Parametrically excited oscillation of stay cable and its control in cable-stayed bridges.
Sun, Bing-nan; Wang, Zhi-gang; Ko, J M; Ni, Y Q
2003-01-01
This paper presents a nonlinear dynamic model for simulation and analysis of a kind of parametrically excited vibration of stay cable caused by support motion in cable-stayed bridges. The sag, inclination angle of the stay cable are considered in the model, based on which, the oscillation mechanism and dynamic response characteristics of this kind of vibration are analyzed through numerical calculation. It is noted that parametrically excited oscillation of a stay cable with certain sag, inclination angle and initial static tension force may occur in cable-stayed bridges due to deck vibration under the condition that the natural frequency of a cable approaches to about half of the first model frequency of the bridge deck system. A new vibration control system installed on the cable anchorage is proposed as a possible damping system to suppress the cable parametric oscillation. The numerical calculation results showed that with the use of this damping system, the cable oscillation due to the vibration of the deck and/or towers will be considerably reduced.
MR damping system on Dongting Lake cable-stayed bridge
NASA Astrophysics Data System (ADS)
Chen, Z. Q.; Wang, X. Y.; Ko, J. M.; Ni, Y. Q.; Spencer, Billie F., Jr.; Yang, G.
2003-08-01
The Dongting Lake Bridge is a cable-stayed bridge crossing the Dongting Lake where it meets the Yangtze River in southern central China. After this bridge was completed in 1999, its cables were observed to be sensitive to rain-wind-induced vibration, especially under adverse weather conditions of both rain and wind. To investigate the possibility of using MR damping systems to reduce cable vibration, a joint project between the Central South University of China and the Hong Kong Polytechnic University was conducted. Based on the promising research results, the bridge authority decided to install MR damping systems on the longest 156 stay cables. The installation started in July 2001 and finished in June 2002, making it the world's first application of MR dampers on cable-stayed bridge to suppress the rain-wind-induced cable vibration. As a visible and permanent aspect of bridge, the MR damping system must be aesthetically pleasing, reliable, durable, easy to maintain, as well as effective in vibration mitigation. Substantial work was done to meet these requirements. This paper describes the implementation of MR damping systems for cable vibration reduction.
Long term monitoring of carbon composite strands in the Penobscot-Narrows bridge.
DOT National Transportation Integrated Search
2015-06-01
The Penobscot-Narrows Bridge was constructed between May 2003 and December 2006. The bridge is a cable-stayed design with twin pylons and a 2,120-foot span. This cable-stayed bridge features a cradle stay system that : allows for each cable strand in...
Simple model of cable-stayed bridge deck subjected to static wind loading
NASA Astrophysics Data System (ADS)
Kang, Yi-Lung; Wang, Yang Cheng
1997-05-01
Cable-stayed bridges have been known since 18th century with aesthetics design. The structural system and the structural behavior are significantly different from those of continuous bridges. Compared to continuous bridge, cable- stayed bridges have more flexure bridge deck than those of continuous bridges.On the other hand, cable-stayed bridges have less stiffness to resist wind loading especially for lateral loads. The first considering of bridge engineering is safety. In 1940's, Tacoma Narrows Suspension Bridge destroyed by wind loading is a good example even though it is not a cable-stayed bridge. After the bridge was destroyed, a lot of research articles have been published regarding cable supported bridge subjected to wind loading. In recent days, high strength materials have been served. The bridge engineers use the advantages to expand the span length of cable-stayed bridges. Due to the span length increased and the use of high strength materials, cable- stayed bridges have more significant nonlinear behavior subjected to wind loading. In this paper, a slice bridge deck of cable-stayed bridge connected to internal support cables is considered. The deck has been considered to be subjected to lateral static wind loading. Since cables can not take compressive force, the deck has strongly nonlinear behavior even though the materials are linear elastic. Several primary load combinations have ben considered in this paper such as the bridge deck supposed to be moved horizontally without rotation or the bridge deck supposed to be moved horizontally with rotational deformation. The mathematical formulas and the numerical solutions are found and represented in graphical forms. The results can be provided to bridge designers and researchers for further study of this type of structure subjected to wind loading.
Structural Monitoring and Field Test for Kao Ping Hsi Cable-Stayed Bridge in Taiwan
NASA Astrophysics Data System (ADS)
Chen, Chern-Hwa
2010-05-01
This work applies system identification techniques to analyze the measured data from structural monitoring system and field test for Kao Ping Hsi cable-stayed bridge in Taiwan. The continuous wavelet transform algorithm can be used to identify the dynamic characteristics of the cable-stayed bridge under environmental vibration. The identified results with traffic flow were compared with those obtained from ambient vibration test. The excellent agreement both the identified results from different traffic conditions indicates that the traffic flow would not significantly change the natural frequencies of the cable-stayed bridge. The modal parameters identified from the field vibration test will be compared with those used in the finite element analysis. The results obtained herein will be used as the damage detection for monitoring the long-term safety of the Kao Ping Hsi cable-stayed bridge by using structural monitoring system.
Static and Dynamic Characteristics of a Long-Span Cable-Stayed Bridge with CFRP Cables
Xie, Xu; Li, Xiaozhang; Shen, Yonggang
2014-01-01
In this study, the scope of CFRP cables in cable-stayed bridges is studied by establishing a numerical model of a 1400-m span of the same. The mechanical properties and characteristics of CFRP stay cables and of a cable-stayed bridge with CFRP cables are here subjected to comprehensive analysis. The anomalies in the damping properties of free vibration, nonlinear parametric vibration and wind fluctuating vibration between steel cables and CFRP cables are determined. The structural stiffness, wind resistance and traffic vibration of the cable-stayed bridge with CFRP cables are also analyzed. It was found that the static performances of a cable-stayed bridge with CFRP cables and steel cables are basically the same. The natural frequencies of CFRP cables do not coincide with the major natural frequencies of the cable-stayed bridge, so the likelihood of CFRP cable-bridge coupling vibration is minuscule. For CFRP cables, the response amplitudes of both parametric vibration and wind fluctuating vibration are smaller than those of steel cables. It can be concluded from the research that the use of CFRP cables does not change the dynamic characteristics of the vehicle-bridge coupling vibration. Therefore, they can be used in long-span cable-stayed bridges with an excellent mechanical performance. PMID:28788710
Static and Dynamic Characteristics of a Long-Span Cable-Stayed Bridge with CFRP Cables.
Xie, Xu; Li, Xiaozhang; Shen, Yonggang
2014-06-23
In this study, the scope of CFRP cables in cable-stayed bridges is studied by establishing a numerical model of a 1400-m span of the same. The mechanical properties and characteristics of CFRP stay cables and of a cable-stayed bridge with CFRP cables are here subjected to comprehensive analysis. The anomalies in the damping properties of free vibration, nonlinear parametric vibration and wind fluctuating vibration between steel cables and CFRP cables are determined. The structural stiffness, wind resistance and traffic vibration of the cable-stayed bridge with CFRP cables are also analyzed. It was found that the static performances of a cable-stayed bridge with CFRP cables and steel cables are basically the same. The natural frequencies of CFRP cables do not coincide with the major natural frequencies of the cable-stayed bridge, so the likelihood of CFRP cable-bridge coupling vibration is minuscule. For CFRP cables, the response amplitudes of both parametric vibration and wind fluctuating vibration are smaller than those of steel cables. It can be concluded from the research that the use of CFRP cables does not change the dynamic characteristics of the vehicle-bridge coupling vibration. Therefore, they can be used in long-span cable-stayed bridges with an excellent mechanical performance.
A New Multiconstraint Method for Determining the Optimal Cable Stresses in Cable-Stayed Bridges
Asgari, B.; Osman, S. A.; Adnan, A.
2014-01-01
Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM). The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method. PMID:25050400
A new multiconstraint method for determining the optimal cable stresses in cable-stayed bridges.
Asgari, B; Osman, S A; Adnan, A
2014-01-01
Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM). The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method.
Development of inspection robots for bridge cables.
Yun, Hae-Bum; Kim, Se-Hoon; Wu, Liuliu; Lee, Jong-Jae
2013-01-01
This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented.
NASA Astrophysics Data System (ADS)
Weischedel, Herbert R.; Hoehle, Hans-Werner
1995-05-01
Stay cables of cable-stayed bridges have corrosion protection systems that can be elaborate. For example, such a system may simply consist of one or several coats of paint, or--more complex--of plastic pipes that are wrapped with tape and filled with grout. Frequently, these corrosion protection systems prevent visual inspections. Therefore, alternative nondestructive examination methods are called for. For example, modern dual-function electromagnetic (EM) instruments allow the simultaneous detection of external and internal localized flaws (such as external and internal broken wires and corrosion piting) and the measurement of loss of metallic cross-sectional area (typically caused by external or internal corrosion or wear). Initially developed for mining and skiing applications, these instruments have been successfully used for the inspection of stays of cable-stayed bridges, and for the inspection of guys of smoke stacks, flare stacks, broadcast towers, suspended roofs, etc. As a rule, guys and bridge cables are not subjected to wear and bending stresses. However, their safety can be compromised by corrosion caused by the failure of corrosion protection systems. Furthermore, live loads and wind forces create intermittent tensile stresses that can cause fatigue breaks of wires. This paper discusses the use of dual-function EM instruments for the detection and the nondestructive quantitative evaluation of cable deterioration. It explains the underlying principles. Experiences with this method together with field inspection results will be presented.
Geometric Nonlinear Analysis of Self-Anchored Cable-Stayed Suspension Bridges
Hui-Li, Wang; Yan-Bin, Tan; Si-Feng, Qin; Zhe, Zhang
2013-01-01
Geometric nonlinearity of self-anchored cable-stayed suspension bridges is studied in this paper. The repercussion of shrinkage and creep of concrete, rise-to-span ratio, and girder camber on the system is discussed. A self-anchored cable-stayed suspension bridge with a main span of 800 m is analyzed with linear theory, second-order theory, and nonlinear theory, respectively. In the condition of various rise-to-span ratios and girder cambers, the moments and displacements of both the girder and the pylon under live load are acquired. Based on the results it is derived that the second-order theory can be adopted to analyze a self-anchored cable-stayed suspension bridge with a main span of 800 m, and the error is less than 6%. The shrinkage and creep of concrete impose a conspicuous impact on the structure. And it outmatches suspension bridges for system stiffness. As the rise-to-span ratio increases, the axial forces of the main cable and the girder decline. The system stiffness rises with the girder camber being employed. PMID:24282388
Geometric nonlinear analysis of self-anchored cable-stayed suspension bridges.
Hui-Li, Wang; Yan-Bin, Tan; Si-Feng, Qin; Zhe, Zhang
2013-01-01
Geometric nonlinearity of self-anchored cable-stayed suspension bridges is studied in this paper. The repercussion of shrinkage and creep of concrete, rise-to-span ratio, and girder camber on the system is discussed. A self-anchored cable-stayed suspension bridge with a main span of 800 m is analyzed with linear theory, second-order theory, and nonlinear theory, respectively. In the condition of various rise-to-span ratios and girder cambers, the moments and displacements of both the girder and the pylon under live load are acquired. Based on the results it is derived that the second-order theory can be adopted to analyze a self-anchored cable-stayed suspension bridge with a main span of 800 m, and the error is less than 6%. The shrinkage and creep of concrete impose a conspicuous impact on the structure. And it outmatches suspension bridges for system stiffness. As the rise-to-span ratio increases, the axial forces of the main cable and the girder decline. The system stiffness rises with the girder camber being employed.
Development of Inspection Robots for Bridge Cables
Kim, Se-Hoon; Lee, Jong-Jae
2013-01-01
This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented. PMID:24459453
Wang, Hao; Tao, Tianyou; Guo, Tong; Li, Jian; Li, Aiqun
2014-01-01
The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges.
Tao, Tianyou; Li, Aiqun
2014-01-01
The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges. PMID:24995367
NASA Astrophysics Data System (ADS)
Shi, Jing-xian; Ran, Zhi-hong
2018-03-01
Extradossed Cable-stayed Bridge is both cable-stayed Bridge and Continuous rigid frame bridge mechanics feature, Beam is the main force components, cable is supplement.This article combined with a single tower and single cable plane Extradossed cable-stayed bridge in Yunnan, use different creep calculation models and analysis deflection caused by creep effects. The results showing that deflection caused by creep effect is smaller than the same span continuous rigid frame bridge, the value is about 2cm. On the other hand the deflection is increasing with ambient humidity decreases, therefore in the dry environment the calculation model is relatively large in the pre-camber. In the choice of RC creep model is significant in the dry areas.
A wireless smart sensor network for automated monitoring of cable tension
NASA Astrophysics Data System (ADS)
Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jong-Woong; Cho, Soojin; Spencer, Billie F., Jr.; Jung, Hyung-Jo
2014-02-01
As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea.
Chen, Bin; Wang, Xu; Sun, Dezhang; Xie, Xu
2014-01-01
It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province). The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system. PMID:25140342
Chen, Bin; Wang, Xu; Sun, Dezhang; Xie, Xu
2014-01-01
It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province). The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system.
DOT National Transportation Integrated Search
1991-01-01
During the construction of the I-295 cable-stayed bridge, a number of the stays on the main span cantilever were instrumented with electrical resistance strain gages mounted directly on the wires of the seven-wire strands making up the stay cables. M...
Wind-induced vibration of stay cables
DOT National Transportation Integrated Search
2007-08-01
Cable-stayed bridges have become the form of choice over the past several decades for bridges in the medium- to long-span range. In some cases, serviceability problems involving large amplitude vibrations of stay cables under certain wind and rain co...
DOT National Transportation Integrated Search
2016-10-01
At over five miles long, the Sunshine Skyway Bridge, crossing Tampa Bay where it meets the Gulf of Mexico, is one of the worlds longest cable-stayed bridges. The pier-supported approaches rise to meet the center section where cables radiating from...
Semi-active control of a cable-stayed bridge under multiple-support excitations.
Dai, Ze-Bing; Huang, Jin-Zhi; Wang, Hong-Xia
2004-03-01
This paper presents a semi-active strategy for seismic protection of a benchmark cable-stayed bridge with consideration of multiple-support excitations. In this control strategy, Magnetorheological (MR) dampers are proposed as control devices, a LQG-clipped-optimal control algorithm is employed. An active control strategy, shown in previous researches to perform well at controlling the benchmark bridge when uniform earthquake motion was assumed, is also used in this study to control this benchmark bridge with consideration of multiple-support excitations. The performance of active control system is compared to that of the presented semi-active control strategy. Because the MR fluid damper is a controllable energy- dissipation device that cannot add mechanical energy to the structural system, the proposed control strategy is fail-safe in that bounded-input, bounded-output stability of the controlled structure is guaranteed. The numerical results demonstrated that the performance of the presented control design is nearly the same as that of the active control system; and that the MR dampers can effectively be used to control seismically excited cable-stayed bridges with multiple-support excitations.
Calibration of Elasto-Magnetic Sensors on In-Service Cable-Stayed Bridges for Stress Monitoring.
Cappello, Carlo; Zonta, Daniele; Laasri, Hassan Ait; Glisic, Branko; Wang, Ming
2018-02-05
The recent developments in measurement technology have led to the installation of efficient monitoring systems on many bridges and other structures all over the world. Nowadays, more and more structures have been built and instrumented with sensors. However, calibration and installation of sensors remain challenging tasks. In this paper, we use a case study, Adige Bridge, in order to present a low-cost method for the calibration and installation of elasto-magnetic sensors on cable-stayed bridges. Elasto-magnetic sensors enable monitoring of cable stress. The sensor installation took place two years after the bridge construction. The calibration was conducted in two phases: one in the laboratory and the other one on site. In the laboratory, a sensor was built around a segment of cable that was identical to those of the cable-stayed bridge. Then, the sample was subjected to a defined tension force. The sensor response was compared with the applied load. Experimental results showed that the relationship between load and magnetic permeability does not depend on the sensor fabrication process except for an offset. The determination of this offset required in situ calibration after installation. In order to perform the in situ calibration without removing the cables from the bridge, vibration tests were carried out for the estimation of the cables' tensions. At the end of the paper, we show and discuss one year of data from the elasto-magnetic sensors. Calibration results demonstrate the simplicity of the installation of these sensors on existing bridges and new structures.
Two-Dimensional Analysis of Cable Stayed Bridge under Wave Loading
NASA Astrophysics Data System (ADS)
Seeram, Madhuri; Manohar, Y.
2018-06-01
In the present study finite element analysis is performed for a modified fan type cable-stayed bridge using ANSYS Mechanical. A cable stayed bridge with two towers and main deck is considered for the present study. Dynamic analysis is performed to evaluate natural frequencies. The obtained natural frequencies and mode shapes of cable stayed bridge are compared to the existing results. Further studies have been conducted for offshore area application by increasing the pylon/tower height depending upon the water depth. Natural frequencies and mode shapes are evaluated for the cable stayed bridge for offshore area application. The results indicate that the natural periods are higher than the existing results due to the effect of increase in mass of the structure and decrease in stiffness of the pylon/tower. The cable stayed bridge is analyzed under various environmental loads such as dead, live, vehicle, seismic and wave loading. Morison equation is considered to evaluate the wave force. The sum of inertia and drag force is taken as the wave force distribution along the fluid interacting height of the pylon. Airy's wave theory is used to assess water particle kinematics, for the wave periods ranging from 5 to 20 s and unit wave height. The maximum wave force among the different regular waves is considered in the wave load case. The support reactions, moments and deflections for offshore area application are highlighted. It is observed that the maximum support reactions and support moments are obtained due to wave and earthquake loading respectively. Hence, it is concluded that the wave and earthquake forces shall be given significance in the design of cable stayed bridge.
Two-Dimensional Analysis of Cable Stayed Bridge under Wave Loading
NASA Astrophysics Data System (ADS)
Seeram, Madhuri; Manohar, Y.
2018-02-01
In the present study finite element analysis is performed for a modified fan type cable-stayed bridge using ANSYS Mechanical. A cable stayed bridge with two towers and main deck is considered for the present study. Dynamic analysis is performed to evaluate natural frequencies. The obtained natural frequencies and mode shapes of cable stayed bridge are compared to the existing results. Further studies have been conducted for offshore area application by increasing the pylon/tower height depending upon the water depth. Natural frequencies and mode shapes are evaluated for the cable stayed bridge for offshore area application. The results indicate that the natural periods are higher than the existing results due to the effect of increase in mass of the structure and decrease in stiffness of the pylon/tower. The cable stayed bridge is analyzed under various environmental loads such as dead, live, vehicle, seismic and wave loading. Morison equation is considered to evaluate the wave force. The sum of inertia and drag force is taken as the wave force distribution along the fluid interacting height of the pylon. Airy's wave theory is used to assess water particle kinematics, for the wave periods ranging from 5 to 20 s and unit wave height. The maximum wave force among the different regular waves is considered in the wave load case. The support reactions, moments and deflections for offshore area application are highlighted. It is observed that the maximum support reactions and support moments are obtained due to wave and earthquake loading respectively. Hence, it is concluded that the wave and earthquake forces shall be given significance in the design of cable stayed bridge.
Dynamic properties of stay cables on the Penobscot Narrows bridge.
DOT National Transportation Integrated Search
2014-09-01
Cable-stayed bridges have been recognized as the most efficient and cost effective structural form for medium to long : span bridges over the past several decades. With their widespread use, cases of serviceability problems associated with : large am...
Monitoring of wind load and response for cable-supported bridges in Hong Kong
NASA Astrophysics Data System (ADS)
Wong, Kai-yuen; Chan, Wai-Yee K.; Man, King-Leung
2001-08-01
Structural health monitoring for the three cable-supported bridges located in the West of Hong Kong or the Tsing Ma Control Area has been carried out since the opening of these bridges to public traffic. The three cable-supported bridges are referred to as the Tsing Ma (suspension) Bridge, the Kap Shui Mun (cable-stayed) Bridge and the Ting Kau (cable-stayed) Bridge. The structural health monitoring works involved are classified as six monitoring categories, namely, wind load and response, temperature load and response, traffic load and response, geometrical configuration monitoring, strains and stresses/forces monitoring and global dynamic characteristics monitoring. As wind loads and responses had been a major concern in the design and construction stages, this paper therefore outlines the work of wind load and response monitoring on Tsing Ma, Kap Shui Mun and Ting Kau Bridges. The paper starts with a brief description of the sensory systems. The description includes the layout and performance requirements of sensory systems for wind load and responses monitoring. Typical results of wind load and response monitoring in graphical forms are then presented. These graphical forms include the plots of wind rose diagrams, wind incidences vs wind speeds, wind turbulence intensities, wind power spectra, gust wind factors, coefficient of terrain roughness, extreme wind analyses, deck deflections/rotations vs wind speeds, acceleration spectra, acceleration/displacement contours, and stress demand ratios. Finally conclusions on wind load and response monitoring on the three cable-supported bridges are drawn.
Baseline modeling of the Owensboro cable-stayed bridge over the Ohio River.
DOT National Transportation Integrated Search
2006-03-01
This report presents the baseline modeling of the Owensboro cable-stayed bridge which connects Owensboro, Kentucky and Rockport, Indiana over the Ohio River. The objective of this study is to establish the bridge baseline model via the dynamics-based...
Calibration of Elasto-Magnetic Sensors on In-Service Cable-Stayed Bridges for Stress Monitoring
Ait Laasri, Hassan; Glisic, Branko; Wang, Ming
2018-01-01
The recent developments in measurement technology have led to the installation of efficient monitoring systems on many bridges and other structures all over the world. Nowadays, more and more structures have been built and instrumented with sensors. However, calibration and installation of sensors remain challenging tasks. In this paper, we use a case study, Adige Bridge, in order to present a low-cost method for the calibration and installation of elasto-magnetic sensors on cable-stayed bridges. Elasto-magnetic sensors enable monitoring of cable stress. The sensor installation took place two years after the bridge construction. The calibration was conducted in two phases: one in the laboratory and the other one on site. In the laboratory, a sensor was built around a segment of cable that was identical to those of the cable-stayed bridge. Then, the sample was subjected to a defined tension force. The sensor response was compared with the applied load. Experimental results showed that the relationship between load and magnetic permeability does not depend on the sensor fabrication process except for an offset. The determination of this offset required in situ calibration after installation. In order to perform the in situ calibration without removing the cables from the bridge, vibration tests were carried out for the estimation of the cables’ tensions. At the end of the paper, we show and discuss one year of data from the elasto-magnetic sensors. Calibration results demonstrate the simplicity of the installation of these sensors on existing bridges and new structures. PMID:29401751
Dynamic response for structural health monitoring of the Penang (I) cable-stayed bridge
NASA Astrophysics Data System (ADS)
Mohammed, M. I.; Sulaeman, E.; Mustapha, F.
2017-03-01
The paper discusses the dynamic response of the Penang (I) cable stayed bridge structure under various moving load representing typical traffic load of the bridge. The bridge has a total span of 440 m excluding the transition bridge that assumed to be not connected structurally to the main bridge structure. The bridge that links the fast growing Pinang Island and the Malaysian Mainland Peninsula has been known to be fully utilized which leads to the construction of Penang (II) bridge and now the third one. Due to highly traffic use of the bridge that may lead to reduction of the bridge design life, the dynamic response of the bridge becomes important to predict critical part of the bridge structure elements including the main girder and the 144 stay cables. The present study reveals that, due to flexible nature of the cable stayed bridge, the moving load that interacts with the natural dynamic characteristics of the bridge, gives significant stress increment compare to proportional static load especially when the moving load is un-symmetric. For this reason, several classes of typical vehicle passing the bridge with various vehicle speeds are investigated to demonstrate their effect on the bridge displacement, internal forces and stresses. The results can be used for further fatigue assessment of the bridge.
Baseline modeling of the Maysville cable-stayed bridge over the Ohio River.
DOT National Transportation Integrated Search
2005-07-01
This report presents the baseline modeling of the Maysville cable-stayed bridge which connects Maysville, Kentucky and Aberdeen, Ohio over the Ohio River. The objective of this study is to establish the bridge baseline model via the dynamics-based te...
Assessment of the Bill Emerson Memorial Cable-stayed Bridge based on seismic instrumentation data
DOT National Transportation Integrated Search
2007-06-01
In this study, both ambient and earthquake data measured from the Bill Emerson Memorial Cable-stayed Bridge are reported and analyzed. Based on the seismic instrumentation data, the vibration characteristics of the bridge are investigated and used to...
Integrated cable vibration control system using wireless sensors
NASA Astrophysics Data System (ADS)
Jeong, Seunghoo; Cho, Soojin; Sim, Sung-Han
2017-04-01
As the number of long-span bridges is increasing worldwide, maintaining their structural integrity and safety become an important issue. Because the stay cable is a critical member in most long-span bridges and vulnerable to wind-induced vibrations, vibration mitigation has been of interest both in academia and practice. While active and semi-active control schemes are known to be quite effective in vibration reduction compared to the passive control, requirements for equipment including data acquisition, control devices, and power supply prevent a widespread adoption in real-world applications. This study develops an integrated system for vibration control of stay-cables using wireless sensors implementing a semi-active control. Arduino, a low-cost single board system, is employed with a MEMS digital accelerometer and a Zigbee wireless communication module to build the wireless sensor. The magneto-rheological (MR) damper is selected as a damping device, controlled by an optimal control algorithm implemented on the Arduino sensing system. The developed integrated system is tested in a laboratory environment using a cable to demonstrate the effectiveness of the proposed system on vibration reduction. The proposed system is shown to reduce the vibration of stay-cables with low operating power effectively.
NASA Astrophysics Data System (ADS)
Asadollahi, Parisa; Li, Jian
2016-04-01
Understanding the dynamic behavior of complex structures such as long-span bridges requires dense deployment of sensors. Traditional wired sensor systems are generally expensive and time-consuming to install due to cabling. With wireless communication and on-board computation capabilities, wireless smart sensor networks have the advantages of being low cost, easy to deploy and maintain and therefore facilitate dense instrumentation for structural health monitoring. A long-term monitoring project was recently carried out for a cable-stayed bridge in South Korea with a dense array of 113 smart sensors, which feature the world's largest wireless smart sensor network for civil structural monitoring. This paper presents a comprehensive statistical analysis of the modal properties including natural frequencies, damping ratios and mode shapes of the monitored cable-stayed bridge. Data analyzed in this paper is composed of structural vibration signals monitored during a 12-month period under ambient excitations. The correlation between environmental temperature and the modal frequencies is also investigated. The results showed the long-term statistical structural behavior of the bridge, which serves as the basis for Bayesian statistical updating for the numerical model.
NASA Astrophysics Data System (ADS)
Jing, Haiquan; He, Xuhui; Zou, Yunfeng; Wang, Hanfeng
2018-03-01
Stay cables are important load-bearing structural elements of cable-stayed bridges. Suppressing the large vibrations of the stay cables under the external excitations is of worldwide concern for the bridge engineers and researchers. Over the past decade, the use of crosstie has become one of the most practical and effective methods. Extensive research has led to a better understanding of the mechanics of cable networks, and the effects of different parameters, such as length ratio, mass-tension ratio, and segment ratio on the effectiveness of the crosstie have been investigated. In this study, uniformly distributed elastic crossties serve to replace the traditional single, or several cross-ties, aiming to delay "mode localization." A numerical method is developed by replacing the uniformly distributed, discrete elastic cross-tie model with an equivalent, continuously distributed, elastic cross-tie model in order to calculate the modal frequencies and mode shapes of the cable-crosstie system. The effectiveness of the proposed method is verified by comparing the elicited results with those obtained using the previous method. The uniformly distributed elastic cross-ties are shown to significantly delay "mode localization."
13. UNIDENTIFIED CABLESTAYED SUSPENSION BRIDGE WITH TIMBER RAILING OF TWELVE ...
13. UNIDENTIFIED CABLE-STAYED SUSPENSION BRIDGE WITH TIMBER RAILING OF TWELVE PANELS, SHOWING CABLE PATTERN SIMILAR TO E.E. RUNYON'S SUSPENSION BRIDGE PATENTS. THE BLUFF DALE SUSPENSION BRIDGE'S CABLES MAY HAVE ORIGINALLY FOLLOWED THIS PATTERN. ELEVATION VIEW. - Bluff Dale Suspension Bridge, Spanning Paluxy River at County Route 149, Bluff Dale, Erath County, TX
Mitigation of wind-induced vibration of stay cables : numerical simulations and evaluations.
DOT National Transportation Integrated Search
2014-08-01
Cable-stayed bridges have been recognized as the most efficient and cost effective structural form for medium-to-long-span bridges over the past several decades. With their widespread use, cases of serviceability problems associated : with large ampl...
Wind tunnel investigations of an inclined stay cable with a helical fillet.
DOT National Transportation Integrated Search
2014-09-01
Cable-stayed bridges have been recognized as the most efficient and cost effective structural form for medium-to-long-span bridges over the past several decades. With their widespread use, cases of serviceability problems associated : with large ampl...
A simplified fragility analysis of fan type cable stayed bridges
NASA Astrophysics Data System (ADS)
Khan, R. A.; Datta, T. K.; Ahmad, S.
2005-06-01
A simplified fragility analysis of fan type cable stayed bridges using Probabilistic Risk Analysis (PRA) procedure is presented for determining their failure probability under random ground motion. Seismic input to the bridge support is considered to be a risk consistent response spectrum which is obtained from a separate analysis. For the response analysis, the bridge deck is modeles as a beam supported on spring at different points. The stiffnesses of the springs are determined by a separate 2D static analysis of cable-tower-deck system. The analysis provides a coupled stiffness matrix for the spring system. A continuum method of analysis using dynamic stiffness is used to determine the dynamic properties of the bridges. The response of the bridge deck is obtained by the response spectrum method of analysis as applied to multidegree of freedom system which duly takes into account the quasi-static component of bridge deck vibration. The fragility analysis includes uncertainties arising due to the variation in ground motion, material property, modeling, method of analysis, ductility factor and damage concentration effect. Probability of failure of the bridge deck is determined by the First Order Second Moment (FOSM) method of reliability. A three span double plane symmetrical fan type cable stayed bridge of total span 689 m, is used as an illustrative example. The fragility curves for the bridge deck failure are obtained under a number of parametric variations. Some of the important conclusions of the study indicate that (i) not only vertical component but also the horizontal component of ground motion has considerable effect on the probability of failure; (ii) ground motion with no time lag between support excitations provides a smaller probability of failure as compared to ground motion with very large time lag between support excitation; and (iii) probability of failure may considerably increase soft soil condition.
Field instrumentation and measured response of the I-295 cable-stayed bridge.
DOT National Transportation Integrated Search
1992-01-01
This first report describes the results of a field study of the live load responses of a segmentally constructed prestressed concrete cable-stayed bridge. The main span of the test structure consists of twin box girders connected by delta frames. Kno...
12. UNIDENTIFIED CABLESTAYED SUSPENSION BRIDGE WITH TIMBER RAILING OF TWELVE ...
12. UNIDENTIFIED CABLE-STAYED SUSPENSION BRIDGE WITH TIMBER RAILING OF TWELVE PANELS, SHOWING CABLE PATTERN SIMILAR TO E.E. RUNYON'S SUSPENSION BRIDGE PATENTS. THE BLUFF DALE SUSPENSION BRIDGE'S CABLES MAY HAVE ORIGINALLY FOLLOWED THIS PATTERN. 3/4 VIEW FROM ABOVE. - Bluff Dale Suspension Bridge, Spanning Paluxy River at County Route 149, Bluff Dale, Erath County, TX
In-plane free vibration analysis of cable arch structure
NASA Astrophysics Data System (ADS)
Zhao, Yueyu; Kang, Houjun
2008-05-01
Cable-stayed arch bridge is a new type of composite bridge, which utilizes the mechanical characters of cable and arch. Based on the supporting members of cable-stayed arch bridge and of erection of arch bridge using of the cantilever construction method with tiebacks, we propose a novel mechanical model of cable-arch structure. In this model, the equations governing vibrations of the cable-arch are derived according to Hamilton's principle for dynamic problems in elastic body under equilibrium state. Then, the program of solving the dynamic governing equations is ultimately established by the transfer matrix method for free vibration of uniform and variable cross-section, and the internal characteristics of the cable-arch are investigated. After analyzing step by step, the research results approve that the program is accurate; meanwhile, the mechanical model and method are both valuable and significant not only in theoretical research and calculation but also in design of engineering.
DOT National Transportation Integrated Search
2005-10-30
This report summarizes the accomplishments of a field investigation project that was conducted in order to understand the mechanisms of wind- and rain-wind-induced stay cable vibrations and to assess the effectiveness of passive viscous dampers and c...
Long-term monitoring FBG-based cable load sensor
NASA Astrophysics Data System (ADS)
Zhang, Zhichun; Zhou, Zhi; Wang, Chuan; Ou, Jinping
2006-03-01
Stay cables are the main load-bearing components of stayed-cable bridges. The cables stress status is an important factor to the stayed-cable bridge structure safety evaluation. So it's very important not only to the bridge construction, but also to the long-term safety evaluation for the bridge structure in-service. The accurate measurement for cable load depends on an effective sensor, especially to meet the long time durability and measurement demand. FBG, for its great advantage of corrosion resistance, absolute measurement, high accuracy, electro-magnetic resistance, quasi-distribution sensing, absolute measurement and so on, is the most promising sensor, which can cater for the cable force monitoring. In this paper, a load sensor has been developed, which is made up of a bushing elastic supporting body, 4 FBGs uniformly-spaced attached outside of the bushing supporting body, and a temperature compensation FBG for other four FBGs, moreover a cover for protection of FBGs. Firstly, the sensor measuring principle is analyzed, and relationship equation of FBG wavelength shifts and extrinsic load has also been gotten. And then the sensor calibration experiments of a steel cable stretching test with the FBG load sensor and a reference electric pressure sensor is finished, and the results shows excellent linearity of extrinsic load and FBG wavelength shifts, and good repeatability, which indicates that such kind of FBG-based load sensor is suitable for load measurement, especially for long-term, real time monitoring of stay-cables.
User manual for veteran's glass city skyway bridge monitoring system.
DOT National Transportation Integrated Search
2017-02-01
Douglas Nims 0000-0001-7663-397X : Victor Hunt 0000-0002-1590-3291 : Arthur Helmicki 0000-0002-7759-5482 : The Veterans Glass City Skyway Bridge is a large cable stayed bridge in Toledo, Ohio owned and : operated by the Ohio Department of Transpor...
DOT National Transportation Integrated Search
1991-01-01
During the construction of the I-295 cable-stayed bridge, an extensive array of mechanical strain gage points were installed in sections of the box girders, pylons, and piers. At each instrumented box girder section, five longitudinal gages were plac...
Dynamic analysis of a long span, cable-stayed freeway bridge using NASTRAN
NASA Technical Reports Server (NTRS)
Salus, W. L.; Jones, R. E.; Ice, M. W.
1973-01-01
The dynamic analysis for earthquake- and wind-induced response of a long span, cable-stayed freeway bridge by NASTRAN in conjunction with post-processors is described. Details of the structural modeling, the input data generation, and numerical results are given. The influence of the dynamic analysis on the bridge design is traced from the project initiation to the development of a successful earthquake and wind resistant configuration.
Combined effect of external damper and cross-tie on the modal response of hybrid two-cable networks
NASA Astrophysics Data System (ADS)
Ahmad, Javaid; Cheng, Shaohong; Ghrib, Faouzi
2018-03-01
Combining external dampers and cross-ties into a hybrid system to control bridge stay cable vibrations can address deficiencies associated with these two commonly used vibration control solutions while retaining their respective merits. Despite successful implementation of this strategy on a few cable-stayed bridges, behavior of such a structural system is still not fully understood. In the current study, an analytical model of a hybrid system consisting of two parallel taut cables interconnected by a transverse linear flexible cross-tie, with one cable also equipped with a transverse linear viscous damper close to one end support, is developed. The proposed model is validated by an experimental work in the literature and an independent numerical simulation. A parametric study is conducted to comprehend the impact of main design parameters on the performance of a hybrid system in terms of the in-plane frequency, the damping and the degree of mode localization of the system's fundamental mode. In addition, the concept of isoquant curve is applied not only to appreciate the effect of simultaneous variation in main design parameters on the modal behavior of a hybrid system, but also to identify the optimal ranges of these parameters to achieve the required cable vibration control effect.
NASA Astrophysics Data System (ADS)
Piniotis, George; Gikas, Vassilis; Mpimis, Thanassis; Perakis, Harris
2016-03-01
This paper presents the dynamic testing of a roadway, single-span, cable-stayed bridge for a sequence of static load and ambient vibration monitoring scenarios. Deck movements were captured along both sideways of the bridge using a Digital Image Correlation (DIC) and a Ground-based Microwave Interfererometer (GBMI) system. Cable vibrations were measured at a single point location on each of the six cables using the GBMI technique. Dynamic testing involves three types of analyses; firstly, vibration analysis and modal parameter estimation (i. e., natural frequencies and modal shapes) of the deck using the combined DIC and GBMI measurements. Secondly, dynamic testing of the cables is performed through vibration analysis and experimental computation of their tension forces. Thirdly, the mechanism of cable-deck dynamic interaction is studied through their Power Spectra Density (PSD) and the Short Time Fourier Transform (STFT) analyses. Thereby, the global (deck and cable) and local (either deck or cable) bridge modes are identified, serving a concrete benchmark of the current state of the bridge for studying the evolution of its structural performance in the future. The level of synergy and complementarity between the GBMI and DIC techniques for bridge monitoring is also examined and assessed.
Wind-induced vibration of stay cables : brief
DOT National Transportation Integrated Search
2005-02-01
The objectives of this project were to: : Identify gaps in current knowledge base : Conduct analytical and experimental research in critical areas : Study performance of existing cable-stayed bridges : Study current mitigation methods...
Short-term evaluation of a bridge cable using acoustic emission sensors.
DOT National Transportation Integrated Search
2010-05-01
The Varina-Enon Bridge carries I-295 across the James River and crosses over the shipping channel that leads to the Richmond (Virginia) Marine Terminal. The bridge is a cable-stayed bridge that was opened to traffic in July 1990. It has 150 ft of ver...
14. UNIDENTIFIED CABLESTAYED SUSPENSION BRIDGE WITH TIMBER RAILING OF TEN ...
14. UNIDENTIFIED CABLE-STAYED SUSPENSION BRIDGE WITH TIMBER RAILING OF TEN PANELS AND STONE PIER, SHOWING ELEMENTS SIMILAR TO E.E. RUNYON'S SUSPENSION BRIDGE PATENTS, BUT ALTERNATE CABLE PATTERN. 3/4 VIEW FROM BELOW. - Bluff Dale Suspension Bridge, Spanning Paluxy River at County Route 149, Bluff Dale, Erath County, TX
Hybrid networking sensing system for structural health monitoring of a concrete cable-stayed bridge
NASA Astrophysics Data System (ADS)
Torbol, Marco; Kim, Sehwan; Chien, Ting-Chou; Shinozuka, Masanobu
2013-04-01
The purpose of this study is the remote structural health monitoring to identify the torsional natural frequencies and mode shapes of a concrete cable-stayed bridge using a hybrid networking sensing system. The system consists of one data aggregation unit, which is daisy-chained to one or more sensing nodes. A wireless interface is used between the data aggregation units, whereas a wired interface is used between a data aggregation unit and the sensing nodes. Each sensing node is equipped with high-precision MEMS accelerometers with adjustable sampling frequency from 0.2 Hz to 1.2 kHz. The entire system was installed inside the reinforced concrete box-girder deck of Hwamyung Bridge, which is a cable stayed bridge in Busan, South Korea, to protect the system from the harsh environmental conditions. This deployment makes wireless communication a challenge due to the signal losses and the high levels of attenuation. To address these issues, the concept of hybrid networking system is introduced with the efficient local power distribution technique. The theoretical communication range of Wi-Fi is 100m. However, inside the concrete girder, the peer to peer wireless communication cannot exceed about 20m. The distance is further reduced by the line of sight between the antennas. However, the wired daisy-chained connection between sensing nodes is useful because the data aggregation unit can be placed in the optimal location for transmission. To overcome the limitation of the wireless communication range, we adopt a high-gain antenna that extends the wireless communication distance to 50m. Additional help is given by the multi-hopping data communication protocol. The 4G modem, which allows remote access to the system, is the only component exposed to the external environment.
Acoustic emission monitoring of CFRP cables for cable-stayed bridges
NASA Astrophysics Data System (ADS)
Rizzo, Piervincenzo; Lanza di Scalea, Francesco
2001-08-01
The advantages of fiber-reinforced polymer (FRP) composite include excellent corrosion resistance, high specific strength and stiffness, as well as outstanding fatigue behavior. The University of California San Diego's I- 5/Gilman Advanced Technology Bridge Project will help demonstrating the use of such materials in civil infrastructures. This paper presents an acoustic emission (AE) study performed during laboratory proof tests of carbon fiber-reinforced polymer stay-cables of possible use in the I-5/Gilman bridge. Three types of cables, both braided and single strand, were tested to failure at lengths ranging from 5500 mm to 5870 mm. AE allowed to monitor damage initiation and progression in the test pieces more accurately than the conventional load versus displacement curve. All of the cables exhibited acoustic activities revealing some degree of damage well before reaching final collapse, which is expected in FRP's. It was also shown that such cables are excellent acoustic waveguides exhibiting very low acoustic attenuation, which makes them an ideal application for an AE-based health monitoring approach.
NASA Astrophysics Data System (ADS)
Ni, Y. Q.; Fan, K. Q.; Zheng, G.; Chan, T. H. T.; Ko, J. M.
