77 FR 37717 - Electrical Cable Test Results and Analysis During Fire Exposure
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-22
... Fire Exposure AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for comment. SUMMARY...-2128, ``Electrical Cable Test Results and Analysis during Fire Exposure (ELECTRA-FIRE), A Consolidation of the Three Major Fire-Induced Circuit and Cable Failure Experiments Performed between 2001 and 2011...
NASA Technical Reports Server (NTRS)
Zanelli, C.; Philbrick, S.; Beretta, G.
1986-01-01
Besides describing the experiments conducted to develop a nonflammable cable, this article discusses several considerations regarding other hazards which might result from cable fires, particularly the toxicity and opacity of the fumes emitted by the burning cable. In addition, this article examines the effects of using the Oxygen Index as a gauge of quality control during manufacture.
Experimental study on the fire protection properties of PVC sheath for old and new cables.
Xie, Qiyuan; Zhang, Heping; Tong, Lin
2010-07-15
The objective of the present study is to analyze the fire protection properties of old and new cables through TG, FTIR and MCC experiments. The results show that the mass loss of old cable sheath is clearly larger than the new one when the temperature is higher than 550 K in air or nitrogen atmosphere. It suggests that the old cable sheath starts to pyrolyze generally at the same temperature based on the analysis of the onset temperatures of mass loss. The results also show that there is a main peak DTG for the old and new cable sheath under each condition. However, the main peak DTG of old cable sheath is larger than that of the new cable sheath, especially in air atmosphere. The FTIR experiments show that the HCl is released by the new cable later but more quickly than the old cable. The MCC experiments suggest that compared with the new one, the peak heat release rate is larger for the old cable. It illustrates that the old cable sheath generally pyrolyzes and combusts more strongly and completely than the new one. Namely, the fire protection properties of the old cable in old buildings are relatively weak. 2010 Elsevier B.V. All rights reserved.
Cable tunnel fire experiment study based on linear optical fiber fire detectors
NASA Astrophysics Data System (ADS)
Fan, Dian; Ding, Hongjun
2013-09-01
Aiming at exiting linear temperature fire detection technology including temperature sensing cable, fiber Raman scattering, fiber Bragg grating, this paper establish an experimental platform in cable tunnel, set two different experimental scenes of the fire and record temperature variation and fire detector response time in the processing of fire simulation. Since a small amount of thermal radiation and no flame for the beginning of the small-scale fire, only directly contacting heat detectors can make alarm response and the rest of other non- contact detectors are unable to respond. In large-scale fire, the alarm response time of the fiber Raman temperature sensing fire detector and fiber Bragg grating temperature sensing fire detector is about 30 seconds, and depending on the thermocouples' record the temperature over the fire is less than 35° in first 60 seconds of large-scale fire, while the temperature rising is more than 5°/min within the range of +/- 3m. According to the technical characteristics of the three detectors, the engineering suitability of the typical linear heat detectors in cable tunnels early fire detection is analyzed, which provide technical support for the preparation of norms.
Langlands, T A M; Henry, B I; Wearne, S L
2009-12-01
We introduce fractional Nernst-Planck equations and derive fractional cable equations as macroscopic models for electrodiffusion of ions in nerve cells when molecular diffusion is anomalous subdiffusion due to binding, crowding or trapping. The anomalous subdiffusion is modelled by replacing diffusion constants with time dependent operators parameterized by fractional order exponents. Solutions are obtained as functions of the scaling parameters for infinite cables and semi-infinite cables with instantaneous current injections. Voltage attenuation along dendrites in response to alpha function synaptic inputs is computed. Action potential firing rates are also derived based on simple integrate and fire versions of the models. Our results show that electrotonic properties and firing rates of nerve cells are altered by anomalous subdiffusion in these models. We have suggested electrophysiological experiments to calibrate and validate the models.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-05
... tray configurations. The experiments conducted range from micro-scale, in which very small (5 mg... burned under a large oxygen- depletion calorimeter. Other experiments include cone calorimetry, smoke and... tray of cables underneath a bank of radiant panels. The results of the small-scale experiments are to...
NASA Astrophysics Data System (ADS)
Taylor, Gabriel James
The failure of electrical cables exposed to severe thermal fire conditions are a safety concern for operating commercial nuclear power plants (NPPs). The Nuclear Regulatory Commission (NRC) has promoted the use of risk-informed and performance-based methods for fire protection which resulted in a need to develop realistic methods to quantify the risk of fire to NPP safety. Recent electrical cable testing has been conducted to provide empirical data on the failure modes and likelihood of fire-induced damage. This thesis evaluated numerous aspects of the data. Circuit characteristics affecting fire-induced electrical cable failure modes have been evaluated. In addition, thermal failure temperatures corresponding to cable functional failures have been evaluated to develop realistic single point thermal failure thresholds and probability distributions for specific cable insulation types. Finally, the data was used to evaluate the prediction capabilities of a one-dimension conductive heat transfer model used to predict cable failure.
Modeling of Electrical Cable Failure in a Dynamic Assessment of Fire Risk
NASA Astrophysics Data System (ADS)
Bucknor, Matthew D.
Fires at a nuclear power plant are a safety concern because of their potential to defeat the redundant safety features that provide a high level of assurance of the ability to safely shutdown the plant. One of the added complexities of providing protection against fires is the need to determine the likelihood of electrical cable failure which can lead to the loss of the ability to control or spurious actuation of equipment that is required for safe shutdown. A number of plants are now transitioning from their deterministic fire protection programs to a risk-informed, performance based fire protection program according to the requirements of National Fire Protection Association (NFPA) 805. Within a risk-informed framework, credit can be taken for the analysis of fire progression within a fire zone that was not permissible within the deterministic framework of a 10 CFR 50.48 Appendix R safe shutdown analysis. To perform the analyses required for the transition, plants need to be able to demonstrate with some level of assurance that cables related to safe shutdown equipment will not be compromised during postulated fire scenarios. This research contains the development of new cable failure models that have the potential to more accurately predict electrical cable failure in common cable bundle configurations. Methods to determine the thermal properties of the new models from empirical data are presented along with comparisons between the new models and existing techniques used in the nuclear industry today. A Dynamic Event Tree (DET) methodology is also presented which allows for the proper treatment of uncertainties associated with fire brigade intervention and its effects on cable failure analysis. Finally a shielding analysis is performed to determine the effects on the temperature response of a cable bundle that is shielded from a fire source by an intervening object such as another cable tray. The results from the analyses demonstrate that models of similar complexity to existing cable failure techniques and tuned to empirical data can better approximate the temperature response of a cables located in tightly packed cable bundles. The new models also provide a way to determine the conditions insides a cable bundle which allows for separate treatment of cables on the interior of the bundle from cables on the exterior of the bundle. The results from the DET analysis show that the overall assessed probability of cable failure can be significantly reduced by more realistically accounting for the influence that the fire brigade has on a fire progression scenario. The shielding analysis results demonstrate a significant reduction in the temperature response of a shielded versus a non-shielded cable bundle; however the computational cost of using a fire progression model that can capture these effects may be prohibitive for performing DET analyses with currently available computational fluid dynamics models and computational resources.
Review of fire test methods and incident data for portable electric cables in underground coal mines
NASA Astrophysics Data System (ADS)
Braun, E.
1981-06-01
Electrically powered underground coal mining machinery is connected to a load center or distribution box by electric cables. The connecting cables used on mobile machines are required to meet fire performance requirements defined in the Code of Federal Regulations. This report reviews Mine Safety and Health Administration's (MSHA) current test method and compares it to British practices. Incident data for fires caused by trailing cable failures and splice failures were also reviewed. It was found that the MSHA test method is more severe than the British but that neither evaluated grouped cable fire performance. The incident data indicated that the grouped configuration of cables on a reel accounted for a majority of the fires since 1970.
The estimation of electrical cable fire-induced damage limits
NASA Astrophysics Data System (ADS)
Nowlen, S. P.; Jacobus, M. J.
Sandia National Laboratories has, for several years, been engaged in the performance of both fire safety and electrical equipment qualification research under independent programs sponsored by the US Nuclear Regulatory Commission. Recent comparisons between electrical cable thermal damageability data gathered independently in these two efforts indicate that a direct correlation exists between certain of the recent cable thermal vulnerability information gathered under equipment qualification conditions and thermal damageability in a fire environment. This direct correlation allows for a significant expansion of the data base on estimated cable thermal vulnerability limits in a fire environment because of the wide range of cable types and products that have been evaluated as a part of the equipment qualification research. This paper provides a discussion of the basis for the derived correlation, and presents estimated cable thermal damage limits for a wide range of generic cable types and specific cable products. The supposition that a direct correlation exists is supported through direct comparisons of the test results for certain specific cable products. The proposed supplemental cable fire vulnerability data gained from examination of the equipment qualification results is presented. These results should be of particular interest to those engaged in the evaluation of fire risk for industrial facilities, including nuclear power plants.
NASA Astrophysics Data System (ADS)
Hartley, M. D.; Jaques, R. E.
1986-11-01
The Canadian Electrical Code and the National Building Code in Canada recognize only two designations in regards to fire resistance of cables; cables for use in combustible (residential) buildings and cables for use in non-combustible buildings. The Test standard for cables for non-combustible buildings resembles IEEE-383. However, it is more severe; particularly for small nonarmoured cables such as Inside Wiring Cable. This forthcoming requirement has necessitated material and product development. Although an Inside Wiring cable modification of both insulation and jacket was undertaken, the large volume fraction of combustible material in the jacket vis a vis the insulation made it the area of greatest impact. The paper outlines the development and its effect on cable performance.
Field test of optical and electrical fire detectors in simulated fire scenes in a cable tunnel
NASA Astrophysics Data System (ADS)
Fan, Dian; Ding, Hongjun; Wang, Dorothy Y.; Jiang, Desheng
2014-06-01
This paper presents the testing results of three types of fire detectors: electrical heat sensing cable, optical fiber Raman temperature sensing detector, and optical fiber Bragg grating (FBG) temperature sensing detector, in two simulated fire scenes in a cable tunnel. In the small-scale fire with limited thermal radiation and no flame, the fire alarm only comes from the heat sensors which directly contact with the heat source. In the large-scale fire with about 5 °C/min temperature rising speed within a 3-m span, the fire alarm response time of the fiber Raman sensor and FBG sensors was about 30 seconds. The test results can be further used for formulating regulation for early fire detection in cable tunnels.
Probabilistic models to estimate fire-induced cable damage at nuclear power plants
NASA Astrophysics Data System (ADS)
Valbuena, Genebelin R.
Even though numerous PRAs have shown that fire can be a major contributor to nuclear power plant risk, there are some specific areas of knowledge related to this issue, such as the prediction of fire-induced damage to electrical cables and circuits, and their potential effects in the safety of the nuclear power plant, that still constitute a practical enigma, particularly for the lack of approaches/models to perform consistent and objective assessments. This report contains a discussion of three different models to estimate fire-induced cable damage likelihood given a specified fire profile: the kinetic, the heat transfer and the IR "K Factor" model. These models not only are based on statistical analysis of data available in the open literature, but to the greatest extent possible they use physics based principles to describe the underlying mechanism of failures that take place among the electrical cables upon heating due to external fires. The characterization of cable damage, and consequently the loss of functionality of electrical cables in fire is a complex phenomenon that depends on a variety of intrinsic factors such as cable materials and dimensions, and extrinsic factors such as electrical and mechanical loads on the cables, heat flux severity, and exposure time. Some of these factors are difficult to estimate even in a well-characterized fire, not only for the variability related to the unknown material composition and physical arrangements, but also for the lack of objective frameworks and theoretical models to study the behavior of polymeric wire cable insulation under dynamic external thermal insults. The results of this research will (1) help to develop a consistent framework to predict fire-induced cable failure modes likelihood, and (2) develop some guidance to evaluate and/or reduce the risk associated with these failure modes in existing and new power plant facilities. Among the models evaluated, the physics-based heat transfer model takes into account the properties and characteristics of the cables and cable materials, and the characteristics of the thermal insult. This model can be used to estimate the probability of cable damage under different thermal conditions.
Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter.
Meinier, Romain; Sonnier, Rodolphe; Zavaleta, Pascal; Suard, Sylvain; Ferry, Laurent
2018-01-15
Fires involving electrical cables are one of the main hazards in Nuclear Power Plants (NPPs). Cables are complex assemblies including several polymeric parts (insulation, bedding, sheath) constituting fuel sources. This study provides an in-depth characterization of the fire behavior of two halogen-free flame retardant cables used in NPPs using the cone calorimeter. The influence of two key parameters, namely the external heat flux and the spacing between cables, on the cable fire characteristics is especially investigated. The prominent role of the outer sheath material on the ignition and the burning at early times was highlighted. A parameter of utmost importance called transition heat flux, was identified and depends on the composition and the structure of the cable. Below this heat flux, the decomposition is limited and concerns only the sheath. Above it, fire hazard is greatly enhanced because most often non-flame retarded insulation part contributes to heat release. The influence of spacing appears complex, and depends on the considered fire property. Copyright © 2017 Elsevier B.V. All rights reserved.
Electro-Optic Fabrics for the Warrior of the 21st Century - Phase II
2010-01-01
46 28. Effect of 1000 cycles of hex- abrasion testing on Fire Wire cable .................................... 46 UNCLASSIFIED vi 29. Close...49 32. Effect of 2000 cycles of hex- abrasion testing on Fire Wire cable .................................... 49 33. Effect of 4000 cycles of...hex- abrasion testing on Fire Wire cable .................................... 50 34. Effect of 2000 cycles of hex- abrasion testing on USB v2 cable
NASA Astrophysics Data System (ADS)
Ochoa, C. G.; Cram, D.; Hatch, C. E.; Tyler, S. W.
2014-12-01
Distributed temperature sensing (DTS) technology offers a viable alternative for accurately measuring wildland fire intensity and distribution in real time applications. We conducted an experiment to test the use of DTS as an alternative technology to monitor prescribed fire temperatures in real time and across a broad spatial scale. The custom fiber-optic cable consisted of three fiber optic lines buffered by polyamide, copper, and polyvinyl chloride, respectively, each armored in a stainless steel tube backfilled with Nitrogen gas. The 150 m long cable was deployed in three different 20 by 26 m experimental plots of short-grass rangeland in central New Mexico. Cable was arranged to maximize coverage of the experimental plots and allow cross-comparison between two main parallel straight-line sections approximately 8 m apart. A DTS system recorded fire temperatures every three seconds and integrated every one meter. A series of five thermocouples attached to a datalogger were placed at selected locations along the cable and also recorded temperature data every three seconds on each fiber. Results indicate that in general there is good agreement between thermocouple-measured and DTS-measured temperatures. A close match in temperature between DTS and thermocouples was particularly observed during the rising limb but not so much during the decline. The metal armoring of the fiber-optic cable remained hot longer than the thermocouples after the flames had passed. The relatively short-duration, high-intensity, prescribed burn fire in each plot resulted in temperatures reaching up to 450 degrees Celsius. In addition, DTS data allow for illustration of the irregular nature of flame speed and travel path across the rangeland grasses, a phenomenon that was impossible to quantify without the use of this tool. This study adds to the understanding of using DTS as a new alternative tool for better characterizing wildland fire intensity, distribution and travel patterns, and establishes the baseline for expanding these test plot results to larger spatial scales.
NASA Astrophysics Data System (ADS)
Pedersen, J. R.; Holte, T. A.; Johansen, E.
Cables with improved fire resistance and flame retardance have been developed. They will continue to function at least 3 hours even at temperatures up to 1000 C and do not propagate fire when tested according to IEC 332 part 3 1982, category A. Made with halogenfree materials they give off no corrosive gases and very little visible smoke in cases of fire. Cables are made for power, signal and instrument installations in hospitals, high rise buildings, railroad cars, subways, on board ship, oil rigs and oil production platforms. The offshore cables are specially constructed to withstand the rugged climatic conditions in the North Sea area.
NASA Astrophysics Data System (ADS)
Dobra, R.; Pasculescu, D.; Marc, G.; Risteiu, M.; Antonov, A.
2017-06-01
Insulation resistance measurement is one of the most important tests required by standards and regulations in terms of electrical safety. Why these tests are is to prevent possible accidents caused by electric shock, damage to equipment or outbreak of fire in normal operating conditions of electrical cables. The insulation resistance experiment refers to the testing of electrical cable insulation, which has a measured resistance that must be below the imposed regulations. Using a microcontroller system data regarding the insulation resistance of the power cables is acquired and with SCADA software the test results are displayed.
Instrumentation Cables Test Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muna, Alice Baca; LaFleur, Chris Bensdotter
A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteriamore » 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift and fluctuate, while the thermoplastic insulated cables, the instrument reading fell off-scale rapidly. From an operational point of view, the latter failure characteristics would likely be identified as a failure from the effects of fire, while the former may result in inaccurate readings.« less
NASA Astrophysics Data System (ADS)
Pangaribuan, Adrianus; Dhiputra, I. M. K.; Nugroho, Yulianto S.
2017-03-01
Electrical cable is a whole of the material including metal (cooper) conductor and its insulation, when an electrical cable is flowed by electric current, based on its own capacity, the temperature of cable conductor increases gradually. If the current flows above the cable carrying capacity, then an extreme temperature rises are expected. When temperature increase, the electric current flow inside cable conductor will decrease gradually related to the resistance and could occur repeatedly in a period. Since electrical faults on electrical cable system are often suspected as the cause of fires, thus this research aims to investigate measures of preventing the fire to start by means of controlling oxygen concentration in a cable compartment. The experimental work was conducted in laboratory by using electrical power cable of 1.5 mm2 size. Two transparent chambers were applied for studying the effect of vertical and horizontal orientations on the cable temperature rise, under various oxygen concentration of the gas streams. In the present work, the electrical was maintained at a constant level during a typical test run. Parametric studies reported in the paper include the use of a bare and insulated cables as well as the bending shape of the cable lines of a straight cable, coiled cable and randomly bent cable which were loaded with the same electric load and oxygen concentration in the gas supply.
Combustibility of Electrical Wire and Cable for Rail Rapid Transit Systems. Volume 1. Flammability.
DOT National Transportation Integrated Search
1983-05-01
The objective of this study was to examine the flammability of wires and cables used in rapid rail transit systems. The overall goal of the study was to quantify the fire properties of wires and cables in a manner so that the relative fire hazards co...
Combustibility of Electrical Wire and Cable for Rail Rapid Transit Systems. Volume 2. Toxicity.
DOT National Transportation Integrated Search
1983-05-01
The objective of this study was to examine the flammability of wires and cables used in rapid rail transit systems. The overall goal of the study was to quantify the fire properties of wires and cables in a manner so that the relative fire hazards co...
Response of Nuclear Power Plant Instrumentation Cables Exposed to Fire Conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muna, Alice Baca; LaFleur, Chris Bensdotter; Brooks, Dusty Marie
This report presents the results of instrumentation cable tests sponsored by the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research and performed at Sandia National Laboratories (SNL). The goal of the tests was to assess thermal and electrical response behavior under fire-exposure conditions for instrumentation cables and circuits. The test objective was to assess how severe radiant heating conditions surrounding an instrumentation cable affect current or voltage signals in an instrumentation circuit. A total of thirty-nine small-scale tests were conducted. Ten different instrumentation cables were tested, ranging from one conductor to eight-twisted pairs. Because the focus of themore » tests was thermoset (TS) cables, only two of the ten cables had thermoplastic (TP) insulation and jacket material and the remaining eight cables were one of three different TS insulation and jacket material. Two instrumentation cables from previous cable fire testing were included, one TS and one TP. Three test circuits were used to simulate instrumentation circuits present in nuclear power plants: a 4–20 mA current loop, a 10–50 mA current loop and a 1–5 VDC voltage loop. A regression analysis was conducted to determine key variables affecting signal leakage time.« less
Type B investigation of electrical fault in 351 Substation, December 4, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debban, H.L.; Shearer, C.A.; Boger, R.M.
1995-02-01
On December 4, 1994, at 2132:10 hours, an electrical failure of a cable-tapping splice resulted in a fire in the 300 Area of the DOE Hanford Site. The fire occurred in the yard of Substation 351 in electrical Vault R122V, where the cable-tapping splice was located. The fire incinerated all cables passing to and through the vault causing them to fail. The failure of the cables resulted in a power outage to twenty customers in the 300 Area. The vault was electrically isolated, and power was restored to the electrical distribution system at 2311 hours. This report contains the accidentmore » scenario, accident analysis, direct cause and root and contributing causes.« less
14 CFR 25.1713 - Fire protection: EWIS.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Electrical Wiring Interconnection Systems (EWIS) § 25.1713... used during emergency procedures must be fire resistant. (c) Insulation on electrical wire and electrical cable, and materials used to provide additional protection for the wire and cable, installed in...
External heating of electrical cables and auto-ignition investigation.
Courty, L; Garo, J P
2017-01-05
Electric cables are now extensively used for both residential and industrial applications. During more than twenty years, multi-scale approaches have been developed to study fire behavior of such cables that represents a serious challenge. Cables are rather complicated materials because they consist of an insulated part and jacket of polymeric materials. These polymeric materials can have various chemical structures, thicknesses and additives and generally have a char-forming tendency when exposed to heat source. In this work, two test methods are used for the characterization of cable pyrolysis and flammability. The first one permits the investigation of cable pyrolysis. A description of the cable mass loss is obtained, coupling an Arrhenius expression with a 1D thermal model of cables heating. Numerical results are successfully compared with experimental data obtained for two types of cable commonly used in French nuclear power plants. The second one is devoted to ignition investigations (spontaneous or piloted) of these cables. All these basic observations, measurements and modelling efforts are of major interest for a more comprehensive fire resistance evaluation of electric cables. Copyright © 2016 Elsevier B.V. All rights reserved.
MagPy: A Python toolbox for controlling Magstim transcranial magnetic stimulators.
McNair, Nicolas A
2017-01-30
To date, transcranial magnetic stimulation (TMS) studies manipulating stimulation parameters have largely used blocked paradigms. However, altering these parameters on a trial-by-trial basis in Magstim stimulators is complicated by the need to send regular (1Hz) commands to the stimulator. Additionally, effecting such control interferes with the ability to send TMS pulses or simultaneously present stimuli with high-temporal precision. This manuscript presents the MagPy toolbox, a Python software package that provides full control over Magstim stimulators via the serial port. It is able to maintain this control with no impact on concurrent processing, such as stimulus delivery. In addition, a specially-designed "QuickFire" serial cable is specified that allows MagPy to trigger TMS pulses with very low-latency. In a series of experimental simulations, MagPy was able to maintain uninterrupted remote control over the connected Magstim stimulator across all testing sessions. In addition, having MagPy enabled had no effect on stimulus timing - all stimuli were presented for precisely the duration specified. Finally, using the QuickFire cable, MagPy was able to elicit TMS pulses with sub-millisecond latencies. The MagPy toolbox allows for experiments that require manipulating stimulation parameters from trial to trial. Furthermore, it can achieve this in contexts that require tight control over timing, such as those seeking to combine TMS with fMRI or EEG. Together, the MagPy toolbox and QuickFire serial cable provide an effective means for controlling Magstim stimulators during experiments while ensuring high-precision timing. Copyright © 2016 Elsevier B.V. All rights reserved.
13. WALKWAY FROM LAUNCHING PAD TO CABLE TUNNEL STAIRWELL, ALSO ...
13. WALKWAY FROM LAUNCHING PAD TO CABLE TUNNEL STAIRWELL, ALSO SHOWING A PROTECTIVE BERM AT TOP LEFT, AND FIRING CONTROL BLOCKHOUSE 0545 AT TOP RIGHT. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
10. ENTRY STAIRWELL TO CABLE TUNNEL, ABOUT THREE QUARTERS THE ...
10. ENTRY STAIRWELL TO CABLE TUNNEL, ABOUT THREE QUARTERS THE DISTANCE TO THE SLED LAUNCHING PAD FROM THE FIRING CONTROL BLOCKHOUSE 0545. Looking west northwest. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
2009-07-01
Breaks in the internal wires of reusable electrosurgical active electrode cables can increase the risk of injuries and surgical fires. Careful visual and manual inspection during reprocessing and immediately before use, coupled with periodic replacement, can help limit the risk.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs between...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs between...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs between...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs between...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs between...
Fire-protection research for energy technology: Fy 80 year end report
NASA Astrophysics Data System (ADS)
Hasegawa, H. K.; Alvares, N. J.; Lipska, A. E.; Ford, H.; Priante, S.; Beason, D. G.
1981-05-01
This continuing research program was initiated in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-free analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate model and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.
Fire/burn risk with electrosurgical devices and endoscopy fiberoptic cables.
Smith, Lee P; Roy, Soham
2008-01-01
The purpose of the study was to systematically explore the fire and burn risk associated with fiberoptic cables and electrosurgical devices. A 300-W light source was connected to a standard gray fiberoptic light cable. The end of the cable was either rested atop or buried within a cotton towel or polypropylene drape in the presence or absence of 100% oxygen for up to 10 minutes. A monopolar electrosurgical device set at 1 W, 10 W, or 30 W was tested on a cotton towel or polypropylene drape for a period of 30 seconds. All trials were repeated. Resting the light cable on top of the cotton towel or polypropylene drape with or without oxygen produced no result. Burying the end of the cable within the drape produced a hole in the drape within 15 seconds both with and without oxygen. Burying the end of the cable within the cotton towel produced a yellow discoloration after 2 minutes both with and without oxygen. The monopolar electrosurgical device set at 30 W burned immediately through the polypropylene drape, producing a skin burn. All other trials with monopolar electrocautery produced no result. No flame or fire was produced in any trial. Fiberoptic cables and electrosurgical generators represent a serious burn risk for surgical patients, with operating room drapes and towels affording only limited protection. Otolaryngologists should be keenly aware of the risks that these devices represent because our specialty uses them frequently.
NASA Astrophysics Data System (ADS)
Nieradzik, L. P.; Haverd, V. E.; Briggs, P.; Meyer, C. P.; Canadell, J.
2015-12-01
Fires play a major role in the carbon-cycle and the development of global vegetation, especially on the continent of Australia, where vegetation is prone to frequent fire occurences and where regional composition and stand-age distribution is regulated by fire. Furthermore, the probable changes of fire behaviour under a changing climate are still poorly understood and require further investigation.In this presentation we introduce the fire-model BLAZE (BLAZe induced land-atmosphere flux Estimator), designed for a novel approach to simulate fire-frequencies, fire-intensities, fire related fluxes and the responses in vegetation. Fire frequencies are prescribed using SIMFIRE (Knorr et al., 2014) or GFED3 (e.g. Giglio et al., 2013). Fire-Line-Intensity (FLI) is computed from meteorological information and fuel loads which are state variables within the C-cycle component of CABLE (Community Atmosphere-Biosphere-Land Exchange model). This FLI is used as an input to the tree-demography model POP(Population-Order-Physiology; Haverd et al., 2014). Within POP the fire-mortality depends on FLI and tree height distribution. Intensity-dependent combustion factors (CF) are then generated for and applied to live and litter carbon pools as well as the transfers from live pools to litter caused by fire. Thus, both fire and stand characteristics are taken into account which has a legacy effect on future events. Gross C-CO2 emissions from Australian wild fires are larger than Australian territorial fossil fuel emissions. However, the net effect of fire on the Australian terrestrial carbon budget is unknown. We address this by applying the newly-developed fire module, integrated within the CABLE land surface model, and optimised for the Australian region, to a reassessment of the Australian Terrestrial Carbon Budget.
Limitations imposed on fire PRA methods as the result of incomplete and uncertain fire event data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowlen, Steven Patrick; Hyslop, J. S.
2010-04-01
Fire probabilistic risk assessment (PRA) methods utilize data and insights gained from actual fire events in a variety of ways. For example, fire occurrence frequencies, manual fire fighting effectiveness and timing, and the distribution of fire events by fire source and plant location are all based directly on the historical experience base. Other factors are either derived indirectly or supported qualitatively based on insights from the event data. These factors include the general nature and intensity of plant fires, insights into operator performance, and insights into fire growth and damage behaviors. This paper will discuss the potential methodology improvements thatmore » could be realized if more complete fire event reporting information were available. Areas that could benefit from more complete event reporting that will be discussed in the paper include fire event frequency analysis, analysis of fire detection and suppression system performance including incipient detection systems, analysis of manual fire fighting performance, treatment of fire growth from incipient stages to fully-involved fires, operator response to fire events, the impact of smoke on plant operations and equipment, and the impact of fire-induced cable failures on plant electrical circuits.« less
77 FR 35306 - Airworthiness Directives; Bell Helicopter Textron, Inc. Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-13
... assemblies (power cable assemblies). This proposed AD is prompted by the determination that the power cable assembly connector (connector) can deteriorate, causing a short in the connector that may lead to a fire. This AD would require replacing the power cable assemblies and their associated parts, and performing...
Cable Television and Public Safety.
ERIC Educational Resources Information Center
Cranberg, Gilbert
One of the most promising applications of cable television (CATV) is municipal surveillance of public areas for protection against crime, fire detection, control of air pollution, and traffic. Thus far, however, the CATV industry has made minimal efforts to realize the potential of CATV for community protection--the use of cable for public safety…
High-acceleration cable deployment
NASA Technical Reports Server (NTRS)
Barns, C. E.; Canning, T. N.; Gin, B.; King, R. W.; Murphy, J. P.
1980-01-01
Prototype high-acceleration umbilical-cable deployment allows electrical communication between above-ground instrumentation and ballistic projectile below surface. Cable deployment is made up of forebody and afterbody. Foreboy can be separated from afterbody by rocket, or they can be fired as unit at target that stops afterbody on impact (forebody would continue, deploying cable). Similar design could be used in study of sea ice and in other surface-penetration studies.
NASA Technical Reports Server (NTRS)
Sovie, Amy L.
1992-01-01
A demonstration of the ability of an existing optical fiber cable to survive the harsh environment of a rocket engine was performed at the NASA Lewis Research Center. The intent of this demonstration was to prove the feasibility of applying fiber optic technology to rocket engine instrumentation systems. Extreme thermal transient tests were achieved by wrapping a high temperature optical fiber, which was cablized for mechanical robustness, around the combustion chamber outside wall of a 1500 lb Hydrogen-Oxygen rocket engine. Additionally, the fiber was wrapped around coolant inlet pipes which were subject to near liquid hydrogen temperatures. Light from an LED was sent through the multimode fiber, and output power was monitored as a function of time while the engine was fired. The fiber showed no mechanical damage after 419 firings during which it was subject to transients from 30 K to 350 K, and total exposure time to near liquid hydrogen temperatures in excess of 990 seconds. These extreme temperatures did cause attenuation greater than 3 dB, but the signal was fully recovered at room temperature. This experiment demonstrates that commercially available optical fiber cables can survive the environment seen by a typical rocket engine instrumentation system, and disclose a temperature-dependent attenuation observed during exposure to near liquid hydrogen temperatures.
Manned spacecraft electrical fire safety
NASA Technical Reports Server (NTRS)
Wardell, A. W.
1971-01-01
The fire hazards created in spacecraft compartments by malfunction of electrical wiring are described. The tests for electrical wire/cable current overload flammability are presented. The application of electrical and material technologies to the reduction of fire hazards in spacecraft are examined.
Characteristic Analysis of Air-gun Source Wavelet based on the Vertical Cable Data
NASA Astrophysics Data System (ADS)
Xing, L.
2016-12-01
Air guns are important sources for marine seismic exploration. Far-field wavelets of air gun arrays, as a necessary parameter for pre-stack processing and source models, plays an important role during marine seismic data processing and interpretation. When an air gun fires, it generates a series of air bubbles. Similar to onshore seismic exploration, the water forms a plastic fluid near the bubble; the farther the air gun is located from the measurement, the more steady and more accurately represented the wavelet will be. In practice, hydrophones should be placed more than 100 m from the air gun; however, traditional seismic cables cannot meet this requirement. On the other hand, vertical cables provide a viable solution to this problem. This study uses a vertical cable to receive wavelets from 38 air guns and data are collected offshore Southeast Qiong, where the water depth is over 1000 m. In this study, the wavelets measured using this technique coincide very well with the simulated wavelets and can therefore represent the real shape of the wavelets. This experiment fills a technology gap in China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grier, H.E.
1985-09-01
An automatic remote-control system armed and fired the bomb and sent out a sequence of time signals to experimental equipment on the atoll. A central station at Parry Island sent signals via submarine cables to a timer station on a shot island. The timer station controlled signals to the zero station and to experiments on the island, and through auxiliary stations, it also controlled signal distribution on adjacent islands. Light-sensitive triggering units for apparatus and for accurate standard zero-time reference were provided in the form of Blue Boxes, or fiducial markers.
Spacecraft Fire Safety: A Human Space Flight Program Perspective
NASA Technical Reports Server (NTRS)
Pedley, Michael D.
2003-01-01
This paper presents viewgraphs on the International Space Station's fire safety program from a human space flight perspective. The topics include: 1) Typical Manned Spacecraft Materials; 2) Typical Flammable Hardware Protection; 3) Materials Flammability; 4) Fire Retardants; 5) Nonflammable Foam Cushion Material; 6) Electrical Wire and Cable; 7) Russian Solid-Fuel Oxygen Generator (SFOG); 8) GOX Ignition Mechanisms; 9) Fire Detection; and 10) Fire Suppression.
10 CFR 50.48 - Fire protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... from the date it was superseded. (4) Each applicant for a design approval, design certification, or... design features for the standard plant necessary to demonstrate compliance with Criterion 3 of appendix A.... (v) Existing cables. In lieu of installing cables meeting flame propagation tests as required by...
12. DETAIL, ENTRY STAIRWELL TO CABLE TUNNEL, LAUNCHING PAD IN ...
12. DETAIL, ENTRY STAIRWELL TO CABLE TUNNEL, LAUNCHING PAD IN THE LEFT DISTANCE, TRACKSIDE CAMERA STAND AT TOP CENTER. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
Material Selection for Cable Gland to Improved Reliability of the High-hazard Industries
NASA Astrophysics Data System (ADS)
Vashchuk, S. P.; Slobodyan, S. M.; Deeva, V. S.; Vashchuk, D. S.
2018-01-01
The sealed cable glands (SCG) are available to ensure safest connection sheathed single wire for the hazard production facility (nuclear power plant and others) the same as pilot cable, control cables, radio-frequency cables et al. In this paper, we investigate the specifics of the material selection of SCG with the express aim of hazardous man-made facility. We discuss the safe working conditions for cable glands. The research indicates the sintering powdered metals cables provide the reliability growth due to their properties. A number of studies have demonstrated the verification of material selection. On the face of it, we make findings indicating that double glazed sealed units could enhance reliability. We had evaluated sample reliability under fire conditions, seismic load, and pressure containment failure. We used the samples mineral insulated thermocouple cable.
77 FR 76542 - Millstone Power Station, Unit 2; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-28
... cable insulation and limited floor based combustibles. The licensee also stated that two of the fire... are provided with ionization smoke detectors. The licensee stated that the smoke and heat detection... combustible loading that predominantly consists of cable insulation and that potential ignition sources for...
30 CFR 57.4057 - Underground trailing cables.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground trailing cables. 57.4057 Section 57.4057 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention...
Comparison of Available Technologies for Fire Spots Detection via Linear Heat Detector
NASA Astrophysics Data System (ADS)
Miksa, František; Nemlaha, Eduard
2016-12-01
It is very demanding to detect fire spots under difficult conditions with high occurrence of interfering external factors such as large distances, airflow difficultly, high dustiness, high humidity, etc. Spot fire sensors do not meet the requirements due to the aforementioned conditions as well as large distances. Therefore, the detection of a fire spot via linear heat sensing cables is utilized.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-07
... steel, fire and water resistant storage chests, gun safes, security safes, portable security safes, cash..., touchpads, plastic gun racks, keypad assemblies, panel lock assemblies, door backs, plastic trays, drawers..., wood gun shelf racks, cable assemblies, communication cables, gasket kits, door springs, metal handles...
11. ENTRY STAIRWELL TO CABLE TUNNEL. REMAINS OF ELECTRICAL DISTRIBUTION ...
11. ENTRY STAIRWELL TO CABLE TUNNEL. REMAINS OF ELECTRICAL DISTRIBUTION STATIONS AT LEFT, TRACKSIDE CAMERA STAND AT FAR RIGHT. Looking northeast toward launch pad. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements of §§ 75.1107-3 through 75.1107-16. (3) Unattended enclosed motors, controls, transformers... surface, platform, or equivalent. The electrical cables at such equipment shall conform with the...
The Coast Artillery Journal. Volume 58, Number 2, February 1923
1923-02-01
firing mechanism block with a fresh primer in place. No.5 acted as a powder runner between the powder pit and No.2. Nos. 6 and 7 carried the loading...obstruct these routes. Xumerous passive obstructions have been conceived: metallic cables raised and maintained in the air by kites ; cables shot into the
46 CFR 28.865 - Wiring methods and materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Wiring methods and materials. 28.865 Section 28.865... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.865 Wiring methods and materials. (a) All cable... terminals is not more than 10 percent. (c) Cable and wiring not serving equipment in high risk fire areas...
Code of Federal Regulations, 2013 CFR
2013-07-01
... circuit used to fire one or more electric blasting caps. Blasting switch means a switch used to connect a... circuit is carried to one or more cables from a single incoming feed line, each cable circuit being... or salary in the service of an employer. Employer means a person or organization which hires one or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... circuit used to fire one or more electric blasting caps. Blasting switch means a switch used to connect a... circuit is carried to one or more cables from a single incoming feed line, each cable circuit being... or salary in the service of an employer. Employer means a person or organization which hires one or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... circuit used to fire one or more electric blasting caps. Blasting switch means a switch used to connect a... circuit is carried to one or more cables from a single incoming feed line, each cable circuit being... or salary in the service of an employer. Employer means a person or organization which hires one or...
FireWire: Hot New Multimedia Interface or Flash in the Pan?
ERIC Educational Resources Information Center
Learn, Larry L., Ed.
1995-01-01
Examines potential solutions to the problem of personal computer cabling and configuration and serial port performance, namely "FireWire" (P1394) and "Universal Serial Bus" (USB). Discusses interface design, technical capabilities, user friendliness, compatibility, costs, and future perspectives. (AEF)
Flammability control for electrical cables and connectors
NASA Technical Reports Server (NTRS)
Wick, W. O.; Buckey, D. L.
1973-01-01
Technique of covering fire-hazardous sections of electrical wiring with fireproof materials prevents fires from spreading in oxygen-enriched atmospheres and eliminates use of heavy metal enclosures. Materials used to cover potting on connectors and ground terminals are made from Teflon-coated Beta cloth and Fluorel, a nonflammable fully-saturated polymer.
75 FR 5690 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A. Model P-180 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-04
... operator reported a short circuit between a generator power cable and an anti-ice shutoff valve, which was... the damage. If left uncorrected, this situation could lead to short circuits with possible fire and/or... products. The MCAI states: An operator reported a short circuit between a generator power cable and an anti...
Smoke from Fires in Southwestern Oregon, Northern California
2017-12-08
This satellite image shows smoke from several fires in Oregon and California on Aug. 2, 2015. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument that flies aboard NASA's Aqua satellite captured an image of smoke from these fires Aug. 2 at 21:05 UTC (5:05 p.m. EDT). The multiple red pixels are heat signatures detected by MODIS. The smoke appears to be a light brown color. InciWeb is an interagency all-risk incident information management system that coordinates with federal, state and local agencies to manage wildfires. In Oregon smoke from the Cable Crossing Fire, the Stouts Fire and the Potter Mountain Complex Fire commingle. The Cable Crossing Fire was reported burning on forestlands protected by the Douglas Forest Protective Association (DFPA) at approximately 3:25 p.m. on Tuesday, July 28, 2015, near Oregon Highway 138 East, near Mile Post 23, east of Glide. South of the Cable Crossing Fire is the Stouts Fire also in forestlands of the DFPA. This fire was reported on Thursday, July 30, 2015, burning approximately 11 miles east of Canyonville near the community of Milo. East of the other fires is the Potter Mountain Complex Fire. These fires are located in the Deschutes Forest consists of eight fires. According to Inciweb they were started by dry lightning on Saturday, Aug. 2, at approximately 5:30 p.m. about five miles north of Toketee Lake. In northern California, smoke from the River Complex Fire, the Fork Complex Fire and the Shf July Lightning Fire was visible in the MODIS image. The River Complex currently consists of seven reported and observed fires on the Six Rivers and Shasta Trinity National Forests. Originally identified as 18 fires, some have burned together. Inciweb noted that in the Six Rivers National Forest there are fires in the Trinity Alps Wilderness. Those fires include the Groves Fire and the Elk Fire. In the Shasta-Trinity National Forest the fires include the Happy Fire at 2,256 acres, Daily Fire at 16 acres, the Look Fire at 7 acres, Onion Fire at 136 acres and Smokey Fire at 1 acre. In the same forest, south of the River Complex is the Fork Complex fire. Inciweb reported that the Fork Complex consists of (at current count) over 40 fires, all of which were ignited by lightning between July 29 and 31, 2015. To the southwest of this complex is the Mad River Complex. This is a series of seven lightning fires that started on July 30, 2015 after a lightning storm moved through Northern California. To the east of this and the other fires, burns another near Redding, California, called the Shf July Lightning Fire. This is also under the Shasta-Trinity National Forest management. At 8 p.m. PDT on Aug. 2, Inciweb reported that approximately 15 lightning strikes occurred within 24 hours throughout the Shasta Trinity National Forest and resulted in two new fires. The Caves fire, east of Mt. Shasta, is approximately one-tenth of an acre. The Bluejay fire, east of Shasta Lake, is approximately four acres. Image credit: NASA Goddard's MODIS Rapid Response Team, Jeff Schmaltz NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Filipchuk, D. V.; Litvinov, A. V.; Etrekova, M. O.; Nozdrya, D. A.
2017-12-01
Sensitivity of the MIS-sensor to products of thermal decomposition of insulation and jacket of the most common types of cables is investigated. It is shown that hydrogen is evolved under heating the insulation to temperatures not exceeding 250 °C. Registration of the evolved hydrogen by the MIS-sensor can be used for detection of fires at an early stage.
46 CFR 111.60-17 - Connections and terminations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... general, connections and terminations to all conductors must retain the original electrical, mechanical, flame-retarding, and, where necessary, fire-resisting properties of the cable. All connecting devices...
46 CFR 111.60-17 - Connections and terminations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... general, connections and terminations to all conductors must retain the original electrical, mechanical, flame-retarding, and, where necessary, fire-resisting properties of the cable. All connecting devices...
The EX-SHADWELL-Full Scale Fire Research and Test Ship
1988-01-20
If shipboard testing is necessary after the large scale land tests at China Lake, the EX-SHADWELL has a helo pad and well deck available which makes...8217 *,~. *c ’q.. ~ I b. Data acquistion system started. c. Fire started d. Data is recorded until all fire activity has ceased. 3.0 THE TEST AREA 3.1 Test...timing clocks will be started at the instant the fuel is lighted. That instant will be time zero . The time the cables become involved will be recorded
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
... that the fire loading in this area is low and that fixed combustibles consist of cable insulation... reactor coolant system decay heat removal when the normal feedwater system is not available, such as... coolant system heat removal function and that the III.G.2 exemption for Fire Zone 23 remains valid. 3.2...
Apollo 17 Lunar Surface Experiment equipment
1972-11-30
S72-37259 (November 1972) --- The Geophone Module and Cable Reels of the Lunar Seismic Profiling Experiment (S-203), a component of the Apollo Lunar Surface Experiments Package which will be carried on the Apollo 17 lunar landing mission. LSPE components are four geophones similar to those used in an earlier active seismic experiment, an electronics package in the ALSEP central station, and eight explosive packages which will be deployed during the geology traverse. The four geophones will be placed one in the center and one at each corner of a 90-meter equilateral triangle. Explosive charges placed on the surface will generate seismic waves of varying strengths to provide data on the structural profile of the landing site. After the charges have been fired by ground command, the experiment will settle down into a passive listening mode, detecting moonquakes, meteorite impacts and the thump caused by the Lunar Module ascent stage impact.
Riisager, Anders; Duehmke, Rudy; Nielsen, Ole Bækgaard; Huang, Christopher L; Pedersen, Thomas Holm
2014-10-15
Recent studies in rat muscle fibres show that repetitive firing of action potentials causes changes in fibre resting membrane conductance (Gm) that reflect regulation of ClC-1 Cl(-) and KATP K(+) ion channels. Methodologically, these findings were obtained by inserting two microelectrodes at close proximity in the same fibres enabling measurements of fibre input resistance (Rin) in between action potential trains. Since the fibre length constant (λ) could not be determined, however, the calculation of Gm relied on the assumptions that the specific cytosolic resistivity (Ri) and muscle fibre volume remained constant during the repeated action potential firing. Here we present a three-microelectrode technique that enables determinations of multiple cable parameters in action potential-firing fibres including Rin and λ as well as waveform and conduction velocities of fully propagating action potentials. It is shown that in both rat and mouse extensor digitorum longus (EDL) fibres, action potential firing leads to substantial changes in both muscle fibre volume and Ri. The analysis also showed, however, that regardless of these changes, rat and mouse EDL fibres both exhibited initial decreases in Gm that were eventually followed by a ∼3-fold, fully reversible increase in Gm after the firing of 1450-1800 action potentials. Using this three-electrode method we further show that the latter rise in Gm was closely associated with excitation failures and loss of action potential signal above -20 mV. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Riisager, Anders; Duehmke, Rudy; Nielsen, Ole Bækgaard; Huang, Christopher L; Pedersen, Thomas Holm
2014-01-01
Recent studies in rat muscle fibres show that repetitive firing of action potentials causes changes in fibre resting membrane conductance (Gm) that reflect regulation of ClC-1 Cl− and KATP K+ ion channels. Methodologically, these findings were obtained by inserting two microelectrodes at close proximity in the same fibres enabling measurements of fibre input resistance (Rin) in between action potential trains. Since the fibre length constant (λ) could not be determined, however, the calculation of Gm relied on the assumptions that the specific cytosolic resistivity (Ri) and muscle fibre volume remained constant during the repeated action potential firing. Here we present a three-microelectrode technique that enables determinations of multiple cable parameters in action potential-firing fibres including Rin and λ as well as waveform and conduction velocities of fully propagating action potentials. It is shown that in both rat and mouse extensor digitorum longus (EDL) fibres, action potential firing leads to substantial changes in both muscle fibre volume and Ri. The analysis also showed, however, that regardless of these changes, rat and mouse EDL fibres both exhibited initial decreases in Gm that were eventually followed by a ∼3-fold, fully reversible increase in Gm after the firing of 1450–1800 action potentials. Using this three-electrode method we further show that the latter rise in Gm was closely associated with excitation failures and loss of action potential signal above −20 mV. PMID:25128573
Study on Elastic Helical TDR Sensing Cable for Distributed Deformation Detection
Tong, Renyuan; Li, Ming; Li, Qing
2012-01-01
In order to detect distributed ground surface deformation, an elastic helical structure Time Domain Reflectometry (TDR) sensing cable is shown in this paper. This special sensing cable consists of three parts: a silicone rubber rope in the center; a couple of parallel wires coiling around the rope; a silicone rubber pipe covering the sensing cable. By analyzing the relationship between the impedance and the structure of the sensing cable, the impedance model shows that the sensing cable impedance will increase when the cable is stretched. This specific characteristic is verified in the cable stretching experiment which is the base of TDR sensing technology. The TDR experiment shows that a positive reflected signal is created at the stretching deformation point on the sensing cable. The results show that the deformation section length and the stretching elongation will both affect the amplitude of the reflected signal. Finally, the deformation locating experiments show that the sensing cable can accurately detect the deformation point position on the sensing cable. PMID:23012560
78 FR 79338 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
...We propose to adopt a new airworthiness directive (AD) for certain Bombardier, Inc. Model DHC-8-400 series airplanes. This proposed AD was prompted by reports of missing clamps that are required to provide positive separation between the alternating current (AC) feeder cables and the hydraulic line of the landing gear alternate extension. This proposed AD would require inspecting for missing clamps, and related investigative and corrective actions if necessary. We are proposing this AD to detect and correct chafing of the AC feeder cable. A chafed and arcing AC feeder cable could puncture the adjacent hydraulic line, which, in combination with the use of the alternate extension system, could result in an in-flight fire.
QM-8 field joint protection system, volume 7
NASA Technical Reports Server (NTRS)
Hale, Elgie
1989-01-01
The pre-launch functioning data of the Field Joint Protection System (JPS) used on QM-8 are presented. Also included is the post fire condition of the JPS components following the test firing of the motor. The JPS components are: field joint heaters; field joint sensors; field joint moisture seal; moisture seal kevlar retaining straps; field joint external extruded cork insulation; vent valve; power cables; and igniter heater.
46 CFR 28.370 - Wiring methods and materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Boat or UL Marine Shipboard cable; or (iii) Meet 46 CFR part 111, subpart 111.60. (e) All metallic... enclosure such as a junction box, fixture enclosure, or panel enclosure. A fire retardant plastic enclosure...
2006-10-10
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - Don Bowling (l) attaching firing cable to breeth cap as Don Holt (r) looks on
2014-04-03
CAPE CANAVERAL, Fla. – The Mobile Launcher is visible through a window inside Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida. The Ground Systems Development and Operations Program is overseeing efforts to create a new multi-user firing room in Firing Room 4. The main floor consoles, cabling and wires below the floor and ceiling tiles above have been removed. Sub-flooring has been installed and the room is marked off to create four separate rooms on the main floor. The design of Firing Room 4 will incorporate five control room areas that are flexible to meet current and future NASA and commercial user requirements. The equipment and most of the consoles from Firing Room 4 were moved to Firing Room 2 for possible future reuse. Photo credit: NASA/Ben Smegelsky
2014-04-03
CAPE CANAVERAL, Fla. – The Ground Systems Development and Operations Program is overseeing efforts to create a new multi-user firing room in Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida. The main floor consoles, cabling and wires below the floor and ceiling tiles have been removed. Sub-flooring has been installed and the room is marked off to create four separate rooms on the main floor. The design of Firing Room 4 will incorporate five control room areas that are flexible to meet current and future NASA and commercial user requirements. The equipment and most of the consoles from Firing Room 4 were moved to Firing Room 2 for possible future reuse. Photo credit: NASA/Ben Smegelsky
2014-04-03
CAPE CANAVERAL, Fla. – Three rows of upper level management consoles are all that remain in Firing Room 4 in the Launch Control Center at NASA’s Kennedy Space Center in Florida. The main floor consoles, cabling and wires below the floor and ceiling tiles above have been removed. The Ground Systems Development and Operations Program is overseeing efforts to create a new firing room based on a multi-user concept that will support NASA and commercial launch needs. The design of Firing Room 4 will incorporate five control room areas that are flexible to meet current and future NASA and commercial user requirements. The equipment and most of the consoles from Firing Room 4 were moved to Firing Room 2 for possible future reuse. Photo credit: NASA/Ben Smegelsky
2014-04-03
CAPE CANAVERAL, Fla. – Three rows of upper level management consoles are all that remain in Firing Room 4 in the Launch Control Center at NASA’s Kennedy Space Center in Florida. The main floor consoles, cabling and wires below the floor and ceiling tiles above have been removed. The Ground Systems Development and Operations Program is overseeing efforts to create a new firing room based on a multi-user concept that will support NASA and commercial launch needs. The design of Firing Room 4 will incorporate five control room areas that are flexible to meet current and future NASA and commercial user requirements. The equipment and most of the consoles from Firing Room 4 were moved to Firing Room 2 for possible future reuse. Photo credit: NASA/Ben Smegelsky
Reversible, high-voltage square-wave pulse generator for triggering spark gaps.
