A visual LISP program for voxelizing AutoCAD solid models
NASA Astrophysics Data System (ADS)
Marschallinger, Robert; Jandrisevits, Carmen; Zobl, Fritz
2015-01-01
AutoCAD solid models are increasingly recognized in geological and geotechnical 3D modeling. In order to bridge the currently existing gap between AutoCAD solid models and the grid modeling realm, a Visual LISP program is presented that converts AutoCAD solid models into voxel arrays. Acad2Vox voxelizer works on a 3D-model that is made up of arbitrary non-overlapping 3D-solids. After definition of the target voxel array geometry, 3D-solids are scanned at grid positions and properties are streamed to an ASCII output file. Acad2Vox has a novel voxelization strategy that combines a hierarchical reduction of sampling dimensionality with an innovative use of AutoCAD-specific methods for a fast and memory-saving operation. Acad2Vox provides georeferenced, voxelized analogs of 3D design data that can act as regions-of-interest in later geostatistical modeling and simulation. The Supplement includes sample geological solid models with instructions for practical work with Acad2Vox.
CAD-based Automatic Modeling Method for Geant4 geometry model Through MCAM
NASA Astrophysics Data System (ADS)
Wang, Dong; Nie, Fanzhi; Wang, Guozhong; Long, Pengcheng; LV, Zhongliang; LV, Zhongliang
2014-06-01
Geant4 is a widely used Monte Carlo transport simulation package. Before calculating using Geant4, the calculation model need be established which could be described by using Geometry Description Markup Language (GDML) or C++ language. However, it is time-consuming and error-prone to manually describe the models by GDML. Automatic modeling methods have been developed recently, but there are some problem existed in most of present modeling programs, specially some of them were not accurate or adapted to specifically CAD format. To convert the GDML format models to CAD format accurately, a Geant4 Computer Aided Design (CAD) based modeling method was developed for automatically converting complex CAD geometry model into GDML geometry model. The essence of this method was dealing with CAD model represented with boundary representation (B-REP) and GDML model represented with constructive solid geometry (CSG). At first, CAD model was decomposed to several simple solids which had only one close shell. And then the simple solid was decomposed to convex shell set. Then corresponding GDML convex basic solids were generated by the boundary surfaces getting from the topological characteristic of a convex shell. After the generation of these solids, GDML model was accomplished with series boolean operations. This method was adopted in CAD/Image-based Automatic Modeling Program for Neutronics & Radiation Transport (MCAM), and tested with several models including the examples in Geant4 install package. The results showed that this method could convert standard CAD model accurately, and can be used for Geant4 automatic modeling.
Creation of Anatomically Accurate Computer-Aided Design (CAD) Solid Models from Medical Images
NASA Technical Reports Server (NTRS)
Stewart, John E.; Graham, R. Scott; Samareh, Jamshid A.; Oberlander, Eric J.; Broaddus, William C.
1999-01-01
Most surgical instrumentation and implants used in the world today are designed with sophisticated Computer-Aided Design (CAD)/Computer-Aided Manufacturing (CAM) software. This software automates the mechanical development of a product from its conceptual design through manufacturing. CAD software also provides a means of manipulating solid models prior to Finite Element Modeling (FEM). Few surgical products are designed in conjunction with accurate CAD models of human anatomy because of the difficulty with which these models are created. We have developed a novel technique that creates anatomically accurate, patient specific CAD solids from medical images in a matter of minutes.
Individualized Human CAD Models: Anthropmetric Morphing and Body Tissue Layering
2014-07-31
Part Flow Chart of the Interaction among VBA Macros, Excel® Spreadsheet, and SolidWorks Front View of the Male and Female Soldier CAD Model...yellow highlighting. The spreadsheet is linked to the CAD model by macros created with the Visual Basic for Application ( VBA ) editor in Microsoft Excel...basically three working parts to the anthropometric morphing that are all interconnected ( VBA macros, Excel spreadsheet, and SolidWorks). The flow
Evolution of Geometric Sensitivity Derivatives from Computer Aided Design Models
NASA Technical Reports Server (NTRS)
Jones, William T.; Lazzara, David; Haimes, Robert
2010-01-01
The generation of design parameter sensitivity derivatives is required for gradient-based optimization. Such sensitivity derivatives are elusive at best when working with geometry defined within the solid modeling context of Computer-Aided Design (CAD) systems. Solid modeling CAD systems are often proprietary and always complex, thereby necessitating ad hoc procedures to infer parameter sensitivity. A new perspective is presented that makes direct use of the hierarchical associativity of CAD features to trace their evolution and thereby track design parameter sensitivity. In contrast to ad hoc methods, this method provides a more concise procedure following the model design intent and determining the sensitivity of CAD geometry directly to its respective defining parameters.
Cam Design Projects in an Advanced CAD Course for Mechanical Engineers
ERIC Educational Resources Information Center
Ault, H. K.
2009-01-01
The objective of this paper is to present applications of solid modeling aimed at modeling of complex geometries such as splines and blended surfaces in advanced CAD courses. These projects, in CAD-based Mechanical Engineering courses, are focused on the use of the CAD system to solve design problems for applications in machine design, namely the…
Design Through Manufacturing: The Solid Model-Finite Element Analysis Interface
NASA Technical Reports Server (NTRS)
Rubin, Carol
2002-01-01
State-of-the-art computer aided design (CAD) presently affords engineers the opportunity to create solid models of machine parts reflecting every detail of the finished product. Ideally, in the aerospace industry, these models should fulfill two very important functions: (1) provide numerical. control information for automated manufacturing of precision parts, and (2) enable analysts to easily evaluate the stress levels (using finite element analysis - FEA) for all structurally significant parts used in aircraft and space vehicles. Today's state-of-the-art CAD programs perform function (1) very well, providing an excellent model for precision manufacturing. But they do not provide a straightforward and simple means of automating the translation from CAD to FEA models, especially for aircraft-type structures. Presently, the process of preparing CAD models for FEA consumes a great deal of the analyst's time.
ERIC Educational Resources Information Center
Chester, Ivan
2007-01-01
CAD (Computer Aided Design) has now become an integral part of Technology Education. The recent introduction of highly sophisticated, low-cost CAD software and CAM hardware capable of running on desktop computers has accelerated this trend. There is now quite widespread introduction of solid modeling CAD software into secondary schools but how…
Zhang, Jing; Zhang, Rimei; Ren, Guanghui; Zhang, Xiaojie
2017-02-01
This article describes a method that incorporates the solid modeling CAD software Solidworks with a dental milling machine to fabricate individual abutments in house. This process involves creating an implant library with 3-dimensional (3D) models and manufacturing a base, scan element, abutment, and crown anatomy. The 3D models can be imported into any dental computer-aided design and computer-aided (CAD-CAM) manufacturing system. This platform increases abutment design flexibility, as the base and scan elements can be designed to fit several shapes as needed to meet clinical requirements. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Design Through Manufacturing: The Solid Model - Finite Element Analysis Interface
NASA Technical Reports Server (NTRS)
Rubin, Carol
2003-01-01
State-of-the-art computer aided design (CAD) presently affords engineers the opportunity to create solid models of machine parts which reflect every detail of the finished product. Ideally, these models should fulfill two very important functions: (1) they must provide numerical control information for automated manufacturing of precision parts, and (2) they must enable analysts to easily evaluate the stress levels (using finite element analysis - FEA) for all structurally significant parts used in space missions. Today's state-of-the-art CAD programs perform function (1) very well, providing an excellent model for precision manufacturing. But they do not provide a straightforward and simple means of automating the translation from CAD to FEA models, especially for aircraft-type structures. The research performed during the fellowship period investigated the transition process from the solid CAD model to the FEA stress analysis model with the final goal of creating an automatic interface between the two. During the period of the fellowship a detailed multi-year program for the development of such an interface was created. The ultimate goal of this program will be the development of a fully parameterized automatic ProE/FEA translator for parts and assemblies, with the incorporation of data base management into the solution, and ultimately including computational fluid dynamics and thermal modeling in the interface.
Visualization Skills: A Prerequisite to Advanced Solid Modeling
ERIC Educational Resources Information Center
Gow, George
2007-01-01
Many educators believe that solid modeling software has made teaching two- and three-dimensional visualization skills obsolete. They claim that the visual tools built into the solid modeling software serve as a replacement for the CAD operator's personal visualization skills. They also claim that because solid modeling software can produce…
Godoy, Myrna C B; Kim, Tae Jung; White, Charles S; Bogoni, Luca; de Groot, Patricia; Florin, Charles; Obuchowski, Nancy; Babb, James S; Salganicoff, Marcos; Naidich, David P; Anand, Vikram; Park, Sangmin; Vlahos, Ioannis; Ko, Jane P
2013-01-01
The objective of our study was to evaluate the impact of computer-aided detection (CAD) on the identification of subsolid and solid lung nodules on thin- and thick-section CT. For 46 chest CT examinations with ground-glass opacity (GGO) nodules, CAD marks computed using thin data were evaluated in two phases. First, four chest radiologists reviewed thin sections (reader(thin)) for nodules and subsequently CAD marks (reader(thin) + CAD(thin)). After 4 months, the same cases were reviewed on thick sections (reader(thick)) and subsequently with CAD marks (reader(thick) + CAD(thick)). Sensitivities were evaluated. Additionally, reader(thick) sensitivity with assessment of CAD marks on thin sections was estimated (reader(thick) + CAD(thin)). For 155 nodules (mean, 5.5 mm; range, 4.0-27.5 mm)-74 solid nodules, 22 part-solid (part-solid nodules), and 59 GGO nodules-CAD stand-alone sensitivity was 80%, 95%, and 71%, respectively, with three false-positives on average (0-12) per CT study. Reader(thin) + CAD(thin) sensitivities were higher than reader(thin) for solid nodules (82% vs 57%, p < 0.001), part-solid nodules (97% vs 81%, p = 0.0027), and GGO nodules (82% vs 69%, p < 0.001) for all readers (p < 0.001). Respective sensitivities for reader(thick), reader(thick) + CAD(thick), reader(thick) + CAD(thin) were 40%, 58% (p < 0.001), and 77% (p < 0.001) for solid nodules; 72%, 73% (p = 0.322), and 94% (p < 0.001) for part-solid nodules; and 53%, 58% (p = 0.008), and 79% (p < 0.001) for GGO nodules. For reader(thin), false-positives increased from 0.64 per case to 0.90 with CAD(thin) (p < 0.001) but not for reader(thick); false-positive rates were 1.17, 1.19, and 1.26 per case for reader(thick), reader(thick) + CAD(thick), and reader(thick) + CAD(thin), respectively. Detection of GGO nodules and solid nodules is significantly improved with CAD. When interpretation is performed on thick sections, the benefit is greater when CAD marks are reviewed on thin rather than thick sections.
ERIC Educational Resources Information Center
Nee, John G.; Kare, Audhut P.
1987-01-01
Explores several concepts in computer assisted design/computer assisted manufacturing (CAD/CAM). Defines, evaluates, reviews and compares advanced computer-aided geometric modeling and analysis techniques. Presents the results of a survey to establish the capabilities of minicomputer based-systems with the CAD/CAM packages evaluated. (CW)
Development of a CAD Model Simplification Framework for Finite Element Analysis
2012-01-01
A. Senthil Kumar , and KH Lee. Automatic solid decomposition and reduction for non-manifold geometric model generation. Computer-Aided Design, 36(13...CAD/CAM: concepts, techniques, and applications. Wiley-interscience, 1995. [38] Avneesh Sud, Mark Foskey, and Dinesh Manocha. Homotopy-preserving
Tips on Creating Complex Geometry Using Solid Modeling Software
ERIC Educational Resources Information Center
Gow, George
2008-01-01
Three-dimensional computer-aided drafting (CAD) software, sometimes referred to as "solid modeling" software, is easy to learn, fun to use, and becoming the standard in industry. However, many users have difficulty creating complex geometry with the solid modeling software. And the problem is not entirely a student problem. Even some teachers and…
Model building techniques for analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walther, Howard P.; McDaniel, Karen Lynn; Keener, Donald
2009-09-01
The practice of mechanical engineering for product development has evolved into a complex activity that requires a team of specialists for success. Sandia National Laboratories (SNL) has product engineers, mechanical designers, design engineers, manufacturing engineers, mechanical analysts and experimentalists, qualification engineers, and others that contribute through product realization teams to develop new mechanical hardware. The goal of SNL's Design Group is to change product development by enabling design teams to collaborate within a virtual model-based environment whereby analysis is used to guide design decisions. Computer-aided design (CAD) models using PTC's Pro/ENGINEER software tools are heavily relied upon in the productmore » definition stage of parts and assemblies at SNL. The three-dimensional CAD solid model acts as the design solid model that is filled with all of the detailed design definition needed to manufacture the parts. Analysis is an important part of the product development process. The CAD design solid model (DSM) is the foundation for the creation of the analysis solid model (ASM). Creating an ASM from the DSM currently is a time-consuming effort; the turnaround time for results of a design needs to be decreased to have an impact on the overall product development. This effort can be decreased immensely through simple Pro/ENGINEER modeling techniques that summarize to the method features are created in a part model. This document contains recommended modeling techniques that increase the efficiency of the creation of the ASM from the DSM.« less
A tool to convert CAD models for importation into Geant4
NASA Astrophysics Data System (ADS)
Vuosalo, C.; Carlsmith, D.; Dasu, S.; Palladino, K.; LUX-ZEPLIN Collaboration
2017-10-01
The engineering design of a particle detector is usually performed in a Computer Aided Design (CAD) program, and simulation of the detector’s performance can be done with a Geant4-based program. However, transferring the detector design from the CAD program to Geant4 can be laborious and error-prone. SW2GDML is a tool that reads a design in the popular SOLIDWORKS CAD program and outputs Geometry Description Markup Language (GDML), used by Geant4 for importing and exporting detector geometries. Other methods for outputting CAD designs are available, such as the STEP format, and tools exist to convert these formats into GDML. However, these conversion methods produce very large and unwieldy designs composed of tessellated solids that can reduce Geant4 performance. In contrast, SW2GDML produces compact, human-readable GDML that employs standard geometric shapes rather than tessellated solids. This paper will describe the development and current capabilities of SW2GDML and plans for its enhancement. The aim of this tool is to automate importation of detector engineering models into Geant4-based simulation programs to support rapid, iterative cycles of detector design, simulation, and optimization.
NASA Technical Reports Server (NTRS)
Ozsoy, T.; Ochs, J. B.
1984-01-01
The development of a general link between three dimensional wire frame models and rigid solid models is discussed. An interactive computer graphics program was developed to serve as a front end to an algorithm (COSMIC Program No. ARC-11446) which offers a general solution to the hidden line problem where the input data is either line segments of n-sided planar polygons of the most general type with internal boundaries. The program provides a general interface to CAD/CAM data bases and is implemented for models created on the Unigraphics VAX 11/780-based CAD/CAM systems with the display software written for DEC's VS11 color graphics devices.
Aboulfotoh, Ahmed M
2018-03-01
Performance of continuous mesophilic high solids anaerobic digestion (HSAD) was simulated using Anaerobic Digestion Model No. 1 (ADM1), under different conditions (solids concentrations, sludge retention time (SRT), organic loading rate (OLR), and type of sludge). Implementation of ADM1, using the proposed biochemical parameters, proved to be a useful tool for the prediction and control of HSAD as the model predicted the behavior of the tested sets of data with considerable accuracy, especially for SRT more than 13 days. The model was then used to investigate the possibility of changing the existing conventional anaerobic digestion (CAD) units in Gabal El Asfar water resource recovery facility into HSAD, instead of establishing new CAD units, and results show that the system will be feasible. HSAD will produce the same bioenergy combined with a decrease in capital, operational, and maintenance costs.
AutoCAD-To-GIFTS Translator Program
NASA Technical Reports Server (NTRS)
Jones, Andrew
1989-01-01
AutoCAD-to-GIFTS translator program, ACTOG, developed to facilitate quick generation of small finite-element models using CASA/GIFTS finite-element modeling program. Reads geometric data of drawing from Data Exchange File (DXF) used in AutoCAD and other PC-based drafting programs. Geometric entities recognized by ACTOG include points, lines, arcs, solids, three-dimensional lines, and three-dimensional faces. From this information, ACTOG creates GIFTS SRC file, which then reads into GIFTS preprocessor BULKM or modified and reads into EDITM to create finite-element model. SRC file used as is or edited for any number of uses. Written in Microsoft Quick-Basic (Version 2.0).
Tanoue, Kiyonori; Shaw, Amanda Rosewell; Watanabe, Norihiro; Porter, Caroline; Rana, Bhakti; Gottschalk, Stephen; Brenner, Malcolm; Suzuki, Masataka
2017-01-01
Chimeric antigen receptor-modified T cells (CAR T-cells) produce pro-inflammatory cytokines that increase expression of T cell checkpoint signals such as PD-L1, which may inhibit their functionality against solid tumors. In this study, we evaluated in human tumor xenograft models the pro-inflammatory properties of an oncolytic adenovirus (Onc.Ad) with a helper-dependent Ad (HDAd) that expresses a PD-L1 blocking mini-antibody (mini-body) (HDPDL1), as a strategy to enhance CAR T-cell killing. Co-administration of these agents (CAd-VECPDL1) exhibited oncolytic effects with production of PD-L1 mini-body locally at the tumor site. On their own, HDPDL1 exhibited no anti-tumor effect and CAd-VECPDL1 alone reduced tumors only to volumes comparable to Onc.Ad treatment. However, combining CAd-VECPDL1 with HER2.CAR T-cells enhanced anti-tumor activity compared to treatment with either HER2.CAR T-cells alone, or HER2.CAR T-cells plus Onc.Ad. The benefits of locally produced PD-L1 mini-body by CAd-VECPDL1 could not be replicated by infusion of anti-PD-L1 IgG plus HER2.CAR T-cells and co-administration of Onc.Ad in a HER2+ prostate cancer xenograft model. Overall, our data document the superiority of local production of PD-L1 mini-body by CAd-VECPDL1 combined with administration of tumor-directed CAR T-cells to control the growth of solid tumors. PMID:28235763
Classroom Experiences in an Engineering Design Graphics Course with a CAD/CAM Extension.
ERIC Educational Resources Information Center
Barr, Ronald E.; Juricic, Davor
1997-01-01
Reports on the development of a new CAD/CAM laboratory experience for an Engineering Design Graphics (EDG) course. The EDG curriculum included freehand sketching, introduction to Computer-Aided Design and Drafting (CADD), and emphasized 3-D solid modeling. Reviews the project and reports on the testing of the new laboratory components which were…
NASA Astrophysics Data System (ADS)
Shchetinin, N. A.; Duganova, E. V.; Golubenko, N. V.; Novikov, I. A.; Korneev, A. S.
2018-03-01
The paper provides modeling results in the CAD/CAE SolidWorks system with embedded FE-analysis package SolidWorks Simulation to study the hardness of floating tyres during their reconstruction into welded-in tyres.
Hole Feature on Conical Face Recognition for Turning Part Model
NASA Astrophysics Data System (ADS)
Zubair, A. F.; Abu Mansor, M. S.
2018-03-01
Computer Aided Process Planning (CAPP) is the bridge between CAD and CAM and pre-processing of the CAD data in the CAPP system is essential. For CNC turning part, conical faces of part model is inevitable to be recognised beside cylindrical and planar faces. As the sinus cosines of the cone radius structure differ according to different models, face identification in automatic feature recognition of the part model need special intention. This paper intends to focus hole on feature on conical faces that can be detected by CAD solid modeller ACIS via. SAT file. Detection algorithm of face topology were generated and compared. The study shows different faces setup for similar conical part models with different hole type features. Three types of holes were compared and different between merge faces and unmerge faces were studied.
NASA Astrophysics Data System (ADS)
Antipin, D. Ya; Shorokhov, S. G.; Bondarenko, O. I.
2018-03-01
A possibility of using current software products realizing CAD/CAE-technologies for the assessment of passenger safety in emergency cases on railway transport has been analyzed. On the basis of the developed solid computer model of an anthropometric dummy, the authors carried out an analysis of possible levels of passenger injury during accident collision of a train with an obstacle.
Using Pair Programming to Teach CAD Based Engineering Graphics
ERIC Educational Resources Information Center
Leland, Robert P.
2010-01-01
Pair programming was introduced into a course in engineering graphics that emphasizes solid modeling using SolidWorks. In pair programming, two students work at a single computer, and periodically trade off roles as driver (hands on the keyboard and mouse) and navigator (discuss strategy and design issues). Pair programming was used in a design…
Stona, Deborah; Burnett, Luiz Henrique; Mota, Eduardo Gonçalves; Spohr, Ana Maria
2015-07-01
Because no information was found in the dental literature regarding the fracture resistance of all-ceramic crowns using CEREC (Sirona) computer-aided design and computer-aided manufacturing (CAD-CAM) system on solid abutments, the authors conducted a study. Sixty synOcta (Straumann) implant replicas and regular neck solid abutments were embedded in acrylic resin and randomly assigned (n = 20 per group). Three types of ceramics were used: feldspathic, CEREC VITABLOCS Mark II (VITA); leucite, IPS Empress CAD (Ivoclar Vivadent); and lithium disilicate, IPS e.max CAD (Ivoclar Vivadent). The crowns were fabricated by the CEREC CAD-CAM system. After receiving glaze, the crowns were cemented with RelyX U200 (3M ESPE) resin cement under load of 1 kilogram. For each ceramic, one-half of the specimens were subjected to the fracture resistance testing in a universal testing machine with a crosshead speed of 1 millimeter per minute, and the other half were subjected to the fractured resistance testing after 1,000,000 cyclic fatigue loading at 100 newtons. According to a 2-way analysis of variance, the interaction between the material and mechanical cycling was significant (P = .0001). According to a Tukey test (α = .05), the fracture resistance findings with or without cyclic fatigue loading were as follows, respectively: CEREC VITABLOCKS Mark II (405 N/454 N) was statistically lower than IPS Empress CAD (1169 N/1240 N) and IPS e.max CAD (1378 N/1025 N) (P < .05). The IPS Empress CAD and IPS e.max CAD did not differ statistically (P > .05). According to a t test, there was no statistical difference in the fracture resistance with and without cyclic fatigue loading for CEREC VITABLOCS Mark II and IPS Empress CAD (P > .05). For IPS e.max CAD, the fracture resistance without cyclic fatigue loading was statistically superior to that obtained with cyclic fatigue loading (P < .05). The IPS Empress CAD and IPS e.max CAD showed higher fracture resistance compared with CEREC VITABLOCS Mark II. The cyclic fatigue loading negatively influenced only IPS e.max CAD. The CEREC VITABLOCS Mark II, IPS Empress CAD, and IPS e.max CAD ceramic crowns cemented on solid abutments showed sufficient resistance to withstand normal chewing forces. Copyright © 2015 American Dental Association. Published by Elsevier Inc. All rights reserved.
3-D Geometric Modeling for the 21st Century.
ERIC Educational Resources Information Center
Ault, Holly K.
1999-01-01
Describes new geometric computer models used in contemporary computer-aided design (CAD) software including wire frame, surface, solid, and parametric models. Reviews their use in engineering design and discusses the impact of these new technologies on the engineering design graphics curriculum. (Author/CCM)
Application programs written by using customizing tools of a computer-aided design system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X.; Huang, R.; Juricic, D.
1995-12-31
Customizing tools of Computer-Aided Design Systems have been developed to such a degree as to become equivalent to powerful higher-level programming languages that are especially suitable for graphics applications. Two examples of application programs written by using AutoCAD`s customizing tools are given in some detail to illustrate their power. One tool uses AutoLISP list-processing language to develop an application program that produces four views of a given solid model. The other uses AutoCAD Developmental System, based on program modules written in C, to produce an application program that renders a freehand sketch from a given CAD drawing.
1992-09-01
to accept; Manufacturing the desk could be only a very small facility for manufacturing Instant In every manufacturing process Manufacturing will be...produced " instant " parts Layer Characterized most, but not all Manufacturing of the new principles Material Deposit Includes the geometrical...using the NOODLES CAD environment [4]. Next, the CAD model is sliced, and the slices are used to generate files that control the laser mask cutting
An enhanced Oct-tree data structure and operations for solid modeling
NASA Technical Reports Server (NTRS)
Fujimura, K.; Toriya, H.; Yamaguchi, K.; Kunii, T. L.
1984-01-01
Oct-trees are enhanced to increase the processing efficiency of geometric operations for interactive CAD use. Further enhancement is made to combine them with surface models for more precise boundary specification as needed by tool path generation in CAM applications.
Progressive 3D shape abstraction via hierarchical CSG tree
NASA Astrophysics Data System (ADS)
Chen, Xingyou; Tang, Jin; Li, Chenglong
2017-06-01
A constructive solid geometry(CSG) tree model is proposed to progressively abstract 3D geometric shape of general object from 2D image. Unlike conventional ones, our method applies to general object without the need for massive CAD models, and represents the object shapes in a coarse-to-fine manner that allows users to view temporal shape representations at any time. It stands in a transitional position between 2D image feature and CAD model, benefits from state-of-the-art object detection approaches and better initializes CAD model for finer fitting, estimates 3D shape and pose parameters of object at different levels according to visual perception objective, in a coarse-to-fine manner. Two main contributions are the application of CSG building up procedure into visual perception, and the ability of extending object estimation result into a more flexible and expressive model than 2D/3D primitive shapes. Experimental results demonstrate the feasibility and effectiveness of the proposed approach.
A Geometry Based Infra-Structure for Computational Analysis and Design
NASA Technical Reports Server (NTRS)
Haimes, Robert
1998-01-01
The computational steps traditionally taken for most engineering analysis suites (computational fluid dynamics (CFD), structural analysis, heat transfer and etc.) are: (1) Surface Generation -- usually by employing a Computer Assisted Design (CAD) system; (2) Grid Generation -- preparing the volume for the simulation; (3) Flow Solver -- producing the results at the specified operational point; (4) Post-processing Visualization -- interactively attempting to understand the results. For structural analysis, integrated systems can be obtained from a number of commercial vendors. These vendors couple directly to a number of CAD systems and are executed from within the CAD Graphical User Interface (GUI). It should be noted that the structural analysis problem is more tractable than CFD; there are fewer mesh topologies used and the grids are not as fine (this problem space does not have the length scaling issues of fluids). For CFD, these steps have worked well in the past for simple steady-state simulations at the expense of much user interaction. The data was transmitted between phases via files. In most cases, the output from a CAD system could go to Initial Graphics Exchange Specification (IGES) or Standard Exchange Program (STEP) files. The output from Grid Generators and Solvers do not really have standards though there are a couple of file formats that can be used for a subset of the gridding (i.e. PLOT3D data formats). The user would have to patch up the data or translate from one format to another to move to the next step. Sometimes this could take days. Specifically the problems with this procedure are:(1) File based -- Information flows from one step to the next via data files with formats specified for that procedure. File standards, when they exist, are wholly inadequate. For example, geometry from CAD systems (transmitted via IGES files) is defined as disjoint surfaces and curves (as well as masses of other information of no interest for the Grid Generator). This is particularly onerous for modern CAD systems based on solid modeling. The part was a proper solid and in the translation to IGES has lost this important characteristic. STEP is another standard for CAD data that exists and supports the concept of a solid. The problem with STEP is that a solid modeling geometry kernel is required to query and manipulate the data within this type of file. (2) 'Good' Geometry. A bottleneck in getting results from a solver is the construction of proper geometry to be fed to the grid generator. With 'good' geometry a grid can be constructed in tens of minutes (even with a complex configuration) using unstructured techniques. Adroit multi-block methods are not far behind. This means that a million node steady-state solution can be computed on the order of hours (using current high performance computers) starting from this 'good' geometry. Unfortunately, the geometry usually transmitted from the CAD system is not 'good' in the grid generator sense. The grid generator needs smooth closed solid geometry. It can take a week (or more) of interaction with the CAD output (sometimes by hand) before the process can begin. One way Communication. (3) One-way Communication -- All information travels on from one phase to the next. This makes procedures like node adaptation difficult when attempting to add or move nodes that sit on bounding surfaces (when the actual surface data has been lost after the grid generation phase). Until this process can be automated, more complex problems such as multi-disciplinary analysis or using the above procedure for design becomes prohibitive. There is also no way to easily deal with this system in a modular manner. One can only replace the grid generator, for example, if the software reads and writes the same files. Instead of the serial approach to analysis as described above, CAPRI takes a geometry centric approach. This makes the actual geometry (not a discretized version) accessible to all phases of the analysis. The connection to the geometry is made through an Application Programming Interface (API) and NOT a file system. This API isolates the top-level applications (grid generators, solvers and visualization components) from the geometry engine. Also this allows the replacement of one geometry kernel with another, without effecting these top-level applications. For example, if UniGraphics is used as the CAD package then Parasolid (UG's own geometry engine) can be used for all geometric queries so that no solid geometry information is lost in a translation. This is much better than STEP because when the data is queried, the same software is executed as used in the CAD system. Therefore, one analyzes the exact part that is in the CAD system. CAPRI uses the same idea as the commercial structural analysis codes but does not specify control. Software components of the CAD system are used, but the analysis suite, not the CAD operator, specifies the control of the software session. This also means that the license issues (may be) minimized and individuals need not have to know how to operate a CAD system in order to run the suite.
Sandia MEMS Visualization Tools v. 3.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarberry, Victor; Jorgensen, Craig R.; Young, Andrew I.
This is a revision to the Sandia MEMS Visualization Tools. It replaces all previous versions. New features in this version: Support for AutoCAD 2014 and 2015 . This CD contains an integrated set of electronic files that: a) Provides a 2D Process Visualizer that generates cross-section images of devices constructed using the SUMMiT V fabrication process. b) Provides a 3D Visualizer that generates 3D images of devices constructed using the SUMMiT V fabrication process. c) Provides a MEMS 3D Model generator that creates 3D solid models of devices constructed using the SUMMiT V fabrication process. While there exists some filesmore » on the CD that are used in conjunction with software package AutoCAD , these files are not intended for use independent of the CD. Note that the customer must purchase his/her own copy of AutoCAD to use with these files.« less
Incorporating Solid Modeling and Team-Based Design into Freshman Engineering Graphics.
ERIC Educational Resources Information Center
Buchal, Ralph O.
2001-01-01
Describes the integration of these topics through a major team-based design and computer aided design (CAD) modeling project in freshman engineering graphics at the University of Western Ontario. Involves n=250 students working in teams of four to design and document an original Lego toy. Includes 12 references. (Author/YDS)
Introduction and Highlights of the Workshop
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Venneri, Samuel L.
1997-01-01
Four generations of CAD/CAM systems can be identified, corresponding to changes in both modeling functionality and software architecture. The systems evolved from 2D and wireframes to solid modeling, to parametric/variational modelers to the current simulation-embedded systems. Recent developments have enabled design engineers to perform many of the complex analysis tasks, typically performed by analysis experts. Some of the characteristics of the current and emerging CAD/CAM/CAE systems are described in subsequent presentations. The focus of the workshop is on the potential of CAD/CAM/CAE systems for use in simulating the entire mission and life-cycle of future aerospace systems, and the needed development to realize this potential. First, the major features of the emerging computing, communication and networking environment are outlined; second, the characteristics and design drivers of future aerospace systems are identified; third, the concept of intelligent synthesis environment being planned by NASA, the UVA ACT Center and JPL is presented; and fourth, the objectives and format of the workshop are outlined.
ACTON - AUTOCAD TO NASTRAN TRANSLATOR
NASA Technical Reports Server (NTRS)
Jones, A.