2003-08-01
An automatic modal identification program is developed for continuous extraction of modal parameters of three cable-supported bridges in Hong Kong which are instrumented with a long-term monitoring system. The program employs the Complex Modal Indication Function (CMIF) algorithm to identify modal properties from continuous ambient vibration measurements in an on-line manner. By using the LabVIEW graphical programming language, the software realizes the algorithm in Virtual Instrument (VI) style. The applicability and implementation issues of the developed software are demonstrated by using one-year measurement data acquired from 67 channels of accelerometers deployed on the cable-stayed Ting Kau Bridge. With the continuously identified results, normal variability of modal vectors caused by varying environmental and operational conditions is observed. Such observation is very helpful for selection of appropriate measured modal vectors for structural health monitoring applications.
Stochastic unilateral free vibration of an in-plane cable network
NASA Astrophysics Data System (ADS)
Giaccu, Gian Felice; Barbiellini, Bernardo; Caracoglia, Luca
2015-03-01
Cross-ties are often used on cable-stayed bridges for mitigating wind-induced stay vibration since they can be easily installed on existing systems. The system obtained by connecting two (or more) stays with a transverse restrainer is designated as an "in-plane cable-network". Failures in the restrainers of an existing network have been observed. In a previous study [1] a model was proposed to explain the failures in the cross-ties as being related to a loss in the initial pre-tensioning force imparted to the connector. This effect leads to the "unilateral" free vibration of the network. Deterministic free vibrations of a three-cable network were investigated by using the "equivalent linearization method". Since the value of the initial vibration amplitude is often not well known due to the complex aeroelastic vibration regimes, which can be experienced by the stays, the stochastic nature of the problem must be considered. This issue is investigated in the present paper. Free-vibration dynamics of the cable network, driven by an initial stochastic disturbance associated with uncertain vibration amplitudes, is examined. The corresponding random eigen-value problem for the vibration frequencies is solved through an implementation of Stochastic Approximation, (SA) based on the Robbins-Monro Theorem. Monte-Carlo methods are also used for validating the SA results.
Jung, Ho-Yeon; Kim, In-Ho; Jung, Hyung-Jo
2017-01-01
Cable structure is a major component of long-span bridges, such as cable-stayed and suspension bridges, and it transfers the main loads of bridges to the pylons. As these cable structures are exposed to continuous external loads, such as vehicle and wind loads, vibration control and continuous monitoring of the cable are required. In this study, an electromagnetic (EM) damper was designed and fabricated for vibration control and monitoring of the cable structure. EM dampers, also called regenerative dampers, consist of permanent magnets and coils. The electromagnetic force due to the relative motion between the coil and the permanent magnet can be used to control the vibration of the structure. The electrical energy can be used as a power source for the monitoring system. The effects of the design parameters of the damper were numerically analyzed and the damper was fabricated. The characteristics of the damper were analyzed with various external load changes. Finally, the vibration-control and energy-harvesting performances of the cable structure were evaluated through a hybrid simulation. The vibration-control and energy-harvesting performances for various loads were analyzed and the applicability to the cable structure of the EM damper was evaluated. PMID:29088077
Jung, Ho-Yeon; Kim, In-Ho; Jung, Hyung-Jo
2017-10-31
Cable structure is a major component of long-span bridges, such as cable-stayed and suspension bridges, and it transfers the main loads of bridges to the pylons. As these cable structures are exposed to continuous external loads, such as vehicle and wind loads, vibration control and continuous monitoring of the cable are required. In this study, an electromagnetic (EM) damper was designed and fabricated for vibration control and monitoring of the cable structure. EM dampers, also called regenerative dampers, consist of permanent magnets and coils. The electromagnetic force due to the relative motion between the coil and the permanent magnet can be used to control the vibration of the structure. The electrical energy can be used as a power source for the monitoring system. The effects of the design parameters of the damper were numerically analyzed and the damper was fabricated. The characteristics of the damper were analyzed with various external load changes. Finally, the vibration-control and energy-harvesting performances of the cable structure were evaluated through a hybrid simulation. The vibration-control and energy-harvesting performances for various loads were analyzed and the applicability to the cable structure of the EM damper was evaluated.
Research on Swivel Construction Technology of 22,400 Tons in Zoucheng Thirty Meter Bridge
NASA Astrophysics Data System (ADS)
Han, Jun; Benlin, Xiao
2018-05-01
In recent years, with the rapid development of highways and railways in our country, there have been many new bridges that need to cross the existing routes. If the conventional construction methods are used, the existing traffic will be affected and the traffic will be built above the busy traffic lines, so there is a big security risk, the construction methods must be improved and innovated. In this paper, it intends to research and develop some key technologies of swivel construction. According to the construction features to use finite element method of swivel cable-stayed bridge to analyse the cable-stayed bridge . The swivel construction process is carried out to solve the technical problems and difficulties in the construction.
Bridge reliability assessment based on the PDF of long-term monitored extreme strains
NASA Astrophysics Data System (ADS)
Jiao, Meiju; Sun, Limin
2011-04-01
Structural health monitoring (SHM) systems can provide valuable information for the evaluation of bridge performance. As the development and implementation of SHM technology in recent years, the data mining and use has received increasingly attention and interests in civil engineering. Based on the principle of probabilistic and statistics, a reliability approach provides a rational basis for analysis of the randomness in loads and their effects on structures. A novel approach combined SHM systems with reliability method to evaluate the reliability of a cable-stayed bridge instrumented with SHM systems was presented in this paper. In this study, the reliability of the steel girder of the cable-stayed bridge was denoted by failure probability directly instead of reliability index as commonly used. Under the assumption that the probability distributions of the resistance are independent to the responses of structures, a formulation of failure probability was deduced. Then, as a main factor in the formulation, the probability density function (PDF) of the strain at sensor locations based on the monitoring data was evaluated and verified. That Donghai Bridge was taken as an example for the application of the proposed approach followed. In the case study, 4 years' monitoring data since the operation of the SHM systems was processed, and the reliability assessment results were discussed. Finally, the sensitivity and accuracy of the novel approach compared with FORM was discussed.
Control Method Stretches Suspensions by Measuring the Sag of Strands in Cable-Stayed Bridges
NASA Astrophysics Data System (ADS)
Bętkowski, Piotr
2017-10-01
In the article is described the method that allows on evaluation and validation of measurement correctness of dynamometers (strain gauges, tension meters) used in systems of suspensions. Control of monitoring devices such as dynamometers is recommended in inspections of suspension bridges. Control device (dynamometer) works with an anchor, and the degree of this cooperation could have a decisive impact on the correctness of the results. Method, which determines the stress in the strand (cable), depending on the sag of stayed cable, is described. This method can be used to control the accuracy of measuring devices directly on the bridge. By measuring the strand sag, it is possible to obtain information about the strength (force) which occurred in the suspension cable. Digital camera is used for the measurement of cable sag. Control measurement should be made independently from the controlled parameter but should verify this parameter directly (it is the best situation). In many cases in practice the controlled parameter is not designation by direct measurement, but the calculations, i.e. relation measured others parameters, as in the method described in the article. In such cases occurred the problem of overlapping error of measurement of intermediate parameters (data) and the evaluation of the reliability of the results. Method of control calculations made in relation to installed in the bridge measuring devices is doubtful without procedure of uncertainty estimation. Such an assessment of the accuracy can be performed using the interval numbers. With the interval numbers are possible the analysis of parametric relationship accuracy of the designation of individual parameters and uncertainty of results. Method of measurements, relations and analytical formulas, and numerical example can be found in the text of the article.
PERSPECTIVE VIEW OF THE REX T. BARBER BRIDGE ARCH CONSTRUCTION, ...
PERSPECTIVE VIEW OF THE REX T. BARBER BRIDGE ARCH CONSTRUCTION, VIEW TO SOUTH OF SOUTHERN TRAVELING FORMWORK AND CABLE STAY TOWER. - Rex T. Barber Veterans Memorial Bridge, Spanning Crooked River Gorge, Dalles-California Highway (US 97), Terrebonne, Deschutes County, OR
Radar-based dynamic testing of the cable-suspended bridge crossing the Ebro River at Amposta, Spain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentile, Carmelo; Luzi, Guido
2014-05-27
Microwave remote sensing is the most recent experimental methodology suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. After a brief description of the radar measurement system, the paper addresses the application of microwave remote sensing to ambient vibration testing of a cable-suspended bridge. The investigated bridge crosses the Ebro River at Amposta, Spain and consists of two steel stiffening trusses and a series of equally spaced steel floor beams; the main span is supported by inclined stay cables and two series of 8 suspension cables. The dynamic tests were performed in operational conditions,more » with the sensor being placed in two different positions so that the response of both the steel deck and the arrays of suspension elements was measured. The experimental investigation confirms the simplicity of use of the radar and the accuracy of the results provided by the microwave remote sensing as well as the issues often met in the clear localization of measurement points.« less
GPS for structural health monitoring - case study on the Basarab overpass cable-stayed bridge
NASA Astrophysics Data System (ADS)
Lepadatu, Alexandru; Tiberius, Christian
2014-04-01
The Basarab cable-stayed bridge is a newly built structure in Bucharest, Romania, which was inaugurated in June 2011. Before the oficial opening, in order to assure its qualification for trafic, it had to pass several loading tests with convoys of trucks and trams. For this, besides a priori evaluation using the Finite Element Method (FEM), levelling and acceleration measurements were made to identify vertical displacements, as well as vibration frequencies of the bridge. The three-day loading trial of the bridge represented a good opportunity for setting-up a GPS campaign for structural monitoring of the Basarab bridge. Taking advantage of the redundancy obtained via simultaneous multi-sensor measurements, it was possible to compare and validate the GPS estimated displacements with both FEM and levelling. Moreover, the dynamic behaviour of the bridge during a dynamic loading test was evaluated using a 20 Hz GPS observation rate and validated afterwards with vibration frequency estimates from acceleration time series. Along with simulations (FEM) and laboratory tests, the in situ monitoring of a structure has a particular importance in establishing the safety of a newly-built structure. Furthermore, in some cases permanent monitoring is needed for safety and economic reasons, especially for strategic structures such as dams and bridges. GPS technology can satisfy this request due to its real-time processing capability and thus it can be looked upon as a new and promising tool for dynamic evaluation of engineering structures. In this contribution we have also assessed the performance of GPS with regard to accuracy and false alarm probability demands for the continuous monitoring of the Basarab cable-stayed bridge.
DOT National Transportation Integrated Search
2009-12-01
The Luling Bridge (Hale Boggs Memorial Bridge) traverses the Mississippi River in St. Charles : Parish, Louisiana. It was one of the first cable-stayed bridges in the United States and opened to : traffic in 1983. Unique to its design are relatively ...
Monitoring calculation of closure change of Extradosed Cable-stayed Bridge
NASA Astrophysics Data System (ADS)
Shi, Jing Xian; Ran, Zhi Hong
2018-06-01
During the construction of extradosed cable-stayed bridge in Yunnan province, China, the construction unit has made certain changes in the construction process of the closure section due to environmental restrictions: remove the hanging basket after the closure, the sling shall not be provided in closure section, the function of the sling is realized by the hanging basket on the 16th beam. In case of this change, the bridge has been constructed to section 15th. In order to ensure the smooth and orderly progress of each stage in the closure phase, this article is arranged according to the construction plan, appropriate adjustment of related procedures, checking the bridge safety at all stages of construction, the stress and force of the main girder are compared to ensure the safety of the construction after closure changes. Adjust the height of the beam of the 16th and 17th to adapt the new construction plan, and the bridge closure smoothly.
NASA Astrophysics Data System (ADS)
Kim, In-Ho; Jang, Seon-Jun; Jung, Hyung-Jo
2013-07-01
In this paper, an innovative strategy for improving the performance of a recently developed rotational energy harvester is proposed. Its performance can be considerably enhanced by replacing the electromagnetic induction part, consisting of moving permanent magnets and a fixed solenoid coil, with a moving mass and a rotational generator (i.e., an electric motor). The proposed system is easily tuned to the natural frequency of a target structure using the position change of a proof mass. Owing to the high efficiency of the rotational generator, the device can more effectively harness electrical energy from the wind-induced vibration of a stay cable. Also, this new configuration makes the device more compact and geometrically tunable. In order to validate the effectiveness of the new configuration, a series of laboratory and field tests are carried out with the prototype of the proposed device, which is designed and fabricated based on the dynamic characteristics of the vibration of a stay cable installed in an in-service cable-stayed bridge. From the field test, it is observed that the normalized output power of the proposed system is 35.67 mW (m s-2)-2, while that of the original device is just 5.47 mW (m s-2)-2. These results show that the proposed device generates much more electrical energy than the original device. Moreover, it is verified that the proposed device can generate sufficient electricity to power a wireless sensor node placed on a cable under gentle-moderate wind conditions.
NASA Astrophysics Data System (ADS)
Maruccio, Claudio; Quaranta, Giuseppe; De Lorenzis, Laura; Monti, Giorgio
2016-08-01
Wireless monitoring could greatly impact the fields of structural health assessment and infrastructure asset management. A common problem to be tackled in wireless networks is the electric power supply, which is typically provided by batteries replaced periodically. A promising remedy for this issue would be to harvest ambient energy. Within this framework, the present paper proposes to harvest ambient-induced vibrations of bridge structures using a new class of piezoelectric textiles. The considered case study is an existing cable-stayed bridge located in Italy along a high-speed road that connects Rome and Naples, for which a recent monitoring campaign has allowed to record the dynamic responses of deck and cables. Vibration measurements have been first elaborated to provide a comprehensive dynamic assessment of this infrastructure. In order to enhance the electric energy that can be converted from ambient vibrations, the considered energy harvester exploits a power generator built using arrays of electrospun piezoelectric nanofibers. A finite element analysis is performed to demonstrate that such power generator is able to provide higher energy levels from recorded dynamic loading time histories than a standard piezoelectric energy harvester. Its feasibility for bridge health monitoring applications is finally discussed.
DOT National Transportation Integrated Search
2013-09-01
Cable-stayed bridges have been increasingly used as river-crossing links in highway and railway transportation networks. In the event : of an abnormal situation, they can not only impact the local and national economy but also threaten the safety of ...
Instrumentation of the Maumee River Crossing.
DOT National Transportation Integrated Search
2012-03-01
This project has focused on the instrumentation, monitoring and testing of the main span unit of the VGCS, one of Ohio's first long-span, cable-stayed bridges and one of only a few dozen such bridges in service in the nation. This effort looked at fi...
Instrumentation of the Maumee River Crossing : executive summary report.
DOT National Transportation Integrated Search
2012-03-01
This project has focused on the instrumentation, monitoring and testing of the main span unit of the : VGCS, one of Ohios first long-span, cable-stayed bridges and one of only a few dozen such bridges in : service in the nation. This effort looked...
Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System
Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan
2009-01-01
This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms. PMID:22408487
Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System.
Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan
2009-01-01
This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.
DOT National Transportation Integrated Search
2013-12-01
The replacement of the US Grant Bridge over the Ohio River in Portsmouth, OH, was initiated in : 2001 when the original bridge was closed and demolished, and its substitute opened in 2006. The : new design is a steel cable stay design with steel gird...
On estimating the accuracy of monitoring methods using Bayesian error propagation technique
NASA Astrophysics Data System (ADS)
Zonta, Daniele; Bruschetta, Federico; Cappello, Carlo; Zandonini, R.; Pozzi, Matteo; Wang, Ming; Glisic, B.; Inaudi, D.; Posenato, D.; Zhao, Y.
2014-04-01
This paper illustrates an application of Bayesian logic to monitoring data analysis and structural condition state inference. The case study is a 260 m long cable-stayed bridge spanning the Adige River 10 km north of the town of Trento, Italy. This is a statically indeterminate structure, having a composite steel-concrete deck, supported by 12 stay cables. Structural redundancy, possible relaxation losses and an as-built condition differing from design, suggest that long-term load redistribution between cables can be expected. To monitor load redistribution, the owner decided to install a monitoring system which combines built-on-site elasto-magnetic and fiber-optic sensors. In this note, we discuss a rational way to improve the accuracy of the load estimate from the EM sensors taking advantage of the FOS information. More specifically, we use a multi-sensor Bayesian data fusion approach which combines the information from the two sensing systems with the prior knowledge, including design information and the outcomes of laboratory calibration. Using the data acquired to date, we demonstrate that combining the two measurements allows a more accurate estimate of the cable load, to better than 50 kN.
DOT National Transportation Integrated Search
1988-01-01
This report reviews the various techniques considered for instrumenting the Rte. 1-295 cable-stayed bridge over the James River near Richmond, Virginia. From this review an instrumentation plan is developed to meet the following objectives: 1. to det...
Damping Estimation from Free Decay Responses of Cables with MR Dampers.
Weber, Felix; Distl, Hans
2015-01-01
This paper discusses the damping measurements on cables with real-time controlled MR dampers that were performed on a laboratory scale single strand cable and on cables of the Sutong Bridge, China. The control approach aims at producing amplitude and frequency independent cable damping which is confirmed by the tests. The experimentally obtained cable damping in comparison to the theoretical value due to optimal linear viscous damping reveals that support conditions of the cable anchors, force tracking errors in the actual MR damper force, energy spillover to higher modes, and excitation and sensor cables hanging on the stay cable must be taken into consideration for the interpretation of the identified cable damping values.
Damping Estimation from Free Decay Responses of Cables with MR Dampers
Weber, Felix; Distl, Hans
2015-01-01
This paper discusses the damping measurements on cables with real-time controlled MR dampers that were performed on a laboratory scale single strand cable and on cables of the Sutong Bridge, China. The control approach aims at producing amplitude and frequency independent cable damping which is confirmed by the tests. The experimentally obtained cable damping in comparison to the theoretical value due to optimal linear viscous damping reveals that support conditions of the cable anchors, force tracking errors in the actual MR damper force, energy spillover to higher modes, and excitation and sensor cables hanging on the stay cable must be taken into consideration for the interpretation of the identified cable damping values. PMID:26167537
I-5/Gilman advanced technology bridge project
NASA Astrophysics Data System (ADS)
Lanza di Scalea, Francesco; Karbhari, Vistasp M.; Seible, Frieder
2000-04-01
The UCSD led I-5/Gilman Advanced Technology Bridge Project will design and construct a fully functional traffic bridge of advanced composite materials across Interstate 5 in La Jolla, California. Its objective is to demonstrate the use of advanced composite technologies developed by the aerospace industry in commercial applications to increase the life expectancy of new structures and for the rehabilitation of aging infrastructure components. The structure will be a 450 ft long, 60 ft wide cable-stayed bridge supported by a 150 ft A-frame pylon with two vehicular lanes, two bicycle lanes, pedestrian walkways and utility tunnels. The longitudinal girders and pylon will be carbon fiber shells filled with concrete. The transverse deck system will consist of hollow glass/carbon hybrid tubes and a polypropylene fiber reinforced concrete deck with an arch action. Selected cables will be composite. The bridge's structural behavior will be monitored to determine how advanced composite materials perform in civil infrastructure applications. The bridge will be instrumented to obtain performance and structural health data in real time and, where possible, in a remote fashion. The sensors applied to the bridge will include electrical resistance strain gages, fiberoptic Bragg gratings and accelerometers.
Robust control of seismically excited cable stayed bridges with MR dampers
NASA Astrophysics Data System (ADS)
YeganehFallah, Arash; Khajeh Ahamd Attari, Nader
2017-03-01
In recent decades active and semi-active structural control are becoming attractive alternatives for enhancing performance of civil infrastructures subjected to seismic and winds loads. However, in order to have reliable active and semi-active control, there is a need to include information of uncertainties in design of the controller. In real world for civil structures, parameters such as loading places, stiffness, mass and damping are time variant and uncertain. These uncertainties in many cases model as parametric uncertainties. The motivation of this research is to design a robust controller for attenuating the vibrational responses of civil infrastructures, regarding their dynamical uncertainties. Uncertainties in structural dynamic’s parameters are modeled as affine uncertainties in state space modeling. These uncertainties are decoupled from the system through Linear Fractional Transformation (LFT) and are assumed to be unknown input to the system but norm bounded. The robust H ∞ controller is designed for the decoupled system to regulate the evaluation outputs and it is robust to effects of uncertainties, disturbance and sensors noise. The cable stayed bridge benchmark which is equipped with MR damper is considered for the numerical simulation. The simulated results show that the proposed robust controller can effectively mitigate undesired uncertainties effects on systems’ responds under seismic loading.
Health monitoring of Binzhou Yellow River highway bridge using fiber Bragg gratings
NASA Astrophysics Data System (ADS)
Ou, Jinping; Zhao, Xuefeng; Li, Hui; Zhou, Zhi; Zhang, Zhichun; Wang, Chuan
2005-05-01
Binzhou yellow river Highway Bridge with 300 meter span and 768 meter length is located in the Shandong province of China and is the first cable stayed bridge with three towers along the yellow river, one of the biggest rivers in China. In order to monitoring the strain and temperature of the bridge and evaluate the health condition, one fiber Bragg grating sensing network consists of about one hundred and thirty FBG sensors mounted in 31 monitoring sections respectively, had been built during three years time. Signal cables of sensors were led to central control room located near the main tower. One four-channel FBG interrogator was used to read the wavelengths from all the sensors, associated with four computer-controlled optic switches connected to each channel. One program was written to control the interrogator and optic switches simultaneously, and ensure signal input precisely. The progress of the monitoring can be controlled through the internet. The sensors embedded were mainly used to monitor the strain and temperature of the steel cable and reinforced concrete beam. PE jacket opening embedding technique of steel cable had been developed to embed FBG sensors safely, and ensure the reliability of the steel cable opened at the same time. Data obtained during the load test can show the strain and temperature status of elements were in good condition. The data obtained via internet since the bridge's opening to traffic shown the bridge under various load such as traffic load, wind load were in good condition.
Li, Dongsheng; Ou, Jinping; Lan, Chengming; Li, Hui
2012-01-01
Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE) technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index. PMID:22666009
NASA Astrophysics Data System (ADS)
Giaccu, Gian Felice; Caracoglia, Luca
2017-04-01
Pre-tensioned-cable bracing systems are widely employed in structural engineering to limit lateral deflections and stabilize structures. A suitable configuration of the pre-tensioned-cable bracing systems in a structure is an important issue since the internal force distribution, emerging from the interaction with the existing structure, significantly affects the structural dynamic behavior. The design, however, is often based on the intuition and the previous experience of the engineer. In recent years, the authors have been investigating the non-linear dynamic response of cable systems, installed on cable-stayed bridges, and in particular the so-called "cable-cross-tie systems" forming a cable network. The bracing cables (cross-ties) can exhibit slackening or snapping. Therefore, a non-linear unilateral model, combined with the taut-cable theory, is required to simulate the incipient slackening conditions in the stays. Capitalizing from this work on non-linear cable dynamics, this paper proposes a new approach to analyze, in laterally- braced truss structures, the unilateral effects and dynamic response accounting for the loss in the pre-tensioning force imparted to the bracing cables. This effect leads to non-linear vibration of the structure. In this preliminary study, the free vibrations of the structure are investigated by using the "Equivalent Linearization Method". A performance coefficient, a real positive number between 0.5 and 1.0, is defined and employed to monitor the relative reduction in the apparent stiffness of the braces during structural vibration, "mode by mode". It is shown that the system can exhibit alternate unilateral behavior of the cross-braces. A reduction of the performance coefficient close to fifty percent is observed in the braces when the initial pre-tensioning force is small. On the other hand the performance coefficient tends to one in the case of a high level of pre-stress. It is concluded that the performance coefficient may possibly be used as an indicator for the design of the braces since a suitable selection of the initial pre-tensioning force can avoid slackening in the braces.
Suspension Bridge Structural Systems: Cable Suspension & Anchorage; Warren Stiffening ...
Suspension Bridge Structural Systems: Cable Suspension & Anchorage; Warren Stiffening Truss; Upper & Lower Decks; Assembled System - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA
Long-term monitoring of a cable stayed bridge using a SCADA system
NASA Astrophysics Data System (ADS)
Torbol, Marco; Kim, Sehwan; Shinozuka, Masanobu
2012-04-01
DuraMote is a MEMS-based remote sensing system, which is developed for the NIST TIP project, Next Generation SCADA for Prevention and Mitigation of Water System Infrastructure Disaster. It is designed for supervisory control and data acquisition (SCADA) of pipe ruptures in water distribution systems. In this project, a method is developed to detect the pipe ruptures by analyzing the acceleration data gathered by DuraMote which consists of two primary components; the first, "Gopher" contains the accelerometers and are attached to the water pipe surface noninvasively, and the second, "Roocas" is placed above ground supplying the power to, and retrieving the data from the multiple Gophers, and then transmit the data through Wi-Fi to a base station. The relays support the Wi-Fi network to facilitate the transmission. A large scale bridge provides an ideal test-bet to validate the performance of such a complex monitoring system as DuraMote for its accuracy, reliability, robustness, and user friendliness. This is because a large bridge is most of the time subjected to susceptible level of ambient vibration due to passing loads, wind, etc. DuraMote can record the acceleration time history arising from the vibration making it possible to estimate the frequency values of various bridge vibration modes. These estimated frequency values are then compared with the values computed from analytical model of the bridge for the verification of the accuracy of DuraMote. It is noted that such a verification method cannot be used practically by deploying DuraMote on a water distribution network since the dynamic behavior of a pipe network, either above or underground, is too complex to model analytically for this purpose, and in addition, the network generally lacks conveniently recordable ambient vibration. In this experiment, the performance of DuraMote system was tested being installed on the Hwamyung Bridge, a 500 m long RC cable stayed bridge in Korea for long term monitoring. In total, the system consisted of 24 accelerometers, 13 Gophers, 10 Roocas, 5 relays, and 1 base station. As it happened, the bridge was subjected to heavy rain, winds, and a typhoon during the experiment allowing the DuraMote to demonstrate extra ordinary robustness and durability. Indeed, in spite of the rough weather, acceleration data was continuously recorded from which natural frequencies, mode shapes, and other structural parameters were calculated. This opportunity would not have happened if the experiment was planned for a shorter duration.
Enhanced damping for bridge cables using a self-sensing MR damper
NASA Astrophysics Data System (ADS)
Chen, Z. H.; Lam, K. H.; Ni, Y. Q.
2016-08-01
This paper investigates enhanced damping for protecting bridge stay cables from excessive vibration using a newly developed self-sensing magnetorheological (MR) damper. The semi-active control strategy for effectively operating the self-sensing MR damper is formulated based on the linear-quadratic-Gaussian (LQG) control by further considering a collocated control configuration, limited measurements and nonlinear damper dynamics. Due to its attractive feature of sensing-while-damping, the self-sensing MR damper facilitates the collocated control. On the other hand, only the sensor measurements from the self-sensing device are employed in the feedback control. The nonlinear dynamics of the self-sensing MR damper, represented by a validated Bayesian NARX network technique, are further accommodated in the control formulation to compensate for its nonlinearities. Numerical and experimental investigations are conducted on stay cables equipped with the self-sensing MR damper operated in passive and semi-active control modes. The results verify that the collocated self-sensing MR damper facilitates smart damping for inclined cables employing energy-dissipative LQG control with only force and displacement measurements at the damper. It is also demonstrated that the synthesis of nonlinear damper dynamics in the LQG control enhances damping force tracking efficiently, explores the features of the self-sensing MR damper, and achieves better control performance over the passive MR damping control and the Heaviside step function-based LQG control that ignores the damper dynamics.
Evaluation of the Luling bridge retrofit details under service loads : final report.
DOT National Transportation Integrated Search
1991-08-01
Extensive strain measurements were carried out on three cross girder boxes used to connect the cable stays to the orthotropic deck-trapezoidal box steel structure. The measurements were obtained at CG3, CG4 and CG5 adjacent to the tower at pier 2. : ...
NASA Astrophysics Data System (ADS)
Giaccu, Gian Felice
2018-05-01
Pre-tensioned cable braces are widely used as bracing systems in various structural typologies. This technology is fundamentally utilized for stiffening purposes in the case of steel and timber structures. The pre-stressing force imparted to the braces provides to the system a remarkable increment of stiffness. On the other hand, the pre-tensioning force in the braces must be properly calibrated in order to satisfactorily meet both serviceability and ultimate limit states. Dynamic properties of these systems are however affected by non-linear behavior due to potential slackening of the pre-tensioned brace. In the recent years the author has been working on a similar problem regarding the non-linear response of cables in cable-stayed bridges and braced structures. In the present paper a displacement-based approach is used to examine the non-linear behavior of a building system. The methodology operates through linearization and allows obtaining an equivalent linearized frequency to approximately characterize, mode by mode, the dynamic behavior of the system. The equivalent frequency depends on both the mechanical characteristics of the system, the pre-tensioning level assigned to the braces and a characteristic vibration amplitude. The proposed approach can be used as a simplified technique, capable of linearizing the response of structural systems, characterized by non-linearity induced by the slackening of pre-tensioned braces.
New Quality Control Algorithm Based on GNSS Sensing Data for a Bridge Health Monitoring System
Lee, Jae Kang; Lee, Jae One; Kim, Jung Ok
2016-01-01
This research introduces an improvement plan for the reliability of Global Navigation Satellite System (GNSS) positioning solutions. It should be considered the most suitable methodology in terms of the adjustment and positioning of GNSS in order to maximize the utilization of GNSS applications. Though various studies have been conducted with regards to Bridge Health Monitoring System (BHMS) based on GNSS, the outliers which depend on the signal reception environment could not be considered until now. Since these outliers may be connected to GNSS data collected from major bridge members, which can reduce the reliability of a whole monitoring system through the delivery of false information, they should be detected and eliminated in the previous adjustment stage. In this investigation, the Detection, Identification, Adaptation (DIA) technique was applied and implemented through an algorithm. Moreover, it can be directly applied to GNSS data collected from long span cable stayed bridges and most of outliers were efficiently detected and eliminated simultaneously. By these effects, the reliability of GNSS should be enormously improved. Improvement on GNSS positioning accuracy is directly linked to the safety of bridges itself, and at the same time, the reliability of monitoring systems in terms of the system operation can also be increased. PMID:27240375
New Quality Control Algorithm Based on GNSS Sensing Data for a Bridge Health Monitoring System.
Lee, Jae Kang; Lee, Jae One; Kim, Jung Ok
2016-05-27
This research introduces an improvement plan for the reliability of Global Navigation Satellite System (GNSS) positioning solutions. It should be considered the most suitable methodology in terms of the adjustment and positioning of GNSS in order to maximize the utilization of GNSS applications. Though various studies have been conducted with regards to Bridge Health Monitoring System (BHMS) based on GNSS, the outliers which depend on the signal reception environment could not be considered until now. Since these outliers may be connected to GNSS data collected from major bridge members, which can reduce the reliability of a whole monitoring system through the delivery of false information, they should be detected and eliminated in the previous adjustment stage. In this investigation, the Detection, Identification, Adaptation (DIA) technique was applied and implemented through an algorithm. Moreover, it can be directly applied to GNSS data collected from long span cable stayed bridges and most of outliers were efficiently detected and eliminated simultaneously. By these effects, the reliability of GNSS should be enormously improved. Improvement on GNSS positioning accuracy is directly linked to the safety of bridges itself, and at the same time, the reliability of monitoring systems in terms of the system operation can also be increased.
Manrique, Oscar J; Bishop, Sarah N; Ciudad, Pedro; Adabi, Kian; Martinez-Jorge, Jorys; Moran, Steven L; Huang, Tony; Vijayasekaran, Aparna; Chen, Shih-Heng; Chen, Hung-Chi
2018-05-16
Lower extremity salvage following significant soft tissue loss can be complicated by lack of recipient vessel for free tissue transfer. We describe our experience in lower limb salvage for patients with no recipient vessels with the use of pedicle, free and cable bridge flaps. A retrospective review from 1985 to 2017 of patients undergoing lower limb salvage using a contralateral pedicle cross leg (PCL) flaps, free cross leg (FCL) flaps, or free cable bridge (FCB) flaps was conducted. Demographics, etiology of the reconstruction, type of flap used, donor-site vessels, defect size, operating time, time of pedicle division, length of hospital stay, time to ambulation, and complications were analyzed. A total of 53 patients (48 males and 5 females) with an average age of 35 years (range, 29-38 years) were identified. The etiology for the reconstruction was trauma in 52 patients and oncological resection in 1 patient. There were 18 PCL, 25 FCL, and 10 FCB completed. The recipient vessels for all flaps were the posterior tibial artery and vein. The average operating room times for PCL, FCL, and FCB flaps were 4, 9, and 10 hours, respectively. The average length of hospital stay was 5 weeks and average time to ambulation was 4 weeks. The average follow-up time was 7.5 years (range, 3-12 years). Complications encountered were hematoma (six), prolonged pain (six), total flap loss (two), reoperation (five), and infection (four). Limb salvage rates were 96.2%. When ipsilateral limb vessels are not available, and other reconstructive options have been exhausted, cross leg flaps can be a viable option for limb salvage in the setting of extensive defects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Analysis of wind-resistant and stability for cable tower in cable-stayed bridge with four towers
NASA Astrophysics Data System (ADS)
Meng, Yangjun; Li, Can
2017-06-01
Wind speed time history simulation methods have been introduced first, especially the harmonic synthesis method introduced in detail. Second, taking Chishi bridge for example, choosing the particular sections, and combined with the design wind speed, three-component coefficient simulate analysis between -4°and 4°has been carry out with the Fluent software. The results show that drag coefficient reaches maximum when the attack Angle is 1°. According to measured wind speed samples,time history curves of wind speed at bridge deck and tower roof have been obtained,and wind-resistant time history analysis for No.5 tower has been carry out. Their results show that the dynamic coefficients are different with different calculation standard, especially transverse bending moment, pulsating crosswind load does not show a dynamic amplification effect.Under pulsating wind loads at bridge deck or tower roof, the maximum displacement at the top of the tower and the maximum stress at the bottom of the tower are within the allowable range. The transverse stiffness of tower is greater than that of the longitudinal stiffness, therefore wind-resistant analysis should give priority to the longitudinal direction. Dynamic coefficients are different with different standard, the maximum dynamic coefficient should be used for the pseudo-static analysis.Finally, the static stability of tower is analyzed with different load combinations, and the galloping stabilities of cable tower is proved.
Celebi, M.
2006-01-01
This paper introduces the state of the art, real-time and broad-band seismic monitoring network implemented for the 1206 m [3956 ft] long, cable-stayed Bill Emerson Memorial Bridge in Cape Girardeau (MO), a new Mississippi River crossing, approximately 80 km from the epicentral region of the 1811-1812 New Madrid earthquakes. The bridge was designed for a strong earthquake (magnitude 7.5 or greater) during the design life of the bridge. The monitoring network comprises a total of 84 channels of accelerometers deployed on the superstructure, pier foundations and at surface and downhole free-field arrays of the bridge. The paper also presents the high quality response data obtained from the network. Such data is aimed to be used by the owner, researchers and engineers to assess the performance of the bridge, to check design parameters, including the comparison of dynamic characteristics with actual response, and to better design future similar bridges. Preliminary analyses of ambient and low amplitude small earthquake data reveal specific response characteristics of the bridge and the free-field. There is evidence of coherent tower, cable, deck interaction that sometimes results in amplified ambient motions. Motions at the lowest tri-axial downhole accelerometers on both MO and IL sides are practically free from any feedback from the bridge. Motions at the mid-level and surface downhole accelerometers are influenced significantly by feedback due to amplified ambient motions of the bridge. Copyright ASCE 2006.
NASA Astrophysics Data System (ADS)
Pakos, Wojciech
2015-09-01
The paper presents numerical analysis of harmonically excited vibration of a cable-stayed footbridge caused by a load function simulating crouching (squats) while changing the static tension in chosen cables. The intentional synchronized motion (e.g., squats) of a single person or group of persons on the footbridge with a frequency close to the natural frequency of the structure may lead to the resonant vibrations with large amplitudes. The appropriate tension changes in some cables cause detuning of resonance on account of stiffness changes of structures and hence detuning in the natural frequency that is close to the excitation frequency. The research was carried out on a 3D computer model of a real structure - a cable-stayed steel footbridge in Leśnica, a quarter of Wrocław, Poland, with the help of standard computer software based on FEM COSMOS/M System.
Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran
2012-01-01
Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables.
Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran
2012-01-01
Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables. PMID:22368483
Strengthening of bridges by post-tensioning using monostrands in substituted cable ducts
NASA Astrophysics Data System (ADS)
Klusáček, Ladislav; Svoboda, Adam
2017-09-01
Post-tensioning is suitable, reliable and durable method of strengthening existing engineering structures, especially bridges. The high efficiency of post-tensioning can be seen in many applications throughout the world. In this paper the method is extended by a structural system of substituted cable ducts, which allows for significantly widening application of prestressing so it’s convenient mostly for application on beam bridges or slab bridges (built in years 1920 - 1960). The method of substituted cable ducts is based on theoretical knowledge and technical procedures, which were made possible through the development in prestressing systems, particularly the development of prestressing tendons (monostrands) and encased anchorages, as well as progress in drilling technology. This technique is highly recommended due to minimization of interventions into the constructions, unseen method of cable arrangement and hence the absence of impact on appearance, which is appreciated not only in case of valuable historical structures but also in general. It is possible to summarise that posttensioning by monostrands in substituted cable ducts is a highly effective method of strengthening existing bridges in order to increase their load capacities in terms of current traffic load and to extend their service life.
34. DETAIL OF APRONTOFLOAT LOCKING PIN SOCKETS AND SUSPENSION CABLES ...
34. DETAIL OF APRON-TO-FLOAT LOCKING PIN SOCKETS AND SUSPENSION CABLES ON BRIDGE NO. 9. LOOKING NORTH. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ
28. BRIDGE NO. 9 APRON AND BRIDGE HINGE JOINT AND ...
28. BRIDGE NO. 9 APRON AND BRIDGE HINGE JOINT AND BRIDGE SUSPENSION SYSTEM SHOWING EYEBAR AND CABLE CONNECTIONS. LOOKING WEST. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ
Monitoring based maintenance utilizing actual stress sensory technology
NASA Astrophysics Data System (ADS)
Sumitro, Sunaryo; Kurokawa, Shoji; Shimano, Keiji; Wang, Ming L.
2005-06-01
In recent years, many infrastructures have been deteriorating. In order to maintain sustainability of those infrastructures which have significant influence on social lifelines, economical and rational maintenance management should be carried out to evaluate the life cycle cost (LCC). The development of structural health monitoring systems, such as deriving evaluation techniques for the field structural condition of existing structures and identification techniques for the significant engineering properties of new structures, can be considered as the first step in resolving the above problem. New innovative evaluation methods need to be devised to identify the deterioration of infrastructures, e.g. steel tendons, cables in cable-stayed bridges and strands embedded in pre- or post-tensioned concrete structures. One of the possible solutions that show 'AtoE' characteristics, i.e., (a)ccuracy, (b)enefit, (c)ompendiousness, (d)urability and (e)ase of operation, elasto-magnetic (EM) actual stress sensory technology utilizing the sensitivity of incremental magnetic permeability to stress change, has been developed. Numerous verification tests on various steel materials have been conducted. By comparing with load cell, strain gage and other sensory technology measurement results, the actual stresses of steel tendons in a pre-stressed concrete structure at the following stages have been thoroughly investigated: (i) pre-stress change due to set-loss (anchorage slippage) at the tendon fixation stage; (ii) pre-stress change due to the tendon relaxation stage; (iii) concrete creep and shrinkage at the long term pre-stressing stage; (iv) pre-stress change in the cyclic fatigue loading stage; and (v) pre-stress change due to the re-pre-stress setting stage. As the result of this testing, it is confirmed that EM sensory technology enables one to measure actual stress in steel wire, strands and steel bars precisely without destroying the polyethylene covering sheath and enables one to provide adequate accuracy and reliability for monitoring actual stresses of those steel tendons during the life cycle of infrastructures. An example of a field application at a cable-stayed bridge is described.
29. BRIDGE NO. 13 APRON AND BRIDGE HINGE JOINT AND ...
29. BRIDGE NO. 13 APRON AND BRIDGE HINGE JOINT AND BRIDGE SUSPENSION SYSTEM (OLDER STYLE) SHOWING EYEBAR AND CABLE CONNECTIONS. LOOKING WEST. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ
Dynamic characteristics of stay cables with inerter dampers
NASA Astrophysics Data System (ADS)
Shi, Xiang; Zhu, Songye
2018-06-01
This study systematically investigates the dynamic characteristics of a stay cable with an inerter damper installed close to one end of a cable. The interest in applying inerter dampers to stay cables is partially inspired by the superior damping performance of negative stiffness dampers in the same application. A comprehensive parametric study on two major parameters, namely, inertance and damping coefficients, are conducted using analytical and numerical approaches. An inerter damper can be optimized for one vibration mode of a stay cable by generating identical wave numbers in two adjacent modes. An optimal design approach is proposed for inerter dampers installed on stay cables. The corresponding optimal inertance and damping coefficients are summarized for different damper locations and interested modes. Inerter dampers can offer better damping performance than conventional viscous dampers for the target mode of a stay cable that requires optimization. However, additional damping ratios in other vibration modes through inerter damper are relatively limited.
