Sample records for cable test strand

  1. Corrosion Induced Loss of Capacity of Post Tensioned Seven Wire Strand Cable Used in Multistrand Anchor Systems Installed at Corps Projects

    DTIC Science & Technology

    2016-12-01

    Universal Test Machine. .................. 7 Figure 2.2. Pull-test results of PT seven-wire strand cable surrounded by a quickset, steel - reinforced epoxy...13 Figure 2.7. Pull-test results of PT seven-wire strand cable surrounded by a quickset, steel - reinforced...surrounded by a thick layer of quickset, steel -reinforced epoxy and with 40% reduced wedges. ....................................................... 15

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emanuela Barzi et al.

    Fermilab is developing 11 T superconducting dipole magnets for future accelerators based on Nb{sub 3}Sn conductor. Within the High Field Magnet Project, the first prototypes feature 1 meter long two-layer shell-type coils and common coils. For the former, keystoned Rutherford-type cable made of 28 Nb{sub 3}Sn strands 1 mm in diameter are used, whereas for the latter a 60-strand flat cable was chosen. Multifilamentary Nb{sub 3}Sn strands produced with various technologies by industry were used for the development and testing of the prototype cable. An experimental cabling machine with up to 28-strand capacity that has been recently purchased, installed andmore » commissioned at Fermilab, has allowed further advances in strand and cable studies. Cables of 27 and 28 strands of various structures (single strands or assemblies of sub-strands), with aspect ratios from 7 to 17, packing factors from 85 to 95%, with and without a stainless steel core were made out of Copper, NbTi, and Modified Jelly Roll (OST), Powder-in-Tube (SMI) and Internal Tin (Mitsubishi) Nb{sub 3}Sn strands. optimal parameters were determined with respect to mechanical and electrical properties, including critical current degradation, interstrand resistance, etc. Round strands of the same billets used in the cables were deformed by rolling them down to various thicknesses. Their critical current Ic was then measured and compared with that of the strands extracted from cables having different packing factors. This paper summarizes the results of such R and D efforts at Fermilab.« less

  3. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full testing in SULTAN: 1. The mechanical role of copper strands in a CICC

    DOE PAGES

    Sanabria, Carlos; Lee, Peter J.; Starch, William; ...

    2015-06-22

    Cables made with Nb 3Sn-based superconductor strands will provide the 13 T maximum peak magnetic field of the ITER Central Solenoid (CS) coils and they must survive up to 60,000 electromagnetic cycles. Accordingly, prototype designs of CS cable-in-conduit-conductors (CICC) were electromagnetically tested over multiple magnetic field cycles and warm-up-cool-down scenarios in the SULTAN facility at CRPP. We report here a post mortem metallographic analysis of two CS CICC prototypes which exhibited some rate of irreversible performance degradation during cycling. The standard ITER CS CICC cable design uses a combination of superconducting and Cu strands, and because the Lorentz force onmore » the strand is proportional to the transport current in the strand, removing the copper strands (while increasing the Cu:SC ratio of the superconducting strands) was proposed as one way of reducing the strand load. In this study we compare the two alternative CICCs, with and without Cu strands, keeping in mind that the degradation after SULTAN test was lower for the CICC without Cu strands. The post mortem metallographic evaluation revealed that the overall strand transverse movement was 20% lower in the CICC without Cu strands and that the tensile filament fractures found were less, both indications of an overall reduction in high tensile strain regions. Furthermore, it was interesting to see that the Cu strands in the mixed cable design (with higher degradation) helped reduce the contact stresses on the high pressure side of the CICC, but in either case, the strain reduction mechanisms were not enough to suppress cyclic degradation. Advantages and disadvantages of each conductor design are discussed here aimed to understand the sources of the degradation.« less

  4. Cable testing for Fermilab's high field magnets using small racetrack coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feher, S.; Ambrosio, G.; Andreev, N.

    As part of the High Field Magnet program at Fermilab simple magnets have been designed utilizing small racetrack coils based on a sound mechanical structure and bladder technique developed by LBNL. Two of these magnets have been built in order to test Nb{sub 3}Sn cables used in cos-theta dipole models. The powder-in-tube strand based cable exhibited excellent performance. It reached its critical current limit within 14 quenches. Modified jelly roll strand based cable performance was limited by magnetic instabilities at low fields as previously tested dipole models which used similar cable.

  5. Sensitivity of Nb$$_3$$Sn Rutherford-Type Cables to Transverse Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barzi, E.; Wokas, T.; Zlobin, A. V.

    Fermilab is developing high field superconducting magnets for future accelerators based on Nb/sub 3/Sn strands. Testing the critical current of superconducting cables under compression is a means to appraise the performance of the produced magnet. However, these cable tests are expensive and labor-intensive. A fixture to assess the superconducting performance of a Nb/sub 3/Sn strand within a reacted and impregnated cable under pressure was designed and built at Fermilab. Several Rutherford-type cables were fabricated at Fermilab and at LBNL using multifilamentary Nb/sub 3/Sn strands. The sensitivity of Nb/sub 3/Sn to transverse pressure was measured for a number of Nb/sub 3/Snmore » technologies (Modified Jelly Roll, Powder-in-Tube, Internal Tin, and Restack Rod Process). Results on the effect of a stainless steel core in the cable are also shown.« less

  6. Reduce Nb3Sn Strand Deformation when Fabricating High Jc Rutherford Cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Xuan

    2012-12-17

    During Phase I, our efforts were to reduce subelements deformation when fabricating Nb3Sn Rutherford cables. Our first focus is on 217-sublement tube type strand. We successfully made a few billets in OD tube with different Cu spacing between subelements, and supplied the strands to Fermi Lab for cabling. Through the rolling test characterization, these types of strands did not have enough bonding between subelements to withstand the deformation. We saw copper cracking between subelements in the deformed strands. We scaled up the billet from OD to 1.5 OD, and made two billets. This greatly improves the bonding. There is nomore » copper cracking in the deformed strands when we scaled up the diameter of the billets. Fermi Lab successfully made cables using one of this improved strands. In their cables, no Cu cracking and no filament bridging occurred. We also successfully made a couple of billets with hex OD and round ID subelements for 61-subelement restack. Due to the lack of bonding, we could not judge its cabling property properly. But we know through this experiment, we could keep the Nb round, once we select the proper Cu spacing.« less

  7. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: II. Significant reduction of strand movement and strand damage in short twist pitch CICCs

    DOE PAGES

    Sanabria, Charlos; Lee, Peter J.; Starch, William; ...

    2015-10-14

    Prototype cable in conduit conductors (CICCs) destined for use in the Toroidal Field (TF) and Central Solenoid (CS) coils of the ITER experimental fusion reactor underwent severe cyclic loading in the SULTAN facility. Their autopsies revealed significant and permanent transverse strand migration due to the large Lorentz forces of the SULTAN test. The movement resulted in a 3 7% void fraction increase on the Low Pressure (LP) side of the longer twist pitch CICCs. However, short twist pitch conductors exhibited less than 1% void fraction increase in the LP side, as well as a complete absence of the Nb 3Snmore » filament fractures observed in the longer twist pitch conductors. We report here a detailed strand to cable analysis of short and longer “baseline” twist pitch CICCs. It was found that the use of Internal Tin strands in the longer “baseline” twist pitch CICCs can be beneficial possibly because of their superior stiffness—which better resist strand movement—while the use of Bronze Process strands showed more movement and poorer cyclic test performance. This was not the case for the short twist pitch CICC. Such conductor design seems to work well with both strand types. But it was found that despite the absence of filament fractures, the short twist pitch CICC made from the Internal Tin strands studied here developed severe strand distortion during cabling which resulted in diffusion barrier breaks and Sn contamination of the Cu stabilizer during the heat treatment. Furthermore, the short twist pitch CICC made from Bronze Process strands preserved diffusion barrier integrity.« less

  8. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: II. Significant reduction of strand movement and strand damage in short twist pitch CICCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanabria, Charlos; Lee, Peter J.; Starch, William

    Prototype cable in conduit conductors (CICCs) destined for use in the Toroidal Field (TF) and Central Solenoid (CS) coils of the ITER experimental fusion reactor underwent severe cyclic loading in the SULTAN facility. Their autopsies revealed significant and permanent transverse strand migration due to the large Lorentz forces of the SULTAN test. The movement resulted in a 3 7% void fraction increase on the Low Pressure (LP) side of the longer twist pitch CICCs. However, short twist pitch conductors exhibited less than 1% void fraction increase in the LP side, as well as a complete absence of the Nb 3Snmore » filament fractures observed in the longer twist pitch conductors. We report here a detailed strand to cable analysis of short and longer “baseline” twist pitch CICCs. It was found that the use of Internal Tin strands in the longer “baseline” twist pitch CICCs can be beneficial possibly because of their superior stiffness—which better resist strand movement—while the use of Bronze Process strands showed more movement and poorer cyclic test performance. This was not the case for the short twist pitch CICC. Such conductor design seems to work well with both strand types. But it was found that despite the absence of filament fractures, the short twist pitch CICC made from the Internal Tin strands studied here developed severe strand distortion during cabling which resulted in diffusion barrier breaks and Sn contamination of the Cu stabilizer during the heat treatment. Furthermore, the short twist pitch CICC made from Bronze Process strands preserved diffusion barrier integrity.« less

  9. New design of cable-in-conduit conductor for application in future fusion reactors

    NASA Astrophysics Data System (ADS)

    Qin, Jinggang; Wu, Yu; Li, Jiangang; Liu, Fang; Dai, Chao; Shi, Yi; Liu, Huajun; Mao, Zhehua; Nijhuis, Arend; Zhou, Chao; Yagotintsev, Konstantin A.; Lubkemann, Ruben; Anvar, V. A.; Devred, Arnaud

    2017-11-01

    The China Fusion Engineering Test Reactor (CFETR) is a new tokamak device whose magnet system includes toroidal field, central solenoid (CS) and poloidal field coils. The main goal is to build a fusion engineering tokamak reactor with about 1 GW fusion power and self-sufficiency by blanket. In order to reach this high performance, the magnet field target is 15 T. However, the huge electromagnetic load caused by high field and current is a threat for conductor degradation under cycling. The conductor with a short-twist-pitch (STP) design has large stiffness, which enables a significant performance improvement in view of load and thermal cycling. But the conductor with STP design has a remarkable disadvantage: it can easily cause severe strand indentation during cabling. The indentation can reduce the strand performance, especially under high load cycling. In order to overcome this disadvantage, a new design is proposed. The main characteristic of this new design is an updated layout in the triplet. The triplet is made of two Nb3Sn strands and one soft copper strand. The twist pitch of the two Nb3Sn strands is large and cabled first. The copper strand is then wound around the two superconducting strands (CWS) with a shorter twist pitch. The following cable stages layout and twist pitches are similar to the ITER CS conductor with STP design. One short conductor sample with a similar scale to the ITER CS was manufactured and tested with the Twente Cable Press to investigate the mechanical properties, AC loss and internal inspection by destructive examination. The results are compared to the STP conductor (ITER CS and CFETR CSMC) tests. The results show that the new conductor design has similar stiffness, but much lower strand indentation than the STP design. The new design shows potential for application in future fusion reactors.

  10. An optimal method for producing low-stress fibre optic cables for astronomy

    NASA Astrophysics Data System (ADS)

    Murray, Graham; Tamura, Naoyuki; Takato, Naruhisa; Ekpenyong, Paul; Jenkins, Daniel; Leeson, Kim; Trezise, Shaun; Butterley, Timothy; Gunn, James; Ferreira, Decio; Oliveira, Ligia; Sodre, Laerte

    2017-09-01

    An increasing number of astronomical spectrographs employ optical fibres to collect and deliver light. For integral-field and high multiplex multi-object survey instruments, fibres offer unique flexibility in instrument design by enabling spectrographs to be located remotely from the telescope focal plane where the fibre inputs are deployed. Photon-starved astronomical observations demand optimum efficiency from the fibre system. In addition to intrinsic absorption loss in optical fibres, another loss mechanism, so-called focal ratio degradation (FRD) must be considered. A fundamental cause of FRD is stress, therefore low stress fibre cables that impart minimum FRD are essential. The FMOS fibre instrument for Subaru Telescope employed a highly effective cable solution developed at Durham University. The method has been applied again for the PFS project, this time in collaboration with a company, PPC Broadband Ltd. The process, planetary stranding, is adapted from the manufacture of large fibre-count, large diameter marine telecommunications cables. Fibre bundles describe helical paths through the cable, incorporating additional fibre per unit length. As a consequence fibre stress from tension and bend-induced `race-tracking' is minimised. In this paper stranding principles are explained, covering the fundamentals of stranded cable design. The authors describe the evolution of the stranding production line and the numerous steps in the manufacture of the PFS prototype cable. The results of optical verification tests are presented for each stage of cable production, confirming that the PFS prototype performs exceptionally well. The paper concludes with an outline of future on-telescope test plans.

  11. The Reduction of the Critical Currents in Nb3Sn Cables under Transverse Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Oort, J.M.; Scanlan, R.M.; Weijers, H.W.

    1992-08-01

    The degradation of the critical current of impregnated Rutherford type Nb{sub 3}Sn cables is investigated as a function of the applied transverse load and magnetic field. The cable is made of TWCA modified jelly-roll type strand material and has a keystone angle of 1.0 degree. The voltage-current characteristics are determined for the magnetic field ranging from 2 to 11 tesla and transverse pressure up to 250 MPa on the cable surface. It is found that the 48-strand cable, made of strands with 6 elements in the matrix, shows a larger critical current degradation than the 26-strand cable with 36 elementsmore » per strand. The global degradation of the 48-strand cable is 63% at 150 MPa, and 40% at 150 MPa for the 26-strand cable. Micro-analysis of the cross-section shows permanent damage to the sharp edge of the cable. The influence of the keystone angle on the critical-current degradation is currently under investigation.« less

  12. High power cable with internal water cooling 400 kV

    NASA Astrophysics Data System (ADS)

    Rasquin, W.; Harjes, B.

    1982-08-01

    Due to the concentration of electricity production in large power plants, the need of higher power transmissions, and the protection of environment, developement of a 400 kV water cooled cable in the power range of 1 to 5 GVA was undertaken. The fabrication and testing of equipment, engineering of cable components, fabrication of a test cable, development of cable terminal laboratory, testing of test cable, field testing of test cable, fabrication of industrial cable laboratory, testing of industrial cable, field testing of industrial cable, and system analysis for optimization were prepared. The field testing was impossible to realize. However, it is proved that a cable consisting of an internal stainless steel water cooled tube, covered by stranded copper profiles, insulated with heavy high quality paper, and protected by an aluminum cover can be produced, withstand tests accordingly to IEC/VDE recommendations, and is able to fulfill all exploitation conditions.

  13. Multistrand superconductor cable

    DOEpatents

    Borden, Albert R.

    1985-01-01

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, R.; Ambrosio, G.; Barzi, E.

    The design study of the block type 15-Tesla RHQT Nb{sub 3}Al dipole magnet, and its merits over Nb{sub 3}Sn magnets are presented. The copper stabilized RHQT Nb{sub 3}Al strand is now becoming commercially available for the application to the accelerator magnets. A 1 mm diameter RHQT Nb{sub 3}Al strand with filament size about 50 {mu}, non-copper Jc about 1000 A/mm{sup 2} at 15 Tesla at 4.2K, copper ratio of 50%, can now be produced over several hundred meters. The stress and strain characteristics of the Nb{sub 3}Al strand are superior to the Nb{sub 3}Sn strand. Another advantage is that itmore » can tolerate a longitudinal strain up to 0.55%. The RHQT Nb{sub 3}Al Rutherford cable will have less chance of contamination of the stabilizer, compared to Nb{sub 3}Sn cable. These characteristics of the RHQT Nb{sub 3}Al will be beneficial for designing and producing 15-Tesla dipole magnets. An example 15-Tesla magnet cross section, utilizing the RHQT Nb{sub 3}Sn strand is presented. A systematic investigation on RHQT Nb{sub 3}Al strands, its Rutherford cables, and building a small racetrack magnet for cable testing are proposed.« less

  15. Multistrand superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easil

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, R.; Ambrosio, G.; Barzi, E.

    Feasibility study of 15-Tesla dipole magnets wound with a new copper stabilized RHQT Nb{sub 3}Al Rutherford cable is presented. A new practical long copper stabilized RHQT Nb{sub 3}Al strand is presented, which is being developed and manufactured at the National Institute of Material Science (NIMS) in Japan. It has achieved a non-copper J{sub c} of 1000A/mm{sup 2} at 15 Tesla at 4.2K, with a copper over non-copper ratio of 1.04, and a filament size less than 50 microns. For this design study a short Rutherford cable with 28 Nb{sub 3}Al strands of 1 mm diameter will be fabricated late thismore » year. The cosine theta magnet cross section is designed using ROXIE, and the stress and strain in the coil is estimated and studied with the characteristics of the Nb{sub 3}Al strand. The advantages and disadvantages of the Nb{sub 3}Al cable are compared with the prevailing Nb{sub 3}Sn cable from the point of view of stress-strain, J{sub c}, and possible degradation of stabilizer due to cabling. The Nb{sub 3}Al coil of the magnet, which will be made by wind and react method, has to be heat treated at 800 degree C for 10 hours. As preparation for the 15 Tesla magnet, a series of tests on strand and Rutherford cables are considered.« less

  17. Cable deformation simulation and a hierarchical framework for Nb3Sn Rutherford cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arbelaez, D.; Prestemon, S. O.; Ferracin, P.

    2009-09-13

    Knowledge of the three-dimensional strain state induced in the superconducting filaments due to loads on Rutherford cables is essential to analyze the performance of Nb{sub 3}Sn magnets. Due to the large range of length scales involved, we develop a hierarchical computational scheme that includes models at both the cable and strand levels. At the Rutherford cable level, where the strands are treated as a homogeneous medium, a three-dimensional computational model is developed to determine the deformed shape of the cable that can subsequently be used to determine the strain state under specified loading conditions, which may be of thermal, magnetic,more » and mechanical origins. The results can then be transferred to the model at the strand/macro-filament level for rod restack process (RRP) strands, where the geometric details of the strand are included. This hierarchical scheme can be used to estimate the three-dimensional strain state in the conductor as well as to determine the effective properties of the strands and cables from the properties of individual components. Examples of the modeling results obtained for the orthotropic mechanical properties of the Rutherford cables are presented.« less

  18. Method to improve superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    A method is disclosed of making a stranded superconductor cable having improved flexing and bending characteristics. In such method, a plurality of superconductor strands are helically wound around a cylindrical portion of a mandrel which tapers along a transitional portion to a flat end portion. The helically wound strands form a multistrand hollow cable which is partially flattened by pressure rollers as the cable travels along the transitional portion. The partially flattened cable is impacted with repeated hammer blows as the hollow cable travels along the flat end portion. The hammer blows flatten both the internal and the external surfaces of the strands. The cable is fully flattened and compacted by two sets of pressure rollers which engage the flat sides and the edges of the cable after it has traveled away from the flat end portion of the mandrel. The flattened internal surfaces slide easily over one another when the cable is flexed or bent so that there is very little possibility that the cable will be damaged by the necessary flexing and bending required to wind the cable into magnet coils.

  19. Structured Cable for High-Current Coils of Tokamaks

    NASA Astrophysics Data System (ADS)

    Benson, Christopher; McIntyre, Peter; Sattarov, Akhdiyor; Mann, Thomas

    2011-10-01

    The 45 kA superconducting cable for the ITER central solenoid coil has yielded questionable results in two recent tests. In both cases the cable Tc increased after cycling only a fraction of the design life, indicating degradation due to fatigue and fracture among the superconducting strands. The Accelerator Research Lab at Texas A&M University is developing a design for a Nb3Sn structured cable suitable for such tokamak coils. The superconductor is configured in 6 sub-cables, and each subcable is supported within a channel of a central support structure within a high-strength armor sheath. The structured cable addresses two issues that are thought to compromise opposition at high current. The strands are supported without cross-overs (which produce stress concentration); and armor sheath and core structure bypass stress through the coil and among subcables so that the stress within each subcable is only what is produced directly upon it. Details of the design and plans for development will be presented.

  20. Damping Estimation from Free Decay Responses of Cables with MR Dampers.

    PubMed

    Weber, Felix; Distl, Hans

    2015-01-01

    This paper discusses the damping measurements on cables with real-time controlled MR dampers that were performed on a laboratory scale single strand cable and on cables of the Sutong Bridge, China. The control approach aims at producing amplitude and frequency independent cable damping which is confirmed by the tests. The experimentally obtained cable damping in comparison to the theoretical value due to optimal linear viscous damping reveals that support conditions of the cable anchors, force tracking errors in the actual MR damper force, energy spillover to higher modes, and excitation and sensor cables hanging on the stay cable must be taken into consideration for the interpretation of the identified cable damping values.

  1. Damping Estimation from Free Decay Responses of Cables with MR Dampers

    PubMed Central

    Weber, Felix; Distl, Hans

    2015-01-01

    This paper discusses the damping measurements on cables with real-time controlled MR dampers that were performed on a laboratory scale single strand cable and on cables of the Sutong Bridge, China. The control approach aims at producing amplitude and frequency independent cable damping which is confirmed by the tests. The experimentally obtained cable damping in comparison to the theoretical value due to optimal linear viscous damping reveals that support conditions of the cable anchors, force tracking errors in the actual MR damper force, energy spillover to higher modes, and excitation and sensor cables hanging on the stay cable must be taken into consideration for the interpretation of the identified cable damping values. PMID:26167537

  2. Method for fabricating multi-strand superconducting cable

    DOEpatents

    Borden, A.R.

    1985-04-01

    Multi-strand superconducting cables adapted to be used, for example, to wind a magnet are fabricated by directing wire strands inwardly from spools disposed on the perimeter of a rotating disk and wrapping them diagonally around a tapered mandrel with a flattened cross-sectional shape with a core having a wedge-shaped channel. As the cable is pulled axially, flexibly coupled wedge-shaped pieces are continuously passed through the channel in the mandrel and inserted into the cable as an internal support therefor.

  3. Apparatus and method for fabricating multi-strand superconducting cable

    DOEpatents

    Borden, Albert R.

    1986-01-01

    Multi-strand superconducting cables adapted to be used, for example, to wind a magnet is fabricated by directing wire strands inwardly from spools disposed on the perimeter of a rotating disk and wrapping them diagonally around a tapered mandrel with a flattened cross-sectional shape with a core having a wedge-shaped channel. As the cable is pulled axially, flexibly coupled wedge-shaped pieces are continuously passed through the channel in the mandrel and inserted into the cable as an internal support therefor.

  4. Persistent-current magnetizations of Nb3Sn Rutherford cables and extracted strands

    NASA Astrophysics Data System (ADS)

    Collings, E. W.; Sumption, M. D.; Myers, C. S.; Wang, X.; Dietderich, D. R.; Yagotyntsev, K.; Nijhuis, A.

    2017-12-01

    The magnetizations of eight high-gradient quadrupole cables designated HQ and QXF and a pair of strands, identical in architecture but with different effective strand diameters extracted from an HQ and a related QXF cable, were measured. In the service of field quality assessment, the cable magnetizations and losses were measured by pickup coil magnetometry at 4.2 K in face-on fields, B m , of ± 400 mT at frequencies, f, of up to 60 mHz. Based on the coupling component of loss, Q coup , the coupling magnetization M coup = Q coup /4B m was derived for a ramp rate of 7.5 mT/s. Persistent current (shielding) magnetization and loss (M sh and Q h,strand ) were measured on short pieces of extracted strand by vibrating sample magnetometry at 4.2 K. Unpenetrated M-B loops to ± 400 mT and fully penetrated loops to ± 14 T were obtained. M coup can be easily controlled and reduced to relatively small values by introducing cores and adjusting the preparation conditions. But in low fields near injection Nb3Sn’s high J c and correspondingly high M sh,cable may call for magnetic compensation to preserve field quality. The suitably adjusted cable and strand fully penetrated M-B loops were in reasonable accord leading to the conclusion that strand magnetization is a useful measure of cable magnetization, and that when suitably manipulated can provide input to magnet field error calculations.

  5. Modeling vibration response and damping of cables and cabled structures

    NASA Astrophysics Data System (ADS)

    Spak, Kaitlin S.; Agnes, Gregory S.; Inman, Daniel J.

    2015-02-01

    In an effort to model the vibration response of cabled structures, the distributed transfer function method is developed to model cables and a simple cabled structure. The model includes shear effects, tension, and hysteretic damping for modeling of helical stranded cables, and includes a method for modeling cable attachment points using both linear and rotational damping and stiffness. The damped cable model shows agreement with experimental data for four types of stranded cables, and the damped cabled beam model shows agreement with experimental data for the cables attached to a beam structure, as well as improvement over the distributed mass method for cabled structure modeling.

  6. Armored spring-core superconducting cable and method of construction

    DOEpatents

    McIntyre, Peter M.; Soika, Rainer H.

    2002-01-01

    An armored spring-core superconducting cable (12) is provided. The armored spring-core superconducting cable (12) may include a spring-core (20), at least one superconducting strand (24) wound onto the spring-core (20), and an armored shell (22) that encases the superconducting strands (24). The spring-core (20) is generally a perforated tube that allows purge gases and cryogenic liquids to be circulated through the armored superconducting cable (12), as well as managing the internal stresses within the armored spring-core superconducting cable (12). The armored shell (22) manages the external stresses of the armored spring-core superconducting cable (12) to protect the fragile superconducting strands (24). The armored spring-core superconducting cable (12) may also include a conductive jacket (34) formed outwardly of the armored shell (22).

  7. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    DOE PAGES

    Majoros, M.; Sumption, M. D.; Collings, E. W.; ...

    2015-04-08

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software.more » Current sharing onset was observed at about 1.02 of strand I c. At a strand current of 1.3I c about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s -1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3I c) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb 3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.« less

  8. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    DOE PAGES

    sumption, Mike; Majoros, Milan; Collings, E. W.; ...

    2014-11-07

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software.more » Current sharing onset was observed at about 1.02 of strand I c. At a strand current of 1.3I c about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s -1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3I c ) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb 3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.« less

  9. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majoros, M.; Sumption, M. D.; Collings, E. W.

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software.more » Current sharing onset was observed at about 1.02 of strand I c. At a strand current of 1.3I c about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s -1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3I c) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb 3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.« less

  10. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    sumption, Mike; Majoros, Milan; Collings, E. W.

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software.more » Current sharing onset was observed at about 1.02 of strand I c. At a strand current of 1.3I c about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s -1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3I c ) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb 3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.« less

  11. Mechanical reinforcement for RACC cables in high magnetic background fields

    NASA Astrophysics Data System (ADS)

    Bayer, C. M.; Gade, P. V.; Barth, C.; Preuß, A.; Jung, A.; Weiß, K. P.

    2016-02-01

    Operable in liquid helium, liquid hydrogen or liquid nitrogen, high temperature superconductor (HTS) cables are investigated as future alternatives to low temperature superconductor (LTS) cables in magnet applications. Different high current HTS cable concepts have been developed and optimized in the last years—each coming with its own benefits and challenges. As the Roebel assembled coated conductor (RACC) is the only fully transposed HTS cable investigated so far, it is attractive for large scale magnet and accelerator magnet applications when field quality and alternating current (AC) losses are of highest importance. However, due to its filamentary character, the RACC is very sensitive to Lorentz forces. In order to increase the mechanical strength of the RACC, each of the HTS strands was covered by an additional copper tape. After investigating the maximum applicable transverse pressure on the strand composition, the cable was clamped into a stainless steel structure to reinforce it against Lorentz forces. A comprehensive test has been carried out in the FBI facility at 4.2 K in a magnetic field of up to 12 T. This publication discusses the maximum applicable pressure as well as the behaviour of the RACC cable as a function of an external magnetic field.

  12. Long-Term In-Service Monitoring and Performance Assessment of the Main Cables of Long-Span Suspension Bridges

    PubMed Central

    Deng, Yang; Liu, Yang; Chen, Suren

    2017-01-01

    Despite the recent developments in structural health monitoring, there remain great challenges for accurately, conveniently, and economically assessing the in-service performance of the main cables for long-span suspension bridges. A long-term structural health monitoring technique is developed to measure the tension force with a conventional sensing technology and further provide the in-service performance assessment strategy of the main cable. The monitoring system adopts conventional vibrating strings transducers to monitor the tension forces of separate cable strands of the main cable in the anchor span. The performance evaluation of the main cable is conducted based on the collected health monitoring data: (1) the measured strand forces are used to derive the overall tension force of a main cable, which is further translated into load bearing capacity assessment using the concept of safety factor; and (2) the proposed technique can also evaluate the uniformity of tension forces from different cable strands. The assessment of uniformity of strand forces of a main cable offers critical information in terms of potential risks of partial damage and performance deterioration of the main cable. The results suggest the proposed low-cost monitoring system is an option to provide approximate estimation of tension forces of main cables for suspension bridges. With the long-term monitoring data, the proposed monitoring-based evaluation methods can further provide critical information to assess the safety and serviceability performance of main cables. PMID:28621743

  13. Long-Term In-Service Monitoring and Performance Assessment of the Main Cables of Long-Span Suspension Bridges.

    PubMed

    Deng, Yang; Liu, Yang; Chen, Suren

    2017-06-16

    Despite the recent developments in structural health monitoring, there remain great challenges for accurately, conveniently, and economically assessing the in-service performance of the main cables for long-span suspension bridges. A long-term structural health monitoring technique is developed to measure the tension force with a conventional sensing technology and further provide the in-service performance assessment strategy of the main cable. The monitoring system adopts conventional vibrating strings transducers to monitor the tension forces of separate cable strands of the main cable in the anchor span. The performance evaluation of the main cable is conducted based on the collected health monitoring data: (1) the measured strand forces are used to derive the overall tension force of a main cable, which is further translated into load bearing capacity assessment using the concept of safety factor; and (2) the proposed technique can also evaluate the uniformity of tension forces from different cable strands. The assessment of uniformity of strand forces of a main cable offers critical information in terms of potential risks of partial damage and performance deterioration of the main cable. The results suggest the proposed low-cost monitoring system is an option to provide approximate estimation of tension forces of main cables for suspension bridges. With the long-term monitoring data, the proposed monitoring-based evaluation methods can further provide critical information to assess the safety and serviceability performance of main cables.

  14. Development and preclinical testing of a new tension-band device for the spine: the Loop system.

    PubMed

    Garner, Matthew D; Wolfe, Steven J; Kuslich, Stephen D

    2002-10-01

    Wire sutures, cerclage constructs, and tension bands have been used for many years in orthopedic surgery. Spinous process and sublaminar wires and other strands or cables are used in the spine to re-establish stability of the posterior spinal ligament complex. Rigid monofilament wires often fail due to weakening created during twisting or wrapping. Stronger metal cables do not conform well to bony surfaces. Polyethylene cables have higher fatigue strength than metal cables. The Loop cable is a pliable, radiolucent, polyethylene braid. Creep of the Loop/locking clip construct is similar to metal cable constructs using crimps. Both systems have less creep than knotted polyethylene cable constructs.

  15. Optimization of ITER Nb3Sn CICCs for coupling loss, transverse electromagnetic load and axial thermal contraction

    NASA Astrophysics Data System (ADS)

    Nijhuis, A.; van Lanen, E. P. A.; Rolando, G.

    2012-01-01

    The ITER cable-in-conduit conductors (CICCs) are built up from sub-cable bundles, wound in different stages, which are twisted to counter coupling loss caused by time-changing external magnet fields. The selection of the twist pitch lengths has major implications for the performance of the cable in the case of strain-sensitive superconductors, i.e. Nb3Sn, as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. At present, this is a great challenge for the ITER central solenoid (CS) CICCs and the solution presented here could be a breakthrough for not only the ITER CS but also for CICC applications in general. After proposing longer twist pitches in 2006 and successful confirmation by short sample tests later on, the ITER toroidal field (TF) conductor cable pattern was improved accordingly. As the restrictions for coupling loss are more demanding for the CS conductors than for the TF conductors, it was believed that longer pitches would not be applicable for the conductors in the CS coils. In this paper we explain how, with the use of the TEMLOP model and the newly developed models JackPot-ACDC and CORD, the design of a CICC can be improved appreciably, particularly for the CS conductor layout. For the first time a large improvement is predicted not only providing very low sensitivity to electromagnetic load and thermal axial cable stress variations but at the same time much lower AC coupling loss. Reduction of the transverse load and warm-up-cool-down degradation can be reached by applying longer twist pitches in a particular sequence for the sub-stages, offering a large cable transverse stiffness, adequate axial flexibility and maximum allowed lateral strand support. Analysis of short sample (TF conductor) data reveals that increasing the twist pitch can lead to a gain of the effective axial compressive strain of more than 0.3% with practically no degradation from bending. This is probably explained by the distinct difference in mechanical response of the cable during axial contraction for short and long pitches. For short pitches periodic bending in different directions with relatively short wavelength is imposed because of a lack of sufficient lateral restraint of radial pressure. This can lead to high bending strain and eventually buckling. Whereas for cables with long twist pitches, the strands are only able to react as coherent bundles, being tightly supported by the surrounding strands, providing sufficient lateral restraint of radial pressure in combination with enough slippage to avoid single strand bending along detrimental short wavelengths. Experimental evidence of good performance was already provided with the test of the long pitch TFPRO2-OST2, which is still until today, the best ITER-type cable to strand performance ever without any cyclic load (electromagnetic and thermal contraction) degradation. For reduction of the coupling loss, specific choices of the cabling twist sequence are needed to minimize the area of linked strands and bundles that are coupled and form loops with the applied changing magnetic field, instead of simply avoiding longer pitches. In addition we recommend increasing the wrap coverage of the CS conductor from 50% to at least 70%. A larger wrap coverage fraction enhances the overall strand bundle lateral restraint. The long pitch design seems the best solution to optimize the ITER CS conductor within the given restrictions of the present coil design envelope, only allowing marginal changes. The models predict significant improvement against strain sensitivity and substantial decrease of the AC coupling loss in Nb3Sn CICCs, but also for NbTi CICCs minimization of the coupling loss can obviously be achieved. Although the success of long pitches to transverse load degradation was already demonstrated, the prediction of the elegant innovative combination with low coupling loss needs to be validated by a short sample test.

  16. Long term monitoring of carbon composite strands in the Penobscot-Narrows bridge.

    DOT National Transportation Integrated Search

    2015-06-01

    The Penobscot-Narrows Bridge was constructed between May 2003 and December 2006. The bridge is a cable-stayed design with twin pylons and a 2,120-foot span. This cable-stayed bridge features a cradle stay system that : allows for each cable strand in...

  17. Development of a 10 m quasi-isotropic strand assembled from 2G wires

    NASA Astrophysics Data System (ADS)

    Kan, Changtao; Wang, Yinshun; Hou, Yanbing; Li, Yan; Zhang, Han; Fu, Yu; Jiang, Zhe

    2018-03-01

    Quasi-isotropic strands made of second generation (2G) high temperature superconducting (HTS) wires are attractive to applications of high-field magnets at low temperatures and power transmission cables at liquid nitrogen temperature in virtue of their high current carrying capability and well mechanical property. In this contribution, a 10 m length quasi-isotropic strand is manufactured and successfully tested in liquid nitrogen to verify the feasibility of an industrial scale production of the strand by the existing cabling technologies. The strand with copper sheath consists of 72 symmetrically assembled 2G wires. The uniformity of critical properties of long quasi-isotropic strands, including critical current and n-value, is very important for their using. Critical currents as well as n-values of the strand are measured every 1 m respectively and compared with the simulation results. Critical current and n-value of the strand are calculated basing on the self-consistent model solved by the finite element method (FEM). Effects of self-field on the critical current and n-value distributions in wires of the strand are analyzed in detail. The simulation results show good agreement with the experimental data and the 10 m quasi-isotropic strand has good critical properties uniformity.

  18. Integrity assessment of grouted posttensioning cables and reinforced concrete of a nuclear containment building

    NASA Astrophysics Data System (ADS)

    Philipose, K.; Shenton, B.

    2011-04-01

    The Containment Buildings of CANDU Nuclear Generating Stations were designed to house nuclear reactors and process equipment and also to provide confinement of releases from a potential nuclear accident such as a Loss Of Coolant Accident (LOCA). To meet this design requirement, a post-tensioning system was designed to induce compressive stresses in the structure to counteract the internal design pressure. The CANDU reactor building at Gentilly-1 (G-1), Quebec, Canada (250 MWe) was built in the early 1970s and is currently in a decommissioned state. The structure at present is under surveillance and monitoring. In the year 2000, a field investigation was conducted as part of a condition assessment and corrosion was detected in some of the grouted post-tension cable strands. However, no further work was done at that time to determine the cause, nature, impact and extent of the corrosion. An investigation of the Gentilly-1 containment building is currently underway to assess the condition of grouted post-tensioning cables and reinforced concrete. At two selected locations, concrete and steel reinforcements were removed from the containment building wall to expose horizontal cables. Individual cable strands and reinforcement bars were instrumented and measurements were taken in-situ before removing them for forensic examination and destructive testing to determine the impact of ageing and corrosion. Concrete samples were also removed and tested in a laboratory. The purpose of the field investigation and laboratory testing, using this structure as a test bed, was also to collect material ageing data and to develop potential Nondestructive Examination (NDE) methods to monitor Containment Building Integrity. The paper describes the field work conducted and the test results obtained for concrete, reinforcement and post-tensioning cables.

  19. Frequency dependence of magnetic ac loss in a Roebel cable made of YBCO on a Ni-W substrate

    NASA Astrophysics Data System (ADS)

    Lakshmi, L. S.; Staines, M. P.; Badcock, R. A.; Long, N. J.; Majoros, M.; Collings, E. W.; Sumption, M. D.

    2010-08-01

    We have investigated the frequency dependent contributions to the magnetic ac loss in a 10 strand Roebel cable with 2 mm wide non-insulated strands and a transposition length of 90 mm. This cable is made from 40 mm wide YBCO coated conductor tape manufactured by AMSC and stabilized by electroplating 25 µm thick copper on either side prior to the mechanical punching of the cable strands. The measurements were carried out in both perpendicular and parallel field orientation, at frequencies in the range of 30-200 Hz. While the loss in the perpendicular orientation is predominantly hysteretic in nature, we observe some frequency dependence of the loss when the cable approaches full flux penetration at high field amplitudes. The magnitude is consistent with eddy current losses in the copper stabilization layer. This supports the fact that the inter-strand coupling loss is not significant in this frequency range. In the parallel field orientation, the hysteresis loss in the Ni-W alloy substrate dominates, but we see an unusually strong frequency dependent contribution to the loss which we attribute to intra-strand current loops.

  20. FEMCAM Analysis of SULTAN Test Results for ITER Nb3SN Cable-conduit Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuhu Zhai, Pierluigi Bruzzone, Ciro Calzolaio

    2013-03-19

    Performance degradation due to filament fracture of Nb3 Sn cable-in-conduit conductors (CICCs) is a critical issue in large-scale magnet designs such as ITER which is currently being constructed in the South of France. The critical current observed in most SULTAN TF CICC samples is significantly lower than expected and the voltage-current characteristic is seen to have a much broader transition from a single strand to the CICC. Moreover, most conductors exhibit the irreversible degradation due to filament fracture and strain relaxation under electromagnetic cyclic loading. With recent success in monitoring thermal strain distribution and its evolution under the electromagnetic cyclicmore » loading from in situ measurement of critical temperature, we apply FEMCAM which includes strand filament breakage and local current sharing effects to SULTAN tested CICCs to study Nb3 Sn strain sensitivity and irreversible performance degradation. FEMCAM combines the thermal bending effect during cool down and the EM bending effect due to locally accumulating Lorentz force during magnet operation. It also includes strand filament fracture and related local current sharing for the calculation of cable n value. In this paper, we model continuous performance degradation under EM cyclic loading based on strain relaxation and the transition broadening upon cyclic loading to the extreme cases seen in SULTAN test data to better quantify conductor performance degradation.« less

  1. Acoustic emission monitoring of CFRP cables for cable-stayed bridges

    NASA Astrophysics Data System (ADS)

    Rizzo, Piervincenzo; Lanza di Scalea, Francesco

    2001-08-01

    The advantages of fiber-reinforced polymer (FRP) composite include excellent corrosion resistance, high specific strength and stiffness, as well as outstanding fatigue behavior. The University of California San Diego's I- 5/Gilman Advanced Technology Bridge Project will help demonstrating the use of such materials in civil infrastructures. This paper presents an acoustic emission (AE) study performed during laboratory proof tests of carbon fiber-reinforced polymer stay-cables of possible use in the I-5/Gilman bridge. Three types of cables, both braided and single strand, were tested to failure at lengths ranging from 5500 mm to 5870 mm. AE allowed to monitor damage initiation and progression in the test pieces more accurately than the conventional load versus displacement curve. All of the cables exhibited acoustic activities revealing some degree of damage well before reaching final collapse, which is expected in FRP's. It was also shown that such cables are excellent acoustic waveguides exhibiting very low acoustic attenuation, which makes them an ideal application for an AE-based health monitoring approach.

  2. Tension and fatigue behavior of 316LVM 1x7 multi-strand cables used as implantable electrodes.

    PubMed

    Lewandowski, John J; Varadarajan, Ravikumar; Smith, Brian; Tuma, Chris; Shazly, Mostafa; Vatamanu, Luciano O

    2008-07-15

    The mechanical behavior of 316LVM 1x7 cables were evaluated in uniaxial tension, and in cyclic strain-controlled fatigue with the use of a Flex tester operated to provide fully reversed bending fatigue. The magnitude of cyclic strains imparted to each cable tested was controlled via the use of different diameter mandrels. Smaller diameter mandrels produced higher values of cyclic strain and lower fatigue life. Multiple samples were tested and analyzed via scanning electron microscopy. The fatigue results were analyzed via a Coffin-Manson-Basquin approach and compared to fatigue data obtained from the literature where testing was conducted on similar materials, but under rotating bending fatigue conditions.

  3. Electro-mechanical characterization of MgB2 wires for the Superconducting Link Project at CERN

    NASA Astrophysics Data System (ADS)

    Konstantopoulou, K.; Ballarino, A.; Gharib, A.; Stimac, A.; Garcia Gonzalez, M.; Perez Fontenla, A. T.; Sugano, M.

    2016-08-01

    In previous years, the R & D program between CERN and Columbus Superconductors SpA led to the development of several configurations of MgB2 wires. The aim was to achieve excellent superconducting properties in high-current MgB2 cables for the HL-LHC upgrade. In addition to good electrical performance, the superconductor shall have good mechanical strength in view of the stresses during operation (Lorenz forces and thermal contraction) and handling (tension and bending) during cabling and installation at room temperature. Thus, the study of the mechanical properties of MgB2 wires is crucial for the cable design and its functional use. In the present work we report on the electro-mechanical characterization of ex situ processed composite MgB2 wires. Tensile tests (critical current versus strain) were carried out at 4.2 K and in a 3 T external field by means of a purpose-built bespoke device to determine the irreversible strain limit of the wire. The minimum bending radius of the wire was calculated taking into account the dependence of the critical current with the strain and it was then used to obtain the minimum twist pitch of MgB2 wires in the cable. Strands extracted from cables having different configurations were tested to quantify the critical current degradation. The Young’s modulus of the composite wire was measured at room temperature. Finally, all measured mechanical parameters will be used to optimize an 18-strand MgB2 cable configuration.

  4. Fundamental Design based on Current Distribution in Coaxial Multi-Layer Cable-in-Conduit Conductor

    NASA Astrophysics Data System (ADS)

    Hamajima, Takataro; Tsuda, Makoto; Yagai, Tsuyoshi; Takahata, Kazuya; Imagawa, Shinsaku

    An imbalanced current distribution is often observed in cable-in-conduit (CIC) superconductors which are composed of multi-staged, triplet type sub-cables, and hence deteriorates the performance of the coils. Therefore, since it is very important to obtain a homogeneous current distribution in the superconducting strands, we propose a coaxial multi-layer type CIC conductor. We use a circuit model for all layers in the coaxial multi-layer CIC conductor, and derive a generalized formula governing the current distribution as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction, radius of each layer, and number of superconducting (SC) strands and copper (Cu) strands. We apply the formula to design the coaxial multi-layer CIC which has the same number of SC strands and Cu strands of the CIC for Central Solenoid of ITER. We can design three kinds of the coaxial multi-layer CIC depending on distribution of SC and Cu strands on all layers. It is shown that the SC strand volume should be optimized as a function of SC and Cu strand distribution on the layers.

  5. Nb 3Sn RRP® strand and Rutherford cable development for a 15 T dipole demonstrator

    DOE PAGES

    Barzi, E.; Andreev, N.; Li, P.; ...

    2016-03-16

    Keystoned Rutherford cables made of 28 strands and with a stainless steel core were developed and manufactured using 1 mm Nb3Sn composite wires produced by Oxford Superconducting Technology with 127 and 169 restacks using the Restacked-Rod-Process ®. Furthermore, the performance and properties of these cables were studied to evaluate possible candidates for 15 T accelerator magnets.

  6. Field Trial of Distributed Acoustic Sensing in an Active Room-and-Pillar Mine

    NASA Astrophysics Data System (ADS)

    Wang, H. F.; Zeng, X.; Lord, N. E.; Fratta, D.; Coleman, T.; Maclaughlin, M.

    2017-12-01

    A Distributed Acoustic Sensing (DAS) field trial was conducted in July 2017 on the floor of the first level of the Lafarge-Conco limestone mine in N. Aurora Illinois. The room-and-pillar mine occupies a wedge-shaped footprint that is approximately 1500 m long by 500 m wide at the midpoint. The mine consists of four levels down to a depth of about 80 m. Pillars are approximately 20-meters on a side and in height. DAS cable was deployed in a shallow groove cut with a pavement saw. The groove was approximately 300-meters long and in the overall shape of an irregular rectangle as it followed a pathway around three pillars in each direction. The groove was 1.25-cm wide and between 2.5 and 7.5-cm deep. Three strands of fiber-optic cable were placed in the groove, positioned one above the other and separated by different materials. The bottom cable was covered with cement to a depth of 1.25-cm and allowed to dry for several days. The middle strand was covered with fines and the top strand was without cover. The DAS array consisted of the three co-located strands connected in series. It recorded signals from daily mine blasts on the afternoons of July 27 and 28. The blast locations were along the mine perimeter at a distance of about 1 km from the array. In addition to the distant blast source, a series of near-array tests were made with a weight-drop source located at surveyed points along the cable and within the array. Average mine-scale velocities were obtained from travel times from blast locations to different DAS channels. Local seismic velocities were obtained from first arrivals of the weight-drop source and from moveout of traces with time. The DAS response and travel times were noted as a function of cable direction. The field test showed that DAS can be used to monitor ground motion within an active mine. The research project is funded by a contract to Montana Tech from the National Institute for Occupational Safety and Health, Office of Mine Safety and Health Research.

  7. Development of 10 kA class Nb sub 3 Al superconducting cable by Jelly-role process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ando, T.; Takahashi, Y.; Nishi, M.

    This paper reports on a multifilamentary Cu/Nb{sub 3}Al composite strand developed, with a non-copper critical current density of more than 400 A/mm{sup 2} at 12 T, by Jelly-roll process. A 10 kA cable-in-conduit conductor was fabricated to demonstrate the applicability to fusion magnets. The cable had 324 strands, and a circular CuNi seamless pipe was used as the conduit. The strand diameter was 0.88 mm and the filament diameter was 28 {mu}m. The heat treatment was performed at 820{degrees} C for 2 hr.

  8. Quench dynamics in MgB2 Rutherford cables

    NASA Astrophysics Data System (ADS)

    Cubero, A.; Navarro, R.; Kováč, P.; Kopera, L.; Rindfleisch, M.; Martínez, E.

    2018-04-01

    The generation and propagation of quench induced by a local heat disturbance or by overcurrents in MgB2 Rutherford cables have been studied experimentally. The analysed cable is composed of 12 strands of monocore MgB2/Nb/Cu10Ni wire and has a transposition length of about 27 mm. Measurements of intra- and inter-strand voltages have been performed to analyse the superconducting-to-normal transition behaviour of these cables during quench. In case of external hot-spots, two different time-dynamic regimes have been observed, a slow stage for the formation of the minimum propagation zone (MPZ), and a fast dynamics once the quench is triggered and propagates to the rest of the cable. Significant local variations of the quench propagation velocity across the strands around the MPZ have been observed, but with average quench propagation velocities closely correlated with the predictions given by one-dimensional-geometry models. For quench induced by overcurrents (i.e. with applied currents higher than the critical current) the nucleation of many normal zones distributed within the cable, which overlap during quench propagation, gives a distinctive and faster quench dynamics.

  9. Final Report: MATERIALS, STRANDS, AND CABLES FOR SUPERCONDUCTING ACCELERATOR MAGNETS [Grant Number DE-SC0010312

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumption, Mike D.; Collings, Edward W.

    2014-10-29

    Our program consisted of the two components: Strand Research and Cable Research, with a focus on Nb3Sn, Bi2212, and YBCO for accelerator magnet applications. We demonstrated a method to refine the grains in Nb3Sn by a factor of two, reaching 45 nm grain sizes, and layer Jcs of 6 kA/mm2 at 12 T. W also measured conductor magnetization for field quality. This has been done both with Nb3Sn conductor, as well as Bi:2212 strand. Work in support of quench studies of YBCO coils was also performed. Cable loss studies in Nb3Sn focused on connecting and comparing persistent magnetization and couplingmore » magnetization for considering their relative impact on HEP machines. In the area of HTS cables, we have investigated both the quench in multistrand YBCO CORC cables, as well as the magnetization of these cables for use in high field magnets. In addition, we examined the magnetic and thermal properties of large (50 T) solenoids.« less

  10. The use of sublaminar cables to replace Luque wires.

    PubMed

    Songer, M N; Spencer, D L; Meyer, P R; Jayaraman, G

    1991-08-01

    Sublaminar wires have been used in conjunction with posterior instrumentation to stabilize the spine. Sublaminar wiring has fallen into disfavor because of an increase in neurologic complications with the Luque technique as well as wire breakage, dural tears, and difficulty of removal. A cable system consisting of two 49-stranded stainless steel cables connected to one malleable leader was designed to overcome these shortcomings. Biomechanical testing revealed that the maximum yield strength of a single stainless steel cable loop was 2.85-2.94 times greater than a double 0.05-in. stainless steel wire loop. The fatigue tests demonstrated that the stainless steel cables required 6-22 times more cycles to failure than the stainless steel wire. Many of the titanium cables failed immediately under higher loads (0-100 lb) because of slipping of the crimp. The preliminary clinical results after a mean of 19 months of follow-up of 245 cables are encouraging. There has been no breakage or loosening of the cables and no complications associated with the use of the cables. The stainless steel cables are very strong, but more important, the cable flexibility prevents repeated contusions to the spinal cord during insertion of the rods and tightening of wires. The cable conforms to the undersurface of the lamina. This may lead to a decrease in neurologic complications.

  11. CSSC Fish Barrier Simulated Rescuer Touch Point Results, Operating Guidance, and Recommendations for Rescuer Safety

    DTIC Science & Technology

    2011-09-01

    Testing Input electrodes consisting of 1/2” diameter, 6” long copper rods were wired to separate conductors of a shielded, commercially available...underwater-rated electrical cable (three-conductor, shielded, shipboard cable (TSS-2), 18 American Wire Gauge (AWG) stranded copper ). Electrode pairs...sandpaper prior to use to ensure the best electrical continuity between the water and electrode by removing any copper oxide. This electrode

  12. Solid-cryogen-stabilized, cable-in-conduit (CIC) superconducting cables

    NASA Astrophysics Data System (ADS)

    Voccio, J. P.; Michael, P. C.; Bromberg, L.; Hahn, S.