1994-01-01
The AutoCAD to NASTRAN translator, ACTON, was developed to facilitate quick generation of small finite element models for use with the NASTRAN finite element modeling program. (NASTRAN is available from COSMIC.) ACTON reads the geometric data of a drawing from the Data Exchange File (DXF) used in AutoCAD and other PC based drafting programs. The geometric entities recognized by ACTON include POINTs, LINEs, SOLIDs, 3DLINEs and 3DFACEs. From this information ACTON creates a NASTRAN bulk data deck which can be used to create a finite element model. The NASTRAN elements created include CBARs, CTRIAs, CQUAD4s, CPENTAs, and CHEXAs. The bulk data deck can be used to create a full NASTRAN deck. It is assumed that the user has at least a working knowledge of AutoCAD and NASTRAN. ACTON was written in Microsoft QuickBasic (Version 2.0). The program was developed for the IBM PC and has been implemented on an IBM PC compatible under DOS 3.21. ACTON was developed in 1988.
Evaluating the Learning Process of Mechanical CAD Students
ERIC Educational Resources Information Center
Hamade, R. F.; Artail, H. A.; Jaber, M. Y.
2007-01-01
There is little theoretical or experimental research on how beginner-level trainees learn CAD skills in formal training sessions. This work presents findings on how trainees develop their skills in utilizing a solid mechanical CAD tool (Pro/Engineer version 2000i[squared] and later version Wildfire). Exercises at the beginner and intermediate…
Yu, Jian-Hong; Lo, Lun-Jou; Hsu, Pin-Hsin
2017-01-01
This study integrates cone-beam computed tomography (CBCT)/laser scan image superposition, computer-aided design (CAD), and 3D printing (3DP) to develop a technology for producing customized dental (orthodontic) miniscrew surgical templates using polymer material. Maxillary bone solid models with the bone and teeth reconstructed using CBCT images and teeth and mucosa outer profile acquired using laser scanning were superimposed to allow miniscrew visual insertion planning and permit surgical template fabrication. The customized surgical template CAD model was fabricated offset based on the teeth/mucosa/bracket contour profiles in the superimposition model and exported to duplicate the plastic template using the 3DP technique and polymer material. An anterior retraction and intrusion clinical test for the maxillary canines/incisors showed that two miniscrews were placed safely and did not produce inflammation or other discomfort symptoms one week after surgery. The fitness between the mucosa and template indicated that the average gap sizes were found smaller than 0.5 mm and confirmed that the surgical template presented good holding power and well-fitting adaption. This study addressed integrating CBCT and laser scan image superposition; CAD and 3DP techniques can be applied to fabricate an accurate customized surgical template for dental orthodontic miniscrews. PMID:28280726
2012-08-01
biomechanical modeling (e.g. arteries). It is also possible to go still fur- ther with the concept and blend shell theories with continuum solid theories in the...spirit of transition elements. Again biomechanical modeling opportunities present themselves, such as for heart-artery models . We also note that all...these blended theories can be developed within the IGA format of exact CAD modeling . The blended formulation presented here is valid for a broad class
A Design-Based Engineering Graphics Course for First-Year Students.
ERIC Educational Resources Information Center
Smith, Shana Shiang-Fong
2003-01-01
Describes the first-year Introduction to Design course at Iowa State University which incorporates design for manufacturing and concurrent engineering principles into the curriculum. Autodesk Inventor was used as the primary CAD tool for parametric solid modeling. Test results show that student spatial visualization skills were dramatically…
Fifth SIAM conference on geometric design 97: Final program and abstracts. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-31
The meeting was divided into the following sessions: (1) CAD/CAM; (2) Curve/Surface Design; (3) Geometric Algorithms; (4) Multiresolution Methods; (5) Robotics; (6) Solid Modeling; and (7) Visualization. This report contains the abstracts of papers presented at the meeting. Proceding the conference there was a short course entitled ``Wavelets for Geometric Modeling and Computer Graphics``.
Creating three-dimensional tooth models from tomographic images.
Lima da Silva, Isaac Newton; Barbosa, Gustavo Frainer; Soares, Rodrigo Borowski Grecco; Beltrao, Maria Cecilia Gomes; Spohr, Ana Maria; Mota, Eduardo Golcalves; Oshima, Hugo Mitsuo Silva; Burnett, Luiz Henrique
2008-01-01
The use of Finite Element Analysis (FEA) is becoming very frequent in Dentistry. However, most of the three-dimensional models presented by the literature for teeth are limited in terms of geometry. Discrepancy in shape and dimensions can cause wrong results to occur. Sharp cusps and faceted contour can produce stress concentrations, which are incoherent with the reality. The aim of this study was the processing of tomographic images in order to develop an advanced three-dimensional reconstruction of the anatomy of a molar tooth and the integration of the resulting solid with commercially available CAD/CAE software. Computed tomographic images were obtained from 0.5 mm thick slices of mandibular molar and transferred to commercial cad software. Once the point cloud data have been generated, the work on these points started to get to the solid model of the tooth with Pro/Engineer software. The obtained tooth model showed very accurate shape and dimensions, as it was obtained from real tooth data with error of 0.0 to -0.8 mm. The methodology presented was efficient for creating a biomodel of a tooth from tomographic images that realistically represented its anatomy.
ACTOG - AUTOCAD TO GIFTS TRANSLATOR
NASA Technical Reports Server (NTRS)
Jones, A.
1994-01-01
The AutoCad TO Gifts Translator program, ACTOG, was developed to facilitate quick generation of small finite element models using the CASA/Gifts finite element modeling program. ACTOG reads the geometric data of a drawing from the Data Exchange File (DXF) used in AutoCAD and other PC based drafting programs. The geometric entities recognized by ACTOG include POINTs, LINEs, ARCs, SOLIDs, 3DLINEs and 3DFACEs. From this information ACTOG creates a GIFTS SRC file which can then be read into the GIFTS preprocessor BULKM or can be modified and read into EDITM to create a finite element model. The GIFTS commands created include KPOINTs, SLINEs, CARCs, GRID3s and GRID4s. The SRC file can be used as is (using the default parameters) or edited for any number of uses. It is assumed that the user has at least a working knowledge of AutoCAD and GIFTS. ACTOG was written in Microsoft QuickBasic (Version 2.0). The program was developed for the IBM PC and has been implemented on an IBM PC compatible under DOS 3.21. ACTOG was developed in 1988.
Interfacing WIPL-D with Mechanical CAD Software
NASA Technical Reports Server (NTRS)
Bliznyuk, Nataliya; Janic, Bojan
2007-01-01
of almost any popular CAD format, e.g. IGES, Parasolid, DXF, ACIS etc. The solid models are processed (simplified) and meshed in GiD(R), and then converted into WIPL-D Pro input file by simple Fortran or Matlab code. This algorithm allows the user to control the mesh of imported geometry, and to assign electric pperties to metalic and dielectric surfaces. Implementation of the algorithm is demonstrated by examples obtained from the NASA Discovery mission, Phoenix Lander 2008. Results for radiation pattern of Phoenix Lander UHF relay antenna with effect of Martian surface, both simulated in WIPL-D Pro and measured, are shown for comparison.
Okada, Tohru; Iwano, Shingo; Ishigaki, Takeo; Kitasaka, Takayuki; Hirano, Yasushi; Mori, Kensaku; Suenaga, Yasuhito; Naganawa, Shinji
2009-02-01
The ground-glass opacity (GGO) of lung cancer is identified only subjectively on computed tomography (CT) images as no quantitative characteristic has been defined for GGOs. We sought to define GGOs quantitatively and to differentiate between GGOs and solid-type lung cancers semiautomatically with a computer-aided diagnosis (CAD). High-resolution CT images of 100 pulmonary nodules (all peripheral lung cancers) were collected from our clinical records. Two radiologists traced the contours of nodules and distinguished GGOs from solid areas. The CT attenuation value of each area was measured. Differentiation between cancer types was assessed by a receiver-operating characteristic (ROC) analysis. The mean CT attenuation of the GGO areas was -618.4 +/- 212.2 HU, whereas that of solid areas was -68.1 +/- 230.3 HU. CAD differentiated between solidand GGO-type lung cancers with a sensitivity of 86.0% and specificity of 96.5% when the threshold value was -370 HU. Four nodules of mixed GGOs were incorrectly classified as the solid type. CAD detected 96.3% of GGO areas when the threshold between GGO and solid areas was 194 HU. Objective definition of GGO area by CT attenuation is feasible. This method is useful for semiautomatic differentiation between GGOs and solid types of lung cancer.
NASA Astrophysics Data System (ADS)
Howie, Philip V.
1993-04-01
The MD Explorer is an eight-seat twin-turbine engine helicopter which is being developed using integrated product definition (IPD) team methodology. New techniques include NOTAR antitorque system for directional control, a composite fuselage, an all-composite bearingless main rotor, and digital cockpit displays. Three-dimensional CAD models are the basis of the entire Explorer design. Solid models provide vendor with design clarification, removing much of the normal drawing interpretation errors.
NASA Technical Reports Server (NTRS)
Haimes, Robert; Follen, Gregory J.
1998-01-01
CAPRI is a CAD-vendor neutral application programming interface designed for the construction of analysis and design systems. By allowing access to the geometry from within all modules (grid generators, solvers and post-processors) such tasks as meshing on the actual surfaces, node enrichment by solvers and defining which mesh faces are boundaries (for the solver and visualization system) become simpler. The overall reliance on file 'standards' is minimized. This 'Geometry Centric' approach makes multi-physics (multi-disciplinary) analysis codes much easier to build. By using the shared (coupled) surface as the foundation, CAPRI provides a single call to interpolate grid-node based data from the surface discretization in one volume to another. Finally, design systems are possible where the results can be brought back into the CAD system (and therefore manufactured) because all geometry construction and modification are performed using the CAD system's geometry kernel.
Suzuki, Kenji
2009-09-21
Computer-aided diagnosis (CAD) has been an active area of study in medical image analysis. A filter for the enhancement of lesions plays an important role for improving the sensitivity and specificity in CAD schemes. The filter enhances objects similar to a model employed in the filter; e.g. a blob-enhancement filter based on the Hessian matrix enhances sphere-like objects. Actual lesions, however, often differ from a simple model; e.g. a lung nodule is generally modeled as a solid sphere, but there are nodules of various shapes and with internal inhomogeneities such as a nodule with spiculations and ground-glass opacity. Thus, conventional filters often fail to enhance actual lesions. Our purpose in this study was to develop a supervised filter for the enhancement of actual lesions (as opposed to a lesion model) by use of a massive-training artificial neural network (MTANN) in a CAD scheme for detection of lung nodules in CT. The MTANN filter was trained with actual nodules in CT images to enhance actual patterns of nodules. By use of the MTANN filter, the sensitivity and specificity of our CAD scheme were improved substantially. With a database of 69 lung cancers, nodule candidate detection by the MTANN filter achieved a 97% sensitivity with 6.7 false positives (FPs) per section, whereas nodule candidate detection by a difference-image technique achieved a 96% sensitivity with 19.3 FPs per section. Classification-MTANNs were applied for further reduction of the FPs. The classification-MTANNs removed 60% of the FPs with a loss of one true positive; thus, it achieved a 96% sensitivity with 2.7 FPs per section. Overall, with our CAD scheme based on the MTANN filter and classification-MTANNs, an 84% sensitivity with 0.5 FPs per section was achieved.
COMSOL in the Academic Environment at USNA
2009-10-01
figure shows the electric field calculated and the right shows the electron density at one point in time. 3.3 Acoustic Detection of Landmines – 3...industries heavy investment in computer graphics and modeling. Packages such as Maya , Zbrush, Mudbox and others excel at this type of modeling. A...like Sketch-Up, Maya or AutoCAD. An extensive library of pre-built models would include all of the Platonic solids, combinations of Platonic
[Numerical finite element modeling of custom car seat using computer aided design].
Huang, Xuqi; Singare, Sekou
2014-02-01
A good cushion can not only provide the sitter with a high comfort, but also control the distribution of the hip pressure to reduce the incidence of diseases. The purpose of this study is to introduce a computer-aided design (CAD) modeling method of the buttocks-cushion using numerical finite element (FE) simulation to predict the pressure distribution on the buttocks-cushion interface. The buttock and the cushion model geometrics were acquired from a laser scanner, and the CAD software was used to create the solid model. The FE model of a true seated individual was developed using ANSYS software (ANSYS Inc, Canonsburg, PA). The model is divided into two parts, i.e. the cushion model made of foam and the buttock model represented by the pelvis covered with a soft tissue layer. Loading simulations consisted of imposing a vertical force of 520N on the pelvis, corresponding to the weight of the user upper extremity, and then solving iteratively the system.
Using the TSAR electromagnetic modeling system
NASA Astrophysics Data System (ADS)
Pennock, S. T.; Laguna, G. W.
1993-09-01
A new user, upon receipt of the TSAR EM modeling system, may be overwhelmed by the number of software packages to learn and the number of manuals associated with those packages. This is a document to describe the creation of a simple TSAR model, beginning with an MGED solid and continuing the process through final results from TSAR. It is not intended to be a complete description of all the parts of the TSAR package. Rather, it is intended simply to touch on all the steps in the modeling process and to take a new user through the system from start to finish. There are six basic parts to the TSAR package. The first, MGED, is part of the BRL-CAD package and is used to create a solid model. The second part, ANASTASIA, is the program used to sample the solid model and create a finite-difference mesh. The third program, IMAGE, lets the user view the mesh itself and verify its accuracy. If everything about the mesh is correct, the process continues to the fourth step, SETUP-TSAR, which creates the parameter files for compiling TSAR and the input file for running a particular simulation. The fifth step is actually running TSAR, the field modeling program. Finally, the output from TSAR is placed into SIG, B2RAS or another program for post-processing and plotting. Each of these steps will be described below. The best way to learn to use the TSAR software is to actually create and run a simple test problem. As an example of how to use the TSAR package, let's create a sphere with a rectangular internal cavity, with conical and cylindrical penetrations connecting the outside to the inside, and find the electric field inside the cavity when the object is exposed to a Gaussian plane wave. We will begin with the solid modeling software, MGED, a part of the BRL-CAD modeling release.
Using the TSAR Electromagnetic modeling system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennock, S.T.; Laguna, G.W.
1993-09-01
A new user, upon receipt of the TSAR EM modeling system, may be overwhelmed by the number of software packages to learn and the number of manuals associated with those packages. This is a document to describe the creation of a simple TSAR model, beginning with an MGED solid and continuing the process through final results from TSAR. It is not intended to be a complete description of all the parts of the TSAR package. Rather, it is intended simply to touch on all the steps in the modeling process and to take a new user through the system frommore » start to finish. There are six basic parts to the TSAR package. The first, MGED, is part of the BRL-CAD package and is used to create a solid model. The second part, ANASTASIA, is the program used to sample the solid model and create a finite -- difference mesh. The third program, IMAGE, lets the user view the mesh itself and verify its accuracy. If everything about the mesh is correct, the process continues to the fourth step, SETUP-TSAR, which creates the parameter files for compiling TSAR and the input file for running a particular simulation. The fifth step is actually running TSAR, the field modeling program. Finally, the output from TSAR is placed into SIG, B2RAS or another program for post-processing and plotting. Each of these steps will be described below. The best way to learn to use the TSAR software is to actually create and run a simple test problem. As an example of how to use the TSAR package, let`s create a sphere with a rectangular internal cavity, with conical and cylindrical penetrations connecting the outside to the inside, and find the electric field inside the cavity when the object is exposed to a Gaussian plane wave. We will begin with the solid modeling software, MGED, a part of the BRL-CAD modeling release.« less
"Bridging" Engineering & Art: An Outreach Approach for Middle and High School Students
ERIC Educational Resources Information Center
Asiabanpour, Bahram; DesChamps-Benke, Nicole; Wilson, Thomas; Loerwald, Matthew; Gourgey, Hannah
2010-01-01
This paper describes a novel outreach approach to high school and middle school students to familiarize them with engineering functions and methods. In this approach students participated in a seven-day summer research camp and learned many engineering skills and tools such as CAD solid modeling, finite element analysis, rapid prototyping,…
Spatial Visualization by Realistic 3D Views
ERIC Educational Resources Information Center
Yue, Jianping
2008-01-01
In this study, the popular Purdue Spatial Visualization Test-Visualization by Rotations (PSVT-R) in isometric drawings was recreated with CAD software that allows 3D solid modeling and rendering to provide more realistic pictorial views. Both the original and the modified PSVT-R tests were given to students and their scores on the two tests were…
Contact Modelling in Isogeometric Analysis: Application to Sheet Metal Forming Processes
NASA Astrophysics Data System (ADS)
Cardoso, Rui P. R.; Adetoro, O. B.; Adan, D.
2016-08-01
Isogeometric Analysis (IGA) has been growing in popularity in the past few years essentially due to the extra flexibility it introduces with the use of higher degrees in the basis functions leading to higher convergence rates. IGA also offers the capability of easily reproducing discontinuous displacement and/or strain fields by just manipulating the multiplicity of the knot parametric coordinates. Another advantage of IGA is that it uses the Non-Uniform Rational B-Splines (NURBS) basis functions, that are very common in CAD solid modelling, and consequently it makes easier the transition from CAD models to numerical analysis. In this work it is explored the contact analysis in IGA for both implicit and explicit time integration schemes. Special focus will be given on contact search and contact detection techniques under NURBS patches for both the rigid tools and the deformed sheet blank.
Yanagawa, Masahiro; Honda, Osamu; Kikuyama, Ayano; Gyobu, Tomoko; Sumikawa, Hiromitsu; Koyama, Mitsuhiro; Tomiyama, Noriyuki
2012-10-01
To evaluate the effects of ASIR on CAD system of pulmonary nodules using clinical routine-dose CT and lower-dose CT. Thirty-five patients (body mass index, 22.17 ± 4.37 kg/m(2)) were scanned by multidetector-row CT with tube currents (clinical routine-dose CT, automatically adjusted mA; lower-dose CT, 10 mA) and X-ray voltage (120 kVp). Each 0.625-mm-thick image was reconstructed at 0%-, 50%-, and 100%-ASIR: 0%-ASIR is reconstructed using only the filtered back-projection algorithm (FBP), while 100%-ASIR is reconstructed using the maximum ASIR and 50%-ASIR implies a blending of 50% FBP and ASIR. CAD output was compared retrospectively with the results of the reference standard which was established using a consensus panel of three radiologists. Data were analyzed using Bonferroni/Dunn's method. Radiation dose was calculated by multiplying dose-length product by conversion coefficient of 0.021. The consensus panel found 265 non-calcified nodules ≤ 30 mm (ground-glass opacity [GGO], 103; part-solid, 34; and solid, 128). CAD sensitivity was significantly higher at 100%-ASIR [clinical routine-dose CT, 71% (overall), 49% (GGO); lower-dose CT, 52% (overall), 67% (solid)] than at 0%-ASIR [clinical routine-dose CT, 54% (overall), 25% (GGO); lower-dose CT, 36% (overall), 50% (solid)] (p<0.001). Mean number of false-positive findings per examination was significantly higher at 100%-ASIR (clinical routine-dose CT, 8.5; lower-dose CT, 6.2) than at 0%-ASIR (clinical routine-dose CT, 4.6; lower-dose CT, 3.5; p<0.001). Effective doses were 10.77 ± 3.41 mSv in clinical routine-dose CT and 2.67 ± 0.17 mSv in lower-dose CT. CAD sensitivity at 100%-ASIR on lower-dose CT is almost equal to that at 0%-ASIR on clinical routine-dose CT. ASIR can increase CAD sensitivity despite increased false-positive findings. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Asiabanpour, Bahram
2010-01-01
In this paper a novel outreach approach to high school students to familiarize them with engineering functions and methods is explained. In this approach students participated in a seven days research camp and learned many engineering skills and tools such as CAD solid modeling, finite element analysis, rapid prototyping, mechanical tests, team…
Wielpütz, Mark O; Wroblewski, Jacek; Lederlin, Mathieu; Dinkel, Julien; Eichinger, Monika; Koenigkam-Santos, M; Biederer, Jürgen; Kauczor, Hans-Ulrich; Puderbach, Michael U; Jobst, Bertram J
2015-05-01
To evaluate the influence of exposure parameters and raw-data based iterative reconstruction (IR) on the performance of computer-aided detection (CAD) of pulmonary nodules on chest multidetector computed tomography (MDCT). Seven porcine lung explants were inflated in a dedicated ex vivo phantom shell and prepared with n=162 artificial nodules of a clinically relevant volume and maximum diameter (46-1063 μl, and 6.2-21.5 mm). n=118 nodules were solid and n=44 part-solid. MDCT was performed with different combinations of 120 and 80 kV with 120, 60, 30 and 12 mA*s, and reconstructed with both filtered back projection (FBP) and IR. Subsequently, 16 datasets per lung were subjected to dedicated CAD software. The rate of true positive, false negative and false positive CAD marks was measured for each reconstruction. The rate of true positive findings ranged between 88.9-91.4% for FBP and 88.3-90.1% for IR (n.s.) with most exposure settings, but was significantly lower with the combination of 80 kV and 12 mA*s (80.9% and 81.5%, respectively, p<0.05). False positive findings ranged between 2.3-8.1 annotations per lung. For nodule volumes <200 μl the rate of true positives was significantly lower than for >300 μl (p<0.05). Similarly, it was significantly lower for diameters <12 mm compared to ≥12 mm (p<0.05). The rate of true positives for solid and part-solid nodules was similar. Nodule CAD on chest MDCT is robust over a wide range of exposure settings. Noise reduction by IR is not detrimental for CAD, and may be used to improve image quality in the setting of low-dose MDCT for lung cancer screening. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Den Harder, Annemarie M; Willemink, Martin J; van Hamersvelt, Robbert W; Vonken, Evert-Jan P A; Milles, Julien; Schilham, Arnold M R; Lammers, Jan-Willem; de Jong, Pim A; Leiner, Tim; Budde, Ricardo P J
2016-02-01
To evaluate the effect of radiation dose reduction and iterative reconstruction (IR) on the performance of computer-aided detection (CAD) for pulmonary nodules. In this prospective study twenty-five patients were included who were scanned for pulmonary nodule follow-up. Image acquisition was performed at routine dose and three reduced dose levels in a single session by decreasing mAs-values with 45%, 60% and 75%. Tube voltage was fixed at 120 kVp for patients ≥ 80 kg and 100 kVp for patients < 80 kg. Data were reconstructed with filtered back projection (FBP), iDose(4) (levels 1,4,6) and IMR (levels 1-3). All noncalcified solid pulmonary nodules ≥ 4 mm identified by two radiologists in consensus served as the reference standard. Subsequently, nodule volume was measured with CAD software and compared to the reference consensus. The numbers of true-positives, false-positives and missed pulmonary nodules were evaluated as well as the sensitivity. Median effective radiation dose was 2.2 mSv at routine dose and 1.2, 0.9 and 0.6 mSv at respectively 45%, 60% and 75% reduced dose. A total of 28 pulmonary nodules were included. With FBP at routine dose, 89% (25/28) of the nodules were correctly identified by CAD. This was similar at reduced dose levels with FBP, iDose(4) and IMR. CAD resulted in a median number of false-positives findings of 11 per scan with FBP at routine dose (93% of the CAD marks) increasing to 15 per scan with iDose(4) (95% of the CAD marks) and 26 per scan (96% of the CAD marks) with IMR at the lowest dose level. CAD can identify pulmonary nodules at submillisievert dose levels with FBP, hybrid and model-based IR. However, the number of false-positive findings increased using hybrid and especially model-based IR at submillisievert dose while dose reduction did not affect the number of false-positives with FBP. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA's Design and Development of a Field Goniometer Instrument Using Solid Works
NASA Technical Reports Server (NTRS)
Turner, Mark; Sasaki, Glen; Jennings, Ernest (Technical Monitor)
2000-01-01
With NASA suffering severe funding cutbacks, engineers at NASA are required to produce state-of-the-art hardware with limited personnel and financial resources. In light of these constraints, the new NASA mandate is to build better, faster and cheaper. In April of 1998, Stennis Space Center's Commercial Remote Sensing Program contracted to the Systems Engineering Division at NASA Ames Research Center to develop a device known as a Field Goniometer. A Field Goniometer is a device that measures bi-directional reflectance of a target, such as vegetation, relative to the sun and an imaging system in an aircraft or spacecraft. The device is able to provide a spectral fingerprint of the surface it is measuring in wavelengths from 350nm-2500nm using a hyperspectral imager. To accomplish this project, several obstacles had to be overcome. First, the design had to be completed in less than four months. Second, due to the complexity of the design, the use of solid modeling was highly desirable but most of the group's solid modelers were assigned to other jobs. Third, the amount of funding available from the customer was one half to one third the funding typically expended for a job of this nature. Our choices for this project were to design with standard 2-D CAD systems currently used in-house or train additional engineers on our existing solids package or purchase a new solid model package. The use of a 2D CAD system was very undesirable due to the complexity of the design. Using our existing solids modeler would have required a learning curve for our engineers that would be incompatible with our schedule. Prior to this project, a member of our design group researched the solid modeling industry and decided to purchase SolidWorks. After examining the product for ease of use, modeling capability, training time required and cost, we decided our highest probability of success would be to design with Solidworks. During the design phase, our fabrication group was able to provide input at the very early stages, which added significant benefit to the final product. Fabrication cost and schedule savings have been realized by having complex part geometries translated directly from the SolidWorks design models to Surfcam and other computer-aided manufacturing (CAM) software. This direct model translation capability optimized the fabrication processes. The end result was that we were able to successfully complete the project on time and on budget. Other advantages of using SolidWorks, as cited by the design team, include a rapid negotiation of the initial learning curve, the ability to develop solid model hardware prototypes (used to communicate the design intent to both the customer and the fabricator), and the ability to work as a team collaborating on a large, complex model. These types of tools and efforts represent our response to NASA's challenge to produce higher quality products within shorter design and fabrication times.
Synergism of the method of characteristics and CAD technology for neutron transport calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Z.; Wang, D.; He, T.
2013-07-01
The method of characteristics (MOC) is a very popular methodology in neutron transport calculation and numerical simulation in recent decades for its unique advantages. One of the key problems determining whether the MOC can be applied in complicated and highly heterogeneous geometry is how to combine an effective geometry processing method with MOC. Most of the existing MOC codes describe the geometry by lines and arcs with extensive input data, such as circles, ellipses, regular polygons and combination of them. Thus they have difficulty in geometry modeling, background meshing and ray tracing for complicated geometry domains. In this study, amore » new idea making use of a CAD solid modeler MCAM which is a CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport developed by FDS Team in China was introduced for geometry modeling and ray tracing of particle transport to remove these geometrical limitations mentioned above. The diamond-difference scheme was applied to MOC to reduce the spatial discretization error of the flat flux approximation in theory. Based on MCAM and MOC, a new MOC code was developed and integrated into SuperMC system, which is a Super Multi-function Computational system for neutronics and radiation simulation. The numerical testing results demonstrated the feasibility and effectiveness of the new idea for geometry treatment in SuperMC. (authors)« less
Development of student's skills of 3D modeling of assembly units
NASA Astrophysics Data System (ADS)
Chepur, P. V.; Boshhenko, T. V.
2018-03-01
The paper presents data on the influence of additives of the pre-treated aluminium oxide powder on the structure of cast lead-tin-based bronzes. The article demonstrates that modern, advanced from the point of view of automation, methods in designing products are the basis for the successful implementation of any production task. The advantages of product presentation in the form of an assembly consisting of 3D models of its details are described. The extreme importance of high-quality preparation of students of engineering specialties for work in computer-aided design programs such as AutoCAD, Compass 3D, Inventer|, Solid Edge, Solid Works, Revit, ANSYS is considered. It is established that one of the most effective forms of increasing the level of computer graphic preparation of students are academic competitions and contests on modeling and prototyping products. The stages of creation of assembly unit models in the AutoCad and Compass 3D software suits generally accepted both in design in a business environment and during training of specialists are considered. The developed 3D models of assembly units are presented in the course of preparation for academic competitions (called Academic Olympics in Russia) of students of the 2nd-5th years of study and the first year students of the master's program in engineering. The conclusions and recommendations on the development of the direction of three-dimensional design in the environment of higher education are given.
NASA Astrophysics Data System (ADS)
McQuiddy, David N., Jr.; Sokolov, Vladimir
1990-12-01
The present conference discusses microwave filters, lightwave technology for microwave antennas, planar and quasi-planar guides, mixers and VCOs, cavity filters, discontinuity and coupling effects, control circuits, power dividers and phase shifters, microwave ICs, biological effects and medical applications, CAD and modeling for MMICs, directional couplers, MMIC design trends, microwave packaging and manufacturing, monolithic ICs, and solid-state devices and circuits. Also discussed are microwave and mm-wave superconducting technology, MICs for communication systems, the merging of optical and microwave technologies, microwave power transistors, ferrite devices, network measurements, advanced transmission-line structures, FET devices and circuits, field theory of IC discontinuities, active quasi-optical techniques, phased-array techniques and circuits, nonlinear CAD, sub-mm wave devices, and high power devices.
Zgong, Xin; Yu, Quan; Yu, Zhe-yuan; Wang, Guo-min; Qian, Yu-fen
2012-04-01
To establish a new method of presurgical alveolar molding using computer aided design(CAD) in infants with complete unilateral cleft lip and palate (UCLP). Ten infants with complete UCLP were recruited. A maxillary impression was taken at the first examination after birth. The study model was scanned by a non-contact three-dimensional laser scanner and a digital model was constructed and analyzed to simulate the alveolar molding procedure with reverse engineering software (RapidForm 2006). The digital geometrical data were exported to produce a scale model using rapid prototyping technology. The whole set of appliances was fabricated based on these solid models. The digital model could be viewed and measured from any direction by the software. By the end of the NAM treatment before surgical lip repair, the cleft was narrowed and the malformation of alveolar segments was aligned normally, significantly improving nasal symmetry and nostril shape. Presurgical NAM using CAD could simplify the treatment procedure and estimate the treatment objective, which enabled precise control of the force and direction of the alveolar segments movement.
Interactive three-dimensional visualization and creation of geometries for Monte Carlo calculations
NASA Astrophysics Data System (ADS)
Theis, C.; Buchegger, K. H.; Brugger, M.; Forkel-Wirth, D.; Roesler, S.; Vincke, H.
2006-06-01
The implementation of three-dimensional geometries for the simulation of radiation transport problems is a very time-consuming task. Each particle transport code supplies its own scripting language and syntax for creating the geometries. All of them are based on the Constructive Solid Geometry scheme requiring textual description. This makes the creation a tedious and error-prone task, which is especially hard to master for novice users. The Monte Carlo code FLUKA comes with built-in support for creating two-dimensional cross-sections through the geometry and FLUKACAD, a custom-built converter to the commercial Computer Aided Design package AutoCAD, exists for 3D visualization. For other codes, like MCNPX, a couple of different tools are available, but they are often specifically tailored to the particle transport code and its approach used for implementing geometries. Complex constructive solid modeling usually requires very fast and expensive special purpose hardware, which is not widely available. In this paper SimpleGeo is presented, which is an implementation of a generic versatile interactive geometry modeler using off-the-shelf hardware. It is running on Windows, with a Linux version currently under preparation. This paper describes its functionality, which allows for rapid interactive visualization as well as generation of three-dimensional geometries, and also discusses critical issues regarding common CAD systems.
Experiment for validation of fluid-structure interaction models and algorithms.