Deng, Yang; Liu, Yang; Chen, Suren
2017-01-01
Despite the recent developments in structural health monitoring, there remain great challenges for accurately, conveniently, and economically assessing the in-service performance of the main cables for long-span suspension bridges. A long-term structural health monitoring technique is developed to measure the tension force with a conventional sensing technology and further provide the in-service performance assessment strategy of the main cable. The monitoring system adopts conventional vibrating strings transducers to monitor the tension forces of separate cable strands of the main cable in the anchor span. The performance evaluation of the main cable is conducted based on the collected health monitoring data: (1) the measured strand forces are used to derive the overall tension force of a main cable, which is further translated into load bearing capacity assessment using the concept of safety factor; and (2) the proposed technique can also evaluate the uniformity of tension forces from different cable strands. The assessment of uniformity of strand forces of a main cable offers critical information in terms of potential risks of partial damage and performance deterioration of the main cable. The results suggest the proposed low-cost monitoring system is an option to provide approximate estimation of tension forces of main cables for suspension bridges. With the long-term monitoring data, the proposed monitoring-based evaluation methods can further provide critical information to assess the safety and serviceability performance of main cables. PMID:28621743
Deng, Yang; Liu, Yang; Chen, Suren
2017-06-16
Despite the recent developments in structural health monitoring, there remain great challenges for accurately, conveniently, and economically assessing the in-service performance of the main cables for long-span suspension bridges. A long-term structural health monitoring technique is developed to measure the tension force with a conventional sensing technology and further provide the in-service performance assessment strategy of the main cable. The monitoring system adopts conventional vibrating strings transducers to monitor the tension forces of separate cable strands of the main cable in the anchor span. The performance evaluation of the main cable is conducted based on the collected health monitoring data: (1) the measured strand forces are used to derive the overall tension force of a main cable, which is further translated into load bearing capacity assessment using the concept of safety factor; and (2) the proposed technique can also evaluate the uniformity of tension forces from different cable strands. The assessment of uniformity of strand forces of a main cable offers critical information in terms of potential risks of partial damage and performance deterioration of the main cable. The results suggest the proposed low-cost monitoring system is an option to provide approximate estimation of tension forces of main cables for suspension bridges. With the long-term monitoring data, the proposed monitoring-based evaluation methods can further provide critical information to assess the safety and serviceability performance of main cables.
Impact of Cross-Tie Properties on the Modal Behavior of Cable Networks on Cable-Stayed Bridges
Ahmad, Javaid; Ghrib, Faouzi
2015-01-01
Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control. PMID:26167539
Impact of Cross-Tie Properties on the Modal Behavior of Cable Networks on Cable-Stayed Bridges.
Ahmad, Javaid; Cheng, Shaohong; Ghrib, Faouzi
2015-01-01
Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control.
50. INTERIOR OF BRIDGE SUSPENSION STRUCTURE ABOVE BRIDGE NOS. 10 ...
50. INTERIOR OF BRIDGE SUSPENSION STRUCTURE ABOVE BRIDGE NOS. 10 AND 9 SHOWING CABLE COUNTERWEIGHT SYSTEM AND SCREW-TYPE VERTICAL ADJUSTMENT MACHINERY (LIFTING SCREWS). LOOKING NORTH. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ
7. Cable Creek Bridge after completion. Zion National Park negative ...
7. Cable Creek Bridge after completion. Zion National Park negative number 1485, classification series 002, 12. - Floor of the Valley Road, Cable Creek Bridge, Spanning Cable Creek on Floor of Valley, Springdale, Washington County, UT
Multi-modal vibration amplitudes of taut inclined cables due to direct and/or parametric excitation
NASA Astrophysics Data System (ADS)
Macdonald, J. H. G.
2016-02-01
Cables are often prone to potentially damaging large amplitude vibrations. The dynamic excitation may be from external loading or motion of the cable ends, the latter including direct excitation, normally from components of end motion transverse to the cable, and parametric excitation induced by axial components of end motion causing dynamic tension variations. Geometric nonlinearity can be important, causing stiffening behaviour and nonlinear modal coupling. Previous analyses of the vibrations, often neglecting sag, have generally dealt with direct and parametric excitation separately or have reverted to numerical solutions of the responses. Here a nonlinear cable model is adopted, applicable to taut cables such as on cable-stayed bridges, that allows for cable inclination, small sag (such that the vibration modes are similar to those of a taut string), multiple modes in both planes and end motion and/or external forcing close to any natural frequency. Based on the method of scaling and averaging it is found that, for sinusoidal inputs and positive damping, non-zero steady state responses can only occur in the modes in each plane with natural frequencies close to the excitation frequency and those with natural frequencies close to half this frequency. Analytical solutions, in the form of non-dimensional polynomial equations, are derived for the steady state vibration amplitudes in up to three modes simultaneously: the directly excited mode, the corresponding nonlinearly coupled mode in the orthogonal plane and a parametrically excited mode with half the natural frequency. The stability of the solutions is also identified. The outputs of the equations are consistent with previous results, where available. Example results from the analytical solutions are presented for a typical inclined bridge cable subject to vertical excitation of the lower end, and they are validated by numerical integration of the equations of motion and against some previous experimental results. It is shown that the modal interactions and sag (although very small) affect the responses significantly.
Evaluation of bridge cables corrosion using acoustic emission technique
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Ou, Jinping
2010-04-01
Owing to the nature of the stress, corrosion of bridge cable may result in catastrophic failure of the structure. However, using electrochemical techniques isn't fully efficient for the detection and control on line of the corrosion phenomenon. A non-destructive testing method based on acoustic emission technique monitoring bridge cable corrosion was explored. The steel strands were placed at room temperature in 5% NaCl solution. Acoustic emission (AE) characteristic parameters were recorded in the whole corrosion experiment process. Based on the plot of cumulated acoustic activity, the bridge cables corrosion included three stages. It can be clearly seen that different stages have different acoustic emission signal characteristics. The AE characteristic parameters would be increased with cables corrosion development. Finally, the bridge cables corrosion experiment with different stress state and different corrosion environment was performed. The results shows that stress magnitude only affects the bridge cable failure time, however, the AE characteristic parameters value has changed a little. It was verified that AE technique can be used to detect the bridge cable early corrosion, investigating corrosion developing trend, and in monitoring and evaluating corrosion damages.
BIM authoring for an image-based bridge maintenance system of existing cable-supported bridges
NASA Astrophysics Data System (ADS)
Dang, N. S.; Shim, C. S.
2018-04-01
Infrastructure nowadays is increasingly become the main backbone for the metropolitan development in general. Along with the rise of new facilities, the demand in term of maintenance for the existing bridges is indispensable. Recently, the terminology of “preventive maintenance” is not unfamiliar with the engineer, literally is the use of a bridge maintenance system (BMS) based on a BIM-oriented model. In this paper, the process of generating a BMS based on BIM model is introduced in detail. Data management for this BMS is separated into two modules: site inspection system and information management system. The noteworthy aspect of this model lays on the closed and automatic process of “capture image, generate the technical damage report, and upload/feedback to the BMS” in real-time. A pilot BMS system for a cable-supported bridge is presented which showed a good performance and potential to further development of preventive maintenance.
1987-09-01
response. An estimate of the buffeting response for the two cases is presented in Figure 4, using the theory of Irwin (Reference 7). Data acquisition was...values were obtained using the log decrement method by exciting the bridge in one mode and observing the decay of the response. Classical theory would...added mass or structural damping level. The addition of inertia to the deck would tend to lower the response according to classical vibration theory
Optic fiber sensor-based smart bridge cable with functionality of self-sensing
NASA Astrophysics Data System (ADS)
He, Jianping; Zhou, Zhi; Jinping, Ou
2013-02-01
Bridge cables, characterized by distributed large span, serving in harsh environment and vulnerability to random damage, are the key load-sustaining components of cable-based bridges. To ensure the safety of the bridge structure, it is critical to monitor the loading conditions of these cables under lengthwise random damages. Aiming at obtaining accurate monitoring at the critical points as well as the general information of the cable force distributed along the entire cable, this paper presents a study on cable force monitoring by combining optical fiber Bragg grating (FBG) sensors and Brillouin optical time domain analysis/reflectory (BOTDA/R) sensing technique in one single optical fiber. A smart FRP-OF-FBG rebar based cable was fabricated by protruding a FRP packaged OF-FBG sensor into the bridge cable. And its sensing characteristics, stability under high stress state temperature self-compensation as well as BOTDA/R distributed data improvement by local FBG sensors have been investigated. The results show that FRP-OF-FBG rebar in the smart cable can deform consistantly along with the steel wire and the cable force obtained from the optical fiber sensors agree well with theoretical value with relative error less than ±5%. Besides, the temperature self-compensation method provides a significant cost-effective technique for the FRP-OF-FBG based cables' in situ cable force measurement. And furthermore, potential damages of the bridge cable, e.g. wire breaking and corrosion, can be characterized and symbolized by the discontinuity and fluctuation of the distributed BOTDA data thereafter accuracy improved by local FBG sensors.
Detection and characterization of corrosion of bridge cables by time domain reflectometry
NASA Astrophysics Data System (ADS)
Liu, Wei; Hunsperger, Robert G.; Folliard, Kevin; Chajes, Michael J.; Barot, Jignesh; Jhaveri, Darshan; Kunz, Eric
1999-02-01
In this paper, we develop and demonstrate a nondestructive evaluation technique for corrosion detection of embedded or encased steel cables. This technique utilizes time domain reflectometry (TDR), which has been traditionally used to detect electrical discontinuities in transmission lines. By applying a sensor wire along with the bridge cable, we can model the cable as an asymmetric, twin-conductor transmission line. Physical defects of the bridge cable will change the electromagnetic properties of the line and can be detected by TDR. Furthermore, different types of defects can be modeled analytically, and identified using TDR. TDR measurement results from several fabricated bridge cable sections with built-in defects are reported.
LUC-2-1682 long term maintenance of the Anthony Wayne Suspension Bridge main cables.
DOT National Transportation Integrated Search
2017-01-01
The Anthony Wayne Bridge, Ohio's only suspension bridge, is undergoing an extensive rehabilitation. Prior to taking action to preserve the cables, ODOT must decide what measures to take to evaluate the condition of the cables, how best to rehabilitat...
DOT National Transportation Integrated Search
2013-06-01
This report provides information on a study of the Arrigoni Bridge in Middletown, Connecticut, : where vibration measurements are used to determine the tension among various suspender : cables in the structure. Actual vibration data on 134 cables und...
Wind tunnel tests of main girder with Π-shaped cross section
NASA Astrophysics Data System (ADS)
Guo, Junfeng; Hong, Chengjing; Zheng, Shixiong; Zhu, Jinbo
2017-10-01
The wind-resistant performance of a cable stayed bridge with IT-shaped girder was investigated by means of wind tunnel tests. Aerodynamic coefficients experiments and wind-induced vibration experiments with a sectional model a geometry scale of l to 60 were conducted. The results have shown that this kind of girder has the necessary condition for aerodynamic stability. Soft flutter of the main girder is a coupled two-degree-of-freedom torsional-bending vibration with single frequency. The amplitude of soft flutter follows a normal distribution, and the amplitude range varies with wind speed and angle of attack. The bridge deck auxiliary facilities can not only improve the critical soft flutter velocity, but also reduce the soft flutter amplitude and the amplitude growth rate.
Bridge condition assessment based on long-term strain monitoring
NASA Astrophysics Data System (ADS)
Sun, LiMin; Sun, Shouwang
2011-04-01
In consideration of the important role that bridges play as transportation infrastructures, their safety, durability and serviceability have always been deeply concerned. Structural Health Monitoring Systems (SHMS) have been installed to many long-span bridges to provide bridge engineers with the information needed in making rational decisions for maintenance. However, SHMS also confronted bridge engineers with the challenge of efficient use of monitoring data. Thus, methodologies which are robust to random disturbance and sensitive to damage become a subject on which many researches in structural condition assessment concentrate. In this study, an innovative probabilistic approach for condition assessment of bridge structures was proposed on the basis of long-term strain monitoring on steel girder of a cable-stayed bridge. First, the methodology of damage detection in the vicinity of monitoring point using strain-based indices was investigated. Then, the composition of strain response of bridge under operational loads was analyzed. Thirdly, the influence of temperature and wind on strains was eliminated and thus strain fluctuation under vehicle loads is obtained. Finally, damage evolution assessment was carried out based on the statistical characteristics of rain-flow cycles derived from the strain fluctuation under vehicle loads. The research conducted indicates that the methodology proposed is qualified for structural condition assessment so far as the following respects are concerned: (a) capability of revealing structural deterioration; (b) immunity to the influence of environmental variation; (c) adaptability to the random characteristic exhibited by long-term monitoring data. Further examination of the applicability of the proposed methodology in aging bridge may provide a more convincing validation.
Passive Vibration Control of Existing Structures by Gravity-Loaded Cables
NASA Astrophysics Data System (ADS)
Alvis, E.; Tsang, H. H.; Hashemi, M. J.
2017-06-01
Structures with high concentration of mass at or close to the top such as highway bridge piers are vulnerable in earthquakes or accidents. In this paper, a simple and convenient retrofit strategy is proposed for minimizing vibrations and damages, extending service life and preventing collapse of existing structures. The proposed system comprises of tension-only cables secured to the sides of the structure through gravity anchor blocks that are free to move in vertical shafts. The system is installed in such a way that the cables do not induce unnecessary stress on the main structure when there is no lateral motion or vibration. The effectiveness of controlling global structural responses is investigated for tension-only bilinear-elastic behaviour of cables. Results of a realistic case study for a reinforced concrete bridge pier show that response reduction is remarkably well under seismic excitation.
54. INTERIOR OF APRON SUSPENSION STRUCTURE SHOWING APRON COUNTERWEIGHT SYSTEM ...
54. INTERIOR OF APRON SUSPENSION STRUCTURE SHOWING APRON COUNTERWEIGHT SYSTEM OF CABLES AND PULLEYS ABOVE BRIDGE NOS. 12 AND 11. LOOKING NORTH. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ
7. SHOWING METHOD OF SLEDDING WIND CABLE DOWN YAKI TRAIL ...
7. SHOWING METHOD OF SLEDDING WIND CABLE DOWN YAKI TRAIL TO THE BRIDGE, WEIGHT OF CABLE AND DRUM APPROXIMATELY 2200 POUNDS - Kaibab Trail Suspension Bridge, Spanning Colorado River, Grand Canyon, Coconino County, AZ
Acoustic emission monitoring and critical failure identification of bridge cable damage
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Ou, Jinping
2008-03-01
Acoustic emission (AE) characteristic parameters of bridge cable damage were obtained on tensile test. The testing results show that the AE parameter analysis method based on correlation figure of count, energy, duration time, amplitude and time can express the whole damage course, and can correctly judge the signal difference of broken wire and unbroken wire. It found the bridge cable AE characteristics aren't apparent before yield deformation, however they are increasing after yield deformation, at the time of breaking, and they reach to maximum. At last, the bridge cable damage evolution law is studied applying the AE characteristic parameter time series fractal theory. In the initial and middle stage of loading, the AE fractal value of bridge cable is unsteady. The fractal value reaches to the minimum at the critical point of failure. According to this changing law, it is approached how to make dynamic assessment and estimation of damage degrees.
Applications of FRP-OFBG sensors on bridge cables
NASA Astrophysics Data System (ADS)
Zhou, Zhi; Zhang, Zhichun; Deng, Nianchun; Zhao, Xuefeng; Li, Dongsheng; Wang, Chuang; Ou, Jinping
2005-05-01
It is still a practical problem how to effectively install FBG sensors on bridge cabes. In this paper, a simple and effective solution is introduced to develop smart bridge cables using FRP-OFBG bars developed in HIT (Harbin Institute of Technology). Here, the FRP-OFBG bar acts as one component of the cable and shows force resistance and well-protected sensors in service. The installation techniques and the sensing properties of FBGs in three kinds of cables, FRP cables, common steel-wire cable and extruded-anchor cable, are introduced and tested under dead load. Moreover, the preliminary introduction of a practical field application based on this solution has been also given. The experimental results show that the deformability of FRP-OFBG bars in the smart cables can reach the terminal and show wonderful accuracy, which shows that such kind of smart cable is practical in field application.
NASA Astrophysics Data System (ADS)
Torra, Vicenç; Martorell, Ferran; Lovey, Francisco C.; Sade, Marcos Leonel
2017-12-01
This study describes two investigations: first, the applicability of NiTi wires in the damping of oscillations induced by wind, rain, or traffic in cable-stayed bridges; and second, the characteristic properties of NiTi, i.e., the effects of wire diameter and particularly the effects of summer and winter temperatures and strain-aging actions on the hysteretic behavior. NiTi wires are mainly of interest because of their high number of available working cycles, reliable results, long service lifetime, and ease in obtaining sets of similar wires from the manufacturer.
NASA Astrophysics Data System (ADS)
Chen, Yongrui; Wei, Wei; Dai, Jie
2017-04-01
Main cable is one of the most important structure of suspension Bridges, which bear all the dead and live load from upper structure. Cable erection is one of the most critical process in suspension bridge construction. Key points about strand erection are studied in this paper, including strand traction, lateral movement, section adjustment, placing into saddle, anchoring, line shape adjustment and keeping, and tension control. The technology has helped a long-span suspension bridge in Yunnan Province, China get a ideal finished state.
Li, Dongsheng; Yang, Wei; Zhang, Wenyao
2017-05-01
Stress corrosion is the major failure type of bridge cable damage. The acoustic emission (AE) technique was applied to monitor the stress corrosion process of steel wires used in bridge cable structures. The damage evolution of stress corrosion in bridge cables was obtained according to the AE characteristic parameter figure. A particle swarm optimization cluster method was developed to determine the relationship between the AE signal and stress corrosion mechanisms. Results indicate that the main AE sources of stress corrosion in bridge cables included four types: passive film breakdown and detachment of the corrosion product, crack initiation, crack extension, and cable fracture. By analyzing different types of clustering data, the mean value of each damage pattern's AE characteristic parameters was determined. Different corrosion damage source AE waveforms and the peak frequency were extracted. AE particle swarm optimization cluster analysis based on principal component analysis was also proposed. This method can completely distinguish the four types of damage sources and simplifies the determination of the evolution process of corrosion damage and broken wire signals. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Flaga, Kazimierz; Furtak, Kazimierz
2015-03-01
Steel-concrete composite structures have been used in bridge engineering from decades. This is due to rational utilisation of the strength properties of the two materials. At the same time, the reinforced concrete (or prestressed) deck slab is more favourable than the orthotropic steel plate used in steel bridges (higher mass, better vibration damping, longer life). The most commonly found in practice are composite girder bridges, particularly in highway bridges of small and medium spans, but the spans may reach over 200 m. In larger spans steel truss girders are applied. Bridge composite structures are also employed in cable-stayed bridge decks of the main girder spans of the order of 600, 800 m. The aim of the article is to present the cionstruction process and strength analysis problems concerning of this type of structures. Much attention is paid to the design and calculation of the shear connectors characteristic for the discussed objects. The authors focused mainly on the issues of single composite structures. The effect of assembly states on the stresses and strains in composite members are highlighted. A separate part of problems is devoted to the influence of rheological factors, i.e. concrete shrinkage and creep, as well as thermal factors on the stresses and strains and redistribution of internal forces.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-12
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-778] Certain Equipment for Communications Networks, Including Switches, Routers, Gateways, Bridges, Wireless Access Points, Cable Modems, IP Phones... networks, including switches, routers, gateways, bridges, wireless access points, cable modems, IP phones...
Coupling vibration research on Vehicle-bridge system
NASA Astrophysics Data System (ADS)
Zhou, Jiguo; Wang, Guihua
2018-01-01
The vehicle-bridge coupling system forms when vehicle running on a bridge. It will generate a relatively large influence on the driving comfort and driving safe when the vibration of the vehicle is bigger. A three-dimensional vehicle-bridge system with biaxial seven degrees of freedom has been establish in this paper based on finite numerical simulation. Adopting the finite element transient numerical simulation to realize the numerical simulation of vehicle-bridge system coupling vibration. Then, analyze the dynamic response of vehicle and bridge while different numbers of vehicles running on the bridge. Got the variation rule of vertical vibration of car body and bridge, and that of the contact force between the wheel and bridge deck. The research results have a reference value for the analysis about the vehicle running on a large-span cabled bridge.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
... Communications Networks, Including Switches, Routers, Gateways, Bridges, Wireless Access Points, Cable Modems, IP... networks, including switches, routers, gateways, bridges, wireless access points, cable modems, IP phones... points, cable modems, IP phones, and products containing same that infringe one or more of claims 1, 5, 9...
4. DETAIL OF THE BRIDGE PIER SHOWING THE SUSPENSION CABLE, ...
4. DETAIL OF THE BRIDGE PIER SHOWING THE SUSPENSION CABLE, LOOKING SOUTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA
NASA Astrophysics Data System (ADS)
Sugihardjo, H.; Tavio; Prasetya, D.; Achmad, N. I.
2017-11-01
The impact of temperature change could govern the final stress of structural elements in the long-span steel bridges. The study was conducted to investigate the effect of temperature change during the construction of a new steel arch bridge, namely the Kutai Kartanegara Bridge. The main bridge has a total spanning length of 470 meters. The erection method of the bridge was the cantilever method with temporary towers, mast cranes, and stay cables. The deflections and internal forces of the steel elements were analyzed using the Midas Civil software. The study focuses on the effort to find the perfect erection time for the closure with regards to the temperature. By measuring the temperatures of the steel elements during the construction, it was found that they varied between 19 and 64 degrees Celsius. From the results of the analyses with various temperatures, it can be concluded that the recommended temperature for the closure erection was 44.6 degrees Celsius. This temperature is similar with the air temperature between either 6 AM and 12 noon or 12 noon and 6 PM. During this periods of time, the effect of thermal stress on the final internal forces in the bridge elements was found much lesser than those obtained during any other period of time.
Development of Murray Loop Bridge for High Induced Voltage
NASA Astrophysics Data System (ADS)
Isono, Shigeki; Kawasaki, Katsutoshi; Kobayashi, Shin-Ichi; Ishihara, Hayato; Chiyajo, Kiyonobu
In the case of the cable fault that ground fault resistance is less than 10MΩ, Murray Loop Bridge is excellent as a fault locator in location accuracy and the convenience. But, when the induction of several hundred V is taken from the single core cable which adjoins it, a fault location with the high voltage Murray Loop Bridge becomes difficult. Therefore, we developed Murray Loop Bridge, which could be applied even when the induced voltage of several hundred V occurs in the measurement cable. The evaluation of the fault location accuracy was done with the developed prototype by the actual line and the training equipment.
Replaceable Unbonded Tendons for Post-Tensioned Bridges
DOT National Transportation Integrated Search
2017-12-24
Currently, all State and local agencies responsible for the maintenance of suspension bridge cables base their maintenance plan mainly on previous experiences and on information from limited inspections. Usually, the exterior covering of the cable is...
13. VIEW OF SUBSTRUCTURE CONNECTIONS WITH TRUSS MEMBERS, SUSPENSION CABLES ...
13. VIEW OF SUBSTRUCTURE CONNECTIONS WITH TRUSS MEMBERS, SUSPENSION CABLES AND 'I'-BEAMS, NORTHEAST SIDE OF BRIDGE, LOOKING WEST - San Rafael Bridge, Spanning San Rafael River near Buckhorn Wash, Castle Dale, Emery County, UT
Evaluation of weigh-in-motion systems.
DOT National Transportation Integrated Search
1991-01-01
The objective of this research was to evaluate low cost weigh-in-motion systems. The three systems evaluated were (1) a capacitance weigh mat system, (2) a bridge weighing system, and (3) a piezoelectric cable sensor system. All three systems have a ...
Rapid cable tension estimation using dynamic and mechanical properties
NASA Astrophysics Data System (ADS)
Martínez-Castro, Rosana E.; Jang, Shinae; Christenson, Richard E.
2016-04-01
Main tension elements are critical to the overall stability of cable-supported bridges. A dependable and rapid determination of cable tension is desired to assess the state of a cable-supported bridge and evaluate its operability. A portable smart sensor setup is presented to reduce post-processing time and deployment complexity while reliably determining cable tension using dynamic characteristics extracted from spectral analysis. A self-recording accelerometer is coupled with a single-board microcomputer that communicates wirelessly with a remote host computer. The portable smart sensing device is designed such that additional algorithms, sensors and controlling devices for various monitoring applications can be installed and operated for additional structural assessment. The tension-estimating algorithms are based on taut string theory and expand to consider bending stiffness. The successful combination of cable properties allows the use of a cable's dynamic behavior to determine tension force. The tension-estimating algorithms are experimentally validated on a through-arch steel bridge subject to ambient vibration induced by passing traffic. The tension estimation is determined in well agreement with previously determined tension values for the structure.
NASA Astrophysics Data System (ADS)
Andre, Julia; Kiremidjian, Anne; Liao, Yizheng; Georgakis, Christos; Rajagopal, Ram
2016-04-01
Ice accretion on cables of bridge structures poses serious risk to the structure as well as to vehicular traffic when the ice falls onto the road. Detection of ice formation, quantification of the amount of ice accumulated, and prediction of icefalls will increase the safety and serviceability of the structure. In this paper, an ice accretion detection algorithm is presented based on the Continuous Wavelet Transform (CWT). In the proposed algorithm, the acceleration signals obtained from bridge cables are transformed using wavelet method. The damage sensitive features (DSFs) are defined as a function of the wavelet energy at specific wavelet scales. It is found that as ice accretes on the cables, the mass of cable increases, thus changing the wavelet energies. Hence, the DSFs can be used to track the change of cables mass. To validate the proposed algorithm, we use the data collected from a laboratory experiment conducted at the Technical University of Denmark (DTU). In this experiment, a cable was placed in a wind tunnel as ice volume grew progressively. Several accelerometers were installed at various locations along the testing cable to collect vibration signals.
Pressure measurements with a precision of 0.001 ppm in magnetic fields at low temperatures
NASA Astrophysics Data System (ADS)
Miura, Y.; Matsushima, N.; Ando, T.; Kuno, S.; Inoue, S.; Ito, K.; Mamiya, T.
1993-11-01
Pressure measurements made by an ac bridge technique with a precision of 0.001 ppm in magnetic fields at low temperatures using a Straty-Adams type gauge are described. In order to improve the sensitivity and the long-term stability of the bridge system, coaxial cables without dielectric insulator were developed, with a small cable capacitance temperature coefficient of the impedance. This pressure measurement system has a sensitivity of dP/P˜5×10-10 and a long-term stability of dP/P˜2.4×10-9 over 18 h. This is especially useful for measurements such as electric and magnetic susceptibility measurements in magnetic fields at low temperatures requiring a high precision.
15. CLOSEUP VIEW OF SOUTHEAST CABLE BOLT, SUSPENSION CABLE, AND ...
15. CLOSE-UP VIEW OF SOUTHEAST CABLE BOLT, SUSPENSION CABLE, AND CONCRETE ANCHORING BLOCK, LOOKING SOUTHEAST - San Rafael Bridge, Spanning San Rafael River near Buckhorn Wash, Castle Dale, Emery County, UT
BTC method for evaluation of remaining strength and service life of bridge cables.
DOT National Transportation Integrated Search
2011-09-01
"This report presents the BTC method; a comprehensive state-of-the-art methodology for evaluation of remaining : strength and residual life of bridge cables. The BTC method is a probability-based, proprietary, patented, and peerreviewed : methodology...
NASA Astrophysics Data System (ADS)
Nikolakopoulos, Konstantinos; Depountis, Nikolaos; Vagenas, Nikolaos; Kavoura, Katerina; Vlaxaki, Eleni; Kelasidis, George; Sabatakakis, Nikolaos
2015-06-01
In this paper a specific example of the synergistic use of geotechnical survey, remote sensing data and GIS for rockfall risk evaluation is presented. The study area is located in Western Greece. Extensive rockfalls have been recorded along Patras - Ioannina highway just after the cable-stayed bridge of Rio-Antirrio, at Klokova site. The rockfalls include medium- sized limestone boulders with volume up to 1.5m3. A detailed engineering geological survey was conducted including rockmass characterization, laboratory testing and geological - geotechnical mapping. Many Rockfall trajectory simulations were done. Rockfall risk along the road was estimated using spatial analysis in a GIS environment.
380. Delineator Unknown December 1932 STATE OF CALIFORNIA; DEPARTMENT OF ...
380. Delineator Unknown December 1932 STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; CABLES & ATTACHMENTS WEST BAY CROSSING; CABLE BANDS; CONTRACT NO. 6A; DRAWING NO. 3 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA
A Wireless Interface for Replacing the Cables in Bridge-Sensor Applications
Pavlin, Marko; Novak, Franc
2012-01-01
This paper presents a solution in which a wireless interface is employed to replace the cables in bridge-sensor measurement applications. The most noticeable feature of the presented approach is the fact that the wireless interface simply replaces the cables without any additional hardware modification to the existing system. In this approach, the concept of reciprocal topology is employed, where the transmitter side acquires signals with its own transfer function and the receiver side reconstructs them with the transfer function reciprocal to the transmitter transfer function. In this paper the principle of data acquisition and reconstruction is described together with the implementation details of the signal transfer from the sensor to the signal-monitoring equipment. The wireless data communication was investigated and proprietary data-reduction methods were developed. The proposed methods and algorithms were implemented using two different wireless technologies. The performance was evaluated with a dedicated data-acquisition system and finally, the test results were analyzed. The two different sets of results indicated the high level of amplitude and the temporal accuracy of the wirelessly transferred sensor signals. PMID:23112585
Study on Wind-induced Vibration and Fatigue Life of Cable-stayed Flexible Antenna
NASA Astrophysics Data System (ADS)
He, Kongde; He, Xuehui; Fang, Zifan; Zheng, Xiaowei; Yu, Hongchang
2018-03-01
The cable-stayed flexible antenna is a large-span space structure composed of flexible multibody, with low frequency of vibration, vortex-induced resonance can occur under the action of Stochastic wind, and a larger amplitude is generated when resonance occurs. To solve this problem, based on the theory of vortex-induced vibration, this paper analyzes the vortex-induced vibration of a cable-stayed flexible antenna under the action of Wind. Based on the sinusoidal force model and Autoregressive Model (AR) method, the vortex-induced force is simulated, then the fatigue analysis of the structure is based on the linear fatigue cumulative damage principle and the rain-flow method. The minimum fatigue life of the structure is calculated to verify the vibration fatigue performance of the structure.
Super-bridges suspended over carbon nanotube cables
NASA Astrophysics Data System (ADS)
Carpinteri, Alberto; Pugno, Nicola M.
2008-11-01
In this paper the new concept of 'super-bridges', i.e. kilometre-long bridges suspended over carbon nanotube cables, is introduced. The analysis shows that the use of realistic (thus defective) carbon nanotube bundles as suspension cables can enlarge the current limit main span by a factor of ~3. Too large compliance and dynamic self-excited resonances could be avoided by additional strands, rendering the super-bridge anchored as a spider's cobweb. As an example, we have computed the limit main spans of the current existing 19 suspended-deck bridges longer than 1 km assuming them to have substituted their cables with carbon nanotube bundles (thus maintaining the same geometry, with the exception of the length) finding spans of up to ~6.3 km. We thus suggest that the design of the Messina bridge in Italy, which would require a main span of ~3.3 km, could benefit from the use of carbon nanotube bundles. We believe that their use represents a feasible and economically convenient solution. The plausibility of these affirmations is confirmed by a statistical analysis of the existing 100 longest suspended bridges, which follow a Zipf's law with an exponent of 1.1615: we have found a Moore-like (i.e. exponential) law, in which the doubling of the capacity (here the main span) per year is substituted by the factor 1.0138. Such a law predicts that the realization of the Messina bridge using conventional materials will only occur around the middle of the present century, whereas it could be expected in the near future if carbon nanotube bundles were used. A simple cost analysis concludes the paper.
Parametric Study on Responses of a Self-Anchored Suspension Bridge to Sudden Breakage of a Hanger
Jiang, Meng; Huang, Cailiang
2014-01-01
The girder of self-anchored suspension bridge is subjected to large compression force applied by main cables. So, serious damage of the girder due to breakage of hangers may cause the collapse of the whole bridge. With the time increasing, the hangers may break suddenly for their resistance capacities decrease due to corrosion. Using nonlinear static and dynamic analysis methods and adopting 3D finite element model, the responses of an actual self-anchored suspension bridge to sudden breakage of hangers are studied in this paper. The results show that the sudden breakage of a hanger causes violent vibration and large changes in internal forces of the bridge. In the process of the vibration, the maximum tension of hanger produced by breakage of a hanger exceeds 2.22 times its initial value, and the reaction forces of the bearings increase by more than 1.86 times the tension of the broken hanger. Based on the actual bridge, the influences of some factors including flexural stiffness of girder, torsion stiffness of girder, flexural stiffness of main cable, weight of girder, weight of main cable, span to sag ratio of main cable, distance of hangers, span length, and breakage time of hanger on the dynamic responses are studied in detail, and the influencing extent of the factors is presented. PMID:25045734
Parametric study on responses of a self-anchored suspension bridge to sudden breakage of a hanger.
Qiu, Wenliang; Jiang, Meng; Huang, Cailiang
2014-01-01
The girder of self-anchored suspension bridge is subjected to large compression force applied by main cables. So, serious damage of the girder due to breakage of hangers may cause the collapse of the whole bridge. With the time increasing, the hangers may break suddenly for their resistance capacities decrease due to corrosion. Using nonlinear static and dynamic analysis methods and adopting 3D finite element model, the responses of an actual self-anchored suspension bridge to sudden breakage of hangers are studied in this paper. The results show that the sudden breakage of a hanger causes violent vibration and large changes in internal forces of the bridge. In the process of the vibration, the maximum tension of hanger produced by breakage of a hanger exceeds 2.22 times its initial value, and the reaction forces of the bearings increase by more than 1.86 times the tension of the broken hanger. Based on the actual bridge, the influences of some factors including flexural stiffness of girder, torsion stiffness of girder, flexural stiffness of main cable, weight of girder, weight of main cable, span to sag ratio of main cable, distance of hangers, span length, and breakage time of hanger on the dynamic responses are studied in detail, and the influencing extent of the factors is presented.
PBF detail of metal pedestrian bridge over exposed control cables, ...
PBF detail of metal pedestrian bridge over exposed control cables, which run between Control (PER-619) and Reactor Buildings (PER-620). Camera facing northwest. Southwest corner of PER-620 at upper right of view. Date: May 2004. INEEL negative no. HD-41-6-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Kavet, Robert; Wyman, Megan T.; Klimley, A. Peter; ...
2016-02-25
Here, the Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) beneath the San Francisco Estuary. The TBC runs parallel to the migratory route of various marine species, including green sturgeon, Chinook salmon, and steelhead trout. In July and August 2014, an extensive series of magnetic field measurements were taken using a pair of submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles that cross the cable’s path; these included the Sanmore » Francisco-Oakland Bay Bridge (BB), the Richmond-San Rafael Bridge (RSR), the Benicia- Martinez Bridge (Ben) and an area in San Pablo Bay (SP) in which a bridge is not present. In this paper, we apply basic formulas that ideally describe the magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable that are otherwise not immediately observable. Magnetic field profiles from measurements taken along 170 survey lines were inspected visually for evidence of a distinct pattern representing the presence of the cable. Many profiles were dominated by field distortions unrelated to the cable caused by bridge structures or other submerged objects, and the cable’s contribution to the field was not detectable. BB, with 40 of the survey lines, did not yield usable data for these reasons. The unrelated anomalies could be up to 100 times greater than those from the cable. In total, discernible magnetic field profiles measured from 76 survey lines were regressed against the equations, representing eight days of measurement. The modeled field anomalies due to the cable (the difference between the maximum and minimum field along the survey line at the cable crossing) were virtually identical to the measured values. The modeling yielded a pooled cable depth below the bay floor of 2.06 m (±1.46 std dev), and estimated the angle to the horizontal of the imaginary line connecting the crosssectional center of the cable’s two conductors (0.1143 m apart) as 178.9° ±61.9° (std dev) for Ben, 78.6°±37.0° (std dev) for RSR, and 139.9°±27.4° (std dev) for SP. The mean of the eight daily average currents derived from the regressions was 986 ±185 amperes (A) (std dev), as compared to 722 ±95 A (std dev) provided by Trans Bay Cable LLC. Overall, the regressions based on fundamental principles (Biot Savart law) and the vectorial summation of cable and geomagnetic fields provide estimates of cable characteristics consistent with plausible expectations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavet, Robert; Wyman, Megan T.; Klimley, A. Peter
Here, the Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) beneath the San Francisco Estuary. The TBC runs parallel to the migratory route of various marine species, including green sturgeon, Chinook salmon, and steelhead trout. In July and August 2014, an extensive series of magnetic field measurements were taken using a pair of submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles that cross the cable’s path; these included the Sanmore » Francisco-Oakland Bay Bridge (BB), the Richmond-San Rafael Bridge (RSR), the Benicia- Martinez Bridge (Ben) and an area in San Pablo Bay (SP) in which a bridge is not present. In this paper, we apply basic formulas that ideally describe the magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable that are otherwise not immediately observable. Magnetic field profiles from measurements taken along 170 survey lines were inspected visually for evidence of a distinct pattern representing the presence of the cable. Many profiles were dominated by field distortions unrelated to the cable caused by bridge structures or other submerged objects, and the cable’s contribution to the field was not detectable. BB, with 40 of the survey lines, did not yield usable data for these reasons. The unrelated anomalies could be up to 100 times greater than those from the cable. In total, discernible magnetic field profiles measured from 76 survey lines were regressed against the equations, representing eight days of measurement. The modeled field anomalies due to the cable (the difference between the maximum and minimum field along the survey line at the cable crossing) were virtually identical to the measured values. The modeling yielded a pooled cable depth below the bay floor of 2.06 m (±1.46 std dev), and estimated the angle to the horizontal of the imaginary line connecting the crosssectional center of the cable’s two conductors (0.1143 m apart) as 178.9° ±61.9° (std dev) for Ben, 78.6°±37.0° (std dev) for RSR, and 139.9°±27.4° (std dev) for SP. The mean of the eight daily average currents derived from the regressions was 986 ±185 amperes (A) (std dev), as compared to 722 ±95 A (std dev) provided by Trans Bay Cable LLC. Overall, the regressions based on fundamental principles (Biot Savart law) and the vectorial summation of cable and geomagnetic fields provide estimates of cable characteristics consistent with plausible expectations.« less
30 CFR 7.406 - Flame test apparatus.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Cable Splice Kits § 7.406 Flame test apparatus. The principal parts of the apparatus used to test for... extend to the sample end location. These are used to energize the electric cable and splice specimens. They are not used, but may stay in place, when testing signaling cables. (b) Specimen holder (support...
30 CFR 7.406 - Flame test apparatus.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Cable Splice Kits § 7.406 Flame test apparatus. The principal parts of the apparatus used to test for... extend to the sample end location. These are used to energize the electric cable and splice specimens. They are not used, but may stay in place, when testing signaling cables. (b) Specimen holder (support...
30 CFR 7.406 - Flame test apparatus.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Cable Splice Kits § 7.406 Flame test apparatus. The principal parts of the apparatus used to test for... extend to the sample end location. These are used to energize the electric cable and splice specimens. They are not used, but may stay in place, when testing signaling cables. (b) Specimen holder (support...
Vibration characteristics and damage detection in a suspension bridge
NASA Astrophysics Data System (ADS)
Wickramasinghe, Wasanthi R.; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Theanh
2016-08-01
Suspension bridges are flexible and vibration sensitive structures that exhibit complex and multi-modal vibration. Due to this, the usual vibration based methods could face a challenge when used for damage detection in these structures. This paper develops and applies a mode shape component specific damage index (DI) to detect and locate damage in a suspension bridge with pre-tensioned cables. This is important as suspension bridges are large structures and damage in them during their long service lives could easily go un-noticed. The capability of the proposed vibration based DI is demonstrated through its application to detect and locate single and multiple damages with varied locations and severity in the cables of the suspension bridge. The outcome of this research will enhance the safety and performance of these bridges which play an important role in the transport network.
Design and performance of stay-in-place UHPC prefabricated panels for infrastructure construction.
