The gamma subunit of transducin is farnesylated.
Lai, R K; Perez-Sala, D; Cañada, F J; Rando, R R
1990-01-01
Protein prenylation with farnesyl or geranylgeranyl moieties is an important posttranslational modification that affects the activity of such diverse proteins as the nuclear lamins, the yeast mating factor mata, and the ras oncogene products. In this article, we show that whole retinal cultures incorporate radioactive mevalonic acid into proteins of 23-26 kDa and one of 8 kDa. The former proteins are probably the "small" guanine nucleotide-binding regulatory proteins (G proteins) and the 8-kDa protein is the gamma subunit of the well-studied retinal heterotrimeric G protein (transducin). After deprenylating purified transducin and its subunits with Raney nickel or methyl iodide/base, the adducted prenyl group can be identified as an all-trans-farnesyl moiety covalently linked to a cysteine residue. Thus far, prenylation reactions have been found to occur at cysteine in a carboxyl-terminal consensus CAAX sequence, where C is the cysteine, A is an aliphatic amino acid, and X is undefined. Both the alpha and gamma subunits of transducin have this consensus sequence, but only the gamma subunit is prenylated. Therefore, the CAAX motif is not necessary and sufficient to direct prenylation. Finally, since transducin is the best understood G protein, both structurally and mechanistically, the discovery that it is farnesylated should allow for a quantitative understanding of this post-translational modification. Images PMID:2217200
Biogenesis of the Saccharomyces cerevisiae Pheromone a-Factor, from Yeast Mating to Human Disease
Barrowman, Jemima
2012-01-01
Summary: The mating pheromone a-factor secreted by Saccharomyces cerevisiae is a farnesylated and carboxylmethylated peptide and is unusually hydrophobic compared to other extracellular signaling molecules. Mature a-factor is derived from a precursor with a C-terminal CAAX motif that directs a series of posttranslational reactions, including prenylation, endoproteolysis, and carboxylmethylation. Historically, a-factor has served as a valuable model for the discovery and functional analysis of CAAX-processing enzymes. In this review, we discuss the three modules comprising the a-factor biogenesis pathway: (i) the C-terminal CAAX-processing steps carried out by Ram1/Ram2, Ste24 or Rce1, and Ste14; (ii) two sequential N-terminal cleavage steps, mediated by Ste24 and Axl1; and (iii) export by a nonclassical mechanism, mediated by the ATP binding cassette (ABC) transporter Ste6. The small size and hydrophobicity of a-factor present both challenges and advantages for biochemical analysis, as discussed here. The enzymes involved in a-factor biogenesis are conserved from yeasts to mammals. Notably, studies of the zinc metalloprotease Ste24 in S. cerevisiae led to the discovery of its mammalian homolog ZMPSTE24, which cleaves the prenylated C-terminal tail of the nuclear scaffold protein lamin A. Mutations that alter ZMPSTE24 processing of lamin A in humans cause the premature-aging disease progeria and related progeroid disorders. Intriguingly, recent evidence suggests that the entire a-factor pathway, including all three biogenesis modules, may be used to produce a prenylated, secreted signaling molecule involved in germ cell migration in Drosophila. Thus, additional prenylated signaling molecules resembling a-factor, with as-yet-unknown roles in metazoan biology, may await discovery. PMID:22933563
Caged Protein Prenyltransferase Substrates: Tools for Understanding Protein Prenylation
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeGraw, Amanda J.; Hast, Michael A.; Xu, Juhua
Originally designed to block the prenylation of oncogenic Ras, inhibitors of protein farnesyltransferase currently in preclinical and clinical trials are showing efficacy in cancers with normal Ras. Blocking protein prenylation has also shown promise in the treatment of malaria, Chagas disease and progeria syndrome. A better understanding of the mechanism, targets and in vivo consequences of protein prenylation are needed to elucidate the mode of action of current PFTase (Protein Farnesyltransferase) inhibitors and to create more potent and selective compounds. Caged enzyme substrates are useful tools for understanding enzyme mechanism and biological function. Reported here is the synthesis and characterizationmore » of caged substrates of PFTase. The caged isoprenoid diphosphates are poor substrates prior to photolysis. The caged CAAX peptide is a true catalytically caged substrate of PFTase in that it is to not a substrate, yet is able to bind to the enzyme as established by inhibition studies and X-ray crystallography. Irradiation of the caged molecules with 350 nm light readily releases their cognate substrate and their photolysis products are benign. These properties highlight the utility of those analogs towards a variety of in vitro and in vivo applications.« less
Molecular and biochemical characterization of tomato farnesyl-protein transferase.
Schmitt, D; Callan, K; Gruissem, W
1996-10-01
The prenylation of membrane-associated proteins involved in the regulation of eukaryotic cell growth and signal transduction is critically important for their subcellular localization and biological activity. In contrast to mammalian cells and yeast, however, the function of protein prenylation in plants is not well understood and only a few prenylated proteins have been identified. We partially purified and characterized farnesyl-protein transferase from tomato (Lycopersicon esculentum, LeFTase) to analyze its biochemical and molecular properties. Using Ras- and G gamma-specific peptide substrates and competition assays we showed that tomato protein extracts have both farnesyl-protein transferase and geranylgeranyl-protein transferase 1 activities. Compared with the heterologous synthetic peptide substrates, the plant-specific CaaX sequence of the ANJ1 protein is a less efficient substrate for LeFTase in vitro. LeFTase activity profiles and LeFTase beta-subunit protein (LeFTB) levels differ significantly in various tissues and are regulated during fruit development. Partially purified LeFTase requires Zn2+ and Mg2+ for enzymatic activity and has an apparent molecular mass of 100 kD Immunoprecipitation experiments using anti-alpha LeFTB antibodies confirmed that LeFTB is a component of LeFTase but not of tomato geranylgeranyl-protein transferase 1. Based on their conserved bio-chemical activities, we expect that prenyltransferases are likely integrated with the sterol biosynthesis pathway in the control of plant cell growth.
Kyro, Kelly; Manandhar, Surya P.; Mullen, Daniel; Schmidt, Walter K.; Distefano, Mark D.
2012-01-01
Rce1p catalyzes the proteolytic trimming of C-terminal tripeptides from isoprenylated proteins containing CAAX-box sequences. Because Rce1p processing is a necessary component in the Ras pathway of oncogenic signal transduction, Rce1p holds promise as a potential target for therapeutic intervention. However, its mechanism of proteolysis and active site have yet to be defined. Here, we describe synthetic peptide analogues that mimic the natural lipidated Rce1p substrate and incorporate photolabile groups for photoaffinity-labeling applications. These photoactive peptides are designed to crosslink to residues in or near the Rce1p active site. By incorporating the photoactive group via p-benzoyl-L-phenylalanine (Bpa) residues directly into the peptide substrate sequence, the labeling efficiency was substantially increased relative to a previously-synthesized compound. Incorporation of biotin on the N-terminus of the peptides permitted photolabeled Rce1p to be isolated via streptavidin affinity capture. Our findings further suggest that residues outside the CAAX-box sequence are in contact with Rce1p, which has implications for future inhibitor design. PMID:22079863
Use of Synthetic Isoprenoids to Target Protein Prenylation and Rho GTPases in Breast Cancer Invasion
Chen, Min; Knifley, Teresa; Subramanian, Thangaiah; Spielmann, H. Peter; O’Connor, Kathleen L.
2014-01-01
Dysregulation of Ras and Rho family small GTPases drives the invasion and metastasis of multiple cancers. For their biological functions, these GTPases require proper subcellular localization to cellular membranes, which is regulated by a series of post-translational modifications that result in either farnesylation or geranylgeranylation of the C-terminal CAAX motif. This concept provided the rationale for targeting farnesyltransferase (FTase) and geranylgeranyltransferases (GGTase) for cancer treatment. However, the resulting prenyl transferase inhibitors have not performed well in the clinic due to issues with alternative prenylation and toxicity. As an alternative, we have developed a unique class of potential anti-cancer therapeutics called Prenyl Function Inhibitors (PFIs), which are farnesol or geranyl-geraniol analogs that act as alternate substrates for FTase or GGTase. Here, we test the ability of our lead PFIs, anilinogeraniol (AGOH) and anilinofarnesol (AFOH), to block the invasion of breast cancer cells. We found that AGOH treatment effectively decreased invasion of MDA-MB-231 cells in a two-dimensional (2D) invasion assay at 100 µM while it blocked invasive growth in three-dimensional (3D) culture model at as little as 20 µM. Notably, the effect of AGOH on 3D invasive growth was phenocopied by electroporation of cells with C3 exotransferase. To determine if RhoA and RhoC were direct targets of AGOH, we performed Rho activity assays in MDA-MB-231 and MDA-MB-468 cells and found that AGOH blocked RhoA and RhoC activation in response to LPA and EGF stimulation. Notably, the geranylgeraniol analog AFOH was more potent than AGOH in inhibiting RhoA and RhoC activation and invasive growth. Interestingly, neither AGOH nor AFOH impacted 3D growth of MCF10A cells. Collectively, this study demonstrates that AGOH and AFOH dramatically inhibit breast cancer invasion, at least in part by blocking Rho function, thus, suggesting that targeting prenylation by using PFIs may offer a promising mechanism for treatment of invasive breast cancer. PMID:24587105
Structure of the Integral Membrane Protein CAAX Protease Ste24p
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pryor Jr., Edward E.; Horanyi, Peter S.; Clark, Kathleen M.
2012-10-26
Posttranslational lipidation provides critical modulation of the functions of some proteins. Isoprenoids (i.e., farnesyl or geranylgeranyl groups) are attached to cysteine residues in proteins containing C-terminal CAAX sequence motifs (where A is an aliphatic residue and X is any residue). Isoprenylation is followed by cleavage of the AAX amino acid residues and, in some cases, by additional proteolytic cuts. We determined the crystal structure of the CAAX protease Ste24p, a zinc metalloprotease catalyzing two proteolytic steps in the maturation of yeast mating pheromone a -factor. The Ste24p core structure is a ring of seven transmembrane helices enclosing a voluminous cavitymore » containing the active site and substrate-binding groove. The cavity is accessible to the external milieu by means of gaps between splayed transmembrane helices. We hypothesize that cleavage proceeds by means of a processive mechanism of substrate insertion, translocation, and ejection.« less
Kinsella, B T; Erdman, R A; Maltese, W A
1991-05-25
Membrane localization of p21ras is dependent upon its posttranslational modification by a 15-carbon farnesyl group. The isoprenoid is linked to a cysteine located within a conserved carboxyl-terminal sequence termed the "CAAX" box (where C is cysteine, A is an aliphatic amino acid, and X is any amino acid). We now show that three GTP-binding proteins encoded by the recently identified rac1, rac2, and ralA genes also undergo isoprenoid modification. cDNAs coding for each protein were transcribed in vitro, and the RNAs were translated in reticulocyte lysates. Incorporation of isoprenoid precursors, [3H]mevalonate or [3H]farnesyl pyrophosphate, indicated that the translation products were modified by isoprenyl groups. A protein recognized by an antibody to rac1 also comigrated with a protein metabolically labeled by a product of [3H] mevalonate in cultured cells. Gel permeation chromatography of radiolabeled hydrocarbons released from the rac1, rac2, and ralA proteins by reaction with Raney nickel catalyst indicated that unlike p21Hras, which was modified by a 15-carbon moiety, the rac and ralA translation products were modified by 20-carbon isoprenyl groups. Site-directed mutagenesis established that the isoprenylated cysteines in the rac1, rac2, and ralA proteins were located in the fourth position from the carboxyl terminus. The three-amino acid extension distal to the cysteine was required for this modification. The isoprenylation of rac1 (CSLL), ralA (CCIL), and the site-directed mutants rac1 (CRLL) and ralA (CSIL), demonstrates that the amino acid adjacent to the cysteine need not be aliphatic. Therefore, proteins with carboxyl-terminal CXXX sequences that depart from the CAAX motif should be considered as potential targets for isoprenoid modification.
Yeast Genes Controlling Responses to Topogenic Signals in a Model Transmembrane Protein
Tipper, Donald J.; Harley, Carol A
2002-01-01
Yeast protein insertion orientation (PIO) mutants were isolated by selecting for growth on sucrose in cells in which the only source of invertase is a C-terminal fusion to a transmembrane protein. Only the fraction with an exocellular C terminus can be processed to secreted invertase and this fraction is constrained to 2–3% by a strong charge difference signal. Identified pio mutants increased this to 9–12%. PIO1 is SPF1, encoding a P-type ATPase located in the endoplasmic reticulum (ER) or Golgi. spf1-null mutants are modestly sensitive to EGTA. Sensitivity is considerably greater in an spf1 pmr1 double mutant, although PIO is not further disturbed. Pmr1p is the Golgi Ca2+ ATPase and Spf1p may be the equivalent ER pump. PIO2 is STE24, a metalloprotease anchored in the ER membrane. Like Spf1p, Ste24p is expressed in all yeast cell types and belongs to a highly conserved protein family. The effects of ste24- and spf1-null mutations on invertase secretion are additive, cell generation time is increased 60%, and cells become sensitive to cold and to heat shock. Ste24p and Rce1p cleave the C-AAX bond of farnesylated CAAX box proteins. The closest paralog of SPF1 is YOR291w. Neither rce1-null nor yor291w-null mutations affected PIO or the phenotype of spf1- or ste24-null mutants. Mutations in PIO3 (unidentified) cause a weaker Pio phenotype, enhanced by a null mutation in BMH1, one of two yeast 14-3-3 proteins. PMID:11950929
Protein prenylation: a new mode of host-pathogen interaction.
Amaya, Moushimi; Baranova, Ancha; van Hoek, Monique L
2011-12-09
Post translational modifications are required for proteins to be fully functional. The three step process, prenylation, leads to farnesylation or geranylgeranylation, which increase the hydrophobicity of the prenylated protein for efficient anchoring into plasma membranes and/or organellar membranes. Prenylated proteins function in a number of signaling and regulatory pathways that are responsible for basic cell operations. Well characterized prenylated proteins include Ras, Rac and Rho. Recently, pathogenic prokaryotic proteins, such as SifA and AnkB, have been shown to be prenylated by eukaryotic host cell machinery, but their functions remain elusive. The identification of other bacterial proteins undergoing this type of host-directed post-translational modification shows promise in elucidating host-pathogen interactions to develop new therapeutics. This review incorporates new advances in the study of protein prenylation into a broader aspect of biology with a focus on host-pathogen interaction. Copyright © 2011 Elsevier Inc. All rights reserved.
Isoprenoids and related pharmacological interventions: potential application in Alzheimer's disease.
Li, Ling; Zhang, Wei; Cheng, Shaowu; Cao, Dongfeng; Parent, Marc
2012-08-01
Two major isoprenoids, farnesyl pyrophosphate and geranylgeranyl pyrophosphate, serve as lipid donors for the posttranslational modification (known as prenylation) of proteins that possess a characteristic C-terminal motif. The prenylation reaction is catalyzed by prenyltransferases. The lipid prenyl group facilitates to anchor the proteins in cell membranes and mediates protein-protein interactions. A variety of important intracellular proteins undergo prenylation, including almost all members of small GTPase superfamilies as well as heterotrimeric G protein subunits and nuclear lamins. These prenylated proteins are involved in regulating a wide range of cellular processes and functions, such as cell growth, differentiation, cytoskeletal organization, and vesicle trafficking. Prenylated proteins are also implicated in the pathogenesis of different types of diseases. Consequently, isoprenoids and/or prenyltransferases have emerged as attractive therapeutic targets for combating various disorders. This review attempts to summarize the pharmacological agents currently available or under development that control isoprenoid availability and/or the process of prenylation, mainly focusing on statins, bisphosphonates, and prenyltransferase inhibitors. Whereas statins and bisphosphonates deplete the production of isoprenoids by inhibiting the activity of upstream enzymes, prenyltransferase inhibitors directly block the prenylation of proteins. As the importance of isoprenoids and prenylated proteins in health and disease continues to emerge, the therapeutic potential of these pharmacological agents has expanded across multiple disciplines. This review mainly discusses their potential application in Alzheimer's disease.
Farnesyltransferase inhibitors: CAAX mimetics based on different biaryl scaffolds.
Straniero, Valentina; Pallavicini, Marco; Chiodini, Giuseppe; Ruggeri, Paola; Fumagalli, Laura; Bolchi, Cristiano; Corsini, Alberto; Ferri, Nicola; Ricci, Chiara; Valoti, Ermanno
2014-07-01
Mimetics of the C-terminal CAAX tetrapeptide of Ras protein were designed as farnesyltransferase (FTase) inhibitors (FTIs) by replacing AA with o-aryl or o-heteroaryl substituted p-hydroxy- or p-aminobenzoic acid, while maintaining the replacement of C with 1,4-benzodioxan-2-ylmethyl or 2-amino-4-thiazolylacetyl residue as in previous CAAX mimetics. Both FTase inhibition and antiproliferative effect were showed by two thiazole derivatives, namely those with 1-naphthyl (10 and 10a) or 3-furanyl (15 and 15a) in the central spacer, and by the benzodioxane derivative with 2-thienyl (6 and 6a) in the same position. Accumulation of unprenylated RAS was demonstrated in cells incubated with 15a. Consistently with FTIs literature, such results delineate the biaryl scaffold not only as a spacer but also as a sensible area of these mimetic molecules, where modifications at the branching aromatic ring are not indifferent and should be matter of further investigation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Blanden, Melanie J; Suazo, Kiall F; Hildebrandt, Emily R; Hardgrove, Daniel S; Patel, Meet; Saunders, William P; Distefano, Mark D; Schmidt, Walter K; Hougland, James L
2018-02-23
Protein prenylation is a post-translational modification that has been most commonly associated with enabling protein trafficking to and interaction with cellular membranes. In this process, an isoprenoid group is attached to a cysteine near the C terminus of a substrate protein by protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I or II (GGTase-I and GGTase-II). FTase and GGTase-I have long been proposed to specifically recognize a four-amino acid C AAX C-terminal sequence within their substrates. Surprisingly, genetic screening reveals that yeast FTase can modify sequences longer than the canonical C AAX sequence, specifically C( x ) 3 X sequences with four amino acids downstream of the cysteine. Biochemical and cell-based studies using both peptide and protein substrates reveal that mammalian FTase orthologs can also prenylate C( x ) 3 X sequences. As the search to identify physiologically relevant C( x ) 3 X proteins begins, this new prenylation motif nearly doubles the number of proteins within the yeast and human proteomes that can be explored as potential FTase substrates. This work expands our understanding of prenylation's impact within the proteome, establishes the biologically relevant reactivity possible with this new motif, and opens new frontiers in determining the impact of non-canonically prenylated proteins on cell function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Signal Transduction Pathway in Maspin-induced Tumor Suppression of Prostate Cancer
2002-03-01
the zip Ebr allele is tested in similar assays with BR-C or Sb-sbd mutants. The zipEbr mutation is associated with a missense alteration in the myosin ...cytoskeletal dynamics in elongating legs via by inducing contraction of the apical actin- myosin belt. 8 Recent evidence has shown that mutations in...the RhoA mutations used in these studies have been characterized at a molecular level (Table 2). RhoAE3 °o is a CAAX box missense mutation (C to Y
Analysis of protein prenylation and S-acylation using gas chromatography-coupled mass spectrometry.
Sorek, Nadav; Akerman, Amir; Yalovsky, Shaul
2013-01-01
Lipid modifications play a key role in protein targeting and function. The two Arabidopsis Gγ subunits, AGG1 and AGG2, have been shown to undergo prenylation (AGG1) and S-acylation (AGG2). Prenylation involves covalent nonreversible attachment of either farnesyl (15 carbons) or geranylgeranyl (20 carbons) isoprenoids to conserved cysteine residues at or near the C-terminus of proteins. S-acylation, frequently referred to as palmitoylation, involves the attachment of acyl fatty acids to thiol groups of cysteine residues through a reversible thioester bond. The procedures described below allow direct analysis of the prenyl and acyl moieties using gas chromatography-coupled mass spectrometry (GC-MS). These methods are based on (1) cleavage of prenyl groups with the Raney nickel catalyst and (2) analysis of protein S-acylation following cleavage of the acyl fatty acids from proteins by hydrogenation with platinum (IV) oxide. The hydrogenation under these conditions causes an acid transesterification of the acyl moieties, adding an ethyl group to the carboxyl head of the fatty acid. The addition of the ethyl group reduces the polarity of the fatty acids, allowing their efficient separation by gas chromatography.
Dietrich, Alexander; Scheer, Alexander; Illenberger, Daria; Kloog, Yoel; Henis, Yoav I; Gierschik, Peter
2003-01-01
The alpha and betagamma subunits of heterotrimeric G-proteins contain specific lipid modifications, which are required for their biological function. However, the relevance of these modifications to the interactions within the heterotrimeric G-protein is not fully understood. In order to explore the role of the S-prenyl moiety of the isoprenylated betagamma dimer of retinal transducin, betagamma(t), in the formation of the heterotrimeric complex with the corresponding N-acylated alpha subunit, alpha(t), we employed purified fully processed subunits, which are soluble in aqueous solutions without detergents. Pertussis-toxin-mediated [(32)P]ADP-ribosylation of alpha(t) is strongly stimulated (approximately 10-fold) in the presence of betagamma(t) and can thus serve as a measure for heterotrimer formation. Using this assay, preincubation of alpha(t) with S-prenyl analogues containing farnesyl or geranylgeranyl moieties was found to inhibit heterotrimer formation in a dose-dependent manner. The inhibition was competitive and reversible, as indicated by its reversal upon increase of the betagamma(t) dimer concentration or by removal of the S-prenyl analogue using gel filtration. The competitive nature of the inhibition is supported by the marked attenuation of the inhibition when the S-prenyl analogue was added to alpha(t) together with or after betagamma(t). The inhibition does not involve interaction with the alpha(t) acyl group, since an S-prenyl analogue inhibited the [(32)P]ADP-ribosylation of an unlipidated alpha(t) mutant. These data suggest the existence of a hitherto unrecognized S-prenyl-binding site in alpha(t), which is critical for its interaction with prenylated betagamma(t). PMID:12952523
The prenyl-binding protein PrBP/δ: a chaperone participating in intracellular trafficking
Zhang, Houbin; Constantine, Ryan; Frederick, Jeanne M.; Baehr, Wolfgang
2012-01-01
Expressed ubiquitously, PrBP/δ functions as chaperone/co-factor in the transport of a subset of prenylated proteins. PrBP/δ features an immunoglobulin-like β-sandwich fold for lipid binding, and interacts with diverse partners. PrBP/δ binds both C-terminal C15 and C20 prenyl side chains of phototransduction polypeptides and small GTP-binding (G) proteins of the Ras superfamily. PrBP/δ also interacts with the small GTPases, ARL2 and ARL3, which act as release factors (GDFs) for prenylated cargo. Targeted deletion of the mouse Pde6d gene encoding PrBP/δ resulted in impeded trafficking to the outer segments of GRK1 and cone PDE6 which are predicted to be farnesylated and geranylgeranylated, respectively. Rod and cone transducin trafficking was largely unaffected. These trafficking defects produce progressive cone-rod dystrophy in the Pde6d−/− mouse. PMID:22960045
The prenyl-binding protein PrBP/δ: a chaperone participating in intracellular trafficking.
Zhang, Houbin; Constantine, Ryan; Frederick, Jeanne M; Baehr, Wolfgang
2012-12-15
Expressed ubiquitously, PrBP/δ functions as chaperone/co-factor in the transport of a subset of prenylated proteins. PrBP/δ features an immunoglobulin-like β-sandwich fold for lipid binding, and interacts with diverse partners. PrBP/δ binds both C-terminal C15 and C20 prenyl side chains of phototransduction polypeptides and small GTP-binding (G) proteins of the Ras superfamily. PrBP/δ also interacts with the small GTPases, ARL2 and ARL3, which act as release factors (GDFs) for prenylated cargo. Targeted deletion of the mouse Pde6d gene encoding PrBP/δ resulted in impeded trafficking to the outer segments of GRK1 and cone PDE6 which are predicted to be farnesylated and geranylgeranylated, respectively. Rod and cone transducin trafficking was largely unaffected. These trafficking defects produce progressive cone-rod dystrophy in the Pde6d(-/-) mouse. Copyright © 2012 Elsevier Ltd. All rights reserved.
Expansion of Protein Farnesyltransferase Specificity Using “Tunable” Active Site Interactions
Hougland, James L.; Gangopadhyay, Soumyashree A.; Fierke, Carol A.
2012-01-01
Post-translational modifications play essential roles in regulating protein structure and function. Protein farnesyltransferase (FTase) catalyzes the biologically relevant lipidation of up to several hundred cellular proteins. Site-directed mutagenesis of FTase coupled with peptide selectivity measurements demonstrates that molecular recognition is determined by a combination of multiple interactions. Targeted randomization of these interactions yields FTase variants with altered and, in some cases, bio-orthogonal selectivity. We demonstrate that FTase specificity can be “tuned” using a small number of active site contacts that play essential roles in discriminating against non-substrates in the wild-type enzyme. This tunable selectivity extends in vivo, with FTase variants enabling the creation of bioengineered parallel prenylation pathways with altered substrate selectivity within a cell. Engineered FTase variants provide a novel avenue for probing both the selectivity of prenylation pathway enzymes and the effects of prenylation pathway modifications on the cellular function of a protein. PMID:22992747
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Fan; Li, Pengcheng; Gong, Jianhua
Aberrant activation of oncoproteins such as members of the Ras family is common in human lung cancers. The proper function of Ras largely depends on a post-translational modification termed prenylation. Bisphosphonates have been shown to inhibit prenylation in cancer cells. In this study, we show that zoledronic acid, a third generation bisphosphonate, is effective in targeting lung cancer cells. This is achieved by the induction of apoptosis and inhibition of proliferation, through suppressing the activation of downstream Ras and EGFR signalling by zoledronic acid. The combination of zoledronic acid and paclitaxel or cisplatin (commonly used chemotherapeutic drugs for lung cancer)more » augmented the activity of either drug alone in in vitro lung cancer cellular system and in vivo lung xenograft mouse model. Importantly, zoledronic acid inhibits protein prenylation as shown by the increased levels of unprenylated Ras and Rap1A. In addition, the effects of zoledronic acid were reversed in the presence of geranylgeraniol and farnesol, further confirming that mechanism of zoledroinc acid's action in lung cancer cells is through prenylation inhibition. Since zoledronic acid is already available for clinic use, these results suggest that it may be an effective addition to the armamentarium of drugs for the treatment of lung cancer. - Highlights: • Zoledronic acid (ZA) is effectively against lung cancer cells in vitro and in vivo. • ZA acts on lung cancer cells through inhibition of protein prenylation. • ZA suppresses global downstream phosphorylation of Ras signalling. • ZA enhances the effects of chemotherapeutic drugs in lung cancer cells.« less
Sensor Function for Butyrophilin 3A1 in Prenyl Pyrophosphate Stimulation of Human Vγ2Vδ2 T Cells
Wang, Hong; Morita, Craig T.
2016-01-01
Vγ2Vδ2 T cells play important roles in human immunity to pathogens and in cancer immunotherapy by responding to isoprenoid metabolites, such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and isopentenyl pyrophosphate. The Ig superfamily protein butyrophilin (BTN)3A1 was shown to be required for prenyl pyrophosphate stimulation. We proposed that the intracellular B30.2 domain of BTN3A1 binds prenyl pyrophosphates, resulting in a change in the extracellular BTN3A1 dimer that is detected by Vγ2Vδ2 TCRs. Such B30.2 binding was demonstrated recently. However, other investigators reported that the extracellular BTN3A1 IgV domain binds prenyl pyrophosphates, leading to the proposal that the Vγ2Vδ2 TCR recognizes the complex. To distinguish between these mechanisms, we mutagenized residues in the two binding sites and tested the mutant BTN3A1 proteins for their ability to mediate prenyl pyrophosphate stimulation of Vγ2Vδ2 T cells to proliferate and secrete TNF-α. Mutagenesis of residues in the IgV site had no effect on Vγ2Vδ2 T cell proliferation or secretion of TNF-α. In contrast, mutagenesis of residues within the basic pocket and surrounding V regions of the B30.2 domain abrogated prenyl pyrophosphate-induced proliferation. Mutations of residues making hydrogen bonds to the pyrophosphate moiety also abrogated TNF-α secretion, as did mutation of aromatic residues making contact with the alkenyl chain. Some mutations further from the B30.2 binding site also diminished stimulation, suggesting that the B30.2 domain may interact with a second protein. These findings support intracellular sensing of prenyl pyrophosphates by BTN3A1 rather than extracellular presentation. PMID:26475929
Dynamical hologram generation for high speed optical trapping of smart droplet microtools
Lanigan, P. M. P.; Munro, I.; Grace, E. J.; Casey, D. R.; Phillips, J.; Klug, D. R.; Ces, O.; Neil, M. A. A.
2012-01-01
This paper demonstrates spatially selective sampling of the plasma membrane by the implementation of time-multiplexed holographic optical tweezers for Smart Droplet Microtools (SDMs). High speed (>1000fps) dynamical hologram generation was computed on the graphics processing unit of a standard display card and controlled by a user friendly LabView interface. Time multiplexed binary holograms were displayed in real time and mirrored to a ferroelectric Spatial Light Modulator. SDMs were manufactured with both liquid cores (as previously described) and solid cores, which confer significant advantages in terms of stability, polydispersity and ease of use. These were coated with a number of detergents, the most successful based upon lipids doped with transfection reagents. In order to validate these, trapped SDMs were maneuvered up to the plasma membrane of giant vesicles containing Nile Red and human biliary epithelial (BE) colon cancer cells with green fluorescent labeled protein (GFP)-labeled CAAX (a motif belonging to the Ras protein). Bright field and fluorescence images showed that successful trapping and manipulation of multiple SDMs in x, y, z was achieved with success rates of 30-50% and that subsequent membrane-SDM interactions led to the uptake of Nile Red or GFP-CAAX into the SDM. PMID:22808432
Jia, Wen-Jun; Jiang, Shan; Tang, Qiao-Li; Shen, Di; Xue, Bin; Ning, Wen; Li, Chao-Jun
2016-06-01
G proteins play essential roles in regulating fetal lung development, and any defects in their expression or function (eg, activation or posttranslational modification) can lead to lung developmental malformation. Geranylgeranyl diphosphate synthase (GGPPS) can modulate protein prenylation that is required for protein membrane-anchoring and activation. Here, we report that GGPPS regulates fetal lung branching morphogenesis possibly through controlling K-Ras prenylation during fetal lung development. GGPPS was continuously expressed in lung epithelium throughout whole fetal lung development. Specific deletion of geranylgeranyl diphosphate synthase 1 (Ggps1) in lung epithelium during fetal lung development resulted in neonatal respiratory distress syndrome-like disease. The knockout mice died at postnatal day 1 of respiratory failure, and the lungs showed compensatory pneumonectasis, pulmonary atelectasis, and hyaline membranes. Subsequently, we proved that lung malformations in Ggps1-deficient mice resulted from the failure of fetal lung branching morphogenesis. Further investigation revealed Ggps1 deletion blocked K-Ras geranylgeranylation and extracellular signal-related kinase 1 or 2/mitogen-activated protein kinase signaling, which in turn disturbed fibroblast growth factor 10 regulation on fetal lung branching morphogenesis. Collectively, our data suggest that GGPPS is essential for maintaining fetal lung branching morphogenesis, which is possibly through regulating K-Ras prenylation. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Circadian rhythm of anti-fungal prenylated chromene in leaves of Piper aduncum.
Morandim, Andreia de A; Bergamo, Débora Cristina B; Kato, Massuo Jorge; Cavalheiro, Alberto José; Bolzani, Vanderlan da S; Furlan, Maysa
2005-01-01
Leaves of Piper aduncum accumulate the anti-fungal chromenes methyl 2,2-dimethyl-2H-1-chromene-6-carboxylate (1) and methyl 2,2-dimethyl-8-(3'-methyl-2'-butenyl)-2H-1-chromene-6-carboxylate (2). The enzymatic formation of 2 from dimethylallyl diphosphate and 1 was investigated using cell-free extracts of the title plant. An HPLC assay for the prenylation reaction was developed and the enzyme activity measured in the protein extracts. The prenyltransferase that catalyses the transfer of the dimethylallyl group to C-2' of 1 was soluble and required dimethylallyl diphosphate as the prenyl donor. In the leaves, the biosynthesis of the prenylated chromene 2 was time-regulated and prenyltransferase activity depended upon circadian variation. Preliminary characterisation and purification experiments on the prenyltransferase from P. aduncum have been performed.
Tricarico, Paola Maura; Romeo, Alessandra; Gratton, Rossella; Crovella, Sergio; Celsi, Fulvio
2017-01-01
Mevalonate Kinase Deficiency (MKD), is a hereditary disease due to mutations in mevalonate kinase gene (MVK). MKD has heterogeneous clinical phenotypes: the correlation between MVK mutations and MKD clinical phenotype is still to be fully elucidated. Deficiency of prenylated proteins has been hypothesized as possible MKD pathogenic mechanism. Based on this hypothesis and considering that neurologic impairment characterizes Mevalonic Aciduria (MA), the most severe form of MKD, we studied the effects of I268T and N301T MVK mutations on protein prenylation, autophagy and programmed cell death in SH-SY5Y neuroblastoma cell lines. SH-SY5Y cells were transiently transfected, with the pCMV-6 plasmid containing MVK wild type and the two mutated sequences. Protein prenylation levels were evaluated using GFP-RhoA-F to assess farnesylation, and GFP-RhoA to evaluate geranylgeranylation; autophagy was measured by evaluating LC3 and p62 protein levels, while Annexin V-FITC and Propidium Iodide staining allowed apoptosis detection. MVK mutants' over-expression causes decreased levels of farnesylation and geranylgeranylation, and also increased LC3 lipidation in SH-SY5Y, with concomitant p62 accumulation. Treatment with bafilomycin A1 (an inhibitor of vacuolar H+-ATPase, a late autophagy inhibitor) further increase LC3-II and p62 levels, suggesting that degradation of autophagolysosome could be impaired. SH-SY5Y, with both MVK mutants, showed apoptosis increase; the presence of N301T associated with augmented cell death. We hypothesize that mevalonate pathway impairment causes alteration of farnesylation and geranylgeranylation proteins and alteration of the autophagic flux; these changes can induce apoptosis, possibly more relevant in the presence of N301T mutation. © 2017 The Author(s)Published by S. Karger AG, Basel.
Chauhan, Indira Singh; Kaur, Jaspreet; Krishna, Shagun; Ghosh, Arpita; Singh, Prashant; Siddiqi, Mohammad Imran; Singh, Neeloo
2015-11-21
Leptomonas is monogenetic kinetoplastid parasite of insects and is primitive in comparison to Leishmania. Comparative studies of these two kinetoplastid may share light on the evolutionary transition to dixenous parasitism in Leishmania. In order to adapt and survive within two hosts, Leishmania species must have acquired virulence factors in addition to mechanisms that mediate susceptibility/resistance to infection in the pathology associated with disease. Rab proteins are key mediators of vesicle transport and contribute greatly to the evolution of complexity of membrane transport system. In this study we used our whole genome sequence data of these two divergent kinetoplastids to analyze the orthologues/paralogues of Rab proteins. During change of lifestyle from monogenetic (Leptomonas) to digenetic (Leishmania), we found that the prenyl machinery remained unchanged. Geranylgeranyl transferase-I (GGTase-I) was absent in both Leishmania and its sister Leptomonas. Farnesyltransferase (FTase) and geranylgeranyl transferase-II (GGTase-II) were identified for protein prenylation. We predict that activity of the missing alpha-subunit (α-subunit) of GGTase-II in Leptomonas was probably contributed by the α-subunit of FTase, while beta-subunit (β-subunit) of GGTase-II was conserved and indicated functional conservation in the evolution of these two kinetoplastids. Therefore the β-subunit emerges as an excellent target for compounds inhibiting parasite activity in clinical cases of co-infections. We also confirmed that during the evolution to digenetic life style in Leishmania, the parasite acquired capabilities to evade drug action and maintain parasite virulence in the host with the incorporation of short-chain dehydrogenase/reductase (SDR/MDR) superfamily in Rab genes. Our study based on whole genome sequences is the first to build comparative evolutionary analysis and identification of prenylation proteins in Leishmania and its sister Leptomonas. The information presented in our present work has importance for drug design targeted to kill L. donovani in humans but not affect the human form of the prenylation enzymes.
Structural basis of recognition of farnesylated and methylated KRAS4b by PDEδ.
Dharmaiah, Srisathiyanarayanan; Bindu, Lakshman; Tran, Timothy H; Gillette, William K; Frank, Peter H; Ghirlando, Rodolfo; Nissley, Dwight V; Esposito, Dominic; McCormick, Frank; Stephen, Andrew G; Simanshu, Dhirendra K
2016-11-01
Farnesylation and carboxymethylation of KRAS4b (Kirsten rat sarcoma isoform 4b) are essential for its interaction with the plasma membrane where KRAS-mediated signaling events occur. Phosphodiesterase-δ (PDEδ) binds to KRAS4b and plays an important role in targeting it to cellular membranes. We solved structures of human farnesylated-methylated KRAS4b in complex with PDEδ in two different crystal forms. In these structures, the interaction is driven by the C-terminal amino acids together with the farnesylated and methylated C185 of KRAS4b that binds tightly in the central hydrophobic pocket present in PDEδ. In crystal form II, we see the full-length structure of farnesylated-methylated KRAS4b, including the hypervariable region. Crystal form I reveals structural details of farnesylated-methylated KRAS4b binding to PDEδ, and crystal form II suggests the potential binding mode of geranylgeranylated-methylated KRAS4b to PDEδ. We identified a 5-aa-long sequence motif (Lys-Ser-Lys-Thr-Lys) in KRAS4b that may enable PDEδ to bind both forms of prenylated KRAS4b. Structure and sequence analysis of various prenylated proteins that have been previously tested for binding to PDEδ provides a rationale for why some prenylated proteins, such as KRAS4a, RalA, RalB, and Rac1, do not bind to PDEδ. Comparison of all four available structures of PDEδ complexed with various prenylated proteins/peptides shows the presence of additional interactions due to a larger protein-protein interaction interface in KRAS4b-PDEδ complex. This interface might be exploited for designing an inhibitor with minimal off-target effects.
Inhibition of Oncogenic functionality of STAT3 Protein by Membrane Anchoring
NASA Astrophysics Data System (ADS)
Liu, Baoxu; Fletcher, Steven; Gunning, Patrick; Gradinaru, Claudiu
2009-03-01
Signal Transducer and Activator of Transcription 3 (STAT3) protein plays an important role in oncogenic processes. A novel molecular therapeutic approach to inhibit the oncogenic functionality of STAT3 is to design a prenylated small peptide sequence which could sequester STAT3 to the plasma membrane. We have also developed a novel fluorescein derivative label (F-NAc), which is much more photostable compared to the popular fluorescein label FITC. Remarkably, the new dye shows fluorescent properties that are invariant over a wide pH range, which is advantageous for our application. We have shown that F-NAc is suitable for single-molecule measurements and its properties are not affected by ligation to biomolecules. The membrane localization via high-affinity prenylated small-molecule binding agents is studied by encapsulating FNAc-labeled STAT3 and inhibitors within a liposome model cell system. The dynamics of the interaction between the protein and the prenylated ligands is investigated at single molecule level. The efficiency and stability of the STAT3 anchoring in lipid membranes are addressed via quantitative confocal imaging and single-molecule spectroscopy using a custom-built multiparameter fluorescence microscope.
Cloning and kinetic characterization of Arabidopsis thaliana solanesyl diphosphate synthase.
Hirooka, Kazutake; Bamba, Takeshi; Fukusaki, Ei-ichiro; Kobayashi, Akio
2003-03-01
trans -Long-chain prenyl diphosphate synthases catalyse the sequential condensation of isopentenyl diphosphate (C(5)) units with allylic diphosphate to produce the C(30)-C(50) prenyl diphosphates, which are precursors of the side chains of prenylquinones. Based on the relationship between product specificity and the region around the first aspartate-rich motif in trans -prenyl diphosphate synthases characterized so far, we have isolated the cDNA for a member of trans -long-chain prenyl diphosphate synthases from Arabidopsis thaliana. The cDNA was heterologously expressed in Escherichia coli, and the recombinant His(6)-tagged protein was purified and characterized. Product analysis revealed that the cDNA encodes solanesyl diphosphate (C(45)) synthase (At-SPS). At-SPS utilized farnesyl diphosphate (FPP; C(15)) and geranylgeranyl diphosphate (GGPP; C(20)), but did not accept either the C(5) or the C(10) allylic diphosphate as a primer substrate. The Michaelis constants for FPP and GGPP were 5.73 microM and 1.61 microM respectively. We also performed an analysis of the side chains of prenylquinones extracted from the A. thaliana plant, and showed that its major prenylquinones, i.e. plastoquinone and ubiquinone, contain the C(45) prenyl moiety. This suggests that At-SPS might be devoted to the biosynthesis of either or both of the prenylquinone side chains. This is the first established trans -long-chain prenyl diphosphate synthase from a multicellular organism.
Bayse, Craig A; Merz, Kenneth M
2014-08-05
Understanding the mechanism of prenyltransferases is important to the design of engineered proteins capable of synthesizing derivatives of naturally occurring therapeutic agents. CloQ is a Mg(2+)-independent aromatic prenyltransferase (APTase) that transfers a dimethylallyl group to 4-hydroxyphenylpyruvate in the biosynthetic pathway for clorobiocin. APTases consist of a common ABBA fold that defines a β-barrel containing the reaction cavity. Positively charged basic residues line the inside of the β-barrel of CloQ to activate the pyrophosphate leaving group to replace the function of the Mg(2+) cofactor in other APTases. Classical molecular dynamics simulations of CloQ, its E281G and F68S mutants, and the related NovQ were used to explore the binding of the 4-hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate substrates in the reactive cavity and the role of various conserved residues. Hybrid quantum mechanics/molecular mechanics potential of mean force (PMF) calculations show that the effect of the replacement of the Mg(2+) cofactor with basic residues yields a similar activation barrier for prenylation to Mg(2+)-dependent APTases like NphB. The topology of the binding pocket for 4HPP is important for selective prenylation at the ortho position of the ring. Methylation at this position alters the conformation of the substrate for O-prenylation at the phenol group. Further, a two-dimensional PMF scan shows that a "reverse" prenylation product may be a possible target for protein engineering.
Regulating the Regulator: Post-Translational Modification of Ras
Ahearn, Ian M.; Haigis, Kevin; Bar-Sagi, Dafna; Philips, Mark R.
2013-01-01
Ras proteins are monomeric GTPases that act as binary molecular switches to regulate a wide range of cellular processes. The exchange of GTP for GDP on Ras is regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), which regulate the activation state of Ras without covalently modifying it. In contrast, post-translational modifications (PTMs) of Ras proteins direct them to various cellular membranes and, in some cases, modulate GTP–GDP exchange. Important Ras PTMs include the constitutive and irreversible remodelling of its C-terminal CAAX motif by farnesylation, proteolysis and methylation, reversible palmitoylation, and conditional modifications including phosphorylation, peptidyl-proly isomerisation, mono- and di-ubiquitination, nitrosylation, ADP ribosylation and glucosylation. PMID:22189424
Huang, Jiangrong; Yang, Xiaoyu; Peng, Xiaochun; Huang, Wei
2017-11-18
Prenylation is a posttranslational lipid modification required for the proper functions of a number of proteins involved in cell regulation. Here, we show that prenylation inhibition is important for renal cell carcinoma (RCC) growth, survival and response to chemotherapy, and its underlying mechanism may be contributed to mitochondrial dysfunction. We first demonstrated that a HMG-CoA reductase inhibitor pitavastatin inhibited mevalonate pathway and thereby prenylation in RCC cells. In addition, pitavastatin is effective in inhibiting growth and inducing apoptosis in a panel of RCC cell lines. Combination of pitavastatin and paclitaxel is significantly more effective than pitavastatin or paclitaxel alone as shown by both in vitro cell culture system and in vivo RCC xenograft model. Importantly, pitavastatin treatment inhibits mitochondrial respiration via suppressing mitochondrial complex I and II enzyme activities. Interestingly, different from mitochondrial inhibitor phenformin that inhibits mitochondrial respiration but activates glycolytic rate in RCC cells, pitavastatin significantly decreases glycolytic rate. The dual inhibitory action of pitavastatin on mitochondrial respiration and glycolysis results in remarkable energy depletion and oxidative stress in RCC cells. In addition, inhibition of prenylation by depleting Isoprenylcysteine carboxylmethyltransferase (Icmt) also mimics the inhibitory effects of pitavastatin in RCC cells. Our work demonstrates the previously unappreciated association between prenylation inhibition and energy metabolism in RCC, which can be therapeutically exploited, likely in tumors that largely rely on energy metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.
Dumitriu, Gina-Mirabela; Bîcu, Elena; Belei, Dalila; Rigo, Benoît; Dubois, Joëlle; Farce, Amaury; Ghinet, Alina
2015-10-15
A new family of CaaX competitive inhibitors of human farnesyltransferase based on phenothiazine and carbazole skeleton bearing a l-cysteine, l-methionine, l-serine or l-valine moiety was designed, synthesized and biologically evaluated. Phenothiazine derivatives proved to be more active than carbazole-based compounds. Phenothiazine 1b with cysteine residue was the most promising inhibitor of human farnesyltransferase in the current study. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gillette, William K; Esposito, Dominic; Abreu Blanco, Maria; Alexander, Patrick; Bindu, Lakshman; Bittner, Cammi; Chertov, Oleg; Frank, Peter H; Grose, Carissa; Jones, Jane E; Meng, Zhaojing; Perkins, Shelley; Van, Que; Ghirlando, Rodolfo; Fivash, Matthew; Nissley, Dwight V; McCormick, Frank; Holderfield, Matthew; Stephen, Andrew G
2015-11-02
Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer's disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5-10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ.
Gillette, William K.; Esposito, Dominic; Abreu Blanco, Maria; Alexander, Patrick; Bindu, Lakshman; Bittner, Cammi; Chertov, Oleg; Frank, Peter H.; Grose, Carissa; Jones, Jane E.; Meng, Zhaojing; Perkins, Shelley; Van, Que; Ghirlando, Rodolfo; Fivash, Matthew; Nissley, Dwight V.; McCormick, Frank; Holderfield, Matthew; Stephen, Andrew G.
2015-01-01
Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer’s disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5–10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ. PMID:26522388
Human Isoprenoid Synthase Enzymes as Therapeutic Targets
NASA Astrophysics Data System (ADS)
Park, Jaeok; Matralis, Alexios; Berghuis, Albert; Tsantrizos, Youla
2014-07-01
The complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids in the human body, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently, pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.
Human isoprenoid synthase enzymes as therapeutic targets
Park, Jaeok; Matralis, Alexios N.; Berghuis, Albert M.; Tsantrizos, Youla S.
2014-01-01
In the human body, the complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins, and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP, and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies. PMID:25101260
Finegold, A A; Johnson, D I; Farnsworth, C C; Gelb, M H; Judd, S R; Glomset, J A; Tamanoi, F
1991-01-01
Protein prenylation occurs by modification of proteins with one of at least two isoprenoids, the farnesyl group and the geranylgeranyl group. Protein farnesyltransferases have been identified, but no such enzyme has been identified for geranylgeranylation. We report the identification of an activity in crude soluble yeast extracts that catalyzes the transfer of a geranylgeranyl moiety from geranylgeranyl pyrophosphate to proteins having the C-terminal sequence Cys-Ile-Ile-Leu or Cys-Val-Leu-Leu but not to a similar protein ending with Cys-Ile-Ile-Ser. This activity is dependent upon the CDC43/CAL1 gene, which is involved in budding and the control of cell polarity, but does not require the DPR1/RAM1 gene, which is known to be required for the farnesylation of Ras proteins. These results indicate that the protein geranylgeranyltransferase activity is distinct from the protein farnesyltransferase activity and that its specificity depends in part on the extreme C-terminal leucine in the protein to be prenylated. Images PMID:2034682
Mitamura, Toshiaki; Yamamura, Yoshimi; Kurosaki, Fumiya
2011-01-01
Translocation of two Rac/Rop guanosine 5'-triphosphate-binding proteins from Scoparia dulcis, Sdrac-1 and Sdrac-2, was examined employing transformed belladonna which overproduces these proteins as glutathione-S-transferase-tagged forms. The transferase activities of the fused proteins in microsomal fraction of belladonna markedly increased by the incubation with methyl jasmonate either in Sdrac-1 or Sdrac-2 transformant, while low and constant activities were observed in the untreated control. Recombinant Sdrac-2 protein was found to bind to prenyl chain in the presence of cell extracts prepared from methyl jasmonate-treated S. dulcis, however, Sdrac-1 was palmitoylated by the addition of the cell extracts. These results suggest that both Sdrac-1 and Sdrac-2 translocate to plant membranes by the stimulation with methyl jasmonate, however, targeting of these proteins is triggered by the independent modification mechanisms, palmitoylation for Sdrac-1 and prenylation for Sdrac-2.
Characterization of an Isoflavonoid-Specific Prenyltransferase from Lupinus albus1[W][OA
Shen, Guoan; Huhman, David; Lei, Zhentian; Snyder, John; Sumner, Lloyd W.; Dixon, Richard A.
2012-01-01
Prenylated flavonoids and isoflavonoids possess antimicrobial activity against fungal pathogens of plants. However, only a few plant flavonoid and isoflavonoid prenyltransferase genes have been identified to date. In this study, an isoflavonoid prenyltransferase gene, designated as LaPT1, was identified from white lupin (Lupinus albus). The deduced protein sequence of LaPT1 shared high homologies with known flavonoid and isoflavonoid prenyltransferases. The LaPT1 gene was mainly expressed in roots, a major site for constitutive accumulation of prenylated isoflavones in white lupin. LaPT1 is predicted to be a membrane-bound protein with nine transmembrane regions and conserved functional domains similar to other flavonoid and isoflavonoid prenyltransferases; it has a predicted chloroplast transit peptide and is plastid localized. A microsomal fraction containing recombinant LaPT1 prenylated the isoflavone genistein at the B-ring 3′ position to produce isowighteone. The enzyme is also active with 2′-hydroxygenistein but has no activity with other flavonoid substrates. The apparent Km of recombinant LaPT1 for the dimethylallyl diphosphate prenyl donor is in a similar range to that of other flavonoid prenyltransferases, but the apparent catalytic efficiency with genistein is considerably higher. Removal of the transit peptide increased the apparent overall activity but also increased the Km. Medicago truncatula hairy roots expressing LaPT1 accumulated isowighteone, a compound that is not naturally produced in this species, indicating a strategy for metabolic engineering of novel antimicrobial compounds in legumes. PMID:22430842
Seeger, Kerstin; Flinspach, Katrin; Haug‐Schifferdecker, Elisa; Kulik, Andreas; Gust, Bertolt; Fiedler, Hans‐Peter; Heide, Lutz
2011-01-01
Summary Streptomyces cinnamonensis DSM 1042 produces two types of isoprenoid secondary metabolites: the prenylated naphthalene derivative furanonaphthoquinone I (FNQ I), and isoprenylated phenazines which are termed endophenazines. Previously, a 55 kb gene cluster was identified which contained genes for both FNQ I and endophenazine biosynthesis. However, several genes required for the biosynthesis of these metabolites were not present in this cluster. We now re‐screened the cosmid library for genes of the mevalonate pathway and identified a separate genomic locus which contains the previously missing genes. This locus (15 kb) comprised orthologues of four phenazine biosynthesis genes known from Pseudomonas strains. Furthermore, the locus contained a putative operon of six genes of the mevalonate pathway, as well as the gene epzP which showed sequence similarity to a recently discovered class of prenyltransferases. Inactivation and complementation experiments proved the involvement of epzP in the prenylation reaction in endophenazine biosynthesis. This newly identified genomic locus is more than 40 kb distant from the previously identified cluster. The protein EpzP was expressed in Escherichia coli in form of a his‐tag fusion protein and purified. The enzyme catalysed the prenylation of 5,10‐dihydrophenazine‐1‐carboxylic acid (dihydro‐PCA) using dimethylallyl diphosphate (DMAPP) as isoprenoid substrate. Km values were determined as 108 µM for dihydro‐PCA and 25 µM for DMAPP. PMID:21342470
Rauthan, Manish; Ranji, Parmida; Aguilera Pradenas, Nataly; Pitot, Christophe; Pilon, Marc
2013-01-01
Statins are cholesterol-lowering drugs that inhibit 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, the rate-limiting enzyme in the synthesis of cholesterol via the mevalonate pathway. This pathway also produces coenzyme Q (a component of the respiratory chain), dolichols (important for protein glycosylation), and isoprenoids (lipid moieties responsible for the membrane association of small GTPases). We previously showed that the nematode Caenorhabditis elegans is useful to study the noncholesterol effects of statins because its mevalonate pathway lacks the sterol synthesis branch but retains all other branches. Here, from a screen of 150,000 mutagenized genomes, we isolated four C. elegans mutants resistant to statins by virtue of gain-of-function mutations within the first six amino acids of the protein ATFS-1, the key regulator of the mitochondrial unfolded protein response that includes activation of the chaperones HSP-6 and HSP-60. The atfs-1 gain-of-function mutants are also resistant to ibandronate, an inhibitor of an enzyme downstream of HMG-CoA reductase, and to gliotoxin, an inhibitor acting on a subbranch of the pathway important for protein prenylation, and showed improved mitochondrial function and protein prenylation in the presence of statins. Additionally, preinduction of the mitochondrial unfolded protein response in wild-type worms using ethidium bromide or paraquat triggered statin resistance, and similar observations were made in Schizosaccharomyces pombe and in a mammalian cell line. We conclude that statin resistance through maintenance of mitochondrial homeostasis is conserved across species, and that the cell-lethal effects of statins are caused primarily through impaired protein prenylation that results in mitochondria dysfunction. PMID:23530189
Rauthan, Manish; Ranji, Parmida; Aguilera Pradenas, Nataly; Pitot, Christophe; Pilon, Marc
2013-04-09
Statins are cholesterol-lowering drugs that inhibit 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, the rate-limiting enzyme in the synthesis of cholesterol via the mevalonate pathway. This pathway also produces coenzyme Q (a component of the respiratory chain), dolichols (important for protein glycosylation), and isoprenoids (lipid moieties responsible for the membrane association of small GTPases). We previously showed that the nematode Caenorhabditis elegans is useful to study the noncholesterol effects of statins because its mevalonate pathway lacks the sterol synthesis branch but retains all other branches. Here, from a screen of 150,000 mutagenized genomes, we isolated four C. elegans mutants resistant to statins by virtue of gain-of-function mutations within the first six amino acids of the protein ATFS-1, the key regulator of the mitochondrial unfolded protein response that includes activation of the chaperones HSP-6 and HSP-60. The atfs-1 gain-of-function mutants are also resistant to ibandronate, an inhibitor of an enzyme downstream of HMG-CoA reductase, and to gliotoxin, an inhibitor acting on a subbranch of the pathway important for protein prenylation, and showed improved mitochondrial function and protein prenylation in the presence of statins. Additionally, preinduction of the mitochondrial unfolded protein response in wild-type worms using ethidium bromide or paraquat triggered statin resistance, and similar observations were made in Schizosaccharomyces pombe and in a mammalian cell line. We conclude that statin resistance through maintenance of mitochondrial homeostasis is conserved across species, and that the cell-lethal effects of statins are caused primarily through impaired protein prenylation that results in mitochondria dysfunction.
Lee, Myoung Hui; Jung, Chanjin; Lee, Junho; Kim, Soo Youn; Lee, Yongjik; Hwang, Inhwan
2011-01-01
Prenylated Rab acceptors (PRAs), members of the Ypt-interacting protein family of small membrane proteins, are thought to aid the targeting of prenylated Rabs to their respective endomembrane compartments. In plants, the Arabidopsis (Arabidopsis thaliana) PRA1 family contains 19 members that display varying degrees of sequence homology to animal PRA1 and localize to the endoplasmic reticulum (ER) and/or endosomes. However, the exact role of these proteins remains to be fully characterized. In this study, the effect of AtPRA1.B6, a member of the AtPRA1 family, on the anterograde trafficking of proteins targeted to various endomembrane compartments was investigated. High levels of AtPRA1.B6 resulted in differential inhibition of coat protein complex II vesicle-mediated anterograde trafficking. The trafficking of the vacuolar proteins sporamin:GFP (for green fluorescent protein) and AALP:GFP, the secretory protein invertase:GFP, and the plasma membrane proteins PMP:GFP and H+-ATPase:GFP was inhibited in a dose-dependent manner, while the trafficking of the Golgi-localized proteins ST:GFP and KAM1(ΔC):mRFP was not affected. Conversely, in RNA interference plants displaying lower levels of AtPRA1.B6 transcripts, the trafficking efficiency of sporamin:GFP and AALP:GFP to the vacuole was increased. Localization and N-glycan pattern analyses of cargo proteins revealed that AtPRA1.B6-mediated inhibition of anterograde trafficking occurs at the ER. In addition, AtPRA1.B6 levels were controlled by cellular processes, including 26S proteasome-mediated proteolysis. Based on these results, we propose that AtPRA1.B6 is a negative regulator of coat protein complex II vesicle-mediated anterograde trafficking for a subset of proteins at the ER. PMID:21828250
Statins and protein prenylation in cancer cell biology and therapy.
Garcia-Ruiz, Carmen; Morales, Albert; Fernandez-Checa, Jose C
2012-05-01
The use of statins has scaled up to become one of the most prescribed medicines in the world and have been very useful in the manegement of cardiovascular diseases and related mortality. The disclosure of their chemical structure similar to that of hydroxy methyl glutaryl-CoA (HMG-CoA) revealed their ability to compete with and inhibit the rate-limiting enzyme HMG-CoA reductase that catalyzes the synthesis of mevalonate, which then serves as the precursor for isoprenoids and cholesterol in the mevalonate pathway. While most of the effects of statins are associated with the lowering of cellular cholesterol levels, it is clear that they also blunt the non-sterol branch of the mevalonate pathway, decreasing formation of isoprenoids and altering protein-prenylation, a critical event in the posttranslational modulation of proteins involved in the regulation of cell cycle progression, proliferation and signaling pathways. Randomized controlled trials for the prevention of cardiovascular diseases indicated that statins elicited provocative and unexpected benefits for reducing a number of different types of cancers, including colorectal carcinoma, melanoma, prostate and hepatocellular carcinoma, although in other cancer types the preclinical expectations of statins were dissapointing. In this review, we will describe the evidence and mechanisms underlying the potential beneficial use of statins and the role of protein prenylation in cancer prevention. Of relevance, the combination of statins with other anti cancer drugs may be a significant asset in malignancies resistant to current therapy.
Simons, Rudy; Vincken, Jean-Paul; Bohin, Maxime C; Kuijpers, Tomas F M; Verbruggen, Marian A; Gruppen, Harry
2011-01-15
Phytoalexins from soya are mainly characterised as prenylated pterocarpans, the glyceollins. Extracts of non-soaked and soaked soya beans, as well as that of soya seedlings, grown in the presence of Rhizopus microsporus var. oryzae, were screened for the presence of prenylated flavonoids with a liquid chromatography/mass spectrometry (LC/MS)-based screening method. The glyceollins I-III and glyceollidins I-II, belonging to the isoflavonoid subclass of the pterocarpans, were tentatively assigned. The formation of these prenylated pterocarpans was accompanied by that of other prenylated isoflavonoids of the subclasses of the isoflavones and the coumestans. It was estimated that approx. 40% of the total isoflavonoid content in Rhizopus-challenged soya bean seedlings were prenylated pterocarpans, whereas 7% comprised prenylated isoflavones and prenylated coumestans. The site of prenylation (A-ring or B-ring) of the prenylated isoflavones was tentatively annotated using positive-ion mode MS by comparing the (1,3) A(+) retro-Diels-Alder (RDA) fragments of prenylated and non-prenylated isoflavones. Furthermore, the fragmentation pathways of the five pterocarpans in negative-ion (NI) mode were proposed, which involved the cleavage of the C-ring and/or D-ring. The absence of the ring-closed prenyl (pyran or furan) gave exclusively -H(2) O(x,y) RDA fragments, whereas its presence gave predominantly the common RDA fragments. Copyright © 2010 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Zhang, Hong; Dan, Zheng; Ding, Zhi-Jie; Lao, Yuan-Zhi; Tan, Hong-Sheng; Xu, Hong-Xi
2016-10-01
A UPLC-PDA-QTOFMS-guided isolation strategy was employed to screen and track potentially new compounds from Garcinia oblongifolia. As a result, two new prenylated xanthones, oblongixanthones D and E (1-2), six new prenylated benzoylphloroglucinol derivatives, oblongifolins V-Z (3-7) and oblongifolin AA (8), as well as a known compound oblongifolin L (9), were isolated from the EtOAc-soluble fraction of an acetone extract of the leaves of Garcinia oblongifolia guided by UPLC-PDA-QTOFMS analysis. The structures of the new compounds were elucidated by 1D- and 2D-NMR spectroscopic analysis and mass spectrometry. Experimental and calculated ECD spectra were used to determine the absolute configurations. The results of wound healing and transwell migration assay showed that oblongixanthones D (1), E (2), and oblongifolin L (9) have the ability to inhibit cancer cell migration in lower cytotoxic concentrations. Western blotting results showed that these compounds exhibited an anti-metastasis effect mainly through downregulating RAF protein levels. In addition, 2 and 9 could inhibit phospho-MEK and phospho-ERK at downstream. Moreover, 1, 2, and 9 could inhibit snail protein level, suggesting that they could regulate the EMT pathway.
Yadav, Ravi P.; Gakhar, Lokesh; Yu, Liping
2017-01-01
FKBP-domain proteins (FKBPs) are pivotal modulators of cellular signaling, protein folding, and gene transcription. Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is a distinctive member of the FKBP superfamily in terms of its biochemical properties, and it plays an important biological role as a chaperone of phosphodiesterase 6 (PDE6), an effector enzyme of the visual transduction cascade. Malfunction of mutant AIPL1 proteins triggers a severe form of Leber congenital amaurosis and leads to blindness. The mechanism underlying the chaperone activity of AIPL1 is largely unknown, but involves the binding of isoprenyl groups on PDE6 to the FKBP domain of AIPL1. We solved the crystal structures of the AIPL1–FKBP domain and its pathogenic mutant V71F, both in the apo form and in complex with isoprenyl moieties. These structures reveal a module for lipid binding that is unparalleled within the FKBP superfamily. The prenyl binding is enabled by a unique “loop-out” conformation of the β4-α1 loop and a conformational “flip-out” switch of the key W72 residue. A second major conformation of apo AIPL1–FKBP was identified by NMR studies. This conformation, wherein W72 flips into the ligand-binding pocket and renders the protein incapable of prenyl binding, is supported by molecular dynamics simulations and appears to underlie the pathogenicity of the V71F mutant. Our findings offer critical insights into the mechanisms that underlie AIPL1 function in health and disease, and highlight the structural and functional diversity of the FKBPs. PMID:28739921
The Prenylated Rab GTPase Receptor PRA1.F4 Contributes to Protein Exit from the Golgi Apparatus.
Lee, Myoung Hui; Yoo, Yun-Joo; Kim, Dae Heon; Hanh, Nguyen Hong; Kwon, Yun; Hwang, Inhwan
2017-07-01
Prenylated Rab acceptor1 (PRA1) functions in the recruitment of prenylated Rab proteins to their cognate organelles. Arabidopsis ( Arabidopsis thaliana ) contains a large number of proteins belonging to the AtPRA1 family. However, their physiological roles remain largely unknown. Here, we investigated the physiological role of AtPRA1.F4, a member of the AtPRA1 family. A T-DNA insertion knockdown mutant of AtPRA1.F4 , atpra1.f4 , was smaller in stature than parent plants and possessed shorter roots, whereas transgenic plants overexpressing HA:AtPRA1.F4 showed enhanced development of secondary roots and root hairs. However, both overexpression and knockdown plants exhibited increased sensitivity to high-salt stress, lower vacuolar Na + /K + -ATPase and plasma membrane ATPase activities, lower and higher pH in the vacuole and apoplast, respectively, and highly vesiculated Golgi apparatus. HA:AtPRA1.F4 localized to the Golgi apparatus and assembled into high-molecular-weight complexes. atpra1.f4 plants displayed a defect in vacuolar trafficking, which was complemented by low but not high levels of HA : AtPRA1.F4 Overexpression of HA:AtPRA1.F4 also inhibited protein trafficking at the Golgi apparatus, albeit differentially depending on the final destination or type of protein: trafficking of vacuolar proteins, plasma membrane proteins, and trans-Golgi network (TGN)-localized SYP61 was strongly inhibited; trafficking of TGN-localized SYP51 was slightly inhibited; and trafficking of secretory proteins and TGN-localized SYP41 was negligibly or not significantly inhibited. Based on these results, we propose that Golgi-localized AtPRA1.F4 is involved in the exit of many but not all types of post-Golgi proteins from the Golgi apparatus. Additionally, an appropriate level of AtPRA1.F4 is crucial for its function at the Golgi apparatus. © 2017 American Society of Plant Biologists. All Rights Reserved.
Koike-Takeshita, A; Koyama, T; Ogura, K
1998-10-01
Among prenyltransferases that catalyze the sequential condensation of isopentenyl diphosphate with allylic diphosphate to produce prenyl diphosphates with various chain lengths and stereochemistries, medium-chain prenyl diphosphate synthases are exceptional in that they comprise two dissociable heteromeric protein components. These components exist without binding with each other under physiological conditions, and neither of them has any prenyltransferase activity by itself. In order to elucidate the precise molecular mechanism underlying expression of the catalytic function by such a unique two-component system, we examined the possibility of forming a hybrid between two of the components of three different medium-chain prenyl diphosphate synthases, components I and II of heptaprenyl diphosphate synthase from Bacillus subtilis, components I' and II' of heptaprenyl diphosphate synthase from Bacillus stearothermophilus, and components A and B of hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26. As a result, only the hybrid-type combination of component I and component II' gave distinct prenyltransferase activity. The hybrid-type enzyme catalyzed the synthesis of heptaprenyl diphosphate and showed moderate heat stability, which lay between those of the natural enzymes from B. subtilis and B. stearothermophilus. There is no possibility of forming a hybrid between the heptaprenyl and hexaprenyl diphosphate synthases.
2016-01-01
Prenylated stilbenoids synthesized in some legumes exhibit plant pathogen defense properties and pharmacological activities with potential benefits to human health. Despite their importance, the biosynthetic pathways of these compounds remain to be elucidated. Peanut (Arachis hypogaea) hairy root cultures produce a diverse array of prenylated stilbenoids upon treatment with elicitors. Using metabolic inhibitors of the plastidic and cytosolic isoprenoid biosynthetic pathways, we demonstrated that the prenyl moiety on the prenylated stilbenoids derives from a plastidic pathway. We further characterized, to our knowledge for the first time, a membrane-bound stilbenoid-specific prenyltransferase activity from the microsomal fraction of peanut hairy roots. This microsomal fraction-derived resveratrol 4-dimethylallyl transferase utilizes 3,3-dimethylallyl pyrophosphate as a prenyl donor and prenylates resveratrol to form arachidin-2. It also prenylates pinosylvin to chiricanine A and piceatannol to arachidin-5, a prenylated stilbenoid identified, to our knowledge, for the first time in this study. This prenyltransferase exhibits strict substrate specificity for stilbenoids and does not prenylate flavanone, flavone, or isoflavone backbones, even though it shares several common features with flavonoid-specific prenyltransferases. PMID:27356974
Ranji, Parmida; Rauthan, Manish; Pitot, Christophe; Pilon, Marc
2014-01-01
HMG-CoA reductase is the rate-limiting enzyme in the mevalonate pathway and the target of cholesterol-lowering statins. We characterized the C. elegans hmgr-1(tm4368) mutant, which lacks HMG-CoA reductase, and show that its phenotypes recapitulate that of statin treatment, though in a more severe form. Specifically, the hmgr-1(tm4368) mutant has defects in growth, reproduction and protein prenylation, is rescued by exogenous mevalonate, exhibits constitutive activation of the UPRer and requires less mevalonate to be healthy when the UPRmt is activated by a constitutively active form of ATFS-1. We also show that different amounts of mevalonate are required for different physiological processes, with reproduction requiring the highest levels. Finally, we provide evidence that the mevalonate pathway is required for the activation of the UPRmt.
General and highly α-regioselective zinc-mediated prenylation of aldehydes and ketones.
Zhao, Li-Ming; Jin, Hai-Shan; Wan, Li-Jing; Zhang, Li-Ming
2011-03-18
A simple, efficient, and general α-prenylation approach for the synthesis of a variety of α-prenylated alcohols has been successfully developed. A wide range of α-prenylated alcohol derivatives could be obtained in good yields by highly α-regioselective zinc-mediated prenylation of various aldehydes and ketones with prenyl bromide at 120 °C in HMPA. By simply altering the reaciton solvent and temperature, the method allows the achievement of a highly notable opposite regiocontrol, providing the expected regiochemical product. The method provides a convenient route for the direct α-prenylation of carbonyl compounds in a highly α-regioselective manner using a cheap and convenient mediator. Two possible pathways are proposed to account for the formation of these synthetically difficult-to-obtain molecules.
Akgoz, Muslum; Kalyanaraman, Vani; Gautam, N.
2008-01-01
On activation of a receptor the G protein βγ complex translocates away from the receptor on the plasma membrane to the Golgi complex. The rate of translocation is influenced by the type of γ subunit associated with the G protein. Complementary approaches — imaging living cells expressing fluorescent protein tagged G proteins and assaying reconstituted receptors and G proteins in vitro — were used to identify mechanisms at the basis of the translocation process. Translocation of Gβγ containing mutant γ subunits with altered prenyl moieties showed that the differences in the prenyl moieties were not sufficient to explain the differential effects of geranylgeranylated γ5 and farnesylated γ11 on the translocation process. The translocation properties of Gβγ were altered dramatically by mutating the C terminal tail region of the γ subunit. The translocation characteristics of these mutants suggest that after receptor activation, Gβγ retains contact with a receptor through the γ subunit C terminal domain and that differential interaction of the activated receptor with this domain controls Gβγ translocation from the plasma membrane. PMID:16517125
Wang, Ruishan; Chen, Ridao; Li, Jianhua; Liu, Xiao; Xie, Kebo; Chen, Dawei; Yin, Yunze; Tao, Xiaoyu; Xie, Dan; Zou, Jianhua; Yang, Lin; Dai, Jungui
2014-12-26
Prenylated flavonoids are attractive specialized metabolites with a wide range of biological activities and are distributed in several plant families. The prenylation catalyzed by prenyltransferases represents a Friedel-Crafts alkylation of the flavonoid skeleton in the biosynthesis of natural prenylated flavonoids and contributes to the structural diversity and biological activities of these compounds. To date, all identified plant flavonoid prenyltransferases (FPTs) have been identified in Leguminosae. In the present study two new FPTs, Morus alba isoliquiritigenin 3'-dimethylallyltransferase (MaIDT) and Cudrania tricuspidata isoliquiritigenin 3'-dimethylallyltransferase (CtIDT), were identified from moraceous plants M. alba and C. tricuspidata, respectively. MaIDT and CtIDT shared low levels of homology with the leguminous FPTs. MaIDT and CtIDT are predicted to be membrane-bound proteins with predicted transit peptides, seven transmembrane regions, and conserved functional domains that are similar to other homogentisate prenyltransferases. Recombinant MaIDT and CtIDT were able to regioselectively introduce dimethylallyl diphosphate into the A ring of three flavonoids with different skeleton types (chalcones, isoflavones, and flavones). Phylogenetic analysis revealed that MaIDT and CtIDT are distantly related to their homologs in Leguminosae, which suggests that FPTs in Moraceae and Leguminosae might have evolved independently. MaIDT and CtIDT represent the first two non-Leguminosae FPTs to be identified in plants and could thus lead to the identification of additional evolutionarily varied FPTs in other non-Leguminosae plants and could elucidate the biosyntheses of prenylated flavonoids in various plants. Furthermore, MaIDT and CtIDT might be used for regiospecific prenylation of flavonoids to produce bioactive compounds for potential therapeutic applications due to their high efficiency and catalytic promiscuity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Wang, Ruishan; Chen, Ridao; Li, Jianhua; Liu, Xiao; Xie, Kebo; Chen, Dawei; Yin, Yunze; Tao, Xiaoyu; Xie, Dan; Zou, Jianhua; Yang, Lin; Dai, Jungui
2014-01-01
Prenylated flavonoids are attractive specialized metabolites with a wide range of biological activities and are distributed in several plant families. The prenylation catalyzed by prenyltransferases represents a Friedel-Crafts alkylation of the flavonoid skeleton in the biosynthesis of natural prenylated flavonoids and contributes to the structural diversity and biological activities of these compounds. To date, all identified plant flavonoid prenyltransferases (FPTs) have been identified in Leguminosae. In the present study two new FPTs, Morus alba isoliquiritigenin 3′-dimethylallyltransferase (MaIDT) and Cudrania tricuspidata isoliquiritigenin 3′-dimethylallyltransferase (CtIDT), were identified from moraceous plants M. alba and C. tricuspidata, respectively. MaIDT and CtIDT shared low levels of homology with the leguminous FPTs. MaIDT and CtIDT are predicted to be membrane-bound proteins with predicted transit peptides, seven transmembrane regions, and conserved functional domains that are similar to other homogentisate prenyltransferases. Recombinant MaIDT and CtIDT were able to regioselectively introduce dimethylallyl diphosphate into the A ring of three flavonoids with different skeleton types (chalcones, isoflavones, and flavones). Phylogenetic analysis revealed that MaIDT and CtIDT are distantly related to their homologs in Leguminosae, which suggests that FPTs in Moraceae and Leguminosae might have evolved independently. MaIDT and CtIDT represent the first two non-Leguminosae FPTs to be identified in plants and could thus lead to the identification of additional evolutionarily varied FPTs in other non-Leguminosae plants and could elucidate the biosyntheses of prenylated flavonoids in various plants. Furthermore, MaIDT and CtIDT might be used for regiospecific prenylation of flavonoids to produce bioactive compounds for potential therapeutic applications due to their high efficiency and catalytic promiscuity. PMID:25361766
Sun, Pan; Jiang, Chang-Sheng; Zhang, Yi; Liu, Ai-Hong; Liang, Tong-Jun; Li, Jia; Guo, Yue-Wei; Jiang, Jian-Mei; Mao, Shui-Chun; Wang, Bin
2017-01-01
Four new prenylated bibenzyls, named aglaiabbrevins A-D (2, 4-6), were isolated from the leaves of Aglaia abbreviata, along with two known related analogues, 3,5-dihydroxy-2-[3,7-dimethyl-2(E),6-octadienyl]bibenzyl (7) and 3,5-dihydroxy-2-(3-methyl-2-butenyl)bibenzyl (8). The structures of the new compounds were elucidated on the basis of extensive spectroscopic experiments, mainly one and two dimensional (1D- and 2D)-NMR, and the absolute configuration of 5 was determined by the measurement of specific rotation. The isolated compounds were evaluated for their protein tyrosine phosphatase-1B (PTP1B) inhibitory activity. The results showed that compounds 5-7 exhibited more potent PTP1B inhibitory effects with IC 50 values of 2.58±0.52, 2.44±0.35, and 2.23±0.14 µM, respectively, than the positive control oleanolic acid (IC 50 =2.74±0.20 µM). On the basis of the data obtained, these bibenzyls with the longer C-2 prenyl groups may be considered as potential lead compounds for the development of new anti-obesity and anti-diabetic agents. Also, the PTP1B inhibitory effects for prenylated bibenzyls are being reported for the first time.
Ranji, Parmida; Rauthan, Manish; Pitot, Christophe; Pilon, Marc
2014-01-01
HMG-CoA reductase is the rate-limiting enzyme in the mevalonate pathway and the target of cholesterol-lowering statins. We characterized the C. elegans hmgr-1(tm4368) mutant, which lacks HMG-CoA reductase, and show that its phenotypes recapitulate that of statin treatment, though in a more severe form. Specifically, the hmgr-1(tm4368) mutant has defects in growth, reproduction and protein prenylation, is rescued by exogenous mevalonate, exhibits constitutive activation of the UPRer and requires less mevalonate to be healthy when the UPRmt is activated by a constitutively active form of ATFS-1. We also show that different amounts of mevalonate are required for different physiological processes, with reproduction requiring the highest levels. Finally, we provide evidence that the mevalonate pathway is required for the activation of the UPRmt. PMID:24918786
Kang, Ming-Hsi; Roy, Bibhuti B; Finnen, Renée L; Le Sage, Valerie; Johnston, Susan M; Zhang, Hui; Banfield, Bruce W
2013-09-01
The Us2 gene encodes a tegument protein that is conserved in most members of the Alphaherpesvirinae. Previous studies on the pseudorabies virus (PRV) Us2 ortholog indicated that it is prenylated, associates with membranes, and spatially regulates the enzymatic activity of the MAP (mitogen-activated protein) kinase ERK (extracellular signal-related kinase) through direct binding and sequestration of ERK at the cytoplasmic face of the plasma membrane. Here we present an analysis of the herpes simplex virus 2 (HSV-2) Us2 ortholog and demonstrate that, like PRV Us2, HSV-2 Us2 is a virion component and that, unlike PRV Us2, it does not interact with ERK in yeast two-hybrid assays. HSV-2 Us2 lacks prenylation signals and other canonical membrane-targeting motifs yet is tightly associated with detergent-insoluble membranes and localizes predominantly to recycling endosomes. Experiments to identify cellular proteins that facilitate HSV-2 Us2 membrane association were inconclusive; however, these studies led to the identification of HSV-2 Us2 as a ubiquitin-interacting protein, providing new insight into the functions of HSV-2 Us2.
Analytical methods for quantitation of prenylated flavonoids from hops.
Nikolić, Dejan; van Breemen, Richard B
2013-01-01
The female flowers of hops ( Humulus lupulus L.) are used as a flavoring agent in the brewing industry. There is growing interest in possible health benefits of hops, particularly as estrogenic and chemopreventive agents. Among the possible active constituents, most of the attention has focused on prenylated flavonoids, which can chemically be classified as prenylated chalcones and prenylated flavanones. Among chalcones, xanthohumol (XN) and desmethylxanthohumol (DMX) have been the most studied, while among flavanones, 8-prenylnaringenin (8-PN) and 6-prenylnaringenin (6-PN) have received the most attention. Because of the interest in medicinal properties of prenylated flavonoids, there is demand for accurate, reproducible and sensitive analytical methods to quantify these compounds in various matrices. Such methods are needed, for example, for quality control and standardization of hop extracts, measurement of the content of prenylated flavonoids in beer, and to determine pharmacokinetic properties of prenylated flavonoids in animals and humans. This review summarizes currently available analytical methods for quantitative analysis of the major prenylated flavonoids, with an emphasis on the LC-MS and LC-MS-MS methods and their recent applications to biomedical research on hops. This review covers all methods in which prenylated flavonoids have been measured, either as the primary analytes or as a part of a larger group of analytes. The review also discusses methodological issues relating to the quantitative analysis of these compounds regardless of the chosen analytical approach.