Hessenthaler, A; Gaddum, N R; Holub, O; Sinkus, R; Röhrle, O; Nordsletten, D
2017-09-01
In this paper a fluid-structure interaction (FSI) experiment is presented. The aim of this experiment is to provide a challenging yet easy-to-setup FSI test case that addresses the need for rigorous testing of FSI algorithms and modeling frameworks. Steady-state and periodic steady-state test cases with constant and periodic inflow were established. Focus of the experiment is on biomedical engineering applications with flow being in the laminar regime with Reynolds numbers 1283 and 651. Flow and solid domains were defined using computer-aided design (CAD) tools. The experimental design aimed at providing a straightforward boundary condition definition. Material parameters and mechanical response of a moderately viscous Newtonian fluid and a nonlinear incompressible solid were experimentally determined. A comprehensive data set was acquired by using magnetic resonance imaging to record the interaction between the fluid and the solid, quantifying flow and solid motion. Copyright © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.
Space-Based Telescopes for the Actionable Refinement of Ephemeris Systems and Test Engineering
2011-12-01
Space Surveillance Network STARE Space-based Telescopes for the Actionable Refinement of Ephemeris STK Satellite Toolkit SV Space Vehicle TAMU...vacuum bake out and visual inspection. Additionally, it is prescribed that these tests be performed in accordance with GSFC-STD-7000, more commonly...environment that a FV will see in orbit. Tools such as Solid Works and NX-Ideas can be used to build CAD models to visually validate engineering
Assembly, Integration, and Test Methods for Operationally Responsive Space Satellites
2010-03-01
like assembly and vibration tests, to ensure there have been no failures induced by the activities. External thermal control blankets and radiator...configuration of the satellite post- vibration test and adds time to the process. • Thermal blanketing is not realistic with current technology or...patterns for thermal blankets and radiator tape. The computer aided drawing (CAD) solid model was used to generate patterns that were cut and applied real
CAD-CAM database management at Bendix Kansas City
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, D.R.
1985-05-01
The Bendix Kansas City Division of Allied Corporation began integrating mechanical CAD-CAM capabilities into its operations in June 1980. The primary capabilities include a wireframe modeling application, a solid modeling application, and the Bendix Integrated Computer Aided Manufacturing (BICAM) System application, a set of software programs and procedures which provides user-friendly access to graphic applications and data, and user-friendly sharing of data between applications and users. BICAM also provides for enforcement of corporate/enterprise policies. Three access categories, private, local, and global, are realized through the implementation of data-management metaphors: the desk, reading rack, file cabinet, and library are for themore » storage, retrieval, and sharing of drawings and models. Access is provided through menu selections; searching for designs is done by a paging method or a search-by-attribute-value method. The sharing of designs between all users of Part Data is key. The BICAM System supports 375 unique users per quarter and manages over 7500 drawings and models. The BICAM System demonstrates the need for generalized models, a high-level system framework, prototyping, information-modeling methods, and an understanding of the entire enterprise. Future BICAM System implementations are planned to take advantage of this knowledge.« less
Verifying Three-Dimensional Skull Model Reconstruction Using Cranial Index of Symmetry
Kung, Woon-Man; Chen, Shuo-Tsung; Lin, Chung-Hsiang; Lu, Yu-Mei; Chen, Tzu-Hsuan; Lin, Muh-Shi
2013-01-01
Background Difficulty exists in scalp adaptation for cranioplasty with customized computer-assisted design/manufacturing (CAD/CAM) implant in situations of excessive wound tension and sub-cranioplasty dead space. To solve this clinical problem, the CAD/CAM technique should include algorithms to reconstruct a depressed contour to cover the skull defect. Satisfactory CAM-derived alloplastic implants are based on highly accurate three-dimensional (3-D) CAD modeling. Thus, it is quite important to establish a symmetrically regular CAD/CAM reconstruction prior to depressing the contour. The purpose of this study is to verify the aesthetic outcomes of CAD models with regular contours using cranial index of symmetry (CIS). Materials and methods From January 2011 to June 2012, decompressive craniectomy (DC) was performed for 15 consecutive patients in our institute. 3-D CAD models of skull defects were reconstructed using commercial software. These models were checked in terms of symmetry by CIS scores. Results CIS scores of CAD reconstructions were 99.24±0.004% (range 98.47–99.84). CIS scores of these CAD models were statistically significantly greater than 95%, identical to 99.5%, but lower than 99.6% (p<0.001, p = 0.064, p = 0.021 respectively, Wilcoxon matched pairs signed rank test). These data evidenced the highly accurate symmetry of these CAD models with regular contours. Conclusions CIS calculation is beneficial to assess aesthetic outcomes of CAD-reconstructed skulls in terms of cranial symmetry. This enables further accurate CAD models and CAM cranial implants with depressed contours, which are essential in patients with difficult scalp adaptation. PMID:24204566
An assessment of finite-element modeling techniques for thick-solid/thin-shell joints analysis
NASA Technical Reports Server (NTRS)
Min, J. B.; Androlake, S. G.
1993-01-01
The subject of finite-element modeling has long been of critical importance to the practicing designer/analyst who is often faced with obtaining an accurate and cost-effective structural analysis of a particular design. Typically, these two goals are in conflict. The purpose is to discuss the topic of finite-element modeling for solid/shell connections (joints) which are significant for the practicing modeler. Several approaches are currently in use, but frequently various assumptions restrict their use. Such techniques currently used in practical applications were tested, especially to see which technique is the most ideally suited for the computer aided design (CAD) environment. Some basic thoughts regarding each technique are also discussed. As a consequence, some suggestions based on the results are given to lead reliable results in geometrically complex joints where the deformation and stress behavior are complicated.
Geometric and computer-aided spline hob modeling
NASA Astrophysics Data System (ADS)
Brailov, I. G.; Myasoedova, T. M.; Panchuk, K. L.; Krysova, I. V.; Rogoza, YU A.
2018-03-01
The paper considers acquiring the spline hob geometric model. The objective of the research is the development of a mathematical model of spline hob for spline shaft machining. The structure of the spline hob is described taking into consideration the motion in parameters of the machine tool system of cutting edge positioning and orientation. Computer-aided study is performed with the use of CAD and on the basis of 3D modeling methods. Vector representation of cutting edge geometry is accepted as the principal method of spline hob mathematical model development. The paper defines the correlations described by parametric vector functions representing helical cutting edges designed for spline shaft machining with consideration for helical movement in two dimensions. An application for acquiring the 3D model of spline hob is developed on the basis of AutoLISP for AutoCAD environment. The application presents the opportunity for the use of the acquired model for milling process imitation. An example of evaluation, analytical representation and computer modeling of the proposed geometrical model is reviewed. In the mentioned example, a calculation of key spline hob parameters assuring the capability of hobbing a spline shaft of standard design is performed. The polygonal and solid spline hob 3D models are acquired by the use of imitational computer modeling.
Some useful innovations with TRASYS and SINDA-85
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.
1993-01-01
Several innovative methods were used to allow more efficient and accurate thermal analysis using SINDA-85 and TRASYS, including model integration and reduction, planetary surface calculations, and model animation. Integration with other modeling and analysis codes allows an analyst to import a geometry from a solid modeling or computer-aided design (CAD) software package, rather than building the geometry 'by hand.' This is more efficient as well as potentially more accurate. However, the use of solid modeling software often generates large analytical models. The problem of reducing large models was elegantly solved using the response of the transient derivative to a forcing step function. The thermal analysis of a lunar rover implemented two unusual features of the TRASYS/SINDA system. A little-known TRASYS routine SURFP calculates the solar heating of a rover on the lunar surface for several different rover positions and orientations. This is used not only to determine the rover temperatures, but also to automatically determine the power generated by the solar arrays. The animation of transient thermal results is an effective tool, especially in a vivid case such as the 14-day progress of the sun over the lunar rover. An animated color map on the solid model displays the progression of temperatures.
NASA Technical Reports Server (NTRS)
Steele, Gynelle C.
1999-01-01
The NASA Lewis Research Center and Flow Parametrics will enter into an agreement to commercialize the National Combustion Code (NCC). This multidisciplinary combustor design system utilizes computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. This integrated system can facilitate and enhance various phases of the design and analysis process.
A CAD/CAE analysis of photographic and engineering data
NASA Technical Reports Server (NTRS)
Goza, S. Michael; Peterson, Wayne L.
1987-01-01
In the investigation of the STS 51L accident, NASA engineers were given the task of visual analysis of photographic data extracted from the tracking cameras located at the launch pad. An analysis of the rotations associated with the right Solid Rocket Booster (SRB) was also performed. The visual analysis involved pinpointing coordinates of specific areas on the photographs. The objective of the analysis on the right SRB was to duplicate the rotations provided by the SRB rate gyros and to determine the effects of the rotations on the launch configuration. To accomplish the objectives, computer aided design and engineering was employed. The solid modeler, GEOMOD, inside the Structural Dynamics Research Corp. I-DEAS package, proved invaluable. The problem areas that were encountered and the corresponding solutions that were obtained are discussed. A brief description detailing the construction of the computer generated solid model of the STS launch configuration is given. A discussion of the coordinate systems used in the analysis is provided for the purpose of positioning the model in coordinate space. The techniques and theory used in the model analysis are described.
GPU-accelerated depth map generation for X-ray simulations of complex CAD geometries
NASA Astrophysics Data System (ADS)
Grandin, Robert J.; Young, Gavin; Holland, Stephen D.; Krishnamurthy, Adarsh
2018-04-01
Interactive x-ray simulations of complex computer-aided design (CAD) models can provide valuable insights for better interpretation of the defect signatures such as porosity from x-ray CT images. Generating the depth map along a particular direction for the given CAD geometry is the most compute-intensive step in x-ray simulations. We have developed a GPU-accelerated method for real-time generation of depth maps of complex CAD geometries. We preprocess complex components designed using commercial CAD systems using a custom CAD module and convert them into a fine user-defined surface tessellation. Our CAD module can be used by different simulators as well as handle complex geometries, including those that arise from complex castings and composite structures. We then make use of a parallel algorithm that runs on a graphics processing unit (GPU) to convert the finely-tessellated CAD model to a voxelized representation. The voxelized representation can enable heterogeneous modeling of the volume enclosed by the CAD model by assigning heterogeneous material properties in specific regions. The depth maps are generated from this voxelized representation with the help of a GPU-accelerated ray-casting algorithm. The GPU-accelerated ray-casting method enables interactive (> 60 frames-per-second) generation of the depth maps of complex CAD geometries. This enables arbitrarily rotation and slicing of the CAD model, leading to better interpretation of the x-ray images by the user. In addition, the depth maps can be used to aid directly in CT reconstruction algorithms.
Aerodynamic Design of Complex Configurations Using Cartesian Methods and CAD Geometry
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.
2003-01-01
The objective for this paper is to present the development of an optimization capability for the Cartesian inviscid-flow analysis package of Aftosmis et al. We evaluate and characterize the following modules within the new optimization framework: (1) A component-based geometry parameterization approach using a CAD solid representation and the CAPRI interface. (2) The use of Cartesian methods in the development Optimization techniques using a genetic algorithm. The discussion and investigations focus on several real world problems of the optimization process. We examine the architectural issues associated with the deployment of a CAD-based design approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute nodes. In addition, we study the influence of noise on the performance of optimization techniques, and the overall efficiency of the optimization process for aerodynamic design of complex three-dimensional configurations. of automated optimization tools. rithm and a gradient-based algorithm.
Viewing CAD Drawings on the Internet
ERIC Educational Resources Information Center
Schwendau, Mark
2004-01-01
Computer aided design (CAD) has been producing 3-D models for years. AutoCAD software is frequently used to create sophisticated 3-D models. These CAD files can be exported as 3DS files for import into Autodesk's 3-D Studio Viz. In this program, the user can render and modify the 3-D model before exporting it out as a WRL (world file hyperlinked)…
NASA Astrophysics Data System (ADS)
Emaminejad, Nastaran; Lo, Pechin; Ghahremani, Shahnaz; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael F.
2017-03-01
For pediatric oncology patients, CT scans are performed to assess treatment response and disease progression. CAD may be used to detect lung nodules which would reflect metastatic disease. The purpose of this study was to investigate the effects of reducing radiation dose and varying slice thickness on CAD performance in the detection of solid lung nodules in pediatric patients. The dataset consisted of CT scans of 58 pediatric chest cases, from which 7 cases had lung nodules detected by radiologist, and a total of 28 nodules were marked. For each case, the original raw data (sinogram data) was collected and a noise addition model was used to simulate reduced-dose scans of 50%, 25% and 10% of the original dose. In addition, the original and reduced-dose raw data were reconstructed at slice thicknesses of 1.5 and 3 mm using a medium sharp (B45) kernel; the result was eight datasets (4 dose levels x 2 thicknesses) for each case An in-house CAD tool was applied on all reconstructed scans, and results were compared with the radiologist's markings. Patient level mean sensitivities at 3mm thickness were 24%, 26%, 25%, 27%, and at 1.5 mm thickness were 23%, 29%, 35%, 36% for 10%, 25%, 50%, and 100% dose level, respectively. Mean FP numbers were 1.5, 0.9, 0.8, 0.7 at 3 mm and 11.4, 3.5, 2.8, 2.8 at 1.5 mm thickness for 10%, 25%, 50%, and 100% dose level respectively. CAD sensitivity did not change with dose level for 3mm thickness, but did change with dose for 1.5 mm. False Positives increased at low dose levels where noise values were high.
Al-Meraikhi, Hadi; Yilmaz, Burak; McGlumphy, Edwin; Brantley, William A; Johnston, William M
2018-01-01
Computer-aided design and computer-aided manufacturing (CAD-CAM)-fabricated titanium and zirconia implant-supported fixed dental prostheses have become increasingly popular for restoring patients with complete edentulism. However, the distortion level of these frameworks is not well known. The purpose of this in vitro study was to compare the 3-dimensional (3D) distortion of CAD-CAM zirconia and titanium implant-fixed screw-retained complete dental prostheses. A master edentulous model with 4 implants at the positions of the maxillary first molars and canines was used. Multiunit abutments (Nobel Biocare) secured to the model were digitally scanned using scan bodies and a laboratory scanner (S600 ARTI; Zirkonzahn). Titanium (n=5) and zirconia (n=5) frameworks were milled using a CAD-CAM system (Zirkonzahn M1; Zirkonzahn). All frameworks were scanned using an industrial computed tomography (CT) scanner (Nikon/X-Tek XT H 225kV MCT Micro-Focus). The direct CT scans were reconstructed to generate standard tessellation language (STL) files. To calculate the 3D distortion of the frameworks, STL files of the CT scans were aligned to the CAD model using a sum of the least squares best-fit algorithm. Surface comparison points were placed on the CAD model on the midfacial aspect of all teeth. The 3D distortion of each direct scan to the CAD model was calculated. In addition, color maps of the scan-to-CAD comparison were constructed using a ±0.500 mm color scale range. Both materials exhibited distortion; however, no significant difference was found in the amount of distortion from the CAD model between the materials (P=.747). Absolute values of deviations from the CAD model were evident in the x and y plane and less so in the z direction. Zirconia and titanium frameworks showed similar 3D distortion compared with the CAD model for the tested CAD-CAM and implant systems. The distortion was more pronounced in the horizontal and sagittal plane than in the vertical plane. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Some Useful Innovations with Trasys and Sinda-85
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.
1993-01-01
Several innovative methods have been used to allow more efficient and accurate thermal analysis using SINDA-85 and TRASYS, including model integration and reduction, planetary surface calculations, and model animation. Integration with other modeling and analysis codes allows an analyst to import a geometry from a solid modeling or computer-aided design (CAD) software package, rather than building the geometry "by hand." This is more efficient as well as potentially more accurate. However, the use of solid modeling software often generates large analytical models. The problem of reducing large models has been elegantly solved using the response of the transient derivative to a forcing step function. The thermal analysis of a lunar rover implemented two unusual features of the TRASYS/SINDA system. A little-known TRASYS routine SURFP calculates the solar heating of a rover on the lunar surface for several different rover positions and orientations. This is used not only to determine the rover temperatures, but also to automatically determine the power generated by the solar arrays. The animation of transient thermal results is an effective tool, especially in a vivid case such as the 14-day progress of the sun over the lunar rover. An animated color map on the solid model displays the progression of temperatures.
NASA Astrophysics Data System (ADS)
Vasilieva, V. N.
2017-11-01
The article deals with the solution of problems in AutoCAD offered at the All-Russian student Olympiads at the section of “Computer graphics” that are not typical for the students of construction specialties. The students are provided with the opportunity to study the algorithm for solving original tasks of high complexity. The article shows how the unknown parameter underlying the construction can be determined using a parametric drawing with geometric constraints and dimensional dependencies. To optimize the mark-up operation, the use of the command for projecting the points and lines of different types onto bodies and surfaces in different directions is shown. For the construction of a spring with a different pitch of turns, the paper describes the creation of a block from a part of the helix and its scaling when inserted into a model with unequal coefficients along the axes. The advantage of the NURBS surface and the application of the “body-surface-surface-NURBS-body” conversion are reflected to enhance the capabilities of both solid and surface modeling. The article’s material introduces construction students into the method of constructing complex models in AutoCAD that are not similar to typical training assignments.
Automatic detection of lung vessel bifurcation in thoracic CT images
NASA Astrophysics Data System (ADS)
Maduskar, Pragnya; Vikal, Siddharth; Devarakota, Pandu
2011-03-01
Computer-aided diagnosis (CAD) systems for detection of lung nodules have been an active topic of research for last few years. It is desirable that a CAD system should generate very low false positives (FPs) while maintaining high sensitivity. This work aims to reduce the number of false positives occurring at vessel bifurcation point. FPs occur quite frequently on vessel branching point due to its shape which can appear locally spherical due to the intrinsic geometry of intersecting tubular vessel structures combined with partial volume effects and soft tissue attenuation appearance surrounded by parenchyma. We propose a model-based technique for detection of vessel branching points using skeletonization, followed by branch-point analysis. First we perform vessel structure enhancement using a multi-scale Hessian filter to accurately segment tubular structures of various sizes followed by thresholding to get binary vessel structure segmentation [6]. A modified Reebgraph [7] is applied next to extract the critical points of structure and these are joined by a nearest neighbor criterion to obtain complete skeletal model of vessel structure. Finally, the skeletal model is traversed to identify branch points, and extract metrics including individual branch length, number of branches and angle between various branches. Results on 80 sub-volumes consisting of 60 actual vessel-branching and 20 solitary solid nodules show that the algorithm identified correctly vessel branching points for 57 sub-volumes (95% sensitivity) and misclassified 2 nodules as vessel branch. Thus, this technique has potential in explicit identification of vessel branching points for general vessel analysis, and could be useful in false positive reduction in a lung CAD system.
CAD-centric Computation Management System for a Virtual TBM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramakanth Munipalli; K.Y. Szema; P.Y. Huang
HyPerComp Inc. in research collaboration with TEXCEL has set out to build a Virtual Test Blanket Module (VTBM) computational system to address the need in contemporary fusion research for simulating the integrated behavior of the blanket, divertor and plasma facing components in a fusion environment. Physical phenomena to be considered in a VTBM will include fluid flow, heat transfer, mass transfer, neutronics, structural mechanics and electromagnetics. We seek to integrate well established (third-party) simulation software in various disciplines mentioned above. The integrated modeling process will enable user groups to interoperate using a common modeling platform at various stages of themore » analysis. Since CAD is at the core of the simulation (as opposed to computational meshes which are different for each problem,) VTBM will have a well developed CAD interface, governing CAD model editing, cleanup, parameter extraction, model deformation (based on simulation,) CAD-based data interpolation. In Phase-I, we built the CAD-hub of the proposed VTBM and demonstrated its use in modeling a liquid breeder blanket module with coupled MHD and structural mechanics using HIMAG and ANSYS. A complete graphical user interface of the VTBM was created, which will form the foundation of any future development. Conservative data interpolation via CAD (as opposed to mesh-based transfer), the regeneration of CAD models based upon computed deflections, are among the other highlights of phase-I activity.« less
An Instructional Method for the AutoCAD Modeling Environment.
ERIC Educational Resources Information Center
Mohler, James L.
1997-01-01
Presents a command organizer for AutoCAD to aid new uses in operating within the 3-D modeling environment. Addresses analyzing the problem, visualization skills, nonlinear tools, a static view of a dynamic model, the AutoCAD organizer, environment attributes, and control of the environment. Contains 11 references. (JRH)
Rapid Process to Generate Beam Envelopes for Optical System Analysis
NASA Technical Reports Server (NTRS)
Howard, Joseph; Seals, Lenward
2012-01-01
The task of evaluating obstructions in the optical throughput of an optical system requires the use of two disciplines, and hence, two models: optical models for the details of optical propagation, and mechanical models for determining the actual structure that exists in the optical system. Previous analysis methods for creating beam envelopes (or cones of light) for use in this obstruction analysis were found to be cumbersome to calculate and take significant time and resources to complete. A new process was developed that takes less time to complete beam envelope analysis, is more accurate and less dependent upon manual node tracking to create the beam envelopes, and eases the burden on the mechanical CAD (computer-aided design) designers to form the beam solids. This algorithm allows rapid generation of beam envelopes for optical system obstruction analysis. Ray trace information is taken from optical design software and used to generate CAD objects that represent the boundary of the beam envelopes for detailed analysis in mechanical CAD software. Matlab is used to call ray trace data from the optical model for all fields and entrance pupil points of interest. These are chosen to be the edge of each space, so that these rays produce the bounding volume for the beam. The x and y global coordinate data is collected on the surface planes of interest, typically an image of the field and entrance pupil internal of the optical system. This x and y coordinate data is then evaluated using a convex hull algorithm, which removes any internal points, which are unnecessary to produce the bounding volume of interest. At this point, tolerances can be applied to expand the size of either the field or aperture, depending on the allocations. Once this minimum set of coordinates on the pupil and field is obtained, a new set of rays is generated between the field plane and aperture plane (or vice-versa). These rays are then evaluated at planes between the aperture and field, at a desired number of steps perceived necessary to build up the bounding volume or cone shape. At each plane, the ray coordinates are again evaluated using the convex hull algorithm to reduce the data to a minimal set. When all of the coordinates of interest are obtained for every plane of the propagation, the data is formatted into an xyz file suitable for FRED optical analysis software to import and create a STEP file of the data. This results in a spiral-like structure that is easily imported by mechanical CAD users who can then use an automated algorithm to wrap a skin around it and create a solid that represents the beam.
ERIC Educational Resources Information Center
Ranscombe, Charlie; Bissett-Johnson, Katherine
2017-01-01
Literature on the use of design tools in educational settings notes an uneasy relationship between student use of traditional hand sketching and digital modelling tools (CAD) during the industrial design process. This is often manifested in the transition from sketching to CAD and exacerbated by a preference of current students to use CAD. In this…
Digital model as an alternative to plaster model in assessment of space analysis
Kumar, A. Anand; Phillip, Abraham; Kumar, Sathesh; Rawat, Anuradha; Priya, Sakthi; Kumaran, V.
2015-01-01
Introduction: Digital three-dimensional models are widely used for orthodontic diagnosis. The purpose of this study was to appraise the accuracy of digital models obtained from computer-aided design/computer-aided manufacturing (CAD/CAM) and cone-beam computed tomography (CBCT) for tooth-width measurements and the Bolton analysis. Materials and Methods: Digital models (CAD/CAM, CBCT) and plaster model were made for each of 50 subjects. Tooth-width measurements on the digital models (CAD/CAM, CBCT) were compared with those on the corresponding plaster models. The anterior and overall Bolton ratios were calculated for each participant and for each method. The paired t-test was applied to determine the validity. Results: Tooth-width measurements, anterior, and overall Bolton ratio of digital models of CAD/CAM and CBCT did not differ significantly from those on the plaster models. Conclusion: Hence, both CBCT and CAD/CAM are trustable and promising technique that can replace plaster models due to its overwhelming advantages. PMID:26538899
Experimental and simulation flow rate analysis of the 3/2 directional pneumatic valve
NASA Astrophysics Data System (ADS)
Blasiak, Slawomir; Takosoglu, Jakub E.; Laski, Pawel A.; Pietrala, Dawid S.; Zwierzchowski, Jaroslaw; Bracha, Gabriel; Nowakowski, Lukasz; Blasiak, Malgorzata
The work includes a study on the comparative analysis of two test methods. The first method - numerical method, consists in determining the flow characteristics with the use of ANSYS CFX. A modeled poppet directional valve 3/2 3D CAD software - SolidWorks was used for this purpose. Based on the solid model that was developed, simulation studies of the air flow through the way valve in the software for computational fluid dynamics Ansys CFX were conducted. The second method - experimental, entailed conducting tests on a specially constructed test stand. The comparison of the test results obtained on the basis of both methods made it possible to determine the cross-correlation. High compatibility of the results confirms the usefulness of the numerical procedures. Thus, they might serve to determine the flow characteristics of directional valves as an alternative to a costly and time-consuming test stand.
Lu, Li; Liu, Shusheng; Shi, Shenggen; Yang, Jianzhong
2011-10-01
China-made 5-axis simultaneous contouring CNC machine tool and domestically developed industrial computer-aided manufacture (CAM) technology were used for full crown fabrication and measurement of crown accuracy, with an attempt to establish an open CAM system for dental processing and to promote the introduction of domestic dental computer-aided design (CAD)/CAM system. Commercially available scanning equipment was used to make a basic digital tooth model after preparation of crown, and CAD software that comes with the scanning device was employed to design the crown by using domestic industrial CAM software to process the crown data in order to generate a solid model for machining purpose, and then China-made 5-axis simultaneous contouring CNC machine tool was used to complete machining of the whole crown and the internal accuracy of the crown internal was measured by using 3D-MicroCT. The results showed that China-made 5-axis simultaneous contouring CNC machine tool in combination with domestic industrial CAM technology can be used for crown making and the crown was well positioned in die. The internal accuracy was successfully measured by using 3D-MicroCT. It is concluded that an open CAM system for dentistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and domestic industrial CAM software has been established, and development of the system will promote the introduction of domestically-produced dental CAD/CAM system.
NASA Astrophysics Data System (ADS)
Wedeking, Gregory A.; Zierer, Joseph J.; Jackson, John R.
2010-07-01
The University of Texas, Center for Electromechanics (UT-CEM) is making a major upgrade to the robotic tracking system on the Hobby Eberly Telescope (HET) as part of theWide Field Upgrade (WFU). The upgrade focuses on a seven-fold increase in payload and necessitated a complete redesign of all tracker supporting structure and motion control systems, including the tracker bridge, ten drive systems, carriage frames, a hexapod, and many other subsystems. The cost and sensitivity of the scientific payload, coupled with the tracker system mass increase, necessitated major upgrades to personnel and hardware safety systems. To optimize kinematic design of the entire tracker, UT-CEM developed novel uses of constraints and drivers to interface with a commercially available CAD package (SolidWorks). For example, to optimize volume usage and minimize obscuration, the CAD software was exercised to accurately determine tracker/hexapod operational space needed to meet science requirements. To verify hexapod controller models, actuator travel requirements were graphically measured and compared to well defined equations of motion for Stewart platforms. To ensure critical hardware safety during various failure modes, UT-CEM engineers developed Visual Basic drivers to interface with the CAD software and quickly tabulate distance measurements between critical pieces of optical hardware and adjacent components for thousands of possible hexapod configurations. These advances and techniques, applicable to any challenging robotic system design, are documented and describe new ways to use commercially available software tools to more clearly define hardware requirements and help insure safe operation.
An Integrated Product Environment
NASA Technical Reports Server (NTRS)
Higgins, Chuck
1997-01-01
Mechanical Advantage is a mechanical design decision support system. Unlike our CAD/CAM cousins, Mechanical Advantage addresses true engineering processes, not just the form and fit of geometry. If we look at a traditional engineering environment, we see that an engineer starts with two things - performance goals and design rules. The intent is to have a product perform specific functions and accomplish that within a designated environment. Geometry should be a simple byproduct of that engineering process - not the controller of it. Mechanical Advantage is a performance modeler allowing engineers to consider all these criteria in making their decisions by providing such capabilities as critical parameter analysis, tolerance and sensitivity analysis, math driven Geometry, and automated design optimizations. If you should desire an industry standard solid model, we would produce an ACIS-based solid model. If you should desire an ANSI/ISO standard drawing, we would produce this as well with a virtual push of the button. For more information on this and other Advantage Series products, please contact the author.
Lorenzen, Nina Dyrberg; Stilling, Maiken; Jakobsen, Stig Storgaard; Gustafson, Klas; Søballe, Kjeld; Baad-Hansen, Thomas
2013-11-01
The stability of implants is vital to ensure a long-term survival. RSA determines micro-motions of implants as a predictor of early implant failure. RSA can be performed as a marker- or model-based analysis. So far, CAD and RE model-based RSA have not been validated for use in hip resurfacing arthroplasty (HRA). A phantom study determined the precision of marker-based and CAD and RE model-based RSA on a HRA implant. In a clinical study, 19 patients were followed with stereoradiographs until 5 years after surgery. Analysis of double-examination migration results determined the clinical precision of marker-based and CAD model-based RSA, and at the 5-year follow-up, results of the total translation (TT) and the total rotation (TR) for marker- and CAD model-based RSA were compared. The phantom study showed that comparison of the precision (SDdiff) in marker-based RSA analysis was more precise than model-based RSA analysis in TT (p CAD < 0.001; p RE = 0.04) and TR (p CAD = 0.01; p RE < 0.001). The clinical precision (double examination in 8 patients) comparing the precision SDdiff was better evaluating the TT using the marker-based RSA analysis (p = 0.002), but showed no difference between the marker- and CAD model-based RSA analysis regarding the TR (p = 0.91). Comparing the mean signed values regarding the TT and the TR at the 5-year follow-up in 13 patients, the TT was lower (p = 0.03) and the TR higher (p = 0.04) in the marker-based RSA compared to CAD model-based RSA. The precision of marker-based RSA was significantly better than model-based RSA. However, problems with occluded markers lead to exclusion of many patients which was not a problem with model-based RSA. HRA were stable at the 5-year follow-up. The detection limit was 0.2 mm TT and 1° TR for marker-based and 0.5 mm TT and 1° TR for CAD model-based RSA for HRA.
Integrating CAD modules in a PACS environment using a wide computing infrastructure.
Suárez-Cuenca, Jorge J; Tilve, Amara; López, Ricardo; Ferro, Gonzalo; Quiles, Javier; Souto, Miguel
2017-04-01
The aim of this paper is to describe a project designed to achieve a total integration of different CAD algorithms into the PACS environment by using a wide computing infrastructure. The aim is to build a system for the entire region of Galicia, Spain, to make CAD accessible to multiple hospitals by employing different PACSs and clinical workstations. The new CAD model seeks to connect different devices (CAD systems, acquisition modalities, workstations and PACS) by means of networking based on a platform that will offer different CAD services. This paper describes some aspects related to the health services of the region where the project was developed, CAD algorithms that were either employed or selected for inclusion in the project, and several technical aspects and results. We have built a standard-based platform with which users can request a CAD service and receive the results in their local PACS. The process runs through a web interface that allows sending data to the different CAD services. A DICOM SR object is received with the results of the algorithms stored inside the original study in the proper folder with the original images. As a result, a homogeneous service to the different hospitals of the region will be offered. End users will benefit from a homogeneous workflow and a standardised integration model to request and obtain results from CAD systems in any modality, not dependant on commercial integration models. This new solution will foster the deployment of these technologies in the entire region of Galicia.
CAD-model-based vision for space applications
NASA Technical Reports Server (NTRS)
Shapiro, Linda G.
1988-01-01
A pose acquisition system operating in space must be able to perform well in a variety of different applications including automated guidance and inspections tasks with many different, but known objects. Since the space station is being designed with automation in mind, there will be CAD models of all the objects, including the station itself. The construction of vision models and procedures directly from the CAD models is the goal of this project. The system that is being designed and implementing must convert CAD models to vision models, predict visible features from a given view point from the vision models, construct view classes representing views of the objects, and use the view class model thus derived to rapidly determine the pose of the object from single images and/or stereo pairs.