DOT National Transportation Integrated Search
2014-08-01
This project aims at designing a stay-in-place formwork system for cast-in-place bridge applications using ultra-high performance : concrete (UHPC) that can be used in the permanent formwork construction. Such panels can be used as permanent formwork...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimley, A. P.; Wyman, M. T.; Kavet, Rob
The US Department of Energy and US Department of the Interior, Bureau of Ocean Energy Management commissioned this study to address the limited scientific data on the impacts of high voltage direct current cables on aquatic biota, in particular migratory species within the San Francisco Bay. Empirical evidence exists that marine animals perceive and orient to local distortions in the earth’s main geomagnetic field magnetic field. The electromagnetic fields (EMF) generated by the cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth’s main field. Concern exists that animals thatmore » migrate along the continental shelves might orient to the EMF from the cables, and move either inshore or offshore away from their normal path. The Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) through the San Francisco Bay. The study addresses the following specific questions based on measurements and projections of the EMF produced by an existing marine cable, the TBC, in San Francisco Bay. Specifically, does the presence of EMF from an operating power cable alter the behavior and path of bony fishes and sharks along a migratory corridor? Does the EMF from an operating power cable guide migratory movements or pose an obstacle to movement? To meet the main study objectives several activities needed to be carried out: 1) modeling of the magnetic fields produced by the TBC, 2) assessing the migratory impacts on Chinook salmon smolts (Oncorhynchus tshawytscha) and green sturgeon (Acipenser medirostris) as a result of local magnetic field distortions produced by bridge structures and 3) analyzing behavioral responses by migratory Chinook salmon and green sturgeon to a high-voltage power cable. To meet the first objective, magnetic field measurements were made using two submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles crossing the cable path. We applied basic formulas to describe magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable not immediately or otherwise observable. The magnetic field profiles of 76 survey lines were regressed against the measured fields, representing eight days of measurement. Many profiles were dominated by field distortions caused by bridge structures or other submerged objects, and the cable contribution to the field was not detectable. The regressions based on fundamental principles (Biot Savart law) and the vectorial summation of cable and geomagnetic fields provide estimates of cable characteristics consistent with plausible expectations. For the second objective, detailed gradiometer survey were examined. Distortions in the earth’s main field produced by bridges across the estuary were much greater than those from the TBC. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges that run perpendicular to these migration routes do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon. Finally, to assess the behavioral responses by migratory Chinook salmon and green sturgeon to a high- voltage power cable - the potential impacts effect of the TBC on fishes migrating through the San Francisco Estuary were examined. These included late-fall run Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Our results indicate Chinook salmon smolts may be attracted to the cable after activation (more cable location crossings, more detections at Bay Bridge, high importance of distance to cable in predicting fish location), but are not impeded from successfully migrating through the San Francisco Bay (similar proportions of successful exits, faster transit rates). Cable activity had opposite effects on outbound and inbound green sturgeon migrations: outbound migrations had significantly longer transit times while inbound migrations had significantly shorter migration times. However, the proportion of green sturgeon that successfully migrated through the San Francisco Bay was not strongly impacted after cable activation for either migration type. Based on the work, we provide the following conclusions: 1) calculations of magnetic fields for assessment of marine life can be performed; however, local anomalies in the fields resulting from submerged structures require validation of such calculations through collection of ambient DC magnetic field data, 2) the large anomalies produced by the bridges that run perpendicular to these migration routes do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon and 3) Chinook salmon smolts may be attracted to the activated cable based on analysis of cable crossing, misdirections, and first presence at the array data, however, the cable activation does not appear to change the proportion of smolts that successfully migrate through the San Francisco Bay. Cable activation impacts inbound and outbound migrating adult green sturgeon: travel time was increased for outbound migrations but decreased for inbound migrations. However, cable activation did not appear to impact the success of either migration type in this species.« less
Performance of a 10 kV, 625 kA, 85 kJ energy discharge module utilizing a solid dielectric switch
NASA Astrophysics Data System (ADS)
Richardson, R. A.; Cravey, W. R.; Goerz, D. A.
We have designed and tested an 87-kJ energy discharge system consisting of two 720-(mu)F, 11-kV capacitors discharged through parallel coaxial cables into a 250 nH load. Data will be presented on the current and voltage waveforms, with calculated values of the system inductance and resistance. The bank uses a solid dielectric switch punctured by an explosive bridge wire (EBW) to initiate the discharge. With the capacitors charged to 9 kV, a 625-kA peak current is sent through the load with a ringing frequency of 6.8 kHz. The coaxial cables used to transmit the current to the load are 3 m in length. Both RG-217 and YK-198 cable types were tested, which have an inductance of 74 nH/ft and 35 nH/ft respectively. Normal operation requires that each cable carry 52 kA. The cables were tested to 100 kA each by connecting fewer cables to the load, and gradually increasing the charge voltage. The solid dielectric switch was chosen for high reliability. Details of the switch will be describes and data on its performance will be presented.
Test-bed for the remote health monitoring system for bridge structures using FBG sensors
NASA Astrophysics Data System (ADS)
Lee, Chin-Hyung; Park, Ki-Tae; Joo, Bong-Chul; Hwang, Yoon-Koog
2009-05-01
This paper reports on test-bed for the long-term health monitoring system for bridge structures employing fiber Bragg grating (FBG) sensors, which is remotely accessible via the web, to provide real-time quantitative information on a bridge's response to live loading and environmental changes, and fast prediction of the structure's integrity. The sensors are attached on several locations of the structure and connected to a data acquisition system permanently installed onsite. The system can be accessed through remote communication using an optical cable network, through which the evaluation of the bridge behavior under live loading can be allowed at place far away from the field. Live structural data are transmitted continuously to the server computer at the central office. The server computer is connected securely to the internet, where data can be retrieved, processed and stored for the remote web-based health monitoring. Test-bed revealed that the remote health monitoring technology will enable practical, cost-effective, and reliable condition assessment and maintenance of bridge structures.
NASA Astrophysics Data System (ADS)
Torres, V.; Quek, S.; Gaydecki, P.
2010-02-01
Aging and deterioration of the main functional parts in civil structures is one of the biggest problems that private and governmental institutions, dedicated to operate and maintain such structures, are facing now days. In the case of relatively old suspension bridges, problems emerge due to corrosion and break of wires in the main cables. Decisive information and a reliable monitoring and evaluation are factors of great relevance required to prevent significant or catastrophic damages caused to the structure, and more importantly, to people. The main challenge for the NDE methods of inspection arises in dealing with the steel wrapping barrier of the suspension cable, which main function is to shield, shape and hold the bundles. The following work, presents a study of a multi-Magnetoresistive sensors system aiming to support the monitoring and evaluation of suspension cables at some of its stages. Modelling, signal acquisition, signal processing, experiments and the initial phases of implementation are presented and discussed widely.
18. View of Tombigbee River Bridge facing east showing upstream ...
18. View of Tombigbee River Bridge facing east showing upstream side of bridge opposite broken railing located on the downstream side. Fallen power pole and telephone cable is shown in the center of the photograph. - Tombigbee River Bridge, Spanning Tombigbee River at State Highway 182, Columbus, Lowndes County, MS
7. VIEW OF NORTHWEST PYLONS ON NORTH ABUTMENT, SUSPENSION CABLE ...
7. VIEW OF NORTHWEST PYLONS ON NORTH ABUTMENT, SUSPENSION CABLE AND 'U'-BOLT CONNECTIONS, LOOKING SOUTH - San Rafael Bridge, Spanning San Rafael River near Buckhorn Wash, Castle Dale, Emery County, UT
Implementation of civionics in a second generation steel-free bridge deck
NASA Astrophysics Data System (ADS)
Klowak, Chad; Rivera, Evangeline; Mufti, Aftab
2005-05-01
As the design and construction of civil structures continue to evolve, it is becoming imperative that these structures be monitored for their health. In order to meet this need, the discipline of Civionics has emerged. Civionics is a new term coined from Civil-Electronics, which is derived from the application of electronics to civil structures. It is similar to the term Avionics, which is used in the aerospace industry. If structural health monitoring is to become part of civil structural engineering, it should include Civionics. It involves the application of electronics to civil structures and aims to assist engineers in realizing the full benefits of structural health monitoring (SHM). In past SHM field applications, the main reason for the failure of a sensor was not the installation of the sensor itself but the egress of the sensor cables. Often, the cables were not handled and protected correctly. For SHM to be successful, specifications must be written on the entire process, beginning with system design and concluding with data collection, interpretation, and management. Civionics specifications include the technical requirements for a SHM system which encompasses fibre optic sensors, cables, conduits, junction boxes and the control room. A specification for data collection and storage is currently being developed as well. In the spring of 2004 research engineers at the University of Manitoba constructed a full-scale second generation steel free bridge deck. The bridge deck is the first of its kind to fully incorporate a complete civionics structural health monitoring system to monitor the deck's behaviour during destructive testing. Throughout the construction of the bridge deck, the entire installation of the civionics system was carried out by research engineers simulating an actual implementation of such a system in a large scale construction environment. One major concern that consulting engineers have raised is the impact that a civionics system that uses conduit, junction boxes, and other electrical ancillary protection, will have when embedded and installed externally on full-scale infrastructure. The full-scale destructive testing of a second generation steel-free bridge deck using a civionics system designed and implemented following guidelines in a civioncs specification manual at the University of Manitoba will provide engineers with the information necessary to address the constructability and structural integrity issues. Civioncs combined with structural health monitoring will provide engineers with feedback necessary to aid in optimizing design techniques and understanding our infrastructures performance, behaviour and state of condition.
17. INTERIOR VIEW OF WEST TRUSS, SHOWING RAILING, SUSPENSION CABLE, ...
17. INTERIOR VIEW OF WEST TRUSS, SHOWING RAILING, SUSPENSION CABLE, CONNECTION BOLTS AND 'U'-COUPLINGS, LOOKING SOUTHWEST - San Rafael Bridge, Spanning San Rafael River near Buckhorn Wash, Castle Dale, Emery County, UT
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
... 1625-AA11 Regulated Navigation Area; Waldo-Hancock Bridge Demolition, Penobscot River, Between Prospect... River between Prospect and Verona, ME, under and surrounding the Waldo- Hancock Bridge in order to facilitate the removal of the trusses, cables, and towers of the Waldo-Hancock Bridge. This temporary final...
77 FR 24147 - Drawbridge Operation Regulation; Mile 359.4, Missouri River, Kansas City, MO
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-23
... eight wire rope lifting cables that operate the lift span. This deviation allows the bridge to remain in the closed position while the lift cables are replaced. DATES: This deviation is effective from 10 p.m... cables that operate the lift span are replaced. The closure period will start at 10 p.m. on or about May...
77 FR 28488 - Drawbridge Operation Regulation; Upper Mississippi River, Hannibal, MO
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... lifting cables that operate the lift span. This deviation allows the bridge to remain in the closed position while the lift cables are replaced. DATES: This deviation is effective from 9 a.m. to 3 p.m. on or... wire rope lifting cables that operate the lift span are replaced. The closure period will be from 9 a.m...
Building Bridges One Line at a Time
ERIC Educational Resources Information Center
Grigsby, Cathy Murray
2012-01-01
In this article, first-grade students were taught the different kinds of lines that were part of the construction of various bridges--the curved lines of the arches of stone bridges, straight lines connecting the cables of a suspension bridge, vertical lines, horizontal lines, and so on. They gained practice in drawing structures and in fine brush…
Theory of the Maxwell pressure tensor and the tension in a water bridge.
Widom, A; Swain, J; Silverberg, J; Sivasubramanian, S; Srivastava, Y N
2009-07-01
A water bridge refers to an experimental "flexible cable" made up of pure de-ionized water, which can hang across two supports maintained with a sufficiently large voltage difference. The resulting electric fields within the de-ionized water flexible cable maintain a tension that sustains the water against the downward force of gravity. A detailed calculation of the water bridge tension will be provided in terms of the Maxwell pressure tensor in a dielectric fluid medium. General properties of the dielectric liquid pressure tensor are discussed along with unusual features of dielectric fluid Bernoulli flows in an electric field. The "frictionless" Bernoulli flow is closely analogous to that of a superfluid.
Application of firefly algorithm to the dynamic model updating problem
NASA Astrophysics Data System (ADS)
Shabbir, Faisal; Omenzetter, Piotr
2015-04-01
Model updating can be considered as a branch of optimization problems in which calibration of the finite element (FE) model is undertaken by comparing the modal properties of the actual structure with these of the FE predictions. The attainment of a global solution in a multi dimensional search space is a challenging problem. The nature-inspired algorithms have gained increasing attention in the previous decade for solving such complex optimization problems. This study applies the novel Firefly Algorithm (FA), a global optimization search technique, to a dynamic model updating problem. This is to the authors' best knowledge the first time FA is applied to model updating. The working of FA is inspired by the flashing characteristics of fireflies. Each firefly represents a randomly generated solution which is assigned brightness according to the value of the objective function. The physical structure under consideration is a full scale cable stayed pedestrian bridge with composite bridge deck. Data from dynamic testing of the bridge was used to correlate and update the initial model by using FA. The algorithm aimed at minimizing the difference between the natural frequencies and mode shapes of the structure. The performance of the algorithm is analyzed in finding the optimal solution in a multi dimensional search space. The paper concludes with an investigation of the efficacy of the algorithm in obtaining a reference finite element model which correctly represents the as-built original structure.
Bridge cable fracture detection with acoustic emission test (Conference Presentation)
NASA Astrophysics Data System (ADS)
Qu, Hongya; Li, Tiantian; Chen, Genda
2017-04-01
In this study, acoustic emission (AE) tests were conducted to detect and locate wire fracture in strands that are widely used in cable-stayed and suspension bridges. To effectively separate fracture signals from unwanted noises, distinct features of fracture, fracture-induced echo, and artificial tapping signals as well as their dependence on loading levels are characterized with short-time Fourier transform. To associate fracture scenarios with their acoustic features, two 20-foot-long ( 6.1 m) 270 ksi ( 1,862 MPa) steel strands of seven wires were tested with one wire notched off at center and support, respectively, up to 90% of its cross section area by 10% increment. Up to 80% reduction in cross section area of the notched wire, each strand was loaded to 20 kips ( 89 kN) corresponding to 35% of the minimum breaking strength and the acquired AE parameters such as hits, energy, and counts were found to change little. With a reduction of 90% of the section area of one wire, both strands were found to be fractured under approximately 16.5 kips ( 73.4 kN). The hits, energy, and counts of AE signals were all demonstrated to suddenly change with the fracture of the notched wire. However, only the counts of AE signals distributed over the length of the strands allow the localization of fracture point. The frequency band of fracture signals is significantly broader than that of either fracture-induced echo or artificial tapping noise. The time duration of artificial tapping noises is substantially longer than that of either fracture or fracture-induced echo. These distinct characteristics can be used to effectively separate fracture signals from noises for wire fracture detection and localization in practice.
Design of inclined loaded drilled shafts in high-plasticity clay environment.
DOT National Transportation Integrated Search
2011-05-01
Drilled shaft foundations are principally used to support many structures such as bridge piers, towers, : buildings, transmission towers, and roadway cable barriers. This research focuses on the use of drilled shafts : in the cable median barrier sys...
DOT National Transportation Integrated Search
2009-11-01
The objectives of this study are to pre-test analyze a decommissioned reinforced concrete (RC) bridge that is selected in consultation with the New York State Department of Transportation (NYSDOT), and design and plan the field tests of the bridge fo...
12. DETAIL VIEW OF BRIDGE, SHOWING SPRING LINE OF SPANS ...
12. DETAIL VIEW OF BRIDGE, SHOWING SPRING LINE OF SPANS FROM CROWN OF MID-CHANNEL PIER, PAIRED COLUMNS SUPPORTING DECK, ARCHED WINDOW RAILING, LOOKING WEST-NORTHWEST FROM EUREKA SOUTHERN RAILROAD BRIDGE. CABLES VISIBLE IN BACKGROUND ARE EARTHQUAKE RESTRAINERS RETROFITTED TO 1952 HIGHWAY BRIDGE, WHICH FUNCTIONED AS DESIGNED IN APRIL 1992 TEMBLOR - Van Duzen River Bridge, Spanning Van Duzen River at CA State Highway 101, Alton, Humboldt County, CA
NASA Astrophysics Data System (ADS)
Treyssède, Fabien
2018-01-01
Understanding thermal effects on the vibration of local (cable-dominant) modes in multi-cable structures is a complicated task. The main difficulty lies in the modification by temperature change of cable tensions, which are then undetermined. This paper applies a finite element procedure to investigate the effects of thermal loads on the linear dynamics of prestressed self-weighted multi-cable structures. Provided that boundary conditions are carefully handled, the discretization of cables with nonlinear curved beam elements can properly represent the thermoelastic behavior of cables as well as their linearized dynamics. A three-step procedure that aims to replace applied pretension forces with displacement continuity conditions is used. Despite an increase in the computational cost related to beam rotational degrees of freedom, such an approach has several advantages. Nonlinear beam finite elements are usually available in commercial codes. The overall method follows a thermoelastic geometrically non-linear analysis and hereby includes the main sources of non-linearities in multi-cable structures. The effects of cable bending stiffness, which can be significant, are also naturally accounted for. The accuracy of the numerical approach is assessed thanks to an analytical model for the vibration of a single inclined cable under temperature change. Then, the effects of thermal loads are investigated for two cable bridges, highlighting how natural frequencies can be affected by temperature. Although counterintuitive, a reverse relative change of natural frequency may occur for certain local modes. This phenomenon can be explained by two distinct mechanisms, one related to the physics intrinsic to cables and the other related to the thermal deflection of the superstructure. Numerical results show that cables cannot be isolated from the rest of the structure and the importance of modeling the whole structure for a quantitative analysis of temperature effects on the dynamics of cable bridges.
DOT National Transportation Integrated Search
2015-08-01
In post-tensioning construction, steel cables : running through PVC pipes buried in concrete : construction components are subjected to a high : level of tension and then secured. This gives the : component significant strength, allowing bridge : spa...
With deck removed and critical members severed, the bridge begins ...
With deck removed and critical members severed, the bridge begins to succumb to tractors, pulling cables attached to its downstream side. View is to the southeast from confluence of Trinity and South Fork Trinity Rivers - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
DOT National Transportation Integrated Search
2009-11-06
The objectives of this study are to pre-test analyze a decommissioned RC bridge that is selected in consultation : with New York State Department of Transportation (NYSDOT), and design and plan the field tests of the bridge : for the performance qual...
11. VIEW OF BRIDGE, LOOKING WEST FROM THE EAST MAIN ...
11. VIEW OF BRIDGE, LOOKING WEST FROM THE EAST MAIN SUSPENSION CABLE ANCHORAGE OVER THE EAST TOWER. THE ORIGINAL WOOD TOWER IS ENCASED IN CONCRETE AND RUBBLE MASONRY. THE VERDE RIVER FLOWS FROM RIGHT TO LEFT. FebruAry 1987 - Verde River Sheep Bridge, Spanning Verde River (Tonto National Forest), Cave Creek, Maricopa County, AZ
Use of fiber reinforced polymer composite cable for post-tensioning application : [summary].
DOT National Transportation Integrated Search
2015-05-01
Post-tensioning is a method frequently used in construction of segmental bridges, continuous : I-girder bridges, and piers. It involves using tendons, which are multiple strands, usually : steel, installed through voids formed by ducts either inside ...
DETAIL OF FLOORBEAM CONNECTIONS AND STRINGERS FROM THE UNDERSIDE OF ...
DETAIL OF FLOORBEAM CONNECTIONS AND STRINGERS FROM THE UNDERSIDE OF THE BRIDGE; NOTE CABLES ADDED TO STRENGTHEN THE LOWER CHORDS OF THE TRUSS - Bedford County Bridge No. 4, Township Route 655 spanning Yellow Creek, Hopewell, Bedford County, PA
LUC-2-1682 Anthony Wayne Bridge : main cable long term health monitoring.
DOT National Transportation Integrated Search
2014-01-01
In preparation for a large rehabilitation project on the Anthony Wayne Bridge (AWB), the Ohio Department of : Transportation has expressed interest in evaluating monitoring and protection strategies which may extend the life : of the AWB. This study ...
Wyman, Megan T.; Kavet, Robert
2017-01-01
Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth’s main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth’s main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We have studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leading underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Based on a detailed gradiometer survey, we found that the distortions in the earth’s main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. In addition, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon. PMID:28575021
Klimley, A Peter; Wyman, Megan T; Kavet, Robert
2017-01-01
Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We have studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leading underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. In addition, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimley, A. Peter; Wyman, Megan T.; Kavet, Robert
Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leadingmore » underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. And based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Additionally, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.« less
Klimley, A. Peter; Wyman, Megan T.; Kavet, Robert; ...
2017-06-02
Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leadingmore » underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. And based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Additionally, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.« less
Identification of unusual events in multi-channel bridge monitoring data
NASA Astrophysics Data System (ADS)
Omenzetter, Piotr; Brownjohn, James Mark William; Moyo, Pilate
2004-03-01
Continuously operating instrumented structural health monitoring (SHM) systems are becoming a practical alternative to replace visual inspection for assessment of condition and soundness of civil infrastructure such as bridges. However, converting large amounts of data from an SHM system into usable information is a great challenge to which special signal processing techniques must be applied. This study is devoted to identification of abrupt, anomalous and potentially onerous events in the time histories of static, hourly sampled strains recorded by a multi-sensor SHM system installed in a major bridge structure and operating continuously for a long time. Such events may result, among other causes, from sudden settlement of foundation, ground movement, excessive traffic load or failure of post-tensioning cables. A method of outlier detection in multivariate data has been applied to the problem of finding and localising sudden events in the strain data. For sharp discrimination of abrupt strain changes from slowly varying ones wavelet transform has been used. The proposed method has been successfully tested using known events recorded during construction of the bridge, and later effectively used for detection of anomalous post-construction events.
75 FR 65232 - Drawbridge Operation Regulation; Illinois River, Pekin, IL
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-22
... Waterway, mile 151.2, Pekin, Illinois. The deviation is necessary to allow the replacement of lift cables and associated mechanisms on the lift span and allows the bridge to be maintained in the closed-to..., Illinois to remain in the closed-to-navigation position for a five day period while lift cables and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-08
... 1625-AA00 Safety Zone, Submarine Cable Replacement Operations, Kent Island Narrows; Queen Anne's County... Guard proposes to establish a temporary safety zone encompassing certain waters of Kent Island Narrows... potential safety hazards associated with the bridge project. Entry into this zone would be prohibited unless...
Job Grading Standard for Blocker and Bracer WG-4602.
ERIC Educational Resources Information Center
Civil Service Commission, Washington, DC. Bureau of Policies and Standards.
The standard is used to grade nonsupervisor's work involved in blocking, bracing, staying, and securing cargo for shipment by land, sea, or air. It requires skill in constructing, placing, and installing wooden blocks, wedges, bracing structures and other staying devices, as well as skill in securing items using wires, ropes, chains, cables,…
Post-tensioned carbon fiber composite cable (CFCC), Little Pond Bridge, Route 302, Fryeburg, Maine.
DOT National Transportation Integrated Search
2013-02-01
Corrosion of reinforcing steel in concrete has been a constant and expensive maintenance problem which : is exacerbated by Maines coastal environment, harsh winters, and the use of chlorides on the roads and : bridges. Carbon fiber products are in...
364. J.G.M., Delineator February 1934 STATE OF CALIFORNIA; DEPARTMENT OF ...
364. J.G.M., Delineator February 1934 STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; CONTRACT NO. 6; SUPERSTRUCTURE - WEST BAY CROSSING; SAN FRANCISCO ANCHORAGE CABLE BENT CASTING; AMERICAN BRIDGE CO.; AMBRIDGE PLANT; ORDER NO. G 4852 C; SHEET NO. 100 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA
378. A.C.S., Delineator March 1933 STATE OF CALIFORNIA; DEPARTMENT OF ...
378. A.C.S., Delineator March 1933 STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; CONTRACT NO. 6A; SUPERSTRUCTURE - WEST BAY CROSSING; YERBA BUENA ANCHORAGE & CABLE BENT. AMERICAN BRIDGE CO.; AMBRIDGE PLANT; ORDER NO. G 4866; SHEET NO. E4 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-24
... the operating lift cables. DATES: This deviation is effective from 12:01 a.m. July 9, 2011, until 11.... SUPPLEMENTARY INFORMATION: The Burlington County Bridge Commission, who owns and operates this vertical-lift... 33 CFR 117.5 and 117.716(b) to facilitate the replacement of the lift cables. The Burlington-Bristol...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
... the operating lift cables. DATES: This deviation is effective from 7 a.m. on October 30, 2012 to 3 p.m.... SUPPLEMENTARY INFORMATION: The Burlington County Bridge Commission, who owns and operates this vertical-lift... 33 CFR 117.5 and 117.716(b) to facilitate the adjustment of the operational lift cables. The...
Time-delayed directional beam phased array antenna
Fund, Douglas Eugene; Cable, John William; Cecil, Tony Myron
2004-10-19
An antenna comprising a phased array of quadrifilar helix or other multifilar antenna elements and a time-delaying feed network adapted to feed the elements. The feed network can employ a plurality of coaxial cables that physically bridge a microstrip feed circuitry to feed power signals to the elements. The cables provide an incremental time delay which is related to their physical lengths, such that replacing cables having a first set of lengths with cables having a second set of lengths functions to change the time delay and shift or steer the antenna's main beam. Alternatively, the coaxial cables may be replaced with a programmable signal processor unit adapted to introduce the time delay using signal processing techniques applied to the power signals.
Cable Discharge System for fundamental detonator studies
NASA Technical Reports Server (NTRS)
Peevy, Gregg R.; Barnhart, Steven G.; Brigham, William P.
1994-01-01
Sandia National Laboratories has recently completed the modification and installation of a cable discharge system (CDS) which will be used to study the physics of exploding bridgewire (EBW) detonators and exploding foil initiators (EFI or slapper). Of primary interest are the burst characteristics of these devices when subjected to the constant current pulse delivered by this system. The burst process involves the heating of the bridge material to a conductive plasma and is essential in describing the electrical properties of the bridgewire foil for use in diagnostics or computer models. The CDS described herein is capable of delivering up to an 8000 A pulse of 3 micron duration. Experiments conducted with the CDS to characterize the EBW and EFI burst behavior are also described. In addition, the CDS simultaneous VISAR capability permits updating the EFI electrical Gurney analysis parameters used in our computer simulation codes. Examples of CDS generated data for a typical EFI and EBW detonator are provided.
DOT National Transportation Integrated Search
2008-09-01
Side-by-side box-beam bridges are low-cost and easy to construct, : but it is difficult to inspect the interior beam webs, which can hide : potential defects such as cracking and other deterioration. A new : design reduces these problems and could do...
366. F.A.N., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF ...
366. F.A.N., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; WEST BAY CROSSING; SAN FRANCISCO CABLE BENT; DRG. NO. 33 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA
379. Delineator Unknown December 1932 STATE OF CALIFORNIA; DEPARTMENT OF ...
379. Delineator Unknown December 1932 STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; CABLES AND ATTACHMENTS - WEST BAY CROSSING; SPLAY CASTINGS; CONTRACT NO. 6A; DRAWING NO. 4 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA
Effects of seismic devices on transverse responses of piers in the Sutong Bridge
NASA Astrophysics Data System (ADS)
Shen, Xing; Camara, Alfredo; Ye, Aijun
2015-12-01
The Sutong Bridge in China opened to traffic in 2008, and is an arterial connection between the cities of Nantong and Suzhou. It is a cable-stayed bridge with a main span of 1,088 m. Due to a tight construction schedule and lack of suitable seismic devices at the time, fixed supports were installed between the piers and the girder in the transverse direction. As a result, significant transverse seismic forces could occur in the piers and foundations, especially during a return period of a 2500-year earthquake. Therefore, the piers, foundations and fixed bearings had to be designed extraordinarily strong. However, when larger earthquakes occur, the bearings, piers and foundations are still vulnerable. The recent rapid developments in seismic technology and the performance-based design approach offer a better opportunity to optimize the transverse seismic design for the Sutong Bridge piers. The optimized design can be applied to the Sutong Bridge (as a retrofit), as well as other bridges. Seismic design alternatives utilizing viscous fluid dampers (VFD), or friction pendulum sliding bearings (FPSB), or transverse yielding metallic dampers (TYMD) are thoroughly studied in this work, and the results are compared with those from the current condition with fixed transverse supports and a hypothetical condition in which only sliding bearings are provided on top of the piers (the girder can move "freely" in the transverse direction during the earthquake, except for frictional forces of the sliding bearings). Parametric analyses were performed to optimize the design of these proposed seismic devices. From the comparison of the peak bridge responses in these configurations, it was found that both VFD and TYMD are very effective in the reduction of transverse seismic forces in piers, while at the same time keeping the relative transverse displacements between piers and the box girder within acceptable limits. However, compared to VFD, TYMD do not interact with the longitudinal displacements of the girder, and have simpler details and lower initial and maintenance costs. Although the use of FPSB can also reduce seismic forces, it generally causes the transverse relative displacements to be higher than acceptable limits.
Low-Heat-Leak Electrical Leads For Cryogenic Systems
NASA Technical Reports Server (NTRS)
Wise, Stephanie A.; Hooker, Matthew W.
1994-01-01
Electrical leads offering high electrical conductivity and low thermal conductivity developed for use in connecting electronic devices inside cryogenic systems to power supplies, signal-processing circuits, and other circuitry located in nearby warmer surroundings. Strip of superconductive leads on ceramic substrate, similar to ribbon cable, connects infrared detectors at temperature of liquid helium with warmer circuitry. Electrical leads bridging thermal gradient at boundary of cryogenic system designed both to minimize conduction of heat from surroundings through leads into system and to minimize resistive heating caused by electrical currents flowing in leads.
Calladine, C R
2015-04-13
Davies Gilbert's work on the catenary is notable on two counts. First, it influenced Thomas Telford in formulating his final design for the Menai Strait suspension bridge (1826); and second, it established for the first time the form of the 'catenary of equal strength'. The classical catenary is a uniform flexible chain or cable hanging freely under gravity between supports. The 'catenary of equal strength' is the form of a cable whose cross-sectional area is made proportional to the tension at each point, so that the tensile stress is uniform throughout. In this paper I provide a sketch of the lives and achievements of Gilbert and Telford, and of their interaction over the Menai Bridge. There follows a commentary on Gilbert's 1826 paper, and on his two related publications; and a brief sketch of the earlier history of the catenary. I then describe the development of the suspension bridge up to the present time. Finally, I discuss relations between mathematical analysts and practical engineers. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
77 FR 72737 - Drawbridge Operation Regulation; Mile 359.4, Missouri River, Kansas City, MO
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-06
... counterweight cables that facilitate movement of the lift span. This deviation allows the bridge to remain in... movement of the lift span are replaced. The closure period will start at 7 a.m. on February 11, 2013, and continue through 11 p.m. on March 2, 2013. Once the counterweight cables are removed, the lift span will...
Nondestructive Testing of Overhead Transmission LINES—NUMERICAL and Experimental Investigation
NASA Astrophysics Data System (ADS)
Kulkarni, S.; Hurlebaus, S.
2009-03-01
Overhead transmission lines are periodically inspected using both on-ground and helicopter-aided visual inspection. Factors including sun glare, cloud cover, close proximity to power lines and the rapidly changing visual circumstances make airborne inspection of power lines a particularly hazardous task. In this study, a finite element model is developed that can be used to create the theoretical dispersion curves of an overhead transmission line. The numerical results are then verified with experimental test using a non-contact and broadband laser detection technique. The methodology developed in this study can be further extended to a continuous monitoring system and be applied to other cable monitoring applications, such as bridge cable monitoring, which would otherwise put human inspectors at risk.
377. F.A.N. and Q.E.D., Delineators Date Unknown STATE OF CALIFORNIA; ...
377. F.A.N. and Q.E.D., Delineators Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; WEST BAY CROSSING; YERBA BUENA CABLE BENT; DRG. NO. 34 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA
NASA Astrophysics Data System (ADS)
Zhou, Xuhong; Cao, Liang; Chen, Y. Frank; Liu, Jiepeng; Li, Jiang
2016-01-01
The developed pre-stressed cable reinforced concrete truss (PCT) floor system is a relatively new floor structure, which can be applied to various long-span structures such as buildings, stadiums, and bridges. Due to the lighter mass and longer span, floor vibration would be a serviceability concern problem for such systems. In this paper, field testing and theoretical analysis for the PCT floor system were conducted. Specifically, heel-drop impact and walking tests were performed on the PCT floor system to capture the dynamic properties including natural frequencies, mode shapes, damping ratios, and acceleration response. The PCT floor system was found to be a low frequency (<10 Hz) and low damping (damping ratio<2 percent) structural system. The comparison of the experimental results with the AISC's limiting values indicates that the investigated PCT system exhibits satisfactory vibration perceptibility, however. The analytical solution obtained from the weighted residual method agrees well with the experimental results and thus validates the proposed analytical expression. Sensitivity studies using the analytical solution were also conducted to investigate the vibration performance of the PCT floor system.
28. VIEW TO NORTHEAST. VIEW OVER TOP OF TRUSS FROM ...
28. VIEW TO NORTHEAST. VIEW OVER TOP OF TRUSS FROM CONTROL CABIN DECK. Photographer unknown, August 1947 (Note that frame for electrical power cables is still in place, though the bridge was converted to hand operation almost ten years earlier.) - Gianella Bridge, Spanning Sacramento River at State Highway 32, Hamilton City, Glenn County, CA
A 1-2 GHz pulsed and continuous wave electron paramagnetic resonance spectrometer
NASA Astrophysics Data System (ADS)
Quine, Richard W.; Rinard, George A.; Ghim, Barnard T.; Eaton, Sandra S.; Eaton, Gareth R.
1996-07-01
A microwave bridge has been constructed that performs three types of electron paramagnetic resonance experiments: continuous wave, pulsed saturation recovery, and pulsed electron spin echo. Switching between experiment types can be accomplished via front-panel switches without moving the sample. Design features and performance of the bridge and of a resonator used in testing the bridge are described. The bridge is constructed of coaxial components connected with semirigid cable. Particular attention has been paid to low-noise design of the preamplifier and stability of automatic frequency control circuits. The bridge incorporates a Smith chart display and phase adjustment meter for ease of tuning.
76 FR 76298 - Drawbridge Operation Regulation; Old Brazos River, Freeport, Brazoria County, TX
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-07
... deviation allows the bridge to remain closed to navigation for four days to replace lift cables. DATES: This... deviation will allow the lift span of the bridge to remain in the closed-to-navigation position in order for.... The project involves the replacement of the old swing span with the current vertical lift span. Vessel...
Real-time kinematic PPP GPS for structure monitoring applied on the Severn Suspension Bridge, UK
NASA Astrophysics Data System (ADS)
Tang, Xu; Roberts, Gethin Wyn; Li, Xingxing; Hancock, Craig Matthew
2017-09-01
GPS is widely used for monitoring large civil engineering structures in real time or near real time. In this paper the use of PPP GPS for monitoring large structures is investigated. The bridge deformation results estimated using double differenced measurements is used as the truth against which the performance of kinematic PPP in a real-time scenario for bridge monitoring is assessed. The towers' datasets with millimetre level movement and suspension cable dataset with centimetre/decimetre level movement were processed by both PPP and DD data processing methods. The consistency of tower PPP time series indicated that the wet tropospheric delay is the major obstacle for small deflection extraction. The results of suspension cable survey points indicate that an ionospheric-free linear measurement is competent for bridge deformation by PPP kinematic model, the frequency domain analysis yields very similar results using either PPP or DD. This gives evidence that PPP can be used as an alternative method to DD for large structure monitoring when DD is difficult or impossible because of large baseline lengths, power outages or natural disasters. The PPP residual tropospheric wet delays can be applied to improve the capacity of small movement extraction.
Calladine, C. R.
2015-01-01
Davies Gilbert's work on the catenary is notable on two counts. First, it influenced Thomas Telford in formulating his final design for the Menai Strait suspension bridge (1826); and second, it established for the first time the form of the ‘catenary of equal strength’. The classical catenary is a uniform flexible chain or cable hanging freely under gravity between supports. The ‘catenary of equal strength’ is the form of a cable whose cross-sectional area is made proportional to the tension at each point, so that the tensile stress is uniform throughout. In this paper I provide a sketch of the lives and achievements of Gilbert and Telford, and of their interaction over the Menai Bridge. There follows a commentary on Gilbert's 1826 paper, and on his two related publications; and a brief sketch of the earlier history of the catenary. I then describe the development of the suspension bridge up to the present time. Finally, I discuss relations between mathematical analysts and practical engineers. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750153
Existence of Torsional Solitons in a Beam Model of Suspension Bridge
NASA Astrophysics Data System (ADS)
Benci, Vieri; Fortunato, Donato; Gazzola, Filippo
2017-11-01
This paper studies the existence of solitons, namely stable solitary waves, in an idealized suspension bridge. The bridge is modeled as an unbounded degenerate plate, that is, a central beam with cross sections, and displays two degrees of freedom: the vertical displacement of the beam and the torsional angles of the cross sections. Under fairly general assumptions, we prove the existence of solitons. Under the additional assumption of large tension in the sustaining cables, we prove that these solitons have a nontrivial torsional component. This appears relevant for security since several suspension bridges collapsed due to torsional oscillations.
A Rapidly Deployable Bridge System
2013-01-15
17 - 4PH SS H1150 Hinge Pins 30x106 psi (2) 143 ksi (4) 157 ksi (4) - 104.7 ksi SS T316 Cables 30x106 psi - 116 ksi - 77.3 ksi The stress...CLASSIFICATION OF: 17 . LIMITATION OF ABSTRACT Public Release 18. NUMBER OF PAGES 12 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b...an MLC30/12m configuration. The MLC50/20m system uses 17 modules in a 9/8 configuration. The connection of the modules to each other is by means of
18 CFR 1304.1 - Scope and intent.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., bridges, aerial cables, culverts, pipelines, fish attractors, shoreline stabilization projects, channel... subjacent to TVA reservoirs and exercises its land rights to carry out the purposes and policies of the Act...
David W. Green; James W. Evans; Joseph F. Murphy; Cherilyn A. Hatfield
2005-01-01
Forest Products Laboratory (FPL) assistance was requested in mechanical grading of logs for two cable suspension bridges intended for pedestrian use in parks near Missoula, Montana. Two hundred ninety two lodgepole pine logs were obtained from a beetle-killed stand near Elk City, Idaho, by Porterbuilt, Inc., of Hamilton, Montana, and machined (dowelled) to a constant...
Lewis, Gregory S; Caroom, Cyrus T; Wee, Hwabok; Jurgensmeier, Darin; Rothermel, Shane D; Bramer, Michelle A; Reid, John Spence
2015-10-01
The biomechanical difficulty in fixation of a Vancouver B1 periprosthetic fracture is purchase of the proximal femoral segment in the presence of the hip stem. Several newer technologies provide the ability to place bicortical locking screws tangential to the hip stem with much longer lengths of screw purchase compared with unicortical screws. This biomechanical study compares the stability of 2 of these newer constructs to previous methods. Thirty composite synthetic femurs were prepared with cemented hip stems. The distal femur segment was osteotomized, and plates were fixed proximally with either (1) cerclage cables, (2) locked unicortical screws, (3) a composite of locked screws and cables, or tangentially directed bicortical locking screws using either (4) a stainless steel locking compression plate system with a Locking Attachment Plate (Synthes) or (5) a titanium alloy Non-Contact Bridging system (Zimmer). Specimens were tested to failure in either axial or torsional quasistatic loading modes (n = 3) after 20 moderate load preconditioning cycles. Stiffness, maximum force, and failure mechanism were determined. Bicortical constructs resisted higher (by an average of at least 27%) maximum forces than the other 3 constructs in torsional loading (P < 0.05). Cables constructs exhibited lower maximum force than all other constructs, in both axial and torsional loading. The bicortical titanium construct was stiffer than the bicortical stainless steel construct in axial loading. Proximal fixation stability is likely improved with the use of bicortical locking screws as compared with traditional unicortical screws and cable techniques. In this study with a limited sample size, we found the addition of cerclage cables to unicortical screws may not offer much improvement in biomechanical stability of unstable B1 fractures.
Magnetic susceptibility well-logging unit with single power supply thermoregulation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeley, R. L.
1985-11-05
The magnetic susceptibility well-logging unit with single power supply thermoregulation system provides power from a single surface power supply over a well-logging cable to an integrated circuit voltage regulator system downhole. This voltage regulator system supplies regulated voltages to a temperature control system and also to a Maxwell bridge sensing unit which includes the solenoid of a magnetic susceptibility probe. The temperature control system is provided with power from the voltage regulator system and operates to permit one of several predetermined temperatures to be chosen, and then operates to maintain the solenoid of a magnetic susceptibility probe at this chosenmore » temperature. The temperature control system responds to a temperature sensor mounted upon the probe solenoid to cause resistance heaters concentrically spaced from the probe solenoid to maintain the chosen temperature. A second temperature sensor on the probe solenoid provides a temperature signal to a temperature transmitting unit, which initially converts the sensed temperature to a representative voltage. This voltage is then converted to a representative current signal which is transmitted by current telemetry over the well logging cable to a surface electronic unit which then reconverts the current signal to a voltage signal.« less
NASA Astrophysics Data System (ADS)
Omenzetter, Piotr; Brownjohn, James M. W.; Moyo, Pilate
2003-08-01
Continuously operating instrumented structural health monitoring (SHM) systems are becoming a practical alternative to replace visual inspection for assessment of condition and soundness of civil infrastructure. However, converting large amount of data from an SHM system into usable information is a great challenge to which special signal processing techniques must be applied. This study is devoted to identification of abrupt, anomalous and potentially onerous events in the time histories of static, hourly sampled strains recorded by a multi-sensor SHM system installed in a major bridge structure in Singapore and operating continuously for a long time. Such events may result, among other causes, from sudden settlement of foundation, ground movement, excessive traffic load or failure of post-tensioning cables. A method of outlier detection in multivariate data has been applied to the problem of finding and localizing sudden events in the strain data. For sharp discrimination of abrupt strain changes from slowly varying ones wavelet transform has been used. The proposed method has been successfully tested using known events recorded during construction of the bridge, and later effectively used for detection of anomalous post-construction events.
Monitoring of Concrete Structures Using Ofdr Technique
NASA Astrophysics Data System (ADS)
Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.
2011-06-01
Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.