Shapiro, A D; Pfeffer, S R
1995-05-12
Rab9 is a Ras-like GTPase required for the transport of mannose 6-phosphate receptors between late endosomes and the trans Golgi network. Rab9 occurs in the cytosol as a complex with GDP dissociation inhibitor (GDI), which we have shown delivers prenyl Rab9 to late endosomes in a functional form. We report here basal rate constants for guanine nucleotide dissociation and GTP hydrolysis for prenyl Rab9. Both rate constants were influenced in part by the hydrophobic environment of the prenyl group. Guanine nucleotide dissociation and GTP hydrolysis rates were lower in the presence of lipid; detergent stimulated intrinsic nucleotide exchange. GDI-alpha inhibited GDP dissociation from prenyl Rab9 by 2.4-fold. GDI-alpha associated with prenyl Rab9 with a KD of 60 nM in 0.1% Lubrol and 23 nM in 0.02% Lubrol. In 0.1% Lubrol, GDI-alpha inhibited GDP dissociation half maximally at 72 +/- 18 nM, consistent with the KD determinations. These data suggest that GDI-alpha associates with prenyl Rab9 with a KD of < or = 23 nM under physiological conditions. Finally, a previously uncharacterized minor form of GDI-alpha inhibited GDP dissociation from prenyl Rab9 by 1.9-fold and bound prenyl Rab9 with a KD of 67 nM in 0.1% Lubrol.
NASA Astrophysics Data System (ADS)
Mori, Takahiro; Zhang, Lihan; Awakawa, Takayoshi; Hoshino, Shotaro; Okada, Masahiro; Morita, Hiroyuki; Abe, Ikuro
2016-03-01
Prenylation reactions play crucial roles in controlling the activities of biomolecules. Bacterial prenyltransferases, TleC from Streptomyces blastmyceticus and MpnD from Marinactinospora thermotolerans, catalyse the `reverse' prenylation of (-)-indolactam V at the C-7 position of the indole ring with geranyl pyrophosphate or dimethylallyl pyrophosphate, to produce lyngbyatoxin or pendolmycin, respectively. Using in vitro analyses, here we show that both TleC and MpnD exhibit relaxed substrate specificities and accept various chain lengths (C5-C25) of the prenyl donors. Comparisons of the crystal structures and their ternary complexes with (-)-indolactam V and dimethylallyl S-thiophosphate revealed the intimate structural details of the enzyme-catalysed `reverse' prenylation reactions and identified the active-site residues governing the selection of the substrates. Furthermore, structure-based enzyme engineering successfully altered the preference for the prenyl chain length of the substrates, as well as the regio- and stereo-selectivities of the prenylation reactions, to produce a series of unnatural novel indolactams.
A Prenylated p47phox-p67phox-Rac1 Chimera Is a Quintessential NADPH Oxidase Activator
Mizrahi, Ariel; Berdichevsky, Yevgeny; Casey, Patrick J.; Pick, Edgar
2010-01-01
The superoxide-generating NADPH oxidase complex of resting phagocytes includes cytochrome b559, a membrane-associated heterodimer composed of two subunits (Nox2 and p22phox), and four cytosolic proteins (p47phox, p67phox, Rac, and p40phox). Upon stimulation, the cytosolic components translocate to the membrane, as the result of a series of interactions among the cytosolic components and among the cytosolic components and cytochrome b559 and its phospholipid environment. We described the construction of a tripartite chimera (trimera) consisting of strategic domains of p47phox, p67phox, and Rac1, in which interactions among cytosolic components were replaced by fusion (Berdichevsky, Y., Mizrahi, A., Ugolev, Y., Molshanski-Mor, S., and Pick, E. (2007) J. Biol. Chem. 282, 22122–22139). We now fused green fluorescent protein (GFP) to the N terminus of the trimera and found the following. 1) The GFP-p47phox-p67phox-Rac1 trimera activates the oxidase in amphiphile-dependent and -independent (anionic phospholipid-enriched membrane) cell-free systems. 2) Geranylgeranylation of the GFP-trimera makes it a potent oxidase activator in unmodified (native) membranes and in the absence of amphiphile. 3) Prenylated GFP-trimera binds spontaneously to native membranes (as assessed by gel filtration and in-line fluorometry), forming a tight complex capable of NADPH-dependent, activator-independent superoxide production at rates similar to those measured in canonical cell-free systems. 4) Prenylation of the GFP-trimera supersedes completely the dependence of oxidase activation on the p47phox phox homology domain and, partially, on the Rac1 polybasic domain, but the requirement for Trp193 in p47phox persists. Prenylated GFP-p47phox-p67phox-Rac1 trimera acts as a quintessential single molecule oxidase activator of potential use in high throughput screening of inhibitors. PMID:20529851
USDA-ARS?s Scientific Manuscript database
Two new prenylated flavonol glycosides, epimedigrandiosides A and B (1 and 2), and 28 previously known compounds including prenylated flavonol derivatives, flavonol glycoside, megastigmanes, phenyl alkanoids, sesquiterpenoid glycoside, lignan, and hexene glucoside were isolated from the methanol ext...
Sasaki, Kanako; Mito, Kouji; Ohara, Kazuaki; Yamamoto, Hirobumi; Yazaki, Kazufumi
2008-01-01
Prenylated flavonoids are natural compounds that often represent the active components in various medicinal plants and exhibit beneficial effects on human health. Prenylated flavonoids are hybrid products composed of a flavonoid core mainly attached to either 5-carbon (dimethylallyl) or 10-carbon (geranyl) prenyl groups derived from isoprenoid (terpenoid) metabolism, and the prenyl groups are crucial for their biological activity. Prenylation reactions in vivo are crucial coupling processes of two major metabolic pathways, the shikimate-acetate and isoprenoid pathways, in which these reactions are also known as a rate-limiting step. However, none of the genes responsible for the prenylation of flavonoids has been identified despite more than 30 years of research in this field. We have isolated a prenyltransferase gene from Sophora flavescens, SfN8DT-1, responsible for the prenylation of the flavonoid naringenin at the 8-position, which is specific for flavanones and dimethylallyl diphosphate as substrates. Phylogenetic analysis shows that SfN8DT-1 has the same evolutionary origin as prenyltransferases for vitamin E and plastoquinone. The gene expression of SfN8DT-1 is strictly limited to the root bark where prenylated flavonoids are solely accumulated in planta. The ectopic expression of SfN8DT-1 in Arabidopsis thaliana resulted in the formation of prenylated apigenin, quercetin, and kaempferol, as well as 8-prenylnaringenin. SfN8DT-1 represents the first flavonoid-specific prenyltransferase identified in plants and paves the way for the identification and characterization of further genes responsible for the production of this large and important class of secondary metabolites. PMID:18218974
Phylloquinone (vitamin K1): occurrence, biosynthesis and functions
USDA-ARS?s Scientific Manuscript database
Phylloquinone is a prenylated naphthoquinone that is synthesized exclusively by plants, green algae, and some species of cyanobacteria, where it serves as a vital electron carrier in photosystem I and as an electron acceptor for the formation of protein disulfide bonds. In humans and other vertebrat...
Arung, Enos Tangke; Shimizu, Kuniyoshi; Tanaka, Hiroyuki; Kondo, Ryuichiro
2010-09-01
In our efforts to find new whitening agent from natural resources, we focused on wood of Artocarpus heterophyllus which shows anti-melanogenesis activity. By activity-guided fractionation of A. heterophyllus wood extract, a new prenylated flavonoid, 3-prenyl luteolin (1) was isolated. The IC(50) of mushroom tyrosinase inhibitory activity of 1 was 76.3 microM. The results of the comparison with that of luteolin showed the prenyl substituent at C-3 position of 1 play an important role for revealing tyrosinase inhibition. In melanin formation inhibition on B16 melanoma cells, IC(50) of 1 was 56.7 microM with less cytotoxicity. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Khaw, K Y; Choi, S B; Tan, S C; Wahab, H A; Chan, K L; Murugaiyah, V
2014-09-25
Garcinia mangostana is a well-known tropical plant found mostly in South East Asia. The present study investigated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of G. mangostana extract and its chemical constituents using Ellman's colorimetric method. Cholinesterase inhibitory-guided approach led to identification of six bioactive prenylated xanthones showing moderate to potent cholinesterases inhibition with IC50 values of lower than 20.5 μM. The most potent inhibitor of AChE was garcinone C while γ-mangostin was the most potent inhibitor of BChE with IC50 values of 1.24 and 1.78 μM, respectively. Among the xanthones, mangostanol, 3-isomangostin, garcinone C and α-mangostin are AChE selective inhibitors, 8-deoxygartanin is a BChE selective inhibitor while γ-mangostin is a dual inhibitor. Preliminary structure-activity relationship suggests the importance of the C-8 prenyl and C-7 hydroxy groups for good AChE and BChE inhibitory activities. The enzyme kinetic studies indicate that both α-mangostin and garcinone C are mixed-mode inhibitors, while γ-mangostin is a non-competitive inhibitor of AChE. In contrast, both γ-mangostin and garcinone C are uncompetitive inhibitors, while α-mangostin is a mixed-mode inhibitor of BChE. Molecular docking studies revealed that α-mangostin, γ-mangostin and garcinone C interacts differently with the five important regions of AChE and BChE. The nature of protein-ligand interactions is mainly hydrophobic and hydrogen bonding. These bioactive prenylated xanthones are worthy for further investigations. Copyright © 2014 Elsevier GmbH. All rights reserved.
[Farnesyl transferase inhibitors (anti-Ras). A new class of anticancer agents].
Levy, R
Ras genes are frequently activated in human tumours. The role of their product, the P21 proteins, in the transduction of the mitogenic signal makes them attractive targets for an anti-neoplastic therapy. The p21 ras proteins are linked to the plasma membrane and transformed into an active form for signal transmission. Their effect is to mediate the effects of growth factors. Two drug families, the Benzodiazepine peptidomimetics and the CAAX tetrapeptides which inhibit the farnesylation of P21-Ras proteins abolish the transforming properties of mutated P21. These promising drugs could rapidly have clinical applications. They have been shown to be highly active at precise concentrations on ras-transformed cells but at the same concentrations are not toxic for untransformed cells. They do not effect other similar enzyme systems within the cell, underlining their selective capacity. Theoretically anti-ras therapy could only suspend cell transformation although it might be possible that if given long enough, a lethal threshold could be reached.
Tan, Xue Fei; Uddin, Zia; Park, Chanin; Song, Yeong Hun; Son, Minky; Lee, Keun Woo; Park, Ki Hun
2017-04-15
Protein tyrosine phosphatase 1B (PTP1B) plays important role in diabetes, obesity and cancer. The methanol extract of the gum resin of Garcinia hanburyi (G. hanburyi) showed potent PTP1B inhibition at 10µg/ml. The active compounds were identified as prenylated caged xanthones (1-9) which inhibited PTP1B in dose-dependent manner. Carboxybutenyl group within caged motif (A ring) was found to play a critical role in enzyme inhibition such as 1-6 (IC 50 s=0.47-4.69µM), whereas compounds having hydroxymethylbutenyl 7 (IC 50 =70.25µM) and methylbutenyl 8 (IC 50 >200µM) showed less activity. The most potent inhibitor, gambogic acid 1 (IC 50 =0.47µM) showed 30-fold more potency than ursolic acid (IC 50 =15.5µM), a positive control. In kinetic study, all isolated xanthones behaved as competitive inhibitors which were fully demonstrated with K m , V max and K ik /K iv ratio. It was also proved that inhibitor 1 operated under the enzyme isomerization model having k 5 =0.0751µM - 1 S - 1 , k 6 =0.0249µM - 1 S - 1 and K i app =0.499µM. To develop a pharmacophore model, we explored the binding sites of compound 1 and 7 in PTP1B. These modeling results were in agreement with our findings, which revealed that the inhibitory activities are tightly related to caged motif and prenyl group in A ring. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhu, J K; Bressan, R A; Hasegawa, P M
1993-09-15
We demonstrate that ANJ1, a higher plant homolog of the bacterial molecular chaperone DnaJ, is a substrate in vitro for protein farnesyl- and geranylgeranyl-transferase activities present in cell extracts of the plant Atriplex nummularia and yeast Saccharomyces cerevisiae. Isoprenylation did not occur when cysteine was replaced by serine in the CAQQ motif at the carboxyl terminus of ANJ1, indicating that this sequence functions as a CaaX consensus sequence for polyisoprenylation (where C is cysteine, a is an aliphatic residue, and X is any amino acid residue). Substitution of leucine for the terminal glutamine did not result in the expected geranylgeranylation as occurs with mammalian proteins containing a carboxyl-terminal leucine. Unlike the wild-type ANJ1, neither of the proteins containing these amino acid substitutions could functionally complement the yeast temperature-sensitive mutant mas5. Farnesylation enhanced the association of ANJ1 with A. nummularia microsomal membranes. Electrophoretic mobility of ANJ1 from the plant indicated that the protein is isoprenylated in vivo.
Zhu, J K; Bressan, R A; Hasegawa, P M
1993-01-01
We demonstrate that ANJ1, a higher plant homolog of the bacterial molecular chaperone DnaJ, is a substrate in vitro for protein farnesyl- and geranylgeranyl-transferase activities present in cell extracts of the plant Atriplex nummularia and yeast Saccharomyces cerevisiae. Isoprenylation did not occur when cysteine was replaced by serine in the CAQQ motif at the carboxyl terminus of ANJ1, indicating that this sequence functions as a CaaX consensus sequence for polyisoprenylation (where C is cysteine, a is an aliphatic residue, and X is any amino acid residue). Substitution of leucine for the terminal glutamine did not result in the expected geranylgeranylation as occurs with mammalian proteins containing a carboxyl-terminal leucine. Unlike the wild-type ANJ1, neither of the proteins containing these amino acid substitutions could functionally complement the yeast temperature-sensitive mutant mas5. Farnesylation enhanced the association of ANJ1 with A. nummularia microsomal membranes. Electrophoretic mobility of ANJ1 from the plant indicated that the protein is isoprenylated in vivo. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 Fig. 7 PMID:8378331
Protein Tyrosine Phosphatase 1B Inhibitors from the Roots of Cudrania tricuspidata.
Quang, Tran Hong; Ngan, Nguyen Thi Thanh; Yoon, Chi-Su; Cho, Kwang-Ho; Kang, Dae Gill; Lee, Ho Sub; Kim, Youn-Chul; Oh, Hyuncheol
2015-06-17
A chemical investigation of the methanol extract from the roots of Cudrania tricuspidata resulted in the isolation of 16 compounds, including prenylated xanthones 1-9 and flavonoids 10-16. Their structures were identified by NMR spectroscopy and mass spectrometry and comparisons with published data. Compounds 1-9 and 13-16 significantly inhibited PTP1B activity in a dose dependent manner, with IC50 values ranging from 1.9-13.6 μM. Prenylated xanthones showed stronger PTP1B inhibitory effects than the flavonoids, suggesting that they may be promising targets for the future discovery of novel PTP1B inhibitors. Furthermore, kinetic analyses indicated that compounds 1 and 13 inhibited PTP1B in a noncompetitive manner; therefore, they may be potential lead compounds in the development of anti-obesity and -diabetic agents.
Tronina, Tomasz; Strugała, Paulina; Popłoński, Jarosław; Włoch, Aleksandra; Sordon, Sandra; Bartmańska, Agnieszka; Huszcza, Ewa
2017-07-21
The synthesis of different classes of prenylated aglycones (α,β-dihydroxanthohumol ( 2 ) and ( Z )-6,4'-dihydroxy-4-methoxy-7-prenylaurone ( 3 )) was performed in one step reactions from xanthohumol ( 1 )-major prenylated chalcone naturally occurring in hops. Obtained flavonoids ( 2 - 3 ) and xanthohumol ( 1 ) were used as substrates for regioselective fungal glycosylation catalyzed by two Absidia species and Beauveria bassiana . As a result six glycosides ( 4 - 9 ) were formed, of which four glycosides ( 6 - 9 ) have not been published so far. The influence of flavonoid skeleton and the presence of glucopyranose and 4- O -methylglucopyranose moiety in flavonoid molecule on binding to main protein in plasma, human serum albumin (HSA), and inhibition of cyclooxygenases COX-1 and COX-2 were investigated. Results showed that chalcone ( 1 ) had the highest binding affinity to HSA (8.624 × 10⁴ M -1 ) of all tested compounds. It has also exhibited the highest inhibition of cyclooxygenases activity, and it was a two-fold stronger inhibitor than α,β-dihydrochalcone ( 2 ) and aurone ( 3 ). The presence of sugar moiety in flavonoid molecule caused the loss of HSA binding activity as well as the decrease in inhibition of cyclooxygenases activity.
Jung, Hyun Ah; Jin, Seong Eun; Park, Jun-Seong; Choi, Jae Sue
2011-05-01
It was previously reported that prenylated flavonols from Sophora flavescens are inhibitors of rat lens aldose reductase (RLAR), human recombinant aldose reductase (HRAR), advanced glycation endproducts (AGE), β-secretase (BACE1) and cholinesterases (ChE). Based upon structure-activity relationships, 3,4'-dihydroxy flavonols with a prenyl or lavandulyl group substitution at the C-8 position, and a hydroxy group at the C-5, are important for such inhibition. In our ongoing study to isolate active principles from S. flavescens by an activity-guided isolation procedure, further detailed phytochemical investigations of the CH(2)Cl(2) fraction were conducted via repeated chromatography over silica gel and Sephadex LH-20 columns. This ultimately resulted in the isolation of a promising active sophoflavescenol with higher inhibitory activities among the current prenylated flavonols isolated from S. flavescens against RLAR, HRAR, AGE, BACE1 and ChEs. The results further support that 3,4'-dihydroxy flavonols with a prenyl or lavandulyl substitution at the C-8 position and a methoxy group at C-5 represent a new class of RLAR, HRAR and AGE inhibitors. Nevertheless, the C-5 hydroxyl group of prenylated flavonoids is important for inhibition of BACE1 and ChEs, indicating that the hydroxyl group at C-5 might be the main contributor to the augmentation and/or modification of prenylated flavonol activity. Copyright © 2010 John Wiley & Sons, Ltd.
Komatsu, Koichiro; Shimada, Akemi; Shibata, Tatsuya; Wada, Satoshi; Ideno, Hisashi; Nakashima, Kazuhisa; Amizuka, Norio; Noda, Masaki; Nifuji, Akira
2013-11-01
Bisphosphonates (BPs) are a major class of antiresorptive drug, and their molecular mechanisms of antiresorptive action have been extensively studied. Recent studies have suggested that BPs target bone-forming cells as well as bone-resorbing cells. We previously demonstrated that local application of a nitrogen-containing BP (N-BP), alendronate (ALN), for a short period of time increased bone tissue in a rat tooth replantation model. Here, we investigated cellular mechanisms of bone formation by ALN. Bone histomorphometry confirmed that bone formation was increased by local application of ALN. ALN increased proliferation of bone-forming cells residing on the bone surface, whereas it suppressed the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in vivo. Moreover, ALN treatment induced more alkaline phosphatase-positive and osteocalcin-positive cells on the bone surface than PBS treatment. In vitro studies revealed that pulse treatment with ALN promoted osteocalcin expression. To track the target cells of N-BPs, we applied fluorescence-labeled ALN (F-ALN) in vivo and in vitro. F-ALN was taken into bone-forming cells both in vivo and in vitro. This intracellular uptake was inhibited by endocytosis inhibitors. Furthermore, the endocytosis inhibitor dansylcadaverine (DC) suppressed ALN-stimulated osteoblastic differentiation in vitro and it suppressed the increase in alkaline phosphatase-positive bone-forming cells and subsequent bone formation in vivo. DC also blocked the inhibition of Rap1A prenylation by ALN in the osteoblastic cells. These data suggest that local application of ALN promotes bone formation by stimulating proliferation and differentiation of bone-forming cells as well as inhibiting osteoclast function. These effects may occur through endocytic incorporation of ALN and subsequent inhibition of protein prenylation.
Isoprenoids and tau pathology in sporadic Alzheimer's disease.
Pelleieux, Sandra; Picard, Cynthia; Lamarre-Théroux, Louise; Dea, Doris; Leduc, Valérie; Tsantrizos, Youla S; Poirier, Judes
2018-05-01
The mevalonate pathway has been described to play a key role in Alzheimer's disease (AD) physiopathology. Farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are nonsterol isoprenoids derived from mevalonate, which serve as precursors to numerous human metabolites. They facilitate protein prenylation; hFPP and hGGPP synthases act as gateway enzymes to the prenylation of the small guanosine triphosphate (GTP)ase proteins such as RhoA and cdc42 that have been shown to facilitate phospho-tau (p-Tau, i.e., protein tau phosphorylated) production in the brain. In this study, a significant positive correlation was observed between the synthases mRNA prevalence and disease status (FPPS, p < 0.001, n = 123; GGPPS, p < 0.001, n = 122). The levels of mRNA for hFPPS and hGGPPS were found to significantly correlate with the amount of p-Tau protein levels (p < 0.05, n = 34) and neurofibrillary tangle density (p < 0.05, n = 39) in the frontal cortex. Interestingly, high levels of hFPPS and hGGPPS mRNA prevalence are associated with earlier age of onset in AD (p < 0.05, n = 58). Together, these results suggest that accumulation of p-Tau in the AD brain is related, at least in part, to increased levels of neuronal isoprenoids. Copyright © 2018 Elsevier Inc. All rights reserved.
Wasko, Brian M.; Smits, Jacqueline P.; Shull, Larry W.; Wiemer, David F.; Hohl, Raymond J.
2011-01-01
Statins and nitrogenous bisphosphonates (NBP) inhibit 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (HMGCR) and farnesyl diphosphate synthase (FDPS), respectively, leading to depletion of farnesyl diphosphate (FPP) and disruption of protein prenylation. Squalene synthase (SQS) utilizes FPP in the first committed step from the mevalonate pathway toward cholesterol biosynthesis. Herein, we have identified novel bisphosphonates as potent and specific inhibitors of SQS, including the tetrasodium salt of 9-biphenyl-4,8-dimethyl-nona-3,7-dienyl-1,1-bisphosphonic acid (compound 5). Compound 5 reduced cholesterol biosynthesis and lead to a substantial intracellular accumulation of FPP without reducing cell viability in HepG2 cells. At high concentrations, lovastatin and zoledronate impaired protein prenylation and decreased cell viability, which limits their potential use for cholesterol depletion. When combined with lovastatin, compound 5 prevented lovastatin-induced FPP depletion and impairment of protein farnesylation. Compound 5 in combination with the NBP zoledronate completely prevented zoledronate-induced impairment of both protein farnesylation and geranylgeranylation. Cotreatment of cells with compound 5 and either lovastatin or zoledronate was able to significantly prevent the reduction of cell viability caused by lovastatin or zoledronate alone. The combination of an SQS inhibitor with an HMGCR or FDPS inhibitor provides a rational approach for reducing cholesterol synthesis while preventing nonsterol isoprenoid depletion. PMID:21903868
Xu, Mei-Juan; Wu, Bin; Ding, Tao; Chu, Ji-Hong; Li, Chang-Yin; Zhang, Jun; Wu, Ting; Wu, Jian; Liu, Shi-Jia; Liu, Shen-Lin; Ju, Wen-Zheng; Li, Ping
2012-10-15
Prenylated flavonoids and isoflavonoids are widely distributed throughout the plant kingdom, with many biological effects. Psoralea corylifolia, which contains many kinds of prenylated components, has been widely used as a medicinal plant in Asia and India for thousands of years. The goal of this study was to characterize the components in P. corylifolia using a liquid chromatography with diode-array detection and quadrupole time-of-flight mass spectrometry (LC-DAD/Q-TOF-MS) method, and to elucidate the fragmentation behavior of the different prenyl substituent groups and their appropriate characteristic pathways in positive ion mode. The calculated accurate masses of the protonated molecules, the fragment ions, the retention behavior, and the data from UV spectra were used for identification of the components in P. corylifolia. A total of 45 compounds, including 43 prenylated components, were identified or tentatively identified in P. corylifolia. Different diagnostic fragment ions and neutral losses were observed in different prenyl substructures: neutral loss of 56 Da (C(4)H(8)) and a fragment ion at m/z 69 (C(5)H(9)(+)) were generated by a prenyl chain; neutral losses of 42 Da (C(3)H(6)), 54 Da (C(4)H(6)), 15 Da (CH(3•)) and 16 Da (CH(4)) were observed in a ring-closed prenyl group; neutral losses of 72 Da (C(4)H(8)O), 60 Da (C(2)H(4)O(2)), 58 Da (C(3)H(6)O) and 18 Da (H(2)O) were detected in a 2,2-dimethyl-3,4-dihydroxydihydropyran ring; neutral losses of 72 Da (C(4)H(8)O), 60 Da (C(3)H(8)O) and 18 Da (H(2)O) were yielded from a 2,2-dimethyl-3-hydroxydihydropyran ring, a 2-(1-hydroxy-1-methylethyl)dihydrofuran ring or a 1-hydroxy-3-methylbut-3-enyl chain. This method can be applied for analysis of prenylated components in P. corylifolia and other herbal medicines. Copyright © 2012 John Wiley & Sons, Ltd.
Li, Haonan; Yang, Allison L; Chung, Yeon Tae; Zhang, Wanying; Liao, Jie; Yang, Guang-Yu
2013-09-01
Sulindac has been identified as a competitive inhibitor of aldo-keto reductase 1B10 (AKR1B10), an enzyme that plays a key role in carcinogenesis. AKR1B10 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and exhibits lipid substrate specificity, especially for farnesyl and geranylgeranyl. There have been no studies though showing that the inhibition of PDAC by sulindac is via inhibition of AKR1B10, particularly the metabolism of farnesyl/geranylgeranyl and Kras protein prenylation. To determine the chemopreventive effects of sulindac on pancreatic carcinogenesis, 5-week-old LSL-Kras(G12D)-LSL-Trp53(R172H)-Pdx-1-Cre mice (Pan(kras/p53) mice) were fed an AIN93M diet with or without 200 p.p.m. sulindac (n = 20/group). Kaplan-Meier survival analysis showed that average animal survival in Pan(kras/p53) mice was 143.7 ± 8.8 days, and average survival with sulindac was increased to 168.0 ± 8.8 days (P < 0.005). Histopathological analyses revealed that 90% of mice developed PDAC, 10% with metastasis to the liver and lymph nodes. With sulindac, the incidence of PDAC was reduced to 56% (P < 0.01) and only one mouse had lymph node metastasis. Immunochemical analysis showed that sulindac significantly decreased Ki-67-labeled cell proliferation and markedly reduced the expression of phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Raf and mitogen-activated protein kinase kinase 1 and 2. In in vitro experiments with PDAC cells from Pan(kras/p53) mice, sulindac exhibited dose-dependent inhibition of AKR1B10 activity. By silencing AKR1B10 expression through small interfering RNA or by sulindac treatment, these in vitro models showed a reduction in Kras and human DNA-J homolog 2 protein prenylation, and downregulation of phosphorylated C-raf, ERK1/2 and MEK1/2 expression. Our results demonstrate that sulindac inhibits pancreatic carcinogenesis by the inhibition of Kras protein prenylation by targeting AKR1B10.
Muramatsu, Masayoshi; Ohto, Chikara; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu
2008-09-01
The object of this research was improvement of prenyl alcohol production with squalene synthase-deficient mutant Saccharomyces cerevisiae ATCC 64031. On screening of many kinds of additives, we found that oils and detergents significantly enhanced the extracellular production of prenyl alcohols. Soybean oil showed the most prominent effect among the additives tested. Its effect was accelerated by a high concentration of glucose in the medium. The combination of these cultivation conditions led to the production of more than 28 mg/l of farnesol in the soluble fraction of the broth. The addition of these compounds to the medium was an effective method for large-scale production of prenyl alcohols with microorganisms.
Arung, Enos Tangke; Shimizu, Kuniyoshi; Kondo, Ryuichiro
2007-09-01
A series of prenylated, flavone-based polyphenols, compounds 1-8, were isolated from the wood of Artocarpus heterophyllus. These compounds, which have previously been shown not to inhibit tyrosinase activity, were found to be active inhibitors of the in vivo melanin biosynthesis in B16 melanoma cells, with little or no cytotoxicity. To clarify the structural requirement for inhibition, some structure-activity relationships were studied, in comparison with related compounds lacking prenyl side chains. Our experiments indicate that both prenyl and OH groups, as well as the type of substitution pattern, are crucial for the inhibition of melanin production in B16 melanoma cells.
Prenylated cinnamate and stilbenes from Kangaroo Island propolis and their antioxidant activity.
Abu-Mellal, Abdallah; Koolaji, Nooshin; Duke, Rujee K; Tran, Van H; Duke, Colin C
2012-05-01
A prenylated cinnamic acid derivative as well as six prenylated tetrahydroxystilbenes were isolated from the ethyl acetate extract of propolis that originated from Kangaroo Island, Australia. Furthermore, six known stilbenes and two known flavanones were also identified from the same sample. Stilbenes are not common in propolis; therefore, Kangaroo Island propolis is considered a unique type of propolis that is rich in prenylated stilbenes. Stilbene propolis from Kangaroo Island showed a stronger scavenging activity towards DPPH free radical than Brazilian green propolis. This strong activity can be explained by the presence of large number of stilbenes, most of them showed strong free radical scavenging activity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Design, synthesis, and biological evaluation of prenylated chalcones as 5-LOX inhibitors.
Reddy, Nimmanapalli P; Aparoy, Polamarasetty; Reddy, T Chandra Mohan; Achari, Chandrani; Sridhar, P Ramu; Reddanna, Pallu
2010-08-15
Ten novel mono- and di-O-prenylated chalcone derivatives were designed on the basis of a homology derived molecular model of 5-lipoxygenase (5-LOX). The compounds were docked into 5-LOX active site and the binding characteristics were quantified using LUDI. To verify our theoretical assumption, the molecules were synthesized and tested for their 5-LOX inhibitory activities. The synthesis was carried out by Claisen-Schmidt condensation reaction of mono- and di-O-prenylated acetophenones with appropriate aldehydes. 5-LOX in vitro inhibition assay showed higher potency of di-O-prenylated chalcones than their mono-O-prenylated chalcone analogs. Compound 5e exhibited good inhibition with an IC(50) at 4 microM. The overall trend for the binding energies calculated and LUDI score was in good qualitative agreement with the experimental data. Further, the compound 5e showed potent anti-proliferative effects (GI(50) at 9 microM) on breast cancer cell line, MCF-7. Copyright 2010 Elsevier Ltd. All rights reserved.
Araya-Cloutier, Carla; den Besten, Heidy M W; Aisyah, Siti; Gruppen, Harry; Vincken, Jean-Paul
2017-07-01
The legume plant family (Fabaceae) is a potential source of antimicrobial phytochemicals. Molecular diversity in phytochemicals of legume extracts was enhanced by germination and fungal elicitation of seven legume species, as established by RP-UHPLC-UV-MS. The relationship between phytochemical composition, including different types of skeletons and substitutions, and antibacterial properties of extracts was investigated. Extracts rich in prenylated isoflavonoids and stilbenoids showed potent antibacterial activity against Listeria monocytogenes and methicillin-resistant Staphylococcus aureus at concentrations between 0.05 and 0.1% (w/v). Prenylated phenolic compounds were significantly (p<0.01) correlated with the antibacterial properties of the extracts. Furthermore, the position of the prenyl group within the phenolic skeleton also influenced the antibacterial activity. Overall, prenylated phenolics from legume seedlings can serve multiple purposes, e.g. as phytoestrogens they can provide health benefits and as natural antimicrobials they offer preservation of foods. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Plastoglobules (PGs) are plastid lipid-protein particles. This study examines the function of PG-localized kinases ABC1K1 and ABC1K3 in Arabidopsis thaliana. Several lines of evidence suggested that ABC1K1 and ABC1K3 form a protein complex. Null mutants for both genes (abc1k1 and abc1k3) and the dou...
Prenylated flavonoids from Desmodium caudatum and evaluation of their anti-MRSA activity.
Sasaki, Hisako; Kashiwada, Yoshiki; Shibata, Hirofumi; Takaishi, Yoshihisa
2012-10-01
Seven prenylated flavonoids and a prenylated chromanochroman derivative, together with eight known flavonoids, were isolated from roots of Desmodium caudatum. The 15 structures were elucidated by extensive spectroscopic analyses. The antibacterial activity of many of other compounds was evaluated against methicillin-resistant Staphylococcus aureus (MRSA: COL and 5) by a disc diffusion method, and the minimum inhibitory concentrations (MICs) to MRSA were determined. Copyright © 2012 Elsevier Ltd. All rights reserved.
Biotransformation of menadione to its prenylated derivative MK-3 using recombinant Pichia pastoris.
Li, Zhemin; Zhao, Genhai; Liu, Hui; Guo, Yugang; Wu, Hefang; Sun, Xiaowen; Wu, Xihua; Zheng, Zhiming
2017-07-01
Prenylated quinones, especially menaquinones, have significant physiological activities, but are arduous to synthesize efficiently. Due to the relaxed aromatic substrate specificity and prenylation regiospecificity at the ortho- site of the phenolic hydroxyl group, the aromatic prenyltransferase NovQ from Streptomyces may be useful in menaquinone synthesis from menadione. In this study, NovQ was overexpressed in Pichia pastoris. After fermentation optimization, NovQ production increased by 1617%. Then the different effects of metal ions, detergents and pH on the activity of purified NovQ were investigated to optimize the prenylation reaction. Finally, purified NovQ and cells containing NovQ were used for menadione prenylation in vitro and in vivo, respectively. Menaquinone-1 (MK-1) was detected as the only product in vitro with γ,γ-dimethylallyl pyrophosphate and menadione hydroquinol substrates. MK-3 at a concentration of 90.53 mg/L was detected as the major product of whole cell catalysis with 3-methyl-2-buten-1-ol and menadione hydroquinol substrates. This study realized whole cell catalysis converting menadione to menaquinones.
Bioinspired chemical synthesis of monomeric and dimeric stephacidin A congeners
NASA Astrophysics Data System (ADS)
Mukai, Ken; de Sant'ana, Danilo Pereira; Hirooka, Yasuo; Mercado-Marin, Eduardo V.; Stephens, David E.; Kou, Kevin G. M.; Richter, Sven C.; Kelley, Naomi; Sarpong, Richmond
2018-01-01
Stephacidin A and its congeners are a collection of secondary metabolites that possess intriguing structural motifs. They stem from unusual biosynthetic sequences that lead to the incorporation of a prenyl or reverse-prenyl group into a bicyclo[2.2.2]diazaoctane framework, a chromene unit or the vestige thereof. To complement biosynthetic studies, which normally play a significant role in unveiling the biosynthetic pathways of natural products, here we demonstrate that chemical synthesis can provide important insights into biosynthesis. We identify a short total synthesis of congeners in the reverse-prenylated indole alkaloid family related to stephacidin A by taking advantage of a direct indole C6 halogenation of the related ketopremalbrancheamide. This novel strategic approach has now made possible the syntheses of several natural products, including malbrancheamides B and C, notoamides F, I and R, aspergamide B, and waikialoid A, which is a heterodimer of avrainvillamide and aspergamide B. Our approach to the preparation of these prenylated and reverse-prenylated indole alkaloids is bioinspired, and may also inform the as-yet undetermined biosynthesis of several congeners.
Kumano, Takuto; Richard, Stéphane B.; Noel, Joseph P.; Nishiyama, Makoto; Kuzuyama, Tomohisa
2010-01-01
NphB is a soluble prenyltransferase from Streptomyces sp. strain CL190 that attaches a geranyl group to a 1,3,6,8-tetrahydroxynaphthalene-derived polyketide during the biosynthesis of anti-oxidant naphterpin. Here we report multiple chemoenzymatic syntheses of various prenylated compounds from aromatic substrates including flavonoids using two prenyltransferases NphB and SCO7190, a NphB homolog from Streptomyces coelicolor A3(2), as biocatalysts. NphB catalyzes carbon–carbon-based and carbon–oxygen-based geranylation of a diverse collection of hydroxyl-containing aromatic acceptors. Thus, this simple method using the prenyltransferases can be used to explore novel prenylated aromatic compounds with biological activities. Kinetic studies with NphB reveal that the prenylation reaction follows a sequential ordered mechanism. PMID:18682327
Demissie, Zerihun A; Erland, Lauren A E; Rheault, Mark R; Mahmoud, Soheil S
2013-03-01
Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s(-1), respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering.
Fan, Aili; Zocher, Georg; Stec, Edyta; Stehle, Thilo; Li, Shu-Ming
2015-01-01
The tryptophan prenyltransferases FgaPT2 and 7-DMATS (7-dimethylallyl tryptophan synthase) from Aspergillus fumigatus catalyze C4- and C7-prenylation of the indole ring, respectively. 7-DMATS was found to accept l-tyrosine as substrate as well and converted it to an O-prenylated derivative. An acceptance of l-tyrosine by FgaPT2 was also observed in this study. Interestingly, isolation and structure elucidation revealed the identification of a C3-prenylated l-tyrosine as enzyme product. Molecular modeling and site-directed mutagenesis led to creation of a mutant FgaPT2_K174F, which showed much higher specificity toward l-tyrosine than l-tryptophan. Its catalytic efficiency toward l-tyrosine was found to be 4.9-fold in comparison with that of non-mutated FgaPT2, whereas the activity toward l-tryptophan was less than 0.4% of that of the wild-type. To the best of our knowledge, this is the first report on an enzymatic C-prenylation of l-tyrosine as free amino acid and altering the substrate preference of a prenyltransferase by mutagenesis. PMID:25477507
Fiesel, Tobias; Gaid, Mariam; Müller, Andreas; Bartels, Joana; El-Awaad, Islam; Beuerle, Till; Ernst, Ludger; Behrends, Sönke; Beerhues, Ludger
2015-08-27
In plants, prenylation of metabolites is widely distributed to generate compounds with efficient defense potential and distinct pharmacological activities profitable to human health. Prenylated compounds are formed by members of the prenyltransferase (PT) superfamily, which catalyze the addition of prenyl moieties to a variety of acceptor molecules. Cell cultures of Hypericum calycinum respond to elicitor treatment with the accumulation of the prenylated xanthone hyperxanthone E. A cDNA encoding a membrane-bound PT (HcPT) was isolated from a subtracted cDNA library and transcript preparations of H. calycinum. An increase in the HcPT transcript level preceded hyperxanthone E accumulation in cell cultures of H. calycinum treated with elicitor. The HcPT cDNA was functionally characterized by expression in baculovirus-infected insect cells. The recombinant enzyme catalyzed biosynthesis of 1,3,6,7-tetrahydroxy-8-prenylxanthone through regiospecific C-8 prenylation of 1,3,6,7-tetrahydroxyxanthone, indicating its involvement in hyperxanthone E formation. The enzymatic product shared significant structural features with the previously reported cholinesterase inhibitor γ-mangostin. Thus, our findings may offer a chance for semisynthesis of new active agents to be involved in the treatment of Alzheimer's disease.
Withers, Sydnor T.; Gottlieb, Shayin S.; Lieu, Bonny; Newman, Jack D.; Keasling, Jay D.
2007-01-01
We have developed a novel method to clone terpene synthase genes. This method relies on the inherent toxicity of the prenyl diphosphate precursors to terpenes, which resulted in a reduced-growth phenotype. When these precursors were consumed by a terpene synthase, normal growth was restored. We have demonstrated that this method is capable of enriching a population of engineered Escherichia coli for those clones that express the sesquiterpene-producing amorphadiene synthase. In addition, we enriched a library of genomic DNA from the isoprene-producing bacterium Bacillus subtilis strain 6051 in E. coli engineered to produce elevated levels of isopentenyl diphosphate and dimethylallyl diphosphate. The selection resulted in the discovery of two genes (yhfR and nudF) whose protein products acted directly on the prenyl diphosphate precursors and produced isopentenol. Expression of nudF in E. coli engineered with the mevalonate-based isopentenyl pyrophosphate biosynthetic pathway resulted in the production of isopentenol. PMID:17693564
Huchelmann, Alexandre; Gastaldo, Clément; Veinante, Mickaël; Zeng, Ying; Heintz, Dimitri; Tritsch, Denis; Schaller, Hubert; Rohmer, Michel; Bach, Thomas J.; Hemmerlin, Andréa
2014-01-01
S-Carvone has been described as a negative regulator of mevalonic acid (MVA) production by interfering with 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) activity, a key player in isoprenoid biosynthesis. The impact of this monoterpene on the production of capsidiol in Nicotiana tabacum, an assumed MVA-derived sesquiterpenoid phytoalexin produced in response to elicitation by cellulase, was investigated. As expected, capsidiol production, as well as early stages of elicitation such as hydrogen peroxide production or stimulation of 5-epi-aristolochene synthase activity, were repressed. Despite the lack of capsidiol synthesis, apparent HMGR activity was boosted. Feeding experiments using (1-13C)Glc followed by analysis of labeling patterns by 13C-NMR, confirmed an MVA-dependent biosynthesis; however, treatments with fosmidomycin, an inhibitor of the MVA-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) isoprenoid pathway, unexpectedly down-regulated the biosynthesis of this sesquiterpene as well. We postulated that S-carvone does not directly inhibit the production of MVA by inactivating HMGR, but possibly targets an MEP-derived isoprenoid involved in the early steps of the elicitation process. A new model is proposed in which the monoterpene blocks an MEP pathway–dependent protein geranylgeranylation necessary for the signaling cascade. The production of capsidiol was inhibited when plants were treated with some inhibitors of protein prenylation or by further monoterpenes. Moreover, S-carvone hindered isoprenylation of a prenylable GFP indicator protein expressed in N. tabacum cell lines, which can be chemically complemented with geranylgeraniol. The model was further validated using N. tabacum cell extracts or recombinant N. tabacum protein prenyltransferases expressed in Escherichia coli. Our study endorsed a reevaluation of the effect of S-carvone on plant isoprenoid metabolism. PMID:24367019
Differential Effect of Zoledronic Acid on Human Vascular Smooth Muscle Cells
Albadawi, Hassan; Haurani, Mounir J.; Oklu, Rahmi; Trubiano, Jordan P.; Laub, Peter J.; Yoo, Hyung-Jin; Watkins, Michael T.
2012-01-01
Introduction The activation of human vascular smooth muscle cell proliferation, adhesion and migration is essential for intimal hyperplasia formation. These experiments were designed to test whether Zoledronic Acid (ZA) would modulate indices of human smooth muscle cell activation, exert differential effects on proliferating vs. quiescent cells and determine whether these effects were dependent on GTPase binding proteins prenylation. ZA was chosen for testing in these experiments because it is clinically used in humans with cancer, and has been shown to modulate rat smooth muscle cell proliferation and migration. Methods Human aortic smooth muscle cells (HASMC) were cultured under either proliferating or growth arrest (quiescent) conditions in the presence or absence of ZA for 48 hours, whereupon the effect of ZA on HASMC proliferation, cellular viability, metabolic activity and membrane integrity were compared. In addition, the effect of ZA on adhesion and migration were assessed in proliferating cells. The effect of increased concentration of ZA on the mevalonate pathway and genomic/cellular stress related poly ADP Ribose polymerase (PARP) enzyme activity were assessed using the relative prenylation of Rap-1A/B protein and the formation of poly ADP- ribosylated proteins (PAR) respectively. Results There was a dose dependent inhibition of cellular proliferation, adhesion and migration following ZA treatment. ZA treatment decreased indices of cellular viability and significantly increased membrane injury in proliferating vs. quiescent cells. This was correlated with the appearance of unprenylated Rap-1A protein and dose dependent down regulation of PARP activity. Conclusions These data suggest that ZA is effective in inhibiting HASMC proliferation, adhesion and migration which coincide with the appearance of unprenylated RAP-1A/B protein, thereby suggesting that the mevalonate pathway may play a role in the inhibition of HASMC activation. PMID:23164362
Roy Choudhury, Swarup; Roy, Sujit; Nag, Anish; Singh, Sanjay Kumar; Sengupta, Dibyendu N.
2012-01-01
The MADS-box family of genes has been shown to play a significant role in the development of reproductive organs, including dry and fleshy fruits. In this study, the molecular properties of an AGAMOUS like MADS box transcription factor in banana cultivar Giant governor (Musa sp, AAA group, subgroup Cavendish) has been elucidated. We have detected a CArG-box sequence binding AGAMOUS MADS-box protein in banana flower and fruit nuclear extracts in DNA-protein interaction assays. The protein fraction in the DNA-protein complex was analyzed by mass spectrometry and using this information we have obtained the full length cDNA of the corresponding protein. The deduced protein sequence showed ∼95% amino acid sequence homology with MA-MADS5, a MADS-box protein described previously from banana. We have characterized the domains of the identified AGAMOUS MADS-box protein involved in DNA binding and homodimer formation in vitro using full-length and truncated versions of affinity purified recombinant proteins. Furthermore, in order to gain insight about how DNA bending is achieved by this MADS-box factor, we performed circular permutation and phasing analysis using the wild type recombinant protein. The AGAMOUS MADS-box protein identified in this study has been found to predominantly accumulate in the climacteric fruit pulp and also in female flower ovary. In vivo and in vitro assays have revealed specific binding of the identified AGAMOUS MADS-box protein to CArG-box sequence in the promoters of major ripening genes in banana fruit. Overall, the expression patterns of this MADS-box protein in banana female flower ovary and during various phases of fruit ripening along with the interaction of the protein to the CArG-box sequence in the promoters of major ripening genes lead to interesting assumption about the possible involvement of this AGAMOUS MADS-box factor in banana fruit ripening and floral reproductive organ development. PMID:22984496
Roy Choudhury, Swarup; Roy, Sujit; Nag, Anish; Singh, Sanjay Kumar; Sengupta, Dibyendu N
2012-01-01
The MADS-box family of genes has been shown to play a significant role in the development of reproductive organs, including dry and fleshy fruits. In this study, the molecular properties of an AGAMOUS like MADS box transcription factor in banana cultivar Giant governor (Musa sp, AAA group, subgroup Cavendish) has been elucidated. We have detected a CArG-box sequence binding AGAMOUS MADS-box protein in banana flower and fruit nuclear extracts in DNA-protein interaction assays. The protein fraction in the DNA-protein complex was analyzed by mass spectrometry and using this information we have obtained the full length cDNA of the corresponding protein. The deduced protein sequence showed ~95% amino acid sequence homology with MA-MADS5, a MADS-box protein described previously from banana. We have characterized the domains of the identified AGAMOUS MADS-box protein involved in DNA binding and homodimer formation in vitro using full-length and truncated versions of affinity purified recombinant proteins. Furthermore, in order to gain insight about how DNA bending is achieved by this MADS-box factor, we performed circular permutation and phasing analysis using the wild type recombinant protein. The AGAMOUS MADS-box protein identified in this study has been found to predominantly accumulate in the climacteric fruit pulp and also in female flower ovary. In vivo and in vitro assays have revealed specific binding of the identified AGAMOUS MADS-box protein to CArG-box sequence in the promoters of major ripening genes in banana fruit. Overall, the expression patterns of this MADS-box protein in banana female flower ovary and during various phases of fruit ripening along with the interaction of the protein to the CArG-box sequence in the promoters of major ripening genes lead to interesting assumption about the possible involvement of this AGAMOUS MADS-box factor in banana fruit ripening and floral reproductive organ development.
Song, Jian Bo; Wang, Yan Xiang; Li, Hai Bo; Li, Bo Wen; Zhou, Zhao Sheng; Gao, Shuai; Yang, Zhi Min
2015-07-01
F-box protein is a subunit of Skp1-Rbx1-Cul1-F-box protein (SCF) complex with typically conserved F-box motifs of approximately 40 amino acids and is one of the largest protein families in eukaryotes. F-box proteins play critical roles in selective and specific protein degradation through the 26S proteasome. In this study, we bioinformatically identified 972 putative F-box proteins from Medicago truncatula genome. Our analysis showed that in addition to the conserved motif, the F-box proteins have several other functional domains in their C-terminal regions (e.g., LRRs, Kelch, FBA, and PP2), some of which were found to be M. truncatula species-specific. By phylogenetic analysis of the F-box motifs, these proteins can be classified into three major families, and each family can be further grouped into more subgroups. Analysis of the genomic distribution of F-box genes on M. truncatula chromosomes revealed that the evolutional expansion of F-box genes in M. truncatula was probably due to localized gene duplications. To investigate the possible response of the F-box genes to abiotic stresses, both publicly available and customer-prepared microarrays were analyzed. Most of the F-box protein genes can be responding to salt and heavy metal stresses. Real-time PCR analysis confirmed that some of the F-box protein genes containing heat, drought, salicylic acid, and abscisic acid responsive cis-elements were able to respond to the abiotic stresses.
Sorek, Nadav; Poraty, Limor; Sternberg, Hasana; Bar, Enat; Lewinsohn, Efraim; Yalovsky, Shaul
2007-03-01
ROPs or RACs are plant Rho-related GTPases implicated in the regulation of a multitude of signaling pathways that function at the plasma membrane by virtue of posttranslational lipid modifications. The relationship between ROP activation status and membrane localization has not been established. Here we demonstrate that endogenous ROPs, as well as a transgenic His(6)-green fluorescent protein (GFP)-AtROP6 fusion protein, were partitioned between Triton X-100-soluble and -insoluble membranes. In contrast, an activated His(6)-GFP-Atrop6(CA) mutant protein accumulated exclusively in detergent-resistant membranes. GDP induced accumulation of ROPs in Triton-soluble membranes, whereas GTPgammaS induced accumulation of ROPs in detergent-resistant membranes. Recombinant wild-type and constitutively active AtROP6 isoforms were purified from Arabidopsis plants, and their lipids were cleaved and analyzed by gas chromatography-coupled mass spectrometry. In Triton-soluble membranes, wild-type AtROP6 was only prenylated, primarily by geranylgeranyl. The activated AtROP6 that accumulated in detergent-resistant membranes was modified by prenyl and acyl lipids. The acyl lipids were identified as palmitic and stearic acids. In agreement, activated His(6)-GFP-Atrop6(CA)mS(156) in which cysteine(156) was mutated into serine accumulated in Triton-soluble membranes. These findings show that upon GTP binding and activation, AtROP6 and possibly other ROPs are transiently S acylated, which induces their partitioning into detergent-resistant membranes.
Sorek, Nadav; Poraty, Limor; Sternberg, Hasana; Buriakovsky, Ella; Bar, Einat; Lewinsohn, Efraim; Yalovsky, Shaul
2017-12-01
ROPs or RACs are plant Rho-related GTPases implicated in the regulation of a multitude of signaling pathways that function at the plasma membrane via posttranslational lipid modifications. The relationships between ROP activation status and membrane localization has not been established. Here, we show that endogenous ROPs, as well as a transgenic His 6 -green fluorescent protein (GFP)- Arabidopsis thaliana ROP6 (AtROP6) fusion protein, were partitioned between Triton X-100-soluble and -insoluble membranes. In contrast, the His 6 -GFP-Atrop6 CA activated mutant accumulated exclusively in detergent-resistant membranes. GDP induced accumulation of ROPs in Triton-soluble membranes, whereas GTPγS induced accumulation of ROPs in detergent-resistant membranes. Recombinant wild-type and constitutively active AtROP6 proteins were purified from Arabidopsis plants, and in turn, their lipids were cleaved and analyzed by gas chromatography-coupled mass spectrometry. In Triton-soluble membranes, the wild-type AtROP6 was only prenylated, primarily by geranylgeranyl. The activated AtROP6 that accumulated in detergent-resistant membranes was modified by prenyl and acyl lipids, identified as palmitic and stearic acids. Consistently, activated His 6 -GFP-Atrop6 CA mS 156 , in which C156 was mutated into serine, accumulated in Triton-soluble membranes. These findings show that upon GTP binding and activation, AtROP6, and possibly other ROPs, are transiently S-acylated, inducing their partitioning into detergent-resistant membranes. Copyright © 2017 American Society for Microbiology.
Sorek, Nadav; Poraty, Limor; Sternberg, Hasana; Buriakovsky, Ella; Bar, Einat; Lewinsohn, Efraim
2017-01-01
ABSTRACT ROPs or RACs are plant Rho-related GTPases implicated in the regulation of a multitude of signaling pathways that function at the plasma membrane via posttranslational lipid modifications. The relationships between ROP activation status and membrane localization has not been established. Here, we show that endogenous ROPs, as well as a transgenic His6-green fluorescent protein (GFP)-Arabidopsis thaliana ROP6 (AtROP6) fusion protein, were partitioned between Triton X-100-soluble and -insoluble membranes. In contrast, the His6-GFP-Atrop6CA activated mutant accumulated exclusively in detergent-resistant membranes. GDP induced accumulation of ROPs in Triton-soluble membranes, whereas GTPγS induced accumulation of ROPs in detergent-resistant membranes. Recombinant wild-type and constitutively active AtROP6 proteins were purified from Arabidopsis plants, and in turn, their lipids were cleaved and analyzed by gas chromatography-coupled mass spectrometry. In Triton-soluble membranes, the wild-type AtROP6 was only prenylated, primarily by geranylgeranyl. The activated AtROP6 that accumulated in detergent-resistant membranes was modified by prenyl and acyl lipids, identified as palmitic and stearic acids. Consistently, activated His6-GFP-Atrop6CAmS156, in which C156 was mutated into serine, accumulated in Triton-soluble membranes. These findings show that upon GTP binding and activation, AtROP6, and possibly other ROPs, are transiently S-acylated, inducing their partitioning into detergent-resistant membranes. PMID:28894027
Ikram, Sobia; Durandet, Monique; Vesa, Simona; Pereira, Serge; Guerche, Philippe; Bonhomme, Sandrine
2014-06-01
F-box protein genes family is one of the largest gene families in plants, with almost 700 predicted genes in the model plant Arabidopsis. F-box proteins are key components of the ubiquitin proteasome system that allows targeted protein degradation. Transcriptome analyses indicate that half of these F-box protein genes are found expressed in microspore and/or pollen, i.e., during male gametogenesis. To assess the role of F-box protein genes during this crucial developmental step, we selected 34 F-box protein genes recorded as highly and specifically expressed in pollen and isolated corresponding insertion mutants. We checked the expression level of each selected gene by RT-PCR and confirmed pollen expression for 25 genes, but specific expression for only 10 of the 34 F-box protein genes. In addition, we tested the expression level of selected F-box protein genes in 24 mutant lines and showed that 11 of them were null mutants. Transmission analysis of the mutations to the progeny showed that none of the single mutations was gametophytic lethal. These unaffected transmission efficiencies suggested leaky mutations or functional redundancy among F-box protein genes. Cytological observation of the gametophytes in the mutants confirmed these results. Combinations of mutations in F-box protein genes from the same subfamily did not lead to transmission defect either, further highlighting functional redundancy and/or a high proportion of pseudogenes among these F-box protein genes.
Isolation and synthesis of antibacterial prenylated acylphloroglu-cinols from Psorothamnus fremontii
USDA-ARS?s Scientific Manuscript database
Antibacterial assay-guided fractionation of the methanol extract of the native American plant Psorothamnus fremontii followed by structure elucidation afforded three prenylated acylphloroglucinol derivatives, psorothatins A-C (1-3). They feature a unique a,ß-epoxyketone functionality and an a,ß-hydr...
Efficient ASK-assisted system for expression and purification of plant F-box proteins.
Li, Haiou; Yao, Ruifeng; Ma, Sui; Hu, Shuai; Li, Suhua; Wang, Yupei; Yan, Chun; Xie, Daoxin; Yan, Jianbin
2017-11-01
Ubiquitin-mediated protein degradation plays an essential role in plant growth and development as well as responses to environmental and endogenous signals. F-box protein is one of the key components of the SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex, which recruit specific substrate proteins for subsequent ubiquitination and 26S proteasome-mediated degradation to regulate developmental processes and signaling networks. However, it is not easy to obtain purified F-box proteins with high activity due to their unstable protein structures. Here, we found that Arabidopsis SKP-like proteins (ASKs) can significantly improve soluble expression of F-box proteins and maintain their bioactivity. We established an efficient ASK-assisted method to express and purify plant F-box proteins. The method meets a broad range of criteria required for the biochemical analysis or protein crystallization of plant F-box proteins. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Aromatic Prenylation in Phenazine Biosynthesis
Saleh, Orwah; Gust, Bertolt; Boll, Björn; Fiedler, Hans-Peter; Heide, Lutz
2009-01-01
The bacterium Streptomyces anulatus 9663, isolated from the intestine of different arthropods, produces prenylated derivatives of phenazine 1-carboxylic acid. From this organism, we have identified the prenyltransferase gene ppzP. ppzP resides in a gene cluster containing orthologs of all genes known to be involved in phenazine 1-carboxylic acid biosynthesis in Pseudomonas strains as well as genes for the six enzymes required to generate dimethylallyl diphosphate via the mevalonate pathway. This is the first complete gene cluster of a phenazine natural compound from streptomycetes. Heterologous expression of this cluster in Streptomyces coelicolor M512 resulted in the formation of prenylated derivatives of phenazine 1-carboxylic acid. After inactivation of ppzP, only nonprenylated phenazine 1-carboxylic acid was formed. Cloning, overexpression, and purification of PpzP resulted in a 37-kDa soluble protein, which was identified as a 5,10-dihydrophenazine 1-carboxylate dimethylallyltransferase, forming a C–C bond between C-1 of the isoprenoid substrate and C-9 of the aromatic substrate. In contrast to many other prenyltransferases, the reaction of PpzP is independent of the presence of magnesium or other divalent cations. The Km value for dimethylallyl diphosphate was determined as 116 μm. For dihydro-PCA, half-maximal velocity was observed at 35 μm. Kcat was calculated as 0.435 s-1. PpzP shows obvious sequence similarity to a recently discovered family of prenyltransferases with aromatic substrates, the ABBA prenyltransferases. The present finding extends the substrate range of this family, previously limited to phenolic compounds, to include also phenazine derivatives. PMID:19339241
Ding, Hui; Ding, Wanjing; Ma, Zhongjun
2017-03-22
Two prenylated indole alkaloids were isolated from the ethyl acetate extracts of a marine-derived fungus Penicillium sp. NH-SL and one of them exhibited potent cytotoxic activity against mouse hepa 1c1c7 cells. In order to detect other bioactive analogs, we used liquid chromatogram tandem mass spectrometry (LC-MS/MS) to analyze the mass spectrometric characteristics of the isolated compounds as well as the crude extracts. As a result, three other analogs were detected, and their structures were deduced according to the similar fragmentation patterns. This is the first systematic report on the mass spectrometric characteristics of prenylated indole derivatives.
Regulating the ethylene response of a plant by modulation of F-box proteins
Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA
2014-01-07
The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.
USDA-ARS?s Scientific Manuscript database
Aspergillus (A.) flavus is a soil fungus that commonly invades peanut seeds and often produces the carcinogenic aflatoxins. Under favorable conditions, the fungus-challenged peanut plant produces and accumulates resveratrol and its prenylated derivatives in response to such invasion. These prenylate...
MicroRNA regulation of F-box proteins and its role in cancer.
Wu, Zhao-Hui; Pfeffer, Lawrence M
2016-02-01
MicroRNAs (miRNAs) are small endogenous non-coding RNAs, which play critical roles in cancer development by suppressing gene expression at the post-transcriptional level. In general, oncogenic miRNAs are upregulated in cancer, while miRNAs that act as tumor suppressors are downregulated, leading to decreased expression of tumor suppressors and upregulated oncogene expression, respectively. F-box proteins function as the substrate-recognition components of the SKP1-CUL1-F-box (SCF)-ubiquitin ligase complex for the degradation of their protein targets by the ubiquitin-proteasome system. Therefore F-box proteins and miRNAs both negatively regulate target gene expression post-transcriptionally. Since each miRNA is capable of fine-tuning the expression of multiple target genes, multiple F-box proteins may be suppressed by the same miRNA. Meanwhile, one F-box proteins could be regulated by several miRNAs in different cancer types. In this review, we will focus on miRNA-mediated downregulation of various F-box proteins, the resulting stabilization of F-box protein substrates and the impact of these processes on human malignancies. We provide insight into how the miRNA: F-box protein axis may regulate cancer progression and metastasis. We also consider the broader role of F-box proteins in the regulation of pathways that are independent of the ubiquitin ligase complex and how that impacts on oncogenesis. The area of miRNAs and the F-box proteins that they regulate in cancer is an emerging field and will inform new strategies in cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cui, Hao-Ran; Zhang, Zheng-Rong; Lv, Wei; Xu, Jia-Ning; Wang, Xiao-Yun
2015-08-01
The F-box protein family is a large family that is characterized by conserved F-box domains of approximately 40-50 amino acids in the N-terminus. F-box proteins participate in diverse cellular processes, such as development of floral organs, signal transduction and response to stress, primarily as a component of the Skp1-cullin-F-box (SCF) complex. In this study, using a global search of the apple genome, 517 F-box protein-encoding genes (F-box genes for short) were identified and further subdivided into 12 groups according to the characterization of known functional domains, which suggests the different potential functions or processes that they were involved in. Among these domains, the galactose oxidase domain was analyzed for the first time in plants, and this domain was present with or without the Kelch domain. The F-box genes were distributed in all 17 apple chromosomes with various densities and tended to form gene clusters. Spatial expression profile analysis revealed that F-box genes have organ-specific expression and are widely expressed in all organs. Proteins that contained the galactose oxidase domain were highly expressed in leaves, flowers and seeds. From a fruit ripening expression profile, 166 F-box genes were identified. The expressions of most of these genes changed little during maturation, but five of them increased significantly. Using qRT-PCR to examine the expression of F-box genes encoding proteins with domains related to stress, the results revealed that F-box proteins were up- or down-regulated, which suggests that F-box genes were involved in abiotic stress. The results of this study helped to elucidate the functions of F-box proteins, especially in Rosaceae plants.
Sánchez-Mir, Laura; Franco, Alejandro; Martín-García, Rebeca; Madrid, Marisa; Vicente-Soler, Jero; Soto, Teresa; Gacto, Mariano; Pérez, Pilar
2014-01-01
The fission yeast small GTPase Rho2 regulates morphogenesis and is an upstream activator of the cell integrity pathway, whose key element, mitogen-activated protein kinase (MAPK) Pmk1, becomes activated by multiple environmental stimuli and controls several cellular functions. Here we demonstrate that farnesylated Rho2 becomes palmitoylated in vivo at cysteine-196 within its carboxyl end and that this modification allows its specific targeting to the plasma membrane. Unlike that of other palmitoylated and prenylated GTPases, the Rho2 control of morphogenesis and Pmk1 activity is strictly dependent upon plasma membrane localization and is not found in other cellular membranes. Indeed, artificial plasma membrane targeting bypassed the Rho2 need for palmitoylation in order to signal. Detailed functional analysis of Rho2 chimeras fused to the carboxyl end from the essential GTPase Rho1 showed that GTPase palmitoylation is partially dependent on the prenylation context and confirmed that Rho2 signaling is independent of Rho GTP dissociation inhibitor (GDI) function. We further demonstrate that Rho2 is an in vivo substrate for DHHC family acyltransferase Erf2 palmitoyltransferase. Remarkably, Rho3, another Erf2 target, negatively regulates Pmk1 activity in a Rho2-independent fashion, thus revealing the existence of cross talk whereby both GTPases antagonistically modulate the activity of this MAPK cascade. PMID:24820419
Ding, Hui; Ding, Wanjing; Ma, Zhongjun
2017-01-01
Two prenylated indole alkaloids were isolated from the ethyl acetate extracts of a marine-derived fungus Penicillium sp. NH-SL and one of them exhibited potent cytotoxic activity against mouse hepa 1c1c7 cells. In order to detect other bioactive analogs, we used liquid chromatogram tandem mass spectrometry (LC-MS/MS) to analyze the mass spectrometric characteristics of the isolated compounds as well as the crude extracts. As a result, three other analogs were detected, and their structures were deduced according to the similar fragmentation patterns. This is the first systematic report on the mass spectrometric characteristics of prenylated indole derivatives. PMID:28327529
Genome-Wide Identification and Expression of Xenopus F-Box Family of Proteins.
Saritas-Yildirim, Banu; Pliner, Hannah A; Ochoa, Angelica; Silva, Elena M
2015-01-01
Protein degradation via the multistep ubiquitin/26S proteasome pathway is a rapid way to alter the protein profile and drive cell processes and developmental changes. Many key regulators of embryonic development are targeted for degradation by E3 ubiquitin ligases. The most studied family of E3 ubiquitin ligases is the SCF ubiquitin ligases, which use F-box adaptor proteins to recognize and recruit target proteins. Here, we used a bioinformatics screen and phylogenetic analysis to identify and annotate the family of F-box proteins in the Xenopus tropicalis genome. To shed light on the function of the F-box proteins, we analyzed expression of F-box genes during early stages of Xenopus development. Many F-box genes are broadly expressed with expression domains localized to diverse tissues including brain, spinal cord, eye, neural crest derivatives, somites, kidneys, and heart. All together, our genome-wide identification and expression profiling of the Xenopus F-box family of proteins provide a foundation for future research aimed to identify the precise role of F-box dependent E3 ubiquitin ligases and their targets in the regulatory circuits of development.
Chen, Chu; Wu, Yan; Chen, Yang; Du, Leilei
2015-08-01
Prenylated phenolics such as amorfrutins are recently identified potent anti-inflammatory and antidiabetic natural products. In this work, high-speed counter-current chromatography was investigated for the isolation and purification of prenylated phenolics from the fruits of Amorpha fruticosa by using a two-phase solvent system composed of n-hexane/ethanol/water (5:4:1, v/v). As a result, 14.2 mg of 5,7-dihydroxy-8-geranylflavanone, 10.7 mg of amorfrutin A and 17.4 mg of amorfrutin B were obtained from 200 mg of n-hexane-soluble crude extract in one step within 250 min. The purities of 5,7-dihydroxy-8-geranylflavanone, amorfrutins A and B were 95.2, 96.7 and 97.1%, respectively, as determined by ultra high performance liquid chromatography. The structural identification was performed by mass spectrometry and (1) H and (13) C NMR spectroscopy. The results indicated that the established method is an efficient and convenient way to purified prenylated phenolics from A. fruticosa extract. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ogawa, Takuya; Emi, Koh-Ichi; Koga, Kazushi; Yoshimura, Tohru; Hemmi, Hisashi
2016-06-01
Cis-prenyltransferase usually consecutively catalyzes the head-to-tail condensation reactions of isopentenyl diphosphate to allylic prenyl diphosphate in the production of (E,Z-mixed) polyprenyl diphosphate, which is the precursor of glycosyl carrier lipids. Some recently discovered homologs of the enzyme, however, catalyze the nonhead-to-tail condensation reactions between allylic prenyl diphosphates. In this study, we characterize a cis-prenyltransferase homolog from a methanogenic archaeon, Methanosarcina acetivorans, to obtain information on the biosynthesis of the glycosyl carrier lipids within it. This enzyme catalyzes both head-to-tail and nonhead-to-tail condensation reactions. The kinetic analysis shows that the main reaction of the enzyme is consecutive head-to-tail prenyl condensation reactions yielding polyprenyl diphosphates, while the chain lengths of the major products seem shorter than expected for the precursor of glycosyl carrier lipids. On the other hand, a subsidiary reaction of the enzyme, i.e., nonhead-to-tail condensation between dimethylallyl diphosphate and farnesyl diphosphate, gives a novel diterpenoid compound, geranyllavandulyl diphosphate. © 2016 Federation of European Biochemical Societies.
Xanthohumol, a hop-derived prenylated flavonoid, promotes macrophage reverse cholesterol transport.
Hirata, Hiroshi; Uto-Kondo, Harumi; Ogura, Masatsune; Ayaori, Makoto; Shiotani, Kazusa; Ota, Ami; Tsuchiya, Youichi; Ikewaki, Katsunori
2017-09-01
Xanthohumol, a prominent prenyl flavonoid from the hop plant (Humulus lupulus L.), is suggested to be antiatherogenic since it reportedly increases high-density lipoprotein (HDL) cholesterol levels. It is not clear whether xanthohumol promotes reverse cholesterol transport (RCT), the most important antiatherogenic property of HDL; therefore, we investigated the effects of xanthohumol on macrophage-to-feces RCT using a hamster model as a CETP-expressing species. In vivo RCT experiments showed that xanthohumol significantly increased fecal appearance of the tracer derived from intraperitoneally injected [ 3 H]-cholesterol-labeled macrophages. Ex vivo experiments were then employed to investigate the detailed mechanism by which xanthohumol enhanced RCT. Cholesterol efflux capacity from macrophages was 1.5-fold higher in xanthohumol-fed hamsters compared with the control group. In addition, protein expression and lecithin-cholesterol acyltransferase activity in the HDL fraction were significantly higher in xanthohumol-fed hamsters compared with the control, suggesting that xanthohumol promoted HDL maturation. Hepatic transcript analysis revealed that xanthohumol increased mRNA expression of abcg8 and cyp7a1. In addition, protein expressions of liver X receptor α and bile pump export protein were increased in the liver by xanthohumol administration when compared with the control, implying that it stimulated bile acid synthesis and cholesterol excretion to feces. In conclusion, our data demonstrate that xanthohumol improves RCT in vivo through cholesterol efflux from macrophages and excretion to feces, leading to antiatherosclerosis effects. It remains to be elucidated whether enhancement of RCT by xanthohumol could prove valuable in humans. Copyright © 2017 Elsevier Inc. All rights reserved.
Tran, Phi-Long; Tran, Phuong Thao; Tran, Huynh Nguyen Khanh; Lee, Suhyun; Kim, Okwha; Min, Buyng-Sun; Lee, Jeong-Hyung
2018-02-01
Prenylated flavonoids are a unique class of naturally occurring flavonoids that have various pharmacological activities. In the present study, we investigated the anti-inflammatory effect in murine macrophages of a prenylated flavonoid, 10-oxomornigrol F (OMF), which was isolated from the twigs of Morus alba (Moraceae). OMF inhibited the lipopolysaccharide (LPS)-induced production of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 in RAW264.7 cells, as well as in mouse bone marrow-derived macrophages (BMMs). OMF also rescued LPS-induced septic mortality in ICR mice. LPS-induced expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α and IL-6 was also significantly suppressed by OMF treatment in RAW264.7 cells. Treatment of RAW264.7 cells with OMF induced heme oxygenase (HO)-1 mRNA and protein expression and increased the nuclear translocation of the nuclear factor-E2-related factor 2 (Nrf2) as well as the expression of Nrf2 target genes, such as NAD(P)H:quinone oxidoreductase 1 (NQO1). Treatment of RAW264.7 cells with OMF increased the intracellular level of reactive oxygen species (ROS) and the phosphorylation levels of p38 mitogen-activated protein kinase (MAPK); co-treatment with the antioxidant N-acetyl-cysteine (NAC) blocked this OMF-induced p38 MAPK phosphorylation. Moreover, NAC, or SB203580 (a p38 MAPK inhibitor), blocked the OMF-induced nuclear translocation of Nrf2 and HO-1 expression, suggesting that OMF induces HO-1 expression by activating Nrf2 through the p38 MAPK pathway. Consistent with the notion that the Nrf2/HO-1 pathway has anti-inflammatory properties, inhibiting HO-1 significantly abrogated the anti-inflammatory effects of OMF in LPS-stimulated RAW264.7 cells. Taken together, these findings suggest that OMF exerts its anti-inflammatory effect by activating the Nrf2/HO-1 pathway, and may be a potential Nrf2 activator to prevent or treat inflammatory diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Karamat, Fazeelat; Olry, Alexandre; Munakata, Ryosuke; Koeduka, Takao; Sugiyama, Akifumi; Paris, Cedric; Hehn, Alain; Bourgaud, Frédéric; Yazaki, Kazufumi
2014-02-01
Furanocoumarins constitute a sub-family of coumarin compounds with important defense properties against pathogens and insects, as well as allelopathic functions in plants. Furanocoumarins are divided into two sub-groups according to the alignment of the furan ring with the lactone structure: linear psoralen and angular angelicin derivatives. Determination of furanocoumarin type is based on the prenylation position of the common precursor of all furanocoumarins, umbelliferone, at C6 or C8, which gives rise to the psoralen or angelicin derivatives, respectively. Here, we identified a membrane-bound prenyltransferase PcPT from parsley (Petroselinum crispum), and characterized the properties of the gene product. PcPT expression in various parsley tissues is increased by UV irradiation, with a concomitant increase in furanocoumarin production. This enzyme has strict substrate specificity towards umbelliferone and dimethylallyl diphosphate, and a strong preference for the C6 position of the prenylated product (demethylsuberosin), leading to linear furanocoumarins. The C8-prenylated derivative (osthenol) is also formed, but to a much lesser extent. The PcPT protein is targeted to the plastids in planta. Introduction of this PcPT into the coumarin-producing plant Ruta graveolens showed increased consumption of endogenous umbelliferone. Expression of PcPT and a 4-coumaroyl CoA 2'-hydroxylase gene in Nicotiana benthamiana, which does not produce furanocoumarins, resulted in formation of demethylsuberosin, indicating that furanocoumarin production may be reconstructed by a metabolic engineering approach. The results demonstrate that a single prenyltransferase, such as PcPT, opens the pathway to linear furanocoumarins in parsley, but may also catalyze the synthesis of osthenol, the first intermediate committed to the angular furanocoumarin pathway, in other plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Evaluation of genetic and metabolic role of SKIP11 in Arabidopsis thaliana
NASA Astrophysics Data System (ADS)
Hassan, Muhammad Naeem ul; Ismail, Ismanizan
2015-09-01
Most of the regulatory proteins are degraded by 26S proteasome complex, only when they are tagged by Ubiquitin. A complex of four proteins, SKP1-Cullin-Ring box-F box (SCF) catalyses the final step to link the Ubiquitin tag with the target proteins. SCF complex interacts with the target proteins through F-box proteins, which confer the overall substrate specificity to the complex. F-box proteins, one of the largest family of proteins in plants have an N-terminal F-box domain and variable C-terminal domains, like leucine-rich repeat, WD-40 repeat and the kelch-repeat domains. In this study, we analysed the role of SKIP11, a kelch containing F-box protein (KFB) from Arabidopsis thaliana, by using reverse genetics strategy. The results show that SKIP11 is involved in the down-regulation of oxylipin pathway, possibly through the degradation of enzymes or/ and the regulatory factors of the pathway.
Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L.; Salt, Jennifer N.; Goring, Daphne R.
2004-01-01
The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis. PMID:14657406
Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L; Salt, Jennifer N; Goring, Daphne R
2004-01-01
The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis.
Mercado-Marin, Eduardo V.
2015-01-01
A unified strategy for the synthesis of congeners of the prenylated indole alkaloids is presented. This strategy has yielded the first synthesis of the natural product (–)-17-hydroxy-citrinalin B as well as syntheses of (+)-stephacidin A and (+)-notoamide I. An enolate addition to an in situ generated isocyanate was utilized in forging a key bicyclo[2.2.2]diazaoctane moiety, and in this way connected the two structural classes of the prenylated indole alkaloids through synthesis. PMID:26417428
Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases.
Wiborg, Jakob; O'Shea, Charlotte; Skriver, Karen
2008-08-01
The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were analysed for their ability to ubiquitinate proteins in vitro in co-operation with different E2s. All U-box domains exhibited ubiquitination activity and interacted productively with UBC4/5-type E2s. Three and four of the U-box domains mediated ubiquitin addition in the presence of UBC13 and UBC7 E2s respectively, but no productive interaction was observed with the UBC15 E2 tested. The activity of AtPUB54 [Arabidopsis thaliana (thale cress) plant U-box 54 protein] was dependent on Trp(266) in the E2-binding cleft, and the E2 selectivity was changed by substitution of this position. The function of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis-trans isomerization of peptidyl-prolyl bonds and dissolving protein aggregates. In conclusion, both typical and atypical Arabidopsis U-box proteins were active E3s. The overlap in the E3/E2 selectivity suggests that in vivo specificity is not determined only by the E3-E2 interactions, but also by other parameters, e.g. co-existence or interactions with additional domains. The biochemical functions of AtPUB49 suggest that the protein can be involved in folding or degradation of protein substrates. Similar functions can also be retained within a protein complex with separate chaperone and U-box proteins.
Small molecule therapeutics targeting F-box proteins in cancer.
Liu, Yuan; Mallampalli, Rama K
2016-02-01
The ubiquitin proteasome system (UPS) plays vital roles in maintaining protein equilibrium mainly through proteolytic degradation of targeted substrates. The archetypical SCF ubiquitin E3 ligase complex contains a substrate recognition subunit F-box protein that recruits substrates to the catalytic ligase core for its polyubiquitylation and subsequent proteasomal degradation. Several well-characterized F-box proteins have been demonstrated that are tightly linked to neoplasia. There is mounting information characterizing F-box protein-substrate interactions with the rationale to develop unique therapeutics for cancer treatment. Here we review that how F-box proteins function in cancer and summarize potential small molecule inhibitors for cancer therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ishii, N; Yamamoto, M; Lahm, H W; Iizumi, S; Yoshihara, F; Nakayama, H; Arisawa, M; Aoki, Y
1997-02-01
Electromobility shift assays with a DNA probe containing the Saccharomyces cerevisiae ENO1 RPG box identified a specific DNA-binding protein in total protein extracts of Candida albicans. The protein, named Rbf1p (RPG-box-binding protein 1), bound to other S. cerevisiae RPG boxes, although the nucleotide recognition profile was not completely the same as that of S. cerevisiae Rap 1p (repressor-activator protein 1), an RPG-box-binding protein. The repetitive sequence of the C. albicans chromosomal telomere also competed with RPG-box binding to Rbf1p. For further analysis, we purified Rbf1p 57,600-fold from C. albicans total protein extracts, raised mAbs against the purified protein and immunologically cloned the gene, whose ORF specified a protein of 527 aa. The bacterially expressed protein showed RPG-box-binding activity with the same profile as that of the purified one. The Rbf1p, containing two glutamine-rich regions that are found in many transcription factors, showed transcriptional activation capability in S. cerevisiae and was predominantly observed in nuclei. These results suggest that Rbf1p is a transcription factor with telomere-binding activity in C. albicans.
Cofactor-dependent specificity of a DEAD-box protein.
Young, Crystal L; Khoshnevis, Sohail; Karbstein, Katrin
2013-07-16
DEAD-box proteins, a large class of RNA-dependent ATPases, regulate all aspects of gene expression and RNA metabolism. They can facilitate dissociation of RNA duplexes and remodeling of RNA-protein complexes, serve as ATP-dependent RNA-binding proteins, or even anneal duplexes. These proteins have highly conserved sequence elements that are contained within two RecA-like domains; consequently, their structures are nearly identical. Furthermore, crystal structures of DEAD-box proteins with bound RNA reveal interactions exclusively between the protein and the RNA backbone. Together, these findings suggest that DEAD-box proteins interact with their substrates in a nonspecific manner, which is confirmed in biochemical experiments. Nevertheless, this contrasts with the need to target these enzymes to specific substrates in vivo. Using the DEAD-box protein Rok1 and its cofactor Rrp5, which both function during maturation of the small ribosomal subunit, we show here that Rrp5 provides specificity to the otherwise nonspecific biochemical activities of the Rok1 DEAD-domain. This finding could reconcile the need for specific substrate binding of some DEAD-box proteins with their nonspecific binding surface and expands the potential roles of cofactors to specificity factors. Identification of helicase cofactors and their RNA substrates could therefore help define the undescribed roles of the 19 DEAD-box proteins that function in ribosome assembly.