Prosthetic knee design by simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollerbach, K; Hollister, A
1999-07-30
Although 150,000 total knee replacement surgeries are performed annually in North America, current designs of knee prostheses have mechanical problems that include a limited range of motion, abnormal gait patterns, patellofemoral joint dysfunction, implant loosening or subsidence, and excessive wear. These problems fall into three categories: failure to reproduce normal joint kinematics, which results in altered limb function; bone-implant interface failure; and material failure. Modern computer technology can be used to design, prototype, and test new total knee implants. The design team uses the full range of CAD-CAM to design and produce implant prototypes for mechanical and clinical testing. Closermore » approximation of natural knee kinematics and kinetics is essential for improved patient function and diminished implant loads. Current knee replacement designs are based on 19th Century theories that the knee moves about a variable axis of rotation. Recent research has shown, however, that knee motion occurs about two fixed, offset axes of rotation. These aces are not perpendicular to the long axes of the bones or to each other, and the axes do not intersect. Bearing surfaces of mechanisms that move about axes of rotation are surfaces of revolution of those axes which advanced CAD technology can produce. Solids with surfaces of revolution for the two axes of rotation for the knee have been made using an HP9000 workstation and Structural Ideas Master Series CAD software at ArthroMotion. The implant's CAD model should closely replicate movements of the normal knee. The knee model will have a range of flexion-extension (FE) from -5 to 120 degrees. Movements include varus, valgus, internal and external rotation, as well as flexion and extension. The patellofemoral joint is aligned perpendicular to the FE axis and replicates the natural joint more closely than those of existing prostheses. The bearing surfaces will be more congruent than current designs and should generate lower stresses in the materials.« less
Genders, Tessa S S; Coles, Adrian; Hoffmann, Udo; Patel, Manesh R; Mark, Daniel B; Lee, Kerry L; Steyerberg, Ewout W; Hunink, M G Myriam; Douglas, Pamela S
2018-03-01
This study sought to externally validate prediction models for the presence of obstructive coronary artery disease (CAD). A better assessment of the probability of CAD may improve the identification of patients who benefit from noninvasive testing. Stable chest pain patients from the PROMISE (Prospective Multicenter Imaging Study for Evaluation of Chest Pain) trial with computed tomography angiography (CTA) or invasive coronary angiography (ICA) were included. The authors assumed that patients with CTA showing 0% stenosis and a coronary artery calcium (CAC) score of 0 were free of obstructive CAD (≥50% stenosis) on ICA, and they multiply imputed missing ICA results based on clinical variables and CTA results. Predicted CAD probabilities were calculated using published coefficients for 3 models: basic model (age, sex, chest pain type), clinical model (basic model + diabetes, hypertension, dyslipidemia, and smoking), and clinical + CAC score model. The authors assessed discrimination and calibration, and compared published effects with observed predictor effects. In 3,468 patients (1,805 women; mean 60 years of age; 779 [23%] with obstructive CAD on CTA), the models demonstrated moderate-good discrimination, with C-statistics of 0.69 (95% confidence interval [CI]: 0.67 to 0.72), 0.72 (95% CI: 0.69 to 0.74), and 0.86 (95% CI: 0.85 to 0.88) for the basic, clinical, and clinical + CAC score models, respectively. Calibration was satisfactory although typical chest pain and diabetes were less predictive and CAC score was more predictive than was suggested by the models. Among the 31% of patients for whom the clinical model predicted a low (≤10%) probability of CAD, actual prevalence was 7%; among the 48% for whom the clinical + CAC score model predicted a low probability the observed prevalence was 2%. In 2 sensitivity analyses excluding imputed data, similar results were obtained using CTA as the outcome, whereas in those who underwent ICA the models significantly underestimated CAD probability. Existing clinical prediction models can identify patients with a low probability of obstructive CAD. Obstructive CAD on ICA was imputed for 61% of patients; hence, further validation is necessary. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Optimizing decision making at the end of life of a product
NASA Astrophysics Data System (ADS)
Gonzalez-Torre, Beatriz; Adenso-Diaz, Belarmino
2004-02-01
European environmental legislation has significantly evolved over the last few years, forcing manufacturers to be more environmentally aware and to introduce ecological criteria in their traditional practices. One of the most important goals of this set of regulations is to reduce the amount of solid waste generated per unit of time by promoting recycling, repair, reuse and other recovery strategies at the product end of life (EOL). However, one of the most difficult steps for manufacturers is that of deciding which of these options or which combination of them should be implemented to get the maximum recovery value taking into account the specific characteristics of each product. In this paper, a recurrent algorithm is proposed to determine the optimal end-of-life strategy. On the basis of the product bill of materials and its graphical CAD/CAM representation, the model will determine to what extent the product should be disassembled and what the final end of each disassembled part should be (reuse, recycling or disposal). The paper starts by presenting an overview of the model, to then focus on the CAD-integrated algorithm for determining the optimum disassembly sequence, a necessary step in EOL decision-making.
ERIC Educational Resources Information Center
Johnson, Michael D.; Diwakaran, Ram Prasad
2011-01-01
Computer-aided design (CAD) is a ubiquitous tool that today's students will be expected to use proficiently for numerous engineering purposes. Taking full advantage of the features available in modern CAD programs requires that models are created in a manner that allows others to easily understand how they are organized and alter them in an…
AutoCAD-To-NASTRAN Translator Program
NASA Technical Reports Server (NTRS)
Jones, A.
1989-01-01
Program facilitates creation of finite-element mathematical models from geometric entities. AutoCAD to NASTRAN translator (ACTON) computer program developed to facilitate quick generation of small finite-element mathematical models for use with NASTRAN finite-element modeling program. Reads geometric data of drawing from Data Exchange File (DXF) used in AutoCAD and other PC-based drafting programs. Written in Microsoft Quick-Basic (Version 2.0).
Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method.
Jeong, Yoo-Geum; Lee, Wan-Sun; Lee, Kyu-Bok
2018-06-01
To evaluate the accuracy of a model made using the computer-aided design/computer-aided manufacture (CAD/CAM) milling method and 3D printing method and to confirm its applicability as a work model for dental prosthesis production. First, a natural tooth model (ANA-4, Frasaco, Germany) was scanned using an oral scanner. The obtained scan data were then used as a CAD reference model (CRM), to produce a total of 10 models each, either using the milling method or the 3D printing method. The 20 models were then scanned using a desktop scanner and the CAD test model was formed. The accuracy of the two groups was compared using dedicated software to calculate the root mean square (RMS) value after superimposing CRM and CAD test model (CTM). The RMS value (152±52 µm) of the model manufactured by the milling method was significantly higher than the RMS value (52±9 µm) of the model produced by the 3D printing method. The accuracy of the 3D printing method is superior to that of the milling method, but at present, both methods are limited in their application as a work model for prosthesis manufacture.
Trainer, Asa; Hedberg, Thomas; Feeney, Allison Barnard; Fischer, Kevin; Rosche, Phil
2016-01-01
Advances in information technology triggered a digital revolution that holds promise of reduced costs, improved productivity, and higher quality. To ride this wave of innovation, manufacturing enterprises are changing how product definitions are communicated - from paper to models. To achieve industry's vision of the Model-Based Enterprise (MBE), the MBE strategy must include model-based data interoperability from design to manufacturing and quality in the supply chain. The Model-Based Definition (MBD) is created by the original equipment manufacturer (OEM) using Computer-Aided Design (CAD) tools. This information is then shared with the supplier so that they can manufacture and inspect the physical parts. Today, suppliers predominantly use Computer-Aided Manufacturing (CAM) and Coordinate Measuring Machine (CMM) models for these tasks. Traditionally, the OEM has provided design data to the supplier in the form of two-dimensional (2D) drawings, but may also include a three-dimensional (3D)-shape-geometry model, often in a standards-based format such as ISO 10303-203:2011 (STEP AP203). The supplier then creates the respective CAM and CMM models and machine programs to produce and inspect the parts. In the MBE vision for model-based data exchange, the CAD model must include product-and-manufacturing information (PMI) in addition to the shape geometry. Today's CAD tools can generate models with embedded PMI. And, with the emergence of STEP AP242, a standards-based model with embedded PMI can now be shared downstream. The on-going research detailed in this paper seeks to investigate three concepts. First, that the ability to utilize a STEP AP242 model with embedded PMI for CAD-to-CAM and CAD-to-CMM data exchange is possible and valuable to the overall goal of a more efficient process. Second, the research identifies gaps in tools, standards, and processes that inhibit industry's ability to cost-effectively achieve model-based-data interoperability in the pursuit of the MBE vision. Finally, it also seeks to explore the interaction between CAD and CMM processes and determine if the concept of feedback from CAM and CMM back to CAD is feasible. The main goal of our study is to test the hypothesis that model-based-data interoperability from CAD-to-CAM and CAD-to-CMM is feasible through standards-based integration. This paper presents several barriers to model-based-data interoperability. Overall, the project team demonstrated the exchange of product definition data between CAD, CAM, and CMM systems using standards-based methods. While gaps in standards coverage were identified, the gaps should not stop industry's progress toward MBE. The results of our study provide evidence in support of an open-standards method to model-based-data interoperability, which would provide maximum value and impact to industry.
Young, Stefano; Lo, Pechin; Kim, Grace; Brown, Matthew; Hoffman, John; Hsu, William; Wahi-Anwar, Wasil; Flores, Carlos; Lee, Grace; Noo, Frederic; Goldin, Jonathan; McNitt-Gray, Michael
2017-04-01
Lung cancer screening with low-dose CT has recently been approved for reimbursement, heralding the arrival of such screening services worldwide. Computer-aided detection (CAD) tools offer the potential to assist radiologists in detecting nodules in these screening exams. In lung screening, as in all CT exams, there is interest in further reducing radiation dose. However, the effects of continued dose reduction on CAD performance are not fully understood. In this work, we investigated the effect of reducing radiation dose on CAD lung nodule detection performance in a screening population. The raw projection data files were collected from 481 patients who underwent low-dose screening CT exams at our institution as part of the National Lung Screening Trial (NLST). All scans were performed on a multidetector scanner (Sensation 64, Siemens Healthcare, Forchheim Germany) according to the NLST protocol, which called for a fixed tube current scan of 25 effective mAs for standard-sized patients and 40 effective mAs for larger patients. The raw projection data were input to a reduced-dose simulation software to create simulated reduced-dose scans corresponding to 50% and 25% of the original protocols. All raw data files were reconstructed at the scanner with 1 mm slice thickness and B50 kernel. The lungs were segmented semi-automatically, and all images and segmentations were input to an in-house CAD algorithm trained on higher dose scans (75-300 mAs). CAD findings were compared to a reference standard generated by an experienced reader. Nodule- and patient-level sensitivities were calculated along with false positives per scan, all of which were evaluated in terms of the relative change with respect to dose. Nodules were subdivided based on size and solidity into categories analogous to the LungRADS assessment categories, and sub-analyses were performed. From the 481 patients in this study, 82 had at least one nodule (prevalence of 17%) and 399 did not (83%). A total of 118 nodules were identified. Twenty-seven nodules (23%) corresponded to LungRADS category 4 based on size and composition, while 18 (15%) corresponded to LungRADS category 3 and 73 (61%) corresponded to LungRADS category 2. For solid nodules ≥8 mm, patient-level median sensitivities were 100% at all three dose levels, and mean sensitivities were 72%, 63%, and 63% at original, 50%, and 25% dose, respectively. Overall mean patient-level sensitivities for nodules ranging from 3 to 45 mm were 38%, 37%, and 38% at original, 50%, and 25% dose due to the prevalence of smaller nodules and nonsolid nodules in our reference standard. The mean false-positive rates were 3, 5, and 13 per case. CAD sensitivity decreased very slightly for larger nodules as dose was reduced, indicating that reducing the dose to 50% of original levels may be investigated further for use in CT screening. However, the effect of dose was small relative to the effect of the nodule size and solidity characteristics. The number of false positives per scan increased substantially at 25% dose, illustrating the importance of tuning CAD algorithms to very challenging, high-noise screening exams. © 2017 American Association of Physicists in Medicine.
TARDEC FIXED HEEL POINT (FHP): DRIVER CAD ACCOMMODATION MODEL VERIFICATION REPORT
2017-11-09
SUPPLEMENTARY NOTES N/A 14. ABSTRACT Easy-to-use Computer-Aided Design (CAD) tools, known as accommodation models, are needed by the ground vehicle... designers when developing the interior workspace for the occupant. The TARDEC Fixed Heel Point (FHP): Driver CAD Accommodation Model described in this...is intended to provide the composite boundaries representing the body of the defined target design population, including posture prediction
Lan, Hongzhi; Updegrove, Adam; Wilson, Nathan M; Maher, Gabriel D; Shadden, Shawn C; Marsden, Alison L
2018-02-01
Patient-specific simulation plays an important role in cardiovascular disease research, diagnosis, surgical planning and medical device design, as well as education in cardiovascular biomechanics. simvascular is an open-source software package encompassing an entire cardiovascular modeling and simulation pipeline from image segmentation, three-dimensional (3D) solid modeling, and mesh generation, to patient-specific simulation and analysis. SimVascular is widely used for cardiovascular basic science and clinical research as well as education, following increased adoption by users and development of a GATEWAY web portal to facilitate educational access. Initial efforts of the project focused on replacing commercial packages with open-source alternatives and adding increased functionality for multiscale modeling, fluid-structure interaction (FSI), and solid modeling operations. In this paper, we introduce a major SimVascular (SV) release that includes a new graphical user interface (GUI) designed to improve user experience. Additional improvements include enhanced data/project management, interactive tools to facilitate user interaction, new boundary condition (BC) functionality, plug-in mechanism to increase modularity, a new 3D segmentation tool, and new computer-aided design (CAD)-based solid modeling capabilities. Here, we focus on major changes to the software platform and outline features added in this new release. We also briefly describe our recent experiences using SimVascular in the classroom for bioengineering education.
Statistical Tolerance and Clearance Analysis for Assembly
NASA Technical Reports Server (NTRS)
Lee, S.; Yi, C.
1996-01-01
Tolerance is inevitable because manufacturing exactly equal parts is known to be impossible. Furthermore, the specification of tolerances is an integral part of product design since tolerances directly affect the assemblability, functionality, manufacturability, and cost effectiveness of a product. In this paper, we present statistical tolerance and clearance analysis for the assembly. Our proposed work is expected to make the following contributions: (i) to help the designers to evaluate products for assemblability, (ii) to provide a new perspective to tolerance problems, and (iii) to provide a tolerance analysis tool which can be incorporated into a CAD or solid modeling system.
Wu, Minghua; Pedroza, Mesias; Lafyatis, Robert; George, Anuh-Teresa; Mayes, Maureen D.; Assassi, Shervin; Tan, Filemon K.; Brenner, Michael B.; Agarwal, Sandeep K.
2014-01-01
Objective Systemic sclerosis (SSc) is a chronic autoimmune disease clinically manifesting as progressive fibrosis of the skin and internal organs. Recent microarray studies demonstrated that cadherin 11 (Cad-11) expression is increased in the affected skin of patients with SSc. The purpose of this study was to examine our hypothesis that Cad-11 is a mediator of dermal fibrosis. Methods Biopsy samples of skin from SSc patients and healthy control subjects were used for real-time quantitative polymerase chain reaction analysis to assess Cad-11 expression and for immunohistochemistry to determine the expression pattern of Cad-11. To determine whether Cad-11 is a mediator of dermal fibrosis, Cad-11–deficient mice and anti–Cad-11 monoclonal antibodies (mAb) were used in the bleomycin-induced dermal fibrosis model. In vitro studies with dermal fibroblasts and bone marrow–derived macrophages were used to determine the mechanisms by which Cad-11 contributes to the development of tissue fibrosis. Results Levels of messenger RNA for Cad-11 were increased in skin biopsy samples from patients with SSc and correlated with the modified Rodnan skin thickness scores. Cad-11 expression was localized to dermal fibroblasts and macrophages in SSc skin. Cad-11–knockout mice injected with bleomycin had markedly attenuated dermal fibrosis, as quantified by measurements of skin thickness, collagen levels, myofibroblast accumulation, and profibrotic gene expression, in lesional skin as compared to the skin of wild-type mice. In addition, anti–Cad-11 mAb decreased fibrosis at various time points in the bleomycin-induced dermal fibrosis model. In vitro studies demonstrated that Cad-11 regulated the production of transforming growth factor β (TGFβ) by macrophages and the migration of fibroblasts. Conclusion These data demonstrate that Cad-11 is a mediator of dermal fibrosis and TGFβ production and suggest that Cad-11 may be a therapeutic target in SSc. PMID:24757152
Deactivation of the E. coli pH stress sensor CadC by cadaverine.
Haneburger, Ina; Fritz, Georg; Jurkschat, Nicole; Tetsch, Larissa; Eichinger, Andreas; Skerra, Arne; Gerland, Ulrich; Jung, Kirsten
2012-11-23
At acidic pH and in the presence of lysine, the pH sensor CadC activates transcription of the cadBA operon encoding the lysine/cadaverine antiporter CadB and the lysine decarboxylase CadA. In effect, these proteins contribute to acid stress adaptation in Escherichia coli. cadBA expression is feedback inhibited by cadaverine, and a cadaverine binding site is predicted within the central cavity of the periplasmic domain of CadC on the basis of its crystallographic analysis. Our present study demonstrates that this site only partially accounts for the cadaverine response in vivo. Instead, evidence for a second, pivotal binding site was collected, which overlaps with the pH-responsive patch of amino acids located at the dimer interface of the periplasmic domain. The temporal response of the E. coli Cad module upon acid shock was measured and modeled for two CadC variants with mutated cadaverine binding sites. These studies supported a cascade-like binding and deactivation model for the CadC dimer: binding of cadaverine within the pair of central cavities triggers a conformational transition that exposes two further binding sites at the dimer interface, and the occupation of those stabilizes the inactive conformation. Altogether, these data represent a striking example for the deactivation of a pH sensor. Copyright © 2012 Elsevier Ltd. All rights reserved.
Paquerault, Sophie; Hardy, Paul T; Wersto, Nancy; Chen, John; Smith, Robert C
2010-09-01
The aim of this study was to explore different computerized models (the "machine") as a means to achieve optimal use of computer-aided detection (CAD) systems and to investigate whether these models can play a primary role in clinical decision making and possibly replace a clinician's subjective decision for combining his or her own assessment with that provided by a CAD system. Data previously collected from a fully crossed, multiple-reader, multiple-case observer study with and without CAD by seven observers asked to identify simulated small masses on two separate sets of 100 mammographic images (low-contrast and high-contrast sets; ie, low-contrast and high-contrast simulated masses added to random locations on normal mammograms) were used. This allowed testing two relative sensitivities between the observers and CAD. Seven models that combined detection assessments from CAD standalone, unaided read, and CAD-aided read (second read and concurrent read) were developed using the leave-one-out technique for training and testing. These models were personalized for each observer. Detection performance accuracies were analyzed using the area under a portion of the free-response receiver-operating characteristic curve (AUFC), sensitivity, and number of false-positives per image. For the low-contrast set, the use of computerized models resulted in significantly higher AUFCs compared to the unaided read mode for all readers, whereas the increased AUFCs between CAD-aided (second and concurrent reads; ie, decisions made by the readers) and unaided read modes were statistically significant for a majority, but not all, of the readers (four and five of the seven readers, respectively). For the high-contrast set, there were no significant trends in the AUFCs whether or not a model was used to combine the original reading modes. Similar results were observed when using sensitivity as the figure of merit. However, the average number of false-positives per image resulting from the computerized models remained the same as that obtained from the unaided read modes. Individual computerized models (the machine) that combine image assessments from CAD standalone, unaided read, and CAD-aided read can increase detection performance compared to the reading done by the observer. However, relative sensitivity (ie, the difference in sensitivity between CAD standalone and unaided read) was a critical factor that determined incremental improvement in decision making, whether made by the observer or using computerized models. Published by Elsevier Inc.
Automatic image database generation from CAD for 3D object recognition
NASA Astrophysics Data System (ADS)
Sardana, Harish K.; Daemi, Mohammad F.; Ibrahim, Mohammad K.
1993-06-01
The development and evaluation of Multiple-View 3-D object recognition systems is based on a large set of model images. Due to the various advantages of using CAD, it is becoming more and more practical to use existing CAD data in computer vision systems. Current PC- level CAD systems are capable of providing physical image modelling and rendering involving positional variations in cameras, light sources etc. We have formulated a modular scheme for automatic generation of various aspects (views) of the objects in a model based 3-D object recognition system. These views are generated at desired orientations on the unit Gaussian sphere. With a suitable network file sharing system (NFS), the images can directly be stored on a database located on a file server. This paper presents the image modelling solutions using CAD in relation to multiple-view approach. Our modular scheme for data conversion and automatic image database storage for such a system is discussed. We have used this approach in 3-D polyhedron recognition. An overview of the results, advantages and limitations of using CAD data and conclusions using such as scheme are also presented.
Perl Embedded in PTC's Pro/ENGINEER, Version 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
2003-12-22
Pro-PERL (AKA Pro/PERL) is a Perl extension to the PTC Pro/TOOLKIT API to the PTC Pro/ENGINEER CAD application including an embedded interpreter. It can be used to automate and customize Pro/ENGINEER, create Vendor Neutral Archive (VNA) format files and re-create CAD models from the VNA files. This has applications in sanitizing classified CAD models created in a classified environment for transfer to an open environment, creating template models for modification to finished models by non-expert users, and transfer of design intent data to other modeling technologies.
Trainer, Asa; Hedberg, Thomas; Feeney, Allison Barnard; Fischer, Kevin; Rosche, Phil
2017-01-01
Advances in information technology triggered a digital revolution that holds promise of reduced costs, improved productivity, and higher quality. To ride this wave of innovation, manufacturing enterprises are changing how product definitions are communicated – from paper to models. To achieve industry's vision of the Model-Based Enterprise (MBE), the MBE strategy must include model-based data interoperability from design to manufacturing and quality in the supply chain. The Model-Based Definition (MBD) is created by the original equipment manufacturer (OEM) using Computer-Aided Design (CAD) tools. This information is then shared with the supplier so that they can manufacture and inspect the physical parts. Today, suppliers predominantly use Computer-Aided Manufacturing (CAM) and Coordinate Measuring Machine (CMM) models for these tasks. Traditionally, the OEM has provided design data to the supplier in the form of two-dimensional (2D) drawings, but may also include a three-dimensional (3D)-shape-geometry model, often in a standards-based format such as ISO 10303-203:2011 (STEP AP203). The supplier then creates the respective CAM and CMM models and machine programs to produce and inspect the parts. In the MBE vision for model-based data exchange, the CAD model must include product-and-manufacturing information (PMI) in addition to the shape geometry. Today's CAD tools can generate models with embedded PMI. And, with the emergence of STEP AP242, a standards-based model with embedded PMI can now be shared downstream. The on-going research detailed in this paper seeks to investigate three concepts. First, that the ability to utilize a STEP AP242 model with embedded PMI for CAD-to-CAM and CAD-to-CMM data exchange is possible and valuable to the overall goal of a more efficient process. Second, the research identifies gaps in tools, standards, and processes that inhibit industry's ability to cost-effectively achieve model-based-data interoperability in the pursuit of the MBE vision. Finally, it also seeks to explore the interaction between CAD and CMM processes and determine if the concept of feedback from CAM and CMM back to CAD is feasible. The main goal of our study is to test the hypothesis that model-based-data interoperability from CAD-to-CAM and CAD-to-CMM is feasible through standards-based integration. This paper presents several barriers to model-based-data interoperability. Overall, the project team demonstrated the exchange of product definition data between CAD, CAM, and CMM systems using standards-based methods. While gaps in standards coverage were identified, the gaps should not stop industry's progress toward MBE. The results of our study provide evidence in support of an open-standards method to model-based-data interoperability, which would provide maximum value and impact to industry. PMID:28691120
Role of System Architecture in Architecture in Developing New Drafting Tools
NASA Astrophysics Data System (ADS)
Sorguç, Arzu Gönenç
In this study, the impact of information technologies in architectural design process is discussed. In this discussion, first the differences/nuances between the concept of software engineering and system architecture are clarified. Then, the design process in engineering, and design process in architecture has been compared by considering 3-D models as the center of design process over which the other disciplines involve the design. It is pointed out that in many high-end engineering applications, 3-D solid models and consequently digital mock-up concept has become a common practice. But, architecture as one of the important customers of CAD systems employing these tools has not started to use these 3-D models. It is shown that the reason of this time lag between architecture and engineering lies behind the tradition of design attitude. Therefore, it is proposed a new design scheme a meta-model to develop an integrated design model being centered on 3-D model. It is also proposed a system architecture to achieve the transformation of architectural design process by replacing 2-D thinking with 3-D thinking. It is stated that in the proposed system architecture, the CAD systems are included and adapted for 3-D architectural design in order to provide interfaces for integration of all possible disciplines to design process. It is also shown that such a change will allow to elaborate the intelligent or smart building concept in future.
The mathematical and computer modeling of the worm tool shaping
NASA Astrophysics Data System (ADS)
Panchuk, K. L.; Lyashkov, A. A.; Ayusheev, T. V.
2017-06-01
Traditionally mathematical profiling of the worm tool is carried out on the first T. Olivier method, known in the theory of gear gearings, with receiving an intermediate surface of the making lath. It complicates process of profiling and its realization by means of computer 3D-modeling. The purpose of the work is the improvement of mathematical model of profiling and its realization based on the methods of 3D-modeling. Research problems are: receiving of the mathematical model of profiling which excludes the presence of the making lath in it; realization of the received model by means of frame and superficial modeling; development and approbation of technology of solid-state modeling for the solution of the problem of profiling. As the basic, the kinematic method of research of the mutually envelope surfaces is accepted. Computer research is executed by means of CAD based on the methods of 3D-modeling. We have developed mathematical model of profiling of the worm tool; frame, superficial and solid-state models of shaping of the mutually enveloping surfaces of the detail and the tool are received. The offered mathematical models and the technologies of 3D-modeling of shaping represent tools for theoretical and experimental profiling of the worm tool. The results of researches can be used at design of metal-cutting tools.
Papanastasiou, Giorgos; Williams, Michelle C; Dweck, Marc R; Alam, Shirjel; Cooper, Annette; Mirsadraee, Saeed; Newby, David E; Semple, Scott I
2016-09-13
Mathematical modeling of perfusion cardiovascular magnetic resonance (CMR) data allows absolute quantification of myocardial blood flow and can potentially improve the diagnosis and prognostication of obstructive coronary artery disease (CAD), against the current clinical standard of visual assessments. This study compares the diagnostic performance of distributed parameter modeling (DP) against the standard Fermi model, for the detection of obstructive CAD, in per vessel against per patient analysis. A pilot cohort of 28 subjects (24 included in the final analysis) with known or suspected CAD underwent adenosine stress-rest perfusion CMR at 3T. Data were analysed using Fermi and DP modeling against invasive coronary angiography and fractional flow reserve, acquired in all subjects. Obstructive CAD was defined as luminal stenosis of ≥70 % alone, or luminal stenosis ≥50 % and fractional flow reserve ≤0.80. On ROC analysis, DP modeling outperformed the standard Fermi model, in per vessel and per patient analysis. In per patient analysis, DP modeling-derived myocardial blood flow at stress demonstrated the highest sensitivity and specificity (0.96, 0.92) in detecting obstructive CAD, against Fermi modeling (0.78, 0.88) and visual assessments (0.79, 0.88), respectively. DP modeling demonstrated consistently increased diagnostic performance against Fermi modeling and showed that it may have merit for stratifying patients with at least one vessel with obstructive CAD. Clinicaltrials.gov NCT01368237 Registered 6 of June 2011. URL: https://clinicaltrials.gov/ct2/show/NCT01368237.
NASA Technical Reports Server (NTRS)
Afjeh, Abdollah A.; Reed, John A.
2003-01-01
Mesh generation has long been recognized as a bottleneck in the CFD process. While much research on automating the volume mesh generation process have been relatively successful,these methods rely on appropriate initial surface triangulation to work properly. Surface discretization has been one of the least automated steps in computational simulation due to its dependence on implicitly defined CAD surfaces and curves. Differences in CAD peometry engines manifest themselves in discrepancies in their interpretation of the same entities. This lack of "good" geometry causes significant problems for mesh generators, requiring users to "repair" the CAD geometry before mesh generation. The problem is exacerbated when CAD geometry is translated to other forms (e.g., IGES )which do not include important topological and construction information in addition to entity geometry. One technique to avoid these problems is to access the CAD geometry directly from the mesh generating software, rather than through files. By accessing the geometry model (not a discretized version) in its native environment, t h s a proach avoids translation to a format which can deplete the model of topological information. Our approach to enable models developed in the Denali software environment to directly access CAD geometry and functions is through an Application Programming Interface (API) known as CAPRI. CAPRI provides a layer of indirection through which CAD-specific data may be accessed by an application program using CAD-system neutral C and FORTRAN language function calls. CAPRI supports a general set of CAD operations such as truth testing, geometry construction and entity queries.
Bittencourt, Marcio Sommer; Hulten, Edward; Polonsky, Tamar S; Hoffman, Udo; Nasir, Khurram; Abbara, Suhny; Di Carli, Marcelo; Blankstein, Ron
2016-07-19
The most appropriate score for evaluating the pretest probability of obstructive coronary artery disease (CAD) is unknown. We sought to compare the Diamond-Forrester (DF) score with the 2 CAD consortium scores recently recommended by the European Society of Cardiology. We included 2274 consecutive patients (age, 56±13 years; 57% male) without prior CAD referred for coronary computed tomographic angiography. Computed tomographic angiography findings were used to determine the presence or absence of obstructive CAD (≥50% stenosis). We compared the DF score with the 2 CAD consortium scores with respect to their ability to predict obstructive CAD and the potential implications of these scores on the downstream use of testing for CAD, as recommended by current guidelines. The DF score did not satisfactorily fit the data and resulted in a significant overestimation of the prevalence of obstructive CAD (P<0.001); the CAD consortium basic score had no significant lack of fitness; and the CAD consortium clinical provided adequate goodness of fit (P=0.39). The DF score had a lower discrimination for obstructive CAD, with an area under the receiver-operating characteristics curve of 0.713 versus 0.752 and 0.791 for the CAD consortium models (P<0.001 for both). Consequently, the use of the DF score was associated with fewer individuals being categorized as requiring no additional testing (8.3%) compared with the CAD consortium models (24.6% and 30.0%; P<0.001). The proportion of individuals with a high pretest probability was 18% with the DF and only 1.1% with the CAD consortium scores (P<0.001) CONCLUSIONS: Among contemporary patients referred for noninvasive testing, the DF risk score overestimates the risk of obstructive CAD. On the other hand, the CAD consortium scores offered improved goodness of fit and discrimination; thus, their use could decrease the need for noninvasive or invasive testing while increasing the yield of such tests. © 2016 American Heart Association, Inc.