NASA Astrophysics Data System (ADS)
Kubodera, Shinji; Tanzawa, Tsutomu; Morisawa, Masayuki; Kiyohiro, Noriaki
Carrier type dynamic strain amplifiers are frequently used for stress measurement with strain gages. That is because the carrier type dynamic strain amplifier can conduct high precision measurement since it is highly resistant against hum noise from the power supply frequency in principle and is free from the thermoelectomotive force even if a metal contact is used in wiring to a Wheatstone bridge for measuring. A problem of the carrier type dynamic strain amplifier is generation of Capacitive component (hereinafter referred to as the C component) in an input cable connecting from the amplifier to the input sensor (Wheatstone bridge for measuring). The C component varies with cable length, cable materials, or ambient temperature change. The aforementioned changing adversely affects the stability of the amplifier. In this paper, we realize and analyze the method that increases the stability of amplifier by detecting, eliminating and self tracking the above C component constantly. Used carrier frequency at 12kHz and 28kHz. We made amplifiers with noise resistant and wide band frequency of measurement range and verified the theory of the Capacitance Self Tracing with the above amplifiers.
Damping properties of fiber reinforced composite suitable for stayed cable
NASA Astrophysics Data System (ADS)
Li, Jianzhi; Sun, Baochen; Du, Yanliang
2011-11-01
Carbon fiber reinforced plastics (CFRP) cables were initially most investigated to replace steel cables. To further explore the advantages of FRP cables, the potential ability of vibration control is studied in this paper emphasizing the designable characteristic of hybrid FRP cables. Fiber reinforced vinyl ester composites and fiber reinforced epoxy composites were prepared by the pultrusion method. Due to the extensive application of fiber reinforced composites, the temperature spectrum and frequency spectrum of loss factor for the composite were tested using dynamic mechanical analysis (DMA) equipment. The damping properties and damping mechanism of the composite were investigated and discussed at different temperatures and frequencies. The result indicates that the loss factor of the composites is increasing with the increase of the frequency from 0.1Hz to 2 Hz and decreasing with the decrease of the temperature from -20°C to 60°C. The loss factor of the carbon fiber composite is higher than that of the glass fiber for the same matrix. The loss factor of the vinyl ester composite is higher than that of the epoxy composite for the same fiber.
Damping properties of fiber reinforced composite suitable for stayed cable
NASA Astrophysics Data System (ADS)
Li, Jianzhi; Sun, Baochen; Du, Yanliang
2012-04-01
Carbon fiber reinforced plastics (CFRP) cables were initially most investigated to replace steel cables. To further explore the advantages of FRP cables, the potential ability of vibration control is studied in this paper emphasizing the designable characteristic of hybrid FRP cables. Fiber reinforced vinyl ester composites and fiber reinforced epoxy composites were prepared by the pultrusion method. Due to the extensive application of fiber reinforced composites, the temperature spectrum and frequency spectrum of loss factor for the composite were tested using dynamic mechanical analysis (DMA) equipment. The damping properties and damping mechanism of the composite were investigated and discussed at different temperatures and frequencies. The result indicates that the loss factor of the composites is increasing with the increase of the frequency from 0.1Hz to 2 Hz and decreasing with the decrease of the temperature from -20°C to 60°C. The loss factor of the carbon fiber composite is higher than that of the glass fiber for the same matrix. The loss factor of the vinyl ester composite is higher than that of the epoxy composite for the same fiber.
Investigation of carbon fiber composite cables (CFCC) in prestressed concrete piles.
DOT National Transportation Integrated Search
2014-04-01
The Florida Department of Transportation (FDOT) commonly uses prestressed concrete piles in : bridge foundations. These piles are prestressed with steel strands that, when installed in aggressive or : marine environments, are subject to corrosion and...
Reusable Hot-Wire Cable Cutter
NASA Technical Reports Server (NTRS)
Pauken, Michael T.; Steinkraus, Joel M.
2010-01-01
During the early development stage of balloon deployment systems for missions, nichrome wire cable cutters were often used in place of pyro-actuated cutters. Typically, a nichrome wire is wrapped around a bundle of polymer cables with a low melting point and connected to a relay-actuated electric circuit. The heat from the nichrome reduces the strength of the cable bundle, which quickly breaks under a mechanical load and can thus be used as a release mechanism for a deployment system. However, the use of hand-made heated nichrome wire for cutters is not very reliable. Often, the wrapped nichrome wire does not cut through the cable because it either pulls away from its power source or does not stay in contact with the cable being cut. Because nichrome is not readily soldered to copper wire, unreliable mechanical crimps are often made to connect the nichrome to an electric circuit. A self-contained device that is reusable and reliable was developed to sever cables for device release or deployment. The nichrome wire in this new device is housed within an enclosure to prevent it from being damaged by handling. The electric power leads are internally connected within the unit to the nichrome wire using a screw terminal connection. A bayonet plug, a quick and secure method of connecting the cutter to the power source, is used to connect the cutter to the power leads similar to those used in pyro-cutter devices. A small ceramic tube [0.25-in. wide 0.5-in. long (.6.4-mm wide 13-mm long)] houses a spiraled nichrome wire that is heated when a cable release action is required. The wire is formed into a spiral coil by wrapping it around a mandrel. It is then laid inside the ceramic tube so that it fits closely to the inner surface of the tube. The ceramic tube provides some thermal and electrical insulation so that most of the heat generated by the wire is directed toward the cable bundle in the center of the spiral. The ceramic tube is cemented into an aluminum block, which holds it in position. The leads of the nichrome wire are attached to screw terminals that connect them to power leads. A bayonet plug mounted at the bottom of the rectangular block connects the power leads to a relay circuit. A thin aluminum shell encloses the entire structure, leaving access points to attach to the bayonet plug and to feed a cable into the cylinder. The access holes for the deployment cable are a smaller diameter than the nichrome coil to prevent the cable from coming in direct contact with the nichrome when loaded. It uses the same general method of severing a cable with a heated wire as was used previously, but implements it in such a way that it is more reliable and less prone to failure. It creates a mechanism to create repeatability that was nonexistent in the previous method.
Planar dynamics of large-deformation rods under moving loads
NASA Astrophysics Data System (ADS)
Zhao, X. W.; van der Heijden, G. H. M.
2018-01-01
We formulate the problem of a slender structure (a rod) undergoing large deformation under the action of a moving mass or load motivated by inspection robots crawling along bridge cables or high-voltage power lines. The rod is described by means of geometrically exact Cosserat theory which allows for arbitrary planar flexural, extensional and shear deformations. The equations of motion are discretised using the generalised-α method. The formulation is shown to handle the discontinuities of the problem well. Application of the method to a cable and an arch problem reveals interesting nonlinear phenomena. For the cable problem we find that large deformations have a resonance detuning effect on cable dynamics. The problem also offers a compelling illustration of the Timoshenko paradox. For the arch problem we find a stabilising (delay) effect on the in-plane collapse of the arch, with failure suppressed entirely at sufficiently high speed.
Investigation of carbon fiber composite cables (CFCC) in prestressed concrete piles : [summary].
DOT National Transportation Integrated Search
2014-04-01
FDOT commonly uses concrete piles prestressed : with steel strands in bridge foundations due to : their economy of design, fabrication, and : installation. However, when installed in marine : environments, the steel strands are prone to : corrosion a...
215. Dennis Hill, Photographer May 1998 DETAIL VIEW OF STRAND ...
215. Dennis Hill, Photographer May 1998 DETAIL VIEW OF STRAND SHOES AND STORM CABLE EYE BARS IN YERBA BUENA ANCHORAGE, FACING EAST. - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA
Construction of bridge decks with precast prestressed deck planks
DOT National Transportation Integrated Search
2002-04-01
The purpose of this paper is to discuss the construction and early performance of two 1999 - 2000 bridge deck replacement state contracts in Illinois that included precast, prestressed concrete (PPC) deck planks. Metal stay-in-place forms used in one...
Civionics specifications for fiber optic sensors for structural health monitoring
NASA Astrophysics Data System (ADS)
Rivera, Evangeline; Mufti, Aftab A.; Thomson, Douglas J.
2004-07-01
As the design and construction of civil structures continue to evolve, it is becoming imperative that these structures be monitored for their health. In order to meet this need, the discipline of Civionics has emerged. It involves the applications to civil structures and aims to assist engineers in realizing the full benefits of structural health monitoring (SHM). Therefore, the goal of the specification outlined in this work is to ensure that correct installation and operating of fiber optic sensors, such as bridges, will be discussed that motivated the writing of these specifications. The main reason for the failure of FOS based monitoring systems can be traced directly to the installation of the fiber sensor itself. Therefore, by creating a standard procedure for SHM, several ambiguities are eliminated such as fiber sensor specifications and the types of cables required. As a result, these specifications will help ensure that the sensors will survive the installation process and eventually prove their value over years of monitoring the health of the structure. The Civionics FOS specifications include the requirements for fiber sensors, specifically Bragg grating sensors, and their corresponding readout unit. It also includes specifications on the cables, conduits, junction boxes, cable termination and the environmental.
NASA Astrophysics Data System (ADS)
Korytov, M. S.; Shcherbakov, V. S.; Titenko, V. V.
2018-01-01
Limitation of the swing of the bridge crane cargo rope is a matter of urgency, as it can significantly improve the efficiency and safety of the work performed. In order to completely dampen the pendulum swing after the break-up of a bridge or a bridge-crane freight cart to maximum speed, it is necessary, in the normal repulsion control of the electric motor, to split the process of dispersion into a minimum of three gaps. For a dynamic system of swinging of a bridge crane on a flexible cable hanger in a separate vertical plane, an analytical solution was obtained to determine the temporal dependence of the cargo rope angle relative to the gravitational vertical when the cargo suspension point moves with constant acceleration. The resulting analytical dependence of the cargo rope angle and its first derivative can break the process of dispersing the cargo suspension point into three stages of dispersal and braking with various accelerations and enter maximum speed of movement of the cargo suspension point. In doing so, the condition of eliminating the swings of the cargo rope relative to the gravitational vertical is fulfilled. Provides examples of the maximum speed output constraints-to-time when removing the rope swing.
Modified van Vaals-Bergman coaxial cable coil (lambda coil) for high-field imaging.
Matsuzawa, H; Nakada, T
1996-03-01
An easily constructed, low-capacitive coupling volume coil based on the van Vaals-Bergman coaxial cable coil for high field imaging is described. The coil (designated "lambda coil") was constructed using two 5/4 length 50 omega coaxial cables matched to a 50 omega transmission line with LC bridge balun. The standing wave on the single 5/4 lambda length coaxial cable provides two points of current maxima in oppositional direction. Therefore, the four current elements necessary for effective B1 field generation can be obtained by two 5/4 lambda length coaxial cables arranged analogous to 1/2 lambda T-antenna. Capacitive coupling between the coil elements and conductive samples (i.e. animals) is minimized by simply retaining the shield of the coaxial cable for the area of voltage maxima. The lambda coil exhibited excellent performance as a volume coil with a high quality factor and highly homogeneous rf fields. Because of its dramatically simple architecture and excellent performance, the lambda coil configuration appears to be an economical alternative to the original van Vaals-Bergman design, especially for research facilities with a high field magnet and limited bore space.
Reduce Nb3Sn Strand Deformation when Fabricating High Jc Rutherford Cables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Xuan
2012-12-17
During Phase I, our efforts were to reduce subelements deformation when fabricating Nb3Sn Rutherford cables. Our first focus is on 217-sublement tube type strand. We successfully made a few billets in OD tube with different Cu spacing between subelements, and supplied the strands to Fermi Lab for cabling. Through the rolling test characterization, these types of strands did not have enough bonding between subelements to withstand the deformation. We saw copper cracking between subelements in the deformed strands. We scaled up the billet from OD to 1.5 OD, and made two billets. This greatly improves the bonding. There is nomore » copper cracking in the deformed strands when we scaled up the diameter of the billets. Fermi Lab successfully made cables using one of this improved strands. In their cables, no Cu cracking and no filament bridging occurred. We also successfully made a couple of billets with hex OD and round ID subelements for 61-subelement restack. Due to the lack of bonding, we could not judge its cabling property properly. But we know through this experiment, we could keep the Nb round, once we select the proper Cu spacing.« less
Use of fiber reinforced polymer composite cable for post-tensioning application.
DOT National Transportation Integrated Search
2015-08-01
The primary objective of this research project was to assess the feasibility of the use of innovative carbon fiber reinforced : polymer (CFRP) tendons and to develop guidelines for CFRP in post-tensioned bridge applications, including segmental : bri...
Rotator cuff tendon connections with the rotator cable.
Rahu, Madis; Kolts, Ivo; Põldoja, Elle; Kask, Kristo
2017-07-01
The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.
Formaldehyde fixation is detrimental to actin cables in glucose-depleted S. cerevisiae cells
Vasicova, Pavla; Rinnerthaler, Mark; Haskova, Danusa; Novakova, Lenka; Malcova, Ivana; Breitenbach, Michael; Hasek, Jiri
2016-01-01
Actin filaments form cortical patches and emanating cables in fermenting cells of Saccharomyces cerevisiae. This pattern has been shown to be depolarized in glucose-depleted cells after formaldehyde fixation and staining with rhodamine-tagged phalloidin. Loss of actin cables in mother cells was remarkable. Here we extend our knowledge on actin in live glucose-depleted cells co-expressing the marker of actin patches (Abp1-RFP) with the marker of actin cables (Abp140-GFP). Glucose depletion resulted in appearance of actin patches also in mother cells. However, even after 80 min of glucose deprivation these cells showed a clear network of actin cables labeled with Abp140-GFP in contrast to previously published data. In live cells with a mitochondrial dysfunction (rho0 cells), glucose depletion resulted in almost immediate appearance of Abp140-GFP foci partially overlapping with Abp1-RFP patches in mother cells. Residual actin cables were clustered in patch-associated bundles. A similar overlapping “patchy” pattern of both actin markers was observed upon treatment of glucose-deprived rho+ cells with FCCP (the inhibitor of oxidative phosphorylation) and upon treatment with formaldehyde. While the formaldehyde-targeted process stays unknown, our results indicate that published data on yeast actin cytoskeleton obtained from glucose-depleted cells after fixation should be considered with caution. PMID:28357356
22. Detail of remnants of winch and motor on remains ...
22. Detail of remnants of winch and motor on remains of machinery house platform east of drawspan; note cables (still connected to drawspan) coming off the winding drum; view to north. - Summer Street Bridge, Spanning Reserved Channel, Boston, Suffolk County, MA
Implementation of 0.7 in. diameter strands in prestressed concrete girders.
DOT National Transportation Integrated Search
2013-03-01
For several years, 0.7 in. diameter strands have been successfully used in cable bridges and for mining applications. Using these large diameter strands at 2 in. by 2 in. spacing in pretensioned concrete girders results in approximately 35% increase ...
Stay-in-place bridge deck forms, a state of the art review. Prestressed panel subdecks.
DOT National Transportation Integrated Search
1973-01-01
The results of prior research conducted on precast prestressed panel subdecks for use in the construction of bridge decks are reviewed and summarized. This construction technique utilizes the precast panel subdecks as the forming for the cast-in-plac...
A search for applications of Fiber Optics in early warning systems for natural hazards.
NASA Astrophysics Data System (ADS)
Wenker, Koen; Bogaard, Thom
2013-04-01
In order to reduce the societal risk associated with natural hazards novel technologies could help to advance in early warning systems. In our study we evaluate the use of multi-sensor technologies as possible early-warning systems for landslides and man-made structures, and the integration of the information in a simple Decision Support System (DSS). In this project, particular attention will be paid to some new possibilities available in the field of distributed monitoring systems of relevant parameters for landslide and man-made structures monitoring (such as large dams and bridges), and among them the distributed monitoring of temperature, strain and acoustic signals by FO cables. Fiber Optic measurements are becoming more and more popular. Fiber optic cables have been developed in the telecommunication business to send large amounts of information over large distances with the speed of light. Because of the commercial application, production costs are relatively low. Using fiber optics for measurements has several advantages. This novel technology is, for instance, immune to electromagnetic interference, appears stable, very accurate, and has the potential to measure several independent physical properties in a distributed manner. The high resolution spatial and temporal distributed information on e.g. temperature or strain (or both) make fiber optics an interesting measurement technique. Several applications have been developed in both engineering as science and the possibilities seem numerous. We will present a thorough literature review that was done to assess the applicability and limitations of FO cable technology. This review was focused but not limited to application in landslide research. Several examples of current practices will be shown, also from outside the natural hazard practice and possible application will be discussed.
4. PACK TRAIN WAITING TO BE UNLOADED AT FOOT OF ...
4. PACK TRAIN WAITING TO BE UNLOADED AT FOOT OF YAKI TRAIL. APPROXIMATELY TWO-AND-ONE-HALF TONS OF STEEL ON ANIMALS SHOWN. NOTE COIL OF 1-1/2' WIND CABLE IN FOREGROUND. - Kaibab Trail Suspension Bridge, Spanning Colorado River, Grand Canyon, Coconino County, AZ
NASA Astrophysics Data System (ADS)
Greenslade, Thomas B.
2005-01-01
The arrangement of four resistors, a source of emf, and a galvanometer, known as Wheatstone's bridge, has been in existence for more than 170 years. The only other piece of apparatus with its staying power is Atwood's machine. Now that it has reached mature status, it seems only fitting to describe its origin, analysis, circuit topology, and past and future uses.
Distributed Fiber Optic Sensor for Early Detection of Rocky Slopes Movements
NASA Astrophysics Data System (ADS)
Minardo, Aldo; Picarelli, Luciano; Coscetta, Agnese; Zeni, Giovanni; Esposito, Giuseppe; Sacchi, Marco; Matano, Fabio; Caccavale, Mauro; Luigi, Zeni
2014-05-01
Distributed optical fiber sensors have in recent years gained considerable attention in structural and environmental monitoring due to specific advantages that, apart from the classical advantages common to all optical fiber sensors such as immunity to electromagnetic interferences, high sensitivity, small size and possibility to be embedded into the structures, multiplexing and remote interrogation capabilities [1], offer the unique feature of allowing the exploitation of a telecommunication grade optical fiber cable as the sensing element to measure deformation and temperature profiles over very long distances. In particular, distributed optical fiber sensors based on stimulated Brillouin scattering (SBS) through the so-called Brillouin Optical Time Domain Analysis (BOTDA), allow to measure strain and temperature profiles up to tens of kilometers with a strain accuracy of ±10µɛ and a temperature accuracy of ±1°C [2]. They have already been successfully employed in the monitoring of large civil and geotechnical structures such as bridges, tunnels, dams, pipelines allowing to identify and localize any kind of failures that can occur during their construction and operation [3,4]. In this paper we present the application of BOTDA to the monitoring of movements in a rocky slope, showing how the sensing optical fiber cable is able to detect the formation and follow the growth of fractures, and to identify their location along the slope, as well. The experimental results have been achieved on a test field located in the area of Naples (Italy), where a single mode optical fiber sensing cable has been deployed along a yellow tuffs slope, by spot gluing the cable with epoxy adhesive. In order to assess the validity of the proposed approach, a few existing cracks have been artificially enlarged and the magnitude and location of the induced strain peaks have been clearly identified by the sensing device. It should be emphasized that, due to the distributed nature of the sensor, no preliminary information about the possible displacement locations of rocks are required in advance. The sensing cable can be simply deployed in a zig-zag pattern path along the slope, for hundreds of meters, and the system will remotely detect and locate any displacements wherever they occur along the fiber cable path, so representing a powerful tool for early warning against possible rock slides. [1] J. M. López-Higuera, L. R. Cobo, A. Q. Incera, A. Cobo, " Fiber Optic Sensors in Structural Health Monitoring", Journal of Lightwave Technology, Vol. 29, pp.586-608, 2011. [2] A. Minardo, R. Bernini, L. Zeni, "Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime", Optics Express, vol. 19, pp. 19233-19244, 2011. [3] A. Minardo, R. Bernini, L. Amato, L. Zeni, "Bridge monitoring using Brillouin fiber-optic sensors", IEEE Sensor Journal, Vol. 12 (1), pp. 145-150, 2012. [4] R. Bernini, A. Minardo, S. Ciaramella, V. Minutolo, L. Zeni, "Distributed strain measurement along a concrete beam via stimulated Brillouin scattering in optical fibers", International Journal of Geophysics, Vol. 2011, pp. 1-5, doi:10.1155/2011/710941, 2011.
14 CFR 25.689 - Cable systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley must be approved. In addition— (1) No cable... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cable systems. 25.689 Section 25.689...
DOT National Transportation Integrated Search
2017-08-01
The remarkable features of ultra-high performance concrete (UHPC) have been reported. Its application in bridge construction has been an active research area in recent years, attributed to its higher compressive strength, higher ductility and reduced...
14 CFR 29.685 - Control system details.
Code of Federal Regulations, 2010 CFR
2010-01-01
... must be means to prevent the slapping of cables or tubes against other parts. (d) Cable systems must be designed as follows: (1) Cables, cable fittings, turnbuckles, splices, and pulleys must be of an acceptable kind. (2) The design of cable systems must prevent any hazardous change in cable tension throughout the...
14 CFR 27.685 - Control system details.
Code of Federal Regulations, 2010 CFR
2010-01-01
... must be means to prevent the slapping of cables or tubes against other parts. (d) Cable systems must be designed as follows: (1) Cables, cable fittings, turnbuckles, splices, and pulleys must be of an acceptable kind. (2) The design of the cable systems must prevent any hazardous change in cable tension throughout...
Cable coupling lightning transient qualification
NASA Technical Reports Server (NTRS)
Cook, M.
1989-01-01
Simulated lightning strike testing of instrumentation cabling on the redesigned solid rocket motor was performed. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of instrumentation cable transients on cables within the system tunnel. The maximum short-circuit current induced onto a United Space Boosters, Inc., operational flight cable within the systems tunnel was 92 A, and the maximum induced open-circuit voltage was 316 V. These levels were extrapolated to the worst-case (200 kA) condition of NASA specification NSTS 07636 and were also scaled to full-scale redesigned solid rocket motor dimensions. Testing showed that voltage coupling to cables within the systems tunnel can be reduced 40 to 90 dB and that current coupling to cables within the systems tunnel can be reduced 30 to 70 dB with the use of braided metallic sock shields around cables that are external to the systems tunnel. Testing also showed that current and voltage levels induced onto cables within the systems tunnel are partially dependant on the cables' relative locations within the systems tunnel. Results of current injections to the systems tunnel indicate that the dominant coupling mode on cables within the systems tunnel is not from instrumentation cables but from coupling through the systems tunnel cover seam apertures. It is recommended that methods of improving the electrical bonding between individual sections of the systems tunnel covers be evaluated. Further testing to better characterize redesigned solid rocket motor cable coupling effects as an aid in developing methods to reduce coupling levels, particularly with respect to cable placement within the systems tunnel, is also recommended.
Plotting Inequalities, Building Resistance
ERIC Educational Resources Information Center
Renner, Adam; Brew, Bridget; Proctor, Crystal
2012-01-01
Media depictions of San Francisco show idyllic images of fog pouring under the Golden Gate Bridge or happy tourists riding cable cars, but rarely the mostly nonwhite neighborhoods of the east side. San Francisco public schools have a bad track record of mimicking this masquerade, with very low numbers of African American and Latina/o students…
76 FR 22152 - Petitions for Modification of Application of Existing Mandatory Safety Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-20
... Mine, MSHA I.D. No. 36-08850. Regulation Affected: 30 CFR 75.503 (Permissible electric face equipment... Mobile Bridge Conveyors, Dual Boom Roof Bolters, Continuous Miners, and Shuttle Cars. The petitioner... current to Roof Bolters and Shuttle Cars. The cables will have a 90 degree insulation rating. Additionally...
The other fiber, the other fabric, the other way
NASA Astrophysics Data System (ADS)
Stephens, Gary R.
1993-02-01
Coaxial cable and distributed switches provide a way to configure high-speed Fiber Channel fabrics. This type of fabric provides a cost-effective alternative to a fabric of optical fibers and centralized cross-point switches. The fabric topology is a simple tree. Products using parallel busses require a significant change to migrate to a serial bus. Coaxial cables and distributed switches require a smaller technology shift for these device manufacturers. Each distributed switch permits both medium type and speed changes. The fabric can grow and bridge to optical fibers as the needs expand. A distributed fabric permits earlier entry into high-speed serial operations. For very low-cost fabrics, a distributed switch may permit a link configured as a loop. The loop eliminates half of the ports when compared to a switched point-to-point fabric. A fabric of distributed switches can interface to a cross-point switch fabric. The expected sequence of migration is: closed loops, small closed fabrics, and, finally, bridges, to connect optical cross-point switch fabrics. This paper presents the concept of distributed fabrics, including address assignment, frame routing, and general operation.
47 CFR 27.1202 - Cable/BRS cross-ownership.
Code of Federal Regulations, 2014 CFR
2014-10-01
... portion of the franchise area actually served by the cable operator's cable system and the cable operator... franchise area actually served by the cable operator's cable system the cable operator will use the BRS... that no portion of the GSA of the BRS station is within the portion of the franchise area actually...
47 CFR 27.1202 - Cable/BRS cross-ownership.
Code of Federal Regulations, 2011 CFR
2011-10-01
... portion of the franchise area actually served by the cable operator's cable system and the cable operator... franchise area actually served by the cable operator's cable system the cable operator will use the BRS... that no portion of the GSA of the BRS station is within the portion of the franchise area actually...
47 CFR 27.1202 - Cable/BRS cross-ownership.
Code of Federal Regulations, 2012 CFR
2012-10-01
... portion of the franchise area actually served by the cable operator's cable system and the cable operator... franchise area actually served by the cable operator's cable system the cable operator will use the BRS... that no portion of the GSA of the BRS station is within the portion of the franchise area actually...
47 CFR 27.1202 - Cable/BRS cross-ownership.
Code of Federal Regulations, 2013 CFR
2013-10-01
... portion of the franchise area actually served by the cable operator's cable system and the cable operator... franchise area actually served by the cable operator's cable system the cable operator will use the BRS... that no portion of the GSA of the BRS station is within the portion of the franchise area actually...
Fixation systems of greater trochanteric osteotomies: biomechanical and clinical outcomes.
Jarit, Gregg J; Sathappan, Sathappan S; Panchal, Anand; Strauss, Eric; Di Cesare, Paul E
2007-10-01
The development of cerclage systems for fixation of greater trochanteric osteotomies has progressed from monofilament wires to multifilament cables to cable grip and cable plate systems. Cerclage wires and cables have various clinical indications, including fixation for fractures and for trochanteric osteotomy in hip arthroplasty. To achieve stable fixation and eventual union of the trochanteric osteotomy, the implant must counteract the destabilizing forces associated with pull of the peritrochanteric musculature. The material properties of cables and cable grip systems are superior to those of monofilament wires; however, potential complications with the use of cables include debris generation and third-body polyethylene wear. Nevertheless, the cable grip system provides the strongest fixation and results in lower rates of nonunion and trochanteric migration. Cable plate constructs show promise but require further clinical studies to validate their efficacy and safety.
47 CFR 76.403 - Cable television system reports.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Cable television system reports. 76.403 Section 76.403 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Forms and Reports § 76.403 Cable television system reports. The operator of every operational cable...
47 CFR 76.403 - Cable television system reports.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Cable television system reports. 76.403 Section 76.403 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Forms and Reports § 76.403 Cable television system reports. The operator of every operational cable...
JPS heater and sensor lightning qualification
NASA Technical Reports Server (NTRS)
Cook, M.
1989-01-01
Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.
21. View of endlift slide on pedestal and threaded shaft ...
21. View of end-lift slide on pedestal and threaded shaft with level gears. Curved deck joint at underside of roadway deck is seen, as well as submarine electrical cables resting on the masonry pier. (Nov. 30, 1988) - University Heights Bridge, Spanning Harlem River at 207th Street & West Harlem Road, New York County, NY
Analysis of alternatives for using cable bolts as primary support at two low-seam coal mines
Esterhuizen, Gabriel S.; Tulu, Ihsan B.
2016-01-01
Cable bolts are sometimes used in low-seam coal mines to provide support in difficult ground conditions. This paper describes cable bolting solutions at two low-seam coal mines in similar ground conditions. Both mines used support systems incorporating cable bolts as part of the primary support system. Two original cable bolt based support systems as well as two modified systems are evaluated to estimate their ability to prevent large roof falls. One of the support systems incorporated passive cable bolts, while the other used pre-tensioned cable bolts. The results and experience at the mines showed that the modified systems provided improved stability over the original support systems. The presence of the cable bolts is the most important contribution to stability against large roof falls, rather than the details of the support pattern. It was also found that a heavy steel channel can improve the safety of the system because of the ‘sling’ action it provides. Additionally, the analysis showed that fully-grouted rebar bolts load much earlier than the cable bolts, and pre-tensioning of the cable bolts can result in a more uniform distribution of loading in the roof. PMID:27722019
Non-Seismology Seismology: Using QuakeCatchers to Analyze the Frequency of Bridge Vibrations
NASA Astrophysics Data System (ADS)
Courtier, A. M.; Constantin, C.; Wilson, C. F.
2013-12-01
We conducted an experiment to test the feasibility of measuring seismic waves generated by traffic near James Madison University. We used QuakeCatcher seismometers (originally designed for passive seismic measurement) to measure vibrations associated with traffic on a wooden bridge as well as a nearby concrete bridge. This experiment was a signal processing exercise for a student research project and did not draw any conclusions regarding bridge safety or security. The experiment consisted of two temporary measurement stations comprised of a laptop computer and a QuakeCatcher - a small seismometer that plugs directly into the laptop via a USB cable. The QuakeCatcher was taped to the ground at the edge of the bridge to achieve good coupling, and vibrational events were triggered repeatedly with a control vehicle to accumulate a consistent dataset of the bridge response. For the wooden bridge, the resulting 'seismograms' were converted to Seismic Analysis Code (SAC) format and analyzed in MATLAB. The concrete bridge did not generate vibrations significant enough to trigger the recording mechanism on the QuakeCatchers. We will present an overview of the experimental design and frequency content of the traffic patterns, as well as a discussion of the instructional benefits of using the QuakeCatcher sensors in this non-traditional setting.
Zha, Kun; Liu, Guo-Hui; Yang, Shu-Hua; Zhou, Wu; Liu, Yi; Wu, Qi-Peng
2017-10-01
This meta-analysis compared the therapeutic effect of cable pin system (CPS) with K-wire tension band (KTB) in the treatment of patella fractures among Chinese Han population. The databases of PubMed, Cochrane library, China National Knowledge Infrastructure (CNKI), Chinese WanFang and Chinese VIP were searched for studies on CPS versus KTB in the treatment of patella fractures among Chinese Han population. Literatures were screened according to the inclusion and exclusion criteria. The quality of the studies was assessed, and meta-analysis was performed using the Cochrane Collaboration's REVMAN 5.3 software. A total of 932 patients from 15 studies were included in this meta-analysis (426 fractures treated with CPS and 506 fractures treated with KTB). There were significant differences in duration of hospital stay [mean difference (MD)=-1.07; 95% confidence interval (CI):-1.71 to-0.43], fracture healing time (MD=-1.23; 95% CI:-1.68 to-0.77), flexion degree of knee joint at 6th month after operation (MD=14.82; 95% CI: 10.93 to 18.71), incidence of postoperative complication [risk ratio (RR)=0.16; 95% CI: 0.09 to 0.27] and excellent-good rate of Böstman score (RR=1.09; 95% CI: 1.03 to 1.16) between the CPS group and KTB group, while no significant difference was found in operative time between the two groups (MD=-4.52; 95% CI:-11.70 to 2.67). For the treatment of patella fractures among Chinese Han population, limited evidence suggests that the CPS is more suitable than the KTB when considering the hospital stay, fracture healing time, flexion degree of knee at 6th month after operation, incidence of postoperative complication and excellent-good rate of Böstman joint score. Due to the limitation of high quality evidence and sample size, more large-scale randomized controlled trials are needed to validate the findings in the future.
14 CFR 25.689 - Cable systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.689 Cable systems. (a... cable system must be designed so that there will be no hazardous change in cable tension throughout the... subject to load or motion and retained only by cotter pins may not be used in the control system. (e...
14 CFR 25.689 - Cable systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.689 Cable systems. (a... cable system must be designed so that there will be no hazardous change in cable tension throughout the... subject to load or motion and retained only by cotter pins may not be used in the control system. (e...
14 CFR 25.689 - Cable systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.689 Cable systems. (a... cable system must be designed so that there will be no hazardous change in cable tension throughout the... subject to load or motion and retained only by cotter pins may not be used in the control system. (e...
14 CFR 25.689 - Cable systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.689 Cable systems. (a... cable system must be designed so that there will be no hazardous change in cable tension throughout the... subject to load or motion and retained only by cotter pins may not be used in the control system. (e...
Flat conductor cable design, manufacture, and installation
NASA Technical Reports Server (NTRS)
Angele, W.; Hankins, J. D.
1973-01-01
Pertinent information for hardware selection, design, manufacture, and quality control necessary for flat conductor cable interconnecting harness application is presented. Comparisons are made between round wire cable and flat conductor cable. The flat conductor cable interconnecting harness systems show major cost, weight, and space savings, plus increased system performance and reliability. The design application section includes electrical characteristics, harness design and development, and a full treatise on EMC considerations. Manufacturing and quality control sections pertain primarily to the developed conductor-contact connector system and special flat conductor cable to round wire cable transitions.
Development of a single-phase 30 m HTS power cable
NASA Astrophysics Data System (ADS)
Cho, Jeonwook; Bae, Joon-Han; Kim, Hae-Jong; Sim, Ki-Deok; Kim, Seokho; Jang, Hyun-Man; Lee, Chang-Young; Kim, Dong-Wook
2006-05-01
HTS power transmission cables appear to be the replacement and retrofitting of underground cables in urban areas and HTS power transmission cable offers a number of technical and economic merits compared to the normal conductor cable system. A 30 m long, single-phase 22.9 kV class HTS power transmission cable system has been developed by Korea Electrotechnology Research Institute (KERI), LS Cable Ltd., and Korea Institute of Machinery and Materials (KIMM), which is one of the 21st century frontier project in Korea since 2001. The HTS power cable has been developed, cooled down and tested to obtain realistic thermal and electrical data on HTS power cable system. The evaluation results clarified such good performance of HTS cable that DC critical current of the HTS cable was 3.6 kA and AC loss was 0.98 W/m at 1260 Arms and shield current was 1000 Arms. These results proved the basic properties for 22.9 kV HTS power cable. As a next step, we have been developing a 30 m, three-phase 22.9 kV, 50 MV A HTS power cable system and long term evaluation is in progress now.
Overhead tray for cable test system
NASA Technical Reports Server (NTRS)
Saltz, K. T.
1976-01-01
System consists of overhead slotted tray, series of compatible adapter cables, and automatic test set which consists of control console and cable-switching console. System reduces hookup time and also reduces cost of fabricating and storing test cables.
Photovoltaic Power System and Power Distribution Demonstration for the Desert RATS Program
NASA Technical Reports Server (NTRS)
Colozza, Anthony; Jakupca, Ian; Mintz, Toby; Herlacher, Mike; Hussey, Sam
2012-01-01
A stand alone, mobile photovoltaic power system along with a cable deployment system was designed and constructed to take part in the Desert Research And Technology Studies (RATS) lunar surface human interaction evaluation program at Cinder Lake, Arizona. The power system consisted of a photovoltaic array/battery system. It is capable of providing 1 kW of electrical power. The system outputs were 48 V DC, 110 V AC, and 220 V AC. A cable reel with 200 m of power cable was used to provide power from the trailer to a remote location. The cable reel was installed on a small trailer. The reel was powered to provide low to no tension deployment of the cable. The cable was connected to the 220 V AC output of the power system trailer. The power was then converted back to 110 V AC on the cable deployment trailer for use at the remote site. The Scout lunar rover demonstration vehicle was used to tow the cable trailer and deploy the power cable. This deployment was performed under a number of operational scenarios, manned operation, remote operation and tele-robotically. Once deployed, the cable was used to provide power, from the power system trailer, to run various operational tasks at the remote location.
Commercialization of Medium Voltage HTS Triax TM Cable Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knoll, David
2012-12-31
The original project scope that was established in 2007 aimed to install a 1,700 meter (1.1 mile) medium voltage HTS Triax{TM} cable system into the utility grid in New Orleans, LA. In 2010, however, the utility partner withdrew from the project, so the 1,700 meter cable installation was cancelled and the scope of work was reduced. The work then concentrated on the specific barriers to commercialization of HTS cable technology. The modified scope included long-length HTS cable design and testing, high voltage factory test development, optimized cooling system development, and HTS cable life-cycle analysis. In 2012, Southwire again analyzed themore » market for HTS cables and deemed the near term market acceptance to be low. The scope of work was further reduced to the completion of tasks already started and to testing of the existing HTS cable system in Columbus, OH. The work completed under the project included: • Long-length cable modeling and analysis • HTS wire evaluation and testing • Cable testing for AC losses • Optimized cooling system design • Life cycle testing of the HTS cable in Columbus, OH • Project management. The 200 meter long HTS Triax{TM} cable in Columbus, OH was incorporated into the project under the initial scope changes as a test bed for life cycle testing as well as the site for an optimized HTS cable cooling system. The Columbus cable utilizes the HTS TriaxTM design, so it provided an economical tool for these of the project tasks.« less
Operating experience of the southwire high-temperature superconducting cable project
NASA Astrophysics Data System (ADS)
Hughey, R. L.; Lindsay, D.
2002-01-01
Southwire Company of Carrollton, Georgia in cooperation with Oak Ridge National Laboratory has designed, built, installed and is operating the world's first field installation of a High Temperature Superconducting (HTS) cable system. The cables supply power to three Southwire manufacturing facilities and part of the corporate headquarters building in Carrollton, GA. The system consists of three 30-m single phase cables rated at 12.4 kV, 1250 Amps, liquid nitrogen cooling system, and the computer-based control system. The cables are built using BSCCO-2223 powder-in-tube HTS tapes and a proprietary cryogenic dielectric material called Cryoflex™. The cables are fully shielded with a second layer of HTS tapes to eliminate any external magnetic fields. The Southwire HTS cables were first energized on january 6, 2000. Since that time they have logged over 8,500 hours of operation while supplying 100% of the required customer load. To date, the cables have worked without failure and operations are continuing. The cable design has passed requisite testing for this class of conventional cables including 10× over current to 12,500 Amps and BIL testing to 110 kV. Southwire has also successfully designed and tested a cable splice. System heat loads and AC Losses have been measured and compared to calculated values. On June 1, 2001 on-site monitoring was ceased and the system was changed to unattended operation to further prove the reliability of the HTS cable system. .
Code of Federal Regulations, 2011 CFR
2011-10-01
... broadcast stations, digital broadcast stations, analog cable systems, digital cable systems, wireline video systems, wireless cable systems, Direct Broadcast Satellite (DBS) services, Satellite Digital Audio Radio...
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Nagarajaiah, Satish
2016-06-01
Randomly missing data of structural vibration responses time history often occurs in structural dynamics and health monitoring. For example, structural vibration responses are often corrupted by outliers or erroneous measurements due to sensor malfunction; in wireless sensing platforms, data loss during wireless communication is a common issue. Besides, to alleviate the wireless data sampling or communication burden, certain accounts of data are often discarded during sampling or before transmission. In these and other applications, recovery of the randomly missing structural vibration responses from the available, incomplete data, is essential for system identification and structural health monitoring; it is an ill-posed inverse problem, however. This paper explicitly harnesses the data structure itself-of the structural vibration responses-to address this (inverse) problem. What is relevant is an empirical, but often practically true, observation, that is, typically there are only few modes active in the structural vibration responses; hence a sparse representation (in frequency domain) of the single-channel data vector, or, a low-rank structure (by singular value decomposition) of the multi-channel data matrix. Exploiting such prior knowledge of data structure (intra-channel sparse or inter-channel low-rank), the new theories of ℓ1-minimization sparse recovery and nuclear-norm-minimization low-rank matrix completion enable recovery of the randomly missing or corrupted structural vibration response data. The performance of these two alternatives, in terms of recovery accuracy and computational time under different data missing rates, is investigated on a few structural vibration response data sets-the seismic responses of the super high-rise Canton Tower and the structural health monitoring accelerations of a real large-scale cable-stayed bridge. Encouraging results are obtained and the applicability and limitation of the presented methods are discussed.
Continued development of a non-proprietary, high-tension, cable end terminal system.
DOT National Transportation Integrated Search
2016-04-29
A non-proprietary, cable guardrail system is currently under development for the Midwest States Pooled Fund Program. : A cable guardrail end terminal was necessary to accompany the cable guardrail system. The objective of this research : project was ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, Samuel W.; Fifield, Leonard S.; Jones, Anthony M.
Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and NDE is conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locatemore » and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. This work examines a physics-based model of a cable system and relates it to FDR measurements for a better understanding of specific damage influences on defect detectability.« less
Periprosthetic hip fractures: A review of the economic burden based on length of stay.
Lyons, Rebecca F; Piggott, Robert P; Curtin, William; Murphy, Colin G
2018-03-01
With the increasing rates of total hip replacements being performed worldwide, there is an increasing incidence of periprosthetic fractures. As our patients' demographics change to include older patients with multiple medical co-morbidities, there is a concurrent increase in morbidity and mortality rates. This leads to longer hospital stays and increasing hospital costs. In the current economic climate, the cost of treating periprosthetic fractures must be addressed and appropriate resource and funding allocation for future provision of services should be planned. All periprosthetic hip fractures that were admitted to a single trauma unit over a three-year period were reviewed. Independent chart review, haematological and radiological review was undertaken. All patients with a periprosthetic fracture associated with a total hip arthroplasty or hemiarthroplasty were included. Follow up data including complications were collated. Data from the hospital inpatient database and finance department was utilized for cost analysis. All statistical analysis was preformed using Minitab version 17. 48 patients were identified who met the inclusion criteria for review. The majority of participants were female with a mean age of 73.5 years. The mean time to fracture was 4.5 years (9 months-18.5 years). Periprosthetic fracture was associated with total hip arthroplasty in 24 cases and a Vancouver B2 classification was most common at n = 20. The majority of patients had revision arthroplasty, with a mean length of stay of 24 days for the whole cohort (9-42). Vancouver B3 fractures had the longest inpatient stay at a mean of 26 days. The mean cost of for a full revision of stem with additional plate and cable fixation was over €27000 compared to €14,600 for ORIF and cable fixation based on length of hospital stay. The prolonged length of stay associated with Vancouver B2 and B3 fractures leads to increased costs to the healthcare service. Accurately calculating the costs of total treatment for periprosthetic fractures is difficult due to a lack of transparency around implant and staffing costs. However, as we can expect increasing incidence of periprosthetic fractures presenting in the coming years it is paramount that we make financial provisions within healthcare budgets to ensure we can treat these patients appropriately.