Measuring Helicase Inhibition of the DEAD-box Protein Dbp2 by Yra1
Ma, Wai Kit; Tran, Elizabeth J.
2016-01-01
Despite the highly conserved helicase core, individual DEAD-box proteins are specialized in diverse RNA metabolic processes. One mechanism that determines DEAD-box protein specificity is enzymatic regulation by other protein cofactors. In this chapter, we describe a protocol for purifying the Saccharomyces cerevisiae DEAD-box RNA helicase Dbp2 and RNA-binding protein Yra1 and subsequent analysis of helicase regulation. The experiments described here can be adapted to RNA helicase and purified co-factor. PMID:25579587
Ectromelia virus encodes a family of Ankyrin/F-box proteins that regulate NFκB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burles, Kristin, E-mail: burles@ualberta.ca; Buuren, Nicholas van; Barry, Michele
2014-11-15
A notable feature of poxviruses is their ability to inhibit the antiviral response, including the nuclear factor kappa B (NFκB) pathway. NFκB is a transcription factor that is sequestered in the cytoplasm until cell stimulation, and relies on the SCF (Skp1, culllin-1, F-box) ubiquitin ligase to target its inhibitor, IκBα, for degradation. IκBα is recruited to the SCF by the F-box domain-containing protein βTrCP. Here, we show that ectromelia virus, the causative agent of mousepox, encodes four F-box-containing proteins, EVM002, EVM005, EVM154, and EVM165, all of which contain Ankyrin (Ank) domains. The Ank/F-box proteins inhibit NFκB nuclear translocation, and thismore » inhibition is dependent on the F-box domain. We also demonstrate that EVM002, EVM005, EVM154, and EVM165 prevent IκBα degradation, suggesting that they target the SCF. This study identifies a new mechanism by which ectromelia virus inhibits NFκB. - Highlights: • Ectromelia virus encodes four Ank/F-box proteins, EVM002, EVM005, EVM154 and EVM165. • The Ank/F-box proteins inhibit NFκB nuclear translocation, dependent on the F-box. • The Ank/F-box proteins prevent IκBα degradation, suggesting they target the SCF. • Deletion of a single Ank/F-box gene from ECTV does not prevent viral NFκB inhibition. • This study identifies a new mechanism by which ectromelia virus inhibits NFκB.« less
Stefanowicz, Karolina; Lannoo, Nausicaä; Proost, Paul; Van Damme, Els J M
2012-01-01
The Arabidopsis thaliana genome contains a small group of bipartite F-box proteins, consisting of an N-terminal F-box domain and a C-terminal domain sharing sequence similarity with Nictaba, the jasmonate-induced glycan-binding protein (lectin) from tobacco. Based on the high sequence similarity between the C-terminal domain of these proteins and Nictaba, the hypothesis was put forward that the so-called F-box-Nictaba proteins possess carbohydrate-binding activity and accordingly can be considered functional homologs of the mammalian sugar-binding F-box or Fbs proteins which are involved in proteasomal degradation of glycoproteins. To obtain experimental evidence for the carbohydrate-binding activity and specificity of the A. thaliana F-box-Nictaba proteins, both the complete F-box-Nictaba sequence of one selected Arabidopsis F-box protein (in casu At2g02360) as well as the Nictaba-like domain only were expressed in Pichia pastoris and analyzed by affinity chromatography, agglutination assays and glycan micro-array binding assays. These results demonstrated that the C-terminal Nictaba-like domain provides the F-box-protein with a carbohydrate-binding activity that is specifically directed against N- and O-glycans containing N-acetyllactosamine (Galβ1-3GlcNAc and Galβ1-4GlcNAc) and poly-N-acetyllactosamine ([Galβ1-4GlcNAc]n) as well as Lewis A (Galβ1-3(Fucα1-4)GlcNAc), Lewis X (Galβ1-4(Fucα1-3)GlcNAc, Lewis Y (Fucα1-2Galβ1-4(Fucα1-3)GlcNAc) and blood type B (Galα1-3(Fucα1-2)Galβ1-3GlcNAc) motifs. Based on these findings one can reasonably conclude that at least the A. thaliana F-box-Nictaba protein encoded by At2g02360 can act as a carbohydrate-binding protein. The results from the glycan array assays revealed differences in sugar-binding specificity between the F-box protein and Nictaba, indicating that the same carbohydrate-binding motif can accommodate unrelated oligosaccharides.
Wan Hasan, Wan Nuraini; Chin, Kok-Yong; Jolly, James Jam; Abd Ghafar, Norzana; Soelaiman, Ima Nirwana
2018-04-23
Osteoporosis is a silent skeletal disease characterized by low bone mass and destruction of skeletal microarchitecture, leading to an increased fracture risk. This occurs due to an imbalance in bone remodelling, whereby the rate of bone resorption is greater than bone formation. Mevalonate pathway, previously known to involve in cholesterol synthesis, is an important regulatory pathway for bone remodelling. This review aimed to provide an overview of the relationship between mevalonate pathway and bone metabolism, as well as agents which act through this pathway to achieve their therapeutic potential. Mevalonate pathway produces farnesyl pyrophosphate and geranylgeranyl pyrophosphate essential in protein prenylation. An increase in protein prenylation favours bone resorption over bone formation. Non-nitrogen containing bisphosphonates inhibit farnesyl diphosphate synthase which produces farnesyl pyrophosphate. They are used as the first line therapy for osteoporosis. Statins, a well-known class of cholesterol-lowering agents, inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, the rate-determining enzyme in the mevalonate pathway. It was shown to increase bone mineral density and prevent fracture in humans. Tocotrienol is a group of vitamin E commonly found in palm oil, rice bran and annatto bean. It causes degradation of HMG-CoA reductase. Many studies demonstrated that tocotrienol prevented bone loss in animal studies but its efficacy has not been tested in humans. mevalonate pathway can be exploited to develop effective antiosteoporosis agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Nopaline-type Ti plasmid of Agrobacterium encodes a VirF-like functional F-box protein.
Lacroix, Benoît; Citovsky, Vitaly
2015-11-20
During Agrobacterium-mediated genetic transformation of plants, several bacterial virulence (Vir) proteins are translocated into the host cell to facilitate infection. One of the most important of such translocated factors is VirF, an F-box protein produced by octopine strains of Agrobacterium, which presumably facilitates proteasomal uncoating of the invading T-DNA from its associated proteins. The presence of VirF also is thought to be involved in differences in host specificity between octopine and nopaline strains of Agrobacterium, with the current dogma being that no functional VirF is encoded by nopaline strains. Here, we show that a protein with homology to octopine VirF is encoded by the Ti plasmid of the nopaline C58 strain of Agrobacterium. This protein, C58VirF, possesses the hallmarks of functional F-box proteins: it contains an active F-box domain and specifically interacts, via its F-box domain, with SKP1-like (ASK) protein components of the plant ubiquitin/proteasome system. Thus, our data suggest that nopaline strains of Agrobacterium have evolved to encode a functional F-box protein VirF.
Suzuki, Nobutaka; Ito, Tatsuo; Matsui, Hisanori; Takizawa, Masayuki
2016-01-01
TAK-475 (lapaquistat acetate) and its active metabolite-I (TAK-475 M-I) inhibit squalene synthase, which catalyzes the conversion of farnesyl diphosphate (FPP) to squalene. FPP is a substrate for synthesis of other mevalonate-derived isoprenoids (MDIs) such as farnesol (FOH), geranlygeranyl diphosphate (GGPP), and geranylgeraniol. In patients with MKD, a rare autosomal recessive disorder, defective activity of mevalonate kinase leads to a shortage of MDIs. MDIs especially GGPP are required for prenylation of proteins, which is a posttranslation modification necessary for proper functioning of proteins like small guanosine triphosphatases. Malfunction of prenylation of proteins results in upregulation of the inflammatory cascade, leading to increased production of proinflammatory cytokines like interleukin-1β (IL-1β), eventually leading to episodic febrile attacks. In vitro, TAK-475 M-I incubation in a concentration dependent manner increased levels of FPP, GGPP, and FOH in human monocytic THP-1 cells. In subsequent experiments, THP-1 cells or human peripheral blood mononuclear cells (PBMCs) were incubated with simvastatin, which inhibits hydroxymethylglutaryl-coenzyme A reductase and thereby decreases levels of the precursors of MDIs, leading to the depletion of MDIs as expected in MKD patients. Increased levels of GGPP and FPP attenuated lipopolysaccharide (LPS)-induced IL-1β production in THP-1 cells and human PBMCs in statin-treated conditions. The MDIs also significantly reduced the damaged cell ratio in this active MKD-like condition. Moreover, TAK-475 M-I directly inhibited LPS-induced IL-1β production from statin-treated THP-1 cells. These results show anti-inflammatory and cytoprotective effects of MDIs via TAK-475 M-I treatment in statin-treated immune cells, suggesting that possible therapeutic effects of TAK-475 treatment in MKD patients.
Potential of tocotrienols in the prevention and therapy of Alzheimer's disease.
Xia, Weiming; Mo, Huanbiao
2016-05-01
Currently there is no cure for Alzheimer's disease (AD); clinical trials are underway to reduce amyloid generation and deposition, a neuropathological hallmark in brains of AD patients. While genetic factors and neuroinflammation contribute significantly to AD pathogenesis, whether increased cholesterol level is a causative factor or a result of AD is equivocal. Prenylation of proteins regulating neuronal functions requires mevalonate-derived farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). The observation that the levels of FPP and GGPP, but not that of cholesterol, are elevated in AD patients is consistent with the finding that statins, competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, reduce FPP and GGPP levels and amyloid β protein production in preclinical studies. Retrospective studies show inverse correlations between incidence of AD and the intake and serum levels of the HMG CoA reductase-suppressive tocotrienols; tocopherols show mixed results. Tocotrienols, but not tocopherols, block the processing and nuclear localization of sterol regulatory element binding protein-2, the transcriptional factor for HMG CoA reductase and FPP synthase, and enhance the degradation of HMG CoA reductase. Consequently, tocotrienols deplete the pool of FPP and GGPP and potentially blunt prenylation-dependent AD pathogenesis. The antiinflammatory activity of tocotrienols further contributes to their protection against AD. The mevalonate- and inflammation-suppressive activities of tocotrienols may represent those of an estimated 23,000 mevalonate-derived plant secondary metabolites called isoprenoids, many of which are neuroprotective. Tocotrienol-containing plant foods and tocotrienol derivatives and formulations with enhanced bioavailability may offer a novel approach in AD prevention and treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
Lohscheider, Jens N; Río Bártulos, Carolina
2016-08-01
Plastoglobules (PG) are lipophilic droplets attached to thylakoid membranes in higher plants and green algae and are implicated in prenyl lipid biosynthesis. They might also represent a central hub for integration of plastid signals under stress and therefore the adaptation of the thylakoid membrane under such conditions. In Arabidopsis thaliana, PG contain around 30 specific proteins of which Fibrillins (FBN) and Activity of bc1 complex kinases (ABC1K) represent the majority with respect to both number and protein mass. However, nothing is known about the presence of PG in most algal species, which are responsible for about 50% of global primary production. Therefore, we searched the genomes of publicly available algal genomes for components of PG and the associated functional network in order to predict their presence and potential evolutionary conservation of physiological functions. We could identify homologous sequences for core components of PG, like FBN and ABC1K, in most investigated algal species. Furthermore, proteins at central and interesting positions within the PG functional coexpression network were identified. Phylogenetic sequence analysis revealed diversity within FBN and ABC1K sequences among algal species with complex plastids of the red lineage and large differences compared with green lineage species. Two types of FBN were detected that differ in their isoelectric point which seems to correlate with subcellular localization. Subgroups of FBN were shared between many investigated species and modeling of their 3D-structure implied a conserved structure. FBN and ABC1K are essential structural and functional components of PG. Their occurrence in investigated algal species suggests presence of PG therein and functions in prenyl lipid metabolism and adaptation of the thylakoid membrane that are conserved during evolution. Copyright © 2016 Elsevier B.V. All rights reserved.
Ectromelia virus encodes a novel family of F-box proteins that interact with the SCF complex.
van Buuren, Nick; Couturier, Brianne; Xiong, Yue; Barry, Michele
2008-10-01
Poxviruses are notorious for encoding multiple proteins that regulate cellular signaling pathways, including the ubiquitin-proteasome system. Bioinformatics indicated that ectromelia virus, the causative agent of lethal mousepox, encoded four proteins, EVM002, EVM005, EVM154, and EVM165, containing putative F-box domains. In contrast to cellular F-box proteins, the ectromelia virus proteins contain C-terminal F-box domains in conjunction with N-terminal ankyrin repeats, a combination that has not been previously reported for cellular proteins. These observations suggested that the ectromelia virus F-box proteins interact with SCF (Skp1, cullin-1, and F-box) ubiquitin ligases. We focused our studies on EVM005, since this protein had only one ortholog in cowpox virus. Using mass spectrometry, we identified cullin-1 as a binding partner for EVM005, and this interaction was confirmed by overexpression of hemagglutinin (HA)-cullin-1. During infection, Flag-EVM005 and HA-cullin-1 colocalized to distinct cellular bodies. Significantly, EVM005 coprecipitated with endogenous Skp1, cullin-1, and Roc1 and associated with conjugated ubiquitin, suggesting that EVM005 interacted with the components of a functional ubiquitin ligase. Interaction of EVM005 with cullin-1 and Skp1 was abolished upon deletion of the F-box, indicating that the F-box played a crucial role in interaction with the SCF complex. Additionally, EVM002 and EVM154 interacted with Skp1 and conjugated ubiquitin, suggesting that ectromelia virus encodes multiple F-box-containing proteins that regulate the SCF complex. Our results indicate that ectromelia virus has evolved multiple proteins that interact with the SCF complex.
Najumudeen, Arafath Kaja; Guzmán, Camilo; Posada, Itziar M D; Abankwa, Daniel
2015-01-01
Rab proteins constitute the largest subfamily of Ras-like small GTPases. They are central to vesicular transport and organelle definition in eukaryotic cells. Unlike their Ras counterparts, they are not a hallmark of cancer. However, a number of diseases, including cancer, show a misregulation of Rab protein activity. As for all membrane-anchored signaling proteins, correct membrane organization is critical for Rabs to operate. In this chapter, we provide a detailed protocol for the use of a flow cytometry-based Fluorescence Resonance Energy Transfer (FRET)-biosensors assay, which allows to detect changes in membrane anchorage, subcellular distribution, and of the nanoscale organization of Rab-GTPases in mammalian cell lines. This assay is high-throughput amenable and can therefore be utilized in chemical-genomic and drug discovery efforts.
Gene transfer of high-mobility group box 1 box-A domain in a rat acute liver failure model.
Tanaka, Masayuki; Shinoda, Masahiro; Takayanagi, Atsushi; Oshima, Go; Nishiyama, Ryo; Fukuda, Kazumasa; Yagi, Hiroshi; Hayashida, Tetsu; Masugi, Yohei; Suda, Koichi; Yamada, Shingo; Miyasho, Taku; Hibi, Taizo; Abe, Yuta; Kitago, Minoru; Obara, Hideaki; Itano, Osamu; Takeuchi, Hiroya; Sakamoto, Michiie; Tanabe, Minoru; Maruyama, Ikuro; Kitagawa, Yuko
2015-04-01
High-mobility group box 1 (HMGB1) has recently been identified as an important mediator of various kinds of acute and chronic inflammation. The protein encoded by the box-A domain of the HMGB1 gene is known to act as a competitive inhibitor of HMGB1. In this study, we investigated whether box-A gene transfer results in box-A protein production in rats and assessed therapeutic efficacy in vivo using an acute liver failure (ALF) model. Three types of adenovirus vectors were constructed-a wild type and two mutants-and a mutant vector was then selected based on the secretion from HeLa cells. The secreted protein was subjected to a tumor necrosis factor (TNF) production inhibition test in vitro. The vector was injected via the portal vein in healthy Wistar rats to confirm box-A protein production in the liver. The vector was then injected via the portal vein in rats with ALF. Western blot analysis showed enhanced expression of box-A protein in HeLa cells transfected with one of the mutant vectors. The culture supernatant from HeLa cells transfected with the vector inhibited TNF-α production from macrophages. Expression of box-A protein was confirmed in the transfected liver at 72 h after transfection. Transfected rats showed decreased hepatic enzymes, plasma HMGB1, and hepatic TNF-α messenger RNA levels, and histologic findings and survival were significantly improved. HMGB1 box-A gene transfer results in box-A protein production in the liver and appears to have a beneficial effect on ALF in rats. Copyright © 2015 Elsevier Inc. All rights reserved.
Ballou, W R; Diggs, C L; Landry, S; Hall, B F
1994-12-16
In our report "Activation of Raf as a result of recruitment to the plasma membrane" (3 June, p. 1463) (1), panels E and F of figure 1 on page 1464 were incorrect. The correct photographs appear below. In addition, the [See figure in the PDF file] second sentence of the legend to figure 1 should have read, "The Raf constructs were tagged at the COOH-terminus with a Glu-Glu epitope (MEYMPME) (24) for c-Raf, or at the NH(2)-terminus with both the Glu-Glu and the Myc (MEQKLISEEDL) (23) epitopes for RafCAAX"; the next-to-the-last sentence of the legend to figure 1 should have read, "The c-Raf constructs in (A through D) are Glu-Glu-tagged and were detected by using an anti Glu-Glu antibody, and the RafCAAX and Raf6QCAAX constructs used in E and F were detected by using the antibody to Raf COOH-terminal peptide"; and the third sentence of note 26 should have read, "After blocking with 5% milk in phosphate-buffered saline (M-PBS), cells were incubated with a mouse monoclonal antibody to Glu-Glu or a rabbit polyclonal antibody to a 20-amino acid COOH-terminal peptide of Raf-1 (Santa Cruz Biotechnology, Santa Cruz, California), washed, and incubated with donkey antibodies to mouse or rabbit IgG combined with Texas Red (Jackson) in M-PBS, washed, and mounted in FITC-Guard (Testog)."
Titration of DnaA protein by oriC DnaA-boxes increases dnaA gene expression in Escherichia coli.
Hansen, F G; Koefoed, S; Sørensen, L; Atlung, T
1987-01-01
Binding of the DnaA protein to its binding sites, the DnaA-boxes (TTATCCACA), was measured by a simple physiological approach. The presence of extra DnaA-boxes in growing cells leads to a derepression of dnaA gene expression, measured as beta-galactosidase activity of a dnaA-lacZ fusion polypeptide. Different DnaA-boxes caused different degrees of derepression indicating that the DnaA protein requires sequences in addition to the DnaA-box for efficient binding. The DnaA-boxes in oriC might act cooperatively in binding of the DnaA protein. The derepressed levels of DnaA protein obtained in a strain carrying an oriC+-pBR322 chimera were very high and sufficient to activate oriC on the chimeric plasmid, which was maintained at a copy number more than three times that of pBR322. PMID:3034578
Regulating the ethylene response of a plant by modulation of F-box proteins
Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA
2011-03-08
The invention relates to transgenic plants having reduced sensitivity to ethylene as a result of having a recombinant nucleic acid encoding an F-box protein that interacts with a EIN3 involved in an ethylene response of plants, and a method of producing a transgenic plant with reduced ethylene sensitivity by transforming the plant with a nucleic acid sequence encoding an F-box protein. The inventions also relates to methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein.
Gupta, Shefali; Garg, Vanika; Bhatia, Sabhyata
2015-01-01
Considering the economic importance of chickpea (C. arietinum L.) seeds, it is important to understand the mechanisms underlying seed development for which a cDNA library was constructed from 6 day old chickpea embryos. A total of 8,186 ESTs were obtained from which 4,048 high quality ESTs were assembled into 1,480 unigenes that majorly encoded genes involved in various metabolic and regulatory pathways. Of these, 95 ESTs were found to be involved in ubiquitination related protein degradation pathways and 12 ESTs coded specifically for putative F-box proteins. Differential transcript accumulation of these putative F-box genes was observed in chickpea tissues as evidenced by quantitative real-time PCR. Further, to explore the role of F-box proteins in chickpea seed development, two F-box genes were selected for molecular characterization. These were named as CarF-box_PP2 and CarF-box_LysM depending on their C-terminal domains, PP2 and LysM, respectively. Their highly conserved structures led us to predict their target substrates. Subcellular localization experiment revealed that CarF-box_PP2 was localized in the cytoplasm and CarF-box_LysM was localized in the nucleus. We demonstrated their physical interactions with SKP1 protein, which validated that they function as F-box proteins in the formation of SCF complexes. Sequence analysis of their promoter regions revealed certain seed specific cis-acting elements that may be regulating their preferential transcript accumulation in the seed. Overall, the study helped in expanding the EST database of chickpea, which was further used to identify two novel F-box genes having a potential role in seed development. PMID:25803812
Deregulation of F-box proteins and its consequence on cancer development, progression and metastasis
Heo, Jinho; Eki, Rebeka; Abbas, Tarek
2015-01-01
F-box proteins are substrate receptors of the SCF (SKP1-Cullin 1-F-box protein) E3 ubiquitin ligase that play important roles in a number of physiological processes and activities. Through their ability to assemble distinct E3 ubiquitin ligases and target key regulators of cellular activities for ubiquitylation and degradation, this versatile group of proteins is able to regulate the abundance of cellular proteins whose deregulated expression or activity contributes to disease. In this review, we describe the important roles of select F-box proteins in regulating cellular activities, the perturbation of which contributes to the initiation and progression of a number of human malignancies. PMID:26432751
Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu
2009-04-01
To develop microbial production method for prenyl alcohols (e.g., (E,E)-farnesol (FOH), (E)-nerolidol (NOH), and (E,E,E)-geranylgeraniol (GGOH)), the genes encoding enzymes in the mevalonate and prenyl diphosphate pathways were overexpressed in Saccharomyces cerevisiae, and the resultant transformants were evaluated as to the production of these alcohols. Overexpression of the gene encoding hydroxymethylglutaryl (HMG)-CoA reductase was most effective among the genes tested. A derivative of S. cerevisiae ATCC 200589, which was selected through screening, was found to be the most suitable host for the production. On cultivation of the resultant transformant, in which the HMG-CoA reductase gene was overexpressed, in a 5-liter bench-scale jar fermenter for 7 d, the production of FOH, NOH, and GGOH reached 145.7, 98.8, and 2.46 mg/l, respectively.
The DEAD-box helicase eIF4A: paradigm or the odd one out?
Andreou, Alexandra Z; Klostermeier, Dagmar
2013-01-01
DEAD-box helicases catalyze the ATP-dependent unwinding of RNA duplexes. They share a helicase core formed by two RecA-like domains that carries a set of conserved motifs contributing to ATP binding and hydrolysis, RNA binding and duplex unwinding. The translation initiation factor eIF4A is the founding member of the DEAD-box protein family, and one of the few examples of DEAD-box proteins that consist of a helicase core only. It is an RNA-stimulated ATPase and a non-processive helicase that unwinds short RNA duplexes. In the catalytic cycle, a series of conformational changes couples the nucleotide cycle to RNA unwinding. eIF4A has been considered a paradigm for DEAD-box proteins, and studies of its function have revealed the governing principles underlying the DEAD-box helicase mechanism. However, as an isolated helicase core, eIF4A is rather the exception, not the rule. Most helicase modules in other DEAD-box proteins are modified, some by insertions into the RecA-like domains, and the majority by N- and C-terminal appendages. While the basic catalytic function resides within the helicase core, its modulation by insertions, additional domains or a network of interaction partners generates the diversity of DEAD-box protein functions in the cell. This review summarizes the current knowledge on eIF4A and its regulation, and discusses to what extent eIF4A serves as a model DEAD-box protein.
Evolution of the F-Box Gene Family in Euarchontoglires: Gene Number Variation and Selection Patterns
Wang, Ailan; Fu, Mingchuan; Jiang, Xiaoqian; Mao, Yuanhui; Li, Xiangchen; Tao, Shiheng
2014-01-01
F-box proteins are substrate adaptors used by the SKP1–CUL1–F-box protein (SCF) complex, a type of E3 ubiquitin ligase complex in the ubiquitin proteasome system (UPS). SCF-mediated ubiquitylation regulates proteolysis of hundreds of cellular proteins involved in key signaling and disease systems. However, our knowledge of the evolution of the F-box gene family in Euarchontoglires is limited. In the present study, 559 F-box genes and nine related pseudogenes were identified in eight genomes. Lineage-specific gene gain and loss events occurred during the evolution of Euarchontoglires, resulting in varying F-box gene numbers ranging from 66 to 81 among the eight species. Both tandem duplication and retrotransposition were found to have contributed to the increase of F-box gene number, whereas mutation in the F-box domain was the main mechanism responsible for reduction in the number of F-box genes, resulting in a balance of expansion and contraction in the F-box gene family. Thus, the Euarchontoglire F-box gene family evolved under a birth-and-death model. Signatures of positive selection were detected in substrate-recognizing domains of multiple F-box proteins, and adaptive changes played a role in evolution of the Euarchontoglire F-box gene family. In addition, single nucleotide polymorphism (SNP) distributions were found to be highly non-random among different regions of F-box genes in 1092 human individuals, with domain regions having a significantly lower number of non-synonymous SNPs. PMID:24727786
GPS-ARM: Computational Analysis of the APC/C Recognition Motif by Predicting D-Boxes and KEN-Boxes
Ren, Jian; Cao, Jun; Zhou, Yanhong; Yang, Qing; Xue, Yu
2012-01-01
Anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase incorporated with Cdh1 and/or Cdc20 recognizes and interacts with specific substrates, and faithfully orchestrates the proper cell cycle events by targeting proteins for proteasomal degradation. Experimental identification of APC/C substrates is largely dependent on the discovery of APC/C recognition motifs, e.g., the D-box and KEN-box. Although a number of either stringent or loosely defined motifs proposed, these motif patterns are only of limited use due to their insufficient powers of prediction. We report the development of a novel GPS-ARM software package which is useful for the prediction of D-boxes and KEN-boxes in proteins. Using experimentally identified D-boxes and KEN-boxes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted. By extensive evaluation and comparison, the GPS-ARM performance was found to be much better than the one using simple motifs. With this powerful tool, we predicted 4,841 potential D-boxes in 3,832 proteins and 1,632 potential KEN-boxes in 1,403 proteins from H. sapiens, while further statistical analysis suggested that both the D-box and KEN-box proteins are involved in a broad spectrum of biological processes beyond the cell cycle. In addition, with the co-localization information, we predicted hundreds of mitosis-specific APC/C substrates with high confidence. As the first computational tool for the prediction of APC/C-mediated degradation, GPS-ARM is a useful tool for information to be used in further experimental investigations. The GPS-ARM is freely accessible for academic researchers at: http://arm.biocuckoo.org. PMID:22479614
Milewska-Hendel, Anna; Baczewska, Aneta H; Sala, Katarzyna; Dmuchowski, Wojciech; Brągoszewska, Paulina; Gozdowski, Dariusz; Jozwiak, Adam; Chojnacki, Tadeusz; Swiezewska, Ewa; Kurczynska, Ewa
2017-01-01
The study was focused on assessing the presence of arabinogalactan proteins (AGPs) and pectins within the cell walls as well as prenyl lipids, sodium and chlorine content in leaves of Tilia x euchlora trees. The leaves that were analyzed were collected from trees with and without signs of damage that were all growing in the same salt stress conditions. The reason for undertaking these investigations was the observations over many years that indicated that there are trees that present a healthy appearance and trees that have visible symptoms of decay in the same habitat. Leaf samples were collected from trees growing in the median strip between roadways that have been intensively salted during the winter season for many years. The sodium content was determined using atomic spectrophotometry, chloride using potentiometric titration and poly-isoprenoids using HPLC/UV. AGPs and pectins were determined using immunohistochemistry methods. The immunohistochemical analysis showed that rhamnogalacturonans I (RG-I) and homogalacturonans were differentially distributed in leaves from healthy trees in contrast to leaves from injured trees. In the case of AGPs, the most visible difference was the presence of the JIM16 epitope. Chemical analyses of sodium and chloride showed that in the leaves from injured trees, the level of these ions was higher than in the leaves from healthy trees. Based on chromatographic analysis, four poly-isoprenoid alcohols were identified in the leaves of T. x euchlora. The levels of these lipids were higher in the leaves from healthy trees. The results suggest that the differences that were detected in the apoplast and symplasm may be part of the defensive strategy of T. x euchlora trees to salt stress, which rely on changes in the chemical composition of the cell wall with respect to the pectic and AGP epitopes and an increased synthesis of prenyl lipids.
Milewska-Hendel, Anna; Baczewska, Aneta H.; Sala, Katarzyna; Dmuchowski, Wojciech; Brągoszewska, Paulina; Gozdowski, Dariusz; Jozwiak, Adam; Chojnacki, Tadeusz; Swiezewska, Ewa; Kurczynska, Ewa
2017-01-01
The study was focused on assessing the presence of arabinogalactan proteins (AGPs) and pectins within the cell walls as well as prenyl lipids, sodium and chlorine content in leaves of Tilia x euchlora trees. The leaves that were analyzed were collected from trees with and without signs of damage that were all growing in the same salt stress conditions. The reason for undertaking these investigations was the observations over many years that indicated that there are trees that present a healthy appearance and trees that have visible symptoms of decay in the same habitat. Leaf samples were collected from trees growing in the median strip between roadways that have been intensively salted during the winter season for many years. The sodium content was determined using atomic spectrophotometry, chloride using potentiometric titration and poly-isoprenoids using HPLC/UV. AGPs and pectins were determined using immunohistochemistry methods. The immunohistochemical analysis showed that rhamnogalacturonans I (RG-I) and homogalacturonans were differentially distributed in leaves from healthy trees in contrast to leaves from injured trees. In the case of AGPs, the most visible difference was the presence of the JIM16 epitope. Chemical analyses of sodium and chloride showed that in the leaves from injured trees, the level of these ions was higher than in the leaves from healthy trees. Based on chromatographic analysis, four poly-isoprenoid alcohols were identified in the leaves of T. x euchlora. The levels of these lipids were higher in the leaves from healthy trees. The results suggest that the differences that were detected in the apoplast and symplasm may be part of the defensive strategy of T. x euchlora trees to salt stress, which rely on changes in the chemical composition of the cell wall with respect to the pectic and AGP epitopes and an increased synthesis of prenyl lipids. PMID:28234963
Evidence for an unusual transmembrane configuration of AGG3, a class C Gγ subunit of Arabidopsis
Wolfenstetter, Susanne; Chakravorty, David; Kula, Ryan; ...
2014-12-22
Heterotrimeric G proteins are crucial for the perception of external signals and subsequent signal transduction in animal and plant cells. In both model systems, the complex is comprised of one Gα, one Gβ and one Gγ subunit. However, in addition to the canonical Gγ subunits (Class A), plants also possess two unusual, plant-specific classes of Gγ subunits (Classes B and C) not yet found in animals. These include Gγ subunits lacking the C-terminal CaaX motif (Class B) which is important for membrane anchoring of the protein, and thus give rise to a flexible subpopulation of Gβ/γ heterodimers that is notmore » necessarily restricted to the plasma membrane. Even more interesting, plants also contain Class C Gγ subunits which are twice the size of canonical Gγs, with a predicted transmembrane domain, and a large cysteine-rich, extracellular C-terminus. However, neither the presence of the transmembrane domain nor the membrane topology has been unequivocally demonstrated. Finally, we provide compelling evidence that AGG3, a Class C Ggamma subunit of Arabidopsis, contains a functional transmembrane domain, which is sufficient but not essential for plasma membrane localization, and that the cysteine-rich C-terminus is extracellular.« less
Chen, Jinfeng; Wang, Jinlong; Lu, Yingyuan; Zhao, Shaoyang; Yu, Qian; Wang, Xuemei; Tu, Pengfei; Zeng, Kewu; Jiang, Yong
2018-05-01
Neuroinflammation is a main factor in the pathogenesis of neurodegenerative diseases, such as Alzheimer disease. Our previous studies indicated that the modified Wuziyanzong Prescription (MWP) can suppress neuroinflammatory responses via nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways. However, the anti-neuroinflammatory components of MWP remain unclear. Herein, a target-directed molecular docking fingerprint (TMDF) strategy, via integrating the chemical profiling and molecular docking approaches, was developed to identify the potential anti-neuroinflammatory components of MWP. First, as many as 120 possible structures, including 49 flavonoids, 28 phenylpropionic acids, 18 amides, 10 carotenoids, eight phenylethanoid glycosides, four lignans, two iridoids, and one triterpenoid were deduced by the source attribution and structural classification-assisted strategy. Then, their geometries were docked against five major targets of the NF-κB and MAPKs signaling cascades, including p38-α, IKKβ, ERK1, ERK2, and TRAF6. The docking results revealed diverse contributions of different components towards the protein targets. Collectively, prenylated flavonoids showed intensive or moderate anti-neuroinflammatory activities, while phenylpropanoids, amides, phenylethanoid glycosides, lignans, and triterpenoids exhibited moderate or weak anti-neuroinflammatory effects. The anti-neuroinflammatory activities of four retrieved prenylated flavonoids were tested by Western blotting assay, and the results mostly agreed with those predicted by the docking method. These gained information demonstrates that the established TMDF strategy could be a rapid and feasible methodology to investigate the potential active components in herbal compound prescriptions. Copyright © 2018 Elsevier B.V. All rights reserved.
Nieto, Javier; Andrés, Celia; Pérez-Encabo, Alfonso
2015-09-14
Enantiopure 1,4-oxazepane derivatives have been prepared by selenocyclofunctionalization of chiral 3-prenyl- and 3-cinnamyl-2-hydroxymethyl-substituted perhydro-1,3-benzoxazine derivatives. The 7-endo-cyclization occurs in high yields and diastereoselection. The regio- and stereochemistry of the cyclization products was dependent on the substitution pattern of the double bond, the nature of the hydroxyl group and the experimental conditions.
Shitan, Nobukazu; Kamimoto, Yoshihisa; Minami, Shota; Kubo, Mizuki; Ito, Kozue; Moriyasu, Masataka; Yazaki, Kazufumi
2011-01-01
Yeast functional screening with a Sophora flavescens cDNA library was performed to identify the genes involved in the tolerant mechanism to the self-producing prenylated flavonoid sophoraflavanone G (SFG). One cDNA, which conferred SFG tolerance, encoded a regulatory particle triple-A ATPase 2 (SfRPT2), a member of the 26S proteasome subunit. The yeast transformant of SfRPT2 showed reduced SFG accumulation in the cells.
Sasaki, Kanako; Tsurumaru, Yusuke; Yamamoto, Hirobumi; Yazaki, Kazufumi
2011-01-01
Prenylated isoflavones are secondary metabolites that are mainly distributed in legume plants. They often possess divergent biological activities such as anti-bacterial, anti-fungal, and anti-oxidant activities and thus attract much attention in food, medicinal, and agricultural research fields. Prenyltransferase is the key enzyme in the biosynthesis of prenylated flavonoids by catalyzing a rate-limiting step, i.e. the coupling process of two major metabolic pathways, the isoprenoid pathway and shikimate/polyketide pathway. However, so far only two genes have been isolated as prenyltransferases involved in the biosynthesis of prenylated flavonoids, namely naringenin 8-dimethylallyltransferase from Sophora flavescens (SfN8DT-1) specific for some limited flavanones and glycinol 4-dimethylallyltransferase from Glycine max (G4DT), specific for pterocarpan substrate. We have in this study isolated two novel genes coding for membrane-bound flavonoid prenyltransferases from S. flavescens, an isoflavone-specific prenyltransferase (SfG6DT) responsible for the prenylation of the genistein at the 6-position and a chalcone-specific prenyltransferase designated as isoliquiritigenin dimethylallyltransferase (SfiLDT). These prenyltransferases were enzymatically characterized using a yeast expression system. Analysis on the substrate specificity of chimeric enzymes between SfN8DT-1 and SfG6DT suggested that the determinant region for the specificity of the flavonoids was the domain neighboring the fifth transmembrane α-helix of the prenyltransferases. PMID:21576242
Sasaki, Kanako; Tsurumaru, Yusuke; Yamamoto, Hirobumi; Yazaki, Kazufumi
2011-07-08
Prenylated isoflavones are secondary metabolites that are mainly distributed in legume plants. They often possess divergent biological activities such as anti-bacterial, anti-fungal, and anti-oxidant activities and thus attract much attention in food, medicinal, and agricultural research fields. Prenyltransferase is the key enzyme in the biosynthesis of prenylated flavonoids by catalyzing a rate-limiting step, i.e. the coupling process of two major metabolic pathways, the isoprenoid pathway and shikimate/polyketide pathway. However, so far only two genes have been isolated as prenyltransferases involved in the biosynthesis of prenylated flavonoids, namely naringenin 8-dimethylallyltransferase from Sophora flavescens (SfN8DT-1) specific for some limited flavanones and glycinol 4-dimethylallyltransferase from Glycine max (G4DT), specific for pterocarpan substrate. We have in this study isolated two novel genes coding for membrane-bound flavonoid prenyltransferases from S. flavescens, an isoflavone-specific prenyltransferase (SfG6DT) responsible for the prenylation of the genistein at the 6-position and a chalcone-specific prenyltransferase designated as isoliquiritigenin dimethylallyltransferase (SfiLDT). These prenyltransferases were enzymatically characterized using a yeast expression system. Analysis on the substrate specificity of chimeric enzymes between SfN8DT-1 and SfG6DT suggested that the determinant region for the specificity of the flavonoids was the domain neighboring the fifth transmembrane α-helix of the prenyltransferases.
Regulating the ethylene response of a plant by modulation of F-box proteins
Guo, Hongwei; Ecker, Joseph R.
2010-02-02
The invention relates to transgenic plants having reduced sensitivity to ethylene as a result of having a recombinant nucleic acid encoding a F-box protein, and a method of producing a transgenic plant with reduced ethylene sensitivity by transforming the plant with a nucleic acid sequence encoding a F-box protein.
Discovery and Characterization of a Group of Fungal Polycyclic Polyketide Prenyltransferases
Chooi, Yit-Heng; Wang, Peng; Fang, Jinxu; Li, Yanran; Wu, Katherine; Wang, Pin; Tang, Yi
2014-01-01
The prenyltransferase (PTase) gene vrtC was proposed to be involved in viridicatumtoxin (1) biosynthesis in Penicillium aethiopicum. Targeted gene deletion and reconstitution of recombinant VrtC activity in vitro established that VrtC is a geranyl transferase that catalyzes a regiospecific Friedel-Crafts alkylation of the naphthacenedione carboxamide intermediate 2 at carbon 6 with geranyl diphosphate (GPP). VrtC can function in the absence of divalent ions and can utilize similar naphthacenedione substrates, such as the acetyl-primed TAN-1612 (4). Genome mining using the VrtC protein sequence leads to the identification of a homologous group of PTase genes in the genomes of human and animal-associated fungi. Three enzymes encoded by this new subgroup of PTase genes from Neosartorya fischeri, Microsporum canis and Trichophyton tonsurans were shown to be able to catalyze transfer of dimethylallyl to several tetracyclic naphthacenedione substrates in vitro. In total, seven C5- or C10-prenylated naphthacenedione compounds were generated. The regioselectivity of these new polycyclic PTases (pcPTases) was confirmed by characterization of product 9 obtained from biotransformation of 4 in Escherichia coli expressing the N. fischeri pcPTase gene. The discovery of this new subgroup of PTases extends our enzymatic tools for modifying polycyclic compounds and enables genome mining of new prenylated polyketides. PMID:22590971
Sheikh, M Osman; Thieker, David; Chalmers, Gordon; Schafer, Christopher M; Ishihara, Mayumi; Azadi, Parastoo; Woods, Robert J; Glushka, John N; Bendiak, Brad; Prestegard, James H; West, Christopher M
2017-11-17
Skp1 is a conserved protein linking cullin-1 to F-box proteins in SCF ( S kp1/ C ullin-1/ F -box protein) E3 ubiquitin ligases, which modify protein substrates with polyubiquitin chains that typically target them for 26S proteasome-mediated degradation. In Dictyostelium (a social amoeba), Toxoplasma gondii (the agent for human toxoplasmosis), and other protists, Skp1 is regulated by a unique pentasaccharide attached to hydroxylated Pro-143 within its C-terminal F-box-binding domain. Prolyl hydroxylation of Skp1 contributes to O 2 -dependent Dictyostelium development, but full glycosylation at that position is required for optimal O 2 sensing. Previous studies have shown that the glycan promotes organization of the F-box-binding region in Skp1 and aids in Skp1's association with F-box proteins. Here, NMR and MS approaches were used to determine the glycan structure, and then a combination of NMR and molecular dynamics simulations were employed to characterize the impact of the glycan on the conformation and motions of the intrinsically flexible F-box-binding domain of Skp1. Molecular dynamics trajectories of glycosylated Skp1 whose calculated monosaccharide relaxation kinetics and rotational correlation times agreed with the NMR data indicated that the glycan interacts with the loop connecting two α-helices of the F-box-combining site. In these trajectories, the helices separated from one another to create a more accessible and dynamic F-box interface. These results offer an unprecedented view of how a glycan modification influences a disordered region of a full-length protein. The increased sampling of an open Skp1 conformation can explain how glycosylation enhances interactions with F-box proteins in cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Role of indirect readout mechanism in TATA box binding protein-DNA interaction.
Mondal, Manas; Choudhury, Devapriya; Chakrabarti, Jaydeb; Bhattacharyya, Dhananjay
2015-03-01
Gene expression generally initiates from recognition of TATA-box binding protein (TBP) to the minor groove of DNA of TATA box sequence where the DNA structure is significantly different from B-DNA. We have carried out molecular dynamics simulation studies of TBP-DNA system to understand how the DNA structure alters for efficient binding. We observed rigid nature of the protein while the DNA of TATA box sequence has an inherent flexibility in terms of bending and minor groove widening. The bending analysis of the free DNA and the TBP bound DNA systems indicate presence of some similar structures. Principal coordinate ordination analysis also indicates some structural features of the protein bound and free DNA are similar. Thus we suggest that the DNA of TATA box sequence regularly oscillates between several alternate structures and the one suitable for TBP binding is induced further by the protein for proper complex formation.
Yoshino, M; Tsutsumi, K; Kanazawa, A
2015-01-01
β-Conglycinin, a major component of seed storage protein in soybean, comprises three subunits: α, α' and β. The expression of genes for these subunits is strictly controlled during embryogenesis. The proximal promoter region up to 245 bp upstream of the transcription start site of the α subunit gene sufficiently confers spatial and temporal control of transcription in embryos. Here, the binding profile of nuclear proteins in the proximal promoter region of the α subunit gene was analysed. DNase I footprinting analysis indicated binding of proteins to the RY element and DNA regions including box I, a region conserved in cognate gene promoters. An electrophoretic mobility shift assay (EMSA) using different portions of box I as a probe revealed that multiple portions of box I bind to nuclear proteins. In addition, an EMSA using nuclear proteins extracted from embryos at different developmental stages indicated that the levels of major DNA-protein complexes on box I increased during embryo maturation. These results are consistent with the notion that box I is important for the transcriptional control of seed storage protein genes. Furthermore, the present data suggest that nuclear proteins bind to novel motifs in box I including 5'-TCAATT-3' rather than to predicted cis-regulatory elements. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Novel isoprenylated proteins identified by an expression library screen.
Biermann, B J; Morehead, T A; Tate, S E; Price, J R; Randall, S K; Crowell, D N
1994-10-14
Isoprenylated proteins are involved in eukaryotic cell growth and signal transduction. The protein determinant for prenylation is a short carboxyl-terminal motif containing a cysteine, to which the isoprenoid is covalently attached via thioether linkage. To date, isoprenylated proteins have almost all been identified by demonstrating the attachment of an isoprenoid to previously known proteins. Thus, many isoprenylated proteins probably remain undiscovered. To identify novel isoprenylated proteins for subsequent biochemical study, colony blots of a Glycine max cDNA expression library were [3H]farnesyl-labeled in vitro. Proteins identified by this screen contained several different carboxyl termini that conform to consensus farnesylation motifs. These proteins included known farnesylated proteins (DnaJ homologs) and several novel proteins, two of which contained six or more tandem repeats of a hexapeptide having the consensus sequence (E/G)(G/P)EK(P/K)K. Thus, plants contain a diverse array of genes encoding farnesylated proteins, and our results indicate that fundamental differences in the identities of farnesylated proteins may exist between plants and other eukaryotes. Expression library screening by direct labeling can be adapted to identify isoprenylated proteins from other organisms, as well as proteins with other post-translational modifications.
[Ibandronate in the treatment of postmenopausal osteoporosis].
Lakatos, Péter
2008-10-01
Postmenopausal osteoporosis affects 7-10% of the population of developed countries. During the past decade, a number of new therapeutical modalities have been made available. Among these, bisphosphonates mean the mainstay of medical treatment. Ibandronate belongs to the amino-bisphosphonate group of these drugs. Amino-bisphosphonates act via the mevalonate metabolic pathway, thus, inhibiting protein prenylation. Several clinical studies have shown a significant reduction in the fracture risk of osteoporotic patients treated with ibandronate. This compound can be administered orally once a month or intravenously once in every 3 months. Longer dosing intervals stimulate patient compliance, and consequently increase efficacy and cost effectiveness.
Aisyah, Siti; Vincken, Jean-Paul; Andini, Silvia; Mardiah, Zahara; Gruppen, Harry
2016-02-01
The effects of germination and elicitation on (iso)flavonoid composition of extracts from three edible lupine species (Lupinus luteus, Lupinus albus, Lupinus angustifolius) were determined by RP-UHPLC-MS(n). The total (iso)flavonoid content of lupine increased over 10-fold upon germination, with the total content and composition of isoflavonoids more affected than those of flavonoids. Glycosylated isoflavones were the most predominant compounds found in lupine seedlings. Lesser amounts of isoflavone aglycones, including prenylated ones, were also accumulated. Elicitation with Rhizopus oryzae, in addition to germination, raised the content of isoflavonoids further: the total content of 2'-hydroxygenistein derivatives was increased considerably, without increasing that of genistein derivatives. Elicitation by fungus triggered prenylation of isoflavonoids, especially of the 2'-hydroxygenistein derivatives. The preferred positions of prenylation differed among the three lupine species. The change in isoflavone composition increased the agonistic activity of the extracts towards the human estrogen receptors, whereas no antagonistic activity was observed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jeske, Mandy; Müller, Christoph W.; Ephrussi, Anne
2017-01-01
DEAD-box RNA helicases play important roles in a wide range of metabolic processes. Regulatory proteins can stimulate or block the activity of DEAD-box helicases. Here, we show that LOTUS (Limkain, Oskar, and Tudor containing proteins 5 and 7) domains present in the germline proteins Oskar, TDRD5 (Tudor domain-containing 5), and TDRD7 bind and stimulate the germline-specific DEAD-box RNA helicase Vasa. Our crystal structure of the LOTUS domain of Oskar in complex with the C-terminal RecA-like domain of Vasa reveals that the LOTUS domain occupies a surface on a DEAD-box helicase not implicated previously in the regulation of the enzyme's activity. We show that, in vivo, the localization of Drosophila Vasa to the nuage and germ plasm depends on its interaction with LOTUS domain proteins. The binding and stimulation of Vasa DEAD-box helicases by LOTUS domains are widely conserved. PMID:28536148
Song, Jianbo; Mo, Xiaowei; Yang, Haiqi; Yue, Luming; Song, Jun; Mo, Beixin
2017-01-01
The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula.
Crystal structure of the UBR-box from UBR6/FBXO11 reveals domain swapping mediated by zinc binding.
Muñoz-Escobar, Juliana; Kozlov, Guennadi; Gehring, Kalle
2017-10-01
The UBR-box is a 70-residue zinc finger domain present in the UBR family of E3 ubiquitin ligases that directly binds N-terminal degradation signals in substrate proteins. UBR6, also called FBXO11, is an UBR-box containing E3 ubiquitin ligase that does not bind N-terminal signals. Here, we present the crystal structure of the UBR-box domain from human UBR6. The dimeric crystal structure reveals a unique form of domain swapping mediated by zinc coordination, where three independent protein chains come together to regenerate the topology of the monomeric UBR-box fold. Analysis of the structure suggests that the absence of N-terminal residue binding arises from the lack of an amino acid binding pocket. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
DEAD-box Helicases as Integrators of RNA, Nucleotide and Protein Binding
Putnam, Andrea A.
2013-01-01
DEAD-box helicases perform diverse cellular functions in virtually all steps of RNA metabolism from Bacteria to Humans. Although DEAD-box helicases share a highly conserved core domain, the enzymes catalyze a wide range of biochemical reactions. In addition to the well established RNA unwinding and corresponding ATPase activities, DEAD-box helicases promote duplex formation and displace proteins from RNA. They can also function as assembly platforms for larger ribonucleoprotein complexes, and as metabolite sensors. This review aims to provide a perspective on the diverse biochemical features of DEAD-box helicases and connections to structural information. We discuss these data in the context of a model that views the enzymes as integrators of RNA, nucleotide, and protein binding. PMID:23416748
Ohara, Kazuaki; Sasaki, Kanako; Yazaki, Kazufumi
2010-01-01
Long chain prenyl diphosphates are crucial biosynthetic precursors of ubiquinone (UQ) in many organisms, ranging from bacteria to humans, as well as precursors of plastoquinone in photosynthetic organisms. The cloning and characterization of two solanesyl diphosphate synthase genes, OsSPS1 and OsSPS2, in Oryza sativa is reported here. OsSPS1 was highly expressed in root tissue whereas OsSPS2 was found to be high in both leaves and roots. Enzymatic characterization using recombinant proteins showed that both OsSPS1 and OsSPS2 could produce solanesyl diphosphates as their final product, while OsSPS1 showed stronger activity than OsSPS2. However, an important biological difference was observed between the two genes: OsSPS1 complemented the yeast coq1 disruptant, which does not form UQ, whereas OsSPS2 only very weakly complemented the growth defect of the coq1 mutant. HPLC analyses showed that both OsSPS1 and OsSPS2 yeast transformants produced UQ9 instead of UQ6, which is the native yeast UQ. According to the complementation study, the UQ9 levels in OsSPS2 transformants were much lower than that of OsSPS1. Green fluorescent protein fusion analyses showed that OsSPS1 localized to mitochondria, while OsSPS2 localized to plastids. This suggests that OsSPS1 is involved in the supply of solanesyl diphosphate for ubiquinone-9 biosynthesis in mitochondria, whereas OsSPS2 is involved in providing solanesyl diphosphate for plastoquinone-9 formation. These findings indicate that O. sativa has a different mechanism for the supply of isoprenoid precursors in UQ biosynthesis from Arabidopsis thaliana, in which SPS1 provides a prenyl moiety for UQ9 at the endoplasmic reticulum. PMID:20421194
Ohara, Kazuaki; Sasaki, Kanako; Yazaki, Kazufumi
2010-06-01
Long chain prenyl diphosphates are crucial biosynthetic precursors of ubiquinone (UQ) in many organisms, ranging from bacteria to humans, as well as precursors of plastoquinone in photosynthetic organisms. The cloning and characterization of two solanesyl diphosphate synthase genes, OsSPS1 and OsSPS2, in Oryza sativa is reported here. OsSPS1 was highly expressed in root tissue whereas OsSPS2 was found to be high in both leaves and roots. Enzymatic characterization using recombinant proteins showed that both OsSPS1 and OsSPS2 could produce solanesyl diphosphates as their final product, while OsSPS1 showed stronger activity than OsSPS2. However, an important biological difference was observed between the two genes: OsSPS1 complemented the yeast coq1 disruptant, which does not form UQ, whereas OsSPS2 only very weakly complemented the growth defect of the coq1 mutant. HPLC analyses showed that both OsSPS1 and OsSPS2 yeast transformants produced UQ9 instead of UQ6, which is the native yeast UQ. According to the complementation study, the UQ9 levels in OsSPS2 transformants were much lower than that of OsSPS1. Green fluorescent protein fusion analyses showed that OsSPS1 localized to mitochondria, while OsSPS2 localized to plastids. This suggests that OsSPS1 is involved in the supply of solanesyl diphosphate for ubiquinone-9 biosynthesis in mitochondria, whereas OsSPS2 is involved in providing solanesyl diphosphate for plastoquinone-9 formation. These findings indicate that O. sativa has a different mechanism for the supply of isoprenoid precursors in UQ biosynthesis from Arabidopsis thaliana, in which SPS1 provides a prenyl moiety for UQ9 at the endoplasmic reticulum.
Gorelik, Maryna; Orlicky, Stephen; Sartori, Maria A.; ...
2016-03-14
Skp1–Cul1–F-box (SCF) E3 ligases play key roles in multiple cellular processes through ubiquitination and subsequent degradation of substrate proteins. Although Skp1 and Cul1 are invariant components of all SCF complexes, the 69 different human F-box proteins are variable substrate binding modules that determine specificity. SCF E3 ligases are activated in many cancers and inhibitors could have therapeutic potential. Here, we used phage display to develop specific ubiquitin-based inhibitors against two F-box proteins, Fbw7 and Fbw11. Unexpectedly, the ubiquitin variants bind at the interface of Skp1 and F-box proteins and inhibit ligase activity by preventing Cul1 binding to the same surface.more » Using structure-based design and phage display, we modified the initial inhibitors to generate broad-spectrum inhibitors that targeted many SCF ligases, or conversely, a highly specific inhibitor that discriminated between even the close homologs Fbw11 and Fbw1. We propose that most F-box proteins can be targeted by this approach for basic research and for potential cancer therapies.« less
Interaction between the phage HK022 Nun protein and the nut RNA of phage lambda.
Chattopadhyay, S; Hung, S C; Stuart, A C; Palmer, A G; Garcia-Mena, J; Das, A; Gottesman, M E
1995-12-19
The nun gene product of prophage HK022 excludes phage lambda infection by blocking the expression of genes downstream from the lambda nut sequence. The Nun protein functions both by competing with lambda N transcription-antitermination protein and by actively inducing transcription termination on the lambda chromosome. We demonstrate that Nun binds directly to a stem-loop structure within nut RNA, boxB, which is also the target for the N antiterminator. The two proteins show comparable affinities for boxB and they compete with each other. Their interactions with boxB are similar, as shown by RNase protection experiments, NMR spectroscopy, and analysis of boxB mutants. Each protein binds the 5' strand of the boxB stem and the adjacent loop. The stem does not melt upon the binding of Nun or N, as the 3' strand remains sensitive to a double-strand-specific RNase. The binding of RNA partially protects Nun from proteolysis and changes its NMR spectra. Evidently, although Nun and N bind to the same surface of boxB RNA, their respective complexes interact differently with RNA polymerase, inducing transcription termination or antitermination, respectively.
SVP-like MADS-box protein from Carya cathayensis forms higher-order complexes.
Wang, Jingjing; Hou, Chuanming; Huang, Jianqin; Wang, Zhengjia; Xu, Yingwu
2015-03-01
To properly regulate plant flowering time and construct floral pattern, MADS-domain containing transcription factors must form multimers including homo- and hetero-dimers. They are also active in forming hetero-higher-order complexes with three to five different molecules. However, it is not well known if a MADS-box protein can also form homo-higher-order complex. In this study a biochemical approach is utilized to provide insight into the complex formation for an SVP-like MADS-box protein cloned from hickory. The results indicated that the protein is a heterogeneous higher-order complex with the peak population containing over 20 monomers. Y2H verified the protein to form homo-complex in yeast cells. Western blot of the hickory floral bud sample revealed that the protein exists in higher-order polymers in native. Deletion assays indicated that the flexible C-terminal residues are mainly responsible for the higher-order polymer formation and the heterogeneity. Current results provide direct biochemical evidences for an active MADS-box protein to be a high order complex, much higher than a quartermeric polymer. Analysis suggests that a MADS-box subset may be able to self-assemble into large complexes, and thereby differentiate one subfamily from the other in a higher-order structural manner. Present result is a valuable supplement to the action of mechanism for MADS-box proteins in plant development. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Cheng, Shaowu; Cao, Dongfeng; Hottman, David A; Yuan, LiLian; Bergo, Martin O; Li, Ling
2013-12-13
Isoprenoids and prenylated proteins have been implicated in the pathophysiology of Alzheimer disease (AD), including amyloid-β precursor protein metabolism, Tau phosphorylation, synaptic plasticity, and neuroinflammation. However, little is known about the relative importance of the two protein prenyltransferases, farnesyltransferase (FT) and geranylgeranyltransferase-1 (GGT), in the pathogenesis of AD. In this study, we defined the impact of deleting one copy of FT or GGT on the development of amyloid-β (Aβ)-associated neuropathology and learning/memory impairments in APPPS1 double transgenic mice, a well established model of AD. Heterozygous deletion of FT reduced Aβ deposition and neuroinflammation and rescued spatial learning and memory function in APPPS1 mice. Heterozygous deletion of GGT reduced the levels of Aβ and neuroinflammation but had no impact on learning and memory. These results document that farnesylation and geranylgeranylation play differential roles in AD pathogenesis and suggest that specific inhibition of protein farnesylation could be a potential strategy for effectively treating AD.
Calderone, Christopher T; Kowtoniuk, Walter E; Kelleher, Neil L; Walsh, Christopher T; Dorrestein, Pieter C
2006-06-13
The pksX gene cluster from Bacillus subtilis is predicted to encode the biosynthesis of an as yet uncharacterized hybrid nonribosomal peptide/polyketide secondary metabolite. We used a combination of biochemical and mass spectrometric techniques to assign functional roles to the proteins AcpK, PksC, PksL, PksF, PksG, PksH, and PksI, and we conclude that they act to incorporate an acetate-derived beta-methyl branch on an acetoacetyl-S-carrier protein and ultimately generate a Delta(2)-isoprenyl-S-carrier protein. This work highlights the power of mass spectrometry to elucidate the functions of orphan biosynthetic enzymes, and it details a mechanism by which single-carbon beta-branches can be inserted into polyketide-like structures. This pathway represents a noncanonical route to the construction of prenyl units and serves as a prototype for the intersection of isoprenoid and polyketide biosynthetic manifolds in other natural product biosynthetic pathways.
Vasorelaxant prenylated flavonoids from the roots of Sophora flavescens.
Kim, Chul Young; Kim, Hyun Jung; Kim, Kyeong-Man; Oak, Min-Ho
2013-01-01
Bioassay-guided fractionation of the methanol extract from the root of Sophora flavescens led to the isolation of eight known prenylated flavonoids responsible for the vasorelaxation activity in porcine coronary arteries. Among them, kushenol N and 5-methylsophoraflavanone B strongly induced the relaxation of porcine coronary arteries with respective ED(50) values of 8.6 and 12.4 µM. This activity and the results of a high-performance liquid chromatographic analysis suggest that kushenol N and 5-methylsophoraflavanone B could be active markers in the S. flavescens extract for vasorelaxation activity.
Max-E47, a Designed Minimalist Protein that Targets the E-Box DNA Site In Vivo and In Vitro
Xu, Jing; Chen, Gang; De Jong, Antonia T.; Shahravan, S. Hesam; Shin, Jumi A.
2009-01-01
Max-E47 is a designed hybrid protein comprising the Max DNA-binding basic region and E47 HLH dimerization subdomain. In the yeast one-hybrid system (Y1H), Max-E47 shows strong transcriptional activation from the E-box site, 5'-CACGTG, targeted by the Myc/Max/Mad network of transcription factors; two mutants, Max-E47Y and Max-E47YF, activate more weakly from the E-box in the Y1H. Quantitative fluorescence anisotropy titrations to gain free energies of protein:DNA binding gave low nM Kd values for the native MaxbHLHZ, Max-E47, and the Y and YF mutants binding to the E-box site (14 nM, 15 nM, 9 nM, and 6 nM, respectively), with no detectable binding to a nonspecific control duplex. Because these minimalist, E-box-binding hybrids have no activation domain and no interactions with the c-MycbHLHZ, as shown by the yeast two-hybrid assay, they can potentially serve as dominant-negative inhibitors that suppress activation of E-box-responsive genes targeted by transcription factors including the c-Myc/Max complex. As proof-of-principle, we used our modified Y1H, which allows direct competition between two proteins vying for a DNA target, to show that Max-E47 effectively outcompetes the native MaxbHLHZ for the E-box; weaker competition is observed from the two mutants, consistent with Y1H results. These hybrids provide a minimalist scaffold for further exploration of the relationship between protein structure and DNA-binding function and may have applications as protein therapeutics or biochemical probes capable of targeting the E-box site. PMID:19449889
Suda, T; Mishima, Y; Takayanagi, K; Asakura, H; Odani, S; Kominami, R
1996-01-01
The high mobility group protein (HMG)-box is a DNA-binding domain found in many proteins that bind preferentially to DNA of irregular structures in a sequence-independent manner and can bend the DNA. We show here that GST-fusion proteins of HMG domains from HMG1 and HMG2 promote a triple-stranded complex formation between DNA containing the (GGA/TCC)11 repeat and oligonucleotides of d(GGA)11 probably due to G:G base pairing. The activity is to reduce association time and requirements of Mg2+ and oligonucleotide concentrations. The HMG box of SRY, the protein determining male-sex differentiation, also has the activity, suggesting that it is not restricted to the HMG-box domains derived from HMG1/2 but is common to those from other members of the HMG-box family of proteins. Interestingly, the box-AB and box-B of HMG1 bend DNA containing the repeat, but SRY fails to bend in a circularization assay. The difference suggests that the two activities of association-promotion and DNA bending are distinct. These results suggest that the HMG-box domain has a novel activity of promoting the association between GGA repeats which might be involved in higher-order architecture of chromatin. PMID:8972860
Genome-wide identification and characterisation of F-box family in maize.
Jia, Fengjuan; Wu, Bingjiang; Li, Hui; Huang, Jinguang; Zheng, Chengchao
2013-11-01
F-box-containing proteins, as the key components of the protein degradation machinery, are widely distributed in higher plants and are considered as one of the largest known families of regulatory proteins. The F-box protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, systematic analysis of the F-box family in maize (Zea mays) has not been reported yet. In this paper, we identified and characterised the maize F-box genes in a genome-wide scale, including phylogenetic analysis, chromosome distribution, gene structure, promoter analysis and gene expression profiles. A total of 359 F-box genes were identified and divided into 15 subgroups by phylogenetic analysis. The F-box domain was relatively conserved, whereas additional motifs outside the F-box domain may indicate the functional diversification of maize F-box genes. These genes were unevenly distributed in ten maize chromosomes, suggesting that they expanded in the maize genome because of tandem and segmental duplication events. The expression profiles suggested that the maize F-box genes had temporal and spatial expression patterns. Putative cis-acting regulatory DNA elements involved in abiotic stresses were observed in maize F-box gene promoters. The gene expression profiles under abiotic stresses also suggested that some genes participated in stress responsive pathways. Furthermore, ten genes were chosen for quantitative real-time PCR analysis under drought stress and the results were consistent with the microarray data. This study has produced a comparative genomics analysis of the maize ZmFBX gene family that can be used in further studies to uncover their roles in maize growth and development.
Ectromelia virus encodes a family of Ankyrin/F-box proteins that regulate NFκB.
Burles, Kristin; van Buuren, Nicholas; Barry, Michele
2014-11-01
A notable feature of poxviruses is their ability to inhibit the antiviral response, including the nuclear factor kappa B (NFκB) pathway. NFκB is a transcription factor that is sequestered in the cytoplasm until cell stimulation, and relies on the SCF (Skp1, culllin-1, F-box) ubiquitin ligase to target its inhibitor, IκBα, for degradation. IκBα is recruited to the SCF by the F-box domain-containing protein βTrCP. Here, we show that ectromelia virus, the causative agent of mousepox, encodes four F-box-containing proteins, EVM002, EVM005, EVM154, and EVM165, all of which contain Ankyrin (Ank) domains. The Ank/F-box proteins inhibit NFκB nuclear translocation, and this inhibition is dependent on the F-box domain. We also demonstrate that EVM002, EVM005, EVM154, and EVM165 prevent IκBα degradation, suggesting that they target the SCF. This study identifies a new mechanism by which ectromelia virus inhibits NFκB. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hast, Michael A.; Beese, Lorena S.
2008-11-21
Protein geranylgeranyltransferase-I (GGTase-I) catalyzes the transfer of a 20-carbon isoprenoid lipid to the sulfur of a cysteine residue located near the C terminus of numerous cellular proteins, including members of the Rho superfamily of small GTPases and other essential signal transduction proteins. In humans, GGTase-I and the homologous protein farnesyltransferase (FTase) are targets of anticancer therapeutics because of the role small GTPases play in oncogenesis. Protein prenyltransferases are also essential for many fungal and protozoan pathogens that infect humans, and have therefore become important targets for treating infectious diseases. Candida albicans, a causative agent of systemic fungal infections in immunocompromisedmore » individuals, is one pathogen for which protein prenylation is essential for survival. Here we present the crystal structure of GGTase-I from C. albicans (CaGGTase-I) in complex with its cognate lipid substrate, geranylgeranylpyrophosphate. This structure provides a high-resolution picture of a non-mammalian protein prenyltransferase. There are significant variations between species in critical areas of the active site, including the isoprenoid-binding pocket, as well as the putative product exit groove. These differences indicate the regions where specific protein prenyltransferase inhibitors with antifungal activity can be designed.« less
Covalent protein-oligonucleotide conjugates by copper-free click reaction
Khatwani, Santoshkumar L.; Mullen, Daniel G.; Hast, Michael A.; Beese, Lorena S.; Distefano, Mark D.; Taton, T. Andrew
2013-01-01
Covalent protein-oligodeoxynucleotide (protein-ODN) conjugates are useful in a number of biological applications, but synthesizing discrete conjugates—where the connection between the two components is at a defined location in both the protein and the ODN—under mild conditions with significant yield can be a challenge. In this article, we demonstrate a strategy for synthesizing discrete protein-ODN conjugates using strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC, a copper-free “click” reaction). Azide-functionalized proteins, prepared by enzymatic prenylation of C-terminal CVIA tags with synthetic azidoprenyl diphosphates, were “clicked” to ODNs that had been modified with a strained dibenzocyclooctyne (DIBO-ODN). The resulting protein-ODN conjugates were purified and characterized by size-exclusion chromatography and gel electrophoresis. We find that the yields and reaction times of the SPAAC bioconjugation reactions are comparable to those previously reported for copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) bioconjugation, but require no catalyst. The same SPAAC chemistry was used to immobilize azide-modified proteins onto surfaces, using surface-bound DIBO-ODN as a heterobifunctional linker. Cu-free click bioconjugation of proteins to ODNs is a simple and versatile alternative to Cu-catalyzed click methods. PMID:22682299
NASA Astrophysics Data System (ADS)
Marliyana, S. D.; Mujahidin, D.; Syah, Y. M.
2018-04-01
Kaempferia pandurata (syn. Boesenbergia rotunda, B. pandurata (Roxb.)Schltr), locally known as "TemuKunci"in Indonesia, is one of the medicinal plants of the family Zingiberaceae. Phytochemical studies on the rhizome of K. pandurata showed the presence of flavonoid derivative, namely flavanones, which constitute as the main components of this plant. Bioactivity studies on this species exhibited various biological activities, such as antibacteria, anti-inflammatory, antitumor, antidiarrhea, antidisentri, anti-HIV, antioxidant, antipyretic, analgesic and insecticides. Among the biological activities, the antibacterial activity results are important as an attempt to answer the emergence of resistance of some bacteria against existing drugs, as well as the emergence of a number of outbreaks of disease caused by bacteria. Therefore, a search to find new compounds that are potential as an antibacterial is an urgent matter. The present study was aimed at the chemical transformation of pinostrobin (1) from K. pandurata rhizome and an antibacterial activity.The chemical transformation was performed through a prenylation reaction of pinostrobin (1) which is the main component of K. pandurata rhizome. The prenylation reaction was carried out by reacting pinostrobin (1) with prenyl bromide and potassium carbonat (K2CO3). The purification of product was done using the radial chromatography with mix solvent n-hexane and ethyl acetate (97.5:2.5; 9.5:0.5; 9.0:1.0.; 8.0:2.0). The purity test of isolated compound was analysedby TLC using different types of eluent. The identification of compounds was determined based on NMR data and mass spectra analysis. Five compounds were obtained from the prenylation reaction, i.e. monooxyprenylated pinostrobin (2), monooxyprenylated chalcone (3), diprenylated chalcone (4), triprenylated chalcone (5), and triprenylated cyclohexene chalcone (6). These compounds were tested for antibacterial activities against four clinical bacteria, namely Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antibacterial test was conducted using microdilution method. The five compounds showed moderate antibacterial activity against clinical bacteria with MIC values in the range of 25 to 50 µg/mL.
Yang, Haiqi; Yue, Luming; Song, Jun
2017-01-01
The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula. PMID:28771553
Sun, Yanjun; Sun, Yinshi; Chen, Hui; Hao, Zhiyou; Wang, Junmin; Guan, Yanbin; Zhang, Yanli; Feng, Weisheng; Zheng, Xiaoke
2014-10-15
Two new prenylated flavonoids, sinoflavonoids A-B, were isolated from the dried fruits of Sinopodophyllum emodi by silica gel column chromatography (SGCC) and high-speed counter-current chromatography (HSCCC). The 95% ethanol extract was partitioned with petroleum ether, dichloromethane, ethyl acetate, and n-butanol in water, respectively. The ethyl acetate fraction was pre-separated by SGCC with a petroleum ether-acetone gradient. The eluates containing target compounds were further separated by HSCCC with n-hexane-ethyl acetate-methanol-water (4:6:4:4, v/v). Finally, 17.3mg of sinoflavonoid A and 25.9mg of sinoflavonoid B were obtained from 100mg of the pretreated concentrate. The purities of sinoflavonoid A and sinoflavonoid B were 98.47% and 99.38%, respectively, as determined by HPLC. Their structures were elucidated on the basis of spectroscopic evidences (HR-ESI-MS, (1)H-NMR, (13)C-NMR, HSQC, HMBC). The separation procedures proved to be efficient, especially for trace prenylated flavonoids. Copyright © 2014 Elsevier B.V. All rights reserved.
Kumar, Krishan; Singal, Ankita; Rizvi, M Moshahid A; Chauhan, Virander S
2008-06-01
High mobility group box chromosomal protein 1 (HMGB1), known as an abundant, non-histone architectural chromosomal protein, is highly conserved across different species. Homologues of HMGB1 were identified and cloned from malaria parasite, Plasmodium falciparum. Sequence analyses showed that the P. falciparum HMGB1 (PfHMGB1) exhibits 45, 23 and 18%, while PfHMGB2 shares 42, 21 and 17% homology with Saccharomyces cerevisiae, human and mouse HMG box proteins respectively. Parasite PfHMGB1and PfHMGB2 proteins contain one HMG Box domain similar to B-Box of mammalian HMGB1. Electrophoretic Mobility Shift Assay (EMSA) showed that recombinant PfHMGB1 and PfHMGB2 bind to DNA. Immunofluorescence Assay using specific antibodies revealed that these proteins are expressed abundantly in the ring stage nuclei. Significant levels of PfHMGB1 and PfHMGB2 were also present in the parasite cytosol at trophozoite and schizont stages. Both, PfHMGB1 and PfHMGB2 were found to be potent inducers of pro-inflammatory cytokines such as TNFalpha from mouse peritoneal macrophages as analyzed by both reverse transcription PCR and by ELISA. These results suggest that secreted PfHMGB1 and PfHMGB2 may be responsible for eliciting/ triggering host inflammatory immune responses associated with malaria infection.
Genome-wide survey and expression analysis of F-box genes in chickpea.
Gupta, Shefali; Garg, Vanika; Kant, Chandra; Bhatia, Sabhyata
2015-02-13
The F-box genes constitute one of the largest gene families in plants involved in degradation of cellular proteins. F-box proteins can recognize a wide array of substrates and regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence, among others. However, little is known about the F-box genes in the important legume crop, chickpea. The available draft genome sequence of chickpea allowed us to conduct a genome-wide survey of the F-box gene family in chickpea. A total of 285 F-box genes were identified in chickpea which were classified based on their C-terminal domain structures into 10 subfamilies. Thirteen putative novel motifs were also identified in F-box proteins with no known functional domain at their C-termini. The F-box genes were physically mapped on the 8 chickpea chromosomes and duplication events were investigated which revealed that the F-box gene family expanded largely due to tandem duplications. Phylogenetic analysis classified the chickpea F-box genes into 9 clusters. Also, maximum syntenic relationship was observed with soybean followed by Medicago truncatula, Lotus japonicus and Arabidopsis. Digital expression analysis of F-box genes in various chickpea tissues as well as under abiotic stress conditions utilizing the available chickpea transcriptome data revealed differential expression patterns with several F-box genes specifically expressing in each tissue, few of which were validated by using quantitative real-time PCR. The genome-wide analysis of chickpea F-box genes provides new opportunities for characterization of candidate F-box genes and elucidation of their function in growth, development and stress responses for utilization in chickpea improvement.
Two high-mobility group box domains act together to underwind and kink DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sánchez-Giraldo, R.; Acosta-Reyes, F. J.; Malarkey, C. S.
The crystal structure of HMGB1 box A bound to an unmodified AT-rich DNA fragment is reported at a resolution of 2 Å. A new mode of DNA recognition for HMG box proteins is found in which two box A domains bind in an unusual configuration generating a highly kinked DNA structure. High-mobility group protein 1 (HMGB1) is an essential and ubiquitous DNA architectural factor that influences a myriad of cellular processes. HMGB1 contains two DNA-binding domains, box A and box B, which have little sequence specificity but have remarkable abilities to underwind and bend DNA. Although HMGB1 box A ismore » thought to be responsible for the majority of HMGB1–DNA interactions with pre-bent or kinked DNA, little is known about how it recognizes unmodified DNA. Here, the crystal structure of HMGB1 box A bound to an AT-rich DNA fragment is reported at a resolution of 2 Å. Two box A domains of HMGB1 collaborate in an unusual configuration in which the Phe37 residues of both domains stack together and intercalate the same CG base pair, generating highly kinked DNA. This represents a novel mode of DNA recognition for HMGB proteins and reveals a mechanism by which structure-specific HMG boxes kink linear DNA.« less
Ota, Kazuhisa; Kito, Keiji; Okada, Satoshi; Ito, Takashi
2008-10-01
Ubiquitination plays various critical roles in eukaryotic cellular regulation and is mediated by a cascade of enzymes including ubiquitin protein ligase (E3). The Skp1-Cullin-F-box protein complex comprises the largest E3 family, in each member of which a unique F-box protein binds its targets to define substrate specificity. Although genome sequencing uncovers a growing number of F-box proteins, most of them have remained as "orphans" because of the difficulties in identification of their substrates. To address this issue, we tested a quantitative proteomic approach by combining the stable isotope labeling by amino acids in cell culture (SILAC), parallel affinity purification (PAP) that we had developed for efficient enrichment of ubiquitinated proteins, and mass spectrometry (MS). We applied this SILAC-PAP-MS approach to compare ubiquitinated proteins between yeast cells with and without over-expressed Mdm30p, an F-box protein implicated in mitochondrial morphology. Consequently, we identified the mitochondrial outer membrane protein Mdm34p as a target of Mdm30p. Furthermore, we found that mitochondrial defects induced by deletion of MDM30 are not only recapitulated by a mutant Mdm34p defective in interaction with Mdm30p but alleviated by ubiquitination-mimicking forms of Mdm34p. These results indicate that Mdm34p is a physiologically important target of Mdm30p.
F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function
Pazhouhandeh, Maghsoud; Dieterle, Monika; Marrocco, Katia; Lechner, Esther; Berry, Bassam; Brault, Véronique; Hemmer, Odile; Kretsch, Thomas; Richards, Kenneth E.; Genschik, Pascal; Ziegler-Graff, Véronique
2006-01-01
Plants employ small RNA-mediated posttranscriptional gene silencing as a virus defense mechanism. In response, plant viruses encode proteins that can suppress RNA silencing, but the mode of action of most such proteins is poorly understood. Here, we show that the silencing suppressor protein P0 of two Arabidopsis-infecting poleroviruses interacts by means of a conserved minimal F-box motif with Arabidopsis thaliana orthologs of S-phase kinase-related protein 1 (SKP1), a component of the SCF family of ubiquitin E3 ligases. Point mutations in the F-box-like motif abolished the P0–SKP1 ortholog interaction, diminished virus pathogenicity, and inhibited the silencing suppressor activity of P0. Knockdown of expression of a SKP1 ortholog in Nicotiana benthamiana rendered the plants resistant to polerovirus infection. Together, the results support a model in which P0 acts as an F-box protein that targets an essential component of the host posttranscriptional gene silencing machinery. PMID:16446454
Nolting, Nicole; Pöggeler, Stefanie
2006-07-01
MADS box transcription factors control diverse developmental processes in plants, metazoans, and fungi. To analyze the involvement of MADS box proteins in fruiting body development of filamentous ascomycetes, we isolated the mcm1 gene from the homothallic ascomycete Sordaria macrospora, which encodes a putative homologue of the Saccharomyces cerevisiae MADS box protein Mcm1p. Deletion of the S. macrospora mcm1 gene resulted in reduced biomass, increased hyphal branching, and reduced hyphal compartment length during vegetative growth. Furthermore, the S. macrospora Deltamcm1 strain was unable to produce fruiting bodies or ascospores during sexual development. A yeast two-hybrid analysis in conjugation with in vitro analyses demonstrated that the S. macrospora MCM1 protein can interact with the putative transcription factor SMTA-1, encoded by the S. macrospora mating-type locus. These results suggest that the S. macrospora MCM1 protein is involved in the transcriptional regulation of mating-type-specific genes as well as in fruiting body development.
Smadi, Abla; Ciavatta, Maria Letizia; Bitam, Fatma; Carbone, Marianna; Villani, Guido; Gavagnin, Margherita
2017-11-23
Chemical investigation of the rhizomes of the marine phanerogam Cymodocea nodosa resulted in the isolation of two new prenylated flavon-di- O -glycosides, cymodioside A ( 1 ) and B ( 2 ), along with known phenolic compounds 3 - 7 , some of which never reported from seagrasses to date. The structures of compounds 1 and 2 were established by extensive nuclear magnetic resonance analysis. In addition, the absolute configuration of 4-(2,5-dihydroxyhexyl) benzene-1,2-diol ( 7 ), which was not previously reported in the literature, has been now determined. Georg Thieme Verlag KG Stuttgart · New York.
Neurochemical aftermath of amateur boxing.