Defeaturing CAD models using a geometry-based size field and facet-based reduction operators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quadros, William Roshan; Owen, Steven James
2010-04-01
We propose a method to automatically defeature a CAD model by detecting irrelevant features using a geometry-based size field and a method to remove the irrelevant features via facet-based operations on a discrete representation. A discrete B-Rep model is first created by obtaining a faceted representation of the CAD entities. The candidate facet entities are then marked for reduction by using a geometry-based size field. This is accomplished by estimating local mesh sizes based on geometric criteria. If the field value at a facet entity goes below a user specified threshold value then it is identified as an irrelevant featuremore » and is marked for reduction. The reduction of marked facet entities is primarily performed using an edge collapse operator. Care is taken to retain a valid geometry and topology of the discrete model throughout the procedure. The original model is not altered as the defeaturing is performed on a separate discrete model. Associativity between the entities of the discrete model and that of original CAD model is maintained in order to decode the attributes and boundary conditions applied on the original CAD entities onto the mesh via the entities of the discrete model. Example models are presented to illustrate the effectiveness of the proposed approach.« less
Bhattacharya, Sayanti; Granger, Christopher B; Craig, Damian; Haynes, Carol; Bain, James; Stevens, Robert D; Hauser, Elizabeth R; Newgard, Christopher B; Kraus, William E; Newby, L Kristin; Shah, Svati H
2014-01-01
To validate independent associations between branched-chain amino acids (BCAA) and other metabolites with coronary artery disease (CAD). We conducted mass-spectrometry-based profiling of 63 metabolites in fasting plasma from 1983 sequential patients undergoing cardiac catheterization. Significant CAD was defined as CADindex ≥ 32 (at least one vessel with ≥ 95% stenosis; N = 995) and no CAD as CADindex ≤ 23 and no previous cardiac events (N = 610). Individuals (N = 378) with CAD severity between these extremes were excluded. Principal components analysis (PCA) reduced large numbers of correlated metabolites into uncorrelated factors. Association between metabolite factors and significant CAD vs. no CAD was tested using logistic regression; and between metabolite factors and severity of CAD was tested using linear regression. Of twelve PCA-derived metabolite factors, two were associated with CAD in multivariable models: factor 10, composed of BCAA (adjusted odds ratio, OR, 1.20; 95% CI 1.05-1.35, p = 0.005) and factor 7, composed of short-chain acylcarnitines, which include byproducts of BCAA metabolism (adjusted OR 1.30; 95% CI 1.14-1.48, p = 0.001). After adjustment for glycated albumin (marker of insulin resistance [IR]) both factors 7 (p = 0.0001) and 10 (p = 0.004) remained associated with CAD. Severity of CAD as a continuous variable (including patients with non-obstructive disease) was associated with metabolite factors 2, 3, 6, 7, 8 and 9; only factors 7 and 10 were associated in multivariable models. We validated the independent association of metabolites involved in BCAA metabolism with CAD extremes. These metabolites may be reporting on novel mechanisms of CAD pathogenesis that are independent of IR and diabetes. Copyright © 2013. Published by Elsevier Ireland Ltd.
2016-08-04
interior surfaces and direct field of view have been added per MIL-STD- 1472G. This CAD model can be applied early in the vehicle design process to ensure... interior surfaces and direct field of view have been added per MIL-STD-1472G. This CAD model can be applied early in the vehicle design process to ensure...Accommodation Model for Military Ground Vehicle Design Paper presented at 2016 NDIA/GVSETS Conference, Aug 4, 2016 4 August 2016 UNCLASSIFIED UNCLASSIFIED
Computing Mass Properties From AutoCAD
NASA Technical Reports Server (NTRS)
Jones, A.
1990-01-01
Mass properties of structures computed from data in drawings. AutoCAD to Mass Properties (ACTOMP) computer program developed to facilitate quick calculations of mass properties of structures containing many simple elements in such complex configurations as trusses or sheet-metal containers. Mathematically modeled in AutoCAD or compatible computer-aided design (CAD) system in minutes by use of three-dimensional elements. Written in Microsoft Quick-Basic (Version 2.0).
Systems Analysis Initiated for All-Electric Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.
2003-01-01
A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three-dimensional computer-aided design (CAD) models of representative PEM fuel cell stack and components were developed and integrated into the virtual reality environment along with an Excel-based model used to calculate fuel cell electrical performance on the basis of cell dimensions (see the figure). CAD models of a representative general aviation aircraft were also developed and added to the environment. With the use of special headgear, users will be able to virtually manipulate the fuel cell s physical characteristics and its placement within the aircraft while receiving information on the resultant fuel cell output power and performance. As the systems analysis effort progresses, we will add more component models to the GRUVE environment to help us more fully understand the effect of various system configurations on the aircraft.
Novel Cadmium Resistance Determinant in Listeria monocytogenes.
Parsons, Cameron; Lee, Sangmi; Jayeola, Victor; Kathariou, Sophia
2017-03-01
Listeria monocytogenes is a foodborne pathogen that can cause severe disease (listeriosis) in susceptible individuals. It is ubiquitous in the environment and often exhibits resistance to heavy metals. One of the determinants that enables Listeria to tolerate exposure to cadmium is the cadAC efflux system, with CadA being a P-type ATPase. Three different cadA genes (designated cadA1 to cadA3 ) were previously characterized in L. monocytogenes A novel putative cadmium resistance gene ( cadA4 ) was recently identified through whole-genome sequencing, but experimental confirmation for its involvement in cadmium resistance is lacking. In this study, we characterized cadA4 in L. monocytogenes strain F8027, a cadmium-resistant strain of serotype 4b. By screening a mariner-based transposon library of this strain, we identified a mutant with reduced tolerance to cadmium and that harbored a single transposon insertion in cadA4 The tolerance to cadmium was restored by genetic complementation with the cadmium resistance cassette ( cadA4C ), and enhanced cadmium tolerance was conferred to two unrelated cadmium-sensitive strains via heterologous complementation with cadA4C Cadmium exposure induced cadA4 expression, even at noninhibitory levels. Virulence assessments in the Galleria mellonella model suggested that a functional cadA4 suppressed virulence, potentially promoting commensal colonization of the insect larvae. Biofilm assays suggested that cadA4 inactivation reduced biofilm formation. These data not only confirm cadA4 as a novel cadmium resistance determinant in L. monocytogenes but also provide evidence for roles in virulence and biofilm formation. IMPORTANCE Listeria monocytogenes is an intracellular foodborne pathogen causing the disease listeriosis, which is responsible for numerous hospitalizations and deaths every year. Among the adaptations that enable the survival of Listeria in the environment are the abilities to persist in biofilms, grow in the cold, and tolerate toxic compounds, such as heavy metals. Here, we characterized a novel determinant that was recently identified on a larger mobile genetic island through whole-genome sequencing. This gene ( cadA4 ) was found to be responsible for cadmium detoxification and to be a divergent member of the Cad family of cadmium efflux pumps. Virulence assessments in a Galleria mellonella model suggested that cadA4 may suppress virulence. Additionally, cadA4 may be involved in the ability of Listeria to form biofilms. Beyond the role in cadmium detoxification, the involvement of cadA4 in other cellular functions potentially explains its retention and wide distribution in L. monocytogenes . Copyright © 2017 American Society for Microbiology.
Jun, Se-Young; Walker, Alexander M; Kim, Hoon; Ralph, John; Vermerris, Wilfred; Sattler, Scott E; Kang, ChulHee
2017-08-01
Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step in monolignol biosynthesis, reducing sinapaldehyde, coniferaldehyde, and p -coumaraldehyde to their corresponding alcohols in an NADPH-dependent manner. Because of its terminal location in monolignol biosynthesis, the variation in substrate specificity and activity of CAD can result in significant changes in overall composition and amount of lignin. Our in-depth characterization of two major CAD isoforms, SbCAD2 (Brown midrib 6 [bmr6]) and SbCAD4, in lignifying tissues of sorghum ( Sorghum bicolor ), a strategic plant for generating renewable chemicals and fuels, indicates their similarity in both structure and activity to Arabidopsis ( Arabidopsis thaliana ) CAD5 and Populus tremuloides sinapyl alcohol dehydrogenase, respectively. This first crystal structure of a monocot CAD combined with enzyme kinetic data and a catalytic model supported by site-directed mutagenesis allows full comparison with dicot CADs and elucidates the potential signature sequence for their substrate specificity and activity. The L119W/G301F-SbCAD4 double mutant displayed its substrate preference in the order coniferaldehyde > p -coumaraldehyde > sinapaldehyde, with higher catalytic efficiency than that of both wild-type SbCAD4 and SbCAD2. As SbCAD4 is the only major CAD isoform in bmr6 mutants, replacing SbCAD4 with L119W/G301F-SbCAD4 in bmr6 plants could produce a phenotype that is more amenable to biomass processing. © 2017 American Society of Plant Biologists. All Rights Reserved.
Integrated computer-aided design using minicomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.
1980-01-01
Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), a highly interactive software, has been implemented on minicomputers at the NASA Langley Research Center. CAD/CAM software integrates many formerly fragmented programs and procedures into one cohesive system; it also includes finite element modeling and analysis, and has been interfaced via a computer network to a relational data base management system and offline plotting devices on mainframe computers. The CAD/CAM software system requires interactive graphics terminals operating at a minimum of 4800 bits/sec transfer rate to a computer. The system is portable and introduces 'interactive graphics', which permits the creation and modification of models interactively. The CAD/CAM system has already produced designs for a large area space platform, a national transonic facility fan blade, and a laminar flow control wind tunnel model. Besides the design/drafting element analysis capability, CAD/CAM provides options to produce an automatic program tooling code to drive a numerically controlled (N/C) machine. Reductions in time for design, engineering, drawing, finite element modeling, and N/C machining will benefit productivity through reduced costs, fewer errors, and a wider range of configuration.
NASA Technical Reports Server (NTRS)
Panczak, Tim; Ring, Steve; Welch, Mark
1999-01-01
Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.
Increased genetic risk for obesity in premature coronary artery disease.
Cole, Christopher B; Nikpay, Majid; Stewart, Alexandre F R; McPherson, Ruth
2016-04-01
There is ongoing controversy as to whether obesity confers risk for CAD independently of associated risk factors including diabetes mellitus. We have carried out a Mendelian randomization study using a genetic risk score (GRS) for body mass index (BMI) based on 35 risk alleles to investigate this question in a population of 5831 early onset CAD cases without diabetes mellitus and 3832 elderly healthy control subjects, all of strictly European ancestry, with adjustment for traditional risk factors (TRFs). We then estimated the genetic correlation between these BMI and CAD (rg) by relating the pairwise genetic similarity matrix to a phenotypic covariance matrix between these two traits. GRSBMI significantly (P=2.12 × 10(-12)) associated with CAD status in a multivariate model adjusted for TRFs, with a per allele odds ratio (OR) of 1.06 (95% CI 1.042-1.076). The addition of GRSBMI to TRFs explained 0.75% of CAD variance and yielded a continuous net recombination index of 16.54% (95% CI=11.82-21.26%, P<0.0001). To test whether GRSBMI explained CAD status when adjusted for measured BMI, separate models were constructed in which the score and BMI were either included as covariates or not. The addition of BMI explained ~1.9% of CAD variance and GRSBMI plus BMI explained 2.65% of CAD variance. Finally, using bivariate restricted maximum likelihood analysis, we provide strong evidence of genome-wide pleiotropy between obesity and CAD. This analysis supports the hypothesis that obesity is a causal risk factor for CAD.
Multidisciplinary analysis and design of printed wiring boards
NASA Astrophysics Data System (ADS)
Fulton, Robert E.; Hughes, Joseph L.; Scott, Waymond R., Jr.; Umeagukwu, Charles; Yeh, Chao-Pin
1991-04-01
Modern printed wiring board design depends on electronic prototyping using computer-based simulation and design tools. Existing electrical computer-aided design (ECAD) tools emphasize circuit connectivity with only rudimentary analysis capabilities. This paper describes a prototype integrated PWB design environment denoted Thermal Structural Electromagnetic Testability (TSET) being developed at Georgia Tech in collaboration with companies in the electronics industry. TSET provides design guidance based on enhanced electrical and mechanical CAD capabilities including electromagnetic modeling testability analysis thermal management and solid mechanics analysis. TSET development is based on a strong analytical and theoretical science base and incorporates an integrated information framework and a common database design based on a systematic structured methodology.
Witberg, Guy; Regev, Ehud; Chen, Shmuel; Assali, Abbid; Barbash, Israel M; Planer, David; Vaknin-Assa, Hana; Guetta, Victor; Vukasinovic, Vojislav; Orvin, Katia; Danenberg, Haim D; Segev, Amit; Kornowski, Ran
2017-07-24
The study sought to examine the effect of coronary artery disease (CAD) on mortality in patients undergoing transcatheter aortic valve replacement (TAVR). CAD is common in the TAVR population. However, there are conflicting data on the prognostic significance of CAD and its treatment in this population. The authors analyzed 1,270 consecutive patients with severe aortic stenosis (AS) undergoing TAVR at 3 Israeli centers. They investigated the association of CAD severity (no CAD, nonsevere CAD [i.e., SYNTAX score (SS) <22], severe CAD [SS >22]) and revascularization completeness ("reasonable" incomplete revascularization [ICR] [i.e., residual SS <8]; ICR [residual SS >8]) with all-cause mortality following TAVR using a Cox proportional hazards ratio model adjusted for multiple prognostic variables. Of the 1,270 patients, 817 (64%) had no CAD, 331 (26%) had nonsevere CAD, and 122 (10%) had severe CAD. Over a median follow-up of 1.9 years, 311 (24.5%) patients died. Mortality was higher in the severe CAD and the ICR groups, but not in the nonsevere CAD or "reasonable" ICR groups, versus no CAD. After multivariate adjustment, both severe CAD (hazard ratio: 2.091; p = 0.017) and ICR (hazard ratio: 1.720; p = 0.031) were associated with increased mortality. Only severe CAD was associated with increased mortality post-TAVR. More complete revascularization pre-TAVR may attenuate the association of severe CAD and mortality. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
STEM Integration: Solids, CAD, and 3D Printers
ERIC Educational Resources Information Center
Fujiwara, Yujiro
2018-01-01
While many students may struggle to make sense of a mathematical formula and its practical implications, they can benefit greatly from an intuitive visualization and the engineering application of the topic. Effective STEM programs create clear connections at least with two subject areas, which translates into an enhanced student learning…
TGeoCad: an Interface between ROOT and CAD Systems
NASA Astrophysics Data System (ADS)
Luzzi, C.; Carminati, F.
2014-06-01
In the simulation of High Energy Physics experiment a very high precision in the description of the detector geometry is essential to achieve the required performances. The physicists in charge of Monte Carlo Simulation of the detector need to collaborate efficiently with the engineers working at the mechanical design of the detector. Often, this collaboration is made hard by the usage of different and incompatible software. ROOT is an object-oriented C++ framework used by physicists for storing, analyzing and simulating data produced by the high-energy physics experiments while CAD (Computer-Aided Design) software is used for mechanical design in the engineering field. The necessity to improve the level of communication between physicists and engineers led to the implementation of an interface between the ROOT geometrical modeler used by the virtual Monte Carlo simulation software and the CAD systems. In this paper we describe the design and implementation of the TGeoCad Interface that has been developed to enable the use of ROOT geometrical models in several CAD systems. To achieve this goal, the ROOT geometry description is converted into STEP file format (ISO 10303), which can be imported and used by many CAD systems.
21 CFR 872.3661 - Optical Impression Systems for CAD/CAM.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3661 Optical Impression Systems for CAD... (CAD/CAM) is a device used to record the topographical characteristics of teeth, dental impressions, or stone models by analog or digital methods for use in the computer-assisted design and manufacturing of...
An Evaluation of Internet-Based CAD Collaboration Tools
ERIC Educational Resources Information Center
Smith, Shana Shiang-Fong
2004-01-01
Due to the now widespread use of the Internet, most companies now require computer aided design (CAD) tools that support distributed collaborative design on the Internet. Such CAD tools should enable designers to share product models, as well as related data, from geographically distant locations. However, integrated collaborative design…
Using CAD/CAM to improve productivity - The IPAD approach
NASA Technical Reports Server (NTRS)
Fulton, R. E.
1981-01-01
Progress in designing and implementing CAD/CAM systems as a result of the NASA Integrated Programs for Aerospace-Vehicle Design is discussed. Essential software packages have been identified as executive, data management, general user, and geometry and graphics software. Data communication, as a means to integrate data over a network of computers of different vendors, provides data management with the capability of meeting design and manufacturing requirements of the vendors. Geometry software is dependent on developmental success with solid geometry software, which is necessary for continual measurements of, for example, a block of metal while it is being machined. Applications in the aerospace industry, such as for design, analysis, tooling, testing, quality control, etc., are outlined.
NASA Astrophysics Data System (ADS)
Szeleszczuk, Łukasz; Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Wawer, Iwona
2016-06-01
In this article we report the results of combined theoretical and experimental structural studies on cinnamic acid derivatives (CADs), one of the main groups of secondary metabolites present in various medicinal plant species and food products of plant origin. The effects of structural differences in CADs on their spectroscopic properties were studied in detail by both: solid-state NMR and GIAO/GIPAW calculations. Theoretical computations were used in order to perform signal assignment in 13C CP/MAS NMR spectra of the cinnamic, o-coumaric, m-coumaric, p-coumaric, caffeic, ferulic, sinapic and 3,4-dimethoxycinnamic acids, and to evaluate the accuracy of GIPAW and GIAO methodology.
Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis
von Scheidt, Moritz; Zhao, Yuqi; Kurt, Zeyneb; Pan, Calvin; Zeng, Lingyao; Yang, Xia; Schunkert, Heribert; Lusis, Aldons J.
2017-01-01
Most of the biological understanding of mechanisms underlying coronary artery disease (CAD) derives from studies of mouse models. The identification of multiple CAD loci and strong candidate genes in large human genome-wide association studies (GWAS) presented an opportunity to examine the relevance of mouse models for the human disease. We comprehensively reviewed the mouse literature, including 827 literature-derived genes, and compared it to human data. First, we observed striking concordance of risk factors for atherosclerosis in mice and humans. Second, there was highly significant overlap of mouse genes with human genes identified by GWAS. In particular, of the 46 genes with strong association signals in CAD-GWAS that were studied in mouse models all but one exhibited consistent effects on atherosclerosis-related phenotypes. Third, we compared 178 CAD-associated pathways derived from human GWAS with 263 from mouse studies and observed that over 50% were consistent between both species. PMID:27916529
Incorporation of composite defects from ultrasonic NDE into CAD and FE models
NASA Astrophysics Data System (ADS)
Bingol, Onur Rauf; Schiefelbein, Bryan; Grandin, Robert J.; Holland, Stephen D.; Krishnamurthy, Adarsh
2017-02-01
Fiber-reinforced composites are widely used in aerospace industry due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. While, ultrasonic testing (UT) is the preferred NDE method to identify the presence of defects in composites, there are no reasonable ways to model the damage and evaluate the structural integrity of composites. We have developed an automated framework to incorporate flaws and known composite damage automatically into a finite element analysis (FEA) model of composites, ultimately aiding in accessing the residual life of composites and make informed decisions regarding repairs. The framework can be used to generate a layer-by-layer 3D structural CAD model of the composite laminates replicating their manufacturing process. Outlines of structural defects, such as delaminations, are automatically detected from UT of the laminate and are incorporated into the CAD model between the appropriate layers. In addition, the framework allows for direct structural analysis of the resulting 3D CAD models with defects by automatically applying the appropriate boundary conditions. In this paper, we show a working proof-of-concept for the composite model builder with capabilities of incorporating delaminations between laminate layers and automatically preparing the CAD model for structural analysis using a FEA software.
NASA Astrophysics Data System (ADS)
Qiu, Yuchen; Tan, Maxine; McMeekin, Scott; Thai, Theresa; Moore, Kathleen; Ding, Kai; Liu, Hong; Zheng, Bin
2015-03-01
The purpose of this study is to identify and apply quantitative image biomarkers for early prediction of the tumor response to the chemotherapy among the ovarian cancer patients participated in the clinical trials of testing new drugs. In the experiment, we retrospectively selected 30 cases from the patients who participated in Phase I clinical trials of new drug or drug agents for ovarian cancer treatment. Each case is composed of two sets of CT images acquired pre- and post-treatment (4-6 weeks after starting treatment). A computer-aided detection (CAD) scheme was developed to extract and analyze the quantitative image features of the metastatic tumors previously tracked by the radiologists using the standard Response Evaluation Criteria in Solid Tumors (RECIST) guideline. The CAD scheme first segmented 3-D tumor volumes from the background using a hybrid tumor segmentation scheme. Then, for each segmented tumor, CAD computed three quantitative image features including the change of tumor volume, tumor CT number (density) and density variance. The feature changes were calculated between the matched tumors tracked on the CT images acquired pre- and post-treatments. Finally, CAD predicted patient's 6-month progression-free survival (PFS) using a decision-tree based classifier. The performance of the CAD scheme was compared with the RECIST category. The result shows that the CAD scheme achieved a prediction accuracy of 76.7% (23/30 cases) with a Kappa coefficient of 0.493, which is significantly higher than the performance of RECIST prediction with a prediction accuracy and Kappa coefficient of 60% (17/30) and 0.062, respectively. This study demonstrated the feasibility of analyzing quantitative image features to improve the early predicting accuracy of the tumor response to the new testing drugs or therapeutic methods for the ovarian cancer patients.
A SINDA thermal model using CAD/CAE technologies
NASA Technical Reports Server (NTRS)
Rodriguez, Jose A.; Spencer, Steve
1992-01-01
The approach to thermal analysis described by this paper is a technique that incorporates Computer Aided Design (CAD) and Computer Aided Engineering (CAE) to develop a thermal model that has the advantages of Finite Element Methods (FEM) without abandoning the unique advantages of Finite Difference Methods (FDM) in the analysis of thermal systems. The incorporation of existing CAD geometry, the powerful use of a pre and post processor and the ability to do interdisciplinary analysis, will be described.
Bonding Effectiveness of Luting Composites to Different CAD/CAM Materials.
Peumans, Marleen; Valjakova, Emilija Bajraktarova; De Munck, Jan; Mishevska, Cece Bajraktarova; Van Meerbeek, Bart
To evaluate the influence of different surface treatments of six novel CAD/CAM materials on the bonding effectiveness of two luting composites. Six different CAD/CAM materials were tested: four ceramics - Vita Mark II; IPS Empress CAD and IPS e.max CAD; Celtra Duo - one hybrid ceramic, Vita Enamic, and one composite CAD/CAM block, Lava Ultimate. A total of 60 blocks (10 per material) received various mechanical surface treatments: 1. 600-grit SiC paper; 2. sandblasting with 30-μm Al2O3; 3. tribochemical silica coating (CoJet). Subsequent chemical surface treatments involved either no further treatment (control), HF acid etching (HF), silanization (S, or HF acid etching followed by silanization (HF+S). Two specimens with the same surface treatment were bonded together using two dual-curing luting composites: Clearfil Esthetic Cement (self-etching) or Panavia SA Cement (self-adhesive). After 1 week of water storage, the microtensile bond strength of the sectioned microspecimens was measured and the failure mode was evaluated. The bonding performance of the six CAD/CAM materials was significantly influenced by surface treatment (linear mixed models, p < 0.05). The luting cement had a significant influence on bond strength for Celtra Duo and Lava Ultimate (linear mixed models, p < 0.05). Mechanical surface treatment significantly influenced the bond strength for Celtra Duo (p = 0.0117), IPS e.max CAD (p = 0.0115), and Lava Ultimate (p < 0.0001). Different chemical surface treatments resulted in the highest bond strengths for the six CAD/CAM materials: Vita Mark II and IPS Empress CAD: S, HF+S; Celtra Duo: HF, HF+S; IPS e.max CAD: HF+S; Vita Enamic: HF+S, S. For Lava Ultimate, the highest bond strengths were obtained with HF, S, HF+S. Failure analysis showed a relation between bond strength and failure type: more mixed failures were observed with higher bond strengths. Mainly adhesive failures were noticed if no further surface treatment was done. The percentage of adhesive failures was higher for CAD/CAM materials with higher flexural strength (Celtra Duo, IPS e.max CAD, and Lava Ultimate). The bond strength of luting composites to novel CAD/CAM materials is influenced by surface treatment. For each luting composite, an adhesive cementation protocol can be specified in order to obtain the highest bond to the individual CAD/CAM materials.
Hamza, Tamer A; Sherif, Rana M
2017-06-01
Dental laboratories use different computer-aided design and computer-aided manufacturing (CAD-CAM) systems to fabricate fixed prostheses; however, limited evidence is available concerning which system provides the best marginal discrepancy. The purpose of this in vitro study was to evaluate the marginal fit of 5 different monolithic zirconia restorations milled with different CAD-CAM systems. Thirty monolithic zirconia crowns were fabricated on a custom-designed stainless steel die and were divided into 5 groups according to the type of monolithic zirconia crown and the CAD-CAM system used: group TZ, milled with an MCXL milling machine; group CZ, translucent zirconia milled with a motion milling machine; group ZZ, zirconia milled with a dental milling unit; group PZ, translucent zirconia milled with a zirconia milling unit; and group BZ, solid zirconia milled using an S1 VHF milling machine. The marginal fit was measured with a binocular microscope at an original magnification of ×100. The results were tabulated and statistically analyzed with 1-way ANOVA and post hoc surface range test, and pairwise multiple comparisons were made using Bonferroni correction (α=.05). The type of CAD-CAM used affected the marginal fit of the monolithic restoration. The mean (±SD) highest marginal discrepancy was recorded in group TZI at 39.3 ±2.3 μm, while the least mean marginal discrepancy was recorded in group IZ (22.8 ±8.9 μm). The Bonferroni post hoc test showed that group TZI was significantly different from all other groups tested (P<.05). Within the limitation of this in vitro study, all tested CAD-CAM systems produced monolithic zirconia restorations with clinically acceptable marginal discrepancies; however, the CAD-CAM system with the 5-axis milling unit produced the best marginal fit. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Multi-Disciplinary Design Optimization Using WAVE
NASA Technical Reports Server (NTRS)
Irwin, Keith
2000-01-01
The current preliminary design tools lack the product performance, quality and cost prediction fidelity required to design Six Sigma products. They are also frequently incompatible with the tools used in detailed design, leading to a great deal of rework and lost or discarded data in the transition from preliminary to detailed design. Thus, enhanced preliminary design tools are needed in order to produce adequate financial returns to the business. To achieve this goal, GEAE has focused on building the preliminary design system around the same geometric 3D solid model that will be used in detailed design. With this approach, the preliminary designer will no longer convert a flowpath sketch into an engine cross section but rather, automatically create 3D solid geometry for structural integrity, life, weight, cost, complexity, producibility, and maintainability assessments. Likewise, both the preliminary design and the detailed design can benefit from the use of the same preliminary part sizing routines. The design analysis tools will also be integrated with the 3D solid model to eliminate manual transfer of data between programs. GEAE has aggressively pursued the computerized control of engineering knowledge for many years. Through its study and validation of 3D CAD programs and processes, GEAE concluded that total system control was not feasible at that time. Prior CAD tools focused exclusively on detail part geometry and Knowledge Based Engineering systems concentrated on rules input and data output. A system was needed to bridge the gap between the two to capture the total system. With the introduction of WAVE Engineering from UGS, the possibilities of an engineering system control device began to formulate. GEAE decided to investigate the new WAVE functionality to accomplish this task. NASA joined GEAE in funding this validation project through Task Order No. 1. With the validation project complete, the second phase under Task Order No. 2 was established to develop an associative control structure (framework) in the UG WAVE environment enabling multi-disciplinary design of turbine propulsion systems. The capabilities of WAVE were evaluated to assess its use as a rapid optimization and productivity tool. This project also identified future WAVE product enhancements that will make the tool still more beneficial for product development.
Detecting Anomalous Insiders in Collaborative Information Systems
Chen, You; Nyemba, Steve; Malin, Bradley
2012-01-01
Collaborative information systems (CISs) are deployed within a diverse array of environments that manage sensitive information. Current security mechanisms detect insider threats, but they are ill-suited to monitor systems in which users function in dynamic teams. In this paper, we introduce the community anomaly detection system (CADS), an unsupervised learning framework to detect insider threats based on the access logs of collaborative environments. The framework is based on the observation that typical CIS users tend to form community structures based on the subjects accessed (e.g., patients’ records viewed by healthcare providers). CADS consists of two components: 1) relational pattern extraction, which derives community structures and 2) anomaly prediction, which leverages a statistical model to determine when users have sufficiently deviated from communities. We further extend CADS into MetaCADS to account for the semantics of subjects (e.g., patients’ diagnoses). To empirically evaluate the framework, we perform an assessment with three months of access logs from a real electronic health record (EHR) system in a large medical center. The results illustrate our models exhibit significant performance gains over state-of-the-art competitors. When the number of illicit users is low, MetaCADS is the best model, but as the number grows, commonly accessed semantics lead to hiding in a crowd, such that CADS is more prudent. PMID:24489520
Enhancing image classification models with multi-modal biomarkers
NASA Astrophysics Data System (ADS)
Caban, Jesus J.; Liao, David; Yao, Jianhua; Mollura, Daniel J.; Gochuico, Bernadette; Yoo, Terry
2011-03-01
Currently, most computer-aided diagnosis (CAD) systems rely on image analysis and statistical models to diagnose, quantify, and monitor the progression of a particular disease. In general, CAD systems have proven to be effective at providing quantitative measurements and assisting physicians during the decision-making process. As the need for more flexible and effective CADs continues to grow, questions about how to enhance their accuracy have surged. In this paper, we show how statistical image models can be augmented with multi-modal physiological values to create more robust, stable, and accurate CAD systems. In particular, this paper demonstrates how highly correlated blood and EKG features can be treated as biomarkers and used to enhance image classification models designed to automatically score subjects with pulmonary fibrosis. In our results, a 3-5% improvement was observed when comparing the accuracy of CADs that use multi-modal biomarkers with those that only used image features. Our results show that lab values such as Erythrocyte Sedimentation Rate and Fibrinogen, as well as EKG measurements such as QRS and I:40, are statistically significant and can provide valuable insights about the severity of the pulmonary fibrosis disease.
Andreini, Daniele; Pontone, Gianluca; Mushtaq, Saima; Gransar, Heidi; Conte, Edoardo; Bartorelli, Antonio L; Pepi, Mauro; Opolski, Maksymilian P; Ó Hartaigh, Bríain; Berman, Daniel S; Budoff, Matthew J; Achenbach, Stephan; Al-Mallah, Mouaz; Cademartiri, Filippo; Callister, Tracy Q; Chang, Hyuk-Jae; Chinnaiyan, Kavitha; Chow, Benjamin J W; Cury, Ricardo; Delago, Augustin; Hadamitzky, Martin; Hausleiter, Joerg; Feuchtner, Gudrun; Kim, Yong-Jin; Kaufmann, Philipp A; Leipsic, Jonathon; Lin, Fay Y; Maffei, Erica; Raff, Gilbert; Shaw, Leslee J; Villines, Todd C; Dunning, Allison; Marques, Hugo; Rubinshtein, Ronen; Hindoyan, Niree; Gomez, Millie; Min, James K
2017-03-15
Non-obstructive coronary artery disease (CAD) identified by coronary computed tomography angiography (CCTA) demonstrated prognostic value. CT-adapted Leaman score (CT-LeSc) showed to improve the prognostic stratification. Aim of the study was to evaluate the capability of CT-LeSc to assess long-term prognosis of patients with non-obstructive (CAD). From 17 centers, we enrolled 2402 patients without prior CAD history who underwent CCTA that showed non-obstructive CAD and provided complete information on plaque composition. Patients were divided into a group without CAD and a group with non-obstructive CAD (<50% stenosis). Segment-involvement score (SIS) and CT-LeSc were calculated. Outcomes were non-fatal myocardial infarction (MI) and the combined end-point of MI and all-cause mortality. Patient mean age was 56±12years. At follow-up (mean 59.8±13.9months), 183 events occurred (53 MI, 99 all-cause deaths and 31 late revascularizations). CT-LeSc was the only multivariate predictor of MI (HRs 2.84 and 2.98 in two models with Framingham and risk factors, respectively) and of MI plus all-cause mortality (HR 2.48 and 1.94 in two models with Framingham and risk factors, respectively). This was confirmed by a net reclassification analysis confirming that the CT-LeSc was able to correctly reclassify a significant proportion of patients (cNRI 0.28 and 0.23 for MI and MI plus all-cause mortality, respectively) vs. baseline model, whereas SIS did not. CT-LeSc is an independent predictor of major acute cardiac events, improving prognostic stratification of patients with non-obstructive CAD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mazzetti, S.; Giannini, V.; Russo, F.; Regge, D.