    2015-12-01

    This paper considers the use of a solid cryogen as a means to stabilize, both mechanically and thermally, magnesium diboride (MgB2) superconducting strands within a dual-channel cable-in-conduit (CIC) cable for use in AC applications, such as a generator stator winding. The cable consists of two separate channels; the outer channel contains the superconducting strands and is filled with a fluid (liquid or gas) that becomes solid at the device operating temperature. Several options for fluid will be presented, such as liquid nitrogen, hydrocarbons and other chlorofluorocarbons (CFCs) that have a range of melting temperatures and volumetric expansions (from solid at operating temperature to fixed volume at room temperature). Implications for quench protection and conductor stability, enhanced through direct contact with the solid cryogen, which has high heat capacity and thermal conductivity (compared with helium gas), will be presented. Depending on the cryogen, the conductor will be filled initially either with liquid at atmospheric conditions or a gas at high pressure (∼100 atm). After cooldown, the cryogen in the stranded-channel will be solid, essentially locking the strands in place, preventing strand motion and degradation due to mechanical deformation while providing enhanced thermal capacity for stability and protection. The effect of cryogen porosity is also considered. The relatively high heat capacity of solid cryogens at these lower temperatures (compared to gaseous helium) enhances the thermal stability of the winding. During operation, coolant flow through the open inner channel will minimize pressure drop.

  13. Roebel cables from REBCO coated conductors: a one-century-old concept for the superconductivity of the future

    NASA Astrophysics Data System (ADS)

    Goldacker, Wilfried; Grilli, Francesco; Pardo, Enric; Kario, Anna; Schlachter, Sonja I.; Vojenčiak, Michal

    2014-09-01

    Energy applications employing high-temperature superconductors (HTS), such as motors/generators, transformers, transmission lines and fault current limiters, are usually operated in the alternate current (ac) regime. In order to be efficient, the HTS devices need to have a sufficiently low value of ac loss, in addition to the necessary current-carrying capacity. Most applications are operated with currents beyond the current capacity of single conductors and consequently require cabled conductor solutions with much higher current carrying capacity, from a few kA up to 20-30 kA for large hydro-generators. A century ago, in 1914, Ludwig Roebel invented a low-loss cable design for copper cables, which was successively named after him. The main idea behind Roebel cables is to separate the current in different strands and to provide a full transposition of the strands along the cable direction. Nowadays, these cables are commonly used in the stator of large generators. Based on the same design concept of their conventional material counterparts, HTS Roebel cables from REBCO coated conductors were first manufactured at the Karlsruhe Institute of Technology and have been successively developed in a number of varieties that provide all the required technical features such as fully transposed strands, high transport currents and low ac losses, yet retaining enough flexibility for a specific cable design. In the past few years a large number of scientific papers have been published on the concept, manufacturing and characterization of such cables. Therefore it is timely for a review of those results. The goal is to provide an overview and a succinct and easy-to-consult guide for users, developers, and manufacturers of this kind of HTS cable.

  14. Method and device for tensile testing of cable bundles

    DOEpatents

    Robertson, Lawrence M; Ardelean, Emil V; Goodding, James C; Babuska, Vit

    2012-10-16

    A standard tensile test device is improved to accurately measure the mechanical properties of stranded cables, ropes, and other composite structures wherein a witness is attached to the top and bottom mounting blocks holding the cable under test. The witness is comprised of two parts: a top and a bottom rod of similar diameter with the bottom rod having a smaller diameter stem on its upper end and the top rod having a hollow opening in its lower end into which the stem fits forming a witness joint. A small gap is present between the top rod and the larger diameter portion of the bottom rod. A standard extensometer is attached to the top and bottom rods of the witness spanning this small witness gap. When a force is applied to separate the mounting blocks, the gap in the witness expands the same length that the entire test specimen is stretched.

  15. The key quality control technology of main cable erection in long-span suspension bridge construction

    NASA Astrophysics Data System (ADS)

    Chen, Yongrui; Wei, Wei; Dai, Jie

    2017-04-01

    Main cable is one of the most important structure of suspension Bridges, which bear all the dead and live load from upper structure. Cable erection is one of the most critical process in suspension bridge construction. Key points about strand erection are studied in this paper, including strand traction, lateral movement, section adjustment, placing into saddle, anchoring, line shape adjustment and keeping, and tension control. The technology has helped a long-span suspension bridge in Yunnan Province, China get a ideal finished state.

  16. Static and dynamic parasitic magnetizations and their control in superconducting accelerator dipoles

    NASA Astrophysics Data System (ADS)

    Collings, E. W.; Sumption, M. D.

    2001-05-01

    Long dipole magnets guide the particle beams in synchrotron-type high energy accelerators. In principal Cu-wound DC-excited dipoles could be designed to deliver a very uniform transverse bore field, i.e. with small or negligible harmonic (multipolar) distortion. But if the Cu is replaced by (a) superconducting strand that is (b) wound into a Rutherford cable carrying a time-varying transport current, extra magnetizations present within the windings cause distortions of the otherwise uniform field. The static (persistent-current) strand magnetization can be reduced by reducing the filament diameter, and the residue compensated or corrected by strategically placed active or passive components. The cable’s interstrand coupling currents can be controlled by increasing the interstrand contact resistance by: adjusting the level of native oxidation of the strand, coating it, or by inserting a ribbon-like core into the cable itself. Methods of locally compensating the magnetization of NbTi and Nb 3Sn strand and cable are discussed, progress in coupling-current suppression through the use of coatings and cores is reviewed, and a method of simultaneously reducing both the static and dynamic magnetizations of a NbTi cable by means of a thin Ni core is suggested.

  17. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...

  18. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...

  19. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...

  20. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...

  1. Stability and normal zone propagation in YBCO CORC cables

    DOE PAGES

    Majoros, M.; Sumption, M. D.; Collings, E. W.; ...

    2016-03-11

    In this study, a two layer conductor on round core cable was tested for stability and normal zone propagation at 77 K in a liquid nitrogen bath. The cable was instrumented with voltage taps and wires on each strand over the cable’s central portion (i.e. excluding the end connections of the cable with the outside world). A heater was placed in the central zone on the surface of the cable, which allowed pulses of various powers and durations to be generated. Shrinking (recovering) and expanding (not recovering) normal zones have been detected, as well as stationary zones which were inmore » thermal equilibrium. Such stationary thermal equilibrium zones did not expand or contract, and hit a constant upper temperature while the heater current persisted; they are essentially a form of Stekly stability. Overall, the cable showed a high degree of stability. Notably, it was able to carry a current of 0.45I c cable with maximum temperature of 123 K for one minute without damage.« less

  2. Thermo-Mechanical Behavior and Shakedown of Shape Memory Alloy Cable Structures

    NASA Astrophysics Data System (ADS)

    Biggs, Daniel B.

    Shape memory alloys (SMAs) are a versatile class of smart materials that exhibit adaptive properties which have been applied to solve engineering problems in wide-ranging fields from aerospace to biomedical engineering. Yet there is a lack of understanding of the fundamental nature of SMAs in order to effectively apply them to challenging problems within these engineering fields. Stranding fine NiTi wires into a cable form satisfies the demands of many aerospace and civil engineering applications which require actuators to withstand large tensile loads. The impact of increased bending and twisting in stranded NiTi wire structures, as well as introducing contact mechanics to the unstable phase transformation is not well understood, and this work aims to fill that void. To study the scalability of NiTi cables, thermo-mechanical characterization tests are conducted on cables much larger than those previously tested. These cables are found to have good superelastic properties and repeatable cyclic behavior with minimal induced plasticity. The behavior of additional cables, which have higher transition temperatures that can be used in a shape memory mode as thermo-responsive, high force actuator elements, are explored. These cables are found to scale up the performance of straight wire by maintaining an equivalent work output. Moreover, this work investigates the degradation of the thermal actuation of SMA wires through novel stress-temperature paths, discovering several path dependent behaviors of transformation-induced plasticity. The local mechanics of NiTi cable structures are explored through experiments utilizing digital image correlation, revealing new periodic transformation instabilities. Finite element simulations are presented, which indicate that the instabilities are caused by friction and relative sliding between wires in a cable. Finally, a study of the convective heat transfer of helical wire involving a suite of wind tunnel experiments, numerical analyses, and an empirical correlation is presented. This provides a method to better model the thermal behavior of helical SMA actuators and highlights the non-monotonic dependence of the convective heat transfer coefficient of helical wire with respect to the angle of the flow.

  3. Bridge cable fracture detection with acoustic emission test (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Qu, Hongya; Li, Tiantian; Chen, Genda

    2017-04-01

    In this study, acoustic emission (AE) tests were conducted to detect and locate wire fracture in strands that are widely used in cable-stayed and suspension bridges. To effectively separate fracture signals from unwanted noises, distinct features of fracture, fracture-induced echo, and artificial tapping signals as well as their dependence on loading levels are characterized with short-time Fourier transform. To associate fracture scenarios with their acoustic features, two 20-foot-long ( 6.1 m) 270 ksi ( 1,862 MPa) steel strands of seven wires were tested with one wire notched off at center and support, respectively, up to 90% of its cross section area by 10% increment. Up to 80% reduction in cross section area of the notched wire, each strand was loaded to 20 kips ( 89 kN) corresponding to 35% of the minimum breaking strength and the acquired AE parameters such as hits, energy, and counts were found to change little. With a reduction of 90% of the section area of one wire, both strands were found to be fractured under approximately 16.5 kips ( 73.4 kN). The hits, energy, and counts of AE signals were all demonstrated to suddenly change with the fracture of the notched wire. However, only the counts of AE signals distributed over the length of the strands allow the localization of fracture point. The frequency band of fracture signals is significantly broader than that of either fracture-induced echo or artificial tapping noise. The time duration of artificial tapping noises is substantially longer than that of either fracture or fracture-induced echo. These distinct characteristics can be used to effectively separate fracture signals from noises for wire fracture detection and localization in practice.

  4. Proceedings of International Wire and Cable Symposium (41st) Held in Reno, Nevada on November 16, 17, 18, and 19, 1992.

    DTIC Science & Technology

    1992-11-01

    confirmed for same group delay, and thus no dispersion will arise. fiber. However, if birefringence arises due to stress resulting from non -circularity...55 nF/KM OTHER MATERIALS M -75 nF/KM X - NON STD. 0 - STRANDED STEEL WIRES CORE MESSENGER (S.S.CABLE) 4,4 STRANDING: C - CONVENTIONAL STRANDING ( GROUP ...evaluated, and the process control automated [7]. Therefore, additional work is needed to method for lines is confirmed. Based on the experimental

  5. New tension band material for fixation of transverse olecranon fractures: a biomechanical study.

    PubMed

    Lalonde, James Allen; Rabalais, R David; Mansour, Alfred; Burger, Evalina L; Riemer, Barry L; Lu, Yun; Baratta, Richard V

    2005-10-01

    This study tested the use of braided polyethylene cable as an option for repairing transverse olecranon fractures. Six cadaveric elbows underwent a transverse olecranon osteotomy followed by fixation with tension band constructs using 18-gauge wire and Secure-Strand (U.S. Surgical, North Haven, Conn). Distraction forces up to 450 N were applied to the triceps tendon while measuring fracture displacement with an extensometer. The average maximal fracture gap with the standard AO tension band technique using stainless steel wire was 0.66 +/- 0.43 mm, as opposed to 0.68 +/- 0.45 mm with braided polyethylene cable. A paired t test indicated no significant difference between the two materials. These results support the feasibility of braided polyethylene cable as an alternative to the standard steel-wire tension band.

  6. 30 CFR 75.822 - Underground high-voltage longwall cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... be a type SHD cable with a center ground-check conductor no smaller than a No. 16 AWG stranded conductor. The cables must be MSHA accepted as flame-resistant under part 18 or approved under subpart K of...

  7. 30 CFR 75.822 - Underground high-voltage longwall cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... be a type SHD cable with a center ground-check conductor no smaller than a No. 16 AWG stranded conductor. The cables must be MSHA accepted as flame-resistant under part 18 or approved under subpart K of...

  8. High strength kiloampere Bi 2Sr 2CaCu 2O x cables for high-field magnet applications

    DOE PAGES

    Shen, Tengming; Li, Pei; Jiang, Jianyi; ...

    2015-04-17

    Multifilamentary Ag-sheathed Bi 2Sr 2CaCu 2O x (Bi-2212) wire can carry sufficient critical current density J c for the development of powerful superconducting magnets. But, the range of its applications is limited by the low mechanical strength of the Ag/Bi-2212 strand. A potential solution is to cable Ag/Bi-2212 wire with high-strength materials that are compatible with the Bi-2212 heat treatment in an oxygen atmosphere. Past attempts have not always been successful, because the high-strength materials reacted with Bi-2212 wires, significantly reducing their J c. We examined the nature of reactions occurring when Ag/Bi-2212 wires are heat-treated in direct contact withmore » several commonly used high-strength alloys and a new Fe-Cr-Al alloy. INCONEL X750 and INCONEL 600 resulted in significant J c loss, whereas Ni80-Cr caused little or no J c loss; however, all of them formed chromium oxide that subsequently reacted with silver, creating cracks in the silver sheath. We found that Fe-Cr-Al did not show significant reactions with Ag/Bi-2212 strands. Scanning electron microscopy (SEM) and energy dispersive x-ray (EDS) examinations revealed that the Fe-Cr-Al alloy benefits from the formation of a uniform, crack-free, continuous alumina layer on its surface that does not react with Ag and that helps minimize the Cu loss found with INCONEL X750 and INCONEL 600. We then fabricated prototype 6-around-1 cables with six Bi-2212 strands twisted and transposed around an Fe-Cr-Al alloy core coated with TiO 2. After standard 1 bar melt processing, the cable retained 100% of the total current-carrying capability of its strands, and, after a 10 bar overpressure processing, the cable reached a total current of 1025 A at 4.2 K and 10 T. Tensile tests showed that Fe-Cr-Al becomes brittle after being cooled to 4.2 K, whereas INCONEL X750 remains ductile and retains a modulus of 183 GPa. Finally. we proposed new cable designs that take advantage of the chemical compatibility of Fe-Cr-Al and high strength of INCONEL X750 for various high-field magnet applications.« less

  9. The effect of heat treatment on the stability of Nb 3Sn RRP-150/169 strands

    DOE PAGES

    Li, Pei; Turrioni, Daniele; Barzi, Emanuela; ...

    2017-02-17

    Here, the magnetic stability of superconductor strands and cables is a key issue in the successful building and operation of high-field accelerator magnets. In this paper, we report the study of a state-of-the-art 0.7 mm Nb 3Sn restacked-rod-process strand manufactured by Oxford Instrument Superconductor Technology. This conductor will be used in Rutherford cable for a 15-T Nb 3Sn dipole demonstrator being built at Fermi National Accelerator Laboratory. Particularly, this study focuses on the impact of varying heat treatment conditions on the stability of the strand. Both the stability against internal flux jumps and external thermal perturbations are studied.

  10. The effect of heat treatment on the stability of Nb 3Sn RRP-150/169 strands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Pei; Turrioni, Daniele; Barzi, Emanuela

    Here, the magnetic stability of superconductor strands and cables is a key issue in the successful building and operation of high-field accelerator magnets. In this paper, we report the study of a state-of-the-art 0.7 mm Nb 3Sn restacked-rod-process strand manufactured by Oxford Instrument Superconductor Technology. This conductor will be used in Rutherford cable for a 15-T Nb 3Sn dipole demonstrator being built at Fermi National Accelerator Laboratory. Particularly, this study focuses on the impact of varying heat treatment conditions on the stability of the strand. Both the stability against internal flux jumps and external thermal perturbations are studied.

  11. Evaluation of bridge cables corrosion using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Ou, Jinping

    2010-04-01

    Owing to the nature of the stress, corrosion of bridge cable may result in catastrophic failure of the structure. However, using electrochemical techniques isn't fully efficient for the detection and control on line of the corrosion phenomenon. A non-destructive testing method based on acoustic emission technique monitoring bridge cable corrosion was explored. The steel strands were placed at room temperature in 5% NaCl solution. Acoustic emission (AE) characteristic parameters were recorded in the whole corrosion experiment process. Based on the plot of cumulated acoustic activity, the bridge cables corrosion included three stages. It can be clearly seen that different stages have different acoustic emission signal characteristics. The AE characteristic parameters would be increased with cables corrosion development. Finally, the bridge cables corrosion experiment with different stress state and different corrosion environment was performed. The results shows that stress magnitude only affects the bridge cable failure time, however, the AE characteristic parameters value has changed a little. It was verified that AE technique can be used to detect the bridge cable early corrosion, investigating corrosion developing trend, and in monitoring and evaluating corrosion damages.

  12. Test of 60 kA coated conductor cable prototypes for fusion magnets

    NASA Astrophysics Data System (ADS)

    Uglietti, D.; Bykovsky, N.; Sedlak, K.; Stepanov, B.; Wesche, R.; Bruzzone, P.

    2015-12-01

    Coated conductors could be promising materials for the fabrication of the large magnet systems of future fusion devices. Two prototype conductors (flat cables in steel conduits), each about 2 m long, were manufactured using coated conductor tapes (4 mm wide) from Super Power and SuperOx, with a total tape length of 1.6 km. Each flat cable is assembled from 20 strands, each strand consisting of a stack of 16 tapes surrounded by two half circular copper profiles, twisted and soldered. The tapes were measured at 12 T and 4.2 K and the results of the measurements were used for the assessment of the conductor electromagnetic properties at low temperature and high field. The two conductors were assembled together in a sample that was tested in the European Dipole (EDIPO) facility. The current sharing temperatures of the two conductors were measured at background fields from 8 T up to 12 T and for currents from 30 kA up to 70 kA: the measured values are within a few percent of the values expected from the measurements on tapes (short samples). After electromagnetic cycling, T cs at 12 T and 50 kA decreased from about 12 K to 11 K (about 10%), corresponding to less than 3% of I c.

  13. Field instrumentation and measured response of the I-295 cable-stayed bridge : interim report on construction period strains in cable stays.

    DOT National Transportation Integrated Search

    1991-01-01

    During the construction of the I-295 cable-stayed bridge, a number of the stays on the main span cantilever were instrumented with electrical resistance strain gages mounted directly on the wires of the seven-wire strands making up the stay cables. M...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stovall, J.P.; RIzy, D.T.; Kisner, R.A.

    The 3M Company has developed a high-temperature low-sag conductor referred to as Aluminum- Conductor Composite-Reinforced or ACCR. The conductor uses an aluminum metal matrix material to replace the steel in conventional conductors so the core has a lower density and higher conductivity. The objective of this work is to accelerate the commercial acceptance by electric utilities of these new conductor designs by testing four representative conductor classes in controlled conditions. Overhead transmission lines use bare aluminum conductor strands wrapped around a steel core strands to transmit electricity. The typical cable is referred to as aluminum-conductor steel-reinforced (ACSR). The outer strandsmore » are aluminum, chosen for its conductivity, low weight, and low cost. The center strand is of steel for the strength required to support the weight without stretching the aluminum due to its ductility. The power density of a transmission corridor has been directly increased by increasing the voltage level. Transmission voltages have increased from 115-kV to 765- kV over the past 80 years. In the United States, further increasing the voltage level is not feasible at this point in time, so in order to further increase the power density of a transmission corridor, conductor designs that increase the current carrying capability have been examined. One of the key limiting factors in the design of a transmission line is the conductor sag which determines the clearance of the conductor above ground or underlying structures needed for electrical safety. Increasing the current carrying capability of a conductor increases the joule heating in the conductor which increases the conductor sag. A conductor designed for high-temperature and lowsag operation requires an engineered modification of the conductor materials. To make an advanced cable, the 3M Company solution has been the development of a composite conductor consisting of Nextel ceramic fibers to replace the steel core and an aluminum-zirconium alloy to improve the outer strands. The result is a cable that can carry more current than steelaluminum lines without sagging as much at higher temperatures. A unique facility called the Powerline Conductor Accelerated Testing (PCAT) Facility was built at ORNL for testing overhead conductors. The PCAT has been uniquely designed for testing overhead bare transmission line conductors at high currents and temperatures after they have been installed and tensioned to the manufacturer's specifications. The ability to operate a transmission line conductor in this manner does not exist elsewhere in the United States. Four classes of ACCR cable designed by 3M have been successfully test at ORNL – small, medium, large and small/compact. Based on these and other manufacturer tests, the 3M Company has successfully introduced the ACCR into the commercial market and has completed over twenty installations for utility companies.« less

  15. Critical Current of Superconducting Rutherford Cable in High Magnetic Fields with Transverse Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietderich, D.R.; Scanlan, R.M.; Walsh, R.P.

    For high energy physics applications superconducting cables are subjected to large stresses and high magnetic fields during service. It is essential to know how these cables perform in these operating conditions. A loading fixture capable of applying loads of up to 700 kN has been developed by NHMFL for LBNL. This fixture permits uniform loading of straight cables over a 122 mm length in a split-pair solenoid in fields up to 12 T at 4.2 K. The first results from this system for Rutherford cables of internal-tin and modified jelly roll strand of Nb{sub 3}Sn produced by IGC and TWCmore » showed that little permanent degradation occurs up to 210 MPa. However, the cable made from internal-tin strand showed a 40% reduction in K{sub c} at 11T and 210 MPa while a dable made from modified jelly roll material showed only a 15% reduction in I{sub c} at 11T and 185 MPa.« less

  16. Apparatus producing constant cable tension for intermittent demand

    DOEpatents

    Lauritzen, T.

    1984-05-23

    This invention relates to apparatus for producing constant tension in cable or the like when it is unreeled and reeled from a drum or spool under conditions of intermittent demand. The invention is particularly applicable to the handling of superconductive cable, but the invention is also applicable to the unreeling and reeling of other strands, such as electrical cable, wire, cord, other cables, fish line, wrapping paper and numerous other materials.

  17. Simulation of the cabling process for Rutherford cables: An advanced finite element model

    NASA Astrophysics Data System (ADS)

    Cabanes, J.; Garlasche, M.; Bordini, B.; Dallocchio, A.

    2016-12-01

    In all existing large particle accelerators (Tevatron, HERA, RHIC, LHC) the main superconducting magnets are based on Rutherford cables, which are characterized by having: strands fully transposed with respect to the magnetic field, a significant compaction that assures a large engineering critical current density and a geometry that allows efficient winding of the coils. The Nb3Sn magnets developed in the framework of the HL-LHC project for improving the luminosity of the Large Hadron Collider (LHC) are also based on Rutherford cables. Due to the characteristics of Nb3Sn wires, the cabling process has become a crucial step in the magnet manufacturing. During cabling the wires experience large plastic deformations that strongly modify the geometrical dimensions of the sub-elements constituting the superconducting strand. These deformations are particularly severe on the cable edges and can result in a significant reduction of the cable critical current as well as of the Residual Resistivity Ratio (RRR) of the stabilizing copper. In order to understand the main parameters that rule the cabling process and their impact on the cable performance, CERN has developed a 3D Finite Element (FE) model based on the LS-Dyna® software that simulates the whole cabling process. In the paper the model is presented together with a comparison between experimental and numerical results for a copper cable produced at CERN.

  18. Implementation of 0.7 in. diameter strands in prestressed concrete girders.

    DOT National Transportation Integrated Search

    2013-03-01

    For several years, 0.7 in. diameter strands have been successfully used in cable bridges and for mining applications. Using these large diameter strands at 2 in. by 2 in. spacing in pretensioned concrete girders results in approximately 35% increase ...

  19. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: III. The importance of strand surface roughness in long twist pitch conductors

    DOE PAGES

    Sanabria, Charlie; Lee, Peter J.; Starch, William; ...

    2016-05-31

    As part of the ITER conductor qualification process, 3 m long Cable-in-Conduit Conductors (CICCs) were tested at the SULTAN facility under conditions simulating ITER operation so as to establish the current sharing temperature, T cs, as a function of multiple full Lorentz force loading cycles. After a comprehensive evaluation of both the Toroidal Field (TF) and the Central Solenoid (CS) conductors, it was found that T cs degradation was common in long twist pitch TF conductors while short twist pitch CS conductors showed some T cs increase. However, one kind of TF conductors containing superconducting strand fabricated by the Bochvarmore » Institute of Inorganic Materials (VNIINM) avoided T cs degradation despite having long twist pitch. In our earlier metallographic autopsies of long and short twist pitch CS conductors, we observed a substantially greater transverse strand movement under Lorentz force loading for long twist pitch conductors, while short twist pitch conductors had negligible transverse movement. With help from the literature, we concluded that the transverse movement was not the source of T cs degradation but rather an increase of the compressive strain in the Nb 3Sn filaments possibly induced by longitudinal movement of the wires. Like all TF conductors this TF VNIINM conductor showed large transverse motions under Lorentz force loading, but Tcs actually increased, as in all short twist pitch CS conductors. We here propose that the high surface roughness of the VNIINM strand may be responsible for the suppression of the compressive strain enhancement (characteristic of long twist pitch conductors). Furthermore, it appears that increasing strand surface roughness could improve the performance of long twist pitch CICCs.« less

  20. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: III. The importance of strand surface roughness in long twist pitch conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanabria, Charlie; Lee, Peter J.; Starch, William

    As part of the ITER conductor qualification process, 3 m long Cable-in-Conduit Conductors (CICCs) were tested at the SULTAN facility under conditions simulating ITER operation so as to establish the current sharing temperature, T cs, as a function of multiple full Lorentz force loading cycles. After a comprehensive evaluation of both the Toroidal Field (TF) and the Central Solenoid (CS) conductors, it was found that T cs degradation was common in long twist pitch TF conductors while short twist pitch CS conductors showed some T cs increase. However, one kind of TF conductors containing superconducting strand fabricated by the Bochvarmore » Institute of Inorganic Materials (VNIINM) avoided T cs degradation despite having long twist pitch. In our earlier metallographic autopsies of long and short twist pitch CS conductors, we observed a substantially greater transverse strand movement under Lorentz force loading for long twist pitch conductors, while short twist pitch conductors had negligible transverse movement. With help from the literature, we concluded that the transverse movement was not the source of T cs degradation but rather an increase of the compressive strain in the Nb 3Sn filaments possibly induced by longitudinal movement of the wires. Like all TF conductors this TF VNIINM conductor showed large transverse motions under Lorentz force loading, but Tcs actually increased, as in all short twist pitch CS conductors. We here propose that the high surface roughness of the VNIINM strand may be responsible for the suppression of the compressive strain enhancement (characteristic of long twist pitch conductors). Furthermore, it appears that increasing strand surface roughness could improve the performance of long twist pitch CICCs.« less

  1. 46 CFR 183.340 - Cable and wiring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... requirements. (a) If individual wires, rather than cable, are used in systems greater than 50 volts, the wire must be in conduit. (b) All cable and wire must: (1) Have stranded copper conductors with sufficient... constant representing the resistance of copper). I=Load current, in amperes. L=length of conductor from...

  2. 46 CFR 183.340 - Cable and wiring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... requirements. (a) If individual wires, rather than cable, are used in systems greater than 50 volts, the wire must be in conduit. (b) All cable and wire must: (1) Have stranded copper conductors with sufficient... constant representing the resistance of copper). I=Load current, in amperes. L=length of conductor from...

  3. 46 CFR 183.340 - Cable and wiring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... requirements. (a) If individual wires, rather than cable, are used in systems greater than 50 volts, the wire must be in conduit. (b) All cable and wire must: (1) Have stranded copper conductors with sufficient... constant representing the resistance of copper). I=Load current, in amperes. L=length of conductor from...

  4. 46 CFR 183.340 - Cable and wiring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... requirements. (a) If individual wires, rather than cable, are used in systems greater than 50 volts, the wire must be in conduit. (b) All cable and wire must: (1) Have stranded copper conductors with sufficient... constant representing the resistance of copper). I=Load current, in amperes. L=length of conductor from...

  5. Cabling design of booster and storage ring construction progress of TPS

    NASA Astrophysics Data System (ADS)

    Wong, Y.-S.; Liu, K.-B.; Liu, C.-Y.; Wang, b.-S.

    2017-06-01

    The 2012 Taiwan Photon Source (TPS) cable construction project started after 10 months to complete the cable laying and installation of power supply. The circumference of the booster ring (BR) is 496.8 m, whereas that of the storage ring (SR) is 518.4 m. Beam current is set to 500 mA at 3.3 GeV. The paper on grounding systems discusses the design of the ground wire (< 0.2 Ω) with low impedance, power supply of the accelerator and cabling tray. The flow and size of the ground current are carefully evaluated to avoid grounded current from flowing everywhere, which causes interference problems. In the design of the TPS, special shielding will be established to isolate the effects of electromagnetic interference on the magnet and ground current. Booster ring dipoles are connected by a series of 54-magnet bending dipole; the cable size of its stranded wire measures 250 mm2, with a total length of 5000 m. Booster ring and storage ring quadrupoles have 150 magnets; the cable size of their stranded wire is 250 mm2, with a total length of 17000 m. Storage ring dipole consists of 48 magnets; the cable size of its stranded wire is 325 mm2, with a total length of 6000 m. This study discusses the power supply cabling design of the storage ring and booster ring construction progress of TPS. The sections of this paper are divided into discussions of the construction of the control and instrument area, cabling layout of booster ring and storage ring, as well as the installation and commission machine. This study also discusses the use of a high-impedance meter to determine the effect of cabling insulation and TPS power supply machine on energy transfer to ensure the use of safe and correct magnet.

  6. 49 CFR 229.89 - Jumpers; cable connections.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Cable and jumper connections between locomotive may not have any of the following conditions: (1) Broken or badly chafed insulation. (2) Broken plugs, receptacles or terminals. (3) Broken or protruding strands of wire. ...

  7. 49 CFR 229.89 - Jumpers; cable connections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Cable and jumper connections between locomotive may not have any of the following conditions: (1) Broken or badly chafed insulation. (2) Broken plugs, receptacles or terminals. (3) Broken or protruding strands of wire. ...

  8. 49 CFR 229.89 - Jumpers; cable connections.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Cable and jumper connections between locomotive may not have any of the following conditions: (1) Broken or badly chafed insulation. (2) Broken plugs, receptacles or terminals. (3) Broken or protruding strands of wire. ...

  9. 49 CFR 229.89 - Jumpers; cable connections.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Cable and jumper connections between locomotive may not have any of the following conditions: (1) Broken or badly chafed insulation. (2) Broken plugs, receptacles or terminals. (3) Broken or protruding strands of wire. ...

  10. Results of Buoyancy-gravity Effects in ITER Cable-in- Conduit Conductor with Dual Channel

    NASA Astrophysics Data System (ADS)

    Bruzzone, P.; Stepanov, B.; Zanino, R.; Richard, L. Savoldi

    2006-04-01

    The coolant in the ITER cable-in-conduit conductors (CICC) flows at significant higher speed in the central channel than in the strand bundle region due to the large difference of hydraulic impedance. When energy is deposited in the bundle region, e.g. by ac loss or radiation, the heat removal in vertically oriented dual channel CICC with the coolant flowing downward is affected by the reduced density of helium (buoyancy) in the bundle region, which is arising from the temperature gradient due to poor heat exchange between the two channels. At large deposited power, flow stagnation and back-flow can cause in the strand bundle area a slow temperature runaway eventually leading to quench. A new test campaign of the thermal-hydraulic behavior was carried out in the SULTAN facility on an instrumented section of the ITER Poloidal Field Conductor Insert (PFIS). The buoyancy-gravity effect was investigated using ac loss heating, with ac loss in the cable calibrated in separate runs. The extent of upstream temperature increase was explored over a broad range of mass flow rate and deposited power. The experimental behavior is partly reproduced by numerical simulations. The results from the tests are extrapolated to the likely operating conditions of the ITER Toroidal Field conductor with the inboard leg cooled from top to bottom and heat deposited by nuclear radiation from the burning plasma.

  11. Capacitor discharge process for welding braided cable

    DOEpatents

    Wilson, Rick D.

    1995-01-01

    A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

  12. 46 CFR 28.370 - Wiring methods and materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... wire must have insulated, stranded copper conductors of the appropriate size and voltage rating for the... that affects one cable does not affect the other. (d) Cable and wire for power and lighting circuits...

  13. Production of Aluminum Stabilized Superconducting Cable for the Mu2e Transport Solenoid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardo, Vito; Ambrosio, Giorgio; Evbota, Daniel

    Here, the Fermilab Mu2e experiment, currently under construction at Fermilab, has the goal of measuring the rare process of direct muon to electron conversion in the field of a nucleus. The experiment features three large superconducting solenoids: the production solenoid (PS), the transport solenoid (TS), and the detector solenoid (DS). The TS is an “S-shaped” solenoid that sits in between the PS and the DS producing a magnetic field ranging between 2.5 and 2.0 T. This paper describes the various steps that led to the successful procurement of over 740 km of superconducting wire and 44 km of Al-stabilized Rutherfordmore » cable needed to build the 52 coils that constitute the Mu2e TS cold mass. The main cable properties and results of electrical and mechanical test campaigns are summarized and discussed. Critical current measurements of the Al-stabilized cables are presented and compared to expected critical current values as measured on extracted strands from the final cables after chemical etching of the aluminum stabilizer. A robust and reliable approach to cable welding is presented, and the effect of cable bending on the transport current is also investigated and presented.« less

  14. Production of Aluminum Stabilized Superconducting Cable for the Mu2e Transport Solenoid

    DOE PAGES

    Lombardo, Vito; Ambrosio, Giorgio; Evbota, Daniel; ...

    2018-01-15

    Here, the Fermilab Mu2e experiment, currently under construction at Fermilab, has the goal of measuring the rare process of direct muon to electron conversion in the field of a nucleus. The experiment features three large superconducting solenoids: the production solenoid (PS), the transport solenoid (TS), and the detector solenoid (DS). The TS is an “S-shaped” solenoid that sits in between the PS and the DS producing a magnetic field ranging between 2.5 and 2.0 T. This paper describes the various steps that led to the successful procurement of over 740 km of superconducting wire and 44 km of Al-stabilized Rutherfordmore » cable needed to build the 52 coils that constitute the Mu2e TS cold mass. The main cable properties and results of electrical and mechanical test campaigns are summarized and discussed. Critical current measurements of the Al-stabilized cables are presented and compared to expected critical current values as measured on extracted strands from the final cables after chemical etching of the aluminum stabilizer. A robust and reliable approach to cable welding is presented, and the effect of cable bending on the transport current is also investigated and presented.« less

  15. Interstrand contact resistances of Bi-2212 Rutherford cables for SMES

    NASA Astrophysics Data System (ADS)

    Kawagoe, A.; Kawabata, Y.; Sumiyoshi, F.; Nagaya, S.; Hirano, N.

    2006-10-01

    Interstrand contact resistances of Bi-2212 Rutherford cables for SMES coils were evaluated from a comparison between measured data and 2D-FEM analyses on interstrand coupling losses in these cables. The cables were composed of 30 non-twisted Bi-2212 strands with a diameter of 0.81 mm and a cable twist pitch of 90 mm. Three samples were measured; one of them had NiCr cores and the others had no cores. One of the latter two samples repeatedly experienced bending. The interstrand coupling losses were measured in liquid helium for the straight samples under transverse ac ripple magnetic fields superposed on dc bias magnetic fields. The transverse magnetic field was applied to the samples in directions both perpendicular and parallel to the flat face of the cable. The effect of the bending on the interstrand coupling losses could be neglected for the non-cored samples. The interstrand coupling losses of NiCr cored sample decreased by about 30% compared with the non-cored samples, in case the direction of the transverse magnetic fields applied to the cable is perpendicular to the flat face of the cable. Using these results and 2D-FEM analyses, taking into account that interstrand contact conditions vary from the center to the edge in the cross-section of cables, gave us the conclusion that the between side-by-side strands contact with metallurgical bond only in both edges of the cables.

  16. First AC loss test and analysis of a Bi2212 cable-in-conduit conductor for fusion application

    NASA Astrophysics Data System (ADS)

    Qin, Jinggang; Shi, Yi; Wu, Yu; Li, Jiangang; Wang, Qiuliang; He, Yuxiang; Dai, Chao; Liu, Fang; Liu, Huajun; Mao, Zhehua; Nijhuis, Arend; Zhou, Chao; Devred, Arnaud

    2018-01-01

    The main goal of the Chinese fusion engineering test reactor (CFETR) is to build a fusion engineering tokamak reactor with a fusion power of 50-200 MW, and plan to test the breeding tritium during the fusion reaction. This may require a maximum magnetic field of the central solenoid and toroidal field coils up to 15 T. New magnet technologies should be developed for the next generation of fusion reactors with higher requirements. Bi2Sr2CaCu2Ox (Bi2212) is considered as a potential and promising superconductor for the magnets in the CFETR. R&D activities are ongoing at the Institute of Plasma Physics, Chinese Academy of Sciences for demonstration of the feasibility of a CICC based on Bi2212 round wire. One sub-size conductor cabled with 42 wires was designed, manufactured and tested with limited strand indentation during cabling and good transport performance. In this paper, the first test results and analysis on the AC loss of Bi2212 round wires and cabled conductor samples are presented. Furthermore, the impact of mechanical load on the AC loss of the sub-size conductor is investigated to represent the operation conditions with electromagnetic loads. The first tests provide an essential basis for the validation of Bi2212 CICC and its application in fusion magnets.

  17. A novel modeling to predict the critical current behavior of Nb3Sn PIT strand under transverse load based on a scaling law and Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Tiening; Chiesa, Luisa; Takayasu, Makoto; Bordini, Bernardo

    2014-09-01

    Superconducting Nb3Sn Powder-In-Tube (PIT) strands could be used for the superconducting magnets of the next generation Large Hadron Collider. The strands are cabled into the typical flat Rutherford cable configuration. During the assembly of a magnet and its operation the strands experience not only longitudinal but also transverse load due to the pre-compression applied during the assembly and the Lorentz load felt when the magnets are energized. To properly design the magnets and guarantee their safe operation, mechanical load effects on the strand superconducting properties are studied extensively; particularly, many scaling laws based on tensile load experiments have been established to predict the critical current dependence on strain. However, the dependence of the superconducting properties on transverse load has not been extensively studied so far. One of the reasons is that transverse loading experiments are difficult to conduct due to the small diameter of the strand (about 1 mm) and the data currently available do not follow a common measurement standard making the comparison between different data sets difficult. Recently at the University of Geneva, a new device has been developed to characterize the critical current of Nb3Sn strands under transverse loads. In this work we present a new 2D Finite Element Analysis (FEA) to predict the electro-mechanical response of a PIT strand that was tested at the University of Geneva when transverse load is applied. The FEA provides the strain map for the superconducting filaments when the load is applied. Those strain maps are then used to evaluate the critical current behavior of a PIT strand using a recently developed scaling law that correlates the superconducting properties of a wire with the strain invariants due to the load applied on the superconductor. The benefits and limitations of this method are discussed based on the comparison between the critical current simulation results obtained with the filament strain map and the experimental results available for PIT strands.

  18. Vertical load capacities of roof truss cross members.

    PubMed

    Gearhart, David F; Morsy, Mohamed Khaled

    2016-05-01

    Trusses used for roof support in coal mines are constructed of two grouted bolts installed at opposing forty-five degree angles into the roof and a cross member that ties the angled bolts together. The load on the cross member is vertical, which is transverse to the longitudinal axis, and therefore the cross member is loaded in the weakest direction. Laboratory tests were conducted to determine the vertical load capacity and deflection of three different types of cross members. Single-point load tests, with the load applied in the center of the specimen and double-point load tests, with a span of 2.4 m, were conducted. For the single-point load configuration, the yield of the 25 mm solid bar cross member was nominally 98 kN of vertical load, achieved at 42 cm of deflection. For cable cross members, yield was not achieved even after 45 cm of deflection. Peak vertical loads were about 89 kN for 17 mm cables and 67 kN for the 15 mm cables. For the double-point load configurations, the 25 mm solid bar cross members yielded at 150 kN of vertical load and 25 cm of deflection. At 25 cm of deflection individual cable strands started breaking at 133 and 111 kN of vertical load for the 17 and 15 mm cable cross members respectively.

  19. An evaluation of Brifen wire rope safety fence.

    DOT National Transportation Integrated Search

    2013-01-01

    Three : - : strand : cable barriers were first developed in the 1960s and found to have several desirable : characteristics as compared to other roadside barriers such as guard rail : . : Brifen Wire Rope Safety Fence is : a four strand woven wire...

  20. Investigation of carbon fiber composite cables (CFCC) in prestressed concrete piles : [summary].

    DOT National Transportation Integrated Search

    2014-04-01

    FDOT commonly uses concrete piles prestressed : with steel strands in bridge foundations due to : their economy of design, fabrication, and : installation. However, when installed in marine : environments, the steel strands are prone to : corrosion a...

  1. 215. Dennis Hill, Photographer May 1998 DETAIL VIEW OF STRAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    215. Dennis Hill, Photographer May 1998 DETAIL VIEW OF STRAND SHOES AND STORM CABLE EYE BARS IN YERBA BUENA ANCHORAGE, FACING EAST. - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  2. Effects of core type, placement, and width on the estimated interstrand coupling properties of QXF-type Nb 3Sn Rutherford cables

    DOE PAGES

    Collings, E. W.; Sumption, M. D.; Majoros, M.; ...

    2015-01-12

    The coupling magnetization of a Rutherford cable is inversely proportional to an effective interstrand contact resistance R eff , a function of the crossing-strand resistance R c, and the adjacent strand resistance R a. In cored cables, R eff continuously varies with W, the core width expressed as percent interstrand cover. For a series of un-heat-treated stabrite-coated NbTi LHC-inner cables with stainless-steel (SS, insulating) cores, R eff (W) decreased smoothly as W decreased from 100%, whereas for a set of research-wound SS-cored Nb 3Sn cables, R eff plummeted abruptly and remained low over most of the range. The difference ismore » due to the controlling influence of R c - 2.5 μΩ for the stabrite/NbTi and 0.26 μΩ for Nb 3Sn. The experimental behavior was replicated in the R eff (W)’s calculated by the program CUDI, which (using the basic parameters of the QXF cable) went on to show in terms of decreasing W that: 1) in QXF-type Nb 3Sn cables (R c = 0.26 μΩ), R eff dropped even more suddenly when the SS core, instead of being centered, was offset to one edge of the cable; 2) R eff decreased more gradually in cables with higher R c’s; and 3) a suitable R eff for a Nb 3Sn cable can be achieved by inserting a suitably resistive core rather than an insulating (SS) one.« less

  3. Progressing in cable-in-conduit for fusion magnets: from ITER to low cost, high performance DEMO

    NASA Astrophysics Data System (ADS)

    Uglietti, D.; Sedlak, K.; Wesche, R.; Bruzzone, P.; Muzzi, L.; della Corte, A.

    2018-05-01

    The performance of ITER toroidal field (TF) conductors still have a significant margin for improvement because the effective strain between ‑0.62% and ‑0.95% limits the strands’ critical current between 15% and 45% of the maximum achievable. Prototype Nb3Sn cable-in-conduit conductors have been designed, manufactured and tested in the frame of the EUROfusion DEMO activities. In these conductors the effective strain has shown a clear improvement with respect to the ITER conductors, reaching values between ‑0.55% and ‑0.28%, resulting in a strand critical current which is two to three times higher than in ITER conductors. In terms of the amount of Nb3Sn strand required for the construction of the DEMO TF magnet system, such improvement may lead to a reduction of at least a factor of two with respect to a similar magnet built with ITER type conductors; a further saving of Nb3Sn is possible if graded conductors/windings are employed. In the best case the DEMO TF magnet could require fewer Nb3Sn strands than the ITER one, despite the larger size of DEMO. Moreover high performance conductors could be operated at higher fields than ITER TF conductors, enabling the construction of low cost, compact, high field tokamaks.

  4. The cable catapult - Putting it there and keeping it there

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.; Conley, Buford R.; Stanek, Clay; Ramsey, William

    1992-01-01

    The cable catapult is the previously proposed method of using long space tethers for high speed interplanetary transport. A long conductive multistrand cable would be connected to a power supply and pointed in the desired direction. A linear motor would pull itself along the powered cable strands and launch a payload capsule toward a distant planet, where it would be caught and decelerated by another cable catapult positioned there. In this paper it is shown how cable catapults can be used to transport themselves to a distant planet and keep themselves in position near the planet despite the tendency of the payload capsule momentum transfer to push them apart.

  5. The cable catapult - Putting it there and keeping it there

    NASA Astrophysics Data System (ADS)

    Forward, Robert L.; Conley, Buford R.; Stanek, Clay; Ramsey, William

    1992-07-01

    The cable catapult is the previously proposed method of using long space tethers for high speed interplanetary transport. A long conductive multistrand cable would be connected to a power supply and pointed in the desired direction. A linear motor would pull itself along the powered cable strands and launch a payload capsule toward a distant planet, where it would be caught and decelerated by another cable catapult positioned there. In this paper it is shown how cable catapults can be used to transport themselves to a distant planet and keep themselves in position near the planet despite the tendency of the payload capsule momentum transfer to push them apart.

  6. Dynamic properties of unbonded, multi-strand beams subjected to flexural loading

    NASA Astrophysics Data System (ADS)

    Asker, Haval K.; Rongong, Jem A.; Lord, Charles E.

    2018-02-01

    Beam-like structures, constructed from many long strands that are constrained rather than bonded together, can provide appreciable levels of structural damping through friction between individual strands. This paper describes experimental and numerical studies, carried out on square-section metal beams, which are aimed at improving understanding of the relationship between construction and performance. A beam is formed from a pack of square-section strands that is held together at various compression loads with pre-calibrated clamps. Flexural deformation of the assembled beam is simulated using standard finite element analysis employing simple Coulomb friction at the interfaces. The validity of the assumptions used in the models is confirmed by comparison with three point bend tests on a regular nine strand construction at several different clamp loads. Dynamic loss factors for this beam are obtained by conducting forced vibration tests, which show that the damping is insensitive to frequency. Subsequent numerical studies are used to investigate the effects of increasing the number of strands whilst maintaining the overall cross-section geometry of the beam. It is found that the system stiffness drops and loss factor increases when more strands are used for a maintained beam cross-section. Interestingly, the energy dissipated by each beam construction is almost the same. These results provide a vital and necessary insight into the physics for stranded structures and materials that are largely prevalent in mechanical (e.g. cables) and electrical (e.g. wires) elements.

  7. Heat Treatment Optimization of Rutherford Cables for a 15 T Nb 3Sn Dipole Demonstrator

    DOE PAGES

    Barzi, Emanuela; Bossert, Marianne; Field, Michael; ...

    2017-01-09

    FNAL has been developing a 15 T Nb 3Sn dipole demonstrator for a future Very High Energy pp Collider based on an optimized 60-mm aperture 4-layer “cos-theta” coil. In order to increase magnet efficiency, we graded the coil by using two cables with same 15 mm width and different thicknesses made of two different Restacked Rod Process (RRP®) wires. Due to the non-uniform field distribution in dipole coils the maximum field in the inner coil will reach 15-16 T, whereas the maximum field in the outer coil is 12-13 T. In preparation for the 15 T dipole coil reaction, heatmore » treatment studies were performed on strands extracted from these cables with the goal of achieving the best coil performance in the corresponding magnetic fields. Particularly, the effect of maximum temperature and time on the cable critical current was studied to take into account actual variations of these parameters during coil reaction. In parallel and in collaboration with OST, development was performed on optimizing Nb 3Sn RRP® wire design and layout. Index Terms— Accelerator magnet, critical current density, Nb 3Sn strand, Rutherford cable.« less

  8. From Franchise to Programming: Jobs in Cable Television.

    ERIC Educational Resources Information Center

    Stanton, Michael

    1985-01-01

    This article takes a look at some of the key jobs at every level of the cable industry. It discusses winning a franchise, building and running the system, and programing and production. Job descriptions include engineer, market analyst, programers, financial analysts, strand mappers, customer service representatives, access coordinator, and studio…

  9. Development of aluminum-stabilized superconducting cables for the Mu2e detector solenoid

    DOE PAGES

    Lombardo, Vito; Buehler, M.; Lamm, M.; ...

    2016-06-01

    Here, the Mu2e experiment at Fermilab is designed to measure the rare process of direct muon-to-electron conversion in the field of a nucleus. The experiment comprises a system of three superconducting solenoids, which focus secondary muons from the production target and transport them to an aluminum stopping target, while minimizing the associated background. The Detector Solenoid (DS) is the last magnet in the transport line and its main functions are to provide a graded field in the region of the stopping target as well as a precision magnetic field in a volume large enough to house the tracker downstream ofmore » the stopping target. The Detector Solenoid coils are designed to be wound using NbTi Rutherford cables conformed in high purity aluminum for stabilization and then cold-worked for strength. Two types of Al-stabilized conductor are required to build the DS coils, one for the gradient section and one for the spectrometer section of the solenoid. The dimensions are optimized to generate the required field profile when the same current is transported in both conductors. The conductors contain NbTi Rutherford cables with 12 (DS1) and 8 (DS2) strands respectively and are manufactured by two different vendors. This paper describes the results of the manufacturing of production lengths of the Al-stabilized cables needed to build the Mu2e Detector Solenoid as well as the testing campaigns and main results. The main cable properties and results of electrical and mechanical tests are summarized and discussed for each stage of the cable development process. Results are compared to design values to show how the production cables satisfy all the design criteria starting from the NbTi wires to the Al-stabilized cables.« less

  10. Superconductor cable

    DOEpatents

    Allais, Arnaud [Hannover, DE; Schmidt, Frank [Langenhagen, DE

    2009-12-15

    A superconductor cable includes a superconductive cable core (1) and a cryostat (2) enclosing the same. The cable core (1) has a superconductive conductor (3), an insulation (4) surrounding the same and a shielding (5) surrounding the insulation (4). A layer (3b) of a dielectric or semiconducting material is applied to a central element (3a) formed from a normally conducting material as a strand or tube and a layer (3c) of at least one wire or strip of superconductive material is placed helically on top. The central element (3a) and the layer (3c) are connected to each other in an electrically conducting manner at the ends of the cable core (1).

  11. Roebel assembled coated conductor cables (RACC): Ac-Losses and current carrying potential

    NASA Astrophysics Data System (ADS)

    Frank, A.; Heller, R.; Goldacker, W.; Kling, A.; Schmidt, C.

    2008-02-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature in the range 50-77 K. Ac-field applications require cables with low ac-losses and hence twisting of the individual strands. We solved this problem using the Roebel technique. Short lengths of Roebel bar cables were prepared from industrial DyBCO and YBCO-CC. Meander shaped tapes of 4 or 5 mm width with twist pitches of 123 or 127 mm were cut from the 10 or 12 mm wide CC tapes using a specially designed tool. Eleven or twelve of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac-field were measured as a function of frequency and field amplitude as well as the coupling current decay time constant. We discuss the results in terms of available theories and compare measured time constants in transverse field with measured coupling losses. Finally the potential of this cable type for ac-use is discussed with respect to ac-losses and current carrying capability.

  12. IC(B,T,STRAIN) Characterisation of a Nb3Sn Internal Tin Strand with Enhanced Specification for Use in Fusion Conductors

    NASA Astrophysics Data System (ADS)

    Pasztor, G.; Bruzzone, P.

    2004-06-01

    The dc performance of a recently produced internal tin route Nb3Sn strand with enhanced specification is studied extensively and compared with predecessor wires manufactured by the suppliers for the ITER Model Coils in 1996. The wire has been selected for use in a full size, developmental cable-in-conduit conductor sample, which is being tested in the SULTAN Test Facility. The critical current, Ic, and the index of the current/voltage characteristic, n, are measured over a broad range of field and temperature, using ITER standard sample holders, made of TiAlV grooved cylinders. The behavior of Ic versus applied tensile strain is also investigated at 4.2 K and 12 T, on straight specimens. Scaling law parameters are drawn from the fit of the experimental results. The implications of the test results to the design of the fusion conductors are discussed.

