animals were given chocolate sessions (a piece of 2g chocolate per each mouse to eat on day 1, 3, 5 and 7). Hippocampal CA1 LFP signals and exploratory behavior of animals receiving chocolate scent were analyzed before and after chocolate sessions. The experiment was performed in a place preference-like apparatus with the zones of normal food pellet and chocolate (both kept in a small perforated cup for smell dispersion) at the opposite ends. Following chocolate sessions, time spent in a chocolate zone and CA1 LFP patterns were analyzed in comparison to control levels. Two-way ANOVA revealed significant increase in time spent seeking for chocolate. Frequency analysis of LFP power spectra revealed significant increases in delta and theta powers. Phase-amplitude analysis showed significant increase in maximal modulation index and decrease in frequency for phase of theta-high gamma coupling. Taken together, neural signaling in the hippocampus was sensitive to chocolate olfactory cue that might underlie learning process in response to repeated chocolate consumptions that primed intense food approaching behavior. Ultimately, these LFP patterns might reflect motivation to eat and predict feeding probability. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Pei; Abraimov, Dmytro; Polyanskii, Anatolii; Kametani, Fumitake; Larbalestier, David
2015-03-01
The residual low-angle grain boundary (GB) network is still the most important current-limiting mechanism operating in biaxially textured rare-earth barium-copper-oxide (REBCO) coated conductors. While Ca doping is well established to improve supercurrent flow across low-angle GBs in weak fields at high temperatures, Ca doping also depresses Tc, making it so far impractical for high-temperature applications of REBCO coated conductors. On the other hand, high-field-magnet applications of REBCO require low temperatures. Here we systematically evaluate the effectiveness of Ca doping in improving the GB transparency, rGB=JcGB/ Jcgrain , of low-angle Y b1 -xC axBaCuO [001] tilt bicrystal films down to 10 K and with magnetic fields perpendicular and parallel to the film surfaces, while varying the Ca and oxygen doping level. Using low-temperature scanning laser microscopy and magneto-optical imaging, we found rGB to strongly depend on the angle between magnetic field and the GB plane and clearly identified regimes in which JcGB can exceed Jcgrain(rGB>1 ) where the GB pinning is optimized by the field being parallel to the GB dislocations. However, even in this favorable situation, we found that rGB became much smaller at lower temperatures. Calculations of the GB Ca segregation profile predict that the high-Jc channels between the GB dislocation cores are almost Ca free. It may be therefore that the positive effects of Ca doping seen by many authors near Tc are partly a consequence of the higher Tc of these Ca-free channels.
Li, Wen; Fan, Chun Chieh; Mäki-Marttunen, Tuomo; Thompson, Wesley K; Schork, Andrew J; Bettella, Francesco; Djurovic, Srdjan; Dale, Anders M; Andreassen, Ole A; Wang, Yunpeng
2018-06-01
Traditional genome-wide association studies (GWAS) have successfully detected genetic variants associated with schizophrenia. However, only a small fraction of heritability can be explained. Gene-set/pathway-based methods can overcome limitations arising from single nucleotide polymorphism (SNP)-based analysis, but most of them place constraints on size which may exclude highly specific and functional sets, like macromolecules. Voltage-gated calcium (Ca v ) channels, belonging to macromolecules, are composed of several subunits whose encoding genes are located far away or even on different chromosomes. We combined information about such molecules with GWAS data to investigate how functional channels associated with schizophrenia. We defined a biologically meaningful SNP-set based on channel structure and performed an association study by using a validated method: SNP-set (sequence) kernel association test. We identified eight subtypes of Ca v channels significantly associated with schizophrenia from a subsample of published data (N = 56,605), including the L-type channels (Ca v 1.1, Ca v 1.2, Ca v 1.3), P-/Q-type Ca v 2.1, N-type Ca v 2.2, R-type Ca v 2.3, T-type Ca v 3.1, and Ca v 3.3. Only genes from Ca v 1.2 and Ca v 3.3 have been implicated by the largest GWAS (N = 82,315). Each subtype of Ca v channels showed relatively high chip heritability, proportional to the size of its constituent gene regions. The results suggest that abnormalities of Ca v channels may play an important role in the pathophysiology of schizophrenia and these channels may represent appropriate drug targets for therapeutics. Analyzing subunit-encoding genes of a macromolecule in aggregate is a complementary way to identify more genetic variants of polygenic diseases. This study offers the potential of power for discovery the biological mechanisms of schizophrenia. © 2018 Wiley Periodicals, Inc.
Direct observation of charged domain walls in hybrid improper ferroelectric (Ca,Sr)3Ti2O7
NASA Astrophysics Data System (ADS)
Kurushima, Kousuke; Yoshimoto, Wataru; Ishii, Yui; Cheong, Sang-Wook; Mori, Shigeo
2017-10-01
We investigated ferroelectric (FE) domain wall structures including “charged domain walls” of hybrid improper FE (Ca,Sr)3Ti2O7 at the subatomic resolution by dark-field transmission electron microscopy (TEM) and high-resolution state-of-the-art aberration-corrected high-angle annular-dark-field (HAADF) scanning transmission electron microscopy (STEM). Dark-field TEM and high-resolution HAADF-STEM images obtained in the FE phase of single crystals of Ca2.46Sr0.54Ti2O7 revealed the formation of abundant charged domain walls with the head-to-head and tail-to-tail configurations in the FE domain structure, in addition to the FE 180° domain structure. The charged domain walls with the head-to-head and tail-to-tail FE polarizations exist stably and can be characterized as the unique double arc-type displacement of Ca/Sr ions in a unit cell without charge accumulation.
Kesner, Raymond P; Kirk, Ryan A; Clark, Jascha K; Moore, Angela; Keefe, Kristen
2016-07-01
The goal of the present research was to assess the degree to which a pattern completion process operates in cue-induced relapse to cocaine-seeking behavior. Using a novel cue-preference version of the place preference task, rats were administered cocaine or saline, which resulted in a preference for the cocaine-paired cues. After 21 days of abstinence and prior to the preference test, for one group, PBS or naloxone was injected into the CA3 subregion of the hippocampus and for a second group, saline or naloxone was injected systemically. The results indicated that infusions of naloxone into CA3 or systemic injections produced a marked disruption for one and two cues, but had minimal disruptive effect for three or four cues, suggesting that naloxone injections disrupt CA3 function and trigger a deficit in a pattern completion process. Thus, it appears that cue-based activation of the dorsal CA3 might be a critical trigger via a pattern completion process. Based on additional analyses it appears that there is a disruption primarily for object touches for one cue naloxone injections into the CA3 or systemic injections, but no effect on time (spatial context). © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Investigation of exotic stable calcium carbides using theory and experiment
Li, Yan-Ling; Wang, Sheng-Nan; Oganov, Artem R.; ...
2015-05-11
It is well known that pressure causes profound changes in the properties of atoms and chemical bonding, leading to the formation of many unusual materials. Here we systematically explore all stable calcium carbides at pressures from ambient to 100 GPa using variable-composition evolutionary structure predictions. We find that Ca 5C 2, Ca 2C, Ca 3C 2, CaC, Ca 2C 3, and CaC 2 have stability fields on the phase diagram. Among these, Ca2C and Ca2C3 are successfully synthesized for the first time via high-pressure experiments with excellent structural correspondence to theoretical predictions. Of particular significance are the base-centered monoclinic phasemore » (space group C 2/m) of Ca 2C, a quasi-two-dimensional metal with layers of negatively charged calcium atoms, and the primitive monoclinic phase (space group P21/c) of CaC with zigzag C 4 groups. Interestingly, strong interstitial charge localization is found in the structure of R-3m-Ca 5C 2 with semimetallic behaviour.« less
Klasing, K C; Thacker, P; Lopez, M A; Calvert, C C
2000-12-01
The purpose of these studies was to determine the husbandry variables that optimize the Ca content of mealworms (Tenebrio molitor) and to determine the bioavailability of this Ca for bone mineralization in chicks that consume the mealworms. To determine the optimal level of Ca in the substrates used in short-term (< 14 days) holding of mealworms and to determine the length of time that mealworms should be exposed to high-Ca substrates, mealworms were placed in either a wheat bran or a chicken starter substrate supplemented with 0, 4, 8, or 12% Ca from CaCO3. The mealworms were harvested after 0.5, 1, 2, 3, 4, 7, or 14 days. The Ca content of the mealworms was greatest with the use of chicken starter and increased linearly with the Ca content of the substrate. In general, the Ca content of the mealworms increased during the first 24 hr and decreased after > or = 1 wk, especially at the higher levels of Ca supplementation. The chicken starter also resulted in higher levels of vitamin D in mealworms. Mealworms held in wheat bran with 8% Ca were fed to growing chicks. Ca bioavailability was calculated from the chicks' bone ash. The Ca in these mealworms was 76% as bioavailable as the Ca in oyster shell.
NASA Astrophysics Data System (ADS)
Qiao, K. M.; Li, J.; Liu, Y.; Kuang, H.; Wang, J.; Hu, F. X.; Sun, J. R.; Shen, B. G.
2018-06-01
In this paper, we have investigated the magnetocaloric effect (MCE) and its modulation by electric field in La0.325Pr0.3Ca0.375MnO3 (LPCMO) films grown on (0 1 1)-oriented PMN-PT substrates. As a typical perovskite manganite with phase separation, the LPCMO bulk shows a considerable MCE, but the MCE of the LPCMO films has never been investigated. We found that the LPCMO films exhibit a MCE over a wide temperature range. A modulation of magnetization by electric field has been observed in the temperature dependent (M-T) and magnetic field dependent (M-H) curves. As a result, enhanced magnetic entropy change and refrigeration capacity by about 4% under an electric field of +6 kV/cm has been demonstrated.
Raman scattering studies of the orbital, magnetic, and conducting phases in double layer ruthenates
NASA Astrophysics Data System (ADS)
Karpus, John Francis
In this dissertation, light scattering techniques are used to probe the exotic orbital, magnetic, and conducting phases of the double layer ruthenate, Ca3Ru2O7, as functions of temperature, applied pressure, and applied magnetic field. These phases result from a rich interplay between the orbital, spin, and electronic degrees of freedom in such a strongly coupled system as Ca3Ru2O7. The Raman-active phonon and magnon excitations in Ca3Ru2O7 convey sufficient information to map out the orbital, magnetic, and conducting (H, T) and (P, T) phase diagrams of this material. This study finds that quasihydrostatic pressure causes a linear suppression of the orbital-ordering temperature (TOO = 48 K at P = 0), up to a T = 0 critical point near P* ˜ 55 kbar, above which the material is in a metallic, orbital-degenerate phase. This pressure-induced collapse of the antiferromagnetic orbital-ordered phase is associated with a suppression of the RuO6 octahedral distortions that are responsible for orbital-ordering. It is also shown that an applied magnetic field at low temperatures induces a change from an orbital-ordered to an orbital-degenerate phase for fields aligned along the in-plane hard-axis, but induces a reentrant orbital-ordered to orbital-disordered to orbital-ordered phase change for fields aligned along the in-plane easy-axis. This complex magnetic field dependence betrays the importance of the spin-orbit coupling in this system, which makes the field-induced phase behavior highly sensitive to both the applied magnetic field magnitude and direction. It is further shown that rapid field-induced changes in the structure and orbital populations are responsible for the highly field-tunable conducting properties of Ca3Ru2O7, and that the most dramatic magneto-conductivities are associated with an "orbital disordered" phase regime in which there is a random mixture of a- and b-axis oriented Ru moments and d-orbital populations on the Ru ions. Dilute La doping in Ca3Ru2O7 changes the lattice parameter along the c-axis and also adds an extra electron, providing bandwidth and band filling control, respectively. This addition of La also lowers the orbital ordering temperature to T ˜ 43 K, and provides a greater sensitivity of the orbital phases to applied magnetic fields, as evidenced by changes in the phases occurring at lower fields and over a greater field range than seen in the undoped system.
Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep.
Montgomery, Sean M; Sirota, Anton; Buzsáki, György
2008-06-25
Rapid eye movement (REM) sleep has been considered a paradoxical state because, despite the high behavioral threshold to arousing perturbations, gross physiological patterns in the forebrain resemble those of waking states. To understand how intrahippocampal networks interact during REM sleep, we used 96 site silicon probes to record from different hippocampal subregions and compared the patterns of activity during waking exploration and REM sleep. Dentate/CA3 theta and gamma synchrony was significantly higher during REM sleep compared with active waking. In contrast, gamma power in CA1 and CA3-CA1 gamma coherence showed significant decreases in REM sleep. Changes in unit firing rhythmicity and unit-field coherence specified the local generation of these patterns. Although these patterns of hippocampal network coordination characterized the more common tonic periods of REM sleep (approximately 95% of total REM), we also detected large phasic bursts of local field potential power in the dentate molecular layer that were accompanied by transient increases in the firing of dentate and CA1 neurons. In contrast to tonic REM periods, phasic REM epochs were characterized by higher theta and gamma synchrony among the dentate, CA3, and CA1 regions. These data suggest enhanced dentate processing, but limited CA3-CA1 coordination during tonic REM sleep. In contrast, phasic bursts of activity during REM sleep may provide windows of opportunity to synchronize the hippocampal trisynaptic loop and increase output to cortical targets. We hypothesize that tonic REM sleep may support off-line mnemonic processing, whereas phasic bursts of activity during REM may promote memory consolidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, B.; Kunich, J.C.; Bindokas, V.P.
1978-10-01
Results of the first year's field study of possible effects on honey bees of a 765 kV transmission line are reported. Conventional hives and metal-free hives, shielded and unshielded, were placed under the line (E-field, ca. 7 kV/m) and in a control area (E-field, ca. 10 V/m) about 400 m away. Bees in unshielded conventional hives under the line weighed less, stored little honey whose moisture content was subnormal (hive weight gain was essentially zero), propolyzed hive entrances excessively but not completely, produced fewer pupae but normal numbers of eggs and larvae, and failed to survive the winter. Unshielded metal-freemore » hives under the line had the following normal features: bee weight; hive weight gain; honey moisture content; and number of eggs, larvae, and pupae. Their abnormal features were: propolization of hive entrances, but at a slower rate and to a lesser extent than conventional hives; aggressive clusters of bees at lower front hive corners; poor overwintering survival; and possibly higher hemocyte counts.« less
The influence of chemical agents on the level of ionized [Ca2+] in squid axons
1985-01-01
Squid giant axons injected with either aequorin or arsenazo III and bathed in 3 mM Ca (Na) seawater were transferred to 3 mM Ca (K) seawater and the response of the aequorin light or the change in the absorbance of arsenazo III was followed. These experimental conditions were chosen because they measure the change in the rate of Na/Ca exchange in introducing Ca into the axon upon depolarization; [Ca]o is too low to effect a channel-based system of Ca entry. This procedure was applied to axons treated with a variety of compounds that have been implicated as inhibitors of Na/Ca exchange. The result obtained was that the substances tested could be placed in three groups. (a) Substances that were without effect on Ca entry effected by Na/Ca exchange were: D600 at 10-100 microM, nitrendipine at 1-5 microM, Ba2+ and Mg2+ at concentrations of 10-50 mM, lidocaine at 0.1-10 mM, cyanide at 2 mM, adriamycin at a concentration of 3 microM, chloradenosine at 35 microM, 2,4-diaminopyridine at 1 mM, Cs+ at 45-90 mM, and tetrodotoxin at 10(-7). (b) Substances that had a significant inhibitory effect on Na/Ca exchange were: Mn2+, Cd2+, and La3+ at 1-50 mM, and quinidine at 50 microM. (c) There were also blocking agents and biochemical inhibitors whose action appeared to be the inhibition of nonmitochondrial Ca buffering in axoplasm rather than an inhibition of Na/Ca exchange. These were the general anesthetic l-octanol at 0.1 mM and 1 mM orthovanadate plus apyrase. PMID:2410536
Poli, Daniele; Thiagarajan, Srikanth; DeMarse, Thomas B.; Wheeler, Bruce C.; Brewer, Gregory J.
2017-01-01
To better understand encoding and decoding of stimulus information in two specific hippocampal sub-regions, we isolated and co-cultured rat primary dentate gyrus (DG) and CA3 neurons within a two-chamber device with axonal connectivity via micro-tunnels. We tested the hypothesis that, in these engineered networks, decoding performance of stimulus site information would be more accurate when stimuli and information flow occur in anatomically correct feed-forward DG to CA3 vs. CA3 back to DG. In particular, we characterized the neural code of these sub-regions by measuring sparseness and uniqueness of the responses evoked by specific paired-pulse stimuli. We used the evoked responses in CA3 to decode the stimulation sites in DG (and vice-versa) by means of learning algorithms for classification (support vector machine, SVM). The device was placed over an 8 × 8 grid of extracellular electrodes (micro-electrode array, MEA) in order to provide a platform for monitoring development, self-organization, and improved access to stimulation and recording at multiple sites. The micro-tunnels were designed with dimensions 3 × 10 × 400 μm allowing axonal growth but not migration of cell bodies and long enough to exclude traversal by dendrites. Paired-pulse stimulation (inter-pulse interval 50 ms) was applied at 22 different sites and repeated 25 times in each chamber for each sub-region to evoke time-locked activity. DG-DG and CA3-CA3 networks were used as controls. Stimulation in DG drove signals through the axons in the tunnels to activate a relatively small set of specific electrodes in CA3 (sparse code). CA3-CA3 and DG-DG controls were less sparse in coding than CA3 in DG-CA3 networks. Using all target electrodes with the three highest spike rates (14%), the evoked responses in CA3 specified each stimulation site in DG with optimum uniqueness of 64%. Finally, by SVM learning, these evoked responses in CA3 correctly decoded the stimulation sites in DG for 43% of the trials, significantly higher than the reverse, i.e., how well-recording in DG could predict the stimulation site in CA3. In conclusion, our co-cultured model for the in vivo DG-CA3 hippocampal network showed sparse and specific responses in CA3, selectively evoked by each stimulation site in DG. PMID:28321182
NASA Astrophysics Data System (ADS)
Jia, Qianjun; Chen, Ziman; Jiang, Xianxian; Zhao, Zhenjun; Huang, Meiping; Li, Jiahua; Zhuang, Jian; Liu, Xiaoqing; Hu, Tianyu; Liang, Wensheng
2017-02-01
Operator radiation and the radiation protection efficacy of a ceiling-suspended lead screen were assessed during coronary angiography (CA) in a catheterization laboratory. An anthropomorphic phantom was placed under the X-ray beam to simulate patient attenuation in eight CA projections. Using real-time dosimeters, radiation dose rates were measured on models mimicking a primary operator (PO) and an assistant. Subsequently, a ceiling-suspended lead screen was placed in three commonly used positions to compare the radiation protection efficacy. The radiation exposure to the PO was 2.3 to 227.9 (mean: 67.2 ± 49.0) μSv/min, with the left anterior oblique (LAO) 45°/cranial 25° and cranial 25° projections causing the highest and the lowest dose rates, respectively. The assistant experienced significantly less radiation overall (mean: 20.1 ± 19.6 μSv/min, P < 0.003), with the right anterior oblique (RAO) 30° and cranial 25° projections resulting in the highest and lowest exposure levels, respectively. Combined with table-side shielding, the ceiling-suspended lead screen reduced the radiation to the PO by 76.8%, 81.9% and 93.5% when placed close to the patient phantom, at the left side and close to the PO, respectively, and reduced the radiation to the assistant by 70.3%, 76.7% and 90.0%, respectively. When placed close to the PO, a ceiling-suspended lead screen provides substantial radiation protection during CA.
Primary Phase Field of the Pb-Doped 2223 High-Tc Superconductor in the (Bi, Pb)-Sr-Ca-Cu-O System
Wong-Ng, W.; Cook, L. P.; Kearsley, A.; Greenwood, W.
1999-01-01
Both liquidus and subsolidus phase equilibrium data are of central importance for applications of high temperature superconductors in the (Bi, Pb)-Sr-Ca-Cu-O system, including material synthesis, melt processing and single crystal growth. The subsolidus equilibria of the 110 K high-Tc Pb-doped 2223 ([Bi, Pb], Sr, Ca, Cu) phase and the location of the primary phase field (crystallization field) have been determined in this study. For the quantitative determination of liquidus data, a wicking technique was developed to capture the melt for quantitative microchemical analysis. A total of 29 five-phase volumes that include the 2223 phase as a component was obtained. The initial melt compositions of these volumes range from a mole fraction of 7.3 % to 28.0 % for Bi, 11.3 % to 27.8 % for Sr, 1.2 % to 19.4 % for Pb, 9.8 % to 30.8 % for Ca, and 17.1 % to 47.0 % for Cu. Based on these data, the crystallization field for the 2223 phase was constructed using the convex hull technique. A section of this “volume” was obtained by holding two components of the composition at the median value, allowing projection on the other three axes to show the extent of the field.
NASA Astrophysics Data System (ADS)
Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni
2011-06-01
The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO system have been determined experimentally in equilibrium with metallic iron. Synthetic slags were equilibrated at a high temperature, quenched, and then the compositions of the phases in equilibrium were measured using electron probe X-ray microanalysis. Pseudoternary sections of the form ZnO-"FeO"-(Al2O3 + CaO + SiO2) for CaO/SiO2 = 0.71, (CaO + SiO2)/Al2O3 = 5 and fixed MgO concentrations of 2, 4, and 6 wt pct have been constructed. Wustite (Fe2+,Mg,Zn)O and spinel (Fe2+,Mg,Zn)O·(Al,Fe3+)2O3 are the major primary phases in the temperature and composition ranges investigated. The liquidus temperatures are increased by 140 K in the wustite primary phase field and by 70 K in the spinel primary phase field with the addition of 6 wt pct MgO in the slag. The partitioning of MgO and ZnO between the solid and liquid phases has been discussed.
The engram formation and the global oscillations of CA3.
Ventriglia, Francesco
2008-12-01
The investigation on the conditions which cause global population oscillatory activities in neural fields, originated some years ago with reference to a kinetic theory of neural systems, as been further deepened in this paper. In particular, the genesis of sharp waves and of some rhythmic activities, such as theta and gamma rhythms, of the hippocampal CA3 field, behaviorally important for their links to learning and memory, has been analyzed with more details. To this aim, the modeling-computational framework previously devised for the study of activities in large neural fields, has been enhanced in such a way that a greater number of biological features, extended dendritic trees-in particular, could be taken into account. By using that methodology, a two-dimensional model of the entire CA3 field has been described and its activity, as it results from the several external inputs impinging on it, has been simulated. As a consequence of these investigations, some hypotheses have been elaborated about the possible function of global oscillatory activities of neural populations of Hippocampus in the engram formation.
Guidi, Sandra; Ciani, Elisabetta; Mangano, Chiara; Calzà, Laura; Bartesaghi, Renata
2013-01-01
Down syndrome (DS) is a high-incidence genetic pathology characterized by severe impairment of cognitive functions, including declarative memory. Impairment of hippocampus-dependent long-term memory in DS appears to be related to anatomo-functional alterations of the hippocampal trisynaptic circuit formed by the dentate gyrus (DG) granule cells - CA3 pyramidal neurons - CA1 pyramidal neurons. No therapies exist to improve cognitive disability in individuals with DS. In previous studies we demonstrated that pharmacotherapy with fluoxetine restores neurogenesis, granule cell number and dendritic morphology in the DG of the Ts65Dn mouse model of DS. The goal of the current study was to establish whether treatment rescues the impairment of synaptic connectivity between the DG and CA3 that characterizes the trisomic condition. Euploid and Ts65Dn mice were treated with fluoxetine during the first two postnatal weeks and examined 45–60 days after treatment cessation. Untreated Ts65Dn mice had a hypotrophyc mossy fiber bundle, fewer synaptic contacts, fewer glutamatergic contacts, and fewer dendritic spines in the stratum lucidum of CA3, the terminal field of the granule cell projections. Electrophysiological recordings from CA3 pyramidal neurons showed that in Ts65Dn mice the frequency of both mEPSCs and mIPSCs was reduced, indicating an overall impairment of excitatory and inhibitory inputs to CA3 pyramidal neurons. In treated Ts65Dn mice all these aberrant features were fully normalized, indicating that fluoxetine can rescue functional connectivity between the DG and CA3. The positive effects of fluoxetine on the DG-CA3 system suggest that early treatment with this drug could be a suitable therapy, possibly usable in humans, to restore the physiology of the hippocampal networks and, hence, memory functions. PMID:23620781
Formation of unusual Cr5+ charge state in CaCr0.5Fe0.5O3 perovskite
NASA Astrophysics Data System (ADS)
Dai, Jian-Hong; Zhao, Qing; Sun, Qian; Zhang, Shuo; Wang, Xiao; Shen, Xu-Dong; Liu, Zhe-Hong; Shen, Xi; Yu, Ri-Cheng; Chan, Ting-Shan; Li, Lun-Xiong; Zhou, Guang-Hui; Yang, Yi-feng; Jin, Chang-Qing; Long, You-Wen
2018-03-01
A new oxide CaCr0.5Fe0.5O3 was prepared under high pressure and temperature conditions. It crystallizes in a B-site disordered Pbnm perovskite structure. The charge combination is determined to be Cr5+/Fe3+ with the presence of unusual Cr5+ state in octahedral coordination, although Cr4+ and Fe4+ occur in the related perovskites CaCrO3 and CaFeO3. The randomly distributed Cr5+ and Fe3+ spins lead to short-range ferromagnetic coupling, whereas an antiferromagnetic phase transition takes place near 50 K due to the Fe3+–O–Fe3+ interaction. In spite of the B-site Cr5+/Fe3+ disorder, the compound exhibits electrical insulating behavior. First-principles calculations further demonstrate the formation of {CaCr}}0.55+{Fe}}0.53+{{{O}}}3 charge combination, and the electron correlation effect of Fe3+ plays an important role for the insulting ground state. CaCr0.5Fe0.5O3 provides the first Cr5+ perovskite system with octahedral coordination, opening a new avenue to explore novel transition-metal oxides with exotic charge states. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574378, 51772324, and 61404052),the National Basic Research Program of China (Grant No. 2014CB921500), and the Chinese Academy of Sciences (Grant Nos. YZ201555, QYZDB-SSW-SLH013, GJHZ1773, and XDB07030300).
Microstructures and Mechanical Study of Mg Alloy Foam Based on Mg-Zn-Ca-CaCO3 System
NASA Astrophysics Data System (ADS)
Erryani, A.; Pramuji, F.; Annur, D.; Amal, M. I.; Kartika, I.
2017-05-01
Magnesium alloy, a material that has potential to use some applications such as aerospace components, computer parts, and mobile phones. Magnesium alloy can also be a popular candidate as an orthopedic implant material for biodegradability, non-toxicity, and mechanical and physical properties that are excellent. Magnesium, one of the main macro elements required for the proper functioning of the human organism, is used to test the materials for biodegradable implants. The main objective of this study was to find out the microstructure, and mechanical characteristics of the Mg-Ca-Zn-CaCO3 alloy as porous implant materials are biodegradable. The presence of CaCO3 on the alloy functions as a foaming agent expected to produce gas bubbles during manufacturing process taken place that will form pores in the alloy. Mg-Ca-Zn-CaCO3 alloy was made by powder metallurgy method with three variations of composition (96Mg-Ca-3Zn-CaCO3, 91Mg-Ca-3Zn-5CaCO3, and 86Mg-Ca-3Zn-10CaCO3 wt%). Milling process was by using a shaker mill for 2 hours to produce a powder size distribution which was more homogeneous. The mixed powder was uniaxially pressed at a pressure of 100 MPa for 2 minutes and 200 MPa for 3 minutes into green compacts with dimensions of 10 mm in diameter and 10 mm in length. The sintering process was carried out at 650°C with a variation of holding time of 10 and 15 hours, and then the specimens were cooled down at room temperature. Microstructural analysis was performed by using X-Ray diffraction technique and Scanning electron microscopy equipped with an energy disperse spectrometry (EDS). The mechanical characteristics were analyzed by using Universal Testing Machine. The density and porosity of specimen were further measured by using Archimedes method. The results show that the optimum microstructure and mechanical characteristics are the holding time of 10 hours. The value of compression was 208.398 N/mm2, the density was 1.63 g/cc and a porosity was 18% on the composition of 86Mg-Ca-3Zn-10CaCO3 wt%.
High-pressure phase relations and thermodynamic properties of CaAl 4Si 2O 11 CAS phase
NASA Astrophysics Data System (ADS)
Akaogi, M.; Haraguchi, M.; Yaguchi, M.; Kojitani, H.
2009-03-01
Phase relations in CaAl4Si2O11 were examined at 12-23 GPa and 1000-1800 °C by multianvil experiments. A three-phase mixture of grossular, kyanite and corundum is stable below about 13 GPa at 1000-1800 °C. At higher pressure and at temperature below about 1200 °C, a mixture of grossular, stishovite and corundum is stable, indicating the decomposition of kyanite. Above about 1200 °C, CaAl4Si2O11 CAS phase is stable at pressure higher than about 13 GPa. The triple point is placed at 14.7 GPa and 1280 °C. The equilibrium boundary of formation of CAS phase from the mixture of grossular, kyanite and corundum has a small negative slope, and that from the mixture of grossular, stishovite and corundum has a strongly negative slope, while the decomposition boundary of kyanite has a small positive slope. Enthalpies of the transitions were measured by high-temperature drop-solution calorimetry. The enthalpy of formation of CaAl4Si2O11 CAS phase from the mixture of grossular, kyanite and corundum was 139.5 ± 15.6 kJ/mol, and that from the mixture of grossular, stishovite and corundum was 94.2 ± 15.4 kJ/mol. The transition boundaries calculated using the measured enthalpy data were consistent with those determined by the high-pressure experiments. The boundaries in this study are placed about 3 GPa higher in pressure and about 200 °C lower in temperature than those by Zhai and Ito [Zhai, S., Ito, E., 2008. Phase relations of CaAl4Si2O11 at high-pressure and high-temperature with implications for subducted continental crust into the deep mantle. Phys. Earth Planet. Inter. 167, 161-167]. Combining the thermodynamic data measured in this study with those in the literature, dissociation boundary of CAS phase into a mixture of Ca-perovskite, corundum and stishovite and that of grossular into Ca-perovskite plus corundum were calculated to further constrain the stability field of CAS phase. The result suggests that the stability of CAS phase would be limited at the bottom of transition zone and top of the lower mantle, when sediments are subducted into the deep mantle. It is also suggested that CAS phase may be stable at the depth of the upper part of the lower mantle, when partial melting of basalt occurs at the depth.
The low temperature specific heat and electrical transport, magnetic properties of Pr0.65Ca0.35MnO3
NASA Astrophysics Data System (ADS)
Han, Zhiyong
2017-02-01
The magnetic properties, electrical transport properties, and low temperature specific heat of polycrystalline perovskite manganese oxide Pr0.65Ca0.35MnO3 have been investigated experimentally. It is found that there exists cluster glass state in the sample at low temperature besides the antiferromagnetic insulating state. With the increase of magnetic field, antiferromagnetic insulating state converts to ferromagnetic metal state and the Debye temperature decreases gradually. In addition, the low temperature electron specific heat in zero magnetic field is obviously larger than that of ordinary rare-earth manganites oxide and this phenomenon is related to the itinerant electrons in ferromagnetic cluster state and the disorder in Pr0.65Ca0.35MnO3.
Ukuda-Hosokawa, Rie; Sadoyama, Yasutsune; Kishaba, Misaki; Kuriwada, Takashi; Anbutsu, Hisashi; Fukatsu, Takema
2015-06-01
Huanglongbing, or citrus greening, is a devastating disease of citrus plants recently spreading worldwide, which is caused by an uncultivable bacterial pathogen, "Candidatus Liberibacter asiaticus," and vectored by a phloem-sucking insect, Diaphorina citri. We investigated the infection density dynamics of "Ca. Liberibacter asiaticus" in field populations of D. citri with experiments using field-collected insects to address how "Ca. Liberibacter asiaticus" infection density in the vector insect is relevant to pathogen transmission to citrus plants. Of 500 insects continuously collected from "Ca. Liberibacter asiaticus"-infected citrus trees with pathological symptoms in the spring and autumn of 2009, 497 (99.4%) were "Ca. Liberibacter asiaticus" positive. The infections were systemic across head-thorax and abdomen, ranging from 10(3) to 10(7) bacteria per insect. In spring, the infection densities were low in March, at ∼ 10(3) bacteria per insect, increasing up to 10(6) to 10(7) bacteria per insect in April and May, and decreasing to 10(5) to 10(6) bacteria per insect in late May, whereas the infection densities were constantly ∼ 10(6) to 10(7) bacteria per insect in autumn. Statistical analysis suggested that several factors, such as insect sex, host trees, and collection dates, may be correlated with "Ca. Liberibacter asiaticus" infection densities in field D. citri populations. Inoculation experiments with citrus seedlings using field-collected "Ca. Liberibacter asiaticus"-infected insects suggested that (i) "Ca. Liberibacter asiaticus"-transmitting insects tend to exhibit higher infection densities than do nontransmitting insects, (ii) a threshold level (∼ 10(6) bacteria per insect) of "Ca. Liberibacter asiaticus" density in D. citri is required for successful transmission to citrus plants, and (iii) D. citri attaining the threshold infection level transmits "Ca. Liberibacter asiaticus" to citrus plants in a stochastic manner. These findings provide valuable insights into understanding, predicting, and controlling this notorious citrus pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Low temperature specific heat of charge ordered Pr_1-xCa_xMnO_3
NASA Astrophysics Data System (ADS)
Smolyaninova, V. N.; Biswas, Amlan; Zhang, X.; Greene, R. L.
2000-03-01
Mixed-valent perovskite manganese oxides at certain doping levels develope a real space ordering of Mn^3+ and Mn^4+ at low temperatures^1, which can be destroyed (``melted'') by the application of a modest magnetic field.^2 To better understand the low-temperature ground state and the physics of the ``melted'' charge-ordered state, the specific heat, resistivity and magnetization of charge-ordered Pr_1-xCa_xMnO3 were measured with and without magnetic field for single crystal and ceramic samples of different x. A large excess specific heat of nonmagnetic origin was found, similar to that found in La_0.5Ca_0.5MnO3 ^3. Significant changes in the specific heat associated with the ``melting'' of the charge ordering were observed in applied magnetic fields up to 9 T. Possible explanations for this anomalous specific heat and its magnetic field dependence will be discussed . ^*This work is supported in part by NSF MRSEC Grant at the University of Maryland. ^1S. Mori, C. H. Chen and S-W. Cheong, Nature 392, 473 (1998). ^2Y. Tomioka et al., Phys. Rev. Lett. 74, 5108 (1995). ^3V. N. Smolyaninova, K. Ghosh and R. L. Greene, Phys. Rev. B 58, R14 725 (1998).
Kim, Donghyeon; Kim, Sung-Chul; Bae, Jong-Seong; Kim, Sungyun; Kim, Seung-Joo; Park, Jung-Chul
2016-09-06
Eu(2+)-activated M5(PO4)3X (M = Ca, Sr, Ba; X = F, Cl, Br) compounds providing different alkaline-earth metal and halide ions were successfully synthesized and characterized. The emission peak maxima of the M5(PO4)3Cl:Eu(2+) (M = Ca, Sr, Ba) compounds were blue-shifted from Ca to Ba (454 nm for Ca, 444 nm for Sr, and 434 nm for Ba), and those of the Sr5(PO4)3X:Eu(2+) (X = F, Cl, Br) compounds were red-shifted along the series of halides, F → Cl → Br (437 nm for F, 444 nm for Cl, and 448 nm for Br). The site selectivity and occupancy of the activator ions (Eu(2+)) in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) crystal lattices were estimated based on theoretical calculation of the 5d → 4f transition energies of Eu(2+) using LCAO. In combination with the photoluminescence measurements and theoretical calculation, it was elucidated that the Eu(2+) ions preferably enter the fully oxygen-coordinated sites in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) compounds. This trend can be well explained by "Pauling's rules". These compounds may provide a platform for modeling a new phosphor and application in the solid-state lighting field.
SNAP-25 in hippocampal CA3 region is required for long-term memory formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou Qiuling; Gao Xiang; Lu Qi
SNAP-25 is a synaptosomal protein of 25 kDa, a key component of synaptic vesicle-docking/fusion machinery, and plays a critical role in exocytosis and neurotransmitter release. We previously reported that SNAP-25 in the hippocampal CA1 region is involved in consolidation of contextual fear memory and water-maze spatial memory (Hou et al. European J Neuroscience, 20: 1593-1603, 2004). SNAP-25 is expressed not only in the CA1 region, but also in the CA3 region, and the SNAP-25 mRNA level in the CA3 region is higher than in the CA1 region. Here, we provide evidence that SNAP-25 in the CA3 region is also involvedmore » in learning/memory. Intra-CA3 infusion of SNAP-25 antisense oligonucleotide impaired both long-term contextual fear memory and water-maze spatial memory, with short-term memory intact. Furthermore, the SNAP-25 antisense oligonucleotide suppressed the long-term potentiation (LTP) of field excitatory post-synaptic potential (fEPSP) in the mossy-fiber pathway (DG-CA3 pathway), with no effect on paired-pulse facilitation of the fEPSP. These results are consistent with the notion that SNAP-25 in the hippocampal CA3 region is required for long-term memory formation.« less
NASA Astrophysics Data System (ADS)
Borg, A.; King, P. L.; Pianetta, P.; Lindau, I.; Mitzi, D. B.; Kapitulnik, A.; Soldatov, A. V.; della Longa, S.; Bianconi, A.
1992-10-01
The high-resolution Ca L2,3 x-ray-absorption near-edge-structure (XANES) spectrum of a Bi2Sr2CaCu2O8 single crystal has been measured by use of a magnetic-projection x-ray microscope probing a surface area of 200×200 μm2. The Ca L2,3 XANES spectrum is analyzed by performing a multiple-scattering XANES calculation in real space and comparing the results with the spectrum of CaF2. Good agreement between the calculated and experimental crystal-field splitting Δf of the Ca 3d final states is found and the splitting is shown to be smaller by 0.5 eV than in the initial state. The Ca 3d partial density of states is found to be close to the Fermi level in the initial state. The Ca-O(in plane) distance is shown to be a critical parameter associated with the shift of the Ca 3d states relative to the Fermi level; in particular, we have studied the effect of the out-of-plane dimpling mode of the in-plane oxygen atoms O(in plane) that will move the Ca 3d states on or off the Fermi level. This mode can therefore play a role in modulating the charge transfer between the two CuO2 planes separated by the Ca ions.
NASA Astrophysics Data System (ADS)
Franzolin, E.; Schmidt, M. W.; Poli, S.
2009-12-01
At convergent margins volatile components, most notably CO2 and H2O, stored in oceanic sediments and MORB are recycled into the mantle. Mafic protoliths become enriched in CO2 and H2O, stored in carbonates and hydrous phases, by hydrothermal alteration. As carbonates are more refractory than hydrous phases, CO2 is more likely to survive in the oceanic lithosphere beyond sub-arc depths [1,2]. Despite the main role of carbonates on cycling crustal and atmospheric CO2 into the mantle, experimental data within the system CaCO3-MgCO3-FeCO3 are scarce. To bridge this gap, piston-cylinder experiments have been performed at 35 kbar, 900-1100 °C to determine subsolidus relations, and up to 1300 °C to constrain melting relations. Pure synthetic calcite, natural magnesite and synthetic siderite have been mixed in different proportions in double Pt-C capsules, to avoid major siderite oxidation. Subsolidus experiments reveal the presence of two miscibility gaps at 900 °C: the solvus dolomite-calcite, which closes at XMgCO3 ~ 0.7, and the solvus dolomite-magnesite, which ranges to the Fe-side of the ternary. Increasing the temperature, the two miscibility gaps became narrower until complete solid solutions between CaCO3-Ca0.5Mg0.5CO3 at 1100 °C, and between CaCO3-FeCO3 at 1000 °C, are observed. The system is characterized by strong compositional asymmetry, thermodynamically described with a van Laar macroscopic formalism [3], and by R-3<=>R-3c phase transitions due to cation disordering, treated by redefining the compositional space with an independent set of end-members that describe both composition and states of ordering. The result is a solid solution model able to reproduce both the phase relations experimentally observed at 35 kbar and those experimentally determined and naturally observed at lower pressure [4-5]. Our model can be reliable extended to pressures of the breakdown of dolomite, e.g. 5-6 GPa, 600-1000 °C. Melting experiments carried out at 1250 °C along the join CaCO3-MgCO3, yield an eutectic at a slightly lower temperature at XCa ~ 0.7; the eutectic temperature decreases with the Fe content in the bulk. The 2-phase field calcite (XCa~0.75) + liquid, broadens with the increase of XFe in the system. Along the join CaMg(CO3)2-CaFe(CO3)2, melting takes place at XFe ~ 0.2, producing Ca enriched melt + Mg enriched dolomite. The new subsolidus and melting data and the ternary thermodynamic solid solution model, have been combined to predict the fate of FeO and CO2 rich systems (i.e. BIF associated with Fe-shale, high-Fe altered basalts and Fe-enriched carbonated metapelites), recycled back into the mantle during the history of the Earth. [1] Kerrick&Connolly, EPSL, 2001, 189, 19-29. [2] Poli et al., EPSL, 2009, 278, 350-360. [3] Holland&Powell, Contr. Min. Pet., 2003, 145, 492-501. [4] Goldsmith et al., Journ. of Geol., 1962, 70, 659-688. [5] Rosenberg, Am. Min., 1967, 52, 787-796.
A crustacean Ca2+-binding protein with a glutamate-rich sequence promotes CaCO3 crystallization.
Endo, Hirotoshi; Takagi, Yasuaki; Ozaki, Noriaki; Kogure, Toshihiro; Watanabe, Toshiki
2004-11-15
The DD4 mRNA of the penaeid prawn Penaeus japonicus was shown previously to be expressed in the epidermis adjacent to the exoskeleton specifically during the post-moult period, when calcification of the exoskeleton took place. The encoded protein possessed a Ca2+-binding site, suggesting its involvement in the calcification of the exoskeleton. In the present study, an additional ORF (open reading frame) of 289 amino acids was identified at the 5' end of the previous ORF. The newly identified part of the encoded protein included a region of approx. 120 amino acids that was highly rich in glutamate residues, and contained one or more Ca2+-binding sites. In an immunohistochemical study, signals were detected within calcified regions in the endocuticular layer of the exoskeleton. Bacterially expressed partial segments of the protein induced CaCO3 crystallization in vitro. Finally, a reverse transcription-PCR study showed that the expression was limited to an early part of the post-moult period, preceding significant calcification of the exoskeleton. These observations argue for the possibility that the encoded protein, renamed crustocalcin (CCN), promotes formation of CaCO3 crystals in the exoskeleton by inducing nucleation.
Where Water Is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster
Yano, Junko; Kern, Jan; Sauer, Kenneth; Latimer, Matthew J.; Pushkar, Yulia; Biesiadka, Jacek; Loll, Bernhard; Saenger, Wolfram; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.
2014-01-01
The oxidation of water to dioxygen is catalyzed within photosystem II (PSII) by a Mn4Ca cluster, the structure of which remains elusive. Polarized extended x-ray absorption fine structure (EXAFS) measurements on PSII single crystals constrain the Mn4Ca cluster geometry to a set of three similar high-resolution structures. Combining polarized EXAFS and x-ray diffraction data, the cluster was placed within PSII, taking into account the overall trend of the electron density of the metal site and the putative ligands. The structure of the cluster from the present study is unlike either the 3.0 or 3.5 angstrom–resolution x-ray structures or other previously proposed models. PMID:17082458
Synthesis and Characterization of Magnetic Carriers Based on Immobilized Enzyme
NASA Astrophysics Data System (ADS)
Li, F. H.; Tang, N.; Wang, Y. Q.; Zhang, L.; Du, W.; Xiang, J.; Cheng, P. G.
2018-05-01
Several new types of carriers and technologies have been implemented to improve traditional enzyme immobilization in industrial biotechnology. The magnetic immobilized enzyme is a kind of new method of enzyme immobilization developed in recent years. An external magnetic field can be used to control the motion mode and direction of immobilized enzyme, and to improve the catalytic efficiency of immobilized enzyme. In this paper, Fe3O4-CaCO3-PDA complex and CaCO3/Fe3O4 composite modified by PEI were prepared. The results show that the morphology of Fe3O4-CaCO3-PDA complex formation is irregular, while the morphology of CaCO3/Fe3O4 composite modified by PEI is regular and has a porous structure.
Loss of Hippocampal Neurons after Kainate Treatment Correlates with Behavioral Deficits
Maia, Gisela H.; Quesado, José L.; Soares, Joana I.; do Carmo, Joana M.; Andrade, Pedro A.; Andrade, José P.; Lukoyanov, Nikolai V.
2014-01-01
Treating rats with kainic acid induces status epilepticus (SE) and leads to the development of behavioral deficits and spontaneous recurrent seizures later in life. However, in a subset of rats, kainic acid treatment does not induce overt behaviorally obvious acute SE. The goal of this study was to compare the neuroanatomical and behavioral changes induced by kainate in rats that developed convulsive SE to those who did not. Adult male Wistar rats were treated with kainic acid and tested behaviorally 5 months later. Rats that had experienced convulsive SE showed impaired performance on the spatial water maze and passive avoidance tasks, and on the context and tone retention tests following fear conditioning. In addition, they exhibited less anxiety-like behaviors than controls on the open-field and elevated plus-maze tests. Histologically, convulsive SE was associated with marked neuron loss in the hippocampal CA3 and CA1 fields, and in the dentate hilus. Rats that had not experienced convulsive SE after kainate treatment showed less severe, but significant impairments on the spatial water maze and passive avoidance tasks. These rats had fewer neurons than control rats in the dentate hilus, but not in the hippocampal CA3 and CA1 fields. Correlational analyses revealed significant relationships between spatial memory indices of rats and neuronal numbers in the dentate hilus and CA3 pyramidal field. These results show that a part of the animals that do not display intense behavioral seizures (convulsive SE) immediately after an epileptogenic treatment, later in life, they may still have noticeable structural and functional changes in the brain. PMID:24409306
Single CA3 pyramidal cells trigger sharp waves in vitro by exciting interneurones.
Bazelot, Michaël; Teleńczuk, Maria T; Miles, Richard
2016-05-15
The CA3 hippocampal region generates sharp waves (SPW), a population activity associated with neuronal representations. The synaptic mechanisms responsible for the generation of these events still require clarification. Using slices maintained in an interface chamber, we found that the firing of single CA3 pyramidal cells triggers SPW like events at short latencies, similar to those for the induction of firing in interneurons. Multi-electrode records from the CA3 stratum pyramidale showed that pyramidal cells triggered events consisting of putative interneuron spikes followed by field IPSPs. SPW fields consisted of a repetition of these events at intervals of 4-8 ms. Although many properties of induced and spontaneous SPWs were similar, the triggered events tended to be initiated close to the stimulated cell. These data show that the initiation of SPWs in vitro is mediated via pyramidal cell synapses that excite interneurons. They do not indicate why interneuron firing is repeated during a SPW. Sharp waves (SPWs) are a hippocampal population activity that has been linked to neuronal representations. We show that SPWs in the CA3 region of rat hippocampal slices can be triggered by the firing of single pyramidal cells. Single action potentials in almost one-third of pyramidal cells initiated SPWs at latencies of 2-5 ms with probabilities of 0.07-0.76. Initiating pyramidal cells evoked field IPSPs (fIPSPs) at similar latencies when SPWs were not initiated. Similar spatial profiles for fIPSPs and middle components of SPWs suggested that SPW fields reflect repeated fIPSPs. Multiple extracellular records showed that the initiated SPWs tended to start near the stimulated pyramidal cell, whereas spontaneous SPWs could emerge at multiple sites. Single pyramidal cells could initiate two to six field IPSPs with distinct amplitude distributions, typically preceeded by a short-duration extracellular action potential. Comparison of these initiated fields with spontaneously occurring inhibitory field motifs allowed us to identify firing in different interneurones during the spread of SPWs. Propagation away from an initiating pyramidal cell was typically associated with the recruitment of interneurones and field IPSPs that were not activated by the stimulated pyramidal cell. SPW fields initiated by single cells were less variable than spontaneous events, suggesting that more stereotyped neuronal ensembles were activated, although neither the spatial profiles of fields, nor the identities of interneurone firing were identical for initiated events. The effects of single pyramidal cell on network events are thus mediated by different sequences of interneurone firing. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Experimental investigation of condensation predictions for dust-enriched systems
NASA Astrophysics Data System (ADS)
Ustunisik, Gokce; Ebel, Denton S.; Walker, David; Boesenberg, Joseph S.
2014-10-01
Condensation models describe the equilibrium distribution of elements between coexisting phases (mineral solid solutions, silicate liquid, and vapor) in a closed chemical system, where the vapor phase is always present, using equations of state of the phases involved at a fixed total pressure (<1 bar) and temperature (T). The VAPORS code uses a CaO-MgO-Al2O3-SiO2 (CMAS) liquid model at T above the stability field of olivine, and the MELTS thermodynamics algorithm at lower T. Quenched high-T crystal + liquid assemblages are preserved in meteorites as Type B Ca-, Al-rich inclusions (CAIs), and olivine-rich ferromagnesian chondrules. Experimental tests of compositional regions within 100 K of the predicted T of olivine stability may clarify the nature of the phases present, the phase boundaries, and the partition of trace elements among these phases. Twenty-three Pt-loop equilibrium experiments in seven phase fields on twelve bulk compositions at specific T and dust enrichment factors tested the predicted stability fields of forsteritic olivine (Mg2SiO4), enstatite (MgSiO3), Cr-bearing spinel (MgAl2O4), perovskite (CaTiO3), melilite (Ca2Al2SiO7-Ca2Mg2Si2O7) and/or grossite (CaAl4O7) crystallizing from liquid. Experimental results for forsterite, enstatite, and grossite are in very good agreement with predictions, both in chemistry and phase abundances. On the other hand the stability of spinel with olivine, and stability of perovskite and gehlenite are quite different from predictions. Perovskite is absent in all experiments. Even at low oxygen fugacity (IW-3.4), the most TiO2-rich experiments do not crystallize Al-, Ti-bearing calcic pyroxene. The stability of spinel and olivine together is limited to a smaller phase field than is predicted. The melilite stability field is much larger than predicted, indicating a deficiency of current liquid or melilite activity models. In that respect, these experiments contribute to improving the data for calibrating thermodynamic models including MELTS.
Schneider, Harald; Ranker, Tom A.; Russell, Stephen J.; Cranfill, Raymond; Geiger, Jennifer M.O.; Aguraiuja, Ruth; Wood, Ken R.; Grundmann, Michael; Kloberdanz, Keelie; Vogel, Johannes C.
2005-01-01
The enigmatic fern genus Diellia, endemic to the Hawaiian archipelago, consists of five extant and one recently extinct species. Diellia is morphologically highly variable, and a unique combination of characters has led to several contrasting hypotheses regarding the relationship of Diellia to other ferns. A phylogenetic analysis of four chloroplast loci places Diellia within ‘black-stemmed’ rock spleenworts of the species-rich genus Asplenium, as previously suggested by W. H. Wagner. Using an external calibration point, we estimate the divergence of the Diellia lineage from its nearest relatives to have occurred at ca. 24.3 Myr ago matching an independent estimate for the renewal of Hawaiian terrestrial life (ca. 23 Myr ago). We therefore suggest that the ancestor of the Diellia lineage may have been among the first successful colonists of the newly emerging islands in the archipelago. Disparity between morphological and nucleotide sequence variation within Diellia is consistent with a recent rapid radiation. Our estimated time of the Diellia radiation (ca. 2 Myr ago) is younger than the oldest island of Kaua’i (ca. 5.1 Myr ago) but older than the younger major islands of Maui (ca. 1.3 Myr ago), Lana’i (ca. 1.3 Myr ago) and Hawaii (ca. 0.43 Myr ago). PMID:15734701
Sadeghi, Bahman; Ezzatpanah, Somayeh; Haghparast, Abbas
2016-06-01
Orexinergic system is involved in reward processing and drug addiction. Here, we investigated the effect of intrahippocampal CA1 administration of orexin-2 receptor (OX2r) antagonist on the acquisition, expression, and extinction of morphine-induced place preference in rats. Conditioned place preference (CPP) was induced by subcutaneous injection of morphine (5 mg/kg) during a 3-day conditioning phase. Three experimental plots were designed; TCS OX2 29 as a selective antagonist of orexin-2 receptors (OX2rs) was dissolved in DMSO, prepared in solutions with different concentrations (1, 3, 10, and 30 nM), and was bilaterally microinjected into the CA1 and some neighboring regions (0.5 μl/side). Conditioning scores and locomotor activities were recorded during the test. Results demonstrate that intra-CA1 administration of the OX2r antagonist attenuates the induction of morphine CPP during the acquisition and expression phases. Effect of TCS OX2 29 on reduction of morphine CPP was dose-dependent and was more pronounced during the acquisition than the expression. Furthermore, higher concentrations of TCS OX2 29 facilitated the extinction of morphine-induced CPP and reduced extinction latency period. Nevertheless, administration of TCS OX2 29 solutions did not have any influence on locomotor activity of all phases. Our findings suggest that OX2rs in the CA1 region of hippocampus are involved in the development of the acquisition and expression of morphine CPP. Moreover, blockade of OX2rs could facilitate extinction and may abrogate or extinguish the ability of drug-related cues, implying that the antagonist might be considered as a propitious therapeutic agent in suppressing drug-seeking behavior.
Hydrochemical zonation of the western part of Göksu Delta aquifer system, Southern Turkey
NASA Astrophysics Data System (ADS)
Dokuz, U. E.; Çelik, M.; Arslan, Ş.; Engin, H.
2012-04-01
In general, coastal areas are preferred places for human settlement, especially at places where infrastructure routes benefit from rivers, streets, or harbours. As a result, these areas usually suffer from rising population and endure increasingly high demand on natural resources like water. Göksu Delta, located in southern Turkey, is one of the important wetland areas of Turkey at the Mediterranean coast. It is divided into two parts by Göksu River. The western part of the delta, which is the subject matter of this study, hosts fertile agricultural fields, touristic places and a Special Environmental Protection Area. These properties of the region lead to a water-dependent ecosystem where groundwater has widely been used for agricultural and domestic purposes. When the exploitation of groundwater peaked in the middle of 1990s, the groundwater levels dropped and seawater intruded. General Directorate of State Hydraulic Works tried to stop seawater intrusion by building irrigation channels connected to Göksu River and banned drilling of new wells for groundwater exploitation, although it is hard to control the drilling of wells without official permit. Geological studies show that the delta is composed of terrestrial sediments including clay to coarse sand deposited during Quaternary. The heterogeneous sediments of Göksu Delta cause hydrogeological features of the aquifer systems to be heterogeneous and anisotropic. Hydrogeological investigations, therefore, indicate mainly two different aquifers, shallow and deep, separated by an aquitard. The shallow aquifer is under unconfined to confined conditions from north to south while the deep aquifer is under confined conditions. This study focuses on hydrogeochemical zonation in terms of hydrochemical processes that affect the Göksu Delta aquifer systems. For this purpose, hydrogeochemical and isotopic studies are conducted to understand the salinisation and softening processes of groundwater. The physicochemical and hydrochemical features of the water (EC, TDS, HCO3-, SO4-2, Cl-, Na+, Ca+2, Mg+2, K+, Br-, B+3, Sr+2, NO3-, PO4-3) were evaluated and composition diagrams were plotted (e.g. ion vs Cl-, ion vs TDS, Na+ vs Ca+2, HCO3/Cl vs Cl-). Ratios of HCO3/Cl, Na/Cl, Ca/Cl, SO4/Cl, Br/Cl, B/Cl were calculated and isotope analyses (δ18O, δD and Tritium) were conducted. By these methods, it is possible to differentiate the effects of agricultural land use, seawater intrusion, ion exchange, and softening processes. Hydrochemical analyses indicate that the dominant anion is HCO3- and the dominant cation is Ca+2 for the northern part and Na+ for the southern part of the aquifers. Both EC values (417-2890 µS/cm), Cl- (16-320 mg/l) and Na+ (490,68-558,58 mg/l) concentrations of groundwater increase along the flow path from north to south for the aquifer system. Combined evaluations show that seawater intrusion is still dominant in the southern part of the study area while ion exchange and softening processes control the central part. Both NO3- (up to 19,6 mg/l) and PO4-3 (up to 11 mg/l) contents as well as Br/Cl ratios indicate agricultural pollution at some locations in the study area.
The chromosphere above a δ-sunspot in the presence of fan-shaped jets
NASA Astrophysics Data System (ADS)
Robustini, Carolina; Leenaarts, Jorrit; de la Cruz Rodríguez, Jaime
2018-01-01
Context. Delta-sunspots are known to be favourable locations for fast and energetic events like flares and coronal mass ejections. The photosphere of this sunspot type has been thoroughly investigated in the past three decades. The atmospheric conditions in the chromosphere are not as well known, however. Aims: This study is focused on the chromosphere of a δ-sunspot that harbours a series of fan-shaped jets in its penumbra. The aim of this study is to establish the magnetic field topology and the temperature distribution in the presence of jets in the photosphere and the chromosphere. Methods: We use data from the Swedish 1m Solar Telescope (SST) and the Solar Dynamics Observatory. We invert the spectropolarimetric Fe I 6302 Å and Ca II 8542 Å data from the SST using the non-LTE inversion code NICOLE to estimate the magnetic field configuration, temperature, and velocity structure in the chromosphere. Results: A loop-like magnetic structure is observed to emerge in the penumbra of the sunspot. The jets are launched from this structure. Magnetic reconnection between this emerging field and the pre-existing vertical field is suggested by hot plasma patches on the interface between the two fields. The height at which the reconnection takes place is located between log τ500 = -2 and log τ500 = -3. The magnetic field vector and the atmospheric temperature maps show a stationary configuration during the whole observation. Movies associated to Figs. 3-5 are available at http://www.aanda.org
TANOMARU-FILHO, Mário; SAÇAKI, Juliana Nogueira; FALEIROS, Frederico Bordini Chaves; GUERREIRO-TANOMARU, Juliane Maria
2011-01-01
Objective Hydroxyl (OH-) and calcium (Ca++) ion release was evaluated in six materials: G1) Sealer 26, G2) White mineral trioxide aggregate (MTA), G3) epiphany, G4) epiphany + 10% calcium hydroxide (CH), G5) epiphany + 20% CH, and G6) zinc oxide and eugenol. Material and Methods Specimens were placed in polyethylene tubes and immersed in distilled water. After 3, 6, 12, 24, and 48 h, 7, 14, and 28 days, the water was assessed for pH with a pH meter and for Ca++ release by atomic absorption spectrophotometry. Results G1, G2, G4, and G5 had the highest pH until 14 days (p<0.05). G1 presented the highest Ca++ release until 6 h, and G4 and G5, from 12 h through 14 days. Ca++ release was greater for G1 and G2 at 28 days. G6 released the least Ca++. Conclusion MTA, Sealer 26, epiphany, and epiphany + CH release OH - and Ca++ ions. Epiphany + CH may be an alternative as retrofilling material. PMID:21437461
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, M.; Hong, Tao; Peng, J.
Bilayer ruthenate Ca 3(Ru 1-xFe x) 2O 7 (x = 0.05) exhibits an incommensurate magnetic soliton lattice driven by the Dzyaloshinskii–Moriya interaction. Here, in this work, we report complex field-induced magnetic phase transitions and memory effect in this system via single-crystal neutron diffraction and magnetotransport measurements. We observe first-order incommensurate-to-commensurate magnetic transitions upon applying the magnetic field both along and perpendicular to the propagation axis of the incommensurate spin structure. Furthermore, we find that the metastable states formed upon decreasing the magnetic field depend on the temperature and the applied field orientation. Lastly, we suggest that the observed field-induced metastabilitymore » may be ascribable to the quenched kinetics at low temperature.« less
Zhu, M.; Hong, Tao; Peng, J.; ...
2018-01-09
Bilayer ruthenate Ca 3(Ru 1-xFe x) 2O 7 (x = 0.05) exhibits an incommensurate magnetic soliton lattice driven by the Dzyaloshinskii–Moriya interaction. Here, in this work, we report complex field-induced magnetic phase transitions and memory effect in this system via single-crystal neutron diffraction and magnetotransport measurements. We observe first-order incommensurate-to-commensurate magnetic transitions upon applying the magnetic field both along and perpendicular to the propagation axis of the incommensurate spin structure. Furthermore, we find that the metastable states formed upon decreasing the magnetic field depend on the temperature and the applied field orientation. Lastly, we suggest that the observed field-induced metastabilitymore » may be ascribable to the quenched kinetics at low temperature.« less
Clofibric acid degradation in UV254/H2O2 process: effect of temperature.
Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei
2010-04-15
The degradation of clofibric acid (CA) in UV(254)/H(2)O(2) process under three temperature ranges, i.e. T1 (9.0-11.5 degrees C), T2 (19.0-21.0 degrees C) and T3 (29.0-30.0 degrees C) was investigated. The effects of solution constituents including NO(3)(-) and HCO(3)(-) anions, and humic acid (HA) on CA degradation were evaluated in Milli-Q waters. CA degradation behaviors were simulated with the pseudo-first-order kinetic model and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated. The results showed that higher temperature would favor CA degradation, and CA degradation was taken place mostly by indirect oxidation through the formation of OH radicals in UV(254)/H(2)O(2) process. In addition, the effects of both NO(3)(-) and HCO(3)(-) anions at two selected concentrations (1.0x10(-3) and 0.1 mol L(-1)) and HA (20 mg L(-1)) on CA degradation were investigated. The results showed that HA had negative effect on CA degradation, and this effect was much more apparent under low temperature condition. On the other hand, the inhibitive effect on CA degradation at both lower and higher concentrations of bicarbonate was observed, and this inhibitive effect was much more apparent at higher bicarbonate concentration and lower temperature condition. While, at higher nitrate concentration the inhibitive effect on CA degradation under three temperature ranges was observed, and with the temperature increase this negative effect was apparently weakened. However, at lower nitrate concentration a slightly positive effect on CA degradation was found under T2 and T3 conditions. Moreover, when using a real wastewater treatment plant (WWTP) effluent spiked with CA over 99% of CA removal could be achieved under 30 degrees C within only 15 min compared with 40 and 80 min under 20 and 10 degrees C respectively, suggesting a significant promotion in CA degradation under higher temperature condition. Therefore, it can be concluded that temperature plays an important role in CA degradation in UV/H(2)O(2) process. 2009 Elsevier B.V. All rights reserved.
Magnetic and Magnetocaloric Properties of Ca0.97La0.03MnO3 Manganites
NASA Astrophysics Data System (ADS)
Gong, G. D.; Hu, P. F.; Li, Y.; Kim, D. H.; Liu, C. L.; Phan, T. L.; Ho, T. A.; Yu, S. C.; Telegin, A.; Naumov, S. V.
2016-07-01
In spite of many previous studies on electron-doped CaMnO3 perovskite manganites, detailed investigations into the influence of low-doping concentrations on their magnetic and magnetocaloric (MC) properties have not been carried out yet. Additionally, there is still the lack of the comparison between single-crystal (SC) and polycrystalline (PC) materials. Dealing with these problems, we prepared orthorhombic Ca0.97La0.03MnO3 SC and PC samples. Magnetization measurements versus the temperature and magnetic field revealed remarkable differences in the magnetic property, particularly around the antiferromagnetic/ferromagnetic-paramagnetic phase-transition region. The analyses of the magnetization versus magnetic field, M( H), data indicated a weak MC effect with magnetic-entropy changes less than 0.1 J kg-1 K-1 for an applied field interval H = 10 kOe because ferromagnetic interactions between Mn3+ and Mn4+ ions are insignificant. The differences in the magnetic and MC properties of the SC and PC samples are ascribed to the effects of grain boundary, magnetic anisotropy, and nonstoichiometry in oxygen.
Decoupled carbonate chemistry controls on the incorporation of boron into Orbulina universa
NASA Astrophysics Data System (ADS)
Howes, Ella L.; Kaczmarek, Karina; Raitzsch, Markus; Mewes, Antje; Bijma, Nienke; Horn, Ingo; Misra, Sambuddha; Gattuso, Jean-Pierre; Bijma, Jelle
2017-01-01
In order to fully constrain paleo-carbonate systems, proxies for two out of seven parameters, plus temperature and salinity, are required. The boron isotopic composition (δ11B) of planktonic foraminifera shells is a powerful tool for reconstructing changes in past surface ocean pH. As B(OH)4- is substituted into the biogenic calcite lattice in place of CO32-, and both borate and carbonate ions are more abundant at higher pH, it was suggested early on that B / Ca ratios in biogenic calcite may serve as a proxy for [CO32-]. Although several recent studies have shown that a direct connection of B / Ca to carbonate system parameters may be masked by other environmental factors in the field, there is ample evidence for a mechanistic relationship between B / Ca and carbonate system parameters. Here, we focus on investigating the primary relationship to develop a mechanistic understanding of boron uptake. Differentiating between the effects of pH and [CO32-] is problematic, as they co-vary closely in natural systems, so the major control on boron incorporation remains unclear. To deconvolve the effects of pH and [CO32-] and to investigate their impact on the B / Ca ratio and δ11B, we conducted culture experiments with the planktonic foraminifer Orbulina universa in manipulated culture media: constant pH (8.05), but changing [CO32-] (238, 286 and 534 µmol kg-1 CO32-) and at constant [CO32-] (276 ± 19.5 µmol kg-1) and varying pH (7.7, 7.9 and 8.05). Measurements of the isotopic composition of boron and the B / Ca ratio were performed simultaneously using a femtosecond laser ablation system coupled to a MC-ICP-MS (multiple-collector inductively coupled plasma mass spectrometer). Our results show that, as expected, δ11B is controlled by pH but it is also modulated by [CO32-]. On the other hand, the B / Ca ratio is driven by [HCO3-], independently of pH. This suggests that B / Ca ratios in foraminiferal calcite can possibly be used as a second, independent, proxy for complete paleo-carbonate system reconstructions. This is discussed in light of recent literature demonstrating that the primary relationship between B / Ca and [HCO3-] can be obscured by other environmental parameters.
Influence of the dynamic lattice strain on the transport behavior of oxide heterojunctions
NASA Astrophysics Data System (ADS)
Wang, J.; Hu, F. X.; Chen, L.; Zhao, Y. Y.; Lu, H. X.; Sun, J. R.; Shen, B. G.
2013-01-01
All-perovskite oxide heterojunctions composed of electron-doped titanate LaxSr1 - xTiO3 (x = 0.1, 0.15) and hole-doped manganite La0.67Ca0.33MnO3 films were fabricated on piezoelectric substrate of (001)-0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT). Taking advantage of the excellent converse piezoelectric effect of PMN-PT, we investigated the influence of the dynamic lattice strain on transport properties of the heterojunctions by applying external bias electric fields on the PMN-PT substrate. Photovoltaic experiments were carried out to characterize the interfacial barrier of the heterojunction. A linear reduction in the barrier height was observed with the increase of the bias field applied on PMN-PT. The value of the barrier height reduces from ˜1.55 (˜1.30) to 1.02 (1.08) eV as the bias field increases from 0 to 12 kV/cm for the junction of La0.10Sr0.9TiO3/La0.67Ca0.33MnO3 (La0.15Sr0.85TiO3/La0.67Ca0.33MnO3). The observed dependency of barrier height on external field can be ascribed to the increasing release of trapped carriers by strain modulation, which results in a suppression of the depletion layer and increases the opportunity for electron tunneling across the depletion area.
Luminescence of Tb-doped Ca 3Y 2(Si 3O 9) 2 oxide upon UV and VUV synchrotron radiation excitation
NASA Astrophysics Data System (ADS)
Dobrowolska, Anna; Zych, Eugeniusz
2011-07-01
Powders of calcium yttrium silicate, Ca 3Y 2(Si 3O 9) 2, containing 0.1-3% Tb 3+ were prepared using a sol-gel method and characterized with XRD, IR, UV-vis and UV-VUV spectroscopies at room temperature and 10 K. Structural analysis revealed pure monoclinic phase of Ca 3Y 2(Si 3O 9) 2 after heat-treatment at 1000 °C. Infrared spectroscopy showed that between 800 and 900 °C a short-range structural organization of the components proceeded, yet without crystallization. A strong emission of Tb 3+ had been observed both in the green part of the spectrum due to the 5D4→ 7FJ transitions and in the blue-violet region owing to the 5D3→ 7FJ radiative relaxation. The color of the light could be tuned from yellowish-green to bluish-white both by means of the dopant content and the temperature of synthesis. Efficient luminescence of Tb 3+-doped Ca 3Y 2(Si 3O 9) 2 phosphors could also be obtained upon stimulation with vacuum ultraviolet synchrotron radiation demonstrating that an energy transfer from the host to the Tb 3+ ions takes place.
Rivera, Patricia; Arrabal, Sergio; Cifuentes, Manuel; Grondona, Jesús M.; Pérez-Martín, Margarita; Rubio, Leticia; Vargas, Antonio; Serrano, Antonia; Pavón, Francisco J.; Suárez, Juan; Rodríguez de Fonseca, Fernando
2014-01-01
The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG) is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca2+ and the activation of specific 2-AG synthesizing (i.e., DAGLα) enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca2+-binding proteins (CaBPs) is still unknown. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL, and FAAH) and the CaBPs calbindin D28k, calretinin, and parvalbumin in the rat hippocampus. CB1, DAGLα, and MAGL labeling was mainly localized in fibers and neuropil, which were differentially organized depending on the hippocampal CaBPs-expressing cells. CB+1 fiber terminals localized in all hippocampal principal cell layers were tightly attached to calbindin+ cells (granular and pyramidal neurons), and calretinin+ and parvalbumin+ interneurons. DAGLα neuropil labeling was selectively found surrounding calbindin+ principal cells in the dentate gyrus and CA1, and in the calretinin+ and parvalbumin+ interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL+ terminals were only observed around CA1 calbindin+ pyramidal cells, CA1/3 calretinin+ interneurons and CA3 parvalbumin+ interneurons localized in the pyramidal cell layers. Interestingly, calbindin+ pyramidal cells expressed FAAH specifically in the CA1 field. The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1 signaling system and selective CaBPs should be considered when analyzing the cannabinoid signaling associated with hippocampal functions. PMID:25018703
Kupferschmidt, David A; Lovinger, David M
2015-01-01
Cortical inputs to the dorsolateral striatum (DLS) are dynamically regulated during skill learning and habit formation, and are dysregulated in disorders characterized by impaired action control. Therefore, a mechanistic investigation of the processes regulating corticostriatal transmission is key to understanding DLS-associated circuit function, behaviour and pathology. Presynaptic GABAB and group II metabotropic glutamate (mGlu2/3) receptors exert marked inhibitory control over corticostriatal glutamate release in the DLS, yet the signalling pathways through which they do so are unclear. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 to assess presynaptic Ca2+ in corticostriatal projections to the DLS. Using simultaneous photometric presynaptic Ca2+ and striatal field potential recordings, we report that relative to P/Q-type Ca2+ channels, N-type channels preferentially contributed to evoked presynaptic Ca2+ influx in motor cortex projections to, and excitatory transmission in, the DLS. Activation of GABAB or mGlu2/3 receptors inhibited both evoked presynaptic Ca2+ transients and striatal field potentials. mGlu2/3 receptor-mediated depression did not require functional N-type Ca2+ channels, but was attenuated by blockade of P/Q-type channels. These findings reveal presynaptic mechanisms of inhibitory modulation of corticostriatal function that probably contribute to the selection and shaping of behavioural repertoires. Key points Plastic changes at cortical inputs to the dorsolateral striatum (DLS) underlie skill learning and habit formation, so characterizing the mechanisms by which these inputs are regulated is important for understanding the neural basis of action control. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 and brain slice photometry to assess evoked presynaptic Ca2+ transients in cortical inputs to the DLS and study their regulation by GABAB and mGlu2/3 receptors. GABAB and mGlu2/3 receptor activation caused clear reductions in electrical stimulus-evoked presynaptic Ca2+ transients in corticostriatal inputs to the DLS. Functional P/Q-type voltage-gated Ca2+ channels were required for the normal inhibitory action of corticostriatal mGlu2/3 receptors. We provide direct evidence of presynaptic Ca2+ inhibition by G protein-coupled receptors at corticostriatal projections. PMID:25781000
Size effect on the magnetic properties of antiferromagnetic La0.2Ca0.8MnO3 nanoparticles
NASA Astrophysics Data System (ADS)
Markovich, V.; Fita, I.; Wisniewski, A.; Mogilyansky, D.; Puzniak, R.; Titelman, L.; Martin, C.; Gorodetsky, G.
2010-03-01
Magnetic properties of electron-doped La0.2Ca0.8MnO3 manganite nanoparticles with average particle size ranging from 15 to 37 nm, prepared by the glycine-nitrate method, have been investigated in temperature range 5-300 K and in magnetic fields up to 90 kOe. A monotonous enhancement of weak ferromagnetism linked to the reduction in the particle size was observed for all nanoparticles. Magnetic hysteresis loops also indicate size-dependent exchange bias effect displayed by horizontal and vertical shifts in field-cooled processes. The magnetization data reveal two ferromagnetic components: first one appears at T˜200K and may be attributed to surface magnetization and second one appears as a result of spin canting of antiferromagnetic core or is developed at some interfaces inside nanoparticles. Time evolution of magnetization recorded in magnetic fields after the field cooling to low temperatures exhibits a very noisy behavior that may be caused by formation of collective state of nanoparticles with no clear tendency to reach equilibrium state. Magnetic properties of the nanoparticle samples are compared with those of the bulk La0.2Ca0.8MnO3 .
Reddy, A G S; Reddy, D V; Rao, P N; Prasad, K Maruthy
2010-12-01
The groundwater of Nalgonda district is well known for its very high fluoride content for the past five decades. Many researchers have contributed their scientific knowledge to unravel causes for fluoride enrichment of groundwater. In the present paper, an attempt has been made to relate the high fluoride content in the groundwater to hydrogeochemical characterization of the water in a fracture hard rock terrain--the Wailpally watershed. Groundwater samples collected from all the major geomorphic units in pre- and post-monsoon seasons were analyzed for its major ion constituents such as Ca(2+), Mg(2+), Na(+), K(+), CO3-, HCO3-, Cl(-), SO4(-2), NO3-, and F(-). The groundwaters in the watershed have the average fluoride content of 2.79 mg/l in pre-monsoon and 2.83 mg/l in post-monsoon. Fluoride concentration in groundwater does not show perceptible change neither with time nor in space. The ionic dominance pattern is in the order of Na(+) > Ca(2+) > Mg(2+) > K(-) among cations and HCO3- Cl(-) > SO4(-2) NO3- F(-) among anions in pre-monsoon. In post-monsoon, Mg replaces Ca(2+) and NO3- takes the place of SO4(-2). The Modified Piper diagram reflect that the water belong to Ca(+2)-Mg(+2)-HCO3- to Na(+)-HCO3- facies. Negative chloralkali indices in both the seasons prove that ion exchange between Na(+) and K(+) in aquatic solution took place with Ca(+2) and Mg(+2) of host rock. The interpretation of plots for different major ions and molar ratios suggest that weathering of silicate rocks and water-rock interaction is responsible for major ion chemistry of groundwater in Wailpally watershed. Chemical characteristics and evolution of this fluoride-contaminated groundwater is akin to normal waters of other hard rock terrain; hence, it can be concluded that aquifer material play an important role in the contribution of fluoride in to the accompanying water. High fluoride content in groundwater can be attributed to the continuous water-rock interaction during the process of percolation with fluoride-bearing country rocks under arid, low precipitation, and high evapotranspiration conditions.
NASA Astrophysics Data System (ADS)
Khan, Nawazish A.; Qurat-ul-Ain; Firdous, Umber; Shaheryar
2012-02-01
We have successfully synthesized (Bi0.25Cu0.25Li0.25Tl0.25)Ba2Ca2Cu3O10-δ and (Bi0.25Cu0.25Li0.25Tl0.25)Ba2(Ca1.5Be0.5)Cu3O10-δ samples and studied their excess conductivity analyses (fluctuation-induced conductivity) of resistivity data. The main objective of such analyses is to investigate the influence of Be-substitution on the superconductivity parameters at the microscopic level. The width of the 3D-2D Lawrence-Doniach regime is increased with the doping of Be at the Ca sites. The energy required to break apart the Cooper pairs is increased from 0.03 eV to 0.08 eV in Be-doped samples. Using the Ginzburg-Landau number (NG) and GL equations, the thermodynamic critical magnetic field Bc(0), the lower critical field Bc1(0), the upper critical field Bc2(0), the critical current density Jc(0), and penetration depth λp.d are also calculated from these analyses. The values of critical fields [Bc(0) Bc1(0)], Jc(0), and phase relaxation time τϕ are increased whereas the penetration depth λp.d and κ values are suppressed with Be-doping. It is most likely that as a result of the enhancement in the density of the carriers in the (Bi0.25Cu0.25Li0.25Tl0.25)Ba2(Ca1.5Be0.5)Cu3O10-δ sample, this charge density gap is suppressed, which in turn suppresses the pseudo-gap resulting into enhancement of Bc (0), Bc1(0), and Jc(0).
Magnetism and electronic structure at the interface of a metal CaRuO3 and Mott insulator CaMnO3.
NASA Astrophysics Data System (ADS)
Boris, Alexander; Freeland, John; Kavich, Jerald; Lee, Ho Nyung; Yordanov, Petar; Khaliullin, Giniyat; Keimer, Bernhard; Chakhalian, Jak
2007-03-01
Recent advances in fabrication of ultra-thin complex oxide heterostructures have opened new opportunities to investigate possible novel quantum states at the correlated interfaces. With this aim we fabricated ultra-thin superlattices of CaMnO3(CMO)/CaRuO3(CRO) with the thickness of CRO layers from 1 to 12 unit cells by laser MBE. Electronic properties of CRO/CMO were investigated by soft x-ray spectroscopies at the L-edges of Mn and Ru. SQUID and optical reflectivity revealed a ferromagnetic thickness-independent transition at Tc 100K and CRO thickness-dependent negative magnetoresistance. This behavior is in marked contrast to the individual layers. At the interface we found a clear sign of net magnetic moment on Mn, which saturates only at magnetic field of 5T. Unlike CMO, similar measurements at the Ru L3-edge showed no detectable magnetism in the field up to 5T. Comparison with Ru references confirmed Ru(IV) oxidation state. These findings are in the sharp contrast with previously suggested models involving Ru(IV-V) valency exchange and thus reveal intricate nature of the interface between a metal and Mott insulator.
3. SOUTH TEST STAND WITH X15 IN PLACE. A color ...
3. SOUTH TEST STAND WITH X-15 IN PLACE. A color photograph taken from a lift boom or from atop a truck, looking northwest to NASA hangars in the far distance. Also shows the shop building at left, and two observation bunkers with hatches open; one at right (Bldg. 1933) and the other in front of Liquid Oxygen tank truck at left (Bldg. 1934). - Edwards Air Force Base, X-15 Engine Test Complex, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
The system Na2CO3-CaCO3 at 3 GPa
NASA Astrophysics Data System (ADS)
Podborodnikov, Ivan V.; Shatskiy, Anton; Arefiev, Anton V.; Rashchenko, Sergey V.; Chanyshev, Artem D.; Litasov, Konstantin D.
2018-04-01
It was suggested that alkali-alkaline earth carbonates may have a substantial role in petrological processes relevant to metasomatism and melting of the Earth's mantle. Because natrite, Na2CO3, Na-Ca carbonate (shortite and/or nyerereite), and calcite, CaCO3, have been recently reported from xenoliths of shallow mantle (110-115 km) origin, we performed experiments on phase relations in the system Na2CO3-CaCO3 at 3 GPa and 800-1300 °C. We found that the system has one intermediate compound, Na2Ca3(CO3)4, at 800 °C, and two intermediate compounds, Na2Ca(CO3)2 and Na2Ca3(CO3)4, at 850 °C. CaCO3 crystals recovered from experiments at 950 and 1000 °C are aragonite and calcite, respectively. Maximum solid solution of CaCO3 in Na2CO3 is 20 mol% at 850 °C. The Na-carbonate-Na2Ca(CO3)2 eutectic locates near 860 °C and 56 mol% Na2CO3. Na2Ca(CO3)2 melts incongruently near 880 °C to produce Na2Ca3(CO3)4 and a liquid containing about 51 mol% Na2CO3. Na2Ca3(CO3)4 disappears above 1000 °C via incongruent melting to calcite and a liquid containing about 43 mol% Na2CO3. At 1050 °C, the liquid, coexisting with Na-carbonate, contains 87 mol% Na2CO3. Na-carbonate remains solid up to 1150 °C and melts at 1200 °C. The Na2CO3 content in the liquid coexisting with calcite decreases to 15 mol% as temperature increases to 1300 °C. Considering the present and previous data, a range of the intermediate compounds on the liquidus of the Na2CO3-CaCO3 join changes as pressure increases in the following sequence: Na2Ca(CO3)2 (0.1 GPa) → Na2Ca(CO3)2, Na2Ca3(CO3)4 (3 GPa) → Na4Ca(CO3)3, Na2Ca3(CO3)4 (6 GPa). Thus, the Na2Ca(CO3)2 nyerereite stability field extends to the shallow mantle pressures. Consequently, findings of nyerereite among daughter phases in the melt inclusions in olivine from the sheared garnet peridotites are consistent with their mantle origin.
Mn-Site Doped CaMnO 3: Creation of the CMR Effect
NASA Astrophysics Data System (ADS)
Raveau, B.; Zhao, Y. M.; Martin, C.; Hervieu, M.; Maignan, A.
2000-01-01
The doping of CaMnO3-δ at Mn sites with pentavalent and hexavalent d0 elements - Nb, Ta, W, Mo - modifies the resistivity behavior of this phase, extending the insulating domain and increasing significantly the resistivity at low temperature as the doping element content increases. The higher valency of the doping element introduces electrons; i.e., Mn3+ species are formed in the Mn4+ matrix. Double exchange phenomena then allow ferromagnetic interactions, by application of external magnetic fields which are similar to those observed for electron-doped manganites Ca1-xLnxMnO3 (x≤0.15), but with smaller magnetic moments. Consequently, this Mn site doping induces CMR properties with resistivity ratios considerably larger than those for CaMnO3-δ.
Wang, Yue; Song, Renfeng; Feng, Huan; Guo, Ke; Meng, Qingtao; Chi, Haijun; Zhang, Run; Zhang, Zhiqiang
2016-01-01
A new Gadolinium(III)–coumarin complex, DO3A-Gd-CA, was designed and prepared as a dual-modal probe for simultaneous fluorescence and relaxivity responses to fluoride ions (F−) in aqueous media and mice. DO3A-Gd-CA was designed by using Gd(III) center as an MRI signal output unit and fluoride binding site, and the 4-(diethylamino)-coumarin-3-carboxylic acid (CA) as a fluorescence reporter. Upon the addition of fluoride ions to the solution of DO3A-Gd-CA, the liberation of the coordinated CA ligand led to a 5.7-fold fluorescence enhancement and a 75% increase in the longitudinal relaxivity (r1). The fluorescent detection limit for fluoride ions was determined to be 8 μM based on a 3σ/slope. The desirable features of the proposed DO3A-Gd-CA, such as high sensitivity and specificity, reliability at physiological pH and low cytotoxicity enable its application in visualization of fluoride ion in mice. The successful in vivo imaging indicates that DO3A-Gd-CA could be potentially used in biomedical diagnosis fields. PMID:27999298
Wang, Yue; Song, Renfeng; Feng, Huan; Guo, Ke; Meng, Qingtao; Chi, Haijun; Zhang, Run; Zhang, Zhiqiang
2016-12-16
A new Gadolinium(III)-coumarin complex, DO3A-Gd- CA , was designed and prepared as a dual-modal probe for simultaneous fluorescence and relaxivity responses to fluoride ions (F - ) in aqueous media and mice. DO3A-Gd- CA was designed by using Gd(III) center as an MRI signal output unit and fluoride binding site, and the 4-(diethylamino)-coumarin-3-carboxylic acid ( CA ) as a fluorescence reporter. Upon the addition of fluoride ions to the solution of DO3A-Gd- CA , the liberation of the coordinated CA ligand led to a 5.7-fold fluorescence enhancement and a 75% increase in the longitudinal relaxivity ( r ₁). The fluorescent detection limit for fluoride ions was determined to be 8 μM based on a 3 σ / slope . The desirable features of the proposed DO3A-Gd- CA , such as high sensitivity and specificity, reliability at physiological pH and low cytotoxicity enable its application in visualization of fluoride ion in mice. The successful in vivo imaging indicates that DO3A-Gd- CA could be potentially used in biomedical diagnosis fields.
Gaspers, Lawrence D; Thomas, Andrew P
2005-01-01
In hepatocytes, hormones linked to the formation of the second messenger inositol 1,4,5-trisphosphate (InsP3) evoke transient increases or spikes in cytosolic free calcium ([Ca2+]i), that increase in frequency with the agonist concentration. These oscillatory Ca2+ signals are thought to transmit the information encoded in the extracellular stimulus to down-stream Ca2+-sensitive metabolic processes. We have utilized both confocal and wide field fluorescence microscopy techniques to study the InsP3-dependent signaling pathway at the cellular and subcellular levels in the intact perfused liver. Typically InsP3-dependent [Ca2+]i spikes manifest as Ca2+ waves that propagate throughout the entire cytoplasm and nucleus, and in the intact liver these [Ca2+]i increases are conveyed through gap junctions to encompass entire lobular units. The translobular movement of Ca2+ provides a means to coordinate the function of metabolic zones of the lobule and thus, liver function. In this article, we describe the characteristics of agonist-evoked [Ca2+]i signals in the liver and discuss possible mechanisms to explain the propagation of intercellular Ca2+ waves in the intact organ.
Aeronautical Decision Making - Cockpit Resource Management
1989-01-01
perspective, the development of CRM concepts as seen in the kickoff workshop held at the NASA Ames Research Center (Cooper, White, and Lauber, 1979...something to put in the place of worrying a pleasant thought. A though stoppage (Stop negative thought patterns by shouting words like ’stop’ or ’no’ in the...the Situation." In: G.E. Cooper, M.D. White, and J.K. Lauber (Eds) Resource management in the cockpit. Moffett Field, CA: NASA Ames Research Center
Fabrication and Enhancement of Critical Currents of Silver Sheathed
NASA Astrophysics Data System (ADS)
Hu, Qingyu
X-ray diffraction was used to characterise the phase composition and to investigate the formation mechanism of the (Bi,Pb)_2Sr_2Ca_2Cu _3O_{10} phase from the precursor with (Bi,Pb)_2Sr_2CaCu _2O_8 as the main phase. The reaction is found to be a two-dimensional nucleation (random)-growth type, (-(ln(1-F)) ^{1/2} = kt, where F is the conversional fraction of (Bi,Pb) _2Sr_2CaCu_2O_8 phase and t is the sintering time. The two dimensional behaviour of the critical current in (Bi,Pb)_2Sr2Ca_2Cu _3O_{10}/Ag tapes was observed and analysed by introducing an effective grain misalignment angle, varphi_{eff}. This angle was found to be identical to the average crystallographic grain misalignment angle in the superconducting core. Furthermore, after fast neutron irradiation, which is isotropical, the J_{c}'s of the tapes were modified by the introduction of artificial defects, but the varphi_{eff}'s remained the same. The transport critical current of (Bi,Pb) _2Sr_2Ca_2Cu_3O_ {10}/Ag tapes was measured in magnetic fields up to 15 T and at temperatures from of 4.2 to 84 K. At high temperatures, the J_ {c} is strongly anisotropic and the anisotropy increases rapidly with magnetic field, whereas at low temperatures the critical current is less anisotropic and the anisotropy is almost field independent above 1 T. The transport J_{c }'s in (Bi,Pb)_2Sr_2Ca _2Cu_3O_{10}/Ag tapes at 77 K and higher magnetic fields after neutron irradiation are significantly enhanced. This enhancement is attributed to an improvement in the flux pinning capability of this material by the neutron-induced defects. The angular dependence of J_{c} is still consistent with two-dimensionality, i.e. flux pinning of pancake and/or Josephson vortices is directly confirmed by this transport measurement. Short multifilamentary (Bi,Pb)_2Sr_2Ca_2Cu_2O_{10 }/Ag tapes were fabricated. The sintering parameters were optimised to be 832^circ C and 180 h. The multifilamentary tape consists mainly of pure (Bi,Pb)_2Sr_2Ca _2Cu_3O_{10} with a (00l) preferred orientation, like the single filamentary tape. The mass densities of the (Bi,Pb)_2Sr_2Ca_2Cu_3O_{10 }/Ag wire and tape vary during the mechanical deformation process, as one of the steps of the oxide-powder -in-tube technique used to fabricate the composite superconductor. Results show that the rolling has a more significant effect on densifying the tape core, whereas the drawing process can only densify the core to about 75% of the theoretical density. Since the textured (Bi,Pb)_2Sr_2Ca _2Cu_3O_{10} phase forms by epitaxial growth on the textured (Bi,Pb) _2Sr_2CaCu_2O_8 seed crystals, the deformation induced texture is critical. The formation of the amorphous phase is harmful to the texturing of the (Bi,Pb)_2Sr_2Ca_2Cu _2O_{10} phase, which finally leads to a degradation of critical currents. (Abstract shortened by UMI.).
Stepan, Jens; Dine, Julien; Eder, Matthias
2015-01-01
Decades of brain research have identified various parallel loops linking the hippocampus with neocortical areas, enabling the acquisition of spatial and episodic memories. Especially the hippocampal trisynaptic circuit [entorhinal cortex layer II → dentate gyrus (DG) → cornu ammonis (CA)-3 → CA1] was studied in great detail because of its seemingly simple connectivity and characteristic structures that are experimentally well accessible. While numerous researchers focused on functional aspects, obtained from a limited number of cells in distinct hippocampal subregions, little is known about the neuronal network dynamics which drive information across multiple synapses for subsequent long-term storage. Fast voltage-sensitive dye imaging in vitro allows real-time recording of activity patterns in large/meso-scale neuronal networks with high spatial resolution. In this way, we recently found that entorhinal theta-frequency input to the DG most effectively passes filter mechanisms of the trisynaptic circuit network, generating activity waves which propagate across the entire DG-CA axis. These "trisynaptic circuit waves" involve high-frequency firing of CA3 pyramidal neurons, leading to a rapid induction of classical NMDA receptor-dependent long-term potentiation (LTP) at CA3-CA1 synapses (CA1 LTP). CA1 LTP has been substantially evidenced to be essential for some forms of explicit learning in mammals. Here, we review data with particular reference to whole network-level approaches, illustrating how activity propagation can take place within the trisynaptic circuit to drive formation of CA1 LTP.
Larrick, James W; Parren, Paul W H I; Huston, James S; Plückthun, Andreas; Bradbury, Andrew; Tomlinson, Ian M; Chester, Kerry A; Burton, Dennis R; Adams, Gregory P; Weiner, Louis M; Scott, Jamie K; Alfenito, Mark R; Veldman, Trudi; Reichert, Janice M
2014-01-01
The 25th anniversary of the Antibody Engineering & Therapeutics Conference, the Annual Meeting of The Antibody Society, will be held in Huntington Beach, CA, December 7-11, 2014. Organized by IBC Life Sciences, the event will celebrate past successes, educate participants on current activities and offer a vision of future progress in the field. Keynote addresses will be given by academic and industry experts Douglas Lauffenburger (Massachusetts Institute of Technology), Ira Pastan (National Cancer Institute), James Wells (University of California, San Francisco), Ian Tomlinson (GlaxoSmithKline) and Anthony Rees (Rees Consulting AB and Emeritus Professor, University of Bath). These speakers will provide updates of their work, placed in the context of the substantial growth of the industry over the past 25 years.
Cryogenic setup for trapped ion quantum computing.
Brandl, M F; van Mourik, M W; Postler, L; Nolf, A; Lakhmanskiy, K; Paiva, R R; Möller, S; Daniilidis, N; Häffner, H; Kaushal, V; Ruster, T; Warschburger, C; Kaufmann, H; Poschinger, U G; Schmidt-Kaler, F; Schindler, P; Monz, T; Blatt, R
2016-11-01
We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120 dB reduction of 50 Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than ±20 nm over 2 s. In addition to the cryogenic apparatus, we describe the setup required for an operation with 40 Ca + and 88 Sr + ions. The instability of the laser manipulating the optical qubits in 40 Ca + is characterized by yielding a minimum of its Allan deviation of 2.4 ⋅ 10 -15 at 0.33 s. To evaluate the performance of the apparatus, we trapped 40 Ca + ions, obtaining a heating rate of 2.14(16) phonons/s and a Gaussian decay of the Ramsey contrast with a 1/e-time of 18.2(8) ms.
Busquet, Perrine; Nguyen, Ngoc Khoi; Schmid, Eduard; Tanimoto, Naoyuki; Seeliger, Mathias W; Ben-Yosef, Tamar; Mizuno, Fengxia; Akopian, Abram; Striessnig, Jörg; Singewald, Nicolas
2010-05-01
Mounting evidence suggests that voltage-gated L-type Ca2+ channels can modulate affective behaviour. We therefore explored the role of CaV1.3 L-type Ca2+ channels in depression- and anxiety-like behaviours using CaV1.3-deficient mice (CaV1.3-/-). We showed that CaV1.3-/- mice displayed less immobility in the forced swim test as well as in the tail suspension test, indicating an antidepressant-like phenotype. Locomotor activity in the home cage or a novel open-field test was not influenced. In the elevated plus maze (EPM), CaV1.3-/- mice entered the open arms more frequently and spent more time there indicating an anxiolytic-like phenotype which was, however, not supported in the stress-induced hyperthermia test. By performing parallel experiments in Claudin 14 knockout mice (Cldn14-/-), which like CaV1.3-/- mice are congenitally deaf, an influence of deafness on the antidepressant-like phenotype could be ruled out. On the other hand, a similar EPM behaviour indicative of an anxiolytic phenotype was also found in the Cldn14-/- animals. Using electroretinography and visual behavioural tasks we demonstrated that at least in mice, CaV1.3 channels do not significantly contribute to visual function. However, marked morphological changes were revealed in synaptic ribbons in the outer plexiform layer of CaV1.3-/- retinas by immunohistochemistry suggesting a possible role of this channel type in structural plasticity at the ribbon synapse. Taken together, our findings indicate that CaV1.3 L-type Ca2+ channels modulate depression-like behaviour but are not essential for visual function. The findings raise the possibility that selective modulation of CaV1.3 channels could be a promising new therapeutic concept for the treatment of mood disorders.
NASA Astrophysics Data System (ADS)
Lakhani, Archana; Kushwaha, Pallavi; Rawat, R.; Kumar, Kranti; Banerjee, A.; Chaddah, P.
2010-01-01
Glass-like arrest has recently been reported in various magnetic materials. As in structural glasses, the kinetics of a first order transformation is arrested while retaining the higher entropy phase as a non-ergodic state. We show visual mesoscopic evidence of the irreversible transformation of the arrested antiferromagnetic-insulating phase in Pr0.5Ca0.5Mn0.975Al0.025O3 to its equilibrium ferromagnetic-metallic phase with an isothermal increase of magnetic field, similar to its iso-field transformation on warming. The magnetic field dependence of the non-equilibrium to equilibrium transformation temperature is shown to be governed by Le Chatelier's principle.
Ferroelectriclike and pyroelectric behavior of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shri Prakash, B.; Varma, K. B. R.
2007-02-19
A ferroelectriclike hysteresis loop was obtained at room temperature for CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramic. The remnant polarization and coercive field for 1100 deg. C/5 h sintered CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics were 0.063 {mu}C/cm{sup 2} and 195 V/cm, respectively. Remnant polarization increased while the coercive field decreased with increase in sintering temperature/duration, implying that these were microstructural dependent. The observation of the hysteresis loop for CCTO ceramic was corroborated by its pyroelectric behavior, and the pyroelectric current at room temperature was -0.0028 nA. These findings were attributed to the presence of mixed-valent Ti ions, apart from off centermore » displacement of Ti ions in TiO{sub 6} octahedra.« less
Shang, Mengmeng; Geng, Dongling; Yang, Dongmei; Kang, Xiaojiao; Zhang, Yang; Lin, Jun
2013-03-18
Pure Ca2Ba3(PO4)3Cl and rare earth ion (Eu(2+)/Ce(3+)/Dy(3+)/Tb(3+)) doped Ca2Ba3(PO4)3Cl phosphors with the apatite structure have been prepared via a Pechini-type sol-gel process. X-ray diffraction (XRD) and structure refinement, photoluminescence (PL) spectra, cathodoluminescence (CL) spectra, absolute quantum yield, as well as lifetimes were utilized to characterize samples. Under UV light excitation, the undoped Ca2Ba3(PO4)3Cl sample shows broad band photoluminescence centered near 480 nm after being reduced due to the defect structure. Eu(2+) and Ce(3+) ion doped Ca2Ba3(PO4)3Cl samples also show broad 5d → 4f transitions with cyan and blue colors and higher quantum yields (72% for Ca2Ba3(PO4)3Cl:0.04Eu(2+); 67% for Ca2Ba3(PO4)3Cl:0.016Ce(3+)). For Dy(3+) and Tb(3+) doped Ca2Ba3(PO4)3Cl samples, they give strong line emissions coming from 4f → 4f transitions. Moreover, the Ce(3+) ion can transfer its energy to the Tb(3+) ion in the Ca2Ba3(PO4)3Cl host, and the energy transfer mechanism has been demonstrated to be a resonant type, via a dipole-quadrupole interaction. However, under the low voltage electron beam excitation, Tb(3+) ion doped Ca2Ba3(PO4)3Cl samples present different luminescence properties compared with their PL spectra, which is ascribed to the different excitation mechanism. On the basis of the good PL and CL properties of the Ca2Ba3(PO4)3Cl:A (A = Ce(3+)/Eu(2+)/Tb(3+)/Dy(3+)), Ca2Ba3(PO4)3Cl might be promising for application in solid state lighting and field-emission displays.
NASA Technical Reports Server (NTRS)
Ren, Z. F.; Wang, C. A.; Wang, J. H.; Miller, D. J.; Goretta, K. C.
1995-01-01
Epitaxial (Tl,Bi)Sr(1.6)Ba(0.4)Ca2Cu3O(x) ((Tl,Bi)-1223) thin films on (100) single crystal LaAlO3 substrates were synthesized by a two-step procedure. Phase development, microstructure, and relationships between film and substrate were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Resistance versus temperature, zero-field-cooled and field cooled magnetization, and transport critical current density (J(sub c)) were measured. The zero-resistance temperature was 105-111 K. J(sub c) at 77 K and zero field was greater than 2 x 10(exp 6) A/sq cm. The films exhibited good flux pinning properties.
Charge ordered ferromagnetic phase in La_0.5Ca_0.5MnO_3
NASA Astrophysics Data System (ADS)
Mathur, Neil
2003-03-01
Charge order and ferromagnetism should be mutually exclusive in the manganites, because ferromagnetism in these materials is normally promoted by delocalised electrons. Surprisingly, a phase that is both strongly charge ordered and fully ferromagnetic is observed [1] at 90 K in La_0.5Ca_0.5MnO_3, using Fresnel imaging, dark-field TEM and electron holography. This new phase coexists with the two low temperature phases that were already known to coexist in La_0.5Ca_0.5MnO_3. (One of these expected phases is ferromagnetic but not charge-ordered, the other is charge-ordered but not ferromagnetic.) Strain fields could be responsible for the novel microscopic texture presented here - perhaps creating conditions in which nearest neighbour hopping is sufficient to promote ferromagnetism. Similarly, strain fields are believed to cause sub-micron phase separation in the manganites. It therefore seems that the manganites can adapt to their environments over a wide range of length scales [2]. [1] http://xxx.lanl.gov/abs/cond-mat/0209436 [2] Neil Mathur and Peter Littlewood, Physics Today, early 2003.
Burgess, Kevin M N; Bryce, David L
2015-02-01
The vaterite polymorph of CaCO3 has puzzled crystallographers for decades in part due to difficulties in obtaining single crystals. The multiple proposed structures for the vaterite polymorph of CaCO3 are assessed using a combined (43)Ca solid-state nuclear magnetic resonance (SSNMR) spectroscopic and computational approach. A combination of improved experimental and computational methods, along with a calibrated chemical shift scale and (43)Ca nuclear quadrupole moment, allow for improved insights relative to our earlier work (Bryce et al., J. Am. Chem. Soc. 2008, 130, 9282). Here, we synthesize a (43)Ca isotopically-enriched sample of vaterite and perform high-resolution quadrupolar SSNMR experiments including magic-angle spinning (MAS), double-rotation (DOR), and multiple-quantum (MQ) MAS experiments at magnetic field strengths of 9.4 and 21.1T. We identify one crystallographically unique Ca(2+) site in vaterite with a slight distribution in both chemical shifts and quadrupolar parameters. Both the experimental (43)Ca electric field gradient tensor and the isotropic chemical shift for vaterite are compared to those calculated with the gauge-including projector-augmented-wave (GIPAW) DFT method in an attempt to identify the model that best represents the crystal structure of vaterite. Simulations of (43)Ca DOR and MAS NMR spectra based on the NMR parameters computed for a total of 18 structural models for vaterite allow us to distinguish between these models. Among these 18, the P3221 and C2 structures provide simulated spectra and diffractograms in best agreement with all experimental data. Copyright © 2014 Elsevier Inc. All rights reserved.
Hutzler, Michael; Fromherz, Peter
2004-04-01
Probing projections between brain areas and their modulation by synaptic potentiation requires dense arrays of contacts for noninvasive electrical stimulation and recording. Semiconductor technology is able to provide planar arrays with high spatial resolution to be used with planar neuronal structures such as organotypic brain slices. To address basic methodical issues we developed a silicon chip with simple arrays of insulated capacitors and field-effect transistors for stimulation of neuronal activity and recording of evoked field potentials. Brain slices from rat hippocampus were cultured on that substrate. We achieved local stimulation of the CA3 region by applying defined voltage pulses to the chip capacitors. Recording of resulting local field potentials in the CA1 region was accomplished with transistors. The relationship between stimulation and recording was rationalized by a sheet conductor model. By combining a row of capacitors with a row of transistors we determined a simple stimulus-response matrix from CA3 to CA1. Possible contributions of inhomogeneities of synaptic projection, of tissue structure and of neuroelectronic interfacing were considered. The study provides the basis for a development of semiconductor chips with high spatial resolution that are required for long-term studies of topographic mapping.
NASA Astrophysics Data System (ADS)
Wang, J. F.; Jiang, Y. C.; Chen, M. G.; Gao, J.
2013-12-01
Heterojunctions composed of La0.5Ca0.5MnO3 and Nb doped SrTiO3 were fabricated, and the effects of the Nb doping level on their electronic transport, photoelectric effect, and magnetoresistance were investigated. A lower doping concentration of Nb led to better rectifying properties and higher open circuit voltages. The I-V curves for La0.5Ca0.5MnO3/0.7 wt. % Nb-SrTiO3 showed a negligible response to magnetic fields for all temperatures, whereas La0.5Ca0.5MnO3/0.05 wt. % Nb-SrTiO3 exhibited distinct magnetoresistance, which depended on both the bias voltage and temperature. These results are discussed with the assistance of conventional semiconductor theories.
NASA Astrophysics Data System (ADS)
Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni
2011-02-01
The phase equilibria and liquidus temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2 system in equilibrium with metallic iron have been determined experimentally in the temperature range 1383 K to 1573 K (1150 °C to 1300 °C). The experimental conditions were selected to characterize lead blast furnace and imperial smelting furnace slags. The results are presented in a form of pseudoternary sections ZnO-"FeO"-(Al2O3 + CaO + SiO2) with fixed CaO/SiO2 and (CaO + SiO2)/Al2O3 ratios. It was found that wustite and spinel are the major primary phases in the composition range investigated. Effects of Al2O3 concentration as well as the CaO/SiO2 ratio on the primary phase field, the liquidus temperature, and the partitioning of ZnO between liquid and solid phases have been discussed for zinc-containing slags.
Fritsch, Michael H; Gutt, Jason J
2005-03-01
A 3-T magnetic resonance field may cause motion or displacement of middle ear implants not seen in studies with 1.5-T magnets. Previous publications have described the safety limitations of some otologic implants in 1.5-T magnetic resonance fields. Several company-wide recalls of implants were issued. No studies to date have been reported for otologic implants within a 3-T magnetic resonance field, nor have there been comparisons with a 1.5-T field strength. Eighteen commonly used middle ear implants and prostheses were selected. In Part 1, the prostheses were placed in Petri dishes and exposed to a 3-T magnetic resonance field. In Part 2, the particular prostheses that showed movement in Part 1 were placed into their intended use positions within temporal bone laboratory specimens and exposed to a 3-T field. Both parts were repeated in a 1.5-T field. In Part 1, three prostheses moved dramatically from their start positions when exposed to the 3-T magnetic resonance field. In Part 2, the three particular prostheses that showed movement in Part 1 showed no gross displacement or movement from their start positions within the temporal bone laboratory specimens. No implants moved in the 1.5-T field in either Part 1 or Part 2. Certain stapes prostheses move dramatically in Petri dishes in 3-T fields. When placed into temporal bone laboratory specimens, the same prostheses show no signs of movement from the surgical site in a 3-T field, and it appears that the surgical position holds the implants firmly in place. Results of published 1.5-T field studies should not be used directly for safety recommendations in a 3-T magnetic resonance. Heat, voltage induction, and vibration during exposure to the magnetic resonance fields should be considered as additional possible safety issues. Preference should be given to platinum and titanium implants in manufacturing processes and surgical selection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partha, Sarathy K.; Ravulapalli, Ravikiran; Allingham, John S.
2014-08-21
Calpains are Ca 2+dependent intracellular cysteine proteases that cleave a wide range of protein substrates to help implement Ca 2+ signaling in the cell. The major isoforms of this enzyme family, calpain-1 and calpain-2, are heterodimers of a large and a small subunit, with the main dimer interface being formed through their C-terminal penta-EF hand (PEF) domains. Calpain-3, or p94, is a skeletal muscle-specific isoform that is genetically linked to limb-girdle muscular dystrophy. Biophysical and modeling studies with the PEF domain of calpain-3 support the suggestion that full-length calpain-3 exists as a homodimer. Here, we report the crystallization of calpain-3'smore » PEF domain and its crystal structure in the presence of Ca 2+, which provides evidence for the homodimer architecture of calpain-3 and supports the molecular model that places a protease core at either end of the elongated dimer. Unlike other calpain PEF domain structures, the calpain-3 PEF domain contains a Ca 2+ bound at the EF5-hand used for homodimer association. Three of the four Ca 2+-binding EF-hands of the PEF domains are concentrated near the protease core, and have the potential to radically change the local charge within the dimer during Ca 2+ signaling. Examination of the homodimer interface shows that there would be steric clashes if the calpain-3 large subunit were to try to pair with a calpain small subunit.« less
2013-01-01
Non-Ohmic and dielectric properties of a novel CaCu3Ti4O12/Au nanocomposite were investigated. Introduction of 2.5 vol.% Au nanoparticles in CaCu3Ti4O12 ceramics significantly reduced the loss tangent while its dielectric permittivity remained unchanged. The non-Ohmic properties of CaCu3Ti4O12/Au (2.5 vol.%) were dramatically improved. A nonlinear coefficient of ≈ 17.7 and breakdown electric field strength of 1.25 × 104 V/m were observed. The maximum stored energy density was found to be 25.8 kJ/m3, which is higher than that of pure CaCu3Ti4O12 by a factor of 8. Au addition at higher concentrations resulted in degradation of dielectric and non-Ohmic properties, which is described well by percolation theory. PMID:24257060
Effects of water hardness on size and hatching success of silver carp eggs
Rach, Jeff J.; Sass, Greg G.; Luoma, James A.; Gaikowski, Mark P.
2010-01-01
Eggs of silver carp Hypophthalmichthys molitrix absorb water after release from the female, causing them to become turgid and to increase substantially in size. The volume of water that diffuses within an egg is most likely determined by (1) the difference in ionic concentration between the egg and the water that surrounds it and (2) the elasticity of the egg membrane. Prior observations suggest that silver carp eggs may swell and burst in soft waters. If water hardness affects silver carp reproductive success in nonnative ecosystems, this abiotic factor could limit silver carp distribution or abundance. In this study, we tested the effect of water hardness on silver carp egg enlargement and hatching success. Groups of newly fertilized silver carp eggs were placed in water at one of five nominal water hardness levels (50, 100, 150, 200, or 250 mg/L as CaCO3) for 1 h to harden (absorb water after fertilization). Egg groups were then placed in separate incubation vessels housed in two recirculation systems that were supplied with either soft (50 mg/L as CaCO3) or hard (250 mg/L as CaCO3) water to evaluate hatching success. Tests were terminated within 24 h after viable eggs had hatched. Eggs that were initially placed in 50-mg/L water to harden were larger (i.e., swelled more) and had a greater probability of hatch than eggs hardened in other water hardness levels. Unlike the effect of water hardness during egg hardening, the water hardness during incubation appeared to have no effect on egg hatching success. Our research suggests that water hardness may not be a limiting factor in the reproduction, recruitment, and range expansion of silver carp in North America.
Quantum effect on the energy levels of Eu2+ doped K2Ca2(SO4)3 nanoparticles.
Salah, Numan; Habib, Sami S; Khan, Zishan H
2010-09-01
Quantum confinement effect on the energy levels of Eu(2+) doped K(2)Ca(2)(SO(4))(3) nanoparticles has been observed. The broad photoluminescence (PL) emission band of Eu(2+) doped K(2)Ca(2)(SO(4))(3) microcrystalline sample observed at ∼436 nm is found to split into two narrow well resolved bands, located at 422 and 445 nm in the nanostructure form of this material. This has been attributed to the reduction in the crystal field strength of the nanomaterials, which results in widening the energy band gap and splitting the broad 4f(6)5d energy level of Eu(2+). Energy band gap values of the micro and nanocrystalline K(2)Ca(2)(SO(4))(3) samples were also determined by measuring the UV-visible absorption spectra. These values are 3.34 and 3.44 eV for the micro and nanocrystalline samples, respectively. These remarkable results suggest that activators having wide emission bands might be subjected to weak crystal strength via nanostructure materials to modify their electronic transitions. This might prove a powerful technique for producing new-advanced materials for use in the fields of solid state lasers and optoelectronic devises.
NASA Astrophysics Data System (ADS)
Thomas, Rini; Das, Gangadhar; Mondal, Rajib; Pradheesh, R.; Mahato, R. N.; Geetha Kumary, T.; Nirmala, R.; Morozkin, A. V.; Lamsal, J.; Yelon, W. B.; Nigam, A. K.; Malik, S. K.
2012-04-01
Nanocrystalline La0.15Ca0.85MnO3 samples of various grain sizes ranging from ˜17 to 42 nm have been prepared by sol-gel technique. Phase purity and composition were verified by room temperature x-ray diffraction and SEM-EDAX analysis. The bulk La0.15Ca0.85MnO3 is known to order antiferromagnetically around 170 K and to undergo a simultaneous crystal structural transition. DC magnetization measurements on 17 nm size La0.15Ca0.85MnO3 show a peak at ˜130 K (TN) in zero-field-cooled (ZFC) state. Field-cooled magnetization bifurcates from ZFC data around 200 K hinting a weak ferromagnetic component near room temperature due to surface moments of the nanoparticle sample. Low temperature powder neutron diffraction experiments reveal that the incomplete structural transition from room temperature orthorhombic to low temperature orthorhombic-monoclinic state also occurs in the nanoparticle sample as in the bulk. Magnetization in the ordered state decreases as particle size increases, thus indicating the reduction of the competing ferromagnetic surface moments.
The system CaO-MgO-SiO2-CO2 at 1 GPa, metasomatic wehrlites, and primary carbonatite magmas
NASA Astrophysics Data System (ADS)
Lee, W. J.; Wyllie, P. J.
New experimental data in CaO-MgO-SiO2-CO2 at 1GPa define the vapor-saturated silicate-carbonate liquidus field boundary involving primary minerals calcite, forsterite and diopside. The eutectic reaction for melting of model calcite (1% MC)-wehrlite at 1GPa is at 1100°C, with liquid composition (by weight) 72% CaCO3 (CC), 9% MgCO3 (MC), and 18% CaMgSi2O6 (Di). These data combined with previous results permit construction of the isotherm-contoured vapor-saturated liquidus surface for the calcite/dolomite field, and part of the adjacent forsterite and diopside fields. Nearly pure calcite crystals in mantle xenoliths cannot represent equilibrium liquids. We recently determined the complete vapor-saturated liquidus surface between carbonates and model peridotites at 2.7GPa the peritectic reaction for dolomite (25% MC)-wehrlite at 2.7GPa occurs at 1300°C, with liquid composition 60% CC, 29% MC, and 11% Di. The liquidus field boundaries on these two surfaces provide the road-map for interpretation of magmatic processes in various peridotite-CO2 systems at depths between the Moho and about 100km. Relationships among kimberlites, melilitites, carbonatites and the liquidus phase boundaries are discussed. Experimental data for carbonatite liquid protected by metasomatic wehrlite have been reported. The liquid trends directly from dolomitic towards CaCO3 with decreasing pressure. The 1.5GPa liquid contains 87% CC and 4% Di, much lower in silicate components than our phase boundary. However, the liquids contain approximately the same CaCO3 (90+/- 1wt%) in terms of only carbonate components. For CO2-bearing mantle, all magmas at depth must pass through initial dolomitic compositions. Rising dolomitic carbonatite melt will vesiculate and may erupt as primary magmas through cracks from about 70km. If it percolates through metasomatic wehrlite from 70km toward the Moho at 35-40km, primary calcic siliceous carbonatite magma can be generated with silicate content at least 11-18% (70-40km) on the silicate-carbonate boundary.
NASA Astrophysics Data System (ADS)
Neigh, C. S. R.; Carroll, M.; Wooten, M.; McCarty, J. L.; Powell, B.; Husak, G. J.; Enenkel, M.; Hain, C.
2017-12-01
Global food production in the developing world occurs within sub-hectare fields that are difficult to identify with moderate resolution satellite imagery. Knowledge about the distribution of these fields is critical in food security programs. We developed a semi-automated image segmentation approach using wall-to-wall sub-meter imagery with high-end computing (HEC) to map crop area (CA) throughout Tigray, Ethiopia that encompasses over 41,000 km2. Our approach tested multiple HEC processing streams to reduce processing time and minimize mapping error. We applied multiple resolution smoothing kernels to capture differences in land surface texture associated to CA. Typically, very-small fields (mean < 2 ha) have a smooth image roughness compared to natural scrub/shrub woody vegetation at the 1 m scale and these features can be segmented in panchromatic imagery with multi-level histogram thresholding. We found multi-temporal very-high resolution (VHR) panchromatic imagery with multi-spectral VHR and moderate resolution imagery are sufficient in extracting critical CA information needed in food security programs. We produced a 2011 ‒ 2015 CA map using over 3,000 WorldView-1 panchromatic images wall-to-wall in 1/2° mosaics for Tigray, Ethiopia in 1 week. We evaluated CA estimates with nearly 3,000 WorldView-2 2 m multispectral 250 × 250 m image subsets, with seven expert interpretations, and with in-situ global positioning system (GPS) photography. Our CA estimates ranged from 32 to 41% in sub-regions of Tigray with median maximum per bin commission and omission errors of 11% and 1% respectively, with most of the error occurring in bins less than 15%. This empirical, simple, and low direct cost approach via U.S. government license agreement and HEC could be a viable big-data methodology to extract wall-to-wall CA for other regions of the world that have very-small agriculture fields with similar image texture.
Liming effects on cadmium stabilization in upland soil affected by gold mining activity.
Hong, Chang Oh; Lee, Do Kyoung; Chung, Doug Young; Kim, Pil Joo
2007-05-01
To reduce cadmium (Cd) uptake of plants cultivated in heavy metal-contaminated soil, the best liming material was selected in the incubation test. The effect of the selected material was evaluated in the field. In the incubation experimentation, CaCO(3), Ca(OH)(2), CaSO(4).2H(2)O, and oyster shell meal were mixed with soil at rates corresponding to 0, 400, 800, 1600, 3200 mg Ca kg(-1). The limed soil was moistened to 70% of field moisture capacity, and incubated at 25 degrees C for 4 weeks. Ca(OH)(2) was found to be more efficient on reducing soil NH(4)OAc extractable Cd concentration, due to pH increase induced net negative charge. The selected Ca(OH)(2) was applied at rates 0, 2, 4, 8 Mg ha(-1) and then cultivated radish (Raphanus sativa L.) in the field. NH(4)OAc extractable Cd concentration of soil and plant Cd concentration decreased significantly with increasing Ca(OH)(2) rate, since alkaline-liming material markedly increased net negative charge of soil induced by pH increase, and decreased bioavailable Cd fractions (exchangeable + acidic and reducible Cd fraction) during radish cultivation. Cadmium uptake of radish could be reduced by about 50% by amending with about 5 Mg ha(-1) Ca(OH)(2) without adverse effect on radish yield and growth. The increase of net negative charge of soil by Ca(OH)(2) application may suppress Cd uptake and the competition between Ca(2+) and Cd(2+) may additionally affect the suppression of Cd uptake.
NASA Astrophysics Data System (ADS)
Zöll, Klaus; Manninger, Tanja; Kahlenberg, Volker; Krüger, Hannes; Tropper, Peter
2017-08-01
In a study on parts of the system Fe2O3-CaO-Al2O3-MgO, the previously unknown compound Ca3MgAl6Fe10O28 or FCAM-I (iso-structural with SFCA-I) has been synthesized. The two principal aims of our investigations have been (i) analysis of the stability field of the new phase as a function of T and fO2 and (ii) determination of its crystal structure. Two experimental series in air and under controlled oxygen fugacity via the hematite-magnetite buffer were conducted. Pure polycrystalline FCAM-I has been obtained at 1463.15 K (1190 °C) in air. While increasing the temperature from 1573.15 K to 1673.15 K (1300 °C to 1400 °C), the FCAM-I phase breaks down forming a variety of new compounds depending on T and fO2. Ca3MgAl6Fe10O28 has a triclinic crystal structure (space group P \\overline{1} ). Basic crystallographic data are as follows: a = 10.2980(4) Å, b = 10.4677(4) Å, c = 11.6399(4) Å, α = 94.363(3)°, β = 111.498(3)°, γ = 109.744(3)°, V = 1069.81(7) Å3, Z = 2.
Antioxidant Potential and Antibacterial Efficiency of Caffeic Acid-Functionalized ZnO Nanoparticles
Choi, Kyong-Hoon; Nam, Ki Chang; Lee, Sang-Yoon; Cho, Guangsup; Jung, Jin-Seung; Kim, Ho-Joong; Park, Bong Joo
2017-01-01
We report a novel zinc oxide (ZnO) nanoparticle with antioxidant properties, prepared by immobilizing the antioxidant 3-(3,4-dihydroxyphenyl)-2-propenoic acid (caffeic acid, CA) on the surfaces of micro-dielectric barrier discharge (DBD) plasma-treated ZnO nanoparticles. The microstructure and physical properties of ZnO@CA nanoparticles were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), infrared spectroscopy, and steady state spectroscopic methods. The antioxidant activity of ZnO@CA nanoparticles was evaluated using an ABTS (3-ethyl-benzothiazoline-6-sulfonic acid) radical cation decolorization assay. ZnO@CA nanoparticles exhibited robust antioxidant activity. Moreover, ZnO@CA nanoparticles showed strong antibacterial activity against Gram-positive bacteria (Staphylococcus aureus) including resistant bacteria such as methicillin-resistant S. aureus and against Gram-negative bacteria (Escherichia coli). Although Gram-negative bacteria appeared to be more resistant to ZnO@CA nanoparticles than Gram-positive bacteria, the antibacterial activity of ZnO@CA nanoparticles was dependent on particle concentration. The antioxidant and antibacterial activity of ZnO@CA may be useful for various biomedical and nanoindustrial applications. PMID:28621707
Futel, Mélinée; Leclerc, Catherine; Le Bouffant, Ronan; Buisson, Isabelle; Néant, Isabelle; Umbhauer, Muriel; Moreau, Marc; Riou, Jean-François
2015-03-01
In Xenopus laevis embryos, kidney field specification is dependent on retinoic acid (RA) and coincides with a dramatic increase of Ca(2+) transients, but the role of Ca(2+) signaling in the kidney field is unknown. Here, we identify TRPP2, a member of the transient receptor potential (TRP) superfamily of channel proteins encoded by the pkd2 gene, as a central component of Ca(2+) signaling in the kidney field. TRPP2 is strongly expressed at the plasma membrane where it might regulate extracellular Ca(2+) entry. Knockdown of pkd2 in the kidney field results in the downregulation of pax8, but not of other kidney field genes (lhx1, osr1 and osr2). We further show that inhibition of Ca(2+) signaling with an inducible Ca(2+) chelator also causes downregulation of pax8, and that pkd2 knockdown results in a severe inhibition of Ca(2+) transients in kidney field explants. Finally, we show that disruption of RA results both in an inhibition of intracellular Ca(2+) signaling and of TRPP2 incorporation into the plasma membrane of kidney field cells. We propose that TRPP2-dependent Ca(2+) signaling is a key component of pax8 regulation in the kidney field downstream of RA-mediated non-transcriptional control of TRPP2. © 2015. Published by The Company of Biologists Ltd.
Mono-manganese mechanism of the photosystem II water splitting reaction by a unique Mn4Ca cluster.