Robledo-Martinez, A; Vega, R; Cuellar, L E; Ruiz-Meza, A; Guzmán, E
2007-05-01
A design is presented for a reversible, square-pulse generator that employs coaxial cables for charge storage and pulse formation and a thyratron as the switch. The generator has a nominal output voltage of 5-30 kV and a pulse duration determined by the cable's physical length. Two variations are presented: (1) a single-stage one consisting of cable that is charged via its shield on one end and discharged with a thyratron on the opposite end and (2) a two-stage one having an inverting circuit that uses a coaxial cable to reverse the polarity of the pulse. The generator operates with "flying shields," i.e., high-voltage pulses also propagate on the outside of the cables; this calls for a dedicated insulation that avoids breakdown between sections of the cable's shield. The rise time obtained is mostly dictated by the switching time of the thyratron; with the one we used in the tests, rise times in the range of 30-40 ns were obtained. We present the results obtained in the implementation of the generators as well as its application to fire a large Marx generator.
Fire retardancy using applied materials
NASA Technical Reports Server (NTRS)
Feldman, R.
1971-01-01
An example of advanced technology transfer from the Little Joe, Surveyor, Comsat, re-entry and Apollo age to everyday fire protection needs is presented. Utilizing the principle of sublimation cooling for thermostatic temperature control, the material meets a wide range of fire retardancy and heat transmission control requirements. Properties vary from flexible tape for conduits and electrical cables to rigid coatings for column protection, with a broad spectrum of sublimation temperatures available. The material can be applied in the field or in the factory, utilizing mass production techniques, yielding a product that is reliable, effective, widely available and low in cost.
2014-04-03
CAPE CANAVERAL, Fla. – The Ground Systems Development and Operations Program is overseeing efforts to create a new multi-user firing room in Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida. The main floor consoles, cabling and wires below the floor and ceiling tiles above have been removed. Sub-flooring has been installed and the room is marked off to create four separate rooms on the main floor. In view along the soffit are space shuttle launch plaques for 21 missions launched from Firing Room 4. The design of Firing Room 4 will incorporate five control room areas that are flexible to meet current and future NASA and commercial user requirements. The equipment and most of the consoles from Firing Room 4 were moved to Firing Room 2 for possible future reuse. Photo credit: NASA/Ben Smegelsky
2006-04-14
gasification rate is expected to be lower and this results in a shorter flame length . In the lateral direction, the copper mesh at both ends is cooled...the cylinder. The visible flame length and width are of the order of the cylinder diameter (1.9 cm) at atmospheric pressure and air velocity of 10...6a is the side-view of the self-sustaining base case flame right after ignition. It shows a long plume downstream of the cable. The total flame
Ouf, F-X; Mocho, V-M; Pontreau, S; Wang, Z; Ferry, D; Yon, J
2015-01-01
For industrial concerns, and more especially for nuclear applications, the characterization of soot is essential for predicting the behaviour of containment barriers in fire conditions. This study deals with the characterization (emission factor, composition, size, morphology, microstructure) of particles produced during thermal degradation of materials found in nuclear facilities (electrical cables, polymers, oil and solvents). Small-scale experiments have been conducted for oxygen concentrations [O2] ranging from 15% to 21% in order to imitate the oxygen depletion encountered during a confined fire. Particles denote distinct shapes, from aggregates composed of monomers with diameters ranging from 31.2 nm to 52.8 nm, to compact nanoparticles with diameters ranging from 15 nm to 400 nm, and their composition strongly depends on fuel type. Despite the organic to total carbon ratio (OC/TC), their properties are poorly influenced by the decrease in [O2]. Finally, two empirical correlations are proposed for predicting the OC/TC ratio and the monomer diameter, respectively, as a function of the fuel's carbon to hydrogen ratio and the emission factor. Copyright © 2014 Elsevier B.V. All rights reserved.
7. CONTROL AND EQUIPMENT ROOM INTERIOR. Looking to southwest corner ...
7. CONTROL AND EQUIPMENT ROOM INTERIOR. Looking to southwest corner and entrance to cable tunnel. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
NASA Astrophysics Data System (ADS)
Qin, Jinggang; Yue, Donghua; Zhang, Xingyi; Wu, Yu; Liu, Xiaochuan; Liu, Huajun; Jin, Huan; Dai, Chao; Nijhuis, Arend; Zhou, Chao; Devred, Arnaud
2018-07-01
The conductors used in large fusion reactors, e.g. ITER, CFETR and DEMO, are made of cable-in-conduit conductor (CICC) with large diameters up to about 50 mm. The superconducting and copper strands are cabled around a central spiral and then wrapped with stainless-steel tape of 0.1 mm thickness. The cable is then inserted into a jacket under tensile force that increases with the length of insertion. Because the cables are long and with a large diameter, the insertion force could reach values of about 40 kN. The large tensile force could lead to significant rotation forces. This may lead to an increase of the twist pitch, especially for the final one. Understanding the twist pitch variation is very important; in particular, the twist pitch of a cable inside a CICC strongly affects its properties, especially for Nb3Sn conductors. In this paper, a simplified numerical model was used to analyze the cable rotation, including material properties, cabling tension as well as wrap tension. Several rotation experiments with tensile force have been performed to verify the numerical results for CFETR CSMC cables. The results show that the numerical analysis is consistent with the experiments and provides the optimal cabling conditions for large superconducting cables.
NASA Astrophysics Data System (ADS)
Dobra, R.; Pasculescu, D.; Risteiu, M.; Buica, G.; Jevremović, V.
2017-06-01
This paper describe some possibilities to minimize voltages switching-off risks from the mining power networks, in case of insulated resistance faults by using a predictive diagnose method. The cables from the neutral insulated power networks (underground mining) are designed to provide a flexible electrical connection between portable or mobile equipment and a point of supply, including main feeder cable for continuous miners, pump cable, and power supply cable. An electronic protection for insulated resistance of mining power cables can be made using this predictive strategy. The main role of electronic relays for insulation resistance degradation of the electrical power cables, from neutral insulated power networks, is to provide a permanent measurement of the insulated resistance between phases and ground, in order to switch-off voltage when the resistance value is below a standard value. The automat system of protection is able to signalize the failure and the human operator will be early informed about the switch-off power and will have time to take proper measures to fix the failure. This logic for fast and automat switch-off voltage without aprioristic announcement is suitable for the electrical installations, realizing so a protection against fires and explosion. It is presented an algorithm and an anticipative relay for insulated resistance control from three-phase low voltage installations with insulated neutral connection.
NASA Astrophysics Data System (ADS)
Jaros, Jakub; Liner, Andrej; Papes, Martin; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek
2015-01-01
Nowadays, the power cables are manufactured to fulfill the following condition - the highest allowable temperature of the cable during normal operation and the maximum allowable temperature at short circuit conditions cannot exceed the condition of the maximum allowable internal temperature. The distribution of the electric current through the conductor leads to the increase of the amplitude of electrons in the crystal lattice of the cables material. The consequence of this phenomenon is the increase of friction and the increase of collisions between particles inside the material, which causes the temperature increase of the carrying elements. The temperature increase is unwanted phenomena, because it is causing losses. In extreme cases, the long-term overload leads to the cable damaging or fire. This paper deals with the temperature distribution measurement inside the power cables using distributed temperature system. With cooperation with Kabex company, the tube containing optical fibers was installed into the center of power cables. These fibers, except telecommunications purposes, can be also used as sensors in measurements carrying out with distributed temperature system. These systems use the optical fiber as a sensor and allow the continual measurement of the temperature along the whole cable in real time with spatial resolution 1 m. DTS systems are successfully deployed in temperature measurement applications in industry areas yet. These areas include construction, drainage, hot water etc. Their advantages are low cost, resistance to electromagnetic radiation and the possibility of real time monitoring at the distance of 8 km. The location of the optical fiber in the center of the power cable allows the measurement of internal distribution of the temperature during overloading the cable. This measurement method can be also used for prediction of short-circuit and its exact location.
Electrical Insulation Fire Characteristics : Volume 1. Flammability Tests.
DOT National Transportation Integrated Search
1978-12-01
In the crowded, confined environment of a rapid transit vehicle, it is essential that smoke emission from all sources be minimized. The adoption of test standards and guidelines for wire and cable used in these vehicles must be undertaken in an organ...
2012-08-27
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett
2012-08-27
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett
2012-08-27
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett
2012-08-27
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett
2012-08-27
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett
Aviation Maintenance Safety Articles, January/February 1990
1990-02-01
actually looked at the fast that you don’t know you’re response of the crew kept the deck-edge fire stations? Do tired or hurt. It wasn’t until fire...connector. Approx- tenance supervisors are caught up in administrative imately 2 inches of wire was added to the harness, tasks, and they fail to excercise ... fast -acting strain of dry rot attacked ear -ly preventable, the container within seven days prior to the accep- The proper routing for the arming cable
77 FR 43382 - Millstone Power Station, Unit 2; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-24
... sources consisting primarily of fire retardant cable insulation and limited floor based combustibles. The... smoke detectors. The licensee stated that the smoke and heat detection systems were designed and... insulation and that potential ignition sources for these areas includes electrical faults. The licensee...
USSR Report Engineering and Equipment.
1987-05-04
Korenev , et al. ; ENERGETICHESKOYE STROITELSTVO, No 7, Jul 86) 33 Improving Fire Protection of Cables in Electric Power Plants (S.Ye. Korshunov...Russian No 7, Jul 86 pp 32-33 {Article by V.D. Likhachev, candidate of technical sciences, K.I. Korenev , candidate of technical sciences, K.I. Chikvaidze
Noise from implantable Cooper cable.
Carrington, V; Zhou, L; Donaldson, N
2005-09-01
Cooper cable is made for implanted devices, usually for connection to stimulating electrodes. An experiment has been performed to see whether these cables would be satisfactory for recording electroneurogram (ENG) signals from cuffs. Four cables were subjected to continuous flexion at 2 Hz while submerged in saline. The cables were connected to a low-noise amplifier, and the noise was measured using a spectrum analyser. These cables had not fractured after 184 million flexions, and the noise in the neural band (500-5000 Hz) had not increased owing to age. Noise in the ENG band increased by less than 3 dB owing to the motion. A fifth, worn cable did fail during the experiment, the conductors becoming exposed to the saline, but this was only apparent by extra noise when the cable was in motion. After 184 million flexions, the four cables were given a more severe test: instead of being connected to the amplifier reference node, two of the four cores of each cable were connected to 18V batteries. Two of the cables were then noisier, but only when in motion, presumably because of leakage between cores. Cooper cables are excellent for transmitting neural signals alone; transmission in one cable of neural signals and power supplies should be avoided if possible.
Wildland Fire Induced Heating of Dome 375 Perma-Con®
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores, Eugene Michael
AET-1 was tasked by ADEM with determining the temperature rise in the drum contents of drums stored in the Dome 375 Perma-Con® at TA-54 given a wildland fire. The wildland fire causes radiative and convective heating on the Perma-Con® exterior. The wildland fire time histories for the radiative and convective heating environment were provided to AET-1 by EES-16. If the calculated temperature rise results in a drum content temperature over 40 °C, then ADEM desires a design solution to ensure the peak temperature remains below 40 °C. An axi-symmetric FE simulation was completed to determine the peak temperature of themore » contents of a drum stored in the Dome 375 Perma-Con® during a wildland fire event. Three wildland fire time histories for the radiative and convective heat transfer were provided by EES-16 and were inputs for the FE simulation. The maximum drum content temperature reached was found to be 110 °C while using inputs from the SiteG_2ms_4ign_wind_from_west.xlsx time history input and not including the SWB in the model. Including the SWB in the results in a peak drum content temperature of 61 °C for the SiteG_2ms_4ign_wind_from_west.xlsx inputs. EES-16 decided that by using fuel mitigation efforts, such as mowing the grass and shrubs near the Perma-Con® they could reduce the shrub/grass fuel loading near the Perma-Con® from 1.46 kg/m 2 to 0.146 kg/m 2 and by using a less conservative fuel loading for the debris field inside the Dome 375 perimeter, reducing it from 0.58 kg/m2 to 0.058 kg/m 2 in their model. They also greatly increased the resolution of their radiation model and increased the accuracy of their model’s required convergence value. Using this refined input the maximum drum content temperature was found to be 28 °C with no SWB present in the model. Additionally, this refined input model was modified to include worst case emissivity values for the concrete, drum and Perma-Con® interior, along with adding a 91 second long residual radiative heat flux of 2,000 W/m2 to the end of the refined wildland fire input. For this case the maximum drum content temperature was found to be 32 °C. For Rev. 2 of this calculation and additional simulation was run that included a cable fire heat flux on the exterior of the Perma-Con® that was calculated by FP-DO. Including the cable fire heat flux in the model without the SWB resulted in a peak drum content temperature over time of 43 °C. Including the SWB in the simulation with the cable fire heat flux resulted in a peak drum content temperature over time of 35 °C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandoval, Thomas D.; Schultz-Fellenz, Emily S.
2012-08-29
The Continuous Reflectometry for Radius vs Time Experiments (CORRTEX) diagnostic system was deployed for the third explosives test in the Source Physics Experiment (SPE) sequence to monitor and verify several conditions of the experiment including the detonation velocity of the explosive package and functioning of explosive initiators. Six distance-marked coaxial cables were installed on the SPE-III explosives canister, and key locations documented through along-cable length measurements and photography. CORRTEX uses electrical-pulse time-domain reflectometry to continuously record the two-way transit time (TWTT) of the cables. As the shock front of the detonation advances, the coaxial cable is shorted or destroyed, andmore » the resulting TWTT also decreases. Interpretation of these changes as a function of TWTT can be converted to positional measurements using known parameters of the cables.« less
Fiber optic cables for severe environment
NASA Astrophysics Data System (ADS)
Massarani, M. G.
1982-10-01
The most severe challenges to the fiber optic cable are related to nuclear weapons testing and other military applications. Nuclear experiments are conducted in deep underground holes. Cables connect the experimental device to recording stations positioned at a certain distance from ground zero. Attractive features provided by fiber optic cable technology include large cost advantages in cable purchase price, savings in handling cost due to the lighter weight, immunity to electromagnetic pulses (EMP), and the capability to transmit high data rates. Details of underground nuclear testing are discussed, taking into account the underground nuclear test environment, and questions of fiber optic cable design for the underground experiments. The use of fiber optics for the Ground Launched Cruise Missile Weapons System (GLCM) is also considered. Attention is given to the GLCM environment, and the proposed cable for GLCM application.
46 CFR 111.103-7 - Ventilation stop stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Case of Fire Break Glass and Operate Switch to Stop Ventilation;” (c) Have the “stop” position of the switch clearly identified; (d) Have a nameplate that identifies the system controlled; and (e) Be arranged so that damage to the switch or cable automatically stops the equipment controlled. ...
46 CFR 111.103-7 - Ventilation stop stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Case of Fire Break Glass and Operate Switch to Stop Ventilation;” (c) Have the “stop” position of the switch clearly identified; (d) Have a nameplate that identifies the system controlled; and (e) Be arranged so that damage to the switch or cable automatically stops the equipment controlled. ...
46 CFR 111.103-7 - Ventilation stop stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Case of Fire Break Glass and Operate Switch to Stop Ventilation;” (c) Have the “stop” position of the switch clearly identified; (d) Have a nameplate that identifies the system controlled; and (e) Be arranged so that damage to the switch or cable automatically stops the equipment controlled. ...
46 CFR 111.103-7 - Ventilation stop stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Case of Fire Break Glass and Operate Switch to Stop Ventilation;” (c) Have the “stop” position of the switch clearly identified; (d) Have a nameplate that identifies the system controlled; and (e) Be arranged so that damage to the switch or cable automatically stops the equipment controlled. ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... which is initiated by a safety fuse. Blasting circuit means the electrical circuit used to fire one or... enclosure through which an electric circuit is carried to one or more cables from a single incoming feed... organization which hires one or more persons to work for wages or salary. Emulsion means an explosive material...
Code of Federal Regulations, 2010 CFR
2010-07-01
... which is initiated by a safety fuse. Blasting circuit means the electrical circuit used to fire one or... enclosure through which an electric circuit is carried to one or more cables from a single incoming feed... organization which hires one or more persons to work for wages or salary. Emulsion means an explosive material...
Code of Federal Regulations, 2013 CFR
2013-07-01
... which is initiated by a safety fuse. Blasting circuit means the electrical circuit used to fire one or... enclosure through which an electric circuit is carried to one or more cables from a single incoming feed... organization which hires one or more persons to work for wages or salary. Emulsion means an explosive material...
13. PULL CURVE RECONSTRUCTION: Photocopy of a September 1907 photograph ...
13. PULL CURVE RECONSTRUCTION: Photocopy of a September 1907 photograph showing the reconstruction of a pull curve at Sacramento and Larkin Streets following the earthquake and fire. The tracks belong to United Railroads of San Francisco. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnetzer, G.H.; Fisher, R.J.; Dinallo, M.A.
1994-08-01
The electrical effects of lightning penetration of the outer case of a weapon on internal structures, such as a firing set housing, and on samples of a flat, flexline detonator cable have been investigated experimentally. Maximum open-circuit voltages measured on either simulated structures (126 V) or the cable (46 V) located directly behind the point of penetration were well below any level that is foreseen to create a threat to nuclear safety. On the other hand, it was found that once full burnthrough of the barrier occurred, significant fractions of the incident continuing currents coupled to both the simulated internalmore » structure (up to 300 A) or to the cable sample (69 A) when each was electrically connected internally to case ground. No occurrence was observed of the injection of large amplitude currents from return strokes occurring after barrier penetration. Under circumstances in which small volumes of trapped gases exist behind penetration sites, rapid heating of the gas by return strokes occurring after burnthrough has been shown to produced large mechanical impulses to the adjacent surfaces.« less
Mitigation of Manhole Events Caused by Secondary Cable Failure
NASA Astrophysics Data System (ADS)
Zhang, Lili
"Manhole event" refers to a range of phenomena, such as smokers, fires and explosions which occur on underground electrical infrastructure, primarily in major cities. The most common cause of manhole events is decomposition of secondary cable initiated by an electric fault. The work presented in this thesis addresses various aspects related to the evolution and mitigation of the manhole events caused by secondary cable insulation failure. Manhole events develop as a result of thermal decomposition of organic materials present in the cable duct and manholes. Polymer characterization techniques are applied to intensively study the materials properties as related to manhole events, mainly the thermal decomposition behaviors of the polymers present in the cable duct. Though evolved gas analysis, the combustible gases have been quantitatively identified. Based on analysis and knowledge of field conditions, manhole events is divided into at least two classes, those in which exothermic chemical reactions dominate and those in which electrical energy dominates. The more common form of manhole event is driven by air flow down the duct. Numerical modeling of smolder propagation in the cable duct demonstrated that limiting air flow is effective in reducing the generation rate of combustible gas, in other words, limiting manhole events to relatively minor "smokers". Besides manhole events, another by-product of secondary cable insulation breakdown is stray voltage. The danger to personnel due to stray voltage is mostly caused by the 'step potential'. The amplitude of step potential as a result of various types of insulation defects is calculated using Finite Element Analysis (FEA) program.
Using Cable Television for Library Data Transmission.
ERIC Educational Resources Information Center
Whitaker, Douglas A.
1985-01-01
Discusses information gained from a test of cable data circuits on a Geac bibliographic control system at the Wayne Oakland Library Federation (WOLF) (Michigan). Highlights include an introduction to cable, hardware profile, the WOLF experience, and key questions that will affect the future use of cable for data transmission. (EJS)
The Cable Book. Community Television for Massachusetts?
ERIC Educational Resources Information Center
Achtenberg, Ben
This manual is especially designed to inform and aid community organizations in understanding cable television and planning for the future. With the exception of the chapter on Massachusetts cable legislation, most of the book should be useful to community organizations anywhere. At the beginning, the history and experience of cable television in…
CNN Newsroom Classroom Guides, July 2002.
ERIC Educational Resources Information Center
Turner Learning, Inc., Atlanta, GA.
These classroom guides, designed to accompany the daily CNN (Cable News Network) Newsroom broadcasts for the month of July 2002, provide program rundowns, suggestions for class activities and discussion, student handouts, and a list of related news terms. Lead stories include: authorities arrest a man accused of starting the Rodeo fire in Arizona,…
NASA Astrophysics Data System (ADS)
Chen, Yanhao; Lu, Qi; Jing, Bo; Zhang, Zhiyi
2016-09-01
This paper addresses dynamic modelling and experiments on a passive vibration isolator for application in the space environment. The isolator is composed of a pretensioned plane cable net structure and a fluid damper in parallel. Firstly, the frequency response function (FRF) of a single cable is analysed according to the string theory, and the FRF synthesis method is adopted to establish a dynamic model of the plane cable net structure. Secondly, the equivalent damping coefficient of the fluid damper is analysed. Thirdly, experiments are carried out to compare the plane cable net structure, the fluid damper and the vibration isolator formed by the net and the damper, respectively. It is shown that the plane cable net structure can achieve substantial vibration attenuation but has a great amplification at its resonance frequency due to the light damping of cables. The damping effect of fluid damper is acceptable without taking the poor carrying capacity into consideration. Compared to the plane cable net structure and the fluid damper, the isolator has an acceptable resonance amplification as well as vibration attenuation.
Evaluation of bridge cables corrosion using acoustic emission technique
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Ou, Jinping
2010-04-01
Owing to the nature of the stress, corrosion of bridge cable may result in catastrophic failure of the structure. However, using electrochemical techniques isn't fully efficient for the detection and control on line of the corrosion phenomenon. A non-destructive testing method based on acoustic emission technique monitoring bridge cable corrosion was explored. The steel strands were placed at room temperature in 5% NaCl solution. Acoustic emission (AE) characteristic parameters were recorded in the whole corrosion experiment process. Based on the plot of cumulated acoustic activity, the bridge cables corrosion included three stages. It can be clearly seen that different stages have different acoustic emission signal characteristics. The AE characteristic parameters would be increased with cables corrosion development. Finally, the bridge cables corrosion experiment with different stress state and different corrosion environment was performed. The results shows that stress magnitude only affects the bridge cable failure time, however, the AE characteristic parameters value has changed a little. It was verified that AE technique can be used to detect the bridge cable early corrosion, investigating corrosion developing trend, and in monitoring and evaluating corrosion damages.
NASA Astrophysics Data System (ADS)
Stastny, Jeffrey A.; Rogers, Craig A.; Liang, Chen
1993-07-01
A parametric design model has been created to optimize the sensitivity of the sensing cable in a distributed sensing system. The system consists of electrical time domain reflectometry (ETDR) signal processing equipment and specially designed sensing cables. The ETDR equipment sends a high-frequency electric pulse (in the giga hertz range) along the sensing cable. Some portion of the electric pulse will be reflected back to the ETDR equipment as a result of the variation of the cable impedance. The electric impedance variation in the sensing cable can be related to its mechanical deformation, such as cable elongation (change in the resistance), shear deformation (change in the capacitance), corrosion of the cable or the materials around the cable (change in inductance and capacitance), etc. The time delay, amplitude, and shape of the reflected pulse provides the means to locate, determine the magnitude, and indicate the nature of the change in the electrical impedance, which is then related to the distributed structural deformation. The sensing cables are an essential part of the health-monitoring system. By using the parametric design model, the optimum cable parameters can be determined for specific deformation. Proof-of-concept experiments also are presented in the paper to demonstrate the utility of an electrical TDR system in distributed sensing applications.
Fast Pulses in a Coaxial Cable.
ERIC Educational Resources Information Center
Gray, Levi
1985-01-01
Describes an experiment designed to introduce physics majors to the triggered oscilloscope. The experiment uses an inexpensive, easily constructed generator which sends pulses down a long coaxial cable, thus providing useful waveforms. (DH)
Power saver circuit for audio/visual signal unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Right, R. W.
1985-02-12
A combined audio and visual signal unit with the audio and visual components actuated alternately and powered over a single cable pair in such a manner that only one of the audio and visual components is drawing power from the power supply at any given instant. Thus, the power supply is never called upon to provide more energy than that drawn by the one of the components having the greater power requirement. This is particularly advantageous when several combined audio and visual signal units are coupled in parallel on one cable pair. Typically, the signal unit may comprise a hornmore » and a strobe light for a fire alarm signalling system.« less
Application of the NUREG/CR-6850 EPRI/NRC Fire PRA Methodology to a DOE Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom Elicson; Bentley Harwood; Richard Yorg
2011-03-01
The application NUREG/CR-6850 EPRI/NRC fire PRA methodology to DOE facility presented several challenges. This paper documents the process and discusses several insights gained during development of the fire PRA. A brief review of the tasks performed is provided with particular focus on the following: • Tasks 5 and 14: Fire-induced risk model and fire risk quantification. A key lesson learned was to begin model development and quantification as early as possible in the project using screening values and simplified modeling if necessary. • Tasks 3 and 9: Fire PRA cable selection and detailed circuit failure analysis. In retrospect, it wouldmore » have been beneficial to perform the model development and quantification in 2 phases with detailed circuit analysis applied during phase 2. This would have allowed for development of a robust model and quantification earlier in the project and would have provided insights into where to focus the detailed circuit analysis efforts. • Tasks 8 and 11: Scoping fire modeling and detailed fire modeling. More focus should be placed on detailed fire modeling and less focus on scoping fire modeling. This was the approach taken for the fire PRA. • Task 14: Fire risk quantification. Typically, multiple safe shutdown (SSD) components fail during a given fire scenario. Therefore dependent failure analysis is critical to obtaining a meaningful fire risk quantification. Dependent failure analysis for the fire PRA presented several challenges which will be discussed in the full paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nacht, S.
1999-08-01
The Mercury Fire Training Pit is a former fire training area located in Area 23 of the Nevada Test Site (NTS). The Mercury Fire Training Pit was used from approximately 1965 to the early 1990s to train fire-fighting personnel at the NTS, and encompasses an area approximately 107 meters (m) (350 feet [ft]) by 137 m (450 ft). The Mercury Fire Training Pit formerly included a bermed burn pit with four small burn tanks, four large above ground storage tanks an overturned bus, a telephone pole storage area, and areas for burning sheds, pallets, and cables. Closure activities will includemore » excavation of the impacted soil in the aboveground storage tank and burn pit areas to a depth of 1.5 m (5 ft), and excavation of the impacted surface soil downgradient of the former ASTs and burnpit areas to a depth of 0.3 m (1 ft). Excavated soil will be disposed in the Area 6 Hydrocarbon Landfill at the NTS.« less
76 FR 19488 - Exelon Generation Company, LLC, Oyster Creek Nuclear Generating Station; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-07
... fuel sources consisting primarily of cable insulation and limited floor based combustibles except areas... heat or smoke that may be produced during a fire event. Additionally, the main combustible in this area... the area is open to the atmosphere with no walls or ceiling to contain the heat or smoke that may be...
30 CFR 75.1107-6 - Capacity of fire suppression devices; location and direction of nozzles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... withstand rough usage and vibration when installed on mining equipment. (b) The extinguishant-discharge... electrical cables on the equipment which are subject to flexing or to external damage; and (2) All hydraulic components on the equipment which are exposed directly to or located in the immediate vicinity of electrical...
Infrared glass fiber cables for CO laser medical applications
NASA Astrophysics Data System (ADS)
Arai, Tsunenori; Mizuno, Kyoichi; Sensaki, Koji; Kikuchi, Makoto; Watanabe, Tamishige; Utsumi, Atsushi; Takeuchi, Kiyoshi; Akai, Yoshiro
1993-05-01
We developed the medical fiber cables which were designed for CO laser therapy, i.e., angioplasty and endoscopic therapy. As-S chalcogenide glass fibers were used for CO laser delivery. A 230 micrometers core-diameter fiber was used for the angioplasty laser cable. The outer diameter of this cable was 600 micrometers . The total length and insertion length of the angioplasty laser cable were 2.5 m and 1.0 m, respectively. Typically, 2.0 W of fiber output was used in the animal experiment in vivo for the ablation of the model plaque which consisted of human atheromatous aorta wall. The transmission of the angioplasty laser cable was approximately 35%, because the reflection loss occurred at both ends of the fiber and window. Meanwhile, the core diameter of the energy delivery fiber for the endoscopic therapy was 450 micrometers . The outer diameter of this cable was 1.7 mm. Approximately 4.5 W of fiber output was used for clinical treatment of pneumothorax through a pneumoscope. Both types of the cables had the ultra-thin thermocouples for temperature monitoring at the tip of the cables. This temperature monitoring was extremely useful to prevent the thermal destruction of the fiber tip. Moreover, the As-S glass fibers were completely sealed by the CaF2 windows and outer tubes. Therefore, these cables were considered to have sufficient safety properties for medical applications. These laser cables were successfully used for the in vivo animal experiments and/or actual clinical therapies.
NASA Astrophysics Data System (ADS)
Andre, Julia; Kiremidjian, Anne; Liao, Yizheng; Georgakis, Christos; Rajagopal, Ram
2016-04-01
Ice accretion on cables of bridge structures poses serious risk to the structure as well as to vehicular traffic when the ice falls onto the road. Detection of ice formation, quantification of the amount of ice accumulated, and prediction of icefalls will increase the safety and serviceability of the structure. In this paper, an ice accretion detection algorithm is presented based on the Continuous Wavelet Transform (CWT). In the proposed algorithm, the acceleration signals obtained from bridge cables are transformed using wavelet method. The damage sensitive features (DSFs) are defined as a function of the wavelet energy at specific wavelet scales. It is found that as ice accretes on the cables, the mass of cable increases, thus changing the wavelet energies. Hence, the DSFs can be used to track the change of cables mass. To validate the proposed algorithm, we use the data collected from a laboratory experiment conducted at the Technical University of Denmark (DTU). In this experiment, a cable was placed in a wind tunnel as ice volume grew progressively. Several accelerometers were installed at various locations along the testing cable to collect vibration signals.
Detection of Local Temperature Change on HTS Cables via Time-Frequency Domain Reflectometry
NASA Astrophysics Data System (ADS)
Bang, Su Sik; Lee, Geon Seok; Kwon, Gu-Young; Lee, Yeong Ho; Ji, Gyeong Hwan; Sohn, Songho; Park, Kijun; Shin, Yong-June
2017-07-01
High temperature superconducting (HTS) cables are drawing attention as transmission and distribution cables in future grid, and related researches on HTS cables have been conducted actively. As HTS cables have come to the demonstration stage, failures of cooling systems inducing quench phenomenon of the HTS cables have become significant. Several diagnosis of the HTS cables have been developed but there are still some limitations of the experimental setup. In this paper, a non-destructive diagnostic technique for the detection of the local temperature change point is proposed. Also, a simulation model of HTS cables with a local temperature change point is suggested to verify the proposed diagnosis. The performance of the diagnosis is checked by comparative analysis between the proposed simulation results and experiment results of a real-world HTS cable. It is expected that the suggested simulation model and diagnosis will contribute to the commercialization of HTS cables in the power grid.
A deep towed explosive source for seismic experiments on the ocean floor
NASA Astrophysics Data System (ADS)
Koelsch, Donald E.; Witzell, Warren E.; Broda, James E.; Wooding, Frank B.; Purdy, G. M.
1986-12-01
A new seismic source for carrying out high resolution measurements of deep ocean crustal structure has been constructed and successfully used in a number of ocean bottom refraction experiments on the Mid Atlantic Ridge near 23° N. The source is towed within 100 m of the ocean floor on a conventional 0.68″ coaxial cable and is capable of firing, upon command from the research vessel, up to 48 individual 2.3 kg explosive charges. The explosive used was commercially available Penta-Erythritol-Tetra Nitrate (PETN) that was activated by 14.9 gm m-1 Primacord and DuPont E-97 electrical detonators. For safety reasons each detonator was fitted with a pressure switch that maintained a short until the source was at depth in excess of approximately 300 m. In addition, a mechanical protector isolated the detonator from the main charge and was only removed by the physical release of the explosive from the source package. These and other safety precautions resulted in several misfires but three experiments were successfully completed during the summer of 1985 at source depths of 3000 4000 m.
Automatic insulation resistance testing apparatus
Wyant, Francis J.; Nowlen, Steven P.; Luker, Spencer M.
2005-06-14
An apparatus and method for automatic measurement of insulation resistances of a multi-conductor cable. In one embodiment of the invention, the apparatus comprises a power supply source, an input measuring means, an output measuring means, a plurality of input relay controlled contacts, a plurality of output relay controlled contacts, a relay controller and a computer. In another embodiment of the invention the apparatus comprises a power supply source, an input measuring means, an output measuring means, an input switching unit, an output switching unit and a control unit/data logger. Embodiments of the apparatus of the invention may also incorporate cable fire testing means. The apparatus and methods of the present invention use either voltage or current for input and output measured variables.
NASA Technical Reports Server (NTRS)
Barkhoudarian, Sarkis; Kittinger, Scott
2006-01-01
Optical spectrometry can provide means to characterize rocket engine exhaust plume impurities due to eroded materials, as well as combustion mixture ratio without any interference with plume. Fiberoptic probes and cables were designed, fabricated and installed on Space Shuttle Main Engines (SSME), allowing monitoring of the plume spectra in real time with a Commercial of the Shelf (COTS) fiberoptic spectrometer, located in a test-stand control room. The probes and the cables survived the harsh engine environments for numerous hot-fire tests. When the plume was seeded with a nickel alloy powder, the spectrometer was able to successfully detect all the metallic and OH radical spectra from 300 to 800 nanometers.
Assessing potential impacts of energized submarine power cables on crab harvests
NASA Astrophysics Data System (ADS)
Love, Milton S.; Nishimoto, Mary M.; Clark, Scott; McCrea, Merit; Bull, Ann Scarborough
2017-12-01
Offshore renewable energy facilities transmit electricity to shore through submarine power cables. Electromagnetic field emissions (EMFs) are generated from the transmission of electricity through these cables, such as the AC inter-array (between unit) and AC export (to shore) cables often used in offshore energy production. The EMF has both an electric component and a magnetic component. While sheathing can block the direct electric field, the magnetic field is not blocked. A concern raised by fishermen on the Pacific Coast of North America is that commercially important Dungeness crab (Metacarcinus magister Dana, 1852)) might not cross over an energized submarine power cable to enter a baited crab trap, thus potentially reducing their catch. The presence of operating energized cables off southern California and in Puget Sound (cables that are comparable to those within the arrays of existing offshore wind energy devices) allowed us to conduct experiments on how energized power cables might affect the harvesting of both M. magister and another commercially important crab species, Cancer productus Randall, 1839. In this study we tested the questions: 1) Is the catchability of crabs reduced if these animals must traverse an energized power cable to enter a trap and 2) if crabs preferentially do not cross an energized cable, is it the cable structure or the EMF emitted from that cable that deters crabs from crossing? In field experiments off southern California and in Puget Sound, crabs were given a choice of walking over an energized power cable to a baited trap or walking directly away from that cable to a second baited trap. Based on our research we found no evidence that the EMF emitted by energized submarine power cables influenced the catchability of these two species of commercially important crabs. In addition, there was no difference in the crabs' responses to lightly buried versus unburied cables. We did observe that, regardless of the position of the cable, Cancer productus in southern California tended to move to the west and Metacarcinus magister tended to move to the east.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-01
... hot shutdown for fire areas in which both trains of safe-shutdown cables or equipment are located in... proposed action. The staff has concluded that such actions would not adversely affect the environment. The... case. This exemption request will not have a significant effect on the environment, as the largest...
ERIC Educational Resources Information Center
New York State Education Dept. , Albany. Bureau of Mass Communications.
Included in this compendium are fifteen documents pertaining to cable television for New York State. Two of the documents deal with the relationships between school districts and the cable operators. The arrangements discussed are from the experiences of the Michigan State School System and the Pasadena, California School District. These reveal…
Cable Modems' Transmitted RF: A Study of SNR, Error Rates, Transmit Levels, and Trouble Call Metrics
ERIC Educational Resources Information Center
Tebbetts, Jo A.
2013-01-01
Hypotheses were developed and tested to measure the cable modems operational metrics response to a reconfiguration of the cable modems' transmitted RF applied to the CMTS. The purpose of this experiment was to compare two groups on the use of non-federal RF spectrum to determine if configuring the cable modems' transmitted RF from 25.2…
Cable Crosstalk Suppression with Two-Wire Voltage Feedback Method for Resistive Sensor Array
Wu, Jianfeng; He, Shangshang; Li, Jianqing; Song, Aiguo
2016-01-01
Using a long, flexible test cable connected with a one-wire voltage feedback circuit, a resistive tactile sensor in a shared row-column fashion exhibited flexibility in robotic operations but suffered from crosstalk caused by the connected cable due to its wire resistances and its contacted resistances. Firstly, we designed a new non-scanned driving-electrode (VF-NSDE) circuit using two wires for every row line and every column line to reduce the crosstalk caused by the connected cables in the circuit. Then, an equivalent resistance expression of the element being tested (EBT) for the two-wire VF-NSDE circuit was analytically derived. Following this, the one-wire VF-NSDE circuit and the two-wire VF-NSDE circuit were evaluated by simulation experiments. Finally, positive features of the proposed method were verified with the experiments of a two-wire VF-NSDE prototype circuit. The experiment results show that the two-wire VF-NSDE circuit can greatly reduce the crosstalk error caused by the cables in the 2-D networked resistive sensor array. PMID:26907279
The Selling of Cable Television 1972.
ERIC Educational Resources Information Center
National Cable Television Association, Inc., Washington, DC.
The 1972 Cable Television Marketing Workshop reviewed in depth a wide variety of marketing and public relations techniques as they pertain to cable television. The workshop was attended by representatives of commercial television systems throughout the United States; it was intended to disseminate the sales and marketing experience of those…
Production of Aluminum Stabilized Superconducting Cable for the Mu2e Transport Solenoid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombardo, Vito; Ambrosio, Giorgio; Evbota, Daniel
Here, the Fermilab Mu2e experiment, currently under construction at Fermilab, has the goal of measuring the rare process of direct muon to electron conversion in the field of a nucleus. The experiment features three large superconducting solenoids: the production solenoid (PS), the transport solenoid (TS), and the detector solenoid (DS). The TS is an “S-shaped” solenoid that sits in between the PS and the DS producing a magnetic field ranging between 2.5 and 2.0 T. This paper describes the various steps that led to the successful procurement of over 740 km of superconducting wire and 44 km of Al-stabilized Rutherfordmore » cable needed to build the 52 coils that constitute the Mu2e TS cold mass. The main cable properties and results of electrical and mechanical test campaigns are summarized and discussed. Critical current measurements of the Al-stabilized cables are presented and compared to expected critical current values as measured on extracted strands from the final cables after chemical etching of the aluminum stabilizer. A robust and reliable approach to cable welding is presented, and the effect of cable bending on the transport current is also investigated and presented.« less
Production of Aluminum Stabilized Superconducting Cable for the Mu2e Transport Solenoid
Lombardo, Vito; Ambrosio, Giorgio; Evbota, Daniel; ...
2018-01-15
Here, the Fermilab Mu2e experiment, currently under construction at Fermilab, has the goal of measuring the rare process of direct muon to electron conversion in the field of a nucleus. The experiment features three large superconducting solenoids: the production solenoid (PS), the transport solenoid (TS), and the detector solenoid (DS). The TS is an “S-shaped” solenoid that sits in between the PS and the DS producing a magnetic field ranging between 2.5 and 2.0 T. This paper describes the various steps that led to the successful procurement of over 740 km of superconducting wire and 44 km of Al-stabilized Rutherfordmore » cable needed to build the 52 coils that constitute the Mu2e TS cold mass. The main cable properties and results of electrical and mechanical test campaigns are summarized and discussed. Critical current measurements of the Al-stabilized cables are presented and compared to expected critical current values as measured on extracted strands from the final cables after chemical etching of the aluminum stabilizer. A robust and reliable approach to cable welding is presented, and the effect of cable bending on the transport current is also investigated and presented.« less
Sixty-four-Channel Inline Cable Tester
NASA Technical Reports Server (NTRS)
2008-01-01
Faults in wiring are a serious concern for the aerospace and aeronautics (commercial, military, and civil) industries. A number of accidents have occurred because faulty wiring created shorts or opens that resulted in the loss of control of the aircraft or because arcing led to fires and explosions. Some of these accidents have resulted in the massive loss of lives (such as in the TWA Flight 800 accident). Circuits on the Space Shuttle have also failed because of faulty insulation on wiring. STS-93 lost power when a primary power circuit in one engine failed and a second engine had a backup power circuit fault. Cables are usually tested on the ground after the crew reports a fault encountered during flight. Often such failures result from vibration and cannot be replicated while the aircraft is stationary. It is therefore important to monitor faults while the aircraft is in operation, when cables are more likely to fail. Work is in progress to develop a cable fault tester capable of monitoring up to 64 individual wires simultaneously. Faults can be monitored either inline or offline. In the inline mode of operation, the monitoring is performed without disturbing the normal operation of the wires under test. That is, the operations are performed unintrusively and are essentially undetectable for the test signal levels are below the noise floor. A cable can be monitored several times per second in the offline mode and once a second in the inline mode. The 64-channel inline cable tester not only detects the occurrence of a fault, but also determines the type of fault (short/open) and the location of the fault. This will enable the detection of intermittent faults that can be repaired before they become serious problems.
Susan N. Little; Roger D. Ottmar; Janet L. Ohmann
1986-01-01
Duff consumption by fire was studied on 15 cable-yarded clearcut units in western Oregon and western Washington. Equations are presented that predict duff consumption (in depth reduction and weight loss) from loading, consumption, and moisture of large fuels, and days since significant precipitation. When more than 25 days elapsed since 1.3 cm rainfall, the effect of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, T.J.; Antonescu, C.
A program to assess the impact of smoke on digital instrumentation and control (I and C) safety systems began in 1994, funded by the US Nuclear Regulatory Commission Office of Research. Digital I and C safety systems are likely replacements for today`s analog systems. The nuclear industry has little experience in qualifying digital electronics for critical systems, part of which is understanding system performance during plant fires. The results of tests evaluating the performance of digital circuits and chip technologies exposed to the various smoke and humidity conditions representative of cable fires are discussed. Tests results show that low tomore » moderate smoke densities can cause intermittent failures of digital systems. Smoke increases leakage currents between biased contacts, leading to shorts. Chips with faster switching times, and thus higher output drive currents, are less sensitive to leakage currents and thus to smoke. Contact corrosion from acidic gases in smoke and inductance of stray capacitance are less important contributors to system upset. Transmission line coupling was increased because the smoke acted as a conductive layer between the lines. Permanent circuit damage was not obvious in the 24 hr of circuit monitoring. Test results also show that polyurethane, parylene, and acrylic conformal coatings are more effective in protecting against smoke than epoxy or silicone. Common-sense mitigation measures are discussed. Unfortunately the authors are a long way from standard tests for smoke exposure that capture the variations in smoke exposure possible in an actual fire.« less
Fiber Optic Cable Assemblies for Space Flight 2: Thermal and Radiation Effects
NASA Technical Reports Server (NTRS)
Ott, Melanie N.
1998-01-01
Goddard Space Flight Center is conducting a search for space flight worthy fiber optic cable assemblies that will benefit all projects at all of the NASA centers. This paper is number two in a series of papers being issued as a result of this task to define and qualify space grade fiber optic cable assemblies. Though to qualify and use a fiber optic cable in space requires treatment of the cable assembly as a system, it is very important to understand the design and behavior of its parts. This paper addresses that need, providing information on cable components shrinkage testing and radiation testing results from recent experiments at Goddard Space Flight Center.
NASA Technical Reports Server (NTRS)
1998-01-01
On this tenth day of the STS-88 mission, the flight crew, Commander Robert D. Cabana, Pilot Frederick W. Sturckow, and Mission Specialists Nancy J. Currie, James H. Newman, Jerry L. Ross, and Sergei Krikalev are awakened by the sounds of Elvis Presley's "Hound Dog". Today's activities are devoted mostly to tasks that ready the station for future assembly work. The crew's first job is to release some cable ties on four cables connected on an earlier space walk, three located on Unity's upper mating adapter and one on its lower adapter, to relieve tension on the lines. The space walkers also will check an insulation cover on one cable connection on the lower Pressurized Mating Adapter (PMA 2) to make sure it is fully installed. Near the end of the space walk, the astronauts conduct a detailed photographic survey of the space station from top to bottom. Finally, each astronaut test fires the Simplified Aid for Extravehicular Activity Rescue (SAFER) jet backpacks they are wearing, a type of space "lifejacket," that would allow an astronaut to fly back to the station if they should ever become untethered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De-Cheng, Chen; Chung-Kung, Lo; Tsu-Jen, Lin
2004-07-01
The living fire probabilistic risk assessment (PRA) models for all three operating nuclear power plants (NPPs) in Taiwan had been established in December 2000. In that study, a scenario-based PRA approach was adopted to systematically evaluate the fire and smoke hazards and associated risks. Using these fire PRA models developed, a risk-informed application project had also been completed in December 2002 for the evaluation of cable-tray fire-barrier wrapping exemption. This paper presents a new application of the fire PRA models to fire protection issues using the fire protection significance determination process (FP SDP). The fire protection issues studied may involvemore » the selection of appropriate compensatory measures during the period when an automatic fire detection or suppression system in a safety-related fire zone becomes inoperable. The compensatory measure can either be a 24-hour fire watch or an hourly fire patrol. The living fire PRA models were used to estimate the increase in risk associated with the fire protection issue in terms of changes in core damage frequency (CDF) and large early release frequency (LERF). In compliance with SDP at-power and the acceptance guidelines specified in RG 1.174, the fire protection issues in question can be grouped into four categories; red, yellow, white and green, in accordance with the guidelines developed for FD SDP. A 24-hour fire watch is suggested only required for the yellow condition, while an hourly fire patrol may be adopted for the white condition. More limiting requirement is suggested for the red condition, but no special consideration is needed for the green condition. For the calculation of risk measures, risk impacts from any additional fire scenarios that may have been introduced, as well as more severe initiating events and fire damages that may accompany the fire protection issue should be considered carefully. Examples are presented in this paper to illustrate the evaluation process. (authors)« less
Shape adjustment optimization and experiment of cable-membrane reflectors
NASA Astrophysics Data System (ADS)
Du, Jingli; Gu, Yongzhen; Bao, Hong; Wang, Congsi; Chen, Xiaofeng
2018-05-01
Cable-membrane structures are widely employed for large space reflectors due to their lightweight, compact and easy package. In these structures, membranes are attached to cable net, serving as reflectors themselves or as supporting structures for other reflective surface. The cable length and membrane shape have to be carefully designed and fabricated to guarantee the desired reflector surface shape. However, due to inevitable error in cable length and membrane shape during the manufacture and assembly of cable-membrane reflectors, some cables have to be designed to be capable of length adjustment. By carefully adjusting the length of these cables, the degeneration in reflector shape precision due to this inevitable error can be effectively reduced. In the paper a shape adjustment algorithm for cable-membrane reflectors is proposed. Meanwhile, model updating is employed during shape adjustment to decrease the discrepancy of the numerical model with respect to the actual reflector. This discrepancy has to be considered because during attaching membranes to cable net, the accuracy of the membrane shape is hard to guarantee. Numerical examples and experimental results demonstrate the proposed method.
Simultaneous Thermal and Gamma Radiation Aging of Cable Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Leonard S.; Liu, Shuaishuai; Bowler, Nicola
Polymers used in nuclear power plant electrical cable systems experience aging and degradation over time due to environmental stress including heat and gamma irradiation. Prediction of long-term cable performance has been based on results of short-term accelerated laboratory aging studies, but questions remain regarding the correlation of accelerated aging to long-term, in-plant aging. This work seeks to increase understanding of the combined effects of heat and radiation on cable polymer material aging toward addressing these questions.
The Lister Hill National Center for Biomedical Communications.
Smith, K A
1994-09-01
On August 3, 1968, the Joint Resolution of the Congress established the program and construction of the Lister Hill National Center for Biomedical Communications. The facility dedicated in 1980 contains the latest in computer and communications technologies. The history, program requirements, construction management, and general planning are discussed including technical issues regarding cabling, systems functions, heating, ventilation, and air conditioning system (HVAC), fire suppression, research and development laboratories, among others.
Forced Forward Smoldering Experiments Aboard The Space Shuttle
NASA Technical Reports Server (NTRS)
Fernandez-Pello, A. C.; Bar-Ilan, A.; Rein, G.; Urban, D. L.; Torero, J. L.
2003-01-01
Smoldering is a basic combustion problem that presents a fire risk because it is initiated at low temperatures and because the reaction can propagate slowly in the material interior and go undetected for long periods of time. It yields a higher conversion of fuel to toxic compounds than does flaming, and may undergo a transition to flaming. To date there have been a few minor incidents of overheated and charred cables and electrical components reported on Space Shuttle flights. With the establishment of the International Space Station, and the planning of a potential manned mission to Mars, there has been an increased interest in the study of smoldering in microgravity. The Microgravity Smoldering Combustion (MSC) experiment is part of a study of the smolder characteristics of porous combustible materials in a spacecraft environment. The aim of the experiment is to provide a better fundamental understanding of the controlling mechanisms of smoldering combustion under normal- and microgravity conditions. This in turn will aid in the prevention and control of smolder originated fires, both on earth and in spacecrafts. The microgravity smoldering experiments have to be conducted in a space-based facility because smoldering is a very slow process and consequently its study in a microgravity environment requires extended periods of time. The microgravity experiments reported here were conducted aboard the Space Shuttle. The most recent tests were conducted during the STS-105 and STS-108 missions. The results of the forward smolder experiments from these flights are reported here. In forward smolder, the reaction front propagates in the same direction as the oxidizer flow. The heat released by the heterogeneous oxidation reaction is transferred ahead of the reaction heating the unreacted fuel. The resulting increase of the virgin fuel temperature leads to the onset of the smolder reaction, and propagates through the fuel. The MSC data are compared with normal gravity data to determine the effect of gravity on smolder.
Operating experience with the southwire 30-meter high-temperature superconducting power cable
NASA Astrophysics Data System (ADS)
Stovall, J. P.; Lue, J. W.; Demko, J. A.; Fisher, P. W.; Gouge, M. J.; Hawsey, R. A.; Armstrong, J. W.; Hughey, R. L.; Lindsay, D. T.; Roden, M. L.; Sinha, U. K.; Tolbert, J. C.