Zetterberg, Henrik; Hietala, M Albert; Jonsson, Michael; Andreasen, Niels; Styrud, Ewa; Karlsson, Ingvar; Edman, Ake; Popa, Cornel; Rasulzada, Abdullah; Wahlund, Lars-Olof; Mehta, Pankaj D; Rosengren, Lars; Blennow, Kaj; Wallin, Anders
2006-09-01
Little solid information is available on the possible risks for neuronal injury in amateur boxing. To determine whether amateur boxing and severity of hits are associated with elevated levels of biochemical markers for neuronal injury in cerebrospinal fluid. Longitudinal study. Referral center specializing in evaluation of neurodegenerative disorders. Fourteen amateur boxers (11 men and 3 women) and 10 healthy male nonathletic control subjects. The boxers underwent lumbar puncture 7 to 10 days and 3 months after a bout. The control subjects underwent LP once. Neurofilament light protein, total tau, glial fibrillary acidic protein, phosphorylated tau, and beta-amyloid protein 1-40 (Abeta([1-40])) and 1-42 (Abeta([1-42])) concentrations in cerebrospinal fluid were measured. Increased levels after a bout compared with after 3 months of rest from boxing were found for 2 markers for neuronal and axonal injury, neurofilament light protein (mean +/- SD, 845 +/- 1140 ng/L vs 208 +/- 108 ng/L; P = .008) and total tau (mean +/- SD, 449 +/- 176 ng/L vs 306 +/- 78 ng/L; P = .006), and for the astroglial injury marker glial fibrillary acidic protein (mean +/- SD, 541 +/- 199 ng/L vs 405 +/- 138 ng/L; P = .003). The increase was significantly higher among boxers who had received many hits (>15) or high-impact hits to the head compared with boxers who reported few hits. In the boxers, concentrations of neurofilament light protein and glial fibrillary acidic protein, but not total tau, were significantly elevated after a bout compared with the nonathletic control subjects. With the exception of neurofilament light protein, there were no significant differences between boxers after 3 months of rest from boxing and the nonathletic control subjects. Amateur boxing is associated with acute neuronal and astroglial injury. If verified in longitudinal studies with extensive follow-up regarding the clinical outcome, analyses of cerebrospinal fluid may provide a scientific basis for medical counseling of athletes after boxing or head injury.
Beyer, Andrea R; VieBrock, Lauren; Rodino, Kyle G; Miller, Daniel P; Tegels, Brittney K; Marconi, Richard T; Carlyon, Jason A
2015-10-01
A rising theme among intracellular microbes is the delivery of ankyrin repeat-containing effectors (Anks) that interact with target proteins to co-opt host cell functions. Orientia tsutsugamushi, an obligate intracellular bacterium and the etiologic agent of scrub typhus, encodes one of the largest Ank repertoires of any sequenced microorganism. They have been previously identified as type 1 secretion system substrates. Here, in silico and manual sequence analyses revealed that a large proportion of O. tsutsugamushi strain Ikeda Anks bear a eukaryotic/poxvirus-like F-box motif, which is known to recruit host cell SCF1 ubiquitin ligase machinery. We assessed the Anks for the ability to serve as F-box proteins. Coimmunoprecipitation assays demonstrated that F-box-containing Anks interact with overexpressed and/or endogenous SCF1 components. When coexpressed with FLAG-Ank4_01 or FLAG-Ank9, a glutathione S-transferase (GST)-tagged version of the SCF1 component SKP1 localized to subcellular sites of FLAG-Ank accumulation. The abilities of recombinant Anks to interact and colocalize with SKP1 were F-box dependent. GST-SKP1 precipitated O. tsutsugamushi-derived Ank9 from infected host cells, verifying both that the pathogen expresses Ank9 during infection and the protein's capability to bind SKP1. Aligning O. tsutsugamushi, poxviral, and eukaryotic F-box sequences delineated three F-box residues that are highly conserved and likely to be functionally important. Substitution of these residues ablated the ability of GFP-Ank9 to interact with GST-SKP1. These results demonstrate that O. tsutsugamushi strain Ikeda Anks can co-opt host cell polyubiquitination machinery, provide the first evidence that an O. tsutsugamushi Ank does so during infection, and advance overall understanding of microbial F-box proteins. Ankyrin repeat-containing proteins (Anks) are important virulence factors of intracellular bacteria that mediate protein-protein interactions with host cell targets. Orientia tsutsugamushi, which causes a debilitating infection called scrub typhus in one of the most densely populated regions of the world, encodes one of the largest Ank armamentariums of any sequenced bacterium. This study demonstrates that O. tsutsugamushi strain Ikeda Anks also bear F-box motifs that interact with host cell polyubiquitination machinery. By proving that an Orientia-derived Ank interacts with SKP1 in infected cells, this evidences the first bona fide Orientia effector and the first example of an endogenous F-box-containing Ank-mammalian-host ligand interaction for any intracellular bacterium. Also, importantly, this work identifies key residues that are essential for microbial F-box function. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Beyer, Andrea R.; VieBrock, Lauren; Rodino, Kyle G.; Miller, Daniel P.; Tegels, Brittney K.; Marconi, Richard T.
2015-01-01
ABSTRACT A rising theme among intracellular microbes is the delivery of ankyrin repeat-containing effectors (Anks) that interact with target proteins to co-opt host cell functions. Orientia tsutsugamushi, an obligate intracellular bacterium and the etiologic agent of scrub typhus, encodes one of the largest Ank repertoires of any sequenced microorganism. They have been previously identified as type 1 secretion system substrates. Here, in silico and manual sequence analyses revealed that a large proportion of O. tsutsugamushi strain Ikeda Anks bear a eukaryotic/poxvirus-like F-box motif, which is known to recruit host cell SCF1 ubiquitin ligase machinery. We assessed the Anks for the ability to serve as F-box proteins. Coimmunoprecipitation assays demonstrated that F-box-containing Anks interact with overexpressed and/or endogenous SCF1 components. When coexpressed with FLAG-Ank4_01 or FLAG-Ank9, a glutathione S-transferase (GST)-tagged version of the SCF1 component SKP1 localized to subcellular sites of FLAG-Ank accumulation. The abilities of recombinant Anks to interact and colocalize with SKP1 were F-box dependent. GST-SKP1 precipitated O. tsutsugamushi-derived Ank9 from infected host cells, verifying both that the pathogen expresses Ank9 during infection and the protein's capability to bind SKP1. Aligning O. tsutsugamushi, poxviral, and eukaryotic F-box sequences delineated three F-box residues that are highly conserved and likely to be functionally important. Substitution of these residues ablated the ability of GFP-Ank9 to interact with GST-SKP1. These results demonstrate that O. tsutsugamushi strain Ikeda Anks can co-opt host cell polyubiquitination machinery, provide the first evidence that an O. tsutsugamushi Ank does so during infection, and advance overall understanding of microbial F-box proteins. IMPORTANCE Ankyrin repeat-containing proteins (Anks) are important virulence factors of intracellular bacteria that mediate protein-protein interactions with host cell targets. Orientia tsutsugamushi, which causes a debilitating infection called scrub typhus in one of the most densely populated regions of the world, encodes one of the largest Ank armamentariums of any sequenced bacterium. This study demonstrates that O. tsutsugamushi strain Ikeda Anks also bear F-box motifs that interact with host cell polyubiquitination machinery. By proving that an Orientia-derived Ank interacts with SKP1 in infected cells, this evidences the first bona fide Orientia effector and the first example of an endogenous F-box-containing Ank–mammalian-host ligand interaction for any intracellular bacterium. Also, importantly, this work identifies key residues that are essential for microbial F-box function. PMID:26170417
Working your SOCS off: The role of ASB10 and protein degradation pathways in glaucoma.
Keller, Kate E; Wirtz, Mary K
2017-05-01
Evidence is accumulating to suggest that mutations in the Ankyrin and SOCS Box-containing protein-10 (ASB10) gene are associated with glaucoma. Since its identification in a large Oregon family with primary open-angle glaucoma (POAG), ASB10 variants have been associated with disease in US, German and Pakistani cohorts. ASB10 is a member of the ASB family of proteins, which have a common structure including a unique N-terminus, a variable number of central ankyrin (ANK) repeat domains and a suppressor of cytokine signaling (SOCS) box at the C-terminus. Mutations in ASB10 are distributed throughout the entire length of the gene including the two alternatively spliced variants of exon 1. A homozygous mutation in a Pakistani individual with POAG, which lies in the center of the SOCS box, is associated with a particularly severe form of the disease. Like other SOCS box-containing proteins, ASB10 functions in ubiquitin-mediated degradation pathways. The ANK repeats bind to proteins destined for degradation. The SOCS box recruits ubiquitin ligase proteins to form a complex to transfer ubiquitin to a substrate bound to the ANK repeats. The ubiquitin-tagged protein then enters either the proteasomal degradation pathway or the autophagic-lysosomal pathway. The choice of pathway appears to be dependent on which lysine residues are used to build polyubiquitin chains. However, these reciprocal pathways work in tandem to degrade proteins because inhibition of one pathway increases degradation via the other pathway. In this publication, we will review the literature that supports identification of ASB10 as a glaucoma-associated gene and the current knowledge of the function of the ASB10 protein. In addition, we present new data that indicates ASB10 expression is up-regulated by the inflammatory cytokines tumor necrosis factor-α and interleukin-1α. Finally, we will describe the emerging role of other SOCS box-containing proteins in protein degradation pathways in ocular cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
SEPALLATA3: the 'glue' for MADS box transcription factor complex formation
Immink, Richard GH; Tonaco, Isabella AN; de Folter, Stefan; Shchennikova, Anna; van Dijk, Aalt DJ; Busscher-Lange, Jacqueline; Borst, Jan W; Angenent, Gerco C
2009-01-01
Background Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation capacity of the Arabidopsis MADS box family. SEPALLATA3 (SEP3) has been shown to mediate complex formation and, therefore, special attention is paid to this factor in this study. Results In total, 106 multimeric complexes were identified; in more than half of these at least one SEP protein was present. Besides the known complexes involved in determining floral organ identity, various complexes consisting of combinations of proteins known to play a role in floral organ identity specification, and flowering time determination were discovered. The capacity to form this latter type of complex suggests that homeotic factors play essential roles in down-regulation of the MADS box genes involved in floral timing in the flower via negative auto-regulatory loops. Furthermore, various novel complexes were identified that may be important for the direct regulation of the floral transition process. A subsequent detailed analysis of the APETALA3, PISTILLATA, and SEP3 proteins in living plant cells suggests the formation of a multimeric complex in vivo. Conclusions Overall, these results provide strong indications that higher-order complex formation is a general and essential molecular mechanism for plant MADS box protein functioning and attribute a pivotal role to the SEP3 'glue' protein in mediating multimerization. PMID:19243611
F-box proteins involved in cancer-associated drug resistance.
Gong, Jian; Zhou, Yuqian; Liu, Deliang; Huo, Jirong
2018-06-01
The ubiquitin proteasome system (UPS) regulated human biological processes through the appropriate and efficient proteolysis of cellular proteins. F-box proteins are the vital components of SKP1-CUL1-FBP (SCF)-type E3 ubiquitin ligases that determine substrate specificity. As F-box proteins have the ability to control the degradation of several crucial protein targets associated with drug resistance, the dysregulation of these proteins may lead to induction of chemoresistance in cancer cells. Chemotherapy is one of the most conventional therapeutic approaches of treatment of patients with cancer. However, its exclusive application in clinical settings is restricted due to the development of chemoresistance, which typically results treatment failure. Therefore, overcoming drug resistance is considered as one of the most critical issues that researchers and clinician associated with oncology face. The present review serves to provide a comprehensive overview of F-box proteins and their possible targets as well as their correlation with the chemoresistance and chemosensitization of cancer cells. The article also presents an integrated representation of the complex regulatory mechanisms responsible for chemoresistance, which may lay the foundation to explore sensible candidate drugs for therapeutic intervention.
Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43.
Boogerd, Kees-Jan; Wong, L Y Elaine; Christoffels, Vincent M; Klarenbeek, Meinke; Ruijter, Jan M; Moorman, Antoon F M; Barnett, Phil
2008-06-01
T-box factors Tbx2 and Tbx3 play key roles in the development of the cardiac conduction system, atrioventricular canal, and outflow tract of the heart. They regulate the gap-junction-encoding gene Connexin43 (Cx43) and other genes critical for heart development and function. Discovering protein partners of Tbx2 and Tbx3 will shed light on the mechanisms by which these factors regulate these gene programs. Employing an yeast 2-hybrid screen and subsequent in vitro pull-down experiments we demonstrate that muscle segment homeobox genes Msx1 and Msx2 are able to bind the cardiac T-box proteins Tbx2, Tbx3, and Tbx5. This interaction, as that of the related Nkx2.5 protein, is supported by the T-box and homeodomain alone. Overlapping spatiotemporal expression patterns of Msx1 and Msx2 together with the T-box genes during cardiac development in mouse and chicken underscore the biological significance of this interaction. We demonstrate that Msx proteins together with Tbx2 and Tbx3 suppress Cx43 promoter activity and down regulate Cx43 gene activity in a rat heart-derived cell line. Using chromatin immunoprecipitation analysis we demonstrate that Msx1 can bind the Cx43 promoter at a conserved binding site located in close proximity to a previously defined T-box binding site, and that the activity of Msx proteins on this promoter appears dependent in the presence of Tbx3. Msx1 and Msx2 can function in concert with the T-box proteins to suppress Cx43 and other working myocardial genes.
Sukari, Ammar; Muqbil, Irfana; Mohammad, Ramzi M.; Philip, Philip A.; Azmi, Asfar S.
2016-01-01
Cancer cachexia is a debilitating metabolic syndrome accounting for fatigue, an impairment of normal activities, loss of muscle mass associated with body weight loss eventually leading to death in majority of patients with advanced disease. Cachexia patients undergoing skeletal muscle atrophy show consistent activation of the SCF ubiquitin ligase (F-BOX) family member Atrogin-1 (also known as MAFBx/FBXO32) alongside the activation of the muscle ring finger protein1 (MuRF1). Other lesser known F-BOX family members are also emerging as key players supporting muscle wasting pathways. Recent work highlights a spectrum of different cancer signaling mechanisms impacting F-BOX family members that feed forward muscle atrophy related genes during cachexia. These novel players provide unique opportunities to block cachexia induced skeletal muscle atrophy by therapeutically targeting the SCF protein ligases. Conversely, strategies that induce the production of proteins may be helpful to counter the effects of these F-BOX proteins. Through this review, we bring forward some novel targets that promote atrogin-1 signaling in cachexia and muscle wasting and highlight newer therapeutic opportunities that can help in the better management of patients with this devastating and fatal disorder. PMID:26804424
Compound Heterozygosity for Y Box Proteins Causes Sterility Due to Loss of Translational Repression
Sharma, Manju; Dearth, Andrea; Smith, Benjamin; Braun, Robert E.
2015-01-01
The Y-box proteins YBX2 and YBX3 bind RNA and DNA and are required for metazoan development and fertility. However, possible functional redundancy between YBX2 and YBX3 has prevented elucidation of their molecular function as RNA masking proteins and identification of their target RNAs. To investigate possible functional redundancy between YBX2 and YBX3, we attempted to construct Ybx2 -/- ;Ybx3 -/- double mutants using a previously reported Ybx2 -/- model and a newly generated global Ybx3 -/- model. Loss of YBX3 resulted in reduced male fertility and defects in spermatid differentiation. However, homozygous double mutants could not be generated as haploinsufficiency of both Ybx2 and Ybx3 caused sterility characterized by extensive defects in spermatid differentiation. RNA sequence analysis of mRNP and polysome occupancy in single and compound Ybx2/3 heterozygotes revealed loss of translational repression almost exclusively in the compound Ybx2/3 heterozygotes. RNAseq analysis also demonstrated that Y-box protein dose-dependent loss of translational regulation was inversely correlated with the presence of a Y box recognition target sequence, suggesting that Y box proteins bind RNA hierarchically to modulate translation in a range of targets. PMID:26646932
Gao, Meng-Xue; Tang, Xi-Yang; Zhang, Feng-Xiang; Yao, Zhi-Hong; Yao, Xin-Sheng; Dai, Yi
2018-04-01
Xian-Ling-Gu-Bao capsule (XLGB), a well-known traditional Chinese medicine prescription, has been used for the prevention and treatment of osteoporosis. The safety and efficacy of XLGB have been confirmed based on the principle of evidence-based medicine. XLGB is usually administered orally, after which its multiple components are brought into contact with intestinal microflora in the alimentary tract and biotransformed. However, investigations on the comprehensive metabolic profile of XLGB are absent. In this study, 12 representative compounds bearing different typical structures (including iridoid glycosides, prenylated flavonol glycosides, prenylated flavonoids, triterpenoid saponins, steroidal saponins, coumarins and monoterpene phenols) were selected and then investigated for their biotransformation in rat intestinal microflora. In addition, the metabolic profile of XLGB in rat intestinal microflora was investigated by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. As a result, a total of 87 biotransformation components were identified from incubated solutions of 12 representative compounds and XLGB, which underwent 16 metabolic reactions (including deglycosylation, glycosylation, dehydrogenation, hydrogenation, oxidation, epoxidation, hydroxylation, dehydration, hydration, hydrolysis, methylation, isomerization, cyclization, pyrolysis reaction, amino acid conjugation and nucleophilic addition reaction with NH 3 ). This demonstrated that the deglycosylation reaction by cleavage of the sugar moieties is the main metabolic pathway of a variety of glycosides, including prenylated flavonol glycosides, coumarin glycosides, iridoid glycosides and saponins. In addition, compared with the biotransformation of 12 representative compounds, a different biotransformed fate was observed in the XLGB incubated samples of rat intestinal microflora. It is worth noting that the amino acid conjugation was first discovered in the metabolism of prenylated flavonol glycosides in rat intestinal microflora. Copyright © 2017 John Wiley & Sons, Ltd.
Duke, Colin C; Tran, Van H; Duke, Rujee K; Abu-Mellal, Abdallah; Plunkett, George T; King, Douglas I; Hamid, Kaiser; Wilson, Karen L; Barrett, Russell L; Bruhl, Jeremy J
2017-02-01
Propolis samples from Kangaroo Island, South Australia, were investigated for chemical constituents using high-field nuclear magnetic resonance spectral profiling. A type of propolis was found containing a high proportion of prenylated hydroxystilbenes. Subsequently, the botanical origin of this type of propolis was identified using a beehive propolis depletion method and analysis of flora. Ligurian honey bees, Apis mellifera ligustica Spinola, were found to produce propolis from resin exuded by the Australian native sedge plant Lepidosperma sp. Montebello (Cyperaceae). The plants, commonly known as sword sedge, were found to have resin that matched with the propolis samples identified as the most abundant propolis type on the island containing C- and O-prenylated tetrahydroxystilbenes (pTHOS) in addition to a small amount of prenylated p-coumarate. The isolation of five pTHOS not previously characterized are reported: (E)-4-(3-methyl-2-buten-1-yl)-3,4',5-trihydroxy-3'-methoxystilbene, (E)-2,4-bis(3-methyl-2-buten-1-yl)-3,3',4',5-tetrahydroxystilbene, (E)-2-(3-methyl-2-buten-1-yl)-3-(3-methyl-2-butenyloxy)-3',4',5-trihydroxystilbene, (E)-2,6-bis(3-methyl-2-buten-1-yl)-3,3',5,5'-tetrahydroxystilbene and (E)-2,6-bis(3-methyl-2-buten-1-yl)-3,4',5-trihydroxy-3'-methoxystilbene. A National Cancer Institute 60 human cell line anticancer screen of three of these compounds showed growth inhibitory activity. The large Australasian genus Lepidosperma is identified as a valuable resource for the isolation of substances with medicinal potential. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
14-3-3 Proteins Interact with a Hybrid Prenyl-Phosphorylation Motif to Inhibit G Proteins
Riou, Philippe; Kjær, Svend; Garg, Ritu; Purkiss, Andrew; George, Roger; Cain, Robert J.; Bineva, Ganka; Reymond, Nicolas; McColl, Brad; Thompson, Andrew J.; O’Reilly, Nicola; McDonald, Neil Q.; Parker, Peter J.; Ridley, Anne J.
2013-01-01
Summary Signaling through G proteins normally involves conformational switching between GTP- and GDP-bound states. Several Rho GTPases are also regulated by RhoGDI binding and sequestering in the cytosol. Rnd proteins are atypical constitutively GTP-bound Rho proteins, whose regulation remains elusive. Here, we report a high-affinity 14-3-3-binding site at the C terminus of Rnd3 consisting of both the Cys241-farnesyl moiety and a Rho-associated coiled coil containing protein kinase (ROCK)-dependent Ser240 phosphorylation site. 14-3-3 binding to Rnd3 also involves phosphorylation of Ser218 by ROCK and/or Ser210 by protein kinase C (PKC). The crystal structure of a phosphorylated, farnesylated Rnd3 peptide with 14-3-3 reveals a hydrophobic groove in 14-3-3 proteins accommodating the farnesyl moiety. Functionally, 14-3-3 inhibits Rnd3-induced cell rounding by translocating it from the plasma membrane to the cytosol. Rnd1, Rnd2, and geranylgeranylated Rap1A interact similarly with 14-3-3. In contrast to the canonical GTP/GDP switch that regulates most Ras superfamily members, our results reveal an unprecedented mechanism for G protein inhibition by 14-3-3 proteins. PMID:23622247
Alibardi, Lorenzo; Dalla Valle, Luisa; Nardi, Alessia; Toni, Mattia
2009-04-01
Hard skin appendages in amniotes comprise scales, feathers and hairs. The cell organization of these appendages probably derived from the localization of specialized areas of dermal-epidermal interaction in the integument. The horny scales and the other derivatives were formed from large areas of dermal-epidermal interaction. The evolution of these skin appendages was characterized by the production of specific coiled-coil keratins and associated proteins in the inter-filament matrix. Unlike mammalian keratin-associated proteins, those of sauropsids contain a double beta-folded sequence of about 20 amino acids, known as the core-box. The core-box shows 60%-95% sequence identity with known reptilian and avian proteins. The core-box determines the polymerization of these proteins into filaments indicated as beta-keratin filaments. The nucleotide and derived amino acid sequences for these sauropsid keratin-associated proteins are presented in conjunction with a hypothesis about their evolution in reptiles-birds compared to mammalian keratin-associated proteins. It is suggested that genes coding for ancestral glycine-serine-rich sequences of alpha-keratins produced a new class of small matrix proteins. In sauropsids, matrix proteins may have originated after mutation and enrichment in proline, probably in a central region of the ancestral protein. This mutation gave rise to the core-box, and other regions of the original protein evolved differently in the various reptilians orders. In lepidosaurians, two main groups, the high glycine proline and the high cysteine proline proteins, were formed. In archosaurians and chelonians two main groups later diversified into the high glycine proline tyrosine, non-feather proteins, and into the glycine-tyrosine-poor group of feather proteins, which evolved in birds. The latter proteins were particularly suited for making the elongated barb/barbule cells of feathers. In therapsids-mammals, mutations of the ancestral proteins formed the high glycine-tyrosine or the high cysteine proteins but no core-box was produced in the matrix proteins of the hard corneous material of mammalian derivatives.
Nolting, Nicole; Pöggeler, Stefanie
2006-01-01
MADS box transcription factors control diverse developmental processes in plants, metazoans, and fungi. To analyze the involvement of MADS box proteins in fruiting body development of filamentous ascomycetes, we isolated the mcm1 gene from the homothallic ascomycete Sordaria macrospora, which encodes a putative homologue of the Saccharomyces cerevisiae MADS box protein Mcm1p. Deletion of the S. macrospora mcm1 gene resulted in reduced biomass, increased hyphal branching, and reduced hyphal compartment length during vegetative growth. Furthermore, the S. macrospora Δmcm1 strain was unable to produce fruiting bodies or ascospores during sexual development. A yeast two-hybrid analysis in conjugation with in vitro analyses demonstrated that the S. macrospora MCM1 protein can interact with the putative transcription factor SMTA-1, encoded by the S. macrospora mating-type locus. These results suggest that the S. macrospora MCM1 protein is involved in the transcriptional regulation of mating-type-specific genes as well as in fruiting body development. PMID:16835449
Zelová, Hana; Hanáková, Zuzana; Čermáková, Zuzana; Šmejkal, Karel; Dalĺ Acqua, Stefano; Babula, Petr; Cvačka, Josef; Hošek, Jan
2014-06-27
Chromatographic separation of root extracts of Morus alba and M. nigra led to the identification of the 2-arylbenzofurans moracin C (1), mulberrofuran Y (2), and mulberrofuran H (3), and the prenylated flavonoids kuwanon E (4), kuwanon C (5), sanggenon H (6), cudraflavone B (7), and morusinol (8), and the Diels-Alder adducts soroceal (9), and sanggenon E (10). The cytotoxicity and their antiphlogistic activity, determined as the attenuation of the secretion of TNF-α and IL-1β and the inhibition of NF-κB nuclear translocation in LPS-stimulated macrophages, were evaluated for compounds 1-10.
Passalacqua, Thais Gaban; Dutra, Luiz Antonio; de Almeida, Letícia; Velásquez, Angela Maria Arenas; Torres, Fabio Aurelio Esteves; Yamasaki, Paulo Renato; dos Santos, Mariana Bastos; Regasini, Luis Octavio; Michels, Paul A M; Bolzani, Vanderlan da Silva; Graminha, Marcia A S
2015-08-15
Chalcones form a class of compounds that belong to the flavonoid family and are widely distributed in plants. Their simple structure and the ease of preparation make chalcones attractive scaffolds for the synthesis of a large number of derivatives enabling the evaluation of the effects of different functional groups on biological activities. In this Letter, we report the successful synthesis of a series of novel prenylated chalcones via Claisen-Schmidt condensation and the evaluation of their effect on the viability of the Trypanosomatidae parasites Leishmania amazonensis, Leishmania infantum and Trypanosoma cruzi. Copyright © 2015 Elsevier Ltd. All rights reserved.
Scott, Barry; Young, Carolyn A.; Saikia, Sanjay; McMillan, Lisa K.; Monahan, Brendon J.; Koulman, Albert; Astin, Jonathan; Eaton, Carla J.; Bryant, Andrea; Wrenn, Ruth E.; Finch, Sarah C.; Tapper, Brian A.; Parker, Emily J.; Jameson, Geoffrey B.
2013-01-01
The indole-diterpene paxilline is an abundant secondary metabolite synthesized by Penicillium paxilli. In total, 21 genes have been identified at the PAX locus of which six have been previously confirmed to have a functional role in paxilline biosynthesis. A combination of bioinformatics, gene expression and targeted gene replacement analyses were used to define the boundaries of the PAX gene cluster. Targeted gene replacement identified seven genes, paxG, paxA, paxM, paxB, paxC, paxP and paxQ that were all required for paxilline production, with one additional gene, paxD, required for regular prenylation of the indole ring post paxilline synthesis. The two putative transcription factors, PP104 and PP105, were not co-regulated with the pax genes and based on targeted gene replacement, including the double knockout, did not have a role in paxilline production. The relationship of indole dimethylallyl transferases involved in prenylation of indole-diterpenes such as paxilline or lolitrem B, can be found as two disparate clades, not supported by prenylation type (e.g., regular or reverse). This paper provides insight into the P. paxilli indole-diterpene locus and reviews the recent advances identified in paxilline biosynthesis. PMID:23949005
Wang, Hao-Meng; Zhang, Li; Liu, Jiang; Yang, Zhao-Liang; Zhao, Hong-Ye; Yang, Yao; Shen, Di; Lu, Kui; Fan, Zhen-Chuan; Yao, Qing-Wei; Zhang, Yong-Min; Teng, Yu-Ou; Peng, Yu
2015-03-06
Four natural chalcones bearing prenyl or geranyl groups, i.e., bavachalcone (1a), xanthoangelol (1b), isobavachalcone (1c), and isoxanthoangelol (1d) were synthesized by using a regio-selective iodination and the Suzuki coupling reaction as key steps. The first total synthesis of isoxanthoangelol (1d) was achieved in 36% overall yield. A series of diprenylated and digeranylated chalcone analogs were also synthesized by alkylation, regio-selective iodination, aldol condensation, Suzuki coupling and [1,3]-sigmatropic rearrangement. The structures of the 11 new derivatives were confirmed by (1)H NMR, (13)C NMR and HRMS. The anticancer activity of these new chalcone derivatives against human tumor cell line K562 were evaluated by MTT assay in vitro. SAR studies suggested that the 5'-prenylation/geranylation of the chalcones significantly enhance their cytotoxic activity. Among them, Bavachalcone (1a) displayed the most potent cytotoxic activity against K562 with IC50 value of 2.7 μM. The morphology changes and annexin-V/PI staining studies suggested that those chalcone derivatives inhibited the proliferation of K562 cells by inducing apoptosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
de Abreu da Silva, Isabel Caetano; Vicentino, Amanda Roberta Revoredo; Dos Santos, Renata Coutinho; da Fonseca, Rodrigo Nunes; de Mendonça Amarante, Anderson; Carneiro, Vitor Coutinho; de Amorim Pinto, Marcia; Aguilera, Estefania Anahi; Mohana-Borges, Ronaldo; Bisch, Paulo Mascarello; da Silva-Neto, Mario Alberto Cardoso; Fantappié, Marcelo Rosado
2018-05-30
High-mobility group B (HMGB) proteins have highly conserved, unique DNA-binding domains, HMG boxes, that can bind non-B-type DNA structures, such as bent, kinked and unwound structures, with high affinity. HMGB proteins also promote DNA bending, looping and unwinding. In this study, we determined the role of the Aedes aegypti single HMG-box domain protein AaHMGB; characterized its structure, spatiotemporal expression levels, subcellular localization, and nucleic acid binding activities; and compared these properties with those of its double-HMG-box counterpart protein, AaHMGB1. Via qRT-PCR, we showed that AaHMGB is expressed at much higher levels than AaHMGB1 throughout mosquito development. In situ hybridization results suggested a role for AaHMGB and AaHMGB1 during embryogenesis. Immunolocalization in the midgut revealed that AaHMGB is exclusively nuclear. Circular dichroism and fluorescence spectroscopy analyses showed that AaHMGB exhibits common features of α-helical structures and is more stably folded than AaHMGB1, likely due to the presence of one or two HMG boxes. Using several DNA substrates or single-stranded RNAs as probes, we observed significant differences between AaHMGB and AaHMGB1 in terms of their binding patterns, activity and/or specificity. Importantly, we showed that the phosphorylation of AaHMGB plays a critical role in its DNA-binding activity. Our study provides additional insight into the roles of single- versus double-HMG-box-containing proteins in nucleic acid interactions for better understanding of mosquito development, physiology and homeostasis. Copyright © 2017. Published by Elsevier B.V.
A MUB E2 structure reveals E1 selectivity between cognate ubiquitin E2s in eukaryotes
NASA Astrophysics Data System (ADS)
Lu, Xiaolong; Malley, Konstantin R.; Brenner, Caitlin C.; Koroleva, Olga; Korolev, Sergey; Downes, Brian P.
2016-08-01
Ubiquitin (Ub) is a protein modifier that controls processes ranging from protein degradation to endocytosis, but early-acting regulators of the three-enzyme ubiquitylation cascade are unknown. Here we report that the prenylated membrane-anchored ubiquitin-fold protein (MUB) is an early-acting regulator of subfamily-specific E2 activation. An AtMUB3:AtUBC8 co-crystal structure defines how MUBs inhibit E2~Ub formation using a combination of E2 backside binding and a MUB-unique lap-bar loop to block E1 access. Since MUBs tether Arabidopsis group VI E2 enzymes (related to HsUbe2D and ScUbc4/5) to the plasma membrane, and inhibit E2 activation at physiological concentrations, they should function as potent plasma membrane localized regulators of Ub chain synthesis in eukaryotes. Our findings define a biochemical function for MUB, a family of highly conserved Ub-fold proteins, and provide an example of selective activation between cognate Ub E2s, previously thought to be constitutively activated by E1s.
Wang, Tuanlao; Hong, Wanjin
2002-01-01
We present evidence to suggest the existence of a regulatory pathway for the Golgi apparatus to modulate the spatial positioning of otherwise distantly located lysosomes. Rab34, a new member of the Rab GTPase family, is associated primarily with the Golgi apparatus. Expression of wild-type or GTP-restricted but not GDP-restricted versions of Rab34 causes spatial redistribution of lysosomes from the periphery to the peri-Golgi region. The regulation of lysosomal positioning by Rab34 depends on its association with the membrane mediated by prenylation and its direct interaction with Rab-interacting lysosomal protein (RILP). This biological activity, mediated by Rab34-RILP interaction, is dependent on Lys82 in the switch I region. Our results have uncovered a novel mechanism for the Golgi apparatus to regulate the spatial distribution of another organelle. PMID:12475955
Kakikawa, M; Ohkubo, S; Sakate, T; Sayama, M; Taketo, A; Kodaira, K
2000-05-16
The putative repressor protein Cng (10kDa on an SDS gel) for the lytic pathway of Lactobacillus plantarum phage φg1e was purified using the Escherichia coli Pt7 system, and its DNA-binding ability for the seven operator-like sequences, the GATAC-boxes (Gb1 to Gb7), was investigated in vitro. In gel-shift assays, Cng selectively bound to the DNA fragments containing the GATAC-box(es). In addition, DNase I footprinting analysis with supercoiled DNA demonstrated that Cng can specifically cover about a 25bp region centered around each of the GATAC-boxes, although two boxes, Gb4 and Gb6, were only partially protected. Moreover, protein crosslinking experiments using glutaraldehyde suggested that Cng most likely functions as a dimer. On the other hand, the binding ability of Cpg for the GATAC-boxes in supercoiled DNA was also examined under the same conditions as in Cng; unlike Cng, Cpg covered Gb4 and Gb6 completely sufficiently as well as the other five boxes. Thus, the present and previous [Kakikawa et al., Gene 215 (1998) 371-379; 242 (2000) 155-166] results indicate a possibility that the two proteins Cng and Cpg selectively bind to the GATAC-boxes that act as operators, and can decide between the lytic or lysogenic pathways through repression of the promoter activity of P(R) as well as P(L).
F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana
Baute, Joke; Polyn, Stefanie; De Block, Jolien; Blomme, Jonas; Van Lijsebettens, Mieke
2017-01-01
F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates. PMID:28340173
Hernandez, Julio; Matter-Sadzinski, Lidia; Skowronska-Krawczyk, Dorota; Chiodini, Florence; Alliod, Christine; Ballivet, Marc; Matter, Jean-Marc
2007-12-28
The atonal homolog 5 (ATH5) protein is central to the transcriptional network regulating the specification of retinal ganglion cells, and its expression comes under the spatiotemporal control of several basic helix-loop-helix (bHLH) proteins in the course of retina development. Monitoring the in vivo occupancy of the ATH5 promoter by the ATH5, Ngn2, and NeuroM proteins and analyzing the DNA motifs they bind, we show that three evolutionarily conserved E-boxes are required for the bHLH proteins to control the different phases of ATH5 expression. E-box 4 mediates the activity of Ngn2, ATH5, and NeuroM along the pathway leading to the conversion of progenitors into newborn neurons. E-box 1, by mediating the antagonistic effects of Ngn2 and HES1 in proliferating progenitors, controls the expansion of the ATH5 expression domain in early retina. E-box 2 is required for the positive feedback by ATH5 that underlies the up-regulation of ATH5 expression when progenitors are going through their last cell cycle. The combinatorial nature of the regulation of the ATH5 promoter suggests that the bHLH proteins involved have no assigned E-boxes but use a common set at which they either cooperate or compete to finely tune ATH5 expression as development proceeds.
Bakó, László; Umeda, Masaaki; Tiburcio, Antonio F.; Schell, Jeff; Koncz, Csaba
2003-01-01
The bacterial virulence protein VirD2 plays an important role in nuclear import and chromosomal integration of Agrobacterium-transferred DNA in fungal, plant, animal, and human cells. Here we show that in nuclei of alfalfa cells, VirD2 interacts with and is phosphorylated by CAK2Ms, a conserved plant ortholog of cyclin-dependent kinase-activating kinases. CAK2Ms binds to and phosphorylates the C-terminal regulatory domain of RNA polymerase II largest subunit, which can recruit the TATA box-binding protein. VirD2 is found in tight association with the TATA box-binding protein in vivo. These results indicate that recognition of VirD2 is mediated by widely conserved nuclear factors in eukaryotes. PMID:12900506
Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors
Stamatopoulou, Vassiliki; Apostolidi, Maria; Li, Shuang; Lamprinou, Katerina; Papakyriakou, Athanasios
2017-01-01
Abstract Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators. PMID:28973457
Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors.
Stamatopoulou, Vassiliki; Apostolidi, Maria; Li, Shuang; Lamprinou, Katerina; Papakyriakou, Athanasios; Zhang, Jinwei; Stathopoulos, Constantinos
2017-09-29
Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Sukari, Ammar; Muqbil, Irfana; Mohammad, Ramzi M; Philip, Philip A; Azmi, Asfar S
2016-02-01
Cancer cachexia is a debilitating metabolic syndrome accounting for fatigue, an impairment of normal activities, loss of muscle mass associated with body weight loss eventually leading to death in majority of patients with advanced disease. Cachexia patients undergoing skeletal muscle atrophy show consistent activation of the SCF ubiquitin ligase (F-BOX) family member Atrogin-1 (also known as MAFBx/FBXO32) alongside the activation of the muscle ring finger protein1 (MuRF1). Other lesser known F-BOX family members are also emerging as key players supporting muscle wasting pathways. Recent work highlights a spectrum of different cancer signaling mechanisms impacting F-BOX family members that feed forward muscle atrophy related genes during cachexia. These novel players provide unique opportunities to block cachexia induced skeletal muscle atrophy by therapeutically targeting the SCF protein ligases. Conversely, strategies that induce the production of proteins may be helpful to counter the effects of these F-BOX proteins. Through this review, we bring forward some novel targets that promote atrogin-1 signaling in cachexia and muscle wasting and highlight newer therapeutic opportunities that can help in the better management of patients with this devastating and fatal disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.
Baron, J; Weisberg, R A
1992-01-01
Phage HK022 encodes a protein, Nun, that promotes transcription termination within the pL and pR operons of its relative, phage lambda. The lambda sequences required for termination had previously been shown to overlap the nut sites, which are essential for transcription antitermination during normal lambda growth. To further specify the Nun target and to determine its relation to the nut sites, we constructed deletion and base substitution mutations of the lambda nutL region and measured Nun-dependent reduction of the expression of a downstream reporter gene. The shortest construct that retained full Nun responsiveness was a 42-bp segment that included both boxA and boxB, sequences that have been implicated in lambda antitermination. Deletion of boxA reduced Nun termination, and deletion of both sequences eliminated Nun termination. Base substitutions in boxA and the proximal portion of boxB impaired Nun termination, while base substitutions between boxA and boxB, in the distal portion of boxB, and immediately downstream from boxB had no appreciable effect. The termination defect of all of the base substitution mutations was relieved by increasing the level of Nun protein; in contrast, the deletions and a multiple-base substitution did not regain full Nun responsiveness at elevated Nun concentrations. We also asked if these mutant nut regions retained their ability to interact with N, the lambda-encoded antitermination protein. A qualitative assay showed that mutations within boxA or boxB reduced interaction, while mutations outside boxA and boxB did not. These data show that (i) the recognition sites for N and Nun overlap to a very considerable extent but are probably not identical and (ii) a high concentration of Nun promotes its interaction with mutant nut sites, a behavior also reported to be characteristic of N. PMID:1532174
Chandra Dantu, Sarath; Nathubhai Kachariya, Nitin; Kumar, Ashutosh
2016-01-01
Polyubiquitination of the target protein by a ubiquitin transferring machinery is key to various cellular processes. E3 ligase Skp1-Cul1-F-box (SCF) is one such complex which plays crucial role in substrate recognition and transfer of the ubiquitin molecule. Previous computational studies have focused on S-phase kinase-associated protein 2 (Skp2), cullin, and RING-finger proteins of this complex, but the roles of the adapter protein Skp1 and F-box domain of Skp2 have not been determined. Using sub-microsecond molecular dynamics simulations of full-length Skp1, unbound Skp2, Skp2-Cks1 (Cks1: Cyclin-dependent kinases regulatory subunit 1), Skp1-Skp2, and Skp1-Skp2-Cks1 complexes, we have elucidated the function of Skp1 and the F-box domain of Skp2. We found that the L16 loop of Skp1, which was deleted in previous X-ray crystallography studies, can offer additional stability to the ternary complex via its interactions with the C-terminal tail of Skp2. Moreover, Skp1 helices H6, H7, and H8 display vivid conformational flexibility when not bound to Skp2, suggesting that these helices can recognize and lock the F-box proteins. Furthermore, we observed that the F-box domain could rotate (5°-129°), and that the binding partner determined the degree of conformational flexibility. Finally, Skp1 and Skp2 were found to execute a domain motion in Skp1-Skp2 and Skp1-Skp2-Cks1 complexes that could decrease the distance between ubiquitination site of the substrate and the ubiquitin molecule by 3 nm. Thus, we propose that both the F-box domain of Skp2 and Skp1-Skp2 domain motions displaying preferential conformational control can together facilitate polyubiquitination of a wide variety of substrates. © 2015 Wiley Periodicals, Inc.
O'Connor, Annalouise; Konda, Veera; Reed, Ralph L; Christensen, J Mark; Stevens, Jan F; Contractor, Nikhat
2018-03-01
Xanthohumol (XN), a prenylated flavonoid found in hops, exhibits anti-inflammatory and antioxidant properties. However, poor bioavailability may limit therapeutic applications. As food components are known to modulate polyphenol absorption, the objective is to determine whether a protein matrix could enhance the bioavailability of XN post oral consumption in humans. This is a randomized, double-blind, crossover study in healthy participants (n = 6) evaluating XN and its major metabolites (isoxanthohumol [IX], 6- and 8-prenylnaringenin [6-PN, 8-PN]) for 6 h following consumption of 12.4 mg of XN delivered via a spent hops-rice protein matrix preparation or a control spent hops preparation. Plasma XN and metabolites are measured by LC-MS/MS. C max , T max , and area-under-the-curve (AUC) values were determined. Circulating XN and metabolite response to each treatment was not bioequivalent. Plasma concentrations of XN and XN + metabolites (AUC) are greater with consumption of the spent hops-rice protein matrix preparation. Compared to a standard spent hops powder, a protein-rich spent hops matrix demonstrates enhanced plasma levels of XN and metabolites following acute oral intake. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alibardi, Lorenzo; Valle, Luisa Dalla; Nardi, Alessia; Toni, Mattia
2009-01-01
Hard skin appendages in amniotes comprise scales, feathers and hairs. The cell organization of these appendages probably derived from the localization of specialized areas of dermal–epidermal interaction in the integument. The horny scales and the other derivatives were formed from large areas of dermal–epidermal interaction. The evolution of these skin appendages was characterized by the production of specific coiled-coil keratins and associated proteins in the inter-filament matrix. Unlike mammalian keratin-associated proteins, those of sauropsids contain a double beta-folded sequence of about 20 amino acids, known as the core-box. The core-box shows 60%–95% sequence identity with known reptilian and avian proteins. The core-box determines the polymerization of these proteins into filaments indicated as beta-keratin filaments. The nucleotide and derived amino acid sequences for these sauropsid keratin-associated proteins are presented in conjunction with a hypothesis about their evolution in reptiles-birds compared to mammalian keratin-associated proteins. It is suggested that genes coding for ancestral glycine-serine-rich sequences of alpha-keratins produced a new class of small matrix proteins. In sauropsids, matrix proteins may have originated after mutation and enrichment in proline, probably in a central region of the ancestral protein. This mutation gave rise to the core-box, and other regions of the original protein evolved differently in the various reptilians orders. In lepidosaurians, two main groups, the high glycine proline and the high cysteine proline proteins, were formed. In archosaurians and chelonians two main groups later diversified into the high glycine proline tyrosine, non-feather proteins, and into the glycine-tyrosine-poor group of feather proteins, which evolved in birds. The latter proteins were particularly suited for making the elongated barb/barbule cells of feathers. In therapsids-mammals, mutations of the ancestral proteins formed the high glycine-tyrosine or the high cysteine proteins but no core-box was produced in the matrix proteins of the hard corneous material of mammalian derivatives. PMID:19422429
Samach, A; Klenz, J E; Kohalmi, S E; Risseeuw, E; Haughn, G W; Crosby, W L
1999-11-01
Genetic and molecular studies have suggested that the UNUSUAL FLORAL ORGANS (UFO) gene, from Arabidopsis thaliana, is expressed in all shoot apical meristems, and is involved in the regulation of a complex set of developmental events during floral development, including floral meristem and floral organ identity. Results from in situ hybridization using genes expressed early in floral development as probes indicate that UFO controls growth of young floral primordia. Transgenic constructs were used to provide evidence that UFO regulates floral organ identity by activating or maintaining transcription of the class B organ-identity gene APETALA 3, but not PISTILLATA. In an attempt to understand the biochemical mode of action of the UFO gene product, we show here that UFO is an F-box protein that interacts with Arabidopsis SKP1-like proteins, both in the yeast two-hybrid system and in vitro. In yeast and other organisms both F-box proteins and SKP1 homologues are subunits of specific ubiquitin E3 enzyme complexes that target specific proteins for degradation. The protein selected for degradation by the complex is specified by the F-box proteins. It is therefore possible that the role of UFO is to target for degradation specific proteins controlling normal growth patterns in the floral primordia, as well as proteins that negatively regulate APETALA 3 transcription.
USDA-ARS?s Scientific Manuscript database
The characteristic increase in protein catabolism during muscle atrophy is largely the result of an increase in E3 ubiquitin ligase expression, specifically that of atrogin-1, or FBXO32, which functions to polyubiquitinate proteins. In rainbow trout, the cDNA sequences of two E3 ubiquitin ligase F-...
Bacterial Degradation of Benzoate
Valderrama, J. Andrés; Durante-Rodríguez, Gonzalo; Blázquez, Blas; García, José Luis; Carmona, Manuel; Díaz, Eduardo
2012-01-01
We have studied for the first time the transcriptional regulatory circuit that controls the expression of the box genes encoding the aerobic hybrid pathway used to assimilate benzoate via coenzyme A (CoA) derivatives in bacteria. The promoters responsible for the expression of the box cluster in the β-proteobacterium Azoarcus sp., their cognate transcriptional repressor, the BoxR protein, and the inducer molecule (benzoyl-CoA) have been characterized. The BoxR protein shows a significant sequence identity to the BzdR transcriptional repressor that controls the bzd genes involved in the anaerobic degradation of benzoate. Because the boxR gene is present in all box clusters so far identified in bacteria, the BoxR/benzoyl-CoA regulatory system appears to be a widespread strategy to control this aerobic hybrid pathway. Interestingly, the paralogous BoxR and BzdR regulators act synergistically to control the expression of the box and bzd genes. This cross-regulation between anaerobic and aerobic pathways for the catabolism of aromatic compounds has never been shown before, and it may reflect a biological strategy to increase the cell fitness in organisms that survive in environments subject to changing oxygen concentrations. PMID:22303008
Marmagne, Anne; Ferro, Myriam; Meinnel, Thierry; Bruley, Christophe; Kuhn, Lauriane; Garin, Jérome; Barbier-Brygoo, Hélène; Ephritikhine, Geneviève
2007-11-01
The proteomics of plasma membrane has brought to date only scarce and partial information on the actual protein repertoire. In this work, the plant plasma membrane proteome of Arabidopsis thaliana was investigated. A highly purified plasma membrane fraction was washed by NaCl and Na2CO3 salts, and the insoluble fractions were further analyzed by nano-LC-MS/MS. With 446 proteins identified, we hereby describe the largest plasma membrane proteome diversity reported so far. Half of the proteins were predicted to display transmembrane domains and/or to be anchored to the membrane, validating a posteriori the pertinence of the approach. A fine analysis highlighted two main specific and novel features. First, the main functional category is represented by a majority of as yet unreported signaling proteins, including 11% receptor-like kinases. Second, 16% of the identified proteins are predicted to be lipid-modified, specifically involving double lipid linkage through N-terminal myristoylation, S-palmitoylation, C-terminal prenylation, or glycosylphosphatidylinositol anchors. Thus, our approach led for the first time to the identification of a large number of peripheral proteins as part of the plasma membrane and allowed the functionality of the plasma membrane in the cell context to be reconsidered.
Accumulation of prenyl alcohols by terpenoid biosynthesis inhibitors in various microorganisms.
Muramatsu, Masayoshi; Ohto, Chikara; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu
2008-09-01
Squalene synthase inhibitors significantly accelerate the production of farnesol by various microorganisms. However, farnesol production by Saccharomyces cerevisiae ATCC 64031, in which the squalene synthase gene is deleted, was not affected by the inhibitors, indicating that farnesol accumulation is enhanced in the absence of squalene synthase activity. The combination of diphenylamine as an inhibitor of carotenoid biosynthesis and a squalene synthase inhibitor increases geranylgeraniol production by a yeast, Rhodotorula rubra NBRC 0870. An ent-kauren synthase inhibitor also enhances the production of farnesol and geranylgeraniol by a filamentous fungus, Gibberella fujikuroi NBRC 30336. These results indicate that the inhibition of downstream enzymes from prenyl diphosphate synthase leads to the production of farnesol and geranylgeraniol.
Sophoflavanones A and B, two novel prenylated flavanones from the roots of Sophora flavescens.
Zhu, Hui; Yang, Ya-Nan; Feng, Zi-Ming; Jiang, Jian-Shuang; Zhang, Pei-Cheng
2018-09-01
In our ongoing investigation of the bioactive compounds from the extract of the roots of Sophora flavescens, two novel prenylated flavanones, named sophoflavanones A (1) and B (2), each with an unusual pyran ring were isolated. Their structures, as well as their absolute configurations, were elucidated based on spectroscopic data including a comparison of their experimental and calculated electronic circular dichroism (ECD) spectra. Additionally, compounds 1 and 2 showed moderate antioxidant activities against Fe 2+ /cysteine-induced toxicity at a concentration of 0.1 µM (inhibition values of 71.65% and 72.49%, respectively, using vitamin C as a positive control (87.83%)). Copyright © 2018 Elsevier Inc. All rights reserved.
Brenner, Wolfram G; Leuendorf, Jan Erik; Cortleven, Anne; Martin, Laetitia B B; Schaller, Hubert; Schmülling, Thomas
2017-05-17
Protein degradation by the ubiquitin-26S proteasome pathway is important for the regulation of cellular processes, but the function of most F-box proteins relevant to substrate recognition is unknown. We describe the analysis of the gene Cytokinin-induced F-box encoding (CFB, AT3G44326), identified in a meta-analysis of cytokinin-related transcriptome studies as one of the most robust cytokinin response genes. F-box domain-dependent interaction with the E3 ubiquitin ligase complex component ASK1 classifies CFB as a functional F-box protein. Apart from F-box and transmembrane domains, CFB contains no known functional domains. CFB is expressed in all plant tissues, predominantly in root tissue. A ProCFB:GFP-GUS fusion gene showed strongest expression in the lateral root cap and during lateral root formation. CFB-GFP fusion proteins were mainly localized in the nucleus and the cytosol but also at the plasma membrane. cfb mutants had no discernible phenotype, but CFB overexpressing plants showed several defects, such as a white upper inflorescence stem, similar to the hypomorphic cycloartenol synthase mutant cas1-1. Both CFB overexpressing plants and cas1-1 mutants accumulated the CAS1 substrate 2,3-oxidosqualene in the white stem tissue, the latter even more after cytokinin treatment, indicating impairment of CAS1 function. This suggests that CFB may link cytokinin and the sterol biosynthesis pathway. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Litholdo, Celso G.; Parker, Benjamin L.; Eamens, Andrew L.; Larsen, Martin R.; Cordwell, Stuart J.; Waterhouse, Peter M.
2016-01-01
Expression of the F-Box protein Leaf Curling Responsiveness (LCR) is regulated by microRNA, miR394, and alterations to this interplay in Arabidopsis thaliana produce defects in leaf polarity and shoot apical meristem organization. Although the miR394-LCR node has been documented in Arabidopsis, the identification of proteins targeted by LCR F-box itself has proven problematic. Here, a proteomic analysis of shoot apices from plants with altered LCR levels identified a member of the Latex Protein (MLP) family gene as a potential LCR F-box target. Bioinformatic and molecular analyses also suggested that other MLP family members are likely to be targets for this post-translational regulation. Direct interaction between LCR F-Box and MLP423 was validated. Additional MLP members had reduction in protein accumulation, in varying degrees, mediated by LCR F-Box. Transgenic Arabidopsis lines, in which MLP28 expression was reduced through an artificial miRNA technology, displayed severe developmental defects, including changes in leaf patterning and morphology, shoot apex defects, and eventual premature death. These phenotypic characteristics resemble those of Arabidopsis plants modified to over-express LCR. Taken together, the results demonstrate that MLPs are driven to degradation by LCR, and indicate that MLP gene family is target of miR394-LCR regulatory node, representing potential targets for directly post-translational regulation mediated by LCR F-Box. In addition, MLP28 family member is associated with the LCR regulation that is critical for normal Arabidopsis development. PMID:27067051
F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana.
Baute, Joke; Polyn, Stefanie; De Block, Jolien; Blomme, Jonas; Van Lijsebettens, Mieke; Inzé, Dirk
2017-05-01
F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
F-box proteins Pof3 and Pof1 regulate Wee1 degradation and mitotic entry in fission yeast.
Qiu, Cui; Yi, Yuan-Yuan; Lucena, Rafael; Wu, Meng-Juan; Sun, Jia-Hao; Wang, Xi; Jin, Quan-Wen; Wang, Yamei
2018-02-02
The key cyclin-dependent kinase Cdk1 (Cdc2) promotes irreversible mitotic entry, mainly by activating the phosphatase Cdc25 while suppressing the tyrosine kinase Wee1. Wee1 needs to be downregulated at the onset of mitosis to ensure rapid activation of Cdk1. In human somatic cells, one mechanism of suppressing Wee1 activity is mediated by ubiquitylation-dependent proteolysis through the Skp1/Cul1/F-box protein (SCF) ubiquitin E3 ligase complex. This mechanism is believed to be conserved from yeasts to humans. So far, the best-characterized human F-box proteins involved in recognition of Wee1 are β-TrCP (BTRCP) and Tome-1 (CDCA3). Although fission yeast Wee1 was the first identified member of its conserved kinase family, the F-box proteins involved in recognition and ubiquitylation of Wee1 have not been identified in this organism. In this study, our screen using Wee1- Renilla luciferase as the reporter revealed that two F-box proteins, Pof1 and Pof3, are required for downregulating Wee1 and are possibly responsible for recruiting Wee1 to SCF. Our genetic analyses supported a functional relevance between Pof1 and Pof3 and the rate of mitotic entry, and Pof3 might play a major role in this process. © 2018. Published by The Company of Biologists Ltd.
Basic N-terminus of yeast Nhp6A regulates the mechanism of its DNA flexibility enhancement.
Zhang, Jingyun; McCauley, Micah J; Maher, L James; Williams, Mark C; Israeloff, Nathan E
2012-02-10
HMGB (high-mobility group box) proteins are members of a class of small proteins that are ubiquitous in eukaryotic cells and nonspecifically bind to DNA, inducing large-angle DNA bends, enhancing the flexibility of DNA, and likely facilitating numerous important biological interactions. To determine the nature of this behavior for different HMGB proteins, we used atomic force microscopy to quantitatively characterize the bend angle distributions of DNA complexes with human HMGB2(Box A), yeast Nhp6A, and two chimeric mutants of these proteins. While all of the HMGB proteins bend DNA to preferred angles, Nhp6A promoted the formation of higher-order oligomer structures and induced a significantly broader distribution of angles, suggesting that the mechanism of Nhp6A is like a flexible hinge more than that of HMGB2(Box A). To determine the structural origins of this behavior, we used portions of the cationic N-terminus of Nhp6A to replace corresponding HMGB2(Box A) sequences. We found that the oligomerization and broader angle distribution correlated directly with the length of the N-terminus incorporated into the HMGB2(Box A) construct. Therefore, the basic N-terminus of Nhp6A is responsible for its ability to act as a flexible hinge and to form high-order structures. Copyright © 2011 Elsevier Ltd. All rights reserved.
Elkobi-Peer, Shira; Carmeli, Shmuel
2015-04-15
Thirteen new and eighteen known natural products were isolated from a bloom material of an assembly of various Microcystis spp. collected in November, 2008, from a commercial fishpond near Kibbutz Kfar Blum, the Jordan Valley, Israel. The new natural products included the prenylated aeruginosin KB676 (1), microphycin KB921 (2), anabaenopeptins KB906 (3) and KB899 (4) and micropeptins KB928 (5), KB956 (6), KB970A (7), KB970B (8), KB984 (9), KB970C (10), KB1048 (11), KB992 (12) and KB1046 (13). Their structures were elucidated primarily by interpretation of their 1D and 2D nuclear magnetic resonance spectra and high-resolution mass spectrometry. Marfey's and chiral-phase high performance liquid chromatography methods were used to determine the absolute configurations of their chiral centers. Aeruginosin KB676 (1) contains the rare (2S,3aS,6S,7aS)-Choi and is the first prenylated aeruginosin derivative described in the literature. Compounds 1 and 5-11 inhibited trypsin with sub-μM IC50s, while Compounds 11-13 inhibited chymotrypsin with sub-μM IC50s. The structures and biological activities of the new natural products and our procedures of dereplication are described.
Ohto, C; Ishida, C; Nakane, H; Muramatsu, M; Nishino, T; Obata, S
1999-05-01
Prenyltransferases (prenyl diphosphate synthases), which are a broad group of enzymes that catalyze the consecutive condensation of homoallylic diphosphate of isopentenyl diphosphates (IPP, C5) with allylic diphosphates to synthesize prenyl diphosphates of various chain lengths, have highly conserved regions in their amino acid sequences. Based on the above information, three prenyltransferase homologue genes were cloned from a thermophilic cyanobacterium, Synechococcus elongatus. Through analyses of the reaction products of the enzymes encoded by these genes, it was revealed that one encodes a thermolabile geranylgeranyl (C20) diphosphate synthase, another encodes a farnesyl (C15) diphosphate synthase whose optimal reaction temperature is 60 degrees C, and the third one encodes a prenyltransferase whose optimal reaction temperature is 75 degrees C. The last enzyme could catalyze the synthesis of five prenyl diphosphates of farnesyl, geranylgeranyl, geranylfarnesyl (C25), hexaprenyl (C30), and heptaprenyl (C35) diphosphates from dimethylallyl (C5) diphosphate, geranyl (C10) diphosphate, or farnesyl diphosphate as the allylic substrates. The product specificity of this novel kind of enzyme varied according to the ratio of the allylic and homoallylic substrates. The situations of these three S. elongatus enzymes in a phylogenetic tree of prenyltransferases are discussed in comparison with a mesophilic cyanobacterium of Synechocystis PCC6803, whose complete genome has been reported by Kaneko et al. (1996).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Shyamasri; Buhrman, Greg; Gagnon, Keith
2012-07-11
Box C/D ribonucleoproteins (RNP) guide the 2'-O-methylation of targeted nucleotides in archaeal and eukaryotic rRNAs. The archaeal L7Ae and eukaryotic 15.5kD box C/D RNP core protein homologues initiate RNP assembly by recognizing kink-turn (K-turn) motifs. The crystal structure of the 15.5kD core protein from the primitive eukaryote Giardia lamblia is described here to a resolution of 1.8 {angstrom}. The Giardia 15.5kD protein exhibits the typical {alpha}-{beta}-{alpha} sandwich fold exhibited by both archaeal L7Ae and eukaryotic 15.5kD proteins. Characteristic of eukaryotic homologues, the Giardia 15.5kD protein binds the K-turn motif but not the variant K-loop motif. The highly conserved residues ofmore » loop 9, critical for RNA binding, also exhibit conformations similar to those of the human 15.5kD protein when bound to the K-turn motif. However, comparative sequence analysis indicated a distinct evolutionary position between Archaea and Eukarya. Indeed, assessment of the Giardia 15.5kD protein in denaturing experiments demonstrated an intermediate stability in protein structure when compared with that of the eukaryotic mouse 15.5kD and archaeal Methanocaldococcus jannaschii L7Ae proteins. Most notable was the ability of the Giardia 15.5kD protein to assemble in vitro a catalytically active chimeric box C/D RNP utilizing the archaeal M. jannaschii Nop56/58 and fibrillarin core proteins. In contrast, a catalytically competent chimeric RNP could not be assembled using the mouse 15.5kD protein. Collectively, these analyses suggest that the G. lamblia 15.5kD protein occupies a unique position in the evolution of this box C/D RNP core protein retaining structural and functional features characteristic of both archaeal L7Ae and higher eukaryotic 15.5kD homologues.« less
Liu, Chenlin; Huang, Xiaohang
2015-09-01
DEAD-box RNA helicase family proteins have been identified in almost all living organisms. Some of them play a crucial role in adaptation to environmental changes and stress response, especially in the low-temperature acclimation in different kinds of organisms. Compared with the full swing study in plants and bacteria, the characters and functions of DEAD-box family proteins had not been surveyed in algae. To identify genes critical for freezing acclimation in algae, we screened DEAD-box RNA helicase genes from the transcriptome sequences of a psychrophilic microalga Chlamydomonas sp. ICE-L which was isolated from Antarctic sea ice. Totally 39 DEAD-box RNA helicase genes had been identified. Most of the DEAD-box RNA helicase have 1:1 homologous relationships in Chlamydomonas reinhardtii and Chlamydomonas sp. ICE-L with several exceptions. The homologous proteins in ICE-L to the helicases critical for cold or freezing tolerance in Arabidopsis thaliana had been identified based on phylogenetic comparison studies. The response of these helicase genes is not always identical in the Chlamydomonas sp. ICE-L and Arabidopsis under the same low-temperature treatment. The expression of several DEAD-box RNA helicase genes including CiRH5, CiRH25, CiRH28, and CiRH55 were significantly up-regulated under freezing treatment of ICE-L and their function in freezing acclimation of ICE-L deserved further investigation.
Transcript and proteomic analysis of developing white lupin (Lupinus albus L.) roots
Tian, Li; Peel, Gregory J; Lei, Zhentian; Aziz, Naveed; Dai, Xinbin; He, Ji; Watson, Bonnie; Zhao, Patrick X; Sumner, Lloyd W; Dixon, Richard A
2009-01-01
Background White lupin (Lupinus albus L.) roots efficiently take up and accumulate (heavy) metals, adapt to phosphate deficiency by forming cluster roots, and secrete antimicrobial prenylated isoflavones during development. Genomic and proteomic approaches were applied to identify candidate genes and proteins involved in antimicrobial defense and (heavy) metal uptake and translocation. Results A cDNA library was constructed from roots of white lupin seedlings. Eight thousand clones were randomly sequenced and assembled into 2,455 unigenes, which were annotated based on homologous matches in the NCBInr protein database. A reference map of developing white lupin root proteins was established through 2-D gel electrophoresis and peptide mass fingerprinting. High quality peptide mass spectra were obtained for 170 proteins. Microsomal membrane proteins were separated by 1-D gel electrophoresis and identified by LC-MS/MS. A total of 74 proteins were putatively identified by the peptide mass fingerprinting and the LC-MS/MS methods. Genomic and proteomic analyses identified candidate genes and proteins encoding metal binding and/or transport proteins, transcription factors, ABC transporters and phenylpropanoid biosynthetic enzymes. Conclusion The combined EST and protein datasets will facilitate the understanding of white lupin's response to biotic and abiotic stresses and its utility for phytoremediation. The root ESTs provided 82 perfect simple sequence repeat (SSR) markers with potential utility in breeding white lupin for enhanced agronomic traits. PMID:19123941
Montes, Matías; Moreira-Ramos, Sandra; Rojas, Diego A; Urbina, Fabiola; Käufer, Norbert F; Maldonado, Edio
2017-02-01
In Schizosaccharomyces pombe, ribosomal protein gene (RPG) promoters contain a TATA box analog, the HomolD box, which is bound by the Rrn7 protein. Despite the importance of ribosome biogenesis for cell survival, the mechanisms underlying RPG transcription remain unknown. In this study, we found that components of the RNA polymerase II (RNAPII) system, consisting of the initiation or general transcription factors (GTFs) TFIIA, IIB, IIE, TATA-binding protein (TBP) and the RNAPII holoenzyme, interacted directly with Rrn7 in vitro, and were able to form a preinitiation complex (PIC) on the HomolD box. PIC complex formation follows an ordered pathway on these promoters. The GTFs and RNAPII can also be cross-linked to HomolD-containing promoters in vivo. In an in vitro reconstituted transcription system, RNAPII components and Rrn7 were necessary for HomolD-directed transcription. The Mediator complex was required for basal transcription from those promoters in whole cell extract (WCE). The Med17 subunit of Mediator also can be cross-linked to the promoter region of HomolD-containing promoters in vivo, suggesting the presence of the Mediator complex on HomolD box-containing promoters. Together, these data show that components of the RNAPII machinery and Rrn7 participate in the PIC assembly on the HomolD box, thereby directing RPG transcription. © 2017 Federation of European Biochemical Societies.
MEIOTIC F-BOX Is Essential for Male Meiotic DNA Double-Strand Break Repair in Rice[OPEN
Wang, Chong; Yu, Junping; Zong, Jie; Lu, Pingli
2016-01-01
F-box proteins constitute a large superfamily in plants and play important roles in controlling many biological processes, but the roles of F-box proteins in male meiosis in plants remain unclear. Here, we identify the rice (Oryza sativa) F-box gene MEIOTIC F-BOX (MOF), which is essential for male meiotic progression. MOF belongs to the FBX subfamily and is predominantly active during leptotene to pachytene of prophase I. mof meiocytes display disrupted telomere bouquet formation, impaired pairing and synapsis of homologous chromosomes, and arrested meiocytes at late prophase I, followed by apoptosis. Although normal, programmed double-stranded DNA breaks (DSBs) form in mof mutants, foci of the phosphorylated histone variant γH2AX, a marker for DSBs, persist in the mutant, indicating that many of the DSBs remained unrepaired. The recruitment of Completion of meiosis I (COM1) and Radiation sensitive51C (RAD51C) to DSBs is severely compromised in mutant meiocytes, indicating that MOF is crucial for DSB end-processing and repair. Further analyses showed that MOF could physically interact with the rice SKP1-like Protein1 (OSK1), indicating that MOF functions as a component of the SCF E3 ligase to regulate meiotic progression in rice. Thus, this study reveals the essential role of an F-box protein in plant meiosis and provides helpful information for elucidating the roles of the ubiquitin proteasome system in plant meiotic progression. PMID:27436711
Bach, Thomas J
2013-01-01
We have established an in vivo visualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, based on the expression of a dexamethasone-inducible GFP fused to the carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL). By using pathway-specific inhibitors it was demonstrated that inhibition of the methylerythritol phosphate (MEP) pathway with known inhibitors like oxoclomazone and fosmidomycin, as well as inhibition of the protein geranylgeranyltransferase type 1 (PGGT-1), shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA) pathway with mevinolin did not affect the localization. During the present work, this test system has been used to examine the effect of newly designed inhibitors of the MEP pathway and inhibitors of sterol biosynthesis such as squalestatin, terbinafine and Ro48-8071. In addition, we also studied the impact of different post-prenylation inhibitors or those suspected to affect the transport of proteins to the plasma membrane on the localization of the geranylgeranylable fusion protein GFP-BD-CVIL. PMID:24555083
Xu, Zongda; Sun, Lidan; Zhou, Yuzhen; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang
2015-10-01
SQUAMOSA promoter-binding protein (SBP)-box family genes encode plant-specific transcription factors that play crucial roles in plant development, especially flower and fruit development. However, little information on this gene family is available for Prunus mume, an ornamental and fruit tree widely cultivated in East Asia. To explore the evolution of SBP-box genes in Prunus and explore their functions in flower and fruit development, we performed a genome-wide analysis of the SBP-box gene family in P. mume. Fifteen SBP-box genes were identified, and 11 of them contained an miR156 target site. Phylogenetic and comprehensive bioinformatics analyses revealed that different groups of SBP-box genes have undergone different evolutionary processes and varied in their length, structure, and motif composition. Purifying selection has been the main selective constraint on both paralogous and orthologous SBP-box genes. In addition, the sequences of orthologous SBP-box genes did not diverge widely after the split of P. mume and Prunus persica. Expression analysis of P. mume SBP-box genes revealed their diverse spatiotemporal expression patterns. Three duplicated SBP-box genes may have undergone subfunctionalization in Prunus. Most of the SBP-box genes showed high transcript levels in flower buds and young fruit. The four miR156-nontargeted genes were upregulated during fruit ripening. Together, these results provide information about the evolution of SBP-box genes in Prunus. The expression analysis lays the foundation for further research on the functions of SBP-box genes in P. mume and other Prunus species, especially during flower and fruit development.
Litholdo, Celso G; Parker, Benjamin L; Eamens, Andrew L; Larsen, Martin R; Cordwell, Stuart J; Waterhouse, Peter M
2016-06-01
Expression of the F-Box protein Leaf Curling Responsiveness (LCR) is regulated by microRNA, miR394, and alterations to this interplay in Arabidopsis thaliana produce defects in leaf polarity and shoot apical meristem organization. Although the miR394-LCR node has been documented in Arabidopsis, the identification of proteins targeted by LCR F-box itself has proven problematic. Here, a proteomic analysis of shoot apices from plants with altered LCR levels identified a member of the Latex Protein (MLP) family gene as a potential LCR F-box target. Bioinformatic and molecular analyses also suggested that other MLP family members are likely to be targets for this post-translational regulation. Direct interaction between LCR F-Box and MLP423 was validated. Additional MLP members had reduction in protein accumulation, in varying degrees, mediated by LCR F-Box. Transgenic Arabidopsis lines, in which MLP28 expression was reduced through an artificial miRNA technology, displayed severe developmental defects, including changes in leaf patterning and morphology, shoot apex defects, and eventual premature death. These phenotypic characteristics resemble those of Arabidopsis plants modified to over-express LCR Taken together, the results demonstrate that MLPs are driven to degradation by LCR, and indicate that MLP gene family is target of miR394-LCR regulatory node, representing potential targets for directly post-translational regulation mediated by LCR F-Box. In addition, MLP28 family member is associated with the LCR regulation that is critical for normal Arabidopsis development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Expression analysis of genes encoding double B-box zinc finger proteins in maize.
Li, Wenlan; Wang, Jingchao; Sun, Qi; Li, Wencai; Yu, Yanli; Zhao, Meng; Meng, Zhaodong
2017-11-01
The B-box proteins play key roles in plant development. The double B-box (DBB) family is one of the subfamily of the B-box family, with two B-box domains and without a CCT domain. In this study, 12 maize double B-box genes (ZmDBBs) were identified through a genome-wide survey. Phylogenetic analysis of DBB proteins from maize, rice, Sorghum bicolor, Arabidopsis, and poplar classified them into five major clades. Gene duplication analysis indicated that segmental duplications made a large contribution to the expansion of ZmDBBs. Furthermore, a large number of cis-acting regulatory elements related to plant development, response to light and phytohormone were identified in the promoter regions of the ZmDBB genes. The expression patterns of the ZmDBB genes in various tissues and different developmental stages demonstrated that ZmDBBs might play essential roles in plant development, and some ZmDBB genes might have unique function in specific developmental stages. In addition, several ZmDBB genes showed diurnal expression pattern. The expression levels of some ZmDBB genes changed significantly under light/dark treatment conditions and phytohormone treatments, implying that they might participate in light signaling pathway and hormone signaling. Our results will provide new information to better understand the complexity of the DBB gene family in maize.
The B-Box Domain Protein BBX21 Promotes Photomorphogenesis.
Xu, Dongqing; Jiang, Yan; Li, Jian; Holm, Magnus; Deng, Xing Wang
2018-03-01
B-box-containing (BBX) proteins play critical roles in a variety of cellular and developmental processes in plants. BBX21 (also known as SALT TOLERANCE HOMOLOG2), which contains two B-box domains in tandem at the N terminus, has been previously demonstrated as a key component involved in the COP1-HY5 signaling hub. However, the exact molecular and physiological roles of B-box domains in BBX21 are largely unclear. Here, we found that structurally disruption of the second B-box domain, but not the first one, in BBX21 completely abolishes its biological and physiological activity in conferring hyperphotomorphogenetic phenotype in Arabidopsis ( Arabidopsis thaliana ). Intact B-box domains in BBX21 are not required for interaction with COP1 and its degradation by COP1 via the 26S proteasome system. However, disruption of the second B-box of BBX21 nearly impairs its ability for binding of T/G-box within the HY5 promoter both in vitro and in vivo, as well as controlling HY5 and HY5-regulated gene expression in Arabidopsis seedlings. Taken together, this study provides a mechanistic framework in which BBX21 directly binds to the T/G-box present in the HY5 promoter possibly through its second B-box domain, which in turn controls HY5 and HY5-regulated gene expression to promote photomorphogenesis. © 2018 American Society of Plant Biologists. All Rights Reserved.
Wang, Guo-Ming; Yin, Hao; Qiao, Xin; Tan, Xu; Gu, Chao; Wang, Bao-Hua; Cheng, Rui; Wang, Ying-Zhen; Zhang, Shao-Ling
2016-12-01
F-box gene family, as one of the largest gene families in plants, plays crucial roles in regulating plant development, reproduction, cellular protein degradation and responses to biotic and abiotic stresses. However, comprehensive analysis of the F-box gene family in pear (Pyrus bretschneideri Rehd.) and other Rosaceae species has not been reported yet. Herein, we identified a total of 226 full-length F-box genes in pear for the first time. And these genes were further divided into various subgroups based on specific domains and phylogenetic analysis. Intriguingly, we observed that whole-genome duplication and dispersed duplication have a major contribution to F-box family expansion. Furthermore, the dynamic evolution for different modes of gene duplication was dissected. Interestingly, we found that dispersed and tandem duplicate have been evolving at a high rate. In addition, we found that F-box genes exhibited functional specificity based on GO analysis, and most of the F-box genes were significantly enriched in the protein binding (GO: 0005515) term, supporting that F-box genes might play a critical role for gene regulation in pear. Transcriptome and digital expression profiles revealed that F-box genes are involved in the development of multiple pear tissues. Overall, these results will set stage for elaborating the biological role of F-box genes in pear and other plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cook, Mandy; Bolkan, Bonnie J; Kretzschmar, Doris
2014-01-01
loechrig (loe) mutant flies are characterized by progressive neuronal degeneration, behavioral deficits, and early death. The mutation is due to a P-element insertion in the gene for the γ-subunit of the trimeric AMP-activated protein kinase (AMPK) complex, whereby the insertion affects only one of several alternative transcripts encoding a unique neuronal isoform. AMPK is a cellular energy sensor that regulates a plethora of signaling pathways, including cholesterol and isoprenoid synthesis via its downstream target hydroxy-methylglutaryl (HMG)-CoA reductase. We recently showed that loe interferes with isoprenoid synthesis and increases the prenylation and thereby activation of RhoA. During development, RhoA plays an important role in neuronal outgrowth by activating a signaling cascade that regulates actin dynamics. Here we show that the effect of loe/AMPKγ on RhoA prenylation leads to a hyperactivation of this signaling pathway, causing increased phosphorylation of the actin depolymerizating factor cofilin and accumulation of filamentous actin. Furthermore, our results show that the resulting cytoskeletal changes in loe interfere with neuronal growth and disrupt axonal integrity. Surprisingly, these phenotypes were enhanced by expressing the Slingshot (SSH) phosphatase, which during development promotes actin depolymerization by dephosphorylating cofilin. However, our studies suggest that in the adult SSH promotes actin polymerization, supporting in vitro studies using human SSH1 that suggested that SSH can also stabilize and bundle filamentous actin. Together with the observed increase in SSH levels in the loe mutant, our experiments suggest that in mature neurons SSH may function as a stabilization factor for filamentous actin instead of promoting actin depolymerization.
Yazaki, Kazufumi; Kunihisa, Miyuki; Fujisaki, Takahiro; Sato, Fumihiko
2002-02-22
Two cDNAs encoding geranyl diphosphate:4-hy- droxybenzoate 3-geranyltransferase were isolated from Lithospermum erythrorhizon by nested PCR using the conserved amino acid sequences among polyprenyl- transferases for ubiquinone biosynthesis. They were functionally expressed in yeast COQ2 disruptant and showed a strict substrate specificity for geranyl diphosphate as the prenyl donor, in contrast to ubiquinone biosynthetic enzymes, suggesting that they are involved in the biosynthesis of shikonin, a naphthoquinone secondary metabolite. Regulation of their expression by various culture conditions coincided with that of geranyltransferase activity and the secondary metabolites biosynthesized via this enzyme. This is the first established plant prenyltransferase that transfers the prenyl chain to an aromatic substrate.
Abramova, Inna; Rudshteyn, Benjamin; Liebman, Joel F; Greer, Alexander
2017-03-01
Hyperforin is a constituent of St. John's wort and coexists with the singlet oxygen sensitizer hypericin. Density functional theory, molecular mechanics and Connolly surface calculations show that accessibility in the singlet oxygen "ene" reaction favors the hyperforin "southwest" and "southeast" prenyl (2-methyl-2-butenyl) groups over the northern prenyl groups. While the southern part of hyperforin is initially more susceptible to oxidation, up to 4 "ene" reactions of singlet oxygen can take place. Computational results assist in predicting the fate of adjacent hydroperoxides in hyperforin, where the loss of hydrogen atoms may lead to the formation of a hydrotrioxide and a carbonyl instead of a Russell reaction. © 2017 The American Society of Photobiology.
Chen, Bill B.; Glasser, Jennifer R.; Coon, Tiffany A.; Zou, Chunbin; Miller, Hannah L.; Fenton, Moon; McDyer, John F.; Boyiadzis, Michael
2012-01-01
Hematologic maligancies exhibit a growth advantage by up-regulation of components within the molecular apparatus involved in cell-cycle progression. The SCF (Skip-Cullin1-F-box protein) E3 ligase family provides homeostatic feedback control of cell division by mediating ubiquitination and degradation of cell-cycle proteins. By screening several previously undescribed E3 ligase components, we describe the behavior of a relatively new SCF subunit, termed FBXL2, that ubiquitinates and destabilizes cyclin D2 protein leading to G0 phase arrest and apoptosis in leukemic and B-lymphoblastoid cell lines. FBXL2 expression was strongly suppressed, and yet cyclin D2 protein levels were robustly expressed in acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) patient samples. Depletion of endogenous FBXL2 stabilized cyclin D2 levels, whereas ectopically expressed FBXL2 decreased cyclin D2 lifespan. FBXL2 did not bind a phosphodegron within its substrate, which is typical of other F-box proteins, but uniquely targeted a calmodulin-binding signature within cyclin D2 to facilitate its polyubiquitination. Calmodulin competes with the F-box protein for access to this motif where it bound and protected cyclin D2 from FBXL2. Calmodulin reversed FBXL2-induced G0 phase arrest and attenuated FBXL2-induced apoptosis of lymphoblastoid cells. These results suggest an antiproliferative effect of SCFFBXL2 in lymphoproliferative malignancies. PMID:22323446
USDA-ARS?s Scientific Manuscript database
Seeds employ sensory systems that assess various environmental cues over time to maximize the successful transition from embryo to seedling. Here, we show that the Arabidopsis F-Box protein Cold Temperature-Germinating (CTG)-10, identified by activation tagging, is a positive regulator during this p...
Comparative structural analysis of human DEAD-box RNA helicases.
Schütz, Patrick; Karlberg, Tobias; van den Berg, Susanne; Collins, Ruairi; Lehtiö, Lari; Högbom, Martin; Holmberg-Schiavone, Lovisa; Tempel, Wolfram; Park, Hee-Won; Hammarström, Martin; Moche, Martin; Thorsell, Ann-Gerd; Schüler, Herwig
2010-09-30
DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domains that both contribute to RNA and ATP binding. Despite recent advances the molecular details of how these enzymes convert chemical energy into RNA remodeling is unknown. We present crystal structures of the isolated DEAD-domains of human DDX2A/eIF4A1, DDX2B/eIF4A2, DDX5, DDX10/DBP4, DDX18/myc-regulated DEAD-box protein, DDX20, DDX47, DDX52/ROK1, and DDX53/CAGE, and of the helicase domains of DDX25 and DDX41. Together with prior knowledge this enables a family-wide comparative structural analysis. We propose a general mechanism for opening of the RNA binding site. This analysis also provides insights into the diversity of DExD/H- proteins, with implications for understanding the functions of individual family members.