  13. Control Method Stretches Suspensions by Measuring the Sag of Strands in Cable-Stayed Bridges

    NASA Astrophysics Data System (ADS)

    Bętkowski, Piotr

    2017-10-01

    In the article is described the method that allows on evaluation and validation of measurement correctness of dynamometers (strain gauges, tension meters) used in systems of suspensions. Control of monitoring devices such as dynamometers is recommended in inspections of suspension bridges. Control device (dynamometer) works with an anchor, and the degree of this cooperation could have a decisive impact on the correctness of the results. Method, which determines the stress in the strand (cable), depending on the sag of stayed cable, is described. This method can be used to control the accuracy of measuring devices directly on the bridge. By measuring the strand sag, it is possible to obtain information about the strength (force) which occurred in the suspension cable. Digital camera is used for the measurement of cable sag. Control measurement should be made independently from the controlled parameter but should verify this parameter directly (it is the best situation). In many cases in practice the controlled parameter is not designation by direct measurement, but the calculations, i.e. relation measured others parameters, as in the method described in the article. In such cases occurred the problem of overlapping error of measurement of intermediate parameters (data) and the evaluation of the reliability of the results. Method of control calculations made in relation to installed in the bridge measuring devices is doubtful without procedure of uncertainty estimation. Such an assessment of the accuracy can be performed using the interval numbers. With the interval numbers are possible the analysis of parametric relationship accuracy of the designation of individual parameters and uncertainty of results. Method of measurements, relations and analytical formulas, and numerical example can be found in the text of the article.

  14. Robot cable-compliant devices

    NASA Technical Reports Server (NTRS)

    Kerley, James J., Jr. (Inventor)

    1990-01-01

    A cable compliant robotic joint includes two U configuration cross section brackets with their U cross sections lying in different planes, one of their brackets being connected to a robot arm and the other to a tool. Additional angle brackets are displaced from the other brackets at corners of the robotic joint. All the brackets are connected by cable segments which lie in one or more planes which are perpendicular to the direction of tool travel as it approaches a work object. The compliance of the joint is determined by the cable segment characteristics, such as their length, material, angle, stranding, pretwisting, and prestressing.

  15. Corroded Anchor Structure Stability/Reliability (CAS_Stab-R) Software for Hydraulic Structures

    DTIC Science & Technology

    2017-12-01

    This report describes software that provides a probabilistic estimate of time -to-failure for a corroding anchor strand system. These anchor...stability to the structure. A series of unique pull-test experiments conducted by Ebeling et al. (2016) at the U.S. Army Engineer Research and...Reliability (CAS_Stab-R) produces probabilistic Remaining Anchor Life time estimates for anchor cables based upon the direct corrosion rate for the

  16. Method of constructing a superconducting magnet

    DOEpatents

    Satti, John A.

    1981-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  17. Superconducting magnet

    DOEpatents

    Satti, John A.

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  18. Cell wall peptidoglycan architecture in Bacillus subtilis

    PubMed Central

    Hayhurst, Emma J.; Kailas, Lekshmi; Hobbs, Jamie K.; Foster, Simon J.

    2008-01-01

    The bacterial cell wall is essential for viability and shape determination. Cell wall structural dynamics allowing growth and division, while maintaining integrity is a basic problem governing the life of bacteria. The polymer peptidoglycan is the main structural component for most bacteria and is made up of glycan strands that are cross-linked by peptide side chains. Despite study and speculation over many years, peptidoglycan architecture has remained largely elusive. Here, we show that the model rod-shaped bacterium Bacillus subtilis has glycan strands up to 5 μm, longer than the cell itself and 50 times longer than previously proposed. Atomic force microscopy revealed the glycan strands to be part of a peptidoglycan architecture allowing cell growth and division. The inner surface of the cell wall has a regular macrostructure with ≈50 nm-wide peptidoglycan cables [average 53 ± 12 nm (n = 91)] running basically across the short axis of the cell. Cross striations with an average periodicity of 25 ± 9 nm (n = 96) along each cable are also present. The fundamental cabling architecture is also maintained during septal development as part of cell division. We propose a coiled-coil model for peptidoglycan architecture encompassing our data and recent evidence concerning the biosynthetic machinery for this essential polymer. PMID:18784364

  19. Quench propagation in the superconducting 6 kA flexible busbars of the LHC

    NASA Astrophysics Data System (ADS)

    Herzog, R.; Calvi, M.; Sonnemann, F.; Pelegrin-Carcelen, J. M.

    2002-05-01

    Flexible superconducting cables with currents up to 6 kA will be used to power magnets individually in the insertion regions of the LHC. In case of a quench, the currents in these circuits will decay very fast (with time constants of about 200 ms) such that relatively small copper cross sections are sufficient for these busbars. Quench propagation experiments on a prototype cable and corresponding simulations led to a detailed understanding of the quench behavior of these busbars and to recommendations for the design and application of the cable. Simulations of the quench process in a multi-strand conductor led to a detailed understanding of the way current crosses from superconducting to pure copper strands and how this affects the quench propagation velocity. At nominal current (6 kA), the quench propagation velocities are high (10 m/s) and the hot spot temperature increases rapidly. In this situation, timely quench detection and energy extraction (current reduction) are vital to prevent damage of circuit components.

  20. Statistical analysis of the Nb3Sn strand production for the ITER toroidal field coils

    NASA Astrophysics Data System (ADS)

    Vostner, A.; Jewell, M.; Pong, I.; Sullivan, N.; Devred, A.; Bessette, D.; Bevillard, G.; Mitchell, N.; Romano, G.; Zhou, C.

    2017-04-01

    The ITER toroidal field (TF) strand procurement initiated the largest Nb3Sn superconducting strand production hitherto. The industrial-scale production started in Japan in 2008 and finished in summer 2015. Six ITER partners (so-called Domestic Agencies, or DAs) are in charge of the procurement and involved eight different strand suppliers all over the world, of which four are using the bronze route (BR) process and four the internal-tin (IT) process. In total more than 500 tons have been produced including excess material covering losses during the conductor manufacturing process, in particular the cabling. The procurement is based on a functional specification where the main strand requirements like critical current, hysteresis losses, Cu ratio and residual resistance ratio are specified but not the strand production process or layout. This paper presents the analysis on the data acquired during the quality control (QC) process that was carried out to ensure the same conductor performance requirements are met by the different strand suppliers regardless of strand design. The strand QC is based on 100% billet testing and on applying statistical process control (SPC) limits. Throughout the production, samples adjacent to the strand pieces tested by the suppliers are cross-checked (‘verified’) by their respective DAs reference labs. The level of verification was lowered from 100% at the beginning of the procurement progressively to approximately 25% during the final phase of production. Based on the complete dataset of the TF strand production, an analysis of the SPC limits of the critical strand parameters is made and the related process capability indices are calculated. In view of the large-scale production and costs, key manufacturing parameters such as billet yield, number of breakages and piece-length distribution are also discussed. The results are compared among all the strand suppliers, focusing on the difference between BR and IT processes. Following the completion of the largest Nb3Sn strand production, our experience gained from monitoring the execution of the QC activities and from auditing the results from the measurements is summarised for future superconducting strand material procurement activities.

  1. Using the CABLES model to assess and minimize risk in research: control group hazards.

    PubMed

    Koocher, G P

    2002-01-01

    CABLES is both an acronym and metaphor for conceptualizing research participation risk by considering 6 distinct domains in which risks of harm to research participants may exist: cognitive, affective, biological, legal, economic, and social/cultural. These domains are described and illustrated, along with suggestions for minimizing or eliminating the potential hazards to human participants in biomedical and behavioral science research. Adoption of a thoughtful ethical analysis addressing all 6 CABLES strands in designing research provides a strong protective step toward safeguarding and promoting the well-being of study participants.

  2. Experimental results of 40-kA Nb[sub 3]Al cable-in-conduit conductor for fusion machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Y.; Sugimoto, M.; Isono, T.

    1994-07-01

    A 40-kA Nb[sub 3]Al cable-in-conduit conductor has been developed for the toroidal field coils of fusion reactors, because Nb[sub 3]Al has excellent mechanical performance. This conductor consists of 405 copper-stabilized multifilamentary strands inserted into a CuNi case circular conduit. The Nb[sub 3]Al strands are fabricated by the Jelly-roll process with a diameter of 1.22 mm. This conductor could be operated up to a current of 46 kA at an external field of 11.2 T. Accordingly, Nb[sub 3]Al promises to soon become a useful superconductor for large-scale high-field applications, such as fusion machines.

  3. Dependence of the Contact Resistance on the Design of Stranded Conductors

    PubMed Central

    Zeroukhi, Youcef; Napieralska-Juszczak, Ewa; Vega, Guillaume; Komeza, Krzysztof; Morganti, Fabrice; Wiak, Slawomir

    2014-01-01

    During the manufacturing process multi-strand conductors are subject to compressive force and rotation moments. The current distribution in the multi-strand conductors is not uniform and is controlled by the transverse resistivity. This is mainly determined by the contact resistance at the strand crossovers and inter-strand contact resistance. The surface layer properties, and in particular the crystalline structure and degree of oxidation, are key parameters in determining the transverse resistivity. The experimental set-ups made it possible to find the dependence of contact resistivity as a function of continuous working stresses and cable design. A study based on measurements and numerical simulation is made to identify the contact resistivity functions. PMID:25196112

  4. Thermal-mechanical properties of epoxy-impregnated Bi-2212/Ag composite

    DOE PAGES

    Li, Pei; Wang, Yang; Fermi National Accelerator Lab.; ...

    2014-11-26

    In this study, knowledge of the thermal-mechanical properties of epoxy/superconductor/insulation composite is important for designing, fabricating, and operating epoxy impregnated high field superconducting magnets near their ultimate potentials. We report measurements of the modulus of elasticity, Poisson's ratio, and the coefficient of thermal contraction of epoxy-impregnated composite made from the state-of-the-art powder-in-tube multifilamentary Ag/Bi 2Sr 2CaCu 2O x round wire at room temperature and cryogenic temperatures. Stress-strain curves of samples made from single-strand and Rutherford cables were tested under both monotonic and cyclic compressive loads, with single strands insulated using a thin TiO 2 insulation coating and the Rutherford cablemore » insulated with a braided ceramic sleeve.« less

  5. Posterior spinal osteosynthesis for cervical fracture/dislocation using a flexible multistrand cable system: technical note.

    PubMed

    Huhn, S L; Wolf, A L; Ecklund, J

    1991-12-01

    Cervical instability secondary to fracture/dislocation or traumatic subluxation involving the posterior elements may be treated by a variety of fusion techniques. The rigidity of the stainless steel wires used in posterior cervical fusions often leads to difficulty with insertion, adequate tension, and conformation of the graft construct. This report describes a technique of posterior cervical fusion employing a wire system using flexible stainless steel cables. The wire consists of a flexible, 49-strand, stainless steel cable connected on one end to a short, malleable, blunt leader with the opposite end connected to a small islet. The cable may be used in occipitocervical, atlantoaxial, facet-to-spinous process, and interspinous fusion techniques. The cable loop is secured by using a tension/crimper device that sets the desired tension in the cable. In addition to superior biomechanical strength, the flexibility of the cable allows greater ease of insertion and tension adjustment. In terms of direct operative instrumentation in posterior cervical arthrodesis, involving both the upper and lower cervical spine, the cable system appears to be a safe and efficient alternative to monofilament wires.

  6. Monitoring based maintenance utilizing actual stress sensory technology

    NASA Astrophysics Data System (ADS)

    Sumitro, Sunaryo; Kurokawa, Shoji; Shimano, Keiji; Wang, Ming L.

    2005-06-01

    In recent years, many infrastructures have been deteriorating. In order to maintain sustainability of those infrastructures which have significant influence on social lifelines, economical and rational maintenance management should be carried out to evaluate the life cycle cost (LCC). The development of structural health monitoring systems, such as deriving evaluation techniques for the field structural condition of existing structures and identification techniques for the significant engineering properties of new structures, can be considered as the first step in resolving the above problem. New innovative evaluation methods need to be devised to identify the deterioration of infrastructures, e.g. steel tendons, cables in cable-stayed bridges and strands embedded in pre- or post-tensioned concrete structures. One of the possible solutions that show 'AtoE' characteristics, i.e., (a)ccuracy, (b)enefit, (c)ompendiousness, (d)urability and (e)ase of operation, elasto-magnetic (EM) actual stress sensory technology utilizing the sensitivity of incremental magnetic permeability to stress change, has been developed. Numerous verification tests on various steel materials have been conducted. By comparing with load cell, strain gage and other sensory technology measurement results, the actual stresses of steel tendons in a pre-stressed concrete structure at the following stages have been thoroughly investigated: (i) pre-stress change due to set-loss (anchorage slippage) at the tendon fixation stage; (ii) pre-stress change due to the tendon relaxation stage; (iii) concrete creep and shrinkage at the long term pre-stressing stage; (iv) pre-stress change in the cyclic fatigue loading stage; and (v) pre-stress change due to the re-pre-stress setting stage. As the result of this testing, it is confirmed that EM sensory technology enables one to measure actual stress in steel wire, strands and steel bars precisely without destroying the polyethylene covering sheath and enables one to provide adequate accuracy and reliability for monitoring actual stresses of those steel tendons during the life cycle of infrastructures. An example of a field application at a cable-stayed bridge is described.

  7. Design and Preparation of Two ReBCO-CORC® Cable-In-Conduit Conductors for Fusion and Detector Magnets

    NASA Astrophysics Data System (ADS)

    Mulder, T.; van der Laan, D.; Weiss, J. D.; Dudarev, A.; Dhallé, M.; ten Kate, H. H. J.

    2017-12-01

    Two new ReBCO-CORC® based cable-in-conduit conductors (CICC) are developed by CERN in collaboration with ACT-Boulder. Both conductors feature a critical current of about 80 kA at 4.5 K and 12 T. One conductor is designed for operation in large detector magnets, while the other is aimed for application in fusion type magnets. The conductors use a six-around-one cable geometry with six flexible ReBCO CORC® strands twisted around a central tube. The fusion CICC is designed to be cooled by the internal forced flow of either helium gas or supercritical helium to cope with high heat loads in superconducting magnets in large fusion experimental reactors. In addition, the cable is enclosed by a stainless steel jacket to accommodate with the high level of Lorentz forces present in such magnets. Detector type magnets require stable, high-current conductors. Therefore, the detector CORC® CICC comprises an OFHC copper jacket with external conduction cooling, which is advantageous due to its simplicity. A 2.8 m long sample of each conductor is manufactured and prepared for testing in the Sultan facility at PSI Villigen. In the paper, the conductor design and assembly steps for both CORC® CICCs are highlighted.

  8. Rotation analysis on large complex superconducting cables based on numerical modeling and experiments

    NASA Astrophysics Data System (ADS)

    Qin, Jinggang; Yue, Donghua; Zhang, Xingyi; Wu, Yu; Liu, Xiaochuan; Liu, Huajun; Jin, Huan; Dai, Chao; Nijhuis, Arend; Zhou, Chao; Devred, Arnaud

    2018-07-01

    The conductors used in large fusion reactors, e.g. ITER, CFETR and DEMO, are made of cable-in-conduit conductor (CICC) with large diameters up to about 50 mm. The superconducting and copper strands are cabled around a central spiral and then wrapped with stainless-steel tape of 0.1 mm thickness. The cable is then inserted into a jacket under tensile force that increases with the length of insertion. Because the cables are long and with a large diameter, the insertion force could reach values of about 40 kN. The large tensile force could lead to significant rotation forces. This may lead to an increase of the twist pitch, especially for the final one. Understanding the twist pitch variation is very important; in particular, the twist pitch of a cable inside a CICC strongly affects its properties, especially for Nb3Sn conductors. In this paper, a simplified numerical model was used to analyze the cable rotation, including material properties, cabling tension as well as wrap tension. Several rotation experiments with tensile force have been performed to verify the numerical results for CFETR CSMC cables. The results show that the numerical analysis is consistent with the experiments and provides the optimal cabling conditions for large superconducting cables.

  9. Some factors determining the effective resistance between strands in flat cables (or superconducting filaments in tapes)

    NASA Astrophysics Data System (ADS)

    Takács, S.; Iwakuma, M.; Funaki, K.

    2000-04-01

    Two effects are considered which can influence the effective resistance between crossing strands on flat cables or filaments in twisted tapes. As analogous cases, the one-layer Rutherford-type cable with classical superconductors and the tapes with twisted BSCCO filaments in a silver matrix in perpendicular magnetic fields are considered as a model. At first, the amount of the central core between the strands and the silver matrix between the filaments increases the effective conductance compared with the direct current paths, which is supposed to be proportional to the touching area of filaments. The increase factor is about two and can be easily suppressed by other effects, such as the contact resistance between the superconductor and the matrix. However, due to the strong anisotropy of critical parameters for high temperature superconductors, this effect can partially compensate the influence of the usually weaker critical current density perpendicular to the tape. The second effect is connected with the existence of the induced voltage between any points of crossing filaments. This leads to an additional effective conductance, proportional to the square of the total number of the filaments. This contribution is prevailing for the anisotropic superconductors. Therefore, to obtain low ac coupling losses in BSCCO tapes, structures with smaller filament number are required. This case is analogous to round structures, leading to ac losses proportional to the square of the layer number in the field direction.

  10. MQXFS1 Quadrupole Fabrication Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosio, G.; Anerella, M.; Bossert, R.

    This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.

  11. 46 CFR 32.75-15 - Electric bonding and grounding for tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Wood Hull Tank Vessels Constructed Prior... cargo tanks in wood hull tank vessels shall be electrically bonded together with stranded copper cable...

  12. 46 CFR 32.75-15 - Electric bonding and grounding for tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Wood Hull Tank Vessels Constructed Prior... cargo tanks in wood hull tank vessels shall be electrically bonded together with stranded copper cable...

  13. Effect of Subelement Spacing in Rrp Nb3Sn Deformed Strands

    NASA Astrophysics Data System (ADS)

    Barzi, E.; Turrioni, D.; Alsharo'a, M.; Field, M.; Hong, S.; Parrell, J.; Yamada, R.; Zhang, Y.; Zlobin, A. V.

    2008-03-01

    The Restacked Rod Process (RRP) is the Nb3Sn strand technology presently producing the largest critical current densities at 4.2 K and 12 T. However, when subject to transverse plastic deformation, RRP subelements (SE) merge into each other, creating larger filaments with a somewhat continuous barrier. In this case, the strand sees a larger effective filament size and its instability can dramatically increase locally leading to a cable quench. To reduce and possibly eliminate this effect, Oxford Instruments Superconducting Technology (OST) developed for FNAL a modified RRP strand design with larger Cu spacing between SE's arranged in a 60/61 array. Strand samples of this design with sizes from 0.7 to 1 mm were first evaluated for transport current properties. A comparison study was then performed between the regular 54/61 and the modified 60/61 design using 0.7 mm round and deformed strands. Finite element modeling of the deformed strands was also performed with ANSYS.

  14. Investigation of carbon fiber composite cables (CFCC) in prestressed concrete piles.

    DOT National Transportation Integrated Search

    2014-04-01

    The Florida Department of Transportation (FDOT) commonly uses prestressed concrete piles in : bridge foundations. These piles are prestressed with steel strands that, when installed in aggressive or : marine environments, are subject to corrosion and...

  15. Materials, Strands, and Cables for Superconducting Accelerator Magnets. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumption, Mike D.; Collings, Edward W.

    2014-09-19

    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb 3Sn. These materials science aspects have been married to results, in the form of flux pinning, B c2, B irr, and transport J c, with an emphasis on obtaining the needed J c for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also reportmore » on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb 3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb 3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.« less

  16. Development of a 30-kA cable-in-conduit conductor for pulsed poloidal coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takashi, Y.; Dresner, L.; Kato, T.

    1983-05-01

    This paper describes design parameters of a 30-kA cable-in-conduit conductor (JF-30), and the test results of stability margin measured by using a triplex in a conduit. Cross sectional size of JF-30 is 35mm X 35 mm and 567 NbTi-Cu-CuNi strands are in a stainless steel conduit whose thickness is 2 mm. Void fraction is 33 % and the designed stability margin is 270 mJ/cc at 5 atm and 7 T. Stability test by a triplex showed a favorable margin, a few hundreds of mJ at 7 T even without helium flow. In addition, the stability was strongly increased when heliummore » flow up to 0.2 g/s was applied. At around 3 atm, the authors found that the stability margin was more than 2 J/cc which exceeded the present heater capacity. This resulted in an extension of current range, in which the sample is stable, up to 150 to 200 % when compared to the case without helium flow.« less

  17. Simulation of prepackaged grout bleed under field conditions : [summary].

    DOT National Transportation Integrated Search

    2014-04-01

    Post-tensioning (PT) is a method of compensating : for concretes weakness under tension by adding : steel. Tubes (ducts) are cast into concrete : components; after the concrete sets, high-strength steel cables (tendons or strand) are run : through...

  18. Experimental characterization of shape memory alloy actuator cables

    NASA Astrophysics Data System (ADS)

    Biggs, Daniel B.; Shaw, John A.

    2016-04-01

    Wire rope (or cables) are a fundamental structural element in many engineering applications. Recently, there has been growing interest in stranding NiTi wires into cables to scale up the adaptive properties of NiTi tension elements and to make use of the desirable properties of wire rope. Exploratory experiments were performed to study the actuation behavior of two NiTi shape memory alloy cables and straight monofilament wire of the same material. The specimens were held under various dead loads ranging from 50 MPa to 400 MPa and thermally cycled 25 times from 140°C to 5°C at a rate of 12°C/min. Performance metrics of actuation stroke, residual strain, and work output were measured and compared between specimen types. The 7x7 cable exhibited similar actuation to the single straight wire, but with slightly longer stroke and marginally more shakedown, while maintaining equivalent specific work output. This leads to the conclusion that the 7x7 cable effectively scaled up the adaptive properties the straight wire. Under loads below 150 MPa, the 1x27 cable had up to double the actuation stroke and work output, but exhibited larger shakedown and poorer performance when loaded higher.

  19. Evaluating prestressing strands and post-tensioning cables in concrete structures using nondestructive methods.

    DOT National Transportation Integrated Search

    2015-11-01

    The objectives were to evaluate the ability of different NDE methods to detect and quantify : defects associated with corrosion of steel reinforcement and grout defects in post-tensioning : applications; and to evaluate the effectiveness of selected ...

  20. Use of fiber reinforced polymer composite cable for post-tensioning application : [summary].

    DOT National Transportation Integrated Search

    2015-05-01

    Post-tensioning is a method frequently used in construction of segmental bridges, continuous : I-girder bridges, and piers. It involves using tendons, which are multiple strands, usually : steel, installed through voids formed by ducts either inside ...

  1. High-performance superconductors for Fusion Nuclear Science Facility

    DOE PAGES

    Zhai, Yuhu; Kessel, Chuck; Barth, Christian; ...

    2016-11-09

    High-performance superconducting magnets play an important role in the design of the next step large-scale, high-field fusion reactors such as the fusion nuclear science facility (FNSF) and the spherical tokamak (ST) pilot plant beyond ITER. Here, Princeton Plasma Physics Laboratory is currently leading the design studies of the FNSF and the ST pilot plant study. ITER, which is under construction in the south of France, utilizes the state-of-the-art low temperature superconducting magnet technology based on the cable-in-conduit conductor design, where over a thousand multifilament Nb 3Sn superconducting strands are twisted together to form a high-current-carrying cable inserted into a steelmore » jacket for coil windings. We present design options of the high-performance superconductors in the winding pack for the FNSF toroidal field magnet system based on the toroidal field radial build from the system code. For the low temperature superconductor options, the advanced J cNb 3Sn RRP strands (J c > 1000 A/mm 2 at 16 T, 4 K) from Oxford Superconducting Technology are under consideration. For the high-temperature superconductor options, the rectangular-shaped high-current HTS cable made of stacked YBCO tapes will be considered to validate feasibility of TF coil winding pack design for the ST-FNSF magnets.« less

  2. High-performance superconductors for Fusion Nuclear Science Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Yuhu; Kessel, Chuck; Barth, Christian

    High-performance superconducting magnets play an important role in the design of the next step large-scale, high-field fusion reactors such as the fusion nuclear science facility (FNSF) and the spherical tokamak (ST) pilot plant beyond ITER. Here, Princeton Plasma Physics Laboratory is currently leading the design studies of the FNSF and the ST pilot plant study. ITER, which is under construction in the south of France, utilizes the state-of-the-art low temperature superconducting magnet technology based on the cable-in-conduit conductor design, where over a thousand multifilament Nb 3Sn superconducting strands are twisted together to form a high-current-carrying cable inserted into a steelmore » jacket for coil windings. We present design options of the high-performance superconductors in the winding pack for the FNSF toroidal field magnet system based on the toroidal field radial build from the system code. For the low temperature superconductor options, the advanced J cNb 3Sn RRP strands (J c > 1000 A/mm 2 at 16 T, 4 K) from Oxford Superconducting Technology are under consideration. For the high-temperature superconductor options, the rectangular-shaped high-current HTS cable made of stacked YBCO tapes will be considered to validate feasibility of TF coil winding pack design for the ST-FNSF magnets.« less

  3. Investigation of current transfer in built-up superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.R.; Dresner, L.; Lue, J.W.

    1977-01-01

    Superconductors carrying 10 kA or more have been widely suggested for use in fusion research and reactor magnets. Built-up or cable conductors have been proposed in which superconductor is concentrated in part of the conductor or part of the strands while the stabilizer occupies the rest. This scheme leads to substantial saving in manufacturing cost and to reduction of ac losses. Simplified analysis indicates that the current transfer from superconducting wire to normal wire takes place over a characteristic length depending on the resistivity of the contact barrier, the resistivity of the stabilizer, and the geometry of the conductor. Furthermore,more » the cold-end recovery suffers a reduction. Two types of conductors were constructed for the experimental test. Triplex conductors consisting of either three superconducting wires or two superconducting plus one copper wire were used to simulate cables. Laminated superconductor and copper strips with different soldering bonds were used for build-ups. Normal zone propagation and recovery experiments have been performed and results are compared with the theory.« less

  4. AC losses and stability on large cable-in-conduit superconductors

    NASA Astrophysics Data System (ADS)

    Bruzzone, Pierluigi

    1998-12-01

    The cable-in-conduit superconductors are preferred for applications where the AC losses and stability are a major concern, e.g., fusion magnets and SMES. A review of coupling currents loss results for both NbTi and Nb 3Sn cable-in-conduit conductors (CICC) is presented and the AC loss relevant features are listed, with special emphasis for the role of the interstrand resistance and strand coating. The transient stability approach for CICCs is discussed and the analytical models are quoted as well as the relevant experimental database. The likely spectrum of transient disturbance in CICC is reviewed and the need to account for interstrand current sharing in the design is outlined. Eventually a practical criterion for the interstrand resistance is proposed to link the stability and AC loss design.

  5. Stripping the Sheath From Stranded Cables

    NASA Technical Reports Server (NTRS)

    Prisk, A. L.; Rotta, J. W.

    1985-01-01

    Device similar to tubing cutter removes tough plastic cover. Insulation stripper is 3 in. (7.6 cm) long and 1.5 (3.8 cm) in diameter. Two rollers are small-diameter bearings. Cutter blade journaled for rotation between pair of similar bearings. Bearings either pin or ball types of suitable dimensions.

  6. Dimensional changes of Nb 3Sn Rutherford cables during heat treatment

    DOE PAGES

    Rochepault, E.; Ferracin, P.; Ambrosio, G.; ...

    2016-06-01

    In high field magnet applications, Nb 3Sn coils undergo a heat treatment step after winding. During this stage, coils radially expand and longitudinally contract due to the Nb 3Sn phase change. In order to prevent residual strain from altering superconducting performances, the tooling must provide the adequate space for these dimensional changes. The aim of this paper is to understand the behavior of cable dimensions during heat treatment and to provide estimates of the space to be accommodated in the tooling for coil expansion and contraction. In addition, this paper summarizes measurements of dimensional changes on strands, single Rutherford cables,more » cable stacks, and coils performed between 2013 and 2015. These samples and coils have been performed within a collaboration between CERN and the U.S. LHC Accelerator Research Program to develop Nb 3Sn quadrupole magnets for the HiLumi LHC. The results are also compared with other high field magnet projects.« less

  7. Type of Material in the Pipes Overhead Power Lines Impact on the Distribution on the Size of the Overhang and the Tension

    NASA Astrophysics Data System (ADS)

    Pawlak, Urszula; Pawlak, Marcin

    2017-10-01

    The article presents the material type from which the conductors of the overhead power lines are produced influences on the size of the overhang and the tension. The aim of the calculations was to present the benefits of the mechanics of the cable resulting from the type of cable used. The analysis was performed for two types of cables: aluminium with steel core and aluminium with composite core, twice span power line section. 10 different conductor-to-strand coil, wind, icing, and temperature variations were included in the calculations. The string description was made by means of a chain curve, while the horizontal component H of the tension force was determined using the bisection method. The loads were collected in accordance with applicable Eurocode.

  8. BaBar superconducting coil: design, construction and test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, R A; Berndt, M; Burgess, W

    2001-01-26

    The BABAR Detector, located in the PEP-II B-Factory at the Stanford Linear Accelerator Center, includes a large 1.5 Tesla superconducting solenoid, 2.8 m bore and length 3.7 m. The two layer solenoid is wound with an aluminum stabilized conductor which is graded axially to produce a {+-} 3% field uniformity in the tracking region. This paper summarizes the 3 year design, fabrication and testing program of the superconducting solenoid. The work was carried out by an international collaboration between INFN, LLNL and SLAC. The coil was constructed by Ansaldo Energia. Critical current measurements of the superconducting strand, cable and conductor,more » cool-down, operation with the thermo-siphon cooling, fast and slow discharges, and magnetic forces are discussed in detail.« less

  9. Buoyant Cable Antenna System

    DTIC Science & Technology

    2008-07-02

    instance, Nitinol is comprised of nickel and titanium. When cool, one or more strands of such material may be bent and deployed as desired from the...considerable and may be in the range of about 35,000 to 70,000 psi. The electrical resistance of Nitinol is rather high and may be in the range of

  10. Design of load-to-failure tests of high-voltage insulation breaks for ITER's cryogenic network

    NASA Astrophysics Data System (ADS)

    Langeslag, S. A. E.; Rodriguez Castro, E.; Aviles Santillana, I.; Sgobba, S.; Foussat, A.

    2015-12-01

    The development of new generation superconducting magnets for fusion research, such as the ITER experiment, is largely based on coils wound with so-called cable-in-conduit conductors. The concept of the cable-in-conduit conductor is based on a direct cooling principle, by supercritical helium, flowing through the central region of the conductor, in close contact with the superconducting strands. Consequently, a direct connection exists between the electrically grounded helium coolant supply line and the highly energised magnet windings. Various insulated regions, constructed out of high-voltage insulation breaks, are put in place to isolate sectors with different electrical potential. In addition to high voltages and significant internal helium pressure, the insulation breaks will experience various mechanical forces resulting from differential thermal contraction phenomena and electro-magnetic loads. Special test equipment was designed, prepared and employed to assess the mechanical reliability of the insulation breaks. A binary test setup is proposed, where mechanical failure is assumed when leak rate of gaseous helium exceeds 10-9·Pa·m3/s. The test consists of a load-to-failure insulation break charging, in tension, while immersed in liquid nitrogen at the temperature of 77 K. Leak tightness during the test is monitored by measuring the leak rate of the gaseous helium, directly surrounding the insulation break, with respect to the existing vacuum inside the insulation break. The experimental setup is proven effective, and various insulation breaks performed beyond expectations.

  11. LEAKAGE CHARACTERISTICS OF MULTI-CONDUCTOR CABLES AND CONDUIT SEALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, C.; Becker, S.

    1962-12-12

    Pipe threads in conduit seal-offs can be made air tight by use of a two- part thiokol-epoxy sealant such as Sika.'' This material bonds to metal but does not harden; thus, threaded parts can be separated. Gas seals in conduit sealoffs can be made by use of Chico, Type A'' sealant. This material is hard and can withstand high pressure differentials. However, there is a detectable leakage through Chico, Type A.'' Sika'' can be used to make a suitable gas- tight seal. However, this material is flexible and will not support long cable lengths. A dual pour method is suggestedmore » of first casting Chico'' around the connectors to obtain strength in the seal and then using either Sika'' or Micro-Preg'' to produce a tight seal. Leakage through the cable, between strands of conductor, can be reduced by either soldering the ends or dipping the ends in conductive epoxy paint. (auth)« less

  12. Ac-loss measurement of a DyBCO-Roebel assembled coated conductor cable (RACC)

    NASA Astrophysics Data System (ADS)

    Schuller, S.; Goldacker, W.; Kling, A.; Krempasky, L.; Schmidt, C.

    2007-10-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature around 50-77 K, which is a crucial precondition for economical cooling costs. We prepared a short length of a Roebel bar cable made of industrial DyBCO coated conductor (Theva Company, Germany). Meander shaped tapes of 4 mm width with a twist pitch of 122 mm were cut from 10 mm wide CC tapes using a specially designed tool. Eleven of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac field were measured as a function of frequency and field amplitude in transverse and parallel field orientations. In addition, the coupling current time constant of the sample was directly measured.

  13. 49 CFR Appendix G to Subchapter B... - Minimum Periodic Inspection Standards

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... or broken cable strands. (b) Improper clamps or clamping. f. Saddle-Mounts. (1) Method of attachment... axle. (6) A tube-type radial tire without radial tube stem markings. These markings include a red band around the tube stem, the word “radial” embossed in metal stems, or the word “radial” molded in rubber...

  14. Performance analysis of the toroidal field ITER production conductors

    NASA Astrophysics Data System (ADS)

    Breschi, M.; Macioce, D.; Devred, A.

    2017-05-01

    The production of the superconducting cables for the toroidal field (TF) magnets of the ITER machine has recently been completed at the manufacturing companies selected during the previous qualification phase. The quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers include performance tests of several conductor samples from selected unit lengths. The short full-size samples (4 m long) were subjected to DC and AC tests in the SULTAN facility at CRPP in Villigen, Switzerland. In a previous work the results of the tests of the conductor performance qualification samples were reported. This work reports the analyses of the results of the tests of the production conductor samples. The results reported here concern the values of current sharing temperature, critical current, effective strain and n-value from the DC tests and the energy dissipated per cycle from the AC loss tests. A detailed comparison is also presented between the performance of the conductors and that of their constituting strands.

  15. Studies of $${\\rm Nb}_{3}{\\rm Sn}$$ Strands Based on the Restacked-Rod Process for High Field Accelerator Magnets

    DOE PAGES

    Barzi, E.; Bossert, M.; Gallo, G.; ...

    2011-12-21

    A major thrust in Fermilab's accelerator magnet R&D program is the development of Nb 3Sn wires which meet target requirements for high field magnets, such as high critical current density, low effective filament size, and the capability to withstand the cabling process. The performance of a number of strands with 150/169 restack design produced by Oxford Superconducting Technology was studied for round and deformed wires. To optimize the maximum plastic strain, finite element modeling was also used as an aid in the design. Results of mechanical, transport and metallographic analyses are presented for round and deformed wires.

  16. Critical currents of Nb sub 3 Sn wires for the US-DPC coil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takayasu, M.; Gung, C.Y.; Steeves, M.M.

    1991-03-01

    This paper evaluates the critical current of titanium-alloyed internal-tin, jelly-roll Nb{sub 3}Sn wire for use in the US-DPC coil. It was confirmed from 14 randomly-selected samples that the critical-current values were uniform and consistent: the non-copper critical-current density was approximately 700 A/mm{sup 2} at 10 T and 4.2 K in agreement with expectations. A 27-strand cable-in-conduit conductor (CICC) using the low-thermal-coefficient-of-expansion superalloy Incoloy 905 yielded a critical current 5--7% below the average value of the single-strand data.

  17. OTEC riser cable model and prototype testing

    NASA Astrophysics Data System (ADS)

    Kurt, J. P.; Schultz, J. A.; Roblee, L. H. S.

    1981-12-01

    Two different OTEC riser cables have been developed to span the distance between a floating OTEC power plant and the ocean floor. The major design concerns for a riser cable in the dynamic OTEC environment are fatigue, corrosion, and electrical/mechanical aging of the cable components. The basic properties of the cable materials were studied through tests on model cables and on samples of cable materials. Full-scale prototype cables were manufactured and were tested to measure their electrical and mechanical properties and performance. The full-scale testing was culminated by the electrical/mechanical fatigue test, which exposes full-scale cables to simultaneous tension, bending and electrical loads, all in a natural seawater environment.

  18. Fibre cables in the lacunae of Typha leaves contribute to a tensegrity structure.

    PubMed

    Witztum, Allan; Wayne, Randy

    2014-04-01

    Cables composed of long, non-lignified fibre cells enclosed in a cover of much shorter thin-walled, crystal-containing cells traverse the air chambers (lacunae) in leaves of the taller species of Typha. The non-lignified fibre cables are anchored in diaphragms composed of stellate cells of aerenchyma tissue that segment the long air chambers into smaller compartments. Although the fibre cables are easily observed and can be pulled free from the porous-to-air diaphragms, their structure and function have been ignored or misinterpreted. Leaves of various species of Typha were dissected and fibre cables were pulled free and observed with a microscope using bright-field and polarizing optics. Maximal tensile strength of freshly removed cables was measured by hanging weights from fibre cables, and Instron analysis was used to produce curves of load versus extension until cables broke. Polarized light microscopy revealed that the cellulose microfibrils that make up the walls of the cable fibres are oriented parallel to the long axis of the fibres. This orientation ensures that the fibre cables are mechanically stiff and strong under tension. Accordingly, the measured stiffness and tensile strength of the fibre cables were in the gigapascal range. In combination with the dorsal and ventral leaf surfaces and partitions that contain lignified fibre bundles and vascular strands that are strong in compression, the very fine fibre cables that are strong under tension form a tensegrity structure. The tensegrity structure creates multiple load paths through which stresses are redistributed throughout the 1-3 m tall upright leaves of Typha angustifolia, T. latifolia, T. × glauca, T. domingensis and T. shuttleworthii. The length of the fibre cables relative to the length of the leaf blades is reduced in the last-formed leaves of flowering individuals. Fibre cables are absent in the shorter leaves of Typha minima and, if present, only extend for a few centimetres from the sheath into the leaf blade of Typha laxmannii. The advantage of the structure of the Typha leaf blade, which enables stiffness to give way to flexibility under windy conditions, is discussed for both vegetative and flowering plants.

  19. Fibre cables in the lacunae of Typha leaves contribute to a tensegrity structure

    PubMed Central

    Witztum, Allan; Wayne, Randy

    2014-01-01

    Background and Aims Cables composed of long, non-lignified fibre cells enclosed in a cover of much shorter thin-walled, crystal-containing cells traverse the air chambers (lacunae) in leaves of the taller species of Typha. The non-lignified fibre cables are anchored in diaphragms composed of stellate cells of aerenchyma tissue that segment the long air chambers into smaller compartments. Although the fibre cables are easily observed and can be pulled free from the porous-to-air diaphragms, their structure and function have been ignored or misinterpreted. Methods Leaves of various species of Typha were dissected and fibre cables were pulled free and observed with a microscope using bright-field and polarizing optics. Maximal tensile strength of freshly removed cables was measured by hanging weights from fibre cables, and Instron analysis was used to produce curves of load versus extension until cables broke. Key Results and Conclusions Polarized light microscopy revealed that the cellulose microfibrils that make up the walls of the cable fibres are oriented parallel to the long axis of the fibres. This orientation ensures that the fibre cables are mechanically stiff and strong under tension. Accordingly, the measured stiffness and tensile strength of the fibre cables were in the gigapascal range. In combination with the dorsal and ventral leaf surfaces and partitions that contain lignified fibre bundles and vascular strands that are strong in compression, the very fine fibre cables that are strong under tension form a tensegrity structure. The tensegrity structure creates multiple load paths through which stresses are redistributed throughout the 1–3 m tall upright leaves of Typha angustifolia, T. latifolia, T. × glauca, T. domingensis and T. shuttleworthii. The length of the fibre cables relative to the length of the leaf blades is reduced in the last-formed leaves of flowering individuals. Fibre cables are absent in the shorter leaves of Typha minima and, if present, only extend for a few centimetres from the sheath into the leaf blade of Typha laxmannii. The advantage of the structure of the Typha leaf blade, which enables stiffness to give way to flexibility under windy conditions, is discussed for both vegetative and flowering plants. PMID:24532647

  20. Effect of Barrel Material on Critical Current Measurements of High-Jc RRP Nb3Sn Wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, A.

    Nb{sub 3}Sn strands extracted from a 20-strand rectangular Rutherford cable were reacted on either stainless steel or Ti-alloy barrels and the critical current, I{sub c}, in the field range of 8-11.5 T was measured on ITER-type barrels made from Ti-6Al-4V alloy, 304 stainless steel and G-10. Measurements on the 'standard' Ti-alloy barrel using the test procedure employed at BNL are shown to reproduce I{sub c} for extracted strands to {+-}2%. The I{sub c} data for the sample mounted on the 'standard' Ti-alloy are fit to the deviatoric strain scaling model developed for Nb{sub 3}Sn by the University of Twente groupmore » using an arbitrary pre-strain. Using the parameters for this fit, the I{sub c} data for the other barrels are fitted by only adjusting the strain. Using this procedure, the strain difference due to the barrel material is determined. Assuming a thermal pre-strain of -0.2% for the sample measured on the Ti-alloy barrel, the use of stainless steel barrel increases the compressive strain by -0.07%, that of G-10 by -0.10%. With the wire soldered to the stainless steel barrel, the strain increases to -0.15%. Details of this study are presented.« less

  1. Experimental investigation of cooling perimeter and disturbance length effect on stability of Nb3Sn cable-in-conduit conductors

    NASA Astrophysics Data System (ADS)

    Armstrong, J. R.

    1992-02-01

    The stability of three coils, with similar parameters besides having differing strand diameters, was investigated experimentally using inductive heaters to input disturbances. One of the coils stability was also tested by doubling the inductive heated disturbance length to 10 cm. By computationally deriving approximate inductive heater input energy at 12 T, stability curves show fair agreement with zero-dimensional and one-dimensional computer predictions. Quench velocity and limiting currents also show good agreement with earlier work. Also, the stability measured on one of the coils below its limiting current by disturbing a 10 cm length of conductor was much less than the same samples stability using a 5 cm disturbance length.

  2. Cable Tester Box

    NASA Technical Reports Server (NTRS)

    Lee, Jason H.

    2011-01-01

    Cables are very important electrical devices that carry power and signals across multiple instruments. Any fault in a cable can easily result in a catastrophic outcome. Therefore, verifying that all cables are built to spec is a very important part of Electrical Integration Procedures. Currently, there are two methods used in lab for verifying cable connectivity. (1) Using a Break-Out Box and an ohmmeter this method is time-consuming but effective for custom cables and (2) Commercial Automated Cable Tester Boxes this method is fast, but to test custom cables often requires pre-programmed configuration files, and cables used on spacecraft are often uniquely designed for specific purposes. The idea is to develop a semi-automatic continuity tester that reduces human effort in cable testing, speeds up the electrical integration process, and ensures system safety. The JPL-Cable Tester Box is developed to check every single possible electrical connection in a cable in parallel. This system indicates connectivity through LED (light emitting diode) circuits. Users can choose to test any pin/shell (test node) with a single push of a button, and any other nodes that are shorted to the test node, even if they are in the same connector, will light up with the test node. The JPL-Cable Tester Boxes offers the following advantages: 1. Easy to use: The architecture is simple enough that it only takes 5 minutes for anyone to learn how operate the Cable Tester Box. No pre-programming and calibration are required, since this box only checks continuity. 2. Fast: The cable tester box checks all the possible electrical connections in parallel at a push of a button. If a cable normally takes half an hour to test, using the Cable Tester Box will improve the speed to as little as 60 seconds to complete. 3. Versatile: Multiple cable tester boxes can be used together. As long as all the boxes share the same electrical potential, any number of connectors can be tested together.

  3. An innovative design for using flexible printed coils for magnetostrictive-based longitudinal guided wave sensors in steel strand inspection

    NASA Astrophysics Data System (ADS)

    Tse, P. W.; Liu, X. C.; Liu, Z. H.; Wu, B.; He, C. F.; Wang, X. J.

    2011-05-01

    Magnetostrictive sensors (MsSs) that can excite and receive guided waves are commonly used in detecting defects that may occur in cables and strands for supporting heavy structures. A conventional MsS has a hard sensing coil that is wound onto a bobbin with electric wires to generate the necessary dynamic magnetic field to excite the desired guided waves. This tailor-made hard coil is usually bulky and is not flexible enough to fit steel strands of various sizes. The conventional MsS also cannot be mounted to any steel strand that does not have a free end to allow the bobbin to pass through the structure of the tested strand. Such inflexibilities limit the use of conventional MsSs in practical situations. To solve these limitations, an innovative type of coil, called a flexible printed coil (FPC), which is made out of flexible printed film, has been designed to replace the inflexible hard coil. The flexible structure of the FPC ensures that the new MsS can be easily installed on and removed from steel strands with different diameters and without free ends. Moreover, the FPC-based MsS can be wrapped into multiple layers due to its thin and flexible design. Although multi-layer FPC creates a minor asymmetry in the dynamic magnetic field, the results of finite element analysis and experiments confirm that the longitudinal guided waves excited by a FPC-based MsS are comparable to those excited by a conventional hard coil MsS. No significant reduction in defect inspection performance was found; in fact, further advantages were identified when using the FPC-based MsS. When acting as the transmitter, the innovative FPC-based MsS can cover a longer inspection length of strand. When acting as the receiver, the FPC-based MsS is more sensitive to smaller defects that are impossible to detect using a hard coil MsS. Hence, the multi-layer FPC-based MsS has great potential for replacing the conventional hard coil MsS because of its convenient installation, and ease of fitting to different strand diameters; it is smaller, and, most importantly, performs much better in strand defect detection.

  4. Commercialization of Medium Voltage HTS Triax TM Cable Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoll, David

    2012-12-31

    The original project scope that was established in 2007 aimed to install a 1,700 meter (1.1 mile) medium voltage HTS Triax{TM} cable system into the utility grid in New Orleans, LA. In 2010, however, the utility partner withdrew from the project, so the 1,700 meter cable installation was cancelled and the scope of work was reduced. The work then concentrated on the specific barriers to commercialization of HTS cable technology. The modified scope included long-length HTS cable design and testing, high voltage factory test development, optimized cooling system development, and HTS cable life-cycle analysis. In 2012, Southwire again analyzed themore » market for HTS cables and deemed the near term market acceptance to be low. The scope of work was further reduced to the completion of tasks already started and to testing of the existing HTS cable system in Columbus, OH. The work completed under the project included: • Long-length cable modeling and analysis • HTS wire evaluation and testing • Cable testing for AC losses • Optimized cooling system design • Life cycle testing of the HTS cable in Columbus, OH • Project management. The 200 meter long HTS Triax{TM} cable in Columbus, OH was incorporated into the project under the initial scope changes as a test bed for life cycle testing as well as the site for an optimized HTS cable cooling system. The Columbus cable utilizes the HTS TriaxTM design, so it provided an economical tool for these of the project tasks.« less

  5. Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Li, Yingxu; Gao, Yuanwen

    2016-01-01

    The superconducting strand, serving as the basic unit cell of the cable-in-conduit-conductors (CICCs), is a typical multi-filament twist composite which is always subjected to a cyclic loading under the operating condition. Meanwhile, the superconducting material Nb3Sn in the strand is sensitive to strain frequently relating to the performance degradation of the superconductivity. Therefore, a comprehensive study on the mechanical behavior of the strand helps understanding the superconducting performance of the strained Nb3Sn strands. To address this issue, taking the LMI (internal tin) strand as an example, a three-dimensional structural finite element model, named as the Multi-filament twist model, of the strand with the real configuration of the LMI strand is built to study the influences of the plasticity of the component materials, the twist of the filament bundle, the initial thermal residual stress and the breakage and its evolution of the filaments on the mechanical behaviors of the strand. The effective properties of superconducting filament bundle with random filament breakage and its evolution versus strain are obtained based on the damage theory of fiber-reinforced composite materials proposed by Curtin and Zhou. From the calculation results of this model, we find that the occurrence of the hysteresis loop in the cyclic loading curve is determined by the reverse yielding of the elastic-plastic materials in the strand. Both the initial thermal residual stress in the strand and the pitch length of the filaments have significant impacts on the axial and hysteretic behaviors of the strand. The damage of the filaments also affects the axial mechanical behavior of the strand remarkably at large axial strain. The critical current of the strand is calculated by the scaling law with the results of the Multi-filament twist model. The predicted results of the Multi-filament twist model show an acceptable agreement with the experiment.

  6. Structural health monitoring for DOT using magnetic shape memory alloy cables in concrete

    NASA Astrophysics Data System (ADS)

    Davis, Allen; Mirsayar, Mirmilad; Sheahan, Emery; Hartl, Darren

    2018-03-01

    Embedding shape memory alloy (SMA) wires in concrete components offers the potential to monitor their structural health via external magnetic field sensing. Currently, structural health monitoring (SHM) is dominated by acoustic emission and vibration-based methods. Thus, it is attractive to pursue alternative damage sensing techniques that may lower the cost or increase the accuracy of SHM. In this work, SHM via magnetic field detection applied to embedded magnetic shape memory alloy (MSMA) is demonstrated both experimentally and using computational models. A concrete beam containing iron-based MSMA wire is subjected to a 3-point bend test where structural damage is induced, thereby resulting in a localized phase change of the MSMA wire. Magnetic field lines passing through the embedded MSMA domain are altered by this phase change and can thus be used to detect damage within the structure. A good correlation is observed between the computational and experimental results. Additionally, the implementation of stranded MSMA cables in place of the MSMA wire is assessed through similar computational models. The combination of these computational models and their subsequent experimental validation provide sufficient support for the feasibility of SHM using magnetic field sensing via MSMA embedded components.

  7. Contact force and mechanical loss of multistage cable under tension and bending

    NASA Astrophysics Data System (ADS)

    Ru, Yanyun; Yong, Huadong; Zhou, Youhe

    2016-10-01

    A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is complicated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.

  8. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of electric... a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and a relative humidity of 55 ±10...

  9. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of electric... a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and a relative humidity of 55 ±10...

  10. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of electric... a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and a relative humidity of 55 ±10...

  11. 30 CFR 7.408 - Test for flame resistance of signaling cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for flame resistance of signaling cables..., Signaling Cables, and Cable Splice Kits § 7.408 Test for flame resistance of signaling cables. (a) Test... specimen for a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and relative humidity of 55...

  12. 30 CFR 7.408 - Test for flame resistance of signaling cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test for flame resistance of signaling cables..., Signaling Cables, and Cable Splice Kits § 7.408 Test for flame resistance of signaling cables. (a) Test... specimen for a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and relative humidity of 55...

  13. 30 CFR 7.408 - Test for flame resistance of signaling cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test for flame resistance of signaling cables..., Signaling Cables, and Cable Splice Kits § 7.408 Test for flame resistance of signaling cables. (a) Test... specimen for a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and relative humidity of 55...

  14. 30 CFR 7.408 - Test for flame resistance of signaling cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test for flame resistance of signaling cables..., Signaling Cables, and Cable Splice Kits § 7.408 Test for flame resistance of signaling cables. (a) Test... specimen for a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and relative humidity of 55...

  15. 30 CFR 7.408 - Test for flame resistance of signaling cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test for flame resistance of signaling cables..., Signaling Cables, and Cable Splice Kits § 7.408 Test for flame resistance of signaling cables. (a) Test... specimen for a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and relative humidity of 55...

  16. Aging, Loss-of-Coolant Accident (LOCA), and high potential testing of damaged cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, R.A.; Jacobus, M.J.