2002-05-01
Southwire Company is operating a high-temperature superconducting (HTS) cable system at its corporate headquarters. The 30-m long, 3-phase cable system is powering three Southwire manufacturing plants and is rated at 12.4-kV, 1250-A, 60-Hz. Cooling is provided by a pressurized liquid nitrogen system operating at 70-80 K. The cables were energized on January 5, 2000 for on-line testing and operation and in April 2000 were placed into extended service. As of June 1, 2001, the HTS cables have provided 100% of the customer load for 8000 hours. The cryogenic system has been in continuous operation since November 1999. The HTS cable system has not been the cause of any power outages to the average 20 MW industrial load served by the cable. The cable has been exposed to short-circuit currents caused by load-side faults without damage. Based upon field measurements described herein, the cable critical current-a key performance parameter-remains the same and has not been affected by the hours of real-world operation, further proving the viability of this promising technology.
Low temperature thermal conductivity of alloys used in cryogenic coaxial cables
NASA Astrophysics Data System (ADS)
Kushino, Akihiro; Kasai, Soichi
2014-03-01
We have developed thin seamless coaxial cables applied for readout in low temperature experiments below liquid helium temperature. Stainless steel employed as the center and outer electrical conductors of the coaxial cable has adequately low thermal conductivity compared to pure metals and can be used when heat penetration into low temperature stages through cables should be lowered however it has large electrical resistivity which can disturb sensitive measurements. Superconducting NbTi alloy has good performance with rather low thermal conductivity and high electrical conductivity. Meanwhile coaxial cables using normal conducting copper alloys such as cupro-nickel, brass, beryllium-copper, phosphor-bronze are advantageous with their good electrical, thermal and cost performances. We investigated thermal conductivity of such alloys after the drawing process into coaxial cables, and compared to expected values without drawing.
Safety research of insulating materials of cable for nuclear power generating station
NASA Technical Reports Server (NTRS)
Lee, C. K.; Choi, J. H.; Kong, Y. K.; Chang, H. S.
1988-01-01
The polymers PE, EPR, PVC, Neoprene, CSP, CLPE, EP and other similar substances are frequently used as insulation and protective covering for cables used in nuclear power generating stations. In order to test these materials for flame retardation, environmental resistance, and cable specifications, they were given the cable normal test, flame test, chemical tests, and subjected to design analysis and loss of coolant accident tests. Material was collected on spark tests and actual experience standards were established through these contributions and technology was accumulated.
Note: Model-based identification method of a cable-driven wearable device for arm rehabilitation
NASA Astrophysics Data System (ADS)
Cui, Xiang; Chen, Weihai; Zhang, Jianbin; Wang, Jianhua
2015-09-01
Cable-driven exoskeletons have used active cables to actuate the system and are worn on subjects to provide motion assistance. However, this kind of wearable devices usually contains uncertain kinematic parameters. In this paper, a model-based identification method has been proposed for a cable-driven arm exoskeleton to estimate its uncertainties. The identification method is based on the linearized error model derived from the kinematics of the exoskeleton. Experiment has been conducted to demonstrate the feasibility of the proposed model-based method in practical application.
Analysis of alternatives for using cable bolts as primary support at two low-seam coal mines
Esterhuizen, Gabriel S.; Tulu, Ihsan B.
2016-01-01
Cable bolts are sometimes used in low-seam coal mines to provide support in difficult ground conditions. This paper describes cable bolting solutions at two low-seam coal mines in similar ground conditions. Both mines used support systems incorporating cable bolts as part of the primary support system. Two original cable bolt based support systems as well as two modified systems are evaluated to estimate their ability to prevent large roof falls. One of the support systems incorporated passive cable bolts, while the other used pre-tensioned cable bolts. The results and experience at the mines showed that the modified systems provided improved stability over the original support systems. The presence of the cable bolts is the most important contribution to stability against large roof falls, rather than the details of the support pattern. It was also found that a heavy steel channel can improve the safety of the system because of the ‘sling’ action it provides. Additionally, the analysis showed that fully-grouted rebar bolts load much earlier than the cable bolts, and pre-tensioning of the cable bolts can result in a more uniform distribution of loading in the roof. PMID:27722019
NASA Astrophysics Data System (ADS)
Weischedel, Herbert R.; Hoehle, Hans-Werner
1995-05-01
Stay cables of cable-stayed bridges have corrosion protection systems that can be elaborate. For example, such a system may simply consist of one or several coats of paint, or--more complex--of plastic pipes that are wrapped with tape and filled with grout. Frequently, these corrosion protection systems prevent visual inspections. Therefore, alternative nondestructive examination methods are called for. For example, modern dual-function electromagnetic (EM) instruments allow the simultaneous detection of external and internal localized flaws (such as external and internal broken wires and corrosion piting) and the measurement of loss of metallic cross-sectional area (typically caused by external or internal corrosion or wear). Initially developed for mining and skiing applications, these instruments have been successfully used for the inspection of stays of cable-stayed bridges, and for the inspection of guys of smoke stacks, flare stacks, broadcast towers, suspended roofs, etc. As a rule, guys and bridge cables are not subjected to wear and bending stresses. However, their safety can be compromised by corrosion caused by the failure of corrosion protection systems. Furthermore, live loads and wind forces create intermittent tensile stresses that can cause fatigue breaks of wires. This paper discusses the use of dual-function EM instruments for the detection and the nondestructive quantitative evaluation of cable deterioration. It explains the underlying principles. Experiences with this method together with field inspection results will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. M. Obi
2000-04-01
The purpose of this Closure Report (CR) is to provide documentation of the completed corrective action and to provide data confirming the corrective action. The corrective action was performed following the approved Corrective Action Plan (CAP) (U.S. Department of Energy [DOE], 1999b) and consisted of closure-in-place with partial excavation, disposal, backfilling, administrative controls, and post-closure monitoring. Soil with petroleum hydrocarbon concentrations above the Nevada Division of Environmental Protection (NDEP) Action Level of 100 milligrams per kilogram (mg/kg) (Nevada Administrative Code, 1996) was removed to a depth of 1.5 meters (m) (5 feet [ft]). The excavations were backfilled with clean fillmore » to restore the site and to prevent contact with deeper, closed-in-place soil that exceeded the NDEP Action Level. According to the Corrective Action Investigation Plan (CAIP) (DOE, 1998), the Mercury Fire Training Pit was used from approximately 1965 to the early 1990s to train fire-fighting and emergency response personnel at the NTS and encompasses an area approximately 85 by 115 m (280 by 380 ft). The location of the Mercury Fire Training Pit is shown in Figure 1 and a site plan is shown in Figure 2. The Mercury Fire Training Pit formerly included a bermed bum pit with four small bum tanks; four large above ground storage tanks (ASTS); an overturned bus, a telephone pole storage area; and several areas for burning sheds, pallets, and cables. During the active life of the Mercury Fire Training Pit, training events were conducted at least monthly and sometimes as often as weekly. Fuels burned during these events included off-specification or rust-contaminated gasoline, diesel, and aviation fuel (JP-4). Other items burned during these events included paint, tires, a pond liner, wood, paper, cloth, and copper cable. Approximately 570 liters (L) (150 gallons [gal]) of fuel were used for each training event resulting in an approximate total of 136,000 L (36,000 gal) of fuel used over the life of the Mercury Fire Training Pit. Unburned fuel was allowed to pool on the ground and was left to eventually volatilize or soak into the soil. In addition, fuels from the ASTS and fuels and fluids from the overturned bus leaked or spilled onto the ground. Approximately 19 L to 38 L (5 to 10 gal) of paint were also burned monthly until sometime in the 1970s.« less
Actin cable dynamics in budding yeast
Yang, Hyeong-Cheol; Pon, Liza A.
2002-01-01
Actin cables, bundles of actin filaments that align along the long axis of budding yeast, are crucial for establishment of cell polarity. We fused green fluorescent protein (GFP) to actin binding protein 140 (Abp140p) and visualized actin cable dynamics in living yeast. We detected two populations of actin cables: (i) bud-associated cables, which extend from the bud along the mother-bud axis, and (ii) randomly oriented cables, which are relatively short. Time-lapse imaging of Abp140p–GFP revealed an apparent increase in the length of bud-associated actin cables. Analysis of movement of Abp140p–GFP fiduciary marks on bud-associated cables and fluorescence loss in photobleaching experiments revealed that this apparent elongation occurs by assembly of new material at the end of the cable within the bud and movement of the opposite end of the cable toward the tip of the mother cell distal to the bud. The rate of extension of the tip of an elongating actin cable is 0.29 ± 0.08 μm/s. Latrunculin A (Lat-A) treatment completely blocked this process. We also observed movement of randomly oriented cables around the cortex of cells at a rate of 0.59 ± 0.14 μm/s. Mild treatment with Lat-A did not affect the velocity of movement of randomly oriented cables. However, Lat-A treatment did increase the number of randomly oriented, motile cables per cell. Our observations suggest that establishment of bud-associated actin cables during the cell cycle is accomplished not by realignment of existing cables but by assembly of new cables within the bud or bud neck, followed by elongation. PMID:11805329
Aging, Loss-of-Coolant Accident (LOCA), and high potential testing of damaged cables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, R.A.; Jacobus, M.J.
1994-04-01
Experiments were conducted to assess the effects of high potential testing of cables and to assess the survivability of aged and damaged cables under Loss-of-Coolant Accident (LOCA) conditions. High potential testing at 240 Vdc/mil on undamaged cables suggested that no damage was incurred on the selected virgin cables. During aging and LOCA testing, Okonite ethylene propylene rubber (EPR) cables with a bonded jacket experienced unexpected failures. The failures appear to be primarily related to the level of thermal aging and the presence of a bonded jacket that ages more rapidly than the insulation. For Brand Rex crosslinked polyolefin (XLPO) cables,more » the results suggest that 7 mils of insulation remaining should give the cables a high probability of surviving accident exposure following aging. The voltage necessary to detect when 7 mils of insulation remain on unaged Brand Rex cables is approximately 35 kVdc. This voltage level would almost certainly be unacceptable to a utility for use as a damage assessment tool. However, additional tests indicated that a 35 kvdc voltage application would not damage virgin Brand Rex cables when tested in water. Although two damaged Rockbestos silicone rubber cables also failed during the accident test, no correlation between failures and level of damage was apparent.« less
NASA Technical Reports Server (NTRS)
Herr, R. W.
1974-01-01
The effects of several cable suspension configurations on the first free-free flexural frequency of uniform beams have been determined by experiment and analysis. The results of this study confirm that in general the larger the test vehicle the larger is the flexural frequency measurement error attributable to a given cable suspension configuration. For horizontally oriented beams representing modern aerospace vehicles of average size and flexibility, the restraining effects of all but the shortest support cables were minor. The restraining effects of support cables of moderate length attached near the base of vertically oriented vehicles were overshadowed by the effects of beam compression due to gravity.
Replaceable Unbonded Tendons for Post-Tensioned Bridges
DOT National Transportation Integrated Search
2017-12-24
Currently, all State and local agencies responsible for the maintenance of suspension bridge cables base their maintenance plan mainly on previous experiences and on information from limited inspections. Usually, the exterior covering of the cable is...
1997-02-24
STS081-360-003 (12-22 Jan. 1997) --- Astronaut John M. Grunsfeld performs an inflight maintenance (IFM) task to re-activate power cables connected to experiments in the Spacehab Double Module (DM), onboard the Space Shuttle Atlantis.
Simulation of the cabling process for Rutherford cables: An advanced finite element model
NASA Astrophysics Data System (ADS)
Cabanes, J.; Garlasche, M.; Bordini, B.; Dallocchio, A.
2016-12-01
In all existing large particle accelerators (Tevatron, HERA, RHIC, LHC) the main superconducting magnets are based on Rutherford cables, which are characterized by having: strands fully transposed with respect to the magnetic field, a significant compaction that assures a large engineering critical current density and a geometry that allows efficient winding of the coils. The Nb3Sn magnets developed in the framework of the HL-LHC project for improving the luminosity of the Large Hadron Collider (LHC) are also based on Rutherford cables. Due to the characteristics of Nb3Sn wires, the cabling process has become a crucial step in the magnet manufacturing. During cabling the wires experience large plastic deformations that strongly modify the geometrical dimensions of the sub-elements constituting the superconducting strand. These deformations are particularly severe on the cable edges and can result in a significant reduction of the cable critical current as well as of the Residual Resistivity Ratio (RRR) of the stabilizing copper. In order to understand the main parameters that rule the cabling process and their impact on the cable performance, CERN has developed a 3D Finite Element (FE) model based on the LS-Dyna® software that simulates the whole cabling process. In the paper the model is presented together with a comparison between experimental and numerical results for a copper cable produced at CERN.
NASA Astrophysics Data System (ADS)
Bull, A. S.; Nishimoto, M.; Love, M.; Schroeder, D. M.
2016-02-01
A network of power cables is an important component of any offshore renewable energy generation facilities (e.g., wind and wave). The cables laid on the seafloor carry current that produces both electric and magnetic fields; the magnetic field, here called an electromagnetic field (EMF), is what is emitted from shielded cables. The cables, themselves, add hard, low-relief structure to what is typically soft-bottom habitat (mud or sand). Given that laboratory experiments show EMF can affect the behavior of some marine vertebrates and invertebrates, concern is raised over the potential ecological impacts of in situ power cables. Here we report an unusual comparative study of the effect of EMF emitted from in situ power cables on the fish and invertebrate communities of the deep coastal shelf environment. In the Santa Barbara Channel of southern California, subsea power cables, similar to those used in the offshore renewable energy industry, transmit electricity from shore to offshore oil and gas production platforms. A non-energized cable in the vicinity of energized cables afforded us the unusual opportunity to control for the effect of cable as hard, low relief habitat. We conducted three annual submersible surveys in October, 2012- 2014, at depths from 75 m to 210 m. We present results comparing observations along the energized and nonenergized cables and on the adjacent natural substrate.
A cable-driven locomotor training system for restoration of gait in human SCI.
Wu, Ming; Hornby, T George; Landry, Jill M; Roth, Heidi; Schmit, Brian D
2011-02-01
A novel cable-driven robotic locomotor training system was developed to provide compliant assistance/resistance forces to the legs during treadmill training in patients with incomplete spinal cord injury (SCI). Eleven subjects with incomplete SCI were recruited to participate in two experiments to test the feasibility of the robotic gait training system. Specifically, 10 subjects participated in one experimental session to test the characteristics of the robotic gait training system and one subject participated in repeated testing sessions over 8 weeks with the robotic device to test improvements in locomotor function. Limb kinematics were recorded in one experiment to evaluate the system characteristics of the cable-driven locomotor trainer and the overground gait speed and 6 min walking distance were evaluated at pre, 4 and 8 weeks post treadmill training of a single subject as well. The results indicated that the cable driven robotic gait training system improved the kinematic performance of the leg during treadmill walking and had no significant impact on the variability of lower leg trajectory, suggesting a high backdrivability of the cable system. In addition, results from a patient with incomplete SCI indicated that prolonged robotic gait training using the cable robot improved overground gait speed. Results from this study suggested that a cable driven robotic gait training system is effective in improving leg kinematic performance, yet allows variability of gait kinematics. Thus, it seems feasible to improve the locomotor function in human SCI using this cable driven robotic system, warranting testing with a larger group of patients. Copyright © 2010 Elsevier B.V. All rights reserved.
New Opportunities for Cabled Ocean Observatories
NASA Astrophysics Data System (ADS)
Duennebier, F. K.; Butler, R.; Karl, D. M.; Roger, L. B.
2002-12-01
With the decommissioning of transoceanic telecommunications cables as they become obsolete or uneconomical, there is an opportunity to use these systems for ocean observatories. Two coaxial cables, TPC-1 and HAW-2 are currently in use for observatories, and another, ANZCAN, is scheduled to be used beginning in 2004 to provide a cabled observatory at Station ALOHA, north of Oahu. The ALOHA observatory will provide several Mb/s data rates and about 1 kW of power to experiments installed at Station ALOHA. Sensors can be installed either by wet mateable connection to a junction box on the ocean floor using an ROV, or by acoustic data link to the system. In either case real-time data will be provided to users over the Internet. A Small Experiment Module, to be first installed at the Hawaii-2 Observatory, and later at Station ALOHA, will provide relatively cheap and uncomplicated access to the observatories for relatively simple sensors. Within the next few years, the first electro-optical cables installed in the 1980's will be decommissioned and could be available for scientific use. These cables could provide long "extension cords" (thousands of km) with very high bandwidth and reasonable power to several observatories in remote locations in the ocean. While they could be used in-place, a more exciting scenario is to use cable ships to pick up sections of cable and move them to locations of higher scientific interest. While such moves would not be cheap, the costs would rival the cost of installation and maintenance of a buoyed observatory, with far more bandwidth and power available for science use.
Noise propagation effects in power supply distribution systems for high-energy physics experiments
NASA Astrophysics Data System (ADS)
Arteche, F.; Rivetta, C.; Iglesias, M.; Echeverria, I.; Pradas, A.; Arcega, F. J.
2017-12-01
High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. This paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.
Noise propagation effects in power supply distribution systems for high-energy physics experiments
Arteche, F.; Rivetta, C.; Iglesias, M.; ...
2017-12-05
High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. Here, this paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. Lastly, this analysis is part of the electromagnetic compatibility based design focused onmore » functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less
Noise propagation effects in power supply distribution systems for high-energy physics experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arteche, F.; Rivetta, C.; Iglesias, M.
High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. Here, this paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. Lastly, this analysis is part of the electromagnetic compatibility based design focused onmore » functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less
NASA Astrophysics Data System (ADS)
Oliveros Tautiva, Sandra Jimena
The Compact Muon Solenoid (CMS) is one of the two most important experiments at the Large Hadron Collider (LHC). The pixel detector is the component closest to the collision in CMS and it receives large doses of radiation which will affect its performance. The pixel detector will be replaced by a new one after four years. The aim is to reduce material in the sensitive zone of the new pixel detector, which leads to the implementation of a type of micro twisted pair cable that will replace the existing kapton cables and some connections will be eliminated. The purpose of this work was to study the viability of using these micro twisted pair cables in the existing 40 MHz analog readout. The electrical parameters of micro cables were determined, and operational tests were performed in a module using these cables for communicating and reading. Three different lengths of micro cables were used, 1.0, 1.5 and 2.0 m, in order to compare test results with those obtained using the kapton cable. It was found that the use of these cables does not affect the programming and reading of the pixels in one module, so the micro cables are viable to be used in place of the kapton cables.
NASA Astrophysics Data System (ADS)
Vyatkin, V. S.; Ivanov, Y. V.; Watanabe, H.; Chikumoto, N.; Yamaguchi, S.
2017-07-01
Cooling of the long HTS power transmission lines performs by pumping of subcooled liquid nitrogen (LN2) along the cable. The temperature of LN2 along the cable increases due to the heat losses of the cryostat and heat generation in the HTS cable. The experiment using test cable line in Ishikari shows that flow rate of 35 L/min retains increasing of LN2 temperature by 1 K per 1 km of length. The technology when the back flow of LN2 cools the radiation shield surrounding the cable pipe is also applied in Ishikari-2 project. In this case the ambient heat flow into cable pipe is 50 times less than that without radiation shield. Back flow of LN2 removes almost all heat coming from the environment. When transport current is close to the critical value the Joule heat of HTS cable is significant. This heat additionally increases the temperature of LN2 flowing along the HTS cable. Near the outlet the temperature of HTS cable is maximal and the local critical current is minimal. The current matching critical current criterion of average electrical field of E 0 = 10-4 V/m provides the voltage drop and significant Joule heat at the hot end of the cable. It can lead the damage of the cable. The present work contains analysis of temperature distribution along the cable and the way to achieve the fail-safe operation of long HTS cable cooled by subcooled LN2. We also performed extrapolation of obtained results for several times longer cable lines by decreasing the LN2 flow rate.
Causes of Cracking of Ignition Cable
NASA Technical Reports Server (NTRS)
Silsbee, F B
1921-01-01
The experiments described here show that the cracking at sharp bends, observed in the insulation of internal combustion engine high tension ignition wires after service, is due to a chemical attack upon the rubber by the ozone produced by the electric discharge that takes place at the surface of the cable. This cracking does not occur if the insulating material is not under tension, or if the cable is surrounded by some medium other than air. But it does occur even if the insulation is not subjected to electric stress, provided that the atmosphere near the cable contains ozone. The extent of this cracking varies greatly with the insulating material used. The cracking can be materially reduced by using braided cable and by avoiding sharp bends.
NASA Astrophysics Data System (ADS)
Kushino, Akihiro; Yamamoto, Yusei; Okuyama, Tetsuya; Kasai, Soichi
We have developed and evaluated thin semi-rigid coaxial cables as the noise filter for readout in low temperature experiments. The cables reported have 0.86 mm outer diameters consisting of seamless outer conductor, polytetrafluoroethylene (PTFE) dielectric, and center conductor made of superconducting niobium-titanium (NbTi). Each center conductor has surficial cladding made of normal conductor in different thickness. We had reported that we can adjust attenuation magnitude and cut-off frequency of the semi-rigid cable in the range about 100 500 MHz by controlling cable length and/or thickness of cladding. We newly manufactured this type of low-pass filter cables using stainless-steel (SUS304) as the material for cladding which has higher electrical resistivity than that of cupro-nickel (CuNi). It enables high filtering efficiency, i.e. large attenuation at the same frequency, compared to those made of conventional CuNi-based low-pass-filter cables.
NASA Astrophysics Data System (ADS)
Liu, Hongfei; Pan, Gaofeng; Lin, Zhong; Liu, Cheng; Zhu, Wenbai; Nan, Rendong; Li, Chunsheng; Gao, Guanjun; Luo, Wenyong; Jin, Chengjin; Song, Jinyou
2017-11-01
The construction of FAST telescope was completed in Guizhou province of China in September 2016, and a kind of novel high-stability 48-core bendable and movable optical cable was developed and applied in analog data optical transmission system of FAST. Novel structure and selective material of this optical cable ensure high stability of optical power in the process of cables round-trip motion when telescope is tracking a radio source. The 105 times bend and stretch accelerated experiment for this optical cable was implemented, and real-time optical and RF signal power fluctuation were measured. The physical structure of optical cables after 105 times round-trip motion is in good condition; the real-time optical power attenuation fluctuation is smaller than 0.044 dB; the real-time RF power fluctuation is smaller than 0.12 dB. The optical cable developed in this letter meets the requirement of FAST and has been applied in FAST telescope.
Spacecraft Fire Suppression: Testing and Evaluation
NASA Technical Reports Server (NTRS)
Abbud-Madrid, Angel; McKinnon, J. Thomas; Delplanque, Jean-Pierre; Kailasanath, Kazhikathra; Gokoglu, Suleyman; Wu, Ming-Shin
2004-01-01
The objective of this project is the testing and evaluation of the effectiveness of a variety of fire suppressants and fire-response techniques that will be used in the next generation of spacecraft (Crew Exploration Vehicle, CEV) and planetary habitats. From the many lessons learned in the last 40 years of space travel, there is common agreement in the spacecraft fire safety community that a new fire suppression system will be needed for the various types of fire threats anticipated in new space vehicles and habitats. To date, there is no single fire extinguishing system that can address all possible fire situations in a spacecraft in an effective, reliable, clean, and safe way. The testing conducted under this investigation will not only validate the various numerical models that are currently being developed, but it will provide new design standards on fire suppression that can then be applied to the next generation of spacecraft extinguishment systems. The test program will provide validation of scaling methods by conducting small, medium, and large scale fires. A variety of suppression methods will be tested, such as water mist, carbon dioxide, and nitrogen with single and multiple injection points and direct or distributed agent deployment. These injection methods cover the current ISS fire suppression method of a portable hand-held fire extinguisher spraying through a port in a rack and also next generation spacecraft units that may have a multi-point suppression delivery system built into the design. Consideration will be given to the need of a crew to clean-up the agent and recharge the extinguishers in flight in a long-duration mission. The fire suppression methods mentioned above will be used to extinguish several fire scenarios that have been identified as the most relevant to spaceflight, such as overheated wires, cable bundles, and circuit boards, as well as burning cloth and paper. Further testing will be conducted in which obstructions and ventilation will be added to represent actual spacecraft conditions (e.g., a series of cards in a card rack).
Operating experience of the southwire high-temperature superconducting cable project
NASA Astrophysics Data System (ADS)
Hughey, R. L.; Lindsay, D.
2002-01-01
Southwire Company of Carrollton, Georgia in cooperation with Oak Ridge National Laboratory has designed, built, installed and is operating the world's first field installation of a High Temperature Superconducting (HTS) cable system. The cables supply power to three Southwire manufacturing facilities and part of the corporate headquarters building in Carrollton, GA. The system consists of three 30-m single phase cables rated at 12.4 kV, 1250 Amps, liquid nitrogen cooling system, and the computer-based control system. The cables are built using BSCCO-2223 powder-in-tube HTS tapes and a proprietary cryogenic dielectric material called Cryoflex™. The cables are fully shielded with a second layer of HTS tapes to eliminate any external magnetic fields. The Southwire HTS cables were first energized on january 6, 2000. Since that time they have logged over 8,500 hours of operation while supplying 100% of the required customer load. To date, the cables have worked without failure and operations are continuing. The cable design has passed requisite testing for this class of conventional cables including 10× over current to 12,500 Amps and BIL testing to 110 kV. Southwire has also successfully designed and tested a cable splice. System heat loads and AC Losses have been measured and compared to calculated values. On June 1, 2001 on-site monitoring was ceased and the system was changed to unattended operation to further prove the reliability of the HTS cable system. .
Anyszka, Rafał; Bieliński, Dariusz M; Jędrzejczyk, Marcin
2013-12-01
Ceramizable (ceramifiable) silicone rubber-based composites are commonly used for cable insulation. These materials are able to create a protective ceramic layer during fire due to the ceramization process, which occurs at high temperature. When the temperature is increased, the polymer matrix is degraded and filler particles stick together by the fluxing agent, producing a solid, continuous ceramic phase that protects the copper wire from heat and mechanical stress. Despite increasing interest in these materials that has resulted in growing applications in the cable industry, their thermal behavior and ceramization process are still insufficiently described in the literature. In this paper, the thermal behavior of ceramizable silicone rubber-based composites is studied using microcalorimetry and Fourier transform infrared spectroscopy. The analysis of the experimental data made it possible to develop complete information on the mechanism of composite ceramization.
Recent developments in photonic networking components for space applications
NASA Astrophysics Data System (ADS)
Parkerson, James P.; Gorman, Lanitia; Thamer, Robert; Chalfant, Charles H.; Hull, Anthony; Orlando, Fred J., Jr.
2003-07-01
Industrial, NASA, and DoD spacecraft designers have recognized the advantages of using fiber optic components and networks for their internal satellite data handling needs. Among the benefits are the total elimination of cable-to-cable and box-to-box EMI; significant size, weight and power reduction; greater on-orbit and integration and test flexibility and significantly lower integration and test costs. Additionally, intra-satellite data rates of 1 to 10 Gbps appear to be an absolute requirement for a number of advanced systems planned for development in the next few years. The only practical way to support these data rates is with fiber optics. Space Photonics and the University of Arkansas have developed fiber optic components (FireFiberTM) and networks that are designed specifically to meet these on-board, high data rate needs using NASA approved materials, packaging processes, and approved radiation tolerant devices. This paper will discuss recent developments in photonic components for spaceborne networks.
Photonic packaging for space applications
NASA Astrophysics Data System (ADS)
Parkerson, James P.; Chalfant, Charles H., III; Orlando, Fred J., Jr.; Hull, Tony
2002-07-01
Industrial, NASA, and DOD spacecraft designers have recognized the advantages of using fiber optic components and networks for their internal satellite data handling needs. Among the benefits are the total elimination of cable-to-cable and box-to-box EMI; significant size, weight and power reduction; greater on-orbit flexibility, simplified integration and test (I&T), and significantly lower I&T costs. Additionally, intra-satellite data rates of 1 to 10 Gbps appear to be an absolute requirement for a number of advanced systems planned for development in the next few years. The only practical way to support these data rates is with fiber optics. Space Photonics and the University of Arkansas have developed fiber optic components (FireFiberTM) and networks that are designed specifically to meet these on-board, high data rate needs using NASA approved materials, packaging processes, and approved radiation tolerant devices. This paper discusses issues relevant to these components and networks.
Lightning protection of full authority digital electronic systems
NASA Astrophysics Data System (ADS)
Crofts, David
1991-08-01
Modern electronic systems are vulnerable to transient and they now provide safety critical functions such as full authority digital electronic control (FADEC) units for fly by wire aircraft. Of the traditional suppression technologies available diodes have gained the wider acceptance, however, they lack the current handling capacity to meet existing threat levels. The development of high speed fold back devices where, at a specified voltage, the off state resistance switches to a very low on state one has provided the equivalent to a semiconductor spark gap. The size of the technology enables it to be integrated into connectors of interconnection cables. To illustrate the performance the technology was developed to meet the Lightning Protection requirements for FADEC units within aeroengines. Work was also carried out to study switching behavior with the waveform 5, the 500 us, 10 kA pulse applied to cable assemblies. This test enabled all the switches in a connector to be fired simultaneously.
Lightning protection of full authority digital electronic systems
NASA Technical Reports Server (NTRS)
Crofts, David
1991-01-01
Modern electronic systems are vulnerable to transient and they now provide safety critical functions such as full authority digital electronic control (FADEC) units for fly by wire aircraft. Of the traditional suppression technologies available diodes have gained the wider acceptance, however, they lack the current handling capacity to meet existing threat levels. The development of high speed fold back devices where, at a specified voltage, the off state resistance switches to a very low on state one has provided the equivalent to a semiconductor spark gap. The size of the technology enables it to be integrated into connectors of interconnection cables. To illustrate the performance the technology was developed to meet the Lightning Protection requirements for FADEC units within aeroengines. Work was also carried out to study switching behavior with the waveform 5, the 500 us, 10 kA pulse applied to cable assemblies. This test enabled all the switches in a connector to be fired simultaneously.
NASA Technical Reports Server (NTRS)
Daeges, J.; Bhanji, A.
1987-01-01
Electrical noise interference in the transmitter crowbar monitoring instrumentation system creates false sensing of crowbar faults during a crowbar firing. One predominant source of noise interference is the conduction of currents in the instrumentation cable shields. Since these circulating ground noise currents produce noise that is similar to the crowbar fault sensing signals, such noise interference reduces the ability to determine true crowbar faults.
Summary of Research, Academic Departments, 1982-1983.
1983-10-01
Office to pursue fur- - and the production of towing tank models is de - ther proof of concept tests and seek improvements ,’ scribed. The design...followed b" Haskind. Rci,,ncr. * as "Cable Fire Studies: Progress Report in Evaluation of Timman, van de Vooren and Greidanus. and Release Rate Apparatus...diameter of the in the capture chamber have been compared with a system is increased, the draft of the device is de - limited amount of experimental data
1983-02-24
LEI’I’EMOF C4KDATION IN PRCESS / AWWRED BY HIGHER AUTHORTIY: 25 COMAND LEPI!ERS OF CMNTION: 20 -.ERITORIOS MAST: 0 EEPI F PUBLIC AEAI S N RELEASES: 45...for the work re-U maining. A decision was made to concentrate work on the telephone, public address, and fire alarm connections of the 200 pair cable...the battalion finished the work at NAS. Rather than initiate work in NAVCAMS, the decision was made to shut down the project until turnover thereby
Development of aluminum-stabilized superconducting cables for the Mu2e detector solenoid
Lombardo, Vito; Buehler, M.; Lamm, M.; ...
2016-06-01
Here, the Mu2e experiment at Fermilab is designed to measure the rare process of direct muon-to-electron conversion in the field of a nucleus. The experiment comprises a system of three superconducting solenoids, which focus secondary muons from the production target and transport them to an aluminum stopping target, while minimizing the associated background. The Detector Solenoid (DS) is the last magnet in the transport line and its main functions are to provide a graded field in the region of the stopping target as well as a precision magnetic field in a volume large enough to house the tracker downstream ofmore » the stopping target. The Detector Solenoid coils are designed to be wound using NbTi Rutherford cables conformed in high purity aluminum for stabilization and then cold-worked for strength. Two types of Al-stabilized conductor are required to build the DS coils, one for the gradient section and one for the spectrometer section of the solenoid. The dimensions are optimized to generate the required field profile when the same current is transported in both conductors. The conductors contain NbTi Rutherford cables with 12 (DS1) and 8 (DS2) strands respectively and are manufactured by two different vendors. This paper describes the results of the manufacturing of production lengths of the Al-stabilized cables needed to build the Mu2e Detector Solenoid as well as the testing campaigns and main results. The main cable properties and results of electrical and mechanical tests are summarized and discussed for each stage of the cable development process. Results are compared to design values to show how the production cables satisfy all the design criteria starting from the NbTi wires to the Al-stabilized cables.« less
The development and evaluation of water-mist fire extinguishing systems
NASA Astrophysics Data System (ADS)
Beason, D. G.; Staggs, K. J.
1994-08-01
Fire protection for underfloor space is primarily provided by Halon 1301 which has proven to be very effective. However, due to the link between halons and the possible depletion of the stratospheric ozone layer, plans have been implemented to eventually phase out Halon 1301 and 1211. In September 1987 the Montreal Protocol concerning chlorofluorocarbons (CFC) and halons was signed by the United States, the European Economic Community, and 23 other nations. The Montreal Protocol calls for freezing halon production at 1986 levels. Because the majority of underfloor fire protection at Lawrence Livermore National Laboratory (LLNL), as well as other Department of Energy (DOE) sites, is either Halon 1301 or sprinklers, some other means of suppression will have to be developed and verified. The potential loss to facilities housing computer or control rooms damaged by underfloor fires can be extreme. These losses would not only include hardware and software replacement costs, but also lost computing and control capability. Here at LLNL technical research in a facility could be severely affected. Recent studies conducted by the Fire Research Discipline of the Special Projects Division have shown that severe fires fueled by cable insulation can develop within as little as a 6-in-high underfloor space (even with mechanical ventilation shut off). Studies also show that conventional sprinklers may not be effective in preventing this destruction. Therefore, we are investigating the water-mist fire extinguishing system as an alternative to Halon 1301 and sprinklers.
Getting Cable TV Off to a Good Start.
ERIC Educational Resources Information Center
Ingold, Charles H.
1988-01-01
Reviews the cable television production course at the University of Northern Colorado. Considers technical needs and scheduling for the course, and discusses problems associated with student newscasts. Concludes that the production course provided valuable experience for broadcast journalism students. (MM)
The Thermal Regime Around Buried Submarine High-Voltage Cables
NASA Astrophysics Data System (ADS)
Emeana, C. J.; Dix, J.; Henstock, T.; Gernon, T.; Thompson, C.; Pilgrim, J.
2015-12-01
The expansion of offshore renewable energy infrastructure and the desire for "trans-continental shelf" power transmission, all require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70oC and are typically buried at depths of 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the thermal properties of near surface shelf sediments are poorly understood and this increases the uncertainty in determining the required cable current ratings, cable reliability and the potential effects on the sedimentary environments. We present temperature measurements from a 2D laboratory experiment, designed to represent a buried, submarine HV cable. We used a large (2.5 m-high) tank, filled with water-saturated ballotini and instrumented with 120 thermocouples, which measured the time-dependent 2D temperature distributions around the heat source. The experiments use a buried heat source to represent a series of realistic cable surface temperatures with the aim for identifying the thermal regimes generated within typical non-cohesive shelf sediments: coarse silt, fine sand and very coarse sand. The steady state heat flow regimes, and normalised and radial temperature distributions were assessed. Our results show that at temperatures up to 60°C above ambient, the thermal regimes are conductive for the coarse silt sediments and convective for the very coarse sand sediments even at 7°C above ambient. However, the heat flow pattern through the fine sand sediment shows a transition from conductive to convective heat flow at a temperature of approximately 20°C above ambient. These findings offer an important new understanding of the thermal regimes associated with submarine HV cables buried in different substrates and has huge impacts on cable ratings as the IEC 60287 standard only considers conductive heat flow as well as other potential near surface impacts.
Bulk Current Injection Testing of Close Proximity Cable Current Return, 1kHz to 1 MHz
NASA Technical Reports Server (NTRS)
Bradley, Arthur T.; Lee, William M.; Singh, Vivek; Yavoich, Brian
2010-01-01
This paper presents the results of an experiment examining the percentage of current that returns on adjacent wires or through a surrounding cable shield rather than through a shared conducting chassis. Simulation and measurement data are compared from 1 kHz 1 MHz for seven common cable configurations. The phenomenon is important to understand, because minimizing the return current path is vital in developing systems with low radiated emissions.
Experimental validation of ultrasonic guided modes in electrical cables by optical interferometry.
Mateo, Carlos; de Espinosa, Francisco Montero; Gómez-Ullate, Yago; Talavera, Juan A
2008-03-01
In this work, the dispersion curves of elastic waves propagating in electrical cables and in bare copper wires are obtained theoretically and validated experimentally. The theoretical model, based on Gazis equations formulated according to the global matrix methodology, is resolved numerically. Viscoelasticity and attenuation are modeled theoretically using the Kelvin-Voigt model. Experimental tests are carried out using interferometry. There is good agreement between the simulations and the experiments despite the peculiarities of electrical cables.
Numerical modeling of a spherical buoy moored by a cable in three dimensions
NASA Astrophysics Data System (ADS)
Zhu, Xiangqian; Yoo, Wan-Suk
2016-05-01
Floating facilities have been studied based on the static analysis of mooring cables over the past decades. To analyze the floating system of a spherical buoy moored by a cable with a higher accuracy than before, the dynamics of the cables are considered in the construction of the numerical modeling. The cable modeling is established based on a new element frame through which the hydrodynamic loads are expressed efficiently. The accuracy of the cable modeling is verified with an experiment that is conducted by a catenary chain moving in a water tank. In addition, the modeling of a spherical buoy is established with respect to a spherical coordinate in three dimensions, which can suffers the gravity, the variable buoyancy and Froude-Krylov loads. Finally, the numerical modeling for the system of a spherical buoy moored by a cable is established, and a virtual simulation is proceeded with the X- and Y-directional linear waves and the X-directional current. The comparison with the commercial simulation code ProteusDS indicates that the system is accurately analyzed by the numerical modeling. The tensions within the cable, the motions of the system, and the relationship between the motions and waves are illustrated according to the defined sea state. The dynamics of the cables should be considered in analyzing the floating system of a spherical buoy moored by a cable.
Assessment of 69 kV Underground Cable Thermal Ratings using Distributed Temperature Sensing
NASA Astrophysics Data System (ADS)
Stowers, Travis
Underground transmission cables in power systems are less likely to experience electrical faults, however, resulting outage times are much greater in the event that a failure does occur. Unlike overhead lines, underground cables are not self-healing from flashover events. The faulted section must be located and repaired before the line can be put back into service. Since this will often require excavation of the underground duct bank, the procedure to repair the faulted section is both costly and time consuming. These added complications are the prime motivators for developing accurate and reliable ratings for underground cable circuits. This work will review the methods by which power ratings, or ampacity, for underground cables are determined and then evaluate those ratings by making comparison with measured data taken from an underground 69 kV cable, which is part of the Salt River Project (SRP) power subtransmission system. The process of acquiring, installing, and commissioning the temperature monitoring system is covered in detail as well. The collected data are also used to evaluate typical assumptions made when determining underground cable ratings such as cable hot-spot location and ambient temperatures. Analysis results show that the commonly made assumption that the deepest portion of an underground power cable installation will be the hot-spot location does not always hold true. It is shown that distributed cable temperature measurements can be used to locate the proper line segment to be used for cable ampacity calculations.
Cable Effects Study. Tangents, Rabbit Holes, Dead Ends, and Valuable Results
Ardelean, Emil V.; Babuška, Vít; Goodding, James C.; ...
2014-08-04
Lessons learned during a study on the effects that electrical power and signal wiring harness cables introduce on the dynamic response of precision spacecraft is presented, along with the most significant results. Our study was a three year effort to discover a set of practical approaches for updating well-defined dynamic models of harness-free structures where knowledge of the cable type, position, and tie-down method are known. Although cables are found on every satellite, the focus was on precision, low damping, and very flexible structures. Obstacles encountered, classified as tangents, rabbit holes, and dead ends, offer practical lessons for structural dynamicsmore » research. The paper traces the historical, experiential progression of the project, describing how the obstacles affected the project. Methods were developed to estimate cable properties. Problems were encountered because of the flexible, highly damped nature of cables. A beam was used as a test article to validate experimentally derived cable properties and to refine the assumptions regarding boundary conditions. Furthermore, a spacecraft bus-like panel with cables attached was designed, and finite element models were developed and validated through experiment. Various paths were investigated at each stage before a consistent test and analysis methodology was developed« less
Cable Effects Study. Tangents, Rabbit Holes, Dead Ends, and Valuable Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ardelean, Emil V.; Babuška, Vít; Goodding, James C.
Lessons learned during a study on the effects that electrical power and signal wiring harness cables introduce on the dynamic response of precision spacecraft is presented, along with the most significant results. Our study was a three year effort to discover a set of practical approaches for updating well-defined dynamic models of harness-free structures where knowledge of the cable type, position, and tie-down method are known. Although cables are found on every satellite, the focus was on precision, low damping, and very flexible structures. Obstacles encountered, classified as tangents, rabbit holes, and dead ends, offer practical lessons for structural dynamicsmore » research. The paper traces the historical, experiential progression of the project, describing how the obstacles affected the project. Methods were developed to estimate cable properties. Problems were encountered because of the flexible, highly damped nature of cables. A beam was used as a test article to validate experimentally derived cable properties and to refine the assumptions regarding boundary conditions. Furthermore, a spacecraft bus-like panel with cables attached was designed, and finite element models were developed and validated through experiment. Various paths were investigated at each stage before a consistent test and analysis methodology was developed« less
Andrew T. Hudak; Patrick H. Freeborn; Sarah A. Lewis; Sharon M. Hood; Helen Y. Smith; Colin C. Hardy; Robert J. Kremens; Bret W. Butler; Casey Teske; Robert G. Tissell; Lloyd P. Queen; Bryce L. Nordgren; Benjamin C. Bright; Penelope Morgan; Philip J. Riggan; Lee Macholz; Leigh B. Lentile; James P. Riddering; Edward E. Mathews
2018-01-01
The Cooney Ridge Fire Experiment conducted by fire scientists in 2003 was a burnout operation supported by a fire suppression crew on the active Cooney Ridge wildfire incident. The fire experiment included measurements of pre-fire fuels, active fire behavior, and immediate post-fire effects. Heat flux measurements collected at multiple scales with multiple ground and...
Noise in pressure transducer readings produced by variations in solar radiation
Cain, S. F.; Davis, G.A.; Loheide, Steven P.; Butler, J.J.
2004-01-01
Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.
Noise in pressure transducer readings produced by variations in solar radiation.
Cain, Samuel F; Davis, Gregory A; Loheide, Steven P; Butler, James J
2004-01-01
Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.
The design, fabrication and installation of cable routing mockups in support of Spacelab 2
NASA Technical Reports Server (NTRS)
1981-01-01
From flight and mockup drawings of Spacelab 2 (SL 2) experiments and hardware, shop ready mockup drawings were produced. Floor panels were the first items considered for fabrication. Cold plate and orthogrid mockups were designed and fabricated. Experiment and other hardware mockups were fabricated of aluminum or plywood, depending on size and configuration. Eighty-three cable routing bracket mockups were fabricated of aluminum and delivered for painting.
6-7 Mev Characteristic Gamma-Ray Source Using A Plasma Opening Switch And A Marx Bank
2011-06-01
of Hawk, including the POS, is shown in Fig. 2a. The POS consists of 12 plasma guns made from coaxial cables that inject ionized plasma radially...inward between two coaxial conductors prior to firing the generator. The POS plasma conducts the generator current as a short circuit for about 700...vacuum gap in the plasma . High-energy electron- and ion-beams form in the plasma -filled coaxial region, with ions from the plasma and the polyethylene
NASA Technical Reports Server (NTRS)
Haddick, C. M., Jr.
1980-01-01
Problems concerning the shuttle main propulsion system Polar Orbit Geophysical Observatory (POGO) instrumentation and the actions taken to correct them are summarized. Investigations and analyses appear to be providing solutions to correct the majority of questionable measurements. Corrective action in the handling of cables and connectors should increase the POGO measurement quality. Unacceptable levels of very low frequency noise and data level shifts may be related to test stand grounding configuration, but further investigation is required.
NASA Astrophysics Data System (ADS)
Chang, Seung Jin; Lee, Chun Ku; Shin, Yong-June; Park, Jin Bae
2016-12-01
A multiple chirp reflectometry system with a fault estimation process is proposed to obtain multiple resolution and to measure the degree of fault in a target cable. A multiple resolution algorithm has the ability to localize faults, regardless of fault location. The time delay information, which is derived from the normalized cross-correlation between the incident signal and bandpass filtered reflected signals, is converted to a fault location and cable length. The in-phase and quadrature components are obtained by lowpass filtering of the mixed signal of the incident signal and the reflected signal. Based on in-phase and quadrature components, the reflection coefficient is estimated by the proposed fault estimation process including the mixing and filtering procedure. Also, the measurement uncertainty for this experiment is analyzed according to the Guide to the Expression of Uncertainty in Measurement. To verify the performance of the proposed method, we conduct comparative experiments to detect and measure faults under different conditions. Considering the installation environment of the high voltage cable used in an actual vehicle, target cable length and fault position are designed. To simulate the degree of fault, the variety of termination impedance (10 Ω , 30 Ω , 50 Ω , and 1 \\text{k} Ω ) are used and estimated by the proposed method in this experiment. The proposed method demonstrates advantages in that it has multiple resolution to overcome the blind spot problem, and can assess the state of the fault.
Development and evaluation of thin semi-rigid cables for superconducting detectors
NASA Astrophysics Data System (ADS)
Kasai, Soichi; Kushino, Akihiro
2015-03-01
We are developing semi-rigid cables for accurate readout of superconducting radiation/particle detectors and other low temperature experiments. The center conductor with a diameter of 0.86 mm is separated with seamless metal outer conductor by dielectric material, polytetrafluoroethylene. We used various metal materials with low thermal conductivity for the electrical conductors such as stainless-steel, cupro-nickel, brass, beryllium-copper, phosphor-bronze, niobium-titanium, and niobium. In addition to the conventional semi-rigid cables, low-pass-filter-type cables were manufactured and evaluated to cut the high frequency noise into superconducting detectors. We measured their low thermal conductance and attenuation property up to 10GHz below the liquid helium temperature.
Development of semi-rigid cables for low temperature superconducting detectors
NASA Astrophysics Data System (ADS)
Kushino, Akihiro; Kasai, Soichi
We are developing semi-rigid cables for accurate readout of superconducting radiation/particle detectors and other low temperature experiments. The center conductor with a diameter of 0.86 mm is separated with seamless metal outer conductor by dielectric material, polytetrafluoroethylene. We used various metal materials with low thermal conductivity for the electrical conductors such as stainless-steel, cupro-nickel, brass, beryllium-copper, phosphor-bronze, niobium-titanium, and niobium. In addition to the conventional semi-rigid cables, low-pass-filter type cables were manufactured and evaluated to cut the high frequency noise into superconducting detectors. We measured their low thermal conductance and attenuation property up to 10 GHz below the liquid helium temperature.
ERIC Educational Resources Information Center
Ohio Educational Library/Media Association, Columbus.
Designed to aid in planning the best use of cable television in a particular educational situation, this pamphlet was prepared by a joint committee of the Ohio Educational Library Media Association and the Greater Miami Valley Instructional Television Council in order to share their plans, experiences, problems, and solutions with others who are…
Human movement training with a cable driven ARm EXoskeleton (CAREX).
Mao, Ying; Jin, Xin; Gera Dutta, Geetanjali; Scholz, John P; Agrawal, Sunil K
2015-01-01
In recent years, the authors have proposed lightweight exoskeleton designs for upper arm rehabilitation using multi-stage cable-driven parallel mechanism. Previously, the authors have demonstrated via experiments that it is possible to apply "assist-as-needed" forces in all directions at the end-effector with such an exoskeleton acting on an anthropomorphic machine arm. A human-exoskeleton interface was also presented to show the feasibility of CAREX on human subjects. The goals of this paper are to 1) further address issues when CAREX is mounted on human subjects, e.g., generation of continuous cable tension trajectories 2) demonstrate the feasibility and effectiveness of CAREX on movement training of healthy human subjects and a stroke patient. In this research, CAREX is rigidly attached to an arm orthosis worn by human subjects. The cable routing points are optimized to achieve a relatively large "tensioned" static workspace. A new cable tension planner based on quadratic programming is used to generate continuous cable tension trajectory for smooth motion. Experiments were carried out on eight healthy subjects. The experimental results show that CAREX can help the subjects move closer to a prescribed circular path using the force fields generated by the exoskeleton. The subjects also adapt to the path shortly after training. CAREX was also evaluated on a stroke patient to test the feasibility of its use on patients with neural impairment. The results show that the patient was able to move closer to a prescribed straight line path with the "assist-as-needed" force field.
NASA Astrophysics Data System (ADS)
Wagner, A. M.; Lindsey, N.; Ajo Franklin, J. B.; Gelvin, A.; Saari, S.; Ekblaw, I.; Ulrich, C.; Dou, S.; James, S. R.; Martin, E. R.; Freifeld, B. M.; Bjella, K.; Daley, T. M.
2016-12-01
We present preliminary results from an experimental study targeting the use of passive fiber-optic distributed temperature sensing (DTS) in a variety of geometries to estimate moisture content evolution in a dynamic permafrost system. A 4 km continuous 2D array of multi-component fiber optic cable (6 SM/6 MM) was buried at the Fairbanks Permafrost Experiment Station to investigate the possibility of using fiber optic distributed sensing as an early detection system for permafrost thaw. A heating experiment using 120 60 Watt heaters was conducted in a 140 m2 area to artificially thaw the topmost section of permafrost. The soils at the site are primarily silt but some disturbed areas include backfilled gravel to depths of approximately 1.0 m. Where permafrost exists, the depth to permafrost ranges from 1.5 to approximately 5 m. The experiment was also used to spatially estimate soil water content distribution throughout the fiber optic array. The horizontal fiber optic cable was buried at depths between 10 and 20 cm. Soil temperatures were monitored with a DTS system at 25 cm increments along the length of the fiber. At five locations, soil water content time-domain reflectometer (TDR) probes were also installed at two depths, in line with the fiber optic cable and 15 to 25 cm below the cable. The moisture content along the fiber optic array was estimated using diurnal effects from the dual depth temperature measurements. In addition to the horizontally installed fiber optic cable, vertical lines of fiber optic cable were also installed inside and outside the heater plot to a depth of 10 m in small diameter (2 cm) boreholes. These arrays were installed in conjunction with thermistor strings and are used to monitor the thawing process and to cross correlate with soil temperatures at the depth of the TDR probes. Results will be presented from the initiation of the artificial thawing through subsequent freeze-up. A comparison of the DTS measured temperatures and thermistors in vertically installed PVC pipes will also be shown. Initial results from a thermal model of the artificial heating experiment and the model's correlation to the actual soil temperature measurements will also be presented. These results show the possibility of using fiber optic cable to measure moisture contents along a longer array with only limited control points.