Kusunoki, Masami
2007-06-01
The molecular mechanism of the water oxidation reaction in photosystem II (PSII) of green plants remains a great mystery in life science. This reaction is known to take place in the oxygen evolving complex (OEC) incorporating four manganese, one calcium and one chloride cofactors, that is light-driven to cycle four intermediates, designated S(0) through S(4), to produce four protons, five electrons and lastly one molecular oxygen, for indispensable resources in biosphere. Recent advancements of X-ray crystallography models established the existence of a catalytic Mn(4)Ca cluster ligated by seven protein amino acids, but its functional structure is not yet resolved. The (18)O exchange rates of two substrate water molecules were recently measured for four S(i)-state samples (i=0-3) leading to (34)O(2) and (36)O(2) formations, revealing asymmetric substrate binding sites significantly depending on the S(i)-state. In this paper, we present a chemically complete model for the Mn(4)Ca cluster and its surrounding enzyme field, which we found out from some possible models by using the hybrid density functional theoretic geometry optimization method to confirm good agreements with the 3.0 A resolution PSII model [B. Loll, J. Kern, W. Saenger, A. Zouni , J. Biesiadka, Nature 438 (2005) 1040-1044] and the S-state dependence of (18)O exchange rates [W. Hillier and T. Wydrzynski, Phys. Chem. Chem. Phys. 6 (2004) 4882-4889]. Furthermore, we have verified that two substrate water molecules are bound to asymmetric cis-positions on the terminal Mn ion being triply bridged (mu-oxo, mu-carboxylato, and a hydrogen bond) to the Mn(3)CaO(3)(OH) core, by developing a generalized theory of (18)O exchange kinetics in OEC to obtain an experimental evidence for the cross exchange pathway from the slow to the fast exchange process. Some important experimental data will be discussed in terms of this model and its possible tautomers, to suggest that a cofactor, Cl(-) ion, may be bound to CP43-Arg357 nearby Ca(2+) ion and that D1-His337 may be used to trap a released proton only in the S(2)-state.
Exterior oblique detail view of sidewalk entry at north side ...
Exterior oblique detail view of sidewalk entry at north side of Building 3 from Bay Street sidewalk, looking southeast (with original steps revised to accommodate handicap ramp) - North Beach Place, 475 Bay Street, 475 Bay Street, San Francisco, San Francisco County, CA
Development of schemas revealed by prior experience and NMDA receptor knock-out
Dragoi, George; Tonegawa, Susumu
2013-01-01
Prior experience accelerates acquisition of novel, related information through processes like assimilation into mental schemas, but the underlying neuronal mechanisms are poorly understood. We investigated the roles that prior experience and hippocampal CA3 N-Methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity play in CA1 place cell sequence encoding and learning during novel spatial experiences. We found that specific representations of de novo experiences on linear environments were formed on a framework of pre configured network activity expressed in the preceding sleep and were rapidly, flexibly adjusted via NMDAR-dependent activity. This prior experience accelerated encoding of subsequent experiences on contiguous or isolated novel tracks, significantly decreasing their NMDAR-dependence. Similarly, de novo learning of an alternation task was facilitated by CA3 NMDARs; this experience accelerated subsequent learning of related tasks, independent of CA3 NMDARs, consistent with a schema-based learning. These results reveal the existence of distinct neuronal encoding schemes which could explain why hippocampal dysfunction results in anterograde amnesia while sparing recollection of old, schema-based memories. DOI: http://dx.doi.org/10.7554/eLife.01326.001 PMID:24327561
Synthesis of calcium vanadate minerals and related compounds
Marvin, Richard F.
1956-01-01
Synthesis of natural vanadates shows that most of them are stable in an acid environment. Phase studies of a portion of the system CaO-V2O5-H2O indicate that calcium vanadates are an indicator of environmental pH conditions. Some minerals, such as pascoute, indicate rapid evaporation of vanadite solutions; other minerals, such as hewettite, show that slow evaporation took place. Cursory examination of systems K2O-UO2-(NO3)2-V2O5 and CaO-UO2(NO3)2-V2O5, both in aqueous solution, has yielded information on the relationships among carnotite, tyuyamunite, and rauvite.
NASA Astrophysics Data System (ADS)
Gómez, Adrián; Chavarriaga, Edgar; Supelano, Iván; Parra, Carlos Arturo; Morán, Oswaldo
2018-05-01
A systematic study of the dependence of the magnetization on the magnetic field around the ferromagnetic-paramagnetic phase transition temperature is carried out on La0.7Ca0.3Mn1-xNixO3 (x=0, 0.02, 0.07, and 1) samples synthesized by auto-combustion method. The successful substitution of Mn3+ ions by Ni2+ ions in the La0.7Ca0.3MnO3 lattice is corroborated by X-ray diffraction technique. Banerjees criteria, Arrott plots, and the scaling hypothesis are used to analyze the experimental data. It is verified that the Ni-doping increases the operating temperature range for magnetocaloric effect through tuning of the magnetic transition temperature. Probably, the replacement of Mn3+ by Ni2+ ions in the La0.7Ca0.3MnO3 lattice weakens the Mn3+-O-Mn4+ double exchange interaction, which leads to a decrease in the transition temperature and magnetic moment in the samples. The Arrott plots suggest that the phase transition from ferromagnetic to paramagnetic in the nano-sized manganite is of second order. The analysis of the magnetization results show that the maximum magnetic entropy changes observed for x=0, 0.02, 0.07, and 0.1 compositions are 0.85, 0.77, 0.63, and 0.59 J/kg K, under a magnetic field of 1.5 T. These values indicate that the magnetic entropy change achieved for La0.7Ca0.3Mn1-xNixO3 manganites synthesized by auto-combustion method is higher than those reported for other manganites with comparable Ni-doping levels but synthesized by standard solid state reaction. It is also observed that the addition of Ni2+ increases the value of the relative cooling power as compared to that of the parent compound. The highest value of this parameter (˜60 J/kg) is found for a Ni-doping level of 2 % around 230 K in a field of 1.5 T.
Hippocampal place cell encoding of sloping terrain.
Porter, Blake S; Schmidt, Robert; Bilkey, David K
2018-05-21
Effective navigation relies on knowledge of one's environment. A challenge to effective navigation is accounting for the time and energy costs of routes. Irregular terrain in ecological environments poses a difficult navigational problem as organisms ought to avoid effortful slopes to minimize travel costs. Route planning and navigation have previously been shown to involve hippocampal place cells and their ability to encode and store information about an organism's environment. However, little is known about how place cells may encode the slope of space and associated energy costs as experiments are traditionally carried out in flat, horizontal environments. We set out to investigate how dorsal-CA1 place cells in rats encode systematic changes to the slope of an environment by tilting a shuttle box from flat to 15° and 25° while minimizing external cue change. Overall, place cell encoding of tilted space was as robust as their encoding of flat ground as measured by traditional place cell metrics such as firing rates, spatial information, coherence, and field size. A large majority of place cells did, however, respond to slope by undergoing partial, complex remapping when the environment was shifted from one tilt angle to another. The propensity for place cells to remap did not, however, depend on the vertical distance the field shifted. Changes in slope also altered the temporal coding of information as measured by the rate of theta phase precession of place cell spikes, which decreased with increasing tilt angles. Together these observations indicate that place cells are sensitive to relatively small changes in terrain slope and that terrain slope may be an important source of information for organizing place cell ensembles. The terrain slope information encoded by place cells could be utilized by efferent regions to determine energetically advantageous routes to goal locations. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Effect of ball-milling to the surface morphology of CaCO3
NASA Astrophysics Data System (ADS)
Sulimai, N. H.; Rani, Rozina Abdul; Khusaimi, Z.; Abdullah, S.; Salifairus, M. J.; Alrokayan, Salman; Khan, Haseeb; Rusop, M.
2018-05-01
Calcium Carbonate can be synthesized in many approaches. This work studied on the physical changes to Calcium Carbonate (CaCO3) by ball-milling activity in different parameters; number of ball; collision duration; revolution per minute (RPM). Zirconia balls were used in the work because it has the best durability to withstand ball-milling conditions set. Industrial grade CaCO3 particles that were run in aforementioned parameters were characterized by Field Emission Scanning Electron Microscope (FE-SEM) to study the physical changes on the size and surface of the CaCO3. They were also characterized with Fourier Transform Infra-red Spectroscopy (FTIR) were fingerprint of CaCO3 regions were identified and any changes in the band position and intensity were discussed. Number of Zirconia balls and collision duration is directly proportional to the absorbance intensity whereas it is inversely proportional for the rpm. The best number of parameters producing the highest Absorbance is 100 Zirconia balls in duration of 1 hour and 100rpm.
Magnetic field dependence of Griffith phase and magnetocaloric effect in Ca0.85Dy0.15MnO3
NASA Astrophysics Data System (ADS)
Nag, Ripan; Sarkar, Bidyut; Pal, Sudipta
2018-03-01
Temperature and Magnetic field dependent magnetization properties of electron doped polycrystalline sample Ca0.85Dy0.15MnO3 (CDMO) prepared by solid state reaction method have been studied. The sample undergoes ferromagnetic to paramagnetic phase transition at about 111k. From the study of magnetic properties in terms of Arrot plots it is observed that the phase transition is of 2nd order. The Griffith phase behavior of the sample is suppressed with the increase of the applied magnetic field strength H. We have estimated the magnetic entropy change from experimental magnetization and temperature data. For a magnetic field change of 8000 Oe, the maximum value of magnetic entropy change arrives at a value of 1.126 J-kg-1 k-1 in this magnetocaloric material.
NASA Astrophysics Data System (ADS)
Ortiz, A. C.; Jin, L.
2016-12-01
Agricultural fields in drylands are intensively irrigated. Indeed, pecan orchards at the El Paso, TX region are flooded with over one meter of water per growing season. The waters are usually oversaturated in calcite (CaCO3) and continuous evapotranspiration drives CaCO3 precipitation, releasing CO2. As such, the loading of CaCO3 through flood irrigation in drylands impacts Ca and C cycles greatly. We characterized soil, soil gas and soil water samples to quantify rates of pedogenic carbonate accumulation and CO2 release, identify the sources of C and Ca in pedogenic carbonates, and investigate kinetic and environmental controls of CaCO3 formation. Simple calculations show that up to 112000kg/km2/yr of Ca is loaded onto the fields by irrigation, evidenced by high water-soluble and acid-leachable Ca in soils, especially in clayey soils. We used 87Sr/86Sr ratios to quantify the relative importance of different Ca end-members including flood irrigation. Data show that water-soluble soil leachates have similar 87Sr/86Sr ratios as irrigation waters at depth, but lighter signatures at surface, probably due dust and fertilizer inputs. We measured daily soil-atmosphere CO2 efflux, δ13CCO2 and concentrations of CO2 gas samples at different soil depths between two irrigation events and at two sites with sandy versus clayey soils. These data help determine if sources of soil CO2 change with depth, irrigation event and if CO2 transport is controlled by texture. Correlations of δ13CCO2 and soil CO2 concentrations indicate mixing of organically respired, atmospheric and CaCO3-derived CO2. We found co-variation of δ13CCO2 and soil CO2 with time, where soil CO2 became heavier in carbon isotopes and more abundant in concentrations, illustrating shifts from soil respired CO2, characterized by lighter C, to increased proportions of CaCO3-derived CO2 with heavier C. Efflux data show peak values as soils dried, indicating supersaturation of soil waters and precipitation of pedogenic calcite. This efflux is also controlled by soil texture, as sandy soils emitted more CO2 than clayey soils, even if fine-textured soils contained more CaCO3. These findings can significantly impact CO2 modeling and can aid in extrapolating to larger scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Z.F.; Wang, C.A.; Wang, J.H.
1994-12-31
Epitaxial (Tl,Bi)Sr{sub 1.6}Ba{sub 0.4}Ca{sub 2}Cu{sub 3}O{sub x} (Tl,Bi)-1223 thin films on (100) single crystal LaAlO{sub 3} substrates were synthesized by a two-step procedure. Phase development, microstructure, and relationships between film and substrate were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Resistance versus temperature, zero-field-cooled and field-cooled magnetization, and transport critical current density (J{sub c}) were measured. The zero-resistance temperature was 105-111 K. J{sub c} at 77 K and zero field was > 2 x 10{sup 6} A/cm{sup 2}. The films exhibited good flux pinning properties.
The flux jumps in high Tc Bi(1.7)Pb(0.3)Sr2 Ca2Cu3O(y) bulk superconductor
NASA Astrophysics Data System (ADS)
Cao, Xiaowen; Huang, Sunli
1989-11-01
There were giant flux jumps in high T sub c Bi(1.7)Pb(0.3)Sr2Ca2Cu3O(v) bulk superconductor. The relaxation time, tau, decreased with both the increase of magnetic field and the rise of temperature. The maximum tau was about 40 min. The average -dM/dt increased with both the increase of magnetic field and the rise of temperature. The minimum average -dM/dt was about 4.1 x 10(exp -2) G/min. The flux jump weakened with time. It was dependent on the decrease of gradient of magnetic flux density dn/dx in the sample.
Dolomitic marbles from the ultrahigh-pressure metamorphic Kimi complex in Rhodope, N.E. Greece
NASA Astrophysics Data System (ADS)
Mposkos, E.; Baziotis, I.; Proyer, A.; Hoinkes, G.
2006-09-01
Dolomitic marbles from the Organi and Pandrosos areas of the ultrahigh-pressure (UHP) metamorphic Kimi complex in East Rhodope, N.E. Greece have the mineral assemblage: Cal + Dol + Ol + Phl ± Di ± Hbl ± Spl ± Ti Chu + retrograde Srp and Chl. Several generations of calcite and dolomite with variable composition and texture represent different stages of the P T evolution: The first stage is represented by matrix dolomite (X_MgCO_3 = 0.48) and relic domains of homogenous composition in matrix calcite (X_MgCO_3 = 0.11 0.13); the second stage is evident from precipitation of lath-shaped and vermicular dolomite in matrix calcite. The third stage is represented by veinlets of almost pure CaCO3 and domainal replacement of prior calcite by nearly pure CaCO3 + Ca-rich dolomite (X_MgCO_3 = 0.34 0.43). Matrix dolomite adjacent to CaCO3 veinlets also becomes Ca-rich (X_MgCO_3 = 0.42). In fact, Ca-rich dolomites with X_MgCO_3 in the range of 0.40 0.34 are reported for the first time from metamorphic marbles. Coexisting Ca-rich dolomite and Mg-poor calcite cannot be explained by the calcite-dolomite miscibility gap. This assemblage rather suggests that Mg-poor calcite was aragonite originally, which formed together with Ca-rich dolomite according to the reaction Mg Cal → Arg + Dol (1) at ultrahigh pressures and temperatures above at least 850 °C, when dolomite becomes disordered and incorporates more Ca than coexisting aragonite does in terms of Mg. The simplest explanation of these observations probably is to suggest two metamorphic events: The first one represented by relic matrix carbonates at relatively low to moderate pressures and temperatures of ca. 750 °C, and the second one limited by the minimum temperatures for dolomite disorder (ca. 850 °C) and in the aragonite + dolomite stability field, i.e. at a minimum pressure of 3 GPa and, if the presence of diamond-bearing metapelites nearby is considered, at conditions of at least 850 °C and 4.3 GPa in the diamond stability field. As there is hardly any back-reaction of Ca-rich dolomite + Mg-poor calcite to Mg-rich calcite, peak temperatures remained below the reaction (1) and the exhumation path probably crossed the aragonite-calcite transition at much lower than peak temperature. Cooling and decompression must have both occurred extremely fast in order for the µm-sized Ca-rich dolomite textures to be preserved. An alternative explanation of the formation of “UHP”-textures and compositions is by a fluid influx that not only caused serpentinisation and chloritisation of silicates but also Mg-leaching from carbonates, particularly from Mg-rich calcite and its fine grained dolomite-precipitates, thus transforming them into Mg-poor calcite + Ca-rich dolomite.
Ikaite crystals in melting sea ice - implications for pCO2 and pH levels in Arctic surface waters
NASA Astrophysics Data System (ADS)
Rysgaard, S.; Glud, R. N.; Lennert, K.; Cooper, M.; Halden, N.; Leakey, R. J. G.; Hawthorne, F. C.; Barber, D.
2012-03-01
A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (CaCO3·6H2O) in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from an actively melting 1.7 km2 (0.5-1 m thick) drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures gradually disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice flow thickness by ca. 0.2 m per week and resulted in an estimated 1.6 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 11 mmol m-2 sea ice d-1 or to 3.5 ton km-2 ice floe week-1.
Exterior direct detail view of revised entry handicap ramp at ...
Exterior direct detail view of revised entry handicap ramp at east side of Building 7 (including 3-story trash dump tower), looking north - North Beach Place, 431 Bay Street, 530 Francisco Street, 431 Bay Street, 530 Francisco Street, San Francisco, San Francisco County, CA
Chen, Ri-Zhao; Li, Lian-Bing; Klein, Michael G; Li, Qi-Yun; Li, Peng-Pei; Sheng, Cheng-Fa
2016-02-01
Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae), commonly referred to as the Asian corn borer, is the most important corn pest in Asia. Although capturing males with pheromone traps has recently been the main monitoring tool and suppression technique, the best trap designs remain unclear. Commercially available Delta and funnel traps, along with laboratory-made basin and water traps, and modified Delta traps, were evaluated in corn and soybean fields during 2013-2014 in NE China. The water trap was superior for capturing first-generation O. furnacalis (1.37 times the Delta trap). However, the basin (8.3 ± 3.2 moths/trap/3 d), Delta (7.9 ± 2.5), and funnel traps (7.0 ± 2.3) were more effective than water traps (1.4 ± 0.4) during the second generation. Delta traps gave optimal captures when deployed at ca. 1.57 × the highest corn plants, 1.36× that of average soybean plants, and at the field borders. In Delta traps modified by covering 1/3 of their ends, captures increased by ca. 15.7 and 8.1% in the first and second generations, respectively. After 35 d in the field, pheromone lures were still ca. 50% as attractive as fresh lures, and retained this level of attraction for ca. 25 more days. Increased captures (first and second generation: 90.9 ± 9.5%; 78.3 ± 9.3%) were obtained by adding a lure exposed for 5 d to funnel traps baited with a 35-d lure. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Tanaka, Mika; Wang, Xiaowen; Mikoshiba, Katsuhiko; Hirase, Hajime; Shinohara, Yoshiaki
2017-10-15
Mice reared in an enriched environment are demonstrated to have larger hippocampal gamma oscillations than those reared in isolation, thereby confirming previous observations in rats. To test whether astrocytic Ca 2+ surges are involved in this experience-dependent LFP pattern modulation, we used inositol trisphosphate receptor type 2 (IP 3 R2)-knockout (KO) mice, in which IP 3 /Ca 2+ signalling in astrocytes is largely diminished. We found that this experience-dependent gamma power alteration persists in the KO mice. Interestingly, hippocampal ripple events, the synchronized events critical for memory consolidation, are reduced in magnitude and frequency by both isolated rearing and IP 3 R2 deficiency. Rearing in an enriched environment (ENR) is known to enhance cognitive and memory abilities in rodents, whereas social isolation (ISO) induces depression-like behaviour. The hippocampus has been documented to undergo morphological and functional changes depending on these rearing environments. For example, rearing condition during juvenility alters CA1 stratum radiatum gamma oscillation power in rats. In the present study, hippocampal CA1 local field potentials (LFP) were recorded from bilateral CA1 in urethane-anaesthetized mice that were reared in either an ENR or ISO condition. Similar to previous findings in rats, gamma oscillation power during theta states was higher in the ENR group. Ripple events that occur during non-theta periods in the CA1 stratum pyramidale also had longer intervals in ISO mice. Because astrocytic Ca 2+ elevations play a key role in synaptic plasticity, we next tested whether these changes in LFP are also expressed in inositol trisphosphate receptor type 2 (IP 3 R2)-knockout (KO) mice, in which astrocytic Ca 2+ elevations are largely diminished. We found that the gamma power was also higher in IP 3 R2-KO-ENR mice compared to IP 3 R2-KO-ISO mice, suggesting that the rearing-environment-dependent gamma power alteration does not necessarily require the astrocytic IP 3 /Ca 2+ pathway. By contrast, ripple events showed genotype-dependent changes, as well as rearing condition-dependent changes: ISO housing and IP 3 R2 deficiency both lead to longer inter-ripple intervals. Moreover, we found that ripple magnitude in the right CA1 tended to be smaller in IP 3 R2-KO. Because IP 3 R2-KO mice have been reported to have depression phenotypes, our results suggest that ripple events and the mood of animals may be broadly correlated. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
μ SR study of NaCaNi2F7 in zero field and applied longitudinal magnetic field
NASA Astrophysics Data System (ADS)
Cai, Yipeng; Wilson, Murray; Hallas, Alannah; Liu, Lian; Frandsen, Benjamin; Dunsiger, Sarah; Krizan, Jason; Cava, Robert; Uemura, Yasutomo; Luke, Graeme
Rich physics of abundant magnetic ground states has been realized in the A2B2X7 geometrically frustrated magnetic pyrochlores. Recently, a new spin-1 Ni2+ pyrochlore, NaCaNi2F7, was synthesized and shown to have spin freezing at 3.6 K with a frustration index of f 36 and antiferromagnetic exchange interactions [1] . This structure has chemical disorder on the A site caused by randomly distributed Ca and Na ions, which causes bond disorder around the magnetic Ni sites. We present Zero Field (ZF) and Longitudinal Field (LF) muon spin rotation (μSR) measurements on this single crystal pyrochlore. Our data shows that the Ni2+ spins start freezing around 4 K giving a static local field of 140 G. The data show no oscillations down to 75 mK which indicates no long range magnetic order. They are well described by the dynamic Gaussian Kubo-Toyabe function with a non-zero hopping rate that is not easily decoupled with an applied longitudinal field, which implies persistent spin dynamics down to 75 mK.
Effects of calcium supplementation on body weight reduction in overweight calcium stone formers.
Menon, Viviane Barcellos; Baxmann, Alessandra Calábria; Froeder, Leila; Martini, Lígia Araújo; Heilberg, Ita Pfeferman
2009-06-01
A randomized, placebo-controlled trial was conducted in overweight calcium stone-forming (CSF) patients, to evaluate the effect of calcium supplementation associated with a calorie-restricted diet on body weight (BW) and fat reduction and its potential changes upon serum and urinary parameters. Fifteen patients were placed on a hypocaloric diet for 3 months, supplemented with either calcium carbonate (CaCO(3), n = 8) or placebo (n = 7), 500 mg bid. Blood and 24-h urine samples were collected and body composition was assessed at baseline and after the intervention. At the end of the study, final BW was significantly lower vs baseline in both CaCO(3) (74 +/- 14 vs. 80 +/- 14 kg, P = 0.01) and placebo groups (80 +/- 10 vs. 87 +/- 9 kg, P = 0.02) but the mean percentage of loss of body weight and body fat did not differ between CaCO(3) and placebo (7.0 +/- 2.0 vs. 8.0 +/- 3.0%, P = 0.40 and 13.0 +/- 7.0 vs. 13.0 +/- 10.0%; P = 0.81, respectively). After CaCO(3) or placebo, no significant differences versus baseline were observed for urinary parameters in both CaCO(3) and placebo, except for a higher mean urinary citrate in placebo group. These data suggest that increasing calcium intake by calcium carbonate supplementation did not contribute to a further reduction of BW and fat in overweight CSF patients submitted to a hypocaloric diet nor altered urinary lithogenic parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacob, K.T., E-mail: katob@materials.iisc.ernet.in; Gupta, Preeti
2015-01-15
Oxygen potentials established by the equilibrium between three condensed phases, CaO{sub ss}+CoO{sub ss}+Ca{sub 3}Co{sub 2}O{sub 6} and CoO{sub ss}+Ca{sub 3}Co{sub 2}O{sub 6}+Ca{sub 3}Co{sub 3.93+α}O{sub 9.36−δ}, are measured as a function of temperature using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen as the reference electrode. Cation non-stoichiometry and oxygen non-stoichiometry in Ca{sub 3}Co{sub 3.93+α}O{sub 9.36−δ} are determined using different techniques under defined conditions. Decomposition temperatures and thermodynamic properties of Ca{sub 3}Co{sub 2}O{sub 6} and Ca{sub 3}Co{sub 4}O{sub 9.163} are calculated from the results. The standard entropy and enthalpy of formation of Ca{sub 3}Co{sub 2}O{sub 6} atmore » 298.15 K are evaluated. Using thermodynamic data from this study and auxiliary information from the literature, phase diagram for the ternary system Ca–Co–O is computed. Isothermal sections at representative temperatures are displayed to demonstrate the evolution of phase relations with temperature. - Graphical abstract: Isothermal section of the phase diagram of the system Ca–Co–O at 1250 K. - Highlights: • Improved definition of cation and oxygen nonstoichiometry of Ca{sub 3}Co{sub 3.93+α}O{sub 9.36−δ}. • Measurement of Δμ{sub O{sub 2}} associated with two 3-phase fields as a function of temperature. • Use of solid-state electrochemical cells for accurate measurement of Δμ{sub O{sub 2}}. • Decomposition temperatures and thermodynamic properties for ternary oxides. • Characterization of ternary phase diagram of the system Ca–Co–O.« less
Preparation of Co3O4 conical nanotube and its application in calcium ion biosensor
NASA Astrophysics Data System (ADS)
Yuan, Hongwen; Ma, Chi; Geng, Junlong; Zhang, Liqiang; Cui, Hai; Liu, Cunzhi
2018-02-01
Calcium ion (Ca2+) is an important ion involved in body life activities, and its content detection in biomedical field owns great significance. In this study, we fabricated Co3O4 conical nanotube on F-doped tin oxide (FTO) substrate for detecting Ca2+. Co3O4 is fabricated through a hydrothermal method and demonstrates a regular hexagon structure, with a length of 5-10 μm and wall thickness of 30 nm. The structure and morphology of Co3O4 were characterized by X-ray diffraction (XRD), scanning electron microscope, and transmission electron microscopy, respectively. In addition, then, we used electrochemical technique to characterize the Ca2+ concentration in the simulated body fluid. The detection of Ca2+ is originated from the electrochemical reaction of hydrogen peroxide using Co3O4 as a catalyst, in which Ca2+ plays a significant role for accelerating the decomposition of hydrogen peroxide catalytic performance. By monitoring the electron transfer signals changes during the electrochemical reaction, we can quickly quantify the Ca2+ concentrations. It is found that this Ca2+ sensor owns a wide detection range (0.1-1.1 mM), a low detection limit (3.767 μM), and good anti-interference ability.
Min, Kyung Hyun; Min, Hyun Su; Lee, Hong Jae; Park, Dong Jin; Yhee, Ji Young; Kim, Kwangmeyung; Kwon, Ick Chan; Jeong, Seo Young; Silvestre, Oscar F; Chen, Xiaoyuan; Hwang, Yu-Shik; Kim, Eun-Cheol; Lee, Sang Cheon
2015-01-27
We report a theranostic nanoparticle that can express ultrasound (US) imaging and simultaneous therapeutic functions for cancer treatment. We developed doxorubicin-loaded calcium carbonate (CaCO3) hybrid nanoparticles (DOX-CaCO3-MNPs) through a block copolymer templated in situ mineralization approach. The nanoparticles exhibited strong echogenic signals at tumoral acid pH by producing carbon dioxide (CO2) bubbles and showed excellent echo persistence. In vivo results demonstrated that the DOX-CaCO3-MNPs generated CO2 bubbles at tumor tissues sufficient for echogenic reflectivity under a US field. In contrast, the DOX-CaCO3-MNPs located in the liver or tumor-free subcutaneous area did not generate the CO2 bubbles necessary for US contrast. The DOX-CaCO3-MNPs could also trigger the DOX release simultaneously with CO2 bubble generation at the acidic tumoral environment. The DOX-CaCO3-MNPs displayed effective antitumor therapeutic activity in tumor-bearing mice. The concept described in this work may serve as a useful guide for development of various theranostic nanoparticles for US imaging and therapy of various cancers.
Magnetic mesoporous Fe/carbon aerogel structures with enhanced arsenic removal efficiency.
Lin, Yi-Feng; Chen, Jia-Ling
2014-04-15
Wastewater treatment has drawn significant research attention due to its associated environmental issues. Adsorption is a promising method for treating wastewater. The development of an adsorbent with a high surface area is important. Therefore, we successfully developed mesoporous Fe/carbon aerogel (CA) structures with high specific surface areas of 48 7m(2)/g via the carbonization of composite Fe3O4/phenol-formaldehyde resin structures, which were prepared using a hydrothermal process with the addition of phenol. The mesoporous Fe/CA structures were further used for the adsorption of arsenic ions with a maximum arsenic-ion uptake of calculated 216.9 mg/g, which is higher than that observed for other arsenic adsorbents. Ferromagnetic behavior was observed for the as-prepared mesoporous Fe/CA structures with an excellent response to applied external magnetic fields. As a result, the adsorbent Fe/CA structures can be easily separated from the solution using an external magnetic field. This study develops the mesoporous Fe/CA structures with high specific surface areas and an excellent response to an applied external magnetic field to provide a feasible approach for wastewater treatment including the removal of arsenic ions. Copyright © 2014 Elsevier Inc. All rights reserved.
Jia, Tingting; Fan, Ziran; Yao, Junxiang; Liu, Cong; Li, Yuhao; Yu, Junxi; Fu, Bi; Zhao, Hongyang; Osada, Minoru; Esfahani, Ehsan Nasr; Yang, Yaodong; Wang, Yuanxu; Li, Jiang-Yu; Kimura, Hideo; Cheng, Zhenxiang
2018-06-20
Single-phase materials that combine electric polarization and magnetization are promising for applications in multifunctional sensors, information storage, spintronic devices, etc. Following the idea of a percolating network of magnetic ions (e.g., Fe) with strong superexchange interactions within a structural scaffold with a polar lattice, a solid solution thin film with perovskite structure at a morphotropic phase boundary with a high level of Fe atoms on the B site of perovskite structure is deposited to combine both ferroelectric and ferromagnetic ordering at room temperature with magnetoelectric coupling. In this work, a 0.85BiTi 0.1 Fe 0.8 Mg 0.1 O 3 -0.15CaTiO 3 thin film has been deposited by pulsed laser deposition (PLD). Both the ferroelectricity and the magnetism were characterized at room temperature. Large polarization and a large piezoelectric effective coefficient d 33 were obtained. Multifield coupling of the thin film has been characterized by scanning force microscopy. Ferroelectric domains and magnetic domains could be switched by magnetic field ( H), electric field ( E), mechanical force ( F), and, indicating that complex cross-coupling exists among the electric polarization, magnetic ordering and elastic deformation in 0.85BiTi 0.1 F e0.8 Mg 0.1 O 3 -0.15CaTiO 3 thin film at room temperature. This work also shows the possibility of writing information with electric field, magnetic field, and mechanical force and then reading data by magnetic field. We expect that this work will benefit information applications.
Structure and Reversibility of 2D von Neumann Cellular Automata Over Triangular Lattice
NASA Astrophysics Data System (ADS)
Uguz, Selman; Redjepov, Shovkat; Acar, Ecem; Akin, Hasan
2017-06-01
Even though the fundamental main structure of cellular automata (CA) is a discrete special model, the global behaviors at many iterative times and on big scales could be a close, nearly a continuous, model system. CA theory is a very rich and useful phenomena of dynamical model that focuses on the local information being relayed to the neighboring cells to produce CA global behaviors. The mathematical points of the basic model imply the computable values of the mathematical structure of CA. After modeling the CA structure, an important problem is to be able to move forwards and backwards on CA to understand their behaviors in more elegant ways. A possible case is when CA is to be a reversible one. In this paper, we investigate the structure and the reversibility of two-dimensional (2D) finite, linear, triangular von Neumann CA with null boundary case. It is considered on ternary field ℤ3 (i.e. 3-state). We obtain their transition rule matrices for each special case. For given special triangular information (transition) rule matrices, we prove which triangular linear 2D von Neumann CAs are reversible or not. It is known that the reversibility cases of 2D CA are generally a much challenged problem. In the present study, the reversibility problem of 2D triangular, linear von Neumann CA with null boundary is resolved completely over ternary field. As far as we know, there is no structure and reversibility study of von Neumann 2D linear CA on triangular lattice in the literature. Due to the main CA structures being sufficiently simple to investigate in mathematical ways, and also very complex to obtain in chaotic systems, it is believed that the present construction can be applied to many areas related to these CA using any other transition rules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hlaing, Nwe Ni, E-mail: nwenihlaing76@gmail.com; Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo; Department of Physics, University of Yangon, 11041 Kamayut, Yangon
Recent years, CaO-based synthetic materials have been attracted attention as potential adsorbents for CO{sub 2} capture mainly due to their high CO{sub 2} adsorption capacity. In this study, micro/nanostructured aragonite CaCO{sub 3} was synthesized by a simple hydrothermal method with using polyacrylamide (PAM). The structural, morphological and thermal properties of the synthesized sample were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and thermogravimetry analysis (TG-DTA). The XRD and FESEM results showed that the obtained sample was aragonite CaCO{sub 3} with aggregated nanorods and microspheres composed of nanorods. A TG-DTA apparatus with Thermoplus 2 software was used tomore » investigate the effect of carbonation temperature on the CO{sub 2} adsorption capacity of CaO derived from aragonite CaCO{sub 3} sample. At 300 °C, the sample reached the CO{sub 2} adsorption capacity of 0.098 g-CO{sub 2}/g-adsorbent, whereas the sample achieved the highest capacity of 0.682 g-CO{sub 2}/g-adsorbent at 700 °C. The results showed that the carbonation temperature significantly influenced on the CO{sub 2} adsorption capacity of the CaO derived from aragonite CaCO{sub 3}.« less
Fast Gamma Rhythms in the Hippocampus Promote Encoding of Novel Object–Place Pairings
Bieri, Kevin Wood; Hwaun, Ernie
2016-01-01
Abstract Hippocampal gamma rhythms increase during mnemonic operations (Johnson and Redish, 2007; Montgomery and Buzsáki, 2007; Sederberg et al., 2007; Jutras et al., 2009; Trimper et al., 2014) and may affect memory encoding by coordinating activity of neurons that code related information (Jensen and Lisman, 2005). Here, a hippocampal-dependent, object–place association task (Clark et al., 2000; Broadbent et al., 2004; Eacott and Norman, 2004; Lee et al., 2005; Winters et al., 2008; Barker and Warburton, 2011) was used in rats to investigate how slow and fast gamma rhythms in the hippocampus relate to encoding of memories for novel object–place associations. In novel object tasks, the degree of hippocampal dependence has been reported to vary depending on the type of novelty (Eichenbaum et al., 2007; Winters et al., 2008). Therefore, gamma activity was examined during three novelty conditions: a novel object presented in a location where a familiar object had been (NO), a familiar object presented in a location where no object had been (NL), and a novel object presented in a location where no object had been (NO+NL). The strongest and most consistent effects were observed for fast gamma rhythms during the NO+NL condition. Fast gamma power, CA3–CA1 phase synchrony, and phase-locking of place cell spikes increased during exploration of novel, compared to familiar, object–place associations. Additionally, place cell spiking during exploration of novel object–place pairings was increased when fast gamma rhythms were present. These results suggest that fast gamma rhythms promote encoding of memories for novel object–place associations. PMID:27257621
Astrocytic GABA transporter activity modulates excitatory neurotransmission
Boddum, Kim; Jensen, Thomas P.; Magloire, Vincent; Kristiansen, Uffe; Rusakov, Dmitri A.; Pavlov, Ivan; Walker, Matthew C.
2016-01-01
Astrocytes are ideally placed to detect and respond to network activity. They express ionotropic and metabotropic receptors, and can release gliotransmitters. Astrocytes also express transporters that regulate the extracellular concentration of neurotransmitters. Here we report a previously unrecognized role for the astrocytic GABA transporter, GAT-3. GAT-3 activity results in a rise in astrocytic Na+ concentrations and a consequent increase in astrocytic Ca2+ through Na+/Ca2+ exchange. This leads to the release of ATP/adenosine by astrocytes, which then diffusely inhibits neuronal glutamate release via activation of presynaptic adenosine receptors. Through this mechanism, increases in astrocytic GAT-3 activity due to GABA released from interneurons contribute to 'diffuse' heterosynaptic depression. This provides a mechanism for homeostatic regulation of excitatory transmission in the hippocampus. PMID:27886179
Experimental Evidence for LENR in a Polarized Pd/D Lattice
NASA Astrophysics Data System (ADS)
Szpak, S.
2005-03-01
Experimental evidence in support of claims that excess enthalpy production in a polarized Pd/D lattice is of a nuclear origin is questioned on various grounds, eg marginal intensity and difficulty in reproducing. Here, evidence is presented that is 100% reproducible and of sufficient intensity to be well outside of experimental errors. In addition to the thermal behavior, the nuclear manifestations include: X-ray emission; tritium production; and, when an operating cell is placed in an external electric field, fusion to create heavier metals such as Ca, Al, Mg, and Zn.
75 FR 12748 - Ocean Transportation Intermediary License Applicants
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-17
... Line (LA), Inc., 470 Cloverleaf Drive, Unit A&B, Baldwin Park, CA 91706, Officers: Wai (aka Winson) M... Shipping & Logistics, LLC, 10651 SW. 108 Avenue, 3A, Miami, FL 33176, Officers: Lorenzo A. Macias... Individual), Zhenfen Wu, Chairman. Qingfeng Wang dba Global Intertrans Logistics, 200 East Norwood Place, San...
Taheri, H R; Jabbari, Z; Adibnia, S; Shahir, M H; Hosseini, S A
2015-01-01
1. Two trials were conducted to evaluate the effect of high-dose phytase alone or in combination with citric acid (CA) in the diet severely limited in available phosphorus (P) on performance, plasma P and plasma Ca of broilers from 22 to 42 d of age. 2. In Trial 1, 297 21-d-old female chicks were placed into 27 pens and allocated to 9 maize-soybean meal-based dietary treatments, which were a positive control [PC, 4.23 g/kg non-phytate P (NPP)] and 8 negative control (NC, 1.35 g/kg NPP) groups consisting of two concentrations of CA (0 and 20 g/kg) and 4 concentrations of phytase (0, 1000, 2000 and 4000 U/kg) in a 2 × 4 factorial arrangement. In Trial 2, 192 21-d-old male chicks were placed into 24 pens and allocated to 6 wheat-canola meal-based dietary treatments, which were a PC (4.2 g/kg NPP), a NC (1.68 g/kg NPP) and 4 NC groups consisting of two concentrations of CA (0 and 20 g/kg) and two concentrations of phytase (2000 and 4000 U/kg) in a 2 × 2 factorial arrangement. 3. In both trials, birds fed on the PC had significantly higher average daily gain (ADG), average daily feed intake (ADFI), plasma P and lower feed conversion ratio (FCR) and plasma Ca than those of birds fed on the NC. CA supplementation significantly increased ADG and ADFI. There was a significant interaction between CA and phytase on plasma P where CA improved the effect of phytase on plasma P. In Trial 1, phytase addition improved ADG, ADFI, FCR and plasma Ca linearly. 4. Briefly, this research showed the interaction effect between CA and phytase on plasma P when broilers were fed on diets based on maize-soybean meal or wheat-canola meal. The results showed that CA supplementation lowered the concentration of phytase that is needed in low NPP diets to increase plasma P.
Predictors of Calcium Retention in Adolescent Boys
Hill, Kathleen M.; Braun, Michelle; Kern, Mark; Martin, Berdine R.; Navalta, James W.; Sedlock, Darlene A.; McCabe, Linda; McCabe, George P.; Peacock, Munro; Weaver, Connie M.
2008-01-01
Context: The relationship between calcium (Ca) intake and Ca retention in adolescent boys was recently reported. Objective: This study evaluated the influence of Ca intake, serum hormone levels, biomarkers of bone metabolism, habitual physical activity, habitual Ca intake, and physical fitness on Ca retention in the same sample. Design: This study was a randomized, cross-over design that consisted of two 3-wk metabolic balance periods. Setting: The study took place on a university campus as a summer camp. Patients or Other Participants: A total of 31 American white boys (13–15 yr) participated in the study. Interventions: Each subject consumed a controlled diet with one of five high-low Ca intake pairs that ranged from 670-2003 mg/d, which was manipulated utilizing a fortified beverage. Main Outcome Measures: Ca retention was determined by Ca intake minus urinary and fecal Ca excretion during each balance period. Results: Ca intake explained 21.7% of the variability in Ca retention, and serum IGF-I concentration explained an additional 11.5%. Other serum hormone levels did not significantly add to the model. Biomarkers of bone metabolism, habitual physical activity, habitual Ca intake, and physical fitness were not significant predictors of Ca retention in adolescent boys. Conclusions: IGF-I, a regulator of growth during puberty, is an important predictor of Ca retention in adolescent boys. However, dietary Ca intake is an even greater predictor of Ca retention during this period of growth. PMID:18840643
Structural phase transition and multiferroic properties of Bi0.8A0.2Fe0.8Mn0.2O3 (A = Ca, Sr)
NASA Astrophysics Data System (ADS)
Rout, Jyoshna; Choudhary, R. N. P.
2018-05-01
The multiferroic BiFeO3 and Bi0.8A0.2Fe0.8Mn0.2O3 (A = Ca, Sr) have been synthesized using direct mechanosynthesis. Detailed investigations were made on the influence of Ca-Mn and Sr-Mn co-substitutions on the structure change, electric and magnetic properties of the BFO. Rietveld refinement on the XRD pattern of the modified samples clarifies the structural transition from R3c:H (parent BiFeO3) to the biphasic structure (R3c: H + Pnma). Scanning electron micrographs confirmed the polycrystalline nature of the materials and each of the microstructure comprised of uniformly distributed grains with less porosity. The dielectric measurements reveal that enhancement in dielectric properties due to the reduction of oxygen vacancies by substitutional ions. Studies of frequency-dependence of impedance and related parameters exhibit that the electrical properties of the materials are strongly dependent on temperature, and bear a good correlation with its microstructure. The bulk resistance (evaluated from impedance studies) is found to decrease with increasing temperature for all the samples. The alternating current (ac) conductivity spectra show a typical signature of an ionic conducting system, and are found to obey Jonscher's universal power law. Preliminary studies of magnetic characteristics of the samples reveal enhanced magnetization for Ca-Mn co-substituted sample. The magnetoelectric coefficient as the function of applied dc magnetizing field under fixed ac magnetic field 15.368 Oe is measured and this ME coefficient αME corresponds to induction of polarization by a magnetic field.
Polymorphisms A387P in thrombospondin-4 and N700S in thrombospondin-1 perturb calcium binding sites.
Stenina, Olga I; Ustinov, Valentin; Krukovets, Irene; Marinic, Tina; Topol, Eric J; Plow, Edward F
2005-11-01
Recent genetic studies have associated members of the thrombospondin (TSP) gene family with premature cardiovascular disease. The disease-associated polymorphisms lead to single amino acid changes in TSP-4 (A387P) and TSP-1 (N700S). These substitutions reside in adjacent domains of these highly homologous proteins. Secondary structural predictive programs and the homology of the domains harboring these amino acid substitutions to those in other proteins pointed to potential alterations of putative Ca2+ binding sites that reside in close proximity to the polymorphic amino acids. Since Ca2+ binding is critical for the structure and function of TSP family members, direct evidence for differences in Ca2+ binding by the polymorphic forms was sought. Using synthetic peptides and purified recombinant variant fragments bearing the amino acid substitutions, we measured differences in Tb3+ luminescence as an index of Ca2+ binding. The Tb3+ binding constants placed the TSP-1 region affected by N700S polymorphism among other high-affinity Ca2+ binding sites. The affinity of Ca2+ binding was lower for peptides (3.5-fold) and recombinant fragments (10-fold) containing the S700 vs. the N700 form. In TSP-4, the P387 form acquired an additional Ca2+ binding site absent in the A387 form. The results of our study suggest that both substitutions (A387P in TSP-4 and N700S in TSP-1) alter Ca2+ binding properties. Since these substitutions exert the opposite effects on Ca2+ binding, a decrease in TSP-1 and an increase in TSP-4, the two TSP variants are likely to influence cardiovascular functions in distinct but yet pathogenic ways.
Roschlau, Corinna; Hauber, Wolfgang
2017-04-14
Growing evidence suggests that the catecholamine (CA) neurotransmitters dopamine and noradrenaline support hippocampus-mediated learning and memory. However, little is known to date about which forms of hippocampus-mediated spatial learning are modulated by CA signaling in the hippocampus. Therefore, in the current study we examined the effects of 6-hydroxydopamine-induced CA depletion in the dorsal hippocampus on two prominent forms of hippocampus-based spatial learning, that is learning of object-location associations (paired-associates learning) as well as learning and choosing actions based on a representation of the context (place learning). Results show that rats with CA depletion of the dorsal hippocampus were able to learn object-location associations in an automated touch screen paired-associates learning (PAL) task. One possibility to explain this negative result is that object-location learning as tested in the touchscreen PAL task seems to require relatively little hippocampal processing. Results further show that in rats with CA depletion of the dorsal hippocampus the use of a response strategy was facilitated in a T-maze spatial learning task. We suspect that impaired hippocampus CA signaling may attenuate hippocampus-based place learning and favor dorsolateral striatum-based response learning. Copyright © 2017 Elsevier B.V. All rights reserved.
Improvement of the Reliability of Dielectrics for MLCC
NASA Astrophysics Data System (ADS)
Nakamura, Tomoyuki; Yao, Takayuki; Ikeda, Jun; Kubodera, Noriyuki; Takagi, Hiroshi
2011-10-01
To achieve enough reliability of monolithic ceramic capacitor, it is important to know the contribution of grain boundary and grain interior to its reliability and insulation resistance. As the number of grain boundaries per layer increased, mean time to failure (MTTF) increased. In addition, as the number of grain boundaries per layer increased, samples showed lower current leakage in the measured electric field range. Using these data, the grain boundary E-J curves were determined by simulation. As a result, temperature and electric field dependence of insulation resistance of grain boundary were very low. The insulation characteristics of one BaTiO3 grain per layer were examined. The resistance and reliability of grain interior were very low. To improve the degradation resistance of grain interior, Ca-doped BaTiO3-based dielectrics were developed. The influence of Ca substitution on MTTF was investigated and it was found out that MTTF increased with the increase of Ca substitution.
Orbital configuration in CaTiO 3 films on NdGaO 3
Cao, Yanwei; Park, Se Young; Liu, Xiaoran; ...
2016-10-13
Despite its use as a constituent layer for realization of a polar metal and interfacial conductivity, the microscopic study of electronic structure of CaTiO 3 is still very limited. Here, we epitaxially stabilized CaTiO 3 films on NdGaO 3 (110) substrates in a layer-by-layer way by pulsed laser deposition. The structural and electronic properties of the films were characterized by reflection-high-energy-electron-diffraction, X-ray diffraction, and element-specific resonant X-ray absorption spectroscopy. To reveal the orbital polarization and the crystal field splitting of the titanium 3d state, X-ray linear dichroism was carried out on CaTiO 3 films, demonstrating the orbital configuration of dmore » xz/d yz < d xy < d 3z2-r2 < d x2-y2. To further explore the origin of this configuration, we performed the first-principles density function theory calculations, which linked the orbital occupation to the on-site energy of Ti 3d orbitals. Finally, these findings can be important for understanding and designing exotic quantum states in heterostructures based on CaTiO 3.« less
Ca and Sr Isotope Sytematics in Mid-Ocean Ridge Hydrothermal Fluids
NASA Astrophysics Data System (ADS)
Pester, N. J.; Syverson, D. D.; Higgins, J. A.; Seyfried, W. E., Jr.
2016-12-01
We report a comprehensive suite of Ca isotopic data (δ44/40Ca) from mid-ocean ridge hydrothermal fluids, standardized relative to seawater. Samples were acquired from 7 different vent fields on the EPR, JdFR and MAR during expeditions between 1999 and 2014. All endmember hydrothermal fluids (within analytical uncertainty) reflect an entirely MORB-dominated signal (-1.0 to -1.2 ‰). This rather uniform signal, despite variable fluid chemistries and a mixture of mafic to ultramafic host lithologies, is somewhat surprising given the noteworthy Ca concentrations in both the hydrothermal fluids and precursor seawater. One explanation for this observation involves the change in anhydrite (CaSO4) saturation with increasing temperature, and the molal concentration ratio of [Mg]:[Ca]:[SO4] in modern seawater of 53:10:28. The near quantitative removal of seawater Mg to silicate alteration phases, favorable at all temperatures, is largely charge balanced by exchange for basaltic Ca, and this process alone can account for the majority of the rock dominated δ44/40Casw signal. That these values are equivalent to MORB, however, suggests a high proportion of this Mg-Ca exchange occurs after seawater Ca precipitates as anhydrite in lower temperature (recharge) regimes of the hydrothermal system, aided by the low [Ca]/[SO4]. 87/86Sr ratios of hydrothermal fluids exhibit a seawater signal of 20 to 30% and Sr is therefore not quantitatively removed during incipient anhydrite formation. Strontium mobility in hydrothermal systems is still poorly understood, but the offset between the Ca and Sr isotopic signatures is consistent with near-equilibrium partitioning of Sr into anhydrite observed in recent experiments. Such observations from modern MOR systems place important constraints on the role of hydrothermal fluxes in paleo-seawater evolution, such as feedbacks involving significant variability in [Mg]:[Ca]:[SO4] ratios of seawater suggested over much of the Phanerozoic.
77 FR 4335 - National Institute of Diabetes and Digestive and Kidney Diseases; Notice of Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-27
... discuss policy. Place: The Fairmont San Francisco, 950 Mason St., San Francisco, CA 94108. Closed: March 6... Francisco, 950 Mason St., San Francisco, CA 94108. Closed: March 7, 2012, 8:30 a.m. to 5 p.m. Agenda: To review and evaluate grant applications. Place: The Fairmont San Francisco, 950 Mason St., San Francisco...
Ramundo-Orlando, A; Mattia, F; Palombo, A; D'Inzeo, G
2000-10-01
Observations recently reported by our group indicate that combined 7 Hz sinusoidal (B(acpeak) = 50 mu T) and parallel static (B(dc) = 50 mu T) magnetic fields can induce a significant increase in diffusion rate of substrate across carbonic anhydrase (CA)-loaded liposomes (DPPC:Chol:SA). A direct involvement of charges of stearylamine (SA) on the lipid membrane surface was also demonstrated. Kinetic studies showed that CA was mainly entrapped in liposomes at 5:3:2 molar ratio, although a small amount (17%) of enzyme was also located on the external surface of these cationic liposomes. In this paper we report steady state kinetic studies on this latter CA after ELF-EMFs exposure. No difference in the apparent K(m) between exposed and sham samples was observed. On the contrary the apparent V(max) was increased by approximately a factor of 2 after field exposure. In spite of the proteolytic digestion of this external CA, a significant increase of enzymatic activity, as a function of increase in the diffusion rate of substrate across the lipid bilayer, was observed in the exposed samples. Based on these results, a conformational change induced by the field on the CA located on the external surface of 5:3:2 liposomes is excluded as an explanation for our previous observations, supporting the primary role of bilayer SA in the interaction with ELF. A model of ELF interaction, based on the Larmor precession theory, explaining the physical phenomenon induced on the dipole of SA has been developed. Copyright 2000 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Vezzoli, G. Christopher; Chen, Michaeline F.; Burke, Terence; Rosen, Carol
1996-08-01
Data are presented herein that support a phase boundary or quasi-phase-boundary delineating in Y1Ba2Cu3O7-δ and in Bi2Sr2Ca2Cu3O10 ceramic materials a transition from a vortex solid lattice to a line-flux disordered state that has been referred to as representing flux lattice melting to a flux liquid, but herein is interpreted not in terms of a liquid but in the form of a less-mobile `polymer'-like or entangled chain species. These data are derived from electrical resistance (r) versus applied magnetic field (H) measurements at various isotherms (T) corresponding to the zero resistance state of yttrium--barium--cuprate, and the mixed state foot regime of bismuth--strontium--calcium--cuprate. We interpret significant slope changes in r versus B at constant T in these materials to be indicative of the H-T conditions for a second-order or weakly first-order phase transition delineating the disordering of a flux lattice vortex solid. We believe that this technique is in ways more direct and at least as accurate as the conventional mechanical oscillator and vibrating magnetometer method to study the flux state. Additional very-low-field studies in Gd1Ba2(Fe0.02Cu0.98)3O7-δ, from 1 to 1000 mT, yield indication for what appears to be a magnetic transition at ca. 77 K at 575 mT, and possibly a second transition at 912 mT (also at ca. 77 K). These data points correspond well with the extrapolated low-field experimental magnetic phase transition boundary curve described at higher field herein (and by others using the mechanical technique), and also correspond well to theoretically predicted work regarding transition involving the vortex state.
Cyclotron-based effects on plant gravitropism
NASA Astrophysics Data System (ADS)
Kordyum, E.; Sobol, M.; Kalinina, Ia.; Bogatina, N.; Kondrachuk, A.
Primary roots exhibit positive gravitropism and grow in the direction of the gravitational vector, while shoots respond negatively and grow opposite to the gravitational vector. We first demonstrated that the use of a weak combined magnetic field (CMF), which is comprised of a permanent magnetic field and an alternating magnetic field with the frequency resonance of the cyclotron frequency of calcium ions, can change root gravitropism from a positive direction to negative direction. Two-day-old cress seedlings were gravistimulated in a chamber that was placed into a μ-metal shield where this CMF was created. Using this "new model" of a root gravitropic response, we have studied some of its components including the movement of amyloplasts-statoliths in root cap statocytes and the distribution of Ca 2+ ions in the distal elongation zone during gravistimulation. Unlike results from the control, amyloplasts did not sediment in the distal part of a statocyte, and more Ca 2+ accumulation was observed in the upper side of a gravistimulated root for seedlings treated with the CMF. For plants treated with the CMF, it appears that a root gravitropic reaction occurs by a normal physiological process resulting in root bending although in the opposite direction. These results support the hypothesis that both the amyloplasts in the root cap statocytes and calcium are important signaling components in plant gravitropism.
Si-Ca species modification and microwave sintering for NiZn ferrites
NASA Astrophysics Data System (ADS)
Yang, Yin-Ju; Sheu, Ching-Iuan; Cheng, Syh-Yuh; Chang, Horng-Yi
2004-12-01
NiZn ferrite particles were precoated with Si-Ca precursor by sol-gel method. Thus convention-sintered particles exhibited small grain size about 2 μm and lowered magnetic permeability as well as increased coercive magnetic field effectively. Microwave sintering could suppress grain growth as the same result of conventional sintering specimens with SiO2-CaO precoating. In microwave process, the grain growth inhibition expressed more obviously for the SiO2-CaO precoated specimens. The magnetic permeability (∼300) after SiO2-CaO precoating became lower than original ferrite (∼800) without SiO2-CaO precoating in conventional sintering. However, the magnetic permeability was lowered no matter whether SiO2-CaO precoating in microwave process. On the other hand, microwave sintering possessed short processing time, for example, 1250 °C/5 min, to prohibit ZnO volatilization in accompanied with grain size reduction. Therefore, such contribution increased resistivity to about 12×106 Ω cm compared to 3×106 Ω cm of original NiZn ferrite. The large coercive magnetic field (Hc) was ascribed to the superposition of small grain size and stress induced by microwave sintering.
Is the place cell a "supple" engram?
Routtenberg, Aryeh
2015-06-01
This short note, which honors Nobelists O'Keefe and the Mosers, asks how the patterning of inputs to a single place cell regulates its firing. Because the combination of inputs to a single CA1 place cell is very large, the generally accepted view is rejected that inputs to a place cell are relatively restricted, near identical repetition upon re-presentation of the environment. The alternative proposed here is that when any 100 excitatory inputs are fired activating a subset combination, which is a large number, selected from the 30,000 synapses, this leads to CA1 cell firing. The selection of the combination of inputs is a very large number it nonetheless leads to the conclusion that even though the same cell dutifully fires when the animal is in an identical location, the inputs that fire the place cell are nonetheless obligatorily non-identical. This CA1 input combinatorial proposal may help us understand the physiological underpinnings of the memory mechanism arising from supple synapses (Routtenberg (2013), Hippocampus 23:202-206). © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
McKibben, Michael A.; Williams, Alan E.; Okubo, Susumu
1988-05-01
The Salton Sea geothermal system (SSGS) occurs in Plio-Pleistocene deltaic-lacustrine-evaporite sediments deposited in the Salton Trough, an active continental rift zone. Temperatures up to 365°C and hypersaline brines with up to 26 wt.% TDS are encountered at 1-3 km depth in the sediments, which are undergoing active greenschist facies hydrothermal metamorphism. Previous models for the origins of the Na-Ca-K-Cl brines have assumed that the high salinities were derived mainly from the downward percolation of cold, dense brines formed by low-temperature dissolution of shallow non-marine evaporites. New drillcores from the central part of the geothermal field contain metamorphosed, bedded evaporites at 1 km depth consisting largely of hornfelsic anhydrite interbedded with anhydrite-cemented solution-collapse shale breccias. Fluid inclusions trapped within the bedded and breccia-cementing anhydrite homogenize at 300°C (identical to the measured downhole temperature) and contain saline Na-Ca-K-Cl brines. Some of the inclusions contain up to 50 vol.% halite, sylvite and carbonate crystals at room temperature, and some halite crystals persist to above 300°C upon laboratory heating. The data are consistent with the trapping of halite-saturated Na-Ca-K-Cl fluids during hydrothermal metamorphism of the evaporites and accompanying solution collapse of interbedded shales. We conclude that many of the salt crystals in inclusions are the residuum of bedded evaporitic salt that was dissolved during metamorphism by heated connate fluids. Therefore, the high salinities of the Salton Sea geothermal brines are derived in part from the in situ hydrothermal metamorphism and dissolution of halides and CaSO 4 from relatively deeply-buried lacustrine evaporites. This fact places important constraints on modeling fluid-flow in the SSGS, as brines need not have migrated over great distances. The brines have been further modified to their present complex Na-Ca-K-Fe-Mn-Cl compositions by on-going sediment metamorphism and water-rock interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Linlin; Yang, Xingxing; Fu, Zuoling, E-mail: zlfu@jlu.edu.cn
2015-05-15
Highlights: • Near-spherical CaSiO{sub 3} nanocrystals were synthesized via a hydrothermal method. • The effect of calcination temperature on crystalline phase formation was discussed. • Optical properties of trivalent ions doped CaSiO{sub 3} nanocrystals were investigated. • Tunable luminescence of CaSiO{sub 3}:Tb{sup 3+}, Eu{sup 3+} can be achieved by a simple method. - Abstract: CaSiO{sub 3}:RE{sup 3+} (RE{sup 3+} = Eu{sup 3+}, Sm{sup 3+}, Tb{sup 3+}, Dy{sup 3+}) nanocrystals were prepared by facile hydrothermal method with further calcinations. The crystal structure and the effects of annealing temperature on phase transition have been characterized by X-ray diffraction (XRD). The photoluminescence (PL)more » and PL excitation (PLE) spectra were used to characterize the optical properties of all samples. The effect of Eu{sup 3+} and Sm{sup 3+} doping concentrations on the luminescent intensity were also investigated in details, respectively. Moreover, the luminescence colors of the Tb{sup 3+} and Eu{sup 3+} co-doped CaSiO{sub 3} samples can be tuned by simply adjusting the relative doping concentrations of the rare earth ions under a single wavelength excitation, which might find potential applications in the fields of light display systems and optoelectronic devices.« less
Low-Energy Electronic Properties of Clean CaRuO3: Elusive Landau Quasiparticles
NASA Astrophysics Data System (ADS)
Schneider, M.; Geiger, D.; Esser, S.; Pracht, U. S.; Stingl, C.; Tokiwa, Y.; Moshnyaga, V.; Sheikin, I.; Mravlje, J.; Scheffler, M.; Gegenwart, P.
2014-05-01
We have prepared high-quality epitaxial thin films of CaRuO3 with residual resistivity ratios up to 55. Shubnikov-de Haas oscillations in the magnetoresistance and a T2 temperature dependence in the electrical resistivity only below 1.5 K, the coefficient of which is substantially suppressed in large magnetic fields, establish CaRuO3 as a Fermi liquid (FL) with an anomalously low coherence scale. At T >1.5 K non-Fermi-liquid (NFL) behavior is found in the electrical resistivity. The high sample quality allows access to the intrinsic electronic properties via THz spectroscopy. For frequencies below 0.6 THz, the conductivity is Drude-like and can be modeled by FL concepts; for higher frequencies, non-Drude behavior is found, which is inconsistent with FL predictions. This establishes CaRuO3 as a prime example of optical NFL behavior in the THz range.
Wang, Gong G; Zhu, Li Q; Liu, Hui C; Li, Wei P
2011-10-18
Inspired from fouling self-mineralization in geothermal water, a novel biomimetic cactuslike CaCO(3) coating with superhydrophobic features is reported in this letter. The structure, morphologies, and phases of the CaCO(3) coating were characterized by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, and infrared spectrophotometry. After prenucleation treatment, a continuous cactuslike CaCO(3) coating with hierarchical nano- and microstructures was self-assembled on stainless steel surfaces after immersion in simulated geothermal water at 50 °C for 48 h. After being modified with a low-surface-energy monolayer of sodium stearate, the as-prepared coating exhibited superhydrophobic properties with a water contact angle of 158.9° and a sliding angle of 2°. Therefore, this work might open up a new application field of geothermal resources and provide insight into designing multidimensional structures with functional applications, including superhydrophobic surfaces. © 2011 American Chemical Society
Evaluation of ex-vivo 9.4T MRI in post-surgical specimens from temporal lobe epilepsy patients.