2018-05-01
Computer-aided diagnosis (CAD) systems are increasingly being used in clinical settings to report multi-parametric magnetic resonance imaging (mp-MRI) of the prostate. Usually, CAD systems automatically highlight cancer-suspicious regions to the radiologist, reducing reader variability and interpretation errors. Nevertheless, implementing this software requires the selection of which mp-MRI parameters can best discriminate between malignant and non-malignant regions. To exploit functional information, some parameters are derived from dynamic contrast-enhanced (DCE) acquisitions. In particular, much CAD software employs pharmacokinetic features, such as K trans and k ep, derived from the Tofts model, to estimate a likelihood map of malignancy. However, non-pharmacokinetic models can be also used to describe DCE-MRI curves, without any requirement for prior knowledge or measurement of the arterial input function, which could potentially lead to large errors in parameter estimation. In this work, we implemented an empirical function derived from the phenomenological universalities (PUN) class to fit DCE-MRI. The parameters of the PUN model are used in combination with T2-weighted and diffusion-weighted acquisitions to feed a support vector machine classifier to produce a voxel-wise malignancy likelihood map of the prostate. The results were all compared to those for a CAD system based on Tofts pharmacokinetic features to describe DCE-MRI curves, using different quality aspects of image segmentation, while also evaluating the number and size of false positive (FP) candidate regions. This study included 61 patients with 70 biopsy-proven prostate cancers (PCa). The metrics used to evaluate segmentation quality between the two CAD systems were not statistically different, although the PUN-based CAD reported a lower number of FP, with reduced size compared to the Tofts-based CAD. In conclusion, the CAD software based on PUN parameters is a feasible means with which to detect PCa, without affecting segmentation quality, and hence it could be successfully applied in clinical settings, improving the automated diagnosis process and reducing computational complexity.
Wu, Na; Chen, Xinghua; Li, Mingyang; Qu, Xiaolong; Li, Yueli; Xie, Weijia; Wu, Long; Xiang, Ying; Li, Yafei; Zhong, Li
2018-05-21
Carotid ultrasound is a non-invasive tool for risk assessment of coronary artery disease (CAD). There is no consensus on which carotid ultrasound parameter constitutes the best measurement of atherosclerosis. We investigated which model of carotid ultrasound parameters and clinical risk factors (CRF) have the highest predictive value for CAD. We enrolled 2431 consecutive patients who have suspected CAD and underwent coronary angiography and carotid ultrasound with measurements of carotid intima-media thickness (CIMT), total number of plaques and areas of different types of plaques classified by echogenicity. Total number of plaques demonstrated the highest incremental prediction ability to predict CAD over CRF (area under the curve [AUC] 0.752 vs 0.701, net reclassification index [NRI] = 0.514, P < 0.001), followed by area of maximum mixed and soft plaques. CIMT had no significant incremental value over CRF (AUC 0.704 vs 0.701, P = 0.241; NRI = 0.062, P = 0.168). The model comprising total number of plaques, areas of maximum soft, hard and mixed plaques plus CRF had the highest discriminatory (AUC = 0.757) and reclassification value (NRI = 0.567) for CAD. A nomogram based on this model was developed to predict CAD. For subjects at low and intermediate risk, the model comprising total number of plaques plus CRF was the best. Total number of plaques, area of maximum soft, hard and mixed plaques showed significantly incremental prediction ability over CRF. A nomogram based on these factors provided an intuitive and practical method in detecting CAD. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Yilmaz, Burak; Alp, Gülce; Seidt, Jeremy; Johnston, William M; Vitter, Roger; McGlumphy, Edwin A
2018-01-06
The load-to-fracture performance of computer-assisted design and computer-assisted manufacturing (CAD-CAM) high-density polymer (HDP) materials in cantilevers is unknown. The purposes of this in vitro study were to evaluate the load-to-fracture performance of CAD-CAM-fabricated HDPs and to compare that with performance of autopolymerized and injection-molded acrylic resins. Specimens from 8 different brands of CAD-CAM HDPs, including Brylic Solid (BS); Brylic Gradient (BG); AnaxCAD Temp EZ (AE); AnaxCAD Temp Plus (AP); Zirkonzahn Temp Basic (Z); GDS Tempo-CAD (GD); Polident (Po); Merz M-PM-Disc (MAT); an autopolymerized acrylic resin, Imident (Conv) and an injection-molded acrylic resin, SR-IvoBase High Impact (Inj) were evaluated for load-to-fracture analysis (n=5). CAD-CAM specimens were milled from poly(methyl methacrylate) (PMMA) blocks measuring 7 mm in buccolingual width, 8 mm in occlusocervical thickness, and 30 mm in length. A wax pattern was prepared in the same dimensions used for CAD-CAM specimens, flasked, and boiled out. Autopolymerizing acrylic resin was packed and polymerized in a pressure container for 30 minutes. An identical wax pattern was flasked and boiled out, and premeasured capsules were injected (SR-IvoBase) and polymerized under hydraulic pressure for 35 minutes for the injection-molded PMMA. Specimens were thermocycled 5000 times (5°C to 55°C) and fixed to a universal testing machine to receive static loads on the 10-mm cantilever, vertically at a 1 mm/min crosshead speed until fracture occurred. Maximum load-to-fracture values were recorded. ANOVA was used to analyze the maximum force values. Significant differences among materials were analyzed by using the Ryan-Einot-Gabriel-Welsch multiple range test (α=.05). Statistically significant differences were found among load-to-fracture values of different HDPs (P<.001). GD and Po materials had significantly higher load-to-fracture values than other materials (P<.001), and no statistically significant differences were found between GD and Po. The lowest load-to-fracture values were observed for autopolymerized and BG materials, which were significantly lower than those of GD, Po, AE, AP, Z, MAT, Inj, and BS. The load-to-fracture value of autopolymerized acrylic resin was not significantly different from that of BG CAD-CAM polymer. GD and Po CAD-CAM materials had the highest load-to-fracture values. AE, AP, Z, MAT, and BS CAD-CAM polymers and injection-molded acrylic resin had similar load-to-fracture values, which were higher than those of BG and autopolymerized acrylic resin. Autopolymerized acrylic resin load-to-fracture value was similar to that of BG CAD-CAM polymer, which is colored in a gradient pattern. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Storer, I. J.; Campbell, R. I.
2012-01-01
Industrial Designers need to understand and command a number of modelling techniques to communicate their ideas to themselves and others. Verbal explanations, sketches, engineering drawings, computer aided design (CAD) models and physical prototypes are the most commonly used communication techniques. Within design, unlike some disciplines,…
2011-01-01
Background Single reading with computer aided detection (CAD) is an alternative to double reading for detecting cancer in screening mammograms. The aim of this study is to investigate whether the use of a single reader with CAD is more cost-effective than double reading. Methods Based on data from the CADET II study, the cost-effectiveness of single reading with CAD versus double reading was measured in terms of cost per cancer detected. Cost (Pound (£), year 2007/08) of single reading with CAD versus double reading was estimated assuming a health and social service perspective and a 7 year time horizon. As the equipment cost varies according to the unit size a separate analysis was conducted for high, average and low volume screening units. One-way sensitivity analyses were performed by varying the reading time, equipment and assessment cost, recall rate and reader qualification. Results CAD is cost increasing for all sizes of screening unit. The introduction of CAD is cost-increasing compared to double reading because the cost of CAD equipment, staff training and the higher assessment cost associated with CAD are greater than the saving in reading costs. The introduction of single reading with CAD, in place of double reading, would produce an additional cost of £227 and £253 per 1,000 women screened in high and average volume units respectively. In low volume screening units, the high cost of purchasing the equipment will results in an additional cost of £590 per 1,000 women screened. One-way sensitivity analysis showed that the factors having the greatest effect on the cost-effectiveness of CAD with single reading compared with double reading were the reading time and the reader's professional qualification (radiologist versus advanced practitioner). Conclusions Without improvements in CAD effectiveness (e.g. a decrease in the recall rate) CAD is unlikely to be a cost effective alternative to double reading for mammography screening in UK. This study provides updated estimates of CAD costs in a full-field digital system and assessment cost for women who are re-called after initial screening. However, the model is highly sensitive to various parameters e.g. reading time, reader qualification, and equipment cost. PMID:21241473
[Research and application of computer-aided technology in restoration of maxillary defect].
Cheng, Xiaosheng; Liao, Wenhe; Hu, Qingang; Wang, Qian; Dai, Ning
2008-08-01
This paper presents a new method of designing restoration model of maxillectomy defect through Computer aided technology. Firstly, 3D maxillectomy triangle mesh model is constructed from Helical CT data. Secondly, the triangle mesh model is transformed into initial computer-aided design (CAD) model of maxillectomy through reverse engineering software. Thirdly, the 3D virtual restoration model of maxillary defect is obtained after designing and adjusting the initial CAD model through CAD software according to the patient's practical condition. Therefore, the 3D virtual restoration can be fitted very well with the broken part of maxilla. The exported design data can be manufactured using rapid prototyping technology and foundry technology. Finally, the result proved that this method is effective and feasible.
The Use of a Parametric Feature Based CAD System to Teach Introductory Engineering Graphics.
ERIC Educational Resources Information Center
Howell, Steven K.
1995-01-01
Describes the use of a parametric-feature-based computer-aided design (CAD) System, AutoCAD Designer, in teaching concepts of three dimensional geometrical modeling and design. Allows engineering graphics to go beyond the role of documentation and communication and allows an engineer to actually build a virtual prototype of a design idea and…
Yamaguchi, Satoshi; Inoue, Sayuri; Sakai, Takahiko; Abe, Tomohiro; Kitagawa, Haruaki; Imazato, Satoshi
2017-05-01
The objective of this study was to assess the effect of silica nano-filler particle diameters in a computer-aided design/manufacturing (CAD/CAM) composite resin (CR) block on physical properties at the multi-scale in silico. CAD/CAM CR blocks were modeled, consisting of silica nano-filler particles (20, 40, 60, 80, and 100 nm) and matrix (Bis-GMA/TEGDMA), with filler volume contents of 55.161%. Calculation of Young's moduli and Poisson's ratios for the block at macro-scale were analyzed by homogenization. Macro-scale CAD/CAM CR blocks (3 × 3 × 3 mm) were modeled and compressive strengths were defined when the fracture loads exceeded 6075 N. MPS values of the nano-scale models were compared by localization analysis. As the filler size decreased, Young's moduli and compressive strength increased, while Poisson's ratios and MPS decreased. All parameters were significantly correlated with the diameters of the filler particles (Pearson's correlation test, r = -0.949, 0.943, -0.951, 0.976, p < 0.05). The in silico multi-scale model established in this study demonstrates that the Young's moduli, Poisson's ratios, and compressive strengths of CAD/CAM CR blocks can be enhanced by loading silica nanofiller particles of smaller diameter. CAD/CAM CR blocks by using smaller silica nano-filler particles have a potential to increase fracture resistance.
Representing spatial information in a computational model for network management
NASA Technical Reports Server (NTRS)
Blaisdell, James H.; Brownfield, Thomas F.
1994-01-01
While currently available relational database management systems (RDBMS) allow inclusion of spatial information in a data model, they lack tools for presenting this information in an easily comprehensible form. Computer-aided design (CAD) software packages provide adequate functions to produce drawings, but still require manual placement of symbols and features. This project has demonstrated a bridge between the data model of an RDBMS and the graphic display of a CAD system. It is shown that the CAD system can be used to control the selection of data with spatial components from the database and then quickly plot that data on a map display. It is shown that the CAD system can be used to extract data from a drawing and then control the insertion of that data into the database. These demonstrations were successful in a test environment that incorporated many features of known working environments, suggesting that the techniques developed could be adapted for practical use.
Wu, Naqiong; Ma, Fenglian; Guo, Yuanlin; Li, Xiaoling; Liu, Jun; Qing, Ping; Xu, Ruixia; Zhu, Chenggang; Jia, Yanjun; Liu, Geng; Dong, Qian; Jiang, Lixin; Li, Jianjun
2014-01-01
Backround N-terminal pro-brain natriuretic peptide (NT-proBNP) is a reliable predictor in acute coronary artery disease (CAD). Little is known about patients with stable CAD, especially Chinese patients with CAD. The aim of the present study was to investigate the association of NT-proBNP levels with the severity of CAD in patients with normal left ventricular ejection fraction. A total of 658 consecutive patients were divided into two groups based on angiograms: CAD group (n = 484) and angiographic normal control group (n = 174). The severity of CAD was evaluated by modified Gensini score, and its relationship with NT-proBNP was analyzed. The prevalence of risk factors such as age, male gender, diabetes mellitus (DM), dyslipidemia, smoking, and family history of CAD in the CAD group were higher than that in the control group. In multivariate regression model analysis, age, gender, and DM were determinants of the presence of CAD. NT-pro BNP was found to be an independent predictor for CAD (OR:1.66 (95% CI: 1.06-2.61), P < 0.05). In a receiver operating characteristic (ROC) curve analysis, an NT-proBNP value of 641.15 pmol/L was identified as a cut-off value in the diagnosis or exclusion of CAD (area under curve (AUC) = 0.56, 95% CI: 0.51-0.61). Furthermore, NT-proBNP was positively correlated with Gensini score (r = 0.14, P < 0.001) in patients with CAD. NT-proBNP was an independent predictor for Chinese patients with CAD, suggesting that the NT-proBNP level might be associated with the presence and the severity of CAD.
Improving Perceptual Skills with 3-Dimensional Animations.
ERIC Educational Resources Information Center
Johns, Janet Faye; Brander, Julianne Marie
1998-01-01
Describes three-dimensional computer aided design (CAD) models for every component in a representative mechanical system; the CAD models made it easy to generate 3-D animations that are ideal for teaching perceptual skills in multimedia computer-based technical training. Fifteen illustrations are provided. (AEF)
Sil, Susmita; Ghosh, Tusharkanti; Gupta, Pritha; Ghosh, Rupsa; Kabir, Syed N; Roy, Avishek
2016-12-01
The neurodegeneration in colchicine induced AD rats (cAD) is mediated by cox-2 linked neuroinflammation. The importance of ROS in the inflammatory process in cAD has not been identified, which may be deciphered by blocking oxidative stress in this model by a well-known anti-oxidant vitamin C. Therefore, the present study was designed to investigate the role of vitamin C on colchicine induced oxidative stress linked neuroinflammation mediated neurodegeneration and memory impairments along with peripheral immune responses in cAD. The impairments of working and reference memory were associated with neuroinflammation and neurodegeneration in the hippocampus of cAD. Administration of vitamin C (200 and 400 mg/kg BW) in cAD resulted in recovery of memory impairments, with prevention of neurodegeneration and neuroinflammation in the hippocampus. The neuroinflammation in the hippocampus also influenced the peripheral immune responses and inflammation in the serum of cAD and all of these parameters were also recovered at 200 and 400 mg dose of vitamin C. However, cAD treated with 600 mg dose did not recover but resulted in increase of memory impairments, neurodegeneration and neuroinflammation in hippocampus along with alteration of peripheral immune responses in comparison to cAD of the present study. Therefore, the present study showed that ROS played an important role in the colchicine induced neuroinflammation linked neurodegeneration and memory impairments along with alteration of peripheral immune responses. It also appears from the results that vitamin C at lower doses showed anti-oxidant effect and at higher dose resulted in pro-oxidant effects in cAD.
Implementation of 3D Optical Scanning Technology for Automotive Applications
Kuş, Abdil
2009-01-01
Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters. PMID:22573995
Fu, Yong; Huang, Yue; Hu, Jianshe; Zhang, Zhengjie
2018-03-01
A green functional adsorbent (CAD) was prepared by Schiff base reaction of chitosan and amino-modified diatomite. The morphology, structure and adsorption properties of the CAD were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and Brunauer Emmett Teller measurements. The effect of pH value, contact time and temperature on the adsorption of Hg(II) ions for the CAD is discussed in detail. The experimental results showed that the CAD had a large specific surface area and multifunctional groups such as amino, hydroxyl and Schiff base. The optimum adsorption effect was obtained when the pH value, temperature and contact time were 4, 25 °C and 120 min, respectively, and the corresponding maximum adsorption capacity of Hg(II) ions reached 102 mg/g. Moreover, the adsorption behavior of Hg(II) ions for the CAD followed the pseudo-second-order kinetic model and Langmuir model. The negative ΔG 0 and ΔH 0 suggested that the adsorption was a spontaneous exothermic process.
Fukumoto, Risa; Kawai, Makoto; Minai, Kosuke; Ogawa, Kazuo; Yoshida, Jun; Inoue, Yasunori; Morimoto, Satoshi; Tanaka, Toshikazu; Nagoshi, Tomohisa; Ogawa, Takayuki; Yoshimura, Michihiro
2017-01-01
It is conceivable that contemporary valvular heart disease (VHD) is affected largely by an age-dependent atherosclerotic process, which is similar to that observed in coronary artery disease (CAD). However, a comorbid condition of VHD and CAD has not been precisely examined. The first objective of this study was to examine a possible comorbid condition. Provided that there is no comorbidity, the second objective was to search for the possible reasons by using conventional risk factors and plasma B-type natriuretic peptide (BNP) because BNP has a potentiality to suppress atherosclerotic development. The study population consisted of 3,457 patients consecutively admitted to our institution. The possible comorbid condition of VHD and CAD and the factors that influence the comorbidity were examined by covariance structure analysis and multivariate analysis. The distribution of the patients with VHD and those with CAD in the histograms showed that the incidence of VHD and the severity of CAD rose with seniority in appearance. The real statistical analysis was planned by covariance structure analysis. The current path model revealed that aging was associated with VHD and CAD severity (P < 0.001 for each); however, as a notable result, there was an inverse association regarding the comorbid condition between VHD and CAD (Correlation coefficient [β]: -0.121, P < 0.001). As the second objective, to clarify the factors leading to this inverse association, the contribution of conventional risk factors, such as age, gender, hypertension, smoking, diabetes, obesity and dyslipidemia, to VHD and CAD were examined by multivariate analysis. However, these factors did not exert an opposing effect on VHD and CAD, and the inverse association defied explanation. Since different pathological mechanisms may contribute to the formation of VHD and CAD, a differentially proposed path model using plasma BNP revealed that an increase in plasma BNP being drawn by VHD suppressed the progression of CAD (β: -0.465, P < 0.001). The incidence of VHD and CAD showed a significant conflicting relationship. This result supported the likely presence of unknown diverse mechanisms on top of the common cascade of atherosclerosis. Among them, the continuous elevation of plasma BNP due to VHD might be one of the explicable factors suppressing the progression of CAD.
Challenges facing developers of CAD/CAM models that seek to predict human working postures
NASA Astrophysics Data System (ADS)
Wiker, Steven F.
2005-11-01
This paper outlines the need for development of human posture prediction models for Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) design applications in product, facility and work design. Challenges facing developers of posture prediction algorithms are presented and discussed.
Moreno-Morcillo, María; Grande-García, Araceli; Ruiz-Ramos, Alba; Del Caño-Ochoa, Francisco; Boskovic, Jasminka; Ramón-Maiques, Santiago
2017-06-06
CAD, the multifunctional protein initiating and controlling de novo biosynthesis of pyrimidines in animals, self-assembles into ∼1.5 MDa hexamers. The structures of the dihydroorotase (DHO) and aspartate transcarbamoylase (ATC) domains of human CAD have been previously determined, but we lack information on how these domains associate and interact with the rest of CAD forming a multienzymatic unit. Here, we prove that a construct covering human DHO and ATC oligomerizes as a dimer of trimers and that this arrangement is conserved in CAD-like from fungi, which holds an inactive DHO-like domain. The crystal structures of the ATC trimer and DHO-like dimer from the fungus Chaetomium thermophilum confirm the similarity with the human CAD homologs. These results demonstrate that, despite being inactive, the fungal DHO-like domain has a conserved structural function. We propose a model that sets the DHO and ATC complex as the central element in the architecture of CAD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Andrade, Weslley Santiago; Oliveira, Paulo; Laydner, Humberto; Ferreira, Eduardo Jose Pereira; Barreto, Jose Augusto Soares
2016-01-01
ABSTRACT Objective To investigate the association between the severity of erectile dysfunction (ED) and coronary artery disease (CAD) in men undergoing coronary angiography for angina or acute myocardial infarct (AMI). Material and Methods We studied 132 males who underwent coronary angiography for first time between January and November 2010. ED severity was assessed by the international index of erectile function (IIEF-5) and CAD severity was assessed by the Syntax score. Patients with CAD (cases) and without CAD (controls) had their IIEF-5 compared. In the group with CAD, their IIEF-5 scores were compared to their Syntax score results. Results We identified 86 patients with and 46 without CAD. The IIEF-5 score of the group without CAD (22.6±0.8) was significantly higher than the group with CAD (12.5±0.5; p<0.0001). In patients without ED, the Syntax score average was 6.3±3.5, while those with moderate or severe ED had a mean Syntax score of 39.0±11.1. After adjustment, ED was independently associated to CAD, with an odds ratio of 40.6 (CI 95%, 14.3-115.3, p<0.0001). The accuracy of the logistic model to correctly identify presence or absence of CAD was 87%, with 92% sensitivity and 78% specificity. The average time that ED was present in patients with CAD was 38.8±2.3 months before coronary symptoms, about twice as high as patients without CAD (18.0±5.1 months). Conclusions ED severity is strongly and independently correlated with CAD complexity, as assessed by the Syntax score in patients undergoing coronariography for evaluation of new onset coronary symptoms. PMID:27136478
Mechanical and Thermal Properties of Dental Composites Cured with CAD/CAM Assisted Solid-State Laser
De Santis, Roberto; Gloria, Antonio; Maietta, Saverio; Martorelli, Massimo; De Luca, Alessandro; Spagnuolo, Gianrico; Riccitiello, Francesco; Rengo, Sandro
2018-01-01
Over the last three decades, it has been frequently reported that the properties of dental restorative composites cured with argon laser are similar or superior to those achieved with conventional halogen and light emitting diode (LED) curing units. Whereas laser curing is not dependent on the distance between the curing unit and the material, such distance represents a drawback for conventional curing units. However, a widespread clinical application of this kind of laser remains difficult due to cost, heavy weight, and bulky size. Recently, with regard to the radiation in the blue region of the spectrum, powerful solid-state lasers have been commercialized. In the current research, CAD (computer-aided design)/CAM (computer-aided manufacturing) assisted solid-state lasers were employed for curing of different dental restorative composites consisting of micro- and nanoparticle-reinforced materials based on acrylic resins. Commercial LED curing units were used as a control. Temperature rise during the photopolymerisation process and bending properties were measured. By providing similar light energy dose, no significant difference in temperature rise was observed when the two light sources provided similar intensity. In addition, after 7 days since curing, bending properties of composites cured with laser and LED were similar. The results suggested that this kind of laser would be suitable for curing dental composites, and the curing process does not suffer from the tip-to-tooth distance. PMID:29584683
Detection of Anomalous Insiders in Collaborative Environments via Relational Analysis of Access Logs
Chen, You; Malin, Bradley
2014-01-01
Collaborative information systems (CIS) are deployed within a diverse array of environments, ranging from the Internet to intelligence agencies to healthcare. It is increasingly the case that such systems are applied to manage sensitive information, making them targets for malicious insiders. While sophisticated security mechanisms have been developed to detect insider threats in various file systems, they are neither designed to model nor to monitor collaborative environments in which users function in dynamic teams with complex behavior. In this paper, we introduce a community-based anomaly detection system (CADS), an unsupervised learning framework to detect insider threats based on information recorded in the access logs of collaborative environments. CADS is based on the observation that typical users tend to form community structures, such that users with low a nity to such communities are indicative of anomalous and potentially illicit behavior. The model consists of two primary components: relational pattern extraction and anomaly detection. For relational pattern extraction, CADS infers community structures from CIS access logs, and subsequently derives communities, which serve as the CADS pattern core. CADS then uses a formal statistical model to measure the deviation of users from the inferred communities to predict which users are anomalies. To empirically evaluate the threat detection model, we perform an analysis with six months of access logs from a real electronic health record system in a large medical center, as well as a publicly-available dataset for replication purposes. The results illustrate that CADS can distinguish simulated anomalous users in the context of real user behavior with a high degree of certainty and with significant performance gains in comparison to several competing anomaly detection models. PMID:25485309
Stawarczyk, Bogna; Liebermann, Anja; Eichberger, Marlis; Güth, Jan-Frederik
2015-03-01
To determine the mechanical and optical properties of CAD/CAM composites (LAVA Ultimate, Cerasmart, Shofu Block and two exp. CAD/CAM composites), a hybrid material (VITA Enamic), a leucite (IPS Empress CAD) and a lithium disilicate glass-ceramic (IPS e.max CAD). Three-point flexural strength (FS) was investigated according ISO 6872:2008 (N=240/n=30). Two-body wear (TBW) was analyzed in a chewing simulator (1,200,000 cycles, 50N, 5°/55°C) using human teeth as antagonists (N=120/n=15). Quantitative analysis of wear was carried out with a 3D-scanner and associated matching software. Discoloration rate (DR) after 14 days of storage in cress, curry, red wine, and distilled water (N=384/n=12), and translucency (T) (N=384/n=48) of CAD/CAM materials were measured in a spectrophotometer (400-700nm wavelength). Data were analyzed using two-/one-way ANOVA with Scheffé post-hoc test, Kruskal-Wallis-H test, and linear mixed models (α=0.05). IPS e.max CAD showed the highest FS (p<0.001), followed by LAVA Ultimate; however, not different from the remaining CAD/CAM composites (exception: Shofu Block). The lowest FS showed VITA Enamic and IPS Empress CAD (p<0.001). IPS Empress CAD, VITA Enamic, exp. CAD/CAM composite 2, followed by IPS e.max presented lower material TBW than the remaining CAD/CAM materials (p<0.001). The highest antagonist wear was observed for the tested glass-ceramics and the hybrid material (p<0.001). Storage medium (red wine>curry>cress>distilled water) exerted the highest influence on DR (p<0.001), closely followed by CAD/CAM material. Glass-ceramics showed lower DR than CAD/CAM composites (p<0.001). CAD/CAM composites presented moderate FS, high T and antagonist friendly behavior. Glass-ceramic demonstrated the most favorable DR and lowest TBW on the material side. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hochman, J; Urowitz, M B; Ibañez, D; Gladman, D D
2009-04-01
We sought to determine the impact of hormone replacement therapy (HRT) on the occurrence of coronary artery disease (CAD) in women with systemic lupus erythematosus (SLE). Women in the University of Toronto lupus database who had taken HRT with no history of CAD were compared with all post-menopausal female patients with no history of HRT or CAD. Chi-squared and t-tests were used to compare the risk factors of CAD and Kaplan-Meier curve, log rank test and proportional hazard model with time-dependent covariates were used to compare the time from entry into the clinic to occurrence of CAD. A total of 114 HRT-user patients with no history of CAD were compared with 227 post-menopausal non-HRT user SLE controls. The groups were similar with respect to lupus anticoagulant, antiphospholipid antibody, cumulative steroid dose and classic cardiac risk factors. A similar percentage of patients developed CAD in the control (13.7%) and HRT (11.4%) groups. There was no difference in the time to development of CAD. In the multivariate analysis, HRT was not a risk factor for CAD. Only age (P = 0.0001, HR = 1.11, 95% CI = 1.05, 1.17) and SLEDAI-2K (P = 0.0001, HR = 1.10, 95% CI = 1.05, 1.16) were significantly associated with the risk of CAD. In this small group of patients with SLE, HRT alone did not appear to predispose to CAD.
Sagor, G H M; Berberich, Thomas; Kojima, Seiji; Niitsu, Masaru; Kusano, Tomonobu
2016-06-01
Two genes, LAT1 and OCT1 , are likely to be involved in polyamine transport in Arabidopsis. Endogenous spermine levels modulate their expression and determine the sensitivity to cadaverine. Arabidopsis spermine (Spm) synthase (SPMS) gene-deficient mutant was previously shown to be rather resistant to the diamine cadaverine (Cad). Furthermore, a mutant deficient in polyamine oxidase 4 gene, accumulating about twofold more of Spm than wild type plants, showed increased sensitivity to Cad. It suggests that endogenous Spm content determines growth responses to Cad in Arabidopsis thaliana. Here, we showed that Arabidopsis seedlings pretreated with Spm absorbs more Cad and has shorter root growth, and that the transgenic Arabidopsis plants overexpressing the SPMS gene are hypersensitive to Cad, further supporting the above idea. The transgenic Arabidopsis overexpressing L-Amino acid Transporter 1 (LAT1) absorbed more Cad and showed increased Cad sensitivity, suggesting that LAT1 functions as a Cad importer. Recently, other research group reported that Organic Cation Transporter 1 (OCT1) is a causal gene which determines the Cad sensitivity of various Arabidopsis accessions. Furthermore, their results suggested that OCT1 is involved in Cad efflux. Thus we monitored the expression of OCT1 and LAT1 during the above experiments. Based on the results, we proposed a model in which the level of Spm content modulates the expression of OCT1 and LAT1, and determines Cad sensitivity of Arabidopsis.
11 Foot Unitary Plan Tunnel Facility Optical Improvement Large Window Analysis
NASA Technical Reports Server (NTRS)
Hawke, Veronica M.
2015-01-01
The test section of the 11 by 11-foot Unitary Plan Transonic Wind Tunnel (11-foot UPWT) may receive an upgrade of larger optical windows on both the North and South sides. These new larger windows will provide better access for optical imaging of test article flow phenomena including surface and off body flow characteristics. The installation of these new larger windows will likely produce a change to the aerodynamic characteristics of the flow in the Test Section. In an effort understand the effect of this change, a computational model was employed to predict the flows through the slotted walls, in the test section and around the model before and after the tunnel modification. This report documents the solid CAD model that was created and the inviscid computational analysis that was completed as a preliminary estimate of the effect of the changes.
LayTracks3D: A new approach for meshing general solids using medial axis transform
Quadros, William Roshan
2015-08-22
This study presents an extension of the all-quad meshing algorithm called LayTracks to generate high quality hex-dominant meshes of general solids. LayTracks3D uses the mapping between the Medial Axis (MA) and the boundary of the 3D domain to decompose complex 3D domains into simpler domains called Tracks. Tracks in 3D have no branches and are symmetric, non-intersecting, orthogonal to the boundary, and the shortest path from the MA to the boundary. These properties of tracks result in desired meshes with near cube shape elements at the boundary, structured mesh along the boundary normal with any irregular nodes restricted to themore » MA, and sharp boundary feature preservation. The algorithm has been tested on a few industrial CAD models and hex-dominant meshes are shown in the Results section. Work is underway to extend LayTracks3D to generate all-hex meshes.« less
From Oss CAD to Bim for Cultural Heritage Digital Representation
NASA Astrophysics Data System (ADS)
Logothetis, S.; Karachaliou, E.; Stylianidis, E.
2017-02-01
The paper illustrates the use of open source Computer-aided design (CAD) environments in order to develop Building Information Modelling (BIM) tools able to manage 3D models in the field of cultural heritage. Nowadays, the development of Free and Open Source Software (FOSS) has been rapidly growing and their use tends to be consolidated. Although BIM technology is widely known and used, there is a lack of integrated open source platforms able to support all stages of Historic Building Information Modelling (HBIM) processes. The present research aims to use a FOSS CAD environment in order to develop BIM plug-ins which will be able to import and edit digital representations of cultural heritage models derived by photogrammetric methods.