Tang, Haosu; Laporte, Damien; Vavylonis, Dimitrios
2014-01-01
The growth of fission yeast relies on the polymerization of actin filaments nucleated by formin For3p, which localizes at tip cortical sites. These actin filaments bundle to form actin cables that span the cell and guide the movement of vesicles toward the cell tips. A big challenge is to develop a quantitative understanding of these cellular actin structures. We used computer simulations to study the spatial and dynamical properties of actin cables. We simulated individual actin filaments as semiflexible polymers in three dimensions composed of beads connected with springs. Polymerization out of For3p cortical sites, bundling by cross-linkers, pulling by type V myosin, and severing by cofilin are simulated as growth, cross-linking, pulling, and turnover of the semiflexible polymers. With the foregoing mechanisms, the model generates actin cable structures and dynamics similar to those observed in live-cell experiments. Our simulations reproduce the particular actin cable structures in myoVΔ cells and predict the effect of increased myosin V pulling. Increasing cross-linking parameters generates thicker actin cables. It also leads to antiparallel and parallel phases with straight or curved cables, consistent with observations of cells overexpressing α-actinin. Finally, the model predicts that clustering of formins at cell tips promotes actin cable formation. PMID:25103242
Effects on Freshwater Organisms of Magnetic Fields Associated with Hydrokinetic Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cada, Glenn F; Bevelhimer, Mark S; Riemer, Kristina P
2011-07-01
Underwater cables will be used to transmit electricity between turbines in an array (interturbine cables), between the array and a submerged step-up transformer (if part of the design), and from the transformer or array to shore. All types of electrical transmitting cables (as well as the generator itself) will emit EMF into the surrounding water. The electric current will induce magnetic fields in the immediate vicinity, which may affect the behavior or viability of animals. Because direct electrical field emissions can be prevented by shielding and armoring, we focused our studies on the magnetic fields that are unavoidably induced bymore » electric current moving through a generator or transmission cable. These initial experiments were carried out to evaluate whether a static magnetic field, such as would be produced by a direct current (DC) transmitting cable, would affect the behavior of common freshwater fish and invertebrates.« less
NASA Astrophysics Data System (ADS)
Ouyang, Bo; Shang, Weiwei
2016-03-01
The solution of tension distributions is infinite for cable-driven parallel manipulators(CDPMs) with redundant cables. A rapid optimization method for determining the optimal tension distribution is presented. The new optimization method is primarily based on the geometry properties of a polyhedron and convex analysis. The computational efficiency of the optimization method is improved by the designed projection algorithm, and a fast algorithm is proposed to determine which two of the lines are intersected at the optimal point. Moreover, a method for avoiding the operating point on the lower tension limit is developed. Simulation experiments are implemented on a six degree-of-freedom(6-DOF) CDPM with eight cables, and the results indicate that the new method is one order of magnitude faster than the standard simplex method. The optimal distribution of tension distribution is thus rapidly established on real-time by the proposed method.
Computational model of polarized actin cables and cytokinetic actin ring formation in budding yeast
Tang, Haosu; Bidone, Tamara C.
2015-01-01
The budding yeast actin cables and contractile ring are important for polarized growth and division, revealing basic aspects of cytoskeletal function. To study these formin-nucleated structures, we built a 3D computational model with actin filaments represented as beads connected by springs. Polymerization by formins at the bud tip and bud neck, crosslinking, severing, and myosin pulling, are included. Parameter values were estimated from prior experiments. The model generates actin cable structures and dynamics similar to those of wild type and formin deletion mutant cells. Simulations with increased polymerization rate result in long, wavy cables. Simulated pulling by type V myosin stretches actin cables. Increasing the affinity of actin filaments for the bud neck together with reduced myosin V pulling promotes the formation of a bundle of antiparallel filaments at the bud neck, which we suggest as a model for the assembly of actin filaments to the contractile ring. PMID:26538307
Experimental characterization of shape memory alloy actuator cables
NASA Astrophysics Data System (ADS)
Biggs, Daniel B.; Shaw, John A.
2016-04-01
Wire rope (or cables) are a fundamental structural element in many engineering applications. Recently, there has been growing interest in stranding NiTi wires into cables to scale up the adaptive properties of NiTi tension elements and to make use of the desirable properties of wire rope. Exploratory experiments were performed to study the actuation behavior of two NiTi shape memory alloy cables and straight monofilament wire of the same material. The specimens were held under various dead loads ranging from 50 MPa to 400 MPa and thermally cycled 25 times from 140°C to 5°C at a rate of 12°C/min. Performance metrics of actuation stroke, residual strain, and work output were measured and compared between specimen types. The 7x7 cable exhibited similar actuation to the single straight wire, but with slightly longer stroke and marginally more shakedown, while maintaining equivalent specific work output. This leads to the conclusion that the 7x7 cable effectively scaled up the adaptive properties the straight wire. Under loads below 150 MPa, the 1x27 cable had up to double the actuation stroke and work output, but exhibited larger shakedown and poorer performance when loaded higher.
Thermo-Mechanical Behavior and Shakedown of Shape Memory Alloy Cable Structures
NASA Astrophysics Data System (ADS)
Biggs, Daniel B.
Shape memory alloys (SMAs) are a versatile class of smart materials that exhibit adaptive properties which have been applied to solve engineering problems in wide-ranging fields from aerospace to biomedical engineering. Yet there is a lack of understanding of the fundamental nature of SMAs in order to effectively apply them to challenging problems within these engineering fields. Stranding fine NiTi wires into a cable form satisfies the demands of many aerospace and civil engineering applications which require actuators to withstand large tensile loads. The impact of increased bending and twisting in stranded NiTi wire structures, as well as introducing contact mechanics to the unstable phase transformation is not well understood, and this work aims to fill that void. To study the scalability of NiTi cables, thermo-mechanical characterization tests are conducted on cables much larger than those previously tested. These cables are found to have good superelastic properties and repeatable cyclic behavior with minimal induced plasticity. The behavior of additional cables, which have higher transition temperatures that can be used in a shape memory mode as thermo-responsive, high force actuator elements, are explored. These cables are found to scale up the performance of straight wire by maintaining an equivalent work output. Moreover, this work investigates the degradation of the thermal actuation of SMA wires through novel stress-temperature paths, discovering several path dependent behaviors of transformation-induced plasticity. The local mechanics of NiTi cable structures are explored through experiments utilizing digital image correlation, revealing new periodic transformation instabilities. Finite element simulations are presented, which indicate that the instabilities are caused by friction and relative sliding between wires in a cable. Finally, a study of the convective heat transfer of helical wire involving a suite of wind tunnel experiments, numerical analyses, and an empirical correlation is presented. This provides a method to better model the thermal behavior of helical SMA actuators and highlights the non-monotonic dependence of the convective heat transfer coefficient of helical wire with respect to the angle of the flow.
NASA Astrophysics Data System (ADS)
Yamaguchi, S.; Ivanov, Y.; Watanabe, H.; Chikumoto, N.; Koshiduka, H.; Hayashi, K.; Sawamura, T.
Ishikari project constructs two lines. The length of the Line 1 is 500 m, and connects the photovoltaic cell to the internet-data center. The other line is 1 km length, and it is a test facility and called Line 2. The structures of the cable systems are not same to test their performance. The construction was started from 2014 in the field, the Line 1 was completed in May 2015, and it was cooled down and do the current experiment, and warmed up. The Line 2 is almost complete in October 2015. It will be tested in November and December, 2015. In order to reduce the stress of the cable induced by the thermal expansion and contraction, we adopted the way of the helical deformation of the cable. The force of the cable is reduced to 1/3 of an usual cable test. Because the cryogenic pipes are welded in the field and we cannot use the baking of the vacuum chamber of the cryogenic pipe, a new vacuum pumping method was proposed and tested for the cryogenic pipe. Since the straight pipes are used to compose the cryogenic pipe, the pressure drop of the circulation would be 1/100 of the corrugated pipe in the present condition, and it is suitable for longer cable system. The heat leak of the cryogenic pipe is ∼1.4W/m including the cable pipe's and the return pipe's. The heat leak of the current lead is ∼30W/kA in the test bench. Finally the current of 6kA/3 sec and the current of 5kA/15 min were achieved in Line 1. The reduction of heat leak will be a major subject of the longer cable system. The cost of the construction will be almost twice higher than that of the copper and aluminum over-head line with the iron tower in the present Japan. The cost construction of the over-head line is an average value, and depends on the newspaper.
Radiation Effects In Satellite Cables
1978-04-01
reverse current across the gap through the ionized air trapped in the gap . This reverse current opposes the effect of the photo-driven current and reduces ...using the measured gap of 30 pm) has the right sign (negative) for both cables and is very close in magnitude for one but is low by about a factor of 2.5...experiments of Reference 32. Therefore, the effect of a 100 volt field in reducing transport of photoelectrons across the gap in the experiment should
Effects of Electrical Insulation Breakdown Voltage And Partial Discharge
NASA Astrophysics Data System (ADS)
Bahrim, F. S.; Rahman, N. F. A.; Haris, H. C. M.; Salim, N. A.
2018-03-01
During the last few decades, development of new materials using composite materials has been of much interest. The Cross-linked Polyethylene (XLPE) which is insulated power cables has been widely used. This paper describes the theoretical analysis, fundamental experiments and application experiments for the XLPE cable insulation. The composite that has been tested is a commercial XLPE and Polypropylene with 30% fiber glass. The results of breakdown strength and partial discharge (PD) behavior described the insulating performance of the composite.
Crystal River 3 Cable Materials for Thermal and Gamma Radiation Aging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Leonard S.; Correa, Miguel; Zwoster, Andy
The Expanded Materials Degradation Assessment Volume 5: Aging of Cables and Cable Systems (EMDA) summarizes the state of knowledge of materials, constructions, operating environments, and aging behavior of low voltage and medium cables in nuclear power plants (NPPs) and identifies potential knowledge gaps with regard to cable operation beyond 60 years. The greatest area of uncertainty relates to how well the accelerated aging used in the original equipment qualification (EQ) processes predicts the performance of cable materials in extended operation. General opinion and utility experience have indicated that actual operating environments of in-plant cables are not as severe, however, asmore » the operating and design basis environments used in the qualification process. Better understanding of the long term aging behavior of cable insulation materials in service conditions and the analysis of actual cable operating environments are the objectives of ongoing research to support subsequent license renewal activities in particular and long term cable aging management in general. A key component of the effort to better understand cable material aging behavior is the availability of representative samples of cables that have been installed in operating light water reactors and have experienced long term service. Unique access to long term service cables, including relatively rich information on cable identity and history, occurred in 2016 through the assistance of the Electric Power Research Institute (EPRI). EPRI facilitated DOE receipt of harvested cables from the decommissioned Crystal River Unit 3 (CR3) pressurized water reactor representing six of the nine most common low voltage cable manufacturers (EPRI 103841R1): Rockbestos, Anaconda Wire and Cable Company (Anaconda), Boston Insulated Wire (BIW), Brand-Rex, Kerite and Okonite. Cable samples received had been installed in the operating plant for durations ranging from 10 years to 36 years. These cables provide the opportunity to assess actual in-plant material aging and compare it to the expectations for service aging implied in original equipment qualification. The received samples are from cables manufactured as early as 1971 and as late as 1998. Of the original manufacturers, BIW, Anaconda and Kerite no longer supply low-voltage cables to the nuclear industry. Okonite, Rockbestos, and Brand-Rex do still supply nuclear-grade low-voltage cables, but most cable insulation formulations have changed over the years. Thus the availability of the CR3 samples representative of cables installed in existing U.S. NPPs also presents the opportunity for additional aging studies on the most relevant insulation and jacketing materials. This report describes the cables received from CR3 through EPRI assistance, some of the specific knowledge gaps that study of these cable materials can be used to address, and experimental plans for addressing those gaps using these materials. Harvested cables from CR3 and other NPPs that have experienced long term service, new old stock cables (manufactured before 2000, but never put in service), and relevant modern nuclear cables and materials from cable manufacturers are enabling research to address identified knowledge gaps and better understand long term aging behavior for cable materials currently installed in NPPs. This research, combined with refined understanding of actual service environments and conditions, will both support subsequent licensing activities and more efficient plant cable aging management.« less
Assessment of NDE for key indicators of aging cables in nuclear power plants - Interim status
NASA Astrophysics Data System (ADS)
Glass, S. W.; Ramuhalli, P.; Fifield, L. S.; Prowant, M. S.; Dib, G.; Tedeschi, J. R.; Suter, J. D.; Jones, A. M.; Good, M. S.; Pardini, A. F.; Hartman, T. S.
2016-02-01
Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. System tests verify cable function under normal loads; however, the concern is over cable performance under exceptional loads associated with design-basis events (DBEs). The cable's ability to perform safely over the initial 40-year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found in an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program to justify cable performance under normal operation as well as accident conditions. Currently the gold standard for determining cable insulation degradation is the elongation-at-break (EAB). This, however, is an ex-situ measurement and requires removal of a sample for laboratory investigation. A reliable nondestructive examination (NDE) in-situ approach is desirable to objectively determine the suitability of the cable for service. A variety of tests are available to assess various aspects of electrical and mechanical cable performance, but none of these tests are suitable for all cable configurations nor does any single test confirm all features of interest. Nevertheless, the complete collection of test possibilities offers a powerful range of tools to assure the integrity of critical cables. Licensees and regulators have settled on a practical program to justify continued operation based on condition monitoring of a lead sample set of cables where test data is tracked in a database and the required test data are continually adjusted based on plant and fleet-wide experience. As part of the Light Water Reactor Sustainability program sponsored by the U.S. Nuclear Regulatory Commission, the U.S. Department of Energy, and industry (represented by the Electric Power Research Institute), an assessment of cable NDE methods was commissioned. Technologies include both bulk electrical measurements (Tan δ, time domain reflectometry, frequency domain reflectometry (FDR), partial discharge, and other techniques) and local insulation measurement (indenter, dynamic mechanical analysis interdigital capacitance, infrared spectral measurement, etc.). This aging cable NDE program update reviews the full range of techniques but focuses on the most interesting test approaches that have a chance to be deployed in-situ, particularly including Tan δ, FDR, and ultrasound methods that have been reviewed most completely in this progress period.
Effect of the surface roughness on interfacial breakdown between two dielectric surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, D.
1996-12-31
Cable splices and accessories are the weak link in an underground power distribution system. Investigations of problems related to cable splices and accessories becomes quite intricate once the simpler causes of failures are dismissed to allow more complex phenomena to be examined. The interfacial breakdown between two internal dielectric surfaces represents one of the major causes of failure for power cable joints. In order to better understand this phenomenon, breakdown experiments were performed at interfaces found in cable splices. An experimental jig was designed to induce breakdown between dielectric surfaces longitudinally along their interface. Effects of surface roughness at EPDM/XLPEmore » and EPDM/EPDM interfaces as well as the presence of silicone grease are taken into account.« less
Improving greater trochanteric reattachment with a novel cable plate system.
Baril, Yannick; Bourgeois, Yan; Brailovski, Vladimir; Duke, Kajsa; Laflamme, G Yves; Petit, Yvan
2013-03-01
Cable-grip systems are commonly used for greater trochanteric reattachment because they have provided the best fixation performance to date, even though they have a rather high complication rate. A novel reattachment system is proposed with the aim of improving fixation stability. It consists of a Y-shaped fixation plate combined with locking screws and superelastic cables to reduce cable loosening and limit greater trochanter movement. The novel system is compared with a commercially available reattachment system in terms of greater trochanter movement and cable tensions under different greater trochanteric abductor application angles. A factorial design of experiments was used including four independent variables: plate system, cable type, abductor application angle, and femur model. The test procedure included 50 cycles of simultaneous application of an abductor force on the greater trochanter and a hip force on the femoral head. The novel plate reduces the movements of a greater trochanter fragment within a single loading cycle up to 26%. Permanent degradation of the fixation (accumulated movement based on 50-cycle testing) is reduced up to 46%. The use of superelastic cables reduces tension loosening up to 24%. However this last improvement did not result in a significant reduction of the grater trochanter movement. The novel plate and cables present advantages over the commercially available greater trochanter reattachment system. The plate reduces movements generated by the hip abductor. The superelastic cables reduce cable loosening during cycling. Both of these positive effects could decrease the risks related to grater trochanter non-union. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Permanent installation of fibre-optic DTS cables in boreholes for temperature monitoring
NASA Astrophysics Data System (ADS)
Henninges, J.; Schrötter, J.; Erbas, K.; Böde, S.; Huenges, E.
2003-04-01
Temperature measurements have become an important tool for the monitoring of dynamic processes in the subsurface both in academia and industry. An innovative experimental design for the monitoring of spatial and temporal variations of temperature along boreholes was developed and successfully applied under extreme arctic conditions during a field experiment, which was carried out within the framework of the Mallik 2002 Production Research Well Program*. Three 40 m spaced, 1200 m deep wells were equipped with permanent fibre-optic sensor cables and the variation of temperature was measured deploying the Distributed Temperature Sensing (DTS) technology. The used DTS system enables the simultaneous online registration of temperature profiles along the three boreholes with a maximum spatial resolution of 0.25 m and a minimum sampling interval of 7 sec. After an individual calibration of the fibre-optic sensor cables a resolution of 0.3 °C of the measured temperature data could be achieved. A special feature of the experiment design is the installation of the sensor cables outside the borehole casing. The fibre-optic cables were attached to the outer side of the casing at every connector within intervals of approx. 12 m with cable clamps. The clamps enable a defined positioning of the cable around the perimeter of the casing and are protecting the cable from mechanical damage during installation. After completion the sensor cables are located in the cement annulus between casing and borehole wall. As an example of the performance of the described temperature logging technology data from the reaming of a 300 m thick cement plug inside the borehole is displayed, offering a unique opportunity to explore thermal processes in the near vicinity of a borehole during drilling. The temperature changes image the progress of the drill bit as well as changes in the mud circulation. Furthermore, local effects can be observed that relate to local thermal properties and technical features of the cable installation. (*) The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group.
Toward an Immodest Experiment in Cable Television: Modestly Produced.
ERIC Educational Resources Information Center
Crichton, Judy
The new capability of cable television (CATV) to provide relevant programming to local communities should be recognized so that inner city consumers can be provided with direct, personal information--warning, comparative prices, and the sense that someone cares. At least one channel should be devoted as a key to these services, with other channels…
Computer planning tools applied to a cable logging research study
Chris B. LeDoux; Penn A. Peters
1985-01-01
Contemporary harvest planning software was used in planning the layout of cable logging units for a production study of the Clearwater Yarder in upstate New York. Planning software, including payload analysis and digital terrain models, allowed researchers to identify layout and yarding problems before the experiment. Analysis of proposed ground profiles pinpointed the...
NASA Technical Reports Server (NTRS)
Koenig, Dieter
1994-01-01
Development of a new test method suitable for the assessment of the resistance of aerospace cables to arc tracking for different specific environmental and network conditions of spacecraft is given in view-graph format. The equipment can be easily adapted for tests at different realistic electrical network conditions incorporating circuit protection and the test system works equally well whatever the test atmosphere. Test results confirm that pure Kapton insulated wire has bad arcing characteristics and ETFE insulated wire is considerably better in air. For certain wires, arc tracking effects are increased at higher oxygen concentrations and significantly increased under vacuum. All tests on different cable insulation materials and in different environments, including enriched oxygen atmospheres, resulted in a more or less rapid extinguishing of all high temperature effects at the beginning of the post-test phase. In no case was a self-maintained fire initiated by the arc.
Long-term monitoring FBG-based cable load sensor
NASA Astrophysics Data System (ADS)
Zhang, Zhichun; Zhou, Zhi; Wang, Chuan; Ou, Jinping
2006-03-01
Stay cables are the main load-bearing components of stayed-cable bridges. The cables stress status is an important factor to the stayed-cable bridge structure safety evaluation. So it's very important not only to the bridge construction, but also to the long-term safety evaluation for the bridge structure in-service. The accurate measurement for cable load depends on an effective sensor, especially to meet the long time durability and measurement demand. FBG, for its great advantage of corrosion resistance, absolute measurement, high accuracy, electro-magnetic resistance, quasi-distribution sensing, absolute measurement and so on, is the most promising sensor, which can cater for the cable force monitoring. In this paper, a load sensor has been developed, which is made up of a bushing elastic supporting body, 4 FBGs uniformly-spaced attached outside of the bushing supporting body, and a temperature compensation FBG for other four FBGs, moreover a cover for protection of FBGs. Firstly, the sensor measuring principle is analyzed, and relationship equation of FBG wavelength shifts and extrinsic load has also been gotten. And then the sensor calibration experiments of a steel cable stretching test with the FBG load sensor and a reference electric pressure sensor is finished, and the results shows excellent linearity of extrinsic load and FBG wavelength shifts, and good repeatability, which indicates that such kind of FBG-based load sensor is suitable for load measurement, especially for long-term, real time monitoring of stay-cables.
STS-43 MS Adamson checks OCTW experiment on OV-104's aft flight deck
1991-08-11
STS043-04-038 (2-11 Aug 1991) --- Astronaut James C. Adamson, STS-43 mission specialist, checks on an experiment on Atlantis? flight deck. Part of the experiment, Optical Communications Through the Shuttle Window (OCTW), can be seen mounted in upper right. The OCTW system consists of two modules, one inside the orbiter crew cabin (as pictured here) and one in the payload bay. The crew compartment version houses an optoelectronic transmitter/receiver pair for video and digital subsystems, test circuitry and interface circuitry. The payload bay module serves as a repeater station. During operation a signal is transmitted through the shuttle window to a bundle of optical fiber cables mounted in the payload bay near an aft window. The cables carry optical signals from the crew compartment equipment to the OCTW payload bay module. The signals are returned via optical fiber cable to the aft flight deck window, retransmitted through the window, and received by the crew compartment equipment.
TEM Cell Testing of Cable Noise Reduction Techniques from 2 MHz to 200 MHz -- Part 2
NASA Technical Reports Server (NTRS)
Bradley, Arthur T.; Evans, William C.; Reed, Joshua L.; Shimp, Samuel K., III; Fitzpatrick, Fred D.
2008-01-01
This paper presents empirical results of cable noise reduction techniques as demonstrated in a TEM cell operating with radiated fields from 2 - 200 MHz. It is the second part of a two-paper series. The first paper discussed cable types and shield connections. In this second paper, the effects of load and source resistances and chassis connections are examined. For each topic, well established theories are compared to data from a real-world physical system. Finally, recommendations for minimizing cable susceptibility (and thus cable emissions) are presented. There are numerous papers and textbooks that present theoretical analyses of cable noise reduction techniques. However, empirical data is often targeted to low frequencies (e.g. <50 KHz) or high frequencies (>100 MHz). Additionally, a comprehensive study showing the relative effects of various noise reduction techniques is needed. These include the use of dedicated return wires, twisted wiring, cable shielding, shield connections, changing load or source impedances, and implementing load- or source-to-chassis isolation. We have created an experimental setup that emulates a real-world electrical system, while still allowing us to independently vary a host of parameters. The goal of the experiment was to determine the relative effectiveness of various noise reduction techniques when the cable is in the presence of radiated emissions from 2 MHz to 200 MHz.
Observations from the Microgravity Smoldering Combustion (MSC) Ultrasound Imaging System (UIS)
NASA Technical Reports Server (NTRS)
Walther, D.C.; Fernandez-Pello, A. C.; Anthenien, R. A.; Urban, D. L.
1999-01-01
The Microgravity Smoldering Combustion (MSC) experiment is a study of the smolder characteristics of porous combustible materials in a microgravity environment. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal earth gravity. Experiments have been conducted aboard the NASA Space Shuttle in the GAS-CAN, an apparatus requiring completely remote operation. Future GAS-CAN experiments will utilize an ultrasound imaging system (UIS). Thermocouples are currently used to measure temperature and reaction front velocities, but a less intrusive method is desirable, as smolder is affected by heat transfer along the thermocouple. It is expected that the UIS will eventually replace the existing array of thermocouples as a non-intrusive technique without compromising data acquisition. Smoldering is defined as a non-flaming, self-sustaining, propagating, exothermic, surface reaction, deriving its principal heat from heterogeneous oxidation of the fuel. Smolder of cable insulation is of particular concern in the space program; to date there have been a few minor incidents of overheated and charred cables and electrical components reported on Space Shuttle flights. Recently, the establishment of the International Space Station and other space facilities has increased interest in the study of smoldering in microgravity because of the need to preempt the possibility, and/or to minimize the effect of a smolder initiated fire during the operation of these facilities. The ignition and propagation of smolder are examined using both thermocouples and the UIS. The UIS has been implemented into the MSC flight hardware. The system provides information about local permeability variations within a smoldering sample, which can, in turn, be interpreted to track the propagation of the smolder reaction. The method utilizes the observation that transmission of an ultrasonic signal through a porous material increases with increasing permeability. Since a propagating smolder reaction leaves behind a char that is higher in permeability than the original (unburnt) material, ultrasonic transmission can be employed to monitor the progress of the primary reaction front, char evolution (i.e. material left by the smolder reaction), pyrolysis, and condensation fronts.
Experiences with Videotex and Expected Effects of Cable TV on Education in West Germany.
ERIC Educational Resources Information Center
Issing, Ludwig J.
The educational implications and capabilities of Broadcast Videotex, Interactive Videotex, and cable television need to be considered in the context of how education as a profession should react toward the implementation of the "new media." Broadcast Videotex, which is capable of programmed learning as well as subtitling for the hearing…
Aziz, Mina S R; Dessouki, Omar; Samiezadeh, Saeid; Bougherara, Habiba; Schemitsch, Emil H; Zdero, Radovan
2017-08-01
Acetabular fractures potentially account for up to half of all pelvic fractures, while pelvic fractures potentially account for over one-tenth of all human bone fractures. This is the first biomechanical study to assess acetabular fracture fixation using plates versus cables in the presence of a total hip arthroplasty, as done for the elderly. In Phase 1, finite element (FE) models compared a standard plate method versus 3 cable methods for repairing an acetabular fracture (type: anterior column plus posterior hemi-transverse) subjected to a physiological-type compressive load of 2207N representing 3 x body weight for a 75kg person during walking. FE stress maps were compared to choose the most mechanically stable cable method, i.e. lowest peak bone stress. In Phase 2, mechanical tests were then done in artificial hemipelvises to compare the standard plate method versus the optimal cable method selected from Phase 1. FE analysis results showed peak bone stresses of 255MPa (Plate method), 205MPa (Mears cable method), 250MPa (Kang cable method), and 181MPa (Mouhsine cable method). Mechanical tests then showed that the Plate method versus the Mouhsine cable method selected from Phase 1 had higher stiffness (662versus 385N/mm, p=0.001), strength (3210versus 2060N, p=0.009), and failure energy (8.8versus 6.2J, p=0.002), whilst they were statistically equivalent for interfragmentary sliding (p≥0.179) and interfragmentary gapping (p≥0.08). The Plate method had superior mechanical properties, but the Mouhsine cable method may be a reasonable alternative if osteoporosis prevents good screw thread interdigitation during plating. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Operation and Development Status of the Spacecraft Fire Experiments (Saffire)
NASA Technical Reports Server (NTRS)
Ruff, Gary A.; Urban, David L.
2016-01-01
Since 2012, a series of Spacecraft Fire Experiments (Saffire) have been under development by the Spacecraft Fire Safety Demonstration (SFS Demo) project, funded by NASA's Advanced Exploration Systems Division. The overall objective of this project is to reduce the uncertainty and risk associated with the design of spacecraft fire safety systems for NASA's exploration missions. The approach to achieving this goal has been to define, develop, and conduct experiments that address gaps in spacecraft fire safety knowledge and capabilities identified by NASA's Fire Safety System Maturation Team. The Spacecraft Fire Experiments (Saffire-I, -II, and -III) are material flammability tests at length scales that are realistic for a spacecraft fire in low-gravity. The specific objectives of these three experiments are to (1) determine how rapidly a large scale fire grows in low-gravity and (2) investigate the low-g flammability limits compared to those obtained in NASA's normal gravity material flammability screening test. The experiments will be conducted in Orbital ATK's Cygnus vehicle after it has unberthed from the International Space Station. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the atmosphere. This paper discusses the status of the Saffire-I, II, and III experiments followed by a review of the fire safety technology gaps that are driving the development of objectives for the next series of experiments, Saffire-IV, V, and VI.
Experimental testing of flexible barriers for containment of debris flows
DeNatale, Jay S.; Iverson, Richard M.; Major, Jon J.; LaHusen, Richard G.; Fliegel, Gregg L.; Duffy, John D.
1999-01-01
In June 1996, six experiments conducted at the U.S. Geological Survey Debris Flow Flume demonstrated that flexible, vertical barriers constructed of wire rope netting can stop small debris flows. All experimental debris flows consisted of water-saturated gravelly sand with less than two percent finer sediment by weight. All debris flows had volumes of about 10 cubic meters, masses of about 20 metre tons, and impact velocities of 5 to 9 meters per second. In four experiments, the debris flow impacted pristine, unreformed barriers of varying design; in the other two experiments, the debris flow impacted barriers already loaded with sediment from a previous flow. Differences in barrier design led to differences in barrier performance. Experiments were conducted with barriers constructed of square-mesh wire-rope netting with 30centimeter, 20centimeter, and 15 centimeter mesh openings as well as 30centimeter diameter interlocking steel rings. In all cases, sediment cascading downslope at the leading edge of the debris flows tended to spray through the nets. Nets fitted with finer-mesh chain link or chicken wire liners contained more sediment than did unlined nets, and a ring net fitted with a synthetic silt screen liner contained nearly 100 percent of the sediment. Irreversible net displacements of up to 2 meters and friction brake engagement on the support and anchor cables dissipated some of the impact energy. However, substantial forces developed in the steel support columns and the lateral and tie-back anchor cables attached to these columns. As predicted by elementary mechanics, the anchor cables experienced larger tensile forces when the support columns were hinged at the base rather than bolted rigidly to the foundation. Measured loads in the lateral anchor cables exceeded those in the tie-back anchor cables and the load cell capacity of 45 kilo-Newtons. Measurements also indicated that the peak loads in the tie- back anchors were highly transient and occurred at the points of maximum momentum impulse to the net.
NASA Astrophysics Data System (ADS)
Wang, Rong; Li, Zhen-hua; Bian, Bao-min; Liu, Cheng-lin; Ji, Yun-jing
2014-12-01
Accurate measurements of forces applied to the optical cable reels with high spinning speeds, will render information on the breakdown of optical fibers, and thus improve the odds of success and un-winding efficiency. In this paper we analyze and deduce the cable wire stress at high pay-off speeds. A high-sensitive opti-mechanical testing sensory device is designed to measure both the axial tension of the cables and the radial pressure of the cable reels at varying stress points simultaneously. The time resolution of this new device is less than 0.015ms, the response time is up to 15μs, and its sensitivity is about 500pc/N, which satisfies the mechanical testing requirements at high spinning speeds. In addition, the spinning speed of 260m/s led to the break-down of the optical fibers, and the spinning speed of 250m/s tested finally led to a deceleration near the end of the broken fibers. It is obvious that this kit can meet the requirement to obtain the periodic signals of the varying forces for each layer and each turn of optical fiber cables. Moreover, we found that the pay-off fiber cable is safe with the unwinding speed of 250m/s and the break-down of optical cables happens during the deceleration process. However, it is under the unwinding speed of 260m/s that pay-off fiber cables broke during the experiment. The abnormal breakdown signals are captured at these unwinding speeds, respectively.
Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments.
Vasquez-Cardenas, Diana; van de Vossenberg, Jack; Polerecky, Lubos; Malkin, Sairah Y; Schauer, Regina; Hidalgo-Martinez, Silvia; Confurius, Veronique; Middelburg, Jack J; Meysman, Filip J R; Boschker, Henricus T S
2015-09-01
Recently, a novel electrogenic type of sulphur oxidation was documented in marine sediments, whereby filamentous cable bacteria (Desulfobulbaceae) are mediating electron transport over cm-scale distances. These cable bacteria are capable of developing an extensive network within days, implying a highly efficient carbon acquisition strategy. Presently, the carbon metabolism of cable bacteria is unknown, and hence we adopted a multidisciplinary approach to study the carbon substrate utilization of both cable bacteria and associated microbial community in sediment incubations. Fluorescence in situ hybridization showed rapid downward growth of cable bacteria, concomitant with high rates of electrogenic sulphur oxidation, as quantified by microelectrode profiling. We studied heterotrophy and autotrophy by following (13)C-propionate and -bicarbonate incorporation into bacterial fatty acids. This biomarker analysis showed that propionate uptake was limited to fatty acid signatures typical for the genus Desulfobulbus. The nanoscale secondary ion mass spectrometry analysis confirmed heterotrophic rather than autotrophic growth of cable bacteria. Still, high bicarbonate uptake was observed in concert with the development of cable bacteria. Clone libraries of 16S complementary DNA showed numerous sequences associated to chemoautotrophic sulphur-oxidizing Epsilon- and Gammaproteobacteria, whereas (13)C-bicarbonate biomarker labelling suggested that these sulphur-oxidizing bacteria were active far below the oxygen penetration. A targeted manipulation experiment demonstrated that chemoautotrophic carbon fixation was tightly linked to the heterotrophic activity of the cable bacteria down to cm depth. Overall, the results suggest that electrogenic sulphur oxidation is performed by a microbial consortium, consisting of chemoorganotrophic cable bacteria and chemolithoautotrophic Epsilon- and Gammaproteobacteria. The metabolic linkage between these two groups is presently unknown and needs further study.
Instrumentation techniques for monitoring shock and detonation waves
NASA Astrophysics Data System (ADS)
Dick, R. D.; Parrish, R. L.
1985-09-01
CORRTEX (Continuous Reflectometry for Radius Versus Time Experiments), SLIFER (Shorted Location Indication by Frequency of Electrical Resonance), and pin probes were used to monitor several conditions of blasting such as the detonation velocity of the explosive, the functioning of the stemming column confining the explosive, and rock mass motion. CORRTEX is a passive device that employs time-domain reflectometry to interrogate the two-way transit time of a coaxial cable. SLIFER is an active device that monitors the changing frequency resulting from a change in length of a coaxial cable forming an element of an oscillator circuit. Pin probes in this application consist of RG-174 coaxial cables, each with an open circuit, placed at several known locations within the material. Each cable is connected to a pulse-forming network and a voltage source. When the cables are shorted by the advancing wave, time-distance data are produced from which a velocity can be computed. Each technique, installation of the gauge, examples of the signals, and interpretation of the records are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, Samuel W.; Fifield, Leonard S.; Hartman, Trenton S.
This Pacific Northwest National Laboratory (PNNL) milestone report describes progress to date on the investigation of nondestructive test (NDE) methods focusing particularly on local measurements that provide key indicators of cable aging and damage. The work includes a review of relevant literature as well as hands-on experimental verification of inspection capabilities. As NPPs consider applying for second, or subsequent, license renewal (SLR) to extend their operating period from 60 years to 80 years, it important to understand how the materials installed in plant systems and components will age during that time and develop aging management programs (AMPs) to assure continuedmore » safe operation under normal and design basis events (DBE). Normal component and system tests typically confirm the cables can perform their normal operational function. The focus of the cable test program is directed toward the more demanding challenge of assuring the cable function under accident or DBE. Most utilities already have a program associated with their first life extension from 40 to 60 years. Regrettably, there is neither a clear guideline nor a single NDE that can assure cable function and integrity for all cables. Thankfully, however, practical implementation of a broad range of tests allows utilities to develop a practical program that assures cable function to a high degree. The industry has adopted 50% elongation at break (EAB) relative to the un-aged cable condition as the acceptability standard. All tests are benchmarked against the cable EAB test. EAB is a destructive test so the test programs must apply an array of other NDE tests to assure or infer the overall set of cable’s system integrity. These cable NDE programs vary in rigor and methodology. As the industry gains experience with the efficacy of these programs, it is expected that implementation practice will converge to a more common approach. This report addresses the range of local NDE cable tests that are or could be practically implemented in a field test situation. These tests include: visual, infrared thermography, interdigital capacitance, indenter, relaxation time indenter, dynamic mechanical analyzer, infrared/near-infrared spectrometry, ultrasound, and distributed fiber optic temperature measurement.« less
Gutrich, J.J.; VanGelder, E.; Loope, L.
2007-01-01
Globally, many invasive alien species have caused extensive ecological and economic damage from either accidental or intentional introduction. The red imported fire ant, Solenopsis invicta, has created billions of dollars in costs annually, spreading as an invasive species across the southern United States. In 1998, the red imported fire ant spread into California creating a highly probable future introduction via shipped products to Hawaii. This paper presents the estimation of potential economic impacts of the red imported fire ant (RIFA) to the state of Hawaii. Evaluation of impacts focuses on the economic sectors of (1) households, (2) agriculture (cattle and crop production), (3) infrastructure (cemeteries, churches, cities, electrical, telephone, and cable services, highways, hospitals and schools), (4) recreation, tourism and business (hotels/resort areas, golf courses, commercial businesses and tourists), and (5) government expenditures (with minimal intervention). The full annual economic costs of the red imported fire ant to Hawaii are estimated (in US$ 2006) to be $211 million/year, comprised of $77 million in damages and expenditures and $134 million in foregone outdoor opportunities to households and tourists. The present value of the projected costs of RIFA over a 20-year period after introduction total $2.5 billion. RIFA invasions across the globe indicate that economic cost-effective action in Hawaii entails implementation of prevention, early detection and rapid response treatment programs for RIFA. ?? 2007 Elsevier Ltd. All rights reserved.
Scaled Jump in Gravity-Reduced Virtual Environments.
Kim, MyoungGon; Cho, Sunglk; Tran, Tanh Quang; Kim, Seong-Pil; Kwon, Ohung; Han, JungHyun
2017-04-01
The reduced gravity experienced in lunar or Martian surfaces can be simulated on the earth using a cable-driven system, where the cable lifts a person to reduce his or her weight. This paper presents a novel cable-driven system designed for the purpose. It is integrated with a head-mounted display and a motion capture system. Focusing on jump motion within the system, this paper proposes to scale the jump and reports the experiments made for quantifying the extent to which a jump can be scaled without the discrepancy between physical and virtual jumps being noticed by the user. With the tolerable range of scaling computed from these experiments, an application named retargeted jump is developed, where a user can jump up onto virtual objects while physically jumping in the real-world flat floor. The core techniques presented in this paper can be extended to develop extreme-sport simulators such as parasailing and skydiving.
Practical Applications of Cables and Ropes in the ISS Countermeasures System
NASA Technical Reports Server (NTRS)
Moore, Cherice; Svetlik, Randall; Williams, Antony
2017-01-01
As spaceflight durations have increased over the last four decades, the effects of weightlessness on the human body are far better understood, as are the countermeasures. A combination of aerobic and resistive exercise devices contribute to countering the losses in muscle strength, aerobic fitness, and bone strength of today's astronauts and cosmonauts that occur during their missions on the International Space Station. Creation of these systems has been a dynamically educational experience for designers and engineers. The ropes and cables in particular have experienced a wide range of challenges, providing a full set of lessons learned that have already enabled improvements in on-orbit reliability by initiating system design improvements. This paper examines the on-orbit experience of ropes and cables in several exercise devices and discusses the lessons learned from these hardware items, with the goal of informing future system design.
George T. Cvetkovich; Patricia L. Winter
2008-01-01
This report presents results from a study of San Bernardino National Forest community residentsâ experiences with and perceptions of fire, fire management, and the Forest Service. Using self-administered surveys and focus group discussions, we found that participants had personal experiences with fire, were concerned about fire, and felt knowledgeable about effective...
NASA Astrophysics Data System (ADS)
Hejtmánek, M.; Neue, G.; Voleš, P.
2015-06-01
This article is devoted to the software design and development of a high-speed readout application used for interfacing particle detectors via the CoaXPress communication standard. The CoaXPress provides an asymmetric high-speed serial connection over a single coaxial cable. It uses a widely available 75 Ω BNC standard and can operate in various modes with a data throughput ranging from 1.25 Gbps up to 25 Gbps. Moreover, it supports a low speed uplink with a fixed bit rate of 20.833 Mbps, which can be used to control and upload configuration data to the particle detector. The CoaXPress interface is an upcoming standard in medical imaging, therefore its usage promises long-term compatibility and versatility. This work presents an example of how to develop DAQ system for a pixel detector. For this purpose, a flexible DAQ card was developed using the XILINX Spartan 6 FPGA. The DAQ card is connected to the framegrabber FireBird CXP6 Quad, which is plugged in the PCI Express bus of the standard PC. The data transmission was performed between the FPGA and framegrabber card via the standard coaxial cable in communication mode with a bit rate of 3.125 Gbps. Using the Medipix2 Quad pixel detector, the framerate of 100 fps was achieved. The front-end application makes use of the FireBird framegrabber software development kit and is suitable for data acquisition as well as control of the detector through the registers implemented in the FPGA.
NASA Technical Reports Server (NTRS)
Theofylaktos, Onoufrios; Warner, Joseph D.; Sheehe, Charles J.
2012-01-01
An experiment was performed to determine the degradation in the bit-error-rate (BER) in the high-data-rate cables chosen for the Orion Service Module due to extreme launch conditions of vibrations with a magnitude of 60g. The cable type chosen for the Orion Service Module was no. 8 quadrax cable. The increase in electrical noise induced on these no. 8 quadrax cables was measured at the NASA Glenn vibration facility in the Structural Dynamics Laboratory. The intensity of the vibrations was set at 32g, which was the maximum available level at the facility. The cable lengths used during measurements were 1, 4, and 8 m. The noise measurements were done in an analog fashion using a performance network analyzer (PNA) by recording the standard deviation of the transmission scattering parameter S(sub 21) over the frequency range of 100 to 900 MHz. The standard deviation of S(sub 210 was measured before, during, and after the vibration of the cables at the vibration facility. We observed an increase in noise by a factor of 2 to 6. From these measurements we estimated the increase expected in the BER for a cable length of 25 m and concluded that these findings are large enough that the noise increase due to vibration must be taken in to account for the design of the communication system for a BER of 10(exp -8).
Thin film conductors for self-equalizing cables
NASA Astrophysics Data System (ADS)
Owen, G.; Trutna, W. R.; Orsley, T. J.; Lucia, F.; Daly, C. B.
2017-10-01
Self-equalizing cables using hollow conductors with wall thickness less than the skin depth were proposed in 1929. However, they do not appear ever to have been widely used, although the idea has resurfaced and been refined from time to time. In the early 2000's, self-equalizing conductors consisting of solid magnetic steel cores coated with silver were developed by W.L. Gore, and used in their 2.5 Gb/s "Eye-Opener" cables, although higher speed versions never appeared. We have revived the original 1929 idea, proposing to use glass as a solid insulating core. This technology can potentially work at frequencies of many 10's of GHz. Possible uses include short range GHz links such as USB and Thunderbolt, and intra-rack interconnections in data centers. Our feasibility experiments have validated the principle. Copper coated glass fibers can, in principle, be manufactured, but in these tests, the conductors were capillaries internally coated with silver as these are easily obtainable, relatively inexpensive and serve to test the concept. The performance of these experimental twin lead cables corresponds to calculations, confirming the general principle. By calculation, we have compared the performance of cables made from copper-on-insulator conductors to that of similar cables made with solid copper conductors, and verified that copper-on-insulator cables have significantly less frequency dependent loss. We have also made and tested cables with copper on PEEK conductors as surrogates for copper on glass fiber.
Atmospheric Science Data Center
2013-01-23
FIRE III ACE Data Sets The First International Satellite Cloud ... Regional Experiment (FIRE) - Arctic Cloud Experiment (ACE) was conducted April through July of 1998. It was held in conjunction with ... Heat Budget of the Arctic Ocean (SHEBA) Experiment. The FIRE-ACE focused on all aspects of Arctic cloud systems. The main facility was ...
Reduce Nb3Sn Strand Deformation when Fabricating High Jc Rutherford Cables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Xuan
2012-12-17
During Phase I, our efforts were to reduce subelements deformation when fabricating Nb3Sn Rutherford cables. Our first focus is on 217-sublement tube type strand. We successfully made a few billets in OD tube with different Cu spacing between subelements, and supplied the strands to Fermi Lab for cabling. Through the rolling test characterization, these types of strands did not have enough bonding between subelements to withstand the deformation. We saw copper cracking between subelements in the deformed strands. We scaled up the billet from OD to 1.5 OD, and made two billets. This greatly improves the bonding. There is nomore » copper cracking in the deformed strands when we scaled up the diameter of the billets. Fermi Lab successfully made cables using one of this improved strands. In their cables, no Cu cracking and no filament bridging occurred. We also successfully made a couple of billets with hex OD and round ID subelements for 61-subelement restack. Due to the lack of bonding, we could not judge its cabling property properly. But we know through this experiment, we could keep the Nb round, once we select the proper Cu spacing.« less
Development of wildfires in Australia over the last century
NASA Astrophysics Data System (ADS)
Nieradzik, Lars Peter; Haverd, Vanessa; Briggs, Peter; Canadell, Josep G.; Smith, Ben
2017-04-01
Wildfires and their emissions are key biospheric processes in the modeling of the carbon cycle that still are insufficiently understood. In Australia, fire emissions constitute a large flux of carbon from the biosphere to the atmosphere of approximately 1.3 times larger than the annual fossil fuel emissions. In addition, fire plays a big role in determining the composition of vegetation which in turn affects land-atmosphere fluxes. Annualy, up to 4% of the vegetated land-surface area is burned which amounts to up to 3% of global NPP and results in the reslease of about 2 Pg carbon into the atmosphere. There are indications that burned area has decreased globally over recent decades but so far there is not a clear trend in the development in fire-intensity and fuel availability. Net emissions from wildfires are not generally included in global and regional carbon budgets, because it is assumed that gross fire emissions are in balance with post-fire carbon uptake by recovering vegetation. This is a valid assumption as long as climate and fire regimes are in equilibrium, but not when the climate and other drivers are changing. We present a study on the behaviour of wildfires on the Australian continent over the last century (1911 - 2012) introducing the novel fire model BLAZE (BLAZe induced biosphere-atmosphere flux Estimator) that has been designed to address the feedbacks between climate, fuel loads, and fires. BLAZE is used within the Australian land-surface model CABLE (Community Atmophere-Biosphere-Land Exchange model). The study shows two significant outcomes: A regional shift in fire patterns shift during this century due to fire suppression and greening effects as well as an increase of potential fire-line intensity (the risk that a fire becomes more intense), especially in regions where most of Australia's population resides. This strongly emphasises the need to further investigate fire dynamics under future climate scenarios. The fire model BLAZE has been developed at the CSIRO Oceans and Atmosphere, Canberra, Australia and will be part of the upcoming release of the dynamic global vegetation model LPJ-GUESS version 4.1 within the MERGE project at Lund University, Sweden. It will also be included in the EC-Earth ESM within the EU Horizon 2020 project CRESCENDO.
NASA Astrophysics Data System (ADS)
Wang, Guiji; Chen, Xuemiao; Cai, Jintao; Zhang, Xuping; Chong, Tao; Luo, Binqiang; Zhao, Jianheng; Sun, Chengwei; Tan, Fuli; Liu, Cangli; Wu, Gang
2016-06-01
A high current pulsed power generator CQ-3-MMAF (Multi-Modules Assembly Facility, MMAF) was developed for material dynamics experiments under ramp wave and shock loadings at the Institute of Fluid Physics (IFP), which can deliver 3 MA peak current to a strip-line load. The rise time of the current is 470 ns (10%-90%). Different from the previous CQ-4 at IFP, the CQ-3-MMAF energy is transmitted by hundreds of co-axial high voltage cables with a low impedance of 18.6 mΩ and low loss, and then hundreds of cables are reduced and converted to tens of cables into a vacuum chamber by a cable connector, and connected with a pair of parallel metallic plates insulated by Kapton films. It is composed of 32 capacitor and switch modules in parallel. The electrical parameters in short circuit are with a capacitance of 19.2 μF, an inductance of 11.7 nH, a resistance of 4.3 mΩ, and working charging voltage of 60 kV-90 kV. It can be run safely and stable when charged from 60 kV to 90 kV. The vacuum of loading chamber can be up to 10-2 Pa, and the current waveforms can be shaped by discharging in time sequences of four groups of capacitor and switch modules. CQ-3-MMAF is an adaptive machine with lower maintenance because of its modularization design. The COMSOL Multi-physics® code is used to optimize the structure of some key components and calculate their structural inductance for designs, such as gas switches and cable connectors. Some ramp wave loading experiments were conducted to check and examine the performances of CQ-3-MMAF. Two copper flyer plates were accelerated to about 3.5 km/s in one shot when the working voltage was charged to 70 kV. The velocity histories agree very well. The dynamic experiments of some polymer bonded explosives and phase transition of tin under ramp wave loadings were also conducted. The experimental data show that CQ-3-MMAF can be used to do material dynamics experiments in high rate and low cost shots. Based on this design concept, the peak current of new generators can be increased to 5-6 MA and about 100 GPa ramp stress can be produced on the metallic samples for high pressure physics, and a conceptual design of CQ-5-MMAF was given.
Wang, Guiji; Chen, Xuemiao; Cai, Jintao; Zhang, Xuping; Chong, Tao; Luo, Binqiang; Zhao, Jianheng; Sun, Chengwei; Tan, Fuli; Liu, Cangli; Wu, Gang
2016-06-01
A high current pulsed power generator CQ-3-MMAF (Multi-Modules Assembly Facility, MMAF) was developed for material dynamics experiments under ramp wave and shock loadings at the Institute of Fluid Physics (IFP), which can deliver 3 MA peak current to a strip-line load. The rise time of the current is 470 ns (10%-90%). Different from the previous CQ-4 at IFP, the CQ-3-MMAF energy is transmitted by hundreds of co-axial high voltage cables with a low impedance of 18.6 mΩ and low loss, and then hundreds of cables are reduced and converted to tens of cables into a vacuum chamber by a cable connector, and connected with a pair of parallel metallic plates insulated by Kapton films. It is composed of 32 capacitor and switch modules in parallel. The electrical parameters in short circuit are with a capacitance of 19.2 μF, an inductance of 11.7 nH, a resistance of 4.3 mΩ, and working charging voltage of 60 kV-90 kV. It can be run safely and stable when charged from 60 kV to 90 kV. The vacuum of loading chamber can be up to 10(-2) Pa, and the current waveforms can be shaped by discharging in time sequences of four groups of capacitor and switch modules. CQ-3-MMAF is an adaptive machine with lower maintenance because of its modularization design. The COMSOL Multi-physics® code is used to optimize the structure of some key components and calculate their structural inductance for designs, such as gas switches and cable connectors. Some ramp wave loading experiments were conducted to check and examine the performances of CQ-3-MMAF. Two copper flyer plates were accelerated to about 3.5 km/s in one shot when the working voltage was charged to 70 kV. The velocity histories agree very well. The dynamic experiments of some polymer bonded explosives and phase transition of tin under ramp wave loadings were also conducted. The experimental data show that CQ-3-MMAF can be used to do material dynamics experiments in high rate and low cost shots. Based on this design concept, the peak current of new generators can be increased to 5-6 MA and about 100 GPa ramp stress can be produced on the metallic samples for high pressure physics, and a conceptual design of CQ-5-MMAF was given.