Comparative Structural Analysis of Human DEAD-Box RNA Helicases
Schütz, Patrick; Karlberg, Tobias; van den Berg, Susanne; Collins, Ruairi; Lehtiö, Lari; Högbom, Martin; Holmberg-Schiavone, Lovisa; Tempel, Wolfram; Park, Hee-Won; Hammarström, Martin; Moche, Martin; Thorsell, Ann-Gerd; Schüler, Herwig
2010-01-01
DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domains that both contribute to RNA and ATP binding. Despite recent advances the molecular details of how these enzymes convert chemical energy into RNA remodeling is unknown. We present crystal structures of the isolated DEAD-domains of human DDX2A/eIF4A1, DDX2B/eIF4A2, DDX5, DDX10/DBP4, DDX18/myc-regulated DEAD-box protein, DDX20, DDX47, DDX52/ROK1, and DDX53/CAGE, and of the helicase domains of DDX25 and DDX41. Together with prior knowledge this enables a family-wide comparative structural analysis. We propose a general mechanism for opening of the RNA binding site. This analysis also provides insights into the diversity of DExD/H- proteins, with implications for understanding the functions of individual family members. PMID:20941364
Chen, Rugang; Guo, Weili; Yin, Yanxu; Gong, Zhen-Hui
2014-02-10
The F-box protein family is characterized by an F-box motif that has been shown to play an important role in regulating various developmental processes and stress responses. In this study, a novel F-box-containing gene was isolated from leaves of pepper cultivar P70 (Capsicum annuum L.) and designated CaF-box. The full-length cDNA is 2088 bp and contains an open reading frame of 1914 bp encoding a putative polypeptide of 638 amino acids with a mass of 67.8 kDa. CaF-box was expressed predominantly in stems and seeds, and the transcript was markedly upregulated in response to cold stress, abscisic acid (ABA) and salicylic acid (SA) treatment, and downregulated under osmotic and heavy metal stress. CaF-box expression was dramatically affected by salt stress, and was rapidly increased for the first hour, then sharply decreased thereafter. In order to further assess the role of CaF-box in the defense response to abiotic stress, a loss-of-function experiment in pepper plants was performed using a virus-induced gene silencing (VIGS) technique. Measurement of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage revealed stronger lipid peroxidation and cell death in the CaF-box-silenced plants than in control plants, suggesting CaF-box plays an important role in regulating the defense response to abiotic stress resistance in pepper plants.
Chen, Rugang; Guo, Weili; Yin, Yanxu; Gong, Zhen-Hui
2014-01-01
The F-box protein family is characterized by an F-box motif that has been shown to play an important role in regulating various developmental processes and stress responses. In this study, a novel F-box-containing gene was isolated from leaves of pepper cultivar P70 (Capsicum annuum L.) and designated CaF-box. The full-length cDNA is 2088 bp and contains an open reading frame of 1914 bp encoding a putative polypeptide of 638 amino acids with a mass of 67.8 kDa. CaF-box was expressed predominantly in stems and seeds, and the transcript was markedly upregulated in response to cold stress, abscisic acid (ABA) and salicylic acid (SA) treatment, and downregulated under osmotic and heavy metal stress. CaF-box expression was dramatically affected by salt stress, and was rapidly increased for the first hour, then sharply decreased thereafter. In order to further assess the role of CaF-box in the defense response to abiotic stress, a loss-of-function experiment in pepper plants was performed using a virus-induced gene silencing (VIGS) technique. Measurement of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage revealed stronger lipid peroxidation and cell death in the CaF-box-silenced plants than in control plants, suggesting CaF-box plays an important role in regulating the defense response to abiotic stress resistance in pepper plants. PMID:24518684
Sasajima, Hitoshi; Nakagawa, Koji; Kashiwayanagi, Makoto; Yokosawa, Hideyoshi
2012-01-01
B-cell translocation gene 1 and 2 (BTG1 and BTG2) are members of the BTG/Tob antiproliferative protein family, which is able to regulate the cell cycle and cell proliferation. We previously reported that BTG1, BTG2, Tob, and Tob2 are degraded via the ubiquitin-proteasome pathway. In this study, we investigated the mechanism of polyubiquitination of BTG1 and BTG2. Since the Skp1-Cdc53/Cullin 1-F-box protein (SCF) complex functions as one of the major ubiquitin ligases for cell cycle regulation, we first examined interactions between BTG proteins and components of the SCF complex, and found that BTG1 and BTG2 were capable of interacting with the SCF complex containing Cullin-1 (a scaffold protein) and Skp1 (a linker protein). As the SCF complex can ubiquitinate various target proteins by substituting different F-box proteins as subunits that recognize different target proteins, we next examined which F-box proteins could bind the two BTG proteins, and found that Skp2, β-transducin repeat-containing protein 1 (βTrCP1), and βTrCP2 were able to associate with both BTG1 and BTG2. Furthermore, we obtained evidence showing that βTrCP1 enhanced the polyubiquitination of both BTG1 and BTG2 more efficiently than Skp2 did, and that an F-box truncated mutant of βTrCP1 had a dominant negative effect on this polyubiquitination. Thus, we propose that BTG1 and BTG2 are subjected to polyubiquitination, more efficiently when it is mediated by SCFβTrCP than by SCFSkp2.
Chen, L; Smith, L; Johnson, M R; Wang, K; Diasio, R B; Smith, J B
2000-10-13
Treatment of human promyelocytic leukemia cells (HL-60) with phorbol 12-myristate 13-acetate (PMA) is known to decrease c-myc mRNA by blocking transcription elongation at sites near the first exon/intron border. Treatment of HL-60 cells with either PMA or bryostatin 1, which acutely activates protein kinase C (PKC), decreased the levels of myc mRNA and Myc protein. The inhibition of Myc synthesis accounted for the drop in Myc protein, because PMA treatment had no effect on Myc turnover. Treatment with PMA or bryostatin 1 increased nuclear protein binding to MIE1, a c-myc intron 1 element that defines an RFX1-binding X box. RFX1 antiserum supershifted MIE1-protein complexes. Increased MIE1 binding was independent of protein synthesis and abolished by a selective PKC inhibitor, which also prevented the effect of PMA on myc mRNA and protein levels and Myc synthesis. PMA treatment increased RFX1 in the nuclear fraction and decreased it in the cytosol without affecting total RFX1. Transfection of HL-60 cells with myc reporter gene constructs showed that the RFX1-binding X box was required for the down-regulation of reporter gene expression by PMA. These findings suggest that nuclear translocation and binding of RFX1 to the X box cause the down-regulation of myc expression, which follows acute PKC activation in undifferentiated HL-60 cells.
Rodríguez-Lima, Oscar; García-Gutierrez, Ponciano; Jiménez, Lucía; Zarain-Herzberg, Ángel; Lazzarini, Roberto; Landa, Abraham
2015-01-01
TATA-box binding protein (TBP) is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1). Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5) and 2-Cys peroxiredoxin (Ts2-CysPrx) gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene.
Ubiquitination of exposed glycoproteins by SCFFBXO27 directs damaged lysosomes for autophagy
Yoshida, Yukiko; Yasuda, Sayaka; Fujita, Toshiharu; Hamasaki, Maho; Murakami, Arisa; Kawawaki, Junko; Iwai, Kazuhiro; Saeki, Yasushi; Yoshimori, Tamotsu; Matsuda, Noriyuki; Tanaka, Keiji
2017-01-01
Ubiquitination functions as a signal to recruit autophagic machinery to damaged organelles and induce their clearance. Here, we report the characterization of FBXO27, a glycoprotein-specific F-box protein that is part of the SCF (SKP1/CUL1/F-box protein) ubiquitin ligase complex, and demonstrate that SCFFBXO27 ubiquitinates glycoproteins in damaged lysosomes to regulate autophagic machinery recruitment. Unlike F-box proteins in other SCF complexes, FBXO27 is subject to N-myristoylation, which localizes it to membranes, allowing it to accumulate rapidly around damaged lysosomes. We also screened for proteins that are ubiquitinated upon lysosomal damage, and identified two SNARE proteins, VAMP3 and VAMP7, and five lysosomal proteins, LAMP1, LAMP2, GNS, PSAP, and TMEM192. Ubiquitination of all glycoproteins identified in this screen increased upon FBXO27 overexpression. We found that the lysosomal protein LAMP2, which is ubiquitinated preferentially on lysosomal damage, enhances autophagic machinery recruitment to damaged lysosomes. Thus, we propose that SCFFBXO27 ubiquitinates glycoproteins exposed upon lysosomal damage to induce lysophagy. PMID:28743755
Effects of Quercetin Supplementation on Lipid and Protein Metabolism after Classic Boxing Training
ERIC Educational Resources Information Center
Demirci, Nevzat
2017-01-01
The metabolic fitness (MF) is a component of athletes' physical conditioning. This study aims to investigate the effects of quercetin supplementation on Turkish Junior athletes' lipid and protein metabolism relating to MF after one month classic boxing training. Totally 20 voluntary junior male athletes were separated into two equal groups as the…
Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii
Story, Randall M.; Li, Hong; Abelson, John N.
2001-01-01
We have determined the structure of a DEAD box putative RNA helicase from the hyperthermophile Methanococcus jannaschii. Like other helicases, the protein contains two α/β domains, each with a recA-like topology. Unlike other helicases, the protein exists as a dimer in the crystal. Through an interaction that resembles the dimer interface of insulin, the amino-terminal domain's 7-strand β-sheet is extended to 14 strands across the two molecules. Motifs conserved in the DEAD box family cluster in the cleft between domains, and many of their functions can be deduced by mutational data and by comparison with other helicase structures. Several lines of evidence suggest that motif III Ser-Ala-Thr may be involved in binding RNA. PMID:11171974
Buser, C; Takaki, T; Sepp-Lorenzino, L
2001-06-01
The 92nd Annual Meeting of the AACR comprised over 5000 abstracts, 12 plenary and award lectures and numerous talks in educational sessions, symposia and mini-symposia. Given the wealth of information presented, we narrowed our coverage to the area of prenyltransferase and protein kinase inhibitors. Many rationally designed drugs are now in clinical trials and exciting results were presented for the Bcr-Abl inhibitor STI-571. The cancer community is beginning to envision new ways to evaluate and administer these well-tolerated drugs which do not fit the traditional anticancer drug profile. There is an emphasis in developing surrogate markers for evaluating the mechanism-based effectiveness as well as identifying off-target toxicities. In addition, there is a large effort in investigating effective drug combinations and the use of these new agents as radiosensitisers. Here we present specific examples of these issues as applied to prenylation and protein kinase inhibitors.
Fernández-Bodega, Ángeles; Álvarez-Álvarez, Rubén; Liras, Paloma; Martín, Juan F
2017-08-01
Penicillium roqueforti produces several prenylated indole alkaloids, including roquefortine C and clavine alkaloids. The first step in the biosynthesis of roquefortine C is the prenylation of tryptophan-derived dipeptides by a dimethylallyltryptophan synthase, specific for roquefortine biosynthesis (roquefortine prenyltransferase). A second dimethylallyltryptophan synthase, DmaW2, different from the roquefortine prenyltransferase, has been studied in this article. Silencing the gene encoding this second dimethylallyltryptophan synthase, dmaW2, proved that inactivation of this gene does not prevent the production of roquefortine C, but suppresses the formation of other indole alkaloids. Mass spectrometry studies have identified these compounds as isofumigaclavine A, the pathway final product and prenylated intermediates. The silencing does not affect the production of mycophenolic acid and andrastin A. A bioinformatic study of the genome of P. roqueforti revealed that DmaW2 (renamed IfgA) is a prenyltransferase involved in isofumigaclavine A biosynthesis encoded by a gene located in a six genes cluster (cluster A). A second three genes cluster (cluster B) encodes the so-called yellow enzyme and enzymes for the late steps for the conversion of festuclavine to isofumigaclavine A. The yellow enzyme contains a tyrosine-181 at its active center, as occurs in Neosartorya fumigata, but in contrast to the Clavicipitaceae fungi. A complete isofumigaclavines A and B biosynthetic pathway is proposed based on the finding of these studies on the biosynthesis of clavine alkaloids.
Guo, Yan-Qiong; Tang, Gui-Hua; Lou, Lan-Lan; Li, Wei; Zhang, Bei; Liu, Bo; Yin, Sheng
2018-01-20
The bioassay-guided phytochemical study of a traditional Chinese medicine Morus alba led to the isolation of 18 prenylated flavonoids (1-18), of which (±)-cyclomorusin (1/2), a pair of enantiomers, and 14-methoxy-dihydromorusin (3) are the new ones. Subsequent structural modification of the selected components by methylation, esterification, hydrogenation, and oxidative cyclization led to 14 more derivatives (19-32). The small library was screened for its inhibition against phosphodiesterase-4 (PDE4), which is a drug target for the treatment of asthma and chronic obstructive pulmonary disease (COPD). Among them, nine compounds (1-5, 8, 10, 16, and 17) exhibited remarkable activities with IC 50 values ranging from 0.0054 to 0.40 μM, being more active than the positive control rolipram (IC 50 = 0.62 μM). (+)-Cyclomorusin (1), the most active natural PDE4 inhibitor reported so far, also showed a high selectivity across other PDE members with the selective fold greater than 55. The SAR study revealed that the presence of prenyls at C-3 and/or C-8, 2H-pyran ring D, and the phenolic hydroxyl groups were important to the activity, which was further supported by the recognition mechanism study of the inhibitors with PDE4 by using molecular modeling. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Orjala, J; Erdelmeier, C A; Wright, A D; Rali, T; Sticher, O
1993-12-01
Five new prenylated benzoic acid derivatives, methyl 3-(3,7-dimethyl-2,6-octadienyl)-4-methoxybenzoate (1), 1-(1-methylethyl)-4-methyl-3-cyclohexenyl 3,5-bis(3-methyl-2-butenyl)-4-hydroxybenzoate (2), 1-(1-methylethyl)-4-methyl-3-cyclohexenyl 3,5-bis(3-methyl-2-butenyl)-4-methoxybenzoate (3), methyl 3,5-bis(3-methyl-2-butenyl)-4-methoxybenzoate (4), and 4-hydroxy-3-(3-methyl-2-butenyl)-5-(3-methyl-2-butenyl)-benzoic acid (5) were isolated from the dried leaves of Piper aduncum L. (Piperaceae). Together with the new metabolites, four known prenylated benzoic acid derivatives, 3,5-bis(3-methyl-2-butenyl)-4-methoxybenzoic acid (6), 4-hydroxy-3,5-bis(3-methyl-2-butenyl)-benzoic acid (nervogenic acid, 7), methyl 4-hydroxy-3,5-bis(3-methyl-2-butenyl)-benzoate (8), and methyl 4-hydroxy-3-(3-methyl-2-butenyl)-benzoate (9) as well as, dillapiol (10), myristicin, and the three sesquiterpenes humulene, caryophyllene epoxide, and humulene epoxide were isolated. Compounds 7, 8, and 9 are reported as natural products for the first time. The structures of the isolates were elucidated by spectroscopic methods, mainly 1D-and 2D-NMR spectroscopy. Isolates 4-7, 9, and 10 were molluscicidal while 2, 5-7, and 9 displayed significant antibacterial activities.
Zhao, Ping; Inoue, Kenichiro; Kouno, Isao; Yamamoto, Hirobumi
2003-01-01
Leachianone G (LG) 2′′-dimethylallyltransferase, a novel prenyl side-chain elongation enzyme, was identified in Sophora flavescens Ait. cultured cells. The enzyme transfers a dimethylallyl group to the 2′′ position of another dimethylallyl group attached at position 8 of LG to form sophoraflavanone G, a branched monoterpenoid-conjugated flavanone characteristic to this plant. This membrane-bound dimethylallyltransferase required Mg2+ (optimum concentration was 10 mm) for the reaction and had an optimum pH of 8.8. It utilized dimethylallyl diphosphate as the sole prenyl donor, and the 2′-hydroxy function in LG was indispensable to the activity. The apparent Km values for dimethylallyl diphosphate and LG were 59 and 2.3 μm, respectively. Subcellular localization of three enzymes that participated in the formation of the lavandulyl group was also investigated by sucrose density gradient centrifugation. Two prenyltransferases, naringenin 8-dimethylallyltransferase and LG 2′′-dimethylallyltransferase, were localized in the plastids, whereas 8-dimethylallylnaringenin 2′-hydroxylase, which catalyzes the crucial step in the lavandulyl-group formation, was associated with the endoplasmic reticulum. These results suggest the close cooperation between the plastids and the endoplasmic reticulum in the formation of lavandulyl groups. PMID:14551337
Grienke, Ulrike; Richter, Martina; Walther, Elisabeth; Hoffmann, Anja; Kirchmair, Johannes; Makarov, Vadim; Nietzsche, Sandor; Schmidtke, Michaela; Rollinger, Judith M
2016-06-03
Influenza virus neuraminidase (NA) is the primary target for influenza therapeutics. Severe complications are often related to secondary pneumonia caused by Streptococcus pneumoniae (pneumococci), which also express NAs. Recently, a NA-mediated lethal synergism between influenza A viruses and pneumococci was described. Therefore, dual inhibitors of both viral and bacterial NAs are expected to be advantageous for the treatment of influenza. We investigated the traditional Chinese herbal drug sāng bái pí (mulberry root bark) as source for anti-infectives. Two prenylated flavonoid derivatives, sanggenon G (4) and sanggenol A (5) inhibited influenza A viral and pneumococcal NAs and, in contrast to the approved NA inhibitor oseltamivir, also planktonic growth and biofilm formation of pneumococci. Evaluation of 27 congeners of 5 revealed a correlation between the degree of prenylation and bioactivity. Abyssinone-V 4'-methyl ether (27) inhibited pneumococcal NA with IC50 = 2.18 μM, pneumococcal growth with MIC = 5.63 μM, and biofilm formation with MBIC = 4.21 μM, without harming lung epithelial cells. Compounds 5 and 27 also disrupt the synergism between influenza A virus and pneumococcal NA in vitro, hence functioning as dual-acting anti-infectives. The results warrant further studies on whether the observed disruption of this synergism is transferable to in vivo systems.
Grienke, Ulrike; Richter, Martina; Walther, Elisabeth; Hoffmann, Anja; Kirchmair, Johannes; Makarov, Vadim; Nietzsche, Sandor; Schmidtke, Michaela; Rollinger, Judith M.
2016-01-01
Influenza virus neuraminidase (NA) is the primary target for influenza therapeutics. Severe complications are often related to secondary pneumonia caused by Streptococcus pneumoniae (pneumococci), which also express NAs. Recently, a NA-mediated lethal synergism between influenza A viruses and pneumococci was described. Therefore, dual inhibitors of both viral and bacterial NAs are expected to be advantageous for the treatment of influenza. We investigated the traditional Chinese herbal drug sāng bái pí (mulberry root bark) as source for anti-infectives. Two prenylated flavonoid derivatives, sanggenon G (4) and sanggenol A (5) inhibited influenza A viral and pneumococcal NAs and, in contrast to the approved NA inhibitor oseltamivir, also planktonic growth and biofilm formation of pneumococci. Evaluation of 27 congeners of 5 revealed a correlation between the degree of prenylation and bioactivity. Abyssinone-V 4′-methyl ether (27) inhibited pneumococcal NA with IC50 = 2.18 μM, pneumococcal growth with MIC = 5.63 μM, and biofilm formation with MBIC = 4.21 μM, without harming lung epithelial cells. Compounds 5 and 27 also disrupt the synergism between influenza A virus and pneumococcal NA in vitro, hence functioning as dual-acting anti-infectives. The results warrant further studies on whether the observed disruption of this synergism is transferable to in vivo systems. PMID:27257160
Franklin, Gregory; Conceição, Luis F R; Kombrink, Erich; Dias, Alberto C P
2009-01-01
Xanthone production in Hypericum perforatum (HP) suspension cultures in response to elicitation by Agrobacterium tumefaciens co-cultivation has been studied. RNA blot analyses of HP cells co-cultivated with A. tumefaciens have shown a rapid up-regulation of genes encoding important enzymes of the general phenylpropanoid pathway (PAL, phenylalanine ammonia lyase and 4CL, 4-coumarate:CoA ligase) and xanthone biosynthesis (BPS, benzophenone synthase). Analyses of HPLC chromatograms of methanolic extracts of control and elicited cells (HP cells that were co-cultivated for 24h with A. tumefaciens) have revealed a 12-fold increase in total xanthone concentration and also the emergence of many xanthones after elicitation. Methanolic extract of elicited cells exhibited significantly higher antioxidant and antimicrobial competence than the equivalent extract of control HP cells indicating that these properties have been significantly increased in HP cells after elicitation. Four major de novo synthesized xanthones have been identified as 1,3,6,7-tetrahydroxy-8-prenyl xanthone, 1,3,6,7-tetrahydroxy-2-prenyl xanthone, 1,3,7-trihydroxy-6-methoxy-8-prenyl xanthone and paxanthone. Antioxidant and antimicrobial characterization of these de novo xanthones have revealed that xanthones play dual function in plant cells during biotic stress: (1) as antioxidants to protect the cells from oxidative damage and (2) as phytoalexins to impair the pathogen growth.
Ctf4 Is a Hub in the Eukaryotic Replisome that Links Multiple CIP-Box Proteins to the CMG Helicase.
Villa, Fabrizio; Simon, Aline C; Ortiz Bazan, Maria Angeles; Kilkenny, Mairi L; Wirthensohn, David; Wightman, Mel; Matak-Vinkovíc, Dijana; Pellegrini, Luca; Labib, Karim
2016-08-04
Replisome assembly at eukaryotic replication forks connects the DNA helicase to DNA polymerases and many other factors. The helicase binds the leading-strand polymerase directly, but is connected to the Pol α lagging-strand polymerase by the trimeric adaptor Ctf4. Here, we identify new Ctf4 partners in addition to Pol α and helicase, all of which contain a "Ctf4-interacting-peptide" or CIP-box. Crystallographic analysis classifies CIP-boxes into two related groups that target different sites on Ctf4. Mutations in the CIP-box motifs of the Dna2 nuclease or the rDNA-associated protein Tof2 do not perturb DNA synthesis genome-wide, but instead lead to a dramatic shortening of chromosome 12 that contains the large array of rDNA repeats. Our data reveal unexpected complexity of Ctf4 function, as a hub that connects multiple accessory factors to the replisome. Most strikingly, Ctf4-dependent recruitment of CIP-box proteins couples other processes to DNA synthesis, including rDNA copy-number regulation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
A Unique HMG-Box Domain of Mouse Maelstrom Binds Structured RNA but Not Double Stranded DNA
Genzor, Pavol; Bortvin, Alex
2015-01-01
Piwi-interacting piRNAs are a major and essential class of small RNAs in the animal germ cells with a prominent role in transposon control. Efficient piRNA biogenesis and function require a cohort of proteins conserved throughout the animal kingdom. Here we studied Maelstrom (MAEL), which is essential for piRNA biogenesis and germ cell differentiation in flies and mice. MAEL contains a high mobility group (HMG)-box domain and a Maelstrom-specific domain with a presumptive RNase H-fold. We employed a combination of sequence analyses, structural and biochemical approaches to evaluate and compare nucleic acid binding of mouse MAEL HMG-box to that of canonical HMG-box domain proteins (SRY and HMGB1a). MAEL HMG-box failed to bind double-stranded (ds)DNA but bound to structured RNA. We also identified important roles of a novel cluster of arginine residues in MAEL HMG-box in these interactions. Cumulatively, our results suggest that the MAEL HMG-box domain may contribute to MAEL function in selective processing of retrotransposon RNA into piRNAs. In this regard, a cellular role of MAEL HMG-box domain is reminiscent of that of HMGB1 as a sentinel of immunogenic nucleic acids in the innate immune response. PMID:25807393
Khan, Abdul Hafeez; Prakash, Alok; Kumar, Dinesh; Rawat, Anil Kumar; Srivastava, Rajeev; Srivastava, Shipra
2010-07-06
Farnesyl transferase (FTase) is an enzyme responsible for post-translational modification in proteins having a carboxy-terminal CaaX motif in human. It catalyzes the attachment of a lipid group in proteins of RAS superfamily, which is essential in signal transduction. FTase has been recognized as an important target for anti cancer therapeutics. In this work, we performed virtual screening against FTase with entire 125 compounds from Indian Plant Anticancer Database using AutoDock 3.0.5 software. All compounds were docked within binding pocket containing Lys164, Tyr300, His248 and Tyr361 residues in crystal structure of FTase. These complexes were ranked according to their docking score, using methodology that was shown to achieve maximum accuracy. Finally we got three potent compounds with the best Autodock docking Score (Vinorelbine: -21.28 Kcal/mol, Vincristine: -21.74 Kcal/mol and Vinblastine: -22.14 Kcal/mol) and their energy scores were better than the FTase bound co-crystallized ligand (L- 739: -7.9 kcal/mol). These three compounds belong to Vinca alkaloids were analyzed through Python Molecular Viewer for their interaction studies. It predicted similar orientation and binding modes for these compounds with L-739 in FTase.Thus from the complex scoring and binding ability it is concluded that these Vinca alkaloids could be promising inhibitors for FTase. A 2-D pharmacophore was generated for these alkaloids using LigandScout to confirm it. A shared feature pharmacophore was also constructed that shows four common features (one hydogen bond Donar, Two hydrogen bond Acceptor and one ionizable area) help compounds to interact with this enzyme.
S locus-linked F-box genes expressed in anthers of Hordeum bulbosum.
Kakeda, Katsuyuki
2009-09-01
Diploid Hordeum bulbosum (a wild relative of cultivated barley) exhibits a two-locus self-incompatibility (SI) system gametophytically controlled by the unlinked multiallelic loci S and Z. This unique SI system is observed in the grasses (Poaceae) including the tribe Triticeae. This paper describes the identification and characterization of two F-box genes cosegregating with the S locus in H. bulbosum, named Hordeum S locus-linked F-box 1 (HSLF1) and HSLF2, which were derived from an S (3) haplotype-specific clone (HAS175) obtained by previous AMF (AFLP-based mRNA fingerprinting) analysis. Sequence analysis showed that both genes encode similar F-box proteins with a C-terminal leucine-rich repeat (LRR) domain, which are distinct from S locus (or S haplotype-specific) F-box protein (SLF/SFB), a class of F-box proteins identified as the pollen S determinant in S-RNase-based gametophytic SI systems. A number of homologous F-box genes with an LRR domain were found in the rice genome, although the functions of the gene family are unknown. One allele of the HSLF1 gene (HSLF1-S (3)) was expressed specifically in mature anthers, whereas no expression was detected from the other two alleles examined. Although the degree of sequence polymorphism among the three HSLF1 alleles was low, a frameshift mutation was found in one of the unexpressed alleles. The HSLF2 gene showed a low level of expression with no tissue specificity as well as little sequence polymorphism among the three alleles. The multiplicity of S locus-linked F-box genes is discussed in comparison with those found in the S-RNase-based SI system.
Jetha, Khushboo; Theißen, Günter; Melzer, Rainer
2014-01-01
The SEPALLATA (SEP) genes of Arabidopsis thaliana encode MADS-domain transcription factors that specify the identity of all floral organs. The four Arabidopsis SEP genes function in a largely yet not completely redundant manner. Here, we analysed interactions of the SEP proteins with DNA. All of the proteins were capable of forming tetrameric quartet-like complexes on DNA fragments carrying two sequence elements termed CArG-boxes. Distances between the CArG-boxes for strong cooperative DNA-binding were in the range of 4–6 helical turns. However, SEP1 also bound strongly to CArG-box pairs separated by smaller or larger distances, whereas SEP2 preferred large and SEP4 preferred small inter-site distances for binding. Cooperative binding of SEP3 was comparatively weak for most of the inter-site distances tested. All SEP proteins constituted floral quartet-like complexes together with the floral homeotic proteins APETALA3 (AP3) and PISTILLATA (PI) on the target genes AP3 and SEP3. Our results suggest an important part of an explanation for why the different SEP proteins have largely, but not completely redundant functions in determining floral organ identity: they may bind to largely overlapping, but not identical sets of target genes that differ in the arrangement and spacing of the CArG-boxes in their cis-regulatory regions. PMID:25183521
Tsanov, Nikolay; Kermi, Chames; Coulombe, Philippe; Van der Laan, Siem; Hodroj, Dana; Maiorano, Domenico
2014-04-01
Proliferating cell nuclear antigen (PCNA) is a well-known scaffold for many DNA replication and repair proteins, but how the switch between partners is regulated is currently unclear. Interaction with PCNA occurs via a domain known as a PCNA-Interacting Protein motif (PIP box). More recently, an additional specialized PIP box has been described, the « PIP degron », that targets PCNA-interacting proteins for proteasomal degradation via the E3 ubiquitin ligase CRL4(Cdt2). Here we provide evidence that CRL4(Cdt2)-dependent degradation of PIP degron proteins plays a role in the switch of PCNA partners during the DNA damage response by facilitating accumulation of translesion synthesis DNA polymerases into nuclear foci. We show that expression of a nondegradable PIP degron (Cdt1) impairs both Pol η and Pol κ focus formation on ultraviolet irradiation and reduces cell viability, while canonical PIP box-containing proteins have no effect. Furthermore, we identify PIP degron-containing peptides from several substrates of CRL4(Cdt2) as efficient inhibitors of Pol η foci formation. By site-directed mutagenesis we show that inhibition depends on a conserved threonine residue that confers high affinity for PCNA-binding. Altogether these findings reveal an important regulative role for the CRL4(Cdt2) pathway in the switch of PCNA partners on DNA damage.
Kainulainen, Markus; Lau, Simone; Samuel, Charles E.; Hornung, Veit
2016-01-01
ABSTRACT Rift Valley fever virus (RVFV, family Bunyaviridae, genus Phlebovirus) is a relevant pathogen of both humans and livestock in Africa. The nonstructural protein NSs is a major virulence factor known to suppress the type I interferon (IFN) response by inhibiting host cell transcription and by proteasomal degradation of a major antiviral IFN effector, the translation-inhibiting protein kinase PKR. Here, we identified components of the modular SCF (Skp1, Cul1, F-box protein)-type E3 ubiquitin ligases as mediators of PKR destruction by NSs. Small interfering RNAs (siRNAs) against the conserved SCF subunit Skp1 protected PKR from NSs-mediated degradation. Consequently, RVFV replication was severely reduced in Skp1-depleted cells when PKR was present. SCF complexes have a variable F-box protein subunit that determines substrate specificity for ubiquitination. We performed an siRNA screen for all (about 70) human F-box proteins and found FBXW11 to be involved in PKR degradation. The partial stabilization of PKR by FBXW11 depletion upregulated PKR autophosphorylation and phosphorylation of the PKR substrate eIF2α and caused a shutoff of host cell protein synthesis in RVFV-infected cells. To maximally protect PKR from the action of NSs, knockdown of structurally and functionally related FBXW1 (also known as β-TRCP1), in addition to FBXW11 deletion, was necessary. Consequently, NSs was found to interact with both FBXW11 and β-TRCP1. Thus, NSs eliminates the antiviral kinase PKR by recruitment of SCF-type E3 ubiquitin ligases containing FBXW11 and β-TRCP1 as substrate recognition subunits. This antagonism of PKR by NSs is essential for efficient RVFV replication in mammalian cells. IMPORTANCE Rift Valley fever virus is a pathogen of humans and animals that has the potential to spread from Africa and the Arabian Peninsula to other regions. A major virulence mechanism is the proteasomal degradation of the antiviral kinase PKR by the viral protein NSs. Here, we demonstrate that NSs requires E3 ubiquitin ligase complexes of the SCF (Skp1, Cul1, F-box protein) type to destroy PKR. SCF-type complexes can engage variant ubiquitination substrate recognition subunits, and we found the F-box proteins FBXW11 and β-TRCP1 to be relevant for the action of NSs against PKR. Thus, we identified the host cell factors that are critically needed by Rift Valley fever virus to uphold its replication against the potent antiviral kinase PKR. PMID:27122577
Kumar, Gulshan; Arya, Preeti; Gupta, Khushboo; Randhawa, Vinay; Acharya, Vishal; Singh, Anil Kumar
2016-01-01
The MADS-box transcription factors play essential roles in various processes of plant growth and development. In the present study, phylogenetic analysis of 142 apple MADS-box proteins with that of other dicotyledonous species identified six putative Dormancy-Associated MADS-box (DAM) and four putative Flowering Locus C-like (FLC-like) proteins. In order to study the expression of apple MADS-box genes, RNA-seq analysis of 3 apical and 5 spur bud stages during dormancy, 6 flower stages and 7 fruit development stages was performed. The dramatic reduction in expression of two MdDAMs, MdMADS063 and MdMADS125 and two MdFLC-like genes, MdMADS135 and MdMADS136 during dormancy release suggests their role as flowering-repressors in apple. Apple orthologs of Arabidopsis genes, FLOWERING LOCUS T, FRIGIDA, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 and LEAFY exhibit similar expression patterns as reported in Arabidopsis, suggesting functional conservation in floral signal integration and meristem determination pathways. Gene ontology enrichment analysis of predicted targets of DAM revealed their involvement in regulation of reproductive processes and meristematic activities, indicating functional conservation of SVP orthologs (DAM) in apple. This study provides valuable insights into the functions of MADS-box proteins during apple phenology, which may help in devising strategies to improve important traits in apple. PMID:26856238
Kumar, Gulshan; Arya, Preeti; Gupta, Khushboo; Randhawa, Vinay; Acharya, Vishal; Singh, Anil Kumar
2016-02-09
The MADS-box transcription factors play essential roles in various processes of plant growth and development. In the present study, phylogenetic analysis of 142 apple MADS-box proteins with that of other dicotyledonous species identified six putative Dormancy-Associated MADS-box (DAM) and four putative Flowering Locus C-like (FLC-like) proteins. In order to study the expression of apple MADS-box genes, RNA-seq analysis of 3 apical and 5 spur bud stages during dormancy, 6 flower stages and 7 fruit development stages was performed. The dramatic reduction in expression of two MdDAMs, MdMADS063 and MdMADS125 and two MdFLC-like genes, MdMADS135 and MdMADS136 during dormancy release suggests their role as flowering-repressors in apple. Apple orthologs of Arabidopsis genes, FLOWERING LOCUS T, FRIGIDA, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 and LEAFY exhibit similar expression patterns as reported in Arabidopsis, suggesting functional conservation in floral signal integration and meristem determination pathways. Gene ontology enrichment analysis of predicted targets of DAM revealed their involvement in regulation of reproductive processes and meristematic activities, indicating functional conservation of SVP orthologs (DAM) in apple. This study provides valuable insights into the functions of MADS-box proteins during apple phenology, which may help in devising strategies to improve important traits in apple.
Progenitor Cell Fate Decisions in Mammary Tumorigenesis
2013-03-01
31.8 NM_134032 Homeo box 82 Hoxb2 18.0 BC011063 HomeoboxAS Hoxa5 17.1 AW105779 Lactate dehydrogenase D Ldbd 14.6 AV367068 Desert hedgehog Dhh 13.8...Fgfrl 689 NM_009704 AmpbiJeplin Areg 663 AV304616 Sonic hedgehog Shh 44.6 NM_D10446 Forklad box A2 Foxa2 42.6 NM_007!’i54 Bone morphogenetic protein...111.5 AV304616 Sonic hedgehog Shb 104.9 NM....010446 Fo!thead box A2 Foxa2 81.7 NM_007SS4 Bone morphogenetic protein 4 Bmp4 69.4 NM_008010 Fibroblast
Li, Shu; Sun, Penglin; Williams, Justin Stephen; Kao, Teh-hui
2014-03-01
The polymorphic S-locus regulating self-incompatibility (SI) in Petunia contains the S-RNase gene and a number of S-locus F-box (SLF) genes. While penetrating the style through the stigma, a pollen tube takes up all S-RNases, but only self S-RNase inhibits pollen tube growth. Recent evidence suggests that SLFs produced by pollen collectively interact with and detoxify non-self S-RNases, but none can interact with self S-RNase. An SLF may be the F-box protein component of an SCF complex (containing Cullin1, Skp1 and Rbx1), which mediates ubiquitination of protein substrates for degradation by the 26S proteasome. However, the precise nature of the complex is unknown. We used pollen extracts of a transgenic plant over-expressing GFP-fused S2-SLF1 (SLF1 of S 2-haplotype) for co-immunoprecipitation (Co-IP) followed by mass spectrometry (MS). We identified PiCUL1-P (a pollen-specific Cullin1), PiSSK1 (a pollen-specific Skp1-like protein) and PiRBX1 (an Rbx1). To validate the results, we raised transgenic plants over-expressing PiSSK1:FLAG:GFP and used pollen extracts for Co-IP-MS. The results confirmed the presence of PiCUL1-P and PiRBX1 in the complex and identified two different SLFs as the F-box protein component. Thus, all but Rbx1 of the complex may have evolved in SI, and all SLFs may be the F-box component of similar complexes.
HMGB1 modulation in pancreatic islets using a cell-permeable A-box fragment.
Hwang, Yong Hwa; Kim, Min Jun; Lee, Yong-Kyu; Lee, Minhyung; Lee, Dong Yun
2017-01-28
Although pancreatic islet implantation is an attractive strategy for curing diabetes mellitus, implanted cells are immunologically eliminated due to early islet graft loss. One of main issues in early islet graft loss is the secretion of high-mobility group-box-1 (HMGB1) protein from the damaged islet cells, which is known as a cytokine-like factor. Therefore, regulating the activity of HMGB1 protein offers an alternative strategy for improving outcomes of islet cell therapy. To this end, we first demonstrated that HMGB1 protein could be bound to its A-box fragment (HMGB1 A-box) with higher binding affinity, resembling anti-HMGB1 antibody. To be used as a pharmaceutical protein ex vivo, TAT-labeled HMGB1 A-box-His 6 (TAT-HMGB1A) was structurally modified for cellular membrane penetration. TAT-HMGB1A significantly reduced secretion of endogenous HMGB1 protein through interaction in the cytosol without any damage to the viability or functionality of the islets. When TAT-HMGB1A-treated islets were implanted into diabetic nude mice, they completely cured diabetes, as evidenced by stable blood glucose level. TAT-HMGB1A treatment could also reduce the marginal islet mass needed to cure diabetes. Furthermore, TAT-HMGB1A positively protected xenotransplanted islets from xenogeneic immune reactions. Collectively, cell-penetrable TAT-HMGB1A could be used to modulate HMGB1 activity to increase successful outcomes of ex vivo pancreatic islet cell therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Jeong, Ji Yeon; Jo, Yang Hee; Kim, Seon Beom; Liu, Qing; Lee, Jin Woo; Mo, Eun Jin; Lee, Ki Yong; Hwang, Bang Yeon; Lee, Mi Kyeong
2015-06-01
The leaves of Morus alba (Moraceae) have been traditionally used for the treatment of metabolic diseases including diabetes and hyperlipidemia. Thus, inhibitory effect of M. alba leaves on pancreatic lipase and their active constituents were investigated in this study. Twenty phenolic compounds including ten flavonoids, eight benzofurans, one stilbene and one chalcones were isolated from the leaves of M. alba. Among the isolated compounds, morachalcone A (20) exerted strong pancreatic lipase inhibition with IC50 value of 6.2 μM. Other phenolic compounds containing a prenyl group showed moderate pancreatic lipase inhibition with IC50 value of <50 μM. Next, extraction conditions with maximum pancreatic lipase inhibition and phenolic content were optimized using response surface methodology with three-level-three-factor Box-Behnken design. Our results suggested the optimized extraction condition for maximum pancreatic lipase inhibition and phenolic content as ethanol concentration of 74.9%; temperature 57.4 °C and sample/solvent ratio, 1/10. The pancreatic lipase inhibition and total phenolic content under optimized condition were found to be 58.5% and 26.2 μg GAE (gallic acid equivalent)/mg extract, respectively, which were well matched with the predicted value. Copyright © 2015 Elsevier Ltd. All rights reserved.
Synergistic Blockade of Mitotic Exit by Two Chemical Inhibitors of the APC/C
Sackton, Katharine L.; Dimova, Nevena; Zeng, Xing; Tian, Wei; Zhang, Mengmeng; Sackton, Timothy B.; Meaders, Johnathan; Pfaff, Kathleen L.; Sigoillot, Frederic; Yu, Hongtao; Luo, Xuelian; King, Randall W.
2014-01-01
Summary Protein machines are multi-subunit protein complexes that orchestrate highly regulated biochemical tasks. An example is the Anaphase-Promoting Complex/Cyclosome (APC/C), a thirteen-subunit ubiquitin ligase that initiates the metaphase-anaphase transition and mitotic exit by targeting proteins such as securin and cyclin B1 for ubiquitin-dependent destruction by the proteasome1,2. Because blocking mitotic exit is an effective approach for inducing tumor cell death3,4, the APC/C represents a potential novel target for cancer therapy. APC/C activation in mitosis requires binding of Cdc205, which forms a co-receptor with the APC/C to recognize substrates containing a Destruction box (D-box)6-14. Here we demonstrate that we can synergistically inhibit APC/C-dependent proteolysis and mitotic exit by simultaneously disrupting two protein-protein interactions within the APC/C-Cdc20-substrate ternary complex. We identified a small molecule, called apcin (APC inhibitor), which binds to Cdc20 and competitively inhibits the ubiquitylation of D-box-containing substrates. Analysis of the crystal structure of the apcin-Cdc20 complex suggests that apcin occupies the D-box-binding pocket on the side face of the WD40-domain. The ability of apcin to block mitotic exit is synergistically amplified by co-addition of tosyl-L-arginine methyl ester (TAME), a small molecule that blocks the APC/C-Cdc20 interaction15,16. This work suggests that simultaneous disruption of multiple, weak protein-protein interactions is an effective approach for inactivating a protein machine. PMID:25156254
Cardiac tissue enriched factors serum response factor and GATA-4 are mutual coregulators
NASA Technical Reports Server (NTRS)
Belaguli, N. S.; Sepulveda, J. L.; Nigam, V.; Charron, F.; Nemer, M.; Schwartz, R. J.
2000-01-01
Combinatorial interaction among cardiac tissue-restricted enriched transcription factors may facilitate the expression of cardiac tissue-restricted genes. Here we show that the MADS box factor serum response factor (SRF) cooperates with the zinc finger protein GATA-4 to synergistically activate numerous myogenic and nonmyogenic serum response element (SRE)-dependent promoters in CV1 fibroblasts. In the absence of GATA binding sites, synergistic activation depends on binding of SRF to the proximal CArG box sequence in the cardiac and skeletal alpha-actin promoter. GATA-4's C-terminal activation domain is obligatory for synergistic coactivation with SRF, and its N-terminal domain and first zinc finger are inhibitory. SRF and GATA-4 physically associate both in vivo and in vitro through their MADS box and the second zinc finger domains as determined by protein A pullout assays and by in vivo one-hybrid transfection assays using Gal4 fusion proteins. Other cardiovascular tissue-restricted GATA factors, such as GATA-5 and GATA-6, were equivalent to GATA-4 in coactivating SRE-dependent targets. Thus, interaction between the MADS box and C4 zinc finger proteins, a novel regulatory paradigm, mediates activation of SRF-dependent gene expression.
Michael, Sushama; Travé, Gilles; Ramu, Chenna; Chica, Claudia; Gibson, Toby J
2008-02-15
KEN-box-mediated target selection is one of the mechanisms used in the proteasomal destruction of mitotic cell cycle proteins via the APC/C complex. While annotating the Eukaryotic Linear Motif resource (ELM, http://elm.eu.org/), we found that KEN motifs were significantly enriched in human protein entries with cell cycle keywords in the UniProt/Swiss-Prot database-implying that KEN-boxes might be more common than reported. Matches to short linear motifs in protein database searches are not, per se, significant. KEN-box enrichment with cell cycle Gene Ontology terms suggests that collectively these motifs are functional but does not prove that any given instance is so. Candidates were surveyed for native disorder prediction using GlobPlot and IUPred and for motif conservation in homologues. Among >25 strong new candidates, the most notable are human HIPK2, CHFR, CDC27, Dab2, Upf2, kinesin Eg5, DNA Topoisomerase 1 and yeast Cdc5 and Swi5. A similar number of weaker candidates were present. These proteins have yet to be tested for APC/C targeted destruction, providing potential new avenues of research.
Yang, Y; Isaac, C; Wang, C; Dragon, F; Pogacic, V; Meier, U T
2000-02-01
Small nucleolar ribonucleoprotein particles (snoRNPs) mainly catalyze the modification of rRNA. The two major classes of snoRNPs, box H/ACA and box C/D, function in the pseudouridylation and 2'-O-methylation, respectively, of specific nucleotides. The emerging view based on studies in yeast is that each class of snoRNPs is composed of a unique set of proteins. Here we present a characterization of mammalian snoRNPs. We show that the previously characterized NAP57 is specific for box H/ACA snoRNPs, whereas the newly identified NAP65, the rat homologue of yeast Nop5/58p, is a component of the box C/D class. Using coimmunoprecipitation experiments, we show that the nucleolar and coiled-body protein Nopp140 interacts with both classes of snoRNPs. This interaction is corroborated in vivo by the exclusive depletion of snoRNP proteins from nucleoli in cells transfected with a dominant negative Nopp140 construct. Interestingly, RNA polymerase I transcription is arrested in nucleoli depleted of snoRNPs, raising the possibility of a feedback mechanism between rRNA modification and transcription. Moreover, the Nopp140-snoRNP interaction appears to be conserved in yeast, because depletion of Srp40p, the yeast Nopp140 homologue, in a conditional lethal strain induces the loss of box H/ACA small nucleolar RNAs. We propose that Nopp140 functions as a chaperone of snoRNPs in yeast and vertebrate cells.
Yang, Yunfeng; Isaac, Cynthia; Wang, Chen; Dragon, François; Pogac̆ić, Vanda; Meier, U. Thomas
2000-01-01
Small nucleolar ribonucleoprotein particles (snoRNPs) mainly catalyze the modification of rRNA. The two major classes of snoRNPs, box H/ACA and box C/D, function in the pseudouridylation and 2′-O-methylation, respectively, of specific nucleotides. The emerging view based on studies in yeast is that each class of snoRNPs is composed of a unique set of proteins. Here we present a characterization of mammalian snoRNPs. We show that the previously characterized NAP57 is specific for box H/ACA snoRNPs, whereas the newly identified NAP65, the rat homologue of yeast Nop5/58p, is a component of the box C/D class. Using coimmunoprecipitation experiments, we show that the nucleolar and coiled-body protein Nopp140 interacts with both classes of snoRNPs. This interaction is corroborated in vivo by the exclusive depletion of snoRNP proteins from nucleoli in cells transfected with a dominant negative Nopp140 construct. Interestingly, RNA polymerase I transcription is arrested in nucleoli depleted of snoRNPs, raising the possibility of a feedback mechanism between rRNA modification and transcription. Moreover, the Nopp140-snoRNP interaction appears to be conserved in yeast, because depletion of Srp40p, the yeast Nopp140 homologue, in a conditional lethal strain induces the loss of box H/ACA small nucleolar RNAs. We propose that Nopp140 functions as a chaperone of snoRNPs in yeast and vertebrate cells. PMID:10679015
Hou, Hongmin; Li, Jun; Gao, Min; Singer, Stacy D.; Wang, Hao; Mao, Linyong; Fei, Zhangjun; Wang, Xiping
2013-01-01
Background The SBP-box gene family is specific to plants and encodes a class of zinc finger-containing transcription factors with a broad range of functions. Although SBP-box genes have been identified in numerous plants including green algae, moss, silver birch, snapdragon, Arabidopsis, rice and maize, there is little information concerning SBP-box genes, or the corresponding miR156/157, function in grapevine. Methodology/Principal Findings Eighteen SBP-box gene family members were identified in Vitis vinifera, twelve of which bore sequences that were complementary to miRNA156/157. Phylogenetic reconstruction demonstrated that plant SBP-domain proteins could be classified into seven subgroups, with the V. vinifera SBP-domain proteins being more closely related to SBP-domain proteins from dicotyledonous angiosperms than those from monocotyledonous angiosperms. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologs of several grape SBP genes were found in corresponding syntenic blocks of Arabidopsis. Expression analysis of the grape SBP-box genes in various organs and at different stages of fruit development in V. quinquangularis ‘Shang-24’ revealed distinct spatiotemporal patterns. While the majority of the grape SBP-box genes lacking a miR156/157 target site were expressed ubiquitously and constitutively, most genes bearing a miR156/157 target site exhibited distinct expression patterns, possibly due to the inhibitory role of the microRNA. Furthermore, microarray data mining and quantitative real-time RT-PCR analysis identified several grape SBP-box genes that are potentially involved in the defense against biotic and abiotic stresses. Conclusion The results presented here provide a further understanding of SBP-box gene function in plants, and yields additional insights into the mechanism of stress management in grape, which may have important implications for the future success of this crop. PMID:23527172
Tan, Meng-Kwang Marcus; Lim, Hui-Jun; Bennett, Eric J.; Shi, Yang; Harper, J. Wade
2014-01-01
Modular Cullin-RING E3 ubiquitin ligases (CRLs) use substrate binding adaptor proteins to specify target ubiquitylation. Many of the ~200 human CRL adaptor proteins remain poorly studied due to a shortage of efficient methods to identify biologically relevant substrates. Here, we report the development of Parallel Adaptor Capture (PAC) proteomics, and its use to systematically identify candidate targets for the leucine-rich repeat family of F-box proteins (FBXLs) that function with SKP1-CUL1-F-box protein (SCF) E3s. In validation experiments, we identify the unstudied F-box protein FBXL17 as a regulator of the NFR2 oxidative stress pathway. We demonstrate that FBXL17 controls the transcription of the NRF2 target HMOX1 via turnover of the transcriptional repressor BACH1 in the absence or presence of extrinsic oxidative stress. This work identifies a role for SCFFBXL17 in controlling the threshold for NRF2-dependent gene activation and provides a framework for elucidating the functions of CRL adaptor proteins. PMID:24035498
Tan, Meng-Kwang Marcus; Lim, Hui-Jun; Bennett, Eric J; Shi, Yang; Harper, J Wade
2013-10-10
Modular cullin-RING E3 ubiquitin ligases (CRLs) use substrate binding adaptor proteins to specify target ubiquitylation. Many of the ~200 human CRL adaptor proteins remain poorly studied due to a shortage of efficient methods to identify biologically relevant substrates. Here, we report the development of parallel adaptor capture (PAC) proteomics and its use to systematically identify candidate targets for the leucine-rich repeat family of F-box proteins (FBXLs) that function with SKP1-CUL1-F-box protein (SCF) E3s. In validation experiments, we identify the unstudied F-box protein FBXL17 as a regulator of the NFR2 oxidative stress pathway. We demonstrate that FBXL17 controls the transcription of the NRF2 target HMOX1 via turnover of the transcriptional repressor BACH1 in the absence or presence of extrinsic oxidative stress. This work identifies a role for SCF(FBXL17) in controlling the threshold for NRF2-dependent gene activation and provides a framework for elucidating the functions of CRL adaptor proteins. Copyright © 2013 Elsevier Inc. All rights reserved.
Choudhury, Swarup Roy; Roy, Sujit; Saha, Progya Paramita; Singh, Sanjay Kumar; Sengupta, Dibyendu N
2008-07-01
MA-ACS1 and MA-ACO1 are the two major ripening genes in banana and play crucial role in the regulation of ethylene production during ripening. Here, we report a comparative ripening pattern in five different naturally occurring banana cultivars namely Cavendish (AAA), Rasthali (AAB), Kanthali (AB), Poovan (AAB) and Monthan (ABB), which have distinct genome composition. We found a distinct variation in the climacteric ethylene production and in-vivo ACC oxidase activity level during the ripening stages in the five cultivars. We identified the cDNAs for MA-ACS1 and MA-ACO1 from the five cultivars and studied the transcript accumulation patterns of the two genes, which correlated well with the differential timing in the expression of these two genes during ripening. The GCC-box is one of the ethylene-responsive elements (EREs) found in the promoters of many ethylene-inducible genes. We have identified a GCC-box motif (putative ERE) in the promoters of MA-ACS1 and MA-ACO1 in banana cultivars. DNA-protein interaction studies revealed the presence of a GCC-box-specific DNA-binding activity in the fruit nuclear extract and such DNA-binding activity was enhanced following ethylene treatment. South-Western blotting revealed a 25-kDa nuclear protein that binds specifically to GCC-box DNA in the climacteric banana fruit. Together, these results indicate the probable involvement of the GCC-box motif as the cis-acting ERE in the regulation of MA-ACS1 and MA-ACO1 during ripening in banana fruits via binding of specific ERE-binding protein.
Chakravarthy, Suma; Tuori, Robert P.; D'Ascenzo, Mark D.; Fobert, Pierre R.; Després, Charles; Martin, Gregory B.
2003-01-01
The tomato transcription factor Pti4, an ethylene-responsive factor (ERF), interacts physically with the disease resistance protein Pto and binds the GCC box cis element that is present in the promoters of many pathogenesis-related (PR) genes. We reported previously that Arabidopsis plants expressing Pti4 constitutively express several GCC box–containing PR genes and show reduced disease symptoms compared with wild-type plants after inoculation with Pseudomonas syringae pv tomato or Erysiphe orontii. To gain insight into how genome-wide gene expression is affected by Pti4, we used serial analysis of gene expression (SAGE) to compare transcripts in wild-type and Pti4-expressing Arabidopsis plants. SAGE provided quantitative measurements of >20,000 transcripts and identified the 50 most highly expressed genes in Arabidopsis vegetative tissues. Comparison of the profiles from wild-type and Pti4-expressing Arabidopsis plants revealed 78 differentially abundant transcripts encoding defense-related proteins, protein kinases, ribosomal proteins, transporters, and two transcription factors (TFs). Many of the genes identified were expressed differentially in wild-type Arabidopsis during infection by Pseudomonas syringae pv tomato, supporting a role for them in defense-related processes. Unexpectedly, the promoters of most Pti4-regulated genes did not have a GCC box. Chromatin immunoprecipitation experiments confirmed that Pti4 binds in vivo to promoters lacking this cis element. Potential binding sites for ERF, MYB, and GBF TFs were present in statistically significantly increased numbers in promoters regulated by Pti4. Thus, Pti4 appears to regulate gene expression directly by binding the GCC box and possibly a non-GCC box element and indirectly by either activating the expression of TF genes or interacting physically with other TFs. PMID:14630974
Armas, Pablo; Agüero, Tristán H; Borgognone, Mariana; Aybar, Manuel J; Calcaterra, Nora B
2008-10-17
Cellular nucleic-acid-binding protein (CNBP) plays an essential role in forebrain and craniofacial development by controlling cell proliferation and survival to mediate neural crest expansion. CNBP binds to single-stranded nucleic acids and displays nucleic acid chaperone activity in vitro. The CNBP family shows a conserved modular organization of seven Zn knuckles and an arginine-glycine-glycine (RGG) box between the first and second Zn knuckles. The participation of these structural motifs in CNBP biochemical activities has still not been addressed. Here, we describe the generation of CNBP mutants that dissect the protein into regions with structurally and functionally distinct properties. Mutagenesis approaches were followed to generate: (i) an amino acid replacement that disrupted the fifth Zn knuckle; (ii) N-terminal deletions that removed the first Zn knuckle and the RGG box, or the RGG box alone; and (iii) a C-terminal deletion that eliminated the three last Zn knuckles. Mutant proteins were overexpressed in Escherichia coli, purified, and used to analyze their biochemical features in vitro, or overexpressed in Xenopus laevis embryos to study their function in vivo during neural crest cell development. We found that the Zn knuckles are required, but not individually essential, for CNBP biochemical activities, whereas the RGG box is essential for RNA-protein binding and nucleic acid chaperone activity. Removal of the RGG box allowed CNBP to preserve a weak single-stranded-DNA-binding capability. A mutant mimicking the natural N-terminal proteolytic CNBP form behaved as the RGG-deleted mutant. By gain-of-function and loss-of-function experiments in Xenopus embryos, we confirmed the participation of CNBP in neural crest development, and we demonstrated that the CNBP mutants lacking the N-terminal region or the RGG box alone may act as dominant negatives in vivo. Based on these data, we speculate about the existence of a specific proteolytic mechanism for the regulation of CNBP biochemical activities during neural crest development.
Russell, Anthony G; Watanabe, Yoh-ichi; Charette, J Michael; Gray, Michael W
2005-01-01
Box C/D ribonucleoprotein (RNP) particles mediate O2'-methylation of rRNA and other cellular RNA species. In higher eukaryotic taxa, these RNPs are more complex than their archaeal counterparts, containing four core protein components (Snu13p, Nop56p, Nop58p and fibrillarin) compared with three in Archaea. This increase in complexity raises questions about the evolutionary emergence of the eukaryote-specific proteins and structural conservation in these RNPs throughout the eukaryotic domain. In protists, the primarily unicellular organisms comprising the bulk of eukaryotic diversity, the protein composition of box C/D RNPs has not yet been extensively explored. This study describes the complete gene, cDNA and protein sequences of the fibrillarin homolog from the protozoon Euglena gracilis, the first such information to be obtained for a nucleolus-localized protein in this organism. The E.gracilis fibrillarin gene contains a mixture of intron types exhibiting markedly different sizes. In contrast to most other E.gracilis mRNAs characterized to date, the fibrillarin mRNA lacks a spliced leader (SL) sequence. The predicted fibrillarin protein sequence itself is unusual in that it contains a glycine-lysine (GK)-rich domain at its N-terminus rather than the glycine-arginine-rich (GAR) domain found in most other eukaryotic fibrillarins. In an evolutionarily diverse collection of protists that includes E.gracilis, we have also identified putative homologs of the other core protein components of box C/D RNPs, thereby providing evidence that the protein composition seen in the higher eukaryotic complexes was established very early in eukaryotic cell evolution.
Li, W W; Hsiung, Y; Wong, V; Galvin, K; Zhou, Y; Shi, Y; Lee, A S
1997-01-01
The highly conserved grp78 core promoter element plays an important role in the induction of grp78 under diverse stress signals. Previous studies have established a functional region in the 3' half of the core (stress-inducible change region [SICR]) which exhibits stress-inducible changes in stressed nuclei. The human transcription factor YY1 is shown to bind the SICR and transactivate the core element under stress conditions. Here we report that expression library screening with the core element has identified two new core binding proteins, YB-1 and dbpA. Both proteins belong to the Y-box family of proteins characterized by an evolutionarily conserved DNA binding motif, the cold shock domain (CSD). In contrast to YY1, which binds only double-stranded SICR, the Y-box/CSD proteins much prefer the lower strand of the SICR. The Y-box proteins can repress the inducibility of the grp78 core element mediated by treatment of cells with A23187, thapsigargin, and tunicamycin. In gel shift assays, YY1 binding to the core element is inhibited by either YB-1 or dbpA. A yeast interaction trap screen using LexA-YY1 as a bait and a HeLa cell cDNA-acid patch fusion library identified YB-1 as a YY1-interacting protein. In cotransfection experiments, the Y-box proteins antagonize the YY1-mediated enhancement of transcription directed by the grp78 core in stressed cells. Thus, the CSD proteins may be part of the stress signal transduction mechanism in the mammalian system. PMID:8972186
Müllers, Erik; Uhlig, Tobias; Stirnnagel, Kristin; Fiebig, Uwe; Zentgraf, Hanswalter; Lindemann, Dirk
2011-02-01
Prototype foamy virus (PFV) Gag lacks the characteristic orthoretroviral Cys-His motifs that are essential for various steps of the orthoretroviral replication cycle, such as RNA packaging, reverse transcription, infectivity, integration, and viral assembly. Instead, it contains three glycine-arginine-rich boxes (GR boxes) in its C terminus that putatively represent a functional equivalent. We used a four-plasmid replication-deficient PFV vector system, with uncoupled RNA genome packaging and structural protein translation, to analyze the effects of deletion and various substitution mutations within each GR box on particle release, particle-associated protein composition, RNA packaging, DNA content, infectivity, particle morphology, and intracellular localization. The degree of viral particle release by all mutants was similar to that of the wild type. Only minimal effects on Pol encapsidation, exogenous reverse transcriptase (RT) activity, and genomic viral RNA packaging were observed. In contrast, particle-associated DNA content and infectivity were drastically reduced for all deletion mutants and were undetectable for all alanine substitution mutants. Furthermore, GR box I mutants had significant changes in particle morphology, and GR box II mutants lacked the typical nuclear localization pattern of PFV Gag. Finally, it could be shown that GR boxes I and III, but not GR box II, can functionally complement each other. It therefore appears that, similar to the orthoretroviral Cys-His motifs, the PFV Gag GR boxes are important for RNA encapsidation, genome reverse transcription, and virion infectivity as well as for particle morphogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Jungeun; Shin, Bongjin; Park, Eui-Soon
2010-01-01
Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain andmore » examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.« less
Rodríguez-Lima, Oscar; García-Gutierrez, Ponciano; Jiménez, Lucía; Zarain-Herzberg, Ángel; Lazzarini, Roberto; Landa, Abraham
2015-01-01
TATA-box binding protein (TBP) is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1). Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5) and 2-Cys peroxiredoxin (Ts2-CysPrx) gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene. PMID:26529408
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Jiwon; Department of Microbiology, Chungnam National University, Daejeon 305-764; Choi, Jeong-Hae
2011-06-03
Highlights: {yields} Regulation of transcriptional activation of RhoB is still unclear. {yields} We examine the effect of p38 MAPK inhibition, and c-Jun and RhoB depletion on UV-induced RhoB expression and apoptosis. {yields} We identify the regions of RhoB promoter necessary to confer UV responsiveness using pRhoB-luciferase reporter assays. {yields} c-Jun, ATF2 and p300 are dominantly associated with NF-Y on the distal CCAAT box. {yields} The activation of p38 MAPK primarily contribute to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins on distal CCAAT box of RhoB promoter. -- Abstract: The Ras-related small GTP-binding protein RhoB is rapidly inducedmore » in response to genotoxic stresses caused by ionizing radiation. It is known that UV-induced RhoB expression results from the binding of activating transcription factor 2 (ATF2) via NF-Y to the inverted CCAAT box (-23) of the RhoB promoter. Here, we show that the association of c-Jun with the distal CCAAT box (-72) is primarily involved in UV-induced RhoB expression and p38 MAPK regulated RhoB induction through the distal CCAAT box. UV-induced RhoB expression and apoptosis were markedly attenuated by pretreatment with the p38 MAPK inhibitor. siRNA knockdown of RhoB, ATF2 and c-Jun resulted in decreased RhoB expression and eventually restored the growth of UV-irradiated Jurkat cells. In the reporter assay using luciferase under the RhoB promoter, inhibition of RhoB promoter activity by the p38 inhibitor and knockdown of c-Jun using siRNA occurred through the distal CCAAT box. Immunoprecipitation and DNA affinity protein binding assays revealed the association of c-Jun and p300 via NF-YA and the dissociation of histone deacetylase 1 (HDAC1) via c-Jun recruitment to the CCAAT boxes of the RhoB promoter. These results suggest that the activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins to the distal CCAAT box of the RhoB promoter in Jurkat cells.« less
Kenessey, István; Kói, Krisztina; Horváth, Orsolya; Cserepes, Mihály; Molnár, Dávid; Izsák, Vera; Dobos, Judit; Hegedűs, Balázs
2016-01-01
Background In non-small cell lung cancer (NSCLC) KRAS-mutant status is a negative prognostic and predictive factor. Nitrogen-containing bisphosphonates inhibit prenylation of small G-proteins (e.g. Ras, Rac, Rho) and thus may affect proliferation and migration. In our preclinical work, we investigated the effect of an aminobisphosphonate compound (zoledronic acid) on mutant and wild type KRAS-expressing human NSCLC cell lines. Results We confirmed that zoledronic acid was unable to inhibit the prenylation of mutant K-Ras unlike in the case of wild type K-Ras. In case of in vitro proliferation, the KRAS-mutant human NSCLC cell lines showed resistance to zoledronic acid wild-type KRAS-cells proved to be sensitive. Combinatory application of zoledronic acid enhanced the cytostatic effect of cisplatin. Zoledronic acid did not induce significant apoptosis. In xenograft model, zoledronic acid significantly reduced the weight of wild type KRAS-EGFR-expressing xenograft tumor by decreasing the proliferative capacity. Futhermore, zoledronic acid induced VEGF expression and improved in vivo tumor vascularization. Materials and methods Membrane association of K-Ras was examined by Western-blot. In vitro cell viability, apoptotic cell death and migration were measured in NSCLC lines with different molecular background. The in vivo effect of zoledronic acid was investigated in a SCID mouse subcutaneous xenograft model. Conclusions The in vitro and in vivo inhibitory effect of zoledronic acid was based on the blockade of cell cycle in wild type KRAS-expressing human NSCLC cells. The zoledronic acid induced vascularization supported in vivo cytostatic effect. Our preclinical investigation suggests that patients with wild type KRAS-expressing NSCLC could potentially benefit from aminobisphosphonate therapy. PMID:27780929
Synthesis and P-glycoprotein induction activity of colupulone analogs.
Bharate, Jaideep B; Batarseh, Yazan S; Wani, Abubakar; Sharma, Sadhana; Vishwakarma, Ram A; Kaddoumi, Amal; Kumar, Ajay; Bharate, Sandip B
2015-05-21
Brain amyloid-beta (Aβ) plaques are one of the primary hallmarks associated with Alzheimer's disease (AD) pathology. Efflux pump proteins located at the blood-brain barrier (BBB) have been reported to play an important role in the clearance of brain Aβ, among which the P-glycoprotein (P-gp) efflux transporter pump has been shown to play a crucial role. Thus, P-gp has been considered as a potential therapeutic target for treatment of AD. Colupulone, a prenylated phloroglucinol isolated from Humulus lupulus, is known to activate pregnane-X-receptor (PXR), which is a nuclear receptor controlling P-gp expression. In the present work, we aimed to synthesize and identify analogs of colupulone that are potent P-gp inducer(s) with an ability to enhance Aβ transport across the BBB. A series of colupulone analogs were synthesized by modifications at both prenyl as well as acyl domains. All compounds were screened for P-gp induction activity using a rhodamine 123 based efflux assay in the P-gp overexpressing human adenocarcinoma LS-180 cells, wherein all compounds showed significant P-gp induction activity at 5 μM. In the western blot studies in LS-180 cells, compounds 3k and 5f were able to induce P-gp as well as LRP1 at 1 μM. The effect of compounds on the Aβ uptake and transport was then evaluated. Among all tested compounds, diprenylated acyl phloroglucinol displayed a significant increase (29%) in Aβ transport across bEnd3 cells grown on inserts as a BBB model. The results presented here suggest the potential of this scaffold to enhance clearance of brain Aβ across the BBB and thus its promise for development as a potential anti-Alzheimer agent.
USDA-ARS?s Scientific Manuscript database
The Arabidopsis thaliana F-BOX protein COLD TEMPERATURE GERMINATING10 (CTG10) was identified from an activation tagged mutant screen as causing seeds to complete germination faster than wild type at 10°C when its expression is increased (Salaita et al. 2005. J. Exp. Bot. 56: 2059). Our unpublished d...
Tsanov, Nikolay; Kermi, Chames; Coulombe, Philippe; Van der Laan, Siem; Hodroj, Dana; Maiorano, Domenico
2014-01-01
Proliferating cell nuclear antigen (PCNA) is a well-known scaffold for many DNA replication and repair proteins, but how the switch between partners is regulated is currently unclear. Interaction with PCNA occurs via a domain known as a PCNA-Interacting Protein motif (PIP box). More recently, an additional specialized PIP box has been described, the « PIP degron », that targets PCNA-interacting proteins for proteasomal degradation via the E3 ubiquitin ligase CRL4Cdt2. Here we provide evidence that CRL4Cdt2-dependent degradation of PIP degron proteins plays a role in the switch of PCNA partners during the DNA damage response by facilitating accumulation of translesion synthesis DNA polymerases into nuclear foci. We show that expression of a nondegradable PIP degron (Cdt1) impairs both Pol η and Pol κ focus formation on ultraviolet irradiation and reduces cell viability, while canonical PIP box-containing proteins have no effect. Furthermore, we identify PIP degron-containing peptides from several substrates of CRL4Cdt2 as efficient inhibitors of Pol η foci formation. By site-directed mutagenesis we show that inhibition depends on a conserved threonine residue that confers high affinity for PCNA-binding. Altogether these findings reveal an important regulative role for the CRL4Cdt2 pathway in the switch of PCNA partners on DNA damage. PMID:24423875
Zhao, Liang; Ng, Ee Ting; Davidson, Tara-Lynne; Longmuss, Enya; Urschitz, Johann; Elston, Marlee; Moisyadi, Stefan; Bowles, Josephine; Koopman, Peter
2014-08-12
The mammalian sex-determining factor SRY comprises a conserved high-mobility group (HMG) box DNA-binding domain and poorly conserved regions outside the HMG box. Mouse Sry is unusual in that it includes a C-terminal polyglutamine (polyQ) tract that is absent in nonrodent SRY proteins, and yet, paradoxically, is essential for male sex determination. To dissect the molecular functions of this domain, we generated a series of Sry mutants, and studied their biochemical properties in cell lines and transgenic mouse embryos. Sry protein lacking the polyQ domain was unstable, due to proteasomal degradation. Replacing this domain with irrelevant sequences stabilized the protein but failed to restore Sry's ability to up-regulate its key target gene SRY-box 9 (Sox9) and its sex-determining function in vivo. These functions were restored only when a VP16 transactivation domain was substituted. We conclude that the polyQ domain has important roles in protein stabilization and transcriptional activation, both of which are essential for male sex determination in mice. Our data disprove the hypothesis that the conserved HMG box domain is the only functional domain of Sry, and highlight an evolutionary paradox whereby mouse Sry has evolved a novel bifunctional module to activate Sox9 directly, whereas SRY proteins in other taxa, including humans, seem to lack this ability, presumably making them dependent on partner proteins(s) to provide this function.
Enwerem, Isioma I.; Velma, Venkatramreddy; Broome, Hanna J.; Kuna, Marija; Begum, Rowshan A.; Hebert, Michael D.
2014-01-01
ABSTRACT Spliceosomal small nuclear ribonucleoproteins (snRNPs) are enriched in the Cajal body (CB). Guide RNAs, known as small Cajal body-specific RNAs (scaRNAs), direct modification of the small nuclear RNA (snRNA) component of the snRNP. The protein WRAP53 binds a sequence motif (the CAB box) found in many scaRNAs and the RNA component of telomerase (hTR) and targets these RNAs to the CB. We have previously reported that coilin, the CB marker protein, associates with certain non-coding RNAs. For a more comprehensive examination of the RNAs associated with coilin, we have sequenced the RNA isolated from coilin immunocomplexes. A striking preferential association of coilin with the box C/D scaRNAs 2 and 9, which lack a CAB box, was observed. This association varied by treatment condition and WRAP53 knockdown. In contrast, reduction of WRAP53 did not alter the level of coilin association with hTR. Additional studies showed that coilin degrades/processes scaRNA 2 and 9, associates with active telomerase and can influence telomerase activity. These findings suggest that coilin plays a novel role in the biogenesis of box C/D scaRNPs and telomerase. PMID:24659245
The DEAD-box Protein Dbp2 Functions with the RNA-binding Protein Yra1 to Promote mRNP Assembly
Ma, Wai Kit; Cloutier, Sara C.; Tran, Elizabeth J.
2013-01-01
Eukaryotic gene expression involves numerous biochemical steps that are dependent on RNA structure and ribonucleoprotein (RNP) complex formation. The DEAD-box class of RNA helicases plays fundamental roles in formation of RNA and RNP structure in every aspect of RNA metabolism. In an effort to explore the diversity of biological roles for DEAD-box proteins, our laboratory recently demonstrated that the DEAD-box protein Dbp2 associates with actively transcribing genes and is required for normal gene expression in Saccharomyces cerevisiae. We now provide evidence that Dbp2 interacts genetically and physically with the mRNA export factor Yra1. In addition, we find that Dbp2 is required for in vivo assembly of mRNA-binding proteins Yra1, Nab2 and Mex67 onto poly(A)+ RNA. Strikingly, we also show that Dbp2 is an efficient RNA helicase in vitro and that Yra1 decreases the efficiency of ATP-dependent duplex unwinding. We provide a model whereby mRNP assembly requires Dbp2 unwinding activity and once the mRNP is properly assembled, inhibition by Yra1 prevents further rearrangements. Both Yra1 and Dbp2 are conserved in multicellular eukaryotes suggesting that this constitutes a broadly conserved mechanism for stepwise assembly of mature mRNPs in the nucleus. PMID:23721653
Nolting, Nicole; Pöggeler, Stefanie
2006-11-01
The MADS box protein MCM1 controls diverse developmental processes and is essential for fruiting body formation in the homothallic ascomycete Sordaria macrospora. MADS box proteins derive their regulatory specificity from a wide range of different protein interactions. We have recently shown that the S. macrospora MCM1 is able to interact with the alpha-domain mating-type protein SMTA-1. To further evaluate the functional roles of MCM1, we used the yeast two-hybrid approach to identify MCM1-interacting proteins. From this screen, we isolated a protein with a putative N-terminal homeodomain and C-terminal C2/H2-Zn2+ finger domains. The protein is a member of the highly conserved fungal STE12 transcription factor family of proteins and was therefore termed STE12. Furthermore, we demonstrate by means of two-hybrid and far western analysis that in addition to MCM1, the S. macrospora STE12 protein is able to interact with the mating-type protein SMTA-1. Unlike the situation in the closely related heterothallic ascomycete Neurospora crassa, deletion (Delta) of the ste12 gene in S. macrospora neither affects vegetative growth nor fruiting body formation. However, ascus and ascospore development are highly impaired by the Deltaste12 mutation. Our data provide another example of the functional divergence within the fungal STE12 transcription factor family.
Li, Dayong; Liu, Huizhi; Zhang, Huijuan; Wang, Xiaoe; Song, Fengming
2008-01-01
DEAD-box proteins comprise a large protein family with members from all kingdoms and play important roles in all types of processes in RNA metabolism. In this study, a rice gene OsBIRH1, which encodes a DEAD-box RNA helicase protein, was cloned and characterized. The predicted OsBIRH1 protein contains a DEAD domain and all conserved motifs that are common characteristics of DEAD-box RNA helicases. Recombinant OsBIRH1 protein purified from Escherichia coli was shown to have both RNA-dependent ATPase and ATP-dependent RNA helicase activities in vitro. Expression of OsBIRH1 was activated in rice seedling leaves after treatment with defence-related signal chemicals, for example benzothiadiazole, salicylic acid, l-aminocyclopropane-1-carboxylic acid, and jasmonic acid, and was also up-regulated in an incompatible interaction between a resistant rice genotype and the blast fungus, Magnaporthe grisea. Transgenic Arabidopsis plants that overexpress the OsBIRH1 gene were generated. Disease resistance phenotype assays revealed that the OsBIRH1-overexpressing transgenic plants showed an enhanced disease resistance against Alternaria brassicicola and Pseudomonas syringae pv. tomato DC3000. Meanwhile, defence-related genes, for example PR-1, PR-2, PR-5, and PDF1.2, showed an up-regulated expression in the transgenic plants. Moreover, the OsBIRH1 transgenic Arabidopsis plants also showed increased tolerance to oxidative stress and elevated expression levels of oxidative defence genes, AtApx1, AtApx2, and AtFSD1. The results suggest that OsBIRH1 encodes a functional DEAD-box RNA helicase and plays important roles in defence responses against biotic and abiotic stresses. PMID:18441339
Tolmachova, Tanya; Anders, Ross; Abrink, Magnus; Bugeon, Laurence; Dallman, Margaret J.; Futter, Clare E.; Ramalho, José S.; Tonagel, Felix; Tanimoto, Naoyuki; Seeliger, Mathias W.; Huxley, Clare; Seabra, Miguel C.
2006-01-01
Choroideremia (CHM) is an X-linked degeneration of the retinal pigment epithelium (RPE), photoreceptors, and choroid, caused by loss of function of the CHM/REP1 gene. REP1 is involved in lipid modification (prenylation) of Rab GTPases, key regulators of intracellular vesicular transport and organelle dynamics. To study the pathogenesis of CHM and to develop a model for assessing gene therapy, we have created a conditional mouse knockout of the Chm gene. Heterozygous-null females exhibit characteristic hallmarks of CHM: progressive degeneration of the photoreceptors, patchy depigmentation of the RPE, and Rab prenylation defects. Using tamoxifen-inducible and tissue-specific Cre expression in combination with floxed Chm alleles, we show that CHM pathogenesis involves independently triggered degeneration of photoreceptors and the RPE, associated with different subsets of defective Rabs. PMID:16410831
Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle.
Xue, Song; Wang, Ruiying; Yang, Fangping; Terns, Rebecca M; Terns, Michael P; Zhang, Xinxin; Maxwell, E Stuart; Li, Hong
2010-09-24
Box C/D small nucleolar and Cajal body ribonucleoprotein particles (sno/scaRNPs) direct site-specific 2'-O-methylation of ribosomal and spliceosomal RNAs and are critical for gene expression. Here we report crystal structures of an archaeal box C/D RNP containing three core proteins (fibrillarin, Nop56/58, and L7Ae) and a half-mer box C/D guide RNA paired with a substrate RNA. The structure reveals a guide-substrate RNA duplex orientation imposed by a composite protein surface and the conserved GAEK motif of Nop56/58. Molecular modeling supports a dual C/D RNP structure that closely mimics that recently visualized by electron microscopy. The substrate-bound dual RNP model predicts an asymmetric protein distribution between the RNP that binds and methylates the substrate RNA. The predicted asymmetric nature of the holoenzyme is consistent with previous biochemical data on RNP assembly and provides a simple solution for accommodating base-pairing between the C/D guide RNA and large ribosomal and spliceosomal substrate RNAs. Copyright © 2010 Elsevier Inc. All rights reserved.