Zhu, Qing; Fu, Zhenyan; Ma, Yitong; Yang, Hong; Huang, Ding; Xie, Xiang; Liu, Fen; Zheng, Yingying; Cha, Erdenbat
2013-08-01
Cytochrome P450 (CYP) 2J2 is expressed in the vascular endothelium and metabolizes arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs). The EETs are potent endogenous vasodilators and inhibitors of vascular inflammation. The aim of the present study was to assess the association between the human CYP2J2 gene polymorphism and coronary artery disease (CAD) in a Han and Uygur population of China. We use two independent case-control studies: a Han population (206 CAD patients and 262 control subjects) and an Uygur population (336 CAD patients and 448 control subjects). All CAD patients and controls were genotyped for the same three single nucleotide polymorphisms (SNPs) (rs890293, rs11572223 and rs2280275) of CYP2J2 gene by a real-time PCR instrument. In the Uygur population, for total, the distribution of SNP3 (rs2280275) genotypes showed a significant difference between CAD and control participants (P=0.048). For total and men, the distribution of SNP3 (rs2280275) alleles and the dominant model (CC vs CT+TT) showed a significant difference between CAD and control participants (for allele: P=0.014 and P=0.035, respectively; for dominant model: P=0.014 and P=0.034, respectively). The significant difference in dominant model was retained after adjustment for covariates (OR: 0.279, 95% confidence interval [CI]: 0.176-0.440, P=0.001; OR: 0.240, 95% CI: 0.128-0.457, P=0.001, respectively). The CC genotype of rs2280275 in CYP2J2 gene could be a protective genetic marker of CAD and T allele may be a risk genetic marker of CAD in men of Uygur population in China. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Single High Fidelity Geometric Data Sets for LCM - Model Requirements
2006-11-01
are extensive single 3D CAD data models incorporating hull structure, propulsion, steering, piping , electrical, HVAC and other systems, which make...single 3D CAD data models incorporating hull structure, propulsion, steering, piping , electrical, HVAC and other systems. During this same period...be sufficiently flexible to accommodate the diverse requirements of various types of structural analyses. Section Properties & Material Data
De Bruyn, Sara; Wouters, Edwin; Ponnet, Koen; Van Damme, Joris; Van Hal, Guido
2017-01-01
Alcohol and drug misuse among college students has been studied extensively and has been clearly identified as a public health problem. Within more general populations alcohol misuse remains one of the leading causes of disease, disability and death worldwide. Conducting research on alcohol misuse requires valid and reliable instruments to measure its consequences. One scale that is often used is the consequences scale in the Core Alcohol and Drug Survey (CADS). However, psychometric studies on the CADS are rare and the ones that do exist report varying results. This article aims to address this imbalance by examining the psychometric properties of a Dutch version of the CADS in a large sample of Flemish university and college students. The analyses are based on data collected by the inter-university project 'Head in the clouds', measuring alcohol use among students. In total, 19,253 students participated (22.1% response rate). The CADS scale was measured using 19 consequences, and participants were asked how often they had experienced these on a 6-point scale. Firstly, the factor structure of the CADS was examined. Two models from literature were compared by performing confirmatory factor analyses (CFA) and were adapted if necessary. Secondly, we assessed the composite reliability as well as the convergent, discriminant and concurrent validity. The two-factor model, identifying personal consequences (had a hangover; got nauseated or vomited; missed a class) and social consequences (got into an argument or fight; been criticized by someone I know; done something I later regretted; been hurt or injured) was indicated to be the best model, having both a good model fit and an acceptable composite reliability. In addition, construct validity was evaluated to be acceptable, with good discriminant validity, although the convergent validity of the factor measuring 'social consequences' could be improved. Concurrent validity was evaluated as good. In deciding which model best represents the data, it is crucial that not only the model fit is evaluated, but the importance of factor reliability and validity issues is also taken into account. The two-factor model, identifying personal consequences and social consequences, was concluded to be the best model. This shortened Dutch version of the CADS (CADS_D) is a useful tool to screen alcohol-related consequences among college students.
3-D Human body models in C.A.D. : Anthropometric Aspects
NASA Astrophysics Data System (ADS)
Renaud, C.; Steck, R.; Pineau, J. C.
1986-07-01
Modeling and simulation methods of man-machine systems are developed at the laboratory by interactive infography and C.A.D. technics. In order to better apprehend the morphological variability of populations we have enriched the 3-D model with a parametric function using classical anthropometric dimensions. We have selected reference, associate and complementary dimensions : lengths, breadths, circumferences and depths, which depend on operator's tasks and characteristics of workplaces. All anthropometric values come from the International Data Bank of Human Biometry of ERGODATA System. The utilization of the parametric function brings a quick and accurate description of morphology for theoretic subjects and can be used in C.A.D. analysis.
The genetic basis for survivorship in coronary artery disease
Dungan, Jennifer R.; Hauser, Elizabeth R.; Qin, Xuejun; Kraus, William E.
2013-01-01
Survivorship is a trait characterized by endurance and virility in the face of hardship. It is largely considered a psychosocial attribute developed during fatal conditions, rather than a biological trait for robustness in the context of complex, age-dependent diseases like coronary artery disease (CAD). The purpose of this paper is to present the novel phenotype, survivorship in CAD as an observed survival advantage concurrent with clinically significant CAD. We present a model for characterizing survivorship in CAD and its relationships with overlapping time- and clinically-related phenotypes. We offer an optimal measurement interval for investigating survivorship in CAD. We hypothesize genetic contributions to this construct and review the literature for evidence of genetic contribution to overlapping phenotypes in support of our hypothesis. We also present preliminary evidence of genetic effects on survival in people with clinically significant CAD from a primary case-control study of symptomatic coronary disease. Identifying gene variants that confer improved survival in the context of clinically appreciable CAD may improve our understanding of cardioprotective mechanisms acting at the gene level and potentially impact patients clinically in the future. Further, characterizing other survival-variant genetic effects may improve signal-to-noise ratio in detecting gene associations for CAD. PMID:24143143
Endocrown restorations: Influence of dental remnant and restorative material on stress distribution.
Tribst, João Paulo Mendes; Dal Piva, Amanda Maria de Oliveira; Madruga, Camila Ferreira Leite; Valera, Marcia Carneiro; Borges, Alexandre Luiz Souto; Bresciani, Eduardo; de Melo, Renata Marques
2018-06-20
The goal of this study was to evaluate the stress distribution in a tooth/restoration system according to the factors "amount of dental remnant" (3 levels) and "restorative material" (2 levels). Three endodontically treated maxillary molars were modeled with CAD software for conducting non-linear finite element analysis (FEA), each with a determined amount of dental remnant of 1.5, 3, or 4.5mm. Models were duplicated, and half received restorations in lithium disilicate (IPS e.max CAD), while the other half received leucite ceramic restorations (IPS Empress CAD), both from Ivoclar Vivadent (Schaan, Liechtenstein). The solids were imported to analysis software (ANSYS 17.2, ANSYS Inc., Houston, TX, USA) in STEP format. All contacts involving the resin cement were considered no-separation, whereas between teeth and fixation cylinder, the contact was considered perfectly bonded. The mechanical properties of each structure were reported, and the materials were considered isotropic, linearly elastic, and homogeneous. An axial load (300N) was applied at the occlusal surface (triploidism area). Results were determined by colorimetric graphs of maximum principal stress (MPS) on tooth remnant, cement line, and restoration. MPS revealed that both factors influenced the stress distribution for all structures; the higher the material's elastic modulus, the higher the stress concentration on the restoration and the lower the stress concentration on the cement line. Moreover, the greater the dental crown remnant, the higher the stress concentration on the restoration. Thus, the remaining dental tissue should always be preserved. In situations in which few dental remnants are available, the thicker the restoration, the higher the concentration of stresses in its structure, protecting the adhesive interface from potential adhesive failures. Results are more promising when the endocrown is fabricated with lithium disilicate ceramic. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Vojdani, Mahroo; Torabi, Kianoosh; Atashkar, Berivan; Heidari, Hossein; Torabi Ardakani, Mahshid
2016-12-01
Marginal fitness is the most important criteria for evaluation of the clinical acceptability of a cast restoration. Marginal gap which is due to cement solubility and plaque retention is potentially detrimental to both tooth and periodontal tissues. This in vitro study aimed to evaluate the marginal and internal fit of cobalt- chromium (Co-Cr) copings fabricated by two different CAD/CAM systems: (CAD/ milling and CAD/ Ceramill Sintron). We prepared one machined standard stainless steel master model with following dimensions: 7 mm height, 5mm diameter, 90˚ shoulder marginal finish line with 1 mm width, 10˚ convergence angle and anti-rotational surface on the buccal aspect of the die. There were 10 copings produced from hard presintered Co-Cr blocks according to CAD/ Milling technique and ten copings from soft non- presintered Co-Cr blocks according to CAD/ Ceramill Sintron technique. Marginal and internal accuracies of copings were documented by the replica technique. Replicas were examined at ten reference points under a digital microscope (230X). The Student's t-test was used for statistical analysis. p < 0.001 was considered significant. Statistically significant differences existed between the groups ( p < 0.001). The CAD/milling group (hard copings) had a mean marginal discrepancy (MD) of 104 µm, axial discrepancy (AD) of 23 µm and occlusal discrepancy of 130 µm. For CAD/ Ceramill Sintron group, these values were 195 µm (MD), 46 µm (AD), and 232 µm (OD). Internal total discrepancy (ITD) for the CAD/milling group was 77 µm, whereas for the CAD/Ceramill Sintron group was 143 µm. Hard presintered Co-Cr copings had significantly higher marginal and internal accuracies compared to the soft non-presintered copings.
Ya, Gao; Qiu, Zhang; Tianrong, Pan
2018-06-01
Atherosclerotic cardiovascular disease is the leading cause of mortality of patients with type 2 diabetes mellitus, and both coronary artery disease (CAD) and diabetes mellitus are associated with inflammation. Emerging evidence suggests a relationship of the monocyte to high-density lipoprotein cholesterol ratio (MHR) with the incidence and severity of CAD. The aim of the present study was to examine the association of MHR with CAD in patients with type 2 diabetes mellitus. A total of 458 consecutive individuals were enrolled, comprising 178 type 2 diabetic patients, 124 type 2 diabetes with CAD, and 156 healthy volunteers as the controls. A multivariable logistic regression model was used to evaluate the relationship between the MHR and CAD in type 2 diabetes, and the receiver operating characteristic (ROC) curve of MHR was used for predicting the presence of CAD in type 2 diabetic patients. Values of MHR were significantly higher in type 2 diabetic patients with CAD compared with those without CAD and the control group. Moreover, multivariate logistic regression analysis showed that MHR was an independent predictor of the presence of CAD in type 2 diabetic patients (OR = 1.361, 95% CI 1.245 - 1.487, p < 0.0001). Based on the receiver operating characteristic (ROC) curve, the cutoff value of MHR (> 8.2) in predicting the presence of CAD in type 2 diabetic patients yields a sensitivity and specificity of 83.74% and 62.15%, respectively, with an area under the curve of 0.795 (95% CI: 0.745 - 0.840). The MHR is strongly associated with CAD in type 2 diabetes and might be a potential biomarker to predict the presence of CAD in type 2 diabetic patients.
Utilization of CAD/CAE for concurrent design of structural aircraft components
NASA Technical Reports Server (NTRS)
Kahn, William C.
1993-01-01
The feasibility of installing the Stratospheric Observatory for Infrared Astronomy telescope (named SOFIA) into an aircraft for NASA astronomy studies is investigated using CAD/CAE equipment to either design or supply data for every facet of design engineering. The aircraft selected for the platform was a Boeing 747, chosen on the basis of its ability to meet the flight profiles required for the given mission and payload. CAD models of the fuselage of two of the aircraft models studied (747-200 and 747 SP) were developed, and models for the component parts of the telescope and subsystems were developed by the various concurrent engineering groups of the SOFIA program, to determine the requirements for the cavity opening and for design configuration. It is noted that, by developing a plan to use CAD/CAE for concurrent engineering at the beginning of the study, it was possible to produce results in about two-thirds of the time required using traditional methods.
Ares Upper Stage Processes to Implement Model Based Design - Going Paperless
NASA Technical Reports Server (NTRS)
Gregory, Melanie
2012-01-01
Computer-Aided Design (CAD) has all but replaced the drafting board for design work. Increased productivity and accuracy should be natural outcomes of using CAD. Going from paper drawings only to paper drawings based on CAD models to CAD models and no drawings, or Model Based Design (MBD), is a natural progression in today?s world. There are many advantages to MBD over traditional design methods. To make the most of those advantages, standards should be in place and the proper foundation should be laid prior to transitioning to MBD. However, without a full understanding of the implications of MBD and the proper control of the data, the advantages are greatly diminished. Transitioning from a paper design world to an electronic design world means re-thinking how information gets controlled at its origin and distributed from one point to another. It means design methodology is critical, especially for large projects. It means preparation of standardized parts and processes as well as strong communication between all parties in order to maximize the benefits of MBD.
NASA Astrophysics Data System (ADS)
Patel, Thaneswer; Sanjog, J.; Karmakar, Sougata
2016-09-01
Computer-aided Design (CAD) and Digital Human Modeling (DHM) (specialized CAD software for virtual human representation) technologies endow unique opportunities to incorporate human factors pro-actively in design development. Challenges of enhancing agricultural productivity through improvement of agricultural tools/machineries and better human-machine compatibility can be ensured by adoption of these modern technologies. Objectives of present work are to provide the detailed scenario of CAD and DHM applications in agricultural sector; and finding out means for wide adoption of these technologies for design and development of cost-effective, user-friendly, efficient and safe agricultural tools/equipment and operator's workplace. Extensive literature review has been conducted for systematic segregation and representation of available information towards drawing inferences. Although applications of various CAD software have momentum in agricultural research particularly for design and manufacturing of agricultural equipment/machinery, use of DHM is still at its infancy in this sector. Current review discusses about reasons of less adoption of these technologies in agricultural sector and steps to be taken for their wide adoption. It also suggests possible future research directions to come up with better ergonomic design strategies for improvement of agricultural equipment/machines and workstations through application of CAD and DHM.
A novel Alzheimer's disease drug candidate targeting inflammation and fatty acid metabolism.
Daugherty, Daniel; Goldberg, Joshua; Fischer, Wolfgang; Dargusch, Richard; Maher, Pamela; Schubert, David
2017-07-14
CAD-31 is an Alzheimer's disease (AD) drug candidate that was selected on the basis of its ability to stimulate the replication of human embryonic stem cell-derived neural precursor cells as well as in APPswe/PS1ΔE9 AD mice. To move CAD-31 toward the clinic, experiments were undertaken to determine its neuroprotective and pharmacological properties, as well as to assay its therapeutic efficacy in a rigorous mouse model of AD. CAD-31 has potent neuroprotective properties in six distinct nerve cell assays that mimic toxicities observed in the old brain. Pharmacological and preliminary toxicological studies show that CAD-31 is brain-penetrant and likely safe. When fed to old, symptomatic APPswe/PS1ΔE9 AD mice starting at 10 months of age for 3 additional months in a therapeutic model of the disease, there was a reduction in the memory deficit and brain inflammation, as well as an increase in the expression of synaptic proteins. Small-molecule metabolic data from the brain and plasma showed that the major effect of CAD-31 is centered on fatty acid metabolism and inflammation. Pathway analysis of gene expression data showed that CAD-31 had major effects on synapse formation and AD energy metabolic pathways. All of the multiple physiological effects of CAD-31 were favorable in the context of preventing some of the toxic events in old age-associated neurodegenerative diseases.
Ben-Shoshan, Jeremy; Segman-Rosenstveig, Yafit; Arbel, Yaron; Chorin, Ehud; Barkagan, Michael; Rozenbaum, Zach; Granot, Yoav; Finkelstein, Ariel; Banai, Shmuel; Keren, Gad; Shacham, Yacov
2016-04-15
Various physical, emotional, and extrinsic triggers have been attributed to acute coronary syndrome. Whether a correlation can be drawn between identifiable ischemic triggers and the nature of coronary artery disease (CAD) still remains unclear. In the present study, we evaluated the correlation between triggered versus nontriggered ischemic symptoms and the extent of CAD in patients with ST-segment elevation myocardial infarction (STEMI). We conducted a retrospective, single-center observational study including 1,345 consecutive patients with STEMI, treated with primary percutaneous coronary intervention. Acute physical and emotional triggers were identified in patients' historical data. Independent predictors of multivessel CAD were determined using a logistic regression model. A potential trigger was identified in 37% of patients. Physical exertion was found to be the most dominant trigger (65%) followed by psychological stress (16%) and acute illness (12%). Patients with nontriggered STEMI tended to be older and more likely to have co-morbidities. Patients with nontriggered STEMI showed a higher rate of multivessel CAD (73% vs 30%, p <0.001). In a multivariate regression model, nontriggered symptoms emerged as an independent predictor of multivessel CAD (odds ratio 8.33, 95% CI 5.74 to 12.5, p = 0.001). No specific trigger was found to predict independently the extent of CAD. In conclusion, symptoms onset without a recognizable trigger is associated with multivessel CAD in STEMI. Further studies will be required to elucidate the putative mechanisms underlying ischemic triggering. Copyright © 2016 Elsevier Inc. All rights reserved.
A CAD System for Hemorrhagic Stroke.
Nowinski, Wieslaw L; Qian, Guoyu; Hanley, Daniel F
2014-09-01
Computer-aided detection/diagnosis (CAD) is a key component of routine clinical practice, increasingly used for detection, interpretation, quantification and decision support. Despite a critical need, there is no clinically accepted CAD system for stroke yet. Here we introduce a CAD system for hemorrhagic stroke. This CAD system segments, quantifies, and displays hematoma in 2D/3D, and supports evacuation of hemorrhage by thrombolytic treatment monitoring progression and quantifying clot removal. It supports seven-step workflow: select patient, add a new study, process patient's scans, show segmentation results, plot hematoma volumes, show 3D synchronized time series hematomas, and generate report. The system architecture contains four components: library, tools, application with user interface, and hematoma segmentation algorithm. The tools include a contour editor, 3D surface modeler, 3D volume measure, histogramming, hematoma volume plot, and 3D synchronized time-series hematoma display. The CAD system has been designed and implemented in C++. It has also been employed in the CLEAR and MISTIE phase-III, multicenter clinical trials. This stroke CAD system is potentially useful in research and clinical applications, particularly for clinical trials.
Cazelli, José Guilherme; Camargo, Gabriel Cordeiro; Kruczan, Dany David; Weksler, Clara; Felipe, Alexandre Rouge; Gottlieb, Ilan
2017-10-01
The prevalence of coronary artery disease (CAD) in valvular patients is similar to that of the general population, with the usual association with traditional risk factors. Nevertheless, the search for obstructive CAD is more aggressive in the preoperative period of patients with valvular heart disease, resulting in the indication of invasive coronary angiography (ICA) to almost all adult patients, because it is believed that coronary artery bypass surgery should be associated with valve replacement. To evaluate the prevalence of obstructive CAD and factors associated with it in adult candidates for primary heart valve surgery between 2001 and 2014 at the National Institute of Cardiology (INC) and, thus, derive and validate a predictive obstructive CAD score. Cross-sectional study evaluating 2898 patients with indication for heart surgery of any etiology. Of those, 712 patients, who had valvular heart disease and underwent ICA in the 12 months prior to surgery, were included. The P value < 0.05 was adopted as statistical significance. The prevalence of obstructive CAD was 20%. A predictive model of obstructive CAD was created from multivariate logistic regression, using the variables age, chest pain, family history of CAD, systemic arterial hypertension, diabetes mellitus, dyslipidemia, smoking, and male gender. The model showed excellent correlation and calibration (R² = 0.98), as well as excellent accuracy (ROC of 0.848; 95%CI: 0.817-0.879) and validation (ROC of 0.877; 95%CI: 0.830 - 0.923) in different valve populations. Obstructive CAD can be estimated from clinical data of adult candidates for valve repair surgery, using a simple, accurate and validated score, easy to apply in clinical practice, which may contribute to changes in the preoperative strategy of acquired heart valve surgery in patients with a lower probability of obstructive disease.
Metabolic Syndrome and Coronary Artery Disease in Ossabaw Compared with Yucatan Swine
Neeb, Zachary P; Edwards, Jason M; Alloosh, Mouhamad; Long, Xin; Mokelke, Eric A; Sturek, Michael
2010-01-01
Metabolic syndrome (MetS), a compilation of associated risk factors, increases the risk of type 2 diabetes and coronary artery disease (CAD, atherosclerosis), which can progress to the point of artery occlusion. Stents are the primary interventional treatment for occlusive CAD, and patients with MetS and hyperinsulinemia have increased restenosis. Because of its thrifty genotype, the Ossabaw pig is a model of MetS. We tested the hypothesis that, when fed high-fat diet, Ossabaw swine develop more features of MetS, greater native CAD, and greater stent-induced CAD than do Yucatan swine. Animals of each breed were divided randomly into 2 groups and fed 2 different calorie-matched diets for 40 wk: control diet (C) and high-fat, high-cholesterol atherogenic diet (H). A bare metal stent was placed in the circumflex artery, and pigs were allowed to recover for 3 wk. Characteristics of MetS, macrovascular and microvascular CAD, in-stent stenosis, and Ca2+ signaling in coronary smooth muscle cells were evaluated. MetS characteristics including, obesity, glucose intolerance, hyperinsulinemia, and elevated arterial pressure were elevated in Ossabaw swine compared to Yucatan swine. Ossabaw swine with MetS had more extensive and diffuse native CAD and in-stent stenosis and impaired coronary blood flow regulation compared with Yucatan. In-stent atherosclerotic lesions in Ossabaw coronary arteries were less fibrous and more cellular. Coronary smooth muscle cells from Ossabaw had impaired Ca2+ efflux and intracellular sequestration versus cells from Yucatan swine. Therefore, Ossabaw swine are a superior model of MetS, subsequent CAD, and cellular Ca2+ signaling defects, whereas Yucatan swine are leaner and relatively resistant to MetS and CAD. PMID:20819380
NASA Astrophysics Data System (ADS)
Thompson, James H.; Apel, Thomas R.
1990-07-01
A technique for modeling microstrip discontinuities is presented which is derived from the transmission line matrix method of solving three-dimensional electromagnetic problems. In this technique the microstrip patch under investigation is divided into an integer number of square and half-square (triangle) subsections. An equivalent lumped-element model is calculated for each subsection. These individual models are then interconnected as dictated by the geometry of the patch. The matrix of lumped elements is then solved using either of two microwave CAD software interfaces with each port properly defined. Closed-form expressions for the lumped-element representation of the individual subsections is presented and experimentally verified through the X-band frequency range. A model demonstrating the use of symmetry and block construction of a circuit element is discussed, along with computer program development and CAD software interface.
Creation of system of computer-aided design for technological objects
NASA Astrophysics Data System (ADS)
Zubkova, T. M.; Tokareva, M. A.; Sultanov, N. Z.
2018-05-01
Due to the competition in the market of process equipment, its production should be flexible, retuning to various product configurations, raw materials and productivity, depending on the current market needs. This process is not possible without CAD (computer-aided design). The formation of CAD begins with planning. Synthesizing, analyzing, evaluating, converting operations, as well as visualization and decision-making operations, can be automated. Based on formal description of the design procedures, the design route in the form of an oriented graph is constructed. The decomposition of the design process, represented by the formalized description of the design procedures, makes it possible to make an informed choice of the CAD component for the solution of the task. The object-oriented approach allows us to consider the CAD as an independent system whose properties are inherited from the components. The first step determines the range of tasks to be performed by the system, and a set of components for their implementation. The second one is the configuration of the selected components. The interaction between the selected components is carried out using the CALS standards. The chosen CAD / CAE-oriented approach allows creating a single model, which is stored in the database of the subject area. Each of the integration stages is implemented as a separate functional block. The transformation of the CAD model into the model of the internal representation is realized by the block of searching for the geometric parameters of the technological machine, in which the XML-model of the construction is obtained on the basis of the feature method from the theory of image recognition. The configuration of integrated components is divided into three consecutive steps: configuring tasks, components, interfaces. The configuration of the components is realized using the theory of "soft computations" using the Mamdani fuzzy inference algorithm.
Issues in assessing multi-institutional performance of BI-RADS-based CAD systems
NASA Astrophysics Data System (ADS)
Markey, Mia K.; Lo, Joseph Y.
2005-04-01
The purpose of this study was to investigate factors that impact the generalization of breast cancer computer-aided diagnosis (CAD) systems that utilize the Breast Imaging Reporting and Data System (BI-RADS). Data sets from four institutions were analyzed: Duke University Medical Center, University of Pennsylvania Medical Center, Massachusetts General Hospital, and Wake Forest University. The latter two data sets are subsets of the Digital Database for Screening Mammography. Each data set consisted of descriptions of mammographic lesions according to the BI-RADS lexicon, patient age, and pathology status (benign/malignant). Models were developed to predict pathology status from the BI-RADS descriptors and the patient age. Comparisons between the models built on data from the different institutions were made in terms of empirical (non-parametric) receiver operating characteristic (ROC) curves. Results suggest that BI-RADS-based CAD systems focused on specific classes of lesions may be more generally applicable than models that cover several lesion types. However, better generalization was seen in terms of the area under the ROC curve than in the partial area index (>90% sensitivity). Previous studies have illustrated the challenges in translating a BI-RADS-based CAD system from one institution to another. This study provides new insights into possible approaches to improve the generalization of BI-RADS-based CAD systems.
Schulman-Marcus, Joshua; Lin, Fay Y.; Gransar, Heidi; Berman, Daniel; Callister, Tracy; DeLago, Augustin; Hadamitzky, Martin; Hausleiter, Joerg; Al-Mallah, Mouaz; Budoff, Matthew; Kaufmann, Philipp; Achenbach, Stephan; Raff, Gilbert; Chinnaiyan, Kavitha; Cademartiri, Filippo; Maffei, Erica; Villines, Todd; Kim, Yong-Jin; Leipsic, Jonathon; Feuchtner, Gudrun; Rubinshtein, Ronen; Pontone, Gianluca; Andreini, Daniele; Marques, Hugo; Chang, Hyuk-Jae; Chow, Benjamin J.W.; Cury, Ricardo C.; Dunning, Allison; Shaw, Leslee; Min, James K.
2017-01-01
Abstract Aims To identify the effect of early revascularization on 5-year survival in patients with CAD diagnosed by coronary-computed tomographic angiography (CCTA). Methods and results We examined 5544 stable patients with suspected CAD undergoing CCTA who were followed a median of 5.5 years in a large international registry. Patients were categorized as having low-, intermediate-, or high-risk CAD based on CCTA findings. Two treatment groups were defined: early revascularization within 90 days of CCTA (n = 1171) and medical therapy (n = 4373). To account for the non-randomized referral to revascularization, we developed a propensity score by logistic regression. This score was incorporated into Cox proportional hazard models to calculate the effect of revascularization on all-cause mortality. Death occurred in 363 (6.6%) patients and was more frequent in medical therapy. In multivariable models, when compared with medical therapy, the mortality benefit of revascularization varied significantly over time and by CAD risk (P for interaction 0.04). In high-risk CAD, revascularization was significantly associated with lower mortality at 1 year (hazard ratio [HR] 0.22, 95% confidence interval [CI] 0.11–0.47) and 5 years (HR 0.31, 95% CI 0.18–0.54). For intermediate-risk CAD, revascularization was associated with reduced mortality at 1 year (HR 0.45, 95% CI 0.22–0.93) but not 5 years (HR 0.63, 95% CI 0.33–1.20). For low-risk CAD, there was no survival benefit at either time point. Conclusions Early revascularization was associated with reduced 1-year mortality in intermediate- and high-risk CAD detected by CCTA, but this association only persisted for 5-year mortality in high-risk CAD. PMID:28329294
Gerber, Megan R; King, Matthew W; Iverson, Katherine M; Pineles, Suzanne L; Haskell, Sally G
2018-03-01
The women Veteran population accessing Veterans Health Administration (VA) care has grown rapidly. Women Veterans exhibit high rates of mental health conditions that increase coronary artery disease (CAD) risk; however, the relationship between specific conditions and increasing mental health burden to CAD in this population is unknown. Using VA National Patient Care Data for 2009, we identified women Veterans over 45 (N = 157,195). Logistic regression models examined different mental health diagnoses and increasing mental health burden (number of diagnostic clusters) as predictors of CAD. CAD prevalence was 4.16%, and 36% of women Veterans were current smokers. Depression exhibited the strongest association with CAD (odds ratio [OR] 1.60, 95% confidence interval [CI] [1.50-1.71]), similar to that of current smoking (OR 1.68 [1.58-1.78]). Controlling for demographic variables, smoking, diabetes, and obesity, each additional mental health diagnosis increased the odds of CAD by 44%. Women Veterans over age 45 accessing VA care exhibited a high degree of mental health burden, which is associated with elevated odds of CAD; those with depression alone had 60% higher odds of CAD. For women Veterans using VA, mental health diagnoses may act as CAD risk factors that are potentially modifiable. Novel interventions in primary care and mental health are needed to address heart disease in this growing and aging population.
Dynamic behavior of the mechanical systems from the structure of a hybrid automobile
NASA Astrophysics Data System (ADS)
Dinel, Popa; Irina, Tudor; Nicolae-Doru, Stănescu
2017-10-01
In introduction are presented solutions of planetary mechanisms that can be used in the construction of the hybrid automobiles where the thermal and electrical sources must be coupled. The systems have in their composition a planetary mechanism with two degrees of mobility at which are coupled a thermal engine, two revertible electrical machines, a gear transmission with four gears and a differential mechanism which transmits the motion at the driving wheels. For the study of the dynamical behavior, with numerical results, one designs such mechanisms, models the elements with solids in AutoCAD, and obtains the mechanical properties of the elements. Further on, we present and solve the equations of motion of a hybrid automotive for which one knows the dynamical parameters.
IFEMS, an Interactive Finite Element Modeling System Using a CAD/CAM System
NASA Technical Reports Server (NTRS)
Mckellip, S.; Schuman, T.; Lauer, S.
1980-01-01
A method of coupling a CAD/CAM system with a general purpose finite element mesh generator is described. The three computer programs which make up the interactive finite element graphics system are discussed.
A Model Based Framework for Semantic Interpretation of Architectural Construction Drawings
ERIC Educational Resources Information Center
Babalola, Olubi Oluyomi
2011-01-01
The study addresses the automated translation of architectural drawings from 2D Computer Aided Drafting (CAD) data into a Building Information Model (BIM), with emphasis on the nature, possible role, and limitations of a drafting language Knowledge Representation (KR) on the problem and process. The central idea is that CAD to BIM translation is a…
CAD-Based Aerodynamic Design of Complex Configurations using a Cartesian Method
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.
2003-01-01
A modular framework for aerodynamic optimization of complex geometries is developed. By working directly with a parametric CAD system, complex-geometry models are modified nnd tessellated in an automatic fashion. The use of a component-based Cartesian method significantly reduces the demands on the CAD system, and also provides for robust and efficient flowfield analysis. The optimization is controlled using either a genetic or quasi-Newton algorithm. Parallel efficiency of the framework is maintained even when subject to limited CAD resources by dynamically re-allocating the processors of the flow solver. Overall, the resulting framework can explore designs incorporating large shape modifications and changes in topology.
Custom-made, root-analogue direct laser metal forming implant: a case report.