Physically Accurate Soil Freeze-Thaw Processes in a Global Land Surface Scheme
NASA Astrophysics Data System (ADS)
Cuntz, Matthias; Haverd, Vanessa
2018-01-01
The model Soil-Litter-Iso (SLI) calculates coupled heat and water transport in soil. It was recently implemented into the Australian land surface model CABLE, which is the land component of the Australian Community Climate and Earth System Simulator (ACCESS). Here we extended SLI to include accurate freeze-thaw processes in the soil and snow. SLI provides thence an implicit solution of the energy and water balances of soil and snow as a standalone model and within CABLE. The enhanced SLI was tested extensively against theoretical formulations, laboratory experiments, field data, and satellite retrievals. The model performed well for all experiments at wide-ranging temporal and spatial scales. SLI melts snow faster at the end of the cold season compared to observations though because there is no subgrid variability within SLI given by the implicit, coupled solution of energy and water. Combined CABLE-SLI shows very realistic dynamics and extent of permafrost on the Northern hemisphere. It illustrated, however, also the limits of possible comparisons between large-scale land surface models and local permafrost observations. CABLE-SLI exhibits the same patterns of snow depth and snow water equivalent on the Northern hemisphere compared to satellite-derived observations but quantitative comparisons depend largely on the given meteorological input fields. Further extension of CABLE-SLI with depth-dependence of soil carbon will allow realistic projections of the development of permafrost and frozen carbon stocks in a changing climate.
Wu, Jianfeng; Wang, Yu; Li, Jianqing; Song, Aiguo
2016-01-01
For suppressing the crosstalk problem due to wire resistances and contacted resistances of the long flexible cables in tactile sensing systems, we present a novel two-wire fast readout approach for the two-dimensional resistive sensor array in shared row-column fashion. In the approach, two wires are used for every driving electrode and every sampling electrode in the resistive sensor array. The approach with a high readout rate, though it requires a large number of wires and many sampling channels, solves the cable crosstalk problem. We also verified the approach’s performance with Multisim simulations and actual experiments. PMID:27213373
A study analysis of cable-body systems totally immersed in a fluid stream
NASA Technical Reports Server (NTRS)
Delaurier, J. D.
1972-01-01
A general stability analysis of a cable-body system immersed in a fluid stream is presented. The analytical portion of this analysis treats the system as being essentially a cable problem, with the body dynamics giving the end conditions. The mathematical form of the analysis consists of partial differential wave equations, with the end and auxiliary conditions being determined from the body equations of motion. The equations uncouple to give a lateral problem and a longitudinal problem as in first order airplane dynamics. A series of tests on a tethered wind tunnel model provide a comparison of the theory with experiment.
NASA Astrophysics Data System (ADS)
Speece, M. A.; Nesladek, N. J.; Kammerer, C.; Maclaughlin, M.; Wang, H. F.; Lord, N. E.
2017-12-01
We conducted experiments in the Underground Education Mining Center on the Montana Tech campus, Butte, Montana, to make a direct comparison between Digital Acoustic Sensing (DAS) and three-component geophones in a mining setting. The sources used for this project where a vertical sledgehammer, oriented shear sledgehammer, and blasting caps set off in both unstemmed and stemmed drillholes. Three-component Geospace 20DM geophones were compared with three different types of fiber-optic cable: (1) Brugg strain, (2) Brugg temperature, and (3) Optical Cable Corporation strain. We attached geophones to the underground mine walls and on the ground surface above the mine. We attached fiber-optic cables to the mine walls and placed fiber-optic cable in boreholes drilled through an underground pillar. In addition, we placed fiber-optic cables in a shallow trench at the surface of the mine. We converted the DAS recordings from strain rate to strain prior to comparison with the geophone data. The setup of the DAS system for this project led to a previously unknown triggering problem that compromised the early samples of the DAS traces often including the first-break times on the DAS records. Geophones clearly recorded the explosives; however, the large amount of energy and its close distance from the fiber-optic cables seemed to compromise the entire fiber loop. The underground hammer sources produced a rough match between the DAS records and the geophone records. However, the sources on the surface of the mine, specifically the sources oriented inline with the fiber-optic cables, produced a close match between the fiber-optic traces and the geophone traces. All three types of fiber-optic cable that were in the mine produced similar results, and one type did not clearly outperform the others. Instead, the coupling of the cable to rock appears to be the most important factor determining DAS data quality. Moreover, we observed the importance of coupling in the boreholes, where fiber-optic cables that were pressed against the rock face with a spacer outperformed fiber-optic cables that were fully embedded within the grout filling the inside of the borehole.
James D. McIver; Scott L. Stephens; James K. Agee; Jamie Barbour; Ralph E. J. Boerner; Carl B. Edminster; Karen L. Erickson; Kerry L. Farris; Christopher J. Fettig; Carl E. Fiedler; Sally Haase; Stephen C. Hart; Jon E. Keeley; Eric E. Knapp; John F. Lehmkuhl; Jason J. Moghaddas; William Otrosina; Kenneth W. Outcalt; Dylan W. Schwilk; Carl N. Skinner; Thomas A. Waldrop; C. Phillip Weatherspoon; Daniel A. Yaussy; Andrew Youngblood; Steve Zack
2012-01-01
The 12-site National Fire and Fire Surrogate study (FFS) was a multivariate experiment that evaluated ecological consequences of alternative fuel-reduction treatments in seasonally dry forests of the US. Each site was a replicated experiment with a common design that compared an un-manipulated control, prescribed fire, mechanical and mechanical + fire treatments....
History of Fire Events in the U.S. Commercial Nuclear Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bijan Najafi; Joglar-Biloch, Francisco; Kassawara, Robert P.
2002-07-01
Over the past decade, interest in performance-based fire protection has increased within the nuclear industry. In support of this growing interest, in 1997 the Electric Power Research Institute (EPRI) developed a long-range plan to develop/improve data and tools needed to support Risk-Informed/Performance-Based fire protection. This plan calls for continued improvement in collection and use of information obtained from fire events at nuclear plants. The data collection process has the objectives of improving the insights gained from such data and reducing the uncertainty in fire risk and fire modeling methods in order to make them a more reliable basis for performancemore » based fire protection programs. In keeping with these objectives, EPRI continues to collect, review and analyze fire events in support of the nuclear industry. EPRI collects these records in cooperation with the Nuclear Electric Insurance Limited (NEIL), by compiling public fire event reports and by direct solicitation of U.S. nuclear facilities. EPRI fire data collection project is based on the principle that the understanding of history is one of the cornerstones of improving fire protection technology and practice. Therefore, the goal has been to develop and maintain a comprehensive database of fire events with flexibility to support various aspects of fire protection engineering. With more than 1850 fire records over a period of three decades and 2400 reactor years, this is the most comprehensive database of nuclear power industry fire events in existence today. In general, the frequency of fires in the U.S. commercial nuclear industry remains constant. In few cases, e.g., transient fires and fires in BWR offgas/recombiner systems, where either increasing or decreasing trends are observed, these trends tend to slow after 1980. The key issues in improving quality of the data remain to be consistency of the recording and reporting of fire events and difficulties in collection of records. EPRI has made significant progress towards improving the quality of the fire events data through use of multiple collection methods as well as its review and verification. To date EPRI has used this data to develop a generic fire ignition frequency model for U.S. nuclear power industry (Ref. 1, 4 and 5) as well as to support other models in support of EPRI Fire Risk Methods such as a cable fire manual suppression model. EPRI will continue its effort to collect and analyze operating data to support risk informed/performance based fire safety engineering, including collection and analysis of impairment data for fire protection systems and features. This paper provides details on the collection and application of fire events to risk informed/performance based fire protection. The paper also provides valuable insights into improving both collection and use of fire events data. (authors)« less
NASA Technical Reports Server (NTRS)
Moores, Greg; Heller, R. P.; Sutanto, Surja; Dugal-Whitehead, Norma R.
1992-01-01
Unexpected and undesirable arcing on dc power systems can produce hazardous situations aboard space flights. The potential for fire and shock might exist in a situation where there is a broken conductor, a loose power connection, or a break in the insulation of the power cable. Such arcing has been found to be reproducible in a laboratory environment. Arcing tests show that the phenomena can last for several seconds and yet be undetectable by present protection schemes used in classical power relaying and remote power controller applications. This paper characterizes the arcing phenomena and suggests future research that is needed.
102. Interior view of utilidor passageway link between building nos. ...
102. Interior view of utilidor passageway link between building nos. 101 and 102 showing waveguides on left and cable tray system on right sides. Note fire suppression water supply piping (upper center). Small maintenance 3-wheel vehicle at center (Note: similar vehicles still in use in 2001.) Official photograph BMEWS Project by Hansen, Photographic Services, Riverton, NJ, BMEWS, clear as negative no. A-101123. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
Early experience with a novel nonmetallic cable in reconstructive hip surgery.
Ting, Nicholas T; Wera, Glenn D; Levine, Brett R; Della Valle, Craig J
2010-09-01
Metallic wires and cables are commonly used in primary and revision THA for fixation of periprosthetic fractures and osteotomies of the greater trochanter. These systems provide secure fixation and high healing rates but fraying, third-body generation, accelerated wear of the bearing surface, and injury to the surgical team remain concerning. We determined the rate of cable failure, union, and complications associated with a novel, nonmetallic cerclage cable in periprosthetic fracture and osteotomy fixation during THA. We retrospectively reviewed 29 patients who had primary and revision THAs using nonmetallic cables. Indications for use included fixation of an extended trochanteric osteotomy, intraoperative fracture of the proximal femur, strut allograft fixation, and a Vancouver B1 periprosthetic fracture of the femur. All patients were evaluated clinically and radiographically immediately postoperatively, at 3 weeks, 6 weeks, 3 months, and then annually thereafter. The minimum followup was 13 months (mean, 21 months; range, 13-30 months). Two of the 29 patients (7%) developed a nonunion; all remaining osteotomies, fractures and allografts had healed at the time of most recent evaluation. Four patients (14%) dislocated postoperatively; two were treated successfully with closed reduction, while the other two required reoperation. We identified no evidence of breakage or other complications directly attributable to the cables. The nonmetallic periprosthetic cables used in this series provided adequate fixation to allow for both osteotomy and fracture healing. We did not observe any complications directly related to the cables. Level of Evidence Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Rapid Redox Signal Transmission by “Cable Bacteria” beneath a Photosynthetic Biofilm
Meysman, F. J. R.
2014-01-01
Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These “cable bacteria” are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferring these electrons along their longitudinal axes to oxygen present near the sediment-water interface. In the present work, we investigated the relationship between cable bacteria and a photosynthetic algal biofilm. In a first experiment, we investigated sediment that hosted both cable bacteria and a photosynthetic biofilm and tested the effect of an imposed diel light-dark cycle by continuously monitoring sulfide at depth. Changes in photosynthesis at the sediment surface had an immediate and repeatable effect on sulfide concentrations at depth, indicating that cable bacteria can rapidly transmit a geochemical effect to centimeters of depth in response to changing conditions at the sediment surface. We also observed a secondary response of the free sulfide at depth manifest on the time scale of hours, suggesting that cable bacteria adjust to a moving oxygen front with a regulatory or a behavioral response, such as motility. Finally, we show that on the time scale of days, the presence of an oxygenic biofilm results in a deeper and more acidic suboxic zone, indicating that a greater oxygen supply can enable cable bacteria to harvest a greater quantity of electrons from marine sediments. Rapid acclimation strategies and highly efficient electron harvesting are likely key advantages of cable bacteria, enabling their success in high sulfide generating coastal sediments. PMID:25416774
Rapid redox signal transmission by "Cable Bacteria" beneath a photosynthetic biofilm.
Malkin, S Y; Meysman, F J R
2015-02-01
Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These "cable bacteria" are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferring these electrons along their longitudinal axes to oxygen present near the sediment-water interface. In the present work, we investigated the relationship between cable bacteria and a photosynthetic algal biofilm. In a first experiment, we investigated sediment that hosted both cable bacteria and a photosynthetic biofilm and tested the effect of an imposed diel light-dark cycle by continuously monitoring sulfide at depth. Changes in photosynthesis at the sediment surface had an immediate and repeatable effect on sulfide concentrations at depth, indicating that cable bacteria can rapidly transmit a geochemical effect to centimeters of depth in response to changing conditions at the sediment surface. We also observed a secondary response of the free sulfide at depth manifest on the time scale of hours, suggesting that cable bacteria adjust to a moving oxygen front with a regulatory or a behavioral response, such as motility. Finally, we show that on the time scale of days, the presence of an oxygenic biofilm results in a deeper and more acidic suboxic zone, indicating that a greater oxygen supply can enable cable bacteria to harvest a greater quantity of electrons from marine sediments. Rapid acclimation strategies and highly efficient electron harvesting are likely key advantages of cable bacteria, enabling their success in high sulfide generating coastal sediments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Progress in distributed fiber optic temperature sensing
NASA Astrophysics Data System (ADS)
Hartog, Arthur H.
2002-02-01
The paper reviews the adoption of distributed temperature sensing (DTS) technology based on Raman backscatter. With one company alone having installed more than 400 units, the DTS is becoming accepted practice in several applications, notably in energy cable monitoring, specialised fire detection and oil production monitoring. The paper will provide case studies in these applications. In each case the benefit (whether economic or safety) will be addressed, together with key application engineering issues. The latter range from the selection and installation of the fibre sensor, the specific performance requirements of the opto-electronic equipment and the issues of data management. The paper will also address advanced applications of distributed sensing, notably the problem of monitoring very long ranges, which apply in subsea DC energy cables or in subsea oil wells linked to platforms through very long (e.g. 30km flowlines). These applications are creating the need for a new generation of DTS systems able to achieve measurements at up to 40km with very high temperature resolution, without sacrificing spatial resolution. This challenge is likely to drive the development of new concepts in the field of distributed sensing.
NASA Astrophysics Data System (ADS)
Baranov, M. I.; Rudakov, S. V.
2018-03-01
The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.
Fiber-optic security monitoring sensor
NASA Astrophysics Data System (ADS)
Englund, Marja; Ipatti, Ari; Karioja, Pentti
1997-09-01
In security monitoring, fiber-optic sensors are advantageous because strong and rugged optical fibers are thin, light, flexible and immune to electromagnetic interference. Optical fibers packaged into cables, such as, building and underground cables, can be used to detect even slightest disturbances, movements, vibrations, pressure changes and impacts along their entire length. When running an optical cable around a structure, and when using speckle pattern recognition technique for alarm monitoring, the distributed monitoring of the structure is possible. The sensing cable can be strung along fences, buried underground, embedded into concrete, mounted on walls, floors and ceilings, or wrapped around the specific components. In this paper, a fiber-optic security monitoring sensor based on speckle pattern monitoring is described. The description of the measuring method and the results of the experimental fiber installations are given. The applicability of embedded and surface mounted fibers to monitor the pressure and impact induced vibrations of fences and concrete structures as well as the loosening of critical parts in a power plant machinery were demonstrated in field and laboratory conditions. The experiences related to the applications and optical cable types are also discussed.
Fiber optic security monitoring sensor
NASA Astrophysics Data System (ADS)
Englund, Marja; Ipatti, Ari; Karioja, Pentti
1997-09-01
In security monitoring, fiber-optic sensors are advantageous because strong and rugged optical fibers are thin, light, flexible and immune to electromagnetic interference. Optical fibers packaged into cables, such as, building and underground cables, can be used to detect even slightest disturbances, movements, vibrations, pressure changes and impacts along their entire length. When running an optical cable around a structure, and when using speckle pattern recognition technique for alarm monitoring, the distributed monitoring of the structure is possible. The sensing cable can be strung along fences, buried underground, embedded into concrete, mounted on walls, floors and ceilings, or wrapped around the specific components. In this paper, a fiber-optic security monitoring sensor based on speckle pattern monitoring is described. The description of the measuring method and the results of the experimental fiber installations are given. The applicability of embedded and surface mounted fibers to monitor the pressure and impact induced vibrations of fences and concrete structures as well as the loosening of critical parts in a power plant machinery were demonstrated in field and laboratory conditions. The experiences related to the applications and optical cable types are also discussed.
Zhu, Chen; Chen, Yizheng; Zhuang, Yiyang; Huang, Jie
2018-04-24
We present a hollow coaxial cable Fabry-Perot resonator for displacement and strain measurement up to 1000 °C. By employing a novel homemade hollow coaxial cable made of stainless steel as a sensing platform, the high-temperature tolerance of the sensor is dramatically improved. A Fabry-Perot resonator is implemented on this hollow coaxial cable by introducing two highly-reflective reflectors along the cable. Based on a nested structure design, the external displacement and strain can be directly correlated to the cavity length of the resonator. By tracking the shift of the amplitude reflection spectrum of the microwave resonator, the applied displacement and strain can be determined. The displacement measurement experiment showed that the sensor could function properly up to 1000 °C. The sensor was also employed to measure the thermal strain of a steel plate during the heating process. The stability of the novel sensor was also investigated. The developed sensing platform and sensing configurations are robust, cost-effective, easy to manufacture, and can be flexibly designed for many other measurement applications in harsh high-temperature environments.
Displacement and Strain Measurement up to 1000 °C Using a Hollow Coaxial Cable Fabry-Perot Resonator
Chen, Yizheng; Zhuang, Yiyang
2018-01-01
We present a hollow coaxial cable Fabry-Perot resonator for displacement and strain measurement up to 1000 °C. By employing a novel homemade hollow coaxial cable made of stainless steel as a sensing platform, the high-temperature tolerance of the sensor is dramatically improved. A Fabry-Perot resonator is implemented on this hollow coaxial cable by introducing two highly-reflective reflectors along the cable. Based on a nested structure design, the external displacement and strain can be directly correlated to the cavity length of the resonator. By tracking the shift of the amplitude reflection spectrum of the microwave resonator, the applied displacement and strain can be determined. The displacement measurement experiment showed that the sensor could function properly up to 1000 °C. The sensor was also employed to measure the thermal strain of a steel plate during the heating process. The stability of the novel sensor was also investigated. The developed sensing platform and sensing configurations are robust, cost-effective, easy to manufacture, and can be flexibly designed for many other measurement applications in harsh high-temperature environments. PMID:29695063
Liang, Yunlei; Du, Zhijiang; Sun, Lining
2017-01-01
The tendon driven mechanism using a cable and pulley to transmit power is adopted by many surgical robots. However, backlash hysteresis objectively exists in cable-pulley mechanisms, and this nonlinear problem is a great challenge in precise position control during the surgical procedure. Previous studies mainly focused on the transmission characteristics of the cable-driven system and constructed transmission models under particular assumptions to solve nonlinear problems. However, these approaches are limited because the modeling process is complex and the transmission models lack general applicability. This paper presents a novel position compensation control scheme to reduce the impact of backlash hysteresis on the positioning accuracy of surgical robots’ end-effectors. In this paper, a position compensation scheme using a support vector machine based on feedforward control is presented to reduce the position tracking error. To validate the proposed approach, experimental validations are conducted on our cable-pulley system and comparative experiments are carried out. The results show remarkable improvements in the performance of reducing the positioning error for the use of the proposed scheme. PMID:28974011
NASA Astrophysics Data System (ADS)
Baranov, M. I.; Rudakov, S. V.
2018-05-01
The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.
Myosin II dynamics are regulated by tension in intercalating cells.
Fernandez-Gonzalez, Rodrigo; Simoes, Sérgio de Matos; Röper, Jens-Christian; Eaton, Suzanne; Zallen, Jennifer A
2009-11-01
Axis elongation in Drosophila occurs through polarized cell rearrangements driven by actomyosin contractility. Myosin II promotes neighbor exchange through the contraction of single cell boundaries, while the contraction of myosin II structures spanning multiple pairs of cells leads to rosette formation. Here we show that multicellular actomyosin cables form at a higher frequency than expected by chance, indicating that cable assembly is an active process. Multicellular cables are sites of increased mechanical tension as measured by laser ablation. Fluorescence recovery after photobleaching experiments show that myosin II is stabilized at the cortex in regions of increased tension. Myosin II is recruited in response to an ectopic force and relieving tension leads to a rapid loss of myosin, indicating that tension is necessary and sufficient for cortical myosin localization. These results demonstrate that myosin II dynamics are regulated by tension in a positive feedback loop that leads to multicellular actomyosin cable formation and efficient tissue elongation.
Noise propagation issues in Belle II pixel detector power cable
NASA Astrophysics Data System (ADS)
Iglesias, M.; Arteche, F.; Echeverria, I.; Pradas, A.; Rivetta, C.; Moser, H.-G.; Kiesling, C.; Rummel, S.; Arcega, F. J.
2018-04-01
The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This paper presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impact on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.
Atmospheric Science Data Center
2014-03-18
... Regional Experiment (FIRE) - Arctic Cloud Experiment (ACE) was conducted April through July of 1998. It was held in conjunction with ... Heat Budget of the Arctic Ocean (SHEBA) Experiment. The FIRE-ACE focused on all aspects of Arctic cloud systems. The main facility was ...
Application of Optical Diagnosis to Aged Low-Voltage Cable Insulation in Nuclear Plants
NASA Astrophysics Data System (ADS)
Katagiri, Junichi; Takezawa, Yoshitaka; Shouji, Hiroshi
We have developed a novel non-destructive optical diagnosis technique for low-voltage cable insulations used in nuclear power plants. The key features of this diagnosis are the use of two wavelengths to measure the change in reflective absorbance (ΔAR), the use of polarized light to measure crystallinity and the use of element volatilizing to measure fluorescence. Chemical kinetics is used to predict the lifetimes of the cable insulations. When cable insulations darken and harden by time degradation, the ΔAR and depolarization parameters increase. This means that the cross-linking density in the cable insulations increases due to deterioration reactions. When the cross-linking density of insulation increases, its elasticity, corresponding to the material's life, increases. Similarly, as the crystallinity increases due to the change in the high-order structure of the insulating resin caused by irradiation, its elongation property decreases. The elongation property of insulation is one of the most important parameters that can be used to evaluate material lifetimes, because it relates to elasticity. The ΔAR correlated with the elongation property, and the correlation coefficient of an accelerated experiment using model pieces was over 0.9. Thus, we concluded that this optical diagnosis should be applied to evaluate the degradation of cable insulations used in nuclear power plants.
Francisco Rodríguez y Silva; Armando González-Cabán
2016-01-01
We propose an economic analysis using utility and productivity, and efficiency theories to provide fire managers a decision support tool to determine the most efficient fire management programs levels. By incorporating managersâ accumulated fire suppression experiences (capitalized experience) in the analysis we help fire managers...
ERIC Educational Resources Information Center
Council of Europe, Strasbourg (France). Committee for Out-of-School Education and Cultural Development.
This 2-part report summarizes the Council of Europe's 1977 colloquy on cable television, local radio, and video, and presents the chairman's report on media and public usefulness. Problem areas addressed in the section on public service applications of the media include ensuring public access to the media, financing local radio and television,…
Apperl, Benjamin; Pressl, Alexander; Schulz, Karsten
2017-01-01
The cost effective maintenance of underwater pressure pipes for sewage disposal in Austria requires the detection and localization of leakages. Extrusion of wastewater in lakes can heavily influence the water and bathing quality of surrounding waters. The Distributed Temperature Sensing (DTS) technology is a widely used technique for oil and gas pipeline leakage detection. While in pipeline leakage detection, fiber optic cables are installed permanently at the outside or within the protective sheathing of the pipe; this paper aims at testing the feasibility of detecting leakages with temporary introduced fiber optic cable inside the pipe. The detection and localization were tested in a laboratory experiment. The intrusion of water from leakages into the pipe, producing a local temperature drop, served as indicator for leakages. Measurements were taken under varying measurement conditions, including the number of leakages as well as the positioning of the fiber optic cable. Experiments showed that leakages could be detected accurately with the proposed methodology, when measuring resolution, temperature gradient and measurement time were properly selected. Despite the successful application of DTS for leakage detection in this lab environment, challenges in real system applications may arise from temperature gradients within the pipe system over longer distances and the placement of the cable into the real pipe system.
NASA Astrophysics Data System (ADS)
Giaccu, Gian Felice; Caracoglia, Luca
2017-04-01
Pre-tensioned-cable bracing systems are widely employed in structural engineering to limit lateral deflections and stabilize structures. A suitable configuration of the pre-tensioned-cable bracing systems in a structure is an important issue since the internal force distribution, emerging from the interaction with the existing structure, significantly affects the structural dynamic behavior. The design, however, is often based on the intuition and the previous experience of the engineer. In recent years, the authors have been investigating the non-linear dynamic response of cable systems, installed on cable-stayed bridges, and in particular the so-called "cable-cross-tie systems" forming a cable network. The bracing cables (cross-ties) can exhibit slackening or snapping. Therefore, a non-linear unilateral model, combined with the taut-cable theory, is required to simulate the incipient slackening conditions in the stays. Capitalizing from this work on non-linear cable dynamics, this paper proposes a new approach to analyze, in laterally- braced truss structures, the unilateral effects and dynamic response accounting for the loss in the pre-tensioning force imparted to the bracing cables. This effect leads to non-linear vibration of the structure. In this preliminary study, the free vibrations of the structure are investigated by using the "Equivalent Linearization Method". A performance coefficient, a real positive number between 0.5 and 1.0, is defined and employed to monitor the relative reduction in the apparent stiffness of the braces during structural vibration, "mode by mode". It is shown that the system can exhibit alternate unilateral behavior of the cross-braces. A reduction of the performance coefficient close to fifty percent is observed in the braces when the initial pre-tensioning force is small. On the other hand the performance coefficient tends to one in the case of a high level of pre-stress. It is concluded that the performance coefficient may possibly be used as an indicator for the design of the braces since a suitable selection of the initial pre-tensioning force can avoid slackening in the braces.
NASA Astrophysics Data System (ADS)
Neilson, B. T.; Hatch, C. E.; Bingham, Q. G.; Tyler, S. W.
2008-12-01
In recent years, distributed temperature sensing (DTS) has enjoyed steady increases in the number and diversity of applications. Because fiber optic cables used for DTS are typically sheathed in dark materials resistant to UV deterioration, the question arises of how shortwave solar radiation penetrating a water column influences the accuracy of absolute DTS-derived temperatures. Initial calculations of these affects considered: shortwave radiation as a function of time of day, water depth, and water clarity; fiber optic cable dimensions; and fluid velocity. These indicate that for clear waterbodies with low velocities and shallow depths, some heating on the cable is likely during peak daily solar radiation. Given higher water velocities, substantial increases in turbidity, and/or deeper water, there should be negligible solar heating on the cable. To confirm these calculations, a field study was conducted to test the effects of solar radiation by installing two types of fiber optic cable at multiple, uniform depths in a trapezoidal canal with constant flow determined by a controlled release from Porcupine Dam near Paradise, Utah. Cables were installed in water depths from 0.05 to 0.79 m in locations of faster (center of canal) and slower (sidewall) water velocities. Thermister strings were installed at the same depths, but shielded from solar radiation and designed to record absolute water temperatures. Calculations predict that at peak solar radiation, in combination with shallow depths and slow velocities, typical fiber-optic cable is likely to experience heating greater than the ambient water column. In this study, DTS data show differences of 0.1-0.2°C in temperatures as seen by cables separated vertically by 0.31 m on the sidewall and center of the channel. Corresponding thermister data showed smaller vertical differences (~0.03-0.1°C) suggesting thermal stratification was also present in the canal. However, the magnitude of the DTS differences could not be fully explained by stratification alone. Additional information from cables installed in a shallow, near-zero velocity pool showed significantly higher temperature differences with cable depth when compared to the cable in the higher-velocity canal flows. This indicates a higher potential for heating of fiber-optic cable in stagnant, shallow waters. With sufficient water velocities and depths, the effect of shortwave solar radiation on DTS measurement accuracy via heating of the fiber- optic cable is negligible. Particular care in experimental design is recommended in shallow or low-velocity systems, including consideration of solar radiation, and independent quantification of (or calibration for) absolute temperatures.
NASA Astrophysics Data System (ADS)
Chen, Guanghui; Zhao, Ming; Sha, Jianbo; Zhang, Jun; Wu, Bingyan; Lin, Chen; Zhang, Mingliang; Gao, Kan
2015-10-01
The five of FBG were embedded in the PE sheath of a tether optical cable, which has about 18mm diameter and 7000mm length. The temperature and tension characteristics of the FBGs embedded in the polythene (PE) sheath had been demonstrated quantitatively. The Bragg wavelength of the embedded FBG shift linearly with the change of pulling force loaded on the tether optical cable and its tension sensitivity is about 3.75 pm/kg. The results of temperature experiment suggest the embedded FBG have been sensitized by PE material, so that its temperature sensitivity increase from 9.37pm/°C to about 12.51pm/°C.
Active Response Gravity Offload and Method
NASA Technical Reports Server (NTRS)
Dungan, Larry K. (Inventor); Lieberman, Asher P. (Inventor); Shy, Cecil (Inventor); Bankieris, Derek R. (Inventor); Valle, Paul S. (Inventor); Redden, Lee (Inventor)
2015-01-01
A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor.
A method to improve data transmission efficiency of non-cabled seismographs
NASA Astrophysics Data System (ADS)
Zheng, F.; Lin, J.; Huaizhu, Z.; Yang, H.
2012-12-01
The non-cable self-locating seismograph developed by College of Instrumentation and Electrical Engineering, Jilin University integrates in-built battery, storage, WIFI, GPS and precision data acquisition. It is suitable for complex terrains which are typically not well addressed by cabled telemetric seismic instruments, such as mountains, swamps, and rivers. Moreover, it provides strong support for core functions such as long-term observation, wired and wireless data transmission, self-positioning and precision clock synchronization. The non-cable seismograph supports time window and continuous data acquisition. When the sampling time is long and sampling rate is high, a huge amount of original seismic data will be stored in the non-cable seismograph. As a result, it usually takes a long time—sometimes too long to be acceptable—to recover data in quasi real-time using wireless technology in resource exploration, especially in complex terrains. Furthermore, a large part of the recovered data is useless noise and only a small percentage is useful. For example, during the exploration experiment of a Chinese mine on July 12 and 14, 2012, we used 20 non-cable seismographs, each of them has 4 tracts. With a total of 80 tracts, 36GB data is collected over two data collecting sessions. 80 shot points were laid, each point lasting 4 seconds. As such the volume of valid data was about 100MB. That means only 0.3% of the total data was valid. At a wired data recovery rate of 200Mbps, 0.4 hours was needed to transmit all data completely. It takes even longer if one wish to review data on the spot by relying on a wireless data transmission rate of 10Mbps.A storage-type non-cable seismograph can store the collected data into several data files, and if one knows the source trigger time and vibration duration, it would be faster to collect data, thus improving data transmission efficiency. To this end, a triggering station is developed. It is one type of non-cable seismograph having the functions of a regular non-cable seismograph such as collecting, storing and transmitting, and on top of that, the abilities to acquire, record and transmit source triggering time. GPS is built into the non-cable seismograph to ensure accurate clock synchronization for all working non-cable seismographs. The source-triggered station can obtain the source trigger time accurately and store it in a file, send it to the server or portable terminal using wireless technology. The management system in the server checks clock synchronization information of each non-cable seismograph against the trigger time, determines the exact sampling location of the trigger time, extracts the corresponding data according to predetermined triggering length. It then sequences data according to the survey line, and integrate it into the seismic data file in appropriate format, thus completing the extraction of single-shot data. For off-site data recovery, one can extract all trigger time from the triggered station and recover data in the above-mentioned method post-experimental. The method can rapidly extract valid data from recovered data. Many field experiments have shown that the method can effectively improve data transmission efficiency of non-cabled seismographs and save data storage spaces in the servers.
Head-mounted LED for optogenetic experiments of freely-behaving animal
NASA Astrophysics Data System (ADS)
Kwon, Ki Yong; Gnade, Andrew G.; Rush, Alexander D.; Patten, Craig D.
2016-03-01
Recent developments in optogenetics have demonstrated the ability to target specific types of neurons with sub-millisecond temporal precision via direct optical stimulation of genetically modified neurons in the brain. In most applications, the beam of a laser is coupled to an optical fiber, which guides and delivers the optical power to the region of interest. Light emitting diodes (LEDs) are an alternative light source for optogenetics and they provide many advantages over a laser based system including cost, size, illumination stability, and fast modulation. Their compact size and low power consumption make LEDs suitable light sources for a wireless optogenetic stimulation system. However, the coupling efficiency of an LED's output light into an optical fiber is lower than a laser due to its noncollimated output light. In typical chronic optogenetic experiment, the output of the light source is transmitted to the brain through a patch cable and a fiber stub implant, and this configuration requires two fiber-to-fiber couplings. Attenuation within the patch cable is potential source of optical power loss. In this study, we report and characterize a recently developed light delivery method for freely-behaving animal experiments. We have developed a head-mounted light source that maximizes the coupling efficiency of an LED light source by eliminating the need for a fiber optic cable. This miniaturized LED is designed to couple directly to the fiber stub implant. Depending on the desired optical power output, the head-mounted LED can be controlled by either a tethered (high power) or battery-powered wireless (moderate power) controller. In the tethered system, the LED is controlled through 40 gauge micro coaxial cable which is thinner, more flexible, and more durable than a fiber optic cable. The battery-powered wireless system uses either infrared or radio frequency transmission to achieve real-time control. Optical, electrical, mechanical, and thermal characteristics of the head-mounted LED were evaluated.
Wood crib fire free burning test in ISO room
NASA Astrophysics Data System (ADS)
Qiang, Xu; Griffin, Greg; Bradbury, Glenn; Dowling, Vince
2006-04-01
In the research of application potential of water mist fire suppression system for fire fighting in train luggage carriage, a series of experiments were conducted in ISO room on wood crib fire with and without water mist actuation. The results of free burn test without water mist suppression are used as reference in evaluating the efficiency of water mist suppression system. As part of the free burn test, several tests have been done under the hood of ISO room to calibrate the size of the crib fire and these tests can also be used in analyzing the wall effect in room fire hazard. In these free burning experiments, wood cribs of four sizes under the hood were tested. The temperature of crib fire, heat flux around the fire, gas concentration in hood of ISO room were measured in the experiments and two sets of thermal imaging system were used to get the temperature distribution and the typical shape of the free burning flames. From the experiments, the radiation intensity in specific positions around the fire, the effective heat of combustion, mass loss, oxygen consumption rate for different sizes of fire, typical structure of the flame and self extinguishment time was obtained for each crib size.
Life cycle assessment of the application of nanoclays in wire coating
NASA Astrophysics Data System (ADS)
Tellaetxe, A.; Blázquez, M.; Arteche, A.; Egizabal, A.; Ermini, V.; Rose, J.; Chaurand, P.; Unzueta, I.
2012-09-01
A life cycle assessment (LCA) is carried out to compare nanoclay-reinforced polymer wire coatings with conventional ones. While the conventional wire coatings contain standard halogen free retardants, in reinforced coatings, montmorillonite (nanoclay) is incorporated into electric cable linings as a rheological agent for an increased resistance to fire. In addition, a reduced load of standard halogen free retardants is obtained. The synergistic effect of the montmorillonite on traditional flame retardant additives (by the formation of a three-dimensional char network) can lead to a revolution in wire production. The application of nanoclays contributes also to anti-dripping effect and flexibility increase [1]. Some producers have already started commercializing wire with nanotechnology-based coating; in the short term the use of nanoclay in wire coating production will probably reach a significant market share replacing traditional formulations. The main aim of this study is to compare the environmental impacts along the life cycle of a traditional wire coating (mineral flame retardants like ATH or MDH in a polymer matrix) with the nanoclay-reinforced wire coating, where the montmorillonite replaces a low percentage of the mineral flame retardant. The system boundaries of the study include the following unit processes: nanoclay production, thermoplastic material and mineral flame retardants production, cable coating manufacturing by extrusion and different end of life scenarios (recycling, incineration and landfill disposal). Whereas nanoreinforced composites have shown and increased fire retardance, the addition of nanomaterials seems to have no significant relevance in the environmental assessment. However, the lack of nano-specific characterization factors for nanomaterials and emission rates associated to the different life cycle stages -mainly in the extrusion and use phase, where accidental combustions can take place- still remains a challenge for realistic life cycle assessment modelling.
Polymer materials and component evaluation in acidic-radiation environments
NASA Astrophysics Data System (ADS)
Celina, M.; Gillen, K. T.; Malone, G. M.; Clough, R. L.; Nelson, W. H.
2001-07-01
Polymeric materials used for cable/wire insulation, electrical connectors, O-rings, seals, and in critical components such as motors, level switches and resistive thermo-devices were evaluated under accelerated degradation conditions in combined radiation-oxidative elevated-temperature acidic-vapor (nitric/oxalic) environments relevant to conditions in isotope processing facilities. Experiments included the assessment of individual materials such as PEEK, polyimides, polyolefin based cable insulation, EPDM rubbers, various epoxy systems, commercial caulking materials as well as some functional testing of components. We discuss how to conduct laboratory experiments to simulate such complex hostile environments, describe some degradation effects encountered, and evaluate the impact on appropriate material and component selection.
Two Years Experience With A Broadband Cable Network In An 1100-Bed Hospital
NASA Astrophysics Data System (ADS)
Cahill, Patrick T.; McCarthy, Robert H.; James, R.; Knowles, R.
1985-09-01
Early in 1983, a three-cable broadband network was installed in The New York Hospital-Cornell Medical Center using well-established cable-TV technology. This network was configured in a vertical tree topology. Currently, it extends over thirteen floors vertically and over two city blocks horizontally. It has now survived several major renovations on the various floors of the hospital. This survivability is a result of the siting of the main tree and of the isolation gained for the branches through the strategic placement of amplifiers. This communications system was designed in a modular fashion for later expansion and so that seven types of functions could be supported on the network without the addition of a new functional level disrupting the functions already existing on the system. Thus far, two functions (real-time image consultation and computer sharing) have been implemented, and two other functions (analog image storage and data base management) are in the prototype stage. Perhaps the most significant feature of our experience thus far has been the ease and utility of analog transmission and storage of images. This experience has lead us to postpone and even de-emphasize digital transmission and storage in our future plans.
JPRS Report, Science & Technology, China.
1992-12-16
Optic Cable Ltd., with a gross investment of US$12.60 million; this firm will market the LXE bundle- tube lightweight fiber optic cable product...trap. There are four types of chemical generators commonly used to produce 02(’A): bubbler, atomizer, wet wall tube array and rotating disk. The...used in small COIL experiments. Figure 2 is a schematic diagram of the device. Chlorine gas passes through a bubbler (glass tube with many drilled
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertzscher, G; Beddar, S
Purpose: To study the promising potential of inorganic scintillator detectors (ISDs) and investigate various unwanted luminescence properties which may compromise their accuracy. Methods: The ISDs were comprised of a ruby crystal coupled to a polymethyl methacrylate (PMMA) fiber-optic cable and a charged coupled device camera. A new type of ISD was manufactured and included a long-pass filter that was sandwiched between the crystal and the fiber-optic cable. The purpose of the filter was to suppress the Cerenkov and fluorescence background light induced in the PMMA (the stem signal) from striking the ruby crystal, generating unwanted ruby excitation. A variety ofmore » experiments were performed to characterize the ruby based ISDs. The relative contribution of the induced ruby signal and the stem signal were quantified while exposing the detector and a bare fiber-optic cable to a high dose rate (HDR) brachytherapy (BT) source, respectively. The unwanted ruby excitation was quantified while irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and a comparison to other commonly used organic scintillator detectors (BCF-12, BCF-60). Results: When the BT source dwelled 0.5 cm away from the fiber-optic cable, the unwanted ruby excitation amounted to >5% of the total signal if the source-distance from the scintillator was >7 cm. However, the unwanted excitation was suppressed to <1% if the ISD incorporated an optic filter. The stem signal was suppressed with a 20 nm band-pass filter and was <3% as long as the source-distance was <7 cm. The ruby based ISDs generated signal up to 20(40) times that of BCF-12(BCF-60). Conclusion: The study presents solutions to unwanted luminescence properties of ruby based ISDs for HDR BT. An optic filter should be sandwiched between the scintillator volume and the fiber-optic cable to prevent the stem signal to excite the ruby crystal.« less
Underwater spark discharge with long transmission line for cleaning horizontal wells
NASA Astrophysics Data System (ADS)
Lee, Kern; Chung, Kyoung-Jae; Hwang, Y. S.; Kim, C. Y.
2017-06-01
A transmission line is discussed for application in an underwater spark-discharge technique in the cleaning of a horizontal well by incorporating a power-transmission model into the simulation. The pulsed-spark-discharge technique has been proposed for clogged-well rehabilitation, because it removes incrustations that are attached to well screens by using strong pressure waves that are generated by the rapid expansion of a spark channel. To apply the pulsed-spark-discharge technique to the cleaning of horizontal wells, the coaxial cable between the pulsed power supply and the spark gap as a load needs to be extended to a few hundred meters. Prior to field application, pulsed-spark-discharge experiments were conducted and the role of the transmission line was examined using an improved simulation model. In the model, a non-linear interaction of the spark channel and the capacitor bank is described by the pulse-forming action of the coaxial cable. Based on the accurate physical properties of the water plasma, such as the equation of state and electrical conductivity within the region of interest, the amount of energy contributed to the development of a shock wave was evaluated. The simulation shows that if the initial conditions of the spark channel are the same, no further reduction in strength of the pressure wave occurs, even if the cable length is increased above 50 m. Hence, the degraded peak pressure that was observed in the experiments using the longer cable is attributed to a change in the initial condition of the spark channel. The parametric study suggests that the low initial charging voltage, the high ambient water pressure, and the long cable length yield the low initial spark-channel density, which results in a reduced peak pressure. The simulation of line charging is presented to discuss the principle of disturbing the pre-breakdown process by an extended cable.
FireStem2D – A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires
Chatziefstratiou, Efthalia K.; Bohrer, Gil; Bova, Anthony S.; Subramanian, Ravishankar; Frasson, Renato P. M.; Scherzer, Amy; Butler, Bret W.; Dickinson, Matthew B.
2013-01-01
FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes. PMID:23894599
Experimental research on the infrared gas fire detection system
NASA Astrophysics Data System (ADS)
Jiang, Yalong; Liu, Yangyang
2018-02-01
Open fires and smoldering fires were differentiated using five experiments: wood pyrolysis, polyurethane smoldering, wood fire, polyurethane fire and cotton rope smoldering. At the same time, the distribution of CO2 and CO concentration in combustion products at different heights was studied. Real fire and environmental interference were distinguished using burning cigarettes and sandalwood. The results showed that open fires and smoldering fires produced significantly different ratios of CO2 and CO concentrations. By judging the order of magnitudes of the ratio CO2 and CO concentrations in the combustion products, open fire and smoldering fire could be effectively distinguished. At the same time, the comparison experiment showed that the rate of increase of the concentration of CO in the smoldering fire was higher than that under non-fire conditions. With the criterion of the rate of increase of CO concentration, smoldering fire and non-fire could be distinguished.
TEM Cell Testing of Cable Noise Reduction Techniques From 2 MHz to 200 MHz - Part 1
NASA Technical Reports Server (NTRS)
Bradley, Arthur T.; Evans, William C.; Reed, Joshua L.; Shimp, Samuel K.; Fitzpatrick, Fred D.
2008-01-01
This paper presents empirical results of cable noise reduction techniques as demonstrated in a TEM cell operating with radiated fields from 2 - 200 MHz. It is the first part of a two-paper series. This first paper discusses cable types and shield connections. In the second paper, the effects of load and source resistances and chassis connections are examined. For each topic, well established theories are compared to data from a real-world physical system. Finally, recommendations for minimizing cable susceptibility (and thus cable emissions) are presented. There are numerous papers and textbooks that present theoretical analyses of cable noise reduction techniques. However, empirical data is often targeted to low frequencies (e.g. <50 KHz) or high frequencies (>100 MHz). Additionally, a comprehensive study showing the relative effects of various noise reduction techniques is needed. These include the use of dedicated return wires, twisted wiring, cable shielding, shield connections, changing load or source impedances, and implementing load- or source-to-chassis isolation. We have created an experimental setup that emulates a real-world electrical system, while still allowing us to independently vary a host of parameters. The goal of the experiment was to determine the relative effectiveness of various noise reduction techniques when the cable is in the presence of radiated emissions from 2 MHz to 200 MHz. The electronic system (Fig. 1) consisted of two Hammond shielded electrical enclosures, one containing the source resistance, and the other containing the load resistance. The boxes were mounted on a large aluminium plate acting as the chassis. Cables connecting the two boxes measured 81 cm in length and were attached to the boxes using standard D38999 military-style connectors. The test setup is shown in Fig. 2. Electromagnetic fields were created using an HP8657B signal generator, MiniCircuits ZHL-42W-SMA amplifier, and an EMCO 5103 TEM cell. Measurements were taken using an Agilent E4401B spectrum analyzer and HP1141a differential probes.
The Spacecraft Fire Experiment (Saffire) - Objectives, Development and Status
NASA Technical Reports Server (NTRS)
Schoren, William; Ruff, Gary A.; Urban, David L.
2016-01-01
Since 2012, the Spacecraft Fire Experiment (Saffire) has been under development by the Spacecraft Fire Safety Demonstration (SFS Demo) project that is funded by NASA's Advanced Exploration Systems Division in the Human Exploration and Operations Mission Directorate. The overall objective of this project is to reduce the uncertainty and risk associated with the design of spacecraft fire safety systems for NASA's exploration missions. This is accomplished by defining, developing, and conducting experiments that address gaps in spacecraft fire safety knowledge and capabilities identified by NASA's Fire Safety System Maturation Team. This paper describes the three Spacecraft Fire Experiments (Saffire-I, -II, and -III) that were developed at NASA-GRC and that will conduct a series of material flammability tests in low-gravity and at length scales that are realistic for a spacecraft fire. The experiments will be conducted in Orbital ATK's Cygnus vehicle after it has unberthed from the International Space Station. The tests will be fully automated with the data downlinked at the conclusion of the test and before the Cygnus vehicle reenters the atmosphere. The objectives of these experiments are to (1) determine how rapidly a large scale fire grows in low-gravity and (2) investigate the low-g flammability limits compared to those obtained in NASA's normal gravity material flammability screening test. The hardware for these experiments has been completed and is awaiting their respective launches, all planned for 2016. This paper will review the objectives of these experiments and how they address several of the knowledge gaps for NASA's exploration missions. The hardware development will be discussed including several novel approaches that were taken for testing and evaluation of these series payloads. The status of the missions and operational status will also be presented.
Risk-based Spacecraft Fire Safety Experiments
NASA Technical Reports Server (NTRS)
Apostolakis, G.; Catton, I.; Issacci, F.; Paulos, T.; Jones, S.; Paxton, K.; Paul, M.
1992-01-01
Viewgraphs on risk-based spacecraft fire safety experiments are presented. Spacecraft fire risk can never be reduced to a zero probability. Probabilistic risk assessment is a tool to reduce risk to an acceptable level.
C-Abl Inhibition; A Novel Therapeutic Target for Parkinson's Disease.
Abushouk, Abdelrahman Ibrahim; Negida, Ahmed; Elshenawy, Rasha Abdelsalam; Zein, Hossam; Hammad, Ali M; Menshawy, Ahmed; Mohamed, Wael M Y
2018-04-26
Parkinson's disease (PD) is the most prevalent movement disorder in the world. The major pathological hallmarks of PD are death of dopaminergic neurons and the formation of Lewy bodies. At the moment, there is no cure for PD; current treatments are symptomatic. Investigators are searching for neuroprotective agents and disease modifying strategies to slow the progress of neurodegeneration. However, due to lack of data about the main pathological sequence of PD, many drug targets failed to provide neuroprotective effects in human trials. Recent evidence suggests the involvement of C-Abelson (c-Abl) tyrosine kinase enzyme in the pathogenesis of PD. Through parkin inactivation, alpha synuclein aggregation, and impaired autophagy of toxic elements. Experimental studies showed that (1) c-Abl activation is involved in neurodegeneration and (2) c-Abl inhibition shows neuroprotective effects and prevents dopaminergic neuronal' death. Current evidence from experimental studies and the first in-human trial shows that c-Abl inhibition holds the promise for neuroprotection against PD and therefore, justifies the movement towards larger clinical trials. In this review article, we discussed the role of c-Abl in PD pathogenesis and the findings of preclinical experiments and the first in-human trial. In addition, based on lessons from the last decade and current preclinical evidence, we provide recommendations for future research in this area. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Characteristics of smoke emissions from biomass fires of the Amazon region - BASE-A experiment
NASA Technical Reports Server (NTRS)
Ward, Darold E.; Setzer, Alberto W.; Kaufman, Yoram J.; Rasmussen, Rei A.
1991-01-01
The Biomass Burning Airborne and Spaceborne Experiment-Amazonia was designed for study of both aerosol and gaseous emissions from fires using an airborne sampling platform. The emission factors for combustion products from four fires suggest that the proportion of carbon released in the form of CO2 is higher than for fires of logging which has been burned in the western U.S. Combustion efficiency was of the order of 97 percent for the Amazonian test fire and 86-94 percent for deforestation fires. The inorganic content of particles from tropical fires are noted to be different from those of fires in the U.S.
Large Scale Experiments on Spacecraft Fire Safety
NASA Technical Reports Server (NTRS)
Urban, David L.; Ruff, Gary A.; Minster, Olivier; Toth, Balazs; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Legros, Guillaume; Eigenbrod, Christian;
2012-01-01
Full scale fire testing complemented by computer modelling has provided significant know how about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal-gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being developed by an international topical team that is collaboratively defining the experiment requirements and performing supporting analysis, experimentation and technology development. This paper presents the objectives, status and concept of this project.
Large Scale Experiments on Spacecraft Fire Safety
NASA Technical Reports Server (NTRS)
Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu;
2012-01-01
Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being developed by an international topical team that is collaboratively defining the experiment requirements and performing supporting analysis, experimentation and technology development. This paper presents the objectives, status and concept of this project.
2008-10-01
et planification en ressources humaines militaires a aboli la norme de taille minimum des Forces Canadiennes. On a conclu que "les...015; Defence R&D Canada – Toronto; October 2008. Introduction ou contexte : En février 2002, le directeur général – politiques et planification en...arming cables. ....................................................... 6 Figure 4 Reach of full throttle (left) and fire bottle T -handles (right
Noise propagation issues in Belle II pixel detector power cable
Iglesias, M.; Arteche, F.; Echeverria, I.; ...
2018-04-26
The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This article presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impactmore » on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less
Noise propagation issues in Belle II pixel detector power cable
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iglesias, M.; Arteche, F.; Echeverria, I.
The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This article presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impactmore » on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less
Unusual Attenuation Recovery Process After Fiber Optic Cable Irradiation
NASA Astrophysics Data System (ADS)
Konečná, Z.; Plaček, V.; Havránek, P.