2012-01-01
Background MADS-box genes constitute a large family of transcription factors functioning as key regulators of many processes during plant vegetative and reproductive development. Type II MADS-box genes have been intensively investigated and are mostly involved in vegetative and flowering development. A growing number of studies of Type I MADS-box genes in Arabidopsis, have assigned crucial roles for these genes in gamete and seed development and have demonstrated that a number of Type I MADS-box genes are epigenetically regulated by DNA methylation and histone modifications. However, reports on agronomically important cereals such as barley and wheat are scarce. Results Here we report the identification and characterization of two Type I-like MADS-box genes, from barley (Hordeum vulgare), a monocot cereal crop of high agronomic importance. Protein sequence and phylogenetic analysis showed that the putative proteins are related to Type I MADS-box proteins, and classified them in a distinct cereal clade. Significant differences in gene expression among seed developmental stages and between barley cultivars with varying seed size were revealed for both genes. One of these genes was shown to be induced by the seed development- and stress-related hormones ABA and JA whereas in situ hybridizations localized the other gene to specific endosperm sub-compartments. The genomic organization of the latter has high conservation with the cereal Type I-like MADS-box homologues and the chromosomal position of both genes is close to markers associated with seed quality traits. DNA methylation differences are present in the upstream and downstream regulatory regions of the barley Type I-like MADS-box genes in two different developmental stages and in response to ABA treatment which may be associated with gene expression differences. Conclusions Two barley MADS-box genes were studied that are related to Type I MADS-box genes. Differential expression in different seed developmental stages as well as in barley cultivars with different seed size was evidenced for both genes. The two barley Type I MADS-box genes were found to be induced by ABA and JA. DNA methylation differences in different seed developmental stages and after exogenous application of ABA is suggestive of epigenetic regulation of gene expression. The study of barley Type I-like MADS-box genes extends our investigations of gene regulation during endosperm and seed development in a monocot crop like barley. PMID:22985436
Hoffmann, H M; Catron, K M; van Wijnen, A J; McCabe, L R; Lian, J B; Stein, G S; Stein, J L
1994-12-20
The OC box of the rat osteocalcin promoter (nt -99 to -76) is the principal proximal regulatory element contributing to both tissue-specific and developmental control of osteocalcin gene expression. The central motif of the OC box includes a perfect consensus DNA binding site for certain homeodomain proteins. Homeodomain proteins are transcription factors that direct proper development by regulating specific temporal and spatial patterns of gene expression. We therefore addressed the role of the homeodomain binding motif in the activity of the OC promoter. In this study, by the combined application of mutagenesis and site-specific protein recognition analysis, we examined interactions of ROS 17/2.8 osteosarcoma cell nuclear proteins and purified Msx-1 homeodomain protein with the OC box. We detected a series of related specific protein-DNA interactions, a subset of which were inhibited by antibodies directed against the Msx-1 homeodomain but which also recognize the Msx-2 homeodomain. Our results show that the sequence requirements for binding the Msx-1 or Msx-2 homeodomain closely parallel those necessary for osteocalcin gene promoter activity in vivo. This functional relationship was demonstrated by transient expression in ROS 17/2.8 osteosarcoma cells of a series of osteocalcin promoter (nt -1097 to +24)-reporter gene constructs containing mutations within and flanking the homeodomain binding site of the OC box. Northern blot analysis of several bone-related cell types showed that all of the cells expressed msx-1, whereas msx-2 expression was restricted to cells transcribing osteocalcin. Taken together, our results suggest a role for Msx-1 and -2 or related homeodomain proteins in transcription of the osteocalcin gene.
In-depth proteome analysis of the rubber particle of Hevea brasiliensis (para rubber tree).
Dai, Longjun; Kang, Guijuan; Li, Yu; Nie, Zhiyi; Duan, Cuifang; Zeng, Rizhong
2013-05-01
The rubber particle is a special organelle in which natural rubber is synthesised and stored in the laticifers of Hevea brasiliensis. To better understand the biological functions of rubber particles and to identify the candidate rubber biosynthesis-related proteins, a comprehensive proteome analysis was performed on H. brasiliensis rubber particles using shotgun tandem mass spectrometry profiling approaches-resulting in a thorough report on the rubber particle proteins. A total of 186 rubber particle proteins were identified, with a range in relative molecular mass of 3.9-194.2 kDa and in isoelectric point values of 4.0-11.2. The rubber particle proteins were analysed for gene ontology and could be categorised into eight major groups according to their functions: including rubber biosynthesis, stress- or defence-related responses, protein processing and folding, signal transduction and cellular transport. In addition to well-known rubber biosynthesis-related proteins such as rubber elongation factor (REF), small rubber particle protein (SRPP) and cis-prenyl transferase (CPT), many proteins were firstly identified to be on the rubber particles, including cyclophilin, phospholipase D, cytochrome P450, small GTP-binding protein, clathrin, eukaryotic translation initiation factor, annexin, ABC transporter, translationally controlled tumour protein, ubiquitin-conjugating enzymes, and several homologues of REF, SRPP and CPT. A procedure of multiple reaction monitoring was established for further protein validation. This comprehensive proteome data of rubber particles would facilitate investigation into molecular mechanisms of biogenesis, self-homeostasis and rubber biosynthesis of the rubber particle, and might serve as valuable biomarkers in molecular breeding studies of H. brasiliensis and other alternative rubber-producing species.
Kainulainen, Markus; Lau, Simone; Samuel, Charles E; Hornung, Veit; Weber, Friedemann
2016-07-01
Rift Valley fever virus (RVFV, family Bunyaviridae, genus Phlebovirus) is a relevant pathogen of both humans and livestock in Africa. The nonstructural protein NSs is a major virulence factor known to suppress the type I interferon (IFN) response by inhibiting host cell transcription and by proteasomal degradation of a major antiviral IFN effector, the translation-inhibiting protein kinase PKR. Here, we identified components of the modular SCF (Skp1, Cul1, F-box protein)-type E3 ubiquitin ligases as mediators of PKR destruction by NSs. Small interfering RNAs (siRNAs) against the conserved SCF subunit Skp1 protected PKR from NSs-mediated degradation. Consequently, RVFV replication was severely reduced in Skp1-depleted cells when PKR was present. SCF complexes have a variable F-box protein subunit that determines substrate specificity for ubiquitination. We performed an siRNA screen for all (about 70) human F-box proteins and found FBXW11 to be involved in PKR degradation. The partial stabilization of PKR by FBXW11 depletion upregulated PKR autophosphorylation and phosphorylation of the PKR substrate eIF2α and caused a shutoff of host cell protein synthesis in RVFV-infected cells. To maximally protect PKR from the action of NSs, knockdown of structurally and functionally related FBXW1 (also known as β-TRCP1), in addition to FBXW11 deletion, was necessary. Consequently, NSs was found to interact with both FBXW11 and β-TRCP1. Thus, NSs eliminates the antiviral kinase PKR by recruitment of SCF-type E3 ubiquitin ligases containing FBXW11 and β-TRCP1 as substrate recognition subunits. This antagonism of PKR by NSs is essential for efficient RVFV replication in mammalian cells. Rift Valley fever virus is a pathogen of humans and animals that has the potential to spread from Africa and the Arabian Peninsula to other regions. A major virulence mechanism is the proteasomal degradation of the antiviral kinase PKR by the viral protein NSs. Here, we demonstrate that NSs requires E3 ubiquitin ligase complexes of the SCF (Skp1, Cul1, F-box protein) type to destroy PKR. SCF-type complexes can engage variant ubiquitination substrate recognition subunits, and we found the F-box proteins FBXW11 and β-TRCP1 to be relevant for the action of NSs against PKR. Thus, we identified the host cell factors that are critically needed by Rift Valley fever virus to uphold its replication against the potent antiviral kinase PKR. Copyright © 2016 Kainulainen et al.
Kramer, B; Ferrari, D M; Klappa, P; Pöhlmann, N; Söling, H D
2001-01-01
The rat luminal endoplasmic-recticulum calcium-binding proteins 1 and 2 (CaBP1 and CaBP2 respectively) are members of the protein disulphide-isomerase (PDI) family. They contain two and three thioredoxin boxes (Cys-Gly-His-Cys) respectively and, like PDI, may be involved in the folding of nascent proteins. We demonstrate here that CaBP1, similar to PDI and CaBP2, can complement the lethal phenotype of the disrupted Saccharomyces cerevisiae PDI gene, provided that the natural C-terminal Lys-Asp-Glu-Leu sequence is replaced by His-Asp-Glu-Leu. Both the in vitro RNase AIII-re-activation assays and in vivo pro-(carboxypeptidase Y) processing assays using CaBP1 and CaBP2 thioredoxin (trx)-box mutants revealed that, whereas the three trx boxes in CaBP2 seem to be functionally equivalent, the first trx box of CaBP1 is significantly more active than the second trx box. Furthermore, only about 65% re-activation of denatured reduced RNase AIII could be obtained with CaBP1 or CaBP2 compared with PDI, and the yield of PDI-catalysed reactions was significantly reduced in the presence of either CaBP1 or CaBP2. In contrast with PDI, neither CaBP1 nor CaBP2 could catalyse the renaturation of denatured glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is a redox-independent process, and neither protein had any effect on the PDI-catalysed refolding of GAPDH. Furthermore, although PDI can bind peptides via its b' domain, a property it shares with PDIp, the pancreas-specific PDI homologue, and although PDI can bind malfolded proteins such as 'scrambled' ribonuclease, no such interactions could be detected for CaBP2. We conclude that: (1) both CaBP2 and CaBP1 lack peptide-binding activity for GAPDH attributed to the C-terminal region of the a' domain of PDI; (2) CaBP2 lacks the general peptide-binding activity attributed to the b' domain of PDI; (3) interaction of CaBP2 with substrate (RNase AIII) is different from that of PDI and substrate; and (4) both CaBP2 and CaBP1 may promote oxidative folding by different kinetic pathways. PMID:11415439
Churchill, Mair E.A.; Klass, Janet; Zoetewey, David L.
2010-01-01
The ubiquitous eukaryotic High-Mobility-Group-Box (HMGB) chromosomal proteins promote many chromatin-mediated cellular activities through their non-sequence-specific binding and bending of DNA. Minor groove DNA binding by the HMG box results in substantial DNA bending toward the major groove owing to electrostatic interactions, shape complementarity and DNA intercalation that occurs at two sites. Here, the structures of the complexes formed with DNA by a partially DNA intercalation-deficient mutant of Drosophila melanogaster HMGD have been determined by X-ray crystallography at a resolution of 2.85 Å. The six proteins and fifty base pairs of DNA in the crystal structure revealed a variety of bound conformations. All of the proteins bound in the minor groove, bridging DNA molecules, presumably because these DNA regions are easily deformed. The loss of the primary site of DNA intercalation decreased overall DNA bending and shape complementarity. However, DNA bending at the secondary site of intercalation was retained and most protein-DNA contacts were preserved. The mode of binding resembles the HMGB1-boxA-cisplatin-DNA complex, which also lacks a primary intercalating residue. This study provides new insights into the binding mechanisms used by HMG boxes to recognize varied DNA structures and sequences as well as modulate DNA structure and DNA bending. PMID:20800069
Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway
Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; ...
2015-06-16
Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore » to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRas G12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRas G12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less
Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway
Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li-Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven
2015-01-01
Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors. PMID:26080442
Kim, Seong K; Shakya, Akhalesh K; O'Callaghan, Dennis J
2016-01-04
The immediate-early protein (IEP) of equine herpesvirus 1 (EHV-1) has extensive homology to the IEP of alphaherpesviruses and possesses domains essential for trans-activation, including an acidic trans-activation domain (TAD) and binding domains for DNA, TFIIB, and TBP. Our data showed that the IEP directly interacted with transcription factor TFIIA, which is known to stabilize the binding of TBP and TFIID to the TATA box of core promoters. When the TATA box of the EICP0 promoter was mutated to a nonfunctional TATA box, IEP-mediated trans-activation was reduced from 22-fold to 7-fold. The IEP trans-activated the viral promoters in a TATA motif-dependent manner. Our previous data showed that the IEP is able to repress its own promoter when the IEP-binding sequence (IEBS) is located within 26-bp from the TATA box. When the IEBS was located at 100 bp upstream of the TATA box, IEP-mediated trans-activation was very similar to that of the minimal IE(nt -89 to +73) promoter lacking the IEBS. As the distance from the IEBS to the TATA box decreased, IEP-mediated trans-activation progressively decreased, indicating that the IEBS located within 100 bp from the TATA box sequence functions as a distance-dependent repressive element. These results indicated that IEP-mediated full trans-activation requires a consensus TATA box of core promoters, but not its binding to the cognate sequence (IEBS). Copyright © 2015 Elsevier B.V. All rights reserved.
Kim, Seong K.; Shakya, Akhalesh K.; O'Callaghan, Dennis J.
2015-01-01
The immediate-early protein (IEP) of equine herpesvirus 1 (EHV-1) has extensive homology to the IEP of alphaherpesviruses and possesses domains essential for trans-activation, including an acidic trans-activation domain (TAD) and binding domains for DNA, TFIIB, and TBP. Our data showed that the IEP directly interacted with transcription factor TFIIA, which is known to stabilize the binding of TBP and TFIID to the TATA box of core promoters. When the TATA box of the EICP0 promoter was mutated to a nonfunctional TATA box, IEP-mediated trans-activation was reduced from 22-fold to 7-fold. The IEP trans-activated the viral promoters in a TATA motif-dependent manner. Our previous data showed that the IEP is able to repress its own promoter when the IEP-binding sequence (IEBS) is located within 26-bp from the TATA box. When the IEBS was located at 100 bp upstream of the TATA box, IEP-mediated trans-activation was very similar to that of the minimal IE(nt −89 to +73) promoter lacking the IEBS. As the distance from the IEBS to the TATA box decreased, IEP-mediated trans-activation progressively decreased, indicating that the IEBS located within 100 bp from the TATA box sequence functions as a distance-dependent repressive element. These results indicated that IEP-mediated full trans-activation requires a consensus TATA box of core promoters, but not its binding to the cognate sequence (IEBS). PMID:26541315
Protein degradation machinery is present broadly during early development in the sea urchin.
Zazueta-Novoa, Vanesa; Wessel, Gary M
2014-07-01
Ubiquitin-dependent proteosome-mediated proteolysis is an important pathway of degradation that controls the timed destruction of cellular proteins in all tissues. All intracellular proteins and many extracellular proteins are continually being hydrolyzed to their constituent amino acids as a result of their recognition by E3 ligases for specific targeting of ubiquitination. Gustavus is a member of an ECS-type E3 ligase which interacts with Vasa, a DEAD-box RNA helicase, to regulate its localization during sea urchin embryonic development, and Gustavus mRNA accumulation is highly localized and dynamic during development. We tested if the core complex for Gustavus function was present in the embryo and if other SOCS box proteins also had restricted expression profiles that would inform future research. Expression patterns of the key members of the proteasomal function, such as the E3 core complex which interacts with Gustavus, and other E3-SOCS box proteins, are widely spread and dynamic in early development of the embryo suggesting broad core complex availability in the proteasome degradation pathway and temporal/spatial enrichments of various E3 ligase dependent targeting mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Protein degradation machinery is present broadly during early development in the sea urchin
Zazueta-Novoa, Vanesa; Wessel, Gary M.
2014-01-01
Ubiquitin-dependent proteosome-mediated proteolysis is an important pathway of degradation that controls the timed destruction of cellular proteins in all tissues. All intracellular proteins and many extracellular proteins are continually being hydrolyzed to their constituent amino acids as a result of their recognition by E3 ligases for specific targeting of ubiquitination. Gustavus is a member of an ECS-type E3 ligase which interacts with Vasa, a DEAD-box RNA helicase, to regulate its localization during sea urchin embryonic development, and Gustavus mRNA accumulation is highly localized and dynamic during development. We tested if the core complex for Gustavus function was present in the embryo and if other SOCS box proteins also had restricted expression profiles that would inform future research. Expression patterns of the key members of the proteasomal function, such as the E3 core complex which interacts with Gustavus, and other E3-SOCS box proteins, are widely spread and dynamic in early development of the embryo suggesting broad core complex availability in the proteasome degradation pathway and temporal/spatial enrichments of various E3 ligase dependent targeting mechanisms. PMID:24963879
Linking F-box protein 7 and parkin to neuronal degeneration in Parkinson's disease (PD).
Zhou, Zhi Dong; Sathiyamoorthy, Sushmitha; Angeles, Dario C; Tan, Eng King
2016-04-18
Mutations of F-box protein 7 (FBXO7) and Parkin, two proteins in ubiquitin-proteasome system (UPS), are both implicated in pathogenesis of dopamine (DA) neuron degeneration in Parkinson's disease (PD). Parkin is a HECT/RING hybrid ligase that physically receives ubiquitin on its catalytic centre and passes ubiquitin onto its substrates, whereas FBXO7 is an adaptor protein in Skp-Cullin-F-box (SCF) SCF(FBXO7) ubiquitin E3 ligase complex to recognize substrates and mediate substrates ubiquitination by SCF(FBXO7) E3 ligase. Here, we discuss the overlapping pathophysiologic mechanisms and clinical features linking Parkin and FBXO7 with autosomal recessive PD. Both proteins play an important role in neuroprotective mitophagy to clear away impaired mitochondria. Parkin can be recruited to impaired mitochondria whereas cellular stress can promote FBXO7 mitochondrial translocation. PD-linked FBXO7 can recruit Parkin into damaged mitochondria and facilitate its aggregation. WT FBXO7, but not PD-linked FBXO7 mutants can rescue DA neuron degeneration in Parkin null Drosophila. A better understanding of the common pathophysiologic mechanisms of these two proteins could unravel specific pathways for targeted therapy in PD.
Genetics Home Reference: protein C deficiency
... Twitter Home Health Conditions Protein C deficiency Protein C deficiency Printable PDF Open All Close All Enable ... to view the expand/collapse boxes. Description Protein C deficiency is a disorder that increases the risk ...
Wang, Jie; Yao, Wenkong; Wang, Lei; Ma, Fuli; Tong, Weihuo; Wang, Chen; Bao, Rui; Jiang, Changyue; Yang, Yazhou; Zhang, Jianxia; Xu, Yan; Wang, Xiping; Zhang, Chaohong; Wang, Yuejin
2017-10-01
An F-box protein (VpEIFP1) induced by Erysiphe necator was isolated from Vitis pseudoreticulata, a wild Chinese grapevine species naturally resistant to powdery mildew (PM). It contains an F-box domain and two Kelch-repeat motifs. Expression profiles indicate the VpEIFP1 is strongly induced at both transcriptional and translational levels by PM infection. A subcellular localisation assay showed that VpEIFP1 is predominantly located in the nucleus and cytoplasm. Overexpression of VpEIFP1 accelerated the accumulation of hydrogen peroxide (H 2 O 2 ) and up-regulated the expressions of ICS2, NPR1 and PR1 involved in defence responses, resulting in suppression of PM germination and growth. As an F-box protein, VpEIFP1 interacts with thioredoxin z (VpTrxz) in the yeast-two-hybrid (Y2H) assay and in the bimolecular fluorescence complementation (BiFC) assay. Decreased amounts of VpTrxz protein in transgenic grapevine leaves overexpressing VpEIFP1 were restored by proteasome inhibitor MG132, implying that VpEIFP1 mediated VpTrxz for degradation through the SCF VpEIFP1 (Skp1-Cullin-F-box) E3 ubiquitin ligase complex. The RNA interference line of VpTrxz showed increased H 2 O 2 accumulation following PM inoculation. We propose VpEIFP1 positively modulates the grapevine defence response to PM by inducing the degradation of VpTrxz via the ubiquitin/26S proteasome system. Copyright © 2017 Elsevier B.V. All rights reserved.
Sardana, Richa; Liu, Xin; Granneman, Sander; Zhu, Jieyi; Gill, Michael; Papoulas, Ophelia; Marcotte, Edward M; Tollervey, David; Correll, Carl C; Johnson, Arlen W
2015-02-01
In eukaryotes, the highly conserved U3 small nucleolar RNA (snoRNA) base-pairs to multiple sites in the pre-ribosomal RNA (pre-rRNA) to promote early cleavage and folding events. Binding of the U3 box A region to the pre-rRNA is mutually exclusive with folding of the central pseudoknot (CPK), a universally conserved rRNA structure of the small ribosomal subunit essential for protein synthesis. Here, we report that the DEAH-box helicase Dhr1 (Ecm16) is responsible for displacing U3. An active site mutant of Dhr1 blocked release of U3 from the pre-ribosome, thereby trapping a pre-40S particle. This particle had not yet achieved its mature structure because it contained U3, pre-rRNA, and a number of early-acting ribosome synthesis factors but noticeably lacked ribosomal proteins (r-proteins) that surround the CPK. Dhr1 was cross-linked in vivo to the pre-rRNA and to U3 sequences flanking regions that base-pair to the pre-rRNA including those that form the CPK. Point mutations in the box A region of U3 suppressed a cold-sensitive mutation of Dhr1, strongly indicating that U3 is an in vivo substrate of Dhr1. To support the conclusions derived from in vivo analysis we showed that Dhr1 unwinds U3-18S duplexes in vitro by using a mechanism reminiscent of DEAD box proteins.
Granneman, Sander; Zhu, Jieyi; Gill, Michael; Papoulas, Ophelia; Marcotte, Edward M.; Tollervey, David; Correll, Carl C.; Johnson, Arlen W.
2015-01-01
In eukaryotes, the highly conserved U3 small nucleolar RNA (snoRNA) base-pairs to multiple sites in the pre-ribosomal RNA (pre-rRNA) to promote early cleavage and folding events. Binding of the U3 box A region to the pre-rRNA is mutually exclusive with folding of the central pseudoknot (CPK), a universally conserved rRNA structure of the small ribosomal subunit essential for protein synthesis. Here, we report that the DEAH-box helicase Dhr1 (Ecm16) is responsible for displacing U3. An active site mutant of Dhr1 blocked release of U3 from the pre-ribosome, thereby trapping a pre-40S particle. This particle had not yet achieved its mature structure because it contained U3, pre-rRNA, and a number of early-acting ribosome synthesis factors but noticeably lacked ribosomal proteins (r-proteins) that surround the CPK. Dhr1 was cross-linked in vivo to the pre-rRNA and to U3 sequences flanking regions that base-pair to the pre-rRNA including those that form the CPK. Point mutations in the box A region of U3 suppressed a cold-sensitive mutation of Dhr1, strongly indicating that U3 is an in vivo substrate of Dhr1. To support the conclusions derived from in vivo analysis we showed that Dhr1 unwinds U3-18S duplexes in vitro by using a mechanism reminiscent of DEAD box proteins. PMID:25710520
Bakkaiova, Jana; Arata, Kosuke; Matsunobu, Miki; Ono, Bungo; Aoki, Tomoyo; Lajdova, Dana; Nebohacova, Martina; Nosek, Jozef; Miyakawa, Isamu
2014-01-01
Mitochondrial DNA (mtDNA) is highly compacted into DNA-protein structures termed mitochondrial nucleoids (mt-nucleoids). The key mt-nucleoid components responsible for mtDNA condensation are HMG box-containing proteins such as mammalian mitochondrial transcription factor A (TFAM) and Abf2p of the yeast Saccharomyces cerevisiae. To gain insight into the function and organization of mt-nucleoids in strictly aerobic organisms, we initiated studies of these DNA-protein structures in Yarrowia lipolytica. We identified a principal component of mt-nucleoids in this yeast and termed it YlMhb1p (Y. lipolytica mitochondrial HMG box-containing protein 1). YlMhb1p contains two putative HMG boxes contributing both to DNA binding and to its ability to compact mtDNA in vitro. Phenotypic analysis of a Δmhb1 strain lacking YlMhb1p resulted in three interesting findings. First, although the mutant exhibits clear differences in mt-nucleoids accompanied by a large decrease in the mtDNA copy number and the number of mtDNA-derived transcripts, its respiratory characteristics and growth under most of the conditions tested are indistinguishable from those of the wild-type strain. Second, our results indicate that a potential imbalance between subunits of the respiratory chain encoded separately by nuclear DNA and mtDNA is prevented at a (post)translational level. Third, we found that mtDNA in the Δmhb1 strain is more prone to mutations, indicating that mtHMG box-containing proteins protect the mitochondrial genome against mutagenic events. PMID:24972935
Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs.
Zhang, Yijun; Fan, Miaomiao; Zhang, Xue; Huang, Feng; Wu, Kang; Zhang, Junsong; Liu, Jun; Huang, Zhuoqiong; Luo, Haihua; Tao, Liang; Zhang, Hui
2014-12-01
The TATA box represents one of the most prevalent core promoters where the pre-initiation complexes (PICs) for gene transcription are assembled. This assembly is crucial for transcription initiation and well regulated. Here we show that some cellular microRNAs (miRNAs) are associated with RNA polymerase II (Pol II) and TATA box-binding protein (TBP) in human peripheral blood mononuclear cells (PBMCs). Among them, let-7i sequence specifically binds to the TATA-box motif of interleukin-2 (IL-2) gene and elevates IL-2 mRNA and protein production in CD4(+) T-lymphocytes in vitro and in vivo. Through direct interaction with the TATA-box motif, let-7i facilitates the PIC assembly and transcription initiation of IL-2 promoter. Several other cellular miRNAs, such as mir-138, mir-92a or mir-181d, also enhance the promoter activities via binding to the TATA-box motifs of insulin, calcitonin or c-myc, respectively. In agreement with the finding that an HIV-1-encoded miRNA could enhance viral replication through targeting the viral promoter TATA-box motif, our data demonstrate that the interaction with core transcription machinery is a novel mechanism for miRNAs to regulate gene expression. © 2014 Zhang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
High Mobility Group Box 1 Protein as an Auxiliary Biomarker for Dengue Diagnosis
Allonso, Diego; Vázquez, Susana; Guzmán, Maria G.; Mohana-Borges, Ronaldo
2013-01-01
Despite the availability of many methods for rapid and early diagnosis of dengue, there is still a need to develop new approaches that not only combine low cost, specificity, and sensitivity, but also are capable of accurately detecting secondary infection in the early stages of the disease. We report the potential of the high mobility group box 1 protein as an auxiliary biomarker for early dengue diagnosis. We tested a 205-sample serum panel that included negative and positive samples from primary and secondary dengue cases, as well as samples from patients with dengue-like symptoms. We observed that high mobility group box 1 protein was generally detected only in dengue-positive samples for persons with primary and secondary infections. These results highlight the possibility of using this endogenous molecule as an auxiliary biomarker to aid in dengue detection and improve current methods for early diagnosis of dengue. PMID:23269659
The Survival Motor Neuron Protein Forms Soluble Glycine Zipper Oligomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Renee; Gupta, Kushol; Ninan, Nisha S.
2012-11-01
The survival motor neuron (SMN) protein forms the oligomeric core of a multiprotein complex that functions in spliceosomal snRNP biogenesis. Loss of function mutations in the SMN gene cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. Nearly half of the known SMA patient missense mutations map to the SMN YG-box, a highly conserved oligomerization domain of unknown structure that contains a (YxxG)3 motif. Here, we report that the SMN YG-box forms helical oligomers similar to the glycine zippers found in transmembrane channel proteins. A network of tyrosine-glycine packing between helices drives formation of soluble YG-box oligomers,more » providing a structural basis for understanding SMN oligomerization and for relating defects in oligomerization to the mutations found in SMA patients. These results have important implications for advancing our understanding of SMN function and glycine zipper-mediated helix-helix interactions.« less
Cytotoxic prenylated flavones from the stem and root bark of Daphne giraldii.
Sun, Qian; Wang, Di; Li, Fei-Fei; Yao, Guo-Dong; Li, Xue; Li, Ling-Zhi; Huang, Xiao-Xiao; Song, Shao-Jiang
2016-08-15
Three new prenylated flavones (1-3), along with three known analogues (4-6), were isolated from the stem and root bark of Daphne giraldii. Their structures were determined by comprehensive NMR and HRESIMS spectroscopic data analyses. The absolute configurations of compounds 2 and 3 were assigned by optical rotation comparison, CD and [Rh2(OCOCF3)4]-induced CD spectral methods. The in vitro cytotoxicity experiments carried out involving five cancer cell lines (U251, A549, HepG2, MCF-7 and Bcap37) showed that 2 markedly inhibited the proliferation of all tested cells with IC50 values ranging from 4.26 to 20.82μM. The preliminary structure-activity relationships of these flavones are discussed. In addition, compound 2 was found to effectively induce apoptosis in HepG2 cells according to a flow cytometry analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Zhiguo; Tang, Longguang; Zou, Peng; Zhang, Yali; Wang, Zhe; Fang, Qilu; Jiang, Lili; Chen, Gaozhi; Xu, Zheng; Zhang, Huajie; Liang, Guang
2014-03-03
Curcumin has been shown to possess anti-inflammatory activities but has been limited for its low stability and poor bioavailability. We have previously reported four series of 5-carbon linker-containing mono-carbonyl analogs of curcumin (MACs). In continuation of our ongoing research, we designed and synthesized 33 novel allylated or prenylated MACs here, and evaluated their anti-inflammatory effects in RAW 264.7 macrophages. A majority of them effectively inhibited the LPS-induced expression of TNF-α and IL-6, especially IL-6. The preliminary SAR and quantitative SAR analysis were conducted. Compound 14q is the most potent analog among them, and exhibits significant protection against LPS-induced death in septic mice. Together, these data present a series of new analogs of curcumin as promising anti-inflammatory agents. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Deterrent activity of hops flavonoids and their derivatives against stored product pests.
Jackowski, J; Popłoński, J; Twardowska, K; Magiera-Dulewicz, J; Hurej, M; Huszcza, E
2017-10-01
Five flavonoids from hops, two of their derivatives, along with naringenin used as a model compound, were tested for their antifeedant activity against three coleopteran stored product pests: Sitophilus granarius L., Tribolium confusum Duv. and Trogoderma granarium Everts. The introduction, into the tested flavonoid molecules, of additional structural fragments such as prenyl or dimethylpyran moiety, is proposed to significantly alter the deterrent activity of the compounds. The prenyl moiety in flavonoids increased the deterrent activity of these compounds in all three of the grain feeding species used in the tests. It is also concluded that the introduction of dimethylpyran moiety to the flavonoid structure increases its deterrent activity in S. granarius and T. confusum, but in one of the test insects, T. granarium, an increased feeding was observed in response to the introduction of dimethylpyran moiety to the flavonoid structure.
Kim, Jang Hoon; Cho, Chong Woon; Kim, Hyo Young; Kim, Kyung Tae; Choi, Gug-Seoun; Kim, Hyeong-Hwang; Cho, In Sook; Kwon, Sun Jung; Choi, Seung-Kook; Yoon, Ju-Yeon; Yang, Seo Young; Kang, Jong Seong; Kim, Young Ho
2017-09-01
The enzyme α-glucosidase is a good drug target for the treatment of diabetes mellitus. Four minor flavonoids (1-4) from roots of Sophora flavescens showed the inhibitory activity, with IC 50 values ranging from 11.0±0.3 to 50.6±1.3μM, toward α-glucosidase. An enzyme kinetics analysis of them revealed that the compounds 1 and 4 were non-competitive, and compounds 2 and 3 were un-competitive inhibitors. For molecular docking, 3-dimensional structure of α-glucosidase was built by homology modeling. As the result, four compounds 1-4 were confirmed to interact into common binding site of α-glucosidase. In addition, all of the four prenylated and lavandulyl compounds (1-4) were abundant in an ethyl acetate fraction separated from a methanol extract, and the potential inhibitor (3) was extracted best using tetrahydrofuran. Copyright © 2017 Elsevier B.V. All rights reserved.
Sobolev, Victor; Arias, Renee; Goodman, Kerestin; Walk, Travis; Orner, Valerie; Faustinelli, Paola; Massa, Alicia
2018-01-10
Aspergillus flavus is a soil fungus that commonly invades peanut seeds and often produces carcinogenic aflatoxins. Under favorable conditions, the fungus-challenged peanut plant produces and accumulates resveratrol and its prenylated derivatives in response to such an invasion. These prenylated stilbenoids are considered peanut antifungal phytoalexins. However, the mechanism of peanut-fungus interaction has not been sufficiently studied. We used pure peanut stilbenoids arachidin-1, arachidin-3, and chiricanine A to study their effects on the viability of and metabolite production by several important toxigenic Aspergillus species. Significant reduction or virtually complete suppression of aflatoxin production was revealed in feeding experiments in A. flavus, Aspergillus parasiticus, and Aspergillus nomius. Changes in morphology, spore germination, and growth rate were observed in A. flavus exposed to the selected peanut stilbenoids. Elucidation of the mechanism of aflatoxin suppression by peanut stilbenoids could provide strategies for preventing plant invasion by the fungi that produce aflatoxins.
Key Pathways and Regulators of Vitamin K Function and Intermediary Metabolism.
Shearer, Martin J; Okano, Toshio
2018-06-01
Vitamin K (VK) is an essential cofactor for the post-translational conversion of peptide-bound glutamate to γ-carboxyglutamate. The resultant vitamin K-dependent proteins are known or postulated to possess a variety of biological functions, chiefly in the maintenance of hemostasis. The vitamin K cycle is a cellular pathway that drives γ-carboxylation and recycling of VK via γ-carboxyglutamyl carboxylase (GGCX) and vitamin K epoxide reductase (VKOR), respectively. In this review, we show how novel molecular biological approaches are providing new insights into the pathophysiological mechanisms caused by rare mutations of both GGCX and VKOR. We also discuss how other protein regulators influence the intermediary metabolism of VK, first through intestinal absorption and second through a pathway that converts some dietary phylloquinone to menadione, which is prenylated to menaquinone-4 (MK-4) in target tissues by UBIAD1. The contribution of MK-4 synthesis to VK functions is yet to be revealed. Expected final online publication date for the Annual Review of Nutrition Volume 38 is August 21, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Taban, A Huma; Tittiger, Claus; Blomquist, Gary J; Welch, William H
2009-06-01
Farnesyl diphosphate synthase (FPPS) catalyzes the consecutive condensation of two molecules of isopentenyl diphosphate with dimethylallyl diphosphate to form farnesyl diphosphate (FPP). In insects, FPP is used for the synthesis of ubiquinones, dolicols, protein prenyl groups, and juvenile hormone. A full-length cDNA of FPPS was cloned from the cotton boll weevil, Anthonomus grandis (AgFPPS). AgFPPS cDNA consists of 1,835 nucleotides and encodes a protein of 438 amino acids. The deduced amino acid sequence has high similarity to previously isolated insect FPPSs and other known FPPSs. Recombinant AgFPPS expressed in E. coli converted labeled isopentenyl diphosphate in the presence of dimethylallyl diphosphate to FPP. Southern blot analysis indicated the presence of a single copy gene. Using molecular modeling, the three-dimensional structure of coleopteran FPPS was determined and compared to the X-ray crystal structure of avian FPPS. The alpha-helical fold is conserved in AgFPPS and the size of the active site cavity is consistent with the enzyme being a FPPS. (c) 2009 Wiley Periodicals, Inc.
An enzyme-coupled continuous fluorescence assay for farnesyl diphosphate synthases
Dozier, Jonathan K; Distefano, Mark D
2012-01-01
Farnesyl diphosphate synthase (FDPS) catalyzes the conversion of isopentenyl diphosphate and dimethylallyl diphosphate to farnesyl diphosphate, a crucial metabolic intermediate in the synthesis of cholesterol, ubiquinone and prenylated proteins; consequently, much effort has gone into developing inhibitors that target FDPS. Currently most FDPS assays use either radiolabeled substrates and are discontinuous, or monitor pyrophosphate release and not farnesyl diphosphate (FPP) creation. Here we report the development of a continuous coupled enzyme assay for FDPS activity that involves the subsequent incorporation of the FPP product of that reaction into a peptide via the action of protein farnesyltransferase (PFTase). By using a dansylated peptide whose fluorescence quantum yield increases upon farnesylation, the rate of FDPS-catalyzed FPP production can be measured. We show that this assay is more sensitive than existing coupled assays, that it can be used to conveniently monitor FDPS activity in a 96-well plate format and that it can reproduce IC50 values for several previously reported FDPS inhibitors. This new method offers a simple, safe and continuous method to assay FDPS activity that should greatly facilitate the screening of inhibitors of this important target. PMID:22085443
Different KChIPs compete for heteromultimeric assembly with pore-forming Kv4 subunits.
Zhou, Jingheng; Tang, Yiquan; Zheng, Qin; Li, Meng; Yuan, Tianyi; Chen, Liangyi; Huang, Zhuo; Wang, KeWei
2015-06-02
Auxiliary Kv channel-interacting proteins 1-4 (KChIPs1-4) coassemble with pore-forming Kv4 α-subunits to form channel complexes underlying somatodendritic subthreshold A-type current that regulates neuronal excitability. It has been hypothesized that different KChIPs can competitively bind to Kv4 α-subunit to form variable channel complexes that can exhibit distinct biophysical properties for modulation of neural function. In this study, we use single-molecule subunit counting by total internal reflection fluorescence microscopy in combinations with electrophysiology and biochemistry to investigate whether different isoforms of auxiliary KChIPs, KChIP4a, and KChIP4bl, can compete for binding of Kv4.3 to coassemble heteromultimeric channel complexes for modulation of channel function. To count the number of photobleaching steps solely from cell membrane, we take advantage of a membrane tethered k-ras-CAAX peptide that anchors cytosolic KChIP4 proteins to the surface for reduction of background noise. Single-molecule subunit counting reveals that the number of KChIP4 isoforms in Kv4.3-KChIP4 complexes can vary depending on the KChIP4 expression level. Increasing the amount of KChIP4bl gradually reduces bleaching steps of KChIP4a isoform proteins, and vice versa. Further analysis of channel gating kinetics from different Kv4-KChIP4 subunit compositions confirms that both KChIP4a and KChIP4bl can modulate the channel complex function upon coassembly. Taken together, our findings show that auxiliary KChIPs can heteroassemble with Kv4 in a competitive manner to form heteromultimeric Kv4-KChIP4 channel complexes that are biophysically distinct and regulated under physiological or pathological conditions. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Feinstein, Wei P; Brylinski, Michal
2015-01-01
Computational approaches have emerged as an instrumental methodology in modern research. For example, virtual screening by molecular docking is routinely used in computer-aided drug discovery. One of the critical parameters for ligand docking is the size of a search space used to identify low-energy binding poses of drug candidates. Currently available docking packages often come with a default protocol for calculating the box size, however, many of these procedures have not been systematically evaluated. In this study, we investigate how the docking accuracy of AutoDock Vina is affected by the selection of a search space. We propose a new procedure for calculating the optimal docking box size that maximizes the accuracy of binding pose prediction against a non-redundant and representative dataset of 3,659 protein-ligand complexes selected from the Protein Data Bank. Subsequently, we use the Directory of Useful Decoys, Enhanced to demonstrate that the optimized docking box size also yields an improved ranking in virtual screening. Binding pockets in both datasets are derived from the experimental complex structures and, additionally, predicted by eFindSite. A systematic analysis of ligand binding poses generated by AutoDock Vina shows that the highest accuracy is achieved when the dimensions of the search space are 2.9 times larger than the radius of gyration of a docking compound. Subsequent virtual screening benchmarks demonstrate that this optimized docking box size also improves compound ranking. For instance, using predicted ligand binding sites, the average enrichment factor calculated for the top 1 % (10 %) of the screening library is 8.20 (3.28) for the optimized protocol, compared to 7.67 (3.19) for the default procedure. Depending on the evaluation metric, the optimal docking box size gives better ranking in virtual screening for about two-thirds of target proteins. This fully automated procedure can be used to optimize docking protocols in order to improve the ranking accuracy in production virtual screening simulations. Importantly, the optimized search space systematically yields better results than the default method not only for experimental pockets, but also for those predicted from protein structures. A script for calculating the optimal docking box size is freely available at www.brylinski.org/content/docking-box-size. Graphical AbstractWe developed a procedure to optimize the box size in molecular docking calculations. Left panel shows the predicted binding pose of NADP (green sticks) compared to the experimental complex structure of human aldose reductase (blue sticks) using a default protocol. Right panel shows the docking accuracy using an optimized box size.
Genetics Home Reference: chordoma
... regions of DNA. On the basis of this action, T-box proteins are called transcription factors. The brachyury protein is ... both result in the production of excess brachyury protein. The specific mechanism by which excess brachyury protein contributes to the ...
Zhou, Jing; Chen, Yan; Wang, Ying; Gao, Xia; Qu, Ding; Liu, Congyan
2013-12-24
The aim of this study was to compare the significance of the intestinal hydrolysis of prenylated flavonoids in Herba Epimedii by an intestinal enzyme and flora. Flavonoids were incubated at 37 °C with rat intestinal enzyme and intestinal flora. HPLC-UV was used to calculate the metabolic rates of the parent drug in the incubation and LC/MS/MS was used to determine the chemical structures of metabolites generated by different flavonoid glycosides. Rates of flavonoid metabolism by rat intestinal enzyme were quicker than those of intestinal flora. The sequence of intestinal flora metabolic rates was icariin>epimedin B>epimedin A>epimedin C>baohuoside I, whereas the order of intestinal enzyme metabolic rates was icariin>epimedin A>epimedin C>epimedin B>baohuoside I. Meanwhile, the LC/MS/MS graphs showed that icariin produced three products, epimedin A/B/C had four and baohuoside I yielded one product in incubations of both intestinal enzyme and flora, which were more than the results of HPLC-UV due to the fact LC/MS/MS has lower detectability and higher sensitivity. Moreover, the outcomes indicated that the rate of metabolization of flavonoids by intestinal enzyme were faster than those of intestinal flora, which was consistent with the HPLC-UV results. In conclusion, the metabolic pathways of the same components by intestinal flora and enzyme were the same. What's more, an intestinal enzyme such as lactase phlorizin hydrolase exhibited a more significant metabolic role in prenylated flavonoids of Herba Epimedi compared with intestinal flora.
Popoola, Olugbenga K; Marnewick, Jeanine L; Rautenbach, Fanie; Iwuoha, Emmanuel I; Hussein, Ahmed A
2015-09-18
Phytochemical investigation of aerial parts of Helichrysum niveum (H. niveum) using different chromatographic methods including semi-preparative HPLC afforded three new (1-3) and six known (4-10) acylphloroglucinols alongside a known dialcohol triterpene (11). The structures of the isolated compounds were characterized accordingly as 1-benzoyl-3 (3-methylbut-2-enylacetate)-phloroglucinol (helinivene A, 1), 1-benzoyl-3 (2S-hydroxyl-3-methylbut-3-enyl)-phloroglucinol (helinivene B, 2), 8-(2-methylpropanone)-3S,5,7-trihydroxyl-2,2-dimethoxychromane (helinivene C, 3), 1-(2-methylbutanone)-4-O-prenyl-phloroglucinol (4), 1-(2-methylpropanone)-4-O-prennyl-phloroglucinol (5), 1-(butanone)-3-prenyl-phloroglucinol (6), 1-(2-methylbutanone)-3-prenyl-phloroglucinol (7), 1-butanone-3-(3-methylbut-2-enylacetate)-phloroglucinol (8), 1-(2-methylpropanone)-3-prenylphloroglucinol (9), caespitate (10), and 3β-24-dihydroxyterexer-14-ene (11). Excellent total antioxidant capacities were demonstrated by helinivenes A and B (1 and 2) when measured as oxygen radicals absorbance capacity (ORAC), ferric-ion reducing antioxidant power (FRAP), trolox equivalent absorbance capacity (TEAC) and including the inhibition of Fe(2+)-induced lipid peroxidation (IC50 = 5.12 ± 0.90; 3.55 ± 1.92) µg/mL, while anti-tyrosinase activity at IC50 = 35.63 ± 4.67 and 26.72 ± 5.05 µg/mL were also observed for 1 and 2, respectively. This is the first chemical and in vitro biological study on H. niveum. These findings underpin new perspectives for the exploitation of these natural phenolic compounds in applications such as in the natural cosmeceutical and pharmaceutical sectors.
Boxing-acute complications and late sequelae: from concussion to dementia.
Förstl, Hans; Haass, Christian; Hemmer, Bernhard; Meyer, Bernhard; Halle, Martin
2010-11-01
Boxing has received increased public attention and acceptance in recent years. However, this development has not been accompanied by a critical discussion of the early and late health complications. We selectively review recent studies on the acute, subacute, and chronic neuropsychiatric consequences of boxing. Cerebral concussions ("knock-outs") are the most relevant acute consequence of boxing. The number of reported cases of death in the ring seems to have mildly decreased. Subacute neuropsychological deficits appear to last longer than subjective symptoms. The associated molecular changes demonstrate neuronal and glial injury correlated with the number and severity of blows to the head (altered total tau, beta-amyloid, neurofilament light protein, glial fibrillary acidic protein, and neuron-specific enolase). The risk of a punch-drunk syndrome (boxer's dementia, dementia pugilistica) as a late effect of chronic traumatic brain injury is associated with the duration of a boxer's career and with his earlier stamina. There are similarities (e.g. increased risk with ApoE4-polymorphism, beta-amyloid pathology) and differences (more tau pathology in boxers) compared with Alzheimer's disease. Protective gear has led to a remarkable reduction of risks in amateur boxing. Similar measures can also be used in professional boxing, but may decrease the thrill, which does appeal to many supporters.
Microbial biotransformation of bioactive flavonoids.
Cao, Hui; Chen, Xiaoqing; Jassbi, Amir Reza; Xiao, Jianbo
2015-01-01
The bioactive flavonoids are considered as the most important phytochemicals in food, which exert a wide range of biological benefits for human being. Microbial biotransformation strategies for production of flavonoids have attracted considerable interest because they allow yielding novel flavonoids, which do not exist in nature. In this review, we summarize the existing knowledge on the production and biotransformation of flavonoids by various microbes. The main reactions during microbial biotransformation are hydroxylation, dehydroxylation, O-methylation, O-demethylation, glycosylation, deglycosylation, dehydrogenation, hydrogenation, C ring cleavage of the benzo-γ-pyrone system, cyclization, and carbonyl reduction. Cunninghamella, Penicillium, and Aspergillus strains are very popular to biotransform flavonoids and they can perform almost all the reactions with excellent yields. Aspergillus niger is one of the most applied microorganisms in the flavonoids' biotransformation; for example, A. niger can transfer flavanone to flavan-4-ol, 2'-hydroxydihydrochalcone, flavone, 3-hydroxyflavone, 6-hydroxyflavanone, and 4'-hydroxyflavanone. The hydroxylation of flavones by microbes usually happens on the ortho position of hydroxyl group on the A ring and C-4' position of the B ring and microbes commonly hydroxylate flavonols at the C-8 position. The microorganisms tend to hydroxylate flavanones at the C-5, 6, and 4' positions; however, for prenylated flavanones, dihydroxylation often takes place on the C4α=C5α double bond on the prenyl group (the side chain of A ring). Isoflavones are usually hydroxylated at the C-3' position of the B ring by microorganisms. The microbes convert flavonoids to their 7-O-glycosides and 3-O-glycosides (when flavonoids have a hydroxyl moiety at the C-3 position). The demethylation of multimethoxyl flavonoids by microbes tends to happen at the C-3' and C-4' positions of the B ring. Multimethoxyl flavanones and isoflavone are demethylated at the C-7 and C-4' positions. The O-methylation of flavonols happens at the C-3' and C-4' and microorganisms O-methylate flavones at the C-6 position and the O-methylation of flavanones, usually took place on the hydroxyl groups of the A ring. The prenyl flavanones were cyclized at the prenyl side chain to form a new five-member ring attached to the A ring. Chalcones were regioselectively cyclized to flavanones. Hydrogenation of flavonoids was only reported on transformation of chalcones to dihydrochalcones. The dehydrogenation of flavanoids to flavonoids was not comprehensively studied. Copyright © 2014 Elsevier Inc. All rights reserved.
Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy
NASA Technical Reports Server (NTRS)
Gomes, M. D.; Lecker, S. H.; Jagoe, R. T.; Navon, A.; Goldberg, A. L.
2001-01-01
Muscle wasting is a debilitating consequence of fasting, inactivity, cancer, and other systemic diseases that results primarily from accelerated protein degradation by the ubiquitin-proteasome pathway. To identify key factors in this process, we have used cDNA microarrays to compare normal and atrophying muscles and found a unique gene fragment that is induced more than ninefold in muscles of fasted mice. We cloned this gene, which is expressed specifically in striated muscles. Because this mRNA also markedly increases in muscles atrophying because of diabetes, cancer, and renal failure, we named it atrogin-1. It contains a functional F-box domain that binds to Skp1 and thereby to Roc1 and Cul1, the other components of SCF-type Ub-protein ligases (E3s), as well as a nuclear localization sequence and PDZ-binding domain. On fasting, atrogin-1 mRNA levels increase specifically in skeletal muscle and before atrophy occurs. Atrogin-1 is one of the few examples of an F-box protein or Ub-protein ligase (E3) expressed in a tissue-specific manner and appears to be a critical component in the enhanced proteolysis leading to muscle atrophy in diverse diseases.
Miguel-Rojas, Cristina; Hera, Concepcion
2016-01-01
F-box proteins determine substrate specificity of the ubiquitin-proteasome system. Previous work has demonstrated that the F-box protein Fbp1, a component of the SCF(Fbp1) E3 ligase complex, is essential for invasive growth and virulence of the fungal plant pathogen Fusarium oxysporum. Here, we show that, in addition to invasive growth, Fbp1 also contributes to vegetative hyphal fusion and fungal adhesion to tomato roots. All of these functions have been shown previously to require the mitogen-activated protein kinase (MAPK) Fmk1. We found that Fbp1 is required for full phosphorylation of Fmk1, indicating that Fbp1 regulates virulence and invasive growth via the Fmk1 pathway. Moreover, the Δfbp1 mutant is hypersensitive to sodium dodecylsulfate (SDS) and calcofluor white (CFW) and shows reduced phosphorylation levels of the cell wall integrity MAPK Mpk1 after SDS treatment. Collectively, these results suggest that Fbp1 contributes to both the invasive growth and cell wall integrity MAPK pathways of F. oxysporum. © 2015 BSPP AND JOHN WILEY & SONS LTD.
NASA Astrophysics Data System (ADS)
Zhou, Qianru; Shao, Mingyu; Qin, Zhenkui; Kyoung, Ho Kang; Zhang, Zhifeng
2010-01-01
RNA helicases of the DEAD-box and related families are involved in various cellular processes including DNA replication, DNA repair, and RNA processing. However, the function of DEAD-box proteins in aquaculture species is poorly understood at molecular level. We obtained the full-length cDNA sequences of two genes encoding helicase-related proteins, Fc-vasa and Fc-PL10a, from the testes of Chinese shrimp, Fenneropenaeus chinensis. The two predicted amino acid sequences contain all the conserved motifs characterized by the DEAD-box family and several RGG repeats in the N-terminal regions. Homology and phylogenetic analyses indicate that they belong to the vasa and PL10 subfamilies. The three-dimensional structures of the two proteins were predicted with a homology modeling approach. Both core proteins consist of two tandem RecA-like domains similar to those of the DEAD-box RNA helicase. Using reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR we found that Fc-vasa was expressed specifically in the adult gonads. Transcription decreased in the ovary but increased in the testis during gonadal development. Fc-PL10a expression was widely distributed in the tissues we examined. Using in situ hybridization, we demonstrated that the Fc-vasa transcript is localized to the cytoplasm of the spermatogonia and oocytes. Thus, our results suggest that Fc-vasa plays an important role in germ-line development, and has utility as a germ cell lineage marker which will help to generate new insight into the origin and differentiation of germ cells as well as the regulation of reproduction in F. chinensis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohr, Georg; Del Campo, Mark; Turner, Kathryn G.
The Saccharomyces cerevisiae DEAD-box protein Mss116p is a general RNA chaperone that functions in splicing mitochondrial group I and group II introns. Recent X-ray crystal structures of Mss116p in complex with ATP analogs and single-stranded RNA show that the helicase core induces a bend in the bound RNA, as in other DEAD-box proteins, while a C-terminal extension (CTE) induces a second bend, resulting in RNA crimping. Here, we illuminate these structures by using high-throughput genetic selections, unigenic evolution, and analyses of in vivo splicing activity to comprehensively identify functionally important regions and permissible amino acid substitutions throughout Mss116p. The functionallymore » important regions include those containing conserved sequence motifs involved in ATP and RNA binding or interdomain interactions, as well as previously unidentified regions, including surface loops that may function in protein-protein interactions. The genetic selections recapitulate major features of the conserved helicase motifs seen in other DEAD-box proteins but also show surprising variations, including multiple novel variants of motif III (SAT). Patterns of amino acid substitutions indicate that the RNA bend induced by the helicase core depends on ionic and hydrogen-bonding interactions with the bound RNA; identify a subset of critically interacting residues; and indicate that the bend induced by the CTE results primarily from a steric block. Finally, we identified two conserved regions - one the previously noted post II region in the helicase core and the other in the CTE - that may help displace or sequester the opposite RNA strand during RNA unwinding.« less
Bragantini, Benoit; Tiotiu, Decebal; Rothé, Benjamin; Saliou, Jean-Michel; Marty, Hélène; Cianférani, Sarah; Charpentier, Bruno; Quinternet, Marc; Manival, Xavier
2016-06-05
Zf–HIT family members share the zf–HIT domain (ZHD), which is characterized by a fold in “treble-clef” through interleaved CCCC and CCHC ZnF motifs that both bind a zinc atom. Six proteins containing ZHD are present in human and three in yeast proteome, all belonging to multimodular RNA/protein complexes involved in gene regulation, chromatin remodeling, and snoRNP assembly. An interesting characteristic of the cellular complexes that ensure these functions is the presence of the RuvBL1/2/Rvb1/2 ATPases closely linked with zf–HIT proteins. Human ZNHIT6/BCD1 and its counterpart in yeast Bcd1p were previously characterized as assembly factors of the box C/D snoRNPs. Our data reveal that the ZHD of Bcd1p is necessary but not sufficient for yeast growth and that the motif has no direct RNA-binding capacity but helps Bcd1p maintain the box C/D snoRNAs level in steady state. However, we demonstrated that Bcd1p interacts nonspecifically with RNAs depending on their length. Interestingly, the ZHD of Bcd1p is functionally interchangeable with that of Hit1p, another box C/D snoRNP assembly factor belonging to the zf–HIT family. This prompted us to use NMR to solve the 3D structures of ZHD from yeast Bcd1p and Hit1p to highlight the structural similarity in the zf–HIT family. We identified structural features associated with the requirement of Hit1p and Bcd1p ZHD for cell growth and box C/D snoRNA stability under heat stress. Altogether, our data suggest an important role of ZHD could be to maintain functional folding to the rest of the protein, especially under heat stress conditions.
Matsumura, Yoshihiro; Sakai, Juro; Skach, William R.
2013-01-01
The C terminus of Hsp70 interacting protein (CHIP) E3 ligase functions as a key regulator of protein quality control by binding the C-terminal (M/I)EEVD peptide motif of Hsp/c70(90) with its N-terminal tetratricopeptide repeat (TPR) domain and facilitating polyubiquitination of misfolded client proteins via its C-terminal catalytic U-box. Using CFTR as a model client, we recently showed that the duration of the Hsc70-client binding cycle is a primary determinant of stability. However, molecular features that control CHIP recruitment to Hsp/c70, and hence the fate of the Hsp/c70 client, remain unknown. To understand how CHIP recognizes Hsp/c70, we utilized a dominant negative mutant in which loss of a conserved proline in the U-box domain (P269A) eliminates E3 ligase activity. In a cell-free reconstituted ER-associated degradation system, P269A CHIP inhibited Hsc70-dependent CFTR ubiquitination and degradation in a dose-dependent manner. Optimal inhibition required both the TPR and the U-box, indicating cooperativity between the two domains. Neither the wild type nor the P269A mutant changed the extent of Hsc70 association with CFTR nor the dissociation rate of the Hsc70-CFTR complex. However, the U-box mutation stimulated CHIP binding to Hsc70 while promoting CHIP oligomerization. CHIP binding to Hsc70 binding was also stimulated by the presence of an Hsc70 client with a preference for the ADP-bound state. Thus, the Hsp/c70 (M/I)EEVD motif is not a simple anchor for the TPR domain. Rather CHIP recruitment involves reciprocal allosteric interactions between its TPR and U-box domains and the substrate-binding and C-terminal domains of Hsp/c70. PMID:23990462
Sahana, Nandita; Kaur, Harpreet; Jain, R K; Palukaitis, Peter; Canto, Tomas; Praveen, Shelly
2014-05-01
The multifunctional potyviral helper-component protease (HcPro) contains variable regions with some functionally conserved domains, such as the FRNK box. Natural variants occur at the FRNK box, a conserved central domain, known for its role in RNA binding and RNAi suppression activities, although no dominant natural variants for the N(182) residue are known to occur. Here, a mutant at HcPro(N182L) was developed to investigate its role in natural populations. Using in vitro studies, we found an increase in the small RNA (sRNA) binding potential of HcPro(N182L) without affecting its protein-protein interaction properties, suggesting that the presence of N(182) is critical to maintain threshold levels of sRNAs, but does not interfere in the self-interaction of HcPro. Furthermore, we found that expression of HcPro(N182L) in Nicotiana benthamiana affected plant growth. Transient expression of HcPro(N182L) induced reporter gene expression in 16c GFP transgenic plants more than HcPro did, suggesting that replacement of asparagine in the FRNK box favours RNA silencing suppression. HcPro was found to be distributed in the nucleus and cytoplasm, whereas HcPro(N182L) was observed only in cytoplasmic inclusion bodies in N. benthamiana leaves, when fused to a GFP tag and expressed by agro-infiltration, suggesting mutation favours oligomerization of HcPro. These findings suggest that amino acid N(182) of the conserved FRNK box may regulate RNA silencing mechanisms, and is required for maintenance of the subcellular localization of the protein for its multi-functionality. Hence, the N(182) residue of the FRNK box seems to be indispensable for potyvirus infection during evolution.
Xu, Hongyun; Shi, Xinxin; Wang, Zhibo; Gao, Caiqiu; Wang, Chao; Wang, Yucheng
2017-08-01
WRKY transcription factors play important roles in many biological processes, and mainly bind to the W-box element to regulate gene expression. Previously, we characterized a WRKY gene from Tamarix hispida, ThWRKY4, in response to abiotic stress, and showed that it bound to the W-box motif. However, whether ThWRKY4 could bind to other motifs remains unknown. In this study, we employed a Transcription Factor-Centered Yeast one Hybrid (TF-Centered Y1H) screen to study the motifs recognized by ThWRKY4. In addition to the W-box core cis-element (termed W-box), we identified that ThWRKY4 could bind to two other motifs: the RAV1A element (CAACA) and a novel motif with sequence of GTCTA (W-box like sequence, WLS). The distributions of these motifs were screened in the promoter regions of genes regulated by some WRKYs. The results showed that the W-box, RAV1A, and WLS motifs were all present in high numbers, suggesting that they play key roles in gene expression mediated by WRKYs. Furthermore, five WRKY proteins from different WRKY subfamilies in Arabidopsis thaliana were selected and confirmed to bind to the RAV1A and WLS motifs, indicating that they are recognized commonly by WRKYs. These findings will help to further reveal the functions of WRKY proteins. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Li; Li, Yixing; Song, Shufeng; Deng, Huafeng; Li, Na; Fu, Xiqin; Chen, Guanghui; Yuan, Longping
2015-01-01
In this study, we reported that a F-box protein, OsADF, as one of the direct targets of TDR , plays a critical role in rice tapetum cell development and pollen formation. The tapetum, the innermost sporophytic tissue of anther, plays an important supportive role in male reproduction in flowering plants. After meiosis, tapetal cells undergo programmed cell death (PCD) and provide nutrients for pollen development. Previously we showed that tapetum degeneration retardation (TDR), a basic helix-loop-helix transcription factor, can trigger tapetal PCD and control pollen wall development during anther development. However, the comprehensive regulatory network of TDR remains to be investigated. In this study, we cloned and characterized a panicle-specific expression F-box protein, anther development F-box (OsADF). By qRT-PCR and RNA in situ hybridization, we further confirmed that OsADF expressed specially in tapetal cells from stage 9 to stage 12 during anther development. In consistent with this specific expression pattern, the RNAi transgenic lines of OsADF exhibited abnormal tapetal degeneration and aborted microspores development, which eventually grew pollens with reduced fertility. Furthermore, we demonstrated that the TDR, a key regulator in controlling rice anther development, could regulate directly the expression of OsADF by binding to E-box motifs of its promoter. Therefore, this work highlighted the possible regulatory role of TDR, which regulates tapetal cell development and pollen formation via triggering the possible ADF-mediated proteolysis pathway.
Zhang, Jiayu; Wu, Liang; Chen, Jiawei; Lin, Sisi; Cai, Daqiu; Chen, Chengwei; Chen, Zhenguo
2018-05-01
Diabetic retinopathy is a neurological disease, which can lead to blindness in severe cases. The pathogenesis underlying diabetic retinopathy is unclear. The aim of this study was to explore the role of dysregulated microRNA 29a/b in the onset and progression of diabetic retinopathy. Diabetes mellitus was induced in rats using 60 mg/kg of streptozotocin. Glucose (5.5 and 25 mM) was used to stimulate rat retinal Müller cells. Real-time polymerase chain reaction and Western blot analyses were used to determine gene expression. A luciferase reporter assay was conducted to validate the relationship of microRNA 29a/b with glioma-associated oncogene homolog 1 and Forkhead box protein O4. The expression of microRNA 29a/b and glutamine synthetase decreased in both diabetes mellitus rats and rat retinal Müller cells stimulated with high glucose, whereas the expression of sonic hedgehog, glioma-associated oncogene homolog 1, glial fibrillary acidic protein, and vascular endothelial growth factor, as well as the content of glutamate, increased. Dysregulated microRNA 29a/b was directly regulated by the sonic hedgehog-glioma-associated oncogene homolog 1 signalling pathway, and microRNA 29a and microRNA 29b targeted Forkhead box protein O4 and regulated its expression. Downregulation of microRNA 29a/b, mediated by the sonic hedgehog-glioma-associated oncogene homolog 1 signalling pathway, exacerbated diabetic retinopathy by upregulating Forkhead box protein O4.
The stomatin-like protein SLP-1 and Cdk2 interact with the F-Box protein Fbw7-γ.
Zhang, Wei; MacDonald, Elizabeth M; Koepp, Deanna M
2012-01-01
Control of cellular proliferation is critical to cell viability. The F-box protein Fbw7 (hAgo/hCdc4/FBXW7) functions as a specificity factor for the Skp1-Cul1-F-box protein (SCF) ubiquitin ligase complex and targets several proteins required for cellular proliferation for ubiquitin-mediated destruction. Fbw7 exists as three splice variants but the mechanistic role of each is not entirely clear. We examined the regulation of the Fbw7-γ isoform, which has been implicated in the degradation of c-Myc. We show here that Fbw7-γ is an unstable protein and that its turnover is proteasome-dependent in transformed cells. Using a two-hybrid screen, we identified a novel interaction partner, SLP-1, which binds the N-terminal domain of Fbw7-γ. Overexpression of SLP-1 inhibits the degradation of Fbw7-γ, suggesting that this interaction can happen in vivo. When Fbw7-γ is stabilized by overexpression of SLP-1, c-Myc protein abundance decreases, suggesting that the SCF(Fbw7-γ) complex maintains activity. We demonstrate that Cdk2 also binds the N-terminal domain of Fbw7-γ as well as SLP-1. Interestingly, co-expression of Cdk2 and SLP-1 does not inhibit Fbw7-γ degradation, suggesting that Cdk2 and SLP-1 may have opposing functions.
SRY, like HMG1, recognizes sharp angles in DNA.
Ferrari, S; Harley, V R; Pontiggia, A; Goodfellow, P N; Lovell-Badge, R; Bianchi, M E
1992-01-01
HMG boxes are DNA binding domains present in chromatin proteins, general transcription factors for nucleolar and mitochondrial RNA polymerases, and gene- and tissue-specific transcriptional regulators. The HMG boxes of HMG1, an abundant component of chromatin, interact specifically with four-way junctions, DNA structures that are cross-shaped and contain angles of approximately 60 and 120 degrees between their arms. We show here also that the HMG box of SRY, the protein that determines the expression of male-specific genes in humans, recognizes four-way junction DNAs irrespective of their sequence. In addition, when SRY binds to linear duplex DNA containing its specific target AACAAAG, it produces a sharp bend. Therefore, the interaction between HMG boxes and DNA appears to be predominantly structure-specific. The production of the recognition of a kink in DNA can serve several distinct functions, such as the repair of DNA lesions, the folding of DNA segments with bound transcriptional factors into productive complexes or the wrapping of DNA in chromatin. Images PMID:1425584
Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Zhang, Bing; Chen, Hua
2016-04-01
The ~80 amino acid A box DNA-binding domain of high mobility group box 1 (HMGB1) protein antagonizes proinflammatory responses during myocardial ischemia reperfusion (I/R) injury. The exact role of microRNA-21 (miR-21) is unknown, but its altered levels are evident in I/R injury. This study examined the roles of HMGB1 A-box and miR-21 in rat myocardial I/R injury model. Sixty Sprague-Dawley rats were randomly divided into six equal groups: (1) Sham; (2) I/R; (3) Ischemic postconditioning (IPost); (4) AntagomiR-21 post-treatment; (5) Recombinant HMGB1 A-box pretreatment; and (6) Recombinant HMGB1 A-box + antagomiR-21 post-treatment. Hemodynamic indexes, arrhythmia scores, ischemic area and infarct size, myocardial injury, and related parameters were studied. Expression of miR-21 was detected by real-time quantitative polymerase chain reaction (qRT-PCR) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was used to quantify apoptosis. Left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), maximal rate of pressure rise (+dp/dtmax), and decline (-dp/dtmax) showed clear reduction upon treatment with recombinant HMGB1 A-box. Arrhythmia was relieved and infarct area decreased in the group pretreated with recombinant HMGB1 A-box, compared with other groups. Circulating lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels increased in response to irreversible cellular injury, while creatine kinase MB isoenzymes (CK-MB) and superoxide dismutase (SOD) activities were reduced in the I/R group, which was reversed following recombinant HMGB1 A-box treatment. Interestingly, pretreatment with recombinant HMGB1 A-box showed the most dramatic reductions in miR-21 levels, compared with other groups. Significantly reduced apoptotic index (AI) was seen in recombinant HMGB1 A-box pretreatment group and recombinant HMGB1 A-box + antagomiR-21 post-treatment group, with the former showing a more dramatic lowering in AI than the latter. Bax, caspase-8, and CHOP showed reduced expression, and Bcl-2 and p-AKT levels were upregulated in recombinant HMGB1 A-box pretreatment group. Thus, recombinant HMGB1 A-box treatment protects against I/R injury and the mechanisms may involve inhibition of miR-21 expression.
HbMADS4, a MADS-box Transcription Factor from Hevea brasiliensis, Negatively Regulates HbSRPP.
Li, Hui-Liang; Wei, Li-Ran; Guo, Dong; Wang, Ying; Zhu, Jia-Hong; Chen, Xiong-Ting; Peng, Shi-Qing
2016-01-01
In plants MADS-box transcription factors (TFs) play important roles in growth and development. However, no plant MADS-box gene has been identified to have a function related to secondary metabolites regulation. Here, a MADS-box TF gene, designated as HbMADS4 , was isolated from Hevea brasiliensis by the yeast one-hybrid experiment to screen the latex cDNA library using the promoter of the gene encoding H. brasiliensis small rubber particle protein (HbSRPP) as bait. HbMADS4 was 984-bp containing 633-bp open reading frame encoding a deduced protein of 230 amino acid residues with a typical conserved MADS-box motif at the N terminus. HbMADS4 was preferentially expressed in the latex, but little expression was detected in the leaves, flowers, and roots. Its expression was inducible by methyl jasmonate and ethylene. Furthermore, transient over-expression and over-expression of HbMADS4 in transgenic tobacco plants significantly suppressed the activity of the HbSRP promoter. Altogether, it is proposed that HbMADS4 is a negative regulator of HbSRPP which participates in the biosynthesis of natural rubber.
HK022 Nun Requires Arginine-Rich Motif Residues Distinct from λ N
Tawk, Caroline S.; Ghattas, Ingrid R.
2015-01-01
ABSTRACT Bacteriophage λ N protein binds boxB RNA hairpins in the nut (N utilization) sites of immediate early λ transcripts and interacts with host factors to suppress transcriptional termination at downstream terminators. In opposition to λ N, the Nun protein of HK022 binds the boxBs of coinfecting λ transcripts, interacts with a similar or identical set of host factors, and terminates transcription to suppress λ replication. Comparison of N-boxB and Nun-boxB nuclear magnetic resonance (NMR) structural models suggests similar interactions, though limited mutagenesis of Nun is available. Here, libraries of Nun's arginine-rich motif (ARM) were screened for the ability to exclude λ coinfection, and mutants were assayed for Nun termination with a boxB plasmid reporter system. Several Nun ARM residues appear to be immutable: Asp26, Arg28, Arg29, Arg32, Trp33, and Arg36. Asp26 and Trp33 appear to be unable to contact boxB and are not found at equivalent positions in λ N ARM. To understand if the requirement of Asp26, Trp33, and Arg36 indicated differences between HK022 Nun termination and λ N antitermination complexes, the same Nun libraries were fused to the activation domain of λ N and screened for clones able to complement N-deficient λ. Mutants were assayed for N antitermination. Surprisingly, Asp26 and Trp33 were still essential when Nun ARM was fused to N. Docking suggests that Nun ARM contacts a hydrophobic surface of the NusG carboxy-terminal domain containing residues necessary for Nun function. These findings indicate that Nun ARM relies on distinct contacts in its ternary complex and illustrate how protein-RNA recognition can evolve new regulatory functions. IMPORTANCE λ N protein interacts with host factors to allow λ nut-containing transcripts to elongate past termination signals. A competing bacteriophage, HK022, expresses Nun protein, which causes termination of λ nut transcripts. λ N and HK022 Nun use similar arginine-rich motifs (ARMs) to bind the same boxB RNAs in nut transcripts. Screening libraries of Nun ARM mutants, both in HK022 Nun and in a λ N fusion, revealed amino acids essential to Nun that could bind one or more host factors. Docking suggests that NusG, which is present in both Nun termination and N antitermination, is a plausible partner. These findings could help understand how transcription elongation is regulated and illustrate how subtle differences allow ARMs to evolve new regulatory functions. PMID:26350130
HK022 Nun Requires Arginine-Rich Motif Residues Distinct from λ N.
Tawk, Caroline S; Ghattas, Ingrid R; Smith, Colin A
2015-11-01
Bacteriophage λ N protein binds boxB RNA hairpins in the nut (N utilization) sites of immediate early λ transcripts and interacts with host factors to suppress transcriptional termination at downstream terminators. In opposition to λ N, the Nun protein of HK022 binds the boxBs of coinfecting λ transcripts, interacts with a similar or identical set of host factors, and terminates transcription to suppress λ replication. Comparison of N-boxB and Nun-boxB nuclear magnetic resonance (NMR) structural models suggests similar interactions, though limited mutagenesis of Nun is available. Here, libraries of Nun's arginine-rich motif (ARM) were screened for the ability to exclude λ coinfection, and mutants were assayed for Nun termination with a boxB plasmid reporter system. Several Nun ARM residues appear to be immutable: Asp26, Arg28, Arg29, Arg32, Trp33, and Arg36. Asp26 and Trp33 appear to be unable to contact boxB and are not found at equivalent positions in λ N ARM. To understand if the requirement of Asp26, Trp33, and Arg36 indicated differences between HK022 Nun termination and λ N antitermination complexes, the same Nun libraries were fused to the activation domain of λ N and screened for clones able to complement N-deficient λ. Mutants were assayed for N antitermination. Surprisingly, Asp26 and Trp33 were still essential when Nun ARM was fused to N. Docking suggests that Nun ARM contacts a hydrophobic surface of the NusG carboxy-terminal domain containing residues necessary for Nun function. These findings indicate that Nun ARM relies on distinct contacts in its ternary complex and illustrate how protein-RNA recognition can evolve new regulatory functions. λ N protein interacts with host factors to allow λ nut-containing transcripts to elongate past termination signals. A competing bacteriophage, HK022, expresses Nun protein, which causes termination of λ nut transcripts. λ N and HK022 Nun use similar arginine-rich motifs (ARMs) to bind the same boxB RNAs in nut transcripts. Screening libraries of Nun ARM mutants, both in HK022 Nun and in a λ N fusion, revealed amino acids essential to Nun that could bind one or more host factors. Docking suggests that NusG, which is present in both Nun termination and N antitermination, is a plausible partner. These findings could help understand how transcription elongation is regulated and illustrate how subtle differences allow ARMs to evolve new regulatory functions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Burlison, Joseph A; Avila, Christopher; Vielhauer, George; Lubbers, Donna J; Holzbeierlein, Jeffrey; Blagg, Brian S J
2008-03-21
Recent studies have shown that the DNA gyrase inhibitor, novobiocin, binds to a previously unrecognized ATP-binding site located at the C-terminus of Hsp90 and induces degradation of Hsp90-dependent client proteins at approximately 700 microM. As a result of these studies, several analogues of the coumarin family of antibiotics have been reported and shown to exhibit increased Hsp90 inhibitory activity; however, the monomeric species lacked the ability to manifest anti-proliferative activity against cancer cell lines at concentrations tested. In an effort to develop more efficacious compounds that produce growth inhibitory activity against cancer cell lines, structure-activity relationships were investigated surrounding the prenylated benzamide side chain of the natural product. Results obtained from these studies have produced the first novobiocin analogues that manifest anti-proliferative activity against several cancer cell lines.
Tocotrienol and Its Role in Chronic Diseases.
Chin, Kok-Yong; Pang, Kok-Lun; Soelaiman, Ima-Nirwana
2016-01-01
Tocotrienol is a member of vitamin E family and is well-known for its antioxidant and anti-inflammatory properties. It is also a suppressor of mevalonate pathway responsible for cholesterol and prenylated protein synthesis. This review aimed to discuss the health beneficial effects of tocotrienol, specifically in preventing or treating hyperlipidaemia, diabetes mellitus, osteoporosis and cancer with respect to these properties. Evidence from in vitro, in vivo and human studies has been examined. It is revealed that tocotrienol shows promising effects in preventing or treating the health conditions previously mentioned in in vivo and in vitro models. In some cases, alpha-tocopherol attenuates the biological activity of tocotrienol. Except for its cholesterol-lowering effects, data on the health-promoting effects of tocotrienol in human are limited. As a conclusion, the encouraging results on the health beneficial effects of tocotrienol should motivate researchers to explore its potential use in human.
Roles of F-box proteins in human digestive system tumors (Review).
Gong, Jian; Lv, Liang; Huo, Jirong
2014-12-01
F-box proteins (FBPs), the substrate-recognition subunit of E3 ubiquitin (Ub) ligase, are the important components of Ub proteasome system (UPS). FBPs are involved in multiple cellular processes through ubiquitylation and subsequent degradation of their target proteins. Many studies have described the roles of FBPs in human cancers. Digestive system tumors account for a large proportion of all the tumors, and their mortality is very high. This review summarizes for the first time the roles of FBPs in digestive system tumorige-nesis and tumor progression, aiming at finding new routes for the rational design of targeted anticancer therapies in digestive system tumors.
Shin, Jae-Moon; Jeong, Yun-Jeong; Cho, Hyun-Ji; Magae, Junji; Bae, Young-Seuk; Chang, Young-Chae
2016-05-01
4-O-Methyl-ascochlorin (MAC) is a methylated derivative of the prenyl-phenol antibiotic ascochlorin, which was isolated from an incomplete fungus, Ascochyta viciae. Although the effects of MAC on apoptosis have been reported, the underlying mechanisms remain unknown. Here, we show that MAC promoted apoptotic cell death and downregulated c-Myc expression in K562 human leukemia cells. The effect of MAC on apoptosis was similar to that of 10058-F4 (a c-Myc inhibitor) or c-Myc siRNA, suggesting that the downregulation of c-Myc expression plays a role in the apoptotic effect of MAC. Further investigation showed that MAC downregulated c-Myc by inhibiting protein synthesis. MAC promoted the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and its target proteins, including p70S6 K and 4E-BP-1. Treatment of cells with AICAR (an AMPK activator), rapamycin (an mTOR inhibitor), or mTOR siRNA downregulated c-Myc expression and induced apoptosis to a similar extent to that of MAC. These results suggest that the effect of MAC on apoptosis induction in human leukemia cells is mediated by the suppression of c-Myc protein synthesis via an AMPK/mTOR-dependent mechanism.
The Emerging Roles of Forkhead Box (FOX) Proteins in Osteosarcoma
Zhang, Wentao; Duan, Ning; Song, Tao; Li, Zhong; Zhang, Caiguo; Chen, Xun
2017-01-01
Osteosarcoma is the most common bone cancer primarily occurring in children and young adults. Over the past few years, the deregulation of a superfamily transcription factors, known as forkhead box (FOX) proteins, has been demonstrated to contribute to the pathogenesis of osteosarcoma. Molecular mechanism studies have demonstrated that FOX family proteins participate in a variety of signaling pathways and that their expression can be regulated by multiple factors. The dysfunction of FOX genes can alter osteosarcoma cell differentiation, metastasis and progression. In this review, we summarized the evidence that FOX genes play direct or indirect roles in the development and progression of osteosarcoma, and evaluated the emerging role of FOX proteins as targets for therapeutic intervention. PMID:28775781
PRL-3, an emerging marker of carcinogenesis, is strongly associated with poor prognosis.
Guzińska-Ustymowicz, Katarzyna; Pryczynicz, Anna
2011-01-01
PRL-3 protein belongs to the family of protein tyrosine phosphatases with unique COOH-terminal prenylation motif, which determines the functions of this protein and its location in the cell. Numerous research studies revealed that apart from performing the poorly investigated physiological role, PRL-3 takes part in the process of carcinogenesis. Specifically, it is involved in reconstructing of the cytoskeleton, regulating adhesion and cell cycle of the cancer cells, and in epithelial-mesenchymal transition. Through these mechanisms PRL-3 protein participates in invasion, migration, metastasis and angiogenesis. Numerous studies indicate that PRL-3 expression is particularly important in colorectal, as well as in gastric, ovarian and breast carcinomas. Recently, several studies on PRL-3 protein in other types of cancer have been published. They reveal a significant role of this protein in the process of angiogenesis and metastasis. It has been proven that a higher expression of PRL-3 correlates with tumor progression and its severity. While the degree of overexpression of PRL-3 varies in different types of tumors, most research shows that in the metastases of these tumors, whether to the lymph nodes or to other organs, the level of expression is extremely high. Overexpression of PRL-3 protein was repeatedly confirmed in metastases, but not with primary tumors. PRL-3 seems to be an adequate marker in diagnosing the stage of tumor advancement for various types of carcinomas, especially for colorectal carcinoma investigated thoroughly in this study. PRL-3 overexpression predicts poor prognosis in patients with various carcinomas and is a promising target in the cancer treatment.
Xie, Qiaoli; Hu, Zongli; Zhu, Zhiguo; Dong, Tingting; Zhao, Zhiping; Cui, Baolu; Chen, Guoping
2014-01-01
MADS-domain proteins are important transcription factors involved in many biological processes of plants. In our study, a tomato MADS-box gene, SlFYFL, was isolated. SlFYFL is expressed in all tissues of tomato and significantly higher in mature leave, fruit of different stages, AZ (abscission zone) and sepal. Delayed leaf senescence and fruit ripening, increased storability and longer sepals were observed in 35S:FYFL tomato. The accumulation of carotenoid was reduced, and ethylene content, ethylene biosynthetic and responsive genes were down-regulated in 35S:FYFL fruits. Abscission zone (AZ) did not form normally and abscission zone development related genes were declined in AZs of 35S:FYFL plants. Yeast two-hybrid assay revealed that SlFYFL protein could interact with SlMADS-RIN, SlMADS1 and SlJOINTLESS, respectively. These results suggest that overexpression of SlFYFL regulate fruit ripening and development of AZ via interactions with the ripening and abscission zone-related MADS box proteins. PMID:24621662
The Biosynthetic Origin of Irregular Monoterpenes in Lavandula
Demissie, Zerihun A.; Erland, Lauren A. E.; Rheault, Mark R.; Mahmoud, Soheil S.
2013-01-01
Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s−1, respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering. PMID:23306202
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Chun-Jun; Sun, Wei-Wen; Bruno, Kenneth S.