    1994-04-01

    Experiments were conducted to assess the effects of high potential testing of cables and to assess the survivability of aged and damaged cables under Loss-of-Coolant Accident (LOCA) conditions. High potential testing at 240 Vdc/mil on undamaged cables suggested that no damage was incurred on the selected virgin cables. During aging and LOCA testing, Okonite ethylene propylene rubber (EPR) cables with a bonded jacket experienced unexpected failures. The failures appear to be primarily related to the level of thermal aging and the presence of a bonded jacket that ages more rapidly than the insulation. For Brand Rex crosslinked polyolefin (XLPO) cables,more » the results suggest that 7 mils of insulation remaining should give the cables a high probability of surviving accident exposure following aging. The voltage necessary to detect when 7 mils of insulation remain on unaged Brand Rex cables is approximately 35 kVdc. This voltage level would almost certainly be unacceptable to a utility for use as a damage assessment tool. However, additional tests indicated that a 35 kvdc voltage application would not damage virgin Brand Rex cables when tested in water. Although two damaged Rockbestos silicone rubber cables also failed during the accident test, no correlation between failures and level of damage was apparent.« less

  17. Development of external cooling cryo-resistive cable systems. Part 2: Insulation characteristics on 66 kV rated cryo-resistive testing cable

    NASA Astrophysics Data System (ADS)

    Ishihara, Kaoru; Akita, Shige; Suzuki, Hiroshi; Ogata, Junichi; Nemoto, Minoru

    1987-08-01

    Cryo-resistive cable system was tested to demonstrate dielectric characteristics. Dielectric characteristics of 66kV cryo-resistive cable at the start of immersion cooling in the liquid nitrogen were 2.25 specific dielectric constant and 0.18 percent dielectric loss which was less than 0.4 percent , the aimed value. Electrostatic capacity and dielectric loss tangent of dielectric characteristics under the applied voltage did not depend on the voltage and the dielectric loss was less than 0.4 percent through the temperature range from -170 to -190C. These values fulfilled the specifications on 275kV class cryo-resistive cable design. The tested cable passed the cable test on 66kV oil-filled cable (ac 90kV, 10 min), but broken down at ac 110kV on the way to endurance testing voltage 130kV. The breakdown occurred due to the mechanical damage of cable insulator by bending and thermal contraction of the cable. It is necessary from these facts to develop flexible cable terminal and joint which can absorb the contraction to realize 275kV cryo-resistive cable. (19 figs, 7 tabs, 15 refs).

  18. Overhead tray for cable test system

    NASA Technical Reports Server (NTRS)

    Saltz, K. T.

    1976-01-01

    System consists of overhead slotted tray, series of compatible adapter cables, and automatic test set which consists of control console and cable-switching console. System reduces hookup time and also reduces cost of fabricating and storing test cables.

  19. Response of Nuclear Power Plant Instrumentation Cables Exposed to Fire Conditions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muna, Alice Baca; LaFleur, Chris Bensdotter; Brooks, Dusty Marie

    This report presents the results of instrumentation cable tests sponsored by the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research and performed at Sandia National Laboratories (SNL). The goal of the tests was to assess thermal and electrical response behavior under fire-exposure conditions for instrumentation cables and circuits. The test objective was to assess how severe radiant heating conditions surrounding an instrumentation cable affect current or voltage signals in an instrumentation circuit. A total of thirty-nine small-scale tests were conducted. Ten different instrumentation cables were tested, ranging from one conductor to eight-twisted pairs. Because the focus of themore » tests was thermoset (TS) cables, only two of the ten cables had thermoplastic (TP) insulation and jacket material and the remaining eight cables were one of three different TS insulation and jacket material. Two instrumentation cables from previous cable fire testing were included, one TS and one TP. Three test circuits were used to simulate instrumentation circuits present in nuclear power plants: a 4–20 mA current loop, a 10–50 mA current loop and a 1–5 VDC voltage loop. A regression analysis was conducted to determine key variables affecting signal leakage time.« less

  20. Challenges and status of ITER conductor production

    NASA Astrophysics Data System (ADS)

    Devred, A.; Backbier, I.; Bessette, D.; Bevillard, G.; Gardner, M.; Jong, C.; Lillaz, F.; Mitchell, N.; Romano, G.; Vostner, A.

    2014-04-01

    Taking the relay of the large Hadron collider (LHC) at CERN, ITER has become the largest project in applied superconductivity. In addition to its technical complexity, ITER is also a management challenge as it relies on an unprecedented collaboration of seven partners, representing more than half of the world population, who provide 90% of the components as in-kind contributions. The ITER magnet system is one of the most sophisticated superconducting magnet systems ever designed, with an enormous stored energy of 51 GJ. It involves six of the ITER partners. The coils are wound from cable-in-conduit conductors (CICCs) made up of superconducting and copper strands assembled into a multistage cable, inserted into a conduit of butt-welded austenitic steel tubes. The conductors for the toroidal field (TF) and central solenoid (CS) coils require about 600 t of Nb3Sn strands while the poloidal field (PF) and correction coil (CC) and busbar conductors need around 275 t of Nb-Ti strands. The required amount of Nb3Sn strands far exceeds pre-existing industrial capacity and has called for a significant worldwide production scale up. The TF conductors are the first ITER components to be mass produced and are more than 50% complete. During its life time, the CS coil will have to sustain several tens of thousands of electromagnetic (EM) cycles to high current and field conditions, way beyond anything a large Nb3Sn coil has ever experienced. Following a comprehensive R&D program, a technical solution has been found for the CS conductor, which ensures stable performance versus EM and thermal cycling. Productions of PF, CC and busbar conductors are also underway. After an introduction to the ITER project and magnet system, we describe the ITER conductor procurements and the quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers. Then, we provide examples of technical challenges that have been encountered and we present the status of ITER conductor production worldwide.

  1. Test plan and report for Space Shuttle launch environment testing of Bergen cable technology safety cable

    NASA Technical Reports Server (NTRS)

    Ralph, John

    1992-01-01

    Bergen Cable Technology (BCT) has introduced a new product they refer to as 'safety cable'. This product is intended as a replacement for lockwire when installed per Aerospace Standard (AS) 4536 (included in Appendix D of this document). Installation of safety cable is reportedly faster and more uniform than lockwire. NASA/GSFC proposes to use this safety cable in Shuttle Small Payloads Project (SSPP) applications on upcoming Shuttle missions. To assure that BCT safety cable will provide positive locking of fasteners equivalent to lockwire, the SSPP will conduct vibration and pull tests of the safety cable.

  2. Experimental Measurements and Comparison of Cable Performance for Mine Hunting Applications

    NASA Astrophysics Data System (ADS)

    Mangum, Katherine

    2005-11-01

    The Naval Surface Warfare Center (NSWCCD) conducted testing of multiple faired synthetic cables in the High Speed Basin in April, 2005. The objective of the test was to determine the hydrodynamic characteristics of bare cables, ribbon faired cables, and cables with extruded plastic ``strakes.'' Faired cables are used to gain on-station time and improve performance of the MH-60 Helicopter when towing mine hunting vehicles. Drag and strum were compared for all cases. Strum was quantified by computing standard deviations of lateral cable acceleration amplitudes. Drag coefficients were calculated using cable tension and angle readings. While the straked cables strummed less than the bare synthetic cable, they did not reduce strum levels as well as ribbon fairing at steep cable angles for speeds of 10, 15, 20 and 25 knots. The drag coefficient of the straked cables was calculated to be higher than that of a bare cable, although further testing is needed to determine an exact number.

  3. Bulk Electrical Cable Non-Destructive Examination Methods for Nuclear Power Plant Cable Aging Management Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Jones, Anthony M.; Fifield, Leonard S.

    This Pacific Northwest National Laboratory milestone report describes progress to date on the investigation of nondestructive test methods focusing particularly on bulk electrical test methods that provide key indicators of cable aging and damage. The work includes a review of relevant literature as well as hands-on experimental verification of inspection capabilities. As nuclear power plants consider applying for second, or subsequent, license renewal to extend their operating period from 60 years to 80 years, it is important to understand how the materials installed in plant systems and components will age during that time and develop aging management programs to assuremore » continued safe operation under normal and design basis events (DBE). Normal component and system tests typically confirm the cables can perform their normal operational function. The focus of the cable test program, however, is directed toward the more demanding challenge of assuring the cable function under accident or DBE. The industry has adopted 50% elongation at break (EAB) relative to the un-aged cable condition as the acceptability standard. All tests are benchmarked against the cable EAB test. EAB, however, is a destructive test so the test programs must apply an array of other nondestructive examination (NDE) tests to assure or infer the overall set of cable’s system integrity. Assessment of cable integrity is further complicated in many cases by vendor’s use of dissimilar material for jacket and insulation. Frequently the jacket will degrade more rapidly than the underlying insulation. Although this can serve as an early alert to cable damage, direct test of the cable insulation without violating the protective jacket becomes problematic. This report addresses the range of bulk electrical NDE cable tests that are or could be practically implemented in a field-test situation with a particular focus on frequency domain reflectometry (FDR). The FDR test method offers numerous advantages over many other bulk electrical tests. Two commercial FDR systems plus a laboratory vector network analyzer are used to test an array of aged and un-aged cables under identical conditions. Several conclusions are set forth, and a number of knowledge gaps are identified.« less

  4. Cable coupling lightning transient qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of instrumentation cabling on the redesigned solid rocket motor was performed. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of instrumentation cable transients on cables within the system tunnel. The maximum short-circuit current induced onto a United Space Boosters, Inc., operational flight cable within the systems tunnel was 92 A, and the maximum induced open-circuit voltage was 316 V. These levels were extrapolated to the worst-case (200 kA) condition of NASA specification NSTS 07636 and were also scaled to full-scale redesigned solid rocket motor dimensions. Testing showed that voltage coupling to cables within the systems tunnel can be reduced 40 to 90 dB and that current coupling to cables within the systems tunnel can be reduced 30 to 70 dB with the use of braided metallic sock shields around cables that are external to the systems tunnel. Testing also showed that current and voltage levels induced onto cables within the systems tunnel are partially dependant on the cables' relative locations within the systems tunnel. Results of current injections to the systems tunnel indicate that the dominant coupling mode on cables within the systems tunnel is not from instrumentation cables but from coupling through the systems tunnel cover seam apertures. It is recommended that methods of improving the electrical bonding between individual sections of the systems tunnel covers be evaluated. Further testing to better characterize redesigned solid rocket motor cable coupling effects as an aid in developing methods to reduce coupling levels, particularly with respect to cable placement within the systems tunnel, is also recommended.

  5. A biomechanical analysis of sublaminar and subtransverse process fixation using metal wires and polyethylene cables.

    PubMed

    Fujita, Masaru; Diab, Mohammad; Xu, Zheng; Puttlitz, Christian M

    2006-09-01

    An in vitro biomechanical calf thoracic spine study. To evaluate the biomechanical stability of sublaminar and subtransverse process fixation using stainless steel wires and ultra-high molecular weight polyethylene (UHMWPE) cables. It is commonly held that transverse process fixation provides less stability than sublaminar fixation. To our knowledge, this is the first biomechanical study to compare the stability afforded by sublaminar fixation and subtransverse process fixation using metal wire and UHMWPE cable before and after cyclic loading. There were 6 fresh-frozen calf thoracic spines (T4-T9) used to determine the sublaminar fixation stiffness and subtransverse process fixation stiffness in each group. Double strands of 18-gauge stainless steel wire, 3 and 5 mm-width UHMWPE cable (Nesplon; Alfresa, Inc., Osaka, Japan) were applied to each spine. Cyclic pure flexion-extension moment loading (2 Nm, 0.5 Hz, 5000 cycles) was applied after the initial stability was analyzed by measuring the range of motion. Statistical analyses were used to delineate differences between the various experimental groups. Subtransverse process wiring was more stable than sublaminar wiring after cyclic loading in flexion-extension (P < 0.05). There were no significant differences between each group in lateral bending and axial rotation after cyclic loading. Sublaminar stainless steel wiring was more stable than sublaminar 3 and 5-mm cable before and after cyclic loading in axial rotation (P < 0.01). Acute subtransverse process fixation using 3-mm cable was less stable after cyclic loading in axial rotation (P < 0.05). All other groups did not produce statistically significant differences. Subtransverse process fixation provides at least as much stability as sublaminar fixation. A 5-mm UHMWPE cable and stainless steel wire result in equivalent sublaminar and subtransverse process stability.

  6. Apparatus producing constant cable tension for intermittent demand

    DOEpatents

    Lauritzen, Ted

    1985-01-01

    The disclosed apparatus produces constant tension in superconducting electrical cable, or some other strand, under conditions of intermittent demand, as the cable is unreeled from a reel or reeled thereon. The apparatus comprises a pivotally supported swing frame on which the reel is rotatably supported, a rotary motor, a drive train connected between the motor and the reel and including an electrically controllable variable torque slip clutch, a servo transducer connected to the swing frame for producing servo input signals corresponding to the position thereof, a servo control system connected between the transducer and the clutch for regulating the torque transmitted by the clutch to maintain the swing frame in a predetermined position, at least one air cylinder connected to the swing frame for counteracting the tension in the cable, and pressure regulating means for supplying a constant air pressure to the cylinder to establish the constant tension in the cable, the servo system and the clutch being effective to produce torque on the reel in an amount sufficient to provide tension in the cable corresponding to the constant force exerted by the air cylinder. The drive train also preferably includes a fail-safe brake operable to its released position by electrical power in common with the servo system, for preventing rotation of the reel if there is a power failure. A shock absorber and biasing springs may also be connected to the swing frame, such springs biasing the frame toward its predetermined position. The tension in the cable may be measured by force measuring devices engageable with the bearings for the reel shaft, such bearings being supported for slight lateral movement. The reel shaft is driven by a Shmidt coupler which accommodates such movement.

  7. Hypervelocity impact testing of cables

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Adkinson, A. B.; English, J. E.; Linebaugh, C. E.

    1973-01-01

    The physics and electrical results obtained from simulated micrometeoroid testing of certain Skylab cables are presented. The test procedure, electrical circuits, test equipment, and cable types utilized are also explained.

  8. 49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Insulation resistance tests, wires in trunking and... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables, except wires connected directly to track rails, shall be tested when wires, cables, and insulation are...

  9. 49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Insulation resistance tests, wires in trunking and... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables, except wires connected directly to track rails, shall be tested when wires, cables, and insulation are...

  10. Non-Intrusive Cable Tester

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor)

    1999-01-01

    A cable tester is described for low frequency testing of a cable for faults. The tester allows for testing a cable beyond a point where a signal conditioner is installed, minimizing the number of connections which have to be disconnected. A magnetic pickup coil is described for detecting a test signal injected into the cable. A narrow bandpass filter is described for increasing detection of the test signal. The bandpass filter reduces noise so that a high gain amplifier provided for detecting a test signal is not completely saturate by noise. To further increase the accuracy of the cable tester, processing gain is achieved by comparing the signal from the amplifier with at least one reference signal emulating the low frequency input signal injected into the cable. Different processing techniques are described evaluating a detected signal.

  11. Light Water Reactor Sustainability Program: Evaluation of Localized Cable Test Methods for Nuclear Power Plant Cable Aging Management Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Fifield, Leonard S.; Hartman, Trenton S.

    This Pacific Northwest National Laboratory (PNNL) milestone report describes progress to date on the investigation of nondestructive test (NDE) methods focusing particularly on local measurements that provide key indicators of cable aging and damage. The work includes a review of relevant literature as well as hands-on experimental verification of inspection capabilities. As NPPs consider applying for second, or subsequent, license renewal (SLR) to extend their operating period from 60 years to 80 years, it important to understand how the materials installed in plant systems and components will age during that time and develop aging management programs (AMPs) to assure continuedmore » safe operation under normal and design basis events (DBE). Normal component and system tests typically confirm the cables can perform their normal operational function. The focus of the cable test program is directed toward the more demanding challenge of assuring the cable function under accident or DBE. Most utilities already have a program associated with their first life extension from 40 to 60 years. Regrettably, there is neither a clear guideline nor a single NDE that can assure cable function and integrity for all cables. Thankfully, however, practical implementation of a broad range of tests allows utilities to develop a practical program that assures cable function to a high degree. The industry has adopted 50% elongation at break (EAB) relative to the un-aged cable condition as the acceptability standard. All tests are benchmarked against the cable EAB test. EAB is a destructive test so the test programs must apply an array of other NDE tests to assure or infer the overall set of cable’s system integrity. These cable NDE programs vary in rigor and methodology. As the industry gains experience with the efficacy of these programs, it is expected that implementation practice will converge to a more common approach. This report addresses the range of local NDE cable tests that are or could be practically implemented in a field test situation. These tests include: visual, infrared thermography, interdigital capacitance, indenter, relaxation time indenter, dynamic mechanical analyzer, infrared/near-infrared spectrometry, ultrasound, and distributed fiber optic temperature measurement.« less

  12. Assessment of NDE for key indicators of aging cables in nuclear power plants - Interim status

    NASA Astrophysics Data System (ADS)

    Glass, S. W.; Ramuhalli, P.; Fifield, L. S.; Prowant, M. S.; Dib, G.; Tedeschi, J. R.; Suter, J. D.; Jones, A. M.; Good, M. S.; Pardini, A. F.; Hartman, T. S.

    2016-02-01

    Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. System tests verify cable function under normal loads; however, the concern is over cable performance under exceptional loads associated with design-basis events (DBEs). The cable's ability to perform safely over the initial 40-year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found in an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program to justify cable performance under normal operation as well as accident conditions. Currently the gold standard for determining cable insulation degradation is the elongation-at-break (EAB). This, however, is an ex-situ measurement and requires removal of a sample for laboratory investigation. A reliable nondestructive examination (NDE) in-situ approach is desirable to objectively determine the suitability of the cable for service. A variety of tests are available to assess various aspects of electrical and mechanical cable performance, but none of these tests are suitable for all cable configurations nor does any single test confirm all features of interest. Nevertheless, the complete collection of test possibilities offers a powerful range of tools to assure the integrity of critical cables. Licensees and regulators have settled on a practical program to justify continued operation based on condition monitoring of a lead sample set of cables where test data is tracked in a database and the required test data are continually adjusted based on plant and fleet-wide experience. As part of the Light Water Reactor Sustainability program sponsored by the U.S. Nuclear Regulatory Commission, the U.S. Department of Energy, and industry (represented by the Electric Power Research Institute), an assessment of cable NDE methods was commissioned. Technologies include both bulk electrical measurements (Tan δ, time domain reflectometry, frequency domain reflectometry (FDR), partial discharge, and other techniques) and local insulation measurement (indenter, dynamic mechanical analysis interdigital capacitance, infrared spectral measurement, etc.). This aging cable NDE program update reviews the full range of techniques but focuses on the most interesting test approaches that have a chance to be deployed in-situ, particularly including Tan δ, FDR, and ultrasound methods that have been reviewed most completely in this progress period.

  13. The effective resistance between twisted superconducting filaments in tapes

    NASA Astrophysics Data System (ADS)

    Takács, S.; Iwakuma, M.; Funaki, K.

    2001-05-01

    We consider two mechanisms, which influence the effective resistance between crossing strands on flat cables or filaments in twisted tapes. The one-layer classical Rutherford-type cable and the tapes with twisted BSCCO filaments in silver matrix are taken as analogous cases. The amount of the matrix between strands or filaments increases the effective conductance compared with the direct current paths (determined by the touching area of the filaments). The increase factor is about two and can easily be suppressed by other effects, like the contact resistance between the superconductor and the matrix. The second mechanism is due to the existence of induced voltage between any points of crossing filaments. This leads to an additional effective conductance, proportional to the square of the total number of filaments. Both effects are not very important for isotropic superconductors, but due to the strong anisotropy of critical parameters they can dominate for high temperature superconductors. The first one may partially compensate the influence of the usually weaker critical current density perpendicular to the tape. The contribution due to the second effect can explain the higher resistivity of the matrix in BSCCO tapes compared with pure silver. It seems that to obtain low AC coupling losses in BSCCO tapes, structures with small filament number are required.

  14. Molecular Regulation of DNA Damage-Induced Apoptosis in Neurons of Cerebral Cortex

    PubMed Central

    Liu, Zhiping; Pipino, Jacqueline; Chestnut, Barry; Landek, Melissa A.

    2009-01-01

    Cerebral cortical neuron degeneration occurs in brain disorders manifesting throughout life, but the mechanisms are understood poorly. We used cultured embryonic mouse cortical neurons and an in vivo mouse model to study mechanisms of DNA damaged-induced apoptosis in immature and differentiated neurons. p53 drives apoptosis of immature and differentiated cortical neurons through its rapid and prominent activation stimulated by DNA strand breaks induced by topoisomerase-I and -II inhibition. Blocking p53-DNA transactivation with α-pifithrin protects immature neurons; blocking p53-mitochondrial functions with μ-pifithrin protects differentiated neurons. Mitochondrial death proteins are upregulated in apoptotic immature and differentiated neurons and have nonredundant proapoptotic functions; Bak is more dominant than Bax in differentiated neurons. p53 phosphorylation is mediated by ataxia telangiectasia mutated (ATM) kinase. ATM inactivation is antiapoptotic, particularly in differentiated neurons, whereas inhibition of c-Abl protects immature neurons but not differentiated neurons. Cell death protein expression patterns in mouse forebrain are mostly similar to cultured neurons. DNA damage induces prominent p53 activation and apoptosis in cerebral cortex in vivo. Thus, DNA strand breaks in cortical neurons induce rapid p53-mediated apoptosis through actions of upstream ATM and c-Abl kinases and downstream mitochondrial death proteins. This molecular network operates through variations depending on neuron maturity. PMID:18820287

  15. Vibration Testing of Electrical Cables to Quantify Loads at Tie-Down Locations

    NASA Technical Reports Server (NTRS)

    Dutson, Joseph D.

    2013-01-01

    The standard method for defining static equivalent structural load factors for components is based on Mile s equation. Unless test data is available, 5% critical damping is assumed for all components when calculating loads. Application of this method to electrical cable tie-down hardware often results in high loads, which often exceed the capability of typical tie-down options such as cable ties and P-clamps. Random vibration testing of electrical cables was used to better understand the factors that influence component loads: natural frequency, damping, and mass participation. An initial round of vibration testing successfully identified variables of interest, checked out the test fixture and instrumentation, and provided justification for removing some conservatism in the standard method. Additional testing is planned that will include a larger range of cable sizes for the most significant contributors to load as variables to further refine loads at cable tie-down points. Completed testing has provided justification to reduce loads at cable tie-downs by 45% with additional refinement based on measured cable natural frequencies.

  16. Environmental testing and laser transmission results for ruggedized high power IR fiber cables

    NASA Astrophysics Data System (ADS)

    Busse, Lynda; Kung, Frederic; Florea, Catalin; Shaw, Brandon; Aggarwal, Ishwar; Sanghera, Jas

    2013-03-01

    We present successful results of high mid-IR laser power transmission as well as MIL-SPEC environmental testing (thermal cycling and vibration testing) of ruggedized, IR-transmitting chalcogenide glass fiber cables. The cables tested included chalcogenide fiber cables with endfaces imprinted with anti-reflective "moth eye" surfaces, whereby the reflection loss is reduced from about 17% per end to less than 3%. The cables with these moth eye surfaces also show excellent laser damage resistance.

  17. Frequency domain reflectometry NDE for aging cables in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Glass, S. W.; Jones, A. M.; Fifield, L. S.; Hartman, T. S.

    2017-02-01

    Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. Although system tests verify cable function under normal loads, demonstration of some cable's ability to perform under exceptional loads associated with design-basis events is essential to assuring plant integrity. The cable's ability to perform safely over the initial 40-year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found in an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program that includes condition monitoring to justify cable performance under normal operation as well as accident conditions. A variety of tests are available to assess various aspects of electrical and mechanical cable performance, but none are suitable for all cable configurations nor does any single test confirm all features of interest. One particularly promising test that is beginning to be used more and more by utilities is frequency domain reflectometry (FDR). FDR is a nondestructive electrical inspection technique used to detect and localize faults in power and communication system conductors along the length of a cable from a single connection point. FDR detects discontinuities in the electrical impedance that arise due to cable splices or similar changes along the path of the conductor pair. In addition, FDR has the potential to provide sensitivity to insulation degradation by detecting small changes in impedance between the cable conductors being examined. The technique is also sensitive to cable bends, the particular lay of the cable in tray, proximity to other cable, and other factors that bear consideration when interpreting the test results. This paper examines various influences on the FDR approach and compares results of three different instruments to assess accelerated aging damage among several NPP representative cables.

  18. JPS heater and sensor lightning qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.

  19. Testing of a 1.25-m HTS Cable Made from YBCO Tapes

    NASA Astrophysics Data System (ADS)

    Gouge, M. J.; Lue, J. W.; Demko, J. A.; Duckworth, R. C.; Fisher, P. W.; Daumling, M.; Lindsay, D. T.; Roden, M. L.; Tolbert, J. C.

    2004-06-01

    Ultera and Oak Ridge National Laboratory (ORNL) have jointly designed, built, and tested a 1.25-m-long, prototype high-temperature superconducting (HTS) power cable made from 1-cm-wide, second-generation YBa2Cu3Ox (YBCO)-coated conductor tapes. Electrical tests of this cable were performed in boiling liquid nitrogen at 77 K. DC testing of the 1.25-m cable included determination of the V-I curve, with a critical current of 4200 A. This was consistent with the properties of the 24 individual YBCO tapes. AC testing of the cable was conducted at currents up to 2500 Arms. The ac losses were measured calorimetrically by measuring the response of a calibrated temperature sensor placed on the former and electrically by use of a Rogowski coil with a lock-in amplifier. AC losses of about 2 W/m were measured at a cable ac current of 2000 Arms. Overcurrent testing was conducted at peak current values up to 12 kA for pulse lengths of 0.1-0.2 s. The cable temperature increased to 105 K for a 12 kA, 0.2 s overcurrent pulse, and the cable showed no degradation after the sequence of overcurrent testing. This commercial-grade HTS cable demonstrated the feasibility of second-generation YBCO tapes in an ac cable application.

  20. The biomechanical analysis of sublaminar wires and cables using luque segmental spinal instrumentation.

    PubMed

    Parsons, J R; Chokshi, B V; Lee, C K; Gundlapalli, R V; Stamer, D

    1997-02-01

    Data was gathered from biomechanical testing of 10 thoracic human cadaveric spines. Spines were tested intact and with a Luque rectangle fixed with wire or cable. To compare the rigidity of fixation and intraspinal penetration of sublaminar monofilament wire and multistrand cable under identical conditions using human cadaveric spines. Reports of neurologic and mechanical complications associated with sublaminar wiring techniques have led to the recent development of more flexible multistrand cable systems. The relative performance of flexible cable versus monofilament wire has not been explored fully in a controlled mechanical environment. A servohydraulic mechanical testing machine was used to measure the static mechanical stiffness of sublaminar wire or cable fixation in conjunction with a Luque rectangle for thoracic human cadaveric spine segments in flexion-extension and torsion modes. Cyclic testing was performed in the flexion-extension mode. Intraspinal penetration of wires and cables was measured. Spine fixation with sublaminar wire and cable resulted in constructs of equal stiffness in flexion-extension and torsion modes. Cyclic testing also indicated similar fatigue profiles for wire- and cable-instrumented spines. Wire and cable fixed spines displayed greater stiffness than the intact spines. Cable encroachment of the spinal canal was less than that seen with wire. Sublaminar multistrand cable may be a rational alternative to monofilament wire in segmental spinal instrumentation because it provides less encroachment into the spinal canal. Further, cadaveric spines instrumented with wire and cable display equivalent mechanical behavior, statically and under cyclic loading. The potential advantages of cable, however, must be balanced against a substantial increase in cost relative to wire.

  1. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Working near the top of a solid rocket booster, NASA and United Space Alliance SRB technicians hook up SRB cables to a CIRRUS computer for testing. From left are Jim Glass, with USA, performing a Flex test on the cable; Steve Swichkow, with NASA, and Jim Silviano, with USA, check the results on a computer. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  2. 14 CFR Appendix F to Part 23 - Test Procedure

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... materials used in electrical wire and cable insulation and in small parts, materials must be tested either... wire and cable insulation, the wire and cable specimens must be the same size as used in the airplane... specification (make and size) must be tested. The specimen of wire or cable (including insulation) must be...

  3. Stability analysis of an F/A-18 E/F cable mount m odel

    NASA Technical Reports Server (NTRS)

    Thompson, Nancy; Farmer, Moses

    1994-01-01

    A full-span F/A-18 E/F cable mounted wind tunnel model is part of a flutter clearance program at the NASA Langley Transonic Dynamics Tunnel. Parametric analysis of this model using GRUMCBL software was conducted to assess stability for wind tunnel tests. Two configurations of the F/A-18 E/F were examined. The parameters examined were pulley-cable friction, mach number, dynamic pressure, cable geometry, center of gravity location, cable tension, snubbing the model, drag, and test medium. For the nominal cable geometry (Cable Geometry 1), Configuration One was unstable for cases with higher pulley-cable friction coefficients. A new cable geometry (Cable Geometry 3) was determined in which Configuration One was stable for all cases evaluated. Configuration Two with the nominal center of gravity position was found to be unstable for cases with higher pulley-cable friction coefficients; however, the model was stable when the center of gravity moved forward 1/2. The model was tested using the cable mount system during the initial wind tunnel entry and was stable as predicted.

  4. Electro-Optic Fabrics for the Warrior of the 21st Century - Phase II

    DTIC Science & Technology

    2010-01-01

    46 28. Effect of 1000 cycles of hex- abrasion testing on Fire Wire cable .................................... 46 UNCLASSIFIED vi 29. Close...49 32. Effect of 2000 cycles of hex- abrasion testing on Fire Wire cable .................................... 49 33. Effect of 4000 cycles of...hex- abrasion testing on Fire Wire cable .................................... 50 34. Effect of 2000 cycles of hex- abrasion testing on USB v2 cable

  5. Filament structure, organization, and dynamics in MreB sheets.

    PubMed

    Popp, David; Narita, Akihiro; Maeda, Kayo; Fujisawa, Tetsuro; Ghoshdastider, Umesh; Iwasa, Mitsusada; Maéda, Yuichiro; Robinson, Robert C

    2010-05-21

    In vivo fluorescence microscopy studies of bacterial cells have shown that the bacterial shape-determining protein and actin homolog, MreB, forms cable-like structures that spiral around the periphery of the cell. The molecular structure of these cables has yet to be established. Here we show by electron microscopy that Thermatoga maritime MreB forms complex, several mum long multilayered sheets consisting of diagonally interwoven filaments in the presence of either ATP or GTP. This architecture, in agreement with recent rheological measurements on MreB cables, may have superior mechanical properties and could be an important feature for maintaining bacterial cell shape. MreB polymers within the sheets appear to be single-stranded helical filaments rather than the linear protofilaments found in the MreB crystal structure. Sheet assembly occurs over a wide range of pH, ionic strength, and temperature. Polymerization kinetics are consistent with a cooperative assembly mechanism requiring only two steps: monomer activation followed by elongation. Steady-state TIRF microscopy studies of MreB suggest filament treadmilling while high pressure small angle x-ray scattering measurements indicate that the stability of MreB polymers is similar to that of F-actin filaments. In the presence of ADP or GDP, long, thin cables formed in which MreB was arranged in parallel as linear protofilaments. This suggests that the bacterial cell may exploit various nucleotides to generate different filament structures within cables for specific MreB-based functions.

  6. Corrosion Induced Loss of Capacity and Development of a Guided Wave Condition Assessment Method for Multistrand Anchor Systems Used in Corps Projects

    DTIC Science & Technology

    2014-08-01

    installing high-capacity, post-tensioned foundation anchors. These stressed steel tendons have been used to strengthen hydraulic concrete structures and to...Field Inspection in Mass Concrete .................................... 32 3.3 NDT Technologies in General for Seven Strand Wire Cable Inspection...rod end of a 1.31-inch-diameter grease embedded trunion anchor rod with concrete termination. ..................... 37 Figure 32. 441 Khz narrow

  7. Superconducting ac cable

    NASA Astrophysics Data System (ADS)

    Schmidt, F.

    1980-11-01

    The components of a superconducting 110 kV ac cable for power ratings or = 2000 MVA were developed. The cable design is of the semiflexible type, with a rigid cryogenic envelope containing a flexible hollow coaxial cable core. The cable core consists of spirally wound Nb-A1 composite wires electrically insulated by high pressure polyethylene tape wrappings. A 35 m long single phase test cable with full load terminals rated at 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of this cable design.

  8. 49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cables. 236.108 Section 236.108 Transportation Other Regulations Relating to Transportation (Continued... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables...

  9. 49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cables. 236.108 Section 236.108 Transportation Other Regulations Relating to Transportation (Continued... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables...

  10. 49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cables. 236.108 Section 236.108 Transportation Other Regulations Relating to Transportation (Continued... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables...

  11. DC Cable for Railway

    NASA Astrophysics Data System (ADS)

    Tomita, Masaru

    The development of a superconducting cable for railways has commenced, assuming that a DC transmission cable will be used for electric trains. The cable has been fabricated based on the results of current testing of a superconducting wire, and various evaluation tests have been performed to determine the characteristics of the cable. A superconducting transmission cable having zero electrical resistance and suitable for railway use is expected to enhance regeneration efficiency, reduce power losses, achieve load leveling and integration of sub-stations, and reduce rail potential.

  12. The performance of cable braids and terminations to lightning induced transients

    NASA Technical Reports Server (NTRS)

    Crofts, David

    1991-01-01

    The latest specification detailing the test waveforms for indirect lightning transients as applied to aircraft wiring systems specify very high voltages and currents. Although considerable data exists for measuring cable screen leakage using such methods as surface transfer impedance and bulk cable injection, there is little data on the likely core transient level that is likely to be induced from these threats. In particular, the new Waveform 5 at very high current levels (10 kA) is reputed to cause severe cable damage. A range of representative cables were made with various screen termination techniques and screening levels. These were tested first to determine their relative screening performance and then they were subjected to lightning transient testing to all the specified waveforms. Core voltages were measured for each test. Tests were also performed on bundles with fewer wires to determine the failure criteria with Waveform 5 and these tests also include flat conductor cables. The test showed that correctly terminated cable bundles performed well in all the tests and would provide a high level of protection to the electronic systems. The use of overbraides, provided the individual screens are well terminated, appears to be unnecessary.

  13. Safety research of insulating materials of cable for nuclear power generating station

    NASA Technical Reports Server (NTRS)

    Lee, C. K.; Choi, J. H.; Kong, Y. K.; Chang, H. S.

    1988-01-01

    The polymers PE, EPR, PVC, Neoprene, CSP, CLPE, EP and other similar substances are frequently used as insulation and protective covering for cables used in nuclear power generating stations. In order to test these materials for flame retardation, environmental resistance, and cable specifications, they were given the cable normal test, flame test, chemical tests, and subjected to design analysis and loss of coolant accident tests. Material was collected on spark tests and actual experience standards were established through these contributions and technology was accumulated.

  14. 47 CFR 76.601 - Performance tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Performance tests. 76.601 Section 76.601... CABLE TELEVISION SERVICE Technical Standards § 76.601 Performance tests. (a) The operator of each cable... cable television system shall conduct complete performance tests of that system at least twice each...

  15. 47 CFR 76.601 - Performance tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Performance tests. 76.601 Section 76.601... CABLE TELEVISION SERVICE Technical Standards § 76.601 Performance tests. (a) The operator of each cable... cable television system shall conduct complete performance tests of that system at least twice each...

  16. 47 CFR 76.601 - Performance tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Performance tests. 76.601 Section 76.601... CABLE TELEVISION SERVICE Technical Standards § 76.601 Performance tests. (a) The operator of each cable... cable television system shall conduct complete performance tests of that system at least twice each...

  17. Dynamic testing of a non-proprietary, high-tension, cable end terminal system.

    DOT National Transportation Integrated Search

    2014-03-01

    Two bogie tests were conducted on a high-tension cable end terminal to evaluate the performance of a new design. The : main goals of the new design were to promote quick cable release times, to retain the cable release lever during impact, to : susta...

  18. Follow-on cable coupling lightning test. Volume 2: Appendixes A, B, C, and D

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following information from the follow-on cable coupling lightning test of the Space Shuttle Booster is presented: (1) resistance measurements (cover-to-cover and cover-to-floor plate); (2) resistance measurements (external bond strap-to-case); (3) resistance measurements (internal bond strap-to-case) and; (4) follow-on cable coupling lightning test data plots. The bulk of the document comprises the follow-on cable coupling lightning test data plots.

  19. 49 CFR 234.267 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Insulation resistance tests, wires in trunking and... resistance tests, wires in trunking and cables. (a) Insulation resistance tests shall be made when wires or... between conductors in trunking. Insulation resistance tests shall be performed when wires, cables, and...

  20. 49 CFR 234.267 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Insulation resistance tests, wires in trunking and... resistance tests, wires in trunking and cables. (a) Insulation resistance tests shall be made when wires or... between conductors in trunking. Insulation resistance tests shall be performed when wires, cables, and...

  1. Method and apparatus for electrical cable testing by pulse-arrested spark discharge

    DOEpatents

    Barnum, John R.; Warne, Larry K.; Jorgenson, Roy E.; Schneider, Larry X.

    2005-02-08

    A method for electrical cable testing by Pulse-Arrested Spark Discharge (PASD) uses the cable response to a short-duration high-voltage incident pulse to determine the location of an electrical breakdown that occurs at a defect site in the cable. The apparatus for cable testing by PASD includes a pulser for generating the short-duration high-voltage incident pulse, at least one diagnostic sensor to detect the incident pulse and the breakdown-induced reflected and/or transmitted pulses propagating from the electrical breakdown at the defect site, and a transient recorder to record the cable response. The method and apparatus are particularly useful to determine the location of defect sites in critical but inaccessible electrical cabling systems in aging aircraft, ships, nuclear power plants, and industrial complexes.

  2. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- United Space Alliance SRB technician Richard Bruns attaches a cable end cover to a cable pulled from the solid rocket booster on Space Shuttle Atlantis. The Shuttle was rolled back from Launch Pad 39A in order to conduct tests on the SRB cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  3. Technology Validation of Optical Fiber Cables for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Friedberg, Patricia; Day, John H. (Technical Monitor)

    2000-01-01

    Periodically, commercially available (COTS) optical fiber cable assemblies are characterized for space flight usage under the NASA Electronic Parts and Packaging Program (NEPP). The purpose of this is to provide a family of optical fiber cable options to a variety of different harsh environments typical to space flight missions. The optical fiber cables under test are evaluated to bring out known failure mechanisms that are expected to occur during a typical mission. The tests used to characterize COTS cables include: (1) vacuum exposure, (2) thermal cycling, and (3) radiation exposure. Presented here are the results of the testing conducted at NASA Goddard Space Flight Center on COTS optical fiber cables over this past year. Several optical fiber cables were characterized for their thermal stability both during and after thermal cycling. The results show how much preconditioning is necessary for a variety of available cables to remain thermally stable in a space flight environment. Several optical fibers of dimensions 100/140/172 microns were characterized for their radiation effects at -125 C using the dose rate requirements of International Space Station. One optical fiber cable in particular was tested for outgassing to verify whether an acrylate coated fiber could be used in a space flight optical cable configuration.

  4. Study on AC loss measurements of HTS power cable for standardizing

    NASA Astrophysics Data System (ADS)

    Mukoyama, Shinichi; Amemiya, Naoyuki; Watanabe, Kazuo; Iijima, Yasuhiro; Mido, Nobuhiro; Masuda, Takao; Morimura, Toshiya; Oya, Masayoshi; Nakano, Tetsutaro; Yamamoto, Kiyoshi

    2017-09-01

    High-temperature superconducting power cables (HTS cables) have been developed for more than 20 years. In addition of the cable developments, the test methods of the HTS cables have been discussed and proposed in many laboratories and companies. Recently the test methods of the HTS cables is required to standardize and to common in the world. CIGRE made the working group (B1-31) for the discussion of the test methods of the HTS cables as a power cable, and published the recommendation of the test method. Additionally, IEC TC20 submitted the New Work Item Proposal (NP) based on the recommendation of CIGRE this year, IEC TC20 and IEC TC90 started the standardization work on Testing of HTS AC cables. However, the individual test method that used to measure a performance of HTS cables hasn’t been established as world’s common methods. The AC loss is one of the most important properties to disseminate low loss and economical efficient HTS cables in the world. We regard to establish the method of the AC loss measurements in rational and in high accuracy. Japan is at a leading position in the AC loss study, because Japanese researchers have studied on the AC loss technically and scientifically, and also developed the effective technologies for the AC loss reduction. The JP domestic commission of TC90 made a working team to discussion the methods of the AC loss measurements for aiming an international standard finally. This paper reports about the AC loss measurement of two type of the HTS conductors, such as a HTS conductor without a HTS shield and a HTS conductor with a HTS shield. The AC loss measurement method is suggested by the electrical method..

  5. How to create ball lightning

    NASA Technical Reports Server (NTRS)

    Golka, Robert K., Jr.

    1991-01-01

    Procedures are given on how to produce ball lightning. Necessary equipment includes a transformer of 150,000 watts capable of providing approximately 10,000 amperes at 15 volts, 60 cycles; thick one inch cables of stranded wire leading into a 3 by 4 by 1 foot plastic tank; a quarter inch thick 4 by 6 inch aluminum plate to be used as one of the discharge electrodes; and another electrode of heavy copper wire with the insulation stripped back 6 inches.

  6. Arc tracking of cables for space applications

    NASA Technical Reports Server (NTRS)

    Koenig, D.; Frontzek, F. R.; Hanson, J.; Reher, H. J.; Judd, M. D.; Bryant, D.

    1995-01-01

    The main objective of this study is to develop a new test method that is suitable for the assessment of the resistance of aerospace cables to arc tracking for different specific environmental and network conditions of spacecrafts. This paper reports the purpose, test conditions, test specimen, test procedure, and test acceptance criteria of seven different (200-250 mm long) cables.

  7. 30 CFR 7.403 - Application requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Cables, Signaling Cables, and Cable Splice Kits § 7.403 Application requirements. (a) Electric cables and signaling cables. A single... product: (1) Product information: (i) Cable type (for example, G or G-GC). (ii) Construction (for example...

  8. 30 CFR 7.403 - Application requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Cables, Signaling Cables, and Cable Splice Kits § 7.403 Application requirements. (a) Electric cables and signaling cables. A single... product: (1) Product information: (i) Cable type (for example, G or G-GC). (ii) Construction (for example...

  9. 30 CFR 7.403 - Application requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Cables, Signaling Cables, and Cable Splice Kits § 7.403 Application requirements. (a) Electric cables and signaling cables. A single... product: (1) Product information: (i) Cable type (for example, G or G-GC). (ii) Construction (for example...

  10. Fiber optic cables for severe environment

    NASA Astrophysics Data System (ADS)

    Massarani, M. G.

    1982-10-01

    The most severe challenges to the fiber optic cable are related to nuclear weapons testing and other military applications. Nuclear experiments are conducted in deep underground holes. Cables connect the experimental device to recording stations positioned at a certain distance from ground zero. Attractive features provided by fiber optic cable technology include large cost advantages in cable purchase price, savings in handling cost due to the lighter weight, immunity to electromagnetic pulses (EMP), and the capability to transmit high data rates. Details of underground nuclear testing are discussed, taking into account the underground nuclear test environment, and questions of fiber optic cable design for the underground experiments. The use of fiber optics for the Ground Launched Cruise Missile Weapons System (GLCM) is also considered. Attention is given to the GLCM environment, and the proposed cable for GLCM application.

  11. 7. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. Looking north from north end of the cable tunnel leading toward Control Center. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  12. 30 CFR 7.406 - Flame test apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Cable Splice Kits § 7.406 Flame test apparatus. The principal parts of the apparatus used to test for... extend to the sample end location. These are used to energize the electric cable and splice specimens. They are not used, but may stay in place, when testing signaling cables. (b) Specimen holder (support...

  13. 30 CFR 7.406 - Flame test apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Cable Splice Kits § 7.406 Flame test apparatus. The principal parts of the apparatus used to test for... extend to the sample end location. These are used to energize the electric cable and splice specimens. They are not used, but may stay in place, when testing signaling cables. (b) Specimen holder (support...

  14. 30 CFR 7.406 - Flame test apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Cable Splice Kits § 7.406 Flame test apparatus. The principal parts of the apparatus used to test for... extend to the sample end location. These are used to energize the electric cable and splice specimens. They are not used, but may stay in place, when testing signaling cables. (b) Specimen holder (support...

  15. Helical grip for the cable cars of San Francisco

    NASA Technical Reports Server (NTRS)

    Peyran, R. J.

    1979-01-01

    A helical cable car grip to minimize high maintenance costs of San Francisco's cable car operation is presented. The grip establishes a rolling contact between the cable and grip to reduce sliding friction and associated cable wear. The design, development, and testing of the helical cable car grip are described.

  16. Thermal and vibration testing of ruggedized IR-transmitting fiber cables

    NASA Astrophysics Data System (ADS)

    Busse, Lynda; Kung, Fred; Florea, Catalin; Shaw, Brandon; Aggarwal, Ishwar; Sanghera, Jas

    2013-05-01

    We present successful results obtained for thermal/ vibration testing of ruggedized, IR-transmitting chalcogenide glass fiber cables using a government facility with state-of-the-art equipment capable of MIL-SPEC environmental testing. We will also present results of a direct imprinting process to create novel "moth eye" patterned surfaces on the IR fiber cable ends that significantly reduces endface reflection losses from 17% to less than 3%. The cables with these imprinted "moth eye" ends transmit much higher IR laser power without damage than was obtained for previous cables with traditional AR coatings.

  17. Testing of TAMU3: a Nb 3Sn Block–Coil Dipole with Stress Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntyre, Peter

    The Accelerator Research Lab (ARL) at Texas A&M has recently concluded the construction and testing of a superconducting block-coil dipole TAMU3. TAMU3 reached 85% of the resistive-onset short sample critical current (0.1 μV/cm criterion) that was measured on extracted strands at the National High Magnetic Field Lab. Peak magnet current was 6603 amps, and all with quenches originated in the vicinity of the hard-way chicane near the exit lead of the TAMU3c inner winding. Leading up to the testing we discovered that we had made two grievous mistakes in the fabrication (we mistakenly used the wrong superconducting wire for themore » cables of the inner windings) and the heat treatment (we used a heat treatment that was too hot and too long). We extracted strands from the leads of the inner and outer windings, and colleagues at NHMFL performed short-sample measurements upon them. The NHMFL measurements indicated RRR ~ 2-5, which gives very little stability against microquenches. The short-sample tests of the extracted strands exhibited a long resistive transition, in which there was a current I sc(B) beyond which it became resistive, then a higher current In(B) at which it went fully normal. Using the I sc(B) data we predicted a short-sample limit for the revised load line of TAMU3 of 7700 A (9 T) – a disappointing reduction from the 14 T objective. On those unhappy notes we undertook the testing of the dipole. The first quench occurred at 5695 A, and the dipole trained thereafter to a maximum quench current of 6600 A (7.6 T), 85% of the compromised short-sample limit. All quenches occurred at a single location, in the region of the S-bend transition and outer lead of one inner winding. Data was collected from stress transducers on the outer windings to evaluate stress management, and on the coil ends to evaluate capture of axial forces by staticfriction lock. The low field reached prevented us from extending those tests to the stress levels where they would have become most interesting, but the designed stress management appeared to be working at the level tested.« less

  18. Review of fire test methods and incident data for portable electric cables in underground coal mines

    NASA Astrophysics Data System (ADS)

    Braun, E.

    1981-06-01

    Electrically powered underground coal mining machinery is connected to a load center or distribution box by electric cables. The connecting cables used on mobile machines are required to meet fire performance requirements defined in the Code of Federal Regulations. This report reviews Mine Safety and Health Administration's (MSHA) current test method and compares it to British practices. Incident data for fires caused by trailing cable failures and splice failures were also reviewed. It was found that the MSHA test method is more severe than the British but that neither evaluated grouped cable fire performance. The incident data indicated that the grouped configuration of cables on a reel accounted for a majority of the fires since 1970.

  19. 7 CFR 1755.903 - Fiber optic service entrance cables.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... group or core designs must consist of 12 fibers or less. (3) When threads or tapes are used as core...: Cable designs must meet the requirements of Part 7, Testing and Test Methods, of ICEA S-110-717... testing. (1) The tests described in this section are intended for acceptance of cable designs and major...

  20. 7 CFR 1755.903 - Fiber optic service entrance cables.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... group or core designs must consist of 12 fibers or less. (3) When threads or tapes are used as core...: Cable designs must meet the requirements of Part 7, Testing and Test Methods, of ICEA S-110-717... testing. (1) The tests described in this section are intended for acceptance of cable designs and major...

  1. 7 CFR 1755.903 - Fiber optic service entrance cables.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... group or core designs must consist of 12 fibers or less. (3) When threads or tapes are used as core...: Cable designs must meet the requirements of Part 7, Testing and Test Methods, of ICEA S-110-717... testing. (1) The tests described in this section are intended for acceptance of cable designs and major...

  2. 7 CFR 1755.903 - Fiber optic service entrance cables.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... group or core designs must consist of 12 fibers or less. (3) When threads or tapes are used as core...: Cable designs must meet the requirements of Part 7, Testing and Test Methods, of ICEA S-110-717... testing. (1) The tests described in this section are intended for acceptance of cable designs and major...

  3. 7 CFR 1755.903 - Fiber optic service entrance cables.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... group or core designs must consist of 12 fibers or less. (3) When threads or tapes are used as core...: Cable designs must meet the requirements of Part 7, Testing and Test Methods, of ICEA S-110-717... testing. (1) The tests described in this section are intended for acceptance of cable designs and major...

  4. 30 CFR 75.831 - Electrical work; troubleshooting and testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) or (2): (1) If a trailing cable disconnecting switch is provided: (i) Open and ground the power... power receptacle. (b) Troubleshooting and testing the trailing cable. During troubleshooting and testing, the de-energized high-voltage cable may be disconnected from the power center only for that period of...

  5. 30 CFR 75.831 - Electrical work; troubleshooting and testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) or (2): (1) If a trailing cable disconnecting switch is provided: (i) Open and ground the power... power receptacle. (b) Troubleshooting and testing the trailing cable. During troubleshooting and testing, the de-energized high-voltage cable may be disconnected from the power center only for that period of...

  6. 30 CFR 75.831 - Electrical work; troubleshooting and testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) or (2): (1) If a trailing cable disconnecting switch is provided: (i) Open and ground the power... power receptacle. (b) Troubleshooting and testing the trailing cable. During troubleshooting and testing, the de-energized high-voltage cable may be disconnected from the power center only for that period of...

  7. 30 CFR 75.831 - Electrical work; troubleshooting and testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) or (2): (1) If a trailing cable disconnecting switch is provided: (i) Open and ground the power... power receptacle. (b) Troubleshooting and testing the trailing cable. During troubleshooting and testing, the de-energized high-voltage cable may be disconnected from the power center only for that period of...

  8. Multiconductor Short/Open Cable Tester

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis

    1994-01-01

    Frequent or regular testing of multiconductor cables terminated in multipin conductors tedious, if not impossible, task. This inexpensive circuit simplifies open/short testing and is amenable to automation. In operation, pair of connectors selected to match pair of connectors installed on each of cables to be tested. As many connectors accommodated as required, and each can have as many conductors as required. Testing technique implemented with this circuit automated easily with electronic controls and computer interface. Printout provides status of each conductor in cable, indicating which, if any, of conductors has open or short circuit.

  9. The detection error of thermal test low-frequency cable based on M sequence correlation algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Dongliang; Ge, Zheyang; Tong, Xin; Du, Chunlin

    2018-04-01

    The problem of low accuracy and low efficiency of off-line detecting on thermal test low-frequency cable faults could be solved by designing a cable fault detection system, based on FPGA export M sequence code(Linear feedback shift register sequence) as pulse signal source. The design principle of SSTDR (Spread spectrum time-domain reflectometry) reflection method and hardware on-line monitoring setup figure is discussed in this paper. Testing data show that, this detection error increases with fault location of thermal test low-frequency cable.

  10. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- NASA and United Space Alliance SRB technicians hook up solid rocket booster cables to a Cirris Signature Touch 1 cable tester. From left are Loren Atkinson and Steve Swichkow, with NASA, and Jeff Suter, with USA. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  11. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Vehicle Assembly Building, United Space Alliance SRB technician Frank Meyer pulls cables out of the solid rocket booster system tunnel. Cable end covers are in a box near his feet. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  12. RODENT RESISTANT CABLE MATERIALS.

    DTIC Science & Technology

    Several formulations of organotin compounds in polymeric materials were evaluated for application to polyethylene cable coatings. Tributyltin ...test the effectiveness of this formulation in protecting treated WF-16 cable from rodent damage. In a laboratory test vapors of tributyltin chloride

  13. Development of optimized PPP insulated pipe-cable systems in the commercial voltage range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allam, E.M.; McKean, A.L.