2017-11-01
At present, the number of optical cables in nuclear power plants has been increasing. Fiber optic cables are commonly used at nuclear power plants in instrumentation and control systems but they are usually used in environments without radiation. Nevertheless, currently, the number of applications in NPP containment with radiation is increasing. One of the most prevalent effects of radiation exposure is an increase of signal attenuation (signal loss). This is the result of fiber darkening due to radiation exposure and it is the main limitation factor in application of fiber optics in radiation environment. However, after the irradiation, the fiber optics go through a “recovery process” during which the optical properties improve again; i.e. attenuation decreases. However, we have found cable, where the expected healing process after few days changed its trend and the attenuation increased again to a value well above the attenuation just after the irradiation. This paper describes experiments that were carried out to explain this unusual recovery behaviour.
NASA Astrophysics Data System (ADS)
Torres, V.; Quek, S.; Gaydecki, P.
2010-02-01
Aging and deterioration of the main functional parts in civil structures is one of the biggest problems that private and governmental institutions, dedicated to operate and maintain such structures, are facing now days. In the case of relatively old suspension bridges, problems emerge due to corrosion and break of wires in the main cables. Decisive information and a reliable monitoring and evaluation are factors of great relevance required to prevent significant or catastrophic damages caused to the structure, and more importantly, to people. The main challenge for the NDE methods of inspection arises in dealing with the steel wrapping barrier of the suspension cable, which main function is to shield, shape and hold the bundles. The following work, presents a study of a multi-Magnetoresistive sensors system aiming to support the monitoring and evaluation of suspension cables at some of its stages. Modelling, signal acquisition, signal processing, experiments and the initial phases of implementation are presented and discussed widely.
SNL/JAEA Collaborations on Sodium Fire Benchmarking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Andrew Jordan; Denman, Matthew R; Takata, Takashi
Two sodium spray fire experiments performed by Sandia National Laboratories (SNL) were used for a code - to - code comparison between CONTAIN - LMR and SPHINCS. Both computer codes are used for modeling sodium accidents in sodium fast reactors. The comparison between the two codes provides insights into the ability of both codes to model sodium spray fires. The SNL T3 and T4 experiments are 20 kg sodium spray fires with sodium spray temperature s of 200 deg C and 500 deg C, respe ctively. Given the relatively low sodium temperature in the SNL T3 experiment, the sodium spraymore » experienced a period of non - combustion. The vessel in the SNL T4 experiment experienced a rapid pressurization that caused of the instrumentation ports to fail during the sodium spray. Despite these unforeseen difficulties, both codes were shown in good agreement with the experiment s . The subsequent pool fire that develops from the unburned sodium spray is a significant characteristic of the T3 experiment. SPHIN CS showed better long - term agreement with the SNL T3 experiment than CONTAIN - LMR. The unexpected port failure during the SNL T4 experiment presented modelling challenges. The time at which the port failure occurred is unknown, but is believed to have occur red at about 11 seconds into the sodium spray fire. The sensitivity analysis for the SNL T4 experiment shows that with a port failure, the sodium spray fire can still maintain elevated pressures during the spray.« less
Ten Years of Observatory Science from Saanich Inlet on the VENUS Cabled Ocean Observatory
NASA Astrophysics Data System (ADS)
Dewey, R. K.; Tunnicliffe, V.; Macoun, P.; Round, A.
2016-02-01
The Saanich Inlet array of the VENUS cabled ocean observatory, maintained and operated by Ocean Networks Canada, was installed in February 2006, and in 2016 will have supported ten years of comprehensive interactive science. Representing the first in the present generation of cabled observing technologies, this coastal array has provided continuous high power and broadband communications to a variety of instrument platforms, hundreds of sensors, and enabled dozens of short, medium, and long-term studies. Saanich Inlet is a protected fjord with limited tidal action, resulting in an extremely productive environment, with strong seasonal chemical variations driven by episodic deep water renewal events and oxygen reduction processes. The breadth of the research has included microbial and benthic community dynamics, biogeochemical cycles, forensics, quantifying inter-annual variations, benthic-pelagic coupling, sensor testing, plankton dynamics, and bio-turbulence. Observatory measurements include core water properties (CTD & O2) and water-column echo-sounder records, as well as experiment-oriented deployments utilizing cameras, Gliders, Dopplers, hydrophones, and a variety of biogeochemical sensors. With a recently installed Buoy Profiler System for monitoring the entire water column, community plans continue with a dedicated Redox experiment through the 2016-17 seasons. Highlights from the dozens of research papers and theses will be presented to demonstrate the achievements enabled by a comprehensive coastal cabled observing system.
NASA Astrophysics Data System (ADS)
Wang, H. F.; Lord, N. E.; Zeng, X.; Fratta, D.; Feigl, K. L.; Team, P.
2016-12-01
The Porotomo research team deployed 8700-meters of Distributed Acoustic Sensing (DAS) cable in a shallow trench on the surface and 400 meters down a borehole at Brady Hot Springs, Nevada in March 2016. The goal of the experiment was to detect changes in geophysical properties associated with hydrologic changes. The DAS cable occupied a natural laboratory of 1500-by-500-by-400-meters overlying a commercial, geothermal field operated by Ormat Technologies. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 120-meters in length. A large Vibroseis truck (T-Rex) provided the seismic source with a sweep frequency between 5 and 80 Hz over 20 seconds. Over the 15 days of the experiment, the Vibroseis truck re-occupied approximately 250 locations outside and within the array days while changes were made in water reinjection from the power plant into wells in the field. At each source location, one vertical and two orthogonal horizontal modes were excited. Dispersion curves were constructed using MASW and a Vibroseis source location approximately in line with each DAS cable segment or from ambient noise correlation functions. Representative fence diagrams of S-wave profiles were constructed by inverting the dispersion curves obtained for several different line segments.
Spacecraft fire-safety experiments for space station: Technology development mission
NASA Technical Reports Server (NTRS)
Youngblood, Wallace W.
1988-01-01
Three concept designs for low-gravity, fire-safety related experiments are presented, as selected for the purpose of addressing key issues of enhancing safety and yet encouraging access to long-duration, manned spacecraft such as the NASA space station. The selected low-gravity experiments are the following: (1) an investigation of the flame-spread rate and combustion-product evolution of the burning of typical thicknesses of spacecraft materials in very low-speed flows; (2) an evaluation of the interaction of fires and candidate extinguishers in various fire scenarios; and (3) an investigation of the persistence and propagation of smoldering and deep-seated combustion. Each experiment is expected to provide fundamental combustion-science data, as well as the fire-safety applications, and each requires the unique long-duration, low-gravity environment of the space station. Two generic test facilities, i.e., the Combustion Tunnel Facility and the Combustion Facility, are proposed for space station accommodation to support the selected experiments. In addition, three near-term, fire-safety related experiments are described along with other related precursor activities.
The wildfire experiment (WIFE): observations with airborne remote sensors
L.F. Radke; T.L. Clark; J.L. Coen; C.A. Walther; R.N. Lockwood; P.J. Riggan; J.A. Brass; R.G. Higgins
2000-01-01
Airborne remote sensors have long been a cornerstone of wildland fire research, and recently three-dimensional fire behaviour models fully coupled to the atmosphere have begun to show a convincing level of verisimilitude. The WildFire Experiment (WiFE) attempted the marriage of airborne remote sensors, multi-sensor observations together with fire model development and...
Experiments to ensure Space Station fire safety - A challenge
NASA Technical Reports Server (NTRS)
Youngblood, W. W.; Seiser, K. M.
1988-01-01
Three experiments have been formulated in order to address prominent fire safety requirements aboard the NASA Space Shuttle; these experiments are to be conducted as part of a Space Station-based Technology Development Mission for the growth phase of Space Station construction and operation. The experiments are: (1) an investigation of the flame-spread rate and combustion-product evolution in the burning of typical spacecraft materials in low gravity; (2) an evaluation of the interaction of fires and candidate fire extinguishers in low gravity; and (3) an investigation of the persistence and propagation of smoldering and deep-seated combustion in low gravity.
Hendrix, J.L.
1995-04-11
A laser initiated ordnance controller apparatus which provides a safe and arm scheme with no moving parts. The safe & arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe & arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activates the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel, and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel. Simultaneous event channels may also be utilized by optically splitting a single event channel. The built-in-test may be performed anytime prior to ordnance ignition. 6 figures.
Hendrix, James L.
1995-01-01
A laser initiated ordnance controller apparatus which provides a safe and m scheme with no moving parts. The safe & arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe & arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activates the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel, and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel. Simultaneous event channels may also be utilized by optically splitting a single event channel. The built-in-test may be performed anytime prior to ordnance ignition.
Effects of Degree of Curing on Fire Spread
NASA Astrophysics Data System (ADS)
Chaivaranont, W.; Evans, J. P.; Liu, Y.
2016-12-01
During extreme summer conditions in Australia, bushfire can become an uncontrollable natural hazard. Various factors, such as geographical and meteorological parameters greatly influence the magnitude of bushfire. In a grassland fire, there is an important factor that affects the severity of fire called the degree of curing. Degree of curing is a percentage measurement of the proportion of dead material in grassland where a 100% curing indicates a totally dead grass field. It is usually assumed constant due to the cost and difficulty in obtaining accurate field observations.To examine the importance of curing, the Phoenix RapidFire fire spread model was used to observe the magnitude and direction of grassland fire spread due to variations in the degree of curing. Idealised experiments and experiments based on 3 past fire events in Australia were conducted, where the 100 by 200 km study area is considered to be all grassland. In the idealised experiments, homogeneous curing data in various patterns were used along with extreme climate data and prescribed topography. In the past fire event experiments, satellite-derived estimated curing data, observed climate data from the nearest weather stations, and real elevation maps were used. A remotely sensed burned area map (MODIS MCD64A1 product) is also used to compare the simulated burned area of past fire events with the satellite observation.The results from both experiments showed that: 1) the rate of spread of grassland fire is significantly impeded when curing is below 75%, 2) topography has insignificant effect on fire spread direction and speed, 3) wind and curing both influence the direction and speed of spread, and 4) the model can only recreate the burned area in one out of three of the past fire events due to various causes including the fact that all past events used here were not exclusively grassland fire.
Hu, Hua; Jonas, Peter
2014-01-01
Fast-spiking, parvalbumin-expressing GABAergic interneurons/basket cells (BCs) play a key role in feedforward and feedback inhibition, gamma oscillations, and complex information processing. For these functions, fast propagation of action potentials (APs) from the soma to the presynaptic terminals is important. However, the functional properties of interneuron axons remain elusive. Here, we examined interneuron axons by confocally targeted subcellular patch-clamp recording in rat hippocampal slices. APs were initiated in the proximal axon ~20 μm from the soma, and propagated to the distal axon with high reliability and speed. Subcellular mapping revealed a stepwise increase of Na+ conductance density from the soma to the proximal axon, followed by a further gradual increase in the distal axon. Active cable modeling and experiments with partial channel block indicated that low axonal Na+ conductance density was sufficient for reliability, but high Na+ density was necessary for both speed of propagation and fast-spiking AP phenotype. Our results suggest that a supercritical density of Na+ channels compensates for the morphological properties of interneuron axons (small segmental diameter, extensive branching, and high bouton density), ensuring fast AP propagation and high-frequency repetitive firing. PMID:24657965
BehavePlus fire modeling system: Past, present, and future
Patricia L. Andrews
2007-01-01
Use of mathematical fire models to predict fire behavior and fire effects plays an important supporting role in wildland fire management. When used in conjunction with personal fire experience and a basic understanding of the fire models, predictions can be successfully applied to a range of fire management activities including wildfire behavior prediction, prescribed...
Understorey fire propagation and tree mortality on adjacent areas to an Amazonian deforestation fire
J.A. Carvalho; C.A. Gurgel Veras; E.C. Alvarado; D.V. Sandberg; S.J. Leite; R. Gielow; E.R.C. Rabelo; J.C. Santos
2010-01-01
Fire characteristics in tropical ecosystems are poorly documented quantitatively in the literature. This paper describes an understorey fire propagating across the edges of a biomass burn of a cleared primary forest. The experiment was carried out in 2001 in the Amazon forest near Alta Floresta, state of Mato Grosso, Brazil, as part of biomass burning experiments...
R. J. Yokelson; T. J. Christian; T. G. Karl; A. Guenther
2008-01-01
As part of the Tropical Forest and Fire Emissions Experiment (TROFFEE), tropical forest fuels were burned in a large, biomass-fire simulation facility and the smoke was characterized with open-path Fourier transform infrared spectroscopy (FTIR), proton-transfer reaction mass spectrometry (PTR-MS), gas chromatography (GC), GC/PTRMS, and filter sampling of the particles...
Penoscrotal Strangulation Caused by a Steel Ring: A Case Report.
Zhang, Jiqing; Wang, Xueming; Li, Zhulin; Zhang, Junhui; Zhang, Xiaodong; Xing, Nianzeng
2017-06-01
Strangulation of the penis and scrotum by a constricting object has been rarely reported. To describe a man with penoscrotal strangulation caused by a steel ring and its successful removal. A 28-year-old man presented to the emergency department with a 7-hour history of a steel ring lodged at the base of his penis and scrotum. Removal was accomplished with the assistance of fire brigade personnel who used their hydraulic cable cutter to shear the ring. During the removal, there were no complications. The hydraulic cable cutter avoided thermal injury and shortened removal time compared with procedures described in the literature. The patient's recovery was uneventful, with erectile function restored after 1 week. Genital incarceration is an urgent clinical situation requiring prompt treatment. However, suitable tools for removing the foreign object are not readily available in emergency and urology departments. Cooperation with other disciplines, even non-medical disciplines, can result in creative and timely measures for removal of the object. Zhang J, Wang X, Zhang J, et al. Penoscrotal Strangulation Caused by a Steel Ring: A Case Report. Sex Med 2017;5:e131-e133. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Sensor/Transducer Bus Alternatives for Space derived from Automotive Networks
NASA Astrophysics Data System (ADS)
Heyer, H.-V.
2004-06-01
Both automotive and space industry have major constraints concerning cable and harness. As in a satellite, the dry mass of the harness in the empty car is about 3.3% of the total car mass and the harness costs are about 12% of the total production cost. So a lot of new architectural communication and power distribution concepts are needed to reduce these drawbacks. One of the possible solutions is the use of distributed bus systems which contains in a decentralized topology busses such as CAN, TTCAN or FLEX-RAY for hard-real-time applications, MOST for fast video communication via optical fiber cabling and fire wire IEEE1394 as backbone.For the general purpose sensor/actuator tasks a simple robust one-wire bus has been defined, the Local Interconnect Network (LIN) bus. This bus is an open standard which is supported by several semiconductor manufactures. The bus was firstly introduced in 1999 and has now reached an acceptable maturity with version 2.0 turning out to be quite interesting as sensor / transducer bus for space applications.This presentation will focus on the LIN Bus and present an overview of that bus.
Wire insulation degradation and flammability in low gravity
NASA Technical Reports Server (NTRS)
Friedman, Robert
1994-01-01
This view-graph presentation covers the following topics: an introduction to spacecraft fire safety, concerns in fire prevention in low gravity, shuttle wire insulation flammability experiment, drop tower risk-based fire safety experiment, and experimental results, conclusions, and proposed studies.
FIRE I - Marine Stratocumulus Data Sets
Atmospheric Science Data Center
2017-12-21
FIRE I - Marine Stratocumulus Data Sets First ISCCP Regional Experiment (FIRE) I - Marine Stratocumulus was conducted off the southwestern coast of California. ... FIRE Project Guide FIRE I - Marine Stratocumulus Home Page (tar file) SCAR-B Block: ...
Space Experiment Concepts: Cup-Burner Flame Extinguishment
NASA Technical Reports Server (NTRS)
Takahashi, Fumiaki
2004-01-01
Space Fire Suppression Processes & Technology. Space experiment concepts of cup-burner flame extinguishment have been conceived to address to the key issues (i.e., organizing questions) in space fire suppression. Cup-burner flame extinguishment experiment can reveal physical and chemical suppression processes and provide agent effectiveness data useful for technology development of space fire suppression systems in various reduced-gravity platforms.
Dow’s fire and explosion index: a case-study in the process unit of an oil extraction factory
Nezamodini, Zeynab Sadat; Rezvani, Zahra; Kian, Kumars
2017-01-01
Introduction The incidence of fires and explosions have led to severe damage in many industries, primarily in industries’ financial losses. This study was conducted to estimate losses due to fire and explosion and the impact of control measures on the number of losses applying Dow’s Fire and Explosion Index. Methods This is a case study conducted in one of the process units of an oil extraction factory. Dow’s Fire and Explosion Index Hazard classification guide, 7th edition, issued by the American Institute of Chemical Engineers was applied. Data were obtained mainly through interviews and consultation with experts, as well as reported operating parameters and process documents. Results The Dow Index of the processing unit was estimated to be 243.68, and the most probable base damage was approximately $4.15 million in 2008. The actual damages were estimated to be $2,863,500, and the number of lost work days to be 64.56 days. The interruption losses were estimated to be $15,817,200 and the total losses to the system to be $18.67 million. These results demonstrated that losses resulting from production interruptions are greater than losses due to the destruction of equipment. A series of corrections was then proposed and risk analysis was performed again to examine the effects of reforms. The comparison shows that by applying reforms the FEI can change to 86.62 and the total loss can reduce to $9.03 million. Conclusion This study shows that Dow’s Index is a systematic tool to examine the impact of control measures. It also enhances resource management considering an optimal insurance contract. Considering the priority of reducing damage factors, several correction actions were suggested, such as modifying the drainage system, installation of hexane detectors, an automatic sprinkler system, fire detectors on the cable tray, and finally, using the water spray washing on the tanks. PMID:28465821
Dow's fire and explosion index: a case-study in the process unit of an oil extraction factory.
Nezamodini, Zeynab Sadat; Rezvani, Zahra; Kian, Kumars
2017-02-01
The incidence of fires and explosions have led to severe damage in many industries, primarily in industries' financial losses. This study was conducted to estimate losses due to fire and explosion and the impact of control measures on the number of losses applying Dow's Fire and Explosion Index. This is a case study conducted in one of the process units of an oil extraction factory. Dow's Fire and Explosion Index Hazard classification guide, 7 th edition, issued by the American Institute of Chemical Engineers was applied. Data were obtained mainly through interviews and consultation with experts, as well as reported operating parameters and process documents. The Dow Index of the processing unit was estimated to be 243.68, and the most probable base damage was approximately $4.15 million in 2008. The actual damages were estimated to be $2,863,500, and the number of lost work days to be 64.56 days. The interruption losses were estimated to be $15,817,200 and the total losses to the system to be $18.67 million. These results demonstrated that losses resulting from production interruptions are greater than losses due to the destruction of equipment. A series of corrections was then proposed and risk analysis was performed again to examine the effects of reforms. The comparison shows that by applying reforms the FEI can change to 86.62 and the total loss can reduce to $9.03 million. This study shows that Dow's Index is a systematic tool to examine the impact of control measures. It also enhances resource management considering an optimal insurance contract. Considering the priority of reducing damage factors, several correction actions were suggested, such as modifying the drainage system, installation of hexane detectors, an automatic sprinkler system, fire detectors on the cable tray, and finally, using the water spray washing on the tanks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalra, Rachpon; Laucht, Arne; Dehollain, Juan Pablo
Cryogen-free low-temperature setups are becoming more prominent in experimental science due to their convenience and reliability, and concern about the increasing scarcity of helium as a natural resource. Despite not having any moving parts at the cold end, pulse tube cryocoolers introduce vibrations that can be detrimental to the experiments. We characterize the coupling of these vibrations to the electrical signal observed on cables installed in a cryogen-free dilution refrigerator. The dominant electrical noise is in the 5–10 kHz range and its magnitude is found to be strongly temperature dependent. We test the performance of different cables designed to diagnosemore » and tackle the noise, and find triboelectrics to be the dominant mechanism coupling the vibrations to the electrical signal. Flattening a semi-rigid cable or jacketing a flexible cable in order to restrict movement within the cable, successfully reduces the noise level by over an order of magnitude. Furthermore, we characterize the effect of the pulse tube vibrations on an electron spin qubit device in this setup. Coherence measurements are used to map out the spectrum of the noise experienced by the qubit, revealing spectral components matching the spectral signature of the pulse tube.« less
NASA Astrophysics Data System (ADS)
Kalra, Rachpon; Laucht, Arne; Dehollain, Juan Pablo; Bar, Daniel; Freer, Solomon; Simmons, Stephanie; Muhonen, Juha T.; Morello, Andrea
2016-07-01
Cryogen-free low-temperature setups are becoming more prominent in experimental science due to their convenience and reliability, and concern about the increasing scarcity of helium as a natural resource. Despite not having any moving parts at the cold end, pulse tube cryocoolers introduce vibrations that can be detrimental to the experiments. We characterize the coupling of these vibrations to the electrical signal observed on cables installed in a cryogen-free dilution refrigerator. The dominant electrical noise is in the 5-10 kHz range and its magnitude is found to be strongly temperature dependent. We test the performance of different cables designed to diagnose and tackle the noise, and find triboelectrics to be the dominant mechanism coupling the vibrations to the electrical signal. Flattening a semi-rigid cable or jacketing a flexible cable in order to restrict movement within the cable, successfully reduces the noise level by over an order of magnitude. Furthermore, we characterize the effect of the pulse tube vibrations on an electron spin qubit device in this setup. Coherence measurements are used to map out the spectrum of the noise experienced by the qubit, revealing spectral components matching the spectral signature of the pulse tube.
Kalra, Rachpon; Laucht, Arne; Dehollain, Juan Pablo; Bar, Daniel; Freer, Solomon; Simmons, Stephanie; Muhonen, Juha T; Morello, Andrea
2016-07-01
Cryogen-free low-temperature setups are becoming more prominent in experimental science due to their convenience and reliability, and concern about the increasing scarcity of helium as a natural resource. Despite not having any moving parts at the cold end, pulse tube cryocoolers introduce vibrations that can be detrimental to the experiments. We characterize the coupling of these vibrations to the electrical signal observed on cables installed in a cryogen-free dilution refrigerator. The dominant electrical noise is in the 5-10 kHz range and its magnitude is found to be strongly temperature dependent. We test the performance of different cables designed to diagnose and tackle the noise, and find triboelectrics to be the dominant mechanism coupling the vibrations to the electrical signal. Flattening a semi-rigid cable or jacketing a flexible cable in order to restrict movement within the cable, successfully reduces the noise level by over an order of magnitude. Furthermore, we characterize the effect of the pulse tube vibrations on an electron spin qubit device in this setup. Coherence measurements are used to map out the spectrum of the noise experienced by the qubit, revealing spectral components matching the spectral signature of the pulse tube.
Ahmed, Zubair; Briden, Anita; Hall, Susan; Brown, Robert A
2004-02-01
We have previously described the production of large cables of fibronectin, a large extracellular matrix cell adhesion glycoprotein, which has a potential application in tissue engineering. Here we have stabilised these cables for longer survival and looked at their ultrastructural cell-substrate behaviour in vitro. Dissolution experiments showed that low concentrations of copper not only caused significant material stabilisation but left pores which could promote cell ingrowth, as we have previously reported with Fn-mats. Indeed, the greatest amount of cell ingrowth was observed for copper treated cables. Immunostaining showed S-100(+) multi-layers of cells around the edge of cables while ultrastructural analysis confirmed the presence of a mixture of fibroblasts and bipolar cells associated with fragments of basal lamina, which is a Schwann cell phenotype. Interestingly, the outermost layers of cells consisted of S-100(-) cells, presumed fibroblasts, apparently 'capping' the Schwann cells. Toxicity tests revealed that Schwann cells were only able to grow at the lowest concentration of copper used (1microM) while fibroblasts grew at all concentrations tested. These results could be used to design biomaterials with optimum properties for promoting cellular ingrowth and survival in tissue engineered grafts which may be used to improve peripheral nerve repair.
Fractional cable model for signal conduction in spiny neuronal dendrites
NASA Astrophysics Data System (ADS)
Vitali, Silvia; Mainardi, Francesco
2017-06-01
The cable model is widely used in several fields of science to describe the propagation of signals. A relevant medical and biological example is the anomalous subdiffusion in spiny neuronal dendrites observed in several studies of the last decade. Anomalous subdiffusion can be modelled in several ways introducing some fractional component into the classical cable model. The Chauchy problem associated to these kind of models has been investigated by many authors, but up to our knowledge an explicit solution for the signalling problem has not yet been published. Here we propose how this solution can be derived applying the generalized convolution theorem (known as Efros theorem) for Laplace transforms. The fractional cable model considered in this paper is defined by replacing the first order time derivative with a fractional derivative of order α ∈ (0, 1) of Caputo type. The signalling problem is solved for any input function applied to the accessible end of a semi-infinite cable, which satisfies the requirements of the Efros theorem. The solutions corresponding to the simple cases of impulsive and step inputs are explicitly calculated in integral form containing Wright functions. Thanks to the variability of the parameter α, the corresponding solutions are expected to adapt to the qualitative behaviour of the membrane potential observed in experiments better than in the standard case α = 1.
Diurnal variation in the turbulent structure of the cloudy marine boundary layer during FIRE 1987
NASA Technical Reports Server (NTRS)
Hignett, Phillip
1990-01-01
During the 1987 FIRE marine stratocumulus experiment the U.K. Meteorological Office operated a set of turbulence probes attached to the tether cable of a balloon based on San Nicolas Island. Typically six probes were used; each probe is fitted with Gill propeller anemometers, a platinum resistance thermometer and wet and dry thermistors, to permit measurements of the fluxes of momentum, heat, and humidity. The orientation of each probe is determined from a pair of inclinometers and a three-axis magnetometer. Sufficient information is available to allow the measured wind velocities to be corrected for the motion of the balloon. On the 14 to 15 July measurements were made over the period 1530 to 1200 UTC and again, after a short break for battery recharging and topping-up the balloon, between 0400 to 0900 UTC. Data were therefore recorded from morning to early evening, and again for a period overnight. Six probes were available for the daytime measurements, five for the night. Data were recorded at 4 Hz for individual periods of a little over an hour. The intention was to keep a minimum of one probe at or just above cloud top; small changes in balloon height were necessary to accommodate changes in inversion height. The ability of the balloon system to make simultaneous measurements at several levels allows the vertical structure of the boundary layer to be displayed without resort to composites. Turbulent statistics were calculated from 2 hour periods, one straddling local noon and one at night. These were subdivided into half-hour averaging intervals for the evaluation of variances and fluxes.
FIRE I - Extended Time Observations Data Sets
Atmospheric Science Data Center
2017-12-21
FIRE I - Extended Time Observations Data Sets First ISCCP Regional Experiment (FIRE) I - Extended Time Observations were conducted in Utah. Relevant ... FIRE Project Guide FIRE I - Extended Time Observations Home Page (tar file) SCAR-B Block: ...
Large-Scale Spacecraft Fire Safety Tests
NASA Technical Reports Server (NTRS)
Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier;
2014-01-01
An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests. The first flight (Saffire-1) is scheduled for July 2015 with the other two following at six-month intervals. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the first examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation.
The double slit experiment and the time reversed fire alarm
NASA Astrophysics Data System (ADS)
Halabi, Tarek
2011-03-01
When both slits of the double slit experiment are open, closing one paradoxically increases the detection rate at some points on the detection screen. Feynman famously warned that temptation to "understand" such a puzzling feature only draws us into blind alleys. Nevertheless, we gain insight into this feature by drawing an analogy between the double slit experiment and a time reversed fire alarm. Much as closing the slit increases probability of a future detection, ruling out fire drill scenarios, having heard the fire alarm, increases probability of a past fire (using Bayesian inference). Classically, Bayesian inference is associated with computing probabilities of past events. We therefore identify this feature of the double slit experiment with a time reversed thermodynamic arrow. We believe that much of the enigma of quantum mechanics is simply due to some variation of time's arrow.
Downward shortwave surface irradiance from 17 sites for the FIRE/SRB Wisconsin experiment
NASA Technical Reports Server (NTRS)
Whitlock, Charles H.; Hay, John E.; Robinson, David A.; Cox, Stephen K.; Wardle, David I.; Lecroy, Stuart R.
1990-01-01
A field experiment was conducted in Wisconsin during Oct. to Nov. 1986 for purposes of both intensive cirrus cloud measurments and SRB algorithm validation activities. The cirrus cloud measurements were part of the FIRE. Tables are presented which show data from 17 sites in the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment/Surface Radiation Budget (FIRE/SRB) Wisconsin experiment region. A discussion of intercomparison results and calibration inconsistencies is also included.
Fire weather and fire behavior in the 1966 loop fire
C.M. Countryman; M.A. Fosberg; R.C. Rothermel; M.J. Schroeder
1968-01-01
Southern California regularly experiences a wind condition known as the Santa Ana winds. This paper describes the phenomenon and the effects it had on fire behavior during the 1966 Loop Fire in the Angeles National Forest, which claimed the lives of 12 fire fighters.
Overview of the 2013 FireFlux II grass fire field experiment
C.B. Clements; B. Davis; D. Seto; J. Contezac; A. Kochanski; J.-B. Fillipi; N. Lareau; B. Barboni; B. Butler; S. Krueger; R. Ottmar; R. Vihnanek; W.E. Heilman; J. Flynn; M.A. Jenkins; J. Mandel; C. Teske; D. Jimenez; J. O' Brien; B. Lefer
2014-01-01
In order to better understand the dynamics of fire-atmosphere interactions and the role of micrometeorology on fire behaviour the FireFlux campaign was conducted in 2006 on a coastal tall-grass prairie in southeast Texas, USA. The FireFlux campaign dataset has become the international standard for evaluating coupled fire-atmosphere model systems. While FireFlux is one...
Unmanned Vehicle Material Flammability Test
NASA Technical Reports Server (NTRS)
Urban, David; Ruff, Gary A.; Fernandez-Pello, A. Carlos; T’ien, James S.; Torero, Jose L.; Cowlard, Adam; Rouvreau, Sebastian; Minster, Olivier; Toth, Balazs; Legros, Guillaume;
2013-01-01
Microgravity combustion phenomena have been an active area of research for the past 3 decades however, there have been very few experiments directly studying spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample and environment sizes typical of those expected in a spacecraft fire. All previous experiments have been limited to samples of the order of 10 cm in length and width or smaller. Terrestrial fire safety standards for all other habitable volumes on earth, e.g. mines, buildings, airplanes, ships, etc., are based upon testing conducted with full-scale fires. Given the large differences between fire behavior in normal and reduced gravity, this lack of an experimental data base at relevant length scales forces spacecraft designers to base their designs using 1-g understanding. To address this question a large scale spacecraft fire experiment has been proposed by an international team of investigators. This poster presents the objectives, status and concept of this collaborative international project to examine spacecraft material flammability at realistic scales. The concept behind this project is to utilize an unmanned spacecraft such as Orbital Cygnus vehicle after it has completed its delivery of cargo to the ISS and it has begun its return journey to earth. This experiment will consist of a flame spread test involving a meter scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This will be the first opportunity to examine microgravity flame behavior at scales approximating a spacecraft fire.
Numerical modeling of laboratory-scale surface-to-crown fire transition
NASA Astrophysics Data System (ADS)
Castle, Drew Clayton
Understanding the conditions leading to the transition of fire spread from a surface fuel to an elevated (crown) fuel is critical to effective fire risk assessment and management. Surface fires that successfully transition to crown fires can be very difficult to suppress, potentially leading to damages in the natural and built environments. This is relevant to chaparral shrub lands which are common throughout parts of the Southwest U.S. and represent a significant part of the wildland urban interface. The ability of the Wildland-Urban Interface Fire Dynamic Simulator (WFDS) to model surface-to-crown fire transition was evaluated through comparison to laboratory experiments. The WFDS model is being developed by the U.S. Forest Service (USFS) and the National Institute of Standards and Technology. The experiments were conducted at the USFS Forest Fire Laboratory in Riverside, California. The experiments measured the ignition of chamise (Adenostoma fasciculatum) crown fuel held above a surface fire spreading through excelsior fuel. Cases with different crown fuel bulk densities, crown fuel base heights, and imposed wind speeds were considered. Cold-flow simulations yielded wind speed profiles that closely matched the experimental measurements. Next, fire simulations with only the surface fuel were conducted to verify the rate of spread while factors such as substrate properties were varied. Finally, simulations with both a surface fuel and a crown fuel were completed. Examination of specific surface fire characteristics (rate of spread, flame angle, etc.) and the corresponding experimental surface fire behavior provided a basis for comparison of the factors most responsible for transition from a surface fire to the raised fuel ignition. The rate of spread was determined by tracking the flame in the Smokeview animations using a tool developed for tracking an actual flame in a video. WFDS simulations produced results in both surface fire spread and raised fuel bed ignition which closely matched the trends reported in the laboratory experiments.
Zhang, Ru; Duan, Yuanfeng; Or, Siu Wing; Zhao, Yang
2014-01-01
An elasto-magnetic (EM) and magneto-electric (ME) effect based elasto-magneto-electric (EME) sensor has been proposed recently by the authors for stress monitoring of steel cables with obvious superiorities over traditional elasto-magnetic sensors. For design optimization and engineering application of the EME sensor, the design theory is interpreted with a developed model taking into account the EM coupling effect and ME coupling effect. This model is able to approximate the magnetization changes that a steel structural component undergoes when subjected to excitation magnetic field and external stress, and to simulate the induced ME voltages of the ME sensing unit located in the magnetization area. A full-scale experiment is then carried out to verify the model and to calibrate the EME sensor as a non-destructive evaluation (NDE) tool to monitor the cable stress. The experimental results agree well with the simulation results using the developed model. The proposed EME sensor proves to be feasible for stress monitoring of steel cables with high sensitivity, fast response, and ease of installation. PMID:25072348
Zhang, Ru; Duan, Yuanfeng; Or, Siu Wing; Zhao, Yang
2014-07-28
An elasto-magnetic (EM) and magneto-electric (ME) effect based elasto-magneto-electric (EME) sensor has been proposed recently by the authors for stress monitoring of steel cables with obvious superiorities over traditional elasto-magnetic sensors. For design optimization and engineering application of the EME sensor, the design theory is interpreted with a developed model taking into account the EM coupling effect and ME coupling effect. This model is able to approximate the magnetization changes that a steel structural component undergoes when subjected to excitation magnetic field and external stress, and to simulate the induced ME voltages of the ME sensing unit located in the magnetization area. A full-scale experiment is then carried out to verify the model and to calibrate the EME sensor as a non-destructive evaluation (NDE) tool to monitor the cable stress. The experimental results agree well with the simulation results using the developed model. The proposed EME sensor proves to be feasible for stress monitoring of steel cables with high sensitivity, fast response, and ease of installation.
Tsin, Daniel A; Davila, Fausto; Dominguez, Guillermo; Tinelli, Andrea; Davila, Martha R
2012-05-01
Use of secured independent tools (SIT) is changing the laparoscopy paradigm, which involves the use of instruments inside the abdominal cavity that are operated via a port that is larger in diameter than the instrument itself. However, in SIT instead of ports we used filaments or cables. Here we describe a modified SIT for use in the introduction of sutures or cables inside the peritoneum. Cables or sutures are passed through a tunnel made by an intravenous catheter and then exteriorized via a 12-mm port for tying, plugging (attaching), or connecting to different types of devices such as an endoscopic bulldog, alligator clamps, lights, and micromotors. These devices are introduced inside the abdomen and remotely operated with cables or filaments. The use of SIT is not limited to laparoscopy; it was successfully used in clinical experiences of single-port and single-incision laparoscopy and could facilitate natural orifice surgery. The technique offers a good force for traction, retraction, and mobilization. In addition, it has transmission capabilities for cameras and may facilitate the placement of wired microrobotics.
Prefire identification for pulse-power systems
Longmire, J.L.; Thuot, M.E.; Warren, D.S.
1982-08-23
Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.
Prefire identification for pulse power systems
Longmire, Jerry L.; Thuot, Michael E.; Warren, David S.
1985-01-01
Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.
Wildland fire and the wilderness visitor experience
Sierra L. Schroeder; Ingrid E. Schneider
2010-01-01
The purpose of this study was to understand wilderness visitors' perceptions of wildland fire and describe visitors' wilderness recreational experience following wildland fire in the Boundary Waters Canoe Area Wilderness (BWCAW). Qualitative interviews revealed visitors' perceptions of burned areas as well as if and how activities and behaviors were...
Flight demonstration of laser diode initiated ordnance
NASA Technical Reports Server (NTRS)
Boucher, Craig J.; Schulze, Norman R.
1995-01-01
A program has been initiated by NASA Headquarters to validate laser initiated ordnance in flight applications. The primary program goal is to bring together a team of government and industry members to develop a laser initiated ordnance system having the test and analysis pedigree to be flown on launch vehicles. The culmination of this effort was a flight of the Pegasus launch vehicle which had two fin rockets initiated by this laser system. In addition, a laser initiated ordnance squib was fired into a pressure bomb during thrusting flight. The complete ordnance system comprising a laser diode firing unit, fiber optic cable assembly, laser initiated detonator, and laser initiated squib was designed and built by The Ensign Bickford Company. The hardware was tested to the requirements of the Pegasus launch vehicle and integrated into the vehicle by The Ensign Bickford Company and the Orbital Sciences Corporation. Discussions include initial program concept, contract implementation, team member responsibilities, analysis results, vehicle integration, safing architecture, ordnance interfaces, mission timeline and telemetry data. A complete system description, summary of the analyses, the qualification test results, and the results of flight are included.
Reducing firing of an early pottery making kiln at Batán Grande, Peru: A Mössbauer study
NASA Astrophysics Data System (ADS)
Wagner, U.; Gebhard, R.; Häusler, W.; Hutzelmann, T.; Riederer, J.; Shimada, I.; Sosa, J.; Wagner, F. E.
1999-11-01
Material from field firing experiments using a 2,700-year old Formative kiln at Batán Grande, Peru, was studied by X-ray diffraction and Mössbauer spectroscopy. The experiments explore the technology involved in producing the gray and black reduced ware for which Cupisnique and other Formative ceramics are justly known. During firing, the iron-bearing compounds in clays undergo characteristic changes which depend on kiln temperature and atmosphere. These changes can be observed in the Mössbauer spectra. By comparing spectra of an appropriate clay fired in field experiments and in the laboratory with the spectra of ancient ceramics, a description of Formative firing techniques in a reducing environment is attempted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazlett, R.N.; Affens, W.A.; McLaren, G.W.
1978-05-01
Fire extinguishment experiments with JP-5 jet fuels derived from shale crude oil and also from petroleum (for comparison) were conducted at NRL's Chesapeake Bay facility. The experiments were conducted in a 40-foot diameter circular pool using Aqueous Film Forming Foam (AFFF) as the fire extinguishing agent. The results with both types of fuel were similar, and it was concluded that the techniques and agents for AFFF application, which have been developed for petroleum fuel fires, can also be used for shale derived jet fuel.
On the Stator Slot Geometry of a Cable Wound Generator for Hydrokinetic Energy Conversion
Grabbe, Mårten; Leijon, Mats
2015-01-01
The stator slot geometry of a cable wound permanent magnet synchronous generator for hydrokinetic energy conversion is evaluated. Practical experience from winding two cable wound generators is used to propose optimized dimensions of different parts in the stator slot geometry. A thorough investigation is performed through simulations of how small geometrical changes alter the generator performance. The finite element method (FEM) is used to model the generator and the simulations show that small changes in the geometry can have large effect on the performance of the generator. Furthermore, it is concluded that the load angle is especially sensitive to small geometrical changes. A new generator design is proposed which shows improved efficiency, reduced weight, and a possibility to decrease the expensive permanent magnet material by almost one-fifth. PMID:25879072
Vehicle fires and fire safety in tunnels
DOT National Transportation Integrated Search
2002-09-20
Tunnels present what is arguably the most hazardous environment, from the point of view of fire safety, that members of the public ever experience. The fire safety design of tunnels is carried out by tunnel engineers on the basis of a potential fire ...
NASA Astrophysics Data System (ADS)
Sun, Ruiyu
It is possible due to present day computing power to produce a fluid dynamical physically-based numerical solution to wildfire behavior, at least in the research mode. This type of wildfire modeling affords a flexibility and produces details that are not available in either current operational wildfire behavior models or field experiments. However before using these models to study wildfire, validation is necessary, and model results need to be systematically and objectively analyzed and compared to real fires. Plume theory and data from the Meteotron experiment, which was specially designed to provide results from measurements for the theoretical study of a convective plume produced by a high heat source at the ground, are used here to evaluate the fire plume properties simulated by two numerical wildfire models, the Fire Dynamics Simulator or FDS, and the Clark coupled atmosphere-fire model. The study indicates that the FDS produces good agreement with the plume theory and the Meteotron results. The study also suggests that the coupled atmosphere-fire model, a less explicit and ideally less computationally demanding model than the FDS; can produce good agreement, but that the agreement is sensitive to the method of putting the energy released from the fire into the atmosphere. The WFDS (Wildfire and wildland-urban interface FDS), an extension of the FDS to the vegetative fuel, and the Australian grass fire experiments are used to evaluate and improve the UULES-wildfire coupled model. Despite the simple fire parameterization in the UULES-wildfire coupled model, the fireline is fairly well predicted in terms of both shape and location in the simulation of Australian grass fire experiment F19. Finally, the UULES-wildfire coupled model is used to examine how the turbulent flow in the atmospheric boundary layer (ABL) affects the growth of the grass fires. The model fires showed significant randomness in fire growth: Fire spread is not deterministic in the ABL, and a probabilistic prediction method is warranted. Of the two contributors to the variability in fire growth in the grass fire simulations in the ABL, fire-induced convection, as opposed to the turbulent ABL wind, appears to be the more important one. One mechanism associated with enhanced fire-induced flow is the downdraft behind the frontal fireline. The downdraft is the direct result of the random interaction between the fire plume and the large eddies in the ABL. This study indicates a connection between fire variability in rate of spread and area burnt and so-called convective velocity scale, and it may be possible to use this boundary-layer scale parameter to account for the effects of ABL turbulence on fire spread and fire behavior in today's operational fire prediction systems.
Fire and Smoke Model Evaluation Experiment (FASMEE): Modeling gaps and data needs
Yongqiang Liu; Adam Kochanski; Kirk Baker; Ruddy Mell; Rodman Linn; Ronan Paugam; Jan Mandel; Aime Fournier; Mary Ann Jenkins; Scott Goodrick; Gary Achtemeier; Andrew Hudak; Matthew Dickson; Brian Potter; Craig Clements; Shawn Urbanski; Roger Ottmar; Narasimhan Larkin; Timothy Brown; Nancy French; Susan Prichard; Adam Watts; Derek McNamara
2017-01-01
Fire and smoke models are numerical tools for simulating fire behavior, smoke dynamics, and air quality impacts of wildland fires. Fire models are developed based on the fundamental chemistry and physics of combustion and fire spread or statistical analysis of experimental data (Sullivan 2009). They provide information on fire spread and fuel consumption for safe and...
Identifiable piezoelectric security system design
NASA Astrophysics Data System (ADS)
Li, Zhenyu; Zhang, Xiaoming
2017-10-01
Directing at the disadvantages of low environmental suitability, inferior anti-interference ability and being easy to be found and destroyed in existing security product, a kind of identifiable piezoelectric security system based on piezoelectric cable is designed. The present system gathers vibration signals of different moving bodies, such as human, vehicles, animals and so on, with piezoelectric cable buried under -ground and distinguishes the different moving bodies through recognition algorithm and thus giving an alarm. As is shown in experiments, the present system has the features of good concealment and high accuracy in distinguishing moving bodies.
Operation REDWING, Report of the Manager Albuquerque Operations
1983-01-31
on their experience in three previous operations (IVY, GREENHOUSE , and CASTLE) AEC authorized, and Holmes & Narver pur chased and shipped to the...Operation GREENHOUSE and one 51-pair cable installed prior to REDWING. One of the 16-pair cables developed shorted and opened pairs. When an...refrigerators, dehumidification units, 20’ ■.r.. i..jjj||.t.^. .M , ., ». i .. —■■■"■= •>•■•— :- •’ ■’ ■■-■■ ■- ’■ • APPENDIX lII-3.10-l
Deitcher, Yair; Eyal, Guy; Kanari, Lida; Verhoog, Matthijs B; Atenekeng Kahou, Guy Antoine; Mansvelder, Huibert D; de Kock, Christiaan P J; Segev, Idan
2017-01-01
Abstract There have been few quantitative characterizations of the morphological, biophysical, and cable properties of neurons in the human neocortex. We employed feature-based statistical methods on a rare data set of 60 3D reconstructed pyramidal neurons from L2 and L3 in the human temporal cortex (HL2/L3 PCs) removed after brain surgery. Of these cells, 25 neurons were also characterized physiologically. Thirty-two morphological features were analyzed (e.g., dendritic surface area, 36 333 ± 18 157 μm2; number of basal trees, 5.55 ± 1.47; dendritic diameter, 0.76 ± 0.28 μm). Eighteen features showed a significant gradual increase with depth from the pia (e.g., dendritic length and soma radius). The other features showed weak or no correlation with depth (e.g., dendritic diameter). The basal dendritic terminals in HL2/L3 PCs are particularly elongated, enabling multiple nonlinear processing units in these dendrites. Unlike the morphological features, the active biophysical features (e.g., spike shapes and rates) and passive/cable features (e.g., somatic input resistance, 47.68 ± 15.26 MΩ, membrane time constant, 12.03 ± 1.79 ms, average dendritic cable length, 0.99 ± 0.24) were depth-independent. A novel descriptor for apical dendritic topology yielded 2 distinct classes, termed hereby as “slim-tufted” and “profuse-tufted” HL2/L3 PCs; the latter class tends to fire at higher rates. Thus, our morpho-electrotonic analysis shows 2 distinct classes of HL2/L3 PCs. PMID:28968789
NASA Astrophysics Data System (ADS)
Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.
2014-02-01
Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESM). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first generation Dynamic Vegetation Models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second generation DVMs, that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to a range of forest types around the globe, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 yr. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents a preferable alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.
30 CFR 77.605 - Breaking trailing cable and power cable connections.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable connections. Trailing cable and power cable connections between cables and to power sources shall not be made...
30 CFR 77.605 - Breaking trailing cable and power cable connections.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable connections. Trailing cable and power cable connections between cables and to power sources shall not be made...
30 CFR 77.605 - Breaking trailing cable and power cable connections.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable connections. Trailing cable and power cable connections between cables and to power sources shall not be made...
30 CFR 77.605 - Breaking trailing cable and power cable connections.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable connections. Trailing cable and power cable connections between cables and to power sources shall not be made...
30 CFR 77.605 - Breaking trailing cable and power cable connections.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable connections. Trailing cable and power cable connections between cables and to power sources shall not be made...
[Research on early fire detection with CO-CO2 FTIR-spectroscopy].
Du, Jian-hua; Zhang, Ren-cheng; Huang, Xiang-ying; Gong, Xue; Zhang, Xiao-hua
2007-05-01
A new fire detection method is put forward based on the theory of FTIR spectroscopy through analyzing all kinds of detection methods, in which CO and CO2 are chosen as early fire detection objects, and an early fire experiment system has been set up. The concentration characters of CO and CO2 were obtained through early fire experiments including real alarm sources and nuisance alarm sources. In real alarm sources there are abundant CO and CO2 which change regularly. In nuisance alarm sources there is almost no CO. So it's feasible to reduce the false alarms and increase the sensitivity of early fire detectors through analyzing the concentration characters of CO and CO2.
NASA Astrophysics Data System (ADS)
Laucht, Arne; Kalra, Rachpon; Dehollain, Juan P.; Bar, Daniel; Freer, Solomon; Simmons, Stephanie; Muhonen, Juha T.; Morello, Andrea
Cryogen-free low-temperature setups are becoming more prominent in experimental science due to their convenience and reliability, and concern about the increasing scarcity of helium as a natural resource. Despite not having any moving parts at the cold end, pulse tube cryocoolers introduce vibrations that can be detrimental to the experiments. We characterize the coupling of these vibrations to the electrical signal observed on cables installed in a cryogen-free dilution refrigerator. The dominant electrical noise is in the 5-10 kHz range and its magnitude is found to be strongly temperature dependent. We test the performance of different cables designed to diagnose and tackle the noise, and find triboelectrics to be the dominant mechanism coupling the vibrations to the electrical signal. Flattening a semi-rigid cable or jacketing a flexible cable in order to restrict movement within the cable, successfully reduces the noise level by over an order of magnitude. Furthermore, we characterize the effect of the pulse tube vibrations on an electron spin qubit device in this setup. Coherence measurements are used to map out the spectrum of the noise experienced by the qubit, revealing spectral components matching the spectral signature of the pulse tube. This research was funded by the Australian Research Council (CE110001027) and the US Army Research Office (W911NF-13-1-0024).
An algorithm for power line detection and warning based on a millimeter-wave radar video.
Ma, Qirong; Goshi, Darren S; Shih, Yi-Chi; Sun, Ming-Ting
2011-12-01
Power-line-strike accident is a major safety threat for low-flying aircrafts such as helicopters, thus an automatic warning system to power lines is highly desirable. In this paper we propose an algorithm for detecting power lines from radar videos from an active millimeter-wave sensor. Hough Transform is employed to detect candidate lines. The major challenge is that the radar videos are very noisy due to ground return. The noise points could fall on the same line which results in signal peaks after Hough Transform similar to the actual cable lines. To differentiate the cable lines from the noise lines, we train a Support Vector Machine to perform the classification. We exploit the Bragg pattern, which is due to the diffraction of electromagnetic wave on the periodic surface of power lines. We propose a set of features to represent the Bragg pattern for the classifier. We also propose a slice-processing algorithm which supports parallel processing, and improves the detection of cables in a cluttered background. Lastly, an adaptive algorithm is proposed to integrate the detection results from individual frames into a reliable video detection decision, in which temporal correlation of the cable pattern across frames is used to make the detection more robust. Extensive experiments with real-world data validated the effectiveness of our cable detection algorithm. © 2011 IEEE
Evaluation of Criteria for the Detection of Fires in Underground Conveyor Belt Haulageways.
Litton, Charles D; Perera, Inoka Eranda
2012-07-01
Large-scale experiments were conducted in an above-ground gallery to simulate typical fires that develop along conveyor belt transport systems within underground coal mines. In the experiments, electrical strip heaters, imbedded ~5 cm below the top surface of a large mass of coal rubble, were used to ignite the coal, producing an open flame. The flaming coal mass subsequently ignited 1.83-meter-wide conveyor belts located approximately 0.30 m above the coal surface. Gas samples were drawn through an averaging probe located approximately 20 m downstream of the coal for continuous measurement of CO, CO 2 , and O 2 as the fire progressed through the stages of smoldering coal, flaming coal, and flaming conveyor belt. Also located approximately 20 m from the fire origin and approximately 0.5 m below the roof of the gallery were two commercially available smoke detectors, a light obscuration meter, and a sampling probe for measurement of total mass concentration of smoke particles. Located upstream of the fire origin and also along the wall of the gallery at approximately 14 m and 5 m upstream were two video cameras capable of both smoke and flame detection. During the experiments, alarm times of the smoke detectors and video cameras were measured while the smoke obscuration and total smoke mass were continually measured. Twelve large-scale experiments were conducted using three different types of fire-resistant conveyor belts and four air velocities for each belt. The air velocities spanned the range from 1.0 m/s to 6.9 m/s. The results of these experiments are compared to previous large-scale results obtained using a smaller fire gallery and much narrower (1.07-m) conveyor belts to determine if the fire detection criteria previously developed (1) remained valid for the wider conveyor belts. Although some differences between these and the previous experiments did occur, the results, in general, compare very favorably. Differences are duly noted and their impact on fire detection discussed.