Kwan, Benjamin Y M; Salehi, Fateme; Kope, Ryan; Lee, Donald H; Sharma, Manas; Hammond, Robert; Burneo, Jorge G; Steven, David; Peters, Terry; Khan, Ali R
2017-10-01
This study evaluates hippocampal pathology through usage of ultra-high field 9.4T ex-vivo imaging of resected surgical specimens in patients who have undergone temporal lobe epilepsy surgery. This is a retrospective interpretation of prospectively acquired data. MRI scanning of resected surgical specimens from patients who have undergone temporal lobe epilepsy surgery was performed on a 9.4T small bore Varian MR magnet. Structural images employed a balanced steady-state free precession sequence (TrueFISP). Six patients (3 females; 3 males) were included in this study with an average age at surgery of 40.7 years (range 20Y_"60) (one was used as a control reference). Two neuroradiologists qualitatively reviewed the ex-vivo MRIs of resected specimens while blinded to the histopathology reports for the ability to identify abnormal features in hippocampal subfield structures. The hippocampal subfields were reliably identified on the 9.4T ex-vivo scans in the hippocampal head region and hippocampal body region by both neuroradiologists in all 6 patients. There was high concordance to pathology for abnormalities detected in the CA1, CA2, CA3 and CA4 subfields. Detection of abnormalities in the dentate gyrus was also high with detection in 4 of 5 cases. The Cohen's kappa between the two neuroradiologists was calculated at 0.734 SE=0.102. Ex-vivo 9.4T specimen imaging can detect abnormalities in CA1, CA2, CA3, CA4 and DG in both the hippocampal head and body. There was good concordance between qualitative findings and histopathological abnormalities for CA1, CA2, CA3, CA4 and DG. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuyan, M.; School of Physics, Sambalpur University, Jyotivihar, Burla 768 019; Panda, R. N.
In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for {sup 40,42,44,48}Ca with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+{sup 40,42,44,48}Ca systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we findmore » that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.« less
Spin frustration and magnetic ordering in triangular lattice antiferromagnet Ca3CoNb2O9
NASA Astrophysics Data System (ADS)
Dai, Jia; Zhou, Ping; Wang, Peng-Shuai; Pang, Fei; Munsie, Tim J.; Luke, Graeme M.; Zhang, Jin-Shan; Yu, Wei-Qiang
2015-12-01
We synthesized a quasi-two-dimensional distorted triangular lattice antiferromagnet Ca3CoNb2O9, in which the effective spin of Co2+ is 1/2 at low temperatures, whose magnetic properties were studied by dc susceptibility and magnetization techniques. The x-ray diffraction confirms the quality of our powder samples. The large Weiss constant θCW˜ -55 K and the low Neel temperature TN˜ 1.45 K give a frustration factor f = | θCW/TN | ≈ 38, suggesting that Ca3CoNb2O9 resides in strong frustration regime. Slightly below TN, deviation between the susceptibility data under zero-field cooling (ZFC) and field cooling (FC) is observed. A new magnetic state with 1/3 of the saturate magnetization Ms is suggested in the magnetization curve at 0.46 K. Our study indicates that Ca3CoNb2O9 is an interesting material to investigate magnetism in triangular lattice antiferromagnets with weak anisotropy. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374364 and 11222433), the National Basic Research Program of China (Grant No. 2011CBA00112). Research at McMaster University supported by the Natural Sciences and Engineering Research Council. Work at North China Electric Power University supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
NASA Astrophysics Data System (ADS)
Matar, Samir F.; Etourneau, Jean
2017-11-01
Based on crystal chemistry analysis within Ca-Ir-O ternary, the generic (CaO)nIrO2 formula leading to CaIrO3 for n = 1, Ca2IrO4 for n = 2 and Ca4IrO6 for n = 4 actual chemical compounds show significant structural changes regarding the spatial arrangement of IrO6 octahedra whereby increasing amounts of CaO act as 'chemical scissor' decreasing the dimensionality of stacking octahedra from 3D (IrO2) to 0D (Ca4IrO6). This is accompanied by changes in the electronic structure investigated within density functional theory. Such changes are particularly exhibited by linear increase of Ir density of states at the Fermi level revealing increasing localization of d states with crystal field effects. Eventually only for Ca4IrO6 a magnetic instability occurs in non magnetic configuration. Spin polarized calculations lead to development of small magnitude but finite magnetization on Ir with M 0.50 μB totally polarized along minority spin channel ↓.
NASA Astrophysics Data System (ADS)
Vlahos, Eftihia; Lummen, Tom; Haislmaier, Ryan; Denev, Sava; Brooks, Charles; Biegalski, Michael; Schlom, Darrell; Eklund, Carl-Johan; Rabe, Karin; Fennie, Craig; Gopalan, Venkatraman
2011-03-01
Bulk CaTi O3 has a centrosymmetric point group and is not polar or ferroelectric. However, we present surprising results that show highly regular polar domains in single crystals of CaTi O3 . Confocal Second Harmonic Generation (SHG) and Raman imaging studies were carried out on perovskite CaTi O3 crystal surfaces. They reveal large, crystallographic polar domains at room temperature, with in-plane polarization components delineated by twin walls. SHG analysis indicates that the highest symmetry of the polar surface is m (space group P c) with polarization in the m plane. In addition, we present results of the polar domain structure imaged before and after the application of an external electric field. Finally, we present the SHG studies of CaTi O3 thin films grown using reactive Molecular Beam Epitaxy (MBE); these films are predicted by theory to be ferroelectric and are shown experimentally, both with SHG and in-plane dielectric measurements, to be ferroelectric for temperatures less than ~ 150 K with group symmetry mm2.
Rapid changes in water hardness and alkalinity: Calcite formation is lethal to Daphnia magna.
Bogart, Sarah J; Woodman, Samuel; Steinkey, Dylan; Meays, Cindy; Pyle, Greg G
2016-07-15
There is growing concern that freshwater ecosystems may be negatively affected by ever-increasing anthropogenic inputs of extremely hard, highly alkaline effluent containing large quantities of Ca(2+), Mg(2+), CO3(2-), and HCO3(-) ions. In this study, the toxicity of rapid and extreme shifts in water hardness (38-600mg/L as CaCO3) and alkalinity (30-420mg/L as CaCO3) to Daphnia magna was tested, both independently and in combination. Within these ranges, where no precipitation event occurred, shifts in water hardness and/or alkalinity were not toxic to D. magna. In contrast, 98-100% of D. magna died within 96h after exposure to 600mg/L as CaCO3 water hardness and 420mg/L as CaCO3 alkalinity (LT50 of 60h with a 95% CI of 54.2-66.0h). In this treatment, a CaCO3 (calcite) precipitate formed in the water column which was ingested by and thoroughly coated the D. magna. Calcite collected from a mining impacted stream contained embedded organisms, suggesting field streams may also experience similar conditions and possibly increased mortality as observed in the lab tests. Although further investigation is required to determine the exact fate of aquatic organisms exposed to rapid calcite precipitation in the field, we caution that negative effects may occur more quickly or at lower concentrations of water hardness and alkalinity in which we observed effects in D. magna, because some species, such as aquatic insects, are more sensitive than cladocerans to changes in ionic strength. Our results provide evidence that both calcite precipitation and the major ion balance of waters should be managed in industrially affected ecosystems and we support the development of a hardness+alkalinity guideline for the protection of aquatic life. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
[Dentinopulpar organ: biological basis of clinical response to Ca(OH)2 application].
Gani, O; Crosa, M E
1989-01-01
We have studied the changes presented by mediate and immediate roentgenographic images of indirect pulp capping and pulpotomies. In the cases of indirect pulp capping it was observed an increase of radiolucidity in the places occupied by Ca(OH)2, and sclerotic dentin was present. In pulpotomies, it was found the dentin bridge, which thickness increases with time. The radiolucidity of pulp chamber occupied by Ca(OH)2 was greater in the long time treatment. The radiopacity of non-vital dentin of walls and floor chamber was increased too. It has suggested that Ca++ ion would have migrated from its place and probably would take part in the synthesis of sclerotic dentin, independently of the vitality of the tissue.
NASA Technical Reports Server (NTRS)
Barta, D. J.; Tibbitts, T. W.
1991-01-01
An electron microprobe was used to determine tissue concentrations of Ca across 20-mm-long leaves of 'Green Lakes' crisphead lettuce (Lactuca sativa L.) with and without tipburn injury. Concentrations within the fifth and 14th leaves, counted from the cotyledons, from plants grown under controlled-environment conditions were compared to concentrations within similar leaves obtained from plants grown under field conditions. Only the 14th leaf from plants grown under controlled-environment conditions developed tipburn. Injured areas on these leaves had Ca concentrations as low as 0.2 to 0.3 mg g-1 dry weight. Uninjured areas of tipburned leaves contained from 0.4 to 0.5 mg g-1 dry weight. Concentrations across the uninjured 14th leaf from field-grown plants averaged 1.0 mg g-1 dry weight. Amounts across the uninjured fifth leaves from both environments averaged 1.6 mg g-1 dry weight. In contrast, Mg concentrations were higher in injured leaves than in uninjured leaves and thus were negatively correlated with Ca concentrations. Magnesium concentrations averaged 4.7 mg g-1 dry weight in injured leaves compared with 3.4 mg g-1 dry weight in uninjured leaves from both environments. Magnesium concentrations were uniform across the leaf. Potassium concentrations were highest at the leaf apex and decreased toward the base and also decreased from the midrib to the margin. Potassium averaged 51 mg g-1 dry weight in injured and uninjured leaves from both environments. No significant differences in K concentration were present between injured and uninjured leaves. This study documented that deficient concentrations of Ca were present in areas of leaf tissue developing tipburn symptoms and that concentrations were significantly higher in similar areas of other leaves that had no symptoms. This study also documented that Ca concentrations were significantly lower in enclosed leaves that exhibited tipburn symptoms than in exposed leaves that did not exhibit tipburn. Also, the amounts of Ca in plants that developed tipburn in controlled environments were lower than in plants of the same cultivar that did not develop tipburn in field plantings. The reduced levels of Ca in plants grown in controlled environments were associated with faster development rates compared with field-grown plants.
NASA Astrophysics Data System (ADS)
Beck, Sophie; Sclauzero, Gabriele; Chopra, Uday; Ederer, Claude
2018-02-01
We use density functional theory plus dynamical mean-field theory (DFT+DMFT) to study multiple control parameters for tuning the metal-insulator transition (MIT) in CaVO3 thin films. We focus on separating the effects resulting from substrate-induced epitaxial strain from those related to the reduced thickness of the film. We show that tensile epitaxial strain of around 3%-4% is sufficient to induce a transition to a paramagnetic Mott-insulating phase. This corresponds to the level of strain that could be achieved on a SrTiO3 substrate. Using free-standing slab models, we then demonstrate that reduced film thickness can also cause a MIT in CaVO3, however, only for thicknesses of less than 4 perovskite units. Our calculations indicate that the MIT in such ultrathin films results mainly from a surface-induced crystal-field splitting between the t2 g orbitals, favoring the formation of an orbitally polarized Mott insulator. This surface-induced crystal-field splitting is of the same type as the one resulting from tensile epitaxial strain, and thus the two effects can also cooperate. Furthermore, our calculations confirm an enhancement of correlation effects at the film surface, resulting in a reduced quasiparticle spectral weight in the outermost layer, whereas bulklike properties are recovered within only a few layers away from the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tutuncu, Goknur; Li, Binzhi; Bowman, Keith
The piezoelectric compositions (1 - x)Ba(Zr 0.2Ti 0.8)O 3–x(Ba 0.7Ca 0.3)TiO 3 (BZT-xBCT) span a model lead-free morphotropic phase boundary (MPB) between room temperature rhombohedral and tetragonal phases at approximately x = 0.5. In the present work, in situ X-ray diffraction measurements during electric field application are used to elucidate the origin of electromechanical strain in several compositions spanning the tetragonal compositional range 0.6 ≤ x ≤ 0.9. As BCT concentration decreases towards the MPB, the tetragonal distortion (given by c/a-1) decreases concomitantly with an increase in 90° domain wall motion. The increase in observed macroscopic strain is predominantly attributedmore » to the increased contribution from 90° domain wall motion. The results demonstrate that domain wall motion is a significant factor in achieving high strain and piezoelectric coefficients in lead-free polycrystalline piezoelectrics.« less
Shi, Xiaoya; Dimitrov, I. K.; Ozaki, Toshinori; ...
2017-11-01
We report the results of magnetization measurements with the magnetic field applied along the c axis on superconducting La 1.9Ca 1.1Cu 2O 6+δ single crystals processed under ultrahigh oxygen pressure. Strong fluctuation effects were found in both low- and high-field regimes. Scaling analysis of the high-field magnetization data near the critical temperature (T c = 53.5K) region reveals the characteristics of critical fluctuation behavior of quasi-two-dimensional (2D) superconductivity, described by Ginzburg-Landau theory using the lowest Landau level approximation. Low-field magnetic susceptibility data can be successfully explained by the Lawrence-Doniach model for a quasi-2D superconductor, from which we obtained the amore » b plane Ginzburg-Landau coherence length of this system, ξ ab(0) = 11.8 ± 0.9 Å . The coherence length along the c axis, ξ c(0), is estimated to be about 1.65 Å, which is in between those of 2D cuprate systems, such as Bi 2Sr 2Ca 2Cu 3O 10 and Bi 2Sr 2CaCu 2O 8, and quasi-three-dimensional (3D) cuprate systems, such as overdoped La 2-xSr xCuO 4 and YBa 2Cu 3O 7-δ. Our studies suggest a strong interplay among the fluctuation effects, dimensionalities, and the ratios of the interlayer Cu-O plane spacing, s , to the c-axis coherence lengths. A high s/ξ c(0) was observed in the high-pressure oxygenated La 1.9Ca 1.1Cu 2O 6+δ, and that apparently drives this system to behave more like a quasi-2D superconductor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoya; Dimitrov, I. K.; Ozaki, Toshinori
We report the results of magnetization measurements with the magnetic field applied along the c axis on superconducting La 1.9Ca 1.1Cu 2O 6+δ single crystals processed under ultrahigh oxygen pressure. Strong fluctuation effects were found in both low- and high-field regimes. Scaling analysis of the high-field magnetization data near the critical temperature (T c = 53.5K) region reveals the characteristics of critical fluctuation behavior of quasi-two-dimensional (2D) superconductivity, described by Ginzburg-Landau theory using the lowest Landau level approximation. Low-field magnetic susceptibility data can be successfully explained by the Lawrence-Doniach model for a quasi-2D superconductor, from which we obtained the amore » b plane Ginzburg-Landau coherence length of this system, ξ ab(0) = 11.8 ± 0.9 Å . The coherence length along the c axis, ξ c(0), is estimated to be about 1.65 Å, which is in between those of 2D cuprate systems, such as Bi 2Sr 2Ca 2Cu 3O 10 and Bi 2Sr 2CaCu 2O 8, and quasi-three-dimensional (3D) cuprate systems, such as overdoped La 2-xSr xCuO 4 and YBa 2Cu 3O 7-δ. Our studies suggest a strong interplay among the fluctuation effects, dimensionalities, and the ratios of the interlayer Cu-O plane spacing, s , to the c-axis coherence lengths. A high s/ξ c(0) was observed in the high-pressure oxygenated La 1.9Ca 1.1Cu 2O 6+δ, and that apparently drives this system to behave more like a quasi-2D superconductor.« less
[Prognostic factors for in-hospital cardiopulmonary arrests. A review of 760 cases].
Fontanals, Jaume; Magaldi, Marta; Caballero, Ángel; Fontanals, Montserrat
2016-07-15
The aim of this study is to analyse in-hospital cardiopulmonary arrests (CA) that took place in conventional wards and evaluate their prognostic factors. Retrospective review of in-hospital CA which occurred in our hospital over a 9-year period. CA that took place in intensive care areas, emergency rooms and operating theatres were excluded from the study. The following data were collected: demographic data, cause and initial rhythm of CA, internal control data, time, place, methods and results after cardiopulmonary resuscitation (CPR) (recovery of spontaneous circulation, [ROSC], and survival at discharge [SAD]) and neurologic performance at discharge. Results were analysed with SPSS(®) v. 20 predictive analytics software. Average age was 66.9±17.5 years; 63.5% male. CA team arrived in 1.75±0.74min on average, and the average length of CPR was 25.8±16.10min. First rhythm: a) shockable rhythms=22.1%; b) asystole=66.2%, and c) pulseless electrical activity=11.7%. ROSC=51% and SAD=24.8%. Factors associated with a better prognostic (P<.05): age, reason for hospital admission, patient's previous physical condition, principal cause of CA, number of defibrillations and average length of CPR. Despite having studied several variables as prognostic factors for CA and some of them being statistically significant, early prediction for survival for an in-hospital CA remains uncertain. Our study suggests that applying rational organisational measures, 25% of in-hospital CA could be discharged from hospital in good condition, and therefore, these organisational and educational measures should be extended to large hospitals. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Electric Dipole Polarizability of ^{48}Ca and Implications for the Neutron Skin.
Birkhan, J; Miorelli, M; Bacca, S; Bassauer, S; Bertulani, C A; Hagen, G; Matsubara, H; von Neumann-Cosel, P; Papenbrock, T; Pietralla, N; Ponomarev, V Yu; Richter, A; Schwenk, A; Tamii, A
2017-06-23
The electric dipole strength distribution in ^{48}Ca between 5 and 25 MeV has been determined at RCNP, Osaka from proton inelastic scattering experiments at forward angles. Combined with photoabsorption data at higher excitation energy, this enables the first extraction of the electric dipole polarizability α_{D}(^{48}Ca)=2.07(22) fm^{3}. Remarkably, the dipole response of ^{48}Ca is found to be very similar to that of ^{40}Ca, consistent with a small neutron skin in ^{48}Ca. The experimental results are in good agreement with ab initio calculations based on chiral effective field theory interactions and with state-of-the-art density-functional calculations, implying a neutron skin in ^{48}Ca of 0.14-0.20 fm.
Comparison of a few recording current meters in San Francisco Bay, CA
Cheng, R.T.
1978-01-01
A team of research scientists in the U.S. Geological Survey uses San Francisco Bay, California, as an outdoor laboratory to study complicated interactions of physical, chemical, and biological processes which take place in an estuarine environment. A current meter comparison study was conceived because of the need to select a suitable current meter to meet field requirements for current measurements in the Bay. The study took place in south San Francisco Bay, California, in the spring of 1977. An instrument tower which was designed to support instruments free from the conventional mooring line motions was constructed and emplaced in south San Francisco Bay. During a period of two months, four types of recording current meters have been used in the tests. The four types were: (1) Aanderaa, (2) tethered shroud-impeller, (3) drag-inclinometer, and (4) electromagnetic current meters. With the exception of the electromagnetic current meter, one of each type was mounted on the instrument tower, and one of each type was deployed on moorings near the instrument tower. In addition, a wind anemometer and a recording tide gauge were also installed on the tower. This paper discusses the characteristics of each instrument and the accuracy that each instrument can provide when used in an estuarine environment. We pay special attention to our experiences in the field operation with respect to handling of the instruments and to our experiences working up the raw data in the post-deployment data analysis.
Evaluating stress analysis and failure criteria for offshore structures for Pechora Sea conditions
NASA Astrophysics Data System (ADS)
Nesic, S.; Donskoy, Y.; Zolotukhin, A.
2017-12-01
Development of Arctic hydrocarbon resources has faced many challenges due to sensitive environmental conditions including low temperatures, ice cover and terrestrial permafrost and extreme seasonal variation in sunlight. Russian offshore field development in Arctic region is usually associated with annual ice cover, which can cause serious damage on the offshore platforms. The Pechora Sea has claimed as one of the most perspective oil and gas region of the Russian Arctic with seven discovered oil and gas fields and several dozens of structures. Our rough assessment, based on in-place hydrocarbon volumes and recovery factor evaluation concept, indicates that Pechora Sea alone has in-place volumes amounting to ca. 20 billion barrel oil equivalent (BOE). This quantity is enough to secure produced volumes by 2040 exceeding 3 billion BOE [1] that indicates huge resource potential of the region. The environmental conditions are primarily function of water dynamics and ice cover. The sea is covered by the ice for greatest part of the year. In this article, the ice load simulations were performed using explicit dynamic analysis system in ANSYS software to determine best shape and size of an offshore platform for the Pechora Sea ice conditions. Different gravity based structures (GBS) were analyzed: artificial island, hollow cylindrical and conical concrete structures and four-leg GBS. Relationships between the stress, deformations and time were analyzed and important observations from the simulation results were a basis for selecting the most preferable structures.
Magnetization and transport properties of silver-sheathed (Hg, Re)Ba2Ca2Cu3O8+delta tapes
NASA Astrophysics Data System (ADS)
Su, J. H.; Sastry, P. V. P. S. S.; Schwartz, J.
2003-10-01
(Hg, Re)Ba2Ca2Cu3O8+delta ((Hg, Re)-1223) samples have been fabricated by wrapping Re0.2Ba2Ca2Cu3Oy precursor powder within Ag foil and pressing or rolling. The Ag/precursor composite is then reacted with CaHgO2 in sealed reaction tubes. X-ray diffraction (XRD) patterns showed only one superconducting phase, (Hg, Re)-1223, in agreement with magnetization measurements showing an onset critical temperature (Tc) of 132 K. The magnetization properties were studied by dc magnetic measurements. The irreversibility line (Hirr), deduced from magnetization hysteresis loops, is approximated by a power law, Hirr ~ (1 - T/Tc)n, with n ~ 2.5, indicating moderate coupling between CuO2 layers compared to YBa2Cu3O7 (n ~ 1.5) and Bi/Tl-based superconductors (n ~ 5.5). The temperature dependence of the magnetization hysteresis loop width DeltaM showed three regimes, dominated by weak links at low temperature (regime I), thermally activated depinning of vortices at intermediate temperature (regime II) and giant flux creep at high temperature (regime III), respectively. Two field dependences were found in the intragrain critical current density (Jmagc) versus applied field at various temperatures: a weak one at lower temperature (leq50 K) and a stronger one at high temperature (geq65 K), indicating a transition from vortex lattice to vortex liquid in the tapes. The transport critical current density (Jtranc) of ~3 × 103 A cm-2 at 4.2 K and self-field was comparable to those for bulk Hg-based superconductors, indicating granular nature of the samples, which was confirmed further by XRD, scanning electron microscopy (SEM) and magneto-optical imaging (MOI).
Mallinson, D.; Burdette, K.; Mahan, S.; Brook, G.
2008-01-01
Luminescence ages from a variety of coastal features on the North Carolina Coastal Plain provide age control for shoreline formation and relative sea-level position during the late Pleistocene. A series of paleoshoreline ridges, dating to Marine Isotope Stage (MIS) 5a and MIS 3 have been defined. The Kitty Hawk beach ridges, on the modern Outer Banks, yield ages of 3 to 2??ka. Oxygen-isotope data are used to place these deposits in the context of global climate and sea-level change. The occurrence of MIS 5a and MIS 3 shorelines suggests that glacio-isostatic adjustment (GIA) of the study area is large (ca. 22 to 26??m), as suggested and modeled by other workers, and/or MIS 3 sea level was briefly higher than suggested by some coral reef studies. Correcting the shoreline elevations for GIA brings their elevation in line with other sea-level indicators. The age of the Kitty Hawk beach ridges places the Holocene shoreline well west of its present location at ca. 3 to 2??ka. The age of shoreline progradation is consistent with the ages of other beach ridge complexes in the southeast USA, suggesting some regionally contemporaneous forcing mechanism. ?? 2007 University of Washington.
Parameterization of Ca+2-protein interactions for molecular dynamics simulations.
Project, Elad; Nachliel, Esther; Gutman, Menachem
2008-05-01
Molecular dynamics simulations of Ca+2 ions near protein were performed with three force fields: GROMOS96, OPLS-AA, and CHARMM22. The simulations reveal major, force-field dependent, inconsistencies in the interaction between the Ca+2 ions with the protein. The variations are attributed to the nonbonded parameterizations of the Ca+2-carboxylates interactions. The simulations results were compared to experimental data, using the Ca+2-HCOO- equilibrium as a model. The OPLS-AA force field grossly overestimates the binding affinity of the Ca+2 ions to the carboxylate whereas the GROMOS96 and CHARMM22 force fields underestimate the stability of the complex. Optimization of the Lennard-Jones parameters for the Ca+2-carboxylate interactions were carried out, yielding new parameters which reproduce experimental data. Copyright 2007 Wiley Periodicals, Inc.
Sola, Daniel; Paulés, Daniel; Grima, Lorena
2017-01-01
Laser-induced breakdown spectroscopy (LIBS) is applied to characterize the formation of porous hydroxyapatite layers on the surface of 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass immersed in simulated body fluid (SBF). Compositional and structural characterization analyses were also conducted by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and micro-Raman spectroscopy. PMID:29211006
Some mineral stability relations in the system CaOMgOSiO2H2OHCl
Luce, R.W.; Cygan, G.L.; Hemley, J.J.; d'Angelo, W. M.
1985-01-01
Mineral-aqueous solution equilibria for the assemblages talc-quartz, tremolite-talc-quartz, diopside-tremolite-quartz, wollastonite-diopside-quartz and wollastonite-quartz have been studied at 2 kb total pressure, 500?? to 700??C and chloride concentrations from 0.03 to 6.0 molal. Most work was at 1 m chloride. Both buffered and unbuffered data were obtained and a recalibration of the Ag-AgCl buffer is presented. Log equilibrium quotients at 500??, 600?? and 700??C are respectively: Ta-Qz ( mMgCl2 mHCl2) 2.57, 1.71, 0.73; Tr-Ta-Qz and Di-Tr-Qz ( mCaCl2 mMgCl2mHCl2) 4.98, 3.99, 2.21 and 7.29, 5.30, 3.56; WoDi-Qz ( mCaCl2 mMgCl2) 3.30, 3.00, 2.79: Wo-Qz ( mCaCl2 mHCl2) 5.15, 3.95, 2.68. Mineral stability fields plotted in terms of these concentration data more tangibly represent the compositional character of real systems and the mass transfer capabilities of their fluids than do the analogous theoretical activity diagrams. Overall dissociation constants of MgCl2 and CaCl2 were calculated from the experimental data using the calculated ionic activity constants for the reactions and the established dissociation constants of HCl. The negative log values are respectively: 3.88. 6.63, 9.20 for CaCl2 and 4.60, 7.54, 10.37 for MgCl2 at 500??, 600?? and 700??C, 2 kb. The Ca values are about an order of magnitude more positive than the conductance-derived values by Frantz and Marshall (1982). The phase relations developed in this study have application to the genesis of talc, tremolite, and diopside-bearing assemblages in some regional metamorphic rocks, but more specifically to the calcsilicate skarn assemblages of many metasomatic aureoles. The equilibrium fluids are characterized by high concentrations of Ca relative to Mg and increasing Ca Mg ratios with decreasing temperatures. The stability fields of talc, tremolite, and quartz expand relative to those of diopside and wollastonite with decreasing temperature, hence their more common appearance as retrograde products in skarn systems. ?? 1985.
Li, He; Li, Jun; Liu, Xiao-Long; Yang, Xi; Zhang, Wei; Wang, Jie; Niu, Ying-Quan
2015-02-01
To investigate the ionic compositions of small lake-watersheds on the Tibetan Plateau, water samples from the brackish lakes (Pung Co (lake), Angrenjin Co and Dajia Co), the freshwater lake (Daggyaima Co), their inflowing rivers and the hot spring (Dagejia Geothermal Field), were collected during July-August 2013. The results showed that the major anions and cations of the brackish lakes were HCO3-, SO4(2-) and Na+, respectively, and the hydrochemical types were HCO3-SO4-Na and HCO3-Na. The major anions and cations of the inflowing rivers and the freshwater lake were HCO3-, SO4(2-) and Ca2+, Mg2+, respectively, and the hydrochemical types were HCO3-Ca, HCO3-Ca-Mg, HCO3-Mg-Ca, HCO3-SO4-Ca and SO4-HCO3- Ca. The major anions and cations of the hot spring were HCO3- and Na+, respectively, and the hydrochemical type was HCO3-Na. Water chemistry in the brackish lakes was primarily dominated by evaporation-crystallization processes, while the inflowing rivers and the freshwater lake were mainly influenced by carbonate weathering, and the hot spring was mainly controlled by hot water-granite interaction. Ca2+ was preferentially removed over Mg2+ from the water when carbonate minerals precipitation occured, which resulted in the high Mg2+/Ca2+ molar ratios of the brackish lakes. In the contribution of cation compositions, the largest contribution was carbonate weathering (54% - 79%), followed by silicate weathering (13% -29%) and evaperite dissolution (4% -23%), and the smallest was atmospheric input (3% - 7%).
Multigenetic characterization of 'Candidatus Xenohaliotis californiensis'.
Cicala, Francesco; Moore, James D; Cáceres-Martínez, Jorge; Del Río-Portilla, Miguel A; Hernández-Rodríguez, Mónica; Vásquez-Yeomans, Rebeca; Rocha-Olivares, Axayácatl
2017-01-01
'Candidatus Xenohaliotis californiensis' (or Ca.Xc) is the aetiological agent of withering syndrome, a chronic wasting disease affecting most if not all North American species of abalone, and has been described as a Rickettsiales-like prokaryote. Genetic data regarding this species are limited to the 16S rRNA gene. The inability to grow it axenically has hindered its genetic and genomic characterization and, in consequence, a thorough analysis of its systematics. Here, we amplified and sequenced five genes (16S rRNA, 23S rRNA, ftsZ, virD4 and virB11) of Ca.Xc from infected abalone to analyse its phylogenetic position. Phylogenies from concatenated DNA and amino acid sequences with representative genera of most Rickettsiales unequivocally place Ca.Xc in the family Anaplasmataceae. Furthermore, the family has two reciprocally monophyletic lineages: one leading to (Neorickettsia, Ca.Xc) and the other to ((Ehrlichia, Anaplasma), Wolbachia)). A molecular-clock Bayesian reconstruction places Ca.Xc as the most basal lineage in Anaplasmataceae. These phylogenetic hypotheses shed light on patterns of host evolution and of ecological transitions. Specifically, Neorickettsia and Ca.Xc inhabit aquatic hosts whereas the remaining Anaplasmataceae are found in terrestrial hosts. Additionally, our evolutionary timeline places the directly transmitted marine Ca.Xc as the basal Anaplasmataceae, ancestral to both freshwater and terrestrial species with adaptations leading to more complex life cycles involving intermediate vectors or reservoir species; this supports the hypothesis of a marine origin for this bacterial family.
Dhirawani, Rajesh B; Marya, Jayant; Dhirawani, Vrinda; Kumar, Vijayendra
2017-01-01
Aim The aim of this study was to evaluate the diffusion ability of ions through dentinal tubules of different nonalcoholic calcium hydroxide-containing herbal pastes and compare it with the calcium hydroxide paste prepared with saline. Materials and methods A total of 36 single-rooted premolar teeth were used in this study. The tooth crowns were removed and the root canals were prepared. Depending on the vehicle to be used for preparing calcium hydroxide pastes, six groups were made: Group I: Ca(OH)2 saline paste (control group), group II: Ca(OH)2 papaya latex paste, group III: Ca(OH)2 coconut water paste, group IV: Ca(OH)2 Ashwagandha (Withania somnifera) paste, group V: Ca(OH)2 Tulsi (Ocimum tenuiflorum) paste, and group VI: Ca(OH)2 garlic (Allium sativum) paste. After biomechanical preparation, calcium hydroxide herbal paste dressings were applied and sealed with resin-based cement. The teeth were placed in containers with deionized water, and the pH of the water was measured at regular intervals over 3, 24, 72, and 168 hours. Results We observed that all herbal pastes allowed the diffusion of ions, but pastes prepared with Ashwagandha and papaya latex showed more ion diffusion after 168 hours and marked increase in pH, depicting better support for calcium hydroxide action. Conclusion We conclude that Ashwagandha and papaya latex allow better diffusion of calcium hydroxide through den-tinal tubules, thus enhancing its action, and advise its use as a vehicle for placing intracanal medicament. How to cite this article Dausage P, Dhirawani RB, Marya J, Dhirawani V, Kumar V. A Comparative Study of Ion Diffusion from Calcium Hydroxide with Various Herbal Pastes through Dentin. Int J Clin Pediatr Dent 2017;10(1):41-44. PMID:28377654
Sahu, Santosh Kumar; Aradhyam, Gopala Krishna; Gummadi, Sathyanarayana N
2009-10-01
Phospholipid scramblases are a group of four homologous proteins conserved from C. elegans to human. In human, two members of the scramblase family, hPLSCR1 and hPLSCR3 are known to bring about Ca2+ dependent translocation of phosphatidylserine and cardiolipin respectively during apoptotic processes. However, affinities of Ca2+/Mg2+ binding to human scramblases and conformational changes taking place in them remains unknown. In the present study, we analyzed the Ca2+ and Mg2+ binding to the calcium binding motifs of hPLSCR1-4 and hPLSCR1 by spectroscopic methods and isothermal titration calorimetry. The results in this study show that (i) affinities of the peptides are in the order hPLSCR1>hPLSCR3>hPLSCR2>hPLSCR4 for Ca2+ and in the order hPLSCR1>hPLSCR2>hPLSCR3>hPLSCR4 for Mg2+, (ii) binding of ions brings about conformational change in the secondary structure of the peptides. The affinity of Ca2+ and Mg2+ binding to protein hPLSCR1 was similar to that of the peptide I. A sequence comparison shows the existence of scramblase-like motifs among other protein families. Based on the above results, we hypothesize that the Ca2+ binding motif of hPLSCR1 is a novel type of Ca2+ binding motif. Our findings will be relevant in understanding the calcium dependent scrambling activity of hPLSCRs and their biological function.
NASA Technical Reports Server (NTRS)
Fondren, W. M.; Moore, R.
1987-01-01
We placed agar blocks adjacent to tips of electrotropically stimulated primary roots of Zea mays. Blocks placed adjacent to the anode-side of the roots for 3 h induced significant curvature when subsequently placed asymmetrically on tips of vertically-oriented roots. Curvature was always toward the side of the root unto which the agar block was placed. Agar blocks not contacting roots and blocks placed adjacent to the cathode-side of electrotropically stimulated roots did not induce significant curvature when placed asymmetrically on tips of vertically-oriented roots. Atomic absorption spectrophotometry indicated that blocks adjacent to the anode-side of electrotropically-stimulated roots contained significantly more calcium than (1) blocks not contacting roots, and (2) blocks contacting the cathode-side of roots. These results demonstrate the presence of a gradient of endogenous Ca in mucilage of electrotropically-stimulated roots (i.e. roots undergoing gravitropic-like curvature).
Memory Erasure Experiments Indicate a Critical Role of CaMKII in Memory Storage.
Rossetti, Tom; Banerjee, Somdeb; Kim, Chris; Leubner, Megan; Lamar, Casey; Gupta, Pooja; Lee, Bomsol; Neve, Rachael; Lisman, John
2017-09-27
The abundant synaptic protein CaMKII is necessary for long-term potentiation (LTP) and memory. However, whether CaMKII is required only during initial processes or whether it also mediates memory storage remains unclear. The most direct test of a storage role is the erasure test. In this test, a putative memory molecule is inhibited after learning. The key prediction is that this should produce persistent memory erasure even after the inhibitory agent is removed. We conducted this test using transient viral (HSV) expression of dominant-negative CaMKII-alpha (K42M) in the hippocampus. This produced persistent erasure of conditioned place avoidance. As an additional test, we found that expression of activated CaMKII (T286D/T305A/T306A) impaired place avoidance, a result not expected if a process other than CaMKII stores memory. Our behavioral results, taken together with prior experiments on LTP, strongly support a critical role of CaMKII in LTP maintenance and memory storage. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sarwar, T.; Qamar, A.; Nadeem, M.
2017-07-01
Dynamics of spin ordering in the manganite Nd0.5Ca0.5MnO3 have been investigated in this paper. It was observed that the complex mixed magnetic ordering in pellets is comprised of antiferromagnetic ordering at 160 K (TN) and complete charge ordering at 250 K (TCO). Under ac field, appearance of unstable ferromagnetic correlations is observed above TCO, which is badly frustrated due to strong spin disorder induced by Jahn Teller distortions. Impedance measurements reveal the spin glass like scenario, suppressing the strong antiferromagnetic and charge ordering states below TN.
Magnetic Spin Correlations in the One-dimensional Frustrated Spin-chain System Ca3Co2O6
NASA Astrophysics Data System (ADS)
Månsson, M.; Sugiyama, J.; Roessli, B.; Hitti, B.; Ikedo, Y.; Zivkovic, I.; Nozaki, H.; Harada, M.; Sassa, Y.; Andreica, D.; Goko, T.; Amato, A.; Ofer, O.; Ansaldo, E. J.; Brewer, J. H.; Chow, K. H.; Yi, H. T.; Cheong, S.-W.; Prsa, K.
In this work we present a combination of zero-field and high transverse-field muon spin rotation/relaxation (μ+SR) measurements. The current μ+SR Knight-shift measurements clearly shows that Ca3Co2O6 display strong spin correlations even at room-temperature. Further, several anomalies in the temperature dependent data are proposed to be connected to the onset of a quasi-one-dimensional (Q1D) ferrimagnetic order. Further, we suggest that in the low-temperature regime, the Q1D ferrimagnetic order co-exist within a long-range antiferromagnetic phase, which has been confirmed by our recent neutron scattering studies.
Evaluation of PIK3CA mutations as a biomarker in Chinese breast carcinomas from Western China.
Cheng, Jingliang; Fu, Shangyi; Wei, Chunli; Tania, Mousumi; Khan, Md Asaduzzaman; Imani, Saber; Zhou, Baixu; Chen, Hanchun; Xiao, Xiuli; Wu, Jingbo; Fu, Junjiang
2017-01-01
PIK3CA gene encodes the p110 α catalytic subunit of the oncoprotein phosphatidylinositol 3-kinase (PI3 K) which regulates many biological processes such as cell proliferation, differentiation, migration and survival through the activation of various signaling pathways. In this study, we have investigated the possible somatic mutations in PIK3CA gene in invasive ductal breast carcinomas of Chinese women from Western China. Genomic DNA was extracted from the formalin-fixed paraffin-embedded (FFPE) tissue samples. The hotspot mutations in PIK3CA gene of exon 9 and exon 20 were studied by pyrosequencing. The sequencing identified two hotspot mutations in exon 20 of one cancer samples at p. H1047L (c. 3140A > T) and eight cancer sample at p. H1047R (c. 3140A > G). No mutation in exon 9 of PIK3CA gene was found in these breast cancer tissue samples. PIK3CA mutations showed surprising clinicopathological features in breast cancer patients, as incidence of lymph node invasiveness is increased in the patients with PIK3CA mutation. In addition, all the patients showed tumor size bigger than 3 cm in diameter. It is important that for early detection and early treatment for BC in developing countries or areas like Western China, and for people to provide popularization education using scientific knowledge in cancer fields. This study identified PIK3CA mutations in breast carcinoma patients of Western China that will enable a more rapid molecular diagnosis, and provide a stronger rationale evidence for development of precision therapeutic approaches as well as promising therapeutic targets for breast cancer treatment or patient management.
Akhtar, Muhammad
2013-01-01
In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % CaCO3 for 15 days. Freundlich adsorption isotherms (P = aC b/a) were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L−1) were calculated. It was observed that P adsorption in soil increased with CaCO3. Moreover, at all the levels of CaCO3, P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L−1, compared to DAP. However, extrapolating the developed relationship between soil CaCO3 contents and quantity of fertilizer to other similar textured soils needs confirmation. PMID:24307878
Environmental Field Trips - Some Places to Visit in Maryland, Virginia and the District of Columbia.
ERIC Educational Resources Information Center
Meetre, Jeff
This publication lists 40 places in the metropolitan Washington, D.C. area that could be visited on an environmental field trip. The sites are placed into five categories: (1) Air Monitoring; (2) Ecology and Nature Study; (3) Solid Waste Management; (4) Wastewater Treatment; and (5) Water Supply. Each entry includes name, address, and phone number…
LC-lens array with light field algorithm for 3D biomedical applications
NASA Astrophysics Data System (ADS)
Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Martinez, Manuel; Javidi, Bahram; Chu, Chao-Yu; Hsuan, Yun; Chu, Wen-Chun
2016-03-01
In this paper, liquid crystal lens (LC-lens) array was utilized in 3D bio-medical applications including 3D endoscope and light field microscope. Comparing with conventional plastic lens array, which was usually placed in 3D endoscope or light field microscope system to record image disparity, our LC-lens array has higher flexibility of electrically changing its focal length. By using LC-lens array, the working distance and image quality of 3D endoscope and microscope could be enhanced. Furthermore, the 2D/3D switching ability could be achieved if we turn off/on the electrical power on LClens array. In 3D endoscope case, a hexagonal micro LC-lens array with 350um diameter was placed at the front end of a 1mm diameter endoscope. With applying electric field on LC-lens array, the 3D specimen would be recorded as from seven micro-cameras with different disparity. We could calculate 3D construction of specimen with those micro images. In the other hand, if we turn off the electric field on LC-lens array, the conventional high resolution 2D endoscope image would be recorded. In light field microscope case, the LC-lens array was placed in front of the CMOS sensor. The main purpose of LC-lens array is to extend the refocusing distance of light field microscope, which is usually very narrow in focused light field microscope system, by montaging many light field images sequentially focusing on different depth. With adjusting focal length of LC-lens array from 2.4mm to 2.9mm, the refocusing distance was extended from 1mm to 11.3mm. Moreover, we could use a LC wedge to electrically shift the optics axis and increase the resolution of light field.
One dimensional magneto-optical compression of a cold CaF molecular beam
NASA Astrophysics Data System (ADS)
Chae, Eunmi; Anderegg, Loic; Augenbraun, Benjamin; Ravi, Aakash; Hemmerling, Boerge; Hutzler, Nicholas; Collopy, Alejandra; Ye, Jun; Ketterle, Wolfgang; Doyle, John
2017-04-01
We demonstrate one dimensional, transverse magneto-optical compression of a cold beam of calcium monofluoride (CaF). By continually alternating the magnetic field direction and laser polarizations of the magneto-optical force (RF-MOT), a photon scattering rate of 2 π x 0.4 MHz is achieved. A 3D model for this RF-MOT, validated by agreement with data, predicts a 3D RF-MOT capture velocity for CaF of 5 m/s. This work was supported by the ARO, the CUA, and the NSF. BLA is supported by the National Science Foundation Graduate Research Fellowship under NSF Grant No. DGE1144152.
NASA Astrophysics Data System (ADS)
Jaho, Sofia; Sygouni, Varvara; Paraskeva, Christakis A.
2015-04-01
The deposition of sparingly soluble salts (scaling) within porous media is a major problem encountered in many industrial and environmental applications. In the oil industry scaling causes severe operational malfunctions and, therefore, increasing the total operating and maintenance cost [1]. The most common types of sparingly soluble salts located in oil fields include carbonate and sulfate salts of calcium, strondium and barium[1,2]. Multiple phase flow and tubing surface properties are some of the factors affecting scale formation [3]. The main purpose of the present work was the investigation of the precipitation mechanisms of calcium carbonate (CaCO3) through in situ mixing of two soluble salt solutions in a flow granular medium, in the presence of water miscible organic fluid (ethylene glycol) or non-miscible organic fluid (n-dodecane). All series of experiments were carried out in a two dimensional porous medium made of Plexiglas. For all solutions used in the experiments, the contact angles with the surface of the porous medium and the interfacial tensions were measured. During the experiments, the calcium carbonate crystal growth was continuously monitored and recorded through an optical microscope equipped with a digital programmed video camera. The snap-shots were taken within specific time intervals and their detailed procession gave information concerning the crystal growth rate and kinetics. The pH of the effluent was measured and fluids samples were collected for calcium analysis using Atomic Absorption Spectroscopy (AAS). In all experiments effluent calcium concentration decreased as a function of time, suggesting that CaCO3 precipitation took place inside the porous medium. Crystals of the precipitated salt were identified using Infrared Spectroscopy (IR) and the morphology of the crystals was examined using Scanning Electron Microscopy (SEM). The induction time for precipitation of CaCO3 crystals in the presence of n-dodecane was significantly reduced compared to the induction time where no oil phase was present. The interface of n-dodecane and supersaturated solutions seems to be very active and favored the formation of the CaCO3 crystalline enhancing the heterogeneous nucleation which generally demands a decreased energy barrier. Acknowledgments This research was partially funded by the European Union (European Social Fund-ESF) and Greek National Funds through the Operational Program "Education and Lifelong Learning" under the action Aristeia II (Code No4420). References 1. Merdhah A. B. and Yassin A. A., Scale formation in oil reservoir during water injection at high-salinity formation water, Journal of Applied Sciences, 7, 3198-3207 (2007). 2. Moghadasi J., Muller-Steinhagen H., Jamialahmadi M. and Sharif A., Model study on the kinetics of oil field formation damage due to salt precipitation from injection, Journal of Petroleum Science and Engineering, 43, 201-217 (2004). 3. Nancollas G. H. and Reddy M. M., The crystallization of calcium carbonate II. Calcite growth mechanism, Journal of Colloid and Interface Science, 37, 824-830 (1971).
Bryce, David L; Bultz, Elijah B; Aebi, Dominic
2008-07-23
Natural-abundance (43)Ca solid-state NMR spectroscopy at 21.1 T and gauge-including projector-augmented-wave (GIPAW) DFT calculations are developed as tools to provide insight into calcium binding environments, with special emphasis on the calcium chemical shift (CS) tensor. The first complete analysis of a (43)Ca solid-state NMR spectrum, including the relative orientation of the CS and electric field gradient (EFG) tensors, is reported for calcite. GIPAW calculations of the (43)Ca CS and EFG tensors for a series of small molecules are shown to reproduce experimental trends; for example, the trend in available solid-state chemical shifts is reproduced with a correlation coefficient of 0.983. The results strongly suggest the utility of the calcium CS tensor as a novel probe of calcium binding environments in a range of calcium-containing materials. For example, for three polymorphs of CaCO3 the CS tensor span ranges from 8 to 70 ppm and the symmetry around calcium is manifested differently in the CS tensor as compared with the EFG tensor. The advantages of characterizing the CS tensor are particularly evident in very high magnetic fields where the effect of calcium CS anisotropy is augmented in hertz while the effect of second-order quadrupolar broadening is often obscured for (43)Ca because of its small quadrupole moment. Finally, as an application of the combined experimental-theoretical approach, the solid-state structure of the vaterite polymorph of calcium carbonate is probed and we conclude that the hexagonal P6(3)/mmc space group provides a better representation of the structure than does the orthorhombic Pbnm space group, thereby demonstrating the utility of (43)Ca solid-state NMR as a complementary tool to X-ray crystallographic methods.
Dickey, Mike; Roa, Wilson; Drodge, Suzanne; Ghosh, Sunita; Murray, Brad; Scrimger, Rufus; Gabos, Zsolt
2015-01-01
The primary objective of this study was to compare dosimetric variables as well as treatment times of multiple static fields (MSFs), conformal arcs (CAs), and volumetric modulated arc therapy (VMAT) techniques for the treatment of early stage lung cancer using stereotactic body radiotherapy (SBRT). Treatments of 23 patients previously treated with MSF of 48Gy to 95% of the planning target volume (PTV) in 4 fractions were replanned using CA and VMAT techniques. Dosimetric parameters of the Radiation Therapy Oncology Group (RTOG) 0915 trial were evaluated, along with the van׳t Riet conformation number (CN), monitor units (MUs), and actual and calculated treatment times. Paired t-tests for noninferiority were used to compare the 3 techniques. CA had significant dosimetric improvements over MSF for the ratio of the prescription isodose volume to PTV (R100%, p < 0.0001), the maximum dose 2cm away from the PTV (D2cm, p = 0.005), and van׳t Riet CN (p < 0.0001). CA was not statistically inferior to MSF for the 50% prescription isodose volume to PTV (R50%, p = 0.05). VMAT was significantly better than CA for R100% (p < 0.0001), R50% (p < 0.0001), D2cm (p = 0.006), and CN (p < 0.0001). CA plans had significantly shorter treatment times than those of VMAT (p < 0.0001). Both CA and VMAT planning showed significant dosimetric improvements and shorter treatment times over those of MSF. VMAT showed the most favorable dosimetry of all 3 techniques; however, the dosimetric effect of tumor motion was not evaluated. CA plans were significantly faster to treat, and minimize the interplay of tumor motion and dynamic multileaf collimator (MLC) motion effects. Given these results, CA has become the treatment technique of choice at our facility. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Xiong, Lixia; Meng, Qing; Sun, Xi; Lu, Xiangtong; Fu, Qiang; Peng, Qinghua; Yang, Jianhua; Oh, Ki-Wan; Hu, Zhenzhen
2018-01-04
Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter that attenuates cocaine-induced locomotor activity when injected into the nucleus accumbens (NAc). Our previous work first confirmed that the inhibitory mechanism of the CART peptide on cocaine-induced locomotor activity is related to a reduction in cocaine-enhanced phosphorylated Ca 2+ /calmodulin-dependent protein kinaseIIα (pCaMKIIα) and the enhancement of cocaine-induced D3R function. This study investigated whether CART peptide inhibited cocaine-induced locomotor activity via inhibition of interactions between pCaMKIIα and the D3 dopamine receptor (D3R). We demonstrated that lentivirus-mediated gene transfer transiently increased pCaMKIIα expression, which peaked at 10 days after microinjection into the rat NAc shell, and induced a significant increase in Ca 2+ influx along with greater behavioral sensitivity in the open field test after intraperitoneal injections of cocaine (15 mg/kg). However, western blot analysis and coimmunoprecipitation demonstrated that CART peptide treatment in lentivirus-transfected CaMKIIα-over-expressing NAc rat tissues or cells prior to cocaine administration inhibited the cocaine-induced Ca 2+ influx and attenuated the cocaine-increased pCaMKIIα expression in lentivirus-transfected CaMKIIα-over-expressing cells. CART peptide decreased the cocaine-enhanced phosphorylated cAMP response element binding protein (pCREB) expression via inhibition of the pCaMKIIα-D3R interaction, which may account for the prolonged locomotor sensitization induced by repeated cocaine treatment in lentivirus-transfected CaMKIIα-over-expressing cells. These results provide strong evidence for the inhibitory modulation of CART peptide in cocaine-induced locomotor sensitization. © 2018 International Society for Neurochemistry.
Roth, Fabian C; Beyer, Katinka M; Both, Martin; Draguhn, Andreas; Egorov, Alexei V
2016-12-01
The entorhinal cortex (EC) is a critical component of the medial temporal lobe (MTL) memory system. Local networks within the MTL express a variety of state-dependent network oscillations that are believed to organize neuronal activity during memory formation. The peculiar pattern of sharp wave-ripple complexes (SPW-R) entrains neurons by a very fast oscillation at ∼200 Hz in the hippocampal areas CA3 and CA1 and then propagates through the "output loop" into the EC. The precise mechanisms of SPW-R propagation and the resulting cellular input patterns in the mEC are, however, largely unknown. We therefore investigated the activity of layer V (LV) principal neurons of the medial EC (mEC) during SPW-R oscillations in horizontal mouse brain slices. Intracellular recordings in the mEC were combined with extracellular monitoring of propagating network activity. SPW-R in CA1 were regularly followed by negative field potential deflections in the mEC. Propagation of SPW-R activity from CA1 to the mEC was mostly monosynaptic and excitatory, such that synaptic input to mEC LV neurons directly reflected unit activity in CA1. Comparison with propagating network activity from CA3 to CA1 revealed a similar role of excitatory long-range connections for both regions. However, SPW-R-induced activity in CA1 involved strong recruitment of rhythmic synaptic inhibition and corresponding fast field oscillations, in contrast to the mEC. These differences between features of propagating SPW-R emphasize the differential processing of network activity by each local network of the hippocampal output loop. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
PLACING TOP CHORD CENTER PANEL. View to the northwest from ...
PLACING TOP CHORD CENTER PANEL. View to the northwest from the old suspension bridge. Chord members in place - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
Sol gel synthesis and characterization studies of Cupromanganite CaCu3Mn4O12
NASA Astrophysics Data System (ADS)
Nurulhuda, A.; Warikh, A. R. M.; Hafizzal, Y.
2017-08-01
A single-phase CaCu3Mn4O12 electroceramic had been prepared via sol gel method and fairly well densified at relative low temperature under atmospheric condition where the crystallization of CaCu3Mn4O12 occurred due to amorphous polymeric mixture. The precursor was prepared by mixing the solutions with 0.6 M citric acid (C6H8O7) as a chelating reagent with the mol ratio 1:2. The precursor gel formed was calcined and sintered at range 400 °C to 800°C by varying dwell time. Material formations under the reported conditions have been confirmed by X-ray diffraction (XRD). The results show that the formation of CaCu3Mn4O12 started at 500 ° C and was formed completely at 700 ° C for 18 hours. The microstructure of all CaCu3Mn4O12 was analysed using field emission scanning electron microscopy (FESEM). A smaller particle size with higher grain boundary was obtained at sintering 700°C to 800°C. FESEM results show the significant influence of calcinations and sintering parameter on the microstructure behaviour of CaCu2Mn4O12.
Disciplined Improvisation: Characteristics of Inquiry in Mindfulness-Based Teaching.
Crane, Rebecca S; Stanley, Steven; Rooney, Michael; Bartley, Trish; Cooper, Lucinda; Mardula, Jody
Evidence for the effectiveness of mindfulness-based stress reduction (MBSR) and mindfulness-based cognitive therapy (MBCT) is rapidly growing as interest in this field expands. By contrast, there are few empirical analyses of the pedagogy of MBSR and MBCT. Development of the evidence base concerning the teaching of MBCT or MBSR would support the integrity of the approach in the context of rapid expansion. This paper describes an applied conversation analysis (CA) of the characteristics of inquiry in the MBSR and MBCT teaching process. Audio-recordings of three 8-week MBCT and MBSR classes, with 24, 12, and 6 participants, were transcribed and systematically examined. The study focused on the teacher-led interactive inquiry which takes place in each session after a guided meditation practice. The study describes and analyzes three practices within the inquiry process that can be identified in sequences of talk: turn-taking talk involving questions and reformulations; the development of participant skills in a particular way of describing experience; and talk that constructs intersubjective connection and affiliation within the group. CA enables fine-grained analysis of the interactional work of mindfulness-based inquiry. Inquiry is a process of disciplined improvisation which is both highly specific to the conditions of the moment it took place in and uses repeated and recognizable patterns of interaction.
Calcium signaling in plant cells in microgravity
NASA Astrophysics Data System (ADS)
Kordyum, E.
Changes in the intracellular Ca 2 + concentration in altered gravity (microgravity and clinostating) evidence that Ca2 + signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in eighties, a review highlighting the performed research and the possible significance of such Ca 2 + changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumably specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2 + ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravis ensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface tensionalterations in the physicochemical properties of the membranechanges in membrane permeability, ion transport, membrane-bound enzyme activity, etc.metabolism rearrangementsphysiological responses. An analysis of data available on biological effects of altered gravity at the cellular level allows one to conclude that microgravity environment appears to affect, in the first place, cytoskeleton, carbohydrate and lipid metabolism, cell wall biogenesis via changes in enzyme activity and protein expression, with involvement of regulatory Ca 2 + messenger system. Changes in Ca 2 + influx/efflux and possible pathways of Ca 2 + signaling in plant cell biochemical regulation in altered gravity are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavrieli, I.; Starinsky, A.; Spiro, B.
1995-09-01
The evolution of the Ca-chloride brines in the Heletz Formation, Lower Cretaceous, in the southern coastal plain of Israel was reconstructed through the study of its sulfate concentration and isotopic composition. Particular emphasis was given to the brine-oil interaction in the oilfields and to the sulfate depletion and lower SO{sub 4}/Cl ratio in brines in contact with hydrocarbons (oil brines) relative to {open_quotes}oil-free{close_quotes} from dry wells in the same oilfields. A method is presented for a calculation of the amount of sulfate removed from the original seawater in the various stages of its evolution to Ca-chloride brine. Eastward migration ofmore » the Messinian Ca-Chloride brine into the Heletz Formation was accompanied by dolomitization of the country rock. Final depletion of sulfate from the brines took place, and possibly still occurs, in the presence of crude oil in the oilfields. The two oil-producing fields, Heletz and Kokhav, occupy different areas on a Rayleigh distillation diagram. Sulfate depletion in both fields is accompanied by an increase in {delta}{sup 34}S{sub SO}{sub 4}, which reaches a maximum values of 59{per_thousand}. The above correlation is explained by bacterial sulfate reduction facilitated by the contact with the crude. Samples collected from the same boreholes at time intervals of several months show two opposing trends: sulfate concentration decrease accompanied by increase in {delta}{sup 34}S{sub SO}{sub 4}, and vice versa. While the first can be explained as in situ bacterial sulfate reduction, the latter attest to subsurface brine migration, as would be expected in oil-producing fields.« less
Composition gradient optimization and electrical characterization of (Pb, Ca)TiO3 thin films
NASA Astrophysics Data System (ADS)
Bao, Dinghua; Mizutani, Nobuyasu; Zhang, Liangying; Yao, Xi
2001-01-01
Compositionally graded (Pb, Ca)TiO3 thin films were prepared by a monoethanolamine-modified sol-gel technique on platinum-coated silicon substrates at the annealing temperature of 600 °C. The composition gradient of the films was greatly improved by a modified annealing method. The dielectric constants, for up-graded and down-graded films annealed at 600 °C for 60 min, were found to be 469 and 355, respectively. Both were larger than those reported for conventional (Pb, Ca)TiO3 thin films. The compositionally graded films had large polarization offsets in hysteresis loops when excited by an alternating electric field. The more smooth the composition gradient of the graded film, the larger the polarization offset. This was consistent with a theoretical model reported previously by Mantese and coworkers [Appl. Phys. Lett. 71, 2047 (1997)]. The magnitude of polarization offset displayed a power-law dependence on the electric field, and the direction of the offset depended on the direction of the composition gradient with respect to the substrate. Both up-graded and down-graded films had good leakage current characteristics.
Nature of the insulating ground state of the 5d postperovskite CaIrO 3
Kim, Sun -Woo; Liu, Chen; Kim, Hyun -Jung; ...
2015-08-26
In this study, the insulating ground state of the 5d transition metal oxide CaIrO 3 has been classified as a Mott-type insulator. Based on a systematic density functional theory (DFT) study with local, semilocal, and hybrid exchange-correlation functionals, we reveal that the Ir t 2g states exhibit large splittings and one-dimensional electronic states along the c axis due to a tetragonal crystal field. Our hybrid DFT calculation adequately describes the antiferromagnetic (AFM) order along the c direction via a superexchange interaction between Ir 4+ spins. Furthermore, the spin-orbit coupling (SOC) hybridizes the t 2g states to open an insulating gap.more » These results indicate that CaIrO 3 can be represented as a spin-orbit Slater insulator, driven by the interplay between a long-range AFM order and the SOC. Such a Slater mechanism for the gap formation is also demonstrated by the DFT + dynamical mean field theory calculation, where the metal-insulator transition and the paramagnetic to AFM phase transition are concomitant with each other.« less
Homeostatic Regulation of the PI(4,5)P2-Ca2+ Signaling System at ER-PM Junctions
Chang, Chi-Lun; Liou, Jen
2016-01-01
The phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-Ca2+ signaling system is important for cell activation in response to various extracellular stimuli. This signaling system is initiated by receptor-induced hydrolysis of PI(4,5)P2 in the plasma membrane (PM) to generate the soluble second messenger inositol 1,4,5-trisphosphate (IP3). IP3 subsequently triggers the release of Ca2+ from the endoplasmic reticulum (ER) store to the cytosol to activate Ca2+-mediated responses, such as secretion and proliferation. The consumed PM PI(4,5)P2 and ER Ca2+ must be quickly restored to sustain signaling responses, and to maintain the homeostasis of PI(4,5)P2 and Ca2+. Since phosphatidylinositol (PI), the precursor lipid for PM PI(4,5)P2, is synthesized in the ER membrane, and a Ca2+ influx across the PM is required to refill the ER Ca2+ store, efficient communications between the ER and the PM are critical for the homeostatic regulation of the PI(4,5)P2-Ca2+ signaling system. This review describes the major findings that established the framework of the PI(4,5)P2-Ca2+ signaling system, and recent discoveries on feedback control mechanisms at ER-PM junctions that sustain the PI(4,5)P2-Ca2+ signaling system. Particular emphasis is placed on the characterization of ER-PM junctions where efficient communications between the ER and the PM occurs, and the activation mechanisms of proteins that dynamically localize to ER-PM junctions to provide the feedback control during PI(4,5)P2-Ca2+ signaling, including the ER Ca2+ sensor STIM1, the extended synaptotagmin E-Syt1, and the PI transfer protein Nir2. This review is part of a Special Issue entitled The Cellular Lipid Landscape. PMID:26924250
Late Quaternary eolian and alluvial response to paleoclimate, Canyonlands, southeastern Utah
Reheis, M.C.; Reynolds, R.L.; Goldstein, H.; Roberts, H.M.; Yount, J.C.; Axford, Y.; Cummings, L.S.; Shearin, N.