Disposable telemetry cable deployment system
Holcomb, David Joseph
2000-01-01
A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.
Flat conductor cable commercialization project
NASA Technical Reports Server (NTRS)
Hogarth, P.; Wadsworth, E.
1977-01-01
An undercarpet flat conductor cable and a baseboard flat conductor cable system were studied for commercialization. The undercarpet system is designed for use in office and commercial buildings. It employs a flat power cable, protected by a grounded metal shield, that terminates in receptacles mounted on the floor. It is designed to interface with a flat conductor cable telephone system. The baseboard system consists of a flat power cable mounted in a plastic raceway; both the raceway and the receptacles are mounted on the surface of the baseboard. It is designed primarily for use in residential buildings, particularly for renovation and concrete and masonry construction.
A Common Initiation Criterion for CL-20 EBW Detonators
NASA Astrophysics Data System (ADS)
Valancius, Cole; Garasi, Christopher; O'Malley, Patrick
2014-11-01
In an effort to better understand the initiation mechanisms of hexanitrohexaazaisowurtzitane (CL-20) based Exploding Bridgewire (EBW) detonators, a series of studies were performed comparing electrical input parameters and detonator performance. Traditional methods of analysis, such as burst current and action, do not allow performance to be compared across multiple firesets. A new metric, electrical burst energy density (Eρ) , allows an explosive train to be characterized across all possible electrical configurations (different firesets, different sized gold bridges, different cables and cable lengths); by testing one electrical configuration, performance across all others is understood. This discovery has implications for design and surveillance, and for the first time, presents a link between modeling of electrical circuits (such as in ALEGRA) and explosive performance.
NASA Astrophysics Data System (ADS)
Ma, Yanhui; He, Minghua; Shen, Wenhou; Ren, Gexue
2015-12-01
In this paper, a simple and designable shock isolation system with ideal high-static-low-dynamic-stiffness (HSLDS) is proposed, which is intended for the horizontal plane shock isolation application. In this system, the isolated object is suspended by several bearing cables and constrained by a number of uniformly distributed pretensioned cables in the horizontal plane, where the low dynamic stiffness of the system is main controlled by the pretension of the planar cables, whilst the high static stiffness is determined by the axial stiffness of the planar cables and their geometric settings. To obtain the HSLDS characteristic of the system, a brief theoretical description of the relationship between the restoring force and displacement is derived. By obtaining the three-order Taylor expansion with sufficient accuracy of the restoring force, influence of planar cable parameters on the low dynamic and high static stiffness is thus given, therefore, the required HSLDS isolator can be easily designed by adjusting the planar cable length, pretension and tensile stiffness. Finally, the isotropy characteristic of the restoring force of the system with different numbers of planar cables is investigated. To evaluate the performance of the system, a rigid isolated object and flexible cables coupling simulation model considering the contacts of the system is established by using multibody dynamics approach. In this model, flexible cables are simulated by 3-node cable element based on the absolute nodal coordinate formulation; the contact between cable and isolated object is simulated based on Hertz contact theory. Finally, the time-domain shock excitation is converted from the design shock spectrum on the basis of BV043/85 criterion. The design procedure of this isolator and some useful guidelines for choosing cable parameters are presented. In addition, a summary about the performance of the isolators with different numbers of cables shocking in an arbitrary direction is given in the conclusion.
14 CFR 27.685 - Control system details.
Code of Federal Regulations, 2012 CFR
2012-01-01
... material used as a bearing: (1) 3.33 for push-pull systems other than ball and roller bearing systems. (2... must be means to prevent the slapping of cables or tubes against other parts. (d) Cable systems must be designed as follows: (1) Cables, cable fittings, turnbuckles, splices, and pulleys must be of an acceptable...
14 CFR 27.685 - Control system details.
Code of Federal Regulations, 2014 CFR
2014-01-01
... material used as a bearing: (1) 3.33 for push-pull systems other than ball and roller bearing systems. (2... must be means to prevent the slapping of cables or tubes against other parts. (d) Cable systems must be designed as follows: (1) Cables, cable fittings, turnbuckles, splices, and pulleys must be of an acceptable...
14 CFR 27.685 - Control system details.
Code of Federal Regulations, 2011 CFR
2011-01-01
... material used as a bearing: (1) 3.33 for push-pull systems other than ball and roller bearing systems. (2... must be means to prevent the slapping of cables or tubes against other parts. (d) Cable systems must be designed as follows: (1) Cables, cable fittings, turnbuckles, splices, and pulleys must be of an acceptable...
47 CFR 76.403 - Cable television system reports.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Cable television system reports. 76.403 Section 76.403 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Forms and Reports § 76.403 Cable television system reports. The...
47 CFR 76.403 - Cable television system reports.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Cable television system reports. 76.403 Section 76.403 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Forms and Reports § 76.403 Cable television system reports. The...
47 CFR 76.403 - Cable television system reports.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Cable television system reports. 76.403 Section 76.403 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Forms and Reports § 76.403 Cable television system reports. The...
NASA Astrophysics Data System (ADS)
Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru
2016-12-01
A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.
Golden Gate Bridge response: a study with low-amplitude data from three earthquakes
Çelebi, Mehmet
2012-01-01
The dynamic response of the Golden Gate Bridge, located north of San Francisco, CA, has been studied previously using ambient vibration data and finite element models. Since permanent seismic instrumentation was installed in 1993, only small earthquakes that originated at distances varying between ~11 to 122 km have been recorded. Nonetheless, these records prompted this study of the response of the bridge to low amplitude shaking caused by three earthquakes. Compared to previous ambient vibration studies, the earthquake response data reveal a slightly higher fundamental frequency (shorter-period) for vertical vibration of the bridge deck center span (~7.7–8.3 s versus 8.2–10.6 s), and a much higher fundamental frequency (shorter period) for the transverse direction of the deck (~11.24–16.3 s versus ~18.2 s). In this study, it is also shown that these two periods are dominant apparent periods representing interaction between tower, cable, and deck.
Self-repair of cracks in brittle material systems
NASA Astrophysics Data System (ADS)
Dry, Carolyn M.
2016-04-01
One of the most effective uses for self repair is in material systems that crack because the cracks can allow the repair chemical to flow into the crack damage sites in all three dimensions. In order for the repair chemical to stay in the damage site and flow along to all the crack and repair there must be enough chemical to fill the entire crack. The repair chemical must be designed appropriately for the particular crack size and total volume of cracks. In each of the three examples of self repair in crackable brittle systems, the viscosity and chemical makeup and volume of the repair chemicals used is different for each system. Further the chemical delivery system has to be designed for each application also. Test results from self repair of three brittle systems are discussed. In "Self Repair of Concrete Bridges and Infrastructure" two chemicals were used due to different placements in bridges to repair different types of cracks- surface shrinkage and shear cracks, In "Airplane Wings and Fuselage, in Graphite" the composite has very different properties than the concrete bridges. In the graphite for airplane components the chemical also had to survive the high processing temperatures. In this composite the cracks were so definite and deep and thin that the repair chemical could flow easily and repair in all layers of the composite. In "Ceramic/Composite Demonstrating Self Repair" the self repair system not only repaired the broken ceramic but also rebounded the composite to the ceramic layer
NASA Astrophysics Data System (ADS)
Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.
2014-02-01
Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESM). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first generation Dynamic Vegetation Models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second generation DVMs, that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to a range of forest types around the globe, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 yr. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents a preferable alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.
Cable and Line Inspection Mechanism
NASA Technical Reports Server (NTRS)
Ross, Terence J. (Inventor)
2003-01-01
An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.
Cable and line inspection mechanism
NASA Technical Reports Server (NTRS)
Ross, Terence J. (Inventor)
2003-01-01
An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartlein, Rick; Hampton, Nigel; Perkel, Josh
2016-02-01
The Cable Diagnostic Focused Initiative (CDFI) played a significant and powerful role in clarifying the concerns and understanding the benefits of performing diagnostic tests on underground power cable systems. This project focused on the medium and high voltage cable systems used in utility transmission and distribution (T&D) systems. While many of the analysis techniques and interpretations are applicable to diagnostics and cable systems outside of T&D, areas such as generating stations (nuclear, coal, wind, etc.) and other industrial environments were not the focus. Many large utilities in North America now deploy diagnostics or have changed their diagnostic testing approach asmore » a result of this project. Previous to the CDFI, different diagnostic technology providers individually promoted their approach as the “the best” or “the only” means of detecting cable system defects.« less
Study on Safety Monitoring System for Submarine Power Cable on the Basis of AIS and Radar Technology
NASA Astrophysics Data System (ADS)
Jie, Wang; Yao-Tian, Fan
Through analyzing the risks of submarine power cable, the highest risk to damage the cable identified is from ship. Based on concept of Vessel Traffic Management Information Systems, the three core sub-systems of safety monitoring system for submarine power cable were studied and described, also some suggestions were given.
Operating experience with the southwire 30-meter high-temperature superconducting power cable
NASA Astrophysics Data System (ADS)
Stovall, J. P.; Lue, J. W.; Demko, J. A.; Fisher, P. W.; Gouge, M. J.; Hawsey, R. A.; Armstrong, J. W.; Hughey, R. L.; Lindsay, D. T.; Roden, M. L.; Sinha, U. K.; Tolbert, J. C.
2002-05-01
Southwire Company is operating a high-temperature superconducting (HTS) cable system at its corporate headquarters. The 30-m long, 3-phase cable system is powering three Southwire manufacturing plants and is rated at 12.4-kV, 1250-A, 60-Hz. Cooling is provided by a pressurized liquid nitrogen system operating at 70-80 K. The cables were energized on January 5, 2000 for on-line testing and operation and in April 2000 were placed into extended service. As of June 1, 2001, the HTS cables have provided 100% of the customer load for 8000 hours. The cryogenic system has been in continuous operation since November 1999. The HTS cable system has not been the cause of any power outages to the average 20 MW industrial load served by the cable. The cable has been exposed to short-circuit currents caused by load-side faults without damage. Based upon field measurements described herein, the cable critical current-a key performance parameter-remains the same and has not been affected by the hours of real-world operation, further proving the viability of this promising technology.
Transient analysis of an HTS DC power cable with an HVDC system
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo
2013-11-01
The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.
Thermal analysis of underground power cable system
NASA Astrophysics Data System (ADS)
Rerak, Monika; Ocłoń, Paweł
2017-10-01
The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. The developed mathematical model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil and cable backfill thermal conductivity on the maximum temperature of the cable conductor. Also, the effect of cable diameter on the temperature of cable core was studied. Numerical analyses were performed based on a program written in MATLAB.
NASA Astrophysics Data System (ADS)
Gutscher, M. A.; Royer, J. Y.; Graindorge, D.; Murphy, S.; Klingelhoefer, F.; Cattaneo, A.; Barreca, G.; Quetel, L.; Petersen, F.; Riccobene, G.; Urlaub, M.; Krastel, S.; Gross, F.; Kopp, H.
2017-12-01
Two-thirds of the earth's surface is covered by water and thus largely inaccessible to modern networks of seismological instruments. A novel use of fiber optic cables could help improve hazard assessment and increase early warning capability. Laser reflectometry using BOTDR (Brillouin Optical Time Domain Reflectometry), commonly used for structural health monitoring of large-scale engineering structures (e.g. - bridges, dams, pipelines, etc.) can measure very small strains (< 1 mm) at very large distances (10 - 200 km). This technique has never been used to monitor deformation caused by active faults on the seafloor. The objective of the FOCUS project is to demonstrate that this technique can measure small (1 - 2 cm) displacements on a primary test site offshore Sicily where the recently mapped North Alfeo Fault crosses the Catania EMSO seafloor observatory, 28 km long fiber optic cable. Two other EMSO test sites with fiber optic cables, the 100 km long Capo Passero (SE Sicily) and the 2 km long cable off Molene Island (W France) will also be studied. Initial reflectometry tests were performed on these three cables using a Febus BOTDR interrogator in June and July 2017. Unexpectedly high dynamic noise levels (corresponding to strains of 200 - 500 mm/m) were observed on the Molene cable, likely due to the high-energy, shallow water, open ocean environment. The tests on the EMSO infrastructure in Sicily indicated low experimental noise levels (20 - 30 mm/m) out to a distance of 15 km. BOTDR observations will have to be calibrated by other independent measurements. Therefore, targeted marine geophysical surveys of the seafloor along the trace of the cable and faults are planned, with the use of seafloor geodetic instruments to quantify fault displacement. Once the BOTDR fault-monitoring technique has been tested, demonstrated and calibrated offshore Eastern Sicily, the goal is to expand it to other fiber optic cable networks, either existing research networks in earthquake hazard zones (Japan, Cascadia) or to the Mediterranean region through access to retired (decommissioned) telecommunication cables or development of dual-use cables (two of the anticipated outcomes of the FOCUS project). This represents a potentially tremendous breakthrough in seismology, tectonics and natural hazard early warning capability.
47 CFR 78.27 - License conditions.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., modifications, assignments or transfers of control, and renewals) in the Cable Television Relay Service to serve cable television systems and other eligible systems, shall contain the condition that cable television... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CABLE TELEVISION RELAY...
47 CFR 78.27 - License conditions.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., modifications, assignments or transfers of control, and renewals) in the Cable Television Relay Service to serve cable television systems and other eligible systems, shall contain the condition that cable television... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CABLE TELEVISION RELAY...
47 CFR 78.27 - License conditions.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., modifications, assignments or transfers of control, and renewals) in the Cable Television Relay Service to serve cable television systems and other eligible systems, shall contain the condition that cable television... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CABLE TELEVISION RELAY...
47 CFR 78.27 - License conditions.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., modifications, assignments or transfers of control, and renewals) in the Cable Television Relay Service to serve cable television systems and other eligible systems, shall contain the condition that cable television... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CABLE TELEVISION RELAY...
47 CFR 78.27 - License conditions.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., modifications, assignments or transfers of control, and renewals) in the Cable Television Relay Service to serve cable television systems and other eligible systems, shall contain the condition that cable television... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CABLE TELEVISION RELAY...
14 CFR 29.685 - Control system details.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ultimate bearing strength of the softest material used as a bearing: (1) 3.33 for push-pull systems other... must be means to prevent the slapping of cables or tubes against other parts. (d) Cable systems must be designed as follows: (1) Cables, cable fittings, turnbuckles, splices, and pulleys must be of an acceptable...
14 CFR 29.685 - Control system details.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ultimate bearing strength of the softest material used as a bearing: (1) 3.33 for push-pull systems other... must be means to prevent the slapping of cables or tubes against other parts. (d) Cable systems must be designed as follows: (1) Cables, cable fittings, turnbuckles, splices, and pulleys must be of an acceptable...
14 CFR 29.685 - Control system details.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ultimate bearing strength of the softest material used as a bearing: (1) 3.33 for push-pull systems other... must be means to prevent the slapping of cables or tubes against other parts. (d) Cable systems must be designed as follows: (1) Cables, cable fittings, turnbuckles, splices, and pulleys must be of an acceptable...
Analysis of ship maneuvering data from simulators
NASA Astrophysics Data System (ADS)
Frette, V.; Kleppe, G.; Christensen, K.
2011-03-01
We analyze complex manuevering histories of ships obtained from training sessions on bridge simulators. Advanced ships are used in fields like offshore oil exploration: dive support vessels, supply vessels, anchor handling vessels, tugs, cable layers, and multi-purpose vessels. Due to high demands from the operations carried out, these ships need to have very high maneuverability. This is achieved through a propulsion system with several thrusters, water jets, and rudders in addition to standard propellers. For some operations, like subsea maintenance, it is crucial that the ship accurately keeps a fixed position. Therefore, bridge systems usually incorporate equipment for Dynamic Positioning (DP). DP is a method to keep ships and semi submersible rigs in a fixed position using the propulsion systems instead of anchors. It may also be used for sailing a vessel from one position to another along a predefined route. Like an autopilot on an airplane, DP may operate without human involvement. The method relies on accurate determination of position from external reference systems like GPS, as well as a continuously adjusted mathematical model of the ship and external forces from wind, waves and currents. In a specific simulator exercise for offshore crews, a ship is to be taken up to an installation consisting of three nearby oil platforms connected by bridges (Frigg field, North Sea), where a subsea inspection is to be carried out. Due to the many degrees of freedom during maneuvering, including partly or full use of DP, the chosen routes vary significantly. In this poster we report preliminary results on representations of the complex maneuvering histories; representations that allow comparison between crew groups, and, possibly, sorting of the different strategic choices behind.
NASA Astrophysics Data System (ADS)
Zeng, Zhengzhong; Ma, Lianying
2004-01-01
A simple and effective bridge-type feeding network consisting only of ordinary resistors and conductive wires is designed and tested which launches a 0.8 ns risetime, 40 ns width, and kV-level rectangular pulse from a coaxial cable onto a rod-shaped resistive high-voltage divider with risetime <2 ns with no significant distortion.
West wall, display area (room 101), view 1 of 4: ...
West wall, display area (room 101), view 1 of 4: southwest corner, showing stairs to commander's quarters and viewing bridge, windows to controller's room (room 102), south end of control consoles, and holes in pedestal floor for computer equipment cables (tape drive I/O?) - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA
Military Adaptation of Kevlar for Portable Bridge Reinforcement Cables.
1980-06-18
WMOFE P T GIBSON OAAKO-78-C-O0ZM UNCLASSIFIED II *3fllIIlfIIIIIIIIflf mhhhhmhm EEIIEIIIEIIII lElllIIhlEllEI EllllEElhlllIE EIIEIIIEIIIII EEllhhEhI 11111...COMMAND FORT BELVOIR, VIRGINIA 22060 L I- ,.- C1 . UNCLASS IF IFfl SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)REDISUCON II . REPORT NUMBER... ii LIST OF ILLUSTRATIONS . . . . . . . . . . . . vi LIST OF TABLES . . . . . . . . . . . . . . xi INTRODUCTION . . . . . . . . . . . . . . . 1
Internal coaxial cable seal system
Hall, David R.; Sneddon, Cameron; Dahlgren, Scott Steven; Briscoe, Michael A.
2006-07-25
The invention is a seal system for a coaxial cable and is placed within the coaxial cable and its constituent components. A series of seal stacks including load ring components and elastomeric rings are placed on load bearing members within the coaxial cable sealing the annular space between the coaxial cable and an electrical contact passing there through. The coaxial cable is disposed within drilling components to transmit electrical signals between drilling components within a drill string. The seal system can be used in a variety of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.
OTEC riser cable system, Phase II: conceptual design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
Studies are summarized of conceptual designs of riser cable systems for OTEC pilot plants of both the spar and plantship configurations located at sites off the southeast coast of Puerto Rico. The studies utilize a baseline pilot plant riser cable, the design of which has been developed and reported on in other reports. Baseline riser cable systems for OTEC pilot plants are identified, system hardware consistent with these designs are conceptualized, and comparisons of the various system concepts are provided. It is concluded that there are three riser cable systems feasible for a spar pilot plant platform at the Puntamore » Yeguas site, and two riser cable systems feasible at the plantship pilot plant at the Punta Tuna site. Recommendations for further investigations in the areas of materials, hardware design and pre-installation site surveys are also addressed.« less
Comparison of submuscular and open plating of pediatric femur fractures: a retrospective review.
Abbott, Matthew D; Loder, Randall T; Anglen, Jeffrey O
2013-01-01
Plate osteosynthesis is an accepted method of treatment of pediatric femur fractures. Historically, open plating has been used. Submuscular bridge plating has gained recent popularity due to the theoretical advantages of decreased operative time, decreased blood loss, and decreased risk for infection. The purpose of this study was to compare submuscular bridge plating to open plating of pediatric femur fractures. We retrospectively reviewed 79 patients (80 treated femur fractures) between 1999 and 2011 that underwent either open plating (58 femur fractures) or submuscular bridge plating (22 femur fractures). The outcome measures evaluated were operative time, estimated blood loss, malunion, leg length discrepancy, time to union, infection, unplanned return to the operating room, and length of hospital stay after surgery. Among our outcome measures, there was no difference between the 2 groups in terms of operative time, leg length discrepancy, time to union, infection, or length of hospital stay after surgery. There was greater estimated blood loss in the open plating group (P≤0.0001) and greater rotational asymmetry in the submuscular bridge plating group (P=0.005). There was a trend of increased unplanned return to the operating room in the open plating group (5/58 vs. 0/22) although not statistically significant (P=0.32). Submuscular bridge plating and open plating seem to be equally viable options for the management of pediatric diaphyseal femur fractures. In this study, open plating had an increase in estimated blood loss and a trend of more unplanned returns to the operating room, whereas submuscular bridge plating had an increase in asymptomatic rotational asymmetry. Further larger, prospective, randomized studies are necessary to further evaluate these operative techniques. Therapeutic Level III.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikiforov, E. P.
2009-07-15
Damage by lightning discharges to lightning arrester cables for 110-175 kV aerial transmission lines is analyzed using data from power systems on incidents with aerial transmission lines over a ten year operating period (1997-2006). It is found that failures of lightning arrester cables occur when a tensile force acts on a cable heated to the melting point by a lightning current. The lightning currents required to heat a cable to this extent are greater for larger cable cross sections. The probability that a lightning discharge will develop decreases as the amplitude of the lightning current increases, which greatly reduces themore » number of lightning discharges which damage TK-70 cables compared to TK-50 cables. In order to increase the reliability of lightning arrester cables for 110 kV aerial transmission lines, TK-70 cables should be used in place of TK-50 cables. The number of lightning discharges per year which damage lightning arrester cables is lowered when the density of aerial transmission lines is reduced within the territory of electrical power systems. An approximate relationship between these two parameters is obtained.« less
Frequency Domain Reflectometry NDE for Aging Cables in Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, Samuel W.; Jones, Anthony M.; Fifield, Leonard S.
Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool tomore » locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to minimize the end-shadow effect.« less
Frequency domain reflectometry modeling for nondestructive evaluation of nuclear power plant cables
NASA Astrophysics Data System (ADS)
Glass, S. W.; Fifield, L. S.; Jones, A. M.; Hartman, T. S.
2018-04-01
Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to minimize the end-shadow effect.
Swot analysis of using aerostats for surveillance in counter terrorism
NASA Astrophysics Data System (ADS)
Çetin, Hüseyin
2013-06-01
In today's conjuncture, the terrorist activities are the most compelling issue for the defence forces in maintaining homeland security. Especially, the terrorist elements that penetrate the homeland may give harm. This harm can be minimized by preventing the terrorist penetrations from homeland borders. In counter terrorism, having Intelligence, Surveillance and Reconnaissance (ISR) capability and using this capability by twenty four hours is deterrence for the terrorist groups. Aerostats emerge as the ideal platform which can provide this capability. Aerostats are unmanned and aerodynamically shaped balloons that are stayed in the air, fixed to the ground by steel cable(s). The aerostat is made of a large fabric envelope that is filled with nonflammable helium gas, which provides the lifting force. The cables also serve to supply the electrical power to the aerostat systems, and for data relay between the aerostat and the ground station. Aerostats are different from the other manned and Unmanned Aerial Vehicles (UAVs) because of aerostats' capabilities such as cost effectiveness, long endurance and high resolution image transmission. Especially having uninterrupted image transmission and surveillance capabilities is important to be advantageous in counter terrorism. In this article, a short definition of terrorism has been given and then the importance of ensuring the homeland border security has been emphasized in counter terrorism. In addition, the questions of "what are the technical capabilities, the usage areas and the purposes of aerostats?" will be introduced as a result of literature review. Finally the strengths and weaknesses of aerostats, opportunities and threats for the near future will be introduced by using "SWOT" analysis method.
Code of Federal Regulations, 2010 CFR
2010-10-01
... broadcast stations, digital broadcast stations, analog cable systems, digital cable systems, wireline video systems, wireless cable systems, Direct Broadcast Satellite (DBS) services, Satellite Digital Audio Radio... local government, or their designated representatives, with a means of emergency communication with the...
EVALUATION OF FLOORPAN TEARING AND CABLE SPLICES FOR CABLE BARRIER SYSTEMS
DOT National Transportation Integrated Search
2017-05-26
This research effort consisted of two objectives related to components of a prototype cable barrier system. The first objective was to mitigate the potential for vehicle floorpan tearing by modifying the cable guardrail posts. A bogie vehicle was equ...
47 CFR 76.614 - Cable television system regular monitoring.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Cable television system regular monitoring. 76.614 Section 76.614 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.614 Cable television...
Dynamic analysis of beam-cable coupled systems using Chebyshev spectral element method
NASA Astrophysics Data System (ADS)
Huang, Yi-Xin; Tian, Hao; Zhao, Yang
2017-10-01
The dynamic characteristics of a beam-cable coupled system are investigated using an improved Chebyshev spectral element method in order to observe the effects of adding cables on the beam. The system is modeled as a double Timoshenko beam system interconnected by discrete springs. Utilizing Chebyshev series expansion and meshing the system according to the locations of its connections, numerical results of the natural frequencies and mode shapes are obtained using only a few elements, and the results are validated by comparing them with the results of a finite-element method. Then the effects of the cable parameters and layout of connections on the natural frequencies and mode shapes of a fixed-pinned beam are studied. The results show that the modes of a beam-cable coupled system can be classified into two types, beam mode and cable mode, according to the dominant deformation. To avoid undesirable vibrations of the cable, its parameters should be controlled in a reasonable range, or the layout of the connections should be optimized.
1990-08-16
do you think elicited the Prime Minis- ter’s trust in you? [Kadar] I met Jozsef Antall for the first time when the Hid [ Bridge ] group was formed...general eco- nomic-policy concepts of the various parties, the Blue Ribbon Commission, and the Bridge group. Aside from a few trade union circles...their men’s weapons away from them." There is scarcely a Soviet military man who can imagine Soviet divisions staying on in a reunified Germany
PREFACE: The 4th Symposium on the Mechanics of Slender Structures (MoSS2013)
NASA Astrophysics Data System (ADS)
Cao, Dengqing; Kaczmarczyk, Stefan
2013-07-01
This volume of Journal of Physics: Conference Series contains papers presented at the 4th Symposium on the Mechanics of Slender Structures (MoSS2013) run under the auspices of the Institute of Physics Applied Mechanics Group and hosted by Harbin Institute of Technology (China) from 7-9 January 2013. The conference has been organized in collaboration with the Technical Committee on Vibration and Sound of the American Society of Mechanical Engineers and follows a one day seminar on Ropes, Cables, Belts and Chains: Theory and Applications and the MoSS2006 symposium held at the University of Northampton (UK) in 2004 and 2006, respectively, the MoSS2008 symposium held at the University of Maryland Baltimore County (USA) in 2008 and the MoSS2010 symposium hosted by Mondragon University and held in San Sebastian (Spain) in 2010. The remit of the Symposium on the Mechanics of Slender Structures series involves a broad range of scientific areas. Applications of slender structures include terrestrial, marine and space systems. Moving elastic elements such as ropes, cables, belts and tethers are pivotal components of many engineering systems. Their lengths often vary when the system is in operation. The applications include vertical transportation installations and, more recently, space tether propulsion systems. Traction drive elevator installations employ ropes and belts of variable length as a means of suspension, and also for the compensation of tensile forces over the traction sheave. In cranes and mine hoists, cables and ropes are subject to length variation in order to carry payloads. Tethers experiencing extension and retraction are important components of offshore and marine installations, as well as being proposed for a variety of different space vehicle propulsion systems based on different applications of momentum exchange and electrodynamic interactions with planetary magnetic fields. Furthermore, cables and slender rods are used extensively in civil engineering; in cable-supported bridges, guyed masts and long-span roofs of buildings and stadia. Suspended cables are also applied as electricity transmission lines. Chains are used in various power transmission systems that include such mechanical systems as chain drives and chain saws. Moving conveyor belts are essential components in various material handling installations. Other structures such as pipelines, plates, beams, mechanical linkages and DNA structures also fall into this category. The behaviour of these elements plays a significant role in the performance of the host structure and a holistic approach is needed in the analysis and design of the entire system. This meeting brings together experts from various fields: structural mechanics, thermo-mechanics, dynamics, electrodynamics, vibration and control, structural health monitoring, artificial intelligence, materials science and applied mathematics to discuss the current state of research as well as rising trends and direction for future research in the area of mechanics of slender structures. The event is aimed at improving the understanding of structural and thermo-mechanical properties and behaviour of slender structures. The papers presented at the conference cover analytical, numerical and experimental research in various applications of slender structures. The Organizing Committee gratefully acknowledges support received from the co-sponsoring institutions and would like to thank the authors for their hard work and high quality contributions. Dengqing Cao Harbin Institute of Technology Stefan Kaczmarczyk The University of Northampton
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-17
... Configuration Control Limitations (CDCCL) task to make certain that the by-pass wire remains installed. On later... in-tank Fuel Quantity Indication (FQI) cable plug and the cable shield of the shielded FQI system... (FQI) cable plug and the cable shield of the shielded FQI system cables in the main and collector fuel...
A systems-biology approach to yeast actin cables.
Drake, Tyler; Yusuf, Eddy; Vavylonis, Dimitrios
2012-01-01
We focus on actin cables in yeast as a model system for understanding cytoskeletal organization and the workings of actin itself. In particular, we highlight quantitative approaches on the kinetics of actin-cable assembly and methods of measuring their morphology by image analysis. Actin cables described by these studies can span greater lengths than a thousand end-to-end actin-monomers. Because of this difference in length scales, control of the actin-cable system constitutes a junction between short-range interactions - among actin-monomers and nucleating, polymerization-facilitating, side-binding, severing, and cross-linking proteins - and the emergence of cell-scale physical form as embodied by the actin cables themselves.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... 11-153] Basic Service Tier Encryption Compatibility Between Cable Systems and Consumer Electronics... substantially affect compatibility between cable service and consumer electronics equipment for most subscribers... problems between cable service and consumer electronics equipment were limiting and/or precluding the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-09
...-126] Basic Service Tier Encryption Compatibility Between Cable Systems and Consumer Electronics... between consumer electronics equipment (such as digital television sets) and newly encrypted cable service... Act''), Congress sought to make sure that consumer electronics equipment could receive cable...
30 CFR 75.817 - Cable handling and support systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.817 Cable handling and support systems. Longwall mining equipment must be... the possibility of miners contacting the cables and to protect the high-voltage cables from damage. ...
Cable Television: Franchising Considerations.
ERIC Educational Resources Information Center
Baer, Walter S.; And Others
This volume is a comprehensive reference guide to cable television technology and issues of planning, franchising, and regulating a cable system. It is intended for local government officials and citizens concerned with the development of cable television systems in their communities, as well as for college and university classes in…
Numerical modeling of a spherical buoy moored by a cable in three dimensions
NASA Astrophysics Data System (ADS)
Zhu, Xiangqian; Yoo, Wan-Suk
2016-05-01
Floating facilities have been studied based on the static analysis of mooring cables over the past decades. To analyze the floating system of a spherical buoy moored by a cable with a higher accuracy than before, the dynamics of the cables are considered in the construction of the numerical modeling. The cable modeling is established based on a new element frame through which the hydrodynamic loads are expressed efficiently. The accuracy of the cable modeling is verified with an experiment that is conducted by a catenary chain moving in a water tank. In addition, the modeling of a spherical buoy is established with respect to a spherical coordinate in three dimensions, which can suffers the gravity, the variable buoyancy and Froude-Krylov loads. Finally, the numerical modeling for the system of a spherical buoy moored by a cable is established, and a virtual simulation is proceeded with the X- and Y-directional linear waves and the X-directional current. The comparison with the commercial simulation code ProteusDS indicates that the system is accurately analyzed by the numerical modeling. The tensions within the cable, the motions of the system, and the relationship between the motions and waves are illustrated according to the defined sea state. The dynamics of the cables should be considered in analyzing the floating system of a spherical buoy moored by a cable.
NASA Astrophysics Data System (ADS)
Wang, Jing; Qi, Zhaohui; Wang, Gang
2017-10-01
The dynamic analysis of cable-pulley systems is investigated in this paper, where the time-varying length characteristic of the cable as well as the coupling motion between the cable and the pulleys are considered. The dynamic model for cable-pulley systems are presented based on the principle of virtual power. Firstly, the cubic spline interpolation is adopted for modeling the flexible cable elements and the virtual 1powers of tensile strain, inertia and gravity forces on the cable are formulated. Then, the coupled motions between the cable and the movable or fixed pulley are described by the input and output contact points, based on the no-slip assumption and the spatial description. The virtual powers of inertia, gravity and applied forces on the contact segment of the cable, the movable and fixed pulleys are formulated. In particular, the internal node degrees of freedom of spline cable elements are reduced, which results in that only the independent description parameters of the nodes connected to the pulleys are included in the final governing dynamic equations. At last, two cable-pulley lifting mechanisms are considered as demonstrative application examples where the vibration of the lifting process is investigated. The comparison with ADAMS models is given to prove the validity of the proposed method.
Improving greater trochanteric reattachment with a novel cable plate system.
Baril, Yannick; Bourgeois, Yan; Brailovski, Vladimir; Duke, Kajsa; Laflamme, G Yves; Petit, Yvan
2013-03-01
Cable-grip systems are commonly used for greater trochanteric reattachment because they have provided the best fixation performance to date, even though they have a rather high complication rate. A novel reattachment system is proposed with the aim of improving fixation stability. It consists of a Y-shaped fixation plate combined with locking screws and superelastic cables to reduce cable loosening and limit greater trochanter movement. The novel system is compared with a commercially available reattachment system in terms of greater trochanter movement and cable tensions under different greater trochanteric abductor application angles. A factorial design of experiments was used including four independent variables: plate system, cable type, abductor application angle, and femur model. The test procedure included 50 cycles of simultaneous application of an abductor force on the greater trochanter and a hip force on the femoral head. The novel plate reduces the movements of a greater trochanter fragment within a single loading cycle up to 26%. Permanent degradation of the fixation (accumulated movement based on 50-cycle testing) is reduced up to 46%. The use of superelastic cables reduces tension loosening up to 24%. However this last improvement did not result in a significant reduction of the grater trochanter movement. The novel plate and cables present advantages over the commercially available greater trochanter reattachment system. The plate reduces movements generated by the hip abductor. The superelastic cables reduce cable loosening during cycling. Both of these positive effects could decrease the risks related to grater trochanter non-union. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Tremblay, Jaëlle; Mac-Thiong, Jean-Marc; Brailovski, Vladimir; Petit, Yvan
2015-09-01
This study investigates the use of braided tubular superelastic cables, previously used for sternum closure following sternotomy, as sublaminar fixation method. It compares the biomechanical performance of spinal instrumentation fixation systems with regular sublaminar cables and proprietary superelastic cables. A hybrid experimental protocol was applied to six porcine L1-L4 spinal segments to compare multifilament sublaminar cables (Atlas, Medtronic Sofamor Danek, Memphis, TN) with proprietary superelastic cables. First, intact total range of motion was determined for all specimens using pure moment loading. Second, pure moments were imposed to the instrumented specimens until these intact total ranges of motion were reproduced. Compared to the intact specimens, the use of superelastic cables resulted in stiffer instrumented specimens than the use of multifilament cables for all the loading modes except axial torsion. Consequently, the superelastic cables limited the instrumented segments mobility more than the multifilament cables. Spinal instrumentation fixation systems using superelastic cables could be a good alternative to conventional sublaminar cables as it maintains a constant stabilization of the spine during loading. © IMechE 2015.
Emerging Subsea Networks: SMART Cable Systems for Science and Society
NASA Astrophysics Data System (ADS)
Howe, B. M.; Butler, R.; Joint Task Force, U.
2016-02-01
The subsea telecommunications cable industry is approaching a prospective new era: deploying SMART subsea cable systems (SMART = Science Monitoring And Reliable Telecommunication). The current global, commercial cable infrastructure consists of 1 Gm of cable, being refreshed now and expanding in the future. The SMART concept is to add a small external sensor package along the cable system at its optical repeaters to transmit important real-time environmental data via a dedicated wavelength or overhead channel in the transmission system, avoiding any impact on the commercial traffic. These small, reliable, existing sensors would precisely measure temperature, pressure and three-axis acceleration across the world's ocean floor over an extended period of time, being deployed using standard cable-laying procedures on new or refurbished cables, but not requiring maintenance through the 2-3 decade life of the cable systems. The game-changing factor is the urgent international need for ocean environmental data related to mitigating climate and sea-level change and improving tsunami and slope failure hazard warnings. Societal costs incurred by these are reaching billions of dollars and hundreds of thousands of deaths. Pressures for new and urgent public policies are evident from the 5th IPCC Assessment, USA-China agreement on limiting greenhouse gas emissions, clear evidence for rapid global warming, 21st Session of the Conference of the Parties to the UNFCCC (December 2015, Paris), and the scale of the costs of inaction. To support revised public policies and actions, decision-makers, industry leaders, and the public are seeking key scientific data, which will necessitate new sources of funding. Hence, the emergence of new SMART cable systems offered by the subsea telecommunications industry will provide new market opportunities, engage additional non-traditional users, and make profound societal contributions. The Joint Task Force (JTF) on SMART Subsea Cable Systems established by three UN agencies (ITU, WMO, and UNESCO IOC) is helping facilitate this transformation. http://www.itu.int/en/ITU-T/climatechange/task-force-sc/Pages/default.aspx or google 'jtf cable'
ERIC Educational Resources Information Center
Cable Television Information Center, Washington, DC.
A guide to the economic factors that influence cable television systems is presented. Designed for local officials who must have some familiarity with cable operations in order to make optimum decisions, the guide analyzes the financial framework of a cable system, not only from the operators viewpoint, but also from the perspective of the…
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs between...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs between...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs between...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs between...
46 CFR 129.340 - Cable and wiring.
Code of Federal Regulations, 2011 CFR
2011-10-01
... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...
46 CFR 129.340 - Cable and wiring.
Code of Federal Regulations, 2013 CFR
2013-10-01
... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...
46 CFR 129.340 - Cable and wiring.
Code of Federal Regulations, 2014 CFR
2014-10-01
... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...
46 CFR 129.340 - Cable and wiring.
Code of Federal Regulations, 2012 CFR
2012-10-01
... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs between...
CATV: The New Communicator. 21st Annual NCTA Convention Official Transcript. Technical Volume.
ERIC Educational Resources Information Center
National Cable Television Association, Inc., Washington, DC.
The proceedings of the 21st annual National Cable Television Association convention are presented under the following groupings: short haul microwave systems, satellite/cable system engineering, market studies, FCC (Federal Communications Commission) technical rules and standards, program origination, cable channel allocations, cable system…
NASA Astrophysics Data System (ADS)
Stastny, Jeffrey A.; Rogers, Craig A.; Liang, Chen
1993-07-01
A parametric design model has been created to optimize the sensitivity of the sensing cable in a distributed sensing system. The system consists of electrical time domain reflectometry (ETDR) signal processing equipment and specially designed sensing cables. The ETDR equipment sends a high-frequency electric pulse (in the giga hertz range) along the sensing cable. Some portion of the electric pulse will be reflected back to the ETDR equipment as a result of the variation of the cable impedance. The electric impedance variation in the sensing cable can be related to its mechanical deformation, such as cable elongation (change in the resistance), shear deformation (change in the capacitance), corrosion of the cable or the materials around the cable (change in inductance and capacitance), etc. The time delay, amplitude, and shape of the reflected pulse provides the means to locate, determine the magnitude, and indicate the nature of the change in the electrical impedance, which is then related to the distributed structural deformation. The sensing cables are an essential part of the health-monitoring system. By using the parametric design model, the optimum cable parameters can be determined for specific deformation. Proof-of-concept experiments also are presented in the paper to demonstrate the utility of an electrical TDR system in distributed sensing applications.
Development of early age shrinkage stresses in reinforced concrete bridge decks
NASA Astrophysics Data System (ADS)
William, Gergis W.; Shoukry, Samir N.; Riad, Mourad Y.
2008-12-01
This paper describes the instrumentation and data analysis of a reinforced concrete bridge deck constructed on 3-span continuous steel girders in Evansville, West Virginia. An instrumentation system consisting of 232 sensors is developed and implemented specifically to measure strains and temperature in concrete deck, strains in longitudinal and transverse rebars, the overall contraction and expansion of concrete deck, and crack openings. Data from all sensors are automatically collected every 30 minutes starting at the time of placing the concrete deck. Measured strain and temperature time-histories were used to calculate the stresses, which were processed to attenuate the thermal effects due to daily temperature changes and isolate the drying shrinkage component. The results indicated that most of concrete shrinkage occurs during the first three days. Under the constraining effects from stay-in-place forms and reinforcement, early age shrinkage leads to elevated longitudinal stress, which is the main factor responsible for crack initiation.