    1992-05-01

    The primary objectives of this project included the development of an alternate domestic source of Paper-Polypropylene-Paper (PPP) laminate and the development of optimized designs for PPP-insulated pipe-type cable systems in the commercial voltage range. The development of a domestic source of PPP laminate was successfully completed. This laminate was utilized throughout the program for fabrication of full-size prototype cables submitted for laboratory qualification tests. Selected cables at rated voltages of 138, 230 and 345kV have been designed, fabricated and subjected to the series of qualification tests leading to full laboratory qualification. An optimized design of 2000 kcmil, 345kV cable insulatedmore » with 600 mils of domestic PPP laminate was fabricated and successfully passed all laboratory qualification tests. This cable design was subsequently installed at Waltz Mill to undergo the series of field tests leading to full commercial qualification.« less

  14. Development of optimized PPP insulated pipe-cable systems in the commercial voltage range. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allam, E.M.; McKean, A.L.

    1992-05-01

    The primary objectives of this project included the development of an alternate domestic source of Paper-Polypropylene-Paper (PPP) laminate and the development of optimized designs for PPP-insulated pipe-type cable systems in the commercial voltage range. The development of a domestic source of PPP laminate was successfully completed. This laminate was utilized throughout the program for fabrication of full-size prototype cables submitted for laboratory qualification tests. Selected cables at rated voltages of 138, 230 and 345kV have been designed, fabricated and subjected to the series of qualification tests leading to full laboratory qualification. An optimized design of 2000 kcmil, 345kV cable insulatedmore » with 600 mils of domestic PPP laminate was fabricated and successfully passed all laboratory qualification tests. This cable design was subsequently installed at Waltz Mill to undergo the series of field tests leading to full commercial qualification.« less

  15. The Streambank Erosion Control Evaluation and Demonstration Act of 1974, Section 32, Public Law 93-251. Appendix H. Evaluation of Existing Projects. Volume 1.

    DTIC Science & Technology

    1981-12-01

    and cables with two strands of twisted No. 12 galvanized-steel wire. The base of the fence was buried to a depth of 1 ft, leaving 5 ft above the...Cnied DD 1473 emlooNriNo si OI VoSIsoLaTit Unclassified *9CUmhTV CLAMWIFCATSOW OF THIS PAQ E (Mbeft Dots Entered) 0 0 0 0 0 0 ~0 0 0 0 0 0 0 0

  16. Analysis of current distribution in a large superconductor

    NASA Astrophysics Data System (ADS)

    Hamajima, Takataro; Alamgir, A. K. M.; Harada, Naoyuki; Tsuda, Makoto; Ono, Michitaka; Takano, Hirohisa

    An imbalanced current distribution which is often observed in cable-in-conduit (CIC) superconductors composed of multistaged, triplet type sub-cables, can deteriorate the performance of the coils. It is, hence very important to analyze the current distribution in a superconductor and find out methods to realize a homogeneous current distribution in the conductor. We apply magnetic flux conservation in a loop contoured by electric center lines of filaments in two arbitrary strands located on adjacent layers in a coaxial multilayer superconductor, and thereby analyze the current distribution in the conductor. A generalized formula governing the current distribution can be described as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction and radius of individual layer. We numerically analyze a homogeneous current distribution as a function of the twist pitches of layers, using the fundamental formula. Moreover, it is demonstrated that we can control current distribution in the coaxial superconductor.

  17. Deck and Cable Dynamic Testing of a Single-span Bridge Using Radar Interferometry and Videometry Measurements

    NASA Astrophysics Data System (ADS)

    Piniotis, George; Gikas, Vassilis; Mpimis, Thanassis; Perakis, Harris

    2016-03-01

    This paper presents the dynamic testing of a roadway, single-span, cable-stayed bridge for a sequence of static load and ambient vibration monitoring scenarios. Deck movements were captured along both sideways of the bridge using a Digital Image Correlation (DIC) and a Ground-based Microwave Interfererometer (GBMI) system. Cable vibrations were measured at a single point location on each of the six cables using the GBMI technique. Dynamic testing involves three types of analyses; firstly, vibration analysis and modal parameter estimation (i. e., natural frequencies and modal shapes) of the deck using the combined DIC and GBMI measurements. Secondly, dynamic testing of the cables is performed through vibration analysis and experimental computation of their tension forces. Thirdly, the mechanism of cable-deck dynamic interaction is studied through their Power Spectra Density (PSD) and the Short Time Fourier Transform (STFT) analyses. Thereby, the global (deck and cable) and local (either deck or cable) bridge modes are identified, serving a concrete benchmark of the current state of the bridge for studying the evolution of its structural performance in the future. The level of synergy and complementarity between the GBMI and DIC techniques for bridge monitoring is also examined and assessed.

  18. Qualification Testing of Solid Rocket Booster Diagonal Strut Restraint Cable Assembly Part Number 10176-0031-102/103

    NASA Technical Reports Server (NTRS)

    Malone, T. W.

    2006-01-01

    This Technical Memorandum presents qualification test results for solid rocket booster diagonal strut restraint cable part number 101276-00313-102/103. During flight this assembly is exposed to a range of temperatures. MIL-W-83420 shows the breaking strength of the cable as 798 kg (1,760 lb) at room temperature but does not define cable strength at the maximum temperature to which the cable is exposed during the first 2 min of flight; 669 C (1,236 F). The cable, which can be built from different corrosion resistant steel alloys, may also vary in its chemical, physical, and mechanical properties at temperature. Negative margins of safety were produced by analysis of the cable at temperature using standard knockdown factors. However, MSFC-HDBK-5 allows the use of a less conservative safety factor of 1.4 and knockdown factors verified by testing. Test results allowed a calculated knockdown factor of 0.1892 to be determined for the restraint cables, which provides a minimum breaking strength of 151 kg (333 lb) at 677 C (1,250 F) when combined with the minimum breaking strength of 0.317-cm (0.125- or 1/8-in) diameter, type 1 composition rope.

  19. Characterization of the Twelve Channel 100/140 Micron Optical Fiber, Ribbon Cable and MTP Array Connector Assembly for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Macmurphy, Shawn; Friedberg, Patricia; Day, John H. (Technical Monitor)

    2002-01-01

    Presented here is the second set of testing conducted by the Technology Validation Laboratory for Photonics at NASA Goddard Space Flight Center on the 12 optical fiber ribbon cable with MTP array connector for space flight environments. In the first set of testing the commercial 62.5/125 cable assembly was characterized using space flight parameters. The testing showed that the cable assembly would survive a typical space flight mission with the exception of a vacuum environment. Two enhancements were conducted to the existing technology to better suit the vacuum environment as well as the existing optoelectronics and increase the reliability of the assembly during vibration. The MTP assembly characterized here has a 100/140 optical commercial fiber and non outgassing connector and cable components. The characterization for this enhanced fiber optic cable assembly involved vibration, thermal and radiation testing. The data and results of this characterization study are presented which include optical in-situ testing.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahder, G.; Bopp, L.A.; Eager, G.S.

    This report covers the continuation of the work to develop technology to manufacture chemically crosslinked polyethylene insulated power cables in the ac voltage range of 138 kV to 345 kV having insulation thicknesses approximately equal to that of oil impregnated paper insulated cables. It also incorporates the development of field molded splices and terminations for new high voltage stress 138 kV cables. After reviewing the main equipment elements, incorporated in the pilot extrusion line, the special features of this system are noted and a step-by-step description of the cable extrusion process is given. Optimization of the process and introduction ofmore » modifications in the equipment culminated with the production of 138 kV cables. Results of laboratory tests to demonstrate the high quality of the cables are given. The development of molded splices and molded stress control cones was initiated with the work on model cables and followed by the making of splices and terminations on 138 kV cables. The molded components are made with the same purified insulating compound as used in the manufacture of the cables. Both the molded splices and the molded stress control cones have been fully tested in the laboratory. Following the completion of the development of the 138 kV cable a high stress 230 kV crosslinked polyethylene cable was developed and optimized. A full evaluation program similar to the one utilized on the 138 kV cable was carried out. Subsequently, work to develop a 345 kV high voltage stress cable, having insulation thickness of 1.02'' was undertaken. 345 kV cables were successfully manufactured and tested. However, additional work is required to further optimize the quality of this cable.« less

  1. Continuous coaxial cable sensors for monitoring of RC structures with electrical time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Chen, Genda; Mu, Huimin; Pommerenke, David; Drewniak, James L.

    2003-08-01

    This study was aimed at developing and validating a new type of coaxial cable sensors that can be used to detect cracks or measure strains in reinforced concrete (RC) structures. The new sensors were designed based on the change in outer conductor configuration under strain effects in contrast to the geometry-based design in conventional coaxial cable sensors. Both numerical simulations and calibration tests with strain gauges of a specific design of the proposed cables were conducted to study the cables' sensitivity. Four designs of the proposed type of sensors were then respectively mounted near the surface of six 3-foot-long RC beams. They were tested in bending to further validate the cables' sensitivity in concrete members. The calibration test results generally agree with the numerical simulations. They showed that the proposed sensors are over 10~50 times more sensitive than conventional cable sensors. The test results of the beams not only validate the sensitivity of the new sensors but also indicate a good correlation with the measured crack width.

  2. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Working near the top of a solid rocket booster, NASA and United Space Alliance SRB technicians hook up SRB cables to a Cirris Signature Touch 1 cable tester. From left are Steve Swichkow, with NASA, and Jim Silviano (back to camera) and Jeff Suter, with USA. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  3. Operating experience of the southwire high-temperature superconducting cable project

    NASA Astrophysics Data System (ADS)

    Hughey, R. L.; Lindsay, D.

    2002-01-01

    Southwire Company of Carrollton, Georgia in cooperation with Oak Ridge National Laboratory has designed, built, installed and is operating the world's first field installation of a High Temperature Superconducting (HTS) cable system. The cables supply power to three Southwire manufacturing facilities and part of the corporate headquarters building in Carrollton, GA. The system consists of three 30-m single phase cables rated at 12.4 kV, 1250 Amps, liquid nitrogen cooling system, and the computer-based control system. The cables are built using BSCCO-2223 powder-in-tube HTS tapes and a proprietary cryogenic dielectric material called Cryoflex™. The cables are fully shielded with a second layer of HTS tapes to eliminate any external magnetic fields. The Southwire HTS cables were first energized on january 6, 2000. Since that time they have logged over 8,500 hours of operation while supplying 100% of the required customer load. To date, the cables have worked without failure and operations are continuing. The cable design has passed requisite testing for this class of conventional cables including 10× over current to 12,500 Amps and BIL testing to 110 kV. Southwire has also successfully designed and tested a cable splice. System heat loads and AC Losses have been measured and compared to calculated values. On June 1, 2001 on-site monitoring was ceased and the system was changed to unattended operation to further prove the reliability of the HTS cable system. .

  4. Determination of threshold and maximum operating electric stresses for selected high voltage insulations. Task 2: Investigation of oil-filled paper insulated cables

    NASA Astrophysics Data System (ADS)

    Sosnowski, M.; Eager, G. S., Jr.

    1983-06-01

    Threshold voltage of oil-impregnated paper insulated cables are investigaed. Experimental work was done on model cables specially manufactured for this project. The cables were impregnated with mineral and with synthetic oils. Standard impulse breakdown voltage tests and impulse voltage breakdown tests with dc prestressing were performed at room temperature and at 1000C. The most important result is the finding of very high level of threshold voltage stress for oil-impregnated paper insulated cables. This threshold voltage is approximately 1.5 times higher than the threshold voltage or crosslinked polyethylene insulated cables.

  5. Evaluation of the New York low-tension three-cable barrier on curved alignment.

    DOT National Transportation Integrated Search

    2013-02-01

    Three full-scale crash tests were performed on the New York Department of Transportations (NYSDOTs) curved, lowtension, : three-cable barrier systems utilizing the MASH Test Level 3 safety performance criteria. The cable barrier system : for te...

  6. Designing and Implementation a Lab Testing Method for Power Cables Insulation Resistance According with STAS 10411-89, SR EN ISO/CEI/17025/2005

    NASA Astrophysics Data System (ADS)

    Dobra, R.; Pasculescu, D.; Marc, G.; Risteiu, M.; Antonov, A.

    2017-06-01

    Insulation resistance measurement is one of the most important tests required by standards and regulations in terms of electrical safety. Why these tests are is to prevent possible accidents caused by electric shock, damage to equipment or outbreak of fire in normal operating conditions of electrical cables. The insulation resistance experiment refers to the testing of electrical cable insulation, which has a measured resistance that must be below the imposed regulations. Using a microcontroller system data regarding the insulation resistance of the power cables is acquired and with SCADA software the test results are displayed.

  7. Interdigital Capacitance Local Non-Destructive Examination of Nuclear Power Plant Cable for Aging Management Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Fifield, Leonard S.; Bowler, Nicola

    This Pacific Northwest National Laboratory milestone report describes progress to date on the investigation of non-destructive test methods focusing on local cable insulation and jacket testing using an interdigital capacitance (IDC) approach. Earlier studies have assessed a number of non-destructive examination (NDE) methods for bulk, distributed, and local cable tests. A typical test strategy is to perform bulk assessments of the cable response using dielectric spectroscopy, Tan , or partial discharge followed by distributed tests like time domain reflectometry or frequency domain reflectometry to identify the most likely defect location followed by a local test that can include visual inspection,more » indenter modulus tests, or Fourier Transform Infrared Spectroscopy (FTIR) or Near Infrared Spectroscopy FTIR (FTNIR). If a cable is covered with an overlaying jacket, the jacket’s condition is likely to be more severely degraded than the underlying insulation. None of the above local test approaches can be used to evaluate insulation beneath a cable jacket. Since the jacket’s function is neither structural nor electrical, a degraded jacket may not have any significance regarding the cable’s performance or suitability for service. IDC measurements offer a promising alternative or complement to these local test approaches including the possibility to test insulation beneath an overlaying jacket.« less

  8. Test plan/procedure for the checkout of the USA cable communications test configuration for the electromagnetic compatibility (EMC) tests

    NASA Technical Reports Server (NTRS)

    Perry, J. C.

    1975-01-01

    A series of electromagnetic compatibility (EMC) tests were conducted in May, 1975 in the Soviet Union. The purpose of the EMC tests was to determine the effects of the operating environment of the Soviet aircraft, Soyuz, upon the electrical performance of the USA's cable communications equipment located in Soyuz. The test procedures necessary to check out the cable communications test configuration in preparation for the EMC tests are presented.

  9. Waltz Mill testing of 345-kV PPP cable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burghardt, R.R.

    1991-09-01

    A 345-kV PPP-insulated cable was subjected to a two-year accelerated life test program at the EPRI Waltz Mill Cable Test Facility. Testing started in November 1985 and was successfully completed in September 1988. The program included conductor temperatures ranging from 85{degrees}C to 105{degrees}C and line-to-line voltages from 362 kV to 474 kV. Cyclic testing was performed during 17 of the 24 months. Dissipation factor measurements were made throughout the program. The measurements indicated no deterioration of the cable or splices as a consequence of the high temperatures and voltages applied to them in this test program. 2 refs., 24 figs.

  10. Waltz Mill testing of 765-kV paper-polypropylene-paper (PPP) cable. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burghardt, R.R.

    1992-06-01

    A 765-kV PPP-insulated cable was subjected to a 27-month accelerated life test program at the EPRI Waltz Mill Cable Test Facility. Testing started in August 1981 and was successfully completed in January 1985. The program included conductor temperatures ranging from 85{degree}C to 105{degree}C and line-to-line voltages from 800 kV to 1050 kV. Cyclic testing was performed during 20 of the 27 months. Dissipation factor measurements were made throughout the program. The measurements indicated no deterioration of the cable or splices as a consequence of the high temperatures and voltages applied to them in this test program.

  11. Waltz Mill testing of 765-kV paper-polypropylene-paper (PPP) cable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burghardt, R.R.

    1992-06-01

    A 765-kV PPP-insulated cable was subjected to a 27-month accelerated life test program at the EPRI Waltz Mill Cable Test Facility. Testing started in August 1981 and was successfully completed in January 1985. The program included conductor temperatures ranging from 85{degree}C to 105{degree}C and line-to-line voltages from 800 kV to 1050 kV. Cyclic testing was performed during 20 of the 27 months. Dissipation factor measurements were made throughout the program. The measurements indicated no deterioration of the cable or splices as a consequence of the high temperatures and voltages applied to them in this test program.

  12. 30 CFR 7.405 - Critical characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Cable Splice Kits § 7.405 Critical characteristics. (a) A sample from each production run, batch, or lot of manufactured electric cable, signaling cable, or splice made from a splice kit shall be flame... cable or splice and a sample of the cable or splice kit assembly shall be visually inspected or tested...

  13. 30 CFR 7.405 - Critical characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Cable Splice Kits § 7.405 Critical characteristics. (a) A sample from each production run, batch, or lot of manufactured electric cable, signaling cable, or splice made from a splice kit shall be flame... cable or splice and a sample of the cable or splice kit assembly shall be visually inspected or tested...

  14. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... midpoint of the splice. The specimen shall be free from external air currents during testing. (5) Adjust... persistence of yellow coloration. (6) Connect all power conductors of the test specimen to the current source. The connections shall be secure and compatible with the size of the cable's power conductors in order...

  15. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... midpoint of the splice. The specimen shall be free from external air currents during testing. (5) Adjust... persistence of yellow coloration. (6) Connect all power conductors of the test specimen to the current source. The connections shall be secure and compatible with the size of the cable's power conductors in order...

  16. Detection of incipient defects in cables by partial discharge signal analysis

    NASA Astrophysics Data System (ADS)

    Martzloff, F. D.; Simmon, E.; Steiner, J. P.; Vanbrunt, R. J.

    1992-07-01

    As one of the objectives of a program aimed at assessing test methods for in-situ detection of incipient defects in cables due to aging, a laboratory test system was implemented to demonstrate that the partial discharge analysis method can be successfully applied to low-voltage cables. Previous investigations generally involved cables rated 5 kV or higher, while the objective of the program focused on the lower voltages associated with the safety systems of nuclear power plants. The defect detection system implemented for the project was based on commercially available signal analysis hardware and software packages, customized for the specific purposes of the project. The test specimens included several cables of the type found in nuclear power plants, including artificial defects introduced at various points of the cable. The results indicate that indeed, partial discharge analysis is capable of detecting incipient defects in low-voltage cables. There are, however, some limitations of technical and non-technical nature that need further exploration before this method can be accepted in the industry.

  17. Fiber Optic Cable Assemblies for Space Flight 2: Thermal and Radiation Effects

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    1998-01-01

    Goddard Space Flight Center is conducting a search for space flight worthy fiber optic cable assemblies that will benefit all projects at all of the NASA centers. This paper is number two in a series of papers being issued as a result of this task to define and qualify space grade fiber optic cable assemblies. Though to qualify and use a fiber optic cable in space requires treatment of the cable assembly as a system, it is very important to understand the design and behavior of its parts. This paper addresses that need, providing information on cable components shrinkage testing and radiation testing results from recent experiments at Goddard Space Flight Center.

  18. 77 FR 37717 - Electrical Cable Test Results and Analysis During Fire Exposure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... Fire Exposure AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for comment. SUMMARY...-2128, ``Electrical Cable Test Results and Analysis during Fire Exposure (ELECTRA-FIRE), A Consolidation of the Three Major Fire-Induced Circuit and Cable Failure Experiments Performed between 2001 and 2011...

  19. 46 CFR 111.60-13 - Flexible electric cord and cables.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Flexible electric cord and cables. 111.60-13 Section 111... cables. (a) Construction and testing. Each flexible cord and cable must meet the requirements in section.... Each flexible cord must be No. 18 AWG (0.82 mm2) or larger. (e) Splices. Each flexible cord and cable...

  20. Cable Tensiometer for Aircraft

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  1. Instrumentation Cables Test Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muna, Alice Baca; LaFleur, Chris Bensdotter

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteriamore » 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift and fluctuate, while the thermoplastic insulated cables, the instrument reading fell off-scale rapidly. From an operational point of view, the latter failure characteristics would likely be identified as a failure from the effects of fire, while the former may result in inaccurate readings.« less

  2. Testing of flat conductor cable to Underwriters Laboratory standards UL719 and UL83

    NASA Technical Reports Server (NTRS)

    Loggins, R. W.; Herndon, R. H.

    1974-01-01

    The flat conductor cable (FCC) which was tested consisted of three AWG No. 12 flat copper conductors laminated between two films of polyethylene terephthalate (Mylar) insulation with a self-extinguishing polyester adhesive. Results of the tests conducted on this cable, according to specifications, warrants the use of this FCC for electrical interconnections in a surface nonmetallic protective covering.

  3. Test report for twinax cable (Rockwell type MB0150-051). [effects of mismatched termination

    NASA Technical Reports Server (NTRS)

    Doland, G. D.

    1978-01-01

    A controlled impedance twisted pair shielded cable was tested to determine the frequency response and effects of mismatched termination. It was found that a long length of this cable, about 100 feet, exhibited a frequency sensitive attenuation roll-off greater than 1.5 db down at 5 MHz. It was also determined that improper termination resulted in losses of 1/2 to 1 db within the frequency range of 200 KHz to greater than 1-1/2 MHz. The test results indicate a possible problem where mismatched connectors are used in video signal cables.

  4. Lightning vulnerability of fiber-optic cables.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Leonard E.; Caldwell, Michele

    2008-06-01

    One reason to use optical fibers to transmit data is for isolation from unintended electrical energy. Using fiber optics in an application where the fiber cable/system penetrates the aperture of a grounded enclosure serves two purposes: first, it allows for control signals to be transmitted where they are required, and second, the insulating properties of the fiber system help to electrically isolate the fiber terminations on the inside of the grounded enclosure. A fundamental question is whether fiber optic cables can allow electrical energy to pass through a grounded enclosure, with a lightning strike representing an extreme but very importantmore » case. A DC test bed capable of producing voltages up to 200 kV was used to characterize electrical properties of a variety of fiber optic cable samples. Leakage current in the samples were measured with a micro-Ammeter. In addition to the leakage current measurements, samples were also tested to DC voltage breakdown. After the fiber optic cables samples were tested with DC methods, they were tested under representative lightning conditions at the Sandia Lightning Simulator (SLS). Simulated lightning currents of 30 kA and 200 kA were selected for this test series. This paper documents measurement methods and test results for DC high voltage and simulated lightning tests performed at the Sandia Lightning Simulator on fiber optic cables. The tests performed at the SLS evaluated whether electrical energy can be conducted inside or along the surface of a fiber optic cable into a grounded enclosure under representative lightning conditions.« less

  5. FOCCoS for Subaru PFS

    NASA Astrophysics Data System (ADS)

    Cesar de Oliveira, Antonio; Souza de Oliveira, Ligia; de Arruda, Marcio V.; Bispo dos Santos, Jesulino; Souza Marrara, Lucas; Bawden de Paula Macanhan, Vanessa; Batista de Carvalho Oliveira, João.; de Paiva Vilaça, Rodrigo; Dominici, Tania P.; Sodré, Laerte; Mendes de Oliveira, Claudia; Karoji, Hiroshi; Sugai, Hajime; Shimono, Atsushi; Tamura, Naoyuki; Takato, Naruhisa; Ueda, Akitoshi

    2012-09-01

    The Fiber Optical Cable and Connector System (FOCCoS), provides optical connection between 2400 positioners and a set of spectrographs by an optical fibers cable as part of Subaru PFS instrument. Each positioner retains one fiber entrance attached at a microlens, which is responsible for the F-ratio transformation into a larger one so that difficulties of spectrograph design are eased. The optical fibers cable will be segmented in 3 parts at long of the way, cable A, cable B and cable C, connected by a set of multi-fibers connectors. Cable B will be permanently attached at the Subaru telescope. The first set of multi-fibers connectors will connect the cable A to the cable C from the spectrograph system at the Nasmith platform. The cable A, is an extension of a pseudo-slit device obtained with the linear disposition of the extremities of the optical fibers and fixed by epoxy at a base of composite substrate. The second set of multi-fibers connectors will connect the other extremity of cable A to the cable B, which is part of the positioner's device structure. The optical fiber under study for this project is the Polymicro FBP120170190, which has shown very encouraging results. The kind of test involves FRD measurements caused by stress induced by rotation and twist of the fiber extremity, similar conditions to those produced by positioners of the PFS instrument. The multi-fibers connector under study is produced by USCONEC Company and may connect 32 optical fibers. The tests involve throughput of light and stability after many connections and disconnections. This paper will review the general design of the FOCCoS subsystem, methods used to fabricate the devices involved and the tests results necessary to evaluate the total efficiency of the set.

  6. Structural Monitoring and Field Test for Kao Ping Hsi Cable-Stayed Bridge in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chern-Hwa

    2010-05-01

    This work applies system identification techniques to analyze the measured data from structural monitoring system and field test for Kao Ping Hsi cable-stayed bridge in Taiwan. The continuous wavelet transform algorithm can be used to identify the dynamic characteristics of the cable-stayed bridge under environmental vibration. The identified results with traffic flow were compared with those obtained from ambient vibration test. The excellent agreement both the identified results from different traffic conditions indicates that the traffic flow would not significantly change the natural frequencies of the cable-stayed bridge. The modal parameters identified from the field vibration test will be compared with those used in the finite element analysis. The results obtained herein will be used as the damage detection for monitoring the long-term safety of the Kao Ping Hsi cable-stayed bridge by using structural monitoring system.

  7. Cable Television.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    The Federal Communications Commission (FCC) presents a brief description of cable television and explains some basic regulations pertaining to it. The history of cable regulation covers the initial jurisdiction, economic considerations of the regulation, court tests, and the holding of public hearings. The major provisions of new cable rules are…

  8. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer for detecting bridge cables.

    PubMed

    Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran

    2012-01-01

    Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables.

  9. Random Vibration and Torque Tests of Fasteners Secured With Locking Cable, Room Temperature Vulcanized (RTV) Rubber, and Closed Cell Foam to Support the Launch of STS-82

    NASA Technical Reports Server (NTRS)

    Yost, V. H.

    1997-01-01

    During a walkdown of the Space Transportation System (STS) orbiter for the 82nd Space Shuttle flight (STS-82), technicians found several safety cables for bolts with missing or loose ferrules. Typically, two or three bolts are secured with a cable which passes through one of the holes in the head of each bolt and a ferrule is crimped on each end of the cable to prevent it from coming out of the holes. The purpose of the cable is to prevent bolts from rotating should they become untightened. Other bolts are secured with either a locking cable or wire which is covered with RTV and foam. The RTV and foam would have to be removed to inspect for missing or loose ferrules. To determine whether this was necessary, vibration and torque test fixtures and tests were made to determine whether or not bolts with missing or loose ferrules would unloosen. These tests showed they would not, and the RTV and foam was not removed.

  10. A Magnetic Flux Leakage and Magnetostrictive Guided Wave Hybrid Transducer for Detecting Bridge Cables

    PubMed Central

    Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran

    2012-01-01

    Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables. PMID:22368483

  11. Qualification of Fiber Optic Cables for Martian Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Lindensmith, Christian A.; Roberts, William T.; Rainen, Richard A.

    2011-01-01

    Means have been developed for enabling fiber optic cables of the Laser Induced Breakdown Spectrometer instrument to survive ground operations plus the nominal 670 Martian conditions that include Martian summer and winter seasons. The purpose of this development was to validate the use of the rover external fiber optic cabling of ChemCam for space applications under the extreme thermal environments to be encountered during the Mars Science Laboratory (MSL) mission. Flight-representative fiber optic cables were subjected to extreme temperature thermal cycling of the same diurnal depth (or delta T) as expected in flight, but for three times the expected number of in-flight thermal cycles. The survivability of fiber optic cables was tested for 600 cumulative thermal cycles from -130 to +15 C to cover the winter season, and another 1,410 cumulative cycles from -105 to +40 C to cover the summer season. This test satisfies the required 3 times the design margin that is a total of 2,010 thermal cycles (670 x 3). This development test included functional optical transmission tests during the course of the test. Transmission of the fiber optic cables was performed prior to and after 1,288 thermal cycles and 2,010 thermal cycles. No significant changes in transmission were observed on either of the two representative fiber cables subject through the 3X MSL mission life that is 2,010 thermal cycles.

  12. Applying Diagnostics to Enhance Cable System Reliability (Cable Diagnostic Focused Initiative, Phase II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartlein, Rick; Hampton, Nigel; Perkel, Josh

    2016-02-01

    The Cable Diagnostic Focused Initiative (CDFI) played a significant and powerful role in clarifying the concerns and understanding the benefits of performing diagnostic tests on underground power cable systems. This project focused on the medium and high voltage cable systems used in utility transmission and distribution (T&D) systems. While many of the analysis techniques and interpretations are applicable to diagnostics and cable systems outside of T&D, areas such as generating stations (nuclear, coal, wind, etc.) and other industrial environments were not the focus. Many large utilities in North America now deploy diagnostics or have changed their diagnostic testing approach asmore » a result of this project. Previous to the CDFI, different diagnostic technology providers individually promoted their approach as the “the best” or “the only” means of detecting cable system defects.« less

  13. Study on the mechanical analysis and the testing technology of the optical fiber cables released from the bobbin

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Li, Zhen-hua; Bian, Bao-min; Liu, Cheng-lin; Ji, Yun-jing

    2014-12-01

    Accurate measurements of forces applied to the optical cable reels with high spinning speeds, will render information on the breakdown of optical fibers, and thus improve the odds of success and un-winding efficiency. In this paper we analyze and deduce the cable wire stress at high pay-off speeds. A high-sensitive opti-mechanical testing sensory device is designed to measure both the axial tension of the cables and the radial pressure of the cable reels at varying stress points simultaneously. The time resolution of this new device is less than 0.015ms, the response time is up to 15μs, and its sensitivity is about 500pc/N, which satisfies the mechanical testing requirements at high spinning speeds. In addition, the spinning speed of 260m/s led to the break-down of the optical fibers, and the spinning speed of 250m/s tested finally led to a deceleration near the end of the broken fibers. It is obvious that this kit can meet the requirement to obtain the periodic signals of the varying forces for each layer and each turn of optical fiber cables. Moreover, we found that the pay-off fiber cable is safe with the unwinding speed of 250m/s and the break-down of optical cables happens during the deceleration process. However, it is under the unwinding speed of 260m/s that pay-off fiber cables broke during the experiment. The abnormal breakdown signals are captured at these unwinding speeds, respectively.

  14. Hypervelocity impact testing of L-band truss cable meteoroid shielding on Skylab

    NASA Technical Reports Server (NTRS)

    Jex, D. W.

    1973-01-01

    A series of tests was performed to determine the protection provided by the L-band truss cable meteoroid shielding installed on Skylab space station at space environment temperatures of minus 180 F. The damage sustained when three test specimens were impacted by spherical projectiles at hypersonic speed was investigated. It is concluded that the L-band truss cable meteoroid shielding provides adequate protection at the indicated temperature.

  15. A cable-driven locomotor training system for restoration of gait in human SCI.

    PubMed

    Wu, Ming; Hornby, T George; Landry, Jill M; Roth, Heidi; Schmit, Brian D

    2011-02-01

    A novel cable-driven robotic locomotor training system was developed to provide compliant assistance/resistance forces to the legs during treadmill training in patients with incomplete spinal cord injury (SCI). Eleven subjects with incomplete SCI were recruited to participate in two experiments to test the feasibility of the robotic gait training system. Specifically, 10 subjects participated in one experimental session to test the characteristics of the robotic gait training system and one subject participated in repeated testing sessions over 8 weeks with the robotic device to test improvements in locomotor function. Limb kinematics were recorded in one experiment to evaluate the system characteristics of the cable-driven locomotor trainer and the overground gait speed and 6 min walking distance were evaluated at pre, 4 and 8 weeks post treadmill training of a single subject as well. The results indicated that the cable driven robotic gait training system improved the kinematic performance of the leg during treadmill walking and had no significant impact on the variability of lower leg trajectory, suggesting a high backdrivability of the cable system. In addition, results from a patient with incomplete SCI indicated that prolonged robotic gait training using the cable robot improved overground gait speed. Results from this study suggested that a cable driven robotic gait training system is effective in improving leg kinematic performance, yet allows variability of gait kinematics. Thus, it seems feasible to improve the locomotor function in human SCI using this cable driven robotic system, warranting testing with a larger group of patients. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Fire related hazards of cables: The Canadian position development of fire resistant inside wiring cable

    NASA Astrophysics Data System (ADS)

    Hartley, M. D.; Jaques, R. E.

    1986-11-01

    The Canadian Electrical Code and the National Building Code in Canada recognize only two designations in regards to fire resistance of cables; cables for use in combustible (residential) buildings and cables for use in non-combustible buildings. The Test standard for cables for non-combustible buildings resembles IEEE-383. However, it is more severe; particularly for small nonarmoured cables such as Inside Wiring Cable. This forthcoming requirement has necessitated material and product development. Although an Inside Wiring cable modification of both insulation and jacket was undertaken, the large volume fraction of combustible material in the jacket vis a vis the insulation made it the area of greatest impact. The paper outlines the development and its effect on cable performance.

  17. In vitro biomechanical comparison of multistrand cables with conventional cervical stabilization.

    PubMed

    Weis, J C; Cunningham, B W; Kanayama, M; Parker, L; McAfee, P C

    1996-09-15

    The biomechanical stability of six different methods of cervical spine stabilization, three using multistrand cables, were evaluated in a bovine model. To quantify and compare the in vitro biomechanical properties of multistrand cables used for posterior cervical wiring to standard cervical fixation techniques. Fixation of the posterior cervical spine with monofilament stainless steel wire is a proven technique for stabilization of the cervical spine. Recently, multistrand braided cables have been used as a substitute for monofilament stainless steel wires. These cables, made of stainless steel, titanium, or polyethylene, are reported to be stronger, more flexible, and fatigue resistant than are monofilament wire based on mechanical testing. However, no in vitro biomechanical studies have been performed testing a standard posterior cervical wiring technique using multistrand cables. Thirty-six fresh frozen cervical calf spines consistent in size and age were mounted and fixed rigidly to isolate the C4-C5 motion segment. Six different reconstruction techniques were evaluated for Rogers' posterior cervical wiring technique using: 1) 20-gauge stainless steel monofilament wire, 2) stainless steel cable, 3) titanium cable, 4) polyethylene cables, 5) anterior locking plate construct with interbody graft, and 6) posterior plate construct. Six cervical spines were included in each group (n = 6), with each specimen statically evaluated under three stability conditions: 1) intact, 2) reconstructed, and 3) postfatigue. The instability model created before the reconstruction consisted of a distractive flexion Stage 3 injury at C4-C5. Nondestructive static biomechanical testing, performed on an material testing machine (MTS 858 Bionix test system, Minneapolis, MN), included axial compression, axial rotation, flexion-extension, and lateral bending. After reconstruction and static analysis, the specimens were fatigued for 1500 cycles and then statically retested. Data analysis included normalization of the reconstructed and postfatigue data to the intact condition. The calculated static parameters included operative functional unit stiffness and range of motion. Posterior cervical reconstruction with stainless steel monofilament wire proved inadequate under fatigue testing. Two of the six specimens failed with fatigue, and this construct permitted the greatest degree of flexion-extension motion after fatigue in comparison with all other constructs (P < 0.05). There were no significant differences in flexural stiffness or range of motion between stainless steel, titanium, or polyethylene cable constructs before or after fatigue testing. The posterior cervical plate constructs were the stiffest constructs under flexion, extension, and lateral bending modes, before and after fatigue testing (P < 0.05). Multistrand cables were superior to monofilament wire with fatigue testing using an in vitro calf cervical spine model. There were no failures or detectable differences in elongation after fatigue testing between the stainless steel, titanium, and polyethylene cables, as shown by the flexion-extension range of motion. The posterior cervical plate construct offered the greatest stability compared with all other constructs.

  18. Coaxial Cables for Martian Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Harvey, Wayne L.; Valas, Sam; Tsai, Michael C.

    2011-01-01

    Work was conducted to validate the use of the rover external flexible coaxial cabling for space under the extreme environments to be encountered during the Mars Science Laboratory (MSL) mission. The antennas must survive all ground operations plus the nominal 670-Martian-day mission that includes summer and winter seasons of the Mars environment. Successful development of processes established coaxial cable hardware fatigue limits, which were well beyond the expected in-flight exposures. In keeping with traditional qualification philosophy, this was accomplished by subjecting flight-representative coaxial cables to temperature cycling of the same depth as expected in-flight, but for three times the expected number of in-flight thermal cycles. Insertion loss and return loss tests were performed on the coaxial cables during the thermal chamber breaks. A vector network analyzer was calibrated and operated over the operational frequency range 7.145 to 8.450 GHz. Even though some of the exposed cables function only at UHF frequencies (approximately 400 MHz), the testing was more sensitive, and extending the test range down to 400 MHz would have cost frequency resolution. The Gore flexible coaxial cables, which were the subject of these tests, proved to be robust and displayed no sign of degradation due to the 3X exposure to the punishing Mars surface operations cycles.

  19. Fiber optical cable and connector system (FOCCoS) for PFS/ Subaru

    NASA Astrophysics Data System (ADS)

    de Oliveira, Antonio Cesar; de Oliveira, Lígia Souza; de Arruda, Marcio V.; Souza Marrara, Lucas; dos Santos, Leandro H.; Ferreira, Décio; dos Santos, Jesulino B.; Rosa, Josimar A.; Junior, Orlando V.; Pereira, Jeferson M.; Castilho, Bruno; Gneiding, Clemens; Junior, Laerte S.; de Oliveira, Claudia M.; Gunn, James; Ueda, Akitoshi; Takato, Naruhisa; Shimono, Atsushi; Sugai, Hajime; Karoji, Hiroshi; Kimura, Masahiko; Tamura, Naoyuki; Wang, Shiang-Yu; Murray, Graham; Le Mignant, David; Madec, Fabrice; Jaquet, Marc; Vives, Sebastien; Fisher, Charlie; Braun, David; Schwochert, Mark; Reiley, Daniel J.

    2014-07-01

    FOCCoS, "Fiber Optical Cable and Connector System" has the main function of capturing the direct light from the focal plane of Subaru Telescope using optical fibers, each one with a microlens in its tip, and conducting this light through a route containing connectors to a set of four spectrographs. The optical fiber cable is divided in 3 different segments called Cable A, Cable B and Cable C. Multi-fibers connectors assure precise connection among all optical fibers of the segments, providing flexibility for instrument changes. To assure strong and accurate connection, these sets are arranged inside two types of assemblies: the Tower Connector, for connection between Cable C and Cable B; and the Gang Connector, for connection between Cable B and Cable A. Throughput tests were made to evaluate the efficiency of the connections. A lifetime test connection is in progress. Cable C is installed inside the PFI, Prime Focus Instrument, where each fiber tip with a microlens is bonded to the end of the shaft of a 2-stage piezo-electric rotatory motor positioner; this assembly allows each fiber to be placed anywhere within its patrol region, which is 9.5mm diameter.. Each positioner uses a fiber arm to support the ferrule, the microlens, and the optical fiber. 2400 of these assemblies are arranged on a motor bench plate in a hexagonal-closed-packed disposition. All optical fibers from Cable C, protected by tubes, pass through the motors' bench plate, three modular plates and a strain relief box, terminating at the Tower Connector. Cable B is permanently installed at Subaru Telescope structure, as a link between Cable C and Cable A. This cable B starts at the Tower Connector device, placed on a lateral structure of the telescope, and terminates at the Gang Connector device. Cable B will be routed to minimize the compression, torsion and bending caused by the cable weight and telescope motion. In the spectrograph room, Cable A starts at the Gang Connector, crosses a distribution box and terminates in a slit device. Each slit device receives approximately 600 optical fibers, linearly arrayed in a curve for better orientation of the light to the spectrograph collimator mirror. Four sets of Gang Connectors, distribution boxes and Slit devices complete one Cable A. This paper will review the general design of the FOCCoS subsystem, methods used to manufacture the involved devices, and the needed tests results to evaluate the total efficiency of the set.

  20. Burning Characteristics and Flammability of PVC Cables in Groups

    NASA Technical Reports Server (NTRS)

    Mikado, T.; Akita, K.

    1988-01-01

    Because burning cables represent a danger of increasing secondary damage it is of utmost importance for disaster prevention to correctly evaluate the combustion characteristics of cable. However, in many cases cable is laid out in bundles complicating the combustion characteristics. A situation has developed where group cable characteristics are not completely understood. A new method is developed for testing the combustion of high polymer type cable and earlier reports gave comparative combustion measurement results. It was learned that there is considerable difference between the combustion characteristics of the grouped cables and those of single cables. This study is supplemental research concerning the special behavior of group PVC cables, throwing some light on their combustion characteristics.

  1. The in-process control of PVC sheath of a double core cable

    NASA Astrophysics Data System (ADS)

    Galeeva, N. S.; Redko, V. V.; Redko, L. A.

    2018-01-01

    In this work the possibility of the sheath hermiticity testing by measuring of the cable capacity per unit length variation during spark testing is considered. The research object is 2×0.75 HO3VVH2-F cable. According to the physical modelling it is proved that such defect of sheath as pinhole through the whole thickness of sheath can be registered for the test length 10 cm with test voltage frequencies 1kHz and 10kHz.

  2. Using Cable Television for Library Data Transmission.

    ERIC Educational Resources Information Center

    Whitaker, Douglas A.

    1985-01-01

    Discusses information gained from a test of cable data circuits on a Geac bibliographic control system at the Wayne Oakland Library Federation (WOLF) (Michigan). Highlights include an introduction to cable, hardware profile, the WOLF experience, and key questions that will affect the future use of cable for data transmission. (EJS)

  3. Cable Tester

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA Tech Brief's provided Sonics Associates, Inc. with a method of saving many hours of testing time and money. James B. Cawthon, Sonics Vice-President, read about a device developed at Ames Research Center. Sonics adapted the device and produced an effective tester that uses a clocked shift register to apply a voltage to a cable under test. This is the active part of the Ames development, and the passive is a small box containing light emitting diodes (LEDs). When connected to the other end of the tested cable, the LEDs light in the same sequence as the generator. This procedure allows the technician to immediately identify a miswired cable.

  4. Square-lashing technique in segmental spinal instrumentation: a biomechanical study.

    PubMed

    Arlet, Vincent; Draxinger, Kevin; Beckman, Lorne; Steffen, Thomas

    2006-07-01

    Sublaminar wires have been used for many years for segmental spinal instrumentation in scoliosis surgery. More recently, stainless steel wires have been replaced by titanium cables. However, in rigid scoliotic curves, sublaminar wires or simple cables can either brake or pull out. The square-lashing technique was devised to avoid complications such as cable breakage or lamina cutout. The purpose of the study was therefore to test biomechanically the pull out and failure mode of simple sublaminar constructs versus the square-lashing technique. Individual vertebrae were subjected to pullout testing having one of two different constructs (single loop and square lashing) using either monofilament wire or multifilament cables. Four different methods of fixation were therefore tested: single wire construct, square-lashing wiring construct, single cable construct, and square-lashing cable construct. Ultimate failure load and failure mechanism were recorded. For the single wire the construct failed 12/16 times by wire breakage with an average ultimate failure load of 793 N. For the square-lashing wire the construct failed with pedicle fracture in 14/16, one bilateral lamina fracture, and one wire breakage. Ultimate failure load average was 1,239 N For the single cable the construct failed 12/16 times due to cable breakage (average force 1,162 N). 10/12 of these breakages were where the cable looped over the rod. For the square-lashing cable all of these constructs (16/16) failed by fracture of the pedicle with an average ultimate failure load of 1,388 N. The square-lashing construct had a higher pullout strength than the single loop and almost no cutting out from the lamina. The square-lashing technique with cables may therefore represent a new advance in segmental spinal instrumentation.

  5. Validation of Measured Damping Trends for Flight-Like Vehicle Panel/Equipment including a Range of Cable Harness Assemblies

    NASA Technical Reports Server (NTRS)

    Smith, Andrew M.; Davis, R. Benjamin; LaVerde, Bruce T.; Fulcher, Clay W.; Jones, Douglas C.; Waldon, James M.; Craigmyle, Benjamin B.

    2012-01-01

    This validation study examines the effect on vibroacoustic response resulting from the installation of cable bundles on a curved orthogrid panel. Of interest is the level of damping provided by the installation of the cable bundles and whether this damping could be potentially leveraged in launch vehicle design. The results of this test are compared with baseline acoustic response tests without cables. Damping estimates from the measured response data are made using a new software tool that leverages a finite element model of the panel in conjunction with advanced optimization techniques. While the full test series is not yet complete, the first configuration of cable bundles that was assessed effectively increased the viscous critical damping fraction of the system by as much as 0.02 in certain frequency ranges.

  6. Superconducting power transmission system development. Cable insulation development

    NASA Astrophysics Data System (ADS)

    1983-09-01

    The development of an underground superconducting power transmission system which is economical and technically attractive to the utility industry is discussed. Suitable superconductors and dielectric insulation were developed. Cables several hundred feet long are tested under realistic conditions. Three operating runs of about 2 weeks duration each were accomplished. The 60 Hz steady state performance of the cables under rated conditions was explored. Over voltage endurance tests and emergency level current tests were performed.

  7. Tactical Vehicle Climate Control Testing

    DTIC Science & Technology

    2017-03-31

    MIL-STD-810G CN1. The greatest care must be taken to monitor this parameter during periods where the vehicle engine is running while in the chamber...a drain plug, wire pass-through, or the gunner’s hatch that can remain closed throughout testing to prevent damaging the cables. Avoid running ...drain plug, wire pass-through, or the gunner’s hatch, that can remain closed throughout testing to prevent damaging the cables. Avoid running cables

  8. Results from tests, with van-mounted sensor, of magnetic leader cable for aircraft guidance during roll-out and turnoff

    NASA Technical Reports Server (NTRS)

    Young, J. C.; Bundick, W. T.; Irwin, S. H.

    1983-01-01

    Tests were conducted with a van mounted experimental magnetic leader cable sensor to evaluate its potential for measuring aircraft displacement and heading with respect to the leader cable during roll out and turnoff. Test results show that the system may be usable in measuring displacement but the heading measurement contains errors introduced by distortion of the magnetic field by the metal van or aircraft.

  9. Cable tester

    NASA Astrophysics Data System (ADS)

    Rammage, Robert L.

    1990-10-01

    A device for sequentially testing the plurality of connectors in a wiring harness is disclosed. The harness is attached to the tester by means of adapter cables and a rotary switch is used to sequentially, individually test the connectors by passing a current through the connector. If the connector is unbroken, a light will flash to show it is electrically sound. The adapters allow a large number of cable configurations to be tested using a single tester configuration.

  10. Development of in-vessel components of the microfission chamber for ITER.

    PubMed

    Ishikawa, M; Kondoh, T; Ookawa, K; Fujita, K; Yamauchi, M; Hayakawa, A; Nishitani, T; Kusama, Y

    2010-10-01

    Microfission chambers (MFCs) will measure the total neutron source strength in ITER. The MFCs will be installed behind blanket modules in the vacuum vessel (VV). Triaxial mineral insulated (MI) cables will carry signals from the MFCs. The joint connecting triaxial MI cables in the VV must be considered because the MFCs and the MI cables will be installed separately at different times. Vacuum tight triaxial connector of the MI cable has been designed and a prototype has been constructed. Performance tests indicate that the connector can be applied to the ITER environment. A small bending-radius test of the MI cable indicates no observed damage at a curvature radius of 100 mm.

  11. Development of in-vessel components of the microfission chamber for ITER1

    PubMed Central

    Ishikawa, M.; Kondoh, T.; Ookawa, K.; Fujita, K.; Yamauchi, M.; Hayakawa, A.; Nishitani, T.; Kusama, Y.

    2010-01-01

    Microfission chambers (MFCs) will measure the total neutron source strength in ITER. The MFCs will be installed behind blanket modules in the vacuum vessel (VV). Triaxial mineral insulated (MI) cables will carry signals from the MFCs. The joint connecting triaxial MI cables in the VV must be considered because the MFCs and the MI cables will be installed separately at different times. Vacuum tight triaxial connector of the MI cable has been designed and a prototype has been constructed. Performance tests indicate that the connector can be applied to the ITER environment. A small bending-radius test of the MI cable indicates no observed damage at a curvature radius of 100 mm. PMID:21033834

  12. Cable attachment for a radioactive brachytherapy source capsule

    DOEpatents

    Gross, Ian G; Pierce, Larry A

    2006-07-18

    In cancer brachytherapy treatment, a small californium-252 neutron source capsule is attached to a guide cable using a modified crimping technique. The guide cable has a solid cylindrical end, and the attachment employs circumferential grooves micromachined in the solid cable end. The attachment was designed and tested, and hardware fabricated for use inside a radioactive hot cell. A welding step typically required in other cable attachments is avoided.

  13. Cable-fault locator

    NASA Technical Reports Server (NTRS)

    Cason, R. L.; Mcstay, J. J.; Heymann, A. P., Sr.

    1979-01-01

    Inexpensive system automatically indicates location of short-circuited section of power cable. Monitor does not require that cable be disconnected from its power source or that test signals be applied. Instead, ground-current sensors are installed in manholes or at other selected locations along cable run. When fault occurs, sensors transmit information about fault location to control center. Repair crew can be sent to location and cable can be returned to service with minimum of downtime.

  14. Estudio de un microcable de par trenzado para la comunicacion y lectura del modulo de pixeles del experimento CMS

    NASA Astrophysics Data System (ADS)

    Oliveros Tautiva, Sandra Jimena

    The Compact Muon Solenoid (CMS) is one of the two most important experiments at the Large Hadron Collider (LHC). The pixel detector is the component closest to the collision in CMS and it receives large doses of radiation which will affect its performance. The pixel detector will be replaced by a new one after four years. The aim is to reduce material in the sensitive zone of the new pixel detector, which leads to the implementation of a type of micro twisted pair cable that will replace the existing kapton cables and some connections will be eliminated. The purpose of this work was to study the viability of using these micro twisted pair cables in the existing 40 MHz analog readout. The electrical parameters of micro cables were determined, and operational tests were performed in a module using these cables for communicating and reading. Three different lengths of micro cables were used, 1.0, 1.5 and 2.0 m, in order to compare test results with those obtained using the kapton cable. It was found that the use of these cables does not affect the programming and reading of the pixels in one module, so the micro cables are viable to be used in place of the kapton cables.

  15. Super-bridges suspended over carbon nanotube cables

    NASA Astrophysics Data System (ADS)

    Carpinteri, Alberto; Pugno, Nicola M.

    2008-11-01

    In this paper the new concept of 'super-bridges', i.e. kilometre-long bridges suspended over carbon nanotube cables, is introduced. The analysis shows that the use of realistic (thus defective) carbon nanotube bundles as suspension cables can enlarge the current limit main span by a factor of ~3. Too large compliance and dynamic self-excited resonances could be avoided by additional strands, rendering the super-bridge anchored as a spider's cobweb. As an example, we have computed the limit main spans of the current existing 19 suspended-deck bridges longer than 1 km assuming them to have substituted their cables with carbon nanotube bundles (thus maintaining the same geometry, with the exception of the length) finding spans of up to ~6.3 km. We thus suggest that the design of the Messina bridge in Italy, which would require a main span of ~3.3 km, could benefit from the use of carbon nanotube bundles. We believe that their use represents a feasible and economically convenient solution. The plausibility of these affirmations is confirmed by a statistical analysis of the existing 100 longest suspended bridges, which follow a Zipf's law with an exponent of 1.1615: we have found a Moore-like (i.e. exponential) law, in which the doubling of the capacity (here the main span) per year is substituted by the factor 1.0138. Such a law predicts that the realization of the Messina bridge using conventional materials will only occur around the middle of the present century, whereas it could be expected in the near future if carbon nanotube bundles were used. A simple cost analysis concludes the paper.

  16. Fault detection techniques for complex cable shield topologies

    NASA Astrophysics Data System (ADS)

    Coonrod, Kurt H.; Davis, Stuart L.; McLemore, Donald P.

    1994-09-01

    This document presents the results of a basic principles study which investigated technical approaches for developing fault detection techniques for use on cables with complex shielding topologies. The study was limited to those approaches which could realistically be implemented on a fielded cable, i.e., approaches which would require partial disassembly of a cable were not pursued. The general approach used was to start with present transfer impedance measurement techniques and modify their use to achieve the best possible measurement range. An alternative test approach, similar to a sniffer type test, was also investigated.