2005-01-01
In upland areas of Canyonlands National Park, Utah, thin deposits and paleosols show late Quaternary episodes of eolian sedimentation, pedogenesis, and climate change. Interpretation of the stratigraphy and optically stimulated luminescence ages of eolian and nearby alluvial deposits, their pollen, and intercalated paleosols yields the following history: (1) Eolian deposition at ca. 46 ka, followed by several episodes of alluviation from some time before ca. 40 ka until after 16 ka (calibrated). (2) Eolian deposition from ca. 17 ka to 12 ka, interrupted by periods of pedogenesis, coinciding with late Pleistocene alluviation as local climate became warmer and wetter. (3) A wetter period from 12 to 8.5 ka corresponding to the peak of summer monsoon influence, during which soils formed relatively quickly by infiltration of eolian silt and clay, and trees and grasses were more abundant. (4) A drier period between ca. 8.5 and 6 ka during which sheetwash deposits accumulated and more desertlike vegetation was dominant; some dunes were reactivated at ca. 8 ka. (5) Episodic eolian and fluvial deposition during a wetter, cooler period that began at ca. 6 ka and ended by ca. 3-2 ka, followed by a shift to drier modern conditions; localized mobilization of dune sand has persisted to the present. These interpretations are similar to those of studies at the Chaco dune field, New Mexico, and the Tusayan dune field, Arizona, and are consistent with paleoclimate interpretations of pollen and packrat middens in the region. A period of rapid deposition and infiltration of eolian dust derived from distant igneous source terranes occurred between ca. 12 and 8 ka. Before ca. 17 ka, and apparently back to at least 45 ka, paleosols contain little or no such infiltrated dust. After ca. 8 ka, either the supply of dust was reduced or the more arid climate inhibited translocation of dust into the soils. ?? 2005 Geological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Kai; State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054; Luo, Yun
2015-09-15
Graphical abstract: Some Yb atoms entered in the lattice of CCTO substituted the Ca sites, the rest of Yb atoms concentrated at grain boundaries decreased the grain size. The dielectric constant was decreased by Yb doping. The dielectric loss of the CCTO could be greatly reduced at low frequency. - Highlights: • Yb atoms may take the place of Ca sites and concentrate at grain boundaries. • Tiny second phase corresponding to Yb may decrease the grain size. • Decrease of the grain size leads to the decrease of dielectric constant. • Yb doping could decrease the dielectric loss ofmore » CCTO. - Abstract: This paper focuses on the remarkable effects of Yb{sub 2}O{sub 3} doping on the microstructure and dielectric characteristics of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO). Samples were prepared by the solid phase reaction method and sintered in air at 1030 °C for 12 h. X-ray diffraction and X-ray photoelectron spectroscopy studies confirm that the primary phase is CCTO. Some Yb{sup 3+} ions may substitute into the Ca site at the center or zenith sites of the CCTO lattice hexahedron, while the rest of the Yb atoms may concentrate at grain boundaries. The grain size of Yb{sub 2}O{sub 3}-doped CCTO ceramics were examined by scanning electron microscopy and demonstrate sharp grain size reduction with Yb{sub 2}O{sub 3} doping. From dielectric property measurements, the Yb{sub 2}O{sub 3} doping reduces the dielectric constant of CCTO, and the dielectric loss is also reduced.« less
NASA Astrophysics Data System (ADS)
Schmitt, Axel; Klitzke, Malte; Gerdes, Axel; Ludwig, Thomas; Schäfer, Christof
2017-04-01
Zircon megacrysts (approx. 0.5-6 mm in diameter) from the Quaternary West and East Eifel volcanic fields, Germany, occur as euhedral crystals in porous K-spar rich plutonic ejecta clasts, and as partially resorbed xenocrysts in tephrite lava. Their relation to the host volcanic rocks has remained contentious because the dominantly basanitic to phonolitic magma compositions in the Eifel are typically zircon undersaturated. We carried out a detailed microanalytical study of zircon megacrysts from seven locations (Emmelberg and Rockeskyll in the West Eifel; Bellerberg, Laacher See, Mendig, Rieden, and Wehr in the East Eifel). Crystals were embedded in epoxy, sectioned to expose interiors through grinding with abrasives, diamond-polished, and mapped by optical microscopy, backscattered electron, and cathodoluminescence imaging. Subsequently, isotope-specific analysis using secondary ionization mass spectrometry (SIMS) and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) was carried out placing 100 correlated spots on 20 selected crystals. Concordant U-Th disequilibrium and U-Pb ages determined by SIMS are between ca. 430 ka (Rieden) and 170 ka (Mendig) and indicate that the megacryst zircons crystallized almost always briefly before eruption. A significant gap between zircon megacryst crystallization (ca. 230 ka) and eruption (ca. 45 ka) ages was only detected for the Emmelberg location. SIMS trace element abundances (e.g., rare earth elements) vary by orders-of-magnitude and correlate with domain boundaries visible in cathodoluminescence; trace element patterns match those reported for zircon from syenitic origins. Isotopic compositions are homogeneous within individual crystals, but show some heterogeneity between different crystals from the same locality. Average isotopic values (δ18O SMOW = +5.3±0.6 ‰ by SIMS; present-day ɛHf = +1.7±2.5 ‰ by LA-ICP-MS; 1 standard deviation), however, are consistent with source magmas being dominantly mantle-derived. The porous structure and relatively small grain size of the host enclaves suggests that they originated from subvolcanic intrusions. Moreover, the preservation of zircon in hot, zircon undersaturated magmas requires brief residence times. Zircon megacrysts thus appear to have crystallized in highly differentiated magmas or nearly solidified intrusions from which crystals or rock aggregates were incorporated into more primitive magmas en route to surface. This implies that chemical signatures of apparently primitive magmas in basaltic volcanic fields can be modified by interaction with evolved melts that differentiated prior to eruption, mostly within an interval less than the ca. 10-25 ka uncertainty range of the radiometric ages.
3. BUILDING 901, EXTERIOR DETAILING ON NORTH SIDE SHOWING CONCRETE ...
3. BUILDING 901, EXTERIOR DETAILING ON NORTH SIDE SHOWING CONCRETE FOUNDATION AND METAL TERMITE SHIELD. - Presidio of San Francisco, Warehouse, West End of Crissy Field, Livingston Street, San Francisco, San Francisco County, CA
Paiva, Diego; Walk, Carrie; McElroy, Audrey
2014-11-01
The objective of this study was to evaluate the effects of dietary Ca, P, and phytase on performance, intestinal morphology, bone ash, and Ca and P digestibility during a necrotic enteritis (NE) outbreak. The 35-d trial was designed as a 2 × 2 × 2 factorial, which included 2 Ca levels (0.6 and 0.9%), 2 P levels (0.3 and 0.45%), and 2 levels of phytase [0 and 1,000 phytase units (FTU)/kg]. Birds were placed on litter from a previous flock that exhibited clinical signs of NE. Birds and feed were weighed on d 12, 19, and 35, and BW gain, feed intake, and feed conversion were calculated. Mortality was recorded daily, and gastrointestinal pH was measured. Tibias and ileal digesta were also collected. Birds began exhibiting clinical signs of NE on d 9, and NE-associated mortality persisted until d 26. Dietary Ca supplemented at 0.9% or inclusion of 1,000 FTU/kg of phytase significantly increased mortality compared with 0.6% Ca or 0 FTU/kg of phytase, respectively. From d 0 to 12, birds fed 0.9% Ca and 0.45% available P with phytase had greater BW gain compared with birds fed 0.6% Ca, 0.45% available P, and phytase. From d 0 to 19, birds fed diets with 0.9% Ca and 0.3% available P had decreased feed intake and improved feed conversion compared with birds fed 0.9% Ca and 0.45% available P. Calcium at 0.9% increased gizzard (d 19) and jejunum (d 12) pH. Phytase supplementation significantly increased Ca digestibility regardless of Ca and P levels of the diets. In addition, diets containing 0.6% Ca and 1,000 FTU/kg of phytase resulted in a significant increase in P digestibility. The results suggest that dietary Ca level may influence NE-associated mortality. In addition, bird performance was affected by interactions of Ca, P, and phytase during the exposure to Clostridium perfringens and the subsequent NE outbreak. Results showed improvements in bird performance when birds were fed 0.6% Ca and 0.3% P in diets supplemented with phytase, which was likely consequent to the influence of Ca in NE pathogenesis. ©2014 Poultry Science Association Inc.
75 FR 13303 - Notice of Realty Action: Direct Sale of Public Lands in Riverside County, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-19
...; CACA 48002] Notice of Realty Action: Direct Sale of Public Lands in Riverside County, CA AGENCY: Bureau... market value of $2,102,000. DATES: Comments regarding the proposed sale must be received by the BLM on or before May 3, 2010. ADDRESSES: Written comments concerning the proposed sale should be sent to the Field...
Field induced ferromagnetic fraction enlargement in phase separated La_0.5Ca_0.5MnO_3
NASA Astrophysics Data System (ADS)
Ghivelder, Luis; Freitas, R. S.; Sacanel, J.; Parisi, F.; Levy, P.
2001-03-01
A systematic study of the magnetic and transport properties of a series of phase separated La_0.5Ca_0.5MnO3 compounds is reported. The investigated samples all have the same composition but different grain sizes, which modifies the volume fraction of the coexisting ferromagnetic (FM) and antiferromagnetic charge-ordered (AFM-CO) phases. Magnetoresistance and magnetization measurements were performed with two different experimental procedures: a standard field-cooled cooling (FC) mode, and a second method in which the field is turned on only while measuring each data point, and switched off while cooling the samples. Magnetization and magnetoresistance measurements display big differences when comparing the data obtained with the different procedures. The overall results are interpret in terms of a field induced FM fraction enlargement. In transport measurements this effect yield a percolative transition. Magnetization data shows evidence for the formation of AFM-CO regions within the FM phase. * e-mail: luisghiv@if.ufrj.br
Nilius, Bernd; Vennekens, Rudi; Prenen, Jean; Hoenderop, Joost G J; Bindels, René J M; Droogmans, Guy
2000-01-01
This study describes properties of monovalent cation currents through ECaC, a recently cloned epithelial Ca2+-permeable channel from rabbit. The kinetics of currents through ECaC was strongly modulated by divalent cations. Currents were inhibited in the presence of extracellular Ca2+. They showed an initial voltage-dependent decay in the presence of 1 mm Mg2+ at hyperpolarizing steps in Ca2+-free solutions, which represents a voltage-dependent Mg2+ block through binding of Mg2+ to a site localized in the electrical field of the membrane (δ = 0.31) and a voltage-dependent binding constant (at 0 mV 3.1 mm Ca2+, obtained from a Woodhull type analysis). Currents were only stable in the absence of divalent cations and showed under these conditions a small time- and voltage-dependent component of activation. Single channel currents in cell-attached and inside-out patches had a conductance of 77.5 ± 4.9 pS (n = 11) and reversed at +14.8 ± 1.6 mV (n = 9) in the absence of divalent cations. The permeation sequence for monovalent cations through ECaC was Na+ > Li+ > K+ > Cs+ > NMDG+ which is identical to the Eisenmann sequence X for a strong field-strength binding site. It is concluded that the permeation profile of ECaC for monovalent cations suggests a strong field-strength binding site that may be involved in Ca2+ permeation and Mg2+ block. PMID:10970426
Greenhouse gas budget from a rice paddy field in the Albufera of Valencia, Spain.
NASA Astrophysics Data System (ADS)
Meijide, Ana; López-Ballesteros, Ana; Calvo-Roselló, Esperanza; López-Jiménez, Ramón; Recio-Huetos, Jaime; Calatayud, Vicent; Carrara, Arnaud; Serrano-Ortiz, Penelope
2017-04-01
Rice paddy fields are large sources of anthropogenic methane (CH4) and therefore many studies have assessed CH4 fluxes from rice paddy fields, mainly in Asia where most of the rice cultivation takes place. However, rice is also cultivated in the Mediterranean, where climatic and management conditions greatly differ. In the Albufera of Valencia, the largest freshwater lagoon in Spain, rice paddy fields have the particularity of being flooded not only while the rice grows, but also after the harvest during the winter. These flooding conditions might result in emissions which are very specific of this ecosystem, and cannot be extrapolated from other studies. We studied CH4 fluxes in a rice paddy field in the Albufera of Valencia at different stages of rice cultivation using the eddy covariance technique and static chambers. We additionally measured carbon dioxide (CO2), water fluxes and nitrous oxide (N2O) fluxes with eddy covariance and chamber methods respectively, in order to obtain a full greenhouse gas (GHG) budget. Our study also aimed at providing a mechanistic understanding of GHG emissions at different stages of rice cultivation, and therefore we also used the Enhanced and Normalized Vegetation Indexes (EVI and NDVI, respectively), derived from remote sensing images. The general ecosystem functioning encompasses three different phases. The first one, over the autumn and the winter, a biological dormancy period causes low CO2 emissions (ca. 1-5 µmol m-2 s-1), which coincides with the EVI and NDVI. The intermittent flooding taking place during this period is expected to cause CH4 emissions. Then, during the spring months (March-May), larger CO2 respiratory emissions take place during the daytime (> 5 µmol m-2 s-1) due to an increase in air temperature, which turn to neutral at the end of spring due to the start of photosynthesis by the rice. The third phase corresponds to the vegetation growth, when the net CO2 uptake increases gradually up to maximum CO2 sequestration rates of ca. 40 µmol m-2 s-1. During this period, the higher air temperature together with the flooding allows for the development of rice plants, resulting in the highest EVI and NDVI values (0.59 and 0.85, respectively) and nighttime maximum CO2 emissions (5-10 µmol m-2 s-1). These conditions also favor the production of CH4, which make the rice paddy field a CH4 source. The ecosystem behaved as a N2O sink during most of the study period. Positive N2O emissions were only observed at the beginning of the vegetation growth phase, which seems to be related to fertilizer application.
Tell, R A; Hooper, H C; Sias, G G; Mezei, G; Hung, P; Kavet, R
2015-01-01
The southwest region of the United States is expected to experience an expansion of commercial solar photovoltaic generation facilities over the next 25 years. A solar facility converts direct current generated by the solar panels to three-phase 60-Hz power that is fed to the grid. This conversion involves sequential processing of the direct current through an inverter that produces low-voltage three-phase power, which is stepped up to distribution voltage (∼12 kV) through a transformer. This study characterized magnetic and electric fields between the frequencies of 0 Hz and 3 GHz at two facilities operated by the Southern California Edison Company in Porterville, CA and San Bernardino, CA. Static magnetic fields were very small compared to exposure limits established by IEEE and ICNIRP. The highest 60-Hz magnetic fields were measured adjacent to transformers and inverters, and radiofrequency fields from 5-100 kHz were associated with the inverters. The fields measured complied in every case with IEEE controlled and ICNIRP occupational exposure limits. In all cases, electric fields were negligible compared to IEEE and ICNIRP limits across the spectrum measured and when compared to the FCC limits (≥0.3 MHz).
Smart Fluid System Dually Responsive to Light and Electric Fields: An Electrophotorheological Fluid.
Yoon, Chang-Min; Jang, Yoonsun; Noh, Jungchul; Kim, Jungwon; Jang, Jyongsik
2017-10-24
Electrophotorheological (EPR) fluids, whose rheological activity is dually responsive to light and electric fields (E fields), is formulated by mixing photosensitive spiropyran-decorated silica (SP-sSiO 2 ) nanoparticles with zwitterionic lecithin and mineral oil. A reversible photorheological (PR) activity of the EPR fluid is developed via the binding and releasing mechanism of lecithin and merocyanine (MC, a photoisomerized form of SP) under ultraviolet (UV) and visible (VIS) light applications. Moreover, the EPR fluid exhibits an 8-fold higher electrorheological (ER) performance compared to the SP-sSiO 2 nanoparticle-based ER fluid (without lecithin) under an E field, which is attributed to the enhanced dielectric properties facilitated by the binding of the lecithin and SP molecules. Upon dual application of UV light and an E field, the EPR fluid exhibits high EPR performance (ca. 115.3 Pa) that far exceeds its separate PR (ca. 0.8 Pa) and ER (ca. 57.5 Pa) activities, because of the synergistic contributions of the PR and ER effects through rigid and fully connected fibril-like structures. Consequently, this study offers a strategy on formulation of dual-stimuli responsive smart fluid systems.
A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean
NASA Astrophysics Data System (ADS)
Battaglia, Gianna; Steinacher, Marco; Joos, Fortunat
2016-05-01
The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo scheme to construct a 1000-member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates, either a strong or a weak dependency on CaCO3 saturation is assumed. In addition, there is the option to have saturation-independent dissolution above the saturation horizon. The median (and 68 % confidence interval) of the constrained model ensemble for global biogenic CaCO3 export is 0.90 (0.72-1.05) Gt C yr-1, that is within the lower half of previously published estimates (0.4-1.8 Gt C yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport timescales for the different set-ups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest applying saturation-independent dissolution rates in Earth system models to minimise computational costs.
Distribution of flux-pinning energies in YBa2Cu3O(7-delta) and Bi2Sr2CaCu2O(8+delta) from flux noise
NASA Astrophysics Data System (ADS)
Ferrari, M. J.; Johnson, Mark; Wellstood, Frederick C.; Clarke, John; Mitzi, D.
1990-01-01
The spectral density of the magnetic flux noise measured in high-temperature superconductors in low magnetic fields scales approximately as the inverse of the frequency and increases with temperature. The temperature and frequency dependence of the noise are used to determine the pinning energies of individual flux vortices in thermal equilibrium. The distribution of pinning energies below 0.1 eV in YBa(2)Cu(3)O(7-delta) and near 0.2 eV in Bi(2)Sr(2)CaCu(2)O(8+delta). The noise power is proportional to the ambient magnetic field, indicating that the vortex motion is uncorrelated.
The Bean model and ac losses in Bi{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}/Ag tapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suenaga, M.; Chiba, T.; Wiesmann, H.J.
The Bean model is almost solely used to interpret ac losses in the powder-in-tube processed composite conductor, Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}/Ag. In order to examine the limits of the applicability of the model, a detailed comparison was made between the values of critical current density J{sub c} for Bi(2223)/Ag tapes which were determined by standard four-probe-dc measurement, and which were deduced from the field dependence of the ac losses utilizing the model. A significant inconsistency between these values of J{sub c} were found, particularly at high fields. Possible sources of the discrepancies are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alagoz, H. S., E-mail: alagoz@ualberta.ca; Jeon, J.; Keating, S.
2016-04-14
We investigated magneto-transport properties of a compressively strained spatially confined La{sub 0.3}Pr{sub 0.4}Ca{sub 0.3}MnO{sub 3} (LPCMO) thin film micro-bridge deposited on LaAlO{sub 3}. Angular dependence of the magneto-resistance R(θ) of this bridge, where θ is the angle between the magnetic field and the current directions in the film plane, exhibits sharp positive and negative percolation jumps near T{sub MIT}. The sign and the magnitude of these jumps can be tuned using the magnetic field. Such behavior has not been observed in LPCMO micro-bridges subjected to tensile strain, indicating a correlation between the type of the lattice strain, the distribution ofmore » electronic domains, and the anisotropic magneto-resistance in spatially confined manganite systems.« less
NASA Astrophysics Data System (ADS)
Md. Sadaf, Sharif; Mostafa Bourim, El; Liu, Xinjun; Hasan Choudhury, Sakeb; Kim, Dong-Wook; Hwang, Hyunsang
2012-03-01
We investigated the effect of a ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin film on the generation of resistive switching in a stacked Pr0.7Ca0.3MnO3 (PCMO)/Nb-doped SrTiO3 (Nb:STO) heterostructure forming a p-n junction. To promote the ferroelectric effect, the thin PZT active layer was deposited on an epitaxially grown p-type PCMO film on a lattice-matched n-type Nb:STO single crystal. It was concluded that the observed resistive switching behavior in the all-perovskite Pt/PZT/PCMO/Nb:STO heterostructure was related to the modulation of PCMO/Nb:STO p-n junction's depletion width, which was caused either by the PZT ferroelectric polarization field effect, the electrochemical drift of oxygen ions under an electric field, or both simultaneously.
A molten salt process for producing neodymium and neodymium-iron alloys
NASA Astrophysics Data System (ADS)
Sharma, Ram A.; Seefurth, Randall N.
1989-12-01
The production of low-cost neodymium metal in a stirred tank reactor by the reduction of Nd2O3 with sodium in the presence of CaCl2-KCl-NaCl melts by the overall reaction Nd2O3+3CaCl2+6Na→2Nd+3CaO+6NaCl at ˜750 °C is described. The metal produced is recovered from the salt medium by dissolving it in a Nd-Zn or Nd-Fe alloy pool. In the case of Nd-Zn alloy pools, product yields (percentages of theoretical neodymium produced) in excess of 94 pct are obtained when using salt ratios, i.e., the amounts of salt per gram of neodymium produced, ≥3.5 and excess reductant ≥10 pct. The alloy produced is of high quality, and following vacuum distillation of the zinc, can be used in producing General Motors’ MAGNEQUENCH alloy for permanent magnets. In the case of Nd-Fe pools, the yield is also ˜95 pct with a salt ratio as low as 3.5. The yield is found to depend on the salt composition and salt ratio, and to decrease at salt ratios below 3.25. Stirrer position has little effect on yield, while increasing the temperature and placing fins in the reactor increase the yield. The Nd-Fe alloy produced is of as good quality as that produced using Ca reductant and is suitable for direct use in preparing the MAGNEQUENCH alloy.
Tuning the magnetocaloric properties of La0.7Ca0.3MnO3 manganites through Ni-doping
NASA Astrophysics Data System (ADS)
Gómez, A.; Chavarriaga, E.; Supelano, I.; Parra, C. A.; Morán, O.
2018-04-01
The effect of Ni2+ doping on the magnetic and magnetocaloric properties of La0.7Ca0.3MnO3 manganites synthesized via the auto-combustion method is reported. The aim of studying Ni2+-substituted La0.7Ca0.3Mn1 - xNixO3 (x = 0 , 0.02 , 0.07, and 0.1) manganites was to explore the possibility of increasing the operating temperature range for the magnetocaloric effect through tuning of the magnetic transition temperature. X-ray diffraction analysis confirmed the phase purity of the synthesized samples. The substitution of Mn3+ ions by Ni2+ ions in the La0.7Ca0.3MnO3 lattice was also corroborated through this technique. The dependence of the magnetization on the temperature reveals that all the compositions exhibit a well-defined ferromagnetic to paramagnetic transition near the Curie temperature. A systematic decrease in the values of the Curie temperature is clearly observed upon Ni2+ doping. Probably the replacement of Mn3+ by Ni2+ ions in the La0.7Ca0.3MnO3 lattice weakens the Mn3+-O-Mn4+ double exchange interaction, which leads to a decrease in the transition temperature and the magnetic moment in the samples. By using Arrott plots, it was found that the phase transition from ferromagnetic to paramagnetic is second order. The maximum magnetic entropy changes observed for the x = 0 , 0.02 , 0.07, and 0.1 composites was 0.85, 0.77, 0.63, and 0.59 J/kg K, respectively, under a magnetic field of 1.5 T. In general, it was verified that the magnetic entropy change achieved for La0.7Ca0.3Mn1 - xNixO3 manganites synthesized via the auto-combustion method is higher than those reported for other manganites with comparable Ni2+-doping levels synthesized via standard solid state reaction. The addition of Ni2+ increases the value of the relative cooling power as compared to that of the parent compound. The highest value of this parameter (∼60 J/kg) is found for a Ni-doping level of 2% around 230 K in a field of 1.5 T.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tutuncu, Goknur; Li, Binzhi; Bowman, Keith
The piezoelectric compositions (1 − x)Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} (BZT-xBCT) span a model lead-free morphotropic phase boundary (MPB) between room temperature rhombohedral and tetragonal phases at approximately x = 0.5. In the present work, in situ X-ray diffraction measurements during electric field application are used to elucidate the origin of electromechanical strain in several compositions spanning the tetragonal compositional range 0.6 ≤ x ≤ 0.9. As BCT concentration decreases towards the MPB, the tetragonal distortion (given by c/a-1) decreases concomitantly with an increase in 90° domain wall motion. The increase in observed macroscopic strain is predominantly attributed to the increased contribution from 90°more » domain wall motion. The results demonstrate that domain wall motion is a significant factor in achieving high strain and piezoelectric coefficients in lead-free polycrystalline piezoelectrics.« less
Multipole ordering and collective excitations in the excitonic phase of Pr0.5Ca0.5CoO3
NASA Astrophysics Data System (ADS)
Yamaguchi, Tomoki; Sugimoto, Koudai; Ohta, Yukinori
2018-05-01
As an extension of our previous paper (Yamaguchi et al., 2017) [24], we study the carrier doping dependence of the excitonic condensation in Pr0.5Ca0.5CoO3 using the random-phase and mean-field approximations for the realistic five-orbital Hubbard model. We show that the spin-triplet excitonic phase with a magnetic multipole ordering is stable against the doping of carriers in a considerable range around Co3+ (or 3d6). We discuss experimental relevance of our results.
Effect of Mg and Si co-substitution on microstructure and strength of tricalcium phosphate ceramics.
García-Páez, Ismael H; Carrodeguas, Raúl García; De Aza, Antonio H; Baudín, Carmen; Pena, Pilar
2014-02-01
Magnesium and silicon co-doped tricalcium phosphate (TCP) ceramics with compositions corresponding to 0, 5 and 10wt% CaMg(SiO3)2 in the system Ca3(PO4)2-CaMg(SiO3)2 were obtained by conventional sintering of compacted mixtures of Ca3(PO4)2, MgO, SiO2 and CaCO3 powders at temperatures between 1100 and 1450°C. Microstructural analyses were performed by X-ray diffraction and field emission scanning electron microscopy with energy dispersive spectroscopy. Major phases in the obtained ceramics were β- or α+β-tricalcium phosphate containing Mg and Si in solid solution. Certain amounts of liquid were formed during sintering depending on composition and temperature. There were found significant differences in distributions of strength determined by the diametral compression of disc tests (DCDT). Failure strengths were controlled by microstructural defects associated with phase development. Mg and Si additions were found to be effective to improve densification and associated strength of TCP bioceramics due to the enhancement of sintering by the low viscosity liquids formed. The highest density and strength were obtained for the TCP ceramic containing 5wt% CaMg(SiO3)2 sintered at 1300°C. Cracking and porosity increased at higher temperatures due to grain growth and swelling. © 2013 Published by Elsevier Ltd.
Shen, Huilian; Fuchino, Yuta; Miyamoto, Daisuke; Nomura, Hiroshi; Matsuki, Norio
2012-05-01
Vagus nerve stimulation (VNS) is an approved treatment for epilepsy and depression and has cognition-enhancing effects in patients with Alzheimer's disease. The hippocampus is widely recognized to be related to epilepsy, depression, and Alzheimer's disease. One possible mechanism of VNS involves its effect on the hippocampus; i.e. it increases the release of noradrenaline in the hippocampus. However, the effect of VNS on synaptic transmission in the hippocampus is unknown. To determine whether VNS modulates neurotransmission in the hippocampus, we examined the effects of VNS on perforant path (PP)-CA3 synaptic transmission electrophysiologically in anaesthetized rats. VNS induces a persistent enhancement of PP-CA3 field excitatory post-synaptic potentials (fEPSPs). Arc, an immediate early gene, was used to identify active brain regions after VNS. The locus coeruleus (LC), which contains the perikarya of noradrenergic projections, harboured more Arc-positive cells, as measured by in-situ hybridization, after 10-min VNS. In addition, electrical lesions of LC neurons or intraventricular administration of the β-adrenergic receptor antagonist timolol prevented the enhancement of PP-CA3 responses by VNS. In conclusion, the protracted increase in PP-CA3 synaptic transmission that is induced by VNS entails activation of the LC and β-adrenergic receptors. Our novel findings suggest that information from the periphery modulates synaptic transmission in the CA3 region of the hippocampus.
Toyota, Masatsugu; Furuichi, Takuya; Tatsumi, Hitoshi
2008-01-01
Plants regulate their growth and morphogenesis in response to gravity field, known as gravitropism. In the early process of gravitropism, changes in the gravity vector (gravistimulation) are transduced into certain intracellular signals, termed gravity perception. The plant hormone auxin is not only a crucial factor to represent gravitropism but also a potential signaling molecule for gravity perception. Another strong candidate for the signaling molecule is calcium ion of which cytoplasmic concentration ([Ca2+]c) is known to increase in response to gravistimulation. However, relationship between these two factors, say which is in the first place, has been controversial. This issue is addressed here mainly based on recent progress including our latest studies. Gravistimulation by turning plants 180° induced a two-peaked [Ca2+]c-increase lasting for several minutes in Arabidopsis seedlings expressing apoaequorin; only the second peak was sensitive to the gravistimulation. Peak amplitudes of the [Ca2+]c-increase were attenuated by the 10 µM auxin transport inhibitor (TIBA) and vesicle trafficking inhibitor (BFA), whereas the onset time and rate of rise of the second peak were not significantly altered. This result indicates that polar auxin transport is not involved in the initial phase of the second [Ca2+]c-increase. It is likely that the gravi-induced [Ca2+]c-increase constitutes an upstream event of the auxin transport, but may positively be modulated by auxin since its peak amplitude is attenuated by the inhibition of auxin transport. PMID:19513245
Capability and Learning to Choose
ERIC Educational Resources Information Center
LeBmann, Ortrud
2009-01-01
The Capability Approach (henceforth CA) is in the first place an approach to the evaluation of individual well-being and social welfare. Many disciplines refer to the CA, first and foremost welfare economics, development studies and political philosophy. Educational theory was not among the first disciplines that took notice of the CA, but has a…
NASA Astrophysics Data System (ADS)
Krichene, A.; Boujelben, W.; Mukherjee, S.; Shah, N. A.; Solanki, P. S.
2018-03-01
We have investigated the effect of charge ordering and phase separation on the electrical and magnetotransport properties of La0.4Eu0.1Ca0.5MnO3 polycrystalline sample. Temperature dependence of resistivity shows a metal-insulator transition at transition temperature Tρ. A hysteretic behavior is observed for zero field resistivity curves with Tρ = 128 K on cooling process and Tρ = 136 K on warming process. Zero field resistivity curves follow Zener polynomial law in the metallic phase with unusual n exponent value ∼9. Presence of resistivity minimum at low temperatures has been ascribed to the coulombic electron-electron scattering process. Resistivity modification due to the magnetic field cycling testifies the presence of the training effect. Magnetization and resistivity appear to be highly correlated. Magnetoresistive study reveals colossal values of negative magnetoresistance reaching about 75% at 132 K under only 2T applied field. Colossal values of magnetoresistance suggest the possibility of using this sample for magnetic field sensing and spintronic applications.
Influence of global and local distortion on magnetic properties of cubic La0.6Ba0.4-xCaxCoO3
NASA Astrophysics Data System (ADS)
Chang, Hong; Gao, Yu; Wu, Qiang; Dong, Xiaohua; Li, Yunfei; Pang, Yanbo
2015-12-01
The magnetic and structural study of the La0.6Ba0.4-xCaxCoO3 (x=0.0, 0.1, 0.2, 0.3, and 0.4) compounds with the lowest global or local distortion are studied. The compounds with x=0, 0.1, 0.2 and 0.3 is crystallized in the structure with the space group Pm-3m, and that with x=0.4 is Pnma. A ferromagnetic-like transition is observed and the Curie temperature, ranging from 235 K to 220 K, decreases slightly with the increasing Ca2+ content for x≤0.3, and the transition temperature is as low as 175 K with x=0.4. A hump, with the hump temperature slightly increase with the Ca2+ content, is observed in the thermal magnetization curves of all of the compounds at the ZFC state, and it is owing to the magnetic frustration because of the coexistence of the FM and the AFM interaction. Above the transition temperature, the magnetic susceptibility versus the temperature is fitted with the ferromagnetic Curie-Weiss law for the compounds with x≤0.3, and that with x=0.4 coincides with the ferrimagnetic Weiss-mean-field model. The absolute values of the exchange constants J1 in the compounds with x≤0.3 and those of J CO 3+CO 3+ ,J CO 3+CO4+ ,JCO4+CO4+ of La0.6Ca0.4CoO3 are deduced from the fitting. The results indicate that (i) the ferromagnetic exchange constants J1 increases with the Ca2+ content x≤0.3; (ii) the ferromagnetic interaction, JCo3+Co4+, plays a main role in the magnetic properties of La0.6Ca0.4CoO3; (iii) the antiferromagnetic interactions, JCo3+Co3+, JCo4+Co4+, are not negligible in the compound x=0.4. The unsaturated magnetization at 70 kOe and the high coercive field in the hysteretic magnetization curve supports the existence of the antiferromagnetic interaction, and the percentage of the antiferromagnetic domain is calculated.
Influences of Na2O and K2O Additions on Electrical Conductivity of CaO-MgO-Al2O3-SiO2 Melts
NASA Astrophysics Data System (ADS)
Zhang, Guo-Hua; Zheng, Wei-Wei; Chou, Kuo-Chih
2017-04-01
The present study investigated the influences of Na2O and K2O additions on electrical conductivity of blast furnace type CaO-MgO-Al2O3-SiO2 melts by the four-electrode method. Both the single addition of Na2O or K2O and the double additions of Na2O and K2O were studied. It was found that electrical conductivity monotonously increased as the amount of Na2O addition was gradually increased, whereas, when K2O was added, there was a continuous decrease of electrical conductivity. With melts containing both Na2O and K2O, electrical conductivity first decreased but then increased when Na2O was gradually substituted for K2O while keeping the molar fractions of other components constant. In other words, the mixed-alkali effect took place in CaO-Mg-Al2O3-SiO2-ΣR2O melts.
Methotrexate conjugated magnetic nanoparticle for targeted drug delivery and thermal therapy
NASA Astrophysics Data System (ADS)
Gupta, Jagriti; Bhargava, Parag; Bahadur, D.
2014-05-01
A simple soft chemical approach is used for the preparation of citrate functionalized iron oxide (Fe3O4) aqueous colloidal magnetic nanoparticles (CA-MNPs) of average size ˜10 nm. The CA-MNPs exhibit superparamagnetic behavior at room temperature with strong field dependent magnetic responsivity. The CA-MNPs can be conjugated with Methotrexate (MTX) drug through amide bonds between the carboxylic group on the surface of MNPs and amine group of MTX. The surface functionalization of Fe3O4 nanoparticles with citric acid and conjugation of MTX drug is evident from FTIR spectroscopy, zeta-potential measurement, and elemental and thermal analyses. From the drug release study, it has been observed that this bonding of MTX conjugated MNPs (MTX-MNPs) is cleaved by the intracellular enzymes in lysosome, and MTX is delivered largely inside target cancerous cells at lower pH, thereby reducing toxicity to normal cells. Also, it has been observed that the intercellular uptake of MTX-MNPs is higher compared to CA-MNPs. In addition, the aqueous colloidal stability, optimal magnetization, and good specific absorption rate (under external AC magnetic field) of CA-MNPs act as effective heating source for thermal therapy. Cytotoxicity study of MTX-MNPs shows the reduction of cellular viability for human cervical cancer cells (HeLa). Further, a synergistic effect of MTX-MNPs shows a more effective tumor cell death due to the combined effect of thermo-chemotherapy.
NASA Astrophysics Data System (ADS)
Shi, Chengbin; Wang, Hui; Li, Jing
2018-06-01
Electroslag remelting (ESR) is increasingly used to produce some varieties of special steels and alloys, mainly because of its ability to provide extreme cleanliness and an excellent solidification structure simultaneously. In the present study, the combined effects of varying SiO2 contents in slag and reoxidation of liquid steel on the chemistry evolution of inclusions and the alloying element content in steel during ESR were investigated. The inclusions in the steel before ESR refining were found to be oxysulfides of patch-type (Ca,Mn)S adhering to a CaO-Al2O3-SiO2-MgO inclusion. The oxide inclusions in both the liquid metal pool and remelted ingots are CaO-Al2O3-MgO and MgAl2O4 together with CaO-Al2O3-SiO2-MgO inclusions (slightly less than 30 pct of the total inclusions), which were confirmed to originate from the reduction of SiO2 from the original oxide inclusions by dissolved Al in liquid steel during ESR. CaO-Al2O3-MgO and MgAl2O4 are newly formed inclusions resulting from the reactions taking place inside liquid steel in the liquid metal pool caused by reoxidation of liquid steel during ESR. Increasing the SiO2 content in slag not only considerably reduced aluminum pickup in parallel with silicon loss during ESR, but also suppressed the decrease in SiO2 content in oxide inclusions. (Ca,Mn)S inclusions were fully removed before liquid metal droplets collected in the liquid metal pool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Juan; Liu, Xiao Qiang, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn; Chen, Xiang Ming, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn
Bi{sub 1−x}(Sr{sub 0.7}Ca{sub 0.3}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} ceramics were prepared by a standard solid state reaction process, and the influence of Sr/Ca ratio on structure and properties for Bi{sub 1−x}(Sr,Ca){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} system was discussed by comparing with Sr{sub 0.5}Ca{sub 0.5}TiO{sub 3}-modified BiFeO{sub 3} ceramics. Rietveld analysis of X-ray diffraction data revealed that the crystal structure changed from rhombohedral R3c (x ≤ 0.4) to orthorhombic Pnma (x = 0.6) with Sr{sub 0.7}Ca{sub 0.3}TiO{sub 3} substitution, and biphasic structure (R3c + Pnma) was determined at x = 0.5, while that for Bi{sub 1−x}(Sr{sub 0.5}Ca{sub 0.5}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} system was at x = 0.4. This indicated thatmore » the morphotropic phase boundary in Bi{sub 1−x}(Sr,Ca){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} system shifted toward (Sr,Ca)TiO{sub 3} side with increasing Sr/Ca ratio. The Raman spectrometric analysis and selected area electron diffraction analysis also confirmed this transition. The dielectric relaxation could be well fitted by Arrhenius law, and the different activation energies were attributed to the different origins of the dielectric relaxations with increasing temperature. The current density-field (J-E) curves indicated that the leakage current was reduced to about five orders of magnitude with Sr{sub 0.7}Ca{sub 0.3}TiO{sub 3} substitution. The P-E hysteresis loops obtained by three different methods indicated the enhanced ferroelectricity at x = 0.4, and it could be attributed to the decrement of leakage current. Meanwhile, the magnetization was enhanced with Sr{sub 0.7}Ca{sub 0.3}TiO{sub 3} substitution, and the maximum remanent magnetization was determined at x = 0.2. The enhanced magnetization originated from the partial substitution of Fe{sup 3+} by Ti{sup 4+}.« less
Chen, Bailin; Jiang, Huijian; Zhu, Yan; Cammers, Arthur; Selegue, John P
2005-03-30
We follow the evolution of polyoxomolybdate nanoparticles in suspensions derived from the keplerate (NH4)42[MoVI72MoV60O372(CH3CO2)30(H2O)72].ca..300H2O.ca..10CH3CO2NH4 ({Mo132}) by flow field-flow fractionation (FlFFF) to monitor the particle-size distribution in situ, atomic force and high-resolution transmission electron microscopy (AFM, SEM, and HRTEM) to confirm particle sizes, inductively coupled plasma-optical emission spectrometry (ICP-OES) to determine the Mo content of the FlFFF-separated fractions, and UV/visible spectroscopy to confirm the identity of the species in suspension. We observe the formation of 3-75-nm polyoxomolybdate particles in suspension and the dynamic growth of {Mo132} crystals.
Chao, Owen Y; Nikolaus, Susanne; Lira Brandão, Marcus; Huston, Joseph P; de Souza Silva, Maria A
2017-05-01
The interplay between medial prefrontal cortex (mPFC) and hippocampus, particularly the hippocampal CA3 area, is critical for episodic memory. To what extent the mPFC also interacts with the hippocampus CA1 subregion still requires elucidation. To investigate this issue, male rats received unilateral N-methyl- D -aspartate lesions of the mPFC together with unilateral lesions of the hippocampal CA1 area, either in the same (control) or in the opposite hemispheres (disconnection). They underwent an episodic-like memory test, combining what-where-when information, and separate tests for novel object preference (what), object place preference (where) and temporal order memory (when). Compared to controls, the disconnected mPFC-CA1 rats exhibited disrupted episodic-like memory with an impaired integration of the what-where-when elements. Both groups showed intact memories for what and when, while only the control group showed intact memory for where. These findings suggest that the functional interaction of the mPFC-CA1 circuit is crucial for the processing of episodic memory and, in particular, for the integration of the spatial memory component. Copyright © 2017 Elsevier Inc. All rights reserved.
Ruminal Ca and P Releases from Diets with Different Portion of the Sugarcane Bagasse
NASA Astrophysics Data System (ADS)
Pangestu, E.; Wahyono, F.; Nuswantara, L. K.; Achmadi, J.
2018-02-01
The in sacco technique was used to study the ruminal Ca and P releases from diets with different portion of sugarcane bagasse. Three diets containing 15, 25, and 35% of sugarcane bagase were tested their kinetic of ruminal Ca and P degradabilities. Two adult male sheep fitted with rumen cannula were used in the in sacco technique. In the in sacco experiment, feed samples were placed in the nylon bag and inserted into ruminal cannula for 0, 1, 3, 6, 12, 24, and 48 h. The kinetic of ruminal Ca and P degradabilities were focused on rapidly soluble fraction (fraction a), potentially degradable fraction (fraction b), and the degradation rate of fraction b (c). The data were tested using analyse of variance based on a completely randomized design. While the portion of sugarcane bagasse increased (P<0.05) fraction a of Ca diet, the portion b of P diet was decreased (P<0.05) by the portion of sugarcane bagasse.In conclusion, the effect of increasing portion of sugarcane bagasse in diet on ruminal release of Ca may be differed with that ofthe ruminal P release.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casbon, M. A.; Nichols, W. E.
DOE O 435.1, Radioactive Waste Management, and DOE M 435.1-1, Radioactive Waste Management Manual, require that a determination of continued adequacy of the performance assessment (PA), composite analysis (CA), and disposal authorization statement (DAS) be made on an annual basis, and it must consider the results of data collection and analysis from research, field studies, and monitoring. Annual summaries of low-level waste (LLW) disposal operations must be prepared with respect to the conclusions and recommendations of the PA and CA, and a determination of the need to revise the PA or CA must be made. The annual summary requirement providesmore » a structured approach for demonstrating the continued adequacy of the PA and CA in demonstrating a reasonable expectation that the performance objectives will be met. This annual summary addresses only the status of the Environmental Restoration Disposal Facility (ERDF) PA (CP-60089, Performance Assessment for the Environmental Restoration Disposal Facility, Hanford Site, Washington, formerly WCH-520 Rev. 1)1. The CA for ERDF is supported by DOE/RL-2016-62, Annual Status Report (FY 2016): Composite Analysis of Low Level Waste Disposal in the Central Plateau at the Hanford Site. The ERDF PA portion of the CA document is found in Section 3.1.4, and the ERDF operations portion is found in Section 3.3.3.2 of that document.« less
Kuchtey, J; Fewtrell, C
1996-03-01
Ca2+ imaging experiments have revealed that for a wide variety of cell types, including RBL-2H3 mucosal mast cells, there are considerable cell-to-cell differences of the Ca2+ responses of individual cells. This heterogeneity is evident in both the shape and latency of the responses. Mast cells within a single microscopic field of view, which have experienced identical culture conditions and experimental preparation, display a wide variety of responses upon antigen stimulation. We have subcloned the RBL-2H3 mucosal mast cell line to test the hypothesis that genetic heterogeneity within the population is the cause of the Ca2+ response heterogeneity. We found that cell-to-cell variability was significantly reduced in four of five clonal lines. The response heterogeneity remaining within the clones was not an experimental artifact caused by differences in the amount of fura-2 loaded by individual cells. Factors other than genetic heterogeneity must partly account for Ca2+ response heterogeneity. It is possible that the complex shapes and variability of the Ca2+ responses are reflections of the fact that there are multiple factors underlying the Ca2-response to antigen stimulation. Small differences from cell to cell in one or more of these factors could be a cause of the remaining Ca2+ response heterogeneity.
First light of Cassis: the stereo surface imaging system onboard the exomars TGO
NASA Astrophysics Data System (ADS)
Gambicorti, L.; Piazza, D.; Pommerol, A.; Roloff, V.; Gerber, M.; Ziethe, R.; El-Maarry, M. R.; Weigel, T.; Johnson, M.; Vernani, D.; Pelo, E.; Da Deppo, V.; Cremonese, G.; Ficai Veltroni, I.; Thomas, N.
2017-09-01
The Colour and Stereo Surface Imaging System (CaSSIS) camera was launched on 14 March 2016 onboard the ExoMars Trace Gas Orbiter (TGO) and it is currently in cruise to Mars. The CaSSIS high resolution optical system is based on a TMA telescope (Three Mirrors Anastigmatic configuration) with a 4th powered folding mirror compacting the CFRP (Carbon Fiber Reinforced Polymer) structure. The camera EPD (Entrance Pupil Diameter) is 135 mm and the focal length is 880 mm, giving an F# 6.5 system; the wavelength range covered by the instrument is 400-1100 nm. The optical system is designed to have distortion of less than 2%, and a worst case Modulation Transfer Function (MTF) of 0.3 at the detector Nyquist spatial frequency (i.e. 50 lp/mm). The Focal Plane Assembly (FPA), including the detector, is a spare from the Simbio-Sys instrument of the Italian Space Agency (ASI). Simbio-Sys will fly on ESA's BepiColombo mission to Mercury in 2018. The detector, developed by Raytheon Vision Systems, is a 2k×2k hybrid Si-PIN array with 10 μm-pixel pitch. The detector allows snap shot operation at a read-out rate of 5 Mpx/s with 14-bit resolution. CaSSIS will operate in a push-frame mode with a Filter Strip Assembly (FSA), placed directly above the detector sensitive area, selecting 4 colour bands. The scale at a slant angle of 4.6 m/px from the nominal orbit is foreseen to produce frames of 9.4 km × 6.3 km on the Martian surface, and covering a Field of View (FoV) of 1.33° cross track × 0.88° along track. The University of Bern was in charge of the full instrument integration as well as the characterisation of the focal plane of CaSSIS. The paper will present an overview of CaSSIS and the optical performance of the telescope and the FPA. The preliminary results of the on-ground calibration campaign and the first light obtained during the commissioning and pointing campaign (April 2016) will be described in detail. The instrument is acquiring images with an average Point Spread Function at Full-Width-Half-Maximum (PSF FWHM) of < 1.5 px, as expected.
NASA Astrophysics Data System (ADS)
Marvin-Dipasquale, M.; Windham-Myers, L.; Agee, J. L.; Kakouros, E.; Cox, M. H.; Fleck, J.; Alpers, C. N.; Stephenson, M.
2008-12-01
The Yolo Bypass Wildlife Area (YBWA) is part of the larger Yolo Bypass floodwater protection zone associated with the Sacramento River and the Sacramento-San Joaquin Delta, in California. While mercury contamination is widespread throughout the region due to historic mining practices, the Yolo Bypass is responsible for a high proportion of the aqueous methylmercury (MeHg) entering the Delta, and biota from the Yolo Bypass are particularly elevated in toxic MeHg. Land use in the YBWA includes seasonally flooded agricultural fields (white rice, wild rice, fallow fields), and permanently and seasonally flooded non-agricultural wetlands used for resident and migratory waterfowl. Mercury biogeochemistry was examined in 0-2 cm surface sediment, as a function of habitat type, wetland management, and agricultural practices during the 2007-08 crop year. In permanently flooded wetlands, MeHg concentrations varied within a narrow range (ca. 0.5-1.5 ng/g dry wt) throughout the study period. In contrast, the three types of agricultural fields had higher MeHg concentrations throughout the rice-growing season (June-Sept; ca. 1.5-3.5 ng/g), and exhibited the highest levels (ca. 3.3-6.3 ng/g) in the post-harvest winter period (Dec-Feb). Further, naturally dried sediment, sampled during July '08 from post-harvest drained fallow agricultural fields (prior to reflooding) had MeHg concentrations that were also quite elevated (3.1 +/- 1.5 ng/g). This suggests that the initial elevated concentrations of overlying water MeHg, sometimes measured soon after flooding previously dried fields, may be related to the release of MeHg formed during the previous wet season and trapped in dried sediment, as opposed to being MeHg newly produced by bacteria upon soil rewetting. These results indicate that the 'hot spots and hot moments' associated with MeHg production in this system are linked to hydrologic manipulations (wetting and drying) in the agricultural fields, and that the practice of post-harvest reflooding of rice fields, to promote rice straw decomposition during the fall and winter, may stimulate microbial activity associated with increased MeHg production during that period.
Castro, Luísa; Aguiar, Paulo
2012-08-01
Phase precession is one of the most well known examples within the temporal coding hypothesis. Here we present a biophysical spiking model for phase precession in hippocampal CA1 which focuses on the interaction between place cells and local inhibitory interneurons. The model's functional block is composed of a place cell (PC) connected with a local inhibitory cell (IC) which is modulated by the population theta rhythm. Both cells receive excitatory inputs from the entorhinal cortex (EC). These inputs are both theta modulated and space modulated. The dynamics of the two neuron types are described by integrate-and-fire models with conductance synapses, and the EC inputs are described using non-homogeneous Poisson processes. Phase precession in our model is caused by increased drive to specific PC/IC pairs when the animal is in their place field. The excitation increases the IC's firing rate, and this modulates the PC's firing rate such that both cells precess relative to theta. Our model implies that phase coding in place cells may not be independent from rate coding. The absence of restrictive connectivity constraints in this model predicts the generation of phase precession in any network with similar architecture and subject to a clocking rhythm, independently of the involvement in spatial tasks.
Thermoluminescence Response of CaF2:Mn, CaFz:Dy and CaSO4:Tm to Protons and Alpha-Particles,
1987-06-01
TLD ) in diverse radiation fields, such as mixed neutron-gamma fields. TL responses of the detector may depend not only on the photon and neutron energy...response of three TLD materials: CaF 2 :Mn, CaF?:Dy and CaSO 4 :Tm. These three materials are commonly used in TLDs , because of their high sensitivities...and suitable readout temperatures. CaS04:Tm powder embedded in polyethylene was investiaged at DREO (Ref. (4)) as a combined neutron/gamma TLD , but
ERIC Educational Resources Information Center
Swant, Jarod; Wagner, John J.
2006-01-01
Dopamine has been demonstrated to be involved in the modulation of long-term potentiation (LTP) in the CA1 region of the hippocampus. As monoamine transporter blockade will increase the actions of endogenous monoamine neurotransmitters, the effect of a dopamine transporter (DAT) antagonist on LTP was assessed using field excitatory postsynaptic…
Zaoutis, Theoklis E; Toltzis, Philip; Chu, Jaclyn; Abrams, Tara; Dul, Michael; Kim, Jason; McGowan, Karin L; Coffin, Susan E
2006-04-01
Methicillin-resistant Staphylococcus aureus (MRSA) has recently emerged as a common cause of infection in children in many parts of the world. The epidemiology of community-acquired MRSA (CA-MRSA) among healthy children has been recently described. However, little is known about CA-MRSA in children with underlying medical conditions. To compare the clinical and molecular epidemiology of CA-MRSA in children with and without risk factors for health care-associated infections (RF-HAI). We conducted a 3-year retrospective cohort study of children with CA-MRSA infection. RF-HAI, including hospitalization within the past year, indwelling medical devices or chronic medical condition, were identified by chart review. Genetic relatedness of CA-MRSA strains was assessed by pulsed field gel electrophoresis. Polymerase chain reaction was used to detect Panton-Valentine leukocidin and determine staphylococcal chromosomal cassette carrying the mecA methicillin-resistant gene (SCCmec) type. We identified 446 episodes of community-acquired S. aureus infections, of which 134 (30%) were caused by MRSA. During the 3-year study period, the proportion of S. aureus infections caused by MRSA rose from 15% (12 of 80) to 40% (93 of 235) (P < 0.001) with the increase noted predominately in children with skin and soft tissue infections. RF-HAI were identified in 56 (42%) patients with CA-MRSA. Among subjects with CA-MRSA, children with RF-HAI were more likely to have had an invasive infection than healthy children (32% versus 5%; P < 0.001). CA-MRSA isolates from children with RF-HAI were similar to those without RF-HAI; all laboratory-retained CA-MRSA isolates harbored the SCCmec type IV cassette, and almost all isolates were susceptible to trimethoprim-sulfamethoxazole and clindamycin. However, pulsed field gel electrophoresis revealed greater molecular diversity among CA-MRSA isolates recovered from children with RF-HAI compared with those from otherwise healthy children (P = 0.001). Additionally CA-MRSA isolates from children with RF-HAI were less likely to contain sequences for Panton-Valentine leukocidin (P < 0.001) and more likely to be resistant to 3 or more classes of antibiotics (P = 0.033). CA-MRSA strains recovered from children with RF-HAI were phenotypically similar to those recovered from healthy children The absence of SCCmec type II or III MRSA among children with RF-HAI suggests that CA-MRSA strains might have become endemic within pediatric health care facilities.
NASA Technical Reports Server (NTRS)
Moore, R.; Fondren, W. M.
1986-01-01
Roots of Allium cepa L. grown in aerated water elongate rapidly, but are not graviresponsive. These roots (1) possess extensive columella tissues comprised of cells containing numerous sedimented amyloplasts, (2) lack mucilage on their tips, and (3) are characterized by a weakly polar movement of calcium (Ca) across their tips. Placing roots in humid air correlates positively with the (1) onset of gravicurvature, (2) appearance of mucilage on tips of the roots, and (3) onset of the ability to transport Ca polarly to the lower side of the root tip. Gravicurvature of roots previously submerged in aerated water is more rapid when roots are oriented vertically for 1-2 h in humid air prior to being oriented horizontally. The more rapid gravicurvature of these roots correlates positively with the accumulation of mucilage at the tips of roots during the time the roots are oriented vertically. Therefore, the onset of gravicurvature and the ability of roots to transport Ca to the lower sides of their tips correlate positively with the presence of mucilage at their tips. These results suggest that mucilage may be important for the transport of Ca across root caps.
Isoxazole-type derivatives related to combretastatin A-4, synthesis and biological evaluation.
Kaffy, Julia; Pontikis, Renée; Carrez, Danièle; Croisy, Alain; Monneret, Claude; Florent, Jean-Claude
2006-06-15
Novel combretastatin analogues bearing various five-membered heterocycles with consecutive oxygen and nitrogen atoms, in place of the olefinic bridge of CA4, have been synthesized (isoxazole, isoxazoline, oxadiazole, etc). These compounds have been evaluated for cytotoxicity and their ability to inhibit the tubulin assembly. On the basis of the relative position of the aromatic A- and B-rings on the heterocyclic moiety, they could be split in two classes, the alpha,gamma- or alpha,beta-diaryl heterocyclic derivatives. In the first series, the 3,5-diaryloxadiazole 9a displayed comparable antitubulin activity to that of CA4, but was devoid of cytotoxic effects. Among the alpha,beta-diaryl heterocyclic derivatives, the 4,5-diarylisoxazole 35 exhibited greater antitubulin activity than that of CA4 (0.75 vs 1.2 microM), but modest antiproliferative activity. These data showed that minor alteration in the chemical structure of the heterocyclic ring and its relative orientation with regard to the two phenyl rings of CA4 could dramatically influence the tubulin binding properties.
Multifocal canalicular adenoma of the minor labial salivary glands
Samar, María Elena; Avila, Rodolfo Esteban; Fonseca, Ismael Bernardo; Anderson, William; Fonseca, Gabriel M; Cantín, Mario
2014-01-01
Canalicular adenoma (CA) is an uncommon benign neoplasia of salivary glands which is clinically difficult to recognise. Despite having an excellent prognosis, the histological diagnosis and clinical management of this entity can be troublesome. While the main differential diagnosis to consider is basal cell adenoma (BCA), similar histological patterns and multifocality have been observed in adenoid cystic carcinoma (ACC) and polymorphous low-grade adenocarcinoma (PLGA), both locally-aggressive malignancies which require radically different treatment to CA. An emphasis has been placed on the value of immunohistochemistry in avoiding diagnostic and surgical errors. CA is positive for AE1/AE3, CD117 and S-100 protein, and negative for p63, α-SMA, Ki 67 and vimentin. Here we discuss the case of a 61-year-old female with CA in her right upper lip, showing multifocal growth histologically. The differential diagnosis with other adenomas is discussed in addition to the role of immunohistochemical studies that can confirm the clinical and surgical findings. PMID:25550873
NASA Astrophysics Data System (ADS)
Baisnab, Dipak Kumar; Sardar, Manas; Amaladass, E. P.; Vaidhyanathan, L. S.; Baskaran, R.
2018-07-01
Thin film multilayer heterostructure of alternate YBa2Cu3O7-δ (YBCO) and Pr0.5Ca0.5MnO3 (PCMO) with thickness of each layer ∼60 nm has been deposited on (100) oriented SrTiO3 substrate by Pulsed Laser Deposition technique. A half portion of the base YBCO layer was masked in situ using mechanical shadow mask and in the remaining half portion, five alternate layers of PCMO and YBCO thin films were deposited. Magnetoresistance measurements were carried out under externally applied magnetic field and injection current. A noticeable damped oscillation of the superconducting transition temperature (TC) of this multilayer with respect to magnetic field is seen. Curiously, the field at which the first minimum in TC occurs, decreases as an injection current is driven perpendicular/parallel to the multilayers. Both these phenomena indicate that ferromagnetic correlation can be induced in antiferromagnetic PCMO thin films by (1) external magnetic field, or (2) injection current. While (1) is well researched, our study indicates that ferromagnetism can be induced by small amount of current in PCMO thin films. This unusual behavior points towards the strongly correlated nature of electrons in PCMO.
NASA Astrophysics Data System (ADS)
Yamasaki, H.; Endo, K.; Nakagawa, Y.; Umeda, M.; Kosaka, S.; Misawa, S.; Yoshida, S.; Kajimura, K.
1992-10-01
Critical current densities Jc were measured in as-deposited, c-axis-oriented Bi2Sr2Ca2Cu3Ox thin films with Tc values as high as 97 K, which were prepared by metalorganic chemical-vapor deposition. These films showed high Jc (≳109 A/m2) at 77.3 K in high magnetic fields (≥1 T, H∥a-b plane). The best values are 3.3×109 A/m2 at 1 T and 9.1×108 A/m2 at 8 T, which are the highest Jc for Bi-oxide thin films among those reported so far. There were no signs of weak links in the Jc(H) behavior, and the surface morphology examined by scanning electron microscopy showed no apparent grain boundaries. The values of Jc decreased sharply when the applied field deviated from the a-b plane, and went to zero at the angles where the field component in the c direction is nearly equal to the irreversibility field Hc2* parallel to the c axis. The angular dependence of Jc of these films is most reasonably explained by the theory of intrinsic pinning.
Spin-state crossover and low-temperature magnetic state in yttrium-doped Pr0.7Ca0.3CoO3
NASA Astrophysics Data System (ADS)
Knížek, K.; Hejtmánek, J.; Maryško, M.; Novák, P.; Šantavá, E.; Jirák, Z.; Naito, T.; Fujishiro, H.; de la Cruz, Clarina
2013-12-01
The structural and magnetic properties of two mixed-valence cobaltites with a formal population of 0.30 Co4+ ions per f.u., (Pr1-yYy)0.7Ca0.3CoO3 (y=0 and 0.15), have been studied down to very low temperatures by means of high-resolution neutron diffraction, SQUID magnetometry, and heat-capacity measurements. The results are interpreted within the scenario of the spin-state crossover from a room-temperature mixture of the intermediate-spin Co3+ and low-spin Co4+ (IS/LS) to the LS/LS mixture in the sample ground states. In contrast to the yttrium-free y=0 that retains the metallic-like character and exhibits ferromagnetic (FM) ordering below 55 K, the doped system y=0.15 undergoes a first-order metal-insulator transition at 132 K, during which not only the crossover to low-spin states but also a partial electron transfer from Pr3+ 4f to cobalt 3d states takes place simultaneously. Taking into account the nonmagnetic character of LS Co3+, such a valence shift electronic transition causes a magnetic dilution, formally to 0.12 LS Co4+ or 0.12 t2g hole spins per f.u., which is the reason for an insulating, highly nonuniform magnetic ground state without long-range order. Nevertheless, even in that case there exists a relatively strong molecular field distributed over all the crystal lattice. It is argued that the spontaneous FM order in y=0 and the existence of strong FM correlations in y=0.15 apparently contradict the single t2g band character of LS/LS phase. The explanation we suggest relies on a model of the defect-induced, itinerant hole-mediated magnetism, where the defects are identified with the magnetic high-spin Co3+ species stabilized near oxygen vacancies.
Zaklit, Josette; Craviso, Gale L; Leblanc, Normand; Yang, Lisha; Vernier, P Thomas; Chatterjee, Indira
2017-10-01
Nanosecond-duration electric pulses (NEPs) can permeabilize the endoplasmic reticulum (ER), causing release of Ca 2+ into the cytoplasm. This study used experimentation coupled with numerical modeling to understand the lack of Ca 2+ mobilization from Ca 2+ -storing organelles in catecholamine-secreting adrenal chromaffin cells exposed to 5-ns pulses. Fluorescence imaging determined a threshold electric (E) field of 8 MV/m for mobilizing intracellular Ca 2+ whereas whole-cell recordings of membrane conductance determined a threshold E-field of 3 MV/m for causing plasma membrane permeabilization. In contrast, a 2D numerical model of a chromaffin cell, which was constructed with internal structures representing a nucleus, mitochondrion, ER, and secretory granule, predicted that exposing the cell to the same 5-ns pulse electroporated the plasma and ER membranes at the same E-field amplitude, 3-4 MV/m. Agreement of the numerical simulations with the experimental results was obtained only when the ER interior conductivity was 30-fold lower than that of the cytoplasm and the ER membrane permittivity was twice that of the plasma membrane. A more realistic intracellular geometry for chromaffin cells in which structures representing multiple secretory granules and an ER showed slight differences in the thresholds necessary to porate the membranes of the secretory granules. We conclude that more sophisticated cell models together with knowledge of accurate dielectric properties are needed to understand the effects of NEPs on intracellular membranes in chromaffin cells, information that will be important for elucidating how NEPs porate organelle membranes in other cell types having a similarly complex cytoplasmic ultrastructure.