P-Cable: New High-Resolution 3D Seismic Acquisition Technology
NASA Astrophysics Data System (ADS)
Planke, Sverre; Berndt, Christian; Mienert, Jürgen; Bünz, Stefan; Eriksen, Frode N.; Eriksen, Ola K.
2010-05-01
We have developed a new cost-efficient technology for acquisition of high-resolution 3D seismic data: the P-Cable system. This technology is very well suited for deep water exploration, site surveys, and studies of shallow gas and fluid migration associated with gas hydrates or leaking reservoirs. It delivers unparalleled 3D seismic images of subsurface sediment architectures. The P-Cable system consists of a seismic cable towed perpendicular to a vessel's steaming direction. This configuration allows us to image an up to 150 m wide swath of the sub-surface for each sail line. Conventional 3D seismic technology relies on several very long streamers (up to 10 km long streamers are common), large sources, and costly operations. In contrast, the P-Cable system is light-weight and fast to deploy from small vessels. Only a small source is required as the system is made for relatively shallow imaging, typically above the first water-bottom multiple. The P-Cable system is particularly useful for acquisition of small 3D cubes, 10-50 km2, in focus areas, rather than extensive mapping of large regions. The rapid deployment and recovery of the system makes it possible to acquire several small cubes (10 to 30 km2) with high-resolution (50-250 Hz) seismic data in during one cruise. The first development of the P-Cable system was a cooperative project achieved by Volcanic Basin Petroleum Research (VBPR), University of Tromsø, National Oceanography Centre, Southampton, and industry partners. Field trials using a 12-streamer system were conducted on sites with active fluid-leakage systems on the Norwegian-Barents-Svalbard margin, the Gulf of Cadiz, and the Mediterranean. The second phase of the development introduced digital streamers. The new P-Cable2 system also includes integrated tow and cross cables for power and data transmission and improved doors to spread the larger cross cable. This digital system has been successfully used during six cruises by the University of Tromsø, VBPR, P-Cable 3D Seismic AS (P3S), and IFM-GEOMAR. Presently, a Norwegian national infrastructure consortium (Univ. of Tromsø, P3S, Univ. of Bergen, NGU) assembles a mobile P-Cable2 high-resolution 3D seismic system for fully operational use of the technology for scientific purposes.
A Systems-Biology Approach to Yeast Actin Cables
Drake, Tyler; Yusuf, Eddy; Vavylonis, Dimitrios
2011-01-01
We focus on actin cables in yeast as a model system for understanding cytoskeletal organization and the workings of actin itself. In particular, we highlight quantitative approaches on the kinetics of actin cable assembly and methods of measuring their morphology by image analysis. Actin cables described by these studies can span greater lengths than a thousand end-to-end actin monomers. Because of this difference in length scales, control of the actin-cable system constitutes a junction between short-range interactions—among actin monomers and nucleating, polymerization-facilitating, side-binding, severing, and cross-linking proteins—and the emergence of cell-scale physical form as embodied by the actin cables themselves. PMID:22161338
Modeling and control of a cable-suspended robot for inspection of vertical structures
NASA Astrophysics Data System (ADS)
Barry, Nicole; Fisher, Erin; Vaughan, Joshua
2016-09-01
In this paper, a cable-driven system is examined for the application of inspection of large, vertical-walled structures such as chemical storage tanks, large ship hulls, and high-rise buildings. Such cable-driven systems are not commonly used for these tasks due to vibration, which decreases inspection accuracy and degrades safety. The flexible nature of the cables make them difficult to control. In this paper, input shaping is implemented on a cable-driven system to reduce vibration. To design the input shapers, a model of the cable-driven system was developed. Analysis of the dominant dynamics and changes in them over the large workspace are also presented. The performance improvements provided by the input shaping controller are quantified through a series of simulations.
Communications Via Undersea Cables: Present And Future
NASA Astrophysics Data System (ADS)
Paul, D. K.
1985-11-01
Advances in fiber optic technology in the past few years have firmly established the superiority of optical fiber to coaxial cables, particularly for large-capacity, long-haul transmission systems. Recently, several undersea fiber optic cable systems have been proposed by both common and noncommon carriers. This paper addresses the techno-economic implications of these applications, and includes a brief review of the current status of undersea cable technology and a projection of future demand and capabilities. The prospects for using high-speed, multifiber undersea cable systems for international communications, extension of these systems through fiber optic terrestrial distribution, and future developmental trends are critically assessed.
78 FR 24368 - Airworthiness Directives; Bell Helicopter Textron, Inc. (Bell) Model Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-25
... chain and cable control system with a push-pull control system. Since we issued that AD, we have... requires replacing the existing chain and cable control system with a push-pull control system. Both... Model 205A-1 to replace the tail rotor chain and cable control system with a push-pull control system...
Cascaded resonant bridge converters
NASA Technical Reports Server (NTRS)
Stuart, Thomas A. (Inventor)
1989-01-01
A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.
Development and preclinical testing of a new tension-band device for the spine: the Loop system.
Garner, Matthew D; Wolfe, Steven J; Kuslich, Stephen D
2002-10-01
Wire sutures, cerclage constructs, and tension bands have been used for many years in orthopedic surgery. Spinous process and sublaminar wires and other strands or cables are used in the spine to re-establish stability of the posterior spinal ligament complex. Rigid monofilament wires often fail due to weakening created during twisting or wrapping. Stronger metal cables do not conform well to bony surfaces. Polyethylene cables have higher fatigue strength than metal cables. The Loop cable is a pliable, radiolucent, polyethylene braid. Creep of the Loop/locking clip construct is similar to metal cable constructs using crimps. Both systems have less creep than knotted polyethylene cable constructs.
Workers in the VAB test SRB cables on STS-98 solid rocket boosters
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Vehicle Assembly Building, United Space Alliance SRB technician Frank Meyer pulls cables out of the solid rocket booster system tunnel. Cable end covers are in a box near his feet. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.
NASA Ames Research Center 60 MW Power Supply Modernization
NASA Technical Reports Server (NTRS)
Choy, Yuen Ching; Ilinets, Boris V.; Miller, Ted; Nagel, Kirsten (Technical Monitor)
2001-01-01
The NASA Ames Research Center 60 MW DC Power Supply was built in 1974 to provide controlled DC power for the Thermophysics Facility Arc Jet Laboratory. The Power Supply has gradually losing reliability due to outdated technology and component life limitation. NASA has decided to upgrade the existing rectifier modules with contemporary high-power electronics and control equipment. NASA plans to complete this project in 2001. This project includes a complete replacement of obsolete thyristor stacks in all six rectifier modules and rectifier bridge control system. High power water-cooled thyristors and freewheeling diodes will be used. The rating of each of the six modules will be 4000 A at 5500 V. The control firing angle signal will be sent from the Facility Control System to six modules via fiberoptic cable. The Power Supply control and monitoring system will include a Master PLC in the Facility building and a Slave PLC in each rectifier module. This system will also monitor each thyristor level in each stack and the auxiliary equipment.
Water turbine system and method of operation
Costin, Daniel P [Montpelier, VT
2011-05-10
A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.
Water turbine system and method of operation
Costin, Daniel P [Montpelier, VT
2009-02-10
A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.
Water turbine system and method of operation
Costin, Daniel P.
2010-06-15
A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.
2001-01-20
KENNEDY SPACE CENTER, FLA. -- Solid rocket booster cables are exposed after removal of the SRB system tunnel cover. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA’s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.
49 CFR 236.71 - Signal wires on pole line and aerial cable.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Signal wires on pole line and aerial cable. 236.71..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.71 Signal wires on pole line and aerial cable. Signal wire on...
49 CFR 236.71 - Signal wires on pole line and aerial cable.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Signal wires on pole line and aerial cable. 236.71..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.71 Signal wires on pole line and aerial cable. Signal wire on...
49 CFR 236.71 - Signal wires on pole line and aerial cable.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Signal wires on pole line and aerial cable. 236.71..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.71 Signal wires on pole line and aerial cable. Signal wire on...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cable and wire facilities expenses-Account 6410... Operating Expenses and Taxes Cable and Wire Facilities Expenses § 36.341 Cable and wire facilities expenses... network cable, aerial wire, and conduit systems. (b) The general method of separating cable and wire...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Cable and wire facilities expenses-Account 6410... Operating Expenses and Taxes Cable and Wire Facilities Expenses § 36.341 Cable and wire facilities expenses... network cable, aerial wire, and conduit systems. (b) The general method of separating cable and wire...
Design and development of 500 m long HTS cable system in the KEPCO power grid, Korea
NASA Astrophysics Data System (ADS)
Sohn, S. H.; Lim, J. H.; Yang, B. M.; Lee, S. K.; Jang, H. M.; Kim, Y. H.; Yang, H. S.; Kim, D. L.; Kim, H. R.; Yim, S. W.; Won, Y. J.; Hwang, S. D.
2010-11-01
In Korea, two long-term field demonstrations for high temperature superconducting (HTS) cable have been carried out for several years; Korea Electric Power Corporation (KEPCO) and LS Cable Ltd. (LSC) independently. Encouraged at the result of the projects performed in parallel, a new project targeting the real grid operation was launched in the fourth quarter of 2008 with the Korean government's financial support. KEPCO and LSC are jointly collaborating in the selection of substation, determination of cable specification, design of cryogenic system, and the scheme of protection coordination. A three phase 500 m long HTS cable at a distribution level voltage of 22.9 kV is to be built at 154/22.9 kV Icheon substation located in near Seoul. A hybrid cryogenic system reflecting the contingency plan is being designed including cryocoolers. The HTS cable system will be installed in the second quarter of 2010, being commissioned by the fall of 2010. This paper describes the objectives of the project and design issues of the cable and cryogenic system in detail.
Summary of LSST systems analysis and integration task for SPS flight test articles
NASA Astrophysics Data System (ADS)
Greenberg, H. S.
1981-02-01
The structural and equipment requirements for two solar power satellite (SPS) test articles are defined. The first SPS concept uses a hexagonal frame structure to stabilize the array of primary tension cables configured to support a Mills Cross antenna containing 17,925 subarrays composed of dipole radiating elements and solid state power amplifier modules. The second test article consists of a microwave antenna and its power source, a 20 by 200 m array of solar cell blankets, both of which are supported by the solar blanket array support structure. The test article structure, a ladder, is comprised of two longitudinal beams (215 m long) spaced 10 m apart and interconnected by six lateral beams. The system control module structure and bridge fitting provide bending and torsional stiffness, and supplement the in plane Vierendeel structure behavior. Mission descriptions, construction, and structure interfaces are addressed.
77 FR 64834 - Exelon Generation Company, LLC; Oyster Creek Nuclear Generating Station; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... automatic fixed deluge water spray system installed over cable trays and open hatches. The deluge... installed over cable trays and open hatches. The deluge suppression system protecting safety- related cable...
LeBlanc, M
1990-01-01
Present body-powered upper-limb prostheses use a cable control system employing World War II aircraft technology to transmit force from the body to the prosthesis for operation. The cable and associated hardware are located outside the prosthesis. Because individuals with arm amputations want prostheses that are natural looking with a smooth, soft outer surface, a design and development project was undertaken to replace the cable system with hydraulics located inside the prosthesis. Three different hydraulic transmission systems were built for evaluation, and other possibilities were explored. Results indicate that a hydraulic force transmission system remains an unmet challenge as a practical replacement for the cable system. The author was unable to develop a hydraulic system that meets the necessary dynamic requirements and is acceptable in size and appearance.
Load Measurement in Structural Members Using Guided Acoustic Waves
NASA Astrophysics Data System (ADS)
Chen, Feng; Wilcox, Paul D.
2006-03-01
A non-destructive technique to measure load in structures such as rails and bridge cables by using guided acoustic waves is investigated both theoretically and experimentally. Robust finite element models for predicting the effect of load on guided wave propagation are developed and example results are presented for rods. Reasonably good agreement of experimental results with modelling prediction is obtained. The measurement technique has been developed to perform tests on larger specimens.
Multi-fibers connectors systems for FOCCoS-PFS-Subaru
NASA Astrophysics Data System (ADS)
de Oliveira, Antonio Cesar; de Oliveira, Ligia Souza; Souza Marrara, Lucas; dos Santos, Leandro Henrique; Vital de Arruda, Marcio; dos Santos, Jesulino Bispo; Ferreira, Décio; Rosa, Josimar Aparecido; de Paiva Vilaça, Rodrigo; Sodré, Laerte; de Oliveira, Claudia Mendes; Gunn, James E.
2014-07-01
The Fiber Optical Cable and Connector System (FOCCoS), provides optical connection between 2400 positioners and a set of spectrographs through optical fibers cables as part of PFS instrument for Subaru telescope. The optical fiber cable will be segmented in 3 parts along the route, cable A, cable B and cable C, connected by a set of multi-fiber connectors. The company USCONEC produces the multi-fiber connector under study. The USCONEC 32F model can connect 32 optical fibers in a 4 x 8 matrix arrangement. The ferrules are made of a durable composite, Polyphenylene Sulfide (PPS) based thermoplastic. The connections are held in place by a push-on/pull-off latch, and the connector can also be distinguished by a pair of metal guide pins that protrude from the front of the connector. Two fibers per connector will be used for monitoring the connection procedure. It was found to be easy to polish and it is small enough to be mounted in groups. Highly multiplexed instruments like PFS require a fiber connector system that can deliver excellent optical performance and reliability. PFS requires two different types of structures to organize the connectors. The Tower Connector system, with 80 multi-fiber connectors, will be a group of connectors for connecting cable B (Telescope Structure) with cable C (Positioners Plate). The Gang Connector system is a group of 8 gang connectors, each one with 12 multi-fibers connectors, for connecting cable B (Telescope Structure) with cable A (Spectrograph). The bench tests with these connector systems and the chosen fibers should measure the throughput of light and the stability after many connections and disconnections. In this paper we describe tests and procedures to evaluate the throughput and FRD increment. The lifetime of the ferrules is also in evaluation.
14 CFR 27.1365 - Electric cables.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would overheat...
14 CFR 27.1365 - Electric cables.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would overheat...
14 CFR 27.1365 - Electric cables.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would overheat...
14 CFR 27.1365 - Electric cables.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would overheat...
14 CFR 27.1365 - Electric cables.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would overheat...
Modular Seafloor and Water Column Systems for the Ocean Observatories Initiative Cabled Array
NASA Astrophysics Data System (ADS)
Delaney, J. R.; Manalang, D.; Harrington, M.; Tilley, J.; Dosher, J.; Cram, G.; Harkins, G.; McGuire, C.; Waite, P.; McRae, E.; McGinnis, T.; Kenney, M.; Siani, C.; Michel-Hart, N.; Denny, S.; Boget, E.; Kawka, O. E.; Daly, K. L.; Luther, D. S.; Kelley, D. S.; Milcic, M.
2016-02-01
Over the past decade, cabled ocean observatories have become an increasingly important way to collect continuous real-time data at remote subsea locations. This has led to the development of a class of subsea systems designed and built specifically to distribute power and bandwidth among sensing instrumentation on the seafloor and throughout the water column. Such systems are typically powered by shore-based infrastructure and involve networks of fiber optic and electrical cabling that provide real-time data access and control of remotely deployed instrumentation. Several subsea node types were developed and/or adapted for cabled use in order to complete the installation of the largest North American scientific cabled observatory in Oct, 2014. The Ocean Observatories Initiative (OOI) Cabled Array, funded by the US National Science Foundation, consists of a core infrastructure that includes 900 km of fiber optic/electrical cables, seven primary nodes, 18 seafloor junction boxes, three mooring-mounted winched profiling systems, and three wire-crawling profiler systems. In aggregate, the installed infrastructure has 200 dedicated scientific instrument ports (of which 120 are currently assigned), and is capable of further expansion. The installed system has a 25-year design life for reliable, sustained monitoring; and all nodes, profilers and instrument packages are ROV-serviceable. Now in it's second year of operation, the systems that comprise the Cabled Array are providing reliable, 24/7 real-time data collection from deployed instrumentation, and offer a modular and scalable class of subsea systems for ocean observing. This presentation will provide an overview of the observatory-class subsystems of the OOI Cabled Array, focusing on the junction boxes, moorings and profilers that power and communicate with deployed instrumentation.
47 CFR 76.614 - Cable television system regular monitoring.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Cable television system regular monitoring. 76... system regular monitoring. Cable television operators transmitting carriers in the frequency bands 108-137 and 225-400 MHz shall provide for a program of regular monitoring for signal leakage by...
47 CFR 76.614 - Cable television system regular monitoring.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Cable television system regular monitoring. 76... system regular monitoring. Cable television operators transmitting carriers in the frequency bands 108-137 and 225-400 MHz shall provide for a program of regular monitoring for signal leakage by...
47 CFR 76.614 - Cable television system regular monitoring.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Cable television system regular monitoring. 76... system regular monitoring. Cable television operators transmitting carriers in the frequency bands 108-137 and 225-400 MHz shall provide for a program of regular monitoring for signal leakage by...
NASA Astrophysics Data System (ADS)
Ishihara, Kaoru; Akita, Shige; Suzuki, Hiroshi; Ogata, Junichi; Nemoto, Minoru
1987-08-01
Cryo-resistive cable system was tested to demonstrate dielectric characteristics. Dielectric characteristics of 66kV cryo-resistive cable at the start of immersion cooling in the liquid nitrogen were 2.25 specific dielectric constant and 0.18 percent dielectric loss which was less than 0.4 percent , the aimed value. Electrostatic capacity and dielectric loss tangent of dielectric characteristics under the applied voltage did not depend on the voltage and the dielectric loss was less than 0.4 percent through the temperature range from -170 to -190C. These values fulfilled the specifications on 275kV class cryo-resistive cable design. The tested cable passed the cable test on 66kV oil-filled cable (ac 90kV, 10 min), but broken down at ac 110kV on the way to endurance testing voltage 130kV. The breakdown occurred due to the mechanical damage of cable insulator by bending and thermal contraction of the cable. It is necessary from these facts to develop flexible cable terminal and joint which can absorb the contraction to realize 275kV cryo-resistive cable. (19 figs, 7 tabs, 15 refs).
Determination of ac conductor and pipe loss in pipe-type cable systems. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silver, D.A.; Seman, G.W.
1982-02-01
The results are presented of investigations into the determination of the ac/dc resistance ratios of high and extra high voltage pipe-type cables with conventional and large size segmental conductors in carbon steel, stainless steel and aluminum pipes in three cable per pipe and single cable per pipe configurations. The measurements included 115 through 765 kV cables with copper, enamel coated copper, and aluminum conductors in sizes of 2000 kcmil (1015 mm/sup 2/), 3250 kcmil (1650 mm/sup 2/), and 3500 kcmil (1776 mm/sup 2/). Calculations using presently available techniques were employed to provide correlation between measured and calculated values in bothmore » magnetic and non-magnetic pipes. In addition, a number of new techniques in conductor construction, pipe material and pipe liners and cable wraps were investigated as means of decreasing the ac/dc resistance ratios of pipe-type cables. Finally, the various systems studied were compared on the basis of system MVA rating and by evaluation of installed and overall operating costs as compared to conventional three cable per pipe systems installed in carbon steel pipes.« less
NASA Astrophysics Data System (ADS)
Marx, Benjamin; Rath, Alexander; Kolm, Frederick; Schröder, Andreas; Buntebarth, Christian; Dreß, Albrecht; Hill, Wieland
2016-05-01
For high-voltage cables, the maximum temperature of the insulation must never be exceeded at any location and at any load condition. The local temperatures depend not only on the cable design and load history, but also on the local thermal environment of the cable. Therefore, distributed temperature monitoring of high-voltage cables is essential to ensure the integrity of the cable at high load. Especially, the load of the export cables of wind farms varies strongly in dependence on weather conditions. In this field study, we demonstrate the measurement performance of a new, robust Brillouin distributed temperature sensing system (Brillouin-DTS). The system is based on spontaneous Brillouin scattering and does not require a fibre loop. This is essential for long submarine high-voltage cables, where normally no loop can be formed in the seabed. It is completely passively cooled and does not contain any moving or wearing parts. The instrument is dedicated for use in industrial and other rough environments. With a measuring time below 10 min, the temperature resolution is better than 1 °C for distances up to 50 km. In the field study, the submarine export cable of an off-shore wind farm has been monitored. The temperature profile of the export cable shows several hot spots, mostly located at cable joints, and also several cold spots.
An Internal Coaxil Cable Seal System
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe
2004-12-23
The invention is a seal system for a coaxial cable more specifically an internal seal system placed within the coaxial cable and its constituent components. A series of seal stacks including flexible rigid rings and elastomeric rings are placed on load bearing members within the coaxial cable. The current invention is adapted to seal the annular space between the coaxial cable and an electrical contact passing there through. The coaxial cable is disposed within drilling components to transmit electrical signals between drilling components within a drill string. During oil and gas exploration, a drill string can see a range of pressures and temperatures thus resulting in multiple combinations of temperature and pressure and increasing the difficulty of creating a robust seal for all combinations. The seal system can be used in a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.
47 CFR 76.611 - Cable television basic signal leakage performance criteria.
Code of Federal Regulations, 2014 CFR
2014-10-01
... average power level of the strongest cable television carrier on the system. (c) In paragraph (a)(1) and... 47 Telecommunication 4 2014-10-01 2014-10-01 false Cable television basic signal leakage...) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.611 Cable...
47 CFR 76.611 - Cable television basic signal leakage performance criteria.
Code of Federal Regulations, 2013 CFR
2013-10-01
... average power level of the strongest cable television carrier on the system. (c) In paragraph (a)(1) and... 47 Telecommunication 4 2013-10-01 2013-10-01 false Cable television basic signal leakage...) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.611 Cable...
47 CFR 76.611 - Cable television basic signal leakage performance criteria.
Code of Federal Regulations, 2012 CFR
2012-10-01
... average power level of the strongest cable television carrier on the system. (c) In paragraph (a)(1) and... 47 Telecommunication 4 2012-10-01 2012-10-01 false Cable television basic signal leakage...) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.611 Cable...
NASA Astrophysics Data System (ADS)
Yu, Zhang; Xiaohui, Song; Jianfang, Li; Fei, Gao
2017-05-01
Cable overheating will lead to the cable insulation level reducing, speed up the cable insulation aging, even easy to cause short circuit faults. Cable overheating risk identification and warning is nessesary for distribution network operators. Cable overheating risk warning method based on impedance parameter estimation is proposed in the paper to improve the safty and reliability operation of distribution network. Firstly, cable impedance estimation model is established by using least square method based on the data from distribiton SCADA system to improve the impedance parameter estimation accuracy. Secondly, calculate the threshold value of cable impedance based on the historical data and the forecast value of cable impedance based on the forecasting data in future from distribiton SCADA system. Thirdly, establish risks warning rules library of cable overheating, calculate the cable impedance forecast value and analysis the change rate of impedance, and then warn the overheating risk of cable line based on the overheating risk warning rules library according to the variation relationship between impedance and line temperature rise. Overheating risk warning method is simulated in the paper. The simulation results shows that the method can identify the imedance and forecast the temperature rise of cable line in distribution network accurately. The result of overheating risk warning can provide decision basis for operation maintenance and repair.
Safety performance evaluation of cable median barriers on freeways in Florida.
Alluri, Priyanka; Haleem, Kirolos; Gan, Albert; Mauthner, John
2016-07-03
This article aims to evaluate the safety performance of cable median barriers on freeways in Florida. The safety performance evaluation was based on the percentages of barrier and median crossovers by vehicle type, crash severity, and cable median barrier type (Trinity Cable Safety System [CASS] and Gibraltar system). Twenty-three locations with cable median barriers totaling about 101 miles were identified. Police reports of 6,524 crashes from years 2005-2010 at these locations were reviewed to verify and obtain detailed crash information. A total of 549 crashes were determined to be barrier related (i.e., crashes involving vehicles hitting the cable median barrier) and were reviewed in further detail to identify crossover crashes and the manner in which the vehicles crossed the barriers; that is, by either overriding, underriding, or penetrating the barriers. Overall, 2.6% of vehicles that hit the cable median barrier crossed the median and traversed into the opposite travel lane. Overall, 98.1% of cars and 95.5% of light trucks that hit the barrier were prevented from crossing the median. In other words, 1.9% of cars and 4.5% of light trucks that hit the barrier had crossed the median and encroached on the opposite travel lanes. There is no significant difference in the performance of cable median barrier for cars versus light trucks in terms of crossover crashes. In terms of severity, overrides were more severe compared to underrides and penetrations. The statistics showed that the CASS and Gibraltar systems performed similarly in terms of crossover crashes. However, the Gibraltar system experienced a higher proportion of penetrations compared to the CASS system. The CASS system resulted in a slightly higher percentage of moderate and minor injury crashes compared to the Gibraltar system. Cable median barriers are successful in preventing median crossover crashes; 97.4% of the cable median barrier crashes were prevented from crossing over the median. Of all of the vehicles that hit the barrier, 83.6% were either redirected or contained by the cable barrier system. Barrier crossover crashes were found to be more severe compared to barrier noncrossover crashes. In addition, overrides were found to be more severe compared to underrides and penetrations.
Non-rocket Earth-Moon transport system
NASA Astrophysics Data System (ADS)
Bolonkin, Alexander
2003-06-01
This paper proposes a new transportation system for travel between Earth and Moon. This transportation system uses mechanical energy transfer and requires only minimal energy, using an engine located on Earth. A cable directly connects a pole of the Earth through a drive station to the lunar surface_ The equation for an optimal equal stress cable for complex gravitational field of Earth-Moon has been derived that allows significantly lower cable masses. The required strength could be provided by cables constructed of carbon nanotubes or carbon whiskers. Some of the constraints on such a system are discussed.
Reducing Actuator Requirements in Continuum Robots Through Optimized Cable Routing.
Case, Jennifer C; White, Edward L; SunSpiral, Vytas; Kramer-Bottiglio, Rebecca
2018-02-01
Continuum manipulators offer many advantages compared to their rigid-linked counterparts, such as increased degrees of freedom and workspace volume. Inspired by biological systems, such as elephant trunks and octopus tentacles, many continuum manipulators are made of multiple segments that allow large-scale deformations to be distributed throughout the body. Most continuum manipulators currently control each segment individually. For example, a planar cable-driven system is typically controlled by a pair of cables for each segment, which implies two actuators per segment. In this article, we demonstrate how highly coupled crossing cable configurations can reduce both actuator count and actuator torque requirements in a planar continuum manipulator, while maintaining workspace reachability and manipulability. We achieve highly coupled actuation by allowing cables to cross through the manipulator to create new cable configurations. We further derive an analytical model to predict the underactuated manipulator workspace and experimentally verify the model accuracy with a physical system. We use this model to compare crossing cable configurations to the traditional cable configuration using workspace performance metrics. Our work here focuses on a simplified planar robot, both in simulation and in hardware, with the goal of extending this to spiraling-cable configurations on full 3D continuum robots in future work.
A cable-driven locomotor training system for restoration of gait in human SCI.
Wu, Ming; Hornby, T George; Landry, Jill M; Roth, Heidi; Schmit, Brian D
2011-02-01
A novel cable-driven robotic locomotor training system was developed to provide compliant assistance/resistance forces to the legs during treadmill training in patients with incomplete spinal cord injury (SCI). Eleven subjects with incomplete SCI were recruited to participate in two experiments to test the feasibility of the robotic gait training system. Specifically, 10 subjects participated in one experimental session to test the characteristics of the robotic gait training system and one subject participated in repeated testing sessions over 8 weeks with the robotic device to test improvements in locomotor function. Limb kinematics were recorded in one experiment to evaluate the system characteristics of the cable-driven locomotor trainer and the overground gait speed and 6 min walking distance were evaluated at pre, 4 and 8 weeks post treadmill training of a single subject as well. The results indicated that the cable driven robotic gait training system improved the kinematic performance of the leg during treadmill walking and had no significant impact on the variability of lower leg trajectory, suggesting a high backdrivability of the cable system. In addition, results from a patient with incomplete SCI indicated that prolonged robotic gait training using the cable robot improved overground gait speed. Results from this study suggested that a cable driven robotic gait training system is effective in improving leg kinematic performance, yet allows variability of gait kinematics. Thus, it seems feasible to improve the locomotor function in human SCI using this cable driven robotic system, warranting testing with a larger group of patients. Copyright © 2010 Elsevier B.V. All rights reserved.
Energy analysis of vehicle-to-cable barrier impacts.
DOT National Transportation Integrated Search
2013-06-01
An accident reconstruction technique was developed for estimating the energy absorbed during an impact with a cable barrier system as well as the initial impact velocity. The kinetic energy absorbed during a cable barrier system impact is comprised o...
Huhn, S L; Wolf, A L; Ecklund, J
1991-12-01
Cervical instability secondary to fracture/dislocation or traumatic subluxation involving the posterior elements may be treated by a variety of fusion techniques. The rigidity of the stainless steel wires used in posterior cervical fusions often leads to difficulty with insertion, adequate tension, and conformation of the graft construct. This report describes a technique of posterior cervical fusion employing a wire system using flexible stainless steel cables. The wire consists of a flexible, 49-strand, stainless steel cable connected on one end to a short, malleable, blunt leader with the opposite end connected to a small islet. The cable may be used in occipitocervical, atlantoaxial, facet-to-spinous process, and interspinous fusion techniques. The cable loop is secured by using a tension/crimper device that sets the desired tension in the cable. In addition to superior biomechanical strength, the flexibility of the cable allows greater ease of insertion and tension adjustment. In terms of direct operative instrumentation in posterior cervical arthrodesis, involving both the upper and lower cervical spine, the cable system appears to be a safe and efficient alternative to monofilament wires.
46 CFR 111.60-2 - Specialty cable for communication and RF applications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-2 Specialty cable for communication and RF applications. Specialty cable such as certain coaxial cable that cannot pass the... 46 Shipping 4 2012-10-01 2012-10-01 false Specialty cable for communication and RF applications...
46 CFR 111.60-2 - Specialty cable for communication and RF applications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-2 Specialty cable for communication and RF applications. Specialty cable such as certain coaxial cable that cannot pass the... 46 Shipping 4 2013-10-01 2013-10-01 false Specialty cable for communication and RF applications...
46 CFR 111.60-2 - Specialty cable for communication and RF applications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-2 Specialty cable for communication and RF applications. Specialty cable such as certain coaxial cable that cannot pass the... 46 Shipping 4 2014-10-01 2014-10-01 false Specialty cable for communication and RF applications...
46 CFR 111.60-2 - Specialty cable for communication and RF applications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-2 Specialty cable for communication and RF applications. Specialty cable such as certain coaxial cable that cannot pass the... 46 Shipping 4 2010-10-01 2010-10-01 false Specialty cable for communication and RF applications...
46 CFR 111.60-2 - Specialty cable for communication and RF applications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-2 Specialty cable for communication and RF applications. Specialty cable such as certain coaxial cable that cannot pass the... 46 Shipping 4 2011-10-01 2011-10-01 false Specialty cable for communication and RF applications...
Possibilities and Limitations of Cable TV for Adult Education.
ERIC Educational Resources Information Center
Niemi, John A.
The paper investigates various organizational models of cable TV ownership and control, legislation in Canada and the United States regarding cable systems, and the potential of cable as an information network for adult education. With a view to giving everyone access to the cable medium and an opportunity to participate, advantages and…
Regulations; Office of Cable Television, State of New Jersey.
ERIC Educational Resources Information Center
New Jersey State Dept. of Public Utilities, Trenton. Office of Cable Television.
Regulations promulgated in accordance with the authority provided the Office of Cable Television, Board of Public Utility Commissioners, State of New Jersey, to regulate cable television in the public interest are set forth. These apply to cable television (CATV) companies which own, control, operate, or manage cable television systems and to…
30 CFR 57.12088 - Splicing trailing cables.
Code of Federal Regulations, 2014 CFR
2014-07-01
... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...
30 CFR 57.12088 - Splicing trailing cables.
Code of Federal Regulations, 2011 CFR
2011-07-01
... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...
30 CFR 57.12088 - Splicing trailing cables.
Code of Federal Regulations, 2013 CFR
2013-07-01
... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...
30 CFR 57.12088 - Splicing trailing cables.
Code of Federal Regulations, 2012 CFR
2012-07-01
... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...
NASA Technical Reports Server (NTRS)
1998-01-01
With technical assistance from Marshall Space Flight Center and Kennedy Space Center, Protective Cable and Wire developed Lightning Retardant Cable (LRC). LRC improves lightning protection over standard coaxial cable by 100 percent. The LRC design keeps lightning from traveling through the cable, preventing damage to satellites, antennas, and cable systems. LRC is now being used in homes as well as airports.
Hall, David R [Provo, UT; Hall, Jr., H. Tracy
2007-07-24
A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. The electrically conducting coil comprises at least two generally fractional loops. In the preferred embodiment, the transmission elements are connected by an electrical conductor. Preferably, the electrical conductor is a coaxial cable. Preferably, the MCEI trough comprises ferrite. In the preferred embodiment, the fractional loops are connected by a connecting cable. In one aspect of the present invention, the connecting cable is a pair of twisted wires. In one embodiment the connecting cable is a shielded pair of twisted wires. In another aspect of the present invention, the connecting cable is a coaxial cable. The connecting cable may be disposed outside of the MCEI circular trough.
NASA Astrophysics Data System (ADS)
Lim, E. K.; Norizan, M. N.; Mohamad, I. S.; Yasin, M. N. M.; Murad, S. A. Z.; Baharum, N. A.; Jamalullail, N.
2017-09-01
This paper presents the design of anti-theft/cable cut real time alert system using microcontroller and GSM technology. The detection part is using the electrical circuit wire connection in detecting the voltage drop of the cable inside the microcontroller digital input port. The GSM wireless modem is used to send the location of cable cut directly to the authority mobile phone. Microcontroller SK40C with Microchip PIC16F887 is used as a controller to control the wireless modem and also the detection device. The device is able to detect and display the location of the cable cut on the LCD display besides of and sending out the location of the cable break to the authority mobile phone wirelessly via SMS.
NASA Astrophysics Data System (ADS)
Jaros, Jakub; Liner, Andrej; Papes, Martin; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek
2015-01-01
Nowadays, the power cables are manufactured to fulfill the following condition - the highest allowable temperature of the cable during normal operation and the maximum allowable temperature at short circuit conditions cannot exceed the condition of the maximum allowable internal temperature. The distribution of the electric current through the conductor leads to the increase of the amplitude of electrons in the crystal lattice of the cables material. The consequence of this phenomenon is the increase of friction and the increase of collisions between particles inside the material, which causes the temperature increase of the carrying elements. The temperature increase is unwanted phenomena, because it is causing losses. In extreme cases, the long-term overload leads to the cable damaging or fire. This paper deals with the temperature distribution measurement inside the power cables using distributed temperature system. With cooperation with Kabex company, the tube containing optical fibers was installed into the center of power cables. These fibers, except telecommunications purposes, can be also used as sensors in measurements carrying out with distributed temperature system. These systems use the optical fiber as a sensor and allow the continual measurement of the temperature along the whole cable in real time with spatial resolution 1 m. DTS systems are successfully deployed in temperature measurement applications in industry areas yet. These areas include construction, drainage, hot water etc. Their advantages are low cost, resistance to electromagnetic radiation and the possibility of real time monitoring at the distance of 8 km. The location of the optical fiber in the center of the power cable allows the measurement of internal distribution of the temperature during overloading the cable. This measurement method can be also used for prediction of short-circuit and its exact location.
Evaluation of the New York low-tension three-cable barrier on curved alignment.
DOT National Transportation Integrated Search
2013-02-01
Three full-scale crash tests were performed on the New York Department of Transportations (NYSDOTs) curved, lowtension, : three-cable barrier systems utilizing the MASH Test Level 3 safety performance criteria. The cable barrier system : for te...
30 CFR 75.1905-1 - Diesel fuel piping systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... entry as electric cables or power lines. Where it is necessary for piping systems to cross electric cables or power lines, guarding must be provided to prevent severed electrical cables or power lines near... storage facility. (h) The diesel fuel piping system must not be located in a borehole with electric power...
30 CFR 75.1905-1 - Diesel fuel piping systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... entry as electric cables or power lines. Where it is necessary for piping systems to cross electric cables or power lines, guarding must be provided to prevent severed electrical cables or power lines near... storage facility. (h) The diesel fuel piping system must not be located in a borehole with electric power...
NASA Astrophysics Data System (ADS)
Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.
2014-08-01
Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESMs). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first-generation dynamic vegetation models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second-generation DVMs that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE (Community Atmosphere Biosphere Land Exchange) or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub-grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to wide-ranging temporal and boreal forests, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model, and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 year. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents an ecologically plausible and efficient alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.
Assessment of 69 kV Underground Cable Thermal Ratings using Distributed Temperature Sensing
NASA Astrophysics Data System (ADS)
Stowers, Travis
Underground transmission cables in power systems are less likely to experience electrical faults, however, resulting outage times are much greater in the event that a failure does occur. Unlike overhead lines, underground cables are not self-healing from flashover events. The faulted section must be located and repaired before the line can be put back into service. Since this will often require excavation of the underground duct bank, the procedure to repair the faulted section is both costly and time consuming. These added complications are the prime motivators for developing accurate and reliable ratings for underground cable circuits. This work will review the methods by which power ratings, or ampacity, for underground cables are determined and then evaluate those ratings by making comparison with measured data taken from an underground 69 kV cable, which is part of the Salt River Project (SRP) power subtransmission system. The process of acquiring, installing, and commissioning the temperature monitoring system is covered in detail as well. The collected data are also used to evaluate typical assumptions made when determining underground cable ratings such as cable hot-spot location and ambient temperatures. Analysis results show that the commonly made assumption that the deepest portion of an underground power cable installation will be the hot-spot location does not always hold true. It is shown that distributed cable temperature measurements can be used to locate the proper line segment to be used for cable ampacity calculations.
Detection of incipient defects in cables by partial discharge signal analysis
NASA Astrophysics Data System (ADS)
Martzloff, F. D.; Simmon, E.; Steiner, J. P.; Vanbrunt, R. J.
1992-07-01
As one of the objectives of a program aimed at assessing test methods for in-situ detection of incipient defects in cables due to aging, a laboratory test system was implemented to demonstrate that the partial discharge analysis method can be successfully applied to low-voltage cables. Previous investigations generally involved cables rated 5 kV or higher, while the objective of the program focused on the lower voltages associated with the safety systems of nuclear power plants. The defect detection system implemented for the project was based on commercially available signal analysis hardware and software packages, customized for the specific purposes of the project. The test specimens included several cables of the type found in nuclear power plants, including artificial defects introduced at various points of the cable. The results indicate that indeed, partial discharge analysis is capable of detecting incipient defects in low-voltage cables. There are, however, some limitations of technical and non-technical nature that need further exploration before this method can be accepted in the industry.
Optimal energy harvesting from vortex-induced vibrations of cables.
Antoine, G O; de Langre, E; Michelin, S
2016-11-01
Vortex-induced vibrations (VIV) of flexible cables are an example of flow-induced vibrations that can act as energy harvesting systems by converting energy associated with the spontaneous cable motion into electricity. This work investigates the optimal positioning of the harvesting devices along the cable, using numerical simulations with a wake oscillator model to describe the unsteady flow forcing. Using classical gradient-based optimization, the optimal harvesting strategy is determined for the generic configuration of a flexible cable fixed at both ends, including the effect of flow forces and gravity on the cable's geometry. The optimal strategy is found to consist systematically in a concentration of the harvesting devices at one of the cable's ends, relying on deformation waves along the cable to carry the energy towards this harvesting site. Furthermore, we show that the performance of systems based on VIV of flexible cables is significantly more robust to flow velocity variations, in comparison with a rigid cylinder device. This results from two passive control mechanisms inherent to the cable geometry: (i) the adaptability to the flow velocity of the fundamental frequencies of cables through the flow-induced tension and (ii) the selection of successive vibration modes by the flow velocity for cables with gravity-induced tension.
Optimal energy harvesting from vortex-induced vibrations of cables
NASA Astrophysics Data System (ADS)
Antoine, G. O.; de Langre, E.; Michelin, S.
2016-11-01
Vortex-induced vibrations (VIV) of flexible cables are an example of flow-induced vibrations that can act as energy harvesting systems by converting energy associated with the spontaneous cable motion into electricity. This work investigates the optimal positioning of the harvesting devices along the cable, using numerical simulations with a wake oscillator model to describe the unsteady flow forcing. Using classical gradient-based optimization, the optimal harvesting strategy is determined for the generic configuration of a flexible cable fixed at both ends, including the effect of flow forces and gravity on the cable's geometry. The optimal strategy is found to consist systematically in a concentration of the harvesting devices at one of the cable's ends, relying on deformation waves along the cable to carry the energy towards this harvesting site. Furthermore, we show that the performance of systems based on VIV of flexible cables is significantly more robust to flow velocity variations, in comparison with a rigid cylinder device. This results from two passive control mechanisms inherent to the cable geometry: (i) the adaptability to the flow velocity of the fundamental frequencies of cables through the flow-induced tension and (ii) the selection of successive vibration modes by the flow velocity for cables with gravity-induced tension.