Resource allocation for wildland fire suppression planning using a stochastic program
Alex Taylor Masarie
2011-01-01
Resource allocation for wildland fire suppression problems, referred to here as Fire-S problems, have been studied for over a century. Not only have the many variants of the base Fire-S problem made it such a durable one to study, but advances in suppression technology and our ever-expanding knowledge of and experience with wildland fire behavior have required almost...
Static and Dynamic Characteristics of a Long-Span Cable-Stayed Bridge with CFRP Cables
Xie, Xu; Li, Xiaozhang; Shen, Yonggang
2014-01-01
In this study, the scope of CFRP cables in cable-stayed bridges is studied by establishing a numerical model of a 1400-m span of the same. The mechanical properties and characteristics of CFRP stay cables and of a cable-stayed bridge with CFRP cables are here subjected to comprehensive analysis. The anomalies in the damping properties of free vibration, nonlinear parametric vibration and wind fluctuating vibration between steel cables and CFRP cables are determined. The structural stiffness, wind resistance and traffic vibration of the cable-stayed bridge with CFRP cables are also analyzed. It was found that the static performances of a cable-stayed bridge with CFRP cables and steel cables are basically the same. The natural frequencies of CFRP cables do not coincide with the major natural frequencies of the cable-stayed bridge, so the likelihood of CFRP cable-bridge coupling vibration is minuscule. For CFRP cables, the response amplitudes of both parametric vibration and wind fluctuating vibration are smaller than those of steel cables. It can be concluded from the research that the use of CFRP cables does not change the dynamic characteristics of the vehicle-bridge coupling vibration. Therefore, they can be used in long-span cable-stayed bridges with an excellent mechanical performance. PMID:28788710
Static and Dynamic Characteristics of a Long-Span Cable-Stayed Bridge with CFRP Cables.
Xie, Xu; Li, Xiaozhang; Shen, Yonggang
2014-06-23
In this study, the scope of CFRP cables in cable-stayed bridges is studied by establishing a numerical model of a 1400-m span of the same. The mechanical properties and characteristics of CFRP stay cables and of a cable-stayed bridge with CFRP cables are here subjected to comprehensive analysis. The anomalies in the damping properties of free vibration, nonlinear parametric vibration and wind fluctuating vibration between steel cables and CFRP cables are determined. The structural stiffness, wind resistance and traffic vibration of the cable-stayed bridge with CFRP cables are also analyzed. It was found that the static performances of a cable-stayed bridge with CFRP cables and steel cables are basically the same. The natural frequencies of CFRP cables do not coincide with the major natural frequencies of the cable-stayed bridge, so the likelihood of CFRP cable-bridge coupling vibration is minuscule. For CFRP cables, the response amplitudes of both parametric vibration and wind fluctuating vibration are smaller than those of steel cables. It can be concluded from the research that the use of CFRP cables does not change the dynamic characteristics of the vehicle-bridge coupling vibration. Therefore, they can be used in long-span cable-stayed bridges with an excellent mechanical performance.
NASA Astrophysics Data System (ADS)
Azieyanti, N. A.; Hakim, Alif; Hasini, Hasril
2017-10-01
A composite mixture of gypsum and natural fibers has been considered in this study to enhance the fire resistance rating of a fire door. Previously the materials used to make a fire door are gypsum and fiber wool where it acts as a protective coating. Normally this fire door must be compact and able to close on its own. Natural fibers have the ability to replace glass fiber cotton because of its features that are available in fiber glass wool. When using fiberglass, it can cause health problem once it is swallowed and inhaled, and may remain in the lungs indefinitely. It also can contribute to lungs cancer. Kapok fiber has been used in this experiment as natural fibers. The objective of the experiment is to analyze the fire resistant rating of the composite mixture of gypsum with kapok fiber. The scopes of the experiment consist of a preparation of composite mixture samples of gypsum with kapok fiber with different composition and thickness, and the fabrication of a fire resistant testing furnace. A testing of samples which were conducted in accordance with the standard MS 1073: PART 2:1996.
The Properties of Condensed Explosives for Electromagnetic Energy Coupling,
1985-10-01
CONCLUSIONS Due t o the 3-dimensional nature of the experiment, multiple reflections occurred within the eleccrode block during the course of the experiment...Self- integracion is used as a method of band-limiting to prevent resonance, as discussed later. Self-resonance and Cable Matching From Figure C-4
Wind tunnel experiments to study chaparral crown fires
Jeanette Cobian-Iñiguez; AmirHessam Aminfar; Joey Chong; Gloria Burke; Albertina Zuniga; David R. Weise; Marko Princevac
2017-01-01
The present protocol presents a laboratory technique designed to study chaparral crown fire ignition and spread. Experiments were conducted in a low velocity fire wind tunnel where two distinct layers of fuel were constructed to represent surface and crown fuels in chaparral. Chamise, a common chaparral shrub, comprised the live crown layer. The dead fuel surface layer...
Overview of the Fire Lab at Missoula Experiments (FLAME)
S. M. Kreidenweis; J. L. Collett; H. Moosmuller; W. P. Arnott; WeiMin Hao; W. C. Malm
2010-01-01
The Fire Lab at Missoula Experiments (FLAME) used a series of open biomass burns, conducted in 2006 and 2007 at the Forest Service Fire Science Laboratory in Missoula, MT, to characterize the physical, chemical and optical properties of biomass combustion emissions. Fuels were selected primarily based on their projected importance for emissions from prescribed and wild...
30 CFR 77.601 - Trailing cables or portable cables; temporary splices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables or portable cables; temporary... OF UNDERGROUND COAL MINES Trailing Cables § 77.601 Trailing cables or portable cables; temporary splices. Temporary splices in trailing cables or portable cables shall be made in a workmanlike manner and...
Hydrocarbon characterization experiments in fully turbulent fires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricks, Allen; Blanchat, Thomas K.
As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuelmore » evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. A set of experiments are outlined in this report which will provide data for the development and validation of models for the fuel regression rates in liquid hydrocarbon fuel fires. The experiments will be performed on fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool will be investigated and the total heat flux to the pool surface will be measured. The importance of convection within the liquid fuel will be assessed by restricting large scale liquid motion in some tests. These data sets will provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.« less
Development of a Distributed Crack Sensor Using Coaxial Cable.
Zhou, Zhi; Jiao, Tong; Zhao, Peng; Liu, Jia; Xiao, Hai
2016-07-29
Cracks, the important factor of structure failure, reflect structural damage directly. Thus, it is significant to realize distributed, real-time crack monitoring. To overcome the shortages of traditional crack detectors, such as the inconvenience of installation, vulnerability, and low measurement range, etc., an improved topology-based cable sensor with a shallow helical groove on the outside surface of a coaxial cable is proposed in this paper. The sensing mechanism, fabrication method, and performances are investigated both numerically and experimentally. Crack monitoring experiments of the reinforced beams are also presented in this paper, illustrating the utility of this sensor in practical applications. These studies show that the sensor can identify a minimum crack width of 0.02 mm and can measure multiple cracks with a spatial resolution of 3 mm. In addition, it is also proved that the sensor performs well to detect the initiation and development of cracks until structure failure.
Development of a Distributed Crack Sensor Using Coaxial Cable
Zhou, Zhi; Jiao, Tong; Zhao, Peng; Liu, Jia; Xiao, Hai
2016-01-01
Cracks, the important factor of structure failure, reflect structural damage directly. Thus, it is significant to realize distributed, real-time crack monitoring. To overcome the shortages of traditional crack detectors, such as the inconvenience of installation, vulnerability, and low measurement range, etc., an improved topology-based cable sensor with a shallow helical groove on the outside surface of a coaxial cable is proposed in this paper. The sensing mechanism, fabrication method, and performances are investigated both numerically and experimentally. Crack monitoring experiments of the reinforced beams are also presented in this paper, illustrating the utility of this sensor in practical applications. These studies show that the sensor can identify a minimum crack width of 0.02 mm and can measure multiple cracks with a spatial resolution of 3 mm. In addition, it is also proved that the sensor performs well to detect the initiation and development of cracks until structure failure. PMID:27483280
Gamo, Toshitaka; Okamura, Kei; Mitsuzawa, Kyohiko; Asakawa, Kenichi
2007-01-01
We successfully deployed an in situ automatic chemical analyzer sensitive to manganese (Mn) in seawater for a period of 81 days for the first time on the deep seafloor of Sagami Bay along a convergent plate boundary south of Japan. The in situ Mn analyzer (GAMOS-IV) was connected to a submarine cable as a means to supply power and to relay real time data. During the observation period from April 5 till June 25, 2006, the amount of measured Mn was seen to increase abruptly up to 10 times that of the background level only on April 21, probably triggered by a M5.8 earthquake which occurred ∼7 km south-southwest of the observation site. This study demonstrates the suitability of submarine cables for the long-term geochemical monitoring of deep sea environments. PMID:24367146
Risks and issues in fire safety on the Space Station
NASA Technical Reports Server (NTRS)
Friedman, Robert
1993-01-01
A fire in the inhabited portion of a spacecraft is a greatly feared hazard, but fire protection in space operations is complicated by two factors. First, the spacecraft cabin is an enclosed volume, which limits the resources for fire fighting and the options for crew escape. Second, an orbiting spacecraft experiences a balance of forces, creating a near-zero-gravity (microgravity) environment that profoundly affects the characteristics of fire initiation, spread, and suppression. The current Shuttle Orbiter is protected by a fire-detection and suppression system whose requirements are derived of necessity from accepted terrestrial and aircraft standards. While experience has shown that Shuttle fire safety is adequate, designers recognize that improved systems to respond specifically to microgravity fire characteristics are highly desirable. Innovative technology is particularly advisable for the Space Station, a forthcoming space community with a complex configuration and long-duration orbital missions, in which the effectiveness of current fire-protection systems is unpredictable. The development of risk assessments to evaluate the probabilities and consequences of fire incidents in spacecraft are briefly reviewed. It further discusses the important unresolved issues and needs for improved fire safety in the Space Station, including those of material selection, spacecraft atmospheres, fire detection, fire suppression, and post-fire restoration.
Oak woodlands and forests fire consortium: A regional view of fire science sharing
Grabner, Keith W.; Stambaugh, Michael C.; Marschall, Joseph M.; Abadir, Erin R.
2013-01-01
The Joint Fire Science Program established 14 regional fire science knowledge exchange consortia to improve the delivery of fire science information and communication among fire managers and researchers. Consortia were developed regionally to ensure that fire science information is tailored to meet regional needs. In this paper, emphasis was placed on the Oak Woodlands and Forests Fire Consortium to provide an inside view of how one regional consortium is organized and its experiences in sharing fire science through various social media, conference, and workshop-based fire science events.
Current State of European Railway Fire Safety Research
DOT National Transportation Integrated Search
1985-06-01
This report describes the recent fire safety research and practical fire experience of the major European railways. It includes a summary of the main causes and characteristics of railway vehicle fires, general approaches to the problem, and existing...
Andrew T. Hudak; Matthew B. Dickinson; Benjamin C. Bright; Robert L. Kremens; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Roger D. Ottmar
2016-01-01
Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD),...
Health monitoring and rehabilitation of a concrete structure using intelligent materials
NASA Astrophysics Data System (ADS)
Song, G.; Mo, Y. L.; Otero, K.; Gu, H.
2006-04-01
This paper presents the concept of an intelligent reinforced concrete structure (IRCS) and its application in structural health monitoring and rehabilitation. The IRCS has multiple functions which include self-rehabilitation, self-vibration damping, and self-structural health monitoring. These functions are enabled by two types of intelligent (smart) materials: shape memory alloys (SMAs) and piezoceramics. In this research, Nitinol type SMA and PZT (lead zirconate titanate) type piezoceramics are used. The proposed concrete structure is reinforced by martensite Nitinol cables using the method of post-tensioning. The martensite SMA significantly increases the concrete's damping property and its ability to handle large impact. In the presence of cracks due to explosions or earthquakes, by electrically heating the SMA cables, the SMA cables contract and close up the cracks. In this research, PZT patches are embedded in the concrete structure to detect possible cracks inside the concrete structure. The wavelet packet analysis method is then applied as a signal-processing tool to analyze the sensor signals. A damage index is defined to describe the damage severity for health monitoring purposes. In addition, by monitoring the electric resistance change of the SMA cables, the crack width can be estimated. To demonstrate this concept, a concrete beam specimen with reinforced SMA cables and with embedded PZT patches is fabricated. Experiments demonstrate that the IRC has the ability of self-sensing and self-rehabilitation. Three-point bending tests were conducted. During the loading process, a crack opens up to 0.47 inches. Upon removal of the load and heating the SMA cables, the crack closes up. The damage index formed by wavelet packet analysis of the PZT sensor data predicts and confirms the onset and severity of the crack during the loading. Also during the loading, the electrical resistance value of the SMA cable changes by up to 27% and this phenomenon is used to monitor the crack width.
47 CFR 36.153 - Assignment of Cable and Wire Facilities (C&WF) to categories.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Assignment of Cable and Wire Facilities (C&WF... Telecommunications Property Cable and Wire Facilities § 36.153 Assignment of Cable and Wire Facilities (C&WF) to categories. (a) Cable consists of: Aerial cable, underground cable, buried cable, submarine cable, deep sea...
47 CFR 36.153 - Assignment of Cable and Wire Facilities (C&WF) to categories.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 2 2012-10-01 2012-10-01 false Assignment of Cable and Wire Facilities (C&WF... Telecommunications Property Cable and Wire Facilities § 36.153 Assignment of Cable and Wire Facilities (C&WF) to categories. (a) Cable consists of: Aerial cable, underground cable, buried cable, submarine cable, deep sea...
47 CFR 36.153 - Assignment of Cable and Wire Facilities (C&WF) to categories.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Assignment of Cable and Wire Facilities (C&WF... Telecommunications Property Cable and Wire Facilities § 36.153 Assignment of Cable and Wire Facilities (C&WF) to categories. (a) Cable consists of: Aerial cable, underground cable, buried cable, submarine cable, deep sea...
Reliability and Characterization of High Voltage Power Capacitors
2014-03-01
Cable The HVPS cable is a specialized coaxial cable that utilizes a high voltage bayonet connector. The cable itself has a voltage rating in excess...the( LabVIEW(program( GPIB( CABLE ( HVPS( HVPS( COAXIAL ( CABLE ( BNC( COAXIAL ( CABLE ( BNC( COAXIAL ( CABLE ( CAPACITOR(‘C’(DATA( CAPACITOR(‘A’(DATA( Circuit...16 F. CABLES AND CONNECTORS ...................................................................16
Definition of experiments to investigate fire suppressants in microgravity
NASA Technical Reports Server (NTRS)
Reuther, James J.
1990-01-01
Defined and justified here are the conceptual design and operation of a critical set of experiments expected to yield information on suppressants and on suppressant delivery systems under realistic spacecraft-fire conditions (smoldering). Specific experiment parameters are provided on the solid fuel (carbon), oxidants (habitable spacecraft atmospheres), fuel/oxidant supply, mixing mode, and rate (quiescent and finite; ventilated and replenishable), ignition mode, event, and reignition tendency, fire-zone size, fire conditions, lifetime, and consequences (toxicity), suppressants (CO2, H2O, N2) and suppressant delivery systems, and diagnostics. Candidate suppressants were identified after an analysis of how reduced gravity alters combustion, and how these alterations may influence the modes, mechanisms, and capacities of terrestrial agents to suppress unwanted combustion, or fire. Preferred spacecraft suppression concepts included the local, near-quiescent application of a gas, vapor, or mist that has thermophysical fire-suppression activity and is chemically inert under terrestrial (normal gravity) combustion conditions. The scale, number, and duration (about 1 hour) of the proposed low-gravity experiments were estimated using data not only on the limitations imposed by spacecraft-carrier (Shuttle or Space Station Freedom) accommodations, but also data on the details and experience of standardized smolder-suppression experiments at normal gravity. Deliberately incorporated into the conceptual design was sufficient interchangeability for the prototype experimental package to fly either on Shuttle now or Freedom later. This flexibility is provided by the design concept of up to 25 modular fuel canisters within a containment vessel, which permits both integration into existing low-gravity in-space combustion experiments and simultaneous testing of separate experiments to conserve utilities and time.
Experiments with the Skylab fire detectors in zero gravity
NASA Technical Reports Server (NTRS)
Linford, R. M. F.
1972-01-01
The Skylab fire detector was evaluated in a zero gravity environment. To conduct the test, small samples of spacecraft materials were ignited in a 5 psi oxygen-rich atmosphere inside a combustion chamber. The chamber free-floated in the cabin of a C-135 aircraft, as the aircraft executed a Keplerian parabola. Up to 10 seconds of zero-gravity combustion were achieved. The Skylab fire-detector tubes viewed the flames from a simulated distance of 3m, and color movies were taken to record the nature of the fire. The experiments established the unique form of zero-gravity fires for a wide range of materials. From the tube-output data, the alarm threshold and detector time constant were verified for the Skylab Fire Detection System.
NASA Astrophysics Data System (ADS)
Ilin, K.; Yagotintsev, K. A.; Zhou, C.; Gao, P.; Kosse, J.; Otten, S. J.; Wessel, W. A. J.; Haugan, T. J.; van der Laan, D. C.; Nijhuis, A.
2015-05-01
For high current superconductors in high magnet fields with currents in the order of 50 kA, single ReBCO coated conductors must be assembled in a cable. The geometry of such a cable is mostly such that combined torsion, axial and transverse loading states are anticipated in the tapes and tape joints. The resulting strain distribution, caused by different thermal contraction and electromagnetic forces, will affect the critical current of the tapes. Tape performance when subjected to torsion, tensile and transverse loading is the key to understanding limitations for the composite cable performance. The individual tape material components can be deformed, not only elastically but also plastically under these loads. A set of experimental setups, as well as a convenient and accurate method of stress-strain state modeling based on the finite element method have been developed. Systematic measurements on single ReBCO tapes are carried out combining axial tension and torsion as well as transverse loading. Then the behavior of a single tape subjected to the various applied loads is simulated in the model. This paper presents the results of experimental tests and detailed FE modeling of the 3D stress-strain state in a single ReBCO tape under different loads, taking into account the temperature dependence and the elastic-plastic properties of the tape materials, starting from the initial tape processing conditions during its manufacture up to magnet operating conditions. Furthermore a comparison of the simulations with experiments is presented with special attention for the critical force, the threshold where the tape performance becomes irreversibly degraded. We verified the influence of tape surface profile non-uniformity and copper stabilizer thickness on the critical force. The FE models appear to describe the tape experiments adequately and can thus be used as a solid basis for optimization of various cabling concepts.
Modeling vibration response and damping of cables and cabled structures
NASA Astrophysics Data System (ADS)
Spak, Kaitlin S.; Agnes, Gregory S.; Inman, Daniel J.
2015-02-01
In an effort to model the vibration response of cabled structures, the distributed transfer function method is developed to model cables and a simple cabled structure. The model includes shear effects, tension, and hysteretic damping for modeling of helical stranded cables, and includes a method for modeling cable attachment points using both linear and rotational damping and stiffness. The damped cable model shows agreement with experimental data for four types of stranded cables, and the damped cabled beam model shows agreement with experimental data for the cables attached to a beam structure, as well as improvement over the distributed mass method for cabled structure modeling.
30 CFR 75.607 - Breaking trailing cable and power cable connections.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Breaking trailing cable and power cable....607 Breaking trailing cable and power cable connections. [Statutory Provisions] Trailing cable and power cable connections to junction boxes shall not be made or broken under load. ...
30 CFR 75.607 - Breaking trailing cable and power cable connections.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Breaking trailing cable and power cable....607 Breaking trailing cable and power cable connections. [Statutory Provisions] Trailing cable and power cable connections to junction boxes shall not be made or broken under load. ...
30 CFR 75.607 - Breaking trailing cable and power cable connections.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Breaking trailing cable and power cable....607 Breaking trailing cable and power cable connections. [Statutory Provisions] Trailing cable and power cable connections to junction boxes shall not be made or broken under load. ...
30 CFR 75.607 - Breaking trailing cable and power cable connections.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Breaking trailing cable and power cable....607 Breaking trailing cable and power cable connections. [Statutory Provisions] Trailing cable and power cable connections to junction boxes shall not be made or broken under load. ...
Schwaerzle, M; Elmlinger, P; Paul, O; Ruther, P
2014-01-01
This paper reports on the design, simulation, fabrication and characterization of a tool for optogenetic experiments based on a light emitting diode (LED). A minimized silicon (Si) interface houses the LED and aligns it to an optical fiber. With a Si housing size of 550×500×380 μm(3) and an electrical interconnection of the LED by a highly flexible polyimide (PI) ribbon cable is the system very variable. PI cables and Si housings are fabricated using established microsystem technologies. A 270×220×50 μm(3) bare LED chip is flip-chip-bonded onto the PI cable. The Si housing is adhesively attached to the PI cable, thereby hosting the LED in a recess. An opposite recess guides the optical fiber with a diameter of 125 μm. An aperture in-between restricts the emitted LED light to the fiber core. The optical fiber is adhesively fixed into the Si housing recess. An optical output intensity at the fiber end facet of 1.71 mW/mm(2) was achieved at a duty cycle of 10 % and a driving current of 30 mA.
Impact capacity reduction in railway prestressed concrete sleepers with vertical holes
NASA Astrophysics Data System (ADS)
Ngamkhanong, Chayut; Li, Dan; Kaewunruen, Sakdirat
2017-09-01
Railway prestressed concrete sleepers (or railroad ties) are principally designed in order to carry wheel loads from the rails to the ground as well as to secure rail gauge for dynamic safe movements of trains. In spite of the most common use of the prestressed concrete sleepers in railway tracks, the concrete sleepers are often modified on construction sites to fit in other systems such as cables, signalling gears, drainage pipes, etc. This is because those signalling, fibre optic, equipment cables are often damaged either by ballast corners or by tamping machine. It is thus necessary to modify concrete sleepers to cater cables internally so that the cables or drainage pipes would not experience detrimental or harsh environments. Accordingly, this study will extend from the previous study into the design criteria of holes and web openings. This paper will highlight structural capacity of concrete sleepers under dynamic transient loading. The modified compression field theory for ultimate strength design of concrete sleepers will be highlighted in this study. The outcome of this study will improve the understanding into dynamic behavior of prestressed concrete sleepers with vertical holes. The insight will enable predictive track maintenance regime in railway industry.
A Cabled, High Bandwidth Instrument Platform for Continuous Scanning of the Upper Ocean Water Column
NASA Astrophysics Data System (ADS)
McRae, E.; Delaney, J. R.; Kelly, D.; Daly, K. L.; Luther, D. S.; Harkins, G.; Harrington, M.; McGuire, C.; Tilley, J.; Dosher, J.; Waite, P.; Cram, G.; Kawka, O. E.
2016-02-01
The Cabled Array portion of the National Science Foundation funded Ocean Observatories Initiative is a large scale, high bandwidth and high power subsea science network designed by the University of Washington Applied Physics Laboratory. Part of that system is a set of winched profilers which continuously scan the upper 200m of the ocean at their deployment sites. The custom built profilers leverage the Cabled Array's technology for interfacing collections of science instruments and add the ability to run predefined missions and to switch missions or mission parameters on the fly via command from shore. The profilers were designed to operate continuously for up to two years after deployment after which certain wearing components must be replaced. The data from the profiler's science and engineering sensors are streamed to shore via the seafloor network in real time. Data channel capacity from the profilers exceeds 40 Mbps. For profiler safety, mission execution is controlled within the platform. Inputs such as 3D gyro, pressure depth and deployed cable calculations are monitored to assure safe operation during any sea state. The profilers never surface but are designed to approach within 5m of the surface if conditions allow. Substantial engineering effort was focused on reliable cable handling under all ocean conditions. The profilers are currently operated from subsea moorings which also contain sets of fixed science and engineering sensors. The profilers and their associated mooring instrument assemblies are designed for rapid replacement using ROVs. We have operated this system for two years, including one annual maintenance turn and information relative to that experience will be included in the paper.[Image Caption] Cabled Array Shallow Profiler shown in its parking position.
30 CFR 75.607 - Breaking trailing cable and power cable connections.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Breaking trailing cable and power cable... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.607 Breaking trailing cable and power cable connections. [Statutory Provisions] Trailing cable and...
Fire as a physical factor in wildland management
Robert E. Martin; Charles T. Cushwa; Robert L. Miller
1969-01-01
We use fire to accomplish many goals. Most of our use is based on long years of experience-experience that enables us to predict the results we should obtain from the "feel" of the situation. Research is being conducted, to assist less experienced land managers to understand fire more completely and to provide means for them to predict its effects in given...
Experimental and numerical modeling of shrub crown fire initiation
Watcharapong Tachajapong; Jesse Lozano; Shakar Mahalingam; Xiangyang Zhou; David Weise
2009-01-01
The transition of fire from dry surface fuels to wet shrub crown fuels was studied using laboratory experiments and a simple physical model to gain a better understanding of the transition process. In the experiments, we investigated the effects of varying vertical distances between surface and crown fuels (crown base height), and of the wind speed on crown fire...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jernigan, Dann A.; Blanchat, Thomas K.
It is necessary to improve understanding and develop temporally- and spatially-resolved integral scale validation data of the heat flux incident to a complex object in addition to measuring the thermal response of said object located within the fire plume for the validation of the SIERRA/FUEGO/SYRINX fire and SIERRA/CALORE codes. To meet this objective, a complex calorimeter with sufficient instrumentation to allow validation of the coupling between FUEGO/SYRINX/CALORE has been designed, fabricated, and tested in the Fire Laboratory for Accreditation of Models and Experiments (FLAME) facility. Validation experiments are specifically designed for direct comparison with the computational predictions. Making meaningful comparisonmore » between the computational and experimental results requires careful characterization and control of the experimental features or parameters used as inputs into the computational model. Validation experiments must be designed to capture the essential physical phenomena, including all relevant initial and boundary conditions. This report presents the data validation steps and processes, the results of the penlight radiant heat experiments (for the purpose of validating the CALORE heat transfer modeling of the complex calorimeter), and the results of the fire tests in FLAME.« less
NASA Astrophysics Data System (ADS)
Vermeeren, Ludo; Leysen, Willem; Brichard, Benoit
2018-01-01
Mineral-insulated (MI) cables and Low-Temperature Co-fired Ceramic (LTCC) magnetic pick-up coils are intended to be installed in various position in ITER. The severe ITER nuclear radiation field is expected to lead to induced currents that could perturb diagnostic measurements. In order to assess this problem and to find mitigation strategies models were developed for the calculation of neutron-and gamma-induced currents in MI cables and in LTCC coils. The models are based on calculations with the MCNPX code, combined with a dedicated model for the drift of electrons stopped in the insulator. The gamma induced currents can be easily calculated with a single coupled photon-electron MCNPX calculation. The prompt neutron induced currents requires only a single coupled neutron-photon-electron MCNPX run. The various delayed neutron contributions require a careful analysis of all possibly relevant neutron-induced reaction paths and a combination of different types of MCNPX calculations. The models were applied for a specific twin-core copper MI cable, for one quad-core copper cable and for silver conductor LTCC coils (one with silver ground plates in order to reduce the currents and one without such silver ground plates). Calculations were performed for irradiation conditions (neutron and gamma spectra and fluxes) in relevant positions in ITER and in the Y3 irradiation channel of the BR1 reactor at SCK•CEN, in which an irradiation test of these four test devices was carried out afterwards. We will present the basic elements of the models and show the results of all relevant partial currents (gamma and neutron induced, prompt and various delayed currents) in BR1-Y3 conditions. Experimental data will be shown and analysed in terms of the respective contributions. The tests were performed at reactor powers of 350 kW and 1 MW, leading to thermal neutron fluxes of 1E11 n/cm2s and 3E11 n/cm2s, respectively. The corresponding total radiation induced currents are ranging from 1 to 7 nA only, putting a challenge on the acquisition system and on the data analysis. The detailed experimental results will be compared with the corresponding values predicted by the model. The overall agreement between the experimental data and the model predictions is fairly good, with very consistent data for the main delayed current components, while the lower amplitude delayed currents and some of the prompt contributions show some minor discrepancies.
Operation Flambeau - civil defense experiment and support: eyewitness accounts of a mass fire
Clay P. Butler; Theodore G. Storey; Richard C. Rothermel; Michael Woolliscroft; Clive M. Countryman; A.M. Western; Abraham Broido; Thomas Y. Palmer
1969-01-01
Seven men skilled in fire research were stationed around the periphery of Flambeau Fire 760-12 and recorded visual impressions of its magnitude. Also, instrumental data were taken both inside the fire zone and outside, so that visual magnitudes of the mass fire may be compared with its measured physical parameters. Visual magnitudes for this fire were: Flame heights up...
The contribution of natural fire management to wilderness fire science
Carol Miller
2014-01-01
When the federal agencies established policies in the late 1960s and early 1970s to allow the use of natural fires in wilderness, they launched a natural fire management experiment in a handful of wilderness areas. As a result, wildland fire has played more of its natural role in wilderness than anywhere else. Much of what we understand about fire ecology comes from...
NASA Astrophysics Data System (ADS)
McLauchlan, K. K.; Nelson, D. M.; Perakis, S.; Marcotte, A. L.
2017-12-01
Fire frequency is crucial for maintaining savannas in the transition between forests and grasslands. In general, increasing fire frequency has two effects: it increases herbaceous plant cover more than woody plant cover, and it lowers soil organic matter stocks. These effects have been demonstrated at a long-term prescribed fire experiment in an oak savanna ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, U.S.A. The fire experiment began in 1964 and oak savannas are burned at various frequencies ranging from every year to not at all. This has led to changes in vegetation ranging from almost 100% grassland to 100% oak forest. Additionally, nitrogen stocks almost doubled in the sites that were not burned, as it accumulated in the trees, leaf litter, and soil. We addressed additional soil changes taking place at this experiment by asking the question: How have fire and oak-grass balance affected soil nutrients, specifically nitrogen and base cations? Surface soils were collected from 12 plots on the oak savanna burn experiment. Soils were collected in increments to 100 cm depth, from under grass-dominated vegetation and from under tree-dominated vegetation. We non-destructively estimated soil base cations by measuring elemental concentrations of dried soil subsamples with a handheld x-ray fluorescence analyzer. We also measured carbon and nitrogen concentrations and isotopic composition of the soil samples. Soils in plots with high fire frequency had higher concentrations of calcium than soils in unburned plots (low fire frequency). Similar trends were seen for soil potassium, magnesium, and phosphorus concentrations. In contrast, soils in plots with high fire frequency had dramatically lowered nitrogen cycling rates and stocks across the oak savanna. The contrast between the responses of different nutrients to changing fire frequency has important implications for the consequences of fire and tree-grass composition on nutrient cycling dynamics.
Spacecraft Fire Safety Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Meyer, Marit
2016-01-01
Appropriate design of fire detection systems requires knowledge of both the expected fire signature and the background aerosol levels. Terrestrial fire detection systems have been developed based on extensive study of terrestrial fires. Unfortunately there is no corresponding data set for spacecraft fires and consequently the fire detectors in current spacecraft were developed based upon terrestrial designs. In low gravity, buoyant flow is negligible which causes particles to concentrate at the smoke source, increasing their residence time, and increasing the transport time to smoke detectors. Microgravity fires have significantly different structure than those in 1-g which can change the formation history of the smoke particles. Finally the materials used in spacecraft are different from typical terrestrial environments where smoke properties have been evaluated. It is critically important to detect a fire in its early phase before a flame is established, given the fixed volume of air on any spacecraft. Consequently, the primary target for spacecraft fire detection is pyrolysis products rather than soot. Experimental investigations have been performed at three different NASA facilities which characterize smoke aerosols from overheating common spacecraft materials. The earliest effort consists of aerosol measurements in low gravity, called the Smoke Aerosol Measurement Experiment (SAME), and subsequent ground-based testing of SAME smoke in 55-gallon drums with an aerosol reference instrument. Another set of experiments were performed at NASAs Johnson Space Center White Sands Test Facility (WSTF), with additional fuels and an alternate smoke production method. Measurements of these smoke products include mass and number concentration, and a thermal precipitator was designed for this investigation to capture particles for microscopic analysis. The final experiments presented are from NASAs Gases and Aerosols from Smoldering Polymers (GASP) Laboratory, with selected results focusing on realistic fuel preparations and heating profiles with regards to early detection of smoke. SAFFIRE is the upcoming large-scale fire experiment which will be executed in a Cygnus vehicle after it undocks from the ISS.
The analysis of cable forces based on natural frequency
NASA Astrophysics Data System (ADS)
Suangga, Made; Hidayat, Irpan; Juliastuti; Bontan, Darwin Julius
2017-12-01
A cable is a flexible structural member that is effective at resisting tensile forces. Cables are used in a variety of structures that employ their unique characteristics to create efficient design tension members. The condition of the cable forces in the cable supported structure is an important indication of judging whether the structure is in good condition. Several methods have been developed to measure on site cable forces. Vibration technique using correlation between natural frequency and cable forces is a simple method to determine in situ cable forces, however the method need accurate information on the boundary condition, cable mass, and cable length. The natural frequency of the cable is determined using FFT (Fast Fourier Transform) Technique to the acceleration record of the cable. Based on the natural frequency obtained, the cable forces then can be determine by analytical or by finite element program. This research is focus on the vibration techniques to determine the cable forces, to understand the physical parameter effect of the cable and also modelling techniques to the natural frequency and cable forces.
Development of Large-Scale Spacecraft Fire Safety Experiments
NASA Technical Reports Server (NTRS)
Ruff, Gary A.; Urban, David; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Cowlard, Adam J.;
2013-01-01
The status is presented of a spacecraft fire safety research project that is under development to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. Future crewed missions are expected to be more complex and longer in duration than previous exploration missions outside of low-earth orbit. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this gap in knowledge, a project has been established under the NASA Advanced Exploration Systems Program under the Human Exploration and Operations Mission directorate with the goal of substantially advancing our understanding of the spacecraft fire safety risk. Associated with the project is an international topical team of fire experts from other space agencies who conduct research that is integrated into the overall experiment design. The experiments are under development to be conducted in an Orbital Science Corporation Cygnus vehicle after it has undocked from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the atmosphere. A computer modeling effort will complement the experimental effort. The international topical team is collaborating with the NASA team in the definition of the experiment requirements and performing supporting analysis, experimentation and technology development. The status of the overall experiment and the associated international technology development efforts are summarized.
Nostalgia--or Nous? A Lookback at an Early Textbook
ERIC Educational Resources Information Center
Chapman, B. R.
1975-01-01
Presents and critiques an experiment relevant to the development of the submarine cable that was found in the 1895 edition of Silvanus P. Thompson's ELEMENTARY LESSONS ON ELECTRICITY AND MAGNETISM. (GS)
New Telecommunication Uses in Tama, New Town. Summary.
ERIC Educational Resources Information Center
Komatsuzaki, Seisuke
This paper deals with a Test Information Service which is being tried out in Tama, Japan. The large scale field experiment of the new telecommunication system is called Coaxial Cable Information Service (CCIS) and was started in 1976. Preliminary findings included that: 1) users are interested in the experiment; 2) two-way communication systems…
Making fire and fire surrogate science available: a summary of regional workshops with clients
Andrew Youngblood; Heidi Bigler-Cole; Christopher J. Fettig; Carl Fiedler; Eric E. Knapp; John F. Lehmkuhl; Kenneth W. Outcalt; Carl N. Skinner; Scott L. Stephens; Thomas A. Waldrop
2007-01-01
Operational-scale experiments that evaluate the consequences of fire and mechanical "surrogates" for natural disturbance events are essential to better understand strategies for reducing the incidence and severity of wildfire. The national Fire and Fire Surrogate (FFS) study was initiated in 1999 to establish an integrated network of long-term studies...
Jill F. Johnstone; T. Scott Rupp; Mark Olson; David. Verbyla
2011-01-01
Much of the boreal forest in western North America and Alaska experiences frequent, stand-replacing wildfires. Secondary succession after fire initiates most forest stands and variations in fire characteristics can have strong effects on pathways of succession. Variations in surface fire severity that influence whether regenerating forests are dominated by coniferous...
NASA Astrophysics Data System (ADS)
Lewandowska, Monika; Herzog, Robert; Malinowski, Leszek
2015-01-01
A heat slug propagation experiment in the final design dual channel ITER TF CICC was performed in the SULTAN test facility at EPFL-CRPP in Villigen PSI. We analyzed the data resulting from this experiment to determine the equivalent transverse heat transfer coefficient hBC between the bundle and the central channel of this cable. In the data analysis we used methods based on the analytical solutions of a problem of transient heat transfer in a dual-channel cable, similar to Renard et al. (2006) and Bottura et al. (2006). The observed experimental and other limits related to these methods are identified and possible modifications proposed. One result from our analysis is that the hBC values obtained with different methods differ by up to a factor of 2. We have also observed that the uncertainties of hBC in both methods considered are much larger than those reported earlier.
Hydrocarbon characterization experiments in fully turbulent fires : results and data analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suo-Anttila, Jill Marie; Blanchat, Thomas K.
As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuelmore » evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. This report describes a set of fuel regression rates experiments to provide data for the development and validation of models. The experiments were performed with fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool was investigated and the total heat flux to the pool surface was measured. The importance of convection within the liquid fuel was assessed by restricting large scale liquid motion in some tests. These data sets provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.« less
Cable equation for general geometry
NASA Astrophysics Data System (ADS)
López-Sánchez, Erick J.; Romero, Juan M.
2017-02-01
The cable equation describes the voltage in a straight cylindrical cable, and this model has been employed to model electrical potential in dendrites and axons. However, sometimes this equation might give incorrect predictions for some realistic geometries, in particular when the radius of the cable changes significantly. Cables with a nonconstant radius are important for some phenomena, for example, discrete swellings along the axons appear in neurodegenerative diseases such as Alzheimers, Parkinsons, human immunodeficiency virus associated dementia, and multiple sclerosis. In this paper, using the Frenet-Serret frame, we propose a generalized cable equation for a general cable geometry. This generalized equation depends on geometric quantities such as the curvature and torsion of the cable. We show that when the cable has a constant circular cross section, the first fundamental form of the cable can be simplified and the generalized cable equation depends on neither the curvature nor the torsion of the cable. Additionally, we find an exact solution for an ideal cable which has a particular variable circular cross section and zero curvature. For this case we show that when the cross section of the cable increases the voltage decreases. Inspired by this ideal case, we rewrite the generalized cable equation as a diffusion equation with a source term generated by the cable geometry. This source term depends on the cable cross-sectional area and its derivates. In addition, we study different cables with swelling and provide their numerical solutions. The numerical solutions show that when the cross section of the cable has abrupt changes, its voltage is smaller than the voltage in the cylindrical cable. Furthermore, these numerical solutions show that the voltage can be affected by geometrical inhomogeneities on the cable.
Rodman Linn; Kerry Anderson; Judith Winterkamp; Alyssa Broos; Michael Wotton; Jean-Luc Dupuy; Francois Pimont; Carleton Edminster
2012-01-01
Field experiments are one way to develop or validate wildland fire-behavior models. It is important to consider the implications of assumptions relating to the locality of measurements with respect to the fire, the temporal frequency of the measured data, and the changes to local winds that might be caused by the experimental configuration. Twenty FIRETEC simulations...
Evaluation of Criteria for the Detection of Fires in Underground Conveyor Belt Haulageways
Litton, Charles D.; Perera, Inoka Eranda
2015-01-01
Large-scale experiments were conducted in an above-ground gallery to simulate typical fires that develop along conveyor belt transport systems within underground coal mines. In the experiments, electrical strip heaters, imbedded ~5 cm below the top surface of a large mass of coal rubble, were used to ignite the coal, producing an open flame. The flaming coal mass subsequently ignited 1.83-meter-wide conveyor belts located approximately 0.30 m above the coal surface. Gas samples were drawn through an averaging probe located approximately 20 m downstream of the coal for continuous measurement of CO, CO2, and O2 as the fire progressed through the stages of smoldering coal, flaming coal, and flaming conveyor belt. Also located approximately 20 m from the fire origin and approximately 0.5 m below the roof of the gallery were two commercially available smoke detectors, a light obscuration meter, and a sampling probe for measurement of total mass concentration of smoke particles. Located upstream of the fire origin and also along the wall of the gallery at approximately 14 m and 5 m upstream were two video cameras capable of both smoke and flame detection. During the experiments, alarm times of the smoke detectors and video cameras were measured while the smoke obscuration and total smoke mass were continually measured. Twelve large-scale experiments were conducted using three different types of fire-resistant conveyor belts and four air velocities for each belt. The air velocities spanned the range from 1.0 m/s to 6.9 m/s. The results of these experiments are compared to previous large-scale results obtained using a smaller fire gallery and much narrower (1.07-m) conveyor belts to determine if the fire detection criteria previously developed (1) remained valid for the wider conveyor belts. Although some differences between these and the previous experiments did occur, the results, in general, compare very favorably. Differences are duly noted and their impact on fire detection discussed. PMID:26566298
Observing The Dynamics Of Wildland Grass Fires: FireFlux -A Field Validation Experiment
Craig B. Clements; Shiyuan Zhong; Scott Goodrick; Ju Li; Xindi Bian; Warren E. Heilman; Joseph J. Charney; Ryan Perna; Meongdo Jang; Daegyun Lee; Monica Patel; Susan Street; Glenn Aumann
2007-01-01
Grass fires, although not as intense as forest fires, present a major threat to life and property during periods of drought in the Great Plains of the United States. Recently, major wildland grass fires in Texas burned nearly 1.6 million acres and destroyed over 730 homes and 1320 other buildings. The fires resulted in the death of 19 people, an estimated loss of 10,...
The FIRE Cirrus Science Results 1993
NASA Technical Reports Server (NTRS)
Mcdougal, David S. (Editor)
1993-01-01
FIRE (First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment) is a U.S. cloud-radiation research program that seeks to improve our basic understanding and parameterizations of cirrus and marine stratocumulus cloud systems and ISCCP data products. The FIRE Cirrus Science Conference was held in Breckenridge, CO, 14-17 Jun. 1993, to present results of cirrus research for the second phase of FIRE (1989-present) and to refine cirrus research goals and priorities for the next phase of FIRE (1994-future). This Conference Publication contains the text of short papers presented at the conference. The papers describe research analyses of data collected at the Cirrus Intensive Field Observations-2 field experiment conducted in Kansas, 13 Nov. - 7 Dec. 1991.
Exposure Assessment of a High-energy Tensile Test With Large Carbon Fiber Reinforced Polymer Cables.
Schlagenhauf, Lukas; Kuo, Yu-Ying; Michel, Silvain; Terrasi, Giovanni; Wang, Jing
2015-01-01
This study investigated the particle and fiber release from two carbon fiber reinforced polymer cables that underwent high-energy tensile tests until rupture. The failing event was the source of a large amount of dust whereof a part was suspected to be containing possibly respirable fibers that could cause adverse health effects. The released fibers were suspected to migrate through small openings to the experiment control room and also to an adjacent machine hall where workers were active. To investigate the fiber release and exposure risk of the affected workers, the generated particles were measured with aerosol devices to obtain the particle size and particle concentrations. Furthermore, particles were collected on filter samples to investigate the particle shape and the fiber concentration. Three situations were monitored for the control room and the machine hall: the background concentrations, the impact of the cable failure, and the venting of the exposed rooms afterward. The results showed four important findings: The cable failure caused the release of respirable fibers with diameters below 3 μm and an average length of 13.9 μm; the released particles did migrate to the control room and to the machine hall; the measured peak fiber concentration of 0.76 fibers/cm(3) and the overall fiber concentration of 0.07 fibers/cm(3) in the control room were below the Permissible Exposure Limit (PEL) for fibers without indication of carcinogenicity; and the venting of the rooms was fast and effective. Even though respirable fibers were released, the low fiber concentration and effective venting indicated that the suspected health risks from the experiment on the affected workers was low. However, the effect of long-term exposure is not known therefore additional control measures are recommended.
Alistair M.S. Smith; Martin J. Wooster; Nick A. Drake; Frederick M. Dipotso; Michael J. Falkowski; Andrew T. Hudak
2005-01-01
The remote sensing of fire severity is a noted goal in studies of forest and grassland wildfires. Experiments were conducted to discover and evaluate potential relationships between the characteristics of African savannah fires and post-fire surface spectral reflectance in the visible to shortwave infrared spectral region. Nine instrumented experimental fires were...
Toward improving our application and understanding of crown fire behavior
Martin E. Alexander; Miguel G. Cruz; Nicole M. Vaillant
2014-01-01
The suggestion has been made that most wildland fire operations personnel base their expectations of how a fire will behave largely on experience and, to a lesser extent, on guides to predicting fire behavior (Burrows 1984). Experienced judgment is certainly needed in any assessment of wildland fire potential but it does have its limitations. The same can be said for...
Shared values and trust: the experience of community residents in a fire-prone ecosystem
Patricia L. Winter; George T. Cvetkovich
2010-01-01
The risk and impact of fires have been significant on the San Bernardino National Forest. It is important to understand how residents of areas surrounded by the forest perceive the impact of fires. If fire management agencies understand these perceptions, fire management agencies will be better equipped to communicate with publics about risk-reduction efforts that...
Cable and Line Inspection Mechanism
NASA Technical Reports Server (NTRS)
Ross, Terence J. (Inventor)
2003-01-01
An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.
Cable and line inspection mechanism
NASA Technical Reports Server (NTRS)
Ross, Terence J. (Inventor)
2003-01-01
An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.
Early Pottery Making in Northern Coastal Peru. Part II: Field Firing Experiments
NASA Astrophysics Data System (ADS)
Shimada, I.; Goldstein, D.; Sosa, J.; Wagner, U.
2003-09-01
We present data from three seasons of experimental field work designed to recreate ancient Andean coastal ceramic firing techniques. Based on the recent discovery of two different archaeological ceramic production sites in the La Leche river valley of northern coastal Peru, the opportunity arose to apply Mössbauer spectroscopy and other analytical methods to reconstruct ancient firing procedures. Two sets of firings took place in 1993 and 1997 in Batán Grande using a partially restored Formative kiln from about 800 BC, local hardwood and cow dung as fuel. A third experiment followed in 2000 after the discovery of a Middle Sicán ceramics workshop in use between ca. AD 950 and 1050 at Huaca Sialupe, where an exact replica of an ancient kiln was built from local clay, and fired with local wood and cow dung. Additionally, inverted urns found at Huaca Sialupe were tested for their potential use as furnaces for metal working. Mössbauer spectroscopy was used to compare the physical and chemical state of specimens produced in the field experiments with ancient ceramics and with specimens produced in controlled laboratory experiments.
Legge, Sarah; Garnett, Stephen; Maute, Kim; Heathcote, Joanne; Murphy, Steve; Woinarski, John C Z; Astheimer, Lee
2015-01-01
Fire is an integral part of savanna ecology and changes in fire patterns are linked to biodiversity loss in savannas worldwide. In Australia, changed fire regimes are implicated in the contemporary declines of small mammals, riparian species, obligate-seeding plants and grass seed-eating birds. Translating this knowledge into management to recover threatened species has proved elusive. We report here on a landscape-scale experiment carried out by the Australian Wildlife Conservancy (AWC) on Mornington Wildlife Sanctuary in northwest Australia. The experiment was designed to understand the response of a key savanna bird guild to fire, and to use that information to manage fire with the aim of recovering a threatened species population. We compared condition indices among three seed-eating bird species--one endangered (Gouldian finch) and two non-threatened (long-tailed finch and double-barred finch)--from two large areas (> 2,830 km2) with initial contrasting fire regimes ('extreme': frequent, extensive, intense fire; versus 'benign': less frequent, smaller, lower intensity fires). Populations of all three species living with the extreme fire regime had condition indices that differed from their counterparts living with the benign fire regime, including higher haematocrit levels in some seasons (suggesting higher levels of activity required to find food), different seasonal haematocrit profiles, higher fat scores in the early wet season (suggesting greater food uncertainty), and then lower muscle scores later in the wet season (suggesting prolonged food deprivation). Gouldian finches also showed seasonally increasing stress hormone concentrations with the extreme fire regime. Cumulatively, these patterns indicated greater nutritional stress over many months for seed-eating birds exposed to extreme fire regimes. We tested these relationships by monitoring finch condition over the following years, as AWC implemented fire management to produce the 'benign' fire regime throughout the property. The condition indices of finch populations originally living with the extreme fire regime shifted to resemble those of their counterparts living with the benign fire regime. This research supports the hypothesis that fire regimes affect food resources for savanna seed-eating birds, with this impact mediated through a range of grass species utilised by the birds over different seasons, and that fire management can effectively moderate that impact. This work provides a rare example of applied research supporting the recovery of a population of a threatened species.
Mechanisms of Cables 1 gene inactivation in human ovarian cancer development.
Sakamoto, Hideo; Friel, Anne M; Wood, Antony W; Guo, Lankai; Ilic, Ana; Seiden, Michael V; Chung, Daniel C; Lynch, Maureen P; Serikawa, Takehiro; Munro, Elizabeth; Oliva, Esther; Orsulic, Sandra; Kirley, Sandra D; Foster, Rosemary; Zukerberg, Lawrence R; Rueda, Bo R
2008-02-01
Cables 1, a cyclin-dependent kinase binding protein, is primarily involved in cell cycle regulation. Loss of nuclear Cables 1 expression is observed in human colon, lung and endometrial cancers. We previously reported that loss of nuclear Cables 1 expression was also observed with high frequency in a limited sample set of human ovarian carcinomas, although the mechanisms underlying loss of nuclear Cables 1 expression remained unknown. Our present objective was to examine Cables 1 expression in ovarian cancer in greater detail, and determine the predominant mechanisms of Cables 1 loss. We assessed potential genetic and epigenetic modifications of the Cables 1 locus through analyses of mutation, polymorphisms, loss of heterozygosity and DNA methylation. We observed a marked loss of nuclear Cables 1 expression in serous and endometrioid ovarian carcinomas that correlated with decreased Cables 1 mRNA levels. Although we detected no Cables 1 mutations, there was evidence of LOH at the Cables 1 locus and epigenetic modification of the Cables 1 promoter region in a subset of ovarian carcinomas and established cancer cell lines. From a functional perspective, over-expression of Cables 1 induced apoptosis, whereas, knockdown of Cables 1 negated this effect. Together these findings suggest that multiple mechanisms underlie the loss of Cables 1 expression in ovarian cancer cells, supporting the hypothesis that Cables 1 is a tumor suppressor in human ovarian cancer.
Development of inspection robots for bridge cables.
Yun, Hae-Bum; Kim, Se-Hoon; Wu, Liuliu; Lee, Jong-Jae
2013-01-01
This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented.