  17. MASH TEST NO. 3-10 OF A NON-PROPRIETARY, HIGH-TENSION CABLE MEDIAN BARRIER FOR USE IN 6H:1V V-DITCH (TEST NO. MWP-8)

    DOT National Transportation Integrated Search

    2017-05-10

    The Midwest States Pooled Fund Program has been developing a prototype design for a non-proprietary, high-tension cable median barrier for use in a 6H:1V V-ditch. This system incorporates four evenly spaced cables, Midwest Weak Posts (MWP) spaced at ...

  18. Leaky coaxial cable signal transmission for remote facilities

    NASA Astrophysics Data System (ADS)

    Smith, S. F.; Crutcher, R. I.

    To develop reliable communications methods to meet the rigorous requirements for nuclear hot cells and similar environments, including control of cranes, transporters, and advanced servomanipulators, the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) has conducted extensive tests of numerous technologies to determine their applicability to remote operations. To alleviate the need for large bundles of cables that must accommodate crane/transporter motion relative to the boundaries of the cell, several transmission techniques are available, including slotted-line radio-frequency couplers, infrared beams, fiber-optic cables, free-space microwave, and inductively coupled leaky coaxial cable. This paper discusses the general characteristics, mode of operation, and proposed implementation of leaky coaxial cable technology in a waste-handling facility scheduled to be built in the near future at ORNL. In addition, specific system hardware based around the use of leaky coaxial cable is described in detail. Finally, data from a series of radiation exposure tests conducted by the CFRP on several samples of the basic leaky coaxial cable and associated connectors are presented.

  19. Lightning tests and analyses of tunnel bond straps and shielded cables on the Space Shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Druen, William M.

    1993-01-01

    The purposes of the tests and analyses described in this report are as follows: (1) determine the lightning current survivability of five alternative changed designs of the bond straps which electrically bond the solid rocket booster (SRB) systems tunnel to the solid rocket motor (SRM) case; (2) determine the amount of reduction in induced voltages on operational flight (OF) tunnel cables obtained by a modified design of tunnel bond straps (both tunnel cover-to-cover and cover-to-motor case); (3) determine the contribution of coupling to the OF tunnel cables by ground electrical and instrumentation (GEI) cables which enter the systems tunnel from unshielded areas on the surfaces of the motor case; and (4) develop a model (based on test data) and calculate the voltage levels at electronic 'black boxes' connected to the OF cables that run in the systems tunnel.

  20. Multiscale stochastic simulations for tensile testing of nanotube-based macroscopic cables.

    PubMed

    Pugno, Nicola M; Bosia, Federico; Carpinteri, Alberto

    2008-08-01

    Thousands of multiscale stochastic simulations are carried out in order to perform the first in-silico tensile tests of carbon nanotube (CNT)-based macroscopic cables with varying length. The longest treated cable is the space-elevator megacable but more realistic shorter cables are also considered in this bottom-up investigation. Different sizes, shapes, and concentrations of defects are simulated, resulting in cable macrostrengths not larger than approximately 10 GPa, which is much smaller than the theoretical nanotube strength (approximately 100 GPa). No best-fit parameters are present in the multiscale simulations: the input at level 1 is directly estimated from nanotensile tests of CNTs, whereas its output is considered as the input for the level 2, and so on up to level 5, corresponding to the megacable. Thus, five hierarchical levels are used to span lengths from that of a single nanotube (approximately 100 nm) to that of the space-elevator megacable (approximately 100 Mm).

  1. Measured and Predicted Radiation-Induced Currents in Semirigid Coaxial Cables.

    DTIC Science & Technology

    1977-10-11

    plasma focus device. Semirigid cables of different size, material, and impedance were tested. Minute gaps and conductor flashings were found to be dominant factors affecting cable response. Response predictions provided by the MCCABE computer code closely correlated with the experimental measurements. Design of low-response semirigid cables matching the metal and dielectric electron emission is discussed.

  2. A novel approach for studying submarine faults: the FOCUS project (FOCUS = Fiber Optic Cable Use for Seafloor studies of earthquake hazard and deformation)

    NASA Astrophysics Data System (ADS)

    Gutscher, M. A.; Royer, J. Y.; Graindorge, D.; Murphy, S.; Klingelhoefer, F.; Cattaneo, A.; Barreca, G.; Quetel, L.; Petersen, F.; Riccobene, G.; Urlaub, M.; Krastel, S.; Gross, F.; Kopp, H.

    2017-12-01

    Two-thirds of the earth's surface is covered by water and thus largely inaccessible to modern networks of seismological instruments. A novel use of fiber optic cables could help improve hazard assessment and increase early warning capability. Laser reflectometry using BOTDR (Brillouin Optical Time Domain Reflectometry), commonly used for structural health monitoring of large-scale engineering structures (e.g. - bridges, dams, pipelines, etc.) can measure very small strains (< 1 mm) at very large distances (10 - 200 km). This technique has never been used to monitor deformation caused by active faults on the seafloor. The objective of the FOCUS project is to demonstrate that this technique can measure small (1 - 2 cm) displacements on a primary test site offshore Sicily where the recently mapped North Alfeo Fault crosses the Catania EMSO seafloor observatory, 28 km long fiber optic cable. Two other EMSO test sites with fiber optic cables, the 100 km long Capo Passero (SE Sicily) and the 2 km long cable off Molene Island (W France) will also be studied. Initial reflectometry tests were performed on these three cables using a Febus BOTDR interrogator in June and July 2017. Unexpectedly high dynamic noise levels (corresponding to strains of 200 - 500 mm/m) were observed on the Molene cable, likely due to the high-energy, shallow water, open ocean environment. The tests on the EMSO infrastructure in Sicily indicated low experimental noise levels (20 - 30 mm/m) out to a distance of 15 km. BOTDR observations will have to be calibrated by other independent measurements. Therefore, targeted marine geophysical surveys of the seafloor along the trace of the cable and faults are planned, with the use of seafloor geodetic instruments to quantify fault displacement. Once the BOTDR fault-monitoring technique has been tested, demonstrated and calibrated offshore Eastern Sicily, the goal is to expand it to other fiber optic cable networks, either existing research networks in earthquake hazard zones (Japan, Cascadia) or to the Mediterranean region through access to retired (decommissioned) telecommunication cables or development of dual-use cables (two of the anticipated outcomes of the FOCUS project). This represents a potentially tremendous breakthrough in seismology, tectonics and natural hazard early warning capability.

  3. Construction and 1st Experiment of the 500-meter and 1000-meter DC Superconducting Power Cable in Ishikari

    NASA Astrophysics Data System (ADS)

    Yamaguchi, S.; Ivanov, Y.; Watanabe, H.; Chikumoto, N.; Koshiduka, H.; Hayashi, K.; Sawamura, T.

    Ishikari project constructs two lines. The length of the Line 1 is 500 m, and connects the photovoltaic cell to the internet-data center. The other line is 1 km length, and it is a test facility and called Line 2. The structures of the cable systems are not same to test their performance. The construction was started from 2014 in the field, the Line 1 was completed in May 2015, and it was cooled down and do the current experiment, and warmed up. The Line 2 is almost complete in October 2015. It will be tested in November and December, 2015. In order to reduce the stress of the cable induced by the thermal expansion and contraction, we adopted the way of the helical deformation of the cable. The force of the cable is reduced to 1/3 of an usual cable test. Because the cryogenic pipes are welded in the field and we cannot use the baking of the vacuum chamber of the cryogenic pipe, a new vacuum pumping method was proposed and tested for the cryogenic pipe. Since the straight pipes are used to compose the cryogenic pipe, the pressure drop of the circulation would be 1/100 of the corrugated pipe in the present condition, and it is suitable for longer cable system. The heat leak of the cryogenic pipe is ∼1.4W/m including the cable pipe's and the return pipe's. The heat leak of the current lead is ∼30W/kA in the test bench. Finally the current of 6kA/3 sec and the current of 5kA/15 min were achieved in Line 1. The reduction of heat leak will be a major subject of the longer cable system. The cost of the construction will be almost twice higher than that of the copper and aluminum over-head line with the iron tower in the present Japan. The cost construction of the over-head line is an average value, and depends on the newspaper.

  4. Determining Damping Trends from a Range of Cable Harness Assemblies on a Launch Vehicle Panel from Test Measurements

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; Davis, R. Ben; LaVerde, Bruce; Jones, Douglas

    2012-01-01

    The team of authors at Marshall Space Flight Center (MSFC) has been investigating estimating techniques for the vibration response of launch vehicle panels excited by acoustics and/or aero-fluctuating pressures. Validation of the approaches used to estimate these environments based on ground tests of flight like hardware is of major importance to new vehicle programs. The team at MSFC has recently expanded upon the first series of ground test cases completed in December 2010. The follow on tests recently completed are intended to illustrate differences in damping that might be expected when cable harnesses are added to the configurations under test. This validation study examines the effect on vibroacoustic response resulting from the installation of cable bundles on a curved orthogrid panel. Of interest is the level of damping provided by the installation of the cable bundles and whether this damping could be potentially leveraged in launch vehicle design. The results of this test are compared with baseline acoustic response tests without cables. Damping estimates from the measured response data are made using a new software tool that employs a finite element model (FEM) of the panel in conjunction with advanced optimization techniques. This paper will report on the \\damping trend differences. observed from response measurements for several different configurations of cable harnesses. The data should assist vibroacoustics engineers to make more informed damping assumptions when calculating vibration response estimates when using model based analysis approach. Achieving conservative estimates that have more flight like accuracy is desired. The paper may also assist analysts in determining how ground test data may relate to expected flight response levels. Empirical response estimates may also need to be adjusted if the measured response used as an input to the study came from a test article without flight like cable harnesses.

  5. Effects of Cable News Watching on Older Adults' Physiological and Self-Reported Stress and Cognitive Function.

    PubMed

    Deal, Caroline; Bogdan, Ryan; Miller, J Phil; Rodebaugh, Tom; Caburnay, Charlene; Yingling, Mike; Hershey, Tammy; Schweiger, Julia; Lenze, Eric J

    2017-01-01

    Older adults are the largest consumer of cable news, which includes negative and politicized content and may constitute a daily stressor. As older adults are also vulnerable to the negative consequences of stress, we hypothesized that cable news watching could induce a stress reaction and impair cognitive function. We tested exposures to cable news (i.e., Fox News and MSNBC) in a within-subject randomized controlled design in 34 healthy older adults. We also included negative (Public Broadcasting Station) and positive (trier social stress test) controls. Cable news watching had no effect on psychological stress, physiological stress, or cognitive function. This remained true even if the news exposures were discordant with participants' political affiliation. We conclude that brief cable news watching does not induce a physiological or subjective stress response or cognitive impairment among healthy older adults.

  6. Life-assessment technique for nuclear power plant cables

    NASA Astrophysics Data System (ADS)

    Bartoníček, B.; Hnát, V.; Plaček, V.

    1998-06-01

    The condition of polymer-based cable material can be best characterized by measuring elongation at break of its insulating materials. However, it is not often possible to take sufficiently large samples for measurement with the tensile testing machine. The problem has been conveniently solved by utilizing differential scanning calorimetry technique. From the tested cable, several microsamples are taken and the oxidation induction time (OIT) is determined. For each cable which is subject to the assessment of the lifetime, the correlation of OIT with elongation at break and the correlation of elongation at break with the cable service time has to be performed. A reliable assessment of the cable lifetime depends on accuracy of these correlations. Consequently, synergistic effects well known at this time - dose rate effects and effects resulting from the different sequence of applying radiation and elevated temperature must be taken into account.

  7. Testing of a flat conductor cable baseboard system for residential and commercial wiring

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.

    1974-01-01

    The results of extensive testing (mechanical, electrical, chemical, environmental, thermal, and analytical) are reported for a flat conductor cable baseboard system for residential and commercial wiring. In all of the tests, Underwriters Laboratories (UL) Standards, UL Tentative Test Programs, or Accepted Engineering Practices were followed during test selection, test setup, and test accomplishment.

  8. Quality Test of Flexible Flat Cable (FFC) With Short Open Test Using Law Ohm Approach through Embedded Fuzzy Logic Based On Open Source Arduino Data Logger

    NASA Astrophysics Data System (ADS)

    Rohmanu, Ajar; Everhard, Yan

    2017-04-01

    A technological development, especially in the field of electronics is very fast. One of the developments in the electronics hardware device is Flexible Flat Cable (FFC), which serves as a media liaison between the main boards with other hardware parts. The production of Flexible Flat Cable (FFC) will go through the process of testing and measuring of the quality Flexible Flat Cable (FFC). Currently, the testing and measurement is still done manually by observing the Light Emitting Diode (LED) by the operator, so there were many problems. This study will be made of test quality Flexible Flat Cable (FFC) computationally utilize Open Source Embedded System. The method used is the measurement with Short Open Test method using Ohm’s Law approach to 4-wire (Kelvin) and fuzzy logic as a decision maker measurement results based on Open Source Arduino Data Logger. This system uses a sensor current INA219 as a sensor to read the voltage value thus obtained resistance value Flexible Flat Cable (FFC). To get a good system we will do the Black-box testing as well as testing the accuracy and precision with the standard deviation method. In testing the system using three models samples were obtained the test results in the form of standard deviation for the first model of 1.921 second model of 4.567 and 6.300 for the third model. While the value of the Standard Error of Mean (SEM) for the first model of the model 0.304 second at 0.736 and 0.996 of the third model. In testing this system, we will also obtain the average value of the measurement tolerance resistance values for the first model of - 3.50% 4.45% second model and the third model of 5.18% with the standard measurement of prisoners and improve productivity becomes 118.33%. From the results of the testing system is expected to improve the quality and productivity in the process of testing Flexible Flat Cable (FFC).

  9. Development of material formula and structure property indicators for low cold-resistant characterization of Cables’ Material

    NASA Astrophysics Data System (ADS)

    Sun, W.; Cai, Y. G.; Feng, Y. M.; Li, Y. L.; Zhou, H. Y.; Zhou, Y.

    2018-01-01

    Alpine regions account for about 27.9% of total land area in China. Northeast China, Inner Mongolia, Northwest China and other regions are located in alpine regions, wherein the above regions are rich in energy. However, the low-temperature impact embrittlement temperature of traditional PVC cable materials is between -15°C and -20°C, which is far lower than actual operation requirements. Cable insulation and sheath are always damaged during cable laying in alpine regions. Therefore, it is urgent to develop low-temperature-resistant cables applicable to low-temperature environment in alpine regions, and safe and stable operation of power grids in the alpine regions can be guaranteed. In the paper, cold-resistant PVC formula systems were mainly trial-manufactured and studied. Appropriate production technologies and formulas were determined through selecting raw materials and modified materials. The low-temperature impact embrittlement temperature was adjusted below -50°C under the precondition that PVC cable materials met national standard property requirements. Cold-resistant PVC cable materials were prepared, which were characterized by excellent physical and mechanical properties, and sound extrusion process, and cold-resistant PVC cable materials can meet production requirements of low-temperature-resistant cables. Meanwhile, the prepared cold-resistant cable material was used for extruding finished product cables and trial-manufacturing sample cables. Type tests of low temperature elongation ratio, 15min withstand voltage, etc. were completed for 35kV and lower sample cables in Mohe Low-temperature Test Site. All properties were consistent with standard requirements.

  10. Performance evolution of 60 kA HTS cable prototypes in the EDIPO test facility

    NASA Astrophysics Data System (ADS)

    Bykovsky, N.; Uglietti, D.; Sedlak, K.; Stepanov, B.; Wesche, R.; Bruzzone, P.

    2016-08-01

    During the first test campaign of the 60 kA HTS cable prototypes in the EDIPO test facility, the feasibility of a novel HTS fusion cable concept proposed at the EPFL Swiss Plasma Center (SPC) was successfully demonstrated. While the measured DC performance of the prototypes at magnetic fields from 8 T to 12 T and for currents from 30 kA to 70 kA was close to the expected one, an initial electromagnetic cycling test (1000 cycles) revealed progressive degradation of the performance in both the SuperPower and SuperOx conductors. Aiming to understand the reasons for the degradation, additional cycling (1000 cycles) and warm up-cool down tests were performed during the second test campaign. I c performance degradation of the SuperOx conductor reached ∼20% after about 2000 cycles, which was reason to continue with a visual inspection of the conductor and further tests at 77 K. AC tests were carried out at 0 and 2 T background fields without transport current and at 10 T/50 kA operating conditions. Results obtained in DC and AC tests of the second test campaign are presented and compared with appropriate data published recently. Concluding the first iteration of the HTS cable development program at SPC, a summary and recommendations for the next activity within the HTS fusion cable project are also reported.

  11. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  12. Follow-on cable coupling lightning test, volume 1

    NASA Technical Reports Server (NTRS)

    Danforth, Richard

    1990-01-01

    A redesigned solid rocket motor test article was subjected to simulated lightning strikes. This test was performed to evaluate the effects of lightning strike to the redesigned motor and Space Transportation System. The purpose of the test was to evaluate the performance of systems tunnel design changes when subjected to the lightning discharges. The goal of the design changes was to reduce lightning induced coupling to cables within the systems tunnel. The test article was subjected to several different amounts and kinds of discharges. Changes in coupling levels detected during the tests are recorded. The dominant mode of coupling appears to be caused by the diffusion of the magnetic fields through the system tunnel covers. The results from bond strap integrity testing showed that 16 of 18 bond straps survived. Design change evaluations showed that coupling reduction ranged from 0 to 36 decibels for each type of cable. The type of cable has less effect on coupling than does strike location and strike levels. Recommendations for design changes are made.

  13. Radiation Dose Testing on Juno High Voltage Cables

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Kirkham, Harold; Kim, Wousik; McAlpine, Bill

    2008-01-01

    The Juno mission to Jupiter will have a highly elliptical orbit taking the spacecraft through the radiation belts surrounding the planet. During these passes through the radiation belts, the spacecraft will be subject to high doses of radiation from energetic electrons and protons with energies ranging from 10 keV to 1 GeV. While shielding within the spacecraft main body will reduce the total absorbed dose to much of the spacecraft electronics, instruments and cables on the outside of the spacecraft will receive much higher levels of absorbed dose. In order to estimate the amount of degradation to two such cables, testing has been performed on two coaxial cables intended to provide high voltages to three of the instruments on Juno. Both cables were placed in a vacuum of 5x10(exp -6) torr and cooled to -50(deg)C prior to exposure to the radiation sources. Measurements of the coaxial capacitance per unit length and partial discharge noise floor indicate that increasing levels of radiation make measurable but acceptably small changes to the F EP Teflon utilized in the construction of these cables. In addition to the radiation dose testing, observations were made on the internal electrostatic charging characteristics of these cables and multiple discharges were recorded.

  14. Radiation Dose Testing on Juno High Voltage Cables

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Kirkham, Harold; Kim, Wousik; McAlpine, Bill

    2008-01-01

    The Juno mission to Jupiter will have a highly elliptical orbit taking the spacecraft through the radiation belts surrounding the planet. During these passes through the radiation belts, the spacecraft will be subject to high doses of radiation from energetic electrons and protons with energies ranging from 10 keV to 1 GeV. While shielding within the spacecraft main body will reduce the total absorbed dose to much of the spacecraft electronics, instruments and cables on the outside of the spacecraft will receive much higher levels of absorbed dose. In order to estimate the amount of degradation to two such cables, testing has been performed on two coaxial cables intended to provide high voltages to three of the instruments on Juno. Both cables were placed in a vacuum of 5x10-6 torr and cooled to -50 C prior to exposure to the radiation sources. Measurements of the coaxial capacitance per unit length and partial discharge noise floor indicate that increasing levels of radiation make measurable but acceptably small changes to the F EP Teflon utilized in the construction of these cables. In addition to the radiation dose testing, observations were made on the internal electrostatic charging characteristics of these cables and multiple discharges were recorded.

  15. 6. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. Looking south from north wall of terminal room. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  16. Cable Effects Study. Tangents, Rabbit Holes, Dead Ends, and Valuable Results

    DOE PAGES

    Ardelean, Emil V.; Babuška, Vít; Goodding, James C.; ...

    2014-08-04

    Lessons learned during a study on the effects that electrical power and signal wiring harness cables introduce on the dynamic response of precision spacecraft is presented, along with the most significant results. Our study was a three year effort to discover a set of practical approaches for updating well-defined dynamic models of harness-free structures where knowledge of the cable type, position, and tie-down method are known. Although cables are found on every satellite, the focus was on precision, low damping, and very flexible structures. Obstacles encountered, classified as tangents, rabbit holes, and dead ends, offer practical lessons for structural dynamicsmore » research. The paper traces the historical, experiential progression of the project, describing how the obstacles affected the project. Methods were developed to estimate cable properties. Problems were encountered because of the flexible, highly damped nature of cables. A beam was used as a test article to validate experimentally derived cable properties and to refine the assumptions regarding boundary conditions. Furthermore, a spacecraft bus-like panel with cables attached was designed, and finite element models were developed and validated through experiment. Various paths were investigated at each stage before a consistent test and analysis methodology was developed« less

  17. Cable Effects Study. Tangents, Rabbit Holes, Dead Ends, and Valuable Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardelean, Emil V.; Babuška, Vít; Goodding, James C.

    Lessons learned during a study on the effects that electrical power and signal wiring harness cables introduce on the dynamic response of precision spacecraft is presented, along with the most significant results. Our study was a three year effort to discover a set of practical approaches for updating well-defined dynamic models of harness-free structures where knowledge of the cable type, position, and tie-down method are known. Although cables are found on every satellite, the focus was on precision, low damping, and very flexible structures. Obstacles encountered, classified as tangents, rabbit holes, and dead ends, offer practical lessons for structural dynamicsmore » research. The paper traces the historical, experiential progression of the project, describing how the obstacles affected the project. Methods were developed to estimate cable properties. Problems were encountered because of the flexible, highly damped nature of cables. A beam was used as a test article to validate experimentally derived cable properties and to refine the assumptions regarding boundary conditions. Furthermore, a spacecraft bus-like panel with cables attached was designed, and finite element models were developed and validated through experiment. Various paths were investigated at each stage before a consistent test and analysis methodology was developed« less

  18. 12. COLD CALIBRATION BLOCKHOUSE BASEMENT VIEW FROM LEFT TO RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. COLD CALIBRATION BLOCKHOUSE BASEMENT VIEW FROM LEFT TO RIGHT, CABLE TRAYS, RACKS, CABLE CONNECTION TERMINALS. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL

  19. 7. BLOCK HOUSE BASEMENT LOOKING THROUGH DOOR INTO CABLE TUNNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. BLOCK HOUSE BASEMENT LOOKING THROUGH DOOR INTO CABLE TUNNEL RUNNING BETWEEN BLOCK HOUSE AND STATIC TEST TOWER. - Marshall Space Flight Center, East Test Area, Block House, Huntsville, Madison County, AL

  20. 3. CABLE TUNNEL TO TEST STAND 1A, LOOKING SOUTH TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CABLE TUNNEL TO TEST STAND 1-A, LOOKING SOUTH TO STAIRS LEADING UP TO CONTROL CENTER. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  1. KSC01pp0149

    NASA Image and Video Library

    2001-01-20

    KENNEDY SPACE CENTER, FLA. -- Solid rocket booster cables are exposed after removal of the SRB system tunnel cover. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA’s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  2. Nondestructive Examination for Nuclear Power Plant Cable Aging Management Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Fifield, Leonard S.

    2016-01-01

    Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. System tests verify cable function under normal loads; however, the concern is over cable performance under exceptional loads associated with design-basis events (DBEs). The cable’s ability to perform safely over the initial 40 year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found inmore » an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program (AMP) to justify cable performance under normal operation as well as accident conditions. This paper addresses various NDE technologies that constitute the essence of an acceptable aging management program.« less

  3. Numerical Simulation of Selecting Model Scale of Cable in Wind Tunnel Test

    NASA Astrophysics Data System (ADS)

    Huang, Yifeng; Yang, Jixin

    The numerical simulation method based on computational Fluid Dynamics (CFD) provides a possible alternative means of physical wind tunnel test. Firstly, the correctness of the numerical simulation method is validated by one certain example. In order to select the minimum length of the cable as to a certain diameter in the numerical wind tunnel tests, the numerical wind tunnel tests based on CFD are carried out on the cables with several different length-diameter ratios (L/D). The results show that, when the L/D reaches to 18, the drag coefficient is stable essentially.

  4. Device for testing continuity and/or short circuits in a cable

    NASA Technical Reports Server (NTRS)

    Hayhurst, Arthur R. (Inventor)

    1995-01-01

    A device for testing current paths is attachable to a conductor. The device automatically checks the current paths of the conductor for continuity of a center conductor, continuity of a shield and a short circuit between the shield and the center conductor. The device includes a pair of connectors and a circuit to provide for testing of the conductive paths of the cable. The pair of connectors electrically connects the conductive paths of a cable to be tested with the circuit paths of the circuit. The circuit paths in the circuit include indicators to simultaneously indicate the results of the testing.

  5. Thin film conductors for self-equalizing cables

    NASA Astrophysics Data System (ADS)

    Owen, G.; Trutna, W. R.; Orsley, T. J.; Lucia, F.; Daly, C. B.

    2017-10-01

    Self-equalizing cables using hollow conductors with wall thickness less than the skin depth were proposed in 1929. However, they do not appear ever to have been widely used, although the idea has resurfaced and been refined from time to time. In the early 2000's, self-equalizing conductors consisting of solid magnetic steel cores coated with silver were developed by W.L. Gore, and used in their 2.5 Gb/s "Eye-Opener" cables, although higher speed versions never appeared. We have revived the original 1929 idea, proposing to use glass as a solid insulating core. This technology can potentially work at frequencies of many 10's of GHz. Possible uses include short range GHz links such as USB and Thunderbolt, and intra-rack interconnections in data centers. Our feasibility experiments have validated the principle. Copper coated glass fibers can, in principle, be manufactured, but in these tests, the conductors were capillaries internally coated with silver as these are easily obtainable, relatively inexpensive and serve to test the concept. The performance of these experimental twin lead cables corresponds to calculations, confirming the general principle. By calculation, we have compared the performance of cables made from copper-on-insulator conductors to that of similar cables made with solid copper conductors, and verified that copper-on-insulator cables have significantly less frequency dependent loss. We have also made and tested cables with copper on PEEK conductors as surrogates for copper on glass fiber.

  6. Method and apparatus for testing a forward-moving strand

    DOEpatents

    Ducommun, Joel; Vulliens, Philippe

    1980-01-01

    In a method for testing a continuously forward-moving strand a light beam which passes along a plane that extends approximately perpendicularly to the longitudinal axis of the strand is introduced into the strand. The brightness value is measured on a place of the strand exterior which is distal from the light incidence place by means of at least one photoelectronic element disposed directly on the strand exterior and the measured result is evaluated in a gating circuit which is electrically connected to the photoelectronic element.

  7. [Biomechanical performance of different wires and cable fixation devices in posterior instrumentation for atlantoaxial instability].

    PubMed

    Liu, Tie-long; Yan, Wang-jun; Han, Yu; Ye, Xiao-jian; Jia, Lian-shun; Li, Jia-shun; Yuan, Wen

    2010-05-01

    To compare the biomechanical performances of different wires and cable fixation devices in posterior instrumentation for atlantoaxial instability, and test the effect of different fixation strengths and fixation approaches on the surgical outcomes. Six specimens of the atlantoaxial complex (C0-C3) were used to establish models of the normal complex, unstable complex (type II odontoid fracture) and fixed complex. On the wd-5 mechanical testing machine, the parameters including the strength and rigidity of anti-rotation, change and strength of stress, and stability were measured for the normal complex, atlantoaxial instability complex, the new type titanium cable fixation system, Atlas titanium cable, Songer titanium cable, and stainless wire. The strength and rigidity of anti-rotation, change and strength of stress, stability of flexion, extension and lateral bending of the unstable atlantoaxial complex fixed by the new double locking titanium cable fixation system were superior to those of the Songer or Atlas titanium cable (P<0.05) and medical stainless wire (P<0.05). Simultaneous cable fastening on both sides resulted in better fixation effect than successive cable fastening (P<0.05). Better fixation effect was achieved by fastening the specimen following a rest (P<0.05). The fixation effects can be enhanced by increased fastening strengths. The new type double locking titanium cable fixation system has better biomechanical performance than the conventional Songer and Atlas titanium cables. Fastening the unstable specimens after a rest following simultaneous fastening of the specimen on both sides produces better fixation effect.

  8. Microbiological sampling of returned Surveyor 3 electrical cabling

    NASA Technical Reports Server (NTRS)

    Knittel, M. D.; Favero, M. S.; Green, R. H.

    1972-01-01

    A piece of electrical wiring bundle running from the television camera to another part of the spacecraft was selected for microbiological examination. Sampling methods are discussed. The results presented show that no viable microorganisms were recovered from the part of the Surveyor 3 cable which was tested. Factors that could have contributed to the sterility of the cable are thermal vacuum testing, natural dieoff, change in pressure during launch, and lunar vacuum and temperature.

  9. Applications of FRP-OFBG sensors on bridge cables

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Zhang, Zhichun; Deng, Nianchun; Zhao, Xuefeng; Li, Dongsheng; Wang, Chuang; Ou, Jinping

    2005-05-01

    It is still a practical problem how to effectively install FBG sensors on bridge cabes. In this paper, a simple and effective solution is introduced to develop smart bridge cables using FRP-OFBG bars developed in HIT (Harbin Institute of Technology). Here, the FRP-OFBG bar acts as one component of the cable and shows force resistance and well-protected sensors in service. The installation techniques and the sensing properties of FBGs in three kinds of cables, FRP cables, common steel-wire cable and extruded-anchor cable, are introduced and tested under dead load. Moreover, the preliminary introduction of a practical field application based on this solution has been also given. The experimental results show that the deformability of FRP-OFBG bars in the smart cables can reach the terminal and show wonderful accuracy, which shows that such kind of smart cable is practical in field application.

  10. Performance of a 10 kV, 625 kA, 85 kJ energy discharge module utilizing a solid dielectric switch

    NASA Astrophysics Data System (ADS)

    Richardson, R. A.; Cravey, W. R.; Goerz, D. A.

    We have designed and tested an 87-kJ energy discharge system consisting of two 720-(mu)F, 11-kV capacitors discharged through parallel coaxial cables into a 250 nH load. Data will be presented on the current and voltage waveforms, with calculated values of the system inductance and resistance. The bank uses a solid dielectric switch punctured by an explosive bridge wire (EBW) to initiate the discharge. With the capacitors charged to 9 kV, a 625-kA peak current is sent through the load with a ringing frequency of 6.8 kHz. The coaxial cables used to transmit the current to the load are 3 m in length. Both RG-217 and YK-198 cable types were tested, which have an inductance of 74 nH/ft and 35 nH/ft respectively. Normal operation requires that each cable carry 52 kA. The cables were tested to 100 kA each by connecting fewer cables to the load, and gradually increasing the charge voltage. The solid dielectric switch was chosen for high reliability. Details of the switch will be describes and data on its performance will be presented.

  11. Field test of optical and electrical fire detectors in simulated fire scenes in a cable tunnel

    NASA Astrophysics Data System (ADS)

    Fan, Dian; Ding, Hongjun; Wang, Dorothy Y.; Jiang, Desheng

    2014-06-01

    This paper presents the testing results of three types of fire detectors: electrical heat sensing cable, optical fiber Raman temperature sensing detector, and optical fiber Bragg grating (FBG) temperature sensing detector, in two simulated fire scenes in a cable tunnel. In the small-scale fire with limited thermal radiation and no flame, the fire alarm only comes from the heat sensors which directly contact with the heat source. In the large-scale fire with about 5 °C/min temperature rising speed within a 3-m span, the fire alarm response time of the fiber Raman sensor and FBG sensors was about 30 seconds. The test results can be further used for formulating regulation for early fire detection in cable tunnels.

  12. Phase 9 Fiber Optic Cable Microbending and Temperature Cycling Tests

    NASA Technical Reports Server (NTRS)

    Abushagur, Mustafa A.G.; Huang, Po T.; Hand, Larry

    1996-01-01

    Optical fibers represent the back bone of the current communications networks. Their performance in the field lacks long term testing data because of the continuous evolution of the manufacturing of fibers and cables. An optical fiber cable that is installed in NASA's KSC has experienced a dramatic increase in attenuation after three years of use from 0.7 dB/km to 7 dB/km in some fibers. A thorough study is presented to assess the causes of such an attenuation increase. Material and chemical decomposition testing showed that there are no changes in the composition of the fiber which might have caused the increase in attenuation. Microbending and heat cycling tests were performed on the cable and individual fibers. It was found that the increase in attenuation is due to microbending caused by excessive stress exerted on the fibers. This was the result of manufacturing and installation irregularities.

  13. Investigation of the strength of shielded and unshielded underwater electrical cables

    NASA Astrophysics Data System (ADS)

    Glowe, D. E.; Arnett, S. L.

    1981-09-01

    The mechanical properties of shielded and unshielded submarine cables (MIL-C-915/8E) were investigated to determine the effect of shielding on cable life, performance, and reliability. Ten cables (five shielded and five unshielded) were selected for laboratory evaluation. A mission profile was developed to establish the mechanical stress limits that cables must endure in service and a test sequence designed to measure tensile strength, flexural abrasion endurance, crush resistance, creep under static tension, and performance in a hull-stuffing tube. The results of this program showed that: (1) DSS-2 cable does not have adequate tensile strength and should have a strength member added. DSS-3 and larger cables have adequate tensile strength with or without the shield; (2) Unshielded DSS-3 type cable does not perform satisfactorily in hull-stuffing tubes; (3) Shielding is not required to meet mission profile specifications for cable crush or flexural abrasion resistance; (4) Construction parameters other than shielding can significantly affect mechanical performance of cable; (5) Unshielded cable construction can result in increased reliability since it permits a thicker single-jacket construction; and (6) Unshielded cable construction can reduce the cost of cable by 8 to 20 percent.

  14. Development of a single-phase 30 m HTS power cable

    NASA Astrophysics Data System (ADS)

    Cho, Jeonwook; Bae, Joon-Han; Kim, Hae-Jong; Sim, Ki-Deok; Kim, Seokho; Jang, Hyun-Man; Lee, Chang-Young; Kim, Dong-Wook

    2006-05-01

    HTS power transmission cables appear to be the replacement and retrofitting of underground cables in urban areas and HTS power transmission cable offers a number of technical and economic merits compared to the normal conductor cable system. A 30 m long, single-phase 22.9 kV class HTS power transmission cable system has been developed by Korea Electrotechnology Research Institute (KERI), LS Cable Ltd., and Korea Institute of Machinery and Materials (KIMM), which is one of the 21st century frontier project in Korea since 2001. The HTS power cable has been developed, cooled down and tested to obtain realistic thermal and electrical data on HTS power cable system. The evaluation results clarified such good performance of HTS cable that DC critical current of the HTS cable was 3.6 kA and AC loss was 0.98 W/m at 1260 Arms and shield current was 1000 Arms. These results proved the basic properties for 22.9 kV HTS power cable. As a next step, we have been developing a 30 m, three-phase 22.9 kV, 50 MV A HTS power cable system and long term evaluation is in progress now.

  15. Research to develop guidelines for cathodic protection of concentric neutral cables, volume 2

    NASA Astrophysics Data System (ADS)

    Hanck, J. A.; Nekoksa, G.

    1981-08-01

    Data from field tests and sieve analyses presented in support of an effort to develop guidelines for the installation of underground transmission primary cables. Anodic and cathodic polarization curves and the surface and cable potential gradients from 38 bellholes.

  16. Literature review of environmental qualification of safety-related electric cables: Summary of past work. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subudhi, M.

    1996-04-01

    This report summarizes the findings from a review of published documents dealing with research on the environmental qualification of safety-related electric cables used in nuclear power plants. Simulations of accelerated aging and accident conditions are important considerations in qualifying the cables. Significant research in these two areas has been performed in the US and abroad. The results from studies in France, Germany, and Japan are described in this report. In recent years, the development of methods to monitor the condition of cables has received special attention. Tests involving chemical and physical examination of cable`s insulation and jacket materials, and electricalmore » measurements of the insulation properties of cables are discussed. Although there have been significant advances in many areas, there is no single method which can provide the necessary information about the condition of a cable currently in service. However, it is possible that further research may identify a combination of several methods that can adequately characterize the cable`s condition.« less

  17. The Effects of Posterior Rotator Cuff Cable Tears on Glenohumeral Biomechanics in a Cadaveric Model of the Throwing Shoulder

    PubMed Central

    Photopoulos, Christos Demetris; ElAttrache, Neal S.; Doermann, Alex; Akeda, Masaki; McGarry, Michelle H.; Lee, Thay Q.

    2017-01-01

    Objectives: The rotator cuff cable has been postulated to be the primary load bearing substructure of the superior part of the rotator cuff. Tears of the posterior rotator cable are frequently seen in overhead throwing athletes. Although the biomechanical significance of the anterior rotator cable has been well described, our current understanding of the relevance of the posterior cable is limited. The purpose of this study was to examine how partial-thickness tears and full-thickness tears of the posterior rotator cable would alter glenohumeral biomechanics and kinematics in cadaveric shoulder models. Methods: Eight fresh-frozen cadaveric shoulder specimens were prepared and tested. To simulate the sequence of glenohumeral positions during the throwing motion, specimens were mounted on a custom shoulder testing system with the humerus positioned at 90° of abduction (30° scapular upward rotation, 60° glenohumeral abduction) and tested at 30, 60, 90, and 120 degrees of external rotation. After a circumferential capsulotomy was performed, rotator cuff muscles were loaded based on physiologic cross-sectional area ratios, and testing for each specimen was performed on each the following three conditions: intact posterior cable, partial-thickness (50%) articular-sided posterior cable tear, and full-thickness posterior cable tear. Primary outcome measures tested for each condition under the various degrees of glenohumeral rotation were: 1) anterior and total glenohumeral translation after application of a 30N anterior force; 2) path of glenohumeral articulation; 3) glenohumeral joint force. Results: With a 30N anterior force at 120° of external rotation, there was a significant increase in anterior glenohumeral translation between intact and full-thickness tear specimens (7.28±2.00mm and 17.49±3.75mm, respectively; p<0.05). Similarly, total joint translation at 120° of external rotation significantly increased between intact and full-thickness tear specimens (10.37±3.18mm and 23.37±5.05mm, respectively; p<0.05). No significant differences were apparent at other degrees of rotation (30, 60, 90 degrees), or with partial-thickness tears. Changes in the path of glenohumeral articulation were likewise most evident at 120° of external rotation, with a progressively anterior, inferior, and lateral shift in articulation with sequential sectioning of the posterior cable. Lastly, with regards to alterations in glenohumeral joint force, no significant changes were seen in any of the conditions. Conclusion: In this cadaveric shoulder model of the throwing shoulder, tears of the posterior rotator cuff cable lead to altered glenohumeral biomechanics and kinematics. These changes were most profound at 120° of external rotation, suggesting the importance of an intact posterior cable as a potential stabilizer during the late-cocking phase of throwing.

  18. Design, development, fabrication and testing of high temperature Flat Conductor Cable (FCC)

    NASA Technical Reports Server (NTRS)

    Rigling, W. S.

    1974-01-01

    The results are presented of a development program for a flat, 25-conductor signal cable and a flat, 3-conductor power cable. Flat cables employ conductors made of strips or flattened round copper conductors insulated with polyimide films. It is shown that conductor thickness ranges from 0.003 to 0.010 inch, and begins to soften and loose mechanical strength at temperatures above 200 C.

  19. Cable Modems' Transmitted RF: A Study of SNR, Error Rates, Transmit Levels, and Trouble Call Metrics

    ERIC Educational Resources Information Center

    Tebbetts, Jo A.

    2013-01-01

    Hypotheses were developed and tested to measure the cable modems operational metrics response to a reconfiguration of the cable modems' transmitted RF applied to the CMTS. The purpose of this experiment was to compare two groups on the use of non-federal RF spectrum to determine if configuring the cable modems' transmitted RF from 25.2…

  20. Radiation Testing of a Low Voltage Silicone Nuclear Power Plant Cable.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Robert

    This report summarizes the results generated in FY13 for cable insulation in support of DOE's Light Water Reactor Sustainability (LWRS) Program, in collaboration with the US- Argentine Binational Energy Working Group (BEWG). A silicone (SiR) cable, which was stored in benign conditions for %7E30 years, was obtained from Comision Nacional de Energia Atomica (CNEA) in Argentina. Physical property testing was performed on the as-received cable. This cable was artificially aged to assess behavior with additional analysis. SNL observed appreciable tensile elongation values for all cable insulations received, indicative of good mechanical performance. Of particular note, the work presented here providesmore » correlations between measured tensile elongation and other physical properties that may be potentially leveraged as a form of condition monitoring (CM) for actual service cables. It is recognized at this point that the polymer aging community is still lacking the number and types of field returned materials that are desired, but SNL -- along with the help of others -- is continuing to work towards that goal. This work is an initial study that should be complimented with location- mapping of environmental conditions of CNEA plant conditions (dose and temperature) as well as retrieval, analysis, and comparison with in-service cables.« less

  1. The Performance of Aircraft Control Cables Under Service Conditions

    DTIC Science & Technology

    1976-04-01

    wires in the cables is illustr;tcd in Ifigs. I ald 2. Fatigue tests were also carried out on samples of galvanised steel cable (5 cwt. (2.49kN) minimumil...sheave ratio using the MIL-C-151I cable of 2.38 mm (3:32 in.) diameter would have been 13.3. For a satisfactory fatigue performance for 7 x 19 galvanised ...critical region in which cable life is relatively low". Reference 13 recommends a sheave ratio of 18 for 7 x 19 galvanised and stainless ,ables and a

  2. External heating of electrical cables and auto-ignition investigation.

    PubMed

    Courty, L; Garo, J P

    2017-01-05

    Electric cables are now extensively used for both residential and industrial applications. During more than twenty years, multi-scale approaches have been developed to study fire behavior of such cables that represents a serious challenge. Cables are rather complicated materials because they consist of an insulated part and jacket of polymeric materials. These polymeric materials can have various chemical structures, thicknesses and additives and generally have a char-forming tendency when exposed to heat source. In this work, two test methods are used for the characterization of cable pyrolysis and flammability. The first one permits the investigation of cable pyrolysis. A description of the cable mass loss is obtained, coupling an Arrhenius expression with a 1D thermal model of cables heating. Numerical results are successfully compared with experimental data obtained for two types of cable commonly used in French nuclear power plants. The second one is devoted to ignition investigations (spontaneous or piloted) of these cables. All these basic observations, measurements and modelling efforts are of major interest for a more comprehensive fire resistance evaluation of electric cables. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. 47 CFR 15.31 - Measurement standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... current systems, and systems employing a “leaky” coaxial cable as an antenna, measurements for... under test, support equipment or interconnecting cables as determined by the boundary defined by an... cables shall be included within this boundary. (1) At frequencies at or above 30 MHz, measurements may be...

  4. 47 CFR 15.31 - Measurement standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... current systems, and systems employing a “leaky” coaxial cable as an antenna, measurements for... under test, support equipment or interconnecting cables as determined by the boundary defined by an... cables shall be included within this boundary. (1) At frequencies at or above 30 MHz, measurements may be...

  5. Protected, high-temperature connecting cable

    NASA Technical Reports Server (NTRS)

    Engdahl, R. E.

    1967-01-01

    Ceramic insulated, swaged stainless steel, sheathed, protective atmosphere cable admits electrical leads into an 1800 deg F air-environment test chamber. The cable has some bending capability and provides for nine niobium alloy conductors. An argon purge during the TIG weld closure protects internal wires from oxidation and embrittlement.

  6. Effect of thermo-mechanical stress during quench on Nb3Sn cable performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linda Imbasciati et al.

    2002-12-09

    Several high field magnets using Nb{sub 3}Sn superconductor are under development for future particle accelerators. The high levels of stored energy in these magnets can cause high peak temperatures during a quench. The thermomechanical stress generated in the winding during the fast temperature rise can result in a permanent damage of the brittle Nb{sub 3}Sn. Although there are several studies of the critical current degradation of Nb{sub 3}Sn strands due to strain, little is known about how to apply the strain limitations to define a maximum acceptable temperature in the coils during a quench. Therefore, an experimental program was launched,more » aimed at improving the understanding of the effect of thermo-mechanical stress in coils made from brittle Nb{sub 3}Sn. A first experiment, reported here, was performed on cables. The experimental results were compared to analytical and finite element models. The next step in the experimental program will be to repeat similar measurements in small racetrack coils and later in full size magnets.« less

  7. Potential Impact of Submarine Power Cables on Crab Harvest

    NASA Astrophysics Data System (ADS)

    Bull, A. S.; Nishimoto, M.

    2016-02-01

    Offshore renewable energy installations convert wave or wind energy to electricity and transfer the power to shore through transmission cables laid on or buried beneath the seafloor. West coast commercial fishermen, who harvest the highly prized Dungeness crab (Metacarcinus magister) and the rock crab (Cancer spp.), are concerned that the interface of crabs and electromagnetic fields (EMF) from these cables will present an electrified fence on the seafloor that their target resource will not cross. Combined with the assistance of professional fishermen, submarine transmission cables that electrify island communities and offshore oil platforms in the eastern Pacific provide an opportunity to test the harvest of crab species across power transmission cables. In situ field techniques give commercial crab species a choice to decide if they will cross fully energized, EMF emitting, power transmission cables, in response to baited traps. Each independent trial is either one of two possible responses: the crab crosses the cable to enter a trap (1) or the crab does not cross the cable to enter a trap (0). Conditions vary among sample units by the following categorical, fixed factors (i.e., covariates) of cable structure (buried or unburied); direction of cable from crab position (west or east, north or south); time and season. A generalized linear model is fit to the data to determine whether any of these factors affect the probability of crabs crossing an energized cable to enter baited traps. Additionally, the experimental design, aside from the number of runs (set of sample trials) and the dates of the runs, is the same in the Santa Barbara Channel for rock crab and Puget Sound for Dungeness crab, and allows us to compare the capture rates of the two species in the two areas. We present preliminary results from field testing in 2015.

  8. A biomechanical comparison of three sternotomy closure techniques.

    PubMed

    Cohen, David J; Griffin, Lanny V

    2002-02-01

    A biomechanical study of three sternotomy closure techniques (figure-of-eight stainless-steel wires, Pectofix Dynamic Sternal Fixation [DSF] stainless-steel plates, and figure-of-eight stainless-steel cables) was conducted to compare strength and stiffness variables in three clinically relevant loading modes (anterior-posterior shear, longitudinal shear, and lateral distraction). All tests were conducted on polyurethane foam sternal models that simulate the properties of cancellous bone. Each model was divided longitudinally and reconstructed using one of the sternotomy closure repair techniques. Tests were performed using a materials testing system that applies a continuously increasing amount of force in one direction to the model until it catastrophically breaks. A total of six trials of each fixation type in each of three test groups were prepared and tested, for a total of 54 tests. Strength and stiffness variables as well as a post-yield analysis of failure were evaluated. Sternums repaired using the DSF plate system are a more rigid construct than sternums repaired using the stainless-steel wires or cables in the distraction and transverse shear modes and they are not significantly different from sternums repaired with wires or cables in the longitudinal shear mode. The DSF plate system offers a 25% improvement in resistance to failure (yield) compared to wires when a transverse shear force is applied to the model. The cable system had a higher resistance to failure than the wires in all modes although the differences were not statistically significant. Additionally, the DSF plate system provides substantial reduction of the implant's cutting into the sternal model under loading as evidenced by the post-yield displacement when compared with either cables or wires for the distraction and longitudinal shear modes. For the transverse shear mode, the cables or wires would completely fail at the load for which cutting begins for the DSF. Both the DSF plate system and the stainless-steel cable system offer important advantages over figure-of-eight wire for sternal closure.

  9. Evaluation of Bluetooth as a replacement for cables in intensive care and surgery.

    PubMed

    Wallin, Mats K E B; Wajntraub, Samson

    2004-03-01

    In today's intensive care and surgery, a great number of cables are attached to patients. These cables can make the care and nursing of the patient difficult. Replacing them with wireless communications technology would facilitate patient care. Bluetooth is a modern radio technology developed specifically to replace cables between different pieces of communications equipment. In this study we sought to determine whether Bluetooth is a suitable replacement for cables in intensive care and during surgery with respect to electromagnetic compatibility. The following questions were addressed: Does Bluetooth interfere with medical equipment? And does the medical equipment decrease the quality of the Bluetooth communication? A Bluetooth link, simulating a patient monitoring system, was constructed with two laptops. The prototype was then used in laboratory and clinical tests according to American standards at the Karolinska Hospital in Stockholm. The tests, which included 44 different pieces of medical equipment, indicated that Bluetooth does not cause any interference. The tests also showed that the hospital environment does not affect the Bluetooth communication negatively. Bluetooth, a new radio technology transmitting at 2.4 GHz, was tested in a clinical setting. The study showed that a single Bluetooth link was robust and electromagnetically compatible with the tested electronic medical devices.

  10. Effect of oxygen concentration on fire growth of various types of cable bending in horizontal and vertical orientations

    NASA Astrophysics Data System (ADS)

    Pangaribuan, Adrianus; Dhiputra, I. M. K.; Nugroho, Yulianto S.

    2017-03-01

    Electrical cable is a whole of the material including metal (cooper) conductor and its insulation, when an electrical cable is flowed by electric current, based on its own capacity, the temperature of cable conductor increases gradually. If the current flows above the cable carrying capacity, then an extreme temperature rises are expected. When temperature increase, the electric current flow inside cable conductor will decrease gradually related to the resistance and could occur repeatedly in a period. Since electrical faults on electrical cable system are often suspected as the cause of fires, thus this research aims to investigate measures of preventing the fire to start by means of controlling oxygen concentration in a cable compartment. The experimental work was conducted in laboratory by using electrical power cable of 1.5 mm2 size. Two transparent chambers were applied for studying the effect of vertical and horizontal orientations on the cable temperature rise, under various oxygen concentration of the gas streams. In the present work, the electrical was maintained at a constant level during a typical test run. Parametric studies reported in the paper include the use of a bare and insulated cables as well as the bending shape of the cable lines of a straight cable, coiled cable and randomly bent cable which were loaded with the same electric load and oxygen concentration in the gas supply.

  11. A coaxial cable Fabry-Perot interferometer for sensing applications.

    PubMed

    Huang, Jie; Wang, Tao; Hua, Lei; Fan, Jun; Xiao, Hai; Luo, Ming

    2013-11-07

    This paper reports a novel coaxial cable Fabry-Perot interferometer for sensing applications. The sensor is fabricated by drilling two holes half-way into a coaxial cable. The device physics was described. The temperature and strain responses of the sensor were tested. The measurement error was calculated and analyzed.

  12. Cultivation in the Newer Media Environment.

    ERIC Educational Resources Information Center

    Perse, Elizabeth M.; And Others

    1994-01-01

    Tests the impact of cable, VCRs, and remote control devices on fear of crime and interpersonal mistrust. Finds that interpersonal mistrust was linked to greater exposure to cable's broadcast-type channels, but fear of crime and mistrust were negatively related to increased exposure to specialized cable channels. Finds fear of crime linked…

  13. Reliability in fiber optic cable harness manufacturing

    NASA Astrophysics Data System (ADS)

    McCoy, Bruce M.

    Key aspects of manufacturing cable harnesses for aircraft and spacecraft that incorporate optical fiber/cables along with traditional wiring are discussed. Issues regarding feasibility of automation of assembly processes, manual assembly, testing, installation, quality assurance, reliability and maintainability are addressed. Training procedures, formal training programs, and their results are reviewed.

  14. Characterization of a high-temperature superconducting conductor on round core cables in magnetic fields up to 20 T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Laan, D. C.; Noyes, P. D.; Miller, G. E.