Nausch, Lydia W. M.; Bonev, Adrian D.; Heppner, Thomas J.; Tallini, Yvonne; Kotlikoff, Michael I.
2012-01-01
It is generally accepted that the endothelium regulates vascular tone independent of the activity of the sympathetic nervous system. Here, we tested the hypothesis that the activation of sympathetic nerves engages the endothelium to oppose vasoconstriction. Local inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ signals (“pulsars”) in or near endothelial projections to vascular smooth muscle (VSM) were measured in an en face mouse mesenteric artery preparation. Electrical field stimulation of sympathetic nerves induced an increase in endothelial cell (EC) Ca2+ pulsars, recruiting new pulsar sites without affecting activity at existing sites. This increase in Ca2+ pulsars was blocked by bath application of the α-adrenergic receptor antagonist prazosin or by TTX but was unaffected by directly picospritzing the α-adrenergic receptor agonist phenylephrine onto the vascular endothelium, indicating that nerve-derived norepinephrine acted through α-adrenergic receptors on smooth muscle cells. Moreover, EC Ca2+ signaling was not blocked by inhibitors of purinergic receptors, ryanodine receptors, or voltage-dependent Ca2+ channels, suggesting a role for IP3, rather than Ca2+, in VSM-to-endothelium communication. Block of intermediate-conductance Ca2+-sensitive K+ channels, which have been shown to colocalize with IP3 receptors in endothelial projections to VSM, enhanced nerve-evoked constriction. Collectively, our results support the concept of a transcellular negative feedback module whereby sympathetic nerve stimulation elevates EC Ca2+ signals to oppose vasoconstriction. PMID:22140050
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadeem, M., E-mail: mnadeemsb@gmail.com; Iqbal, M. Javid; Farhan, M. Arshad
2016-08-15
Highlights: • Concept of normalized magnetization is introduced to explain relative magnetic transitions. • Coexistence of two magnetic modes is correlated with the magnetic transitions and MIT. • Field induced melting and collapse of charge ordered antiferromagnetic (CO-AFM) state into ferromagnetic (FM) state is conferred. - Abstract: The magnetic properties of polycrystalline La{sub 0.5-x}Pr{sub x}Ca{sub 0.5}MnO{sub 3} material are investigated at different temperatures. The existence of magnetically diverse phases associated with various relaxation modes and their modulation with temperature and doping is analyzed. La{sub 0.5}Ca{sub 0.5}MnO{sub 3} exhibited field induced melting and collapse of charge ordered antiferromagnetic (CO-AFM) phase intomore » ferromagnetic (FM) state. This phenomenon results in lowering of Neel’s temperature (T{sub N}) along with changes in the slope of magnetic moment with temperature. Using normalized M(T) curves, the variation and interplay of charge ordered temperature (T{sub CO}), Curie temperature (T{sub C}) and T{sub N} is conferred. The coexistence of two magnetic modes is explained as major ingredient for the magnetic transitions as well as metal to insulator transition (MIT); where melting and collapse of charge ordering is conversed as basic feature in these Praseodymium (Pr) doped La{sub 0.5}Ca{sub 0.5}MnO{sub 3} materials.« less
Yoo, Jejoong; Wilson, James; Aksimentiev, Aleksei
2016-10-01
Calcium ions (Ca(2+) ) play key roles in various fundamental biological processes such as cell signaling and brain function. Molecular dynamics (MD) simulations have been used to study such interactions, however, the accuracy of the Ca(2+) models provided by the standard MD force fields has not been rigorously tested. Here, we assess the performance of the Ca(2+) models from the most popular classical force fields AMBER and CHARMM by computing the osmotic pressure of model compounds and the free energy of DNA-DNA interactions. In the simulations performed using the two standard models, Ca(2+) ions are seen to form artificial clusters with chloride, acetate, and phosphate species; the osmotic pressure of CaAc2 and CaCl2 solutions is a small fraction of the experimental values for both force fields. Using the standard parameterization of Ca(2+) ions in the simulations of Ca(2+) -mediated DNA-DNA interactions leads to qualitatively wrong outcomes: both AMBER and CHARMM simulations suggest strong inter-DNA attraction whereas, in experiment, DNA molecules repel one another. The artificial attraction of Ca(2+) to DNA phosphate is strong enough to affect the direction of the electric field-driven translocation of DNA through a solid-state nanopore. To address these shortcomings of the standard Ca(2+) model, we introduce a custom model of a hydrated Ca(2+) ion and show that using our model brings the results of the above MD simulations in quantitative agreement with experiment. Our improved model of Ca(2+) can be readily applied to MD simulations of various biomolecular systems, including nucleic acids, proteins and lipid bilayer membranes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 752-763, 2016. © 2016 Wiley Periodicals, Inc.
Zhu, L-F; Friák, M; Lymperakis, L; Titrian, H; Aydin, U; Janus, A M; Fabritius, H-O; Ziegler, A; Nikolov, S; Hemzalová, P; Raabe, D; Neugebauer, J
2013-04-01
We employ ab initio calculations and investigate the single-crystalline elastic properties of (Ca,Mg)CO3 crystals covering the whole range of concentrations from pure calcite CaCO3 to pure magnesite MgCO3. Studying different distributions of Ca and Mg atoms within 30-atom supercells, our theoretical results show that the energetically most favorable configurations are characterized by elastic constants that nearly monotonously increase with the Mg content. Based on the first principles-derived single-crystalline elastic anisotropy, the integral elastic response of (Ca,Mg)CO3 polycrystals is determined employing a mean-field self-consistent homogenization method. As in case of single-crystalline elastic properties, the computed polycrystalline elastic parameters sensitively depend on the chemical composition and show a significant stiffening impact of Mg atoms on calcite crystals in agreement with the experimental findings. Our analysis also shows that it is not advantageous to use a higher-scale two-phase mix of stoichiometric calcite and magnesite instead of substituting Ca atoms by Mg ones on the atomic scale. Such two-phase composites are not significantly thermodynamically favorable and do not provide any strong additional stiffening effect. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Dan; Wu, Zu-Hui; Chen, Ji-Yao; Zhou, Lu-Wei
2013-06-01
We apply electric fields at different frequencies of 0.1, 1, 10 and 100 kHz to the rat basophilic leukemia (RBL) mast cells in calcium-containing or calcium-free buffers. The stimuli cause changes of the intracellular calcium ion concentration [Ca2+]i as well as the histamine. The [Ca2+]i increases when the frequency of the external electric field increases from 100 Hz to 10 kHz, and then decreases when the frequency further increases from 10 kHz to 100 kHz, showing a peak at 100 kHz. A similar frequency dependence of the histamine release is also found. The [Ca2+]i and the histamine releases at 100 Hz are about the same as the values of the control group with no electrical stimulation. The ruthenium red (RR), an inhibitor to the TRPV (transient receptor potential (TRP) family V) channels across the cell membrane, is used in the experiment to check whether the electric field stimuli act on the TRPV channels. Under an electric field of 10 kHz, the [Ca2+]i in a calcium-concentration buffer is about 3.5 times as much as that of the control group with no electric stimulation, while the [Ca2+]i in a calcium-free buffer is only about 2.2 times. Similar behavior is also found for the histamine release. RR blockage effect on the [Ca2+]i decrease is statistically significant (~75%) when mast cells in the buffer with calcium are stimulated with a 10 kHz electric field in comparison with the result without the RR treatment. This proves that TRPVs are the channels that calcium ions inflow through from the extracellular environment under electrical stimuli. Under this condition, the histamine is also released following a similar way. We suggest that, as far as an electric stimulation is concerned, an application of ac electric field of 10 kHz is better than other frequencies to open TRPV channels in mast cells, and this would cause a significant calcium influx resulting in a significant histamine release, which could be one of the mechanisms for electric therapy.
Experimental identification of Ca isotopic fractionations in higher plants
NASA Astrophysics Data System (ADS)
Cobert, Florian; Schmitt, Anne-Désirée; Bourgeade, Pascale; Labolle, François; Badot, Pierre-Marie; Chabaux, François; Stille, Peter
2011-10-01
Hydroponic experiments have been performed in order to identify the co-occurring geochemical and biological processes affecting the Ca isotopic compositions within plants. To test the influence of the Ca concentration and pH of the nutritive solution on the Ca isotopic composition of the different plant organs, four experimental conditions were chosen combining two different Ca concentrations (5 and 60 ppm) and two pHs (4 and 6). The study was performed on rapid growing bean plants in order to have a complete growth cycle. Several organs (root, stem, leaf, reproductive) were sampled at two different growth stages (10 days and 6 weeks of culture) and prepared for Ca isotopic measurements. The results allow to identify three Ca isotopic fractionation levels. The first one takes place when Ca enters the lateral roots, during Ca adsorption on cation-exchange binding sites in the apoplasm. The second one takes place when Ca is bound to the polygalacturonic acids (pectins) of the middle lamella of the xylem cell wall. Finally, the last fractionation occurs in the reproductive organs, also caused by cation-exchange processes with pectins. However, the cell wall structures of these organs and/or number of available exchange sites seem to be different to those of the xylem wall. These three physico-chemical fractionation mechanisms allow to enrich the organs in the light 40Ca isotope. The amplitude of the Ca isotopic fractionation within plant organs is highly dependent on the composition of the nutritive solution: low pH (4) and Ca concentrations (5 ppm) have no effect on the biomass increase of the plants but induce smaller fractionation amplitudes compared to those obtained from other experimental conditions. Thus, Ca isotopic signatures of bean plants are controlled by the external nutritive medium. This study highlights the potential of Ca isotopes to be applied in plant physiology (to identify Ca uptake, circulation and storage mechanisms within plants) and in biogeochemistry (to identify Ca recycling, Ca content and pH evolutions in soil solutions through time).
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-02
... Auburn City Hall and Fire House, (Auburn, CA MPS) 1103 High St., Auburn, 11000935 Auburn Fire House No. 1, (Auburn, CA MPS) El Dorado St. & Lincoln Way, Auburn, 11000936 Auburn Fire House No. 2, (Auburn, CA MPS... St., San Francisco, 11000944 COLORADO Boulder County Cardinal Mill, (Metal Mining and Tourist Era...
SiO2 and ZnO Dopants in 3D Printed TCP Scaffolds Enhances Osteogenesis and Angiogenesis in vivo
Fielding, Gary; Bose, Susmita
2013-01-01
Calcium phosphate (CaP) scaffolds with three dimensionally (3D) interconnected pores play an important role in mechanical interlocking and biological fixation in bone implant applications. CaPs alone, however, are only osteoconductive (ability to guide bone growth). Much attention has been given to the incorporation of biologics and pharmacologics to add osteoinductive (ability to cause new bone growth) properties to CaP materials. Because biologics and pharmacologics are generally delicate compounds and also subject to increased regulatory scrutiny, there is a need to investigate alternative methods to introduce osteoinductivity to CaP materials. In this study silica (SiO2) and zinc oxide (ZnO) have been incorporated in to 3D printed β-tricalcium phosphate (TCP) scaffolds to investigate their potential to trigger osteoinduction in vivo. Silicon and zinc are trace elements that are common to bone and have also been shown to have many beneficial properties from increased bone regeneration to angiogenesis. Implants were placed in bicortical femur defects introduced to a murine model for up to 16 weeks. Addition of dopants into TCP increased the capacity for new early bone formation by modulating collagen I production and osteocalcin production. Neovascularization was found to be up to three times more than the pure TCP control group. The findings from this study indicate that the combination of SiO2 and ZnO dopants in TCP may be a viable alternative to introduce osteoinductive properties to CaPs. PMID:23871941
Synthesis and luminescent properties of spindle-like CaWO{sub 4}:Sm{sup 3+} phosphors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yue; Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026; Liu, Yu
2012-01-15
Graphical abstract: In this paper, spindle-like CaWO{sub 4}:Sm{sup 3+} phosphors were prepared via a polyvinylpyrrolidone (PVP)-assisted sonochemical process. Dependence of emission intensity on Sm{sup 3+} ions concentration in the CaWO{sub 4}:Sm{sup 3+} phosphor were also calculated via a nonlinear fitting by using the formula y = ax/(1 + bx{sup c}). Highlights: Black-Right-Pointing-Pointer The samples were prepared via a PVP assisted sonochemical process. Black-Right-Pointing-Pointer The color coordinates for 1 mol% Sm{sup 3+} doped CaWO{sub 4} phosphor were calculated. Black-Right-Pointing-Pointer The D-D interaction is responsible for concentration quenching between Sm{sup 3+} ions. Black-Right-Pointing-Pointer The critical energy transfer distances (R{sub c}) were obtained.more » -- Abstract: Spindle-like CaWO{sub 4}:Sm{sup 3+} phosphors were prepared via a Polyvinylpyrrolidone (PVP)-assisted sonochemical process, and characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and photoluminescence spectroscopy (PL). The XRD results suggested that the prepared samples are single-phase. The FE-SEM images indicated that the prepared CaWO{sub 4}:Sm{sup 3+} phosphors are composed of many spindles with maximum average diameter of 150 nm and maximum average length of 500 nm. Under 404 nm excitation, the characteristic emissions corresponding to {sup 4}G{sub 5/2} {yields} {sup 6}H{sub J} (J = 5/2, 7/2, 9/2 and 11/2) transitions of Sm{sup 3+} in CaWO{sub 4} phosphors were observed. The color coordinates for 1 mol% Sm{sup 3+} doped CaWO{sub 4} phosphor were calculated to be (0.595, 0.404). The fluorescent concentration quenching of Sm{sup 3+} doped spindle-like phosphors was studied based on the Van Uitert's model, and it was found that the electric dipole-dipole (D-D) interaction is the dominant energy transfer mechanism between Sm{sup 3+} ions in the CaWO{sub 4}:Sm{sup 3+} phosphors. The critical energy transfer distance was estimated.« less
PLACING TOP CHORD CENTER PANEL. View is to the northwest ...
PLACING TOP CHORD CENTER PANEL. View is to the northwest from the old suspension bridge. Chord members being moved into place by jigger stick and highline - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
Oxygen permeation and stability of La 0.4Ca 0.6Fe 1-xCo xO 3-δ ( x = 0, 0.25, 0.5) membranes
NASA Astrophysics Data System (ADS)
Diethelm, S.; Van herle, J.; Middleton, P. H.; Favrat, D.
Three perovskite-type compounds of composition La 0.4Ca 0.6Fe 1- xCo xO 3- δ ( x=0, 0.25 and 0.5) were investigated for use as oxygen separation membranes for the partial oxidation (POX) of methane to syngas. Special attention was given to the question of their stability in real operating conditions. A permeation set-up was specially designed to measure oxygen fluxes through these materials when placed in a strong pO 2 gradient. It also facilitated testing the long-term stability of the specimen. Permeation measurements performed in an air/argon gradient between 800 and 1000 °C showed that the highest fluxes were obtained with the highest content of cobalt (La 0.4Ca 0.6Fe 0.5Co 0.5O 3- δ ≅ La 0.4Ca 0.6Fe 0.75Co 0.25O 3- δ > La 0.4Ca 0.6FeO 3- δ). In addition, comparison between the fluxes of samples of different thickness gave clear evidence of surface limitations in the oxygen transport. The long-term stability test showed opposite trends: only the two lowest Co containing compounds ( x=0 and 0.25) sustained an air/(Ar+H 2) gradient over more than 600 h. The other ( x=0.5) broke shortly after the introduction of H 2. In the presence of H 2, the oxygen flux was increased by a factor 10 compared to Ar and reached 0.83 μmol/cm 2 s for La 0.4Ca 0.6Fe 0.75Co 0.25O 3- δ at 900 °C. Post-operation SEM examination of the cross-section and both surfaces revealed that the surface exposed to H 2 had started to decompose resulting in the formation of a thin porous layer but the bulk of the material remained unchanged.
Calcinated egg shell as a candidate of biosecurity enhancement material
OTA, Mari; TOYOFUKU, Chiharu; THAMMAKARN, Chanathip; SANGSRIRATANAKUL, Natthanan; YAMADA, Masashi; NAKAJIMA, Katsuhiro; KITAZAWA, Minori; HAKIM, Hakimullah; ALAM, Md. Shahin; SHOHAM, Dany; TAKEHARA, Kazuaki
2016-01-01
Calcinated egg shell (Egg-CaO), of which the main component is calcium oxide, was evaluated in the forms of powder and aqueous solutions for their efficacies as disinfectants against avian influenza virus (AIV), Newcastle disease virus (NDV), infectious bursal disease virus (IBDV), Salmonella Infantis and Escherichia coli. Egg-CaO powder inactivated these viruses within 3 min in the presence of 33% of fetal bovine serum (FBS). In Egg-CaO solutions, except AIV, all pathogens were inactivated within 1 hr, even in the presence of 5% of FBS. Without FBS, all pathogens, except AIV, were inactivated within 3 min, and AIV within 1 hr. In addition, persistence of virucidal activity against AIV and NDV of Egg-CaO powder was confirmed after exposure to sunlight for 2 weeks or resuspension with water for 7 times, simulating field harsh environments. Chick growth test was conducted to ensure the safety of the use of Egg-CaO powder in chicken cages and showed that it is safe to add Egg-CaO in litter or feed. In conclusion, Egg-CaO can be useful for the enhancement of biosecurity at farms. PMID:26854110
Kumar, Ashok
2010-08-01
Dysregulation of the cholinergic transmitter system is a hallmark of Alzheimer's disease and contributes to an age-associated decline in memory performance. The current study examined the influence of carbachol, a cholinergic receptor agonist, on synaptic transmission over the course of aging. Extracellular excitatory postsynaptic field potentials were recorded from CA3-CA1 synapses in acute hippocampal slices obtained from young adult (5-8 mo) and aged (22-24 mo) male Fischer 344 rats. Bath application of carbachol elicited a transient depression of synaptic transmission, which was followed by a long-lasting depression (CCh-LTD) observed 90 min after carbachol cessation in both age groups. However, the magnitude of CCh-LTD was significantly larger in senescent animals and was attenuated by N-methyl-D-aspartate receptor blockade in aged animals. Blockade of L-type Ca(2+) channels inhibited CCh-LTD to a greater extent in aged animals compared to young adults. Finally, the expression of CCh-LTD was dependent on protein synthesis. The results indicate that altered Ca(2+) homeostasis or muscarinic activation of Ca(2+) signaling contribute to the enhanced CCh-LTD during senescence.
Synthesis of Bi.sub.1.8 Pb.sub.0.4 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x superconductor
Smith, Michael G.
1996-01-01
Two-powder processes for the synthesis of superconducting (Bi, Pb)-2223/Ag-clad wires by the oxide-powder-in-the-robe are provided. The first precursor powder, of nominal stoichiometry CaCuO.sub.x, is a solution-synthesized mixture of Ca.sub.0.45 Cu.sub.0.55 O.sub.2 and CaO. Using these oxide precursor mixtures, superconducting tapes with well-aligned grains and reproducible critical current densities J.sub.c in the range of 20,000 to 26,000 A/cm.sup.2 at 75 K in self-field after annealing less than 200 hours were obtained.
Synthesis of Bi{sub 1.8}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} superconductor
Smith, M.G.
1996-10-29
Two-powder processes for the synthesis of superconducting (Bi, Pb)-2223/Ag-clad wires by the oxide-powder-in-the-robe are provided. The first precursor powder, of nominal stoichiometry CaCuO{sub x}, is a solution-synthesized mixture of Ca{sub 0.45}Cu{sub 0.55}O{sub 2} and CaO. Using these oxide precursor mixtures, superconducting tapes with well-aligned grains and reproducible critical current densities J{sub c} in the range of 20,000 to 26,000 A/cm{sup 2} at 75 K in self-field after annealing less than 200 hours were obtained. 2 figs.
NASA Astrophysics Data System (ADS)
Lo, Li; Shen, Chuan-Chou; Lu, Chia-Jung; Chen, Yi-Chi; Chang, Ching-Chih; Wei, Kuo-Yen; Qu, Dingchuang; Gagan, Michael K.
2014-02-01
We have developed a rapid and precise procedure for measuring multiple elements in foraminifera and corals by inductively coupled plasma sector field mass spectrometry (ICP-SF-MS) with both cold- [800 W radio frequency (RF) power] and hot- (1200 W RF power) plasma techniques. Our quality control program includes careful subsampling protocols, contamination-free workbench spaces, and refined plastic-ware cleaning process. Element/Ca ratios are calculated directly from ion beam intensities of 24Mg, 27Al, 43Ca, 55Mn, 57Fe, 86Sr, and 138Ba, using a standard bracketing method. A routine measurement time is 3-5 min per dissolved sample. The matrix effects of nitric acid, and Ca and Sr levels, are carefully quantified and overcome. There is no significant difference between data determined by cold- and hot-plasma methods, but the techniques have different advantages. The cold-plasma technique offers a more stable plasma condition and better reproducibility for ppm-level elements. Long-term 2-sigma relative standard deviations (2-RSD) for repeat measurements of an in-house coral standard are 0.32% for Mg/Ca and 0.43% for Sr/Ca by cold-plasma ICP-SF-MS, and 0.69% for Mg/Ca and 0.51% for Sr/Ca by hot-plasma ICP-SF-MS. The higher sensitivity and enhanced measurement precision of the hot-plasma procedure yields 2-RSD precision for μmol/mol trace elements of 0.60% (Mg/Ca), 9.9% (Al/Ca), 0.68% (Mn/Ca), 2.7% (Fe/Ca), 0.50% (Sr/Ca), and 0.84% (Ba/Ca) for an in-house foraminiferal standard. Our refined ICP-SF-MS technique, which has the advantages of small sample size (2-4 μg carbonate consumed) and fast sample throughput (5-8 samples/hour), should open the way to the production of high precision and high resolution geochemical records for natural carbonate materials.
Radio Frequency Magneto-Optical Trapping of CaF with High Density.
Anderegg, Loïc; Augenbraun, Benjamin L; Chae, Eunmi; Hemmerling, Boerge; Hutzler, Nicholas R; Ravi, Aakash; Collopy, Alejandra; Ye, Jun; Ketterle, Wolfgang; Doyle, John M
2017-09-08
We demonstrate significantly improved magneto-optical trapping of molecules using a very slow cryogenic beam source and either rf modulated or dc magnetic fields. The rf magneto-optical trap (MOT) confines 1.0(3)×10^{5} CaF molecules at a density of 7(3)×10^{6} cm^{-3}, which is an order of magnitude greater than previous molecular MOTs. Near Doppler-limited temperatures of 340(20) μK are attained. The achieved density enables future work to directly load optical tweezers and create optical arrays for quantum simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De, Santanu, E-mail: santanujuphys91@gmail.com; Kumar, Kranti; Banerjee, A.
We have found that the geometrically frustrated spin chain compound Ca{sub 3}Co{sub 2}O{sub 6} belonging to Ising like universality class with uniaxial anisotropy shows kinetic arrest of first order intermediate phase (IP) to ferrimagnetic (FIM) transition. In this system, dc magnetization measurements followed by different protocols suggest the coexistence of high temperature IP with equilibrium FIM phase in low temperature. Formation of metastable state due to hindered first order transition has also been probed through cooling and heating in unequal field (CHUF) protocol. Kinetically arrested high temperature IP appears to persist down to almost the spin freezing temperature in thismore » system.« less
BEAN MODEL AND AC LOSSES IN Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}/Ag TAPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
SUENAGA,M.; CHIBA,T.; WIESMANN,H.J.
The Bean model is almost solely used to interpret ac losses in the powder-in-tube processed composite conductor, Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}/Ag. In order to examine the limits of the applicability of the model, a detailed comparison was made between the values of critical current density J{sub c} for Bi(2223)/Ag tapes which were determined by standard four-probe-dc measurement, and which were deduced from the field dependence of the ac losses utilizing the model. A significant inconsistency between these values of J{sub c} were found, particularly at high fields. Possible sources of the discrepancies are discussed.
Parallel emergence of stable and dynamic memory engrams in the hippocampus.
Hainmueller, Thomas; Bartos, Marlene
2018-06-06
During our daily life, we depend on memories of past experiences to plan future behaviour. These memories are represented by the activity of specific neuronal groups or 'engrams' 1,2 . Neuronal engrams are assembled during learning by synaptic modification, and engram reactivation represents the memorized experience 1 . Engrams of conscious memories are initially stored in the hippocampus for several days and then transferred to cortical areas 2 . In the dentate gyrus of the hippocampus, granule cells transform rich inputs from the entorhinal cortex into a sparse output, which is forwarded to the highly interconnected pyramidal cell network in hippocampal area CA3 3 . This process is thought to support pattern separation 4 (but see refs. 5,6 ). CA3 pyramidal neurons project to CA1, the hippocampal output region. Consistent with the idea of transient memory storage in the hippocampus, engrams in CA1 and CA2 do not stabilize over time 7-10 . Nevertheless, reactivation of engrams in the dentate gyrus can induce recall of artificial memories even after weeks 2 . Reconciliation of this apparent paradox will require recordings from dentate gyrus granule cells throughout learning, which has so far not been performed for more than a single day 6,11,12 . Here, we use chronic two-photon calcium imaging in head-fixed mice performing a multiple-day spatial memory task in a virtual environment to record neuronal activity in all major hippocampal subfields. Whereas pyramidal neurons in CA1-CA3 show precise and highly context-specific, but continuously changing, representations of the learned spatial sceneries in our behavioural paradigm, granule cells in the dentate gyrus have a spatial code that is stable over many days, with low place- or context-specificity. Our results suggest that synaptic weights along the hippocampal trisynaptic loop are constantly reassigned to support the formation of dynamic representations in downstream hippocampal areas based on a stable code provided by the dentate gyrus.
Radioactivity of Nevada hot-spring systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollenberg, H.A.
1974-01-01
Field gamma radiometry and laboratory gamma spectrometry of waters and spring deposits were accomplished for some hot-sprin systems in northern Nevada. Gamma dose rates measured on-site range from 2 to 500 mu rphr, and depend msinly on the amounts of the natural radioelements in the spring deposits. At several locations /sup 222/Rn, emanating from the water, casuses recognizable ganna anomalies. High radioactivities, primarily from /sup 226/Ra, are associated with hot-spring systems dominated by CaCO/sub 3/, while silica-dominated systems sre relatively low in radioactivity. Gamma spectrometry disclosed the enrichment of / sup 226/Ra with respect to its parent U in CaCO/submore » 3/-dominated systems. /sup 226/Ra preferentially associates with Ca; therefore, where tufa and siliceous sinter are present in a deposit, the calcareous material is highest in radioacnvity. Spring deposits at fast-flowing CaCO/sub 3/-dominated systems are generally less radioactive than calcareous deposits at slower flowing springs. (auth)« less
NASA Astrophysics Data System (ADS)
Monteagudo, M. M.; Weldeab, S.; Lea, D. W.; Karl, D. M.; Rosenthal, Y.
2016-12-01
Planktonic foraminiferal Mg/Ca is one of the most widely-applied proxies for sea surface temperature reconstructions. Current calibrations yield a temperature sensitivity of 9.0 ± 1.0% Mg/Ca per °C (1-2). According to culture studies (3-4), salinity may also influence Mg/Ca ratios by 3.3 ± 1.7% per salinity unit (4), though this effect has not been verified by a field-based study. Paired Mg/Ca-δ18O and faunal fluxes of Globigerinoides ruber (sensu lato) were measured from sediment trap samples at the Hawaii Ocean Time Series. Within the habitat depth range of G. ruber (0-50 m), seasonal temperature and salinity vary by 4 °C and 0.7 practical salinity units, respectively. Multivariate regression reveals that salinity influence is not significant at this site, allowing us to isolate and quantify the temperature influence on Mg/Ca using spatially and temporally highly-resolved temperature measurements. Our study shows an exponential Mg/Ca-temperature relationship of: Mg/Ca [mmol/mol] = (0.97 ± 0.39) exp ((0.063 ± 0.016)*T[°C]) (RMSE=0.32). The results of our faunal and geochemical analyses highlight two key findings. First, foraminiferal assemblage data reveals that the mean annual flux of G. ruber (13 shells/m2/day) is strongly skewed by flux during the summer (up to 63 shells/m2/day) with potential implications for reconstructing annual SST. Second, our results indicate a temperature sensitivity of 6.3 ± 1.6% Mg/Ca per °C, suggesting that the temperature influence on Mg/Ca may be lower than the canonical 9 ± 1 % Mg/Ca per °C value and is sensitive to the choice of habitat depth. 1. Anand et al., Paleoceanography, 18, 1050 (2003); 2. Dekens et al., G3, 3, 1022 (2002); 3. Hönisch et al., GCA, 121, 196-213 (2013); 4. Kisakürek et al., EPSL, 273, 260-269 (2008).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winarsih, Suci; Kurniawan, Budhy, E-mail: bkuru07@gmail.com; Manaf, Azwar
2016-06-17
In this paper, we explored structural and electrical properties of La{sub 0.7}(Ba{sub 1-x}Ca{sub x}){sub 0.3}MnO{sub 3} (x = 0; 0.03; and 0.05) compounds. The general structure of perovskite manganites is AMnO{sub 3} (A= trivalent rare earth with divalent ion-doped). Average A-site cation size, external pressure, and the variance of the cation size σ{sup 2} are one of many factors that affected to magneto-transport properties of manganites as reported by others. In this work we focus only on the electrical properties in La{sub 0.7}Ba{sub 0.3}MnO{sub 3} Ca-doped compound which may influence crystal structure resulting resistivity phenomena under magnetic field influence. Allmore » samples were synthesized by sol-gel method from which fine powders were obtained. The X-ray powder diffraction pattern of powder materials shows that all samples are fully crystalline with a rhombohedral structure. Rietveld refinement shows that the presence of calcium has changed some crystal structural parameters such lattice parameter, Mn–O bond length, and Mn–O–Mn angles. The electrical resistivity of all synthesized materials investigated by four point probe method using Cryogenic Magnet in the temperature range of 50-300 K under influence a magnetic field shows resistivity temperature dependent. In fact presence of calcium has reduced the resistivity. It might occure because it has made an enhancement in the mobility of hopping electrons. The magnetic external field causes the resistivity decreased for all samples because host spin align by delocalizing the charge carries so electron itinerant through the lattice suggested by other authors. Both calcium dopant concentration and the applied external magnetic field shows strong correlation in reduction of resistivity.« less
3. EASTERN EDGE OF POST ENGINEER'S SHOPS AND YARD, LOOKING ...
3. EASTERN EDGE OF POST ENGINEER'S SHOPS AND YARD, LOOKING 312 DEGREES NORTH WEST, EUCALYPTUS TREES DENOTE EDGE OF PRESIDIO. - Presidio of San Francisco, Post Engineer's Headquarters Office, Crissy Field North cantonment, San Francisco, San Francisco County, CA
Evolution of magnetic properties of CaMn1-x Nb x O3 with Nb-doping
NASA Astrophysics Data System (ADS)
Markovich, V.; Fita, I.; Wisniewski, A.; Puzniak, R.; Martin, C.; Mogilyansky, D.; Jung, G.; Gorodetsky, G.
2015-08-01
Magnetic and structural properties of Nb-doped CaMnO3 have been studied and the effect of doping with 0.02 ⩽ x ⩽ 0.1 has been investigated. Substitution of Nb5+ ion for the Mn4+ site of the parent matrix causes one-electron doping with the chemical formula \\text{CaMn}1-2x4+\\text{Mn}x3+\\text{Nb}x5+{{\\text{O}}3} , accompanied by a monotonous increase of the lattice parameters, unit-cell volume, average Mn-O bond distance and a decrease in Mn-O-Mn bond angle, with increasing x. Low temperature magnetic ground state of CaMn1-x Nb x O3 has been found to be dependent on niobium doping level. The ground magnetic state evolves from mostly antiferromagnetic, with a weak ferromagnetic component for x = 0.02-0.08, to charge ordered C-type antiferromagnetic state at x = 0.1. Spontaneous magnetization increases sharply with increasing doping level, approaches a maximal value of 4.1 emu g-1 at T = 10 K for x = 0.08, and then decreases rapidly to reach a very small value of 0.2 emu g-1 for x = 0.1. Anomalous negative magnetization behavior below the magnetic transition temperature has been observed for the compound with x = 0.04 in the field cooled magnetization and remanent dc magnetization measurements. Vertical and horizontal shifts of the hysteresis loop of the field cooled sample have been observed for CaMn0.9Nb0.1O3 as possible signatures of the exchange bias effect. The effect of hydrostatic pressure on dc magnetization for the sample with x > 0.02 revealed a significant increase of the ferromagnetic phase volume under pressure, linked to progressive suppression of a negative magnetization in x = 0.04 sample.
Effect of cryogenic temperature on spectroscopic and laser properties of Er,La:SrF2-CaF2 crystal
NASA Astrophysics Data System (ADS)
Švejkar, Richard; Šulc, Jan; Němec, Michal; Jelínková, Helena; Doroshenko, Maxim E.; Nakladov, Andrei N.; Osiko, Vjatcheslav V.
2016-03-01
The laser and spectroscopic properties of crystal Er,La:SrF2-CaF2 at temperature range 80 - 300 K, which is appropriate for generation of radiation around 2.7 um is presented. The sample of Er,La:SrF2-CaF2 (concentration Er(0.04), La(0.12):Ca(0.77)Sr(0.07)) had plan-parallel face-polished faces without anti-reflection coatings (thickness 8.2 mm). During spectroscopy and laser experiments the Er,La:SrF2-CaF2 was attached to temperature controlled copper holder and it was placed in vacuum chamber. The transmission and emission spectra of Er,La:SrF2-CaF2 together with the fluorescence decay time were measured in dependence on temperature. The excitation of Er,La:SrF2-CaF2 was carried out by a laser diode radiation (pulse duration 5 ms, repetition rate 20 Hz, pump wavelength 973 nm). Laser resonator was hemispherical, 140 mm in length with at pumping mirror (HR @ 2.7 µm) and spherical output coupler (r = 150 mm, R = 95 % @ 2.5 - 2.8 µm). Tunability of laser at 80 K in range 2690 - 2765 nm was obtained using MgF2 birefringent filter. With decreasing temperature of sample the fluorescence lifetime of manifold 4I11/2 (upper laser level) became shorter and intensity of up-conversion radiation was increasing. The highest slope efficiency with respect to absorbed power was 2.3 % at 80 K. The maximum output of peak amplitude power was 0.3 W at 80 K, i.e. 1.5 times higher than measured this value at 300 K. The wavelength generated by Er,La:SrF2-CaF2 laser (2.7 µm) is relatively close to absorption peak of water (3 µm) and so, one of the possible usage should be in medicine and spectroscopy.
Keefer, David K.; Moseley, Michael E.; DeFrance, Susan D.
2003-01-01
Previous work throughout the Ilo region of south coastal Peru has documented the existence of flood and debris-flow deposits produced by two El Niño events evidently much more severe than any in recent history. These two events have been dated to ca. AD 1300–1400 and AD 1607–08. The Late Pleistocene to Holocene record of older sedimentary deposits in this region is dominated by flood and debris-flow deposits of similar scale. These older deposits have been described and dated from three coastal, alluvial-fan sites. These deposits, which are as old as 38 200 years, are dominated by massive debris-flow deposits, several tens of cm thick, typically composed of cobble- and boulder-sized clasts in a matrix of silty sand, with characteristics indicating generation by heavy rainfall in an arid environment. Twenty-two radiocarbon dates and a single infrared-stimulated luminescence date show that particularly severe El Niño events occurred throughout the Late Pleistocene and two of three divisions of the Holocene with significantly different frequencies. The period of greatest activity was during the Early Holocene when at least six such events took place during a period of ca. 3600 years, beginning near the end of the Younger Dryas ca. 12 000 years ago. One of these events produced a debris flow that may have caused abandonment of the Paleo-Indian site at Quebrada Tacahuay, one of the oldest on the Andean coast. No severe events took place during the Middle Holocene between ca. 8400 and 5300 years ago, when a wide variety of other paleoclimate proxy records indicate that the El Niño–Southern Oscillation regime was particularly weak. Since ca. 5300 years ago, four of these severe events have taken place. The Late Pleistocene sequence is constrained by only two dates, which indicate that at least ten severe events took place between ca. 38 200 and 12 900 years ago. Mechanisms probably responsible for generating these large-scale deposits include: (1) ‘Mega-Niños’ that produced anomalously heavy rainfall along most or all of the central Andean coast; (2) El Niños that occurred shortly after great earthquakes that produced large amounts of sediment; or (3) El Niños that produced anomalously heavy local rainfall. The existence of these large-scale deposits in the Ilo region implies a level of hazard much higher than indicated by the historical record alone
Swerts, Ben; Chibotaru, Liviu F; Lindh, Roland; Seijo, Luis; Barandiaran, Zoila; Clima, Sergiu; Pierloot, Kristin; Hendrickx, Marc F A
2008-04-01
In this article, we present a fragment model potential approach for the description of the crystalline environment as an extension of the use of embedding ab initio model potentials (AIMPs). The biggest limitation of the embedding AIMP method is the spherical nature of its model potentials. This poses problems as soon as the method is applied to crystals containing strongly covalently bonded structures with highly nonspherical electron densities. The newly proposed method addresses this problem by keeping the full electron density as its model potential, thus allowing one to group sets of covalently bonded atoms into fragments. The implementation in the MOLCAS 7.0 quantum chemistry package of the new method, which we call the embedding fragment ab inito model potential method (embedding FAIMP), is reported here, together with results of CASSCF/CASPT2 calculations. The developed methodology is applied for two test problems: (i) the investigation of the lowest ligand field states (2)A1 and (2)B1 of the Cr(V) defect in the YVO4 crystal and (ii) the investigation of the lowest ligand field and ligand-metal charge transfer (LMCT) states at the Mn(II) substitutional impurity doped into CaCO3. Comparison with similar calculations involving AIMPs for all environmental atoms, including those from covalently bounded units, shows that the FAIMP treatment of the YVO4 units surrounding the CrO4(3-) cluster increases the excitation energy (2)B1 → (2)A1 by ca. 1000 cm(-1) at the CASSCF level of calculation. In the case of the Mn(CO3)6(10-) cluster, the FAIMP treatment of the CO3(2-) units of the environment give smaller corrections, of ca. 100 cm(-1), for the ligand-field excitation energies, which is explained by the larger ligands of this cluster. However, the correction for the energy of the lowest LMCT transition is found to be ca. 600 cm(-1) for the CASSCF and ca. 1300 cm(-1) for the CASPT2 calculation.
ERIC Educational Resources Information Center
Fujii, Satoshi; Yamazaki, Yoshihiko; Goto, Jun-Ichi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko
2016-01-01
We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated by preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential or the population…
Combined effects of dopants and electric field on interactions of dopamine with graphene
NASA Astrophysics Data System (ADS)
Wang, Qun; Wang, Meng-hao; Lu, Xiong; Wang, Ke-feng; Fang, Li-ming
2017-10-01
We utilized the density functional theory to study interactions in dopamine (DA)-graphene (G) systems. Graphene was modified with boron (B), nitrogen (N), calcium (Ca), and iron (Fe) atoms. Furthermore, an external electric field (E-field) between 0.005 and 0.020 au was applied between the DA and (Ca, Fe)-doped G. The study revealed that interactions can be modulated between the DA and doped G (especially the Ca- and Fe-doped G) due to the formation of metalsbnd O and Osbnd metalsbnd O covalent interactions. In addition, interactions are sensitive to the E-field applied to DA-Ca/Fe-G-lying models, there are the strongest interactions with the 0.015 au E-field.
Silva-Gómez, Adriana B; Bravo-Duran, Dolores A; Eguibar, Jose R; Cortes, Carmen
2018-06-01
Myelin mutant taiep rats show a progressive demyelination in the central nervous system due to an abnormal accumulation of microtubules in the cytoplasm and the processes on their oligodendrocytes. Demyelination is associated with electrophysiological alterations and the mutant had a progressive astrocytosis. The illness is associated with change in cytokine levels and in the expression of different nitric oxide synthase and concomitantly lipoperoxidation in several areas of the brain. However, until now there has been no detailed anatomical analysis of neurons in this mutant. The aim of this study was to analyze the dendritic morphology in the hippocampus using Golgi-Cox staining and spatial memory through Morris water maze test in young adult (3 months old) taiep rats and compare them with normal Sprague-Dawley. Our results showed that taiep rats have altered dendritic tree morphology in pyramidal neurons in the CA1 field of the hippocampus, but not in the CA3 region. These morphological changes did not produce a concomitant deficit in spatial memory acquisition or recall at this early stage of the disease. Our results suggest that impairment of dendritic morphology in the CA1 field of the hippocampus is a landmark of the pathology of this progressive multiple sclerosis model. © 2018 Wiley Periodicals, Inc.
Multiple caloric effects in (Ba0.865Ca0.135Zr0.1089Ti0.8811Fe0.01)O3 ferroelectric ceramic
NASA Astrophysics Data System (ADS)
Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul
2015-07-01
Multiple caloric effects have been investigated for Fe-doped bulk (Ba0.865Ca0.135Zr0.1089Ti0.8811Fe0.01)O3 (BCZTO-Fe) ferroelectric ceramic. Indirect predictions were made using Maxwell's relations in conjunction with data from experimental observations. It was revealed that bulk BCZTO-Fe has huge untapped potential for solid-state refrigeration. A peak electrocaloric effect of 0.45 K (347 K) was predicted for 0-3 kV.mm-1 electric field, significantly higher than other BCZTO based materials. A maximum elastocaloric cooling of 1.4 K (298 K) was achieved for applied stress of 0-200 MPa. Finally, an unforeseen component of electric field driven caloric effect has been reported as inverse piezocaloric effect, with a maximum temperature change of 0.28 K (298 K).
Jung, Soo-Jin; Park, Shin Young; Kim, Seh Eun; Kang, Ike; Park, Jiyong; Lee, Jungwon; Kim, Chang-Min; Chung, Myung-Sub; Ha, Sang-Do
2017-07-01
The aim of this study was to evaluate the bactericidal effect of calcium oxide (CaO) against Pseudomonas aeruginosa biofilms on quail eggshells and major egg contacting surfaces (stainless steel, plastic, and rubber). The samples were subjected to CaO treatments (0%, 0.01%, 0.05%, 0.10%, 0.15%, 0.20%, 0.25%, and 0.30%) for 1 min. All the CaO treatments significantly reduced P. aeruginosa biofilms on all tested surfaces as compared to controls. In comparison of biofilm stability, the strongest and most resistant biofilm was formed on eggshell against the CaO treatment, followed by rubber, stainless steel, and plastic. In evaluation of bactericidal effect, the largest reduction (3.16 log CFU) was observed in plastic even at the lowest concentration of CaO (0.01%), whereas the least reduction was found in eggshells, regardless of CaO concentration. In addition, stainless steel showed a significant reduction in biofilm formation at all concentrations except 0.10% to 0.15% CaO. At 0.30% CaO, the reduction of P. aeruginosa in biofilms on stainless steel, plastic, rubber, and eggshell were 5.48, 6.37, 4.87, and 3.14 log CFU/cm 2 (CFU/egg), respectively. Biofilm reduction after CaO treatment was also observed by field emission scanning electron microscopy (FE-SEM). Based on the FE-SEM images, we observed that P. aeruginosa biofilms formed compact aggregations on eggshell surfaces with CaO treatments up to 0.30%. More specifically, a 0.20% CaO treatment resulted in the reductions of 3 to 6 log CFU in all materials. © 2017 Institute of Food Technologists®.
Challenges of coronary angiography and intervention in patients previously treated by TAVI.
Blumenstein, Johannes; Kim, Won-Keun; Liebetrau, Christoph; Gaede, Luise; Kempfert, Joerg; Walther, Thomas; Hamm, Christian; Möllmann, Helge
2015-08-01
Since the beginning of the transcatheter aortic valve implantation (TAVI) era, many prosthetic valves have entered clinical practice. TAVI prostheses differ regarding stent design and some may potentially interfere with diagnostic or interventional catheters. The aim of our analysis was to evaluate the feasibility of coronary angiography (CA) or percutaneous coronary intervention (PCI) in patients with prior TAVI. From 2011 to 2014, 1,000 patients were treated by TAVI at our center using eight different valve prostheses (Symetis ACURATE TA and ACURATE TF; Medtronic CoreValve and Engager; JenaValve, SJM Portico; Edwards Lifesciences SAPIEN and SAPIEN XT). In this analysis, all patients were included who underwent either CA or PCI after TAVI. CA or PCI were rated as fully feasible when coronary ostia could be fully intubated, partially feasible when coronary arteries could be displayed only unselectively or unfeasible when coronary arteries could not be displayed. A total of 35 patients underwent CA/PCI after TAVI at our hospital. In all patients with valves implanted in a subcoronary position (SAPIEN n = 19; JenaValve n = 1), selective intubation was feasible using standard catheters. Out of 15 patients with valve types that are placed over the coronary ostia (CoreValve n = 10, ACURATE n = 4, Portico n = 1), selective intubation of coronary arteries was not possible in 9 cases, even with the use of different diagnostic catheters. Full accessibility was possible only in 3 cases. In 2 cases, display of the right CA was only feasible using unselective aortography. In 1 case, coronary arteries could not be displayed at all immediately after a valve-in-valve procedure. CA or PCI after TAVI is usually feasible. Devices that are placed in a partially supracoronary position, however, can interfere with diagnostic or guiding catheters and impede straightforward intervention, especially when the prosthesis is not implanted in the correct position.
Wang, Baochen; Liu, Yan-Gai; Huang, Zhaohui; Fang, Minghao; Wu, Xiaowen
2017-12-22
Discovery of novel phosphors is one of the main issues for improving the color rendering index (CRI) and correlated color temperature (CCT) of white light-emitting diodes (w-LEDs). This study mainly presents a systematic research on the synthesis, crystal structure variation and photoluminescence tuning of novel (oxy)nitride solid solution Ca 3 Si 3-x O 3+x N 4-2x : Eu 2+ phosphors. XRD refinements show that lattice distortion occurs when x value diverges the optimum one (x = 1). The lattice distortion causes a widening of emission spectrum and an increase of Stokes shift (ΔSS), which leads to a bigger thermal quenching. With decrease of x value, the emission spectrum shows an obvious red-shift from 505.2 to 540.8 nm, which is attributed to the crystal field splitting. The enhanced crystal field splitting also broadens the excitation spectrum, making it possible to serve as the phosphor for near ultraviolet (n-UV) LEDs. A 3-phosphor-conversion w-LED lamp was fabricated with the as-prepared phosphor, which exhibits high CRI (Ra = 85.29) and suitable CCT (4903.35 K). All these results indicate that the Ca 3 Si 3-x O 3+x N 4-2x : Eu 2+ phosphor can serve as the green phosphor for n-UV w-LEDs, with a tunable spectrum by controlling the crystal structure and morphology.
High-Tc superconducting materials for electric power applications.
Larbalestier, D; Gurevich, A; Feldmann, D M; Polyanskii, A
2001-11-15
Large-scale superconducting electric devices for power industry depend critically on wires with high critical current densities at temperatures where cryogenic losses are tolerable. This restricts choice to two high-temperature cuprate superconductors, (Bi,Pb)2Sr2Ca2Cu3Ox and YBa2Cu3Ox, and possibly to MgB2, recently discovered to superconduct at 39 K. Crystal structure and material anisotropy place fundamental restrictions on their properties, especially in polycrystalline form. So far, power applications have followed a largely empirical, twin-track approach of conductor development and construction of prototype devices. The feasibility of superconducting power cables, magnetic energy-storage devices, transformers, fault current limiters and motors, largely using (Bi,Pb)2Sr2Ca2Cu3Ox conductor, is proven. Widespread applications now depend significantly on cost-effective resolution of fundamental materials and fabrication issues, which control the production of low-cost, high-performance conductors of these remarkable compounds.
Aeolian stratigraphy describes ice-age paleoenvironments in unglaciated Arctic Alaska
NASA Astrophysics Data System (ADS)
Gaglioti, Benjamin V.; Mann, Daniel H.; Groves, Pamela; Kunz, Michael L.; Farquharson, Louise M.; Reanier, Richard E.; Jones, Benjamin M.; Wooller, Matthew J.
2018-02-01
Terrestrial paleoenvironmental records with high dating resolution extending into the last ice age are rare from the western Arctic. Such records can test the synchronicity and extent of ice-age climatic events and define how Arctic landscapes respond to rapid climate changes. Here we describe the stratigraphy and sedimentology of a yedoma deposit in Arctic Alaska (the Carter Section) dating to between 37,000 and 9000 calibrated radiocarbon years BP (37-9 ka) and containing detailed records of loess and sand-sheet sedimentation, soil development, carbon storage, and permafrost dynamics. Alternation between sand-sheet and loess deposition provides a proxy for the extent and activity of the Ikpikpuk Sand Sea (ISS), a large dune field located immediately upwind. Warm, moist interstadial times (ca. 37, 36.3-32.5, and 15-13 ka) triggered floodplain aggradation, permafrost thaw, reduced loess deposition, increased vegetation cover, and rapid soil development accompanied by enhanced carbon storage. During the Last Glacial Maximum (LGM, ca. 28-18 ka), rapid loess deposition took place on a landscape where vegetation was sparse and non-woody. The most intense aeolian activity occurred after the LGM between ca. 18 and 15 ka when sand sheets fringing the ISS expanded over the site, possibly in response to increasingly droughty conditions as summers warmed and active layers deepened. With the exception of this lagged LGM response, the record of aeolian activity at the Carter Section correlates with other paleoenvironmental records from unglaciated Siberia and Alaska. Overall, rapid shifts in geomorphology, soils, vegetation, and permafrost portray an ice-age landscape where, in contrast to the Holocene, environmental change was chronic and dominated by aeolian processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Hamalawy, A.A.; El-Zaidia, M.M.; Ammar, A.A.
1993-04-01
Measurements of the superconducting resistance as a function of temperature were performed using the conventional four-probe method. The transition to complete superconductivity was recorded for samples of (Tl[sub 2]Ca[sub 2]Ba[sub 2]Cu[sub 3]O[sub 10])[sub 100[minus]x]LiF[sub x] (2223) mixed with different LiF ratios x = 0, 2, 4, 5, 6, 8, 10, and 12wt.%. It was found that the transition temperature T[sub c] was increased up to 5 wt.% of LiF. Further addition of LiF decreases T[sub c]. Therefore, 5 wt.% LiF is the optimum concentration giving a transition temperature of 130 K. Measurements of the superconducting resistance of all the samplesmore » except the (1111) compound show that the addition of 5 wt.% LiF increases T[sub c] and decreases the metastable phases. The real part of the a.c. magnetic susceptibility [chi][sub a.c.] is studied using a zero-field cooled mechanism. The temperature dependence of [chi][sub a.c.] for the prepared TlBaCaCuO having stoichiometric composition of (1111), (2223), (2234), and (3245) and that after doping with 5 wt.% LiF showed a broad feature. The transition to the complete diamagnetic state takes place in a broad transition region containing many transition steps, indicating the presence of metastable phases. The addition of LiF decreases the fluctuation in the transition region and its effect in reducing the number of multiphases. 29 refs., 10 refs.« less
Attenuated Ca(2+) release in a mouse model of limb girdle muscular dystrophy 2A.
DiFranco, Marino; Kramerova, Irina; Vergara, Julio L; Spencer, Melissa Jan
2016-01-01
Mutations in CAPN3 cause limb girdle muscular dystrophy type 2A (LGMD2A), a progressive muscle wasting disease. CAPN3 is a non-lysosomal, Ca-dependent, muscle-specific proteinase. Ablation of CAPN3 (calpain-3 knockout (C3KO) mice) leads to reduced ryanodine receptor (RyR1) expression and abnormal Ca2+/calmodulin-dependent protein kinase II (Ca-CaMKII)-mediated signaling. We previously reported that Ca(2+) release measured by fura2-FF imaging in response to single action potential stimulation was reduced in old C3KO mice; however, the use of field stimulation prevented investigation of the mechanisms underlying this impairment. Furthermore, our prior studies were conducted on older animals, whose muscles showed advanced muscular dystrophy, which prevented us from establishing whether impaired Ca(2+) handling is an early feature of disease. In the current study, we sought to overcome these matters by studying single fibers isolated from young wild-type (WT) and C3KO mice using a low affinity calcium dye and high intracellular ethylene glycol-bis(2-aminoethylether)-n,n,n',n'-tetraacetic acid (EGTA) to measure Ca(2+) fluxes. Muscles were subjected to both current and voltage clamp conditions. Standard and confocal fluorescence microscopy was used to study Ca(2+) release in single fibers enzymatically isolated from hind limb muscles of wild-type and C3KO mice. Two microelectrode amplifier and experiments were performed under current or voltage clamp conditions. Calcium concentration changes were detected with an impermeant low affinity dye in the presence of high EGTA intracellular concentrations, and fluxes were calculated with a single compartment model. Standard Western blotting analysis was used to measure the concentration of RyR1 and the α subunit of the dihydropyridine (αDHPR) receptors. Data are presented as mean ± SEM and compared with the Student's test with significance set at p < 0.05. We found that the peak value of Ca(2+) fluxes elicited by single action potentials was significantly reduced by 15-20 % in C3KO fibers, but the kinetics was unaltered. Ca(2+) release elicited by tetanic stimulation was also impaired in C3KO fibers. Confocal studies confirmed that Ca(2+) release was similarly reduced in all triads of C3KO mice. Voltage clamp experiments revealed a normal voltage dependence of Ca(2+) release in C3KO mice but reduced peak Ca(2+) fluxes as with action potential stimulation. These findings concur with biochemical observations of reduced RyR1 and αDHPR levels in C3KO muscles and reduced mechanical output. Confocal studies revealed a similar decrease in Ca(2+) release at all triads consistent with a homogenous reduction of functional voltage activated Ca(2+) release sites. Overall, these results suggest that decreased Ca(2+) release is an early defect in calpainopathy and may contribute to the observed reduction of CaMKII activation in C3KO mice.
Absolute Geostrophic Velocity Inverted from World Ocean Atlas 2013 (WOAV13) with the P-Vector Method
2015-11-01
The WOAV13 dataset comprises 3D global gridded climatological fields of absolute geostrophic velocity inverted...from World Ocean Atlas-2013 (WOA13) temperature and salinity fields using the P-vector method. It provides a climatological velocity field that is... climatology Dataset Identifier: gov.noaa.nodc:0121576 Creator: NOAP Lab, Department of Oceanography, Naval Postgraduate School, Monterey, CA Title
Hönigsperger, Christoph; Marosi, Máté; Murphy, Ricardo; Storm, Johan F
2015-01-01
Key points Kv7 (KCNQ/M) channels are known to control excitability and generate subthreshold M-resonance in CA1 hippocampal pyramidal cells, but their properties and functions have not previously been compared along the dorsoventral (septotemporal) axis We used whole-cell recordings to compare electrophysiological properties of dorsal and ventral CA1 pyramidal cells in hippocampal slices from 3- to 4-week-old rats Blockade of Kv7/M-channels with 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE991) had a stronger impact on electrical properties in dorsal than ventral pyramidal cells, including input resistance, temporal summation, M-resonance, spike threshold, medium after-hyperpolarization, excitability, and spike frequency adaptation. Voltage-clamp recordings revealed a larger amplitude and left-shifted voltage dependence of XE991-sensitive current (IM) in dorsal vs. ventral cells. IM-dependent differences in excitability and resonance may be important for rate and phase coding of CA1 place cells along the dorsoventral axis and may enhance epileptiform activity in ventral pyramidal cells. Abstract In rodent hippocampi, the connections, gene expression and functions differ along the dorsoventral (D–V) axis. CA1 pyramidal cells show increasing excitability along the D–V axis, although the underlying mechanism is not known. In the present study, we investigated how the M-current (IM), caused by Kv7/M (KCNQ) potassium channels, and known to often control neuronal excitability, contributes to D–V differences in intrinsic properties of CA1 pyramidal cells. Using whole-cell patch clamp recordings and the selective Kv7/M blocker 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE991) in hippocampal slices from 3- to 4-week-old rats, we found that: (i) IM had a stronger impact on subthreshold electrical properties in dorsal than ventral CA1 pyramidal cells, including input resistance, temporal summation of artificial synaptic potentials, and M-resonance; (ii) IM activated at more negative potentials (left-shifted) and had larger peak amplitude in the dorsal than ventral CA1; and (iii) the initial spike threshold (during ramp depolarizations) was elevated, and the medium after-hyperpolarization and spike frequency adaptation were increased (i.e. excitability was lower) in the dorsal rather than ventral CA1. These differences were abolished or reduced by application of XE991, indicating that they were caused by IM. Thus, it appears that IM has stronger effects in dorsal than in ventral rat CA1 pyramidal cells because of a larger maximal M-conductance and left-shifted activation curve in the dorsal cells. These mechanisms may contribute to D–V differences in the rate and phase coding of position by CA1 place cells, and may also enhance epileptiform activity in ventral CA1. PMID:25656084
Molecular field coefficients and cation distribution of substituted yttrium iron garnets
NASA Astrophysics Data System (ADS)
Röschmann, P.; Hansen, P.
1981-10-01
The saturation magnetization Ms(T) of Ga, Al, Sc, and CaVBi substituted Y3Fe5O12 (YIG) single crystals and of polycrystalline Ca/Ge and Ca/Ti substituted YIG has been investigated for 4.2 K ⩽T⩽TC. The samples were repeatedly annealed and quenched at different equilibrium temperatures 773 K⩽Te ⩽1523 K. The attained site exchange of Fe and the substituents between the a and d sites resulted in considerable changes of Ms(T). From a fit of the Néel molecular field theory to the Ms(T) data the dependence of the magnetic moments at T = 0 K and of the molecular field coefficients on the amount of nonmagnetic substitutions on the a and d sites were determined. It turned out that ion-specific sets of equations are required accounting for the ''particular ion effect'' of different cation species. The cation distributions inferred from the magnetic data have been analyzed along with a thermodynamic equilibrium model. The derived site stabilizing energies for the mixed Fe-Ga and Fe-Al garnets agree well with recently reported data. New results are presented for the site stabilizing energies in Ca/Ge:YIG and for the substituents Sc and Ti with octahedral site preference.
Field and In-Lab Determination of Ca[superscript 2+] in Seawater
ERIC Educational Resources Information Center
Stoodley, Robin; Nun~ez, Jose R. Rodriguez; Bartz, Tessa
2014-01-01
Portions of classic undergraduate quantitative analysis experiments in complexiometric titration and potentiometry are combined with a field-sampling experience to create a two period (2 × 3 h) comparison-based experiment for second-year students. A multifunctional chemical analysis device is used with calcium ion-selective electrode for field…
NASA Astrophysics Data System (ADS)
Maitra, S.; Mitra, R.; Bera, K. P.; Nath, T. K.
2017-05-01
We have prepared cadmium doped CCTO (Ca1-xCdxCu3Ti4O12 where x = 0.01, 0.02, 0.03, 0.04, 0.05) by Molten Salt Synthesis technique. It has exhibited high level of crystallinity and a well defined micrometre sized grains with uniform cubic morphology, as confirmed by a combination of X-ray diffraction and field emission scanning electron microscopy. Thereby we have found the modulation of its semiconducting bandgap as a function of doping from recorded UV-Vis reflectance spectra using Kubelka Munk (KM) method where with increasing Cadmium doping content the bandgap is found to increase. We have also carried out investigation on the field emission properties of CCTO crystals and it has exhibited poor field emission characteristics. Finally, we have investigated the dielectric properties of CCTO as a function of temperature. It has exhibited a giant dielectric property with low loss over a considerable temperature regime (50-300°C) and is found to exhibit Maxwell Wagner type dielectric relaxation.
Electronic, thermoelectric, and magneto-dielectric properties of Ca1-xNaxCr2O4
NASA Astrophysics Data System (ADS)
Kolodiazhnyi, Taras; Sakurai, Hiroya
2013-06-01
We report on electronic, thermoelectric, and magneto-dielectric properties of Ca1-xNaxCr2O4 series with a calcium ferrite-type structure prepared by high-pressure-high-temperature synthesis. Dielectric spectroscopy down to 2 K confirms that both CaCr2O4 and NaCr2O4 end members have an insulating ground state notwithstanding the fact that the latter compound has a mixed valence Cr3+/Cr4+ structure. A crossover from positive to negative charge carriers occurs in NaCr2O4 at T≈230 K. Partial substitution of Ca for Na brings about a change from n to p type carriers at ca. x =0.75. A strong suppression of thermal conductivity below TN=21 K was found in CaCr2O4 indicating a scattering of acoustic phonons from a long wave-length cycloidal magnetic excitations. A pronounced dielectric anomaly at Néel temperature adds CaCr2O4 to the multiferroic family of compounds. Lattice contribution to dielectric properties of NaCr2O4 at TN=125 K is screened by high electric conductivity. An onset of the magnetocapacitance above 3 T correlates with the spin-flop transition in NaCr2O4 at a critical field of 3.5 T. A strong non-saturated magnetocapacitance in this compound cannot be entirely attributed to the colossal magnetoresistance.