Gilliam, David S.
2018-01-01
Acropora cervicornis is the most widely used coral species for reef restoration in the greater Caribbean. However, outplanting methodologies (e.g., colony density, size, host genotype, and attachment technique) vary greatly, and to date have not been evaluated for optimality across multiple sites. Two experiments were completed during this study, the first evaluated the effects of attachment technique, colony size, and genotype by outplanting 405 A. cervicornis colonies, from ten genotypes, four size classes, and three attachment techniques (epoxy, nail and cable tie, or puck) across three sites. Colony survival, health condition, tissue productivity, and growth were assessed across one year for this experiment. The second experiment assessed the effect of colony density by outplanting colonies in plots of one, four, or 25 corals per 4 m2 across four separate sites. Plot survival and condition were evaluated across two years for this experiment in order to better capture the effect of increasing cover. Colonies attached with a nail and cable tie resulted in the highest survival regardless of colony size. Small corals had the lowest survival, but the greatest productivity. The majority of colony loss was attributed to missing colonies and was highest for pucks and small epoxied colonies. Disease and predation were observed at all sites, but did not affect all genotypes, however due to the overall low prevalence of either condition there were no significant differences found in any comparison. Low density plots had significantly higher survival and significantly lower prevalence of disease, predation, and missing colonies than high density plots. These results indicate that to increase initial outplant success, colonies of many genotypes should be outplanted to multiple sites using a nail and cable tie, in low densities, and with colonies over 15 cm total linear extension. PMID:29507829
Impact of lightning strikes on hospital functions.
Mortelmans, Luc J M; Van Springel, Gert L J; Van Boxstael, Sam; Herrijgers, Jan; Hoflacks, Stefaan
2009-01-01
Two regional hospitals were struck by lightning during a one-month period. The first hospital, which had 236 beds, suffered a direct strike to the building. This resulted in a direct spread of the power peak and temporary failure of the standard power supply. The principle problems, after restoring standard power supply, were with the fire alarm system and peripheral network connections in the digital radiology systems. No direct impact on the hardware could be found. Restarting the servers resolved all problems. The second hospital, which had 436 beds, had a lightning strike on the premises and mainly experienced problems due to induction. All affected installations had a cable connection from outside in one way or another. The power supplies never were endangered. The main problem was the failure of different communication systems (telephone, radio, intercom, fire alarm system). Also, the electronic entrance control went out. During the days after the lightening strike, multiple software problems became apparent, as well as failures of the network connections controlling the technical support systems. There are very few ways to prepare for induction problems. The use of fiber-optic networks can limit damage. To the knowledge of the authors, these are the first cases of lightning striking hospitals in medical literature.
Animal exposure during burn tests
NASA Technical Reports Server (NTRS)
Gaume, J. G.
1976-01-01
An animal exposure test system has been designed and fabricated for the purpose of collecting physiological and environmental (temperature) data from animal subjects exposed to combustion gases in large scale fire tests. The AETS consists of an open wire mesh, two-compartment cage, one containing an exercise wheel for small rodents, and the other containing one rat instrumented externally for electrocardiogram and respiration. The ECG and respiration sensors are located in a belt placed around the torso of the subject, electrode wires forming an umbilical to a connector in the top of the compartment. A cable extends from the connector to the power supply and signal conditioning electronics. These are connected to a dual-beam oscilloscope for real time monitoring and a magnetic tape recorder having three or more channels. Endpoints observed are bradycardia, cardiac arrhythmias, changes in respiratory pattern, respiratory arrest and cardiac arrest. The ECG record also appears to be a good method of monitoring animal activity as indicated by an increase in EMG noise superimposed on the record during increased activity of the torso musculature. Examples of the recordings are presented and discussed as to their significance regarding toxicity of fire gases.
NASA Astrophysics Data System (ADS)
Kogan, I.; Paull, C. K.; Kuhnz, L.; von Thun, S.; Burton, E.; Greene, H. G.; Barry, J. P.
2003-12-01
To better understand the potential impacts of the presence of cables on the seabed, a topic of interest for which little data is published or publicly available, a study of the environmental impacts of the ATOC/Pioneer Seamount cable was conducted. The 95 km long, submarine, coaxial cable extends between Pioneer Seamount and the Pillar Point Air Force Station in Half Moon Bay, California. Approximately two thirds of the cable lies within the Monterey Bay National Marine Sanctuary. The cable is permitted to NOAA- Oceanic and Atmospheric Research for transmitting data from a hydrophone array on Pioneer Seamount to shore. The cable was installed unburied on the seafloor in 1995. The cable path crosses the continental shelf, descends to a maximum depth of 1,933 m, and climbs back upslope to 998 m depth near the crest of Pioneer Seamount. A total of 42 hours of video and 152 push cores were collected in 10 stations along cable and control transects using the ROVs Ventana and Tiburon equipped with cable-tracking tools. The condition of the cable, its effect on the seafloor, and distribution of benthic megafauna and infauna were determined. Video data indicated the nature of interaction between the cable and the seafloor. Rocky nearshore areas, where wave energies are greatest, showed the clearest evidence of impact. Here, evidence of abrasion included frayed and unraveling portions of the cable's armor and vertical grooves in the rock apparently cut by the cable. The greatest incision and armor damage occurred on ledges between spans in irregular rock outcrop areas. Unlike the nearshore rocky region, neither the rocks nor the cable appeared damaged along outcrops on Pioneer Seamount. Multiple loops of slack cable added during a 1997 cable repair operation were found lying flat on the seafloor. Several sharp kinks in the cable were seen at 240 m water depths in an area subjected to intense trawling activity. Most of the cable has become buried with time in sediment substrates on the continental shelf whereas much of the cable remains exposed in sediments at deeper depths. The cable is exposed in rocky environments of the nearshore region and on all of Pioneer Seamount. The main biological features associated with the cable were organisms utilizing the cable as substrate and occasionally as shelter. Considerable care was taken to count megafauna in video transects and macrofauna from the top 5 cm of push cores. Few differences were found between cable and control sites at the 95% confidence level. Anemones Metridium farcimen and Stomphia sp. colonized the cable and were more abundant in cable transects at most soft sediment sites. Coarse extrapolation of the transect data suggest that more than 5,000 M. farcimen may live on the continental shelf portion of the cable. Several other species of anemones living on the cable are common along deeper sections of the cable route. Where the cable was buried, the presence of linear rows of sea anemones proved to be a reliable indicator of the cable's position. Flatfish and rockfish apparently congregate near the cable and were as much as 1 order of magnitude more abundant near the cable at some sites.
30 CFR 75.827 - Guarding of trailing cables.
Code of Federal Regulations, 2012 CFR
2012-07-01
... grounded metal. (b) Suspended cables and cable crossovers. When equipment must cross any portion of the cable, the cable must be either: (1) Suspended from the mine roof; or (2) Protected by a cable crossover...
30 CFR 75.827 - Guarding of trailing cables.
Code of Federal Regulations, 2014 CFR
2014-07-01
... grounded metal. (b) Suspended cables and cable crossovers. When equipment must cross any portion of the cable, the cable must be either: (1) Suspended from the mine roof; or (2) Protected by a cable crossover...
30 CFR 75.827 - Guarding of trailing cables.
Code of Federal Regulations, 2011 CFR
2011-07-01
... grounded metal. (b) Suspended cables and cable crossovers. When equipment must cross any portion of the cable, the cable must be either: (1) Suspended from the mine roof; or (2) Protected by a cable crossover...
30 CFR 75.827 - Guarding of trailing cables.
Code of Federal Regulations, 2013 CFR
2013-07-01
... grounded metal. (b) Suspended cables and cable crossovers. When equipment must cross any portion of the cable, the cable must be either: (1) Suspended from the mine roof; or (2) Protected by a cable crossover...
47 CFR 76.802 - Disposition of cable home wiring.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Disposition of cable home wiring. 76.802... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.802 Disposition of cable home wiring... cable operator shall not remove the cable home wiring unless it gives the subscriber the opportunity to...
47 CFR 76.802 - Disposition of cable home wiring.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Disposition of cable home wiring. 76.802... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.802 Disposition of cable home wiring... cable operator shall not remove the cable home wiring unless it gives the subscriber the opportunity to...
47 CFR 76.802 - Disposition of cable home wiring.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Disposition of cable home wiring. 76.802... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.802 Disposition of cable home wiring... cable operator shall not remove the cable home wiring unless it gives the subscriber the opportunity to...
47 CFR 76.802 - Disposition of cable home wiring.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Disposition of cable home wiring. 76.802... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.802 Disposition of cable home wiring... cable operator shall not remove the cable home wiring unless it gives the subscriber the opportunity to...
47 CFR 27.1202 - Cable/BRS cross-ownership.
Code of Federal Regulations, 2014 CFR
2014-10-01
... portion of the franchise area actually served by the cable operator's cable system and the cable operator... franchise area actually served by the cable operator's cable system the cable operator will use the BRS... that no portion of the GSA of the BRS station is within the portion of the franchise area actually...
47 CFR 27.1202 - Cable/BRS cross-ownership.
Code of Federal Regulations, 2011 CFR
2011-10-01
... portion of the franchise area actually served by the cable operator's cable system and the cable operator... franchise area actually served by the cable operator's cable system the cable operator will use the BRS... that no portion of the GSA of the BRS station is within the portion of the franchise area actually...
47 CFR 27.1202 - Cable/BRS cross-ownership.
Code of Federal Regulations, 2012 CFR
2012-10-01
... portion of the franchise area actually served by the cable operator's cable system and the cable operator... franchise area actually served by the cable operator's cable system the cable operator will use the BRS... that no portion of the GSA of the BRS station is within the portion of the franchise area actually...
47 CFR 27.1202 - Cable/BRS cross-ownership.
Code of Federal Regulations, 2013 CFR
2013-10-01
... portion of the franchise area actually served by the cable operator's cable system and the cable operator... franchise area actually served by the cable operator's cable system the cable operator will use the BRS... that no portion of the GSA of the BRS station is within the portion of the franchise area actually...
Trial by Fire (and Tornado) Taught Us to Plan for Crises.
ERIC Educational Resources Information Center
Caylor, Mary Jane
1991-01-01
Based on Huntsville (Alabama) schools' experience with a devastating fire, the superintendent later ensured adequate fire insurance coverage, promoted regular fire drills, and developed an emergency response plan that delineated staff responsibilities, communication modes, and training and updating procedures. The plan served the district well…
Learning Fire Investigation the Clean Way: The Virtual Experience
ERIC Educational Resources Information Center
Davies, Amanda; Dalgarno, Barney
2009-01-01
The effective teaching of fire investigation skills presents logistical challenges because of the difficulty of providing students with access to suitable fire damaged buildings so that they can undertake authentic investigation tasks. At Charles Sturt University (CSU), in the subject JST415, "Fire Investigation Cause and Origin…
2017-12-19
Firing System for Electromagnetic Pulsed Power Experiments by Robert Borys Jr and Colby Adams Approved for public release...Belcamp, MD Approved for public release; distribution is unlimited. ii REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188... Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions
Atmospheric Science Data Center
2017-12-22
... The First ISCCP Regional Experiment is a series of field missions which have collected cirrus and marine stratocumulus ... Home Page (tar file) FIRE I - Extended Time Observations Home Page (tar file) FIRE Project Home Page for ...
Experimental Measurements and Comparison of Cable Performance for Mine Hunting Applications
NASA Astrophysics Data System (ADS)
Mangum, Katherine
2005-11-01
The Naval Surface Warfare Center (NSWCCD) conducted testing of multiple faired synthetic cables in the High Speed Basin in April, 2005. The objective of the test was to determine the hydrodynamic characteristics of bare cables, ribbon faired cables, and cables with extruded plastic ``strakes.'' Faired cables are used to gain on-station time and improve performance of the MH-60 Helicopter when towing mine hunting vehicles. Drag and strum were compared for all cases. Strum was quantified by computing standard deviations of lateral cable acceleration amplitudes. Drag coefficients were calculated using cable tension and angle readings. While the straked cables strummed less than the bare synthetic cable, they did not reduce strum levels as well as ribbon fairing at steep cable angles for speeds of 10, 15, 20 and 25 knots. The drag coefficient of the straked cables was calculated to be higher than that of a bare cable, although further testing is needed to determine an exact number.
Development of Inspection Robots for Bridge Cables
Kim, Se-Hoon; Lee, Jong-Jae
2013-01-01
This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented. PMID:24459453
47 CFR 36.153 - Assignment of Cable and Wire Facilities (C&WF) to categories.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Assignment of Cable and Wire Facilities (C&WF... Telecommunications Property Cable and Wire Facilities § 36.153 Assignment of Cable and Wire Facilities (C&WF) to... cable and intrabuilding network cable. Where an entire cable or aerial wire is assignable to one...
47 CFR 36.153 - Assignment of Cable and Wire Facilities (C&WF) to categories.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Assignment of Cable and Wire Facilities (C&WF... Telecommunications Property Cable and Wire Facilities § 36.153 Assignment of Cable and Wire Facilities (C&WF) to... cable and intrabuilding network cable. Where an entire cable or aerial wire is assignable to one...
MAGNETOMETER - TRI-AXIS SENSOR UNIT - GEMINI-TITAN (GT)-12 EXPERIMENT MSC-3 (M405) - MSC
1966-10-01
S66-09379 (1 Oct. 1966) --- Tri-Axis Magnetometer-Sensor Unit mounted on telescoping boom. Cable connects Sensor Unit with Electronics Unit mounted on retrograde beam in retrograde adapter section. Objective of experiment is to monitor the direction and amplitude of Earth's magnetic field (Gemini-12). Photo credit: NASA
LPT. Low power test (TAN640) interior. Basement level. Camera facing ...
LPT. Low power test (TAN-640) interior. Basement level. Camera facing north. Cable trays and conduit cross tunnel between critical experiment cell and critical experiment control room. Construction 93% complete. Photographer: Jack L. Anderson. Date: October 23, 1957. INEEL negative no. 57-5339 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Damping Estimation from Free Decay Responses of Cables with MR Dampers.
Weber, Felix; Distl, Hans
2015-01-01
This paper discusses the damping measurements on cables with real-time controlled MR dampers that were performed on a laboratory scale single strand cable and on cables of the Sutong Bridge, China. The control approach aims at producing amplitude and frequency independent cable damping which is confirmed by the tests. The experimentally obtained cable damping in comparison to the theoretical value due to optimal linear viscous damping reveals that support conditions of the cable anchors, force tracking errors in the actual MR damper force, energy spillover to higher modes, and excitation and sensor cables hanging on the stay cable must be taken into consideration for the interpretation of the identified cable damping values.
Damping Estimation from Free Decay Responses of Cables with MR Dampers
Weber, Felix; Distl, Hans
2015-01-01
This paper discusses the damping measurements on cables with real-time controlled MR dampers that were performed on a laboratory scale single strand cable and on cables of the Sutong Bridge, China. The control approach aims at producing amplitude and frequency independent cable damping which is confirmed by the tests. The experimentally obtained cable damping in comparison to the theoretical value due to optimal linear viscous damping reveals that support conditions of the cable anchors, force tracking errors in the actual MR damper force, energy spillover to higher modes, and excitation and sensor cables hanging on the stay cable must be taken into consideration for the interpretation of the identified cable damping values. PMID:26167537
D. Jimenez; B. Butler; K. Hiers; R. Ottmar; M. Dickinson; R. Kremens; J. O' Brien; A. Hudak; C. Clements
2009-01-01
The Rx-CADRE project was the combination of local and national fire expertise in the field of core fire research. The project brought together approximately 30 fire scientists from six geographic regions and seven diff erent agencies. The project objectives were to demonstrate the capacity for collaborative research by bringing together individuals and teams with a...
NASA Astrophysics Data System (ADS)
Ta, Wurui; Shao, Tianchong; Gao, Yuanwen
2018-04-01
High-temperature superconductor (HTS) rare-earth-barium-copper-oxide (REBCO) tapes are very promising for use in high-current cables. The cable geometry and the layout of the superconducting tapes are directly related to the performance of the HTS cable. In this paper, we use numerical methods to perform a comparison study of multiple-stage twisted stacked-tape cable (TSTC) conductors to find better cable structures that can both improve the critical current and minimize the alternating current (AC) losses of the cable. The sub-cable geometry is designed to have a stair-step shape. Three superconducting tape layouts are chosen and their transport performance and AC losses are evaluated. The magnetic field and current density profiles of the cables are obtained. The results show that arrangement of the superconducting tapes from the interior towards the exterior of the cable based on their critical current values in descending order can enhance the cable's transport capacity while significantly reducing the AC losses. These results imply that cable transport capacity improvements can be achieved by arranging the superconducting tapes in a manner consistent with the electromagnetic field distribution. Through comparison of the critical currents and AC losses of four types of HTS cables, we determine the best structural choice among these cables.
Robert L. Ryan; Mark B. Wamsley
2006-01-01
We surveyed residents of fire-prone areas of the Central Pine Barrens of Long Island, New York, and the Plymouth Pine Barrens in Massachusetts to learn how they perceived wildland fire risk and management techniques for reducing fire hazard. We found that residents considered the fire threat to their own property to be relatively low in spite of first-hand experience...
Characterization of a mine fire using atmospheric monitoring system sensor data.
Yuan, L; Thomas, R A; Zhou, L
2017-06-01
Atmospheric monitoring systems (AMS) have been widely used in underground coal mines in the United States for the detection of fire in the belt entry and the monitoring of other ventilation-related parameters such as airflow velocity and methane concentration in specific mine locations. In addition to an AMS being able to detect a mine fire, the AMS data have the potential to provide fire characteristic information such as fire growth - in terms of heat release rate - and exact fire location. Such information is critical in making decisions regarding fire-fighting strategies, underground personnel evacuation and optimal escape routes. In this study, a methodology was developed to calculate the fire heat release rate using AMS sensor data for carbon monoxide concentration, carbon dioxide concentration and airflow velocity based on the theory of heat and species transfer in ventilation airflow. Full-scale mine fire experiments were then conducted in the Pittsburgh Mining Research Division's Safety Research Coal Mine using an AMS with different fire sources. Sensor data collected from the experiments were used to calculate the heat release rates of the fires using this methodology. The calculated heat release rate was compared with the value determined from the mass loss rate of the combustible material using a digital load cell. The experimental results show that the heat release rate of a mine fire can be calculated using AMS sensor data with reasonable accuracy.
Development of superconducting power devices in Europe
NASA Astrophysics Data System (ADS)
Tixador, Pascal
2010-11-01
Europe celebrated last year (2008) the 100-year anniversary of the first liquefaction of helium by H. Kammerling Onnes in Leiden. It led to the discovery of superconductivity in 1911. Europe is still active in the development of superconducting (SC) devices. The discovery of high critical temperature materials in 1986, again in Europe, has opened a lot of opportunities for SC devices by broking the 4 K cryogenic bottleneck. Electric networks experience deep changes due to the emergence of dispersed generation (renewable among other) and to the advances in ICT (Information Communication Technologies). The networks of the future will be "smart grids". Superconductivity will offer "smart" devices for these grids like FCL (Fault Current Limiter) or VLI (Very Low Inductance) cable and would certainly play an important part. Superconductivity also will participate to the required sustainable development by lowering the losses and enhancing the mass specific powers. Different SC projects in Europe will be presented (Cable, FCL, SMES, Flywheel and Electrical Machine) but the description is not exhaustive. Nexans has commercialized the first two FCLs without public funds in the European grid (UK and Germany). The Amsterdam HTS cable is an exciting challenge in term of losses for long SC cables. European companies (Nexans, Air Liquide, Siemens, Converteam, …) are also very active for projects outside Europe (LIPA, DOE FCL, …).
Summary Report of Cable Aging and Performance Data for Fiscal Year 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celina, Mathias C.; Celina, Mathias C.; Redline, Erica Marie
2014-09-01
As part of the Light Water Reactor Sustainability Program, science - based engineering approaches were employed to address cable degradation behavior under a range of exposure environments. Experiments were conducted with the goal to provide best guidance for aged material states, remaining life and expected performance under specific conditions for a range of cable materials. Generic engineering tests , which focus on rapid accelerated aging and tensile elongation , were combined with complementar y methods from polymer degradation science. Sandia's approach, building on previous years' efforts, enabled the generation of some of the necessary data supporting the development of improvedmore » lifetime predictions models, which incorporate known material b ehaviors and feedback from field - returned 'aged' cable materials. Oxidation rate measurements have provided access to material behavior under low dose rate thermal conditions, where slow degradation is not apparent in mechanical property changes. Such da ta have shown aging kinetics consistent with established radiati on - thermal degradation models. ACKNOWLEDGEMENTS We gratefully acknowledge ongoing technical support at the LICA facility and extensive sample handling provided by Maryla Wasiolek and Don Hans on. Sam Durbin and Patrick Mattie are recognized for valuable guidance throughout the year and assistance in the preparation of the final report. Doug Brunson is appreciated for sample analysis, compilation and plotting of experimental data.« less
The NIST SPIDER, A Robot Crane
Albus, James; Bostelman, Roger; Dagalakis, Nicholas
1992-01-01
The Robot Systems Division of the National Institute of Standards and Technology has been experimenting for several years with new concepts for robot cranes. These concepts utilize the basic idea of the Stewart Platform parallel link manipulator. The unique feature of the NIST approach is to use cables as the parallel links and to use winches as the actuators. So long as the cables are all in tension, the load is kinematically constrained, and the cables resist perturbing forces and moments with equal stiffness to both positive and negative loads. The result is that the suspended load is constrained with a mechanical stiffness determined by the elasticity of the cables, the suspended weight, and the geometry of the mechanism. Based on these concepts, a revolutionary new type of robot crane, the NIST SPIDER (Stewart Platform Instrumented Drive Environmental Robot) has been developed that can control the position, velocity, and force of tools and heavy machinery in all six degrees of freedom (x, y, z, roll, pitch, and yaw). Depending on what is suspended from its work platform, the SPIDER can perform a variety of tasks. Examples are: cutting, excavating and grading, shaping and finishing, lifting and positioning. A 6 m version of the SPIDER has been built and critical performance characteristics analyzed. PMID:28053439
The NIST SPIDER, A Robot Crane.
Albus, James; Bostelman, Roger; Dagalakis, Nicholas
1992-01-01
The Robot Systems Division of the National Institute of Standards and Technology has been experimenting for several years with new concepts for robot cranes. These concepts utilize the basic idea of the Stewart Platform parallel link manipulator. The unique feature of the NIST approach is to use cables as the parallel links and to use winches as the actuators. So long as the cables are all in tension, the load is kinematically constrained, and the cables resist perturbing forces and moments with equal stiffness to both positive and negative loads. The result is that the suspended load is constrained with a mechanical stiffness determined by the elasticity of the cables, the suspended weight, and the geometry of the mechanism. Based on these concepts, a revolutionary new type of robot crane, the NIST SPIDER (Stewart Platform Instrumented Drive Environmental Robot) has been developed that can control the position, velocity, and force of tools and heavy machinery in all six degrees of freedom ( x, y, z , roll, pitch, and yaw). Depending on what is suspended from its work platform, the SPIDER can perform a variety of tasks. Examples are: cutting, excavating and grading, shaping and finishing, lifting and positioning. A 6 m version of the SPIDER has been built and critical performance characteristics analyzed.
Zeng, Xiangfang
2015-03-26
In September 2013, an experiment using Distributed Acoustic Sensing (DAS) was conducted at Garner Valley, a test site of the University of California Santa Barbara (Lancelle et al., 2014). This submission includes noise cross-correlation functions (NCF) . Each file includes a NCF between two channels. The name of each channel denotes the distance in meters from starting point of the fiber-optic cable. Lancelle, C., N. Lord, H. Wang, D. Fratta, R. Nigbor, A. Chalari, R. Karaulanov, J. Baldwin, and E. Castongia (2014), Directivity and Sensitivity of Fiber-Optic Cable Measuring Ground Motion using a Distributed Acoustic Sensing Array (abstract # NS31C-3935), AGU Fall Meeting. https://agu.confex.com/agu/fm14/meetingapp.cgi#Paper/19828 The e-poster is available at: https://agu.confex.com/data/handout/agu/fm14/Paper_19828_handout_696_0.pdf
Beus, Michael J.; McCoy, William G.
1998-01-01
Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable "no-load" condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.
New Mission Control Center Briefing
NASA Technical Reports Server (NTRS)
1995-01-01
Live footage shows panelists, Chief Center Systems Division John Muratore, and Acting Chief, Control Center Systems Division, Linda Uljon, giving an overview of the new Mission Control Center. Muratore and Uljon talk about the changes and modernization of the new Center. The panelists mention all the new capabilities of the new Center. They emphasize the Distributed real time command and control environment, the reduction in operation costs, and even the change from coaxial cables to fiber optic cables. Uljon also tells us that the new Control Center will experience its first mission after the launch of STS-70 and its first complete mission (both launching and landing) during STS-71.
Large-Scale Spacecraft Fire Safety Experiments in ISS Resupply Vehicles
NASA Technical Reports Server (NTRS)
Ruff, Gary A.; Urban, David
2013-01-01
Our understanding of the fire safety risk in manned spacecraft has been limited by the small scale of the testing we have been able to conduct in low-gravity. Fire growth and spread cannot be expected to scale linearly with sample size so we cannot make accurate predictions of the behavior of realistic scale fires in spacecraft based on the limited low-g testing to date. As a result, spacecraft fire safety protocols are necessarily very conservative and costly. Future crewed missions are expected to be longer in duration than previous exploration missions outside of low-earth orbit and accordingly, more complex in terms of operations, logistics, and safety. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this concern, a spacecraft fire safety research project is underway to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. This project is supported by the NASA Advanced Exploration Systems Program Office in the Human Exploration and Operations Mission Directorate. The activity of this project is supported by an international topical team of fire experts from other space agencies to maximize the utility of the data and to ensure the widest possible scrutiny of the concept. The large-scale space flight experiment will be conducted on three missions; each in an Orbital Sciences Corporation Cygnus vehicle after it has deberthed from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew allows the fire products to be released into the cabin. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the atmosphere. The international topical team is collaborating with the NASA team in the definition of the experiment requirements and performing supporting analysis, experimentation and technology development.
Tremblay, Jaëlle; Mac-Thiong, Jean-Marc; Brailovski, Vladimir; Petit, Yvan
2015-09-01
This study investigates the use of braided tubular superelastic cables, previously used for sternum closure following sternotomy, as sublaminar fixation method. It compares the biomechanical performance of spinal instrumentation fixation systems with regular sublaminar cables and proprietary superelastic cables. A hybrid experimental protocol was applied to six porcine L1-L4 spinal segments to compare multifilament sublaminar cables (Atlas, Medtronic Sofamor Danek, Memphis, TN) with proprietary superelastic cables. First, intact total range of motion was determined for all specimens using pure moment loading. Second, pure moments were imposed to the instrumented specimens until these intact total ranges of motion were reproduced. Compared to the intact specimens, the use of superelastic cables resulted in stiffer instrumented specimens than the use of multifilament cables for all the loading modes except axial torsion. Consequently, the superelastic cables limited the instrumented segments mobility more than the multifilament cables. Spinal instrumentation fixation systems using superelastic cables could be a good alternative to conventional sublaminar cables as it maintains a constant stabilization of the spine during loading. © IMechE 2015.
Quench propagation in the superconducting 6 kA flexible busbars of the LHC
NASA Astrophysics Data System (ADS)
Herzog, R.; Calvi, M.; Sonnemann, F.; Pelegrin-Carcelen, J. M.
2002-05-01
Flexible superconducting cables with currents up to 6 kA will be used to power magnets individually in the insertion regions of the LHC. In case of a quench, the currents in these circuits will decay very fast (with time constants of about 200 ms) such that relatively small copper cross sections are sufficient for these busbars. Quench propagation experiments on a prototype cable and corresponding simulations led to a detailed understanding of the quench behavior of these busbars and to recommendations for the design and application of the cable. Simulations of the quench process in a multi-strand conductor led to a detailed understanding of the way current crosses from superconducting to pure copper strands and how this affects the quench propagation velocity. At nominal current (6 kA), the quench propagation velocities are high (10 m/s) and the hot spot temperature increases rapidly. In this situation, timely quench detection and energy extraction (current reduction) are vital to prevent damage of circuit components.
A new IPQAM modulator with high integrated degree for digital TV
NASA Astrophysics Data System (ADS)
He, Yejun; Liu, Deming; Zhu, Guangxi; Jiang, Tao; Sun, Gongxian
2008-12-01
As video on demand (VOD) services are deployed, cable operators will experience a fundamental shift in their business, moving from broadcast to unicast content delivery. Another significant change is the introduction of Gigabit Ethernet into their network, which is providing an unprecedented opportunity to turn the cable operator's infrastructure into a sustainable competitive advantage. However, Gigabit Ethernet is more than just transport; it's the foundation of the Next-Generation Digital Video Network. IPQAM modulator, which is a main equipment, aren't made in China so far. It is the first time that we did design IPQAM modulator and will apply it to interactive TV based on DWDM (dense wavelength-division multiplexing). This paper introduces the principle of IPQAM modulator and transmission approach. The differences between IPQAM and conventional QAM are analysed. Some key techniques such as scrambling, statistical multiplexing, Data over Cable Service Interface Specification (DOCSIS) 3.0, software defined radio as well as DVB simulcrypt are also studied.
Self-inflicted long complex urethro-vesical foreign body: is open surgery always needed?
Garg, Manish; Kumar, Manoj; Sankhwar, Satyanarayan; Singh, Vishwajeet
2013-01-01
In this case report, we describe our experience of a self-inflicted long complex urethrovesical foreign body managed suprapubically through the minimally invasive technique. A 21-year-old man with antipsychotic treatment for the past 10 years presented with a long electric cable wire in his bladder with the distal end in the penile urethra. He presented with symptoms of voiding difficulty and gross haematuria. An attempt of gentle retrieval of wire through the cystoscopic forceps was not successful due to a very complex knot of cable in the bladder. To avoid open surgery such as suprapubic cystotomy, the percutaneous minimally invasive approach was planned. Access to the bladder was achieved by the suprapubic puncture of the bladder, placement of a guide-wire and serial dilation of supra-pubic tract. With the help of nephroscope, through suprapubic tract, the cable wire was retrieved antegradely without causing undue trauma to the bladder or urethra. PMID:23749820
Turbulence spectra measured during fire front passage
Daisuke Seto; Craig B. Clements; Warren E. Heilman
2013-01-01
Four field experiments were conducted over various fuel and terrain to investigate turbulence generation during the passage of wildland fire fronts. Our results indicate an increase in horizontal mean winds and friction velocity, horizontal and vertical velocity variances as well as a decreased degree of anisotropy in TKE during fire front passage (FFP) due to fire-...
Prescribed fire research in Pennsylvania
Patrick Brose
2009-01-01
Prescribed fire in Pennsylvania is a relatively new forestry practice because of the State's adverse experience with highly destructive wildfires in the early 1900s. The recent introduction of prescribed fire raises a myriad of questions regarding its correct and safe use. This poster briefly describes the prescribed fire research projects of the Forestry Sciences...
Biomass consumption during prescribed fires in big sagebrush ecosystems
Clinton S. Wright; Susan J. Prichard
2006-01-01
Big sagebrush (Artemisia tridentata) ecosystems typically experience stand replacing fires during which some or all of the ignited biomass is consumed. Biomass consumption is directly related to the energy released during a fire, and is an important factor that determines smoke production and the effects of fire on other resources. Consumption of...
System for stabilizing cable phase delay utilizing a coaxial cable under pressure
NASA Technical Reports Server (NTRS)
Clements, P. A. (Inventor)
1974-01-01
Stabilizing the phase delay of signals passing through a pressurizable coaxial cable is disclosed. Signals from an appropriate source at a selected frequency, e.g., 100 MHz, are sent through the controlled cable from a first cable end to a second cable end which, electrically, is open or heavily mismatched at 100 MHz, thereby reflecting 100 MHz signals back to the first cable end. Thereat, the phase difference between the reflected-back signals and the signals from the source is detected by a phase detector. The output of the latter is used to control the flow of gas to or from the cable, thereby controlling the cable pressure, which in turn affects the cable phase delay.
Modal resonant dynamics of cables with a flexible support: A modulated diffraction problem
NASA Astrophysics Data System (ADS)
Guo, Tieding; Kang, Houjun; Wang, Lianhua; Liu, Qijian; Zhao, Yueyu
2018-06-01
Modal resonant dynamics of cables with a flexible support is defined as a modulated (wave) diffraction problem, and investigated by asymptotic expansions of the cable-support coupled system. The support-cable mass ratio, which is usually very large, turns out to be the key parameter for characterizing cable-support dynamic interactions. By treating the mass ratio's inverse as a small perturbation parameter and scaling the cable tension properly, both cable's modal resonant dynamics and the flexible support dynamics are asymptotically reduced by using multiple scale expansions, leading finally to a reduced cable-support coupled model (i.e., on a slow time scale). After numerical validations of the reduced coupled model, cable-support coupled responses and the flexible support induced coupling effects on the cable, are both fully investigated, based upon the reduced model. More explicitly, the dynamic effects on the cable's nonlinear frequency and force responses, caused by the support-cable mass ratio, the resonant detuning parameter and the support damping, are carefully evaluated.
105. VIEW NORTH FROM SLC3W CABLE TUNNEL INTO CABLE VAULT ...
105. VIEW NORTH FROM SLC-3W CABLE TUNNEL INTO CABLE VAULT AND SLC-3E CABLE TUNNEL. NOTE WOODEN PLANKING ON FLOOR OF TUNNEL AND CABLE TRAYS LINING TUNNEL WALLS. STAIRS ON EAST WALL OF CABLE VAULT LEAD INTO LANDLINE INSTRUMENTATION ROOM. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Frequency domain reflectometry NDE for aging cables in nuclear power plants
NASA Astrophysics Data System (ADS)
Glass, S. W.; Jones, A. M.; Fifield, L. S.; Hartman, T. S.
2017-02-01
Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. Although system tests verify cable function under normal loads, demonstration of some cable's ability to perform under exceptional loads associated with design-basis events is essential to assuring plant integrity. The cable's ability to perform safely over the initial 40-year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found in an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program that includes condition monitoring to justify cable performance under normal operation as well as accident conditions. A variety of tests are available to assess various aspects of electrical and mechanical cable performance, but none are suitable for all cable configurations nor does any single test confirm all features of interest. One particularly promising test that is beginning to be used more and more by utilities is frequency domain reflectometry (FDR). FDR is a nondestructive electrical inspection technique used to detect and localize faults in power and communication system conductors along the length of a cable from a single connection point. FDR detects discontinuities in the electrical impedance that arise due to cable splices or similar changes along the path of the conductor pair. In addition, FDR has the potential to provide sensitivity to insulation degradation by detecting small changes in impedance between the cable conductors being examined. The technique is also sensitive to cable bends, the particular lay of the cable in tray, proximity to other cable, and other factors that bear consideration when interpreting the test results. This paper examines various influences on the FDR approach and compares results of three different instruments to assess accelerated aging damage among several NPP representative cables.
Atmospheric Science Data Center
2017-12-22
... in conjunction with the Surface Heat Budget of the Arctic Ocean (SHEBA) Experiment. The FIRE-ACE focused on all aspects of Arctic cloud ... Alaska with measurements extending well over the Arctic Ocean (ship and aircraft). Guide Documents: FIRE Project ...
Fire Island National Seashore : alternative transportation study.
DOT National Transportation Integrated Search
2011-12-31
As part of its General Management Plan (GMP) process, Fire Island National Seashore (FIIS) seeks to develop a long-term management model to protect Fire Islands resources, while facilitating a safe, rewarding, and relevant experience for the publi...
Park, Do Youn; Sakamoto, Hideo; Kirley, Sandra D.; Ogino, Shuji; Kawasaki, Takako; Kwon, Eunjeong; Mino-Kenudson, Mari; Lauwers, Gregory Y.; Chung, Daniel C.; Rueda, Bo R.; Zukerberg, Lawrence R.
2007-01-01
Cables is a cyclin-dependent kinase-binding nuclear protein that maps to chromosome 18q11-12. Here, we assessed Cables expression in 160 colorectal cancers (CRCs), its role in colon cancer cell growth, and the potential mechanisms of Cables inactivation. Expression levels, promoter methylation, and mutational status of Cables were investigated in colon cancer cell lines and primary colon tumors. Chromosome 18q loss of heterozygosity (LOH) was evaluated with multiple polymorphic markers. Cables inhibited cellular proliferation and colony formation in colon cancer cell lines. Cables expression was reduced in 65% of primary CRCs. No mutations were detected in 10 exons of Cables in 20 primary colon tumors. Cables promoter was methylated in cell lines with decreased Cables expression and vice versa. 5-Aza-2′-deoxycytidine resulted in increased Cables expression in methylated cell lines. There was a significant correlation between promoter methylation and Cables gene expression in primary colon tumors. Sixty-five percent of primary colon tumors demonstrated chromosome 18q LOH. LOH involving the Cables region was observed in 35% of cases, including those in which more distal portions of chromosome 18q were retained, and Cables expression was decreased in all such cases. Loss of Cables expression in 65% of CRCs suggests that it is a common event in colonic carcinogenesis, with promoter methylation and LOH appearing to be important mechanisms of Cables gene inactivation. PMID:17982127
The impact of frequency on the performance of microwave ablation.
Sawicki, James F; Shea, Jacob D; Behdad, Nader; Hagness, Susan C
2017-02-01
The use of higher frequencies in percutaneous microwave ablation (MWA) may offer compelling interstitial antenna design advantages over the 915 MHz and 2.45 GHz frequencies typically employed in current systems. To evaluate the impact of higher frequencies on ablation performance, we conducted a comprehensive computational and experimental study of microwave absorption and tissue heating as a function of frequency. We performed electromagnetic and thermal simulations of MWA in ex vivo and in vivo porcine muscle at discrete frequencies in the 1.9-26 GHz range. Ex vivo ablation experiments were performed in the 1.9-18 GHz range. We tracked the size of the ablation zone across frequency for constant input power and ablation duration. Further, we conducted simulations to investigate antenna feed line heating as a function of frequency, input power, and cable diameter. As the frequency was increased from 1.9 to 26 GHz the resulting ablation zone dimensions decreased in the longitudinal direction while remaining relatively constant in the radial direction; thus at higher frequencies the overall ablation zone was more spherical. However, cable heating at higher frequencies became more problematic for smaller diameter cables at constant input power. Comparably sized ablation zones are achievable well above 1.9 GHz, despite increasingly localised power absorption. Specific absorption rate alone does not accurately predict ablation performance, particularly at higher frequencies where thermal diffusion plays an important role. Cable heating due to ohmic losses at higher frequencies may be controlled through judicious choices of input power and cable diameter.
Occupational Asthma in a Cable Manufacturing Company
Attarchi, Mirsaeed; Dehghan, Faezeh; Yazdanparast, Taraneh; Mohammadi, Saber; Golchin, Mahdie; Sadeghi, Zargham; Moafi, Masoud; Seyed Mehdi, Seyed Mohammad
2014-01-01
Background: During the past decade, incidence of asthma has increased, which might have been due to environmental exposures. Objectives: Considering the expansion of cable manufacturing industry in Iran, the present study was conducted to evaluate the prevalence of occupational asthma in a cable manufacturing company in Iran as well as its related factors. Patients and Methods: This study was conducted on employees of a cable manufacturing company in Yazd, Iran, in 2012. The workers were divided into two groups of exposure (to toluene diisocyanate, polyvinyl chloride, polyethylene or polypropylene) and without exposure. Diagnosis of occupational asthma was made based on the subjects’ medical history, spirometry and peak flowmetry, and its frequency was compared between the two groups. Results: The overall prevalence of occupational asthma was 9.7%. This rate was 13.8% in the exposed group. Logistic regression analysis showed that even after adjustment for confounding factors, a significant correlation existed between the frequency of occupational asthma and exposure to the produced dust particles (P < 0.05). In addition, age, work experience, body mass index, cigarette smoking and shift work had significant correlations with the prevalence of occupational asthma (P < 0.05). Conclusions: Considering the high prevalence of occupational asthma among cable manufacturing company workers in Iran, this issue needs to be addressed immediately in addition to reduction of exposure among subjects. Reduction in work shift duration, implementation of tobacco control and cessation programs for the personnel, and performing spirometry tests and respiratory examinations in shorter periods may be among effective measures for reducing the incidence of occupational asthma in this industry. PMID:25558389
Investigation of cables for ionization chambers.
Spokas, J J; Meeker, R D
1980-01-01
Seven coaxial cables which are in use for carrying currents generated in ionization chambers have been critically studied with reference to their suitability to this application. Included in this study are four low-noise triaxial cables and three low-noise two-conductor cables. For each cable the following characteristics were considered: inherent noise currents, currents produced by cable movements, polarization currents, the degree of electrostatic shielding of the central signal-carrying conductor, and radiation-induced cable currents. The study indicated that of the seven cables, two low-noise triaxial cables, both employing solid Teflon dielectric surrounding the central conductor, appear to offer the best overall performance for use with ionization chambers.
An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael
2005-11-29
A coaxial cable electrical connector more specifically an internal coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transfonner. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive care of the coaxial cable. A plurality of bulbous pliant tabs on the coaxial cable connector mechanically engage the inside diameter of the coaxial cable thus grounding the transformer to the coaxial cable. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string.
High power cable with internal water cooling 400 kV
NASA Astrophysics Data System (ADS)
Rasquin, W.; Harjes, B.
1982-08-01
Due to the concentration of electricity production in large power plants, the need of higher power transmissions, and the protection of environment, developement of a 400 kV water cooled cable in the power range of 1 to 5 GVA was undertaken. The fabrication and testing of equipment, engineering of cable components, fabrication of a test cable, development of cable terminal laboratory, testing of test cable, field testing of test cable, fabrication of industrial cable laboratory, testing of industrial cable, field testing of industrial cable, and system analysis for optimization were prepared. The field testing was impossible to realize. However, it is proved that a cable consisting of an internal stainless steel water cooled tube, covered by stranded copper profiles, insulated with heavy high quality paper, and protected by an aluminum cover can be produced, withstand tests accordingly to IEC/VDE recommendations, and is able to fulfill all exploitation conditions.
30 CFR 7.403 - Application requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Cables, Signaling Cables, and Cable Splice Kits § 7.403 Application requirements. (a) Electric cables and signaling cables. A single... product: (1) Product information: (i) Cable type (for example, G or G-GC). (ii) Construction (for example...
30 CFR 7.403 - Application requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Cables, Signaling Cables, and Cable Splice Kits § 7.403 Application requirements. (a) Electric cables and signaling cables. A single... product: (1) Product information: (i) Cable type (for example, G or G-GC). (ii) Construction (for example...
30 CFR 7.403 - Application requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Cables, Signaling Cables, and Cable Splice Kits § 7.403 Application requirements. (a) Electric cables and signaling cables. A single... product: (1) Product information: (i) Cable type (for example, G or G-GC). (ii) Construction (for example...
NASA Bluetooth Wireless Communications
NASA Technical Reports Server (NTRS)
Miller, Robert D.
2007-01-01
NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.
NASA Astrophysics Data System (ADS)
Warneke, C.; Schwarz, J. P.; Yokelson, R. J.; Roberts, J. M.; Koss, A.; Coggon, M.; Yuan, B.; Sekimoto, K.
2017-12-01
A combination of a warmer, drier climate with fire-control practices over the last century have produced a situation in which we can expect more frequent fires and fires of larger magnitude in the Western U.S. and Canada. There are urgent needs to better understand the impacts of wildfire and biomass burning (BB) on the atmosphere and climate system, and for policy-relevant science to aid in the process of managing fires. The FIREX (Fire Influence on Regional and Global Environment Experiment) research effort is a multi-year, multi-agency measurement campaign focused on the impact of BB on climate and air quality from western North American wild fires, where research takes place on scales ranging from the flame-front to the global atmosphere. FIREX includes methods development and small- and large-scale laboratory and field experiments. FIREX will include: emission factor measurements from typical North American fuels in the fire science laboratory in Missoula, Montana; mobile laboratory deployments; ground site measurements at sites influenced by BB from several western states. The main FIREX effort will be a large field study with multiple aircraft and mobile labs in the fire season of 2019. One of the main advances of FIREX is the availability of various new measurement techniques that allows for smoke evaluation in unprecedented detail. The first major effort of FIREX was the fire science laboratory measurements in October 2016, where a large number of previously understudied Nitrogen containing volatile organic compounds (NVOCs) were measured using H3O+CIMS and I-CIMS instruments. The contribution of NVOCs to the total reactive Nitrogen budget and the relationship to the Nitrogen content of the fuel are investigated.
NASA Technical Reports Server (NTRS)
Ruff, Gary A.
2004-01-01
This report is concerned with the following topics regarding fire suppression:What is the relative effectiveness of candidate suppressants to extinguish a representative fire in reduced gravity, including high-O2 mole fraction, low -pressure environments? What are the relative advantages and disadvantages of physically acting and chemically-acting agents in spacecraft fire suppression? What are the O2 mole fraction and absolute pressure below which a fire cannot exist? What effect does gas-phase radiation play in the overall fire and post-fire environments? Are the candidate suppressants effective to extinguish fires on practical solid fuels? What is required to suppress non-flaming fires (smoldering and deep seated fires) in reduced gravity? How can idealized space experiment results be applied to a practical fire scenario? What is the optimal agent deployment strategy for space fire suppression?
Carbon and Aerosol Emissions from Biomass Fires in Mexico
NASA Astrophysics Data System (ADS)
Hao, W. M.; Flores Garnica, G.; Baker, S. P.; Urbanski, S. P.
2009-12-01
Biomass burning is an important source of many atmospheric greenhouse gases and photochemically reactive trace gases. There are limited data available on the spatial and temporal extent of biomass fires and associated trace gas and aerosol emissions in Mexico. Biomass burning is a unique source of these gases and aerosols, in comparison to industrial and biogenic sources, because the locations of fires vary considerably both daily and seasonally and depend on human activities and meteorological conditions. In Mexico, the fire season starts in January and about two-thirds of the fires occur in April and May. The amount of trace gases and aerosols emitted by fires spatially and temporally is a major uncertainty in quantifying the impact of fire emissions on regional atmospheric chemical composition. To quantify emissions, it is necessary to know the type of vegetation, the burned area, the amount of biomass burned, and the emission factor of each compound for each ecosystem. In this study biomass burning experiments were conducted in Mexico to measure trace gas emissions from 24 experimental fires and wildfires in semiarid, temperate, and tropical ecosystems from 2005 to 2007. A range of representative vegetation types were selected for ground-based experimental burns to characterize fire emissions from representative Mexico fuels. A third of the country was surveyed each year, beginning in the north. The fire experiments in the first year were conducted in Chihuahua, Nuevo Leon, and Tamaulipas states in pine forest, oak forest, grass, and chaparral. The second-year fire experiments were conducted on pine forest, oak forest, shrub, agricultural, grass, and herbaceous fuels in Jalisco, Puebla, and Oaxaca states in central Mexico. The third-year experiments were conducted in pine-oak forests of Chiapas, coastal grass, and low subtropical forest on the Yucatan peninsula. FASS (Fire Atmosphere Sampling System) towers were deployed for the experimental fires. Each FASS system contains 4 electro-polished stainless steel canisters to sample trace gas emissions, with a corresponding set of Teflon filters in the sampling ports to collect PM2.5 particulates. In addition, biomass burning was sampled by aircraft with canisters and real-time instruments as part of the MILAGRO field campaign. We present the emission factors of CO2, CO, CH4, C2-C4 compounds, and PM2.5 for prescribed fires of the major vegetation types in Mexico, as well as for regional wildfires in southern and central Mexico. We will also present a high-resolution vegetation map in Mexico based on the Landsat satellites and the fuel consumption models for various components and sizes of fuels.
Commercial fishing industry deaths - forensic issues.
Byard, Roger W
2013-04-01
The commercial fishing industry has one of the highest injury and mortality rates of all occupational areas. This results from the nature of the work involving vessels often manned by only a few individuals who are working with heavy-duty equipment in dangerous environments at all hours. Economic pressures may force inappropriately geared vessels to operate further out to sea than is safe. Deaths result from a wide variety of situations involving vessel loss, falls overboard, fire and explosions, cable entanglements and gas exposure. Autopsies are often difficult as there are no diagnostic features of either drowning or hypothermia and features may be obscured by putrefaction and postmortem animal predation. The forensic implications of deaths in the fishing industry are reviewed. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
The Over-Selling of Fiber Optics? Cable Planning for Educational Technology.
ERIC Educational Resources Information Center
Kovacs, Robert E.
1993-01-01
Describes fiber optic cables and coaxial cables and considers when each would be appropriate for educational technology. Single mode versus multimode fiber optics are explained, advantages and disadvantages of each type of cable are discussed, and guidelines for choosing fiber optic cables and coaxial cables are offered. (LRW)
Helical grip for the cable cars of San Francisco
NASA Technical Reports Server (NTRS)
Peyran, R. J.
1979-01-01
A helical cable car grip to minimize high maintenance costs of San Francisco's cable car operation is presented. The grip establishes a rolling contact between the cable and grip to reduce sliding friction and associated cable wear. The design, development, and testing of the helical cable car grip are described.
47 CFR 76.1001 - Unfair practices generally.
Code of Federal Regulations, 2012 CFR
2012-10-01
... control with a cable operator or cable operators, satellite cable programming vendor or vendors in which a... under common control with, such terrestrial cable programming vendor shall be deemed responsible for... programming vendor is wholly owned by, controlled by, or under common control with a cable operator or cable...
14 CFR 25.689 - Cable systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley must be approved. In addition— (1) No cable... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cable systems. 25.689 Section 25.689...
47 CFR 76.1001 - Unfair practices generally.
Code of Federal Regulations, 2014 CFR
2014-10-01
... control with a cable operator or cable operators, satellite cable programming vendor or vendors in which a... under common control with, such terrestrial cable programming vendor shall be deemed responsible for... programming vendor is wholly owned by, controlled by, or under common control with a cable operator or cable...
47 CFR 76.1001 - Unfair practices generally.
Code of Federal Regulations, 2013 CFR
2013-10-01
... control with a cable operator or cable operators, satellite cable programming vendor or vendors in which a... under common control with, such terrestrial cable programming vendor shall be deemed responsible for... programming vendor is wholly owned by, controlled by, or under common control with a cable operator or cable...
30 CFR 57.12014 - Handling energized power cables.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Handling energized power cables. 57.12014... Electricity Surface and Underground § 57.12014 Handling energized power cables. Power cables energized to.... This does not prohibit pulling or dragging of cable by the equipment it powers when the cable is...
30 CFR 57.12014 - Handling energized power cables.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Handling energized power cables. 57.12014... Electricity Surface and Underground § 57.12014 Handling energized power cables. Power cables energized to.... This does not prohibit pulling or dragging of cable by the equipment it powers when the cable is...
30 CFR 57.12014 - Handling energized power cables.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Handling energized power cables. 57.12014... Electricity Surface and Underground § 57.12014 Handling energized power cables. Power cables energized to.... This does not prohibit pulling or dragging of cable by the equipment it powers when the cable is...