    2013-02-13

    The next generation of high-ï¬eld magnets that will operate at magnetic ï¬elds substantially above 20 T, or at temperatures substantially above 4.2 K, requires high-temperature superconductors (HTS). Conductor on round core (CORC) cables, in which RE-Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (RE = rare earth) (REBCO) coated conductors are wound in a helical fashion on a flexible core, are a practical and versatile HTS cable option for low-inductance, high-field magnets. We performed the first tests of CORC magnet cables in liquid helium in magnetic fields of up to 20 T. A record critical current I{sub c} of 5021 A was measured atmore » 4.2 K and 19 T. In a cable with an outer diameter of 7.5 mm, this value corresponds to an engineering current density J{sub e} of 114 A mm{sup -2} , the highest J{sub e} ever reported for a superconducting cable at such high magnetic fields. Additionally, the first magnet wound from an HTS cable was constructed from a 6 m-long CORC cable. The 12-turn, double-layer magnet had an inner diameter of 9 cm and was tested in a magnetic field of 20 T, at which it had an I{sub c} of 1966 A. The cables were quenched repetitively without degradation during the measurements, demonstrating the feasibility of HTS CORC cables for use in high-field magnet applications.« less

  15. The characteristics of electrical trees in the inner and outer layers of different voltage rating XLPE cable insulation

    NASA Astrophysics Data System (ADS)

    Xie, Ansheng; Li, Shengtao; Zheng, Xiaoquan; Chen, George

    2009-06-01

    The statistical initiation and propagation characteristics of electrical trees in cross-linked polyethylene (XLPE) cables with different voltage ratings from 66 to 500 kV were investigated under a constant test voltage of 50 Hz/7 kV (the 66 kV rating cable is from UK, the others from China). It was found that the characteristics of electrical trees in the inner region of 66 kV cable insulation differed considerably from those in the outer region under the same test conditions; however, no significant differences appeared in the 110 kV rating cable and above. The initiation time of electrical trees in both the inner and the outer regions of the 66 kV cable is much shorter than that in higher voltage rating cables; in addition the growth rate of electrical trees in the 66 kV cable is much larger than that in the higher voltage rating cables. By using x-ray diffraction, differential scanning calorimetry and thermogravimetry methods, it was revealed that besides the extrusion process, the molecular weight of base polymer material and its distribution are the prime factors deciding the crystallization state. The crystallization state and the impurity content are responsible for the resistance to electrical trees. Furthermore, it was proposed that big spherulites will cooperate with high impurity content in enhancing the initiation and growth processes of electrical trees via the 'synergetic effect'. Finally, dense and small spherulites, high crystallinity, high purity level of base polymer material and super-clean production processes are desirable for higher voltage rating cables.

  16. Improving greater trochanteric reattachment with a novel cable plate system.

    PubMed

    Baril, Yannick; Bourgeois, Yan; Brailovski, Vladimir; Duke, Kajsa; Laflamme, G Yves; Petit, Yvan

    2013-03-01

    Cable-grip systems are commonly used for greater trochanteric reattachment because they have provided the best fixation performance to date, even though they have a rather high complication rate. A novel reattachment system is proposed with the aim of improving fixation stability. It consists of a Y-shaped fixation plate combined with locking screws and superelastic cables to reduce cable loosening and limit greater trochanter movement. The novel system is compared with a commercially available reattachment system in terms of greater trochanter movement and cable tensions under different greater trochanteric abductor application angles. A factorial design of experiments was used including four independent variables: plate system, cable type, abductor application angle, and femur model. The test procedure included 50 cycles of simultaneous application of an abductor force on the greater trochanter and a hip force on the femoral head. The novel plate reduces the movements of a greater trochanter fragment within a single loading cycle up to 26%. Permanent degradation of the fixation (accumulated movement based on 50-cycle testing) is reduced up to 46%. The use of superelastic cables reduces tension loosening up to 24%. However this last improvement did not result in a significant reduction of the grater trochanter movement. The novel plate and cables present advantages over the commercially available greater trochanter reattachment system. The plate reduces movements generated by the hip abductor. The superelastic cables reduce cable loosening during cycling. Both of these positive effects could decrease the risks related to grater trochanter non-union. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Analysis and elimination method of the effects of cables on LVRT testing for offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Jiang, Zimin; Liu, Xiaohao; Li, Changgang; Liu, Yutian

    2018-02-01

    The current state, characteristics and necessity of the low voltage ride through (LVRT) on-site testing for grid-connected offshore wind turbines are introduced firstly. Then the effects of submarine cables on the LVRT testing are analysed based on the equivalent circuit of the testing system. A scheme for eliminating the effects of cables on the proposed LVRT testing method is presented. The specified voltage dips are guaranteed to be in compliance with the testing standards by adjusting the ratio between the current limiting impedance and short circuit impedance according to the steady voltage relationship derived from the equivalent circuit. Finally, simulation results demonstrate that the voltage dips at the high voltage side of wind turbine transformer satisfy the requirements of testing standards.

  18. Deployment and retraction of a cable-driven solar array: Testing and simulation

    NASA Technical Reports Server (NTRS)

    Kumar, P.; Pellegrino, S.

    1995-01-01

    The paper investigates three critical areas in cable-driven rigid-panel solar arrays: First, the variation of deployment and retraction cable tensions due to friction at the hinges; Second, the change in deployment dynamics associated with different deployment histories; Third, the relationship between the level of pre-tension in the closed contact loops and the synchronization of deployment. A small scale model array has been made and tested, and its behavior has been compared to numerical simulations.

  19. ATM/cable arch and beam structural test program

    NASA Technical Reports Server (NTRS)

    Housley, J. A.

    1972-01-01

    The structural testing is described of an Apollo Telescope Mount (ATM) cable arch and beam assembly, using static loads to simulate the critical conditions expected during transportation and launch of the ATM. All test objectives were met. Stress and deflection data show that the assembly is structurally adequate for use in the ATM.

  20. Noise from implantable Cooper cable.

    PubMed

    Carrington, V; Zhou, L; Donaldson, N

    2005-09-01

    Cooper cable is made for implanted devices, usually for connection to stimulating electrodes. An experiment has been performed to see whether these cables would be satisfactory for recording electroneurogram (ENG) signals from cuffs. Four cables were subjected to continuous flexion at 2 Hz while submerged in saline. The cables were connected to a low-noise amplifier, and the noise was measured using a spectrum analyser. These cables had not fractured after 184 million flexions, and the noise in the neural band (500-5000 Hz) had not increased owing to age. Noise in the ENG band increased by less than 3 dB owing to the motion. A fifth, worn cable did fail during the experiment, the conductors becoming exposed to the saline, but this was only apparent by extra noise when the cable was in motion. After 184 million flexions, the four cables were given a more severe test: instead of being connected to the amplifier reference node, two of the four cores of each cable were connected to 18V batteries. Two of the cables were then noisier, but only when in motion, presumably because of leakage between cores. Cooper cables are excellent for transmitting neural signals alone; transmission in one cable of neural signals and power supplies should be avoided if possible.

  1. Acoustic emission monitoring and critical failure identification of bridge cable damage

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Ou, Jinping

    2008-03-01

    Acoustic emission (AE) characteristic parameters of bridge cable damage were obtained on tensile test. The testing results show that the AE parameter analysis method based on correlation figure of count, energy, duration time, amplitude and time can express the whole damage course, and can correctly judge the signal difference of broken wire and unbroken wire. It found the bridge cable AE characteristics aren't apparent before yield deformation, however they are increasing after yield deformation, at the time of breaking, and they reach to maximum. At last, the bridge cable damage evolution law is studied applying the AE characteristic parameter time series fractal theory. In the initial and middle stage of loading, the AE fractal value of bridge cable is unsteady. The fractal value reaches to the minimum at the critical point of failure. According to this changing law, it is approached how to make dynamic assessment and estimation of damage degrees.

  2. Comparison of Commercial Electromagnetic Interface Test Techniques to NASA Electromagnetic Interference Test Techniques

    NASA Astrophysics Data System (ADS)

    Smith, V.

    2000-11-01

    This report documents the development of analytical techniques required for interpreting and comparing space systems electromagnetic interference test data with commercial electromagnetic interference test data using NASA Specification SSP 30237A "Space Systems Electromagnetic Emission and Susceptibility Requirements for Electromagnetic Compatibility." The PSpice computer simulation results and the laboratory measurements for the test setups under study compare well. The study results, however, indicate that the transfer function required to translate test results of one setup to another is highly dependent on cables and their actual layout in the test setup. Since cables are equipment specific and are not specified in the test standards, developing a transfer function that would cover all cable types (random, twisted, or coaxial), sizes (gauge number and length), and layouts (distance from the ground plane) is not practical.

  3. Comparison of Commercial Electromagnetic Interface Test Techniques to NASA Electromagnetic Interference Test Techniques

    NASA Technical Reports Server (NTRS)

    Smith, V.; Minor, J. L. (Technical Monitor)

    2000-01-01

    This report documents the development of analytical techniques required for interpreting and comparing space systems electromagnetic interference test data with commercial electromagnetic interference test data using NASA Specification SSP 30237A "Space Systems Electromagnetic Emission and Susceptibility Requirements for Electromagnetic Compatibility." The PSpice computer simulation results and the laboratory measurements for the test setups under study compare well. The study results, however, indicate that the transfer function required to translate test results of one setup to another is highly dependent on cables and their actual layout in the test setup. Since cables are equipment specific and are not specified in the test standards, developing a transfer function that would cover all cable types (random, twisted, or coaxial), sizes (gauge number and length), and layouts (distance from the ground plane) is not practical.

  4. Aeroelastic Response and Protection of Space Shuttle External Tank Cable Trays

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Keller, Donald F.; Schuster, David M.; Piatak, David J.; Rausch, Russ D.; Bartels, Robert E.; Ivanco, Thomas G.; Cole, Stanley R.; Spain, Charles V.

    2005-01-01

    Sections of the Space Shuttle External Tank Liquid Oxygen (LO2) and Liquid Hydrogen (LH2) cable trays are shielded from potentially damaging airloads with foam Protuberance Aerodynamic Load (PAL) Ramps. Flight standard design LO2 and LH2 cable tray sections were tested with and without PAL Ramp models in the United States Air Force Arnold Engineering Development Center s (AEDC) 16T transonic wind tunnel to obtain experimental data on the aeroelastic stability and response characteristics of the trays and as part of the larger effort to determine whether the PAL ramps can be safely modified or removed. Computational Fluid Dynamic simulations of the full-stack shuttle launch configuration were used to investigate the flow characeristics around and under the cable trays without the protective PAL ramps and to define maximum crossflow Mach numbers and dynamic pressures experienced during launch. These crossflow conditions were used to establish wind tunnel test conditions which also included conservative margins. For all of the conditions and configurations tested, no aeroelastic instabilities or unacceptable dynamic response levels were encountered and no visible structural damage was experienced by any of the tested cable tray sections. Based upon this aeroelastic characterization test, three potentially acceptable alternatives are available for the LO2 cable tray PAL Ramps: Mini-Ramps, Tray Fences, or No Ramps. All configurations were tested to maximum conditions, except the LH2 trays at -15 deg. crossflow angle. This exception is the only caveat preventing the proposal of acceptable alternative configurations for the LH2 trays as well. Structural assessment of all tray loads and tray response measurements from launches following the Shuttle Return To Flight with the existing PAL Ramps will determine the acceptability of these PAL Ramp alternatives.

  5. Evaluation of Cable Harness Post-Installation Testing. Part B

    NASA Technical Reports Server (NTRS)

    King, M. S.; Iannello, C. J.

    2011-01-01

    The Cable Harness Post-Installation Testing Report was written in response to an action issued by the Ares Project Control Board (PCB). The action for the Ares I Avionics & Software Chief Engineer and the Avionics Integration and Vehicle Systems Test Work Breakdown Structure (WBS) Manager in the Vehicle Integration Office was to develop a set of guidelines for electrical cable harnesses. Research showed that post-installation tests have been done since the Apollo era. For Ares I-X, the requirement for post-installation testing was removed to make it consistent with the avionics processes used on the Atlas V expendable launch vehicle. Further research for the report involved surveying government and private sector launch vehicle developers, military and commercial aircraft, spacecraft developers, and harness vendors. Responses indicated crewed launch vehicles and military aircraft perform post-installation tests. Key findings in the report were as follows: Test requirements identify damage, human-rated vehicles should be tested despite the identification of statistically few failures, data does not support the claim that post-installation testing damages the harness insulation system, and proper planning can reduce overhead associated with testing. The primary recommendation of the report is for the Ares projects to retain the practice of post-fabrication and post-installation cable harness testing.

  6. ''Football'' test coil: a simulated service test of internally-cooled, cabled superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marston, P.G.; Iwasa, Y.; Thome, R.J.

    Internally-cooled, cabled superconductor, (ICCS), appears from small-scale tests to be a viable alternative to pool-boiling cooled superconductors for large superconducting magnets. Potential advantages may include savings in helium inventory, smaller structure and ease of fabrication. Questions remain, however, about the structural performance of these systems. The ''football'' test coil has been designed to simulate the actual ''field-current-stress-thermal'' operating conditions of a 25 ka ICCS in a commercial scale MHD magnet. The test procedure will permit demonstration of the 20 year cyclic life of such a magnet in less than 20 days. This paper describes the design, construction and test ofmore » that coil which is wound of copper-stabilized niobium-titanium cable in steel conduit. 2 refs.« less

  7. Ionizing radiation effects on ISS ePTFE jacketed cable assembly

    NASA Astrophysics Data System (ADS)

    Koontz, S. L.; Golden, J. L.; Lorenz, M. J.; Pedley, M. D.

    2003-09-01

    Polytetrafluoroethylene (PTFE), which is susceptible to embrittlement by ionizing radiation, is used as a primary material in the Mobile Transporter's (MT) Trailing Umbilical System (TUS) cable on the International Space Station (ISS). The TUS cable provides power and data service between the ISS truss and the MT. The TUS cable is normally stowed in an uptake reel and is fed out to follow the MT as it moves along rails on the ISS truss structure. For reliable electrical and mechanical performance, TUS cable polymeric materials must be capable of >3.5% elongation without cracking or breaking. The MT TUS cable operating temperature on ISS is expected to range between -100°C and +130°C. The on-orbit functional life requirement for the MT TUS cable is 10 years. Analysis and testing were performed to verify that the MT TUS cable would be able to meet full-life mechanical and electrical performance requirements, despite progressive embrittlement by the natural ionizing radiation environment. Energetic radiation belt electrons (trapped electrons) are the principal contributor to TUS cable radiation dose. TUS cable specimens were irradiated, in vacuum, with both energetic electrons and gamma rays. Electron beam energy was chosen to minimize charging effects on the non-conductive ePTFE (expanded PTFE) targets. Tensile testing was then performed, over the expected range of operating temperatures, as a function of radiation dose. When compared to the expected in-flight radiation dose/depth profile, atomic oxygen (AO) erosion of the radiation damaged TUS cable jacket surfaces is more rapid than the development of radiation induced embrittlement of the same surfaces. Additionally, the layered construction of the jacket prevents crack growth propagation, leaving the inner layer material compliant with the design elongation requirements. As a result, the TUS cable insulation design was verified to meet performance life requirements.

  8. Radiation Testing of a Low Voltage Silicone Nuclear Power Plant Cable.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White II, Gregory Von; Schroeder, John Lee.; Sawyer, Patricia Sue.

    This report summarizes the results generated in FY13 for cable insulation in support of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program, in collaboration with the US-Argentine Binational Energy Working Group (BEWG). A silicone (SiR) cable, which was stored in benign conditions for %7E30 years, was obtained from Comision Nacional de Energia Atomica (CNEA) in Argentina with the approval of NA-SA (Nucleoelectrica Argentina Sociedad Anonima). Physical property testing was performed on the as-received cable. This cable was artificially aged to assess behavior with additional analysis. SNL observed appreciable tensile elongation values for all cable insulations received, indicative ofmore » good mechanical performance. Of particular note, the work presented here provides correlations between measured tensile elongation and other physical properties that may be potentially leveraged as a form of condition monitoring (CM) for actual service cables. It is recognized at this point that the polymer aging community is still lacking the number and types of field returned materials that are desired, but Sandia National Laboratories (SNL) -- along with the help of others -- is continuing to work towards that goal. This work is an initial study that should be complimented with location-mapping of environmental conditions of Argentinean plant conditions (dose and temperature) as well as retrieval, analysis, and comparison with in- service cables.« less

  9. Design and evaluation of 66 kV-class HTS power cable using REBCO wires

    NASA Astrophysics Data System (ADS)

    Ohya, M.; Yumura, H.; Masuda, T.; Amemiya, N.; Ishiyama, A.; Ohkuma, T.

    2011-11-01

    Sumitomo Electric (SEI) has been involved in the development of 66 kV-class HTS cables using REBCO wires. One of the technical targets in this project is to reduce the AC loss to less than 2 W/m/phase at 5 kA. SEI has developed a clad-type of textured metal substrate with lower magnetization loss compared with a conventional NiW substrate. In addition, 30 mm-wide REBCO tapes were slit into 4 mm-wide strips, and these strips were wound spirally on a former with small gaps. The AC loss of a manufactured 4-layer cable conductor was 1.5 W/m at 5 kA at 64 K. Given that the AC loss in a shield layer is supposed to be one-fourth of a whole cable core loss, our cables are expected to achieve the AC loss target of less than 2 W/m/phase at 5 kA. Another important target is to manage a fault current. A cable core was designed and fabricated based on the simulation findings, and over-current tests (max. 31.5 kA, 2 s) were conducted to check its performance. The critical current value of the cable cores were measured before and after the over-current tests and verified its soundness. A 5 kA-class current lead for the cable terminations was also developed. The current loading tests were conducted for the developed current leads. The temperature distribution of the current leads reached to the steady-state within less than 12 h, and it was confirmed that the developed current lead has enough capacity of 5 kA loading.

  10. A Coaxial Cable Fabry-Perot Interferometer for Sensing Applications

    PubMed Central

    Huang, Jie; Wang, Tao; Hua, Lei; Fan, Jun; Xiao, Hai; Luo, Ming

    2013-01-01

    This paper reports a novel coaxial cable Fabry-Perot interferometer for sensing applications. The sensor is fabricated by drilling two holes half-way into a coaxial cable. The device physics was described. The temperature and strain responses of the sensor were tested. The measurement error was calculated and analyzed. PMID:24212121

  11. MASH test nos. 3-11 and 3-10 on a non-proprietary cable median barrier.

    DOT National Transportation Integrated Search

    2016-05-17

    The Midwest States Pooled Fund has been developing a new non-proprietary cable median barrier. This system : incorporates four evenly spaced cables, Midwest Weak Posts spaced at 8 to 16 ft (2.4 to 4.9 m) intervals, and a bolted, : tabbed bracket to a...

  12. MASH test nos. 3-17 and 3-11 on a non-proprietary cable median barrier.

    DOT National Transportation Integrated Search

    2015-11-01

    The Midwest States Pooled Fund has been developing a new design for a non-proprietary high-tension cable median barrier. This new system incorporates four evenly spaced cables, Midwest Weak Posts (MWPs) spaced at 8 to 16 ft (2.4 to 4.9 m) intervals, ...

  13. 49 CFR 234.219 - Gate arm lights and light cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Gate arm lights and light cable. 234.219 Section... Maintenance, Inspection, and Testing Maintenance Standards § 234.219 Gate arm lights and light cable. Each gate arm light shall be maintained in such condition to be properly visible to approaching highway...

  14. 49 CFR 234.219 - Gate arm lights and light cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Gate arm lights and light cable. 234.219 Section... Maintenance, Inspection, and Testing Maintenance Standards § 234.219 Gate arm lights and light cable. Each gate arm light shall be maintained in such condition to be properly visible to approaching highway...

  15. Thermal Insulation Performance of Flexible Piping for Use in HTS Power Cables

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    High-temperature superconducting (HTS) cables that typically operate at temperatures below 80 K are being developed for power transmission. The practical application of HTS power cables will require the use of flexible piping to contain the cable and the liquid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was conducted in geometries representing both rigid and flexible piping. This experimental study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center provides a framework for the development of cost-effective, efficient thermal insulation systems that will support these long-distance flexible lines containing HTS power cables. The overall thermal performance of the insulation system for a rigid configuration and for a flexible configuration, simulating a flexible HTS power cable, was determined by the steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two different cylindrically rolled material systems were tested: a standard MLI and a layered composite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between flexible piping are presented.

  16. Machine Tests Optical Fibers In Flexure

    NASA Technical Reports Server (NTRS)

    Darejeh, Hadi; Thomas, Henry; Delcher, Ray

    1993-01-01

    Machine repeatedly flexes single optical fiber or cable or bundle of optical fibers at low temperature. Liquid nitrogen surrounds specimen as it is bent back and forth by motion of piston. Machine inexpensive to build and operate. Tests under repeatable conditions so candidate fibers, cables, and bundles evaluated for general robustness before subjected to expensive shock and vibration tests.

  17. Results and analysis of the hot-spot temperature experiment for a cable-in-conduit conductor with thick conduit

    NASA Astrophysics Data System (ADS)

    Sedlak, Kamil; Bruzzone, Pierluigi

    2015-12-01

    In the design of future DEMO fusion reactor a long time constant (∼23 s) is required for an emergency current dump in the toroidal field (TF) coils, e.g. in case of a quench detection. This requirement is driven mainly by imposing a limit on forces on mechanical structures, namely on the vacuum vessel. As a consequence, the superconducting cable-in-conduit conductors (CICC) of the TF coil have to withstand heat dissipation lasting tens of seconds at the section where the quench started. During that time, the heat will be partially absorbed by the (massive) steel conduit and electrical insulation, thus reducing the hot-spot temperature estimated strictly from the enthalpy of the strand bundle. A dedicated experiment has been set up at CRPP to investigate the radial heat propagation and the hot-spot temperature in a CICC with a 10 mm thick steel conduit and a 2 mm thick glass epoxy outer electrical insulation. The medium size, ∅ = 18 mm, NbTi CICC was powered by the operating current of up to 10 kA. The temperature profile was monitored by 10 temperature sensors. The current dump conditions, namely the decay time constant and the quench detection delay, were varied. The experimental results show that the thick conduit significantly contributes to the overall enthalpy balance, and consequently reduces the amount of copper required for the quench protection in superconducting cables for fusion reactors.

  18. Multi-fibers connectors systems for FOCCoS-PFS-Subaru

    NASA Astrophysics Data System (ADS)

    de Oliveira, Antonio Cesar; de Oliveira, Ligia Souza; Souza Marrara, Lucas; dos Santos, Leandro Henrique; Vital de Arruda, Marcio; dos Santos, Jesulino Bispo; Ferreira, Décio; Rosa, Josimar Aparecido; de Paiva Vilaça, Rodrigo; Sodré, Laerte; de Oliveira, Claudia Mendes; Gunn, James E.

    2014-07-01

    The Fiber Optical Cable and Connector System (FOCCoS), provides optical connection between 2400 positioners and a set of spectrographs through optical fibers cables as part of PFS instrument for Subaru telescope. The optical fiber cable will be segmented in 3 parts along the route, cable A, cable B and cable C, connected by a set of multi-fiber connectors. The company USCONEC produces the multi-fiber connector under study. The USCONEC 32F model can connect 32 optical fibers in a 4 x 8 matrix arrangement. The ferrules are made of a durable composite, Polyphenylene Sulfide (PPS) based thermoplastic. The connections are held in place by a push-on/pull-off latch, and the connector can also be distinguished by a pair of metal guide pins that protrude from the front of the connector. Two fibers per connector will be used for monitoring the connection procedure. It was found to be easy to polish and it is small enough to be mounted in groups. Highly multiplexed instruments like PFS require a fiber connector system that can deliver excellent optical performance and reliability. PFS requires two different types of structures to organize the connectors. The Tower Connector system, with 80 multi-fiber connectors, will be a group of connectors for connecting cable B (Telescope Structure) with cable C (Positioners Plate). The Gang Connector system is a group of 8 gang connectors, each one with 12 multi-fibers connectors, for connecting cable B (Telescope Structure) with cable A (Spectrograph). The bench tests with these connector systems and the chosen fibers should measure the throughput of light and the stability after many connections and disconnections. In this paper we describe tests and procedures to evaluate the throughput and FRD increment. The lifetime of the ferrules is also in evaluation.

  19. Biomechanical analysis using FEA and experiments of a standard plate method versus three cable methods for fixing acetabular fractures with simultaneous THA.

    PubMed

    Aziz, Mina S R; Dessouki, Omar; Samiezadeh, Saeid; Bougherara, Habiba; Schemitsch, Emil H; Zdero, Radovan

    2017-08-01

    Acetabular fractures potentially account for up to half of all pelvic fractures, while pelvic fractures potentially account for over one-tenth of all human bone fractures. This is the first biomechanical study to assess acetabular fracture fixation using plates versus cables in the presence of a total hip arthroplasty, as done for the elderly. In Phase 1, finite element (FE) models compared a standard plate method versus 3 cable methods for repairing an acetabular fracture (type: anterior column plus posterior hemi-transverse) subjected to a physiological-type compressive load of 2207N representing 3 x body weight for a 75kg person during walking. FE stress maps were compared to choose the most mechanically stable cable method, i.e. lowest peak bone stress. In Phase 2, mechanical tests were then done in artificial hemipelvises to compare the standard plate method versus the optimal cable method selected from Phase 1. FE analysis results showed peak bone stresses of 255MPa (Plate method), 205MPa (Mears cable method), 250MPa (Kang cable method), and 181MPa (Mouhsine cable method). Mechanical tests then showed that the Plate method versus the Mouhsine cable method selected from Phase 1 had higher stiffness (662versus 385N/mm, p=0.001), strength (3210versus 2060N, p=0.009), and failure energy (8.8versus 6.2J, p=0.002), whilst they were statistically equivalent for interfragmentary sliding (p≥0.179) and interfragmentary gapping (p≥0.08). The Plate method had superior mechanical properties, but the Mouhsine cable method may be a reasonable alternative if osteoporosis prevents good screw thread interdigitation during plating. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Mobile Uninterruptible Power Supply

    NASA Technical Reports Server (NTRS)

    Mears, Robert L.

    1990-01-01

    Proposed mobile unit provides 20 kVA of uninterruptible power. Used with mobile secondary power-distribution centers to provide power to test equipment with minimal cabling, hazards, and obstacles. Wheeled close to test equipment and system being tested so only short cable connections needed. Quickly moved and set up in new location. Uninterruptible power supply intended for tests which data lost or equipment damaged during even transient power failure.

  1. Biomechanical comparison of four C1 to C2 rigid fixative techniques: anterior transarticular, posterior transarticular, C1 to C2 pedicle, and C1 to C2 intralaminar screws.

    PubMed

    Lapsiwala, Samir B; Anderson, Paul A; Oza, Ashish; Resnick, Daniel K

    2006-03-01

    We performed a biomechanical comparison of several C1 to C2 fixation techniques including crossed laminar (intralaminar) screw fixation, anterior C1 to C2 transarticular screw fixation, C1 to 2 pedicle screw fixation, and posterior C1 to C2 transarticular screw fixation. Eight cadaveric cervical spines were tested intact and after dens fracture. Four different C1 to C2 screw fixation techniques were tested. Posterior transarticular and pedicle screw constructs were tested twice, once with supplemental sublaminar cables and once without cables. The specimens were tested in three modes of loading: flexion-extension, lateral bending, and axial rotation. All tests were performed in load and torque control. Pure bending moments of 2 nm were applied in flexion-extension and lateral bending, whereas a 1 nm moment was applied in axial rotation. Linear displacements were recorded from extensometers rigidly affixed to the C1 and C2 vertebrae. Linear displacements were reduced to angular displacements using trigonometry. Adding cable fixation results in a stiffer construct for posterior transarticular screws. The addition of cables did not affect the stiffness of C1 to C2 pedicle screw constructs. There were no significant differences in stiffness between anterior and posterior transarticular screw techniques, unless cable fixation was added to the posterior construct. All three posterior screw constructs with supplemental cable fixation provide equal stiffness with regard to flexion-extension and axial rotation. C1 lateral mass-C2 intralaminar screw fixation restored resistance to lateral bending but not to the same degree as the other screw fixation techniques. All four screw fixation techniques limit motion at the C1 to 2 articulation. The addition of cable fixation improves resistance to flexion and extension for posterior transarticular screw fixation.

  2. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...

  3. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...

  4. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...

  5. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...

  6. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...

  7. 2. TERMINAL ROOM, SHOP LEVEL INTERIOR, SHOWING MEZZANINE LEVEL CABLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. TERMINAL ROOM, SHOP LEVEL INTERIOR, SHOWING MEZZANINE LEVEL CABLE RACK AT UPPER RIGHT. Looking north. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  8. Dynamic analysis of the BMW tower in Munich

    NASA Astrophysics Data System (ADS)

    Indacochea-Beltran, Joaquin; Elgindy, Pearl; Lee, Elaine; Vignesh, Thiviya; Ansourian, Peter; Tahmasebinia, Faham; Marroquín, Fernando Alonso

    2016-08-01

    In the 1970s, world famous Austrian architect Karl Schwanzer designed an avant-garde suspended skyscraper for the new BMW headquarters. The BMW Tower was envisioned to resemble a four-cylinder motor and become a symbol for the recent flourishing success of BMW. Throughout its four decades, the BMW Tower has become the main architectural feature of modern Munich and a pride for one of the World leading car manufacturers. The structural design of the BMW Tower represented a major challenge to Germany's finest engineers because the suspended 99.5m-high structure had to whitstand not only static loading but large wind dynamic loading while having deflections within appropriate serviceability limits. Strand7 has been used to determine the stresses and deflections the structure is subjected to in order to analyse its behavior under static and dynamic loadings. Ultimately, this analysis helps to understand the nature of suspended structures in relation to the Eurocode building standards. Finally, thermal resistance has also been analysed using Strand7 to simulate a fire scenario and analyse the behaviour of the cable structure, which is the most critical building component.

  9. 49 CFR 234.243 - Wire on pole line and aerial cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Wire on pole line and aerial cable. 234.243... Maintenance, Inspection, and Testing Maintenance Standards § 234.243 Wire on pole line and aerial cable. Wire... bracket supported by a pole or other support. Wire shall not interfere with, or be interfered with by...

  10. 49 CFR 234.243 - Wire on pole line and aerial cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wire on pole line and aerial cable. 234.243... Maintenance, Inspection, and Testing Maintenance Standards § 234.243 Wire on pole line and aerial cable. Wire... bracket supported by a pole or other support. Wire shall not interfere with, or be interfered with by...

  11. Test and Evaluation of Public Service Uses of Cable Television: Reading, Pennsylvania.

    ERIC Educational Resources Information Center

    New York Univ., NY. Reading Consortium.

    The New York University-Reading Consortium proposed to evaluate the use of interactive cable television for the delivery of public services to the the elderly residents of Reading, Pennsylvania. The project represented the collaborative efforts of New York University, the City of reading, the Berks TV Cable Company, the Berks County Senior…

  12. Obscenity and Cable Television: A Regulatory Approach. Journalism Monographs. Number Ninety-Five.

    ERIC Educational Resources Information Center

    Trauth, Denise M.; Huffman, John L.

    Noting that much of the recent preoccupation with pornography has centered on its delivery by the relatively new medium of adult-oriented cable television, this monograph explores the questions surrounding regulation of adult-oriented cable television and develops those elements that must be considered when forming a judicial test in this area.…

  13. A polytetrafluorethylene insulated cable for high temperature oxygen aerospace applications

    NASA Technical Reports Server (NTRS)

    Sheppard, A. T.; Webber, R. G.

    1983-01-01

    For electrical cables to function and survive in the severe high temperature oxygen environment that will be experienced in the external tanks of the space shuttle, extreme cleanliness and material purity is required. A flexible light weight cable has been developed for use in pure oxygen at worst case temperatures of -190 to +260 degrees Centigrade and pressures as high as 44 pounds per square inch absolute. A comprehensive series of tests were performed on cables manufactured to the best commercial practices in order to establish the basic guidelines for control of build configuration as well as each material used in construction of the cable.

  14. A polytetrafluorethylene insulated cable for high temperature oxygen aerospace applications

    NASA Astrophysics Data System (ADS)

    Sheppard, A. T.; Webber, R. G.

    For electrical cables to function and survive in the severe high temperature oxygen environment that will be experienced in the external tanks of the space shuttle, extreme cleanliness and material purity is required. A flexible light weight cable has been developed for use in pure oxygen at worst case temperatures of -190 to +260 degrees Centigrade and pressures as high as 44 pounds per square inch absolute. A comprehensive series of tests were performed on cables manufactured to the best commercial practices in order to establish the basic guidelines for control of build configuration as well as each material used in construction of the cable.

  15. ETR BUILDING, TRA642, INTERIOR. CONSOLE FLOOR, SOUTH HALF. CABLE TUNNEL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR BUILDING, TRA-642, INTERIOR. CONSOLE FLOOR, SOUTH HALF. CABLE TUNNEL. CAMERA FACING SOUTH INTO ETR ELECTRICAL BUILDING (TRA-648). INL NEGATIVE NO. HD46-20-2. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. Test matrices for evaluating cable median barriers placed in v-ditches.

    DOT National Transportation Integrated Search

    2012-07-01

    Cable barrier systems designed to be used in median ditches have been traditionally full-scale crash tested placed either : within 4 ft from the slope break point (SBP) of a 4H:1V front slope or near the bottom of the ditch. Recently, there has been ...

  17. Design, development, manufacture, testing, and delivery of devices for connection of solar cell panel circuitry to flat conductor cable solar cell array harness

    NASA Technical Reports Server (NTRS)

    Dillard, P. A.; Waddington, D.

    1971-01-01

    The technology status and problem areas which exist for the application of flat conductor cabling to solar cell arrays are summarized. Details covering the design, connector manufacture, and prototype test results are also summarized.

  18. A cable-driven parallel robots application: modelling and simulation of a dynamic cable model in Dymola

    NASA Astrophysics Data System (ADS)

    Othman, M. F.; Kurniawan, R.; Schramm, D.; Ariffin, A. K.

    2018-05-01

    Modeling a cable model in multibody dynamics simulation tool which dynamically varies in length, mass and stiffness is a challenging task. Simulation of cable-driven parallel robots (CDPR) for instance requires a cable model that can dynamically change in length for every desired pose of the platform. Thus, in this paper, a detailed procedure for modeling and simulation of a dynamic cable model in Dymola is proposed. The approach is also applicable for other types of Modelica simulation environments. The cable is modeled using standard mechanical elements like mass, spring, damper and joint. The parameters of the cable model are based on the factsheet of the manufacturer and experimental results. Its dynamic ability is tested by applying it on a complete planar CDPR model in which the parameters are based on a prototype named CABLAR, which is developed in Chair of Mechatronics, University of Duisburg-Essen. The prototype has been developed to demonstrate an application of CDPR as a goods storage and retrieval machine. The performance of the cable model during the simulation is analyzed and discussed.

  19. Operating experience with the southwire 30-meter high-temperature superconducting power cable

    NASA Astrophysics Data System (ADS)

    Stovall, J. P.; Lue, J. W.; Demko, J. A.; Fisher, P. W.; Gouge, M. J.; Hawsey, R. A.; Armstrong, J. W.; Hughey, R. L.; Lindsay, D. T.; Roden, M. L.; Sinha, U. K.; Tolbert, J. C.

    2002-05-01

    Southwire Company is operating a high-temperature superconducting (HTS) cable system at its corporate headquarters. The 30-m long, 3-phase cable system is powering three Southwire manufacturing plants and is rated at 12.4-kV, 1250-A, 60-Hz. Cooling is provided by a pressurized liquid nitrogen system operating at 70-80 K. The cables were energized on January 5, 2000 for on-line testing and operation and in April 2000 were placed into extended service. As of June 1, 2001, the HTS cables have provided 100% of the customer load for 8000 hours. The cryogenic system has been in continuous operation since November 1999. The HTS cable system has not been the cause of any power outages to the average 20 MW industrial load served by the cable. The cable has been exposed to short-circuit currents caused by load-side faults without damage. Based upon field measurements described herein, the cable critical current-a key performance parameter-remains the same and has not been affected by the hours of real-world operation, further proving the viability of this promising technology.

  20. 7 CFR 1755.890 - RUS specification for filled telephone cables with expanded insulation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) The test procedures described in this appendix are for qualification of initial cable designs and... must be made at 23 ±3 °C. (III) Environmental tests—(1) Heat aging test—(a) Test samples. Place one... to allow one end to be accessed for test connections. Cut out a series of 6 millimeter (0.25 inch...

  1. 7 CFR 1755.890 - RUS specification for filled telephone cables with expanded insulation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) The test procedures described in this appendix are for qualification of initial cable designs and... must be made at 23 ±3 °C. (III) Environmental tests—(1) Heat aging test—(a) Test samples. Place one... to allow one end to be accessed for test connections. Cut out a series of 6 millimeter (0.25 inch...

  2. 7 CFR 1755.890 - RUS specification for filled telephone cables with expanded insulation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) The test procedures described in this appendix are for qualification of initial cable designs and... must be made at 23 ±3 °C. (III) Environmental tests—(1) Heat aging test—(a) Test samples. Place one... to allow one end to be accessed for test connections. Cut out a series of 6 millimeter (0.25 inch...

  3. 7 CFR 1755.890 - RUS specification for filled telephone cables with expanded insulation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) The test procedures described in this appendix are for qualification of initial cable designs and... must be made at 23 ±3 °C. (III) Environmental tests—(1) Heat aging test—(a) Test samples. Place one... to allow one end to be accessed for test connections. Cut out a series of 6 millimeter (0.25 inch...

  4. 7 CFR 1755.890 - RUS specification for filled telephone cables with expanded insulation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) The test procedures described in this appendix are for qualification of initial cable designs and... must be made at 23 ±3 °C. (III) Environmental tests—(1) Heat aging test—(a) Test samples. Place one... to allow one end to be accessed for test connections. Cut out a series of 6 millimeter (0.25 inch...

  5. Evaluation of critical nuclear power plant electrical cable response to severe thermal fire conditions

    NASA Astrophysics Data System (ADS)

    Taylor, Gabriel James

    The failure of electrical cables exposed to severe thermal fire conditions are a safety concern for operating commercial nuclear power plants (NPPs). The Nuclear Regulatory Commission (NRC) has promoted the use of risk-informed and performance-based methods for fire protection which resulted in a need to develop realistic methods to quantify the risk of fire to NPP safety. Recent electrical cable testing has been conducted to provide empirical data on the failure modes and likelihood of fire-induced damage. This thesis evaluated numerous aspects of the data. Circuit characteristics affecting fire-induced electrical cable failure modes have been evaluated. In addition, thermal failure temperatures corresponding to cable functional failures have been evaluated to develop realistic single point thermal failure thresholds and probability distributions for specific cable insulation types. Finally, the data was used to evaluate the prediction capabilities of a one-dimension conductive heat transfer model used to predict cable failure.

  6. Status and Progress of a Fault Current Limiting Hts Cable to BE Installed in the con EDISON Grid

    NASA Astrophysics Data System (ADS)

    Maguire, J.; Folts, D.; Yuan, J.; Henderson, N.; Lindsay, D.; Knoll, D.; Rey, C.; Duckworth, R.; Gouge, M.; Wolff, Z.; Kurtz, S.

    2010-04-01

    In the last decade, significant advances in the performance of second generation (2G) high temperature superconducting wire have made it suitable for commercially viable applications such as electric power cables and fault current limiters. Currently, the U.S. Department of Homeland Security is co-funding the design, development and demonstration of an inherently fault current limiting HTS cable under the Hydra project with American Superconductor and Consolidated Edison. The cable will be approximately 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The underground cable will be installed and energized in New York City. The project is led by American Superconductor teamed with Con Edison, Ultera (Southwire and nkt cables joint venture), and Air Liquide. This paper describes the general goals, design criteria, status and progress of the project. Fault current limiting has already been demonstrated in 3 m prototype cables, and test results on a 25 m three-phase cable will be presented. An overview of the concept of a fault current limiting cable and the system advantages of this unique type of cable will be described.

  7. Criterion validation of two submaximal aerobic fitness tests, the self-monitoring Fox-walk test and the Åstrand cycle test in people with rheumatoid arthritis.

    PubMed

    Nordgren, Birgitta; Fridén, Cecilia; Jansson, Eva; Österlund, Ted; Grooten, Wilhelmus Johannes; Opava, Christina H; Rickenlund, Anette

    2014-09-17

    Aerobic capacity tests are important to evaluate exercise programs and to encourage individuals to have a physically active lifestyle. Submaximal tests, if proven valid and reliable could be used for estimation of maximal oxygen uptake (VO2max). The purpose of the study was to examine the criterion-validity of the submaximal self-monitoring Fox-walk test and the submaximal Åstrand cycle test against a maximal cycle test in people with rheumatoid arthritis (RA). A secondary aim was to study the influence of different formulas for age predicted maximal heart rate when estimating VO2max by the Åstrand test. Twenty seven subjects (81% female), mean (SD) age 62 (8.1) years, diagnosed with RA since 17.9 (11.7) years, participated in the study. They performed the Fox-walk test (775 meters), the Åstrand test and the maximal cycle test (measured VO2max test). Pearson's correlation coefficients were calculated to determine the direction and strength of the association between the tests, and paired t-tests were used to test potential differences between the tests. Bland and Altman methods were used to assess whether there was any systematic disagreement between the submaximal tests and the maximal test. The correlation between the estimated and measured VO2max values were strong and ranged between r = 0.52 and r = 0.82 including the use of different formulas for age predicted maximal heart rate, when estimating VO2max by the Åstrand test. VO2max was overestimated by 30% by the Fox-walk test and underestimated by 10% by the Åstrand test corrected for age. When the different formulas for age predicted maximal heart rate were used, the results showed that two formulas better predicted maximal heart rate and consequently a more precise estimation of VO2max. Despite the fact that the Fox-walk test overestimated VO2max substantially, the test is a promising method for self-monitoring VO2max and further development of the test is encouraged. The Åstrand test should be considered as highly valid and feasible and the two newly developed formulas for predicting maximal heart rate according to age are preferable to use when estimating VO2max by the Åstrand test.

  8. 49 CFR 572.125 - Upper and lower torso assemblies and torso flexion test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of the dummy, the pull cable, and the load cell as shown in Figure N5. (7) Apply a tension force in the midsagittal plane to the pull cable as shown in Figure N5 at any upper torso deflection rate... determine the stiffness effects of the lumbar spine (drawing 127-3002), including cable (drawing 127-8095...

  9. Equipment testing with damped sinewaves between 1 and 50 MHz

    NASA Astrophysics Data System (ADS)

    Hardwick, C. John; Baldwin, R. E.

    1992-11-01

    Present lightning equipment test standards such as RTCA DO160C call for damped sinusoidal tests at 1 and 10 MHz. There has been some discussion in the lightning community about extending these tests to 50 frequencies in the region 1-50 MHz. This paper presents characteristics of such tests on cable bundles and notes the relationship between bundle current and injected voltage; important parameters are the cable loss and Q of the driving waveform.

  10. Crashworthy Troop Seat Testing Program

    DTIC Science & Technology

    1977-11-01

    19 ’rest 4 . . . . . . . . . .. . 29 | Detail Design’Finalization. .... 29 Vertical Wire - Bending Energy Attenuator 32 Toggle Latch...Strut Wire - Bending Attenuator Force Deflection. . . . ................... 28 15 Notched Wire and Pin Anchorage Test Specimen . 30 16 Quick-Disconnect...and Hold-Down Cable ......... 31 17 Failed Hold-Down Cable ...... . . . . 31 18 Wire - Bending Tension/Compression Energy Attenuator

  11. Subscriber Response System; El Segundo Interim Test Report.

    ERIC Educational Resources Information Center

    Callais, Richard T.

    A new cable television system, called the Subscriber Response System (SRS), is being tested prior to a trial installation in El Segundo, California. The components include two bidirectional cables, a computer for processing subscribers' requests, and subscriber terminals to be located in homes or offices. The home terminal includes a three-digit…

  12. Microelectronic Stimulator Array

    DTIC Science & Technology

    2000-08-09

    narrow, flexible micro-cable 36. The micro-cable 36 is approximately six inches in length and is custom made using gold leads patterned on polyimide ...neural prosthesis device is biocompatibility and safety. Because the duration of any tests with the retinal prosthesis test device 30 are very short...less than an hour), biocompatibility issues are primarily reduced to acute effects of the testing and need not address the more difficult chronic

  13. Applications Of Measurement Techniques To Develop Small-Diameter, Undersea Fiber Optic Cables

    NASA Astrophysics Data System (ADS)

    Kamikawa, Neil T.; Nakagawa, Arthur T.

    1984-12-01

    Attenuation, strain, and optical time domain reflectometer (OTDR) measurement techniques were applied successfully in the development of a minimum-diameter, electro-optic sea floor cable. Temperature and pressure models for excess attenuation in polymer coated, graded-index fibers were investigated analytically and experimentally using these techniques in the laboratory. The results were used to select a suitable fiber for the cable. Measurements also were performed on these cables during predeployment and sea-trial testing to verify laboratory results. Application of the measurement techniques and results are summarized in this paper.

  14. Bulk Current Injection Testing of Cable Noise Reduction Techniques, 50 kHz to 400 MHz

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Hare, Richard J.; Singh, Manisha

    2009-01-01

    This paper presents empirical results of cable noise reduction techniques as demonstrated using bulk current injection (BCI) techniques with radiated fields from 50 kHz - 400 MHz. It is a follow up to the two-part paper series presented at the Asia Pacific EMC Conference that focused on TEM cell signal injection. This paper discusses the effects of cable types, shield connections, and chassis connections on cable noise. For each topic, well established theories are compared with data from a real-world physical system.

  15. 30 CFR 28.40 - Construction and performance requirements; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-CIRCUIT PROTECTION FOR TRAILING CABLES IN COAL MINES Construction, Performance, and Testing Requirements... for use with direct current in providing short-circuit protection for trailing cables, when such fuses...

  16. 9. "TEST STAND; STRUCTURAL; CABLE TUNNEL, PLAN, SECTIONS, DETAILS." Specifications ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. "TEST STAND; STRUCTURAL; CABLE TUNNEL, PLAN, SECTIONS, DETAILS." Specifications No. OC1-55-72-(Rev.); Drawing No. 60-09-12; sheet 43 of 148; file no. AF 1320/94, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  17. Some cable suspension systems and their effects on the flexural frequencies of slender aerospace structures

    NASA Technical Reports Server (NTRS)

    Herr, R. W.

    1974-01-01

    The effects of several cable suspension configurations on the first free-free flexural frequency of uniform beams have been determined by experiment and analysis. The results of this study confirm that in general the larger the test vehicle the larger is the flexural frequency measurement error attributable to a given cable suspension configuration. For horizontally oriented beams representing modern aerospace vehicles of average size and flexibility, the restraining effects of all but the shortest support cables were minor. The restraining effects of support cables of moderate length attached near the base of vertically oriented vehicles were overshadowed by the effects of beam compression due to gravity.

  18. Behavior of Fiber Glass Bolts, Rock Bolts and Cable Bolts in Shear

    NASA Astrophysics Data System (ADS)

    Li, Xuwei; Aziz, Naj; Mirzaghorbanali, Ali; Nemcik, Jan

    2016-07-01

    This paper experimentally compares the shear behavior of fiber glass (FG) bolt, rock bolt (steel rebar bolt) and cable bolt for the bolt contribution to bolted concrete surface shear strength, and bolt failure mode. Two double shear apparatuses of different size were used for the study. The tensile strength, the shear strength and the deformation modulus of bolt control the shear behavior of a sheared bolted joint. Since the strength and deformation modulus of FG bolt, rock bolt and cable bolt obtained from uniaxial tensile tests are different, their shear behavior in reinforcing joints is accordingly different. Test results showed that the shear stiffness of FG bolted joints decreased gradually from the beginning to end, while the shear stiffness of joints reinforced by rock bolt and cable bolt decreased bi-linearly, which is clearly consistent with their tensile deformation modulus. The bolted joint shear stiffness was highly influenced by bolt pretension in the high stiffness stage for both rock bolt and cable bolt, but not in the low stiffness stage. The rock bolt contribution to joint shear strength standardised by the bolt tensile strength was the largest, followed by cable bolts, then FG bolts. Both the rock bolts and cable bolts tended to fail in tension, while FG bolts in shear due to their low shear strength and constant deformation modulus.

  19. Temperature Distribution and Critical Current of Long HTS Cables Cooled with Subcooled Liquid Nitrogen

    NASA Astrophysics Data System (ADS)

    Vyatkin, V. S.; Ivanov, Y. V.; Watanabe, H.; Chikumoto, N.; Yamaguchi, S.

    2017-07-01

    Cooling of the long HTS power transmission lines performs by pumping of subcooled liquid nitrogen (LN2) along the cable. The temperature of LN2 along the cable increases due to the heat losses of the cryostat and heat generation in the HTS cable. The experiment using test cable line in Ishikari shows that flow rate of 35 L/min retains increasing of LN2 temperature by 1 K per 1 km of length. The technology when the back flow of LN2 cools the radiation shield surrounding the cable pipe is also applied in Ishikari-2 project. In this case the ambient heat flow into cable pipe is 50 times less than that without radiation shield. Back flow of LN2 removes almost all heat coming from the environment. When transport current is close to the critical value the Joule heat of HTS cable is significant. This heat additionally increases the temperature of LN2 flowing along the HTS cable. Near the outlet the temperature of HTS cable is maximal and the local critical current is minimal. The current matching critical current criterion of average electrical field of E 0 = 10-4 V/m provides the voltage drop and significant Joule heat at the hot end of the cable. It can lead the damage of the cable. The present work contains analysis of temperature distribution along the cable and the way to achieve the fail-safe operation of long HTS cable cooled by subcooled LN2. We also performed extrapolation of obtained results for several times longer cable lines by decreasing the LN2 flow rate.

  20. Connected Lighting Systems Efficiency Study$-$ PoE Cable Energy Losses, Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuenge, Jason; Kelly, Karsten; Poplawski, Michael

    First report in a study of the efficiency of connected lighting systems. The report summarizes the results of an exploratory study investigating power losses in Ethernet cables used between PoE switches and luminaires in PoE connected lighting systems. Testing was conducted at the Pacific Northwest National Laboratory (PNNL) Connected Lighting Test Bed in September 2017. The results were analyzed to explore the impact of cable selection on PoE lighting system energy efficiency, as well as the effectiveness of guidelines recently introduced by the American National Standards Institute (ANSI) C137 Lighting Systems Committee.

  1. FMEA on the superconducting torus for the Jefferson Lab 12 GeV accelerator upgrade

    DOE PAGES

    Ghoshal, Probir K.; Biallas, George H.; Fair, Ruben J.; ...

    2015-01-16

    As part of the Jefferson Lab 12GeV accelerator upgrade project, Hall B requires two conduction cooled superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. Both magnets are to be wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. This paper describes the various failure modes in torus magnet along with the failure modes that could be experienced by the torus and its interaction with the solenoid which is located inmore » close proximity.« less

  2. Noise in pressure transducer readings produced by variations in solar radiation

    USGS Publications Warehouse

    Cain, S. F.; Davis, G.A.; Loheide, Steven P.; Butler, J.J.

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.

  3. Noise in pressure transducer readings produced by variations in solar radiation.

    PubMed

    Cain, Samuel F; Davis, Gregory A; Loheide, Steven P; Butler, James J

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.

  4. Evaluation of pipe-type cable joint restraint systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, D.A.; Seman, G.W.

    1990-03-01

    the purpose of this project was to evaluate two systems for restraining the movement of 345kV high-pressure oil-filled (HPOF) cable joints during load cycling. Problems with joints and adjacent cables due to thermomechanical bending (TMB) experienced by the Consolidated Edison Company of New York and Public Service Electric Gas Company of New Jersey are reviewed. Some approaches to reducing or preventing TMB induced damage to HPOF pipe type cable joints are discussed. The design and operation of a special test apparatus for simulating TMB effects under laboratory conditions is described. One of the two joint restraint systems evaluated under thismore » project was developed by PSE G and employed wedging devices, which could be retrofitted into existing installations, that limited the longitudinal movement of the joints during load cycling. The other system developed by Pirelli Cable Corporation applied the restraining force to the cylindrical portion of the hand applied joint insulation by means of support spiders and steel rods attached to the reducer faces. The test results show that the PSE G restraint system can effectively limit joint longitudinal movement while causing a minimal amount of mechanical disturbance to the joint stress cones. The test results obtained with the PCC system are inconclusive and indicate that further refinement and testing are required to demonstrate the effectiveness of this promising joint restraint system.« less

  5. The estimation of electrical cable fire-induced damage limits

    NASA Astrophysics Data System (ADS)

    Nowlen, S. P.; Jacobus, M. J.