In secondary metabolite biosynthesis, core synthetic genes such as polyketide synthase genes or non-ribosomal peptide synthase genes usually encode proteins that generate various backbone precursors. These precursors are modified by other tailoring enzymes to yield a large variety of different secondary metabolites. The number of core synthesis genes in a given species correlates, therefore, with the number of types of secondary metabolites the organism can produce. In our study, heterologous expression of all the A. terreus NRPS-like genes showed that two NRPS-like proteins, encoded by atmelA and apvA, release the same natural product, aspulvinone E. More interestingly, further experiments revealedmore » that the aspulvinone E produced by two different genes accumulates in different fungal compartments. And this spatial control of aspulvinone E production is likely to be regulated by their own specific promoters. Comparative genomics indicates that atmelA and apvA might share a same ancestral gene and the gene apvA is inserted in a highly conserved region in Aspergillus species that contains genes coding for life-essential proteins. The study also identified one trans-prenyltransferase AbpB which is capable of prenylating two different substrates aspulvinones and butyrolactones. In total, our study shows the first example in which the locally distribution of the same natural product could lead to its incorporation into different SM pathways.« less
USDA-ARS?s Scientific Manuscript database
Prenylated stilbenoids found preferentially in a few legume plants exhibit phytoalexin properties and pharmacological activities with potential benefits to human health. Despite their importance, the biosynthetic pathways of these compounds remain to be elucidated. Peanut (Arachis hypogaea) hairy r...
Antimicrobial and antiinsectan phenolic metabolites of dalea searlsiae
USDA-ARS?s Scientific Manuscript database
Continued interest in the chemistry of Dalea spp. (Fabaceae) has led to investigation of Dalea searlsiae, a plant native to areas of the western United States. Methanol extractions of D. searlsiae roots, and subsequent chromatographic fractionation, afforded the new prenylated and geranylated flavan...
Fujisawa, Masaki; Shima, Yoko; Nakagawa, Hiroyuki; Kitagawa, Mamiko; Kimbara, Junji; Nakano, Toshitsugu; Kasumi, Takafumi; Ito, Yasuhiro
2014-01-01
The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) targeting tomato gene promoters. The ChIP-chip and transcriptome analysis identified FUL1/FUL2 target genes that contain at least one genomic region bound by FUL1 or FUL2 (regions that occur mainly in their promoters) and exhibit FUL1/FUL2-dependent expression during ripening. These analyses identified 860 direct FUL1 targets and 878 direct FUL2 targets; this set of genes includes both direct targets of RIN and nontargets of RIN. Functional classification of the FUL1/FUL2 targets revealed that these FUL homologs function in many biological processes via the regulation of ripening-related gene expression, both in cooperation with and independent of RIN. Our in vitro assay showed that the FUL homologs, RIN, and tomato AGAMOUS-LIKE1 form DNA binding complexes, suggesting that tetramer complexes of these MADS box proteins are mainly responsible for the regulation of ripening. PMID:24415769
RNA helicase proteins as chaperones and remodelers
Jarmoskaite, Inga; Russell, Rick
2014-01-01
Superfamily 2 helicase proteins are ubiquitous in RNA biology and have an extraordinarily broad set of functional roles. Central among these roles are to promote rearrangements of structured RNAs and to remodel RNA-protein complexes (RNPs), allowing formation of native RNA structure or progression through a functional cycle of structures. While all superfamily 2 helicases share a conserved helicase core, they are divided evolutionarily into several families, and it is principally proteins from three families, the DEAD-box, DEAH/RHA and Ski2-like families, that function to manipulate structured RNAs and RNPs. Strikingly, there are emerging differences in the mechanisms of these proteins, both between families and within the largest family (DEAD-box), and these differences appear to be tuned to their RNA or RNP substrates and their specific roles. This review outlines basic mechanistic features of the three families and surveys individual proteins and the current understanding of their biological substrates and mechanisms. PMID:24635478
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellner, Julian N.; Meinhart, Anton, E-mail: anton.meinhart@mpimf-heidelberg.mpg.de
The structure of the SPRY domain of the human RNA helicase DDX1 was determined at 2.0 Å resolution. The SPRY domain provides a putative protein–protein interaction platform within DDX1 that differs from other SPRY domains in its structure and conserved regions. The human RNA helicase DDX1 in the DEAD-box family plays an important role in RNA processing and has been associated with HIV-1 replication and tumour progression. Whereas previously described DEAD-box proteins have a structurally conserved core, DDX1 shows a unique structural feature: a large SPRY-domain insertion in its RecA-like consensus fold. SPRY domains are known to function as protein–proteinmore » interaction platforms. Here, the crystal structure of the SPRY domain of human DDX1 (hDSPRY) is reported at 2.0 Å resolution. The structure reveals two layers of concave, antiparallel β-sheets that stack onto each other and a third β-sheet beneath the β-sandwich. A comparison with SPRY-domain structures from other eukaryotic proteins showed that the general β-sandwich fold is conserved; however, differences were detected in the loop regions, which were identified in other SPRY domains to be essential for interaction with cognate partners. In contrast, in hDSPRY these loop regions are not strictly conserved across species. Interestingly, though, a conserved patch of positive surface charge is found that may replace the connecting loops as a protein–protein interaction surface. The data presented here comprise the first structural information on DDX1 and provide insights into the unique domain architecture of this DEAD-box protein. By providing the structure of a putative interaction domain of DDX1, this work will serve as a basis for further studies of the interaction network within the hetero-oligomeric complexes of DDX1 and of its recruitment to the HIV-1 Rev protein as a viral replication factor.« less
PrenDB, a Substrate Prediction Database to Enable Biocatalytic Use of Prenyltransferases.
Gunera, Jakub; Kindinger, Florian; Li, Shu-Ming; Kolb, Peter
2017-03-10
Prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily catalyze the attachment of prenyl or prenyl-like moieties to diverse acceptor compounds. These acceptor molecules are generally aromatic in nature and mostly indole or indole-like. Their catalytic transformation represents a major skeletal diversification step in the biosynthesis of secondary metabolites, including the indole alkaloids. DMATS enzymes thus contribute significantly to the biological and pharmacological diversity of small molecule metabolites. Understanding the substrate specificity of these enzymes could create opportunities for their biocatalytic use in preparing complex synthetic scaffolds. However, there has been no framework to achieve this in a rational way. Here, we report a chemoinformatic pipeline to enable prenyltransferase substrate prediction. We systematically catalogued 32 unique prenyltransferases and 167 unique substrates to create possible reaction matrices and compiled these data into a browsable database named PrenDB. We then used a newly developed algorithm based on molecular fragmentation to automatically extract reactive chemical epitopes. The analysis of the collected data sheds light on the thus far explored substrate space of DMATS enzymes. To assess the predictive performance of our virtual reaction extraction tool, 38 potential substrates were tested as prenyl acceptors in assays with three prenyltransferases, and we were able to detect turnover in >55% of the cases. The database, PrenDB (www.kolblab.org/prendb.php), enables the prediction of potential substrates for chemoenzymatic synthesis through substructure similarity and virtual chemical transformation techniques. It aims at making prenyltransferases and their highly regio- and stereoselective reactions accessible to the research community for integration in synthetic work flows. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility
2014-01-01
Background The MADS-box transcription factors play fundamental roles in reproductive developmental control. Although the roles of many plant MADS-box proteins have been extensively studied, there are almost no functional studies of them in soybean, an important protein and oil crop in the world. In addition, the MADS-box protein orthologs may have species-specific functions. Controlling male fertility is an important goal in plant hybrid breeding but is difficult in some crops like soybean. The morphological structure of soybean flowers prevents the cross-pollination. Understanding the molecular mechanisms for floral development will aid in engineering new sterile materials that could be applied in hybrid breeding programs in soybean. Result Through microarray analysis, a flower-enriched gene in soybean was selected and designated as GmMADS28. GmMADS28 belongs to AGL9/SEP subfamily of MADS-box proteins, localized in nucleus and showed specific expression patterns in floral meristems as well as stamen and petal primordia. Expression of GmMADS28 in the stamens and petals of a soybean mutant NJS-10Hfs whose stamens are converted into petals was higher than in those of wild-type plants. Constitutive expression of GmMADS28 in tobacco promoted early flowering and converted stamens and sepals to petals. Interestingly, transgenic plants increased the numbers of sepal, petal and stamen from five to six and exhibited male sterility due to the shortened and curly filaments and the failure of pollen release from the anthers. The ectopic expression of GmMADS28 was found to be sufficient to activate expression of tobacco homologs of SOC1, LEAFY, AGL8/FUL, and DEF. In addition, we observed the interactions of GmMADS28 with soybean homologs of SOC1, AP1, and AGL8/FUL proteins. Conclusion In this study, we observed the roles of GmMADS28 in the regulation of floral organ number and petal identity. Compared to other plant AGL9/SEP proteins, GmMADS28 specifically regulates floral organ number, filament length and pollen release. The sterility caused by the ectopic expression of GmMADS28 offers a promising way to genetically produce new sterile material that could potentially be applied in the hybrid breeding of crops like soybean. PMID:24693922
A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility.
Huang, Fang; Xu, Guangli; Chi, Yingjun; Liu, Haicui; Xue, Qian; Zhao, Tuanjie; Gai, Junyi; Yu, Deyue
2014-04-02
The MADS-box transcription factors play fundamental roles in reproductive developmental control. Although the roles of many plant MADS-box proteins have been extensively studied, there are almost no functional studies of them in soybean, an important protein and oil crop in the world. In addition, the MADS-box protein orthologs may have species-specific functions. Controlling male fertility is an important goal in plant hybrid breeding but is difficult in some crops like soybean. The morphological structure of soybean flowers prevents the cross-pollination. Understanding the molecular mechanisms for floral development will aid in engineering new sterile materials that could be applied in hybrid breeding programs in soybean. Through microarray analysis, a flower-enriched gene in soybean was selected and designated as GmMADS28. GmMADS28 belongs to AGL9/SEP subfamily of MADS-box proteins, localized in nucleus and showed specific expression patterns in floral meristems as well as stamen and petal primordia. Expression of GmMADS28 in the stamens and petals of a soybean mutant NJS-10Hfs whose stamens are converted into petals was higher than in those of wild-type plants. Constitutive expression of GmMADS28 in tobacco promoted early flowering and converted stamens and sepals to petals. Interestingly, transgenic plants increased the numbers of sepal, petal and stamen from five to six and exhibited male sterility due to the shortened and curly filaments and the failure of pollen release from the anthers. The ectopic expression of GmMADS28 was found to be sufficient to activate expression of tobacco homologs of SOC1, LEAFY, AGL8/FUL, and DEF. In addition, we observed the interactions of GmMADS28 with soybean homologs of SOC1, AP1, and AGL8/FUL proteins. In this study, we observed the roles of GmMADS28 in the regulation of floral organ number and petal identity. Compared to other plant AGL9/SEP proteins, GmMADS28 specifically regulates floral organ number, filament length and pollen release. The sterility caused by the ectopic expression of GmMADS28 offers a promising way to genetically produce new sterile material that could potentially be applied in the hybrid breeding of crops like soybean.
A Network of HMG-box Transcription Factors Regulates Sexual Cycle in the Fungus Podospora anserina
Ait Benkhali, Jinane; Coppin, Evelyne; Brun, Sylvain; Peraza-Reyes, Leonardo; Martin, Tom; Dixelius, Christina; Lazar, Noureddine; van Tilbeurgh, Herman; Debuchy, Robert
2013-01-01
High-mobility group (HMG) B proteins are eukaryotic DNA-binding proteins characterized by the HMG-box functional motif. These transcription factors play a pivotal role in global genomic functions and in the control of genes involved in specific developmental or metabolic pathways. The filamentous ascomycete Podospora anserina contains 12 HMG-box genes. Of these, four have been previously characterized; three are mating-type genes that control fertilization and development of the fruit-body, whereas the last one encodes a factor involved in mitochondrial DNA stability. Systematic deletion analysis of the eight remaining uncharacterized HMG-box genes indicated that none were essential for viability, but that seven were involved in the sexual cycle. Two HMG-box genes display striking features. PaHMG5, an ortholog of SpSte11 from Schizosaccharomyces pombe, is a pivotal activator of mating-type genes in P. anserina, whereas PaHMG9 is a repressor of several phenomena specific to the stationary phase, most notably hyphal anastomoses. Transcriptional analyses of HMG-box genes in HMG-box deletion strains indicated that PaHMG5 is at the hub of a network of several HMG-box factors that regulate mating-type genes and mating-type target genes. Genetic analyses revealed that this network also controls fertility genes that are not regulated by mating-type transcription factors. This study points to the critical role of HMG-box members in sexual reproduction in fungi, as 11 out of 12 members were involved in the sexual cycle in P. anserina. PaHMG5 and SpSte11 are conserved transcriptional regulators of mating-type genes, although P. anserina and S. pombe diverged 550 million years ago. Two HMG-box genes, SOX9 and its upstream regulator SRY, also play an important role in sex determination in mammals. The P. anserina and S. pombe mating-type genes and their upstream regulatory factor form a module of HMG-box genes analogous to the SRY/SOX9 module, revealing a commonality of sex regulation in animals and fungi. PMID:23935511
Increased helix and protein stability through the introduction of a new tertiary hydrogen bond.
Peterson, R W; Nicholson, E M; Thapar, R; Klevit, R E; Scholtz, J M
1999-03-12
In an effort to quantify the importance of hydrogen bonding and alpha-helix formation to protein stability, a capping box motif was introduced into the small phosphocarrier protein HPr. Previous studies had confirmed that Ser46, at the N-cap position of the short helix-B in HPr, serves as an N-cap in solution. Thus, only a single-site mutation was required to produce a canonical S-X-X-E capping box: Lys49 at the N3 position was substituted with a glutamic acid residue. Thermal and chemical denaturation studies on the resulting K49E HPr show that the designed variant is approximately 2 kcal mol-1 more stable than the wild-type protein. However, NMR studies indicate that the side-chain of Glu49 does not participate in the expected capping H-bond interaction, but instead forms a new tertiary H-bond that links helix-B to the four-stranded beta-sheet of HPr. Here, we demonstrate that a strategy in which new non-native H-bonds are introduced can generate proteins with increased stability. We discuss why the original capping box design failed, and compare the energetic consequences of the new tertiary side-chain to main-chain H-bond with a local (helix-capping) side-chain to main-chain H-bond on the protein's global stability. Copyright 1999 Academic Press.
Crystal Structure of the Minimalist Max-E47 Protein Chimera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmadpour, Faraz; Ghirlando, Rodolfo; De Jong, Antonia T.
Max-E47 is a protein chimera generated from the fusion of the DNA-binding basic region of Max and the dimerization region of E47, both members of the basic region/helix-loop-helix (bHLH) superfamily of transcription factors. Like native Max, Max-E47 binds with high affinity and specificity to the E-box site, 5'-CACGTG, both in vivo and in vitro. We have determined the crystal structure of Max-E47 at 1.7 Å resolution, and found that it associates to form a well-structured dimer even in the absence of its cognate DNA. Analytical ultracentrifugation confirms that Max-E47 is dimeric even at low micromolar concentrations, indicating that the Max-E47more » dimer is stable in the absence of DNA. Circular dichroism analysis demonstrates that both non-specific DNA and the E-box site induce similar levels of helical secondary structure in Max-E47. These results suggest that Max-E47 may bind to the E-box following the two-step mechanism proposed for other bHLH proteins. In this mechanism, a rapid step where protein binds to DNA without sequence specificity is followed by a slow step where specific protein:DNA interactions are fine-tuned, leading to sequence-specific recognition. Collectively, these results show that the designed Max-E47 protein chimera behaves both structurally and functionally like its native counterparts.« less
Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu
2010-07-01
An acyclic diterpene alcohol, (E,E,E)-geranylgeraniol (GGOH), is one of the important compounds used as perfume and pharmacological agents. A deficiency of squalene (SQ) synthase activity allows yeasts to accumulate an acyclic sesquiterpene alcohol, (E,E)-farnesol, in their cells. Since sterols are essential for the growth of yeasts, a deficiency of SQ synthase activity makes the addition of supplemental sterols to the culture media necessary. To develop a GGOH production method not requiring any supplemental sterols, we overexpressed HMG1 encoding hydroxymethylglutaryl-CoA reductase and the genes of two prenyl diphosphate synthases, ERG20 and BTS1, in Saccharomyces cerevisiae. A prototrophic diploid coexpressing HMG1 and the ERG20-BTS1 fusion accumulated GGOH with neither disruption of the SQ synthase gene nor the addition of any supplemental sterols. The GGOH content on the diploid cultivation in a 5-l jar fermenter reached 138.8 mg/l under optimal conditions.
The DEAD-Box Protein CYT-19 Uses Arginine Residues in Its C-Tail To Tether RNA Substrates.
Busa, Veronica F; Rector, Maxwell J; Russell, Rick
2017-07-18
DEAD-box proteins are nonprocessive RNA helicases that play diverse roles in cellular processes. The Neurospora crassa DEAD-box protein CYT-19 promotes mitochondrial group I intron splicing and functions as a general RNA chaperone. CYT-19 includes a disordered, arginine-rich "C-tail" that binds RNA, positioning the helicase core to capture and unwind nearby RNA helices. Here we probed the C-tail further by varying the number and positions of arginines within it. We found that removing sets of as few as four of the 11 arginines reduced RNA unwinding activity (k cat /K M ) to a degree equivalent to that seen upon removal of the C-tail, suggesting that a minimum or "threshold" number of arginines is required. In addition, a mutant with 16 arginines displayed RNA unwinding activity greater than that of wild-type CYT-19. The C-tail modifications impacted unwinding only of RNA helices within constructs that included an adjacent helix or structured RNA element that would allow C-tail binding, indicating that the helicase core remained active in the mutants. In addition, changes in RNA unwinding efficiency of the mutants were mirrored by changes in functional RNA affinity, as determined from the RNA concentration dependence of ATPase activity, suggesting that the C-tail functions primarily to increase RNA affinity. Interestingly, the salt concentration dependence of RNA unwinding activity is unaffected by C-tail composition, suggesting that the C-tail uses primarily hydrogen bonding, not electrostatic interactions, to bind double-stranded RNA. Our results provide insights into how an unstructured C-tail contributes to DEAD-box protein activity and suggest parallels with other families of RNA- and DNA-binding proteins.
Völkel, Pamela; Le Faou, Perrine; Vandamme, Julien; Pira, Dorcas; Angrand, Pierre-Olivier
2012-05-01
Polycomb repression controls the expression of hundreds of genes involved in development and is mediated by essentially two classes of chromatin-associated protein complexes. The Polycomb repressive complex 2 (PRC2) trimethylates histone H3 at lysine 27, an epigenetic mark that serves as a docking site for the PRC1 protein complex. Drosophila core PRC1 is composed of four subunits: Polycomb (Pc), Posterior sex combs (Psc), Polyhomeotic (Ph) and Sex combs extra (Sce). Each of these proteins has multiple orthologs in vertebrates, thus generating an enormous scope for potential combinatorial diversity. In particular, mammalian genomes encode five Pc family members: CBX2, CBX4, CBX6, CBX7 and CBX8. To complicate matters further, distinct isoforms might arise from single genes. Here, we address the functional role of the two human CBX2 isoforms. Owing to different polyadenylation sites and alternative splicing events, the human CBX2 locus produces two transcripts: a 5-exon transcript that encodes the 532-amino acid CBX2-1 isoform that contains the conserved chromodomain and Pc box and a 4-exon transcript encoding a shorter isoform, CBX2-2, lacking the Pc box but still possessing a chromodomain. Using biochemical approaches and a novel in vivo imaging assay, we show that the short CBX2-2 isoform lacking the Pc box, does not participate in PRC1 protein complexes, but self-associates in vivo and forms complexes of high molecular weight. Furthermore, the CBX2 short isoform is still able to repress transcription, suggesting that Polycomb repression might occur in the absence of PRC1 formation.
Detection and quantification of RNA 2′-O-methylation and pseudouridylation
Karijolich, John
2016-01-01
RNA-guided RNA modification is a naturally occurring process that introduces 2′-O-methylation and pseudouridylation into rRNA, spliceosomal snRNA and several other types of RNA. The Box C/D ribonucleoproteins (RNP) and Box H/ACA RNP, each containing one unique guide RNA (Box C/D RNA or Box H/ACA RNA) and a set of core proteins, are responsible for 2′-O-methylation and pseudouridylation respectively. Box C/D RNA and Box H/ACA RNA provide the modification specificity through base pairing with their RNA substrate. These post-transcriptional modifications could profoundly alter the properties and functions of substrate RNAs. Thus it is desirable to establish reliable and standardized modification methods to study biological functions of modified nucleotides in RNAs. Here, we present several sensitive and efficient methods and protocols for detecting and quantifying post-transcriptional 2′-O-methylation and pseudouridylation. PMID:26853326
Hansen, Flemming G.; Atlung, Tove
2018-01-01
More than 50 years have passed since the presentation of the Replicon Model which states that a positively acting initiator interacts with a specific site on a circular chromosome molecule to initiate DNA replication. Since then, the origin of chromosome replication, oriC, has been determined as a specific region that carries sequences required for binding of positively acting initiator proteins, DnaA-boxes and DnaA proteins, respectively. In this review we will give a historical overview of significant findings which have led to the very detailed knowledge we now possess about the initiation process in bacteria using Escherichia coli as the model organism, but emphasizing that virtually all bacteria have DnaA proteins that interacts with DnaA boxes to initiate chromosome replication. We will discuss the dnaA gene regulation, the special features of the dnaA gene expression, promoter strength, and translation efficiency, as well as, the DnaA protein, its concentration, its binding to DnaA-boxes, and its binding of ATP or ADP. Furthermore, we will discuss the different models for regulation of initiation which have been proposed over the years, with particular emphasis on the Initiator Titration Model. PMID:29541066
Venom Proteome of the Box Jellyfish Chironex fleckeri
Brinkman, Diane L.; Aziz, Ammar; Loukas, Alex; Potriquet, Jeremy; Seymour, Jamie; Mulvenna, Jason
2012-01-01
The nematocyst is a complex intracellular structure unique to Cnidaria. When triggered to discharge, the nematocyst explosively releases a long spiny, tubule that delivers an often highly venomous mixture of components. The box jellyfish, Chironex fleckeri, produces exceptionally potent and rapid-acting venom and its stings to humans cause severe localized and systemic effects that are potentially life-threatening. In an effort to identify toxins that could be responsible for the serious health effects caused by C. fleckeri and related species, we used a proteomic approach to profile the protein components of C. fleckeri venom. Collectively, 61 proteins were identified, including toxins and proteins important for nematocyte development and nematocyst formation (nematogenesis). The most abundant toxins identified were isoforms of a taxonomically restricted family of potent cnidarian proteins. These toxins are associated with cytolytic, nociceptive, inflammatory, dermonecrotic and lethal properties and expansion of this important protein family goes some way to explaining the destructive and potentially fatal effects of C. fleckeri venom. Venom proteins and their post-translational modifications (PTMs) were further characterized using toxin-specific antibodies and phosphoprotein/glycoprotein-specific stains. Results indicated that glycosylation is a common PTM of the toxin family while a lack of cross-reactivity by toxin-specific antibodies infers there is significant divergence in structure and possibly function among family members. This study provides insight into the depth and diversity of protein toxins produced by harmful box jellyfish and represents the first description of a cubozoan jellyfish venom proteome. PMID:23236347
SCF(KMD) controls cytokinin signaling by regulating the degradation of type-B response regulators.
Kim, Hyo Jung; Chiang, Yi-Hsuan; Kieber, Joseph J; Schaller, G Eric
2013-06-11
Cytokinins are plant hormones that play critical roles in growth and development. In Arabidopsis, the transcriptional response to cytokinin is regulated by action of type-B Arabidopsis response regulators (ARRs). Although central elements in the cytokinin signal transduction pathway have been identified, mechanisms controlling output remain to be elucidated. Here we demonstrate that a family of F-box proteins, called the kiss me deadly (KMD) family, targets type-B ARR proteins for degradation. KMD proteins form an S-phase kinase-associated PROTEIN1 (SKP1)/Cullin/F-box protein (SCF) E3 ubiquitin ligase complex and directly interact with type-B ARR proteins. Loss-of-function KMD mutants stabilize type-B ARRs and exhibit an enhanced cytokinin response. In contrast, plants with elevated KMD expression destabilize type-B ARR proteins leading to cytokinin insensitivity. Our results support a model in which an SCF(KMD) complex negatively regulates cytokinin responses by controlling levels of a key family of transcription factors.
Artoindonesianin C, a new xanthone derivative from Artocarpus teysmanii.
Makmur, L; Syamsurizal, S; Tukiran, T; Achmad, S A; Aimi, N; Hakim, E H; Kitajima, M; Takayama, H
2000-02-01
A new xanthone derivative, artoindonesianin C (1), was isolated from Artocarpus teysmanii, together with two known prenylated flavonoids, cycloartobiloxanthone and artonin J. The structure of artoindonesianin C (1) was determined on the basis of MS and NMR evidence and by comparison with known related compounds.
Ahmad, Aftab; Niwa, Yasuo; Goto, Shingo; Ogawa, Takeshi; Shimizu, Masanori; Suzuki, Akane; Kobayashi, Kyoko; Kobayashi, Hirokazu
2015-01-01
An activation-tagging methodology was applied to dedifferentiated calli of Arabidopsis to identify new genes involved in salt tolerance. This identified salt tolerant callus 8 (stc8) as a gene encoding the basic helix-loop-helix transcription factor bHLH106. bHLH106-knockout (KO) lines were more sensitive to NaCl, KCl, LiCl, ABA, and low temperatures than the wild-type. Back-transformation of the KO line rescued its phenotype, and over-expression (OX) of bHLH106 in differentiated plants exhibited tolerance to NaCl. Green fluorescent protein (GFP) fused with bHLH106 revealed that it was localized to the nucleus. Prepared bHLH106 protein was subjected to electrophoresis mobility shift assays against E-box sequences (5'-CANNTG-3'). The G-box sequence 5'-CACGTG-3' had the strongest interaction with bHLH106. bHLH106-OX lines were transcriptomically analyzed, and resultant up- and down-regulated genes selected on the criterion of presence of a G-box sequence. There were 198 genes positively regulated by bHLH106 and 36 genes negatively regulated; these genes possessed one or more G-box sequences in their promoter regions. Many of these genes are known to be involved in abiotic stress response. It is concluded that bHLH106 locates at a branching point in the abiotic stress response network by interacting directly to the G-box in genes conferring salt tolerance on plants.
Matsumoto, Daiki; Yamane, Hisayo; Abe, Kazuyuki; Tao, Ryutaro
2012-07-01
Many species in Rosaceae, Solanaceae, and Plantaginaceae exhibit S-RNase-based self-incompatibility (SI). In this system, the pistil and pollen specificities are determined by S-RNase and the S locus F-box protein, respectively. The pollen S determinant F-box protein in Prunus (Rosaceae) is referred to by two different terms, SFB (for S-haplotype-specific F-box protein) and SLF (for S locus F box), whereas it is called SLF in Solanaceae and Plantaginaceae. Prunus SFB is thought to be a molecule indispensable for its cognate S-RNase to exert cytotoxicity and to arrest pollen tube growth in incompatible reactions. Although recent studies have demonstrated the molecular function of SCF(SLF) in the SI reaction of Solanaceae and Plantaginaceae, how SFB participates in the Prunus SI mechanism remains to be elucidated. Here we report the identification of sweet cherry (Prunus avium) SFB (PavSFB)-interacting Skp1-like1 (PavSSK1) using a yeast (Saccharomyces cerevisiae) two-hybrid screening against the pollen cDNA library. Phylogenetic analysis showed that PavSSK1 belongs to the same clade as Antirrhinum hispanicum SLF-interacting Skp1-like1 and Petunia hybrida SLF-interacting Skp1-like1 (PhSSK1). In yeast, PavSSK1 interacted not only with PavSFBs from different S haplotypes and Cullin1-likes (PavCul1s), but also with S-locus F-box-likes. A pull-down assay confirmed the interactions between PavSSK1 and PavSFB and between PavSSK1 and PavCul1s. These results collectively indicate that PavSSK1 could be a functional component of the SCF complex and that PavSFB may function as a component of the SCF complex. We discuss the molecular function of PavSFB in self-/nonself-recognition in the gametophytic SI of Prunus.
Matsumoto, Daiki; Yamane, Hisayo; Abe, Kazuyuki; Tao, Ryutaro
2012-01-01
Many species in Rosaceae, Solanaceae, and Plantaginaceae exhibit S-RNase-based self-incompatibility (SI). In this system, the pistil and pollen specificities are determined by S-RNase and the S locus F-box protein, respectively. The pollen S determinant F-box protein in Prunus (Rosaceae) is referred to by two different terms, SFB (for S-haplotype-specific F-box protein) and SLF (for S locus F box), whereas it is called SLF in Solanaceae and Plantaginaceae. Prunus SFB is thought to be a molecule indispensable for its cognate S-RNase to exert cytotoxicity and to arrest pollen tube growth in incompatible reactions. Although recent studies have demonstrated the molecular function of SCFSLF in the SI reaction of Solanaceae and Plantaginaceae, how SFB participates in the Prunus SI mechanism remains to be elucidated. Here we report the identification of sweet cherry (Prunus avium) SFB (PavSFB)-interacting Skp1-like1 (PavSSK1) using a yeast (Saccharomyces cerevisiae) two-hybrid screening against the pollen cDNA library. Phylogenetic analysis showed that PavSSK1 belongs to the same clade as Antirrhinum hispanicum SLF-interacting Skp1-like1 and Petunia hybrida SLF-interacting Skp1-like1 (PhSSK1). In yeast, PavSSK1 interacted not only with PavSFBs from different S haplotypes and Cullin1-likes (PavCul1s), but also with S-locus F-box-likes. A pull-down assay confirmed the interactions between PavSSK1 and PavSFB and between PavSSK1 and PavCul1s. These results collectively indicate that PavSSK1 could be a functional component of the SCF complex and that PavSFB may function as a component of the SCF complex. We discuss the molecular function of PavSFB in self-/nonself-recognition in the gametophytic SI of Prunus. PMID:22548785
Kraakman, L S; Mager, W H; Maurer, K T; Nieuwint, R T; Planta, R J
1989-01-01
Transcription of the majority of the ribosomal protein (rp) genes in yeast is activated through common cis-acting elements, designated RPG-boxes. These elements have been shown to act as specific binding sites for the protein factor TUF/RAP1/GRF1 in vitro. Two such elements occur in the intergenic region separating the divergently transcribed genes encoding L46 and S24. To investigate whether the two RPG-boxes mediate transcription activation of both the L46 and S24 gene, two experimental strategies were followed: cloning of the respective genes on multicopy vectors and construction of fusion genes. Cloning of the L46 + S24 gene including the intergenic region in a multicopy yeast vector indicated that both genes are transcriptionally active. Using constructs in which only the S24 or the L46 gene is present, with or without the intergenic region, we obtained evidence that the intergenic region is indispensable for transcription activation of either gene. To demarcate the element(s) responsible for this activation, fusions of the intergenic region in either orientation to the galK reporter gene were made. Northern analysis of the levels of hybrid mRNA demonstrated that the intergenic region can serve as an heterologous promoter when it is in the 'S24-orientation'. Surprisingly, however, when fused in the reverse orientation the intergenic region did hardly confer transcription activity on the fusion gene. Furthermore, a 274 bp FnuDII-FnuDII fragment from the intergenic region that contains the RPG-boxes, could replace the naturally occurring upstream activation site (UASrpg) of the L25 rp-gene only when inserted in the 'S24-orientation'. Removal of 15 bp from the FnuDII fragment appeared to be sufficient to obtain transcription activation in the 'L46 orientation' as well. Analysis of a construct in which the RPG-boxes were selectively deleted from the promoter region of the L46 gene indicated that the RPG-boxes are needed for efficient transcriptional activation of the L46 gene. We conclude that all promoter elements for the S24 gene are located within the intergenic region, where the RPG-boxes are the most likely UAS-elements. However, the intergenic region (including the RPG-boxes) is required but not sufficient to confer transcription activity on the L46 gene. Images PMID:2602141
Kraakman, L S; Mager, W H; Maurer, K T; Nieuwint, R T; Planta, R J
1989-12-11
Transcription of the majority of the ribosomal protein (rp) genes in yeast is activated through common cis-acting elements, designated RPG-boxes. These elements have been shown to act as specific binding sites for the protein factor TUF/RAP1/GRF1 in vitro. Two such elements occur in the intergenic region separating the divergently transcribed genes encoding L46 and S24. To investigate whether the two RPG-boxes mediate transcription activation of both the L46 and S24 gene, two experimental strategies were followed: cloning of the respective genes on multicopy vectors and construction of fusion genes. Cloning of the L46 + S24 gene including the intergenic region in a multicopy yeast vector indicated that both genes are transcriptionally active. Using constructs in which only the S24 or the L46 gene is present, with or without the intergenic region, we obtained evidence that the intergenic region is indispensable for transcription activation of either gene. To demarcate the element(s) responsible for this activation, fusions of the intergenic region in either orientation to the galK reporter gene were made. Northern analysis of the levels of hybrid mRNA demonstrated that the intergenic region can serve as an heterologous promoter when it is in the 'S24-orientation'. Surprisingly, however, when fused in the reverse orientation the intergenic region did hardly confer transcription activity on the fusion gene. Furthermore, a 274 bp FnuDII-FnuDII fragment from the intergenic region that contains the RPG-boxes, could replace the naturally occurring upstream activation site (UASrpg) of the L25 rp-gene only when inserted in the 'S24-orientation'. Removal of 15 bp from the FnuDII fragment appeared to be sufficient to obtain transcription activation in the 'L46 orientation' as well. Analysis of a construct in which the RPG-boxes were selectively deleted from the promoter region of the L46 gene indicated that the RPG-boxes are needed for efficient transcriptional activation of the L46 gene. We conclude that all promoter elements for the S24 gene are located within the intergenic region, where the RPG-boxes are the most likely UAS-elements. However, the intergenic region (including the RPG-boxes) is required but not sufficient to confer transcription activity on the L46 gene.
Watanabe, Yoh-ichi; Gray, Michael W.
2000-01-01
A reverse transcription–polymerase chain reaction (RT–PCR) approach was used to clone a cDNA encoding the Euglena gracilis homolog of yeast Cbf5p, a protein component of the box H/ACA class of snoRNPs that mediate pseudouridine formation in eukaryotic rRNA. Cbf5p is a putative pseudouridine synthase, and the Euglena homolog is the first full-length Cbf5p sequence to be reported for an early diverging unicellular eukaryote (protist). Phylogenetic analysis of putative pseudouridine synthase sequences confirms that archaebacterial and eukaryotic (including Euglena) Cbf5p proteins are specifically related and are distinct from the TruB/Pus4p clade that is responsible for formation of pseudouridine at position 55 in eubacterial (TruB) and eukaryotic (Pus4p) tRNAs. Using a bioinformatics approach, we also identified archaebacterial genes encoding candidate homologs of yeast Gar1p and Nop10p, two additional proteins known to be associated with eukaryotic box H/ACA snoRNPs. These observations raise the possibility that pseudouridine formation in archaebacterial rRNA may be dependent on analogs of the eukaryotic box H/ACA snoRNPs, whose evolutionary origin may therefore predate the split between Archaea (archaebacteria) and Eucarya (eukaryotes). Database searches further revealed, in archaebacterial and some eukaryotic genomes, two previously unrecognized groups of genes (here designated ‘PsuX’ and ‘PsuY’) distantly related to the Cbf5p/TruB gene family. PMID:10871366
A safety study of oral tangeretin and xanthohumol administration to laboratory mice.
Vanhoecke, Barbara W; Delporte, Femke; Van Braeckel, Eva; Heyerick, Arne; Depypere, Herman T; Nuytinck, Margareta; De Keukeleire, Denis; Bracke, Marc E
2005-01-01
The detection of molecular targets for flavonoids in cell signalling has opened new perspectives for their application in medicine. Both tangeretin, a citrus methoxyflavone, and xanthohumol, the main prenylated chalcone present in hops (Humulus lupulus L.), act on the mitogen-activated protein kinase pathway and await further investigation for administration in vivo. A safety study was designed in laboratory mice orally administered concentrates of purified tangeretin (1 x 10(-4) M) or xanthohumol (5 x 10(-4) M) at libitum for 4 weeks. Blood samples were collected for the analysis of a variety of haematological and biochemical parameters. A reduction of the circulating lymphocyte number was noticed for tangeretin, while all other parameters were unaffected by treatment with either tangeretin or xanthohumol. The parameters encompassed an integrity check of the following tissues and organs: bone marrow, liver, exocrine pancreas, kidneys, muscles, thyroid, ovaries and surrenal cortex. Furthermore, no differences were noted in the metabolism of proteins, lipids, carbohydrates and uric acid, as well as in ion concentrations. All data indicate that oral administration of tangeretin or xanthohumol to laboratory mice does not affect major organ functions and opens the gate for further safety studies in humans.
Snipes, Stephen A; Rodriguez, Kevin; DeVries, Aaron E; Miyawaki, Kaori N; Perales, Mariano; Xie, Mingtang; Reddy, G Venugopala
2018-04-01
Concentration-dependent transcriptional regulation and the spatial regulation of transcription factor levels are poorly studied in plant development. WUSCHEL, a stem cell-promoting homeodomain transcription factor, accumulates at a higher level in the rib meristem than in the overlying central zone, which harbors stem cells in the shoot apical meristems of Arabidopsis thaliana. The differential accumulation of WUSCHEL in adjacent cells is critical for the spatial regulation and levels of CLAVATA3, a negative regulator of WUSCHEL transcription. Earlier studies have revealed that DNA-dependent dimerization, subcellular partitioning and protein destabilization control WUSCHEL protein levels and spatial accumulation. Moreover, the destabilization of WUSCHEL may also depend on the protein concentration. However, the roles of extrinsic spatial cues in maintaining differential accumulation of WUS are not understood. Through transient manipulation of hormone levels, hormone response patterns and analysis of the receptor mutants, we show that cytokinin signaling in the rib meristem acts through the transcriptional regulatory domains, the acidic domain and the WUSCHEL-box, to stabilize the WUS protein. Furthermore, we show that the same WUSCHEL-box functions as a degron sequence in cytokinin deficient regions in the central zone, leading to the destabilization of WUSCHEL. The coupled functions of the WUSCHEL-box in nuclear retention as described earlier, together with cytokinin sensing, reinforce higher nuclear accumulation of WUSCHEL in the rib meristem. In contrast a sub-threshold level may expose the WUSCHEL-box to destabilizing signals in the central zone. Thus, the cytokinin signaling acts as an asymmetric spatial cue in stabilizing the WUSCHEL protein to lead to its differential accumulation in neighboring cells, which is critical for concentration-dependent spatial regulation of CLAVATA3 transcription and meristem maintenance. Furthermore, our work shows that cytokinin response is regulated independently of the WUSCHEL function which may provide robustness to the regulation of WUSCHEL concentration.
Huang, Jinguang; Zheng, Chengchao
2013-01-01
RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of the RNA helicase gene family in crop growth and development. PMID:24265739
Xu, Ruirui; Zhang, Shizhong; Huang, Jinguang; Zheng, Chengchao
2013-01-01
RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of the RNA helicase gene family in crop growth and development.
Involvement of Retinoblastoma Protein and HBP1 in Histone H10 Gene Expression
Lemercier, Claudie; Duncliffe, Kym; Boibessot, Isabelle; Zhang, Hui; Verdel, André; Angelov, Dimitar; Khochbin, Saadi
2000-01-01
The histone H10-encoding gene is expressed in vertebrates in differentiating cells during the arrest of proliferation. In the H10 promoter, a specific regulatory element, which we named the H4 box, exhibits features which implicate a role in mediating H10 gene expression in response to both differentiation and cell cycle control signals. For instance, within the linker histone gene family, the H4 box is found only in the promoters of differentiation-associated subtypes, suggesting that it is specifically involved in differentiation-dependent expression of these genes. In addition, an element nearly identical to the H4 box is conserved in the promoters of histone H4-encoding genes and is known to be involved in their cell cycle-dependent expression. The transcription factors interacting with the H10 H4 box were therefore expected to link differentiation-dependent expression of H10 to the cell cycle control machinery. The aim of this work was to identify such transcription factors and to obtain information concerning the regulatory pathway involved. Interestingly, our cloning strategy led to the isolation of a retinoblastoma protein (RB) partner known as HBP1. HBP1, a high-mobility group box transcription factor, interacted specifically with the H10 H4 box and moreover was expressed in a differentiation-dependent manner. We also showed that the HBP1-encoding gene is able to produce different forms of HBP1. Finally, we demonstrated that both HBP1 and RB were involved in the activation of H10 gene expression. We therefore propose that HBP1 mediates a link between the cell cycle control machinery and cell differentiation signals. Through modulating the expression of specific chromatin-associated proteins such as histone H10, HBP1 plays a vital role in chromatin remodeling events during the arrest of cell proliferation in differentiating cells. PMID:10958660
Tan, Hua-Wei; Song, Xiao-Ming; Duan, Wei-Ke; Wang, Yan; Hou, Xi-Lin
2015-11-01
The SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box gene family contains highly conserved plant-specific transcription factors that play an important role in plant development, especially in flowering. Chinese cabbage (Brassica rapa subsp. pekinensis) is a leafy vegetable grown worldwide and is used as a model crop for research in genome duplication. The present study aimed to characterize the SBP-box transcription factor genes in Chinese cabbage. Twenty-nine SBP-box genes were identified in the Chinese cabbage genome and classified into six groups. We identified 23 orthologous and 5 co-orthologous SBP-box gene pairs between Chinese cabbage and Arabidopsis. An interaction network among these genes was constructed. Sixteen SBP-box genes were expressed more abundantly in flowers than in other tissues, suggesting their involvement in flowering. We show that the MiR156/157 family members may regulate the coding regions or 3'-UTR regions of Chinese cabbage SBP-box genes. As SBP-box genes were found to potentially participate in some plant development pathways, quantitative real-time PCR analysis was performed and showed that Chinese cabbage SBP-box genes were also sensitive to the exogenous hormones methyl jasmonic acid and salicylic acid. The SBP-box genes have undergone gene duplication and loss, evolving a more refined regulation for diverse stimulation in plant tissues. Our comprehensive genome-wide analysis provides insights into the SBP-box gene family of Chinese cabbage.
Ribeiro, Fabio Schneider; de Abreu da Silva, Isabel Caetano; Carneiro, Vitor Coutinho; Belgrano, Fabrício dos Santos; Mohana-Borges, Ronaldo; de Andrade Rosa, Ivone; Benchimol, Marlene; Souza, Nathalia Rocha Quintino; Mesquita, Rafael Dias; Sorgine, Marcos Henrique Ferreira; Gazos-Lopes, Felipe; Vicentino, Amanda Roberta Revoredo; Wu, Wenjie; de Moraes Maciel, Renata; da Silva-Neto, Mario Alberto Cardoso; Fantappié, Marcelo Rosado
2012-01-01
The mosquito Aedes aegypti can spread the dengue, chikungunya and yellow fever viruses. Thus, the search for key molecules involved in the mosquito survival represents today a promising vector control strategy. High Mobility Group Box (HMGB) proteins are essential nuclear factors that maintain the high-order structure of chromatin, keeping eukaryotic cells viable. Outside the nucleus, secreted HMGB proteins could alert the innate immune system to foreign antigens and trigger the initiation of host defenses. In this work, we cloned and functionally characterized the HMGB1 protein from Aedes aegypti (AaHMGB1). The AaHMGB1 protein typically consists of two HMG-box DNA binding domains and an acidic C-terminus. Interestingly, AaHMGB1 contains a unique alanine/glutamine-rich (AQ-rich) C-terminal region that seems to be exclusive of dipteran HMGB proteins. AaHMGB1 is localized to the cell nucleus, mainly associated with heterochromatin. Circular dichroism analyses of AaHMGB1 or the C-terminal truncated proteins revealed α-helical structures. We showed that AaHMGB1 can effectively bind and change the topology of DNA, and that the AQ-rich and the C-terminal acidic regions can modulate its ability to promote DNA supercoiling, as well as its preference to bind supercoiled DNA. AaHMGB1 is phosphorylated by PKA and PKC, but not by CK2. Importantly, phosphorylation of AaHMGB1 by PKA or PKC completely abolishes its DNA bending activity. Thus, our study shows that a functional HMGB1 protein occurs in Aedes aegypt and we provide the first description of a HMGB1 protein containing an AQ-rich regulatory C-terminus. PMID:22802955
Park, Hyun Jung; Costa, Robert H.; Lau, Lester F.; Tyner, Angela L.; Raychaudhuri, Pradip
2008-01-01
The forkhead box M1 (FoxM1) transcription factor is overexpressed in many cancers, and in mouse models it is required for tumor progression. FoxM1 activates expression of the cell cycle genes required for both S and M phase progression. Here we demonstrate that FoxM1 is degraded in late mitosis and early G1 phase by the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. FoxM1 interacts with the APC/C complex and its adaptor, Cdh1. Expression of Cdh1 stimulated degradation of the FoxM1 protein, and depletion of Cdh1 resulted in stabilization of the FoxM1 protein in late mitosis and in early G1 phase of the cell cycle. Cdh1 has been implicated in regulating S phase entry. We show that codepletion of FoxM1 inhibits early S phase entry observed in Cdh1-depleted cells. The N-terminal region of FoxM1 contains both destruction box (D box) and KEN box sequences that are required for targeting by Cdh1. Mutation of either the D box sequence or the KEN box sequence stabilized FoxM1 and blocked Cdh1-induced proteolysis. Cells expressing a nondegradable form of FoxM1 entered S phase rapidly following release from M phase arrest. Together, our observations show that FoxM1 is one of the targets of Cdh1 in late M or early G1 phase and that its proteolysis is important for regulated entry into S phase. PMID:18573889
Park, Hyun Jung; Costa, Robert H; Lau, Lester F; Tyner, Angela L; Raychaudhuri, Pradip
2008-09-01
The forkhead box M1 (FoxM1) transcription factor is overexpressed in many cancers, and in mouse models it is required for tumor progression. FoxM1 activates expression of the cell cycle genes required for both S and M phase progression. Here we demonstrate that FoxM1 is degraded in late mitosis and early G(1) phase by the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. FoxM1 interacts with the APC/C complex and its adaptor, Cdh1. Expression of Cdh1 stimulated degradation of the FoxM1 protein, and depletion of Cdh1 resulted in stabilization of the FoxM1 protein in late mitosis and in early G(1) phase of the cell cycle. Cdh1 has been implicated in regulating S phase entry. We show that codepletion of FoxM1 inhibits early S phase entry observed in Cdh1-depleted cells. The N-terminal region of FoxM1 contains both destruction box (D box) and KEN box sequences that are required for targeting by Cdh1. Mutation of either the D box sequence or the KEN box sequence stabilized FoxM1 and blocked Cdh1-induced proteolysis. Cells expressing a nondegradable form of FoxM1 entered S phase rapidly following release from M phase arrest. Together, our observations show that FoxM1 is one of the targets of Cdh1 in late M or early G(1) phase and that its proteolysis is important for regulated entry into S phase.
Ru, Yi; Wang, Qinhao; Liu, Xiping; Zhang, Mei; Zhong, Daixing; Ye, Mingxiang; Li, Yuanchun; Han, Hua; Yao, Libo; Li, Xia
2016-01-01
Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost all currently available inhibitors. Here we took use of a previously generated chimeric ubiquitin ligase, SH2-U-box, in which SH2 from the adaptor protein Grb2 acts as a binding domain for activated BCR-ABL, while U-box from CHIP functions as an E3 ubiquitin ligase domain, so as to target the ubiquitination and degradation of both native and T315I-mutant BCR-ABL. As such, SH2-U-box significantly inhibited proliferation and induced apoptosis in CML cells harboring either the wild-type or T315I-mutant BCR-ABL (K562 or K562R), with BCR-ABL-dependent signaling pathways being repressed. Moreover, SH2-U-box worked in concert with imatinib in K562 cells. Importantly, SH2-U-box-carrying lentivirus could markedly suppress the growth of K562-xenografts in nude mice or K562R-xenografts in SCID mice, as well as that of primary CML cells. Collectively, by degrading the native and T315I-mutant BCR-ABL, the chimeric ubiquitin ligase SH2-U-box may serve as a potential therapy for both imatinib-sensitive and resistant CML. PMID:27329306
Ru, Yi; Wang, Qinhao; Liu, Xiping; Zhang, Mei; Zhong, Daixing; Ye, Mingxiang; Li, Yuanchun; Han, Hua; Yao, Libo; Li, Xia
2016-06-22
Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost all currently available inhibitors. Here we took use of a previously generated chimeric ubiquitin ligase, SH2-U-box, in which SH2 from the adaptor protein Grb2 acts as a binding domain for activated BCR-ABL, while U-box from CHIP functions as an E3 ubiquitin ligase domain, so as to target the ubiquitination and degradation of both native and T315I-mutant BCR-ABL. As such, SH2-U-box significantly inhibited proliferation and induced apoptosis in CML cells harboring either the wild-type or T315I-mutant BCR-ABL (K562 or K562R), with BCR-ABL-dependent signaling pathways being repressed. Moreover, SH2-U-box worked in concert with imatinib in K562 cells. Importantly, SH2-U-box-carrying lentivirus could markedly suppress the growth of K562-xenografts in nude mice or K562R-xenografts in SCID mice, as well as that of primary CML cells. Collectively, by degrading the native and T315I-mutant BCR-ABL, the chimeric ubiquitin ligase SH2-U-box may serve as a potential therapy for both imatinib-sensitive and resistant CML.
FBXL5 interacts with p150 {sup Glued} and regulates its ubiquitination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Ning; Liu Jing; Ding Xia
2007-07-20
The microtubule motor cytoplasmic dynein and its activator dynactin drive vesicular transport and mitotic spindle organization. p150 {sup Glued} is the dynactin subunit responsible for binding to dynein and microtubules. The F-box proteins constitute one of the four subunits of ubiquitin protein ligase complex called SCFs (SKP1-cullin-F-box), which governs phosphorylation-dependent ubiquitination and subsequent proteolysis. Our recent study showed that the proteolysis of mitotic kinesin CENP-E is mediated by SCF via a direct Skp1 link [D. Liu, N. Zhang, J. Du, X. Cai, M. Zhu, C. Jin, Z. Dou, C. Feng, Y. Yang, L. Liu, K. Takeyasu, W. Xie, X. Yao,more » Interaction of Skp1 with CENP-E at the midbody is essential for cytokinesis, Biochem. Biophys. Res. Commun. 345 (2006) 394-402]. Here we show that F-box protein FBXL5 interacts with p150 {sup Glued} and orchestrates its turnover via ubiquitination. FBXL5 binds to p150 {sup Glued} in vitro and in vivo. FBXL5 and p150 {sup Glued} co-localize primarily in the cytoplasm with peri-nuclear enrichment in HeLa cells. Overexpression of FBXL5 promotes poly-ubiquitination of p150 {sup Glued} and protein turnover of p150 {sup Glued} . Our findings provide a potential mechanism by which p150 {sup Glued} protein function is regulated by SCFs.« less
Identification of FBXO25-interacting Proteins Using an Integrated Proteomics Approach
Teixeira, Felipe R.; Yokoo, Sami; Gartner, Carlos G.; Manfiolli, Adriana O.; Baqui, Munira M. A.; Assmann, Eliana M.; Maragno, Ana Leticia G. C.; Yu, Huijun; de Lanerolle, Primal; Kobarg, Jörg; Gygi, Steven P.; Gomes, Marcelo D.
2011-01-01
FBXO25 is one of 68 human F-box proteins that serve as specificity factors for a family of ubiquitin ligases composed of Skp1, Rbx1, Cullin1 and F-box protein (SCF1) that are involved in targeting proteins for destruction across the ubiquitin proteasome system. We recently reported that the FBXO25 protein accumulates in novel subnuclear structures named FBXO25-associated nuclear domains (FANDs). Combining two-step affinity purification followed by mass spectrometry with a classical two-hybrid screen, we identified 132 novel potential FBXO25 interacting partners. One of the identified proteins, β-actin, physically interacts through its N-terminus with FBXO25 and is enriched in the FBXO25 nuclear compartments. Inhibitors of actin polymerization promote a significant disruption of FANDs, indicating that they are compartments influenced by the organizational state of actin in the nucleus. Furthermore, FBXO25 antibodies interfered with RNA polymerase II transcription in vitro. Our results open new perspectives for the understanding of this novel compartment and its nuclear functions. PMID:20473970
21 CFR 866.6050 - Ovarian adnexal mass assessment score test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... ovarian/adnexal mass assessment test system is a device that measures one or more proteins in serum or... § 866.1(e). (c) Black box warning. Under section 520(e) of the Federal Food, Drug, and Cosmetic Act... box and must appear in all advertising, labeling, and promotional material for these devices. That...
21 CFR 866.6050 - Ovarian adnexal mass assessment score test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ovarian/adnexal mass assessment test system is a device that measures one or more proteins in serum or... § 866.1(e). (c) Black box warning. Under section 520(e) of the Federal Food, Drug, and Cosmetic Act... box and must appear in all advertising, labeling, and promotional material for these devices. That...
The role of two F-box proteins, SLEEPY1 and SNEEZY, in arabidopsis GA signaling
USDA-ARS?s Scientific Manuscript database
The F-box gene SLY1 is a positive regulator of gibberellin (GA) signaling and loss of SLY1 results in GA-insensitive phenotypes including dwarfism, reduced fertility, delayed flowering, and increased seed dormancy. These sly1 phenotypes can be partially rescued by overexpression of the SLY1 homolog...
Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.
2013-01-01
The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol−1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol−1). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning. PMID:24320250
Rocklin, Gabriel J; Mobley, David L; Dill, Ken A; Hünenberger, Philippe H
2013-11-14
The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol(-1)) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol(-1)). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning.
NASA Astrophysics Data System (ADS)
Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.
2013-11-01
The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol-1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol-1). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning.
Genome-Wide Analyses of the Soybean F-Box Gene Family in Response to Salt Stress
Jia, Qi; Xiao, Zhi-Xia; Wong, Fuk-Ling; Sun, Song; Liang, Kang-Jing; Lam, Hon-Ming
2017-01-01
The F-box family is one of the largest gene families in plants that regulate diverse life processes, including salt responses. However, the knowledge of the soybean F-box genes and their roles in salt tolerance remains limited. Here, we conducted a genome-wide survey of the soybean F-box family, and their expression analysis in response to salinity via in silico analysis of online RNA-sequencing (RNA-seq) data and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to predict their potential functions. A total of 725 potential F-box proteins encoded by 509 genes were identified and classified into 9 subfamilies. The gene structures, conserved domains and chromosomal distributions were characterized. There are 76 pairs of duplicate genes identified, including genome-wide segmental and tandem duplication events, which lead to the expansion of the number of F-box genes. The in silico expression analysis showed that these genes would be involved in diverse developmental functions and play an important role in salt response. Our qRT-PCR analysis confirmed 12 salt-responding F-box genes. Overall, our results provide useful information on soybean F-box genes, especially their potential roles in salt tolerance. PMID:28417911
Genome-Wide Analyses of the Soybean F-Box Gene Family in Response to Salt Stress.
Jia, Qi; Xiao, Zhi-Xia; Wong, Fuk-Ling; Sun, Song; Liang, Kang-Jing; Lam, Hon-Ming
2017-04-12
The F-box family is one of the largest gene families in plants that regulate diverse life processes, including salt responses. However, the knowledge of the soybean F-box genes and their roles in salt tolerance remains limited. Here, we conducted a genome-wide survey of the soybean F-box family, and their expression analysis in response to salinity via in silico analysis of online RNA-sequencing (RNA-seq) data and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to predict their potential functions. A total of 725 potential F-box proteins encoded by 509 genes were identified and classified into 9 subfamilies. The gene structures, conserved domains and chromosomal distributions were characterized. There are 76 pairs of duplicate genes identified, including genome-wide segmental and tandem duplication events, which lead to the expansion of the number of F-box genes. The in silico expression analysis showed that these genes would be involved in diverse developmental functions and play an important role in salt response. Our qRT-PCR analysis confirmed 12 salt-responding F-box genes. Overall, our results provide useful information on soybean F-box genes, especially their potential roles in salt tolerance.
Multiple interactions amongst floral homeotic MADS box proteins.
Davies, B; Egea-Cortines, M; de Andrade Silva, E; Saedler, H; Sommer, H
1996-01-01
Most known floral homeotic genes belong to the MADS box family and their products act in combination to specify floral organ identity by an unknown mechanism. We have used a yeast two-hybrid system to investigate the network of interactions between the Antirrhinum organ identity gene products. Selective heterodimerization is observed between MADS box factors. Exclusive interactions are detected between two factors, DEFICIENS (DEF) and GLOBOSA (GLO), previously known to heterodimerize and control development of petals and stamens. In contrast, a third factor, PLENA (PLE), which is required for reproductive organ development, can interact with the products of MADS box genes expressed at early, intermediate and late stages. We also demonstrate that heterodimerization of DEF and GLO requires the K box, a domain not found in non-plant MADS box factors, indicating that the plant MADS box factors may have different criteria for interaction. The association of PLENA and the temporally intermediate MADS box factors suggests that part of their function in mediating between the meristem and organ identity genes is accomplished through direct interaction. These data reveal an unexpectedly complex network of interactions between the factors controlling flower development and have implications for the determination of organ identity. Images PMID:8861961
Zhou, Weihua; Wei, Wenyi; Sun, Yi
2013-05-01
The SCF (SKP1 (S-phase-kinase-associated protein 1), Cullin-1, F-box protein) E3 ubiquitin ligases, the founding member of Cullin-RING ligases (CRLs), are the largest family of E3 ubiquitin ligases in mammals. Each individual SCF E3 ligase consists of one adaptor protein SKP1, one scaffold protein cullin-1 (the first family member of the eight cullins), one F-box protein out of 69 family members, and one out of two RING (Really Interesting New Gene) family proteins RBX1/ROC1 or RBX2/ROC2/SAG/RNF7. Various combinations of these four components construct a large number of SCF E3s that promote the degradation of many key regulatory proteins in cell-context, temporally, and spatially dependent manners, thus controlling precisely numerous important cellular processes, including cell cycle progression, apoptosis, gene transcription, signal transduction, DNA replication, maintenance of genome integrity, and tumorigenesis. To understand how the SCF E3 ligases regulate these cellular processes and embryonic development under in vivo physiological conditions, a number of mouse models with transgenic (Tg) expression or targeted deletion of components of SCF have been established and characterized. In this review, we will provide a brief introduction to the ubiquitin-proteasome system (UPS) and the SCF E3 ubiquitin ligases, followed by a comprehensive overview on the existing Tg and knockout (KO) mouse models of the SCF E3s, and discuss the role of each component in mouse embryogenesis, cell proliferation, apoptosis, carcinogenesis, as well as other pathogenic processes associated with human diseases. We will end with a brief discussion on the future directions of this research area and the potential applications of the knowledge gained to more effective therapeutic interventions of human diseases.
Chan, Ching Wan; Lee, Youn-Bok; Uney, James; Flynn, Andrea; Tobias, Jonathan H.; Norman, Michael
2007-01-01
The SLTM [SAF (scaffold attachment factor)-like transcription modulator] protein contains a SAF-box DNA-binding motif and an RNA-binding domain, and shares an overall identity of 34% with SAFB1 {scaffold attachment factor-B1; also known as SAF-B (scaffold attachment factor B), HET [heat-shock protein 27 ERE (oestrogen response element) and TATA-box-binding protein] or HAP (heterogeneous nuclear ribonucleoprotein A1-interacting protein)}. Here, we show that SLTM is localized to the cell nucleus, but excluded from nucleoli, and to a large extent it co-localizes with SAFB1. In the nucleus, SLTM has a punctate distribution and it does not co-localize with SR (serine/arginine) proteins. Overexpression of SAFB1 has been shown to exert a number of inhibitory effects, including suppression of oestrogen signalling. Although SLTM also suppressed the ability of oestrogen to activate a reporter gene in MCF-7 breast-cancer cells, inhibition of a constitutively active β-galactosidase gene suggested that this was primarily the consequence of a generalized inhibitory effect on transcription. Measurement of RNA synthesis, which showed a particularly marked inhibition of [3H]uridine incorporation into mRNA, supported this conclusion. In addition, analysis of cell-cycle parameters, chromatin condensation and cytochrome c release showed that SLTM induced apoptosis in a range of cultured cell lines. Thus the inhibitory effects of SLTM on gene expression appear to result from generalized down-regulation of mRNA synthesis and initiation of apoptosis consequent upon overexpressing the protein. While indicating a crucial role for SLTM in cellular function, these results also emphasize the need for caution when interpreting phenotypic changes associated with manipulation of protein expression levels. PMID:17630952
The relationship between elastic constants and structure of shock waves in a zinc single crystal
NASA Astrophysics Data System (ADS)
Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.
2017-12-01
The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.
Donald, R G; Schindler, U; Batschauer, A; Cashmore, A R
1990-01-01
G box and I box sequences of the Arabidopsis thaliana ribulose-bisphosphate-1,5-carboxylase small subunit (RBCS) promoter are required for expression mediated by the Arabidopsis rbcS-1A promoter in transgenic tobacco plants and are bound in vitro by factors from plant nuclear extracts termed GBF and GA-1, respectively. We show here that a -390 to -60 rbcS-1A promoter fragment containing the G box and two I boxes activates transcription from a truncated iso-1-cytochrome c (CYC1) gene promoter in Saccharomyces cerevisiae. Mutagenesis of either the rbcS-1A G box or both I box sequences eliminated the expression mediated by this fragment. When polymerized, I box oligonucleotides were also capable of enhancing expression from the truncated CYC1 promoter. Single-copy G box sequences from the Arabidopsis rbcS-1A, Arabidopsis Adh and tomato rbcS-3A promoters were more potent activators and were used in mobility shift assays to identify a DNA binding activity in yeast functionally similar to GBF. In methylation interference experiments, the binding specificity of the yeast protein was indistinguishable from that obtained with plant nuclear extracts. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2161333
Bouard, Charlotte; Terreux, Raphael; Honorat, Mylène; Manship, Brigitte; Ansieau, Stéphane; Vigneron, Arnaud M.; Puisieux, Alain; Payen, Léa
2016-01-01
Abstract The TWIST1 bHLH transcription factor controls embryonic development and cancer processes. Although molecular and genetic analyses have provided a wealth of data on the role of bHLH transcription factors, very little is known on the molecular mechanisms underlying their binding affinity to the E-box sequence of the promoter. Here, we used an in silico model of the TWIST1/E12 (TE) heterocomplex and performed molecular dynamics (MD) simulations of its binding to specific (TE-box) and modified E-box sequences. We focused on (i) active E-box and inactive E-box sequences, on (ii) modified active E-box sequences, as well as on (iii) two box sequences with modified adjacent bases the AT- and TA-boxes. Our in silico models were supported by functional in vitro binding assays. This exploration highlighted the predominant role of protein side-chain residues, close to the heart of the complex, at anchoring the dimer to DNA sequences, and unveiled a shift towards adjacent ((-1) and (-1*)) bases and conserved bases of modified E-box sequences. In conclusion, our study provides proof of the predictive value of these MD simulations, which may contribute to the characterization of specific inhibitors by docking approaches, and their use in pharmacological therapies by blocking the tumoral TWIST1/E12 function in cancers. PMID:27151200
Huenges, M; Rölz, C; Gschwind, R; Peteranderl, R; Berglechner, F; Richter, G; Bacher, A; Kessler, H; Gemmecker, G
1998-01-01
The NusB protein of Escherichia coli is involved in the regulation of rRNA biosynthesis by transcriptional antitermination. In cooperation with several other proteins, it binds to a dodecamer motif designated rrn boxA on the nascent rRNA. The antitermination proteins of E.coli are recruited in the replication cycle of bacteriophage lambda, where they play an important role in switching from the lysogenic to the lytic cycle. Multidimensional heteronuclear NMR experiments were performed with recombinant NusB protein labelled with 13C, 15N and 2H. The three-dimensional structure of the protein was solved from 1926 NMR-derived distances and 80 torsion angle restraints. The protein folds into an alpha/alpha-helical topology consisting of six helices; the arginine-rich N-terminus appears to be disordered. Complexation of the protein with an RNA dodecamer equivalent to the rrn boxA site results in chemical shift changes of numerous amide signals. The overall packing of the protein appears to be conserved, but the flexible N-terminus adopts a more rigid structure upon RNA binding, indicating that the N-terminus functions as an arginine-rich RNA-binding motif (ARM). PMID:9670024
Advances in basic and clinical immunology in 2016.
Chinen, Javier; Badran, Yousef R; Geha, Raif S; Chou, Janet S; Fried, Ari J
2017-10-01
Advances in basic immunology in 2016 included studies that further characterized the role of different proteins in the differentiation of effector T and B cells, including cytokines and proteins involved in the actin cytoskeleton. Regulation of granule formation and secretion in cytotoxic cells was also further described by examining patients with familial hemophagocytic lymphohistiocytosis. The role of prenylation in patients with mevalonate kinase deficiency leading to inflammation has been established. We reviewed advances in clinical immunology, as well as new approaches of whole-genome sequencing and genes newly reported to be associated with immunodeficiency, such as linker of activation of T cells (LAT); B-cell CLL/lymphoma 11B (BCL11B); RGD, leucine-rich repeat, tropomodulin domain, and proline-rich domain-containing protein (RLTPR); moesin; and Janus kinase 1 (JAK1). Trials of hematopoietic stem cell transplantation and gene therapy for primary immunodeficiency have had relative success; the use of autologous virus-specific cytotoxic T cells has proved effective as well. New medications are being explored, such as pioglitazone, which is under study for its role in enhancing the oxidative burst in patients with chronic granulomatous disease. Development of vaccines for HIV infection continues to provide insight into the immune response against a virus with an extraordinary mutation rate. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Cruickshank, Mark N; Dods, James; Taylor, Rhonda L; Karimi, Mahdad; Fenwick, Emily J; Quail, Elizabeth A; Rea, Alexander J; Holers, V Michael; Abraham, Lawrence J; Ulgiati, Daniela
2015-07-01
Complement receptor 2 (CR2/CD21) plays an important role in the generation of normal B cell immune responses. As transcription appears to be the prime mechanism via which surface CR2/CD21 expression is controlled, understanding transcriptional regulation of this gene will have broader implications to B cell biology. Here we report opposing, cell-context specific control of CR2/CD21 promoter activity by tandem E-box elements, spaced 22 bp apart and within 70 bp of the transcription initiation site. We have identified E2A and USF transcription factors as binding to the distal and proximal E-box sites respectively in CR2-positive B-cells, at a site that is hypersensitive to restriction enzyme digestion compared to non-expressing K562 cells. However, additional unidentified proteins have also been found to bind these functionally important elements. By utilizing a proteomics approach we have identified a repressor protein, RP58, binding the distal E-box motif. Co-transfection experiments using RP58 overexpression constructs demonstrated a specific 10-fold repression of CR2/CD21 transcriptional activity mediated through the distal E-box repressor element. Taken together, our results indicate that repression of the CR2/CD21 promoter can occur through one of the E-box motifs via recruitment of RP58 and other factors to bring about a silenced chromatin context within CR2/CD21 non-expressing cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Bin; Liu, Xia; Zhao, Guangyao; Mao, Xinguo; Li, Ang; Jing, Ruilian
2014-06-01
Wheat (Triticum aestivum L.) is one of the most important crops in the world. Squamosa-promoter binding protein (SBP)-box genes play a critical role in regulating flower and fruit development. In this study, 10 novel SBP-box genes (TaSPL genes) were isolated from wheat ((Triticum aestivum L.) cultivar Yanzhan 4110). Phylogenetic analysis classified the TaSPL genes into five groups (G1-G5). The motif combinations and expression patterns of the TaSPL genes varied among the five groups with each having own distinctive characteristics: TaSPL20/21 in G1 and TaSPL17 in G2 mainly expressed in the shoot apical meristem and the young ear, and their expression levels responded to development of the ear; TaSPL6/15 belonging to G3 were upregulated and TaSPL1/23 in G4 were downregulated during grain development; the gene in G5 (TaSPL3) expressed constitutively. Thus, the consistency of the phylogenetic analysis, motif compositions, and expression patterns of the TaSPL genes revealed specific gene structures and functions. On the other hand, the diverse gene structures and different expression patterns suggested that wheat SBP-box genes have a wide range of functions. The results also suggest a potential role for wheat SBP-box genes in ear development. This study provides a significant beginning of functional analysis of SBP-box genes in wheat. © 2014 The Authors. Journal of Integrative Plant Biology Published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
UBIAD1 Mutation Alters a Mitochondrial Prenyltransferase to Cause Schnyder Corneal Dystrophy
Nickerson, Michael L.; Kostiha, Brittany N.; Brandt, Wolfgang; Fredericks, William; Xu, Ke-Ping; Yu, Fu-Shin; Gold, Bert; Chodosh, James; Goldberg, Marc; Lu, Da Wen; Yamada, Masakazu; Tervo, Timo M.; Grutzmacher, Richard; Croasdale, Chris; Hoeltzenbein, Maria; Sutphin, John; Malkowicz, S. Bruce; Wessjohann, Ludger; Kruth, Howard S.; Dean, Michael; Weiss, Jayne S.
2010-01-01
Background Mutations in a novel gene, UBIAD1, were recently found to cause the autosomal dominant eye disease Schnyder corneal dystrophy (SCD). SCD is characterized by an abnormal deposition of cholesterol and phospholipids in the cornea resulting in progressive corneal opacification and visual loss. We characterized lesions in the UBIAD1 gene in new SCD families and examined protein homology, localization, and structure. Methodology/Principal Findings We characterized five novel mutations in the UBIAD1 gene in ten SCD families, including a first SCD family of Native American ethnicity. Examination of protein homology revealed that SCD altered amino acids which were highly conserved across species. Cell lines were established from patients including keratocytes obtained after corneal transplant surgery and lymphoblastoid cell lines from Epstein-Barr virus immortalized peripheral blood mononuclear cells. These were used to determine the subcellular localization of mutant and wild type protein, and to examine cholesterol metabolite ratios. Immunohistochemistry using antibodies specific for UBIAD1 protein in keratocytes revealed that both wild type and N102S protein were localized sub-cellularly to mitochondria. Analysis of cholesterol metabolites in patient cell line extracts showed no significant alteration in the presence of mutant protein indicating a potentially novel function of the UBIAD1 protein in cholesterol biochemistry. Molecular modeling was used to develop a model of human UBIAD1 protein in a membrane and revealed potentially critical roles for amino acids mutated in SCD. Potential primary and secondary substrate binding sites were identified and docking simulations indicated likely substrates including prenyl and phenolic molecules. Conclusions/Significance Accumulating evidence from the SCD familial mutation spectrum, protein homology across species, and molecular modeling suggest that protein function is likely down-regulated by SCD mutations. Mitochondrial UBIAD1 protein appears to have a highly conserved function that, at least in humans, is involved in cholesterol metabolism in a novel manner. PMID:20505825
The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants.
Zhou, Shu-Mei; Kong, Xiang-Zhu; Kang, Han-Han; Sun, Xiu-Dong; Wang, Wei
2015-01-01
As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants. To investigate the mechanisms involved, in this study, we investigated the tolerance of the transgenic plants to oxidative stress. Methyl viologen was used to induce oxidative stress conditions. Real-time PCR and western blot analysis revealed that TaFBA1 expression was up-regulated by oxidative stress treatments. Under oxidative stress conditions, the transgenic tobacco plants showed a higher germination rate, higher root length and less growth inhibition than wild type (WT). The enhanced oxidative stress tolerance of the transgenic plants was also indicated by lower reactive oxygen species (ROS) accumulation, malondialdehyde (MDA) content and cell membrane damage under oxidative stress compared with WT. Higher activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD), were observed in the transgenic plants than those in WT, which may be related to the upregulated expression of some antioxidant genes via the overexpression of TaFBA1. In others, some stress responsive elements were found in the promoter region of TaFBA1, and TaFBA1 was located in the nucleus, cytoplasm and plasma membrane. These results suggest that TaFBA1 plays an important role in the oxidative stress tolerance of plants. This is important for understanding the functions of F-box proteins in plants' tolerance to multiple stress conditions.
The Involvement of Wheat F-Box Protein Gene TaFBA1 in the Oxidative Stress Tolerance of Plants
Zhou, Shu-Mei; Kong, Xiang-Zhu; Kang, Han-Han; Sun, Xiu-Dong; Wang, Wei
2015-01-01
As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants. To investigate the mechanisms involved, in this study, we investigated the tolerance of the transgenic plants to oxidative stress. Methyl viologen was used to induce oxidative stress conditions. Real-time PCR and western blot analysis revealed that TaFBA1 expression was up-regulated by oxidative stress treatments. Under oxidative stress conditions, the transgenic tobacco plants showed a higher germination rate, higher root length and less growth inhibition than wild type (WT). The enhanced oxidative stress tolerance of the transgenic plants was also indicated by lower reactive oxygen species (ROS) accumulation, malondialdehyde (MDA) content and cell membrane damage under oxidative stress compared with WT. Higher activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD), were observed in the transgenic plants than those in WT, which may be related to the upregulated expression of some antioxidant genes via the overexpression of TaFBA1. In others, some stress responsive elements were found in the promoter region of TaFBA1, and TaFBA1 was located in the nucleus, cytoplasm and plasma membrane. These results suggest that TaFBA1 plays an important role in the oxidative stress tolerance of plants. This is important for understanding the functions of F-box proteins in plants’ tolerance to multiple stress conditions. PMID:25906259
Praveen, Kavita; Wen, Ying; Gray, Kelsey M.; Noto, John J.; Patlolla, Akash R.; Van Duyne, Gregory D.; Matera, A. Gregory
2014-01-01
Mutations in the human survival motor neuron 1 (SMN) gene are the primary cause of spinal muscular atrophy (SMA), a devastating neuromuscular disorder. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. Additional tissue-specific and global functions have been ascribed to SMN; however, their relevance to SMA pathology is poorly understood and controversial. Using Drosophila as a model system, we created an allelic series of twelve Smn missense mutations, originally identified in human SMA patients. We show that animals expressing these SMA-causing mutations display a broad range of phenotypic severities, similar to the human disease. Furthermore, specific interactions with other proteins known to be important for SMN's role in RNP assembly are conserved. Intragenic complementation analyses revealed that the three most severe mutations, all of which map to the YG box self-oligomerization domain of SMN, display a stronger phenotype than the null allele and behave in a dominant fashion. In support of this finding, the severe YG box mutants are defective in self-interaction assays, yet maintain their ability to heterodimerize with wild-type SMN. When expressed at high levels, wild-type SMN is able to suppress the activity of the mutant protein. These results suggest that certain SMN mutants can sequester the wild-type protein into inactive complexes. Molecular modeling of the SMN YG box dimer provides a structural basis for this dominant phenotype. These data demonstrate that important structural and functional features of the SMN YG box are conserved between vertebrates and invertebrates, emphasizing the importance of self-interaction to the proper functioning of SMN. PMID:25144193
Praveen, Kavita; Wen, Ying; Gray, Kelsey M; Noto, John J; Patlolla, Akash R; Van Duyne, Gregory D; Matera, A Gregory
2014-08-01
Mutations in the human survival motor neuron 1 (SMN) gene are the primary cause of spinal muscular atrophy (SMA), a devastating neuromuscular disorder. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. Additional tissue-specific and global functions have been ascribed to SMN; however, their relevance to SMA pathology is poorly understood and controversial. Using Drosophila as a model system, we created an allelic series of twelve Smn missense mutations, originally identified in human SMA patients. We show that animals expressing these SMA-causing mutations display a broad range of phenotypic severities, similar to the human disease. Furthermore, specific interactions with other proteins known to be important for SMN's role in RNP assembly are conserved. Intragenic complementation analyses revealed that the three most severe mutations, all of which map to the YG box self-oligomerization domain of SMN, display a stronger phenotype than the null allele and behave in a dominant fashion. In support of this finding, the severe YG box mutants are defective in self-interaction assays, yet maintain their ability to heterodimerize with wild-type SMN. When expressed at high levels, wild-type SMN is able to suppress the activity of the mutant protein. These results suggest that certain SMN mutants can sequester the wild-type protein into inactive complexes. Molecular modeling of the SMN YG box dimer provides a structural basis for this dominant phenotype. These data demonstrate that important structural and functional features of the SMN YG box are conserved between vertebrates and invertebrates, emphasizing the importance of self-interaction to the proper functioning of SMN.
NOP132 is required for proper nucleolus localization of DEAD-box RNA helicase DDX47
Sekiguchi, Takeshi; Hayano, Toshiya; Yanagida, Mitsuaki; Takahashi, Nobuhiro; Nishimoto, Takeharu
2006-01-01
Previously, we described a novel nucleolar protein, NOP132, which interacts with the small GTP binding protein RRAG A. To elucidate the function of NOP132 in the nucleolus, we identified proteins that interact with NOP132 using mass spectrometric methods. NOP132 associated mainly with proteins involved in ribosome biogenesis and RNA metabolism, including the DEAD-box RNA helicase protein, DDX47, whose yeast homolog is Rrp3, which has roles in pre-rRNA processing. Immunoprecipitation of FLAG-tagged DDX47 co-precipitated rRNA precursors, as well as a number of proteins that are probably involved in ribosome biogenesis, implying that DDX47 plays a role in pre-rRNA processing. Introduction of NOP132 small interfering RNAs induced a ring-like localization of DDX47 in the nucleolus, suggesting that NOP132 is required for the appropriate localization of DDX47 within the nucleolus. We propose that NOP132 functions in the recruitment of pre-rRNA processing proteins, including DDX47, to the region where rRNA is transcribed within the nucleolus. PMID:16963496
Agarwal, Shailesh R; Gratwohl, Jackson; Cozad, Mia; Yang, Pei-Chi; Clancy, Colleen E; Harvey, Robert D
2018-01-01
Aim: Confining cAMP production to discrete subcellular locations makes it possible for this ubiquitous second messenger to elicit unique functional responses. Yet, factors that determine how and where the production of this diffusible signaling molecule occurs are incompletely understood. The fluid mosaic model originally proposed that signal transduction occurs through random interactions between proteins diffusing freely throughout the plasma membrane. However, it is now known that the movement of membrane proteins is restricted, suggesting that the plasma membrane is segregated into distinct microdomains where different signaling proteins can be concentrated. In this study, we examined what role lipid raft and non-raft membrane domains play in compartmentation of cAMP signaling in adult ventricular myocytes. Methods and Results: The freely diffusible fluorescence resonance energy transfer-based biosensor Epac2-camps was used to measure global cytosolic cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. We found that β-adrenergic receptors, which are expressed in lipid raft and non-raft domains, produce cAMP responses near the plasma membrane that are distinctly different from those produced by E-type prostaglandin receptors, which are expressed exclusively in non-raft domains. We also found that there are differences in basal cAMP levels associated with lipid raft and non-raft domains, and that this can be explained by differences in basal adenylyl cyclase activity associated with each of these membrane environments. In addition, we found evidence that phosphodiesterases 2, 3, and 4 work together in regulating cAMP activity associated with both lipid raft and non-raft domains, while phosphodiesterase 3 plays a more prominent role in the bulk cytoplasmic compartment. Conclusion: These results suggest that different membrane domains contribute to the formation of distinct pools of cAMP under basal conditions as well as following receptor stimulation in adult ventricular myocytes.