Design of power cable grounding wire anti-theft monitoring system
NASA Astrophysics Data System (ADS)
An, Xisheng; Lu, Peng; Wei, Niansheng; Hong, Gang
2018-01-01
In order to prevent the serious consequences of the power grid failure caused by the power cable grounding wire theft, this paper presents a GPRS based power cable grounding wire anti-theft monitoring device system, which includes a camera module, a sensor module, a micro processing system module, and a data monitoring center module, a mobile terminal module. Our design utilize two kinds of methods for detecting and reporting comprehensive image, it can effectively solve the problem of power and cable grounding wire box theft problem, timely follow-up grounded cable theft events, prevent the occurrence of electric field of high voltage transmission line fault, improve the reliability of the safe operation of power grid.
LPT. Low power test (TAN640 and641) sections. Referent drawing is ...
LPT. Low power test (TAN-640 and-641) sections. Referent drawing is HAER ID-33-E-292. Section A shows cable tunnel between reactor cells and control room. Bridge crane, roof, ladder details. Ralph M. Parsons 1229-12 ANP/GE-7-640-A-3. November 1956. Approved by INEEL Classification Office for public release. INEEL index code no. 038-0640-00-693-107276 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
76 FR 32866 - Cable Landing Licenses; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-07
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 1 [DA 11-668] Cable Landing Licenses; Correction... Systems Agency and affects applicants requesting streamlined processing of cable landing license... paragraph (j) to read as follows: Sec. 1.767 Cable landing licenses. * * * * * (j) Applications for...
Optimum cable barrier design and placement for the state of Oklahoma.
DOT National Transportation Integrated Search
2013-01-01
This research evaluated the effectiveness of ODOTs cable barrier program. Site inspections of all known cable barrier systems were conducted. : Locations of most cable sites were found to be within guidelines for effective use. Comparison to sites...
Hargrove, Douglas L.
2004-09-14
A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.
Quartz crystal resonator g sensitivity measurement methods and recent results
NASA Astrophysics Data System (ADS)
Driscoll, M. M.
1990-09-01
A technique for accurate measurements of quartz crystal resonator vibration sensitivity is described. The technique utilizes a crystal oscillator circuit in which a prescribed length of coaxial cable is used to connect the resonator to the oscillator sustaining stage. A method is provided for determination and removal of measurement errors normally introduced as a result of cable vibration. In addition to oscillator-type measurements, it is also possible to perform similar vibration sensitivity measurements using a synthesized signal generator with the resonator installed in a passive phase bridge. Test results are reported for 40 and 50 MHz, fifth overtone AT-cut, and third overtone SC-cut crystals. Acceleration sensitivity (gamma vector) values for the SC-cut resonators were typically four times smaller (5 x 10 to the -10th/g) than for the AT-cut units. However, smaller unit-to-unit gamma vector magnitude variation was exhibited by the AT-cut resonators.
47 CFR 76.605 - Technical standards.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... applicable to each NTSC or similar video downstream cable television channel in the system: (1)(i) The cable... contour; (iii) Each signal that is first received by the cable television system by direct video feed from...
47 CFR 76.605 - Technical standards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... applicable to each NTSC or similar video downstream cable television channel in the system: (1)(i) The cable... contour; (iii) Each signal that is first received by the cable television system by direct video feed from...
47 CFR 76.605 - Technical standards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... applicable to each NTSC or similar video downstream cable television channel in the system: (1)(i) The cable... contour; (iii) Each signal that is first received by the cable television system by direct video feed from...
47 CFR 76.605 - Technical standards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... applicable to each NTSC or similar video downstream cable television channel in the system: (1)(i) The cable... contour; (iii) Each signal that is first received by the cable television system by direct video feed from...
47 CFR 76.605 - Technical standards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... applicable to each NTSC or similar video downstream cable television channel in the system: (1)(i) The cable... contour; (iii) Each signal that is first received by the cable television system by direct video feed from...
3D beam shape estimation based on distributed coaxial cable interferometric sensor
NASA Astrophysics Data System (ADS)
Cheng, Baokai; Zhu, Wenge; Liu, Jie; Yuan, Lei; Xiao, Hai
2017-03-01
We present a coaxial cable interferometer based distributed sensing system for 3D beam shape estimation. By making a series of reflectors on a coaxial cable, multiple Fabry-Perot cavities are created on it. Two cables are mounted on the beam at proper locations, and a vector network analyzer (VNA) is connected to them to obtain the complex reflection signal, which is used to calculate the strain distribution of the beam in horizontal and vertical planes. With 6 GHz swept bandwidth on the VNA, the spatial resolution for distributed strain measurement is 0.1 m, and the sensitivity is 3.768 MHz mɛ -1 at the interferogram dip near 3.3 GHz. Using displacement-strain transformation, the shape of the beam is reconstructed. With only two modified cables and a VNA, this system is easy to implement and manage. Comparing to optical fiber based sensor systems, the coaxial cable sensors have the advantage of large strain and robustness, making this system suitable for structure health monitoring applications.
47 CFR 11.55 - EAS operation during a State or Local Area emergency.
Code of Federal Regulations, 2010 CFR
2010-10-01
... leaks or liquid spills, widespread power failures, industrial explosions, and civil disorders. (1) DBS...); analog cable systems, digital cable systems, and wireless cable systems must comply with § 11.54(b)(6... programming should comply with § 11.54(b)(8). (5) Upon completion of the State or Local Area EAS transmission...
NASA Astrophysics Data System (ADS)
Alam, Md Nazmul
Sensors and sensing system are playing dominant roles in monitoring the health of infrastructure, such as bridges, power lines, gas pipelines, rail roads etc. Sensing modalities employing Surface Acoustic Waves (SAW), Electromagnetic (EM) and optical have been investigated and reported. Sensors that utilize the perturbation of EM fields as function of the change in the physical structural or material phenomenon are of particular interest because of their inherent synergy with electronic system and diagnostic techniques, e.g. Time Domain Reflectometry (TDR), Joint-Time-Frequency-Domain-Reflectometry (JTFDR). The focus of this work is to study and develop new sensing and monitoring concepts that are based on EM principles. First, the analyses, design and development of a static electric field type sensor are presented for application in embedded concrete moisture content measurement. The analytical formulation and results based on conformal mapping method for an interdigitated sensor clearly show the dependency of the field penetration depth and the inter-electrode capacitance on the electrode sizes and their spacings. It is observed that larger electrode size and small separation are needed in order to achieve substantially higher capacitance or large field penetration depth. A meander and a circular sensor are fabricated and tested to demonstrate concrete moisture content measurements that show that moisture content is a linear function of sensor interelectrode capacitance. Second, sub-wavelength dimension non-intrusive wave launchers are designed and tested that can launch TDR or JTFDR type broadband surface wave waveforms in the VHF-UHF bands in order to detect cable faults. Greater than 3:1 transmission bandwidth (100-300 MHz) is obtained with a cylindrical launcher on square orthogonal ground plane while with a CSW launcher more than an octave (100-240 MHz) bandwidth is achieved. Open circuit faults are detected using surface waves and TDR on two XLPE cables. Third, a new mathematical method is developed that can be used to determine the changes in the dielectric constant of a cable insulating material. By comparing the experimental JTFDR waveform signatures from a new and an aged cable, it is demonstrated that the change in the average dielectric constant of the insulation material can be estimated from the phase transfer functions obtained from the FFT of measured magnitude and phase responses. The experimental data obtained for two types of cables, XLPE and EPR show that the dielectric constant decreases with accelerated aging. Finally, JTFDR surface wave sensing method is developed and applied to determine the locations of aging related insulation damage in power cables. The comparative power spectral responses of conducted and non-intrusive surface wave JTFDR waveforms clearly show the resulting bandwidth reduction in the latter primarily because of the reflective nature of the coupling. It is demonstrated that with the help of a non-intrusive wave launcher and a 120 MHz Gaussian chirp waveform the location of aging related insulation damages can be detected. Experiments conducted show the cross-correlation peaks at subsequent aging intervals as the cable is aged inside a heat chamber.
System for stabilizing cable phase delay utilizing a coaxial cable under pressure
NASA Technical Reports Server (NTRS)
Clements, P. A. (Inventor)
1974-01-01
Stabilizing the phase delay of signals passing through a pressurizable coaxial cable is disclosed. Signals from an appropriate source at a selected frequency, e.g., 100 MHz, are sent through the controlled cable from a first cable end to a second cable end which, electrically, is open or heavily mismatched at 100 MHz, thereby reflecting 100 MHz signals back to the first cable end. Thereat, the phase difference between the reflected-back signals and the signals from the source is detected by a phase detector. The output of the latter is used to control the flow of gas to or from the cable, thereby controlling the cable pressure, which in turn affects the cable phase delay.
Cable-to-post attachments for a non-proprietary high-tension cable barrier - phase II.
DOT National Transportation Integrated Search
2015-06-01
The research objectives reported herein were based on further development of cable-to-post attachment hardware for use in : the non-proprietary high-tension cable barrier system. Specifically, this project aimed to develop and evaluate alternative : ...
Effect of force tightening on cable tension and displacement in greater trochanter reattachment.
Canet, Fanny; Duke, Kajsa; Bourgeois, Yan; Laflamme, G-Yves; Brailovski, Vladimir; Petit, Yvan
2011-01-01
The purpose of this study was to evaluate cable tension during installation, and during loading similar to walking in a cable grip type greater trochanter (GT), reattachment system. A 4th generation Sawbones composite femur with osteotomised GT was reattached with four Cable-Ready® systems (Zimmer, Warsaw, IN). Cables were tightened at 3 different target installation forces (178, 356 and 534 N) and retightened once as recommended by the manufacturer. Cables tension was continuously monitored using in-situ load cells. To simulate walking, a custom frame was used to apply quasi static load on the head of a femoral stem implant (2340 N) and abductor pull (667 N) on the GT. GT displacement (gap and sliding) relative to the femur was measured using a 3D camera system. During installation, a drop in cable tension was observed when tightening subsequent cables: an average 40+12.2% and 11 ± 5.9% tension loss was measured in the first and second cable. Therefore, retightening the cables, as recommended by the manufacturer, is important. During simulated walking, the second cable additionally lost up to 12.2+3.6% of tension. No difference was observed between the GT-femur gaps measured with cables tightened at different installation forces (p=0.32). The GT sliding however was significantly greater (0.9 ± 0.3 mm) when target installation force was set to only 178 N compared to 356 N (0.2 ± 0.1 mm); p<0.001. There were no significant changes when initial tightening force was increased to 534 N (0.3 ± 0.1 mm); p=0.11. In conclusion, the cable tightening force should be as close as possible to that recommended by the manufacturer, because reducing it compromises the stability of the GT fragment, whereas increasing it does not improve this stability, but could lead to cable breakage.
NASA Astrophysics Data System (ADS)
Hillenbrand, Christopher F.; Barron, Thomas D.; Nugent, David M.
1995-03-01
A submarine trails one fiber optic cable and an undersea vehicle is controlled by this first cable. A missile/torpedo trails a second cable that is to be coupled to the first cable. The second cable has a segment suspended vertically underwater between a buoyant pod and a sea anchor type buoy. The undersea vehicle, or Autonomous Undersea Vehicle, (AUV) hunts for the pod by conventional homing means. A forked cable pickup device in the nose of the AUV captures the suspended cable segment directing it into a slot so a male socket in the underside of the pod mates with a female socket in the slot.
Evaluation of wireless Local Area Networks
NASA Astrophysics Data System (ADS)
McBee, Charles L.
1993-09-01
This thesis is an in-depth evaluation of the current wireless Local Area Network (LAN) technologies. Wireless LAN's consist of three technologies: they are infrared light, microwave, and spread spectrum. When the first wireless LAN's were introduced, they were unfavorably labeled slow, expensive, and unreliable. The wireless LAN's of today are competitively priced, more secure, easier to install, and provide equal to or greater than the data throughput of unshielded twisted pair cable. Wireless LAN's are best suited for organizations that move office staff frequently, buildings that have historical significance, or buildings that have asbestos. Additionally, an organization may realize a cost savings of between $300 to $1,200 each time a node is moved. Current wireless LAN technologies have a positive effect on LAN standards being developed by the Defense Information System Agency (DISA). DoD as a whole is beginning to focus on wireless LAN's and mobile communications. If system managers want to remain successful, they need to stay abreast of this technology.
NASA Astrophysics Data System (ADS)
Hejll, Arvid; Täljsten, Björn; Carolin, Anders
2006-03-01
To obtain a better knowledge of existing structures behaviour monitoring can be used. The use of monitoring in bridge structures by the use of instruments to assess the integrity of structures is not new and there are reports from structures tested as early as in the 19th century according to ISIS Canada1 However, the term SHM (Structural Health Monitoring) is relatively new to civil engineering and the driving force to implement SHM comes from recognising the limitations of conventional visual inspections and evaluations using conservative codes of practice. The possibilities to monitor existing structures with help of the rapidly evolving Information Technology are to day carried out. The objective of SHM is to monitor the in-situ behaviour of a structure accurately and efficiently, to assess its performance under various service conditions, to detect damage or deterioration, and to determine the health or condition of the structure1. In Sweden strengthening and periodic monitoring of a large freivorbau bridge (pre-stresed concrete box girder bridge) has been carried out, the Gröndals Bridge. The bridge is located in Stockholm and is approximately 400 m in length with a free span of 120 m. It was opened to tram traffic in year 2000. Just after opening cracks were noticed in the webs, these cracks have then increased, the size of the largest cracks exceeded 0.5 mm, and at the end of year 2001 the bridge was temporarily strengthened. This was carried out with externally placed prestressed steel stays. The reason for cracking is quite clear but the responsibility is still debated. Nevertheless, it was evidently that the bridge needed to be strengthened. The strengthening methods used were CFRP plates in the Service Limit State (SLS) and prestressed dywidag stays in the Ultimate Limit State (ULS). The strengthening was carried out during year 2002. At the same time monitoring of the bridge commenced, using LVDT crack gauges as well as optical fibre sensors. This monitoring was carried out during the summer period. In addition to this a winter monitoring was carried out in the beginning of 2005. This paper presents the background to strengthening and a comparison between summer and winter monitoring where the strengthening behaviour between the two seasons is enlightened. The result from the monitoring is very interesting; it would have been preferable to strengthen the bridge during the winter.
47 CFR 15.31 - Measurement standards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... current systems, and systems employing a “leaky” coaxial cable as an antenna, measurements for... under test, support equipment or interconnecting cables as determined by the boundary defined by an... cables shall be included within this boundary. (1) At frequencies at or above 30 MHz, measurements may be...
47 CFR 15.31 - Measurement standards.
Code of Federal Regulations, 2012 CFR
2012-10-01
... current systems, and systems employing a “leaky” coaxial cable as an antenna, measurements for... under test, support equipment or interconnecting cables as determined by the boundary defined by an... cables shall be included within this boundary. (1) At frequencies at or above 30 MHz, measurements may be...
47 CFR 76.601 - Performance tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Performance tests. 76.601 Section 76.601... CABLE TELEVISION SERVICE Technical Standards § 76.601 Performance tests. (a) The operator of each cable... cable television system shall conduct complete performance tests of that system at least twice each...
47 CFR 76.601 - Performance tests.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Performance tests. 76.601 Section 76.601... CABLE TELEVISION SERVICE Technical Standards § 76.601 Performance tests. (a) The operator of each cable... cable television system shall conduct complete performance tests of that system at least twice each...
47 CFR 76.601 - Performance tests.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Performance tests. 76.601 Section 76.601... CABLE TELEVISION SERVICE Technical Standards § 76.601 Performance tests. (a) The operator of each cable... cable television system shall conduct complete performance tests of that system at least twice each...
Communicable Medicine: Cable Television and Health Services.
ERIC Educational Resources Information Center
Kalba, Konrad K.
Cable television offers a great potential for the improvement of present health services. A multipurpose cable communications system, adapted to interorganizational medical uses, could constitute the communications infrastructure needed in the present disorganized state of health care delivery. Such a system of video and data transmission offers…
Current Status of Cable Television in the Top-100 Broadcast Markets.
ERIC Educational Resources Information Center
Kaplan, Stuart J.
1978-01-01
A study of the status of cable television in the major broadcast markets suggests that the cable industry has made very little progress in penetrating the top-100 markets, that the rate of development of new cable systems in the top-100 markets has slowed in recent years, and that the primary function of cable television is to retransmit…
Liu, Tie-long; Yan, Wang-jun; Han, Yu; Ye, Xiao-jian; Jia, Lian-shun; Li, Jia-shun; Yuan, Wen
2010-05-01
To compare the biomechanical performances of different wires and cable fixation devices in posterior instrumentation for atlantoaxial instability, and test the effect of different fixation strengths and fixation approaches on the surgical outcomes. Six specimens of the atlantoaxial complex (C0-C3) were used to establish models of the normal complex, unstable complex (type II odontoid fracture) and fixed complex. On the wd-5 mechanical testing machine, the parameters including the strength and rigidity of anti-rotation, change and strength of stress, and stability were measured for the normal complex, atlantoaxial instability complex, the new type titanium cable fixation system, Atlas titanium cable, Songer titanium cable, and stainless wire. The strength and rigidity of anti-rotation, change and strength of stress, stability of flexion, extension and lateral bending of the unstable atlantoaxial complex fixed by the new double locking titanium cable fixation system were superior to those of the Songer or Atlas titanium cable (P<0.05) and medical stainless wire (P<0.05). Simultaneous cable fastening on both sides resulted in better fixation effect than successive cable fastening (P<0.05). Better fixation effect was achieved by fastening the specimen following a rest (P<0.05). The fixation effects can be enhanced by increased fastening strengths. The new type double locking titanium cable fixation system has better biomechanical performance than the conventional Songer and Atlas titanium cables. Fastening the unstable specimens after a rest following simultaneous fastening of the specimen on both sides produces better fixation effect.
49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.
Code of Federal Regulations, 2014 CFR
2014-10-01
... cables. 236.108 Section 236.108 Transportation Other Regulations Relating to Transportation (Continued... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables...
49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.
Code of Federal Regulations, 2012 CFR
2012-10-01
... cables. 236.108 Section 236.108 Transportation Other Regulations Relating to Transportation (Continued... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables...
49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.
Code of Federal Regulations, 2013 CFR
2013-10-01
... cables. 236.108 Section 236.108 Transportation Other Regulations Relating to Transportation (Continued... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables...
Code of Federal Regulations, 2013 CFR
2013-10-01
...), and (d) of this section. (b) Local distribution service (LDS) station. A fixed CARS station used... headend of a cable television system. (d) Cable Television Relay Service PICKUP station. A land mobile.... For other definitions, see part 76 (Cable Television Service) of this chapter. (a) Cable television...
Code of Federal Regulations, 2010 CFR
2010-10-01
...), and (d) of this section. (b) Local distribution service (LDS) station. A fixed CARS station used... headend of a cable television system. (d) Cable Television Relay Service PICKUP station. A land mobile.... For other definitions, see part 76 (Cable Television Service) of this chapter. (a) Cable television...
Code of Federal Regulations, 2011 CFR
2011-10-01
...), and (d) of this section. (b) Local distribution service (LDS) station. A fixed CARS station used... headend of a cable television system. (d) Cable Television Relay Service PICKUP station. A land mobile.... For other definitions, see part 76 (Cable Television Service) of this chapter. (a) Cable television...
Code of Federal Regulations, 2012 CFR
2012-10-01
...), and (d) of this section. (b) Local distribution service (LDS) station. A fixed CARS station used... headend of a cable television system. (d) Cable Television Relay Service PICKUP station. A land mobile.... For other definitions, see part 76 (Cable Television Service) of this chapter. (a) Cable television...
Code of Federal Regulations, 2014 CFR
2014-10-01
...), and (d) of this section. (b) Local distribution service (LDS) station. A fixed CARS station used... headend of a cable television system. (d) Cable Television Relay Service PICKUP station. A land mobile.... For other definitions, see part 76 (Cable Television Service) of this chapter. (a) Cable television...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, Samuel W.; Jones, Anthony M.; Fifield, Leonard S.
This Pacific Northwest National Laboratory milestone report describes progress to date on the investigation of nondestructive test methods focusing particularly on bulk electrical test methods that provide key indicators of cable aging and damage. The work includes a review of relevant literature as well as hands-on experimental verification of inspection capabilities. As nuclear power plants consider applying for second, or subsequent, license renewal to extend their operating period from 60 years to 80 years, it is important to understand how the materials installed in plant systems and components will age during that time and develop aging management programs to assuremore » continued safe operation under normal and design basis events (DBE). Normal component and system tests typically confirm the cables can perform their normal operational function. The focus of the cable test program, however, is directed toward the more demanding challenge of assuring the cable function under accident or DBE. The industry has adopted 50% elongation at break (EAB) relative to the un-aged cable condition as the acceptability standard. All tests are benchmarked against the cable EAB test. EAB, however, is a destructive test so the test programs must apply an array of other nondestructive examination (NDE) tests to assure or infer the overall set of cable’s system integrity. Assessment of cable integrity is further complicated in many cases by vendor’s use of dissimilar material for jacket and insulation. Frequently the jacket will degrade more rapidly than the underlying insulation. Although this can serve as an early alert to cable damage, direct test of the cable insulation without violating the protective jacket becomes problematic. This report addresses the range of bulk electrical NDE cable tests that are or could be practically implemented in a field-test situation with a particular focus on frequency domain reflectometry (FDR). The FDR test method offers numerous advantages over many other bulk electrical tests. Two commercial FDR systems plus a laboratory vector network analyzer are used to test an array of aged and un-aged cables under identical conditions. Several conclusions are set forth, and a number of knowledge gaps are identified.« less
An Analysis of Our Cable Distribution System: Its Current and Future Capabilities.
ERIC Educational Resources Information Center
Clarke, Tobin de Leon
Three goals have been set for San Joaquin Delta College Learning Resource Center's cable distribution system: it is to be made useable, useful, and flexible. Presently the system consists of a microwave dish installed on one building which points to a relay station with approximately one and one half miles of cable pulled to various locations. A…
JPRS Report: Telecommunications.
1988-03-31
Services, Integrated Business Systems , Computasia, Unitel, Cable Television and Telco Properties. 07310 Cable TV License Bidder Eyes Intermediate...international network: ARPA CNUCE (CNR) Pisa EAN IASI (CNR) Roma EARN CNUCE (CNR) Pisa SPAN INFN (CNR) Bologna UCCP Systems & Management (Private company ...largest interna- tional telecommunications companies , in a joint venture with PTAT Systems Incorporated of the U.S. The cable will form a key link in
Wire in the Cable-Driven System of Surgical Robot
NASA Astrophysics Data System (ADS)
Wang, X. F.; Lv, N.; Mu, H. Z.; Xue, L. J.
2017-07-01
During the evolution of the surgical robot, cable plays an important role. It translates motion and force precisely from surgeon’s hand to the tool’s tips. In the paper, the vertical wires, the composition of cable, are mathematically modeled from a geometric point of view. The cable structure and tension are analyzed according to the characteristics of wire screw twist. The structural equations of the wires in different positions are derived for both non-bent cable and bent cable, respectively. The bending moment formula of bent cable is also obtained. This will help researchers find suitable cable and design more matched pulley.
Frequency domain reflectometry NDE for aging cables in nuclear power plants
NASA Astrophysics Data System (ADS)
Glass, S. W.; Jones, A. M.; Fifield, L. S.; Hartman, T. S.
2017-02-01
Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. Although system tests verify cable function under normal loads, demonstration of some cable's ability to perform under exceptional loads associated with design-basis events is essential to assuring plant integrity. The cable's ability to perform safely over the initial 40-year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found in an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program that includes condition monitoring to justify cable performance under normal operation as well as accident conditions. A variety of tests are available to assess various aspects of electrical and mechanical cable performance, but none are suitable for all cable configurations nor does any single test confirm all features of interest. One particularly promising test that is beginning to be used more and more by utilities is frequency domain reflectometry (FDR). FDR is a nondestructive electrical inspection technique used to detect and localize faults in power and communication system conductors along the length of a cable from a single connection point. FDR detects discontinuities in the electrical impedance that arise due to cable splices or similar changes along the path of the conductor pair. In addition, FDR has the potential to provide sensitivity to insulation degradation by detecting small changes in impedance between the cable conductors being examined. The technique is also sensitive to cable bends, the particular lay of the cable in tray, proximity to other cable, and other factors that bear consideration when interpreting the test results. This paper examines various influences on the FDR approach and compares results of three different instruments to assess accelerated aging damage among several NPP representative cables.
Code of Federal Regulations, 2013 CFR
2013-10-01
... CABLE TELEVISION SERVICE Competitive Availability of Navigation Devices § 76.1200 Definitions. As used... open video system as defined by § 76.1500(a). Such systems include, but are not limited to, cable...) Multichannel video programming distributor. A person such as, but not limited to, a cable operator, a BRS/EBS...
Code of Federal Regulations, 2014 CFR
2014-10-01
... CABLE TELEVISION SERVICE Competitive Availability of Navigation Devices § 76.1200 Definitions. As used... open video system as defined by § 76.1500(a). Such systems include, but are not limited to, cable...) Multichannel video programming distributor. A person such as, but not limited to, a cable operator, a BRS/EBS...
Code of Federal Regulations, 2012 CFR
2012-10-01
... CABLE TELEVISION SERVICE Competitive Availability of Navigation Devices § 76.1200 Definitions. As used... open video system as defined by § 76.1500(a). Such systems include, but are not limited to, cable...) Multichannel video programming distributor. A person such as, but not limited to, a cable operator, a BRS/EBS...
Assessment of sodium conductor distribution cable
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1979-06-01
The study assesses the barriers and incentives for using sodium conductor distribution cable. The assessment considers environmental, safety, energy conservation, electrical performance and economic factors. Along with all of these factors considered in the assessment, the sodium distribution cable system is compared to the present day alternative - an aluminum conductor system. (TFD)
46 CFR 113.50-20 - Distribution of cable runs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Distribution of cable runs. 113.50-20 Section 113.50-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Public Address Systems § 113.50-20 Distribution of cable runs. (a) Each...
46 CFR 113.50-20 - Distribution of cable runs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Distribution of cable runs. 113.50-20 Section 113.50-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Public Address Systems § 113.50-20 Distribution of cable runs. (a) Each...
47 CFR 76.905 - Standards for identification of cable systems subject to effective competition.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Rate... system. (2) The franchise area is: (i) Served by at least two unaffiliated multichannel video programming... franchise area; and (ii) the number of households subscribing to multichannel video programming other than...
NASA Technical Reports Server (NTRS)
Lee, Jason H.
2011-01-01
Cables are very important electrical devices that carry power and signals across multiple instruments. Any fault in a cable can easily result in a catastrophic outcome. Therefore, verifying that all cables are built to spec is a very important part of Electrical Integration Procedures. Currently, there are two methods used in lab for verifying cable connectivity. (1) Using a Break-Out Box and an ohmmeter this method is time-consuming but effective for custom cables and (2) Commercial Automated Cable Tester Boxes this method is fast, but to test custom cables often requires pre-programmed configuration files, and cables used on spacecraft are often uniquely designed for specific purposes. The idea is to develop a semi-automatic continuity tester that reduces human effort in cable testing, speeds up the electrical integration process, and ensures system safety. The JPL-Cable Tester Box is developed to check every single possible electrical connection in a cable in parallel. This system indicates connectivity through LED (light emitting diode) circuits. Users can choose to test any pin/shell (test node) with a single push of a button, and any other nodes that are shorted to the test node, even if they are in the same connector, will light up with the test node. The JPL-Cable Tester Boxes offers the following advantages: 1. Easy to use: The architecture is simple enough that it only takes 5 minutes for anyone to learn how operate the Cable Tester Box. No pre-programming and calibration are required, since this box only checks continuity. 2. Fast: The cable tester box checks all the possible electrical connections in parallel at a push of a button. If a cable normally takes half an hour to test, using the Cable Tester Box will improve the speed to as little as 60 seconds to complete. 3. Versatile: Multiple cable tester boxes can be used together. As long as all the boxes share the same electrical potential, any number of connectors can be tested together.
Zhuang, Jinda; Ju, Y Sungtaek
2015-09-22
The deformation and rupture of axisymmetric liquid bridges being stretched between two fully wetted coaxial disks are studied experimentally and theoretically. We numerically solve the time-dependent Navier-Stokes equations while tracking the deformation of the liquid-air interface using the arbitrary Lagrangian-Eulerian (ALE) moving mesh method to fully account for the effects of inertia and viscous forces on bridge dynamics. The effects of the stretching velocity, liquid properties, and liquid volume on the dynamics of liquid bridges are systematically investigated to provide direct experimental validation of our numerical model for stretching velocities as high as 3 m/s. The Ohnesorge number (Oh) of liquid bridges is a primary factor governing the dynamics of liquid bridge rupture, especially the dependence of the rupture distance on the stretching velocity. The rupture distance generally increases with the stretching velocity, far in excess of the static stability limit. For bridges with low Ohnesorge numbers, however, the rupture distance stay nearly constant or decreases with the stretching velocity within certain velocity windows due to the relative rupture position switching and the thread shape change. Our work provides an experimentally validated modeling approach and experimental data to help establish foundation for systematic further studies and applications of liquid bridges.
Continuous monitoring of large civil structures using a digital fiber optic motion sensor system
NASA Astrophysics Data System (ADS)
Hodge, Malcolm H.; Kausel, Theodore C., Jr.
1998-03-01
There is no single attribute which can always predict structural deterioration. Accordingly, we have developed a scheme for monitoring a wide range of incipient deterioration parameters, all based on a single motion sensor concept. In this presentation, we describe how an intrinsically low power- consumption fiber optic harness can be permanently deployed to poll an array of optical sensors. The function and design of these simple, durable, and naturally digital sensors is described, along with the manner in which they have been configured to collect information for changes in the most important structural aspects. The SIMS system is designed to interrogate each sensor up to five-thousand times per second for the life of the structure, and to report sensor data back to a remote computer base for current and long-term analysis, and is directed primarily towards bridges. By suitably modifying the actuation of this very precise motion sensor, SIMS is able to track bridge deck deflection and vibration, expansion joint travel, concrete and rebar corrosion, pothole development, pier scour and tilt. Other sensors will track bolt clamp load, cable tension, and metal fatigue. All of these data are received within microseconds, which means that appropriate computer algorithm manipulations can be carried out to correlate one sensor with other sensors in real time. This internal verification feature automatically enhances confidence in the system's predictive ability and alerts the user to any anomalous behavior.
Initial tension loss in cerclage cables.
Ménard, Jérémie; Émard, Maxime; Canet, Fanny; Brailovski, Vladimir; Petit, Yvan; Laflamme, George Y
2013-10-01
Cerclage cables, frequently used in the management of fractures and osteotomies, are associated with a high failure rate and significant loosening during surgery. This study compared the capacity to maintain tension of different types of orthopaedic cable systems. Multifilament Cobalt-Chrome (CoCr) cables with four different crimp/clamp devices (DePuy, Stryker, Zimmer and Smith&Nephew) and one non-metallic Nylon (Ny) cable from Kinamed were instrumented with a load cell to measure tension during insertion. Significant tension loss was observed with crimping for all cables (P<0.05). Removing the tensioner led to an additional unexpected tension loss (CoCr-DePuy: 18%, CoCr-Stryker: 29%, CoCr-Smith&Nephew: 33%, Ny: 46%, and CoCr-Zimmer: 52%). The simple CoCr (DePuy) cable system outperformed the more sophisticated locking devices due to its significantly better ability to prevent tension loss. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zabolotnov, Yu. M.
2016-07-01
We analyze the spatial motion of a rigid body fixed to a cable about its center of mass when the orbital cable system is unrolling. The analysis is based on the integral manifold method, which permits separating the rigid body motion into the slow and fast components. The motion of the rigid body is studied in the case of slow variations in the cable tension force and under the action of various disturbances.We estimate the influence of the static and dynamic asymmetry of the rigid body on its spatial motion about the cable fixation point. An example of the analysis of the rigid body motion when the orbital cable system is unrolling is given for a special program of variations in the cable tension force. The conditions of applicability of the integral manifold method are analyzed.
Estimation of the interference coupling into cables within electrically large multiroom structures
NASA Astrophysics Data System (ADS)
Keghie, J.; Kanyou Nana, R.; Schetelig, B.; Potthast, S.; Dickmann, S.
2010-10-01
Communication cables are used to transfer data between components of a system. As a part of the EMC analysis of complex systems, it is necessary to determine which level of interference can be expected at the input of connected devices due to the coupling into the irradiated cable. For electrically large systems consisting of several rooms with cables connecting components located in different rooms, an estimation of the coupled disturbances inside cables using commercial field computation software is often not feasible without several restrictions. In many cases, this is related to the non-availability of computing memory and processing power needed for the computation. In this paper, we are going to show that, starting from a topological analysis of the entire system, weak coupling paths within the system can be can be identified. By neglecting these coupling paths and using the transmission line approach, the original system will be simplified so that a simpler estimation is possible. Using the example of a system which is composed of two rooms, multiple apertures, and a network cable located in both chambers, it is shown that an estimation of the coupled disturbances due to external electromagnetic sources is feasible with this approach. Starting from an incident electromagnetic field, we determine transfer functions describing the coupling means (apertures, cables). Using these transfer functions and the knowledge of the weak coupling paths above, a decision is taken regarding the means for paths that can be neglected during the estimation. The estimation of the coupling into the cable is then made while taking only paths with strong coupling into account. The remaining part of the wiring harness in areas with weak coupling is represented by its input impedance. A comparison with the original network shows a good agreement.
47 CFR 76.611 - Cable television basic signal leakage performance criteria.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Cable television basic signal leakage... television basic signal leakage performance criteria. (a) No cable television system shall commence or... one of the following cable television basic signal leakage performance criteria: (1) prior to carriage...
Apollo/Saturn C00.00.19.3 operations and maintenance. Cathodic protection of communication cables
NASA Technical Reports Server (NTRS)
1972-01-01
Operating and maintenance instructions for cathodic protection of communication cables at the Cape Kennedy Launch Complex are presented. The system is designed to prevent or arrest corrosion of communication cables buried in soil or submerged in water by impressing sufficient direct current from the rectifier through the anodes to the cable. This process neutralizes or counteracts current flowing from the cable into the soil or water, thus preventing or arresting corrosion of the cable sheath material.
Recommendations for the Revision of MIL-C-915 Outboard Cable Specifications.
1983-03-15
pressure heat 127 40 Ethylene propylene rubber Air oven 121 168 Air pressure heat 127 40 4333 131 -ML-C-915C Table XIV - Accclerated aging of specimens...terminated at the hydrophones and transducers in cable glands in which the cables are directly rubber -molded to the cable gland which is mounted to...outboard sonar system components. The cables are sealed to the connector plugs by molding a neoprene or polyurethane rubber boot to the cable jacket and to
Space Flight Cable Model Development
NASA Technical Reports Server (NTRS)
Spak, Kaitlin
2013-01-01
This work concentrates the modeling efforts presented in last year's VSGC conference paper, "Model Development for Cable-Harnessed Beams." The focus is narrowed to modeling of space-flight cables only, as a reliable damped cable model is not yet readily available and is necessary to continue modeling cable-harnessed space structures. New experimental data is presented, eliminating the low-frequency noise that plagued the first year's efforts. The distributed transfer function method is applied to a single section of space flight cable for Euler-Bernoulli and shear beams. The work presented here will be developed into a damped cable model that can be incorporated into an interconnected beam-cable system. The overall goal of this work is to accurately predict natural frequencies and modal damping ratios for cabled space structures.
Low temperature monitoring system for subsurface barriers
Vinegar, Harold J [Bellaire, TX; McKinzie, II Billy John [Houston, TX
2009-08-18
A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.
Advanced Twisted Pair Cables for Distributed Local Area Networks in Intelligent Structure Systems
NASA Astrophysics Data System (ADS)
Semenov, Andrey
2018-03-01
The possibility of a significant increase in the length of cable communication channels of local area networks of automation and engineering support systems of buildings in the case of their implementation on balanced twisted pair cables is shown. Assuming a direct connection scheme and an effective speed of 100 Mbit/s, analytical relationships are obtained for the calculation of the maximum communication distance. The necessity of using in the linear part of such systems of twisted pair cables with U/UTP structure and interference parameters at the level of category 5e is grounded.
30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables; minimum design... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall be...
Dynamic testing of a non-proprietary, high-tension, cable end terminal system.
DOT National Transportation Integrated Search
2014-03-01
Two bogie tests were conducted on a high-tension cable end terminal to evaluate the performance of a new design. The : main goals of the new design were to promote quick cable release times, to retain the cable release lever during impact, to : susta...
47 CFR 76.921 - Buy-through of other tiers prohibited.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Rate Regulation § 76.921 Buy-through of other tiers prohibited. (a) No cable system operator, other than an operator subject to effective competition, may... video programming offered on a per channel or per program charge basis. A cable operator may, however...
47 CFR 76.921 - Buy-through of other tiers prohibited.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Rate Regulation § 76.921 Buy-through of other tiers prohibited. (a) No cable system operator, other than an operator subject to effective competition, may... video programming offered on a per channel or per program charge basis. A cable operator may, however...
47 CFR 76.921 - Buy-through of other tiers prohibited.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Rate Regulation § 76.921 Buy-through of other tiers prohibited. (a) No cable system operator, other than an operator subject to effective competition, may... video programming offered on a per channel or per program charge basis. A cable operator may, however...
Using Cable Television for Library Data Transmission.
ERIC Educational Resources Information Center
Whitaker, Douglas A.
1985-01-01
Discusses information gained from a test of cable data circuits on a Geac bibliographic control system at the Wayne Oakland Library Federation (WOLF) (Michigan). Highlights include an introduction to cable, hardware profile, the WOLF experience, and key questions that will affect the future use of cable for data transmission. (EJS)
30 CFR 75.804 - Underground high-voltage cables.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance grounded systems shall be equipped with metallic shields around each power conductor with one or more...
30 CFR 75.804 - Underground high-voltage cables.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance grounded systems shall be equipped with metallic shields around each power conductor with one or more...
30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage trailing cables; minimum design... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall be...
30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage trailing cables; minimum design... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall be...
30 CFR 75.804 - Underground high-voltage cables.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance grounded systems shall be equipped with metallic shields around each power conductor with one or more...
30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage trailing cables; minimum design... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall be...
Moving body velocity arresting line. [stainless steel cables with energy absorbing sleeves
NASA Technical Reports Server (NTRS)
Hull, R. A. (Inventor)
1981-01-01
The arresting of a moving body is improved through the use of steel cables that elongate to absorb the kinetic energy of the body. A sleeve surrounds the cables, protecting them from chafing and providing a failsafe energy absorbing system should the cables fail.
High power cable with internal water cooling 400 kV
NASA Astrophysics Data System (ADS)
Rasquin, W.; Harjes, B.
1982-08-01
Due to the concentration of electricity production in large power plants, the need of higher power transmissions, and the protection of environment, developement of a 400 kV water cooled cable in the power range of 1 to 5 GVA was undertaken. The fabrication and testing of equipment, engineering of cable components, fabrication of a test cable, development of cable terminal laboratory, testing of test cable, field testing of test cable, fabrication of industrial cable laboratory, testing of industrial cable, field testing of industrial cable, and system analysis for optimization were prepared. The field testing was impossible to realize. However, it is proved that a cable consisting of an internal stainless steel water cooled tube, covered by stranded copper profiles, insulated with heavy high quality paper, and protected by an aluminum cover can be produced, withstand tests accordingly to IEC/VDE recommendations, and is able to fulfill all exploitation conditions.
NASA Technical Reports Server (NTRS)
Barbero, P.; Chin, J.
1973-01-01
The theoretical derivation of the set of equations is discussed which is applicable to modeling the dynamic characteristics of aeroelastically-scaled models flown on the two-cable mount system in a 16 ft transonic dynamics tunnel. The computer program provided for the analysis is also described. The program calculates model trim conditions as well as 3 DOF longitudinal and lateral/directional dynamic conditions for various flying cable and snubber cable configurations. Sample input and output are included.
A movable-mass attitude stabilization system for cable-connected artificial-g space stations
NASA Technical Reports Server (NTRS)
Childs, D. W.; Hardison, T. L.
1974-01-01
The development of an active, momentum-exchange system to be used for attitude stabilization of a class of cable-connected artificial-g space stations is studied. A system which employs a single movable control mass is examined for the control of a space station which has the physical appearance of two cylinders connected axially by cables. The dynamic model for the space station includes its aggregate rigid body rotation and relative torsional rotation between the bodies. A zero torsional stiffness design (one cable) and a maximum torsional stiffness design (eight cables) are examined in various stages of deployment, for selected spin velocities ranging from 4 rpm upwards. A linear, time-invariant, feed-back control system is employed, with gains calculated via a root-specification procedure. The movable mass controller provides critical wobble-damping capability for the crew quarters for all configurations and spin velocity.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-31
... lowest unit charge. Broadcast stations and cable systems are also required to review their advertising... Communications Act directs broadcast stations and cable operators to charge political candidates the ``lowest... CFR 73.1942 requires broadcast licensees and 47 CFR 76.206 requires cable television systems to...
Combustibility of Electrical Wire and Cable for Rail Rapid Transit Systems. Volume 1. Flammability.
DOT National Transportation Integrated Search
1983-05-01
The objective of this study was to examine the flammability of wires and cables used in rapid rail transit systems. The overall goal of the study was to quantify the fire properties of wires and cables in a manner so that the relative fire hazards co...
Combustibility of Electrical Wire and Cable for Rail Rapid Transit Systems. Volume 2. Toxicity.
DOT National Transportation Integrated Search
1983-05-01
The objective of this study was to examine the flammability of wires and cables used in rapid rail transit systems. The overall goal of the study was to quantify the fire properties of wires and cables in a manner so that the relative fire hazards co...