    Sandia National Laboratories has, for several years, been engaged in the performance of both fire safety and electrical equipment qualification research under independent programs sponsored by the US Nuclear Regulatory Commission. Recent comparisons between electrical cable thermal damageability data gathered independently in these two efforts indicate that a direct correlation exists between certain of the recent cable thermal vulnerability information gathered under equipment qualification conditions and thermal damageability in a fire environment. This direct correlation allows for a significant expansion of the data base on estimated cable thermal vulnerability limits in a fire environment because of the wide range of cable types and products that have been evaluated as a part of the equipment qualification research. This paper provides a discussion of the basis for the derived correlation, and presents estimated cable thermal damage limits for a wide range of generic cable types and specific cable products. The supposition that a direct correlation exists is supported through direct comparisons of the test results for certain specific cable products. The proposed supplemental cable fire vulnerability data gained from examination of the equipment qualification results is presented. These results should be of particular interest to those engaged in the evaluation of fire risk for industrial facilities, including nuclear power plants.

  6. A device for testing cables

    NASA Technical Reports Server (NTRS)

    Hayhurst, Arthur Ray (Inventor)

    1993-01-01

    A device for testing current paths is attachable to a conductor. The device automatically checks the current paths of the conductor for continuity of a center conductor, continuity of a shield, and a short circuit between the shield and the center conductor. The device includes a pair of connectors and a circuit to provide for testing of the conductive paths of a cable to be tested with the circuit paths of the circuit. The circuit paths in the circuit include indicators to simultaneously indicate the results of the testing.

  7. Space Station Freedom primary power wiring requirements

    NASA Technical Reports Server (NTRS)

    Hill, Thomas J.

    1994-01-01

    The Space Station Freedom (SSF) Program requirements are a 30 year reliable service life in low Earth orbit in hard vacuum or pressurized module service without detrimental degradation. Specific requirements are outlined in this presentation for SSF primary power and cable insulation. The primary power cable status and the WP-4 planned cable test program are also reviewed along with Rocketdyne-WP04 prime insulation candidates.

  8. ATOC/Pioneer Seamount cable after 8 years on the seafloor: Observations, environmental impact

    NASA Astrophysics Data System (ADS)

    Kogan, Irina; Paull, Charles K.; Kuhnz, Linda A.; Burton, Erica J.; von Thun, Susan; Gary Greene, H.; Barry, James P.

    2006-04-01

    A study was conducted on the impacts of the presence of the Acoustic Thermometry of Ocean Climate (ATOC)/Pioneer Seamount cable on the benthos from nearshore waters adjacent to its origin at Pillar Point Air Force Station in Half Moon Bay, California to its terminus 95 km along its length on Pioneer Seamount. The coaxial Type SD cable was installed, unburied on the seafloor in 1995. Thirteen sites along the cable route were surveyed using the Monterey Bay Aquarium Research Institute (MBARI) ROVs Ventana and Tiburon equipped with cable-tracking tools. Quantitative comparisons of biological communities and seafloor features between cable and control sites were performed at nine stations. Forty-two hours of video footage and 138 push cores were collected over 15.1 km of seafloor. Approximately 12.1 km of the cable was observed (13% of the cable route). This study documents the appearance and condition of the cable and the underlying seafloor, and the effects of the cable on biological communities along its route. Limited self-burial of the cable has occurred during the 8-year deployment, particularly over the continental shelf and upper slope. Cable strumming by nearshore wave action has incised rocky siltstone outcrops. Several observations of kinks and snags in the cable on the upper slope (˜240 m depth) suggest contact with trawling gear. Few changes in the abundance or distribution of benthic fauna were detectable from video observations (epifaunal) and sediment core samples (infauna). Of 17 megafaunal groups and 19 infaunal taxa, no tests evaluating the overall effect of the cable were statistically significant. While these results indicate that the biological impacts of the cable are minor at most, three megafaunal groups exhibited cable-related changes at one or more stations. Actiniarians (sea anemones) colonized the cable when it was exposed on the seafloor, and were therefore generally more abundant on the cable than in surrounding, sediment-dominated seafloor habitats. Some fishes were also more abundant near the cable, apparently due to the higher habitat complexity provided by the cable. The study also documents general changes in the benthos across the Central California continental margin.

  9. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors

    PubMed Central

    Li, Dongsheng; Ou, Jinping; Lan, Chengming; Li, Hui

    2012-01-01

    Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE) technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index. PMID:22666009

  10. Biomechanical comparison of fixation methods in transverse patella fractures.

    PubMed

    Scilaris, T A; Grantham, J L; Prayson, M J; Marshall, M P; Hamilton, J J; Williams, J L

    1998-01-01

    To compare monofilament wire versus braided cable for stabilizing transverse patella fractures using the modified AO tension band technique. A randomized blocked (paired) study comparing two fixation methods. Statistical analysis was performed using a nested repeated measures analysis, followed by Bonferroni post hoc testing. Seven paired embalmed knees (mean age 71.8 years, SD 14.6 years) were dissected, and transverse fractures were simulated. The knees were reduced and randomly fixed by either two parallel 0.062-inch Kirschner wires with a 1.0-millimeter-diameter 316L stainless steel monofilament wire tension loop or two Kirschner wires with a 1.0-millimeter-diameter 316L stainless steel braided cable tension loop. Knees were tested by applying a cyclic load through the suprapatellar tendon between twenty and 300 newtons for thirty cycles. The maximum fracture displacement increased with each cycle of loading for both the braided cable and monofilament wire tension loop configurations (p = 0.0001). The average peak displacement at the thirtieth cycle was 2.25 millimeters for monofilament wire and 0.73 millimeters for the cable. When comparing both methods for all cycles, the braided cable allowed less fracture displacement than did the monofilament wire (p = 0.002), and the rate of increase per cycle of maximum fracture displacement was less for the cable than for the wire (p = 0.0001). In transverse, noncomminuted patella fractures, fixation with two Kirschner wires and a 1.0-millimeter braided cable tension loop was superior to the monofilament wire tension loop. Most importantly, the braided cable afforded more predictable results during cyclic loading.

  11. Production and cost of a live skyline cable yarder tested in Appalachia

    Treesearch

    Edward L. Fisher; Harry G. Gibson; Cleveland J. Biller

    1980-01-01

    Logging systems that are profitable and environmentally acceptable are needed in Appalachian hardwood forests. Small, mobile cable yarders show promise in meeting both economic and environmental objectives. One such yarder, the Ecologger, was tested on the Jefferson National Forest near Marion, Virginia. Production rates and costs are presented for the system along...

  12. 4MOST fiber feed preliminary design: prototype testing and performance

    NASA Astrophysics Data System (ADS)

    Haynes, Dionne M.; Kelz, Andreas; Barden, Samuel C.; Bauer, Svend-Marian; Ehrlich, Katjana; Haynes, Roger; Jahn, Thomas; Saviauk, Allar; de Jong, Roelof S.

    2016-08-01

    The 4MOST instrument is a multi-object-spectrograph for the ESO-VISTA telescope. The 4MOST fiber feed subsystem is composed of a fiber positioner (AESOP) holding 2436 science fibers based on the Echidna tilting spine concept, and the fiber cable, which feeds two low-resolution spectrographs (1624 fibers) and one high-resolution spectrograph (812 fibers). In order to optimize the fiber feed subsystem design and provide essential information required for the spectrograph design, prototyping and testing has been undertaken. In this paper we give an overview of the current fiber feed subsystem design and present the preliminary FRD, scrambling, throughput and system performance impact results for: maximum and minimum spine tilt, fiber connectors, cable de-rotator simulator for fiber cable lifetime tests.

  13. Strand development and splice device : final report, February 3, 2009.

    DOT National Transportation Integrated Search

    2010-02-01

    "A new device for gripping prestressing strands was developed and tested. The device could provide a means of anchoring the terminal end of a strand in order to provide a mechanism for developing bonded strand at the service limit state, to provide t...

  14. Electrothermal Action of the Pulse of the Current of a Short Artificial-Lightning Stroke on Test Specimens of Wires and Cables of Electric Power Objects

    NASA Astrophysics Data System (ADS)

    Baranov, M. I.; Rudakov, S. V.

    2018-03-01

    The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.

  15. Cable Crosstalk Suppression with Two-Wire Voltage Feedback Method for Resistive Sensor Array

    PubMed Central

    Wu, Jianfeng; He, Shangshang; Li, Jianqing; Song, Aiguo

    2016-01-01

    Using a long, flexible test cable connected with a one-wire voltage feedback circuit, a resistive tactile sensor in a shared row-column fashion exhibited flexibility in robotic operations but suffered from crosstalk caused by the connected cable due to its wire resistances and its contacted resistances. Firstly, we designed a new non-scanned driving-electrode (VF-NSDE) circuit using two wires for every row line and every column line to reduce the crosstalk caused by the connected cables in the circuit. Then, an equivalent resistance expression of the element being tested (EBT) for the two-wire VF-NSDE circuit was analytically derived. Following this, the one-wire VF-NSDE circuit and the two-wire VF-NSDE circuit were evaluated by simulation experiments. Finally, positive features of the proposed method were verified with the experiments of a two-wire VF-NSDE prototype circuit. The experiment results show that the two-wire VF-NSDE circuit can greatly reduce the crosstalk error caused by the cables in the 2-D networked resistive sensor array. PMID:26907279

  16. Electrothermal Action of the Pulse of the Current of a Short Artificial-Lightning Stroke on Test Specimens of Wires and Cables of Electric Power Objects

    NASA Astrophysics Data System (ADS)

    Baranov, M. I.; Rudakov, S. V.

    2018-05-01

    The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.

  17. Non-Intrusive Impedance-Based Cable Tester

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor)

    1999-01-01

    A non-intrusive electrical cable tester determines the nature and location of a discontinuity in a cable through application of an oscillating signal to one end of the cable. The frequency of the oscillating signal is varied in increments until a minimum, close to zero voltage is measured at a signal injection point which is indicative of a minimum impedance at that point. The frequency of the test signal at which the minimum impedance occurs is then employed to determine the distance to the discontinuity by employing a formula which relates this distance to the signal frequency and the velocity factor of the cable. A numerically controlled oscillator is provided to generate the oscillating signal, and a microcontroller automatically controls operation of the cable tester to make the desired measurements and display the results. The device is contained in a portable housing which may be hand held to facilitate convenient use of the device in difficult to access locations.

  18. A miniature cable-driven robot for crawling on the heart.

    PubMed

    Patronik, N A; Zenati, M A; Riviere, C N

    2005-01-01

    This document describes the design and preliminary testing of a cable-driven robot for the purpose of traveling on the surface of the beating heart to administer therapy. This methodology obviates mechanical stabilization and lung deflation, which are typically required during minimally invasive cardiac surgery. Previous versions of the robot have been remotely actuated through push-pull wires, while visual feedback was provided by fiber optic transmission. Although these early models were able to perform locomotion in vivo on porcine hearts, the stiffness of the wire-driven transmission and fiber optic camera limited the mobility of the robots. The new prototype described in this document is actuated by two antagonistic cable pairs, and contains a color CCD camera located in the front section of the device. These modifications have resulted in superior mobility and visual feedback. The cable-driven prototype has successfully demonstrated prehension, locomotion, and tissue dye injection during in vitro testing with a poultry model.

  19. Electron spin resonance spectral study of PVC and XLPE insulation materials and their life time analysis.

    PubMed

    Morsy, M A; Shwehdi, M H

    2006-03-01

    Electron spin resonance (ESR) study is carried out to characterize thermal endurance of insulating materials used in power cable industry. The presented work provides ESR investigation and evaluation of widely used cable insulation materials, namely polyvinyl chloride (PVC) and cross-linked polyethylene (XLPE). The results confirm the fact that PVC is rapidly degrades than XLPE. The study also indicates that colorants and cable's manufacturing processes enhance the thermal resistance of the PVC. It also verifies the powerfulness and the importance of the ESR-testing of insulation materials compared to other tests assumed by International Electrotechnical Commission (IEC) Standard 216-procedure, e.g. weight loss (WL), electric strength (ES) or tensile strength (TS). The estimated thermal endurance parameters by ESR-method show that the other standard methods overestimate these parameters and produce less accurate thermal life time curves of cable insulation materials.

  20. Wind Tunnel Investigation of a Balloon as Decelerator at Mach Numbers from 1.47 to 2.50

    NASA Technical Reports Server (NTRS)

    McShera, John T.; Keyes, J. Wayne

    1961-01-01

    A wind-tunnel investigation was conducted to study the characteristics of a towed spherical balloon as a drag device at Mach numbers from 1.47 to 2.50, Reynolds numbers from 0.36 x 10(exp 6) to 1.0 x 10(exp 6) , and angles of attack from -15 to 15 degrees. Tow-cable length was approximately 24 inches from asymmetric body to cone on the upstream side of the balloon. As the tow cable was lengthened the balloon reached a point in the test section where wall-reflected shocks intersected the balloon and caused severe oscillations. As a result, the tow cable broke and the inflatable balloon model was destroyed. Further tests used a model rigid plastic sphere 6.75 inches in diameter. Tow cable length was approximately 24 inches from asymmetric body to the upstream side of the sphere.

  1. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Challener, William A

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber,more » and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.« less

  2. A second look at cable logging in the Appalachians

    Treesearch

    Harry G. Gibson; Cleveland J. Biller

    1975-01-01

    Cable logging, once used extensively in the Appalachians, is being re-examined to see if smaller, more mobile systems can help solve some of the timber-managment problems on steep slopes. A small Austrian skyline was tested in West Virginia to determine its feasibility for harvesting enstern hardwoods. The short-term test included both selection and clearcut harvesting...

  3. Comparison of two tension-band fixation materials and techniques in transverse patella fractures: a biomechanical study.

    PubMed

    Rabalais, R David; Burger, Evalina; Lu, Yun; Mansour, Alfred; Baratta, Richard V

    2008-02-01

    This study compared the biomechanical properties of 2 tension-band techniques with stainless steel wire and ultra high molecular weight polyethylene (UHMWPE) cable in a patella fracture model. Transverse patella fractures were simulated in 8 cadaver knees and fixated with figure-of-8 and parallel wire configurations in combination with Kirschner wires. Identical configurations were tested with UHMWPE cable. Specimens were mounted to a testing apparatus and the quadriceps was used to extend the knees from 90 degrees to 0 degrees; 4 knees were tested under monotonic loading, and 4 knees were tested under cyclic loading. Under monotonic loading, average fracture gap was 0.50 and 0.57 mm for steel wire and UHMWPE cable, respectively, in the figure-of-8 construct compared with 0.16 and 0.04 mm, respectively, in the parallel wire construct. Under cyclic loading, average fracture gap was 1.45 and 1.66 mm for steel wire and UHMWPE cable, respectively, in the figure-of-8 construct compared with 0.45 and 0.60 mm, respectively, in the parallel wire construct. A statistically significant effect of technique was found, with the parallel wire construct performing better than the figure-of-8 construct in both loading models. There was no effect of material or interaction. In this biomechanical model, parallel wires performed better than the figure-of-8 configuration in both loading regimens, and UHMWPE cable performed similarly to 18-gauge steel wire.

  4. Cell-cycle regulation of formin-mediated actin cable assembly

    PubMed Central

    Miao, Yansong; Wong, Catherine C. L.; Mennella, Vito; Michelot, Alphée; Agard, David A.; Holt, Liam J.; Yates, John R.; Drubin, David G.

    2013-01-01

    Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation. PMID:24133141

  5. Automatic detection of ECG cable interchange by analyzing both morphology and interlead relations.

    PubMed

    Han, Chengzong; Gregg, Richard E; Feild, Dirk Q; Babaeizadeh, Saeed

    2014-01-01

    ECG cable interchange can generate erroneous diagnoses. For algorithms detecting ECG cable interchange, high specificity is required to maintain a low total false positive rate because the prevalence of interchange is low. In this study, we propose and evaluate an improved algorithm for automatic detection and classification of ECG cable interchange. The algorithm was developed by using both ECG morphology information and redundancy information. ECG morphology features included QRS-T and P-wave amplitude, frontal axis and clockwise vector loop rotation. The redundancy features were derived based on the EASI™ lead system transformation. The classification was implemented using linear support vector machine. The development database came from multiple sources including both normal subjects and cardiac patients. An independent database was used to test the algorithm performance. Common cable interchanges were simulated by swapping either limb cables or precordial cables. For the whole validation database, the overall sensitivity and specificity for detecting precordial cable interchange were 56.5% and 99.9%, and the sensitivity and specificity for detecting limb cable interchange (excluding left arm-left leg interchange) were 93.8% and 99.9%. Defining precordial cable interchange or limb cable interchange as a single positive event, the total false positive rate was 0.7%. When the algorithm was designed for higher sensitivity, the sensitivity for detecting precordial cable interchange increased to 74.6% and the total false positive rate increased to 2.7%, while the sensitivity for detecting limb cable interchange was maintained at 93.8%. The low total false positive rate was maintained at 0.6% for the more abnormal subset of the validation database including only hypertrophy and infarction patients. The proposed algorithm can detect and classify ECG cable interchanges with high specificity and low total false positive rate, at the cost of decreased sensitivity for certain precordial cable interchanges. The algorithm could also be configured for higher sensitivity for different applications where a lower specificity can be tolerated. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Structural health monitoring approach for detecting ice accretion on bridge cable using the Haar Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Andre, Julia; Kiremidjian, Anne; Liao, Yizheng; Georgakis, Christos; Rajagopal, Ram

    2016-04-01

    Ice accretion on cables of bridge structures poses serious risk to the structure as well as to vehicular traffic when the ice falls onto the road. Detection of ice formation, quantification of the amount of ice accumulated, and prediction of icefalls will increase the safety and serviceability of the structure. In this paper, an ice accretion detection algorithm is presented based on the Continuous Wavelet Transform (CWT). In the proposed algorithm, the acceleration signals obtained from bridge cables are transformed using wavelet method. The damage sensitive features (DSFs) are defined as a function of the wavelet energy at specific wavelet scales. It is found that as ice accretes on the cables, the mass of cable increases, thus changing the wavelet energies. Hence, the DSFs can be used to track the change of cables mass. To validate the proposed algorithm, we use the data collected from a laboratory experiment conducted at the Technical University of Denmark (DTU). In this experiment, a cable was placed in a wind tunnel as ice volume grew progressively. Several accelerometers were installed at various locations along the testing cable to collect vibration signals.

  7. Design considerations for high-power VHF radar transceivers: Phase matching long coaxial cables using a cable radar

    NASA Technical Reports Server (NTRS)

    Johnson, P. E.; Ecklund, W. L.

    1983-01-01

    The Poker Flat 49.92-MHz MST radar uses 64 phase-controlled transmitters in individual shelters distributed throughout the antenna array. Phase control is accomplished by sampling the transmitted pulse at the directional coupler of each transmitter and sending the sample pulse back to a phase-control unit. This method requires phase matching 64 long (256 meter) coaxial cables (RG-213) to within several electrical degrees. Tests with a time domain reflectometer showed that attenuation of high frequency components in the long RG-213 cable rounded the leading edge of the reflected pulse so that the cables could only be measured to within 50 cm (about 45 deg at 49.92 MHz). Another measurement technique using a vector voltmeter to compare forward and reflected phase required a directional coupler with unattainable directivity. Several other techniques were also found lacking, primarily because of loss in the long RG-213 cables. At this point it was realized that what was needed was a simple version of the phase-coherent clear-air radar, i.e., a cable radar. The design and operation of this cable are described.

  8. Fatigue properties of superelastic Ti-Ni filaments and braided cables for bone fixation.

    PubMed

    Baril, Y; Brailovski, V

    2010-02-01

    This work is focused on the fatigue properties of the braided hollow tubular cables for bone fixation made of superelastic Ti-Ni filaments. To evaluate the fatigue life of the cable and the impact of braiding on fatigue life, a comparative study was conducted on both the braided cable and the single filament. The results of strain-controlled fatigue testing under variable mean and alternating strain conditions demonstrated that: (a) even though alternating strain is the most influent parameter, mean strain also has a significant impact on the fatigue life of both the filament and the braid; an improvement in the braided cable's fatigue life is observed under mean strains corresponding to the middle of the superelastic loop plateau; and (b) run-out (10(5) cycles) is reached at 1% of alternating strain for the filament, and at 0.3% for the braided cable. It was proved that the negative impact of braiding on fatigue life is caused: (a) by friction-induced damage of the braided filaments during cable manufacturing and (b) by locally occurring bending in the vicinity of the filaments' crossing, combined with the interfilament fretting during repetitive stretching of the braided cable.

  9. Costs of harvesting forest biomass on steep slopes with a small cable yarder: results from field trials and simulations

    Treesearch

    John E. Baumgras; Chris B. LeDoux

    1986-01-01

    Cable yarding can reduce the environmental impact of timber harvesting on steep slopes by increasing road spacing and reducing soil disturbance. To determine the cost of harvesting forest biomass with a small cable yarder, a 13.4 kW (18 hp) skyline yarder was tested on two southern Appalachian sites. At both sites, fuelwood was harvested from the boles of hardwood...

  10. Determination analaysis of the power losses of transformers with continuously transpored conductors (CTC) based fuzzy logic

    NASA Astrophysics Data System (ADS)

    Kaloko, Bambang Sri; Atsari, Erinna Dyah

    2017-03-01

    Electric motive force which flows into the iron core continuously on a plate - plate iron isolated may cause heat posed by current eddy (eddy current). No water loss occurs due to detainees on the circuit at the the flow of current load because this loss happened on the entanglement of the transformer is made of copper. Continuously Transposed Conductors (CTC) consist of a number of enameled rectangular wires (5-84 strands) made into an assembly. Each strand is transposed in turn to each position in the cable and is then covered with layers of insulation paper. Continuously Transposed Conductors are used in winding wires for medium and ultra high power transformers. CTC is manufactured by OFHC copper and indeed, is able to supply polyester roped. CTC which has been designed to reduce production cost, oil pocket and improve cooling efficiency. Hardened type CTC (CPR1, CPR2, and CPR3: BS1432) and Self-bonding CTC which can be used to improve mechanical and electrical strength are also available. This analysis is performed using the methods of fuzzy logic in taking account of the resources.

  11. High-field superconducting nested coil magnet

    NASA Technical Reports Server (NTRS)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  12. Cable Television.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    This report provides information about cable television and the Federal Communications Commission's (FCC) responsibilities in regulating its operation. The initial jurisdiction and rules covered in this report pertain to the court test, public hearing, certificate of compliance, franchising, signal carriage, leapfrogging, access and origination…

  13. Radar-based dynamic testing of the cable-suspended bridge crossing the Ebro River at Amposta, Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentile, Carmelo; Luzi, Guido

    2014-05-27

    Microwave remote sensing is the most recent experimental methodology suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. After a brief description of the radar measurement system, the paper addresses the application of microwave remote sensing to ambient vibration testing of a cable-suspended bridge. The investigated bridge crosses the Ebro River at Amposta, Spain and consists of two steel stiffening trusses and a series of equally spaced steel floor beams; the main span is supported by inclined stay cables and two series of 8 suspension cables. The dynamic tests were performed in operational conditions,more » with the sensor being placed in two different positions so that the response of both the steel deck and the arrays of suspension elements was measured. The experimental investigation confirms the simplicity of use of the radar and the accuracy of the results provided by the microwave remote sensing as well as the issues often met in the clear localization of measurement points.« less

  14. Assessing potential impacts of energized submarine power cables on crab harvests

    NASA Astrophysics Data System (ADS)

    Love, Milton S.; Nishimoto, Mary M.; Clark, Scott; McCrea, Merit; Bull, Ann Scarborough

    2017-12-01

    Offshore renewable energy facilities transmit electricity to shore through submarine power cables. Electromagnetic field emissions (EMFs) are generated from the transmission of electricity through these cables, such as the AC inter-array (between unit) and AC export (to shore) cables often used in offshore energy production. The EMF has both an electric component and a magnetic component. While sheathing can block the direct electric field, the magnetic field is not blocked. A concern raised by fishermen on the Pacific Coast of North America is that commercially important Dungeness crab (Metacarcinus magister Dana, 1852)) might not cross over an energized submarine power cable to enter a baited crab trap, thus potentially reducing their catch. The presence of operating energized cables off southern California and in Puget Sound (cables that are comparable to those within the arrays of existing offshore wind energy devices) allowed us to conduct experiments on how energized power cables might affect the harvesting of both M. magister and another commercially important crab species, Cancer productus Randall, 1839. In this study we tested the questions: 1) Is the catchability of crabs reduced if these animals must traverse an energized power cable to enter a trap and 2) if crabs preferentially do not cross an energized cable, is it the cable structure or the EMF emitted from that cable that deters crabs from crossing? In field experiments off southern California and in Puget Sound, crabs were given a choice of walking over an energized power cable to a baited trap or walking directly away from that cable to a second baited trap. Based on our research we found no evidence that the EMF emitted by energized submarine power cables influenced the catchability of these two species of commercially important crabs. In addition, there was no difference in the crabs' responses to lightly buried versus unburied cables. We did observe that, regardless of the position of the cable, Cancer productus in southern California tended to move to the west and Metacarcinus magister tended to move to the east.

  15. Behavior of a high-temperature superconducting conductor on a round core cable at current ramp rates as high as 67.8 kA s-1 in background fields of up to 19 T

    NASA Astrophysics Data System (ADS)

    Michael, P. C.; Bromberg, L.; van der Laan, D. C.; Noyes, P.; Weijers, H. W.

    2016-04-01

    High temperature superconducting (HTS) conductor-on-round-core (CORC®) cables have been developed for use in power transmission systems and large high-field magnets. The use of high-current conductors for large-scale magnets reduces system inductance and limits the peak voltage needed for ramped field operation. A CORC® cable contains a large number of RE-Ba2Cu3O7-δ (RE = rare earth) (REBCO) coated conductors, helically wound in multiple layers on a thin, round former. Large-scale applications, such as fusion and accelerator magnets, require current ramp rates of several kilo-Amperes per second during pulsed operation. This paper presents results that demonstrate the electromagnetic stability of a CORC® cable during transient conditions. Measurements were performed at 4.2 K using a 1.55 m long CORC® cable in background fields of up to 19 T. Repeated current pulses in a background field of 19 T at current ramp rates of up to 67.8 kA s-1 to approximately 90% of the cable’s quench current at that field, did not show any sign of degradation in cable performance due to excessive ac loss or electromagnetic instability. The very high current ramp rates applied during these tests were used to compensate, to the extent possible, the limited cable length accommodated by the test facility, assuming that the measured results could be extrapolated to longer length cables operated at proportionally lower current ramp rates. No shift of the superconducting transition to lower current was measured when the current ramp rate was increased from 25 A s-1 to 67.8 kA s-1. These results demonstrate the viability of CORC® cables for use in low-inductance magnets that operate at moderate to high current ramp rates.

  16. TEM Cell Testing of Cable Noise Reduction Techniques From 2 MHz to 200 MHz - Part 1

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Evans, William C.; Reed, Joshua L.; Shimp, Samuel K.; Fitzpatrick, Fred D.

    2008-01-01

    This paper presents empirical results of cable noise reduction techniques as demonstrated in a TEM cell operating with radiated fields from 2 - 200 MHz. It is the first part of a two-paper series. This first paper discusses cable types and shield connections. In the second paper, the effects of load and source resistances and chassis connections are examined. For each topic, well established theories are compared to data from a real-world physical system. Finally, recommendations for minimizing cable susceptibility (and thus cable emissions) are presented. There are numerous papers and textbooks that present theoretical analyses of cable noise reduction techniques. However, empirical data is often targeted to low frequencies (e.g. <50 KHz) or high frequencies (>100 MHz). Additionally, a comprehensive study showing the relative effects of various noise reduction techniques is needed. These include the use of dedicated return wires, twisted wiring, cable shielding, shield connections, changing load or source impedances, and implementing load- or source-to-chassis isolation. We have created an experimental setup that emulates a real-world electrical system, while still allowing us to independently vary a host of parameters. The goal of the experiment was to determine the relative effectiveness of various noise reduction techniques when the cable is in the presence of radiated emissions from 2 MHz to 200 MHz. The electronic system (Fig. 1) consisted of two Hammond shielded electrical enclosures, one containing the source resistance, and the other containing the load resistance. The boxes were mounted on a large aluminium plate acting as the chassis. Cables connecting the two boxes measured 81 cm in length and were attached to the boxes using standard D38999 military-style connectors. The test setup is shown in Fig. 2. Electromagnetic fields were created using an HP8657B signal generator, MiniCircuits ZHL-42W-SMA amplifier, and an EMCO 5103 TEM cell. Measurements were taken using an Agilent E4401B spectrum analyzer and HP1141a differential probes.

  17. Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields.

    PubMed

    Wang, Boshuo; Aberra, Aman S; Grill, Warren M; Peterchev, Angel V

    2018-04-01

    We present a theory and computational methods to incorporate transverse polarization of neuronal membranes into the cable equation to account for the secondary electric field generated by the membrane in response to transverse electric fields. The effect of transverse polarization on nonlinear neuronal activation thresholds is quantified and discussed in the context of previous studies using linear membrane models. The response of neuronal membranes to applied electric fields is derived under two time scales and a unified solution of transverse polarization is given for spherical and cylindrical cell geometries. The solution is incorporated into the cable equation re-derived using an asymptotic model that separates the longitudinal and transverse dimensions. Two numerical methods are proposed to implement the modified cable equation. Several common neural stimulation scenarios are tested using two nonlinear membrane models to compare thresholds of the conventional and modified cable equations. The implementations of the modified cable equation incorporating transverse polarization are validated against previous results in the literature. The test cases show that transverse polarization has limited effect on activation thresholds. The transverse field only affects thresholds of unmyelinated axons for short pulses and in low-gradient field distributions, whereas myelinated axons are mostly unaffected. The modified cable equation captures the membrane's behavior on different time scales and models more accurately the coupling between electric fields and neurons. It addresses the limitations of the conventional cable equation and allows sound theoretical interpretations. The implementation provides simple methods that are compatible with current simulation approaches to study the effect of transverse polarization on nonlinear membranes. The minimal influence by transverse polarization on axonal activation thresholds for the nonlinear membrane models indicates that predictions of stronger effects in linear membrane models with a fixed activation threshold are inaccurate. Thus, the conventional cable equation works well for most neuroengineering applications, and the presented modeling approach is well suited to address the exceptions.

  18. Offshore Earthquakes Do Not Influence Marine Mammal Stranding Risk on the Washington and Oregon Coasts.

    PubMed

    Grant, Rachel A; Savirina, Anna; Hoppitt, Will

    2018-01-26

    The causes of marine mammals stranding on coastal beaches are not well understood, but may relate to topography, currents, wind, water temperature, disease, toxic algal blooms, and anthropogenic activity. Offshore earthquakes are a source of intense sound and disturbance and could be a contributing factor to stranding probability. We tested the hypothesis that the probability of marine mammal stranding events on the coasts of Washington and Oregon, USA is increased by the occurrence of offshore earthquakes in the nearby Cascadia subduction zone. The analysis carried out here indicated that earthquakes are at most, a very minor predictor of either single, or large (six or more animals) stranding events, at least for the study period and location. We also tested whether earthquakes inhibit stranding and again, there was no link. Although we did not find a substantial association of earthquakes with strandings in this study, it is likely that there are many factors influencing stranding of marine mammals and a single cause is unlikely to be responsible. Analysis of a subset of data for which detailed descriptions were available showed that most live stranded animals were pups, calves, or juveniles, and in the case of dead stranded mammals, the commonest cause of death was trauma, disease, and emaciation.

  19. Dynamic analysis of suspension cable based on vector form intrinsic finite element method

    NASA Astrophysics Data System (ADS)

    Qin, Jian; Qiao, Liang; Wan, Jiancheng; Jiang, Ming; Xia, Yongjun

    2017-10-01

    A vector finite element method is presented for the dynamic analysis of cable structures based on the vector form intrinsic finite element (VFIFE) and mechanical properties of suspension cable. Firstly, the suspension cable is discretized into different elements by space points, the mass and external forces of suspension cable are transformed into space points. The structural form of cable is described by the space points at different time. The equations of motion for the space points are established according to the Newton’s second law. Then, the element internal forces between the space points are derived from the flexible truss structure. Finally, the motion equations of space points are solved by the central difference method with reasonable time integration step. The tangential tension of the bearing rope in a test ropeway with the moving concentrated loads is calculated and compared with the experimental data. The results show that the tangential tension of suspension cable with moving loads is consistent with the experimental data. This method has high calculated precision and meets the requirements of engineering application.

  20. Low-smoke, halogenfree ship-offshore/onshore cables with improved flame retardance and fire resistance

    NASA Astrophysics Data System (ADS)

    Pedersen, J. R.; Holte, T. A.; Johansen, E.

    Cables with improved fire resistance and flame retardance have been developed. They will continue to function at least 3 hours even at temperatures up to 1000 C and do not propagate fire when tested according to IEC 332 part 3 1982, category A. Made with halogenfree materials they give off no corrosive gases and very little visible smoke in cases of fire. Cables are made for power, signal and instrument installations in hospitals, high rise buildings, railroad cars, subways, on board ship, oil rigs and oil production platforms. The offshore cables are specially constructed to withstand the rugged climatic conditions in the North Sea area.

  1. Fiber Optic Cable Thermal Preparation to Ensure Stable Operation

    NASA Technical Reports Server (NTRS)

    Thoames Jr, William J.; Chuska, Rick F.; LaRocca, Frank V.; Switzer, Robert C.; Macmurphy, Shawn L.; Ott, Melanie N.

    2008-01-01

    Fiber optic cables are widely used in modern systems that must provide stable operation during exposure to changing environmental conditions. For example, a fiber optic cable on a satellite may have to reliably function over a temperature range of -50 C up to 125 C. While the system requirements for a particular application will dictate the exact method by which the fibers should be prepared, this work will examine multiple ruggedized fibers prepared in different fashions and subjected to thermal qualification testing. The data show that if properly conditioned the fiber cables can provide stable operation, but if done incorrectly, they will have large fluctuations in transmission.

  2. A module concept for a cable-mesh deployable antenna

    NASA Technical Reports Server (NTRS)

    Meguro, Akira

    1993-01-01

    This paper describes the design, manufacture, and deployment tests of a modular mesh deployable antenna. Reaction forces and moments created by a mesh and cable network are estimated using CASA. Deployment analysis is carried out using DADS. Three types of deployable antenna modules are developed and fabricated. Their design approach and deployment characteristics are also presented. Ground deployment tests are performed to verify design criteria.

  3. Trinity cable safety system.

    DOT National Transportation Integrated Search

    2007-01-31

    Cab1eSafety System (CASS).is being tested by the Oklahoma Department of Transportation (ODOT) along I-35 in McClain County. CASS will be compare with two other system approve by ODOT. Using C-shaped post tensioned cables, CASS is designed to...

  4. Vasoactive amines modulate actin cables (stress fibers) and surface area in cultured bovine endothelium.

    PubMed

    Welles, S L; Shepro, D; Hechtman, H B

    1985-06-01

    Cultured bovine aortic endothelial cells were fixed and stained with NBD-phallicidin and quantitated with a digital image analyzer for changes in actin cables and surface area. Serotonin (5-HT), norepinephrine (NE), dopamine and histamine (all at 10(-4)M concentrations) were tested for their ability to induce cytoskeletal changes. Only 5-HT and NE increased actin cables significantly (p less than 0.01), 80.7% and 97.9%, respectively. Dopamine and histamine treated cells showed a 67.4% and 80.8% decrease in actin cables respectively (p less than 0.01). Stimulated increases of actin cables by 5-HT were inhibited by Ketanserin, and propranolol inhibited NE stimulation of actin cables. Treatment of cells with these blockers alone also decreased actin cables below control values (p less than 0.01). Pretreatment of cells with diphenhydramine, but not cimetidine, inhibited histamine-induced decreases in actin cables. Stimulation of surface area by 5-HT and NE was also observed, with 40.8% and 80.7% increases respectively, when compared with controls (p less than 0.01). The increases in actin cables were associated with a lack of ruffled edges that are indicative of motile cells. In contrast, induced decreases in actin cables resulted in cells with ruffled edges. Exogenous 5-HT and NE have been shown to prevent the increased permeability visible as extravasation of red blood cells from postcapillary venules in thrombocytopenic animals. The present data suggest that 5-HT and NE may be involved in maintaining the endothelial barrier function by a receptor-mediated stimulation of actin cables. Also, histamine-induced decreases in actin cables may be correlated with the amine's action in vivo as a mediator of increased inflammatory permeability.

  5. Bulk Current Injection Testing of Close Proximity Cable Current Return, 1kHz to 1 MHz

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Lee, William M.; Singh, Vivek; Yavoich, Brian

    2010-01-01

    This paper presents the results of an experiment examining the percentage of current that returns on adjacent wires or through a surrounding cable shield rather than through a shared conducting chassis. Simulation and measurement data are compared from 1 kHz 1 MHz for seven common cable configurations. The phenomenon is important to understand, because minimizing the return current path is vital in developing systems with low radiated emissions.

  6. Two different electrical properties can improve transoceanic cable-route mapping

    USGS Publications Warehouse

    Wynn, J.; McGinnis, T.

    2001-01-01

    Induced polarization (IP) measurements made in the marine environment were investigated to map and remotely characterize the top 6-10 meters of the seafloor. The continuous resistivity profiling with cone-penetrometer tests, providing important information to engineers planning transoceanic cable routes, was also described. The IP effect and resistivity were identified as the two electric properties to improve transoceanic cable-route mapping. The measurement of IP and resistivity was found to depend on electrical current.

  7. Experimental validation of ultrasonic guided modes in electrical cables by optical interferometry.

    PubMed

    Mateo, Carlos; de Espinosa, Francisco Montero; Gómez-Ullate, Yago; Talavera, Juan A

    2008-03-01

    In this work, the dispersion curves of elastic waves propagating in electrical cables and in bare copper wires are obtained theoretically and validated experimentally. The theoretical model, based on Gazis equations formulated according to the global matrix methodology, is resolved numerically. Viscoelasticity and attenuation are modeled theoretically using the Kelvin-Voigt model. Experimental tests are carried out using interferometry. There is good agreement between the simulations and the experiments despite the peculiarities of electrical cables.

  8. Comparative structural neck responses of the THOR-NT, Hybrid III, and human in combined tension-bending and pure bending.

    PubMed

    Dibb, Alan T; Nightingale, Roger W; Chancey, V Carol; Fronheiser, Lucy E; Tran, Laura; Ottaviano, Danielle; Meyers, Barry S

    2006-11-01

    This study evaluated the biofidelity of both the Hybrid III and the THOR-NT anthropomorphic test device (ATD) necks in quasistatic tension-bending and pure-bending by comparing the responses of both the ATDs with results from validated computational models of the living human neck. This model was developed using post-mortem human surrogate (PMHS) osteoligamentous response corridors with effective musculature added (Chancey, 2005). Each ATD was tested using a variety of end-conditions to create the tension-bending loads. The results were compared using absolute difference, RMS difference, and normalized difference metrics. The THOR-NT was tested both with and without muscle cables. The THOR-NT was also tested with and without the central safety cable to test the effect of the cable on the behavior of the ATD. The Hybrid III was stiffer than the model for all tension-bending end conditions. Quantitative measurement of the differences in response showed more close agreement between the THOR-NT and the model than the Hybrid III and the model. By contrast, no systematic differences were observed in the head kinematics. The muscle cables significantly stiffened the THOR-NT by effectively reducing the laxity from the occipital condyle (OC) joint. The cables also shielded the OC upper neck load cell from a significant portion of the applied loads. The center safety significantly stiffened the response and decreased the fidelity, particularly in modes of loading in which tensile forces were large and bending moments small. This study compares ATD responses to computational models in which the models include PMHS response corridors while correcting for problems associated with cadaveric muscle. While controversial and requiring considerable diligence, these kinds of approaches show promise in assessing ATD biofidelity.

  9. Comparison of cable ageing

    NASA Astrophysics Data System (ADS)

    Plaček, Vít; Kohout, Tomáš

    2010-03-01

    Two cable types, which currently are used in nuclear power plants (NPP) and which are composed by jacket/insulation materials, i.e. PVC/PVC and PVC/PE, were exposed to accelerated ageing conditions, in order to simulate their behavior after 10 years in service. The cables were aged under two different test conditions: With relatively high accelerating ageing speed:Radiation ageing was carried out at room temperature at a dose rate of 2900 Gy/h, followed by thermal ageing at 100 °C. This accelerated ageing condition was fairly fast, but still in compliance with the standards. With moderate ageing speed:The radiation and thermal ageing was performed simultaneously (superimposed) at a dose rate of 2.7-3.7Gy/h and a temperature of 68-70 °C. Such a test condition seems to be very close to the radiation and temperature impact onto the cables in the real NPP service. Finally, mechanical properties were measured to characterize the ageing status of the cables. The purpose of this study was to compare degradation effects, derived from both ageing methods, and to demonstrate that results obtained from high values of accelerating parameters and from fast ageing simulation can be very different from reality. The observed results corroborated this assumption.

  10. Occupational allergic rhinitis from guar gum.

    PubMed

    Kanerva, L; Tupasela, O; Jolanki, R; Vaheri, E; Estlander, T; Keskinen, H

    1988-05-01

    Three cases of allergic rhinitis from a vegetable gum, guar gum, have been detected. Two subjects were exposed to fine guar gum powder (Emco Gum 563, Meyhall Chemical AG, Switzerland), an insulator in rubber cables, when opening cables in a power cable laboratory. After 1-2 years' exposure the patients developed rhinitis. Scratch-chamber tests, nasal provocation tests, nasal eosinophilia and a RAST test proved their allergy. A third subject developed allergic rhinitis from another guar gum product (Meyproid 5306, Meyhall Chemical AG) after 2 years' exposure in a paper factory. A positive skin test and nasal provocation test confirmed the diagnosis. A fourth case of possible allergy to guar gum after exposure to Meyproid 5306 in a paper factory is also presented. No final diagnosis was reached in this case (in 1974). The present subjects, only one of whom was atopic, developed allergy within 2 years, although their exposure to guar gum was not especially heavy. Therefore, when handling guar, adequate ventilation facilities should be provided and protective clothing, including a respiratory mask, should be worn.

  11. Measurement of rock mass deformation with grouted coaxial antenna cables

    NASA Astrophysics Data System (ADS)

    Dowding, C. H.; Su, M. B.; O'Connor, K.

    1989-01-01

    Techniques presented herein show how reflected voltage pulses from coaxial antenna cable grouted in rock masses can be employed to quantify the type and magnitude of rock mass deformation. This measurement is similar to that obtained from a combined full profile extensometer (to measure local extension) and inclinometer (to measure local shearing). Rock mass movements deform the grouted cable, which locally changes cable capacitance and thereby the reflected wave form of the voltage pulse. Thus, by monitoring changes in these reflection signatures, it is possible to monitor rock mass deformation. This paper presents laboratory measurements necessary to quantitatively interpret the reflected voltage signatures. Cables were sheared and extended to correlate measured cable deformation with reflected voltage signals. Laboratory testing included development of grout mixtures with optimum properties for field installation and performance of a TDR (Time Domain Reflectometry) monitoring system. Finally, the interpretive techniques developed through laboratory measurements were applied to previously collected field data to extract hitherto unrealized information.

  12. 16 CFR 1204.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the total rate at which electrical charge is transported through the antenna-mast system in response to the applied test voltage, including both capacitive and resistive components. (f) Electrical... can be measured by the current monitoring device. (g) Feed cable means the electrical cable that...

  13. Sixty-four-Channel Inline Cable Tester

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Faults in wiring are a serious concern for the aerospace and aeronautics (commercial, military, and civil) industries. A number of accidents have occurred because faulty wiring created shorts or opens that resulted in the loss of control of the aircraft or because arcing led to fires and explosions. Some of these accidents have resulted in the massive loss of lives (such as in the TWA Flight 800 accident). Circuits on the Space Shuttle have also failed because of faulty insulation on wiring. STS-93 lost power when a primary power circuit in one engine failed and a second engine had a backup power circuit fault. Cables are usually tested on the ground after the crew reports a fault encountered during flight. Often such failures result from vibration and cannot be replicated while the aircraft is stationary. It is therefore important to monitor faults while the aircraft is in operation, when cables are more likely to fail. Work is in progress to develop a cable fault tester capable of monitoring up to 64 individual wires simultaneously. Faults can be monitored either inline or offline. In the inline mode of operation, the monitoring is performed without disturbing the normal operation of the wires under test. That is, the operations are performed unintrusively and are essentially undetectable for the test signal levels are below the noise floor. A cable can be monitored several times per second in the offline mode and once a second in the inline mode. The 64-channel inline cable tester not only detects the occurrence of a fault, but also determines the type of fault (short/open) and the location of the fault. This will enable the detection of intermittent faults that can be repaired before they become serious problems.

  14. Using Fiber Optic Distributed Acoustic Sensing to Measure Hydromechanics in a Crystalline Rock Aquifer

    NASA Astrophysics Data System (ADS)

    Ciervo, C.; Becker, M.; Cole, M. C.; Coleman, T.; Mondanos, M.

    2016-12-01

    Measuring hydromechanical behavior in fractured rock is important for hydraulic fracturing and stimulation in petroleum reservoirs, predicting thermal effects in geothermal fields, and monitoring geologic carbon sequestration injection. We present a new method for measuring geomechanical response to fluid pressure in fractures that employs fiber optic Distributed Acoustic Sensing (DAS). DAS was designed to measure acoustic and seismic signals, often in petroleum wells. DAS seismic monitoring has been proposed as a particularly useful tool for performing seismic testing for carbon sequestration and geothermal projects because fiber optic cable is able to withstand high temperatures and pressures. DAS measures seismic vibration in the Hz to kHz frequency range by measuring strain rate in the fiber optic cable. We adapted this technology to measure rock strain in response to periodic hydraulic pulses in the mHz frequency range. A field experiment was conducted in a low-permeability fractured crystalline bedrock to test the ability of DAS to measure hydromechanical response to periodic pumping and injection. The fiber optic cable was coupled to the borehole wall using a flexible liner designed with an air coupled transducer to measure fluid pressure. Both strain and pressure were measured across a known fracture zone hydraulically connected to the pumping/injection well 30 m away. Periodic strain with amplitudes as small as 50 nm were measured in response to head amplitudes of 2 mm. Clean strain signals were detected at all tested periods of hydraulic oscillation ranging from 2 to 18 minutes. A non-linear relationship was found between opening and closing of the fracture (as measured by cable strain) and fluid pressure in the fracture. The response was also sensitive to the fiber optic cable design. This field test suggests potential for measuring hydraulic connectivity and hydromechanical behavior in fractured formations through cementing fiber optic cable in wellbores outside of well casings.

  15. ACTIVE DELIVERY CABLE TUNED TO DEVICE DEPLOYMENT STATE: ENHANCED VISIBILITY OF NITINOL OCCLUDERS DURING PRE-CLINICAL INTERVENTIONAL MRI

    PubMed Central

    Bell, Jamie A.; Saikus, Christina E.; Ratnayaka, Kanishka; Barbash, Israel M.; Faranesh, Anthony Z.; Franson, Dominique N.; Sonmez, Merdim; Slack, Michael C.; Lederman, Robert J.; Kocaturk, Ozgur

    2012-01-01

    Purpose To develop an active delivery system that enhances visualization of nitinol cardiac occluder devices during deployment under real-time MRI. Materials and Methods We constructed an active delivery cable incorporating a loopless antenna and a custom titanium microscrew to secure the occluder devices. The delivery cable was tuned and matched to 50Ω at 64 MHz with the occluder device attached. We used real-time balanced SSFP in a wide-bore 1.5T scanner. Device-related images were reconstructed separately and combined with surface-coil images. The delivery cable was tested in vitro in a phantom and in vivo in swine using a variety of nitinol cardiac occluder devices. Results In vitro, the active delivery cable provided little signal when the occluder device was detached and maximal signal with the device attached. In vivo, signal from the active delivery cable enabled clear visualization of occluder device during positioning and deployment. Device release resulted in decreased signal from the active cable. Post-mortem examination confirmed proper device placement. Conclusions The active delivery cable enhanced the MRI depiction of nitinol cardiac occluder devices during positioning and deployment, both in conventional and novel applications. We expect enhanced visibility to contribute to effectiveness and safety of new and emerging MRI-guided treatments. PMID:22707441

  16. Development of radiation resistant electrical cable insulations

    NASA Technical Reports Server (NTRS)

    Lee, B. S.; Soo, P.; Mackenzie, D. R.

    1994-01-01

    Two new polyethylene cable insulations have been formulated for nuclear applications and have been tested under gamma radiation. Both insulations are based on low density polyethylene, one with PbO and the other with Sb2O3 as additives. The test results show that the concept of using inorganic antioxidants to retard radiation initiated oxidation (RIO) is viable. PbO is more effective than Sb2O3 in minimizing RIO.

  17. Simple system for locating ground loops.

    PubMed

    Bellan, P M

    2007-06-01

    A simple low-cost system for rapid identification of the cables causing ground loops in complex instrumentation configurations is described. The system consists of an exciter module that generates a 100 kHz ground loop current and a detector module that determines which cable conducts this test current. Both the exciter and detector are magnetically coupled to the ground circuit so there is no physical contact to the instrumentation system under test.

  18. Very Low Frequency Breakdown Properties of Electrical Insulation Materials at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Sauers, I.; Tuncer, E.; Polizos, G.; James, D. R.; Ellis, A. R.; Pace, M. O.

    2010-04-01

    For long cables or equipment with large capacitance it is not always possible to conduct high voltage withstand tests at 60 Hz due to limitations in charging currents of the power supply. Very low frequency (typically at a frequency of 0.1 Hz) has been used for conventional cables as a way of getting around the charging current limitation. For superconducting grid applications the same issues apply. However there is very little data at cryogenic temperatures on how materials perform at low frequency compared to 60 Hz and whether higher voltages should be applied when performing a high voltage acceptability test. Various materials including G10 (fiberglass reinforced plastic or FRP), Cryoflex™ (a tape insulation used in some high temperature superconducting cables), kapton (commonly used polyimide), polycarbonate, and polyetherimide, and in liquid nitrogen alone have been tested using a step method for frequencies of 60 Hz, 0.1 Hz, and dc. The dwell time at each step was chosen so that the aging factor would be the same in both the 60 Hz and 0.1 Hz tests. The data indicated that, while there is a small frequency dependence for liquid nitrogen, there are significant differences for the solid materials studied. Breakdown data for these materials and for model cables will be shown and discussed.

  19. Proceedings of the International Wire and Cable Symposium (40th) Held in St. Louis, Missouri on 18-21 November 1991

    DTIC Science & Technology

    1991-11-01

    S. Windeler, Bell Laboratories- 1970 Dr. 0. Leuchs, Kable and Metalwerke-"A New Self -Ex- "A Low Capacitance Cable for the T2 Digital Trans...Pickering is a member implementation as well as test and evaluation, of the New York Rubber Group, the Wire production base planning and product assurance...metallic German power utilities. ground or phase wire. The thus created new aerial cable changes in its mechanical characteristics only unimportantly

  20. Online Cable Tester and Rerouter

    NASA Technical Reports Server (NTRS)

    Lewis, Mark; Medelius, Pedro

    2012-01-01

    Hardware and algorithms have been developed to transfer electrical power and data connectivity safely, efficiently, and automatically from an identified damaged/defective wire in a cable to an alternate wire path. The combination of online cable testing capabilities, along with intelligent signal rerouting algorithms, allows the user to overcome the inherent difficulty of maintaining system integrity and configuration control, while autonomously rerouting signals and functions without introducing new failure modes. The incorporation of this capability will increase the reliability of systems by ensuring system availability during operations.

Top