Seo, Kyeong-Hwa; Lee, Dae-Young; Jeong, Rak-Hun; Lee, Dong-Sung; Kim, Young-Eon; Hong, Eock-Kee; Kim, Youn-Chul; Baek, Nam-In
2015-04-01
A prenylated arylbenzofuran and six flavonoids were isolated from the fruits of Morus alba L. through silica gel, octadecyl silica gel, and Diaion HP-20 column chromatography. Based on the nuclear magnetic resonance, mass spectrometry, and infrared spectroscopic data, the chemical structures of the compounds were determined to be artoindonesianin O (1), isobavachalcone (2), morachalcone A (3), quercetin (4), astragalin (5), isoquercetin (6), and rutin (7). The isolated compounds were evaluated for protection of HT22-immortalized hippocampal cells against glutamate-induced oxidative stress. Compounds 1 and 3 exhibited protective effects with EC(50) values of 19.7±1.2 and 35.5±2.1 μM, respectively. The major compounds 1-3 and 7 were quantified using liquid chromatography/mass spectrometry analysis and were determined to be 1.88±2.1, 1.90±1.8, 0.78±1.5, and 37.29±2.2 mg/kg, respectively, in the ethanol extract of M. alba L. fruits.
Taddeo, Vito Alessandro; Epifano, Francesco; Fiorito, Serena; Genovese, Salvatore
2016-09-10
In this paper the presence of selected prenylated and unprenylated phenylpropanoids, namely ferulic acid 1, boropinic acid 2, 4'-geranyloxyferulic acid 3, umbelliferone 4, 7-isopentenyloxycoumarin 5, and auraptene 6, have been determined in Italian raw propolis after having been extracted with different methodologies. An aqueous solution of β-cyclodextrin was the best extraction method for ferulic acid 1, treatment with indifferently EtOH or aqueous β-cyclodextrin were the most effective one for umbelliferone 4, boropinic acid 2 gave the best yields either with H2O/β-cyclodextrin or olive oil treatment or in biphasic systems, maceration with biphasic mixtures of aqueous β-cyclodextrin and olive oil was seen to be the most effective procedure for 7-isopentenyloxycoumarin 5, the only method providing significant quantities of 4'-geranyloxyferulic acid 3 was the maceration of raw propolis with olive oil, and finally auraptene 4 was best extracted with absolute EtOH. "Classic" maceration in general performed better than ultrasound-assisted one. Copyright © 2016 Elsevier B.V. All rights reserved.
Bolasco, Adriana; Fioravanti, Rossella; Rossi, Francesca; Rossi, Paola; Vitali, Alberto
2010-06-16
In vivo biotransformation experiments were performed by using a cell suspension culture of Morus nigra expressing a high PT (prenyltransferase) activity, fed with the target substrate 2',4'-dihydroxychalcone. In order to improve the reaction yields by enhancing the chalcone solubility, three different cyclodextrins have been used to host the substrate. The respective complexes have been studied by means of both spectroscopic and calorimetric techniques (Fourier-transform infrared, 1H-NMR and differential scanning calorimetry) and the solution behaviours have been characterized by solubility phase studies. The hydroxypropyl-beta-cyclodextrin complex was found to be the most suitable for biotransformation, and the reaction of prenylation resulted in a 6-fold higher yield of the final product when compared with the use of the free substrate. The reaction provided as the sole product the 3'-dimethylallyl derivative isocordoin, a biologically active plant compound. The results obtained allow the development of systems based on the use of biofermentors or the use of immobilized cells in order to enhance the biotransformation yields.
Synergistic effects of ATP and RNA binding to human DEAD-box protein DDX1.
Kellner, Julian N; Reinstein, Jochen; Meinhart, Anton
2015-03-11
RNA helicases of the DEAD-box protein family form the largest group of helicases. The human DEAD-box protein 1 (DDX1) plays an important role in tRNA and mRNA processing, is involved in tumor progression and is also hijacked by several virus families such as HIV-1 for replication and nuclear export. Although important in many cellular processes, the mechanism of DDX1's enzymatic function is unknown. We have performed equilibrium titrations and transient kinetics to determine affinities for nucleotides and RNA. We find an exceptional tight binding of DDX1 to adenosine diphosphate (ADP), one of the strongest affinities observed for DEAD-box helicases. ADP binds tighter by three orders of magnitude when compared to adenosine triphosphate (ATP), arresting the enzyme in a potential dead-end ADP conformation under physiological conditions. We thus suggest that a nucleotide exchange factor leads to DDX1 recycling. Furthermore, we find a strong cooperativity in binding of RNA and ATP to DDX1 that is also reflected in ATP hydrolysis. We present a model in which either ATP or RNA binding alone can partially shift the equilibrium from an 'open' to a 'closed'-state; this shift appears to be not further pronounced substantially even in the presence of both RNA and ATP as the low rate of ATP hydrolysis does not change. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Oesterlin, Lena K; Goody, Roger S; Itzen, Aymelt
2012-04-10
Intracellular vesicular trafficking is regulated by approximately 60 members of the Rab subfamily of small Ras-like GDP/GTP binding proteins. Rab proteins cycle between inactive and active states as well as between cytosolic and membrane bound forms. Membrane extraction/delivery and cytosolic distribution of Rabs is mediated by interaction with the protein GDP dissociation inhibitor (GDI) that binds to prenylated inactive (GDP-bound) Rab proteins. Because the Rab:GDP:GDI complex is of high affinity, the question arises of how GDI can be displaced efficiently from Rab protein in order to allow the necessary recruitment of the Rab to its specific target membrane. While there is strong evidence that DrrA, as a bacterially encoded GDP/GTP exchange factor, contributes to this event, we show here that posttranslational modifications of Rabs can also modulate the affinity for GDI and thus cause effective displacement of GDI from Rab:GDI complexes. These activities have been found associated with the phosphocholination and adenylylation activities of the enzymes AnkX and DrrA/SidM, respectively, from the pathogenic bacterium Legionella pneumophila. Both modifications occur after spontaneous dissociation of Rab:GDI complexes within their natural equilibrium. Therefore, the effective GDI displacement that is observed is caused by inhibition of reformation of Rab:GDI complexes. Interestingly, in contrast to adenylylation by DrrA, AnkX can covalently modify inactive Rabs with high catalytic efficiency even when GDP is bound to the GTPase and hence can inhibit binding of GDI to Rab:GDP complexes. We therefore speculate that human cells could employ similar mechanisms in the absence of infection to effectively displace Rabs from GDI.
Pizarro, Lorena; Leibman-Markus, Meirav; Schuster, Silvia; Bar, Maya; Meltz, Tal; Avni, Adi
2018-01-01
Plants recognize microbial/pathogen associated molecular patterns (MAMP/PAMP) through pattern recognition receptors (PRRs) triggering an immune response against pathogen progression. MAMP/PAMP triggered immune response requires PRR endocytosis and trafficking for proper deployment. LeEIX2 is a well-known Solanum lycopersicum RLP-PRR, able to recognize and respond to the fungal MAMP/PAMP ethylene-inducing xylanase (EIX), and its function is highly dependent on intracellular trafficking. Identifying protein machinery components regulating LeEIX2 intracellular trafficking is crucial to our understanding of LeEIX2 mediated immune responses. In this work, we identified a novel trafficking protein, SlPRA1A, a predicted regulator of RAB, as an interactor of LeEIX2. Overexpression of SlPRA1A strongly decreases LeEIX2 endosomal localization, as well as LeEIX2 protein levels. Accordingly, the innate immune responses to EIX are markedly reduced by SlPRA1A overexpression, presumably due to a decreased LeEIX2 availability. Studies into the role of SlPRA1A in LeEIX2 trafficking revealed that LeEIX2 localization in multivesicular bodies/late endosomes is augmented by SlPRA1A. Furthermore, inhibiting vacuolar function prevents the LeEIX2 protein level reduction mediated by SlPRA1A, suggesting that SlPRA1A may redirect LeEIX2 trafficking to the vacuole for degradation. Interestingly, SlPRA1A overexpression reduces the amount of several RLP-PRRs, but does not affect the protein level of receptor-like kinase PRRs, suggesting a specific role of SlPRA1A in RLP-PRR trafficking and degradation. PMID:29545816
Going Outside the TonB Box: Identification of Novel FepA-TonB Interactions In Vivo.
Gresock, Michael G; Postle, Kathleen
2017-05-15
In Gram-negative bacteria, the cytoplasmic membrane protein TonB transmits energy derived from proton motive force to energize transport of important nutrients through TonB-dependent transporters in the outer membrane. Each transporter consists of a beta barrel domain and a lumen-occluding cork domain containing an essential sequence called the TonB box. To date, the only identified site of transporter-TonB interaction is between the TonB box and residues ∼158 to 162 of TonB. While the mechanism of ligand transport is a mystery, a current model based on site-directed spin labeling and molecular dynamics simulations is that, following ligand binding, the otherwise-sequestered TonB box extends into the periplasm for recognition by TonB, which mediates transport by pulling or twisting the cork. In this study, we tested that hypothesis with the outer membrane transporter FepA using in vivo photo-cross-linking to explore interactions of its TonB box and determine whether additional FepA-TonB interaction sites exist. We found numerous specific sites of FepA interaction with TonB on the periplasmic face of the FepA cork in addition to the TonB box. Two residues, T32 and A33, might constitute a ligand-sensitive conformational switch. The facts that some interactions were enhanced in the absence of ligand and that other interactions did not require the TonB box argued against the current model and suggested that the transport process is more complex than originally conceived, with subtleties that might provide a mechanism for discrimination among ligand-loaded transporters. These results constitute the first study on the dynamics of TonB-gated transporter interaction with TonB in vivo IMPORTANCE The TonB system of Gram-negative bacteria has a noncanonical active transport mechanism involving signal transduction and proteins integral to both membranes. To achieve transport, the cytoplasmic membrane protein TonB physically contacts outer membrane transporters such as FepA. Only one contact between TonB and outer membrane transporters has been identified to date: the TonB box at the transporter amino terminus. The TonB box has low information content, raising the question of how TonB can discriminate among multiple different TonB-dependent transporters present in the bacterium if it is the only means of contact. Here we identified several additional sites through which FepA contacts TonB in vivo , including two neighboring residues that may explain how FepA signals to TonB that ligand has bound. Copyright © 2017 American Society for Microbiology.
NASA Technical Reports Server (NTRS)
Yang, Tianbao; Poovaiah, B. W.
2002-01-01
We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.
Ueguchi-Tanaka, Miyako; Hirano, Ko; Hasegawa, Yasuko; Kitano, Hidemi; Matsuoka, Makoto
2008-09-01
The rice (Oryza sativa) DELLA protein SLR1 acts as a repressor of gibberellin (GA) signaling. GA perception by GID1 causes SLR1 protein degradation involving the F-box protein GID2; this triggers GA-associated responses such as shoot elongation and seed germination. In GA-insensitive and GA biosynthesis mutants, SLENDER RICE1 (SLR1) accumulates to high levels, and the severity of dwarfism is usually correlated with the level of SLR1 accumulation. An exception is the GA-insensitive F-box mutant gid2, which shows milder dwarfism than mutants such as gid1 and cps even though it accumulates higher levels of SLR1. The level of SLR1 protein in gid2 was decreased by loss of GID1 function or treatment with a GA biosynthesis inhibitor, and dwarfism was enhanced. Conversely, overproduction of GID1 or treatment with GA(3) increased the SLR1 level in gid2 and reduced dwarfism. These results indicate that derepression of SLR1 repressive activity can be accomplished by GA and GID1 alone and does not require F-box (GID2) function. Evidence for GA signaling without GID2 was also provided by the expression behavior of GA-regulated genes such as GA-20oxidase1, GID1, and SLR1 in the gid2 mutant. Based on these observations, we propose a model for the release of GA suppression that does not require DELLA protein degradation.
Khandelwal, Anuj; Hall, Jessica
2014-01-01
Epigallocatechin-3-gallate (EGCG), the principal polyphenol isolated from green tea, was recently shown to inhibit Hsp90, however structure-activity relationships for this natural product have not yet been produced. Herein, we report the synthesis and biological evaluation of EGCG analogues to establish structure-activity relationships between EGCG and Hsp90. All four rings as well as the linker connecting the C- and the D-rings were systematically investigated, which led to the discovery of compounds that inhibit Hs90 and display improvement in efficacy over EGCG. Anti-proliferative activity of all the analogues was determined against MCF-7 and SKBr3 cell lines and Hsp90 inhibitory activity of four most potent analogues was further evaluated by western blot analyses and degradation of Hsp90-dependent client proteins. Prenyl substituted aryl ester of 3,5-dihydroxychroman-3-ol ring system was identified as novel scaffold that exhibit Hsp90 inhibitory activity. PMID:23834230
Wang, Jiawen; Zhang, Wenyan; Lv, Mingyu; Zuo, Tao; Kong, Wei; Yu, Xianghui
2011-12-01
Various feline APOBEC3 (fA3) proteins exhibit broad antiviral activities against a wide range of viruses, such as feline immunodeficiency virus (FIV), feline foamy virus (FFV), and feline leukemia virus (FeLV), as well as those of other species. This activity can be counteracted by the FIV Vif protein, but the mechanism by which FIV Vif suppresses fA3s is unknown. In the present study, we demonstrated that FIV Vif could act via a proteasome-dependent pathway to overcome fA3s. FIV Vif interacted with feline cellular proteins Cullin5 (Cul5), ElonginB, and ElonginC to form an E3 complex to induce degradation of fA3s. Both the dominant-negative Cul5 mutant and a C-terminal hydrophilic replacement ElonginC mutant potently disrupted the FIV Vif activity against fA3s. Furthermore, we identified a BC-box motif in FIV Vif that was essential for the recruitment of E3 ubiquitin ligase and also required for FIV Vif-mediated degradation of fA3s. Moreover, despite the lack of either a Cul5-box or a HCCH zinc-binding motif, FIV Vif specifically selected Cul5. Therefore, FIV Vif may interact with Cul5 via a novel mechanism. These finding imply that SOCS proteins may possess distinct mechanisms to bind Cul5 during formation of the Elongin-Cullin-SOCS box complex.
Identification of allergens in the box jellyfish Chironex yamaguchii that cause sting dermatitis.
Horiike, Takumi; Nagai, Hiroshi; Kitani, Seiichi
2015-01-01
Jellyfish stings cause painful, papular-urticarial eruptions due to the immediate allergic, acute toxic and persistent inflammatory responses. In spite of many marine accidents and their economic impact, modes of first-aid treatment remain conventional and specific allergen and medical treatment are not yet available. The purpose of this study was to define the specific allergen of the box jellyfish Chironex yamaguchii and to study the precise mechanism of the resulting dermatitis. We comprehensively studied the immunoglobulin-binding molecules from the box jellyfish C. yamaguchii with a purification procedure and Western blotting, using sera from 1 patient and from several controls. From the nematocyst wall and spine, we detected IgG-binding acidic glycoprotein (of 66 and 30 kDa) as determined by Western blot and ion-exchange chromatography. In addition, the 66-kDa protein was found to be an asparagine residue-coupled N-linked glycoprotein and the epitope resided in the protein fraction. We found that CqTX-A, the major toxic protein of the nematocyst, is also a heat-stable IgE-binding allergen. This was confirmed as a 45-kDa protein by Western blot from both nematocyst extracts and purified CqTX-A. The detection of these proteins may, in part, explain the combined immediate allergic-toxic and persistent allergic responses. Hopefully, our findings will lead to the development of specific venom immunotherapy for marine professional workers and tourists for jellyfish-sting dermatitis and anaphylaxis. © 2015 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Akerman, Matthew P.; Mkhize, Zimbili; van Heerden, Fanie R.
2018-07-01
Owing to their bioactivity and prevalence in medicinal plant extracts, prenylated phloroglucinols have garnered significant interest. Towards the synthesis of prenylated phloroglucinol derivatives, 2,4,6-trihydroxy-3-(3-methylbut-2-enyl)acetophenone is required as an intermediate. Herein, this was synthesised by a tandem Claisen-Cope rearrangement reaction on 2,4-bis(methoxymethoxy)-6-(3-methylbut-2-enyloxy)acetophenone and a subsequent hydrolysis to remove protecting groups. This reaction yielded the desired product as well as three by-products. Two of these by-products were isomeric chromane derivatives (2 and 3) and the third was a methoxy derivative (4). These compounds have been studied by single crystal X-ray crystallography and DFT methods. Compound (2) crystallised in the P21/c space group with two hydrogen-bonded molecules in the asymmetric unit (Z = 8). Compound (4) crystallised in the Pbca space group with a single molecule in the asymmetric unit (Z = 8). Both compounds formed extensive supramolecular structures supported by hydrogen bonds in the solid state. Compound (2) forms a simple one-dimensional hydrogen-bonded chain co-linear with the a-axis. Compound (4) forms a two-dimensional supramolecular structure comprising "pentameric" hydrogen-bonded motifs linked by additional H-bonds to form the supramolecular structure. Both structures showed intramolecular hydrogen bonds between the acetyl oxygen and adjacent OH group. DFT simulations were used to probe the relative energies of the molecules and hydrogen bonds. These simulations showed that the intramolecular hydrogen bond has a substantial stabilising effect with an interaction strength of 70.64 kJ mol-1. The formation of the hydrogen-bonded dimer of (2) from which the supramolecular structure is formed has a ΔHassoc constant of -42.32 kJ mol-1, illustrating that the formation of the hydrogen-bonded structure is energetically favourable.
Li, Wentao; Chetelat, Roger T
2015-04-07
Unilateral interspecific incompatibility (UI) is a postpollination, prezygotic reproductive barrier that prevents hybridization between related species when the female parent is self-incompatible (SI) and the male parent is self-compatible (SC). In tomato and related Solanum species, two genes, ui1.1 and ui6.1, are required for pollen compatibility on pistils of SI species or hybrids. We previously showed that ui6.1 encodes a Cullin1 (CUL1) protein. Here we report that ui1.1 encodes an S-locus F-box (SLF) protein. The ui1.1 gene was mapped to a 0.43-cM, 43.2-Mbp interval at the S-locus on chromosome 1, but positional cloning was hampered by low recombination frequency. We hypothesized that ui1.1 encodes an SLF protein(s) that interacts with CUL1 and Skp1 proteins to form an SCF-type (Skp1, Cullin1, F-box) ubiquitin E3 ligase complex. We identified 23 SLF genes in the S. pennellii genome, of which 19 were also represented in cultivated tomato (S. lycopersicum). Data from recombination events, expression analysis, and sequence annotation highlighted 11 S. pennellii genes as candidates. Genetic transformations demonstrated that one of these, SpSLF-23, is sufficient for ui1.1 function. A survey of cultivated and wild tomato species identified SLF-23 orthologs in each of the SI species, but not in the SC species S. lycopersicum, S. cheesmaniae, and S. galapagense, pollen of which lacks ui1.1 function. These results demonstrate that pollen compatibility in UI is mediated by protein degradation through the ubiquitin-proteasome pathway, a mechanism related to that which controls pollen recognition in SI.
Assaying Auxin Receptor Activity Using SPR Assays with F-Box Proteins and Aux/IAA Degrons.
Quareshy, Mussa; Uzunova, Veselina; Prusinska, Justyna M; Napier, Richard M
2017-01-01
The identification of TIR1 as an auxin receptor combined with advanced biophysical instrumentation has led to the development of real-time activity assays for auxins. Traditionally, molecules have been assessed for auxinic activity using bioassays, and agrochemical compound discovery continues to be based on "spray and pray" technologies. Here, we describe the methodology behind an SPR-based assay that uses TIR1 and related F-box proteins with surface plasmon resonance spectrometry for rapid compound screening. In addition, methods for collecting kinetic binding data and data processing are given so that they may support programs for rational design of novel auxin ligands.
Regulatory T Cell and Forkhead Box Protein 3 as Modulators of Immune Homeostasis
Pereira, Leonn Mendes Soares; Gomes, Samara Tatielle Monteiro; Ishak, Ricardo; Vallinoto, Antonio Carlos Rosário
2017-01-01
The transcription factor forkhead box protein 3 (FOXP3) is an essential molecular marker of regulatory T cell (Treg) development in different microenvironments. Tregs are cells specialized in the suppression of inadequate immune responses and the maintenance of homeostatic tolerance. Studies have addressed and elucidated the role played by FOXP3 and Treg in countless autoimmune and infectious diseases as well as in more specific cases, such as cancer. Within this context, the present article reviews aspects of the immunoregulatory profile of FOXP3 and Treg in the management of immune homeostasis, including issues relating to pathology as well as immune tolerance. PMID:28603524
Skp1 Independent Function of Cdc53/Cul1 in F-box Protein Homeostasis.
Mathur, Radhika; Yen, James L; Kaiser, Peter
2015-12-01
Abundance of substrate receptor subunits of Cullin-RING ubiquitin ligases (CRLs) is tightly controlled to maintain the full repertoire of CRLs. Unbalanced levels can lead to sequestration of CRL core components by a few overabundant substrate receptors. Numerous diseases, including cancer, have been associated with misregulation of substrate receptor components, particularly for the largest class of CRLs, the SCF ligases. One relevant mechanism that controls abundance of their substrate receptors, the F-box proteins, is autocatalytic ubiquitylation by intact SCF complex followed by proteasome-mediated degradation. Here we describe an additional pathway for regulation of F-box proteins on the example of yeast Met30. This ubiquitylation and degradation pathway acts on Met30 that is dissociated from Skp1. Unexpectedly, this pathway required the cullin component Cdc53/Cul1 but was independent of the other central SCF component Skp1. We demonstrated that this non-canonical degradation pathway is critical for chromosome stability and effective defense against heavy metal stress. More importantly, our results assign important biological functions to a sub-complex of cullin-RING ligases that comprises Cdc53/Rbx1/Cdc34, but is independent of Skp1.
Li, Wei; Zhang, Xin-Cheng; Zhao, Jian; Shi, Yan; Zhu, Xin-Ping
2015-01-25
Cuora trifasciata has become one of the most critically endangered species in the world. The complete mitochondrial genome of C. trifasciata (Chinese three-striped box turtle) was determined in this study. Its mitochondrial genome is a 16,575-bp-long circular molecule that consists of 37 genes that are typically found in other vertebrates. And the basic characteristics of the C. trifasciata mitochondrial genome were also determined. Moreover, a comparison of C. trifasciata with Cuora cyclornata, Cuora pani and Cuora aurocapitata indicated that the four mitogenomics differed in length, codons, overlaps, 13 protein-coding genes (PCGs), ND3, rRNA genes, control region, and other aspects. Phylogenetic analysis with Bayesian inference and maximum likelihood based on 12 protein-coding genes of the genus Cuora indicated the phylogenetic position of C. trifasciata within Cuora. The phylogenetic analysis also showed that C. trifasciata from Vietnam and China formed separate monophyletic clades with different Cuora species. The results of nucleotide base compositions, protein-coding genes and phylogenetic analysis showed that C. trifasciata from these two countries may represent different Cuora species. Copyright © 2014 Elsevier B.V. All rights reserved.
Sassa, Hidenori
2016-01-01
Self-incompatibility (SI) is a major obstacle for stable fruit production in fruit trees of Rosaceae. SI of Rosaceae is controlled by the S locus on which at least two genes, pistil S and pollen S, are located. The product of the pistil S gene is a polymorphic and extracellular ribonuclease, called S-RNase, while that of the pollen S gene is a protein containing the F-box motif, SFB (S haplotype-specific F-box protein)/SFBB (S locus F-box brothers). Recent studies suggested that SI of Rosaceae includes two different systems, i.e., Prunus of tribe Amygdaleae exhibits a self-recognition system in which its SFB recognizes self-S-RNase, while tribe Pyreae (Pyrus and Malus) shows a non-self-recognition system in which many SFBB proteins are involved in SI, each recognizing subset of non-self-S-RNases. Further biochemical and biological characterization of the S locus genes, as well as other genes required for SI not located at the S locus, will help our understanding of the molecular mechanisms, origin, and evolution of SI of Rosaceae, and may provide the basis for breeding of self-compatible fruit tree cultivars.
Sassa, Hidenori
2016-01-01
Self-incompatibility (SI) is a major obstacle for stable fruit production in fruit trees of Rosaceae. SI of Rosaceae is controlled by the S locus on which at least two genes, pistil S and pollen S, are located. The product of the pistil S gene is a polymorphic and extracellular ribonuclease, called S-RNase, while that of the pollen S gene is a protein containing the F-box motif, SFB (S haplotype-specific F-box protein)/SFBB (S locus F-box brothers). Recent studies suggested that SI of Rosaceae includes two different systems, i.e., Prunus of tribe Amygdaleae exhibits a self-recognition system in which its SFB recognizes self-S-RNase, while tribe Pyreae (Pyrus and Malus) shows a non-self-recognition system in which many SFBB proteins are involved in SI, each recognizing subset of non-self-S-RNases. Further biochemical and biological characterization of the S locus genes, as well as other genes required for SI not located at the S locus, will help our understanding of the molecular mechanisms, origin, and evolution of SI of Rosaceae, and may provide the basis for breeding of self-compatible fruit tree cultivars. PMID:27069396
Ueshima, Shuhei; Nagata, Kyosuke; Okuwaki, Mitsuru
2017-11-15
Upstream binding factor (UBF) is a member of the high-mobility group (HMG) box protein family, characterized by multiple HMG boxes and a C-terminal acidic region (AR). UBF is an essential transcription factor for rRNA genes and mediates the formation of transcriptionally active chromatin in the nucleolus. However, it remains unknown how UBF is specifically localized to the nucleolus. Here, we examined the molecular mechanisms that localize UBF to the nucleolus. We found that the first HMG box (HMG box 1), the linker region (LR), and the AR cooperatively regulate the nucleolar localization of UBF1. We demonstrated that the AR intramolecularly associates with and attenuates the DNA binding activity of HMG boxes and confers the structured DNA preference to HMG box 1. In contrast, the LR was found to serve as a nuclear localization signal and compete with HMG boxes to bind the AR, permitting nucleolar localization of UBF1. The LR sequence binds DNA and assists the stable chromatin binding of UBF. We also showed that the phosphorylation status of the AR does not clearly affect the localization of UBF1. Our results strongly suggest that associations of the AR with HMG boxes and the LR regulate UBF nucleolar localization. Copyright © 2017 American Society for Microbiology.
Riber, Leise; Fujimitsu, Kazuyuki; Katayama, Tsutomu; Løbner-Olesen, Anders
2009-01-01
Initiation of chromosome replication in Escherichia coli is limited by the initiator protein DnaA associated with ATP. Within the replication origin, binding sites for DnaA associated with ATP or ADP (R boxes) and the DnaA(ATP) specific sites (I-boxes, tau-boxes and 6-mer sites) are found. We analysed chromosome replication of cells carrying mutations in conserved regions of oriC. Cells carrying mutations in DnaA-boxes I2, I3, R2, R3 and R5 as well as FIS and IHF binding sites resembled wild-type cells with respect to origin concentration. Initiation of replication in these mutants occurred in synchrony or with slight asynchrony only. Furthermore, lack of Hda stimulated initiation in all these mutants. The DnaA(ATP) containing complex that leads to initiation can therefore be formed in the absence of several of the origin DnaA binding sites including both DnaA(ATP) specific I-boxes. However, competition between I-box mutant and wild-type origins, revealed a positive role of I-boxes on initiation. On the other hand, mutations affecting DnaA-box R4 were found to be compromised for initiation and could not be augmented by an increase in cellular DnaA(ATP)/DnaA(ADP) ratio. Compared with the sites tested here, R4 therefore seems to contribute to initiation most critically.
NASA Astrophysics Data System (ADS)
Ying, Jinyong; Xie, Dexuan
2015-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.
ERIC Educational Resources Information Center
Kugel, Jennifer F.
2008-01-01
An undergraduate biochemistry laboratory experiment that will teach the technique of fluorescence resonance energy transfer (FRET) while analyzing protein-induced DNA bending is described. The experiment uses the protein TATA binding protein (TBP), which is a general transcription factor that recognizes and binds specific DNA sequences known as…
Increased expression of sex determining region Y-box 11 (SOX11) in cutaneous malignant melanoma.
Jian, Jiao; Guoying, Wang; Jing, Zhao
2013-08-01
To observe sex determining region Y-box 11 (SOX11) gene expression in cutaneous malignant melanoma and its effect on tumour cell proliferation. Clinicopathological data and tissue samples from patients with cutaneous malignant melanoma, together with tissue samples from healthy volunteers (controls), were retrospectively reviewed. Protein levels of SOX11 and the antigen identified by monoclonal antibody Ki-67 (Ki-67) in skin lesions were analysed using immunohistochemistry. The correlation between protein levels and clinipathological parameters was investigated. Out of 40 patient samples, 25 (62.5%) were positive for SOX11 protein in malignant melanoma tissue. This was significantly higher than in 40 control tissue samples, in which no SOX11 protein was detected. Presence of SOX11 protein was positively related to the proliferation index of cutaneous malignant melanoma tumour cells. Presence of SOX11 protein in cutaneous malignant melanoma was related to tumour type, tumour location, lymph node metastasis and 5-year survival rate. Human cutaneous malignant melanoma tissues expressed high levels of SOX11 compared with healthy controls, suggesting that SOX11 may be a new prognostic marker for malignant melanoma.
Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Ferreira, Gerson; Cappelletti, Paola; Soares-Lima, Sheila; Pinto, Luis Felipe; Mencalha, André; Abdelhay, Eliana
2014-01-01
One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance. PMID:25089713
Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Ferreira, Gerson; Cappelletti, Paola; Soares-Lima, Sheila; Pinto, Luis Felipe; Mencalha, André; Abdelhay, Eliana
2014-08-01
One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance.
Molecular cloning and characterization of SoxB2 gene from Zhikong scallop Chlamys farreri
NASA Astrophysics Data System (ADS)
He, Yan; Bao, Zhenmin; Guo, Huihui; Zhang, Yueyue; Zhang, Lingling; Wang, Shi; Hu, Jingjie; Hu, Xiaoli
2013-11-01
The Sox proteins play critical roles during the development of animals, including sex determination and central nervous system development. In this study, the SoxB2 gene was cloned from a mollusk, the Zhikong scallop ( Chlamys farreri), and characterized with respect to phylogeny and tissue distribution. The full-length cDNA and genomic DNA sequences of C. farreri SoxB2 ( Cf SoxB2) were obtained by rapid amplification of cDNA ends and genome walking, respectively, using a partial cDNA fragment from the highly conserved DNA-binding domain, i.e., the High Mobility Group (HMG) box. The full-length cDNA sequence of Cf SoxB2 was 2 048 bp and encoded 268 amino acids protein. The genomic sequence was 5 551 bp in length with only one exon. Several conserved elements, such as the TATA-box, GC-box, CAAT-box, GATA-box, and Sox/sry-sex/testis-determining and related HMG box factors, were found in the promoter region. Furthermore, real-time quantitative reverse transcription PCR assays were carried out to assess the mRNA expression of Cf SoxB 2 in different tissues. SoxB2 was highly expressed in the mantle, moderately in the digestive gland and gill, and weakly expressed in the gonad, kidney and adductor muscle. In male and female gonads at different developmental stages of reproduction, the expression levels of Cf SoxB2 were similar. Considering the specific expression and roles of SoxB 2 in other animals, in particular vertebrates, and the fact that there are many pallial nerves in the mantle, cerebral ganglia in the digestive gland and gill nerves in gill, we propose a possible essential role in nervous tissue function for Sox B 2 in C. farreri.
An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development.
Chae, Eunyoung; Tan, Queenie K-G; Hill, Theresa A; Irish, Vivian F
2008-04-01
Plants flower in response to both environmental and endogenous signals. The Arabidopsis LEAFY (LFY) transcription factor is crucial in integrating these signals, and acts in part by activating the expression of multiple floral homeotic genes. LFY-dependent activation of the homeotic APETALA3 (AP3) gene requires the activity of UNUSUAL FLORAL ORGANS (UFO), an F-box component of an SCF ubiquitin ligase, yet how this regulation is effected has remained unclear. Here, we show that UFO physically interacts with LFY both in vitro and in vivo, and this interaction is necessary to recruit UFO to the AP3 promoter. Furthermore, a transcriptional repressor domain fused to UFO reduces endogenous LFY activity in plants, supporting the idea that UFO acts as part of a transcriptional complex at the AP3 promoter. Moreover, chemical or genetic disruption of proteasome activity compromises LFY-dependent AP3 activation, indicating that protein degradation is required to promote LFY activity. These results define an unexpected role for an F-box protein in functioning as a DNA-associated transcriptional co-factor in regulating floral homeotic gene expression. These results suggest a novel mechanism for promoting flower development via protein degradation and concomitant activation of the LFY transcription factor. This mechanism may be widely conserved, as homologs of UFO and LFY have been identified in a wide array of plant species.
Structural and Thermodynamic Signatures of DNA Recognition by Mycobacterium tuberculosis DnaA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsodikov, Oleg V.; Biswas, Tapan
An essential protein, DnaA, binds to 9-bp DNA sites within the origin of replication oriC. These binding events are prerequisite to forming an enigmatic nucleoprotein scaffold that initiates replication. The number, sequences, positions, and orientations of these short DNA sites, or DnaA boxes, within the oriCs of different bacteria vary considerably. To investigate features of DnaA boxes that are important for binding Mycobacterium tuberculosis DnaA (MtDnaA), we have determined the crystal structures of the DNA binding domain (DBD) of MtDnaA bound to a cognate MtDnaA-box (at 2.0 {angstrom} resolution) and to a consensus Escherichia coli DnaA-box (at 2.3 {angstrom}). Thesemore » structures, complemented by calorimetric equilibrium binding studies of MtDnaA DBD in a series of DnaA-box variants, reveal the main determinants of DNA recognition and establish the [T/C][T/A][G/A]TCCACA sequence as a high-affinity MtDnaA-box. Bioinformatic and calorimetric analyses indicate that DnaA-box sequences in mycobacterial oriCs generally differ from the optimal binding sequence. This sequence variation occurs commonly at the first 2 bp, making an in vivo mycobacterial DnaA-box effectively a 7-mer and not a 9-mer. We demonstrate that the decrease in the affinity of these MtDnaA-box variants for MtDnaA DBD relative to that of the highest-affinity box TTGTCCACA is less than 10-fold. The understanding of DnaA-box recognition by MtDnaA and E. coli DnaA enables one to map DnaA-box sequences in the genomes of M. tuberculosis and other eubacteria.« less
Drobni, Mirva; Hallberg, Kristina; Öhman, Ulla; Birve, Anna; Persson, Karina; Johansson, Ingegerd; Strömberg, Nicklas
2006-01-01
Background Actinomyces naeslundii genospecies 1 and 2 express type-2 fimbriae (FimA subunit polymers) with variant Galβ binding specificities and Actinomyces odontolyticus a sialic acid specificity to colonize different oral surfaces. However, the fimbrial nature of the sialic acid binding property and sequence information about FimA proteins from multiple strains are lacking. Results Here we have sequenced fimA genes from strains of A.naeslundii genospecies 1 (n = 4) and genospecies 2 (n = 4), both of which harboured variant Galβ-dependent hemagglutination (HA) types, and from A.odontolyticus PK984 with a sialic acid-dependent HA pattern. Three unique subtypes of FimA proteins with 63.8–66.4% sequence identity were present in strains of A. naeslundii genospecies 1 and 2 and A. odontolyticus. The generally high FimA sequence identity (>97.2%) within a genospecies revealed species specific sequences or segments that coincided with binding specificity. All three FimA protein variants contained a signal peptide, pilin motif, E box, proline-rich segment and an LPXTG sorting motif among other conserved segments for secretion, assembly and sorting of fimbrial proteins. The highly conserved pilin, E box and LPXTG motifs are present in fimbriae proteins from other Gram-positive bacteria. Moreover, only strains of genospecies 1 were agglutinated with type-2 fimbriae antisera derived from A. naeslundii genospecies 1 strain 12104, emphasizing that the overall folding of FimA may generate different functionalities. Western blot analyses with FimA antisera revealed monomers and oligomers of FimA in whole cell protein extracts and a purified recombinant FimA preparation, indicating a sortase-independent oligomerization of FimA. Conclusion The genus Actinomyces involves a diversity of unique FimA proteins with conserved pilin, E box and LPXTG motifs, depending on subspecies and associated binding specificity. In addition, a sortase independent oligomerization of FimA subunit proteins in solution was indicated. PMID:16686953
Allosteric Signaling Is Bidirectional in an Outer-Membrane Transport Protein.
Sikora, Arthur; Joseph, Benesh; Matson, Morgan; Staley, Jacob R; Cafiso, David S
2016-11-01
In BtuB, the Escherichia coli TonB-dependent transporter for vitamin B 12 , substrate binding to the extracellular surface unfolds a conserved energy coupling motif termed the Ton box into the periplasm. This transmembrane signaling event facilitates an interaction between BtuB and the inner-membrane protein TonB. In this study, continuous-wave and pulse electron paramagnetic resonance in a native outer-membrane preparation demonstrate that signaling also occurs from the periplasmic to the extracellular surface in BtuB. The binding of a TonB fragment to the periplasmic interface alters the configuration of the second extracellular loop and partially dissociates a spin-labeled substrate analog. Moreover, mutants in the periplasmic Ton box that are transport-defective alter the binding site for vitamin B 12 in BtuB. This work demonstrates that the Ton box and the extracellular substrate binding site are allosterically coupled in BtuB, and that TonB binding may initiate a partial round of transport. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
DEAD-box RNA helicase DDX3X inhibits DENV replication via regulating type one interferon pathway.
Li, Guanghao; Feng, Tingting; Pan, Wen; Shi, Xiaohong; Dai, Jianfeng
2015-01-02
Dengue virus (DENV) is a mosquito-borne virus that threatens approximately 2.5 billion people worldwide. Vaccines against DENV are currently unavailable. DEAD-box RNA helicases (DDXs) have been reported to participate in viral replication and host innate immune response. In the present study, we analyzed the role of 40 DDX proteins during DENV replication. Among these proteins, DDX3X showed antiviral effect against DENV infection. Viral replication significantly increased in DDX3X-silenced cells compared with the controls. The interferon (IFN)-β transcription level decreased during the early stage of DENV infection in DDX3X-silenced cells compared with that in the controls. DDX3X could stimulate IFN-β transcription through the IRF3 and the NFκB branches in DENV-infected cells. Our data imply that DDX3X, a member of DEAD-box RNA helicase, is necessary for IFN production and could inhibit DENV replication. Copyright © 2014 Elsevier Inc. All rights reserved.
TRF2 and the evolution of the bilateria
Duttke, Sascha H.C.; Doolittle, Russell F.; Wang, Yuan-Liang
2014-01-01
The development of a complex body plan requires a diversity of regulatory networks. Here we consider the concept of TATA-box-binding protein (TBP) family proteins as “system factors” that each supports a distinct set of transcriptional programs. For instance, TBP activates TATA-box-dependent core promoters, whereas TBP-related factor 2 (TRF2) activates TATA-less core promoters that are dependent on a TCT or downstream core promoter element (DPE) motif. These findings led us to investigate the evolution of TRF2. TBP occurs in Archaea and eukaryotes, but TRF2 evolved prior to the emergence of the bilateria and subsequent to the evolutionary split between bilaterians and nonbilaterian animals. Unlike TBP, TRF2 does not bind to the TATA box and could thus function as a new system factor that is largely independent of TBP. We postulate that this TRF2-based system served as the foundation for new transcriptional programs, such as those involved in triploblasty and body plan development, that facilitated the evolution of bilateria. PMID:25274724
Synthesis and biosynthesis of isocordoin.
Vitali, A; Ferrari, F; Monache, G D; Bombardelli, E; Botta, B
2001-07-01
In the search of a convenient synthesis for isocordoin (1), a potential anticancer natural product, 2',4'-dihydroxychalcone was inoculated in cell suspension cultures of Morus nigra, which were expected to contain an active prenyltransferase. After 24 hours the target compound was easily isolated from the metabolite extract. Optimization of the biotransformation resulted in a 85% yield of the prenyl derivative.
USDA-ARS?s Scientific Manuscript database
The peanut plant has evolved specialized biosynthetic mechanisms that allowed resisting infection by producing diverse secondary metabolites. Among these unique compounds are the stilbenoids, which include resveratrol analogues. Our previous research demonstrated that peanut hairy root cultures prov...
Wang, Xiu-Xing; Ying, Pu; Diao, Fan; Wang, Qiang; Ye, Dan; Jiang, Chen; Shen, Ning; Xu, Na; Chen, Wei-Bo; Lai, Shan-Shan; Jiang, Shan; Miao, Xiao-Li; Feng, Jin; Tao, Wei-Wei; Zhao, Ning-Wei; Yao, Bing; Xu, Zhi-Peng; Sun, Hai-Xiang; Li, Jian-Min; Sha, Jia-Hao; Huang, Xing-Xu; Shi, Qing-Hua; Tang, Hong; Gao, Xiang; Li, Chao-Jun
2013-07-29
Mumps commonly affects children 5-9 yr of age, and can lead to permanent adult sterility in certain cases. However, the etiology of this long-term effect remains unclear. Mumps infection results in progressive degeneration of the seminiferous epithelium and, occasionally, Sertoli cell-only syndrome. Thus, the remaining Sertoli cells may be critical to spermatogenesis recovery after orchitis healing. Here, we report that the protein farnesylation/geranylgeranylation balance is critical for patients' fertility. The expression of geranylgeranyl diphosphate synthase 1 (GGPPS) was decreased due to elevated promoter methylation in the testes of infertile patients with mumps infection history. When we deleted GGPPS in mouse Sertoli cells, these cells remained intact, whereas the adjacent spermatogonia significantly decreased after the fifth postnatal day. The proinflammatory MAPK and NF-κB signaling pathways were constitutively activated in GGPPS(-/-) Sertoli cells due to the enhanced farnesylation of H-Ras. GGPPS(-/-) Sertoli cells secreted an array of cytokines to stimulate spermatogonia apoptosis, and chemokines to induce macrophage invasion into the seminiferous tubules. Invaded macrophages further blocked spermatogonia development, resulting in a long-term effect through to adulthood. Notably, this defect could be rescued by GGPP administration in EMCV-challenged mice. Our results suggest a novel mechanism by which mumps infection during childhood results in adult sterility.
Yeast metabolic engineering--targeting sterol metabolism and terpenoid formation.
Wriessnegger, Tamara; Pichler, Harald
2013-07-01
Terpenoids comprise various structures conferring versatile functions to eukaryotes, for example in the form of prenyl-anchors they attach proteins to membranes. The physiology of eukaryotic membranes is fine-tuned by another terpenoid class, namely sterols. Evidence is accumulating that numerous membrane proteins require specific sterol structural features for function. Moreover, sterols are intermediates in the synthesis of steroids serving as hormones in higher eukaryotes. Like steroids many compounds of the terpenoid family do not contribute to membrane architecture, but serve as signalling, protective or attractant/repellent molecules. Particularly plants have developed a plenitude of terpenoid biosynthetic routes branching off early in the sterol biosynthesis pathway and, thereby, forming one of the largest groups of naturally occurring organic compounds. Many of these aromatic and volatile molecules are interesting for industrial application ranging from foods to pharmaceuticals. Combining the fortunate situation that sterol biosynthesis is highly conserved in eukaryotes with the amenability of yeasts to genetic and metabolic engineering, basically all naturally occurring terpenoids might be produced involving yeasts. Such engineered yeasts are useful for the study of biological functions and molecular interactions of terpenoids as well as for the large-scale production of high-value compounds, which are unavailable in sufficient amounts from natural sources due to their low abundance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Berghe, Wim Vanden; De Naeyer, An; Dijsselbloem, Nathalie; David, Jean-Pierre; De Keukeleire, Denis; Haegeman, Guy
2011-09-01
We have analyzed in molecular detail how kurarinone, a lavandulyl flavanone isolated from Sophora flavescens, suppresses nuclear factor-κB (NFκB)-driven interleukin-6 (IL6) expression and cancer cell growth. Interleukin-6 (IL6), involved in cancer-related inflammation, acts as an autocrine and paracrine growth factor, which promotes angiogenesis, metastasis, and subversion of immunity, and changes responsivity to hormones and to chemotherapeutics. Our results in estrogen-unresponsive fibroblasts, ribosomal S6 kinase 2 kinase (RSK2) knockout cells, and estrogen receptor (ER)-deficient breast tumor cells show that kurarinone can inhibit tumor cell proliferation and selectively block nuclear NFκB transactivation of specific target genes such as IL6, cyclin D1, SOD2 but not TNFAIP2. This occurs via attenuation of extracellular signal-regulated protein (ERK) and RSK2 kinase pathways and inhibition of S6 kinase ribosomal protein (S6RP) and histone H3 S10 phosphorylation. As constitutive NFκB and RSK2 activity are important hallmarks of human cancers, including hematopoietic malignancies and solid tumors, prenylated flavanones represent an attractive class of natural inhibitors of the ERK/RSK2 signaling pathway for cancer therapy.
GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites.
Xie, Yubin; Zheng, Yueyuan; Li, Hongyu; Luo, Xiaotong; He, Zhihao; Cao, Shuo; Shi, Yi; Zhao, Qi; Xue, Yu; Zuo, Zhixiang; Ren, Jian
2016-06-16
As one of the most common post-translational modifications in eukaryotic cells, lipid modification is an important mechanism for the regulation of variety aspects of protein function. Over the last decades, three classes of lipid modifications have been increasingly studied. The co-regulation of these different lipid modifications is beginning to be noticed. However, due to the lack of integrated bioinformatics resources, the studies of co-regulatory mechanisms are still very limited. In this work, we developed a tool called GPS-Lipid for the prediction of four classes of lipid modifications by integrating the Particle Swarm Optimization with an aging leader and challengers (ALC-PSO) algorithm. GPS-Lipid was proven to be evidently superior to other similar tools. To facilitate the research of lipid modification, we hosted a publicly available web server at http://lipid.biocuckoo.org with not only the implementation of GPS-Lipid, but also an integrative database and visualization tool. We performed a systematic analysis of the co-regulatory mechanism between different lipid modifications with GPS-Lipid. The results demonstrated that the proximal dual-lipid modifications among palmitoylation, myristoylation and prenylation are key mechanism for regulating various protein functions. In conclusion, GPS-lipid is expected to serve as useful resource for the research on lipid modifications, especially on their co-regulation.
Identification and characterization of a member of Rab subfamily, Rab8, from Clonorchis sinensis.
Liang, Pei; He, Lei; Yu, Jinyun; Xie, Zhizhi; Chen, Xueqing; Mao, Qiang; Liang, Chi; Huang, Yan; Lu, Gang; Yu, Xinbing
2015-05-01
The Rabs act as a binary molecular switch that utilizes the conformational changes associated with the GTP/GDP cycle to elicit responses from target proteins. It regulates a broad spectrum of cellular processes including cell proliferation, cytoskeletal assembly, and intracellular membrane trafficking in eukaryotes. The Rab8 from Clonorchis sinensis (CsRab8) was composed of 199 amino acids. The deduced amino acid sequence shared above 50% identities with other species from trematode, tapeworm, mammal, insecta, nematode, and reptile, respectively. The homologous analysis of sequences showed the conservative domains: G1 box (GDSGVGKS), G2 box (T), G3 box (DTAG), G4 box (GNKCDL), and G5 box. In addition, the structure modeling had also shown other functional domains: GTP/Mg(2+) binding sites, switch I region, and switch II region. A phylogenic tree analysis indicated that the CsRab8 was clustered with the Rab from Schistosoma japonicum, and trematode and tapeworm came from the same branch, which was different from an evolutional branch built by other species, such as mammal animal, insecta, nematode, and reptile. The recombinant CsRab8 protein was expressed in Escherichia coli and the purified protein was a soluble molecule by 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. CsRab8 was identified as a component of excretory/secretory products of C. sinensis by western blot analysis. The transcriptional level of CsRab8 at metacercaria stage was the highest at the four stages and higher by 56.49-folds than that at adult worm, 1.23-folds than that at excysted metacercaria, and 2.69-folds than that at egg stage. Immunohistochemical localization analysis showed that CsRab8 was specifically distributed in the tegument, vitellarium, eggs, and testicle of adult worms, and detected on the vitellarium and tegument of metacercaria. Combined with the results, CsRab8 is indispensable for survival and development of parasites, especially for regulating excretory/secretory products secretion.
Rotational Diffusion Depends on Box Size in Molecular Dynamics Simulations.
Linke, Max; Köfinger, Jürgen; Hummer, Gerhard
2018-06-07
We show that the rotational dynamics of proteins and nucleic acids determined from molecular dynamics simulations under periodic boundary conditions suffer from significant finite-size effects. We remove the box-size dependence of the rotational diffusion coefficients by adding a hydrodynamic correction k B T/6 ηV with k B Boltzmann's constant, T the absolute temperature, η the solvent shear viscosity, and V the box volume. We show that this correction accounts for the finite-size dependence of the rotational diffusion coefficients of horse-heart myoglobin and a B-DNA dodecamer in aqueous solution. The resulting hydrodynamic radii are in excellent agreement with experiment.
Jadid, Nurul; Mialoundama, Alexis Samba; Heintz, Dimitri; Ayoub, Daniel; Erhardt, Mathieu; Mutterer, Jérôme; Meyer, Denise; Alioua, Abdelmalek; Van Dorsselaer, Alain; Rahier, Alain; Camara, Bilal; Bouvier, Florence
2011-01-01
The most abundant posttranslational modification in nature is the attachment of preassembled high-mannose-type glycans, which determines the fate and localization of the modified protein and modulates the biological functions of glycosylphosphatidylinositol-anchored and N-glycosylated proteins. In eukaryotes, all mannose residues attached to glycoproteins from the luminal side of the endoplasmic reticulum (ER) derive from the polyprenyl monosaccharide carrier, dolichol P-mannose (Dol-P-Man), which is flipped across the ER membrane to the lumen. We show that in plants, Dol-P-Man is synthesized when Dol-P-Man synthase1 (DPMS1), the catalytic core, interacts with two binding proteins, DPMS2 and DPMS3, that may serve as membrane anchors for DPMS1 or provide catalytic assistance. This configuration is reminiscent of that observed in mammals but is distinct from the single DPMS protein catalyzing Dol-P-Man biosynthesis in bakers’ yeast and protozoan parasites. Overexpression of DPMS1 in Arabidopsis thaliana results in disorganized stem morphology and vascular bundle arrangements, wrinkled seed coat, and constitutive ER stress response. Loss-of-function mutations and RNA interference–mediated reduction of DPMS1 expression in Arabidopsis also caused a wrinkled seed coat phenotype and most remarkably enhanced hypersensitivity to ammonium that was manifested by extensive chlorosis and a strong reduction of root growth. Collectively, these data reveal a previously unsuspected role of the prenyl-linked carrier pathway for plant development and physiology that may help integrate several aspects of candidate susceptibility genes to ammonium stress. PMID:21558543
Brand, Luise H.; Fischer, Nina M.; Harter, Klaus; Kohlbacher, Oliver; Wanke, Dierk
2013-01-01
WRKY transcription factors constitute a large protein family in plants that is involved in the regulation of developmental processes and responses to biotic or abiotic stimuli. The question arises how stimulus-specific responses are mediated given that the highly conserved WRKY DNA-binding domain (DBD) exclusively recognizes the ‘TTGACY’ W-box consensus. We speculated that the W-box consensus might be more degenerate and yet undetected differences in the W-box consensus of WRKYs of different evolutionary descent exist. The phylogenetic analysis of WRKY DBDs suggests that they evolved from an ancestral group IIc-like WRKY early in the eukaryote lineage. A direct descent of group IIc WRKYs supports a monophyletic origin of all other group II and III WRKYs from group I by loss of an N-terminal DBD. Group I WRKYs are of paraphyletic descent and evolved multiple times independently. By homology modeling, molecular dynamics simulations and in vitro DNA–protein interaction-enzyme-linked immunosorbent assay with AtWRKY50 (IIc), AtWRKY33 (I) and AtWRKY11 (IId) DBDs, we revealed differences in DNA-binding specificities. Our data imply that other components are essentially required besides the W-box-specific binding to DNA to facilitate a stimulus-specific WRKY function. PMID:23975197
JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation
Sun, Luyang; Shi, Lei; Li, Wenqian; Yu, Wenhua; Liang, Jing; Zhang, Hua; Yang, Xiaohan; Wang, Yan; Li, Ruifang; Yao, Xingrong; Yi, Xia; Shang, Yongfeng
2009-01-01
The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Currently, several ubiquitin ligases, including the single-subunit RING-finger types—MDM2, Pirh2, and COP1—and the HECT-domain type—ARF-BP1—have been reported to target p53 for degradation. Here, we report the identification of a human Kelch domain-containing F-box protein, JFK. We showed that JFK promotes ubiquitination and degradation of p53. But unlike MDM2, Pirh2, COP1, and ARF-BP1, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assembly of a Skp1-Cul1-F-box complex. Significantly, JFK inhibits p53-dependent transcription, and depletion of JFK stabilizes p53, promotes cell apoptosis, arrests cells in the G1 phase, and sensitizes cells to ionizing radiation-induced cell death. These data indicate that JFK is a critical negative regulator of p53 and represents a pathway for the maintenance of p53 levels in unstressed cells. Our experiments link the Skp1-Cul1-F-box system to p53 regulation. PMID:19509332
JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation.
Sun, Luyang; Shi, Lei; Li, Wenqian; Yu, Wenhua; Liang, Jing; Zhang, Hua; Yang, Xiaohan; Wang, Yan; Li, Ruifang; Yao, Xingrong; Yi, Xia; Shang, Yongfeng
2009-06-23
The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Currently, several ubiquitin ligases, including the single-subunit RING-finger types--MDM2, Pirh2, and COP1--and the HECT-domain type--ARF-BP1--have been reported to target p53 for degradation. Here, we report the identification of a human Kelch domain-containing F-box protein, JFK. We showed that JFK promotes ubiquitination and degradation of p53. But unlike MDM2, Pirh2, COP1, and ARF-BP1, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assembly of a Skp1-Cul1-F-box complex. Significantly, JFK inhibits p53-dependent transcription, and depletion of JFK stabilizes p53, promotes cell apoptosis, arrests cells in the G(1) phase, and sensitizes cells to ionizing radiation-induced cell death. These data indicate that JFK is a critical negative regulator of p53 and represents a pathway for the maintenance of p53 levels in unstressed cells. Our experiments link the Skp1-Cul1-F-box system to p53 regulation.
Physcomitrella MADS-box genes regulate water supply and sperm movement for fertilization.
Koshimizu, Shizuka; Kofuji, Rumiko; Sasaki-Sekimoto, Yuko; Kikkawa, Masahide; Shimojima, Mie; Ohta, Hiroyuki; Shigenobu, Shuji; Kabeya, Yukiko; Hiwatashi, Yuji; Tamada, Yosuke; Murata, Takashi; Hasebe, Mitsuyasu
2018-01-01
MIKC classic (MIKC C )-type MADS-box genes encode transcription factors that function in various developmental processes, including angiosperm floral organ identity. Phylogenetic analyses of the MIKC C -type MADS-box family, including genes from non-flowering plants, suggest that the increased numbers of these genes in flowering plants is related to their functional divergence; however, their precise functions in non-flowering plants and their evolution throughout land plant diversification are unknown. Here, we show that MIKC C -type MADS-box genes in the moss Physcomitrella patens function in two ways to enable fertilization. Analyses of protein localization, deletion mutants and overexpression lines of all six genes indicate that three MIKC C -type MADS-box genes redundantly regulate cell division and growth in the stems for appropriate external water conduction, as well as the formation of sperm with motile flagella. The former function appears to be maintained in the flowering plant lineage, while the latter was lost in accordance with the loss of sperm.
Qin, Wei; Lv, Pinou; Fan, Xinqi; Quan, Baiyi; Zhu, Yuntao; Qin, Ke; Chen, Ying; Wang, Chu
2017-01-01
O-linked GlcNAcylation (O-GlcNAcylation), a ubiquitous posttranslational modification on intracellular proteins, is dynamically regulated in cells. To analyze the turnover dynamics of O-GlcNAcylated proteins, we developed a quantitative time-resolved O-linked GlcNAc proteomics (qTOP) strategy based on metabolic pulse-chase labeling with an O-GlcNAc chemical reporter and stable isotope labeling with amino acids in cell culture (SILAC). Applying qTOP, we quantified the turnover rates of 533 O-GlcNAcylated proteins in NIH 3T3 cells and discovered that about 14% exhibited minimal removal of O-GlcNAc or degradation of protein backbones. The stability of those hyperstable O-GlcNAcylated proteins was more sensitive to O-GlcNAcylation inhibition compared with the more dynamic populations. Among the hyperstable population were three core proteins of box C/D small nucleolar ribonucleoprotein complexes (snoRNPs): fibrillarin (FBL), nucleolar protein 5A (NOP56), and nucleolar protein 5 (NOP58). We showed that O-GlcNAcylation stabilized these proteins and was essential for snoRNP assembly. Blocking O-GlcNAcylation on FBL altered the 2′-O-methylation of rRNAs and impaired cancer cell proliferation and tumor formation in vivo. PMID:28760965
Zhang, Zhiyong; Zheng, Xixi; Yang, Jun; Messing, Joachim; Wu, Yongrui
2016-01-01
The maize endosperm-specific transcription factors opaque2 (O2) and prolamine-box binding factor (PBF) regulate storage protein zein genes. We show that they also control starch synthesis. The starch content in the PbfRNAi and o2 mutants was reduced by ∼5% and 11%, respectively, compared with normal genotypes. In the double-mutant PbfRNAi;o2, starch was decreased by 25%. Transcriptome analysis reveals that >1,000 genes were affected in each of the two mutants and in the double mutant; these genes were mainly enriched in sugar and protein metabolism. Pyruvate orthophosphate dikinase 1 and 2 (PPDKs) and starch synthase III (SSIII) are critical components in the starch biosynthetic enzyme complex. The expression of PPDK1, PPDK2, and SSIII and their protein levels are further reduced in the double mutants as compared with the single mutants. When the promoters of these genes were analyzed, we found a prolamine box and an O2 box that can be additively transactivated by PBF and O2. Starch synthase IIa (SSIIa, encoding another starch synthase for amylopectin) and starch branching enzyme 1 (SBEI, encoding one of the two main starch branching enzymes) are not directly regulated by PBF and O2, but their protein levels are significantly decreased in the o2 mutant and are further decreased in the double mutant, indicating that o2 and PbfRNAi may affect the levels of some other transcription factor(s) or mRNA regulatory factor(s) that in turn would affect the transcript and protein levels of SSIIa and SBEI. These findings show that three important traits—nutritional quality, calories, and yield—are linked through the same transcription factors. PMID:27621432
Denef, V. J.; Patrauchan, M. A.; Florizone, C.; Park, J.; Tsoi, T. V.; Verstraete, W.; Tiedje, J. M.; Eltis, L. D.
2005-01-01
Recent microarray experiments suggested that Burkholderia xenovorans LB400, a potent polychlorinated biphenyl (PCB)-degrading bacterium, utilizes up to three apparently redundant benzoate pathways and a C1 metabolic pathway during biphenyl and benzoate metabolism. To better characterize the roles of these pathways, we performed quantitative proteome profiling of cells grown on succinate, benzoate, or biphenyl and harvested during either mid-logarithmic growth or the transition between the logarithmic and stationary growth phases. The Bph enzymes, catabolizing biphenyl, were ∼16-fold more abundant in biphenyl- versus succinate-grown cells. Moreover, the upper and lower bph pathways were independently regulated. Expression of each benzoate pathway depended on growth substrate and phase. Proteins specifying catabolism via benzoate dihydroxylation and catechol ortho-cleavage (ben-cat pathway) were approximately an order of magnitude more abundant in benzoate- versus biphenyl-grown cells at the same growth phase. The chromosomal copy of the benzoyl-coenzyme A (CoA) (boxC) pathway was also expressed during growth on biphenyl: BoxC proteins were approximately twice as abundant as Ben and Cat proteins under these conditions. By contrast, proteins of the megaplasmid copy of the benzoyl-CoA (boxM) pathway were only detected in transition-phase benzoate-grown cells. Other proteins detected at increased levels in benzoate- and biphenyl-grown cells included general stress response proteins potentially induced by reactive oxygen species formed during aerobic aromatic catabolism. Finally, C1 metabolic enzymes were present in biphenyl-grown cells during transition phase. This study provides insights into the physiological roles and integration of apparently redundant catabolic pathways in large-genome bacteria and establishes a basis for investigating the PCB-degrading abilities of this strain. PMID:16291673
Hsiao, Yu-Yun; Jeng, Mei-Fen; Tsai, Wen-Chieh; Chuang, Yu-Chen; Li, Chia-Ying; Wu, Tian-Shung; Kuoh, Chang-Sheng; Chen, Wen-Huei; Chen, Hong-Hwa
2008-09-01
Geranyl diphosphate (GDP) is the precursor of monoterpenes, which are the major floral scent compounds in Phalaenopsis bellina. The cDNA of P. bellina GDP synthase (PbGDPS) was cloned, and its sequence corresponds to the second Asp-rich motif (SARM), but not to any aspartate-rich (Asp-rich) motif. The recombinant PbGDPS enzyme exhibits dual prenyltransferase activity, producing both GDP and farnesyl diphosphate (FDP), and a yeast two-hybrid assay and gel filtration revealed that PbGDPS was able to form a homodimer. Spatial and temporal expression analyses showed that the expression of PbGDPS was flower specific, and that maximal PbGDPS expression was concomitant with maximal emission of monoterpenes on day 5 post-anthesis. Homology modelling of PbGDPS indicated that the Glu-rich motif might provide a binding site for Mg(2+) and catalyze the formation of prenyl products in a similar way to SARM. Replacement of the key Glu residues with alanine totally abolished enzyme activity, whereas their mutation to Asp resulted in a mutant with two-thirds of the activity of the wild-type protein. Phylogenetic analysis indicated that plant GDPS proteins formed four clades: members of both GDPS-a and GDPS-b clades contain Asp-rich motifs, and function as homodimers. In contrast, proteins in the GDPS-c and GDPS-d clades do not contain Asp-rich motifs, but although members of the GDPS-c clade function as heterodimers, PbGDPS, which is more closely related to the GDPS-c clade proteins than to GDPS-a and GDPS-b proteins, and is currently the sole member of the GDPS-d clade, functions as a homodimer.
Ciossani, Giuseppe; Overlack, Katharina; Petrovic, Arsen; Huis In 't Veld, Pim J; Koerner, Carolin; Wohlgemuth, Sabine; Maffini, Stefano; Musacchio, Andrea
2018-05-10
The segregation of chromosomes during cell division relies on the function of the kinetochores, protein complexes that physically connect chromosomes with microtubules of the spindle. The metazoan proteins, centromere protein E (CENP-E) and CENP-F, are components of a fibrous layer of mitotic kinetochores named the corona. Several of their features suggest that CENP-E and CENP-F are paralogs: they are very large (comprising approximately 2700 and 3200 residues, respectively), contain abundant predicted coiled-coil structures, are C-terminally prenylated, and are endowed with microtubule-binding sites at their termini. Moreover, CENP-E contains an ATP-hydrolyzing motor domain that promotes microtubule plus end-directed motion. Here, we show that both CENP-E and CENP-F are recruited to mitotic kinetochores independently of the main corona constituent, the Rod-Zwilch-ZW10 (RZZ) complex. We identified specific interactions of CENP-F and CENP-E with budding uninhibited by benzimidazole 1 (BUB1) and BUB1-related (BUBR1) mitotic checkpoint Ser/Thr kinases, respectively, paralogous proteins involved in mitotic checkpoint control and chromosome alignment. Whereas BUBR1 was dispensable for kinetochore localization of CENP-E, BUB1 was stringently required for CENP-F localization. Through biochemical reconstitution, we demonstrated that the CENP-E-BUBR1 and CENP-F-BUB1 interactions are direct and require similar determinants, a dimeric coiled-coil in CENP-E or CENP-F and a kinase domain in BUBR1 or BUB1. Our findings are consistent with the existence of structurally similar BUB1-CENP-F and BUBR1-CENP-E complexes, supporting the notion that CENP-E and CENP-F are evolutionarily related. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Lundquist, Peter K.; Poliakov, Anton; Bhuiyan, Nazmul H.; Zybailov, Boris; Sun, Qi; van Wijk, Klaas J.
2012-01-01
Plastoglobules (PGs) in chloroplasts are thylakoid-associated monolayer lipoprotein particles containing prenyl and neutral lipids and several dozen proteins mostly with unknown functions. An integrated view of the role of the PG is lacking. Here, we better define the PG proteome and provide a conceptual framework for further studies. The PG proteome from Arabidopsis (Arabidopsis thaliana) leaf chloroplasts was determined by mass spectrometry of isolated PGs and quantitative comparison with the proteomes of unfractionated leaves, thylakoids, and stroma. Scanning electron microscopy showed the purity and size distribution of the isolated PGs. Compared with previous PG proteome analyses, we excluded several proteins and identified six new PG proteins, including an M48 metallopeptidase and two Absence of bc1 complex (ABC1) atypical kinases, confirmed by immunoblotting. This refined PG proteome consisted of 30 proteins, including six ABC1 kinases and seven fibrillins together comprising more than 70% of the PG protein mass. Other fibrillins were located predominantly in the stroma or thylakoid and not in PGs; we discovered that this partitioning can be predicted by their isoelectric point and hydrophobicity. A genome-wide coexpression network for the PG genes was then constructed from mRNA expression data. This revealed a modular network with four distinct modules that each contained at least one ABC1K and/or fibrillin gene. Each module showed clear enrichment in specific functions, including chlorophyll degradation/senescence, isoprenoid biosynthesis, plastid proteolysis, and redox regulators and phosphoregulators of electron flow. We propose a new testable model for the PGs, in which sets of genes are associated with specific PG functions. PMID:22274653
Striz, Anneliese C.; Tuma, Pamela L.
2016-01-01
A major focus for our laboratory is identifying the molecules and mechanisms that regulate polarized apical protein sorting in hepatocytes, the major epithelial cells of the liver. These trafficking pathways are regulated, in part, by small molecular weight rab GTPases. We chose to investigate rab17, whose expression is restricted to polarized epithelial cells, is enriched in liver, and has been implicated in regulating basolateral to apical transcytosis. To initiate our studies, we generated three recombinant adenoviruses expressing wild type, constitutively active (GTP bound), or dominant-negative (GDP bound) rab17. Immunoblotting revealed rab17 immunoreactive species at 25 kDa (the predicted rab17 molecular mass) and 40 kDa. We determined that mono-sumoylation of the 25-kDa rab17 is responsible for the shift in molecular mass, and that rab17 prenylation is required for sumoylation. We further determined that sumoylation selectively promotes interactions with syntaxin 2 (but not syntaxins 3 or 4) and that these interactions are nucleotide dependent. Furthermore, a K68R-mutated rab17 led to the redistribution of syntaxin 2 and 5′ nucleotidase from the apical membrane to subapical puncta, whereas multidrug resistance protein 2 distributions were not changed. Together these data are consistent with the proposed role of rab17 in vesicle fusion with the apical plasma membrane and further implicate sumoylation as an important mediator of protein-protein interactions. The selectivity in syntaxin binding and apical protein redistribution further suggests that rab17 and syntaxin 2 mediate fusion of transcytotic vesicles at the apical surface. PMID:26957544
Protein-protein interactions in the regulation of WRKY transcription factors.
Chi, Yingjun; Yang, Yan; Zhou, Yuan; Zhou, Jie; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang
2013-03-01
It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth, development, and responses to biotic and abiotic stress. Despite the functional diversity, almost all analyzed WRKY proteins recognize the TTGACC/T W-box sequences and, therefore, mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors. Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling, transcription, and chromatin remodeling. Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcription factors. It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biological processes. In this review, we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute, at different levels, to the establishment of the complex regulatory and functional network of WRKY transcription factors.
Shuh, Maureen; Derse, David
2000-01-01
The human T-cell leukemia virus type 1 Tax protein activates the expression of cellular immediate early genes controlled by the serum response element (SRE), which contains both the serum response factor (SRF) binding element (CArG box) and the ternary complex factor (TCF) binding element (Ets box). We show that TCF binding is necessary for Tax activation of the SRE and that Tax directly interacts with TCFs in vitro. In addition, Tax interactions with CREB binding protein (CBP) and p300- and CBP-associated factor were found to be essential for Tax activation of SRF-mediated transcription. PMID:11070040
The genetics of early telencephalon patterning: some assembly required
Hébert, Jean M.; Fishell, Gord
2009-01-01
The immense range of human behaviours is rooted in the complex neural networks of the cerebrum. The creation of these networks depends on the precise integration of specific neuronal subtypes that are born in different regions of the telencephalon. Here, using the mouse as a model system, we review how these proliferative zones are established. Moreover, we discuss how these regions can be traced back in development to the function of a few key genes, including those that encode fibroblast growth factors (FGFs), sonic hedgehog (SHH), bone morphogenetic proteins (BMPs), forkhead box G1 (FoxG1), paired box 6 (PAX6) and LIM homeobox protein 2 (LHX2), that pattern the early telencephalon. PMID:19143049
Forkhead box transcription factors in embryonic heart development and congenital heart disease.
Zhu, Hong
2016-01-01
Embryonic heart development is a very complicated process regulated precisely by a network composed of many genes and signaling pathways in time and space. Forkhead box (Fox, FOX) proteins are a family of transcription factors characterized by the presence of an evolutionary conserved "forkhead"or "winged-helix" DNA-binding domain and able to organize temporal and spatial gene expression during development. They are involved in a wide variety of cellular processes, such as cell cycle progression, proliferation, differentiation, migration, metabolism and DNA damage response. An abundance of studies in model organisms and systems has established that Foxa2, Foxc1/c2, Foxh1 and Foxm1, Foxos and Foxps are important components of the signaling pathways that instruct cardiogenesis and embryonic heart development, playing paramount roles in heart development. The previous studies also have demonstrated that mutations in some of the forkhead box genes and the aberrant expression of forkhead box gene are heavily implicated in the congenital heart disease (CHD) of humans. This review primarily focuses on the current understanding of heart development regulated by forkhead box transcription factors and molecular genetic mechanisms by which forkhead box factors modulate heart development during embryogenesis and organogenesis. This review also summarizes human CHD related mutations in forkhead box genes as well as the abnormal expression of forkhead box gene, and discusses additional possible regulatory mechanisms of the forkhead box genes during embryonic heart development that warrant further investigation. Copyright © 2015 Elsevier Inc. All rights reserved.
Smuder, Ashley J; Sollanek, Kurt J; Min, Kisuk; Nelson, W Bradley; Powers, Scott K
2015-05-01
Mechanical ventilation is a lifesaving measure for patients with respiratory failure. However, prolonged mechanical ventilation results in diaphragm weakness, which contributes to problems in weaning from the ventilator. Therefore, identifying the signaling pathways responsible for mechanical ventilation-induced diaphragm weakness is essential to developing effective countermeasures to combat this important problem. In this regard, the forkhead boxO family of transcription factors is activated in the diaphragm during mechanical ventilation, and forkhead boxO-specific transcription can lead to enhanced proteolysis and muscle protein breakdown. Currently, the role that forkhead boxO activation plays in the development of mechanical ventilation-induced diaphragm weakness remains unknown. This study tested the hypothesis that mechanical ventilation-induced increases in forkhead boxO signaling contribute to ventilator-induced diaphragm weakness. University research laboratory. Young adult female Sprague-Dawley rats. Cause and effect was determined by inhibiting the activation of forkhead boxO in the rat diaphragm through the use of a dominant-negative forkhead boxO adeno-associated virus vector delivered directly to the diaphragm. Our results demonstrate that prolonged (12 hr) mechanical ventilation results in a significant decrease in both diaphragm muscle fiber size and diaphragm-specific force production. However, mechanically ventilated animals treated with dominant-negative forkhead boxO showed a significant attenuation of both diaphragm atrophy and contractile dysfunction. In addition, inhibiting forkhead boxO transcription attenuated the mechanical ventilation-induced activation of the ubiquitin-proteasome system, the autophagy/lysosomal system, and caspase-3. Forkhead boxO is necessary for the activation of key proteolytic systems essential for mechanical ventilation-induced diaphragm atrophy and contractile dysfunction. Collectively, these results suggest that targeting forkhead boxO transcription could be a key therapeutic target to combat ventilator-induced diaphragm dysfunction.
Li, Yan-Liang; Fang, Zhi-Xiang; You, Jing
2013-02-20
A validated method for analyzing Cry proteins is a premise to study the fate and ecological effects of contaminants associated with genetically engineered Bacillus thuringiensis crops. The current study has optimized the extraction method to analyze Cry1Ac protein in soil using a response surface methodology with a three-level-three-factor Box-Behnken experimental design (BBD). The optimum extraction conditions were at 21 °C and 630 rpm for 2 h. Regression analysis showed a good fit of the experimental data to the second-order polynomial model with a coefficient of determination of 0.96. The method was sensitive and precise with a method detection limit of 0.8 ng/g dry weight and relative standard deviations at 7.3%. Finally, the established method was applied for analyzing Cry1Ac protein residues in field-collected soil samples. Trace amounts of Cry1Ac protein were detected in the soils where transgenic crops have been planted for 8 and 12 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Boo-Ja; Park, Chang-Jin; Kim, Sung-Kyu
2006-05-26
We find that salicylic acid and ethephon treatment in hot pepper increases the expression of a putative basic/leucine zipper (bZIP) transcription factor gene, CabZIP1. CabZIP1 mRNA is expressed ubiquitously in various organs. The green fluorescent protein-fused transcription factor, CabZIP1::GFP, can be specifically localized to the nucleus, an action that is consistent with the presence of a nuclear localization signal in its protein sequence. Transient overexpression of the CabZIP1 transcription factor results in an increase in PR-1 transcripts level in Nicotiana benthamiana leaves. Using chromatin immunoprecipitation, we demonstrate that CabZIP1 binds to the G-box elements in native promoter of the hotmore » pepper pathogenesis-related protein 1 (CaPR-1) gene in vivo. Taken together, our results suggest that CabZIP1 plays a role as a transcriptional regulator of the CaPR-1 gene.« less
Leblanc, B; Read, C; Moss, T
1993-02-01
The interaction of the ribosomal transcription factor xUBF with the RNA polymerase I core promoter of Xenopus laevis has been studied both at the DNA and protein levels. It is shown that a single xUBF-DNA complex forms over the 40S initiation site (+1) and involves at least the DNA sequences between -20 and +60 bp. DNA sequences upstream of +10 and downstream of +18 are each sufficient to direct complex formation independently. HMG box 1 of xUBF independently recognizes the sequences -20 to -1 and +1 to +22 and the addition of the N-terminal dimerization domain to HMG box 1 stabilizes its interaction with these sequences approximately 10-fold. HMG boxes 2/3 interact with the DNA downstream of +22 and can independently position xUBF across the initiation site. The C-terminal segment of xUBF, HMG boxes 4, 5 or the acidic domain, directly or indirectly interact with HMG box 1, making the core promoter sequences between -11 and -15 hypersensitive to DNase. This interaction also requires the DNA sequences between +17 and +32, i.e. the HMG box 2/3 binding site. The data suggest extensive folding of the core promoter within the xUBF complex.
Nucleoplasmic Nup98 controls gene expression by regulating a DExH/D-box protein.
Capitanio, Juliana S; Montpetit, Ben; Wozniak, Richard W
2018-01-01
The nucleoporin Nup98 has been linked to the regulation of transcription and RNA metabolism, 1-3 but the mechanisms by which Nup98 contributes to these processes remains largely undefined. Recently, we uncovered interactions between Nup98 and several DExH/D-box proteins (DBPs), a protein family well-known for modulating gene expression and RNA metabolism. 4-6 Analysis of Nup98 and one of these DBPs, DHX9, showed that they directly interact, their association is facilitated by RNA, and Nup98 binding stimulates DHX9 ATPase activity. 7 Furthermore, these proteins were dependent on one another for their proper association with a subset of gene loci to control transcription and modulate mRNA splicing. 7 On the basis of these observations, we proposed that Nup98 functions to regulate DHX9 activity within the nucleoplasm. 7 Since Nup98 is associated with several DBPs, regulation of DHX9 by Nup98 may represent a paradigm for understanding how Nup98, and possibly other FG-Nup proteins, could direct the diverse cellular activities of multiple DBPs.
Wang, Zhao V.; Deng, Yingfeng; Gao, Ningguo; Pedrozo, Zully; Li, Dan L.; Morales, Cyndi R.; Criollo, Alfredo; Luo, Xiang; Tan, Wei; Jiang, Nan; Lehrman, Mark A.; Rothermel, Beverly A.; Lee, Ann-Hwee; Lavandero, Sergio; Mammen, Pradeep P.A.; Ferdous, Anwarul; Gillette, Thomas G.; Scherer, Philipp E.; Hill, Joseph A.
2014-01-01
SUMMARY The hexosamine biosynthetic pathway (HBP) generates UDP-GlcNAc (uridine diphosphate N-acetylglucosamine) for glycan synthesis and O-linked GlcNAc (O-GlcNAc) protein modifications. Despite the established role of the HBP in metabolism and multiple diseases, regulation of the HBP remains largely undefined. Here, we show that spliced X-box binding protein 1 (Xbp1s), the most conserved signal transducer of the unfolded protein response (UPR), is a direct transcriptional activator of the HBP. We demonstrate that the UPR triggers HBP activation via Xbp1s-dependent transcription of genes coding for key, rate-limiting enzymes. We further establish that this previously unrecognized UPR-HBP axis is triggered in a variety of stress conditions. Finally, we demonstrate a physiologic role for the UPR-HBP axis, by showing that acute stimulation of Xbp1s in heart by ischemia/reperfusion confers robust cardioprotection in part through induction of the HBP. Collectively, these studies reveal that Xbp1s couples the UPR to the HBP to protect cells under stress. PMID:24630721
Wang, Zhao V; Deng, Yingfeng; Gao, Ningguo; Pedrozo, Zully; Li, Dan L; Morales, Cyndi R; Criollo, Alfredo; Luo, Xiang; Tan, Wei; Jiang, Nan; Lehrman, Mark A; Rothermel, Beverly A; Lee, Ann-Hwee; Lavandero, Sergio; Mammen, Pradeep P A; Ferdous, Anwarul; Gillette, Thomas G; Scherer, Philipp E; Hill, Joseph A
2014-03-13
The hexosamine biosynthetic pathway (HBP) generates uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) for glycan synthesis and O-linked GlcNAc (O-GlcNAc) protein modifications. Despite the established role of the HBP in metabolism and multiple diseases, regulation of the HBP remains largely undefined. Here, we show that spliced X-box binding protein 1 (Xbp1s), the most conserved signal transducer of the unfolded protein response (UPR), is a direct transcriptional activator of the HBP. We demonstrate that the UPR triggers HBP activation via Xbp1s-dependent transcription of genes coding for key, rate-limiting enzymes. We further establish that this previously unrecognized UPR-HBP axis is triggered in a variety of stress conditions. Finally, we demonstrate a physiologic role for the UPR-HBP axis by showing that acute stimulation of Xbp1s in heart by ischemia/reperfusion confers robust cardioprotection in part through induction of the HBP. Collectively, these studies reveal that Xbp1s couples the UPR to the HBP to protect cells under stress. Copyright © 2014 Elsevier Inc. All rights reserved.