NASA Astrophysics Data System (ADS)
Hampson, Robert E.; Song, Dong; Opris, Ioan; Santos, Lucas M.; Shin, Dae C.; Gerhardt, Greg A.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.
2013-12-01
Objective. Memory accuracy is a major problem in human disease and is the primary factor that defines Alzheimer’s, ageing and dementia resulting from impaired hippocampal function in the medial temporal lobe. Development of a hippocampal memory neuroprosthesis that facilitates normal memory encoding in nonhuman primates (NHPs) could provide the basis for improving memory in human disease states. Approach. NHPs trained to perform a short-term delayed match-to-sample (DMS) memory task were examined with multi-neuron recordings from synaptically connected hippocampal cell fields, CA1 and CA3. Recordings were analyzed utilizing a previously developed nonlinear multi-input multi-output (MIMO) neuroprosthetic model, capable of extracting CA3-to-CA1 spatiotemporal firing patterns during DMS performance. Main results. The MIMO model verified that specific CA3-to-CA1 firing patterns were critical for the successful encoding of sample phase information on more difficult DMS trials. This was validated by the delivery of successful MIMO-derived encoding patterns via electrical stimulation to the same CA1 recording locations during the sample phase which facilitated task performance in the subsequent, delayed match phase, on difficult trials that required more precise encoding of sample information. Significance. These findings provide the first successful application of a neuroprosthesis designed to enhance and/or repair memory encoding in primate brain.
Hampson, Robert E.; Song, Dong; Opris, Ioan; Santos, Lucas M.; Shin, Dae C.; Gerhardt, Greg A.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.
2014-01-01
Objective Memory accuracy is a major problem in human disease and is the primary factor that defines Alzheimer’s’, aging and dementia resulting from impaired hippocampal function in medial temporal lobe. Development of a hippocampal memory neuroprosthesis that facilitates normal memory encoding in nonhuman primates (NHPs) could provide the basis for improving memory in human disease states. Approach NHPs trained to perform a short-term delayed match to sample (DMS) memory task were examined with multi-neuron recordings from synaptically connected hippocampal cell fields, CA1 and CA3. Recordings were analyzed utilizing a previously developed nonlinear multi-input multi-output (MIMO) neuroprosthetic model, capable of extracting CA3-to-CA1 spatiotemporal firing patterns during DMS performance. Main Results The MIMO model verified that specific CA3-to-CA1 firing patterns were critical for successful encoding of Sample phase information on more difficult DMS trials. This was validated by delivery of successful MIMO-derived encoding patterns via electrical stimulation to the same CA1 recording locations during the Sample phase which facilitated task performance in the subsequent delayed Match phase on difficult trials that required more precise encoding of Sample information. Significance These findings provide the first successful application of a neuroprosthesis designed to enhance and/or repair memory encoding in primate brain. PMID:24216292
NASA Astrophysics Data System (ADS)
Zhan, Di; Xu, Qing; Huang, Duan-Ping; Liu, Han-Xing; Chen, Wen; Zhang, Feng
2018-03-01
Ba0.95Ca0.05Zr0.2Ti0.8O3 ceramics were prepared at different sintering temperatures by citrate precursor and solid-state reaction methods, respectively. The crystal structure and microstructure of the specimens were characterized. In view of energy storage capacitor utilizations, the dielectric properties of the specimens were investigated at room temperature as a function of frequency and applied electric field. Moreover, the nature of mobile charge carriers in the specimens was diagnosed by complex impedance spectroscopy at elevated temperatures. While the dielectric constants of the specimens prepared by different methods are quite different (4.4 × 103-2.2 × 104 at 10 kHz) at zero electric field, the energy storage densities at an identical strong electric field are similar (e.g. 0.32-0.41 J/cm3 at 120 kV/cm). The dielectric constants under bias electric field were fitted to a multipolarization mechanism model to resolve the contributions of intrinsic and extrinsic polarization mechanisms. It turned out that the extrinsic contributions fade out within low electric field range (<20 kV/cm) and thereby the intrinsic lattice polarization governs the overall dielectric responses at higher fields. Based on the fitting result, the energy storage properties of the specimens were interpreted.
Insights From Field Geology Into the Styles and Timings of Large Silicic Explosive `Supereruptions'
NASA Astrophysics Data System (ADS)
Wilson, C. J.
2006-12-01
The evocative terms `supereruption' (and `supervolcano'), whilst eminently saleable to the media, conceal the fact that, apart from knowing that such large eruptions (>300 km3, magma) actually have occurred, we understand very little about the dynamics of such events. Field studies of 3 supereruption deposits suggest that we are missing information on the timing and eruptive styles that is essential in assessing the dynamics and impacts of past and future large eruptions. The 26.5 ka Oruanui eruption in New Zealand (ca. 530 km3, magma) shows evidence in the form of erosion intervals and/or reworked horizons for spasmodic activity, including a hiatus of weeks plus other shorter breaks, that interrupted 10 phases of activity. Following the plinian fall unit of phase 1, there was a time break long enough for local reworking (and possibly emplacement of a small dome), thus of the order of weeks in duration. Other breaks, during which minor wind- or water-reworking took place are observed between phases 4 and 5, and 9 and 10, and were of the order of days. Two other horizons saw the complete settling out of 10-20 micron-sized ash particles before commencement of the next phase of the eruption, and thus may represent breaks of hours. The whole eruption was a series of large-scale outbreaks of generally increasing vigor, daisy-chained to form a single geological event, but one which would represent recurrent hazards, and uncertainties in eruptive activity if repeated today. The 0.76 Ma Bishop Tuff eruption (ca. 600 km3, magma), on the other hand, displays evidence only for one short time break, represented by settling out of fine ash at the top of a plinian pumice fall unit. Most of the eruption volume may have been emplaced over only about 6 days. Such an eruption, although catastrophic when placed in today's societal context, at least was over relatively rapidly. The immense 2.06 Ma Huckleberry Ridge Tuff (HRT) eruption (ca. 2500 km3, magma) shows evidence for prolonged time breaks, possibly of months to years, at several stages. During deposition of the basal pre- ignimbrite fall deposit, horizons of wind- and/or water-reworked material occur, suggesting that normal weather processes (wind, hail deposition, rainfall) may have affected the deposits during breaks in deposition. Between the three major ignimbrite units (A, B and C), there is local evidence for cooling below temperatures required for welding across their mutual boundaries and partial cessation of vapour-phase alteration in the earlier unit where the ignimbrites thin against topographic highs. A false impression of continuity in HRT emplacement is given by a lack of significant density contrasts across unit boundaries in areas where the deposits were thick enough to cause high temperatures and concomitant welding across the mutual contacts. All three eruptions show evidence for partial or complete simultaneity of plinian pumice fall deposition with co- generation and emplacement of ignimbrite. The widespread notions of fall and flow activity being antipathetic and of the former leading to the latter are too simple, especially given the demonstrable development of multiple vent sites in the Oruanui and Bishop eruptions. All three eruptions show that there is a wealth of information to be gained from detailed field studies that can provide powerful constraints on eruption dynamics, although it is apparent that there is no simple model that can be applied to supereruptions. Two out of the three examples were prolonged for months or years, and assessing when the eruption would have actually finished, or foreseeing the climactic stage(s) which would have caused the greatest impact, would have been problematic.
Shi, Yulin; Ikrar, Taruna; Olivas, Nicholas D; Xu, Xiangmin
2014-06-15
Spontaneous network activity is believed to sculpt developing neural circuits. Spontaneous giant depolarizing potentials (GDPs) were first identified with single-cell recordings from rat CA3 pyramidal neurons, but here we identify and characterize a large-scale spontaneous network activity we term global network activation (GNA) in the developing mouse hippocampal slices, which is measured macroscopically by fast voltage-sensitive dye imaging. The initiation and propagation of GNA in the mouse is largely GABA-independent and dominated by glutamatergic transmission via AMPA receptors. Despite the fact that signal propagation in the adult hippocampus is strongly unidirectional through the canonical trisynaptic circuit (dentate gyrus [DG] to CA3 to CA1), spontaneous GNA in the developing hippocampus originates in distal CA3 and propagates both forward to CA1 and backward to DG. Photostimulation-evoked GNA also shows prominent backward propagation in the developing hippocampus from CA3 to DG. Mouse GNA is strongly correlated to electrophysiological recordings of highly localized single-cell and local field potential events. Photostimulation mapping of neural circuitry demonstrates that the enhancement of local circuit connections to excitatory pyramidal neurons occurs over the same time course as GNA and reveals the underlying pathways accounting for GNA backward propagation from CA3 to DG. The disappearance of GNA coincides with a transition to the adult-like unidirectional circuit organization at about 2 weeks of age. Taken together, our findings strongly suggest a critical link between GNA activity and maturation of functional circuit connections in the developing hippocampus. Copyright © 2013 Wiley Periodicals, Inc.
A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean
NASA Astrophysics Data System (ADS)
Battaglia, G.; Steinacher, M.; Joos, F.
2015-12-01
The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally-constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Latin-Hypercube scheme to construct a 1000 member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates either a strong, a weak or no dependency on CaCO3 saturation is assumed. Median (68 % confidence interval) global CaCO3 export is 0.82 (0.67-0.98) Gt PIC yr-1, within the lower half of previously published estimates (0.4-1.8 Gt PIC yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. Dissolution within the 200 to 1500 m depth range (0.33; 0.26-0.40 Gt PIC yr-1) is substantially lower than inferred from the TA*-CFC age method (1 ± 0.5 Gt PIC yr-1). The latter estimate is likely biased high as the TA*-CFC method neglects transport. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport time scales for the different setups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest to apply saturation-independent dissolution rates in Earth System Models to minimise computational costs.
NASA Astrophysics Data System (ADS)
Yau, Yu-Chyi; Peacor, Donald R.; Essene, Eric J.
1986-09-01
Amphiboles and pyroxenes occurring in the Salton Sea Geothermal Field were found to contain coherent intergrowths of chain silicates with other than double and single chain widths by using transmission and analytical electron microscopy. Both occur in the biotite zone at the temperature (depth) interval of 310° C (1,060 m) to 330° C (1,547m) which approximately corresponds to temperatures of the greenschist facies. The amphiboles occur as euhedral fibrous crystals occupying void space and are composed primarily of irregularly alternating (010) slabs of double or triple chains, with rare quadruple and quintuple chains. Primary crystallization from solution results in euhedral crystals. Clinopyroxenes formed mainly as a porefilling cement and subordinately as prismatic crystals coexisting with fibrous amphiboles. Fine lamellae of double and triple chains are irregularly intercalated with pyroxene. AEM analyses yield formulae (Ca1.8Mg2.9Fe1.9Mn0.1) Si8O21.8(OH)1.8 (310° C) and (Ca2.0Fe2.5Mg2.3) Si8O21.8 (OH)2.0 (330° C) for amphiboles and (Ca1.1Fe0.6Mg0.3) Si2O6 for clinopyroxene. Thermodynamic calculations at Pfluid=100 bar of equilibrium reactions of (1) 3 chlorite +10 calcite + 21 quartz = 3 actinolite + 2 clinozoisite + 8 H2O + 10 CO2 and (2) actinolite+ 3 calcite+ 2 quartz = 5 clinopyroxene + H2O + 3 CO2 using Mg-end member phases indicate that formation of amphibole and pyroxene require very water-rich conditions (X_{CO_2 } < 0.06) at temperatures below 330° C.
Zheng, Yun-Min; Wang, Qing-Song; Liu, Qing-Hua; Rathore, Rakesh; Yadav, Vishal; Wang, Yong-Xiao
2008-01-01
Hypoxia causes heterogeneous contractile responses in resistance and conduit pulmonary as well as systemic (mesenteric) artery smooth muscle cells (RPASMCs, CPASMCs and MASMCs), but the underlying mechanisms are largely unknown. In this study, we aimed to investigate whether the gene expression and functional activity of ryanodine receptors (RyRs) would be different in these 3 cell types. RyR mRNA expression, Ca(2+) sparks and [Ca(2+)](i) were measured by real-time quantitative RT-PCR, laser scanning confocal microscopy and wide-field fluorescence microscopy, respectively. All 3 RyR subtype (RyR1, RyR2 and RyR3) mRNAs are expressed in RPASMCs, CPASMCs and MASMCs, but their expression levels are different. Spontaneous Ca(2+) sparks (functional events of RyRs) show distinct frequency, amplitude, duration, size and kinetics in these 3 cell types. Similarly, activation of RyRs by caffeine, 4-chloro-m-cresol or high K(+) induces differential Ca(2+) release. Moreover, hypoxia-induced increase in [Ca(2+)](i) is largest in MASMCs relative to CPSAMCs and smallest in RPASMCs. This study provides comprehensive evidence that RyRs are heterogeneous in gene expression and functional activity in RPASMCs, CPASMCs and MASMCs, which may contribute to the diversity of excitation-contraction coupling and hypoxic Ca(2+) responses in different vascular smooth muscle cells. Copyright 2008 S. Karger AG, Basel.
Simulation and analysis of plasmonic sensor in NIR with fluoride glass and graphene layer
NASA Astrophysics Data System (ADS)
Pandey, Ankit Kumar; Sharma, Anuj K.
2018-02-01
A calcium fluoride (CaF2) prism based plasmonic biosensor with graphene layer is proposed in near infrared region (NIR) of operation. The stacking of multilayer graphene is considered with dielectric interlayer sandwiched between two graphene layers. Excellent optical properties of CaF2 glass and enhanced field at the graphene-analyte interface are intended to be exploited for proposed sensor structure in NIR spectral region. Performance parameters in terms of field enhancement at interface and figure of merit (FOM) are analyzed and compared with those of conventional SPR based sensor. It is demonstrated that the same sensor probe can also be used for gas sensing with nearly 3.5-4 times enhancement in FOM, compared with conventional sensor. The results show that CaF2 based SPR sensor provides much better sensitivity than that based on other glasses.
NASA Astrophysics Data System (ADS)
Yan, Jian-Min; Gao, Guan-Yin; Liu, Yu-Kuai; Wang, Fei-Fei; Zheng, Ren-Kui
2017-10-01
We report the fabrication of lead-free multiferroic structures by depositing ferromagnetic La0.7Sr0.3MnO3 (LSMO) polycrystalline films on polished 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 (BZT-BCT) piezoelectric ceramic substrates. By applying electric fields to the BZT-BCT along the thickness direction, the resistivity of LSMO films can be effectively manipulated via the piezoelectric strain of the BZT-BCT. Moreover, the LSMO polycrystalline films exhibit almost temperature independent and significantly enhanced magnetoresistance (MR) below TC. At T = 2 K and H = 8 T, the MR of polycrystalline films is approximately two orders of magnitude higher than that of LSMO epitaxial films grown on (LaAlO3)0.3(SrAl1/2Ta1/2O3)0.7 single-crystal substrates. The enhanced MR mainly results from the spin-polarized tunneling of charge carriers across grain boundaries. The LSMO/BZT-BCT structures with electric-field controllable modulation of resistivity and enhanced MR effect may have potential applications in low-energy consumption and environmentally friendly electronic devices.
Magnetic properties of electron-doped La0.23Ca0.77MnO3 nanoparticles
NASA Astrophysics Data System (ADS)
Markovich, V.; Jung, G.; Wisniewski, A.; Mogilyansky, D.; Puzniak, R.; Kohn, A.; Wu, X. D.; Suzuki, K.; Gorodetsky, G.
2012-09-01
Magnetic properties of electron-doped La0.23Ca0.77MnO3 manganite nanoparticles, with average size of 12 and 60 nm, prepared by the glycine-nitrate method, have been investigated in the temperature range 5-300 K and magnetic fields up to 90 kOe. It is suggested that weak ferromagnetic moment results from ferromagnetic shells of the basically antiferromagnetic nanoparticles and from domains of frustrated disordered phase in the core. Assumption of two distinct sources of ferromagnetism is supported by the appearance of two independent ferromagnetic contributions in the fit of the T 3/2 Bloch law to spontaneous magnetization. The ferromagnetic components, which are more pronounced in smaller particles, occupy only a small fraction of the nanoparticle volume and the antiferromagnetic ground state remains stable. It is found that the magnetic hysteresis loops following field cooled processes, display size-dependent horizontal and vertical shifts, namely, exhibiting exchange bias effect. Time-dependent magnetization dynamics demonstrating two relaxation rates were observed at constant magnetic fields upon cooling to T < 100 K.
SALT EFFECTS ON SWARMERS OF DUNALIELLA VIRIDIS TEOD
Baas-Becking, L. G. M.
1931-01-01
1. Dunaliella viridis Teodoresco thrives equally well in solutions of NaCl 1 to 4 mol and pH 6 to 9. 2. The organism is sensitive to calcium and magnesium, especially in acid medium. 3. Calcium and magnesium are antagonistic. In a molar solution of NaCl the antagonistic relation Mg:Ca is 4 to 5. In a 4 molar solution of NaCl the proportion becomes many times as great (20:1). 4. Although the strains used in this investigation did not occur in sea water concentrates, the increase in the antagonistic ratio Mg:Ca in which they can live closely paralleled the changes in this ratio which take place when sea water evaporates. 5. The other organisms which occurred in the cultures each show a specific relation to Ca and Mg. 6. The size of the cells of Dunaliella does not decrease with increasing NaCl content. PMID:19872621
Biological effects due to weak magnetic field on plants
NASA Astrophysics Data System (ADS)
Belyavskaya, N. A.
2004-01-01
Throughout the evolution process, Earth's magnetic field (MF, about 50 μT) was a natural component of the environment for living organisms. Biological objects, flying on planned long-term interplanetary missions, would experience much weaker magnetic fields, since galactic MF is known to be 0.1-1 nT. However, the role of weak magnetic fields and their influence on functioning of biological organisms are still insufficiently understood, and is actively studied. Numerous experiments with seedlings of different plant species placed in weak magnetic field have shown that the growth of their primary roots is inhibited during early germination stages in comparison with control. The proliferative activity and cell reproduction in meristem of plant roots are reduced in weak magnetic field. Cell reproductive cycle slows down due to the expansion of G 1 phase in many plant species (and of G 2 phase in flax and lentil roots), while other phases of cell cycle remain relatively stabile. In plant cells exposed to weak magnetic field, the functional activity of genome at early pre-replicate period is shown to decrease. Weak magnetic field causes intensification of protein synthesis and disintegration in plant roots. At ultrastructural level, changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells were observed in pea roots exposed to weak magnetic field. Mitochondria were found to be very sensitive to weak magnetic field: their size and relative volume in cells increase, matrix becomes electron-transparent, and cristae reduce. Cytochemical studies indicate that cells of plant roots exposed to weak magnetic field show Ca 2+ over-saturation in all organelles and in cytoplasm unlike the control ones. The data presented suggest that prolonged exposures of plants to weak magnetic field may cause different biological effects at the cellular, tissue and organ levels. They may be functionally related to systems that regulate plant metabolism including the intracellular Ca 2+ homeostasis. However, our understanding of very complex fundamental mechanisms and sites of interactions between weak magnetic fields and biological systems is still incomplete and still deserve strong research efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choura Maatar, S.; M’nassri, R.; Institut NEEL, CNRS, B.P.166, 38042 Grenoble Cedex 9
2015-05-15
In this work, we report the effect of Na doping on the structural, magnetic and magnetocaloric properties in La{sub 0.8}Ca{sub 0.2−x}Na{sub x}MnO{sub 3} powder samples. Our polycristalline samples have been synthesized using the solid-state reaction method at high temperatures. The parent compound La{sub 0.8}Ca{sub 0.2}MnO{sub 3} crystallizes in the orthorhombic system with Pbnm space group. Na doping induces a structural transition from orthorhombic (Pbnm space group) to rhombohedral (R-3C space group) symmetry. Magnetization measurements versus temperature in a magnetic applied field of 50 mT showed that all our investigated samples display a paramagnetic-ferromagnetic transition with decreasing temperature. The Curie temperaturemore » T{sub C} increases with Na content from 240 K for x=0 to 330 K for x=0.2. A large magnetocaloric effect has been observed in all samples, the maximum entropy change, |∆S{sub M}|{sub max}, shifts to smaller values with increasing Na content, from4.56 J/kg K (x=0.05) to 2.3 J/kg K (x=0.2) under a magnetic field change ∆µ{sub 0}H of 2 T. For the same applied magnetic field of 2 T, the Relative Cooling Power (RCP) values are found to be constant around 91 J/kg. - Graphical abstract: Sodium doping induces an increase of T{sub C} from 240 K for x=0 to 330 K for x=0.2. - Highlights: • La{sub 0.8}Ca{sub 0.2−x}Na{sub x}MnO{sub 3} are synthesized using the ceramic method at high temperatures. • Na doping induces a structural transition from Pbnm to R-3C space group. • T{sub C} increases with Na content from 240 K for x=0 to 330 K for x=0.2. • RCP is constant around 91 J/kg for all compounds under 2 T.« less
NASA Astrophysics Data System (ADS)
Wu, Steven Yueh-Hsiu; Tseng, Ching-Li; Lin, Feng-Huei
2010-05-01
In this study, a magnetic iron-doped calcium sulfide (Fe-CaS) nanoparticle was newly developed and studied for the purpose of hyperthermia due to its promising magnetic property, adequate biodegradation rate, and relatively good biocompatibility. Fe-CaS nanoparticles were synthesized by a wet chemical co-precipitation process with heat treatment in a N2 atmosphere, and were subsequently cooled in N2 and exposed to air at a low temperature. The crystal structure of the Fe-CaS nanoparticles was similar to that of the CaS, which was identified by an X-ray diffractometer (XRD). The particle size was less than 40 nm based on a Debye-Scherrer equation and transmission electron microscope (TEM) examination. Magnetic properties obtained from the SQUID magnetometer demonstrated that the synthesized CaS was a diamagnetic property. Once the Fe ions were doped, the synthesized Fe-CaS converted into paramagnetism which showed no hysteresis loop. Having been heated above 600 °C in N2, the Fe-CaS showed a promising magnetic property to produce enough energy to increase the temperature for hyperthermia. 10 mg/ml of the Fe-CaS was able to generate heat to elevate the media temperature over 42.5 °C within 6 min. The area of the hysteresis loop increased with the increasing of the treated temperature, especially at 800 °C for 1 h. This is because more Fe ions replaced Ca ions in the lattice at the higher heat treatment temperature. The heat production was also increasing with the increasing of heat treatment temperature, which resulted in an adequate specific absorption ratio (SAR) value, which was found to be 45.47 W/g at 37 °C under an alternative magnetic field of f = 750 KHz , H = 10 Oe. The in vitro biocompatibility test of the synthesized Fe-CaS nanoparticles examined by the LDH assay showed no cytotoxicity to 3T3 fibroblast. The result of in vitro cell hyperthermia shows that under magnetic field the Fe-CaS nanoparticles were able to generate heat and kill the CT-26 cancer cells significantly. We believe that the developed Fe-CaS nanoparticles have great potential as thermo-seeds for cancer hyperthermia in the near future.
NASA Astrophysics Data System (ADS)
Gao, L.; Wang, X.; Chen, Y.; Chi, Q. G.; Lei, Q. Q.
2015-08-01
We report a novel low-density polyethylene (LDPE) composite filled with nickel-coated CaCu3Ti4O12 ceramic (denoted as CCTO@Ni), prepared by a melt mixing technique, and its prominent dielectric characteristics. The effects of magnetic field treatment on the dielectric properties of CCTO@Ni/LDPE composite films with a low filler concentration of 10 vol.% were investigated. Our results show that the dielectric permittivity, loss tangent, and conductivity of the LDPE composite films initially improved and then decreased with increasing treatment time under the applied magnetic field. Magnetic field treatment for 60 min led to an ultra-high dielectric permittivity value of 1.57 × 104, four orders of magnitude higher than that of the pure LDPE material. Our results indicate that the magnetic treatment may have induced a percolation effect and enhanced the interfacial polarization of the CCTO@Ni/LDPE composite, resulting in the observed changes in its dielectric properties.
X-Ray Dose in Microfocus Radiographic Inspections
2007-03-15
convenient because they can be placed inside electronic assemblies. The TLDs must be returned to the vendor for readout. Com- mercial providers of...AEROSPACE REPORT NO. TR-2007(8555)-3 X-Ray Dose in Microfocus Radiographic Inspections 15 March 2007 Prepared by G. W. STUPIAN Electronics and...Segundo, CA 90245. It was reviewed and approved for The Aerospace Corporation by B. Jaduszliwer, Principal Director, Electronics and Photonics Laboratory
Up-conversion white light of Tm 3+/Er 3+/Yb 3+ tri-doped CaF 2 phosphors
NASA Astrophysics Data System (ADS)
Cao, Chunyan; Qin, Weiping; Zhang, Jisen; Wang, Yan; Wang, Guofeng; Wei, Guodong; Zhu, Peifen; Wang, Lili; Jin, Longzhen
2008-03-01
Tm3+/Er3+/Yb3+ tri-doped CaF2 phosphors were synthesized using a hydrothermal method. The phosphors were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and up-conversion (UC) emission spectra. After annealing, the phosphors emitted white light under a 980 nm continuous wave diode laser (CW LD 2 W) excitation. As the excitation power density changed in the range of 20-260 W/cm2, the chromaticity coordinates of the UC light of the phosphor Ca0.885Tm0.005Er0.01Yb0.1F2 fell well in the white region of the 1931 CIE diagram. For the proportion of red, green and blue (RGB) in white light is strict, key factors for achieving UC white light, such as host materials, rare earth ions doping concentrations, annealing temperatures, as well as the excitation power densities, were investigated and discussed.
STIM1- and Orai1-dependent store-operated calcium entry regulates human myoblast differentiation.
Darbellay, Basile; Arnaudeau, Serge; König, Stéphane; Jousset, Hélène; Bader, Charles; Demaurex, Nicolas; Bernheim, Laurent
2009-02-20
Our previous work on human myoblasts suggested that a hyperpolarization followed by a rise in [Ca(2+)](in) involving store-operated Ca(2+) entry (SOCE) channels induced myoblast differentiation. Advances in the understanding of the SOCE pathway led us to examine more precisely its role in post-natal human myoblast differentiation. We found that SOCE orchestrated by STIM1, the endoplasmic reticulum Ca(2+) sensor activating Orai Ca(2+) channels, is crucial. Silencing STIM1, Orai1, or Orai3 reduced SOCE amplitude and myoblast differentiation, whereas Orai2 knockdown had no effect. Conversely, overexpression of STIM1 with Orai1 increased SOCE and accelerated myoblast differentiation. STIM1 or Orai1 silencing decreased resting [Ca(2+)](in) and intracellular Ca(2+) store content, but correction of these parameters did not rescue myoblast differentiation. Remarkably, SOCE amplitude correlated linearly with the expression of two early markers of myoblast differentiation, MEF2 and myogenin, regardless of the STIM or Orai isoform that was silenced. Unexpectedly, we found that the hyperpolarization also depends on SOCE, placing SOCE upstream of K(+) channel activation in the signaling cascade that controls myoblast differentiation. These findings indicate that STIM1 and Orai1 are key molecules for the induction of human myoblast differentiation.
Diode pumped tunable lasers based on Tm:CaF2 and Tm:Ho:CaF2 ceramics
NASA Astrophysics Data System (ADS)
Šulc, Jan; Němec, Michal; Jelinková, Helena; Doroshenko, Maxim E.; Fedorov, Pavel P.; Osiko, Vyacheslav V.
2014-02-01
The Tm:CaF2 (4% of TmF3) and Tm:Ho:CaF2 (2% of TmF3, 0.3% of HoF3) ceramics, prepared using hot pressing, and hot formation technique had been used as an active medium of diode pumped mid-infrared tunable laser. A fibre (core diameter 400 μm, NA = 0.22) coupled laser diode (LIMO, HLU30F400-790) was used to longitudinal pumping. The laser diode was operating in the pulsed regime (6 ms pulse length, 10 Hz repetition rate). The duty-cycle 6% ensures a low thermal load even under the maximum diode pumping power amplitude 25W (ceramics samples were only air-cooled). The laser diode emission wavelength was 786 nm. The 80mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.85 - 2.15 μm, HT @ 0.78 μm) and a curved (r = 150mm) output coupler with a reflectivity of ˜ 98% @ 1.85 - 2.0 μm for Tm:CaF2 laser or ˜ 99.5% @ 2.0 - 2.15 μm for Ho:Tm:CaF2. Tuning of the laser was accomplished by using a birefringent filter (single 1.5mm thick quartz plate) placed inside the optical resonator at the Brewster angle. Both samples offered broad and smooth tuning possibilities in mid-IR spectral range and the lasers were continuously tunable over ˜ 100 nm. The obtained Tm:CaF2 tunability ranged from 1892 to 1992nm (the maximum output energy 1.8mJ was reached at 1952nm for absorbed pumping energy 78 mJ). In case of Tm:Ho:CaF2 laser tunability from 2016 to 2111nm was reached (the maximum output energy 1.5mJ was reached at 2083nm for absorbed pumping energy 53 mJ). Both these material are good candidates for a future investigation of high energy, ultra-short, laser pulse generation.
Sethi, Kalyan K; Verma, Saurabh M
2014-08-01
Drug design involves the design of small molecules that are complementary in shape and charge to the biomolecular target with which they interact and therefore will bind to it. Three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed for a series of carbonic anhydrase IX inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques with the help of SYBYL 7.1 software. The large set of 36 different aromatic/heterocyclic sulfamates carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, such as hCA IX, was chosen for this study. The conventional ligand-based 3D-QSAR studies were performed based on the low energy conformations employing database alignment rule. The ligand-based model gave q(2) values 0.802 and 0.829 and r(2) values 1.000 and 0.994 for CoMFA and CoMSIA, respectively, and the predictive ability of the model was validated. The predicted r(2) values are 0.999 and 0.502 for CoMFA and CoMSIA, respectively. SEA (steric, electrostatic, hydrogen bond acceptor) of CoMSIA has the significant contribution for the model development. The docking of inhibitors into hCA IX active site using Glide XP (Schrödinger) software revealed the vital interactions and binding conformation of the inhibitors. The CoMFA and CoMSIA field contour maps are well in agreement with the structural characteristics of the binding pocket of hCA IX active site, which suggests that the information rendered by 3D-QSAR models and the docking interactions can provide guidelines for the development of improved hCA IX inhibitors as leads for various types of metastatic cancers including those of cervical, renal, breast and head and neck origin.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-21
... and evaluate grant applications. Place: Disney's Paradise Pier Hotel, 1717 S. Disneyland Drive... applications. Place: Disney's Paradise Pier Hotel, 1717 S. Disneyland Drive, Anaheim, CA 92802. Contact Person...
Fujita, Satoshi; Toyoda, Izumi; Thamattoor, Ajoy K.
2014-01-01
Previous studies suggest that spontaneous seizures in patients with temporal lobe epilepsy might be preceded by increased action potential firing of hippocampal neurons. Preictal activity is potentially important because it might provide new opportunities for predicting when a seizure is about to occur and insight into how spontaneous seizures are generated. We evaluated local field potentials and unit activity of single, putative excitatory neurons in the subiculum, CA1, CA3, and dentate gyrus of the dorsal hippocampus in epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Average action potential firing rates of neurons in the subiculum, CA1, and dentate gyrus, but not CA3, increased significantly and progressively beginning 2–4 min before locally recorded spontaneous seizures. In the subiculum, CA1, and dentate gyrus, but not CA3, 41–57% of neurons displayed increased preictal activity with significant consistency across multiple seizures. Much of the increased preictal firing of neurons in the subiculum and CA1 correlated with preictal theta activity, whereas preictal firing of neurons in the dentate gyrus was independent of theta. In addition, some CA1 and dentate gyrus neurons displayed reduced firing rates preictally. These results reveal that different hippocampal subregions exhibit differences in the extent and potential underlying mechanisms of preictal activity. The finding of robust and significantly consistent preictal activity of subicular, CA1, and dentate neurons in the dorsal hippocampus, despite the likelihood that many seizures initiated in other brain regions, suggests the existence of a broader neuronal network whose activity changes minutes before spontaneous seizures initiate. PMID:25505320
76 FR 1386 - Safety Zone; Centennial of Naval Aviation Kickoff, San Diego Bay, San Diego, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-10
...-AA00 Safety Zone; Centennial of Naval Aviation Kickoff, San Diego Bay, San Diego, CA AGENCY: Coast... zone on the navigable waters of San Diego Bay in San Diego, CA in support of the Centennial of Naval... February 12, 2010, the Centennial of Naval Aviation Kickoff will take place in San Diego Bay. In support of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jena, Paramananda; Gupta, Santosh K., E-mail: santufrnd@gmail.com; Natarajan, V.
2015-04-15
Nanocrystalline Scheelite type Dy doped AMoO{sub 4} [where A = Ba, Sr and Ca] samples were prepared by acrylamide assisted sol–gel process and characterized by XRD, FT-Raman, FTIR, SEM and photoluminescence (PL). PL of undoped sample shows blue/green emission in CaMoO{sub 4} and SrMoO{sub 4} but multicolour visible emission leading to near white light in BaMoO{sub 4} nanoparticles; the origin of which is explained. It was observed that on doping 0.5 mol% of Dy{sup 3+} in molybdate samples complete energy transfer takes place in case of SrMoO{sub 4} and BaMoO{sub 4}, but host contributed substantially in Dy doped BaMoO{sub 4}more » sample, resulting in biexponential decay. It was also observed that symmetry around Dy{sup 3+} decreases as the size of alkaline earth ion increases. Due to combined blue, yellow and red colour emission in dysprosium doped sample; all samples showed near white light emission under UV and near UV excitation.« less
NASA Astrophysics Data System (ADS)
Tu, Shu-Ju; Yang, Pei-Ying; Hong, Ji-Hong; Lo, Ching-Jung
2013-07-01
In CT planning for radiation therapy, patients may be asked to have a medical procedure of contrast agent (CA) administration as required by their physicians. CA media improve quality of CT images and assist radiation oncologists in delineation of the target or organs with accuracy. However, dosimetric discrepancy may occur between scenarios in which CA media are present in CT planning and absent in treatment delivery. In recent preclinical experiments of small animals, gold nanoparticles (AuNPs) have been identified as an excellent contrast material of x-ray imaging. In this work, we quantitatively evaluate the effect of AuNPs to be used as a potential material of contrast enhancement in radiotherapy planning with an analytical phantom and clinical case. Conray 60, an iodine-based product for contrast enhancement in clinical uses, is included as a comparison. Other additional variables such as different concentrations of CA media, radiation delivery techniques and dose calculation algorithms are included. We consider 1-field AP, 4-field box, 7-field intensity modulated radiation therapy (IMRT) and a recent technique of volumetric modulated arc therapy (VMAT). CA media of AuNPs (Conray 60) with concentrations of 10%, 20%, 30%, 40% and 50% containing 28.2, 56.4, 84.6, 112.8 and 141.0 mg of gold (iodine) per mL were prepared prior to CT scanning. A virtual phantom with a target where nanoparticle media are loaded and clinical case of gastric lymphoma in which the Conray 60 media were given to the patient prior to the CT planning are included for the study. Compared to Conray 60 media with concentration of 10%/50%, Hounsfield units for AuNP media of 10%/50% are 322/1608 higher due to the fact that atomic number of Au (Z=79) is larger than I (Z=53). In consequence, dosimetric discrepancy of AuNPs is magnified between presence and absence of contrast media. It was found in the phantom study that percent dose differences between presence and absence of CA media may be reduced by delivery techniques of 7-field IMRT or VMAT. To manage less than 3% of percent dose difference, it was suggested an upper limit of 15% (or 42.3 mg Au/mL) of AuNP media in the phantom study; 8% (or 22.5 mg Au/mL) in the specific clinical case.
1984-01-01
0 C D CaDOC 00 CD001 00 0001 CD0DD 0 00ac 0C D DC 00 00 0D000000 Li wi W z LU~ wi 2: Li Li w Li Li 010t - 0a ca 0 0a o 0 0o to m 0n 0 GaO -a r NN 00...0 0N0 -C) ’ N J0 -m-3m (fl (a) (N0I- c))0- * ~ c 0 ’a I ~ 0 00 -1 -.1 -1 -j 0 000L000 00 00 I 0 (0)-1 CuaC fr aCD L z 0 Ca CD C 0 0 0 0 GaO -a C3...L ,0, O O 0 U’in) Jini t 30 OD0N Of N MN cr V)() វI 1 (D .0 >- 0 ) W - D~ Di 0- 0y >wO 0 000 c- coNC- C- Q)- - - ZN 0M F-N 1-- 9-OI - 0 - 0 - a0
González-Vega, J Caroline; Walk, Carrie L; Liu, Yanhong; Stein, Hans H
2014-01-01
An experiment was conducted to test the hypothesis that the standardised digestibility of Ca in calcium carbonate and Lithothamnium calcareum Ca is not different regardless of the level of dietary Ca, and that phytic acid affects the digestibility of Ca in these two ingredients to the same degree. The objectives were to determine where in the intestinal tract Ca absorption takes place and if there are measurable quantities of basal endogenous Ca fluxes in the stomach, small intestine or large intestine. Diets contained calcium carbonate or L. calcareum Ca as the sole source of Ca, 0% or 1% phytic acid and 0.4% or 0.8% Ca. A Ca-free diet was also formulated and used to measure endogenous fluxes and losses of Ca. Nine growing pigs (initial body weight 23.8 ± 1.3 kg) were cannulated in the duodenum and in the distal ileum, and faecal, ileal and duodenal samples were collected. Duodenal endogenous fluxes of Ca were greater (p < 0.05) than ileal endogenous fluxes and total tract endogenous losses of Ca, but ileal endogenous fluxes were less (p < 0.05) than total tract endogenous losses. Standardised digestibility of Ca was not affected by the level of phytic acid, but decreased (p < 0.05) as Ca level increased in L. calcareum Ca diets, but that was not the case if calcium carbonate was the source of Ca (interaction, p < 0.05). The standardised duodenal digestibility (SDD), standardised ileal digestibility (SID) and standardised total tract digestibility (STTD) of Ca were not different if calcium carbonate was the source of dietary Ca. However, the STTD of Ca in L. calcareum Ca was greater (p < 0.05) than the SID and SDD of Ca. The SDD, SID and STTD of Ca in calcium carbonate were greater (p < 0.05) than those of L. calcareum Ca. In conclusion, under the conditions of this experiment, standardised digestibility of Ca is not affected by the level of phytic acid, but may be affected by dietary Ca level depending on the Ca source. Calcium from calcium carbonate is mostly absorbed before the duodenum, but Ca from L. calcareum Ca is mostly absorbed in the jejunum and ileum.
NASA Astrophysics Data System (ADS)
Cobert, Florian; Schimtt, Anne-Désirée.; Bourgeade, Pascale; Stille, Peter; Chabaux, François; Badot, Pierre-Marie; Jaegler, Thomas
2010-05-01
This study aims to better understand the role of vegetation on the Ca cycle at the level of the critical zone of the Earth, in order to specify the mechanisms controlling the Ca absorption by plants at the rock/plant interface. To do this, we performed experiments using hydroponic plant cultures in a way that we could control the co-occuring geochemical and physiological process and determine the impact of the nutritive solution on the Ca cycle within plants. A dicotyledon and calcicole plant with rapid growth, the French bean (Phaseolus vulgaris L.), has been chosen to have access to one complete growth cycle. Several experiments have been conducted with two Ca concentrations, 6 (L) and 60 (H) ppm and two pH values (4 and 6) in the nutritive solution, for which the Ca concentration was maintained constant, so its Ca content is considered as infinite. A second experiment (non infinite L6) allowed Ca depletion in the solution through time; therefore, response effects on the Ca isotopic signatures in the plant organs and in the nutritive solution were observed. We determined Ca concentrations and isotopic ratios in the nutritive solution and in different organs (main roots, secondary roots, old and young stems, old and young leaves and fruits) at two different growth stages (10 days and 6 weeks). Preliminary results show that: (1) the roots (main and secondary) were enriched in the light isotope (40Ca) compared to the nutritive solution, and leaves were enriched in the heavy isotope (44Ca) compared to stems. These results are in accord with previously published field studies (Wigand et al., 2005; Page et al., 2008; Cenki-Tok et al., 2009; Holmden and Bélanger, 2010). Leaves and secondary roots were however enriched in the heavy isotope (44Ca) compared to bean pods, stems and main roots. These results could be related to kinetic fractionation processes occurring either during the Ca root uptake, or during the Ca transport within the plant, or physiological mechanisms occurring first at the level of secondary roots, and second at the level of leaves. (2) No Ca isotope difference was observed neither between old and young organs, (except for H6 leaves), nor between the two growth stages (except for H6 roots). This suggest that the mechanisms controlling isotopic fractionations of Ca within common beans do not vary during growth, and that the nutrients stored in the cotyledons have only a minor effect on the Ca isotope fractionations of plants harvested after 10 days. (3) Strongest Ca isotope fractionations were observed at the nutritive solution/root interface. This implies that the mechanisms of light isotope enrichments in the plant are mainly due to transport processes taking place at this interface. (4) The non infinite L6 nutritive solution became enriched in 44Ca during the experiment compared to the infinite L6 nutritive solution and all the other solutions (L4, H4, and H6). This enrichment can be explained by Rayleigh fractionation or isotopic equilibrium. (5) Bean organs, from L4 and non infinite L6 experiment conditions, were enriched in 44Ca compared to stems and roots cultivated under H4, H6 and infinite L6 conditions. This might be due to the limited Ca in the nutritive solutions that cause smallest Ca isotope fractionations in the bean organs. All these results show that there is no simple correlation between Ca isotopic variations, Ca content and pH of the nutrient solution, and that physiological effects have also to be involved. They confirm the potential of the Ca isotopic system for tracing biological fractionations in natural ecosystems.
NASA Astrophysics Data System (ADS)
Kordyum, Elizabeth; Sobol, Margaryta; Kalinina, Yana; Bogatina, Nina; Kondrachuk, Alexander
Recently it was shown that roots reveal negative gravitropism in the weak combined magnetic field (CMF) with the frequency resonance to the cyclotron frequency of Ca2+ ions. A negative gravitropic reaction in the CMF occurs by a usual physiological process. Experiments in the CMF confirmed that gravitropism is plastid-based and Ca2+ ions participate in this process. Unlike control, amyloplasts-statoliths are not displacing on the lower side of a gravistimulated root but tend to group in the center of a statocyte during 30 min under gravistimulation in the CMF. In an hour of gravistimulation, they are localized near one of the statocyte longitudinal wall. Now we determined that amyloplasts are localized along the statocyte upper longitudinal side. It is of a special interest that a root is bending to the same direction with displacing of amyloplasts: in positive gravitropism - downwards, in negative gravitropism - upwards. On the basis of the obtained data there is a question, what forces promote displacing of amyloplasts against a gravitational vector? In the paper, three possible explanations are discussed: 1) CMF + Ca2+ action on the distribution of elastic forces in cytoskeleton, 2) CMF + Ca2+ action on the distribution of electric field in statocytes, and 3) CMF action on energy and direction of Ca2+ ion rotation according to the ion cyclotron resonance model that can lead to paradoxical Ca2+ redistribution.
2011-11-21
Std Z39-18 Sol-Gel CCTO /P(VDF-HFP) Composites with High Energy Density During the previous reporting period we found that CCTO (CaCu3Ti4O12...composites containing CCTO synthesized by the standard solid-state route. At the optimal 20 vol% CCTO loading, our CCTO -P(VDF-HFP) composite has εr ~82 at...Ceramics such as BaTiO3 or CaCu3Ti4O12 ( CCTO ) have high dielectric permittivities, but they suffer from very low breakdown field strength and thus low
Coras, Roland; Pauli, Elisabeth; Li, Jinmei; Schwarz, Michael; Rössler, Karl; Buchfelder, Michael; Hamer, Hajo; Stefan, Hermann; Blumcke, Ingmar
2014-07-01
To clarify the anatomical organization of human memory remains a major challenge in clinical neuroscience. Experimental data suggest dentate gyrus granule cells play a major role in memory acquisition, i.e. pattern separation and rapid pattern completion, whereas hippocampal CA1 neurons are implicated in place memory and autobiographical memory retrieval. Patients with temporal lobe epilepsy present with a broad spectrum of memory impairment, which can be assessed during clinical examination. Although long seizure histories may contribute to a pathophysiological reorganization of functional connectivity, surgical resection of the epileptic hippocampus offers a unique possibility to anatomically study the differential contribution of hippocampal subfields to compromised learning and memory in humans. Herein, we tested the hypothesis of hippocampal subfield specialization in a series of 100 consecutive patients with temporal lobe epilepsy submitted to epilepsy surgery. Memory profiles were obtained from intracarotid amobarbital testing and non-invasive verbal memory assessment before surgery, and correlated with histopathologically quantified cell loss pattern in hippocampal subfields obtained from the same patients using the new international consensus classification for hippocampal sclerosis proposed by the International League against Epilepsy (HS ILAE). Interestingly, patients with CA1 predominant cell loss (HS ILAE Type 2; n = 13) did not show declarative memory impairment and were indistinguishable from patients without any hippocampal cell loss (n = 19). In contrast, 63 patients with neuronal loss affecting all hippocampal subfields including CA1, CA4 and dentate gyrus (HS ILAE Type 1), or predominant cell loss in CA4 and partially affecting also CA3 and dentate gyrus (HS ILAE Type 3, n = 5) showed significantly reduced declarative memory capacities (intracarotid amobarbital testing: P < 0.001; verbal memory: P < 0.05). Our results suggested an alternative model of how memory processing can be organized amongst hippocampal subfields, and that CA1 pyramidal cells are less critically involved in declarative human memory acquisition compared to dentate gyrus granule cells or CA4/CA3 pyramidal cells. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Photoemission study of CaF2- and SrF2-GaAs(110) interfaces formed at room temperature
NASA Astrophysics Data System (ADS)
Mao, D.; Young, K.; Kahn, A.; Zanoni, R.; McKinley, J.; Margaritondo, G.
1989-06-01
Interfaces formed by evaporating CaF2 or SrF2 on room-temperature GaAs(110) are studied with synchrotron-radiation photoemission spectroscopy. The fluoride films grow uniformly on the GaAs surface. The deposition of CaF2 and SrF2 induces a large initial band bending on p-type GaAs (~0.9 eV) and a small initial band bending on n-type GaAs (~0.25 eV). The valence band is dominated by the F 2p peak which shifts toward high binding energies by ~1.5 eV after the deposition of >=16 Å fluoride. This shift reflects an increase in the valence-band offset between the two materials as the film forms. The final band offsets are estimated at 7.7 and 8.0 eV for CaF2 and SrF2, respectively, and are in qualitative agreement with those expected from the fluoride-Si data. Core-level measurements indicate that no reaction or decomposition of the MF2 molecule takes place at the interface. The F 2s core-level line shape and the increase in the binding-energy separation of F 2s and Ca 3p with increasing coverage suggest the presence of an interface F component. Contrary to the CaF2/Si case, no measurable Ca-substrate bonding effect is observed. The dissociative effect of uv irradiation on the CaF2 film is also investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alagoz, H. S., E-mail: alagoz@ualberta.ca; Jeon, J.; Boos, R.
Our investigations of magneto-transport properties of La{sub 0.3}Pr{sub 0.4}Ca{sub 0.3}MnO{sub 3} manganite thin films of reduced dimensions revealed dramatic changes in R(θ), the dependence of resistivity on the angle between the magnetic field direction and the current direction, and consequently in the anisotropic magneto-resistance. A regular oscillatory sin{sup 2}θ form of R(θ) is replaced by a very sharp rectangular-shaped ones when the dimensions of the system become comparable to the size of the intrinsic electronic domains. We discuss possible mechanisms that could be responsible for these changes.
Perpendicular magnetic anisotropy of La0.67Sr0.33MnO3 thin films grown on CaMnO3 buffered SrTiO3
NASA Astrophysics Data System (ADS)
Wang, Zhi-Hong; Cristiani, G.; Habermeier, H.-U.; Zhang, Zhen-Rong; Han, Bao-Shan
2003-10-01
La0.67Sr0.33MnO3(LSMO) thin films were grown onto CaMnO3(CMO) buffered SrTiO3(100) by pulsed laser deposition. Because of the in-plane compressive strain induced by the lattice mismatch between CMO and LSMO, a perpendicular magnetic anisotropy (PMA) was obtained in the overlayer LSMO. Using the magnetic force microscopy, stripe magnetic domains in association with the PMA were observed at room temperature. Furthermore, the magnetoresistance with in-plane magnetic field parallel and vertical to the measuring current was studied at 5 and 300 K, and its correlation with the magnetic anisotropy has been discussed.
Impact of biomass burning on rainwater acidity and composition in Singapore
NASA Astrophysics Data System (ADS)
Balasubramanian, R.; Victor, T.; Begum, R.
1999-11-01
The Indonesian forest fires that took place from August through October 1997 released large amounts of gaseous and particulate pollutants into the atmosphere. The particulate emissions produced a plume that was easily visible by satellite and significantly affected regional air quality in Southeast Asia. This prolonged haze episode provided an unprecedented opportunity to examine the effects of biomass burning on regional atmospheric chemistry. We undertook a comprehensive field study to assess the influence of biomass burning impacted air masses on precipitation chemistry in Singapore. Major inorganic and organic ions were determined in 104 rain samples collected using an automated wet-only sampler from July through December 1997. Mean pH values ranged from 3.79 to 6.20 with a volume-weighted mean of 4.35. There was a substantially large number of rain events with elevated concentrations of these ions during the biomass burning period. The relatively high concentrations of SO2-4, NO-3, and NH+4 observed during the burning period are attributed to a long residence time of air masses, leading to progressive gas to particle conversion of biomass burning emission components. The decrease in pH of precipitation in response to the increased concentrations of acids is only marginal, which is ascribed to neutralization of acidity by NH3 and CaCO3.
NASA Astrophysics Data System (ADS)
Herrero-Bervera, E.; Tema, E.; Athens, J. S.
2015-12-01
We present new absolute archaeointensity data from five archaeological sites in coastal area of Ecuador (South America). Potsherd fragments come from the archaeological excavations of Guayas Province (ca. 535-1535 AD, Manteño Period), Nido de Las Lechusas (ca. 55-755 AD, Guangala Period, and ca. 470-1470 AD, Panzaleo Period), Santa Elena (ca. 4530-2030 BC, Valdivia Period) and Valdivia (ca. 4530-2030 BC, Valdivia Period) respectively, based on available radiocarbon dating. Successful archaeointensity data have been obtained from thirty seven potsherds using the Thellier-Coe protocol. Rock magnetic experiments including low-field magnetic susceptibility versus temperature (k-T) plots, Isothermal Remanent Magnetization (IRM) acquisition curves, as well as hysteresis loops and back-fields, have been performed in order to characterize the magnetic behavior of the samples and determine their main magnetic carriers. The Curie temperatures indicate the presence of at least two magnetic mineral phases (i.e. 560-5750C and 610-6200C), with predominant Curie temperatures typical of magnetite. The results of the magnetic grain size analyses suggest the presence of particles in the Pseudo-Single Domain (PSD) range, according to the distribution on the modified Day plots (Dunlop 2002 a and b) for magnetite. The successful absolute paleointensity determinations yielded archaeointensity values of 17.3 ± 0.5 μT for Guayas (Manteno Period), 29.13 ± 0.61 μT for Nido de Las Lechusas (Guangala Period), 35.45 ± 1.6 μT for Nido de Las Lechusas ((Panzaleo Period), 27.3 ± 1.0 μT for Santa Elena (Valdivia Period) and 25.82 ± 1.82 μT for Valdivia (Valdivia Period). The new results are in good correlation with archaeomagnetic data from the earlier published data from the coastal Valdiva in Ecuador. These new archaeointensity data from Ecuador for the last 4530-2030 BC years aim to enrich our knowledge of the geomagnetic field intensity variations in the south hemisphere, together with previously published data from South America.
Giant magnetoelectric effect in pure manganite-manganite heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Sanjukta; Pankaj, Ravindra; Yarlagadda, Sudhakar
2017-11-01
Obtaining strong magnetoelectric couplings in bulk materials and heterostructures is an ongoing challenge. We demonstrate that manganite heterostructures of the form (Insulator) /(LaMnO3)(n)/Interface/(CaMnO3)(n)/(Insulator) show strong multiferroicity in magnetic manganites where ferroelectric polarization is realized by charges leaking from LaMnO3 to CaMnO3 due to repulsion. Here, an effective nearest-neighbor electron-electron (electron-hole) repulsion (attraction) is generated by cooperative electron-phonon interaction. Double exchange, when a particle virtually hops to its unoccupied neighboring site and back, produces magnetic polarons that polarize antiferromagnetic regions. Thus a striking giant magnetoelectric effect ensues when an external electrical field enhances the electron leakage across the interface.
2D/0D graphene hybrids for visible-blind flexible UV photodetectors.
Tetsuka, Hiroyuki
2017-07-17
Nitrogen-functionalized graphene quantum dots (NGQDs) are attractive building blocks for optoelectronic devices because of their exceptional tunable optical absorption and fluorescence properties. Here, we developed a high-performance flexible NGQD/graphene field-effect transistor (NGQD@GFET) hybrid ultraviolet (UV) photodetector, using dimethylamine-functionalized GQDs (NMe 2 -GQDs) with a large bandgap of ca. 3.3 eV. The NMe 2 -GQD@GFET photodetector exhibits high photoresponsivity and detectivity of ca. 1.5 × 10 4 A W -1 and ca. 5.5 × 10 11 Jones, respectively, in the deep-UV region as short as 255 nm without application of a backgate voltage. The feasibility of these flexible UV photodetectors for practical application in flame alarms is also demonstrated.
NASA Astrophysics Data System (ADS)
Carracedo-Sánchez, M.; Sarrionandia, F.; Arostegui, J.; Errandonea-Martin, J.; Gil-Ibarguchi, J. I.
2016-11-01
We present the results of a petrographic and geochemical study carried out on a layer of achnelithic tephra outcropping at the base of the volcanic cone of Las Herrerías (Miocene-Quaternary volcanic region of Campo de Calatrava, Spain). The tephra, with a composition of nephelinite and ash (< 1 mm) to coarse lapilli (ca. 1 cm) in size, is made of intact isolated achneliths (mostly elongated and spheroidal, including Pele's tears), achnelith fragments and rare welded achneliths. The achneliths at Las Herrerías were generated in a gas-rich fire fountain that fragmented the magma into micro- to nanometre particles. The low viscosity of the nephelinitic blebs (< 1235 Pa.s) inside the hottest (ca. 900 °C), inner zone of the fountain allowed the development of the characteristic fluidal shapes of these pyroclasts and their welding above the glass transition temperature (533-669 °C). The sideromelane glass of the achneliths, also nephelinitic in composition, is variably altered to palagonite. The palagonitization was isovolumetric and took place in a near closed system at the achnelith scale. Palagonitization involved depletion in the concentration (g/cm3) of all major elements and notable increase in H2O content. The elements liberated by this process formed smectite with an average structural formula comprised between those of beidellite and nontronite end terms: (Na0.01K0.03Ca0.18) (Mg0.22Fe0.16)2 + (Fe0.48Al1.02)3 + (Ti0.18)4 + (Si3.58Al0.42) O10(OH)2. The degree of palagonitization in each achnelith was likely related to the amount of water incorporated by individual clasts at the moment of their deposition in a volcanic maar lake. Afterwards, there was no more water circulation through the achnelithic tephra, which was sealed from water by overlying hydrovolcanic tuff deposits. It was this isolation that made possible the preservation of glass to the present day.
4. Historic American Buildings Survey Drawing by LaPlace VIEW FROM ...
4. Historic American Buildings Survey Drawing by LaPlace VIEW FROM HILL TO REAR OF MISSION GROUNDS - 1839 - Mission San Carlos Borromeo, Rio Road & Lausen Drive, Carmel-by-the-Sea, Monterey County, CA
Takeya, Hiroyuki; ElMassalami, Mohammed; Terrazos, Luis A; Rapp, Raul E; Capaz, Rodrigo B; Fujii, Hiroki; Takano, Yoshihiko; Doerr, Mathias; Granovsky, Sergey A
2013-06-01
We follow the evolution of the electronic properties of the titled homologous series when n as well as the atomic type of A and M are varied where for n = 1, A = Ca, Sr and M = Rh, Ir while for n = 3, A = Ca, Sr and M = Rh. The crystal structure of n = 1 members is known to be CaRh 2 B 2 -type ( Fddd ), while that of n = 3 is Ca 3 Rh 8 B 6 -type ( Fmmm ); the latter can be visualized as a stacking of structural fragments from AM 3 B 2 ( P 6/ mmm ) and AM 2 B 2 . The metallic properties of the n = 1 and 3 members are distinctly different: on the one hand, the n = 1 members are characterized by a linear coefficient of the electronic specific heat γ ≈ 3 mJ mol -1 K -2 , a Debye temperature θ D ≈ 300 K, a normal conductivity down to 2 K and a relatively strong linear magnetoresistivity for fields up to 150 kOe. The n = 3 family, on the other hand, exhibits γ ≈ 18 mJ mol -1 K -2 , θ D ≈ 330 K, a weak linear magnetoresistivity and an onset of superconductivity (for Ca 3 Rh 8 B 6 , T c = 4.0 K and H c2 = 14.5 kOe, while for Sr 3 Rh 8 B 6 , T c = 3.4 K and H c2 ≈ 4.0 kOe). These remarkable differences are consistent with the findings of the electronic band structures and density of state (DOS) calculations. In particular, satisfactory agreement between the measured and calculated γ was obtained. Furthermore, the Fermi level, E F , of Ca 3 Rh 8 B 6 lies at almost the top of a pronounced local DOS peak, while that of CaRh 2 B 2 lies at a local valley: this is the main reason behind the differences between the, e.g., superconducting properties. Finally, although all atoms contribute to the DOS at E F , the contribution of the Rh atoms is the strongest.
Takeya, Hiroyuki; ElMassalami, Mohammed; Terrazos, Luis A; Rapp, Raul E; Capaz, Rodrigo B; Fujii, Hiroki; Takano, Yoshihiko; Doerr, Mathias; Granovsky, Sergey A
2013-01-01
We follow the evolution of the electronic properties of the titled homologous series when n as well as the atomic type of A and M are varied where for n = 1, A = Ca, Sr and M = Rh, Ir while for n = 3, A = Ca, Sr and M = Rh. The crystal structure of n = 1 members is known to be CaRh2B2-type (Fddd), while that of n = 3 is Ca3Rh8B6-type (Fmmm); the latter can be visualized as a stacking of structural fragments from AM3B2 (P6/mmm) and AM2B2. The metallic properties of the n = 1 and 3 members are distinctly different: on the one hand, the n = 1 members are characterized by a linear coefficient of the electronic specific heat γ ≈ 3 mJ mol−1 K−2, a Debye temperature θD ≈ 300 K, a normal conductivity down to 2 K and a relatively strong linear magnetoresistivity for fields up to 150 kOe. The n = 3 family, on the other hand, exhibits γ ≈ 18 mJ mol−1 K−2, θD ≈ 330 K, a weak linear magnetoresistivity and an onset of superconductivity (for Ca3Rh8B6, Tc = 4.0 K and Hc2 = 14.5 kOe, while for Sr3Rh8 B6, Tc = 3.4 K and Hc2 ≈ 4.0 kOe). These remarkable differences are consistent with the findings of the electronic band structures and density of state (DOS) calculations. In particular, satisfactory agreement between the measured and calculated γ was obtained. Furthermore, the Fermi level, EF, of Ca3Rh8B6 lies at almost the top of a pronounced local DOS peak, while that of CaRh2B2 lies at a local valley: this is the main reason behind the differences between the, e.g., superconducting properties. Finally, although all atoms contribute to the DOS at EF, the contribution of the Rh atoms is the strongest. PMID:27877576
Varga-Szemes, Akos; Kiss, Pal; Rab, Andras; Suranyi, Pal; Lenkey, Zsofia; Simor, Tamas; Bryant, Robert G.; Elgavish, Gabriel A.
2016-01-01
Purpose MRI contrast agents (CA) whose contrast enhancement remains relatively high even at the higher end of the magnetic field strength range would be desirable. The purpose of this work was to demonstrate such a desired magnetic field dependency of the longitudinal relaxivity for an experimental MRI CA, Gd(ABE-DTTA). Materials and Methods The relaxivity of 0.5mM and 1mM Gd(ABE-DTTA) was measured by Nuclear Magnetic Relaxation Dispersion (NMRD) in the range of 0.0002 to 1T. Two MRI and five NMR instruments were used to cover the range between 1.5 to 20T. Parallel measurement of a Gd-DTPA sample was performed throughout as reference. All measurements were carried out at 37°C and pH 7.4. Results The relaxivity values of 0.5mM and 1mM Gd(ABE-DTTA) measured at 1.5, 3, and 7T, within the presently clinically relevant magnetic field range, were 15.3, 11.8, 12.4 s-1mM-1 and 18.1, 16.7, and 13.5 s-1mM-1, respectively. The control 4 mM Gd-DTPA relaxivities at the same magnetic fields were 3.6, 3.3, and 3.0 s-1mM-1, respectively. Conclusions The longitudinal relaxivity of Gd(ABE-DTTA) measured within the presently clinically relevant field range is three to five times higher than that of most commercially available agents. Thus, Gd(ABE-DTTA) could be a practical choice at any field strength currently used in clinical imaging including those at the higher end. PMID:26872055
Kusleika, Saulius
2002-01-01
The aim of the study was to investigate and estimate quantitative changes of bioelements (Ca, Zn, Mg, Cu, Mn) in the lenses on the influence of hypodynamic stress and zinc (Zn). Hypodynamic stress of 48 days duration was provoked for Chinchilla rabbits (n = 20) by placing them in metal hutches. Every day (48 days) 10 rabbits, which had intervention received 0.3 mg/kg body wt. doses of Zn (in form of Zn acetate). The rabbits (n = 10) of the control group, which had no intervention were kept in vivarium conditions. Concentration of bioelements in the lenses of rabbits was detected by atomic absorption spectrophotometry 503 "Perkin-Elmer" (USA). The investigation revealed that hypodynamic stress of 48 days duration caused the increase in amount of Ca, Zn, Mn in lenses as compared with that in control rabbits and in rabbits receiving Zn. The concentration of bioelements (Ca, Zn, Mg, Cu, Mn) in lenses of rabbits receiving Zn in case of hypodynamic stress did not change significantly.
Assessment of groundwater quality and health risk in drinking water basin using GIS.
Şener, Şehnaz; Şener, Erhan; Davraz, Ayşen
2017-02-01
Eğirdir Lake basin was selected as the study area because the lake is the second largest freshwater lake in Turkey and groundwater in the basin is used as drinking water. In the present study, 29 groundwater samples were collected and analyzed for physico-chemical parameters to determine the hydrochemical characteristics, groundwater quality, and human health risk in the study area. The dominant ions are Ca 2+ , Mg 2+ , HCO 3 2- , and SO 4 2 . According to Gibbs plot, the predominant samples fall in the rock-water interaction field. A groundwater quality index (WQI) reveals that the majority of the samples falls under good to excellent category of water, suggesting that the groundwater is suitable for drinking and other domestic uses. The Ca-Mg-HCO 3 , Ca-HCO 3 , Ca-SO 4 -HCO 3 , and Ca-Mg-HCO 3 -SO 4 water types are the dominant water types depending on the water-rock interaction in the investigation area. Risk of metals to human health was then evaluated using hazard quotients (HQ) by ingestion and dermal pathways for adults and children. It was indicated that As with HQ ingestion >1 was the most important pollutant leading to non-carcinogenic concerns. It can be concluded that the highest contributors to chronic risks were As and Cr for both adults and children.
NASA Astrophysics Data System (ADS)
Nishio, Takashi; Naka, Kensuke
2015-06-01
Photoinduced crystallization of calcium carbonate (CaCO3), which was based on the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphyenyl)propionic acid) under alkaline conditions of pH 8.4 and 10 was studied for preparation of CaCO3 composite particles in single-digit micrometer-sizes. In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol%) was used as a precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. After the UV irradiation for 50 min, calcite spheroids in single-digit micrometer-sizes were obtained as major products at pH 8.4. The obtained calcite spheroids contained organic components of about 10 wt%. The comparison of the characteristics of the CaCO3 obtained at pH 8.4 and 10 suggests that the nucleation and crystallization of both vaterite and calcite continuously took place in a moderated supersaturation owing to the CO2 hydration equilibrium as long as the photodecarboxylation of KP continued. Consequently, the aggregation-based crystal growth in the presence of PVAPS seemed to enable the formation of the spheroidal composites of calcite in single-digit micrometer-sizes.
Linkage analysis and physical mapping near the gene for x-linked agammaglobulinemia at Xq22
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parolini, O.; Lassiter, G.L.; Henry, M.J.
The gene for x-linked agammaglobulinemia (XLA) has been mapped to Xq22. No recombinations have been reported between the gene and the prob p212 at DXS178; however, this probe is informative in only 30-40% of women and the reported flanking markers, DXS3 and DXS94, and 10-15 cM apart. To identify additional probes that might be useful in genetic counseling, we examined 11 polymorphisms that have been mapped to the Xq21.3-q22 region in 13 families with XLA. In addition, pulsed-field gel electrophoresis and yeast artificial chromosomes (YACs) were used to further characterize the segman of DNA within which the gene for SLAmore » must lie. The results demonstrated that DXS366 and DXS442, which share a 430-kb pulsed-field fragment, could replace DXS3 as proximal flanking markers. Probes at DXS178 and DXS265 identified the same 145-kb pulsed-field fragment, and both loci were contained within a 200-kb YAC identified with the probe p212. A highly polymorphic CA repeat (DCS178CA) was isolated from one end of this YAC and used in linkage analysis. Probes at DXS101 and DXS328 shared several pulsed-field fragments, the smallest of which was 250 kb. No recombinations were seen between XLA and the DXS178-DXS265-DXS178CA complex, DXS101, DXS328, DXS87, or the gene for proteolipid protein (PLP). Key crossovers, when combined with the linkage data from families with Alport syndrome, suggested the following order of loci: cen-DXS3-DXS366-DXS442-(PLP, DXS101, DXS328, DXS178-DXS265-DXS178CA complex, XL)-(DXS87, DXS94)-DXS327-(DXS350, DXS362)-tel. Our studies also limit the segment of DNA within which the XLA gene must lie to the 3- to 4-cM distance between DCS442 and DXS94 and they identify and orient polymorphisms that can be used in genetic counseling not only for XLA but also for Pelizaeus-Merzbacher disease (PLP deficiency), Alport syndrome (COL4A5 deficiency), and Fabry disease ([alpha]-galactosidase A difficiency). 31 refs., 5 figs., 2 tabs.« less
CaMKIIα underlies spontaneous and evoked pain behaviors in Berkeley sickle cell transgenic mice.
He, Ying; Chen, Yan; Tian, Xuebi; Yang, Cheng; Lu, Jian; Xiao, Chun; DeSimone, Joseph; Wilkie, Diana J; Molokie, Robert E; Wang, Zaijie Jim
2016-12-01
Pain is one of the most challenging and stressful conditions to patients with sickle cell disease (SCD) and their clinicians. Patients with SCD start experiencing pain as early as 3 months old and continue having it throughout their lives. Although many aspects of the disease are well understood, little progress has been made in understanding and treating pain in SCD. This study aimed to investigate the functional involvement of Ca/calmodulin-dependent protein kinase II (CaMKIIα) in the persistent and refractory pain associated with SCD. We found that nonevoked ongoing pain as well as evoked hypersensitivity to mechanical and thermal stimuli were present in Berkeley sickle cell transgenic mice (BERK mice), but not nonsickle control littermates. Prominent activation of CaMKIIα was observed in the dorsal root ganglia and spinal cord dorsal horn region of BERK mice. Intrathecal administration of KN93, a selective inhibitor of CaMKII, significantly attenuated mechanical allodynia and heat hyperalgesia in BERK mice. Meanwhile, spinal inhibition of CaMKII elicited conditioned place preference in the BERK mice, indicating the contribution of CaMKII in the ongoing spontaneous pain of SCD. We further targeted CaMKIIα by siRNA knockdown. Both evoked pain and ongoing spontaneous pain were effectively attenuated in BERK mice. These findings elucidated, for the first time, an essential role of CaMKIIα as a cellular mechanism in the development and maintenance of spontaneous and evoked pain in SCD, which can potentially offer new targets for pharmacological intervention of pain in SCD.
Precipitation patterns during channel flow
NASA Astrophysics Data System (ADS)
Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.
2013-12-01
Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001
Modification of dendritic development.
Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio
2002-01-01
Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the hippocampal Ammon's horn and, particularly, on the CA1 field pyramidal neurons, as well as on afferences to the hippocampus which needs to be further investigated.
NASA Astrophysics Data System (ADS)
Denyszyn, S. W.; Mundil, R.; Metcalfe, I.; He, B.
2010-12-01
In eastern Australia, the interconnected Bowen and Sydney Basins are filled with terrestrial sediments of late Paleozoic to early Mesozoic age. These sedimentary units record significant evolutionary events of eastern Gondwana during the time interval between two major mass extinctions (end Middle Permian and Permian-Triassic), and also provide lithological evidence for the Carboniferous-Permian Late Paleozoic Ice Age of southern Pangea, considered to be divisible into up to seven discrete glaciation events in Australia [e.g., 1]. These glaciations are currently assigned ages that indicate that the last of the glaciations predate the end Middle Permian mass extinction at ca. 260 Ma. However, the estimates for the time and durations are largely based on biostratigraphy and lithostratigraphy that, in the absence of robust and precise radioisotopic ages, are unacceptably fragile for providing an accurate high-resolution framework. Interbedded with the sediments are numerous tuff layers that contain zircon, many of which are associated with extensive coal measures in the Sydney and Bowen Basins. Published SHRIMP U-Pb zircon ages [2, 3] have been shown to be less precise and inaccurate when compared to ages applying the CA-TIMS method to the same horizons. Also within the late Middle Permian, the eruption of the Emeishan flood basalts in SW China has been proposed to have caused the end Middle Permian mass extinction [e.g., 4], though a causal link between these events demands a rigorous test that can only be provided by high-resolution geochronology. We present new U-Pb (CA-TIMS) zircon ages on tuff layers from the Sydney and Bowen Basins, with the purpose of generating a timescale for the Upper Permian of Australia to allow correlation with different parts of the world. Initial results, with permil precision, date a tuff layer within the uppermost Bandanna Fm. to ca. 252 Ma, a tuff within the Moranbah Coal Measures to ca. 256 Ma, and a tuff within the Ingelara Fm. to ca. 257 Ma, the latter two units lying stratigraphically below the latest identified glacial deposits. U-Pb (CA-TIMS) results on zircons from the Emeishan flood basalts and related volcanic products confirm the end-Guadalupian age (ca. 260 Ma) of the magmatism, and based on present data, place the Emeishan volcanic event (and its possibly associated mass extinction) within the occurrence of the Late Paleozoic Ice Age. This study’s primary goal is the establishment of a chronostratigraphic framework that would allow the integration of calibrated records from both terrestrial and marine units from different parts of the world in order to constrain the timing and rates of extinctions and recoveries in different locations and physical environments. [1] Fielding et al. (2008), J. Geol Soc. Lon., v. 165, pp. 129-140 [2] Michaelsen et al. (2001), Aus. J. Earth Sci., v. 48, pp. 183-192 [3] Roberts et al. (1996), Aus. J. Earth Sci., v. 43, pp. 401-421 [4] He et al. (2007), EPSL, v. 255, pp. 306-323
NASA Astrophysics Data System (ADS)
Akaki, M.; Tozawa, J.; Akahoshi, D.; Kuwahara, H.
2009-05-01
We have investigated the magnetic and dielectric properties of Ca2CoSi2O7 crystal. The dielectricity and magnetism of Ca2CoSi2O7 are strongly coupled below a canted antiferromagnetic transition temperature (TN). Magnetic fields induce electric polarization below TN. Interestingly, the magnetic-field-induced electric polarization is detected even without poling electric fields. Below TN, a canted antiferromagnetic-paramagnetic transition is induced by magnetic fields. The large magnetocapacitance is observed around TN. The origin of the large magnetocapacitance is due to the magnetic-field-induced the canted antiferromagnetic-paramagnetic transition.
Somogyi, Peter; Katona, Linda; Klausberger, Thomas; Lasztóczi, Bálint; Viney, Tim J.
2014-01-01
The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges. In the hippocampus, pyramidal cell assemblies representing temporal sequences are coordinated by GABAergic interneurons selectively innervating specific postsynaptic domains, and discharging phase locked to network oscillations. We compare the cellular network dynamics in the CA1 and CA3 areas recorded with or without anaesthesia. All parts of pyramidal cells, except the axon initial segment, receive GABA from multiple interneuron types, each with distinct firing dynamics. The axon initial segment is exclusively innervated by axo-axonic cells, preferentially firing after the peak of the pyramidal layer theta cycle, when pyramidal cells are least active. Axo-axonic cells are inhibited during SWRs, when many pyramidal cells fire synchronously. This dual inverse correlation demonstrates the key inhibitory role of axo-axonic cells. Parvalbumin-expressing basket cells fire phase locked to field gamma activity in both CA1 and CA3, and also strongly increase firing during SWRs, together with dendrite-innervating bistratified cells, phasing pyramidal cell discharge. Subcellular domain-specific GABAergic innervation probably developed for the coordination of multiple glutamatergic inputs on different parts of pyramidal cells through the temporally distinct activity of GABAergic interneurons, which differentially change their firing during different network states. PMID:24366131
Li, Yan; Meng, Jingjing; Yang, Sha; Guo, Feng; Zhang, Jialei; Geng, Yun; Cui, Li; Wan, Shubo; Li, Xinguo
2017-01-01
Peanut is one of the calciphilous plants. Calcium serves as a ubiquitous central hub in a large number of signaling pathways. In the field, free calcium ion (Ca2+)-deficient soil can result in unfilled pods. Four pod stages were analyzed to determine the relationship between Ca2+ excretion and pod development. Peanut shells showed Ca2+ excretion at all four stages; however, both the embryo of Stage 4 (S4) and the red skin of Stage 3 (S3) showed Ca2+ absorbance. These results showed that embryo and red skin of peanut need Ca2+ during development. In order to survey the relationship among calcium, hormone and seed development from gene perspective, we further analyzed the seed transcriptome at Stage 2 (S2), S3, and S4. About 70 million high quality clean reads were generated, which were assembled into 58,147 unigenes. By comparing these three stages, total 4,457 differentially expressed genes were identified. In these genes, 53 Ca2+ related genes, 40 auxin related genes, 15 gibberellin genes, 20 ethylene related genes, 2 abscisic acid related genes, and 7 cytokinin related genes were identified. Additionally, a part of them were validated by qRT-PCR. Most of their expressions changed during the pod development. Since some reports showed that Ca2+ signal transduction pathway is involved in hormone regulation pathway, these results implied that peanut seed development might be regulated by the collaboration of Ca2+ signal transduction pathway and hormone regulation pathway. PMID:28769950
NASA Astrophysics Data System (ADS)
Klee, M.; de Vries, J. W. C.; Brand, W.
1988-11-01
Superconducting layers in the Bi(Pb)-Ca-Sr-Cu-O system are prepared by thermal decomposition of metal carboxylates. The films are deposited on MgO single crystal and ceramic substrates using a spin-coating and dip-coating process. The Bi-Ca-Sr-Cu-O films consist mainly of the low- Tc phase ( c-axis=3.073 nm), whereas partial substitution of Bi by Pb favours the formation of the high- Tc phase ( c-axis=3.707 nm). Films deposited on MgO (100) are strong c-axis preferentially oriented grown. While the Bi-Ca-Sr-Cu-O films show a step in the resistance versus temperature curve ( Tcf⋍80 K) due to the presence of the low- Tc and the high- Tc phase, the Bi(Pb)-Ca-Sr-Cu-O films have an onset at 110 K and are superconducting at 104 K. The temperature dependence of the critical current indicates that in the Bi-Ca-Sr-Cu-O system weak links of superconductor-isolator-superconductor type are present, while in the Bi(Pb)-Ca-Sr-Cu-O samples the contact is formed by normal-metal barriers. Using magnetic fields up to 5 T, the anisotropy of the resistive transition of the high- Tc phase was studied. In Bi(Pb)-Ca-Sr-Cu-O films the anisotropy ratio is about 18, and the corresponding coherence lengths are ξ ab(0)⋍3.6 nm and ξ c(0)⋍0.2 nm. These values are nearly the same as in the low- Tc phase.
NASA Astrophysics Data System (ADS)
Gudfinnsson, Gudmundur H.; Presnall, Dean C.
1996-12-01
Isobarically invariant phase relations in the CaO-MgO-Al2O3-SiO2 system (CMAS) involving the lherzolite phase assemblage in equilibrium with liquid have been determined at 2.4-3.4 GPa. These phase relations form the solidus of model lherzolite in the CMAS system. Our data, which include determinations of all phase compositions, are in excellent agreement with the 3.0 and 4.0 GPa points of Milholland and Presnall [1991] and Davis and Schairer [1965], respectively. The invariant transition on the P-T solidus curve from spinel- to garnet-lherzolite at 3.0 GPa, 1575°C [Milholland and Presnall, 1991], is confirmed, but we observe that the theoretically required temperature depression on the solidus curve at this point is not experimentally detectable. Composition trends along the solidus take a sharp turn at the transition. In the spinel-lherzolite stability field, melt compositions become increasingly Fo-normative and less En-normative with increasing pressure, but become less Fo-normative and more pyroxenitic as pressure increases in the garnet-lherzolite stability field. Calculated melting reactions indicate that forsterite is in reaction relationship with the melt up to 3.0 GPa. Orthopyroxene is also in reaction relationship at pressures higher than just over 2.8 GPa and is the only phase in reaction relationship with the melt in the garnet-lherzolite stability field. Comparison of the normative compositions and the CaO/Al2O3 values of the komatiites of Gorgona Island and of the Reliance Formation in Zimbabwe with the compositions of liquids along the solidus of model lherzolite in the CMAS system indicates that the former komatiites were generated at pressures close to 3.7 GPa and the latter at close to 4.5 GPa, assuming that the melt generation occurred in the presence of the complete garnet-lherzolite assemblage.
Ferroelectrics under the Synchrotron Light: A Review
Fuentes-Cobas, Luis E.; Montero-Cabrera, María E.; Pardo, Lorena; Fuentes-Montero, Luis
2015-01-01
Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described. PMID:28787814
NASA Astrophysics Data System (ADS)
Zhang, Chuan-Lin; Zou, Hai-Bo; Ye, Xian-Tao; Chen, Xiang-Yan
2018-01-01
The Pamir Plateau at the western end of the India-Asia collision zone underwent long-term terrane drifting, accretion and collision between early Paleozoic and Mesozoic. However, the detailed evolution of this plateau, in particular, the timing of the Proto- and Palaeo-Tethys ocean subduction and closure, remains enigmatic. Here we report new field observations and zircon U-Pb ages and Hf isotopic compositions of the representative rocks from the so-called Precambrian basement in the northeastern Pamir, i.e., the Bulunkuole Group. The rock associations of the Bulunkuole Group indicate volcano-sedimentary sequences with arc affinities. Geochronological data demonstrate that the deposition age of the Bulunkuole Group in the NE section of the Pamir was Middle to Late Cambrian (530-508 Ma) rather than Paleoproterozoic. The deposition age became progressively younger from south to north. The amphibolite- to granulite facies metamorphism of the Bulunkuole Group took place at ca. 200-180 Ma. Unlike the scenario in the Southern Kunlun terrane (SKT) in the eastern section of the West Kunlun Orogenic Belt (WKOB), early Paleozoic metamorphism (ca. 440 Ma) was absent in this area. Two phases of magmatic intrusions, composed of granites and minor gabbros with arc geochemical signatures, emplaced at 510-480 Ma and 240-200 Ma. The amphibolite (meta mafic sheet? 519 Ma) and the meta-rhyolite (508 Ma) have zircon εHf(t) values of 1.6 to 5.9 and - 1.5 to 1.4, respectively. The 511 Ma gneissic granite sheet and the 486 Ma gabbro have zircon εHf(t) values of - 0.1 to 2.4 and 1.3 to 3.6, respectively. Zircon εHf(t) of the 245 Ma augen gneissic granite sheet varies from - 2.2 to 2.0 whereas the metamorphic zircons from the amphibolite (193 Ma) and high-pressure mafic granulite sample (187 Ma) have negative εHf(t) values of - 5.3 to - 2 and - 15 to - 12, respectively. In line with rock association and the deposition age of the Bulunkuole Group and the Saitula Group in the eastern section of WKOB, we propose that both of them were accretionary wedge between the Tarim and Tianshuihai terrane formed during the Proto-Tethys ocean south- southwestward subduction (present orientation). The timing of deposition and metamorphism documents two distinct phases of arc magmatism and sedimentary basin evolution. This indicates that the Proto-Tethys ocean closed at ca. 440 Ma in the eastern section of WKOB whereas in the western section, a remnant of the Proto-Tethys ocean between the Tarim and the NE Pamir did not close till Late Triassic. This remnant ocean was filled by the Ordovician-Triassic sequences. The accretion between NE Pamir and the Central Pamir was completed by ca. 180 Ma as demonstrated by the metamorphic zircon U-Pb age of the high pressure mafic granulite in the NE Pamir.
32. STUDIO VIEW OF PLAQUE PLACED ON MILL HOUSE AT ...
32. STUDIO VIEW OF PLAQUE PLACED ON MILL HOUSE AT TIME OF COMPLETION, COMMEMORATING EDWARD J. LUKE (SEE TEXT) - Sperry Corn Elevator Complex, Weber Avenue (North side), West of Edison Street, Stockton, San Joaquin County, CA
Baker, Salah A; Drumm, Bernard T; Saur, Dieter; Hennig, Grant W; Ward, Sean M; Sanders, Kenton M
2016-06-15
Interstitial cells of Cajal at the level of the deep muscular plexus (ICC-DMP) in the small intestine generate spontaneous Ca(2+) transients that consist of localized Ca(2+) events and limited propagating Ca(2+) waves. Ca(2+) transients in ICC-DMP display variable characteristics: from discrete, highly localized Ca(2+) transients to regionalized Ca(2+) waves with variable rates of occurrence, amplitude, duration and spatial spread. Ca(2+) transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells. Ca(2+) transients in ICC-DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s). Functional intracellular Ca(2+) stores are essential for spontaneous Ca(2+) transients, and the sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) pump is necessary for maintenance of spontaneity. Ca(2+) release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3 Rs). Release from these channels is interdependent. ICC express transcripts of multiple RyRs and InsP3 Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC-DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC-DMP are mediated by activation of Ca(2+) -activated Cl(-) channels; thus, Ca(2+) signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca(2+) transients in ICC-DMP within intact jejunal muscles expressing a genetically encoded Ca(2+) indicator (GCaMP3) selectively in ICC. ICC-DMP displayed spontaneous Ca(2+) transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca(2+) transients was highly variable, and it was determined that firing was stochastic in nature. Ca(2+) transients were tabulated in multiple cells within fields of view, and no correlation was found between the events in adjacent cells. TTX (1 μm) significantly increased the occurrence of Ca(2+) transients, suggesting that ICC-DMP contributes to the tonic inhibition conveyed by ongoing activity of inhibitory motor neurons. Ca(2+) transients were minimally affected after 12 min in Ca(2+) free solution, indicating these events do not depend immediately upon Ca(2+) influx. However, inhibitors of sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) pump and blockers of inositol triphosphate receptor (InsP3 R) and ryanodine receptor (RyR) channels blocked ICC Ca(2+) transients. These data suggest an interdependence between RyR and InsP3 R in the generation of Ca(2+) transients. Itpr1 and Ryr2 were the dominant transcripts expressed by ICC. These findings provide the first high-resolution recording of the subcellular Ca(2+) dynamics that control the behaviour of ICC-DMP in situ. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Baker, Salah A.; Drumm, Bernard T.; Saur, Dieter; Hennig, Grant W.; Ward, Sean M.
2016-01-01
Key points Interstitial cells of Cajal at the level of the deep muscular plexus (ICC‐DMP) in the small intestine generate spontaneous Ca2+ transients that consist of localized Ca2+ events and limited propagating Ca2+ waves.Ca2+ transients in ICC‐DMP display variable characteristics: from discrete, highly localized Ca2+ transients to regionalized Ca2+ waves with variable rates of occurrence, amplitude, duration and spatial spread.Ca2+ transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells.Ca2+ transients in ICC‐DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s).Functional intracellular Ca2+ stores are essential for spontaneous Ca2+ transients, and the sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) pump is necessary for maintenance of spontaneity.Ca2+ release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3Rs). Release from these channels is interdependent.ICC express transcripts of multiple RyRs and InsP3Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. Abstract Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC‐DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC‐DMP are mediated by activation of Ca2+‐activated Cl− channels; thus, Ca2+ signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca2+ transients in ICC‐DMP within intact jejunal muscles expressing a genetically encoded Ca2+ indicator (GCaMP3) selectively in ICC. ICC‐DMP displayed spontaneous Ca2+ transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca2+ transients was highly variable, and it was determined that firing was stochastic in nature. Ca2+ transients were tabulated in multiple cells within fields of view, and no correlation was found between the events in adjacent cells. TTX (1 μm) significantly increased the occurrence of Ca2+ transients, suggesting that ICC‐DMP contributes to the tonic inhibition conveyed by ongoing activity of inhibitory motor neurons. Ca2+ transients were minimally affected after 12 min in Ca2+ free solution, indicating these events do not depend immediately upon Ca2+ influx. However, inhibitors of sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) pump and blockers of inositol triphosphate receptor (InsP3R) and ryanodine receptor (RyR) channels blocked ICC Ca2+ transients. These data suggest an interdependence between RyR and InsP3R in the generation of Ca2+ transients. Itpr1 and Ryr2 were the dominant transcripts expressed by ICC. These findings provide the first high‐resolution recording of the subcellular Ca2+ dynamics that control the behaviour of ICC‐DMP in situ. PMID:26824875
NASA Astrophysics Data System (ADS)
Mages, Margarete; Woelfl, Stefan; v. Tümpling jun, Wolf
2001-11-01
Two new preparation techniques for total-reflection X-ray fluorescence (TXRF) element determination of single freshwater crustacean specimens (dry weight: 3-40 μg ind -1) have been developed and tested using Daphnia pulex from a deep, oligotrophic freshwater lake located in southern Chile. Dry method: Specimens were washed with 0.2 μm filtered lake water and frozen in liquid nitrogen. The freeze-dried Daphnia specimens were weighed using an ultra-fine microbalance and placed on quartz glass carriers for TXRF analysis. Wet method: Specimens were washed with 0.2 μm filtered lake water and placed on quartz glass carriers for TXRF analysis and dried in air. The dry weight was determined using the previously established body length-dry weight relationship. Method validation for both the dry and the wet preparation method in combination with TXRF spectrometry for the element determination in small single freshwater crustaceans showed that both methods can be used for routine investigations. There were no significant differences between the dry and the wet methods concerning the elements Ca, K, Fe, Zn, Br, P, Cu, but the determination of Mn, S and Sr revealed significant differences between the two methods. It seems that the dry method yields more precise results, but the wet method is easier to handle in the field when samples cannot be fixed with liquid nitrogen.
Thermodynamic model for uranium release from hanford site tank residual waste.
Cantrell, Kirk J; Deutsch, William J; Lindberg, Mike J
2011-02-15
A thermodynamic model of U solid-phase solubility and paragenesis was developed for Hanford Site tank residual waste that will remain in place after tank closure. The model was developed using a combination of waste composition data, waste leach test data, and thermodynamic modeling of the leach test data. The testing and analyses were conducted using actual Hanford Site tank residual waste. Positive identification of U phases by X-ray diffraction was generally not possible either because solids in the waste were amorphous or their concentrations were not detectable by XRD for both as-received and leached residual waste. Three leachant solutions were used in the studies: deionized water, CaCO3 saturated solution, and Ca(OH)2 saturated solution. Analysis of calculated saturation indices indicate that NaUO2PO4·xH2O and Na2U2O7(am) are present in the residual wastes initially. Leaching of the residual wastes with deionized water or CaCO3 saturated solution results in preferential dissolution Na2U2O7(am) and formation of schoepite. Leaching of the residual wastes with Ca(OH)2 saturated solution appears to result in transformation of both NaUO2PO4·xH2O and Na2U2O7(am) to CaUO4. Upon the basis of these results, the paragenetic sequence of secondary phases expected to occur as leaching of residual waste progresses for two tank closure scenarios was identified.
Kamba, Abdullahi Shafiu; Ismail, Maznah; Ibrahim, Tengku Azmi Tengku; Zakaria, Zuki Abu Bakar
2014-01-01
Currently, there has been extensive research interest for inorganic nanocrystals such as calcium phosphate, iron oxide, silicone, carbon nanotube and layered double hydroxide as a drug delivery system especially in cancer therapy. However, toxicological screening of such particles is paramount importance before use as delivery carrier. In this study we examine the biocompatibility of CaCO3 nanocrystal on NIH 3T3 cell line. Transmission and field emission scanning electron microscopy (TEM and FESEM) were used for the characterisation of CaCO3 nanocrystals. Cytotoxicity and genotoxic effect of calcium carbonate nanocrystals in cultured mouse embryonic fibroblast NIH 3T3 cell line using various bioassays including MTT, and Neutral red/Trypan blue double-staining assays. LDH, BrdU and reactive oxygen species were used for toxicity analysis. Cellular morphology was examined by scanning electron microscopy (SEM) and confocal fluorescence microscope. The outcome of the analyses revealed a clear rod-shaped aragonite polymorph of calcium carbonate nanocrystal. The analysed cytotoxic and genotoxicity of CaCO3 nanocrystal on NIH 3T3 cells using different bioassays revealed no significance differences as compared to control. A slight decrease in cell viability was noticed when the cells were exposed to higher concentrations of 200 to 400 µg/ml, while increase in ROS generation and LDH released at 200 and 400 µg/ml was observed. The study has shown that CaCO3 nanocrystal is biocompatible and non toxic to NIH 3T3 fibroblast cells. The analysed results offer a promising potential of CaCO3 nanocrystal for the development of intracellular drugs, genes and other macromolecule delivery systems.
Estivariz, Concepción; Mogdasy, Cristina; Pedreira, Walter; Galiana, Antonio; Galiana, Alvaro; Bagnulo, Homero; Gorwitz, Rachel; Fosheim, Gregory E.; McDougal, Linda K.; Jernigan, Daniel
2008-01-01
Community-associated MRSA (CA-MRSA) strains have emerged in Uruguay. We reviewed Staphylococcus aureus isolates from a large healthcare facility in Montevideo (center A) and obtained information from 3 additional hospitals on patients infected with CA-MRSA. An infection was defined as healthcare-onset if the culture was obtained >48 hours after hospital admission. At center A, the proportion of S. aureus infections caused by CA-MRSA increased from 4% to 23% over 2 years; the proportion caused by healthcare-associated MRSA (HA-MRSA) decreased from 25% to 5%. Of 182 patients infected with CA-MRSA, 38 (21%) had healthcare-onset infections. Pulsed-field gel electrophoresis determined that 22 (92%) of 24 isolates were USA1100, a community strain. CA-MRSA has emerged in Uruguay and appears to have replaced HA-MRSA strains at 1 healthcare facility. In addition, CA-MRSA appears to cause healthcare-onset infections, a finding that emphasizes the need for infection control measures to prevent transmission within healthcare settings. PMID:18680644
NASA Astrophysics Data System (ADS)
Wang, Bo-Kun; Wu, Shao-Yi; Yuan, Zi-Yi; Liu, Zi-Xuan; Jiang, Shi-Xin; Liu, Zheng; Yao, Zi-Jian; Teng, Bao-Hua; Wu, Ming-He
2016-08-01
The spin Hamiltonian parameters and local structures are theoretically studied for Cu2+-doped alkaline earth lead zinc phosphate (RPPZ, R=Mg, Ca, Sr, and Ba) glasses based on the high-order perturbation calculations for a tetragonally elongated octahedral 3d9 cluster. The relative elongation ratios are found to be ρ≈3.2%, 4.4%, 4.6%, and 3.3% for R=Mg, Ca, Sr, and Ba, respectively, because of the Jahn-Teller effect. The whole decreasing crystal-field strength Dq and orbital reduction factor k from Mg to Sr are ascribed to the weakening electrostatic coulombic interactions and the increasing probability of productivity of nonbridge oxygen (and hence increasing Cu2+-O2- electron cloud admixtures) under PbO addition, respectively, with increasing alkali earth ionic radius. The anomalies (the largest Dq and the next highest k among the systems) for R=Ba are attributed to the cross linkage of this large cation in the network. The overall increasing order (Mg≤Ba
Field Trips. Beginnings Workshop.
ERIC Educational Resources Information Center
Cartwright, Sally; Aronson, Susan S.; Stacey, Susan; Winbush, Olga
2001-01-01
Five articles highlight benefits and organization of field trips: (1) "Field Trips Promote Child Learning at Its Best"; (2) "Planning for Maximum Benefit, Minimum Risk"; (3) "Coaching Community Hosts"; (4) "The Story of a Field Trip: Trash and Its Place within Children's Learning and Community"; and (5) "Field Trip Stories and Perspectives" (from…
Aikawa, Masahide; Hiraki, Takatoshi; Tamaki, Motonori; Kasahara, Mikio; Kondo, Akira; Uno, Itsushi; Mukai, Hitoshi; Shimizu, Atsushi; Murano, Kentaro
2006-11-01
An intensive field survey, with 6-h measurement intervals, of concentrations of chemical species in particulate matter and gaseous compounds was carried out at coastal sites on the Sea of Japan during winter. The concentration variation of SO(2)(g) and HNO(3)(g) were well correlated, whereas the NH(3)(g) concentration variation had no correlation with those of SO(2)(g) and HNO(3)(g). The NH(4) (+) (p)/non-sea-salt- (nss-)SO(4) (2 -)(p) ratio in particulate matter was mainly affected by the location of the sampling site. One or more concentration peaks of nss-Ca(2 +) for survey period were observed. Backward trajectories analyses for the highest nss-Ca(2 +) concentration peaks showed some inconsistency in pathways. We consider that insufficient mixing of the atmosphere and/or insufficient time for the transported air pollutants to react with those discharged locally are the most likely explanations for the discrepancies between the measured products [HNO(3)][NH(3)] and the calculated values.
NASA Astrophysics Data System (ADS)
Niebieskikwiat, D.; Sánchez, R. D.; Lamas, D. G.; Caneiro, A.; Hueso, L. E.; Rivas, J.
2003-05-01
We study the nonlinear current-voltage (I-V) characteristics and analyze the voltage-dependent tunneling conductance in nanoparticles of La2/3A1/3MnO3 (A=Ca, Sr). The powders were prepared by different wet-chemical routes and low calcination temperatures were used to obtain an average particle size D≈30 nm. The data are comprehensively explained in terms of the tunneling picture, which allows one to estimate the height of the grain boundary insulating barrier (φ) for each sample. For constant D, our results show that the sample preparation route is mainly responsible for the value of φ in nanoparticles, while the Coulomb gap in the Coulomb blockade regime is ˜3 times higher for Sr- than for Ca-doping. We also show that a small fraction of the barriers contribute to the nonlinear transport, and the current is mainly carried through low-resistive percolated paths. In addition, despite the different barrier strengths, the low-field magnetoresistance (LFMR) is similar for all samples, implying that φ is not the fundamental parameter determining the LFMR.
NASA Astrophysics Data System (ADS)
Yamamoto, Takafumi D.; Taniguchi, Hiroki; Yasui, Yukio; Iguchi, Satoshi; Sasaki, Takahiko; Terasaki, Ichiro
2017-10-01
We have measured the resistivity, the thermopower, and the specific heat of the weak ferromagnetic oxide CaRu0.8Sc0.2O3 in external magnetic fields up to 140 kOe below 80 K. We have observed that the thermopower Q is significantly suppressed by magnetic fields at around the ferromagnetic transition temperature of 30 K, and have further found that the magneto-thermopower Δ Q(H,T) = Q(H,T) - Q(0,T) is roughly proportional to the magneto-entropy Δ S(H,T) = S(H,T) - S(0,T). We discuss this relationship between the two quantities in terms of the Kelvin formula, and find that the observed ΔQ is quantitatively consistent with the values expected from the Kelvin formula, a possible physical meaning of which is discussed.
A weak combined magnetic field changes root gravitropism
NASA Astrophysics Data System (ADS)
Kordyum, E. L.; Bogatina, N. I.; Kalinina, Ya. M.; Sheykina, N. V.
Although gravitropism has been studied for many decades, many questions on plant gravitropism, including the participation of Ca 2+ ions in graviperception and signal transduction, remain open and require new experiments. We have studied gravistimulation and root gravitropism in the presence of the weak, alternating magnetic field that consisted of a sinusoidal frequency of 32 Hz inside a μ-metal shield. We discovered that this field changes normally positively gravitropic cress root to exhibit negative gravitropism. Because the combined magnetic field was adjusted to the cyclotron frequency of Ca 2+ ions, the obtained data suggest that calcium ion participate in root gravitropism. Simultaneous application of the oscillating magnetic field of the same frequency ion induce oscillation of Ca 2+ ions and can change the rate and/or the direction of Ca 2+ ion flux in roots. Control and magnetic field-exposed roots were examined for change in the distribution of amyloplasts and cellular organelles by light, electron, and confocal laser microscopy.
Chang, Eric H.; Volpe, Bruce T.; Mackay, Meggan; Aranow, Cynthia; Watson, Philip; Kowal, Czeslawa; Storbeck, Justin; Mattis, Paul; Berlin, RoseAnn; Chen, Huiyi; Mader, Simone; Huerta, Tomás S.; Huerta, Patricio T.; Diamond, Betty
2015-01-01
Patients with systemic lupus erythematosus (SLE) experience cognitive abnormalities in multiple domains including processing speed, executive function, and memory. Here we show that SLE patients carrying antibodies that bind DNA and the GluN2A and GluN2B subunits of the N-methyl-d-aspartate receptor (NMDAR), termed DNRAbs, displayed a selective impairment in spatial recall. Neural recordings in a mouse model of SLE, in which circulating DNRAbs penetrate the hippocampus, revealed that CA1 place cells exhibited a significant expansion in place field size. Structural analysis showed that hippocampal pyramidal cells had substantial reductions in their dendritic processes and spines. Strikingly, these abnormalities became evident at a time when DNRAbs were no longer detectable in the hippocampus. These results suggest that antibody-mediated neurocognitive impairments may be highly specific, and that spatial cognition may be particularly vulnerable to DNRAb-mediated structural and functional injury to hippocampal cells that evolves after the triggering insult is no longer present. PMID:26286205
Assessment of radio frequency exposures in schools, homes, and public places in Belgium.
Verloock, Leen; Joseph, Wout; Goeminne, Francis; Martens, Luc; Verlaek, Mart; Constandt, Kim
2014-12-01
Characterization of exposure from emerging radio frequency (RF) technologies in areas where children are present is important. Exposure to RF electromagnetic fields (EMF) was assessed in three "sensitive" microenvironments; namely, schools, homes, and public places located in urban environments and compared to exposure in offices. In situ assessment was conducted by performing spatial broadband and accurate narrowband measurements, providing 6-min averaged electric-field strengths. A distinction between internal (transmitters that are located indoors) and external (outdoor sources from broadcasting and telecommunication) sources was made. Ninety-four percent of the broadband measurements were below 1 V m(-1). The average and maximal total electric-field values in schools, homes, and public places were 0.2 and 3.2 V m(-1) (WiFi), 0.1 and 1.1 V m(-1) (telecommunication), and 0.6 and 2.4 V m(-1) (telecommunication), respectively, while for offices, average and maximal exposure were 0.9 and 3.3 V m(-1) (telecommunication), satisfying the ICNIRP reference levels. In the schools considered, the highest maximal and average field values were due to internal signals (WiFi). In the homes, public places, and offices considered, the highest maximal and average field values originated from telecommunication signals. Lowest exposures were obtained in homes. Internal sources contributed on average more indoors (31.2%) than outdoors (2.3%), while the average contributions of external sources (broadcast and telecommunication sources) were higher outdoors (97.7%) than at indoor positions (68.8%). FM, GSM, and UMTS dominate the total downlink exposure in the outdoor measurements. In indoor measurements, FM, GSM, and WiFi dominate the total exposure. The average contribution of the emerging technology LTE was only 0.6%.
NASA Astrophysics Data System (ADS)
Kireev, Victor; Kovaleva, Liana; Isakov, Andrey; Alimbekova, Sofya
2017-11-01
In the present paper, an attempt to explain the mechanisms of the electromagnetic field influence on the process of formation and deposition of calcium carbonate from supersaturated brine solution has been made using numerical modeling. The one-dimensional mathematical model of the brine laminar flow through a cylindrical tube with non-uniform temperature field is written in the form of the system of transient convection-diffusion-reaction partial differential equations describing temperature field and chemical components concentrations (Ca2+, HCO3-, CaCO3). The influence of the temperature on the kinetics of formation of calcium carbonate is taken into account and it is described in accordance with the Arrhenius equation. The kinetics of the calcium carbonate precipitation on the wall of the pipe is given on the basis of the Henry isotherm. It has been established that the electromagnetic treatment of brine solution leads to a decrease of the adsorption rate constant and Henry's constant but it does not significantly influence on the chemical reaction rate of calcium carbonate formation. It also has been shown that treatment with electromagnetic field significantly reduces the amount of calcium carbonate deposits on the wall of the pipe.
Contribution of Genoarchitecture to Understanding Hippocampal Evolution and Development.
Medina, Loreta; Abellán, Antonio; Desfilis, Ester
2017-01-01
The hippocampal formation is a highly conserved structure of the medial pallium that works in association with the entorhinal cortex, playing a key role in memory formation and spatial navigation. Although it has been described in several vertebrates, the presence of comparable subdivisions across species remained unclear. This panorama has started to change in recent years thanks to the identification of some of the genes that regulate the development of the hippocampal formation in the mouse and help to delineate its subdivisions based on molecular features. Some of these genes have been used to try to identify subdivisions in chicken and lizards comparable to those of the mammalian hippocampal formation and the entorhinal cortex. Here, we review some of these data, which suggest the existence of fields comparable to the dentate gyrus, CA3, CA1, subiculum, as well as medial and lateral parts of the entorhinal cortex in all amniotes. We also analyze available data suggesting the existence of serial connections between these fields, speculate on the possible existence of auto-associative loops in CA3, and discuss general principles governing the formation of the connections. © 2017 S. Karger AG, Basel.
PLACING DIAGONALS IN CENTER PANEL. View is northnorthwest from the ...
PLACING DIAGONALS IN CENTER PANEL. View is north-northwest from the old suspension bridge, looking at upstream side of new bridge - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
Deng, Hua; Wang, Dewen; Peng, Ruiyun; Wang, Shuiming; Chen, Jiankui; Zhang, Sa; Dong, Bo; Wang, Xiaomin
2005-08-01
Though there is ongoing public concern on potential hazards and risk of electromagnetic radiation, the bioeffects mechanism of electromagnetic fields remains obscure. Heart is one of the organs susceptive to electromagnetic fields (EMF). This study was designed to assess the influence of high power pulse microwave and electromagnetic pulse irradiation on cardiomyocytes, to explore the critical mechanism of electromagnetic fields, and to explain the regular course of injury caused by exposure to pulse EMF. Cultured cardiomyocytes were irradiated by high power pulse microwave and electromagnetic pulse first, then a series of apparatus including atom force microscope, laser scanning confocal microscope and flow cytometer were used to examine the changes of cell membrane conformation, structure and function. After irradiation, the cardiomyocytes pulsated slower or stop, the cells conformation was abnormal, the cells viability declined, and the percentage of apoptosis and necrosis increased significantly (P< 0.01). The cell membrane had pores unequal in size, and lost its penetration character. The concentration of Na+, K+, Ca2+, Cl-, Mg2+, Ca2+ and P3+ in cell culture medium increased significantly (P< 0.01). and the concentration of Ca2+ in cells ([Ca2+]i) decreased significantly (P<0.01). The results indicated that cardiomyocytes are susceptible to non-ionizing radiation. Pulse electromagnetic field can induce cardiomyocytes electroporation, and can do great damage to cells conformation, structure and function. Electroporation is one of the most critical mechanisms to explain the athermal effects of electromagnetic radiation.
Membrane guanylate cyclase is a beautiful signal transduction machine: overview.
Sharma, Rameshwar K
2010-01-01
This article is a sequel to the four earlier comprehensive reviews which covered the field of membrane guanylate cyclase from its origin to the year 2002 (Sharma in Mol Cell Biochem 230:3-30, 2002) and then to the year 2004 (Duda et al. in Peptides 26:969-984, 2005); and of the Ca(2+)-modulated membrane guanylate cyclase to the year 1997 (Pugh et al. in Biosci Rep 17:429-473, 1997) and then to 2004 (Sharma et al. in Curr Top Biochem Res 6:111-144, 2004). This article contains three parts. The first part is "Historical"; it is brief, general, and freely borrowed from the earlier reviews, covering the field from its origin to the year 2004 (Sharma in Mol Cell Biochem, 230:3-30, 2002; Duda et al. in Peptides 26:969-984, 2005). The second part focuses on the "Ca(2+)-modulated ROS-GC membrane guanylate cyclase subfamily". It is divided into two sections. Section "Historical" and covers the area from its inception to the year 2004. It is also freely borrowed from an earlier review (Sharma et al. in Curr Top Biochem Res 6:111-144, 2004). Section "Ca(2+)-modulated ROS-GC membrane guanylate cyclase subfamily" covers the area from the year 2004 to May 2009. The objective is to focus on the chronological development, recognize major contributions of the original investigators, correct misplaced facts, and project on the future trend of the field of mammalian membrane guanylate cyclase. The third portion covers the present status and concludes with future directions in the field.
NASA Astrophysics Data System (ADS)
Keswani, Bhavna C.; Saraf, Deepashri; Patil, S. I.; Kshirsagar, Anjali; James, A. R.; Kolekar, Y. D.; Ramana, C. V.
2018-05-01
We report on the combined experimental and theoretical simulation results of lead-free ferroelectrics, Ba(1-x)CaxTiO3 (x = 0.0-0.3) and BaTi(1-y)ZryO3 (y = 0.0-0.2), synthesized by standard solid state reaction method. First principles density functional calculations are used to investigate the electronic structure, dynamical charges, and spontaneous polarization of these compounds. In addition, the structural, ferroelectric, piezoelectric, and dielectric properties are studied using extensive experiments. The X-ray diffraction and temperature dependent Raman spectroscopy studies indicate that the calcium (Ca) substituted compositions exhibit a single phase crystal structure, while zirconium (Zr) substituted compositions are biphasic. The scanning electron micrographs reveal the uniform and highly dense microstructure. The presence of polarization-electric field and strain-electric field hysteresis loops confirms the ferroelectric and piezoelectric nature of all the compositions. Our results demonstrate higher values for polarization, percentage strain, piezoelectric coefficients, and electrostrictive coefficient compared to those existing in the literature. For smaller substitutions of Ca and Zr in BaTiO3, a direct piezoelectric coefficient (d33) is enhanced, while the highest d33 value (˜300 pC/N) is observed for BaTi0.96Zr0.04O3 due to the biphasic ferroelectric behavior. Calculation of Born effective charges indicates that doping with Ca or Zr increases the dynamical charges on Ti as well as on O and decreases the dynamical charge on Ba. An increase in the dynamical charges on Ti and O is ascribed to the increase in covalency of Ti-O bond that reduces the polarizability of the crystal. A broader range of temperatures is demonstrated to realize the stable phase in the Ca substituted compounds. The results indicate enhancement in the temperature range of applicability of these compounds for device applications. The combined theoretical and experimental study is expected to enhance the current scientific understanding of the lead-free ferroelectric materials.
NASA Astrophysics Data System (ADS)
Lebensohn, Ricardo A.
2012-03-01
This special issue contains selected contributions from invited speakers to the 'Polycrystal Modelling with Experimental Integration: A Symposium Honoring Carlos Tomé', held as part of the 2011 TMS Annual Meeting and Exhibition, that took place on February 27-March 3, 2011 in San Diego, CA, USA. This symposium honored the remarkable contributions of Dr Carlos N Tomé to the field of mechanical behavior of polycrystalline materials, on the occasion of his 60th birthday. Throughout his career, Dr Tomé has pioneered the theoretical and numerical development of models of polycrystal mechanical behavior, with emphasis on the role played by texture and microstructure on the anisotropic behavior of engineering materials. His many contributions have been critical in establishing a strong connection between models and experiments, and in bridging different scales in the pursuit of robust multiscale models with experimental integration. Among his achievements, the numerical codes that Dr Tomé and co-workers have developed are extensively used in the materials science and engineering community as predictive tools for parameter identification, interpretation of experiments, and multiscale calculations in academia, national laboratories and industry. The symposium brought together materials scientists and engineers to address current theoretical, computational and experimental issues related to microstructure-property relationships in polycrystalline materials deforming in different regimes, including the effects of single crystal anisotropy, texture and microstructure evolution. Synergetic studies, involving different crystal plasticity-based models, including multiscale implementations of the latter, and measurements of global and local textures, internal strains, dislocation structures, twinning, phase distribution, etc, were discussed in more than 90 presentations. The papers in this issue are representative of the different length-scales, materials, and experimental and modeling techniques addressed in the symposium. The special issue starts with two papers by Wang et al presenting molecular dynamics studies of the interaction of dislocations with grain and twin boundaries in hcp crystals. The papers by Vu et al and Mercier et al that follow present novel formulations based on non-linear homogenization for viscoelastic and elasto-viscoplastic polycrystals, respectively. Next, two papers by Merkel et al and Beaudoin et al report on synchrotron x-ray measurements of lattice strains in hcp-iron and Al-Li (fcc) polycrystals, respectively, interpreted by means of polycrystal plasticity models. The following two papers by Field et al and Lefebvre et al show how orientation images of polycrystalline cubic metals obtained by electron backscatter diffraction can be used as direct input of models for quantification of dislocation density fields and surface roughness, respectively. Finally, the papers by Jeong et al and Vanna Yang et al show applications of physically-based models of polycrystal plasticity to the analysis of the anisotropic plastic response of stainless steels, and the strain-hardening of Mg-Al alloys, respectively.
NASA Astrophysics Data System (ADS)
Oliveira, M. P.; Mercena, S. G.; Meneses, C. T.; Jesus, C. B. R.; Pagliuso, P. G.; Duque, J. G. S.
2018-04-01
In this work, we report on X-ray diffraction and magnetization measurements carried out in the low-dimensional hexagonal cobaltites BaxA1-xCoO3-δ (A = Mg or Ca, 0 ⩽ x ⩽ 0.20 and δ = 0 or 0.4). Polycrystalline samples have been synthesized by solid-state reaction. The Rietveld refinements of the X-ray diffraction patterns show clearly a phase coexistence of both BaCoO2.6 and BaCoO3 hexagonal polytype structures (space group: P63/mmc), which is dependent on both the dopant ion and doping level. At low temperatures (T < 50K), the ZFC-FC data recorded at H = 1 kOe for Ca-doped (x < 0.15) and Ba0.80Mg0.20CoO3-δ samples present a broad peak and strong thermal hysteresis. Besides, a second anomaly around room temperature is also observed in susceptibility curves for all samples. Further increasing in the Ca-doping produces a continuous decreasing of magnetization and for the samples with x > 0.10 the low temperature hysteresis is not observed anymore. The field-dependence of ZFC-FC curves taken for the sample grown with x = 0 show a displacement of the peak position into low temperature region. Except for the sample grown with x = 0.20, the MvsH loops taken at T = 2 K show multiple steps in the field region ranging - 15 ⩽ H ⩽ 15 kOe . Finally, the saturation magnetization values are consistent with a low-spin state for the Co2+ or Co4+ ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phan, The-Long; Jung, C. U.; Lee, B. W., E-mail: bwlee@hufs.ac.kr
We prepared orthorhombic La{sub 0.7−x}Y{sub x}Ca{sub 0.3}MnO{sub 3} samples (x = 0, 0.04, 0.06, and 0.08) by conventional solid-state reaction and then studied their magnetic properties and magnetocaloric (MC) effect based on magnetization versus temperature and magnetic-field measurements, M(T, H). The experimental results revealed that an x increase in La{sub 0.7−x}Y{sub x}Ca{sub 0.3}MnO{sub 3} reduced the ferromagnetic-paramagnetic transition temperature (T{sub C}) from 260 K (for x = 0) to ∼126 K (for x = 0.08). Around the T{sub C}, maximum magnetic-entropy changes for a magnetic-field variation interval H = 50 kOe are about 10.7, 8.5, 7.4, and 5.8 J·kg{sup −1}·K{sup −1} for x = 0, 0.04, 0.06, and 0.08, respectively, corresponding to refrigerantmore » capacities RC = 250–280 J·kg{sup −1}. These values are comparable to those of some conventional MC materials, revealing the applicability of La{sub 0.7−x}Y{sub x}Ca{sub 0.3}MnO{sub 3} in magnetic refrigeration. Using the Arrott method and scaling hypothesis as analyzing high-field M(H, T) data, and the universal-curve construction of the magnetic entropy change, we found a magnetic-phase separation. While the samples x = 0−0.06 exhibit a first-order magnetic phase transition, x = 0.08 exhibits the crossover of the first-to-second-order phase transformation (with its critical-exponent values close to those expected for the tricritical mean-field theory) and has the presence of ferromagnetic clusters even above the T{sub C}. Such the variations in the magnetism and MC effect are related to the changes in structural parameters caused by the Y substitution for La because Y doping does not change the concentration ratio of Mn{sup 3+}/Mn{sup 4+}.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-16
..., Col. Bud Day published in Field. TL 12-09, is hereby rescinded in its entirety. 3-May-12 CA San... region in which the affected airport is located; 3. The National Flight Procedures Office, 6500 South... Policies and Procedures (44 FR 11034; February 26, 1979); and (3) does not warrant preparation of a...
Intracellular Calcium Decreases Upon Hyper Gravity-Treatment of Arabidopsis Thaliana Cell Cultures
NASA Astrophysics Data System (ADS)
Neef, Maren; Denn, Tamara; Ecke, Margret; Hampp, Rüdiger
2016-06-01
Cell cultures of Arabidopsis thaliana ( A. t.) respond to changes in the gravitational field strength with fluctuations of the amount of cytosolic calcium (Ca2+). In parabolic flight experiments, where hyper- and μg phases follow each other, μg clearly increased Ca2+, while hyper-g caused a slight reduction. Since the latter observation had not been reported before, we studied this effect in more detail. Using a special centrifuge for heavy items (ZARM, Bremen, Germany), we determined the hyper-g-dependent intracellular Ca2+ level with transgenic cell lines expressing the Ca2+ sensor, cameleon. This sensor exhibits a shift in fluorescence from 480 to 530 nm in response to Ca2+ binding. The data show a drop in the intracellular Ca2+ concentration with a threshold gravity of around 3 g. This is above hypergravity levels achieved during parabolic flights (1.8 g). The use of mutants with different sub-cellular targets of cameleon expression (nucleus, tonoplast, plasma membrane) gave the same results, i.e. Ca2+ is obviously exported from several intracellular compartments.
76 FR 5201 - Notice of Realty Action: Competitive Sale of Public Lands in Monterey County, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
... sale should be sent to the Field Manager, BLM Hollister Field Office, 20 Hamilton Court, Hollister, CA... will be provided an opportunity to submit supplemental bids. The BLM Hollister Field Office Manager... Management (BLM), Hollister Field Office, proposes to sell two separate parcels of public land totaling 80...
NASA Astrophysics Data System (ADS)
Donati, J.-F.; Hébrard, E.; Hussain, G.; Moutou, C.; Grankin, K.; Boisse, I.; Morin, J.; Gregory, S. G.; Vidotto, A. A.; Bouvier, J.; Alencar, S. H. P.; Delfosse, X.; Doyon, R.; Takami, M.; Jardine, M. M.; Fares, R.; Cameron, A. C.; Ménard, F.; Dougados, C.; Herczeg, G.; Matysse Collaboration
2014-11-01
We report results of a spectropolarimetric and photometric monitoring of the weak-line T Tauri star LkCa 4 within the Magnetic Topologies of Young Stars and the Survival of close-in giant Exoplanets (MaTYSSE) programme, involving ESPaDOnS at the Canada-France-Hawaii Telescope. Despite an age of only 2 Myr and a similarity with prototypical classical T Tauri stars, LkCa 4 shows no evidence for accretion and probes an interesting transition stage for star and planet formation. Large profile distortions and Zeeman signatures are detected in the unpolarized and circularly polarized lines of LkCa 4 using Least-Squares Deconvolution (LSD), indicating the presence of brightness inhomogeneities and magnetic fields at the surface of LkCa 4. Using tomographic imaging, we reconstruct brightness and magnetic maps of LkCa 4 from sets of unpolarized and circularly polarized LSD profiles. The large-scale field is strong and mainly axisymmetric, featuring a ≃2 kG poloidal component and a ≃1 kG toroidal component encircling the star at equatorial latitudes - the latter making LkCa 4 markedly different from classical T Tauri stars of similar mass and age. The brightness map includes a dark spot overlapping the magnetic pole and a bright region at mid-latitudes - providing a good match to the contemporaneous photometry. We also find that differential rotation at the surface of LkCa 4 is small, typically ≃5.5 times weaker than that of the Sun, and compatible with solid-body rotation. Using our tomographic modelling, we are able to filter out the activity jitter in the radial velocity curve of LkCa 4 (of full amplitude 4.3 km s-1) down to an rms precision of 0.055 km s-1. Looking for hot Jupiters around young Sun-like stars thus appears feasible, even though we find no evidence for such planets around LkCa 4.
Yi, Di; Liu, Jian; Okamoto, Satoshi; Jagannatha, Suresha; Chen, Yi-Chun; Yu, Pu; Chu, Ying-Hao; Arenholz, Elke; Ramesh, R
2013-09-20
We investigate the possibility of controlling the magnetic phase transition of the heterointerface between a half-doped manganite La(0.5)Ca(0.5)MnO(3) and a multiferroic BiFeO(3) (BFO) through magnetoelectric coupling. Using macroscopic magnetometry and element-selective x-ray magnetic circular dichroism at the Mn and Fe L edges, we discover that the ferroelectric polarization of BFO controls simultaneously the magnetization of BFO and La(0.5)Ca(0.5)MnO(3) (LCMO). X-ray absorption spectra at the oxygen K edge and linear dichroism at the Mn L edge suggest that the interfacial coupling is mainly derived from the superexchange between Mn and Fe t(2g) spins. The combination of x-ray absorption spectroscopy and mean-field theory calculations reveals that the d-electron modulation of Mn cations changes the magnetic coupling in LCMO, which controls the enhanced canted moments of interfacial BFO via the interfacial coupling. Our results demonstrate that the competition between ferromagnetic and antiferromagnetic instability can be modulated by an electric field at the heterointerface, providing another pathway for the electrical field control of magnetism.
Effects of gravity on combustion synthesis of functionally graded biomaterials
NASA Astrophysics Data System (ADS)
Castillo, M.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.; Zhang, X.; Umakoshi, M.; Yi, H. C.; Guigne, J. Y.
2003-07-01
Combustion synthesis, or self-propagating, high temperature synthesis is currently being used at the Colorado School of Mines to produce advanced materials for biomedical applications. These biomaterials include ceramic, intermetallic, and metal-matrix composites for applications ranging from structural to oxidation- and wear-resistant materials, e.g., TiC-Ti, TiC-Cr 3C 2, MOSi 2-SiC, NiAl-TiB 2, to engineered porous composites, e.g., B 4C-Al 2O 3, Ti-TiB x, Ni-Ti, Ca 3(P0 4) 2 and glass-ceramic composites, e.g., CaO-SiO 2-BaO-Al 2O 3-TiB 2. The goal of the functionally graded biomaterials project is to develop new materials, graded in porosity and composition, which will combine the desirable mechanical properties of implant, e.g., NiTi, with the bone-growth enhancement properties of porous biodegradable ceramics, e.g., Ca 3(PO 4) 2. Recent experiments on the NASA parabolic flight (KC-135) aircraft have shown that gravity plays an important role in controlling the structure and properties of materials produced by combustion synthesis. The results of these studies, which will be presented at the conference, will provide valuable input to the design of experiments to be done in Space-DRUMS TM, a containerless materials processing facility scheduled to be placed on the International Space Station in 2003.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szulik, Marta W.; Pallan, Pradeep S.; Nocek, Boguslaw
5-Hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) form during active demethylation of 5-methylcytosine (5mC) and are implicated in epigenetic regulation of the genome. They are differentially processed by thymine DNA glycosylase (TDG), an enzyme involved in active demethylation of 5mC. Three modified Dickerson–Drew dodecamer (DDD) sequences, amenable to crystallographic and spectroscopic analyses and containing the 5'-CG-3' sequence associated with genomic cytosine methylation, containing 5hmC, 5fC, or 5caC placed site-specifically into the 5'-T 8X 9G 10-3' sequence of the DDD, were compared. The presence of 5caC at the X9 base increased the stability of the DDD, whereas 5hmC or 5fC didmore » not. Both 5hmC and 5fC increased imino proton exchange rates and calculated rate constants for base pair opening at the neighboring base pair A 5:T 8, whereas 5caC did not. At the oxidized base pair G 4:X 9, 5fC exhibited an increase in the imino proton exchange rate and the calculated k op. In all cases, minimal effects to imino proton exchange rates occurred at the neighboring base pair C 3:G 10. No evidence was observed for imino tautomerization, accompanied by wobble base pairing, for 5hmC, 5fC, or 5caC when positioned at base pair G 4:X 9; each favored Watson–Crick base pairing. However, both 5fC and 5caC exhibited intranucleobase hydrogen bonding between their formyl or carboxyl oxygens, respectively, and the adjacent cytosine N 4 exocyclic amines. The lesion-specific differences observed in the DDD may be implicated in recognition of 5hmC, 5fC, or 5caC in DNA by TDG. Furthermore, they do not correlate with differential excision of 5hmC, 5fC, or 5caC by TDG, which may be mediated by differences in transition states of the enzyme-bound complexes.« less