Mangano, Francesco Guido; Cirotti, Bruno; Sammons, Rachel Lilian; Mangano, Carlo
2012-11-01
In the last few years, the application of digital technology in dentistry has become widespread with the introduction of cone beam computed tomography (CBCT) scan technology, and considerable progress has been made in the development of computer-aided design/ computer-aided manufacturing (CAD/CAM) techniques, including direct laser metal forming (DLMF). DLMF is a technology which allows solids with complex geometry to be produced by annealing metal powder microparticles in a focused laser beam, according to a computer-generated three-dimensional (3D) model. For dental implants, the fabrication process involves the laser-induced fusion of titanium microparticles, in order to build, layer by layer, the desired object. At present, the combined use of CBCT 3D data and CAD/CAM technology makes it possible to manufacture custom-made, root-analogue implants (RAI) with sufficient precision. This report demonstrates the successful clinical use of a custom-made, root-analogue DLMF implant. CBCT images of a non-restorable right maxillary first premolar were acquired and transformed into a 3D model. From this model, a custom-made, root-analogue DLMF implant was fabricated. Immediately after tooth extraction, the RAI with a pre-operatively designed abutment was placed in the extraction socket and restored with a single crown. At the 1-year follow-up examination, the RAI showed a good functional and aesthetic integration. The introduction of DLMF technology signals the start of a new revolutionary era for implant dentistry as its immense potential for producing highly complex macro- and microstructures is receiving vast interest in different medical fields.
Common variants associated with plasma triglycerides and risk for coronary artery disease.
Do, Ron; Willer, Cristen J; Schmidt, Ellen M; Sengupta, Sebanti; Gao, Chi; Peloso, Gina M; Gustafsson, Stefan; Kanoni, Stavroula; Ganna, Andrea; Chen, Jin; Buchkovich, Martin L; Mora, Samia; Beckmann, Jacques S; Bragg-Gresham, Jennifer L; Chang, Hsing-Yi; Demirkan, Ayşe; Den Hertog, Heleen M; Donnelly, Louise A; Ehret, Georg B; Esko, Tõnu; Feitosa, Mary F; Ferreira, Teresa; Fischer, Krista; Fontanillas, Pierre; Fraser, Ross M; Freitag, Daniel F; Gurdasani, Deepti; Heikkilä, Kauko; Hyppönen, Elina; Isaacs, Aaron; Jackson, Anne U; Johansson, Asa; Johnson, Toby; Kaakinen, Marika; Kettunen, Johannes; Kleber, Marcus E; Li, Xiaohui; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Magnusson, Patrik K E; Mangino, Massimo; Mihailov, Evelin; Montasser, May E; Müller-Nurasyid, Martina; Nolte, Ilja M; O'Connell, Jeffrey R; Palmer, Cameron D; Perola, Markus; Petersen, Ann-Kristin; Sanna, Serena; Saxena, Richa; Service, Susan K; Shah, Sonia; Shungin, Dmitry; Sidore, Carlo; Song, Ci; Strawbridge, Rona J; Surakka, Ida; Tanaka, Toshiko; Teslovich, Tanya M; Thorleifsson, Gudmar; Van den Herik, Evita G; Voight, Benjamin F; Volcik, Kelly A; Waite, Lindsay L; Wong, Andrew; Wu, Ying; Zhang, Weihua; Absher, Devin; Asiki, Gershim; Barroso, Inês; Been, Latonya F; Bolton, Jennifer L; Bonnycastle, Lori L; Brambilla, Paolo; Burnett, Mary S; Cesana, Giancarlo; Dimitriou, Maria; Doney, Alex S F; Döring, Angela; Elliott, Paul; Epstein, Stephen E; Eyjolfsson, Gudmundur Ingi; Gigante, Bruna; Goodarzi, Mark O; Grallert, Harald; Gravito, Martha L; Groves, Christopher J; Hallmans, Göran; Hartikainen, Anna-Liisa; Hayward, Caroline; Hernandez, Dena; Hicks, Andrew A; Holm, Hilma; Hung, Yi-Jen; Illig, Thomas; Jones, Michelle R; Kaleebu, Pontiano; Kastelein, John J P; Khaw, Kay-Tee; Kim, Eric; Klopp, Norman; Komulainen, Pirjo; Kumari, Meena; Langenberg, Claudia; Lehtimäki, Terho; Lin, Shih-Yi; Lindström, Jaana; Loos, Ruth J F; Mach, François; McArdle, Wendy L; Meisinger, Christa; Mitchell, Braxton D; Müller, Gabrielle; Nagaraja, Ramaiah; Narisu, Narisu; Nieminen, Tuomo V M; Nsubuga, Rebecca N; Olafsson, Isleifur; Ong, Ken K; Palotie, Aarno; Papamarkou, Theodore; Pomilla, Cristina; Pouta, Anneli; Rader, Daniel J; Reilly, Muredach P; Ridker, Paul M; Rivadeneira, Fernando; Rudan, Igor; Ruokonen, Aimo; Samani, Nilesh; Scharnagl, Hubert; Seeley, Janet; Silander, Kaisa; Stančáková, Alena; Stirrups, Kathleen; Swift, Amy J; Tiret, Laurence; Uitterlinden, Andre G; van Pelt, L Joost; Vedantam, Sailaja; Wainwright, Nicholas; Wijmenga, Cisca; Wild, Sarah H; Willemsen, Gonneke; Wilsgaard, Tom; Wilson, James F; Young, Elizabeth H; Zhao, Jing Hua; Adair, Linda S; Arveiler, Dominique; Assimes, Themistocles L; Bandinelli, Stefania; Bennett, Franklyn; Bochud, Murielle; Boehm, Bernhard O; Boomsma, Dorret I; Borecki, Ingrid B; Bornstein, Stefan R; Bovet, Pascal; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chambers, John C; Chen, Yii-Der Ida; Collins, Francis S; Cooper, Richard S; Danesh, John; Dedoussis, George; de Faire, Ulf; Feranil, Alan B; Ferrières, Jean; Ferrucci, Luigi; Freimer, Nelson B; Gieger, Christian; Groop, Leif C; Gudnason, Vilmundur; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B; Hingorani, Aroon; Hirschhorn, Joel N; Hofman, Albert; Hovingh, G Kees; Hsiung, Chao Agnes; Humphries, Steve E; Hunt, Steven C; Hveem, Kristian; Iribarren, Carlos; Järvelin, Marjo-Riitta; Jula, Antti; Kähönen, Mika; Kaprio, Jaakko; Kesäniemi, Antero; Kivimaki, Mika; Kooner, Jaspal S; Koudstaal, Peter J; Krauss, Ronald M; Kuh, Diana; Kuusisto, Johanna; Kyvik, Kirsten O; Laakso, Markku; Lakka, Timo A; Lind, Lars; Lindgren, Cecilia M; Martin, Nicholas G; März, Winfried; McCarthy, Mark I; McKenzie, Colin A; Meneton, Pierre; Metspalu, Andres; Moilanen, Leena; Morris, Andrew D; Munroe, Patricia B; Njølstad, Inger; Pedersen, Nancy L; Power, Chris; Pramstaller, Peter P; Price, Jackie F; Psaty, Bruce M; Quertermous, Thomas; Rauramaa, Rainer; Saleheen, Danish; Salomaa, Veikko; Sanghera, Dharambir K; Saramies, Jouko; Schwarz, Peter E H; Sheu, Wayne H-H; Shuldiner, Alan R; Siegbahn, Agneta; Spector, Tim D; Stefansson, Kari; Strachan, David P; Tayo, Bamidele O; Tremoli, Elena; Tuomilehto, Jaakko; Uusitupa, Matti; van Duijn, Cornelia M; Vollenweider, Peter; Wallentin, Lars; Wareham, Nicholas J; Whitfield, John B; Wolffenbuttel, Bruce H R; Altshuler, David; Ordovas, Jose M; Boerwinkle, Eric; Palmer, Colin N A; Thorsteinsdottir, Unnur; Chasman, Daniel I; Rotter, Jerome I; Franks, Paul W; Ripatti, Samuli; Cupples, L Adrienne; Sandhu, Manjinder S; Rich, Stephen S; Boehnke, Michael; Deloukas, Panos; Mohlke, Karen L; Ingelsson, Erik; Abecasis, Goncalo R; Daly, Mark J; Neale, Benjamin M; Kathiresan, Sekar
2013-11-01
Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 × 10(-8) for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.
Common variants associated with plasma triglycerides and risk for coronary artery disease
Do, Ron; Willer, Cristen J.; Schmidt, Ellen M.; Sengupta, Sebanti; Gao, Chi; Peloso, Gina M.; Gustafsson, Stefan; Kanoni, Stavroula; Ganna, Andrea; Chen, Jin; Buchkovich, Martin L.; Mora, Samia; Beckmann, Jacques S.; Bragg-Gresham, Jennifer L.; Chang, Hsing-Yi; Demirkan, Ayşe; Den Hertog, Heleen M.; Donnelly, Louise A.; Ehret, Georg B.; Esko, Tõnu; Feitosa, Mary F.; Ferreira, Teresa; Fischer, Krista; Fontanillas, Pierre; Fraser, Ross M.; Freitag, Daniel F.; Gurdasani, Deepti; Heikkilä, Kauko; Hyppönen, Elina; Isaacs, Aaron; Jackson, Anne U.; Johansson, Åsa; Johnson, Toby; Kaakinen, Marika; Kettunen, Johannes; Kleber, Marcus E.; Li, Xiaohui; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Magnusson, Patrik K.E.; Mangino, Massimo; Mihailov, Evelin; Montasser, May E.; Müller-Nurasyid, Martina; Nolte, Ilja M.; O'Connell, Jeffrey R.; Palmer, Cameron D.; Perola, Markus; Petersen, Ann-Kristin; Sanna, Serena; Saxena, Richa; Service, Susan K.; Shah, Sonia; Shungin, Dmitry; Sidore, Carlo; Song, Ci; Strawbridge, Rona J.; Surakka, Ida; Tanaka, Toshiko; Teslovich, Tanya M.; Thorleifsson, Gudmar; Van den Herik, Evita G.; Voight, Benjamin F.; Volcik, Kelly A.; Waite, Lindsay L.; Wong, Andrew; Wu, Ying; Zhang, Weihua; Absher, Devin; Asiki, Gershim; Barroso, Inês; Been, Latonya F.; Bolton, Jennifer L.; Bonnycastle, Lori L; Brambilla, Paolo; Burnett, Mary S.; Cesana, Giancarlo; Dimitriou, Maria; Doney, Alex S.F.; Döring, Angela; Elliott, Paul; Epstein, Stephen E.; Eyjolfsson, Gudmundur Ingi; Gigante, Bruna; Goodarzi, Mark O.; Grallert, Harald; Gravito, Martha L.; Groves, Christopher J.; Hallmans, Göran; Hartikainen, Anna-Liisa; Hayward, Caroline; Hernandez, Dena; Hicks, Andrew A.; Holm, Hilma; Hung, Yi-Jen; Illig, Thomas; Jones, Michelle R.; Kaleebu, Pontiano; Kastelein, John J.P.; Khaw, Kay-Tee; Kim, Eric; Klopp, Norman; Komulainen, Pirjo; Kumari, Meena; Langenberg, Claudia; Lehtimäki, Terho; Lin, Shih-Yi; Lindström, Jaana; Loos, Ruth J.F.; Mach, François; McArdle, Wendy L; Meisinger, Christa; Mitchell, Braxton D.; Müller, Gabrielle; Nagaraja, Ramaiah; Narisu, Narisu; Nieminen, Tuomo V.M.; Nsubuga, Rebecca N.; Olafsson, Isleifur; Ong, Ken K.; Palotie, Aarno; Papamarkou, Theodore; Pomilla, Cristina; Pouta, Anneli; Rader, Daniel J.; Reilly, Muredach P.; Ridker, Paul M.; Rivadeneira, Fernando; Rudan, Igor; Ruokonen, Aimo; Samani, Nilesh; Scharnagl, Hubert; Seeley, Janet; Silander, Kaisa; Stančáková, Alena; Stirrups, Kathleen; Swift, Amy J.; Tiret, Laurence; Uitterlinden, Andre G.; van Pelt, L. Joost; Vedantam, Sailaja; Wainwright, Nicholas; Wijmenga, Cisca; Wild, Sarah H.; Willemsen, Gonneke; Wilsgaard, Tom; Wilson, James F.; Young, Elizabeth H.; Zhao, Jing Hua; Adair, Linda S.; Arveiler, Dominique; Assimes, Themistocles L.; Bandinelli, Stefania; Bennett, Franklyn; Bochud, Murielle; Boehm, Bernhard O.; Boomsma, Dorret I.; Borecki, Ingrid B.; Bornstein, Stefan R.; Bovet, Pascal; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chambers, John C.; Chen, Yii-Der Ida; Collins, Francis S.; Cooper, Richard S.; Danesh, John; Dedoussis, George; de Faire, Ulf; Feranil, Alan B.; Ferrières, Jean; Ferrucci, Luigi; Freimer, Nelson B.; Gieger, Christian; Groop, Leif C.; Gudnason, Vilmundur; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B.; Hingorani, Aroon; Hirschhorn, Joel N.; Hofman, Albert; Hovingh, G. Kees; Hsiung, Chao Agnes; Humphries, Steve E.; Hunt, Steven C.; Hveem, Kristian; Iribarren, Carlos; Järvelin, Marjo-Riitta; Jula, Antti; Kähönen, Mika; Kaprio, Jaakko; Kesäniemi, Antero; Kivimaki, Mika; Kooner, Jaspal S.; Koudstaal, Peter J.; Krauss, Ronald M.; Kuh, Diana; Kuusisto, Johanna; Kyvik, Kirsten O.; Laakso, Markku; Lakka, Timo A.; Lind, Lars; Lindgren, Cecilia M.; Martin, Nicholas G.; März, Winfried; McCarthy, Mark I.; McKenzie, Colin A.; Meneton, Pierre; Metspalu, Andres; Moilanen, Leena; Morris, Andrew D.; Munroe, Patricia B.; Njølstad, Inger; Pedersen, Nancy L.; Power, Chris; Pramstaller, Peter P.; Price, Jackie F.; Psaty, Bruce M.; Quertermous, Thomas; Rauramaa, Rainer; Saleheen, Danish; Salomaa, Veikko; Sanghera, Dharambir K.; Saramies, Jouko; Schwarz, Peter E.H.; Sheu, Wayne H-H; Shuldiner, Alan R.; Siegbahn, Agneta; Spector, Tim D.; Stefansson, Kari; Strachan, David P.; Tayo, Bamidele O.; Tremoli, Elena; Tuomilehto, Jaakko; Uusitupa, Matti; van Duijn, Cornelia M.; Vollenweider, Peter; Wallentin, Lars; Wareham, Nicholas J.; Whitfield, John B.; Wolffenbuttel, Bruce H.R.; Altshuler, David; Ordovas, Jose M.; Boerwinkle, Eric; Palmer, Colin N.A.; Thorsteinsdottir, Unnur; Chasman, Daniel I.; Rotter, Jerome I.; Franks, Paul W.; Ripatti, Samuli; Cupples, L. Adrienne; Sandhu, Manjinder S.; Rich, Stephen S.; Boehnke, Michael; Deloukas, Panos; Mohlke, Karen L.; Ingelsson, Erik; Abecasis, Goncalo R.; Daly, Mark J.; Neale, Benjamin M.; Kathiresan, Sekar
2013-01-01
Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiologic studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P<5×10−8 for each) to examine the role of triglycerides on risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglycerides, and show that the direction and magnitude of both are factors in determining CAD risk. Second, we consider loci with only a strong magnitude of association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol, a polymorphism's strength of effect on triglycerides is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD. PMID:24097064
Structure, functional characterization, and evolution of the dihydroorotase domain of human CAD.
Grande-García, Araceli; Lallous, Nada; Díaz-Tejada, Celsa; Ramón-Maiques, Santiago
2014-02-04
Upregulation of CAD, the multifunctional protein that initiates and controls the de novo biosynthesis of pyrimidines in animals, is essential for cell proliferation. Deciphering the architecture and functioning of CAD is of interest for its potential usage as an antitumoral target. However, there is no detailed structural information about CAD other than that it self-assembles into hexamers of ∼1.5 MDa. Here we report the crystal structure and functional characterization of the dihydroorotase domain of human CAD. Contradicting all assumptions, the structure reveals an active site enclosed by a flexible loop with two Zn²⁺ ions bridged by a carboxylated lysine and a third Zn coordinating a rare histidinate ion. Site-directed mutagenesis and functional assays prove the involvement of the Zn and flexible loop in catalysis. Comparison with homologous bacterial enzymes supports a reclassification of the DHOase family and provides strong evidence against current models of the architecture of CAD. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rotger, Margalida; Glass, Tracy R; Junier, Thomas; Lundgren, Jens; Neaton, James D; Poloni, Estella S; van 't Wout, Angélique B; Lubomirov, Rubin; Colombo, Sara; Martinez, Raquel; Rauch, Andri; Günthard, Huldrych F; Neuhaus, Jacqueline; Wentworth, Deborah; van Manen, Danielle; Gras, Luuk A; Schuitemaker, Hanneke; Albini, Laura; Torti, Carlo; Jacobson, Lisa P; Li, Xiuhong; Kingsley, Lawrence A; Carli, Federica; Guaraldi, Giovanni; Ford, Emily S; Sereti, Irini; Hadigan, Colleen; Martinez, Esteban; Arnedo, Mireia; Egaña-Gorroño, Lander; Gatell, Jose M; Law, Matthew; Bendall, Courtney; Petoumenos, Kathy; Rockstroh, Jürgen; Wasmuth, Jan-Christian; Kabamba, Kabeya; Delforge, Marc; De Wit, Stephane; Berger, Florian; Mauss, Stefan; de Paz Sierra, Mariana; Losso, Marcelo; Belloso, Waldo H; Leyes, Maria; Campins, Antoni; Mondi, Annalisa; De Luca, Andrea; Bernardino, Ignacio; Barriuso-Iglesias, Mónica; Torrecilla-Rodriguez, Ana; Gonzalez-Garcia, Juan; Arribas, José R; Fanti, Iuri; Gel, Silvia; Puig, Jordi; Negredo, Eugenia; Gutierrez, Mar; Domingo, Pere; Fischer, Julia; Fätkenheuer, Gerd; Alonso-Villaverde, Carlos; Macken, Alan; Woo, James; McGinty, Tara; Mallon, Patrick; Mangili, Alexandra; Skinner, Sally; Wanke, Christine A; Reiss, Peter; Weber, Rainer; Bucher, Heiner C; Fellay, Jacques; Telenti, Amalio; Tarr, Philip E
2013-07-01
Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medications, and traditional risk factors to CAD has not been fully evaluated in the setting of HIV infection. In the general population, 23 common single-nucleotide polymorphisms (SNPs) were shown to be associated with CAD through genome-wide association analysis. Using the Metabochip, we genotyped 1875 HIV-positive, white individuals enrolled in 24 HIV observational studies, including 571 participants with a first CAD event during the 9-year study period and 1304 controls matched on sex and cohort. A genetic risk score built from 23 CAD-associated SNPs contributed significantly to CAD (P = 2.9 × 10(-4)). In the final multivariable model, participants with an unfavorable genetic background (top genetic score quartile) had a CAD odds ratio (OR) of 1.47 (95% confidence interval [CI], 1.05-2.04). This effect was similar to hypertension (OR = 1.36; 95% CI, 1.06-1.73), hypercholesterolemia (OR = 1.51; 95% CI, 1.16-1.96), diabetes (OR = 1.66; 95% CI, 1.10-2.49), ≥ 1 year lopinavir exposure (OR = 1.36; 95% CI, 1.06-1.73), and current abacavir treatment (OR = 1.56; 95% CI, 1.17-2.07). The effect of the genetic risk score was additive to the effect of nongenetic CAD risk factors, and did not change after adjustment for family history of CAD. In the setting of HIV infection, the effect of an unfavorable genetic background was similar to traditional CAD risk factors and certain adverse antiretroviral exposures. Genetic testing may provide prognostic information complementary to family history of CAD.
Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans
NASA Astrophysics Data System (ADS)
Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj
2016-06-01
This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.
Milan, Raymond; Vasiliadis, Helen-Maria; Gontijo Guerra, Samantha; Berbiche, Djamal
2017-01-01
To evaluate the effect of patient out-of-pocket costs on adherence to antihypertensive agents (AHA) in community-dwelling older adults covered by the public drug insurance plan in Quebec. This is a secondary analysis of data from the "Étude sur la santé des aînés" study (2005-2008) on community-dwelling older adults in Quebec aged 65 years and older (N=2,811). The final sample included 881 participants diagnosed with arterial hypertension and treated with AHA. Medication adherence was measured with the proportion of days covered over a 2-year follow-up period (<80% and ≥80%). Out-of-pocket costs for AHA, in Canadian dollars (CAD), at cohort entry were categorized as follows: $0, $0.01-$5.00, $5.01-$10.00, $10.01-$15.00 and $15.01-$36.00. Multivariable logistic regression models were constructed to study adherence to AHA as a function of out-of-pocket costs while controlling for several confounders. Models were also stratified by annual household income (<$15,000 CAD and ≥$15,000 CAD). In this study, 80.8% of participants were adherent to their AHA. Among participants reporting an annual household income <$15,000 CAD, those with an out-of-pocket cost of $10.01-$15.00 CAD were significantly less adherent to their AHA than those with no contribution (OR =0.175, 95% CI: 0.042-0.740). Among participants reporting an income of ≥$15,000 CAD, those with out-of-pocket costs of $0.01-$5.00 CAD (OR =0.194; 95% CI: 0.048-0.787), $5.01-$10.00 CAD (OR =0.146; 95% CI: 0.036-0.589), $10.01-$15.00 CAD (OR =0.192; 95% CI: 0.047-0.777) and $15.01-$36.00 CAD (OR =0.160, 95% CI: 0.039-0.655) were significantly less adherent to their AHA than participants with no contribution. Increased out-of-pocket costs are associated with non-adherence to AHA in older adults covered by a public drug insurance plan, more importantly in those reporting an annual household income ≥$15,000 CAD. A reduction in the amount of out-of-pocket costs and yearly maximum contribution for drugs may improve adherence to treatment.
Xie, Joe X; Cury, Ricardo C; Leipsic, Jonathon; Crim, Matthew T; Berman, Daniel S; Gransar, Heidi; Budoff, Matthew J; Achenbach, Stephan; Ó Hartaigh, Bríain; Callister, Tracy Q; Marques, Hugo; Rubinshtein, Ronen; Al-Mallah, Mouaz H; Andreini, Daniele; Pontone, Gianluca; Cademartiri, Filippo; Maffei, Erica; Chinnaiyan, Kavitha; Raff, Gilbert; Hadamitzky, Martin; Hausleiter, Joerg; Feuchtner, Gudrun; Dunning, Allison; DeLago, Augustin; Kim, Yong-Jin; Kaufmann, Philipp A; Villines, Todd C; Chow, Benjamin J W; Hindoyan, Niree; Gomez, Millie; Lin, Fay Y; Jones, Erica; Min, James K; Shaw, Leslee J
2018-01-01
This study sought to assess clinical outcomes associated with the novel Coronary Artery Disease-Reporting and Data System (CAD-RADS) scores used to standardize coronary computed tomography angiography (CTA) reporting and their potential utility in guiding post-coronary CTA care. Clinical decision support is a major focus of health care policies aimed at improving guideline-directed care. Recently, CAD-RADS was developed to standardize coronary CTA reporting and includes clinical recommendations to facilitate patient management after coronary CTA. In the multinational CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter) registry, 5,039 patients without known coronary artery disease (CAD) underwent coronary CTA and were stratified by CAD-RADS scores, which rank CAD stenosis severity as 0 (0%), 1 (1% to 24%), 2 (25% to 49%), 3 (50% to 69%), 4A (70% to 99% in 1 to 2 vessels), 4B (70% to 99% in 3 vessels or ≥50% left main), or 5 (100%). Kaplan-Meier and multivariable Cox models were used to estimate all-cause mortality or myocardial infarction (MI). Receiver-operating characteristic (ROC) curves were used to compare CAD-RADS to the Duke CAD Index and traditional CAD classification. Referrals to invasive coronary angiography (ICA) after coronary CTA were also assessed. Cumulative 5-year event-free survival ranged from 95.2% to 69.3% for CAD-RADS 0 to 5 (p < 0.0001). Higher scores were associated with elevations in event risk (hazard ratio: 2.46 to 6.09; p < 0.0001). The ROC curve for prediction of death or MI was 0.7052 for CAD-RADS, which was noninferior to the Duke Index (0.7073; p = 0.893) and traditional CAD classification (0.7095; p = 0.783). ICA rates were 13% for CAD-RADS 0 to 2, 66% for CAD-RADS 3, and 84% for CAD-RADS ≥4A. For CAD-RADS 3, 58% of all catheterizations occurred within the first 30 days of follow-up. In a patient subset with available medication data, 57% of CAD-RADS 3 patients who received 30-day ICA were either asymptomatic or not receiving antianginal therapy at baseline, whereas only 32% had angina and were receiving medical therapy. CAD-RADS effectively identified patients at risk for adverse events. Frequent ICA use was observed among patients without severe CAD, many of whom were asymptomatic or not taking antianginal drugs. Incorporating CAD-RADS into coronary CTA reports may provide a novel opportunity to promote evidence-based care post-coronary CTA. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
CAPRI: A Geometric Foundation for Computational Analysis and Design
NASA Technical Reports Server (NTRS)
Haimes, Robert
2006-01-01
CAPRI is a software building tool-kit that refers to two ideas; (1) A simplified, object-oriented, hierarchical view of a solid part integrating both geometry and topology definitions, and (2) programming access to this part or assembly and any attached data. A complete definition of the geometry and application programming interface can be found in the document CAPRI: Computational Analysis PRogramming Interface appended to this report. In summary the interface is subdivided into the following functional components: 1. Utility routines -- These routines include the initialization of CAPRI, loading CAD parts and querying the operational status as well as closing the system down. 2. Geometry data-base queries -- This group of functions allow all top level applications to figure out and get detailed information on any geometric component in the Volume definition. 3. Point queries -- These calls allow grid generators, or solvers doing node adaptation, to snap points directly onto geometric entities. 4. Calculated or geometrically derived queries -- These entry points calculate data from the geometry to aid in grid generation. 5. Boundary data routines -- This part of CAPRI allows general data to be attached to Boundaries so that the boundary conditions can be specified and stored within CAPRI s data-base. 6. Tag based routines -- This part of the API allows the specification of properties associated with either the Volume (material properties) or Boundary (surface properties) entities. 7. Geometry based interpolation routines -- This part of the API facilitates Multi-disciplinary coupling and allows zooming through Boundary Attachments. 8. Geometric creation and manipulation -- These calls facilitate constructing simple solid entities and perform the Boolean solid operations. Geometry constructed in this manner has the advantage that if the data is kept consistent with the CAD package, therefore a new design can be incorporated directly and is manufacturable. 9. Master Model access This addition to the API allows for the querying of the parameters and dimensions of the model. The feature tree is also exposed so it is easy to see where the parameters are applied. Calls exist to allow for the modification of the parameters and the suppression/unsuppression of nodes in the tree. Part regeneration is performed by a single API call and a new part becomes available within CAPRI (if the regeneration was successful). This is described in a separate document. Components 1-7 are considered the CAPRI base level reader.
Yang, R Y; Wang, S M; Sun, L; Liu, J M; Li, H X; Sui, X F; Wang, M; Xiu, H L; Wang, S; He, Q; Dong, J; Chen, W X
2015-10-01
Several recent studies have found an independent relationship between levels of plasma branched-chain amino acids (BCAAs) and risk factors for coronary artery disease (CAD); however, few studies have investigated the associations of BCAAs with CAD and the risk of cardiovascular events. Therefore, the aim of this study was to investigate the relationship between BCAAs and CAD. We studied 143 patients with CAD diagnosed by coronary angiography at Beijing Hospital (Beijing, China) during 2008-2011. Apparently healthy control individuals (n = 286) and the patients with CAD were matched (2:1 ratio) by age and gender. The healthy control individuals were selected at random from a set of subjects who attended an annual physical examination at the same hospital in 2011. Conditional logistic regression models were used to evaluate the associations between measured variables and CAD. After multivariate adjustment for traditional CAD risk factors, each one-standard-deviation increase in BCAA concentration was associated with an approximately twofold increase in the risk of CAD (odds ratio = 1.63, 95% confidence interval (CI): 1.21-2.20, P = 0.001). As compared with subjects in the lowest quartile of BCAA levels, the odds ratios (95% CIs) for CAD risk in subjects belonging to quartiles 2, 3, and 4 were 1.65 (0.75-3.61), 2.04 (0.92-4.53), and 3.86 (1.71-8.69), respectively (P trend = 0.01). Our results demonstrate that BCAAs are significantly related to CAD development. This relationship is independent of diabetes, hypertension, dyslipidemia, and body mass index. Copyright © 2015 Elsevier B.V. All rights reserved.
Zheng, Ying-Ying; Xie, Xiang; Ma, Yi-Tong; Fu, Zhen-Yan; Ma, Xiang; Yang, Yi-Ning; Li, Xiao-Mei; Pan, Shuo; Adi, Dilare; Chen, Bang-Dang; Liu, Fen
2017-01-31
C5aR-like receptor 2 (C5L2) has been identified as a receptor for the inflammatory factor Complement 5a (C5a) and acylation-stimulating protein (ASP). ASP binding to C5L2 leading to a net accumulation of TG stores and glucose transporter. The aim of the present study is to evaluate the association of the SNPs of C5L2 gene with coronary artery disease (CAD) in a Chinese population. We examined the role of the tagging single nucleotide polymorphisms (SNPs) of C5L2 gene for CAD using a case-control design. We determined the prevalence of C5L2 genotypes in 505 CAD patients and 469 age and sex-matched healthy control subjects of Han population. There was significant difference in genotype distributions of rs2972607 and rs8112962 between CAD patients and control subjects. The rs2972607 was found to be associated with CAD in a dominant model (AA vs. AG + GG, P<0.001). Similarly, the rs8112962 was found to be associated with CAD in a dominant model (TT vs CT + CC, P=0.016). The difference remained statistically significant after multivariate adjustment (OR =1.401, 95% confidence interval [CI]:1.026~1.914, P=0.034; OR = 1.541, 95%CI:1.093~ 2.172, P=0.014; respectively). The results of this study indicate that both rs2972607 and rs8112962 of C5L2 gene are associated with CAD in a Han population of China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setio, Arnaud A. A., E-mail: arnaud.arindraadiyoso@radboudumc.nl; Jacobs, Colin; Gelderblom, Jaap
Purpose: Current computer-aided detection (CAD) systems for pulmonary nodules in computed tomography (CT) scans have a good performance for relatively small nodules, but often fail to detect the much rarer larger nodules, which are more likely to be cancerous. We present a novel CAD system specifically designed to detect solid nodules larger than 10 mm. Methods: The proposed detection pipeline is initiated by a three-dimensional lung segmentation algorithm optimized to include large nodules attached to the pleural wall via morphological processing. An additional preprocessing is used to mask out structures outside the pleural space to ensure that pleural and parenchymalmore » nodules have a similar appearance. Next, nodule candidates are obtained via a multistage process of thresholding and morphological operations, to detect both larger and smaller candidates. After segmenting each candidate, a set of 24 features based on intensity, shape, blobness, and spatial context are computed. A radial basis support vector machine (SVM) classifier was used to classify nodule candidates, and performance was evaluated using ten-fold cross-validation on the full publicly available lung image database consortium database. Results: The proposed CAD system reaches a sensitivity of 98.3% (234/238) and 94.1% (224/238) large nodules at an average of 4.0 and 1.0 false positives/scan, respectively. Conclusions: The authors conclude that the proposed dedicated CAD system for large pulmonary nodules can identify the vast majority of highly suspicious lesions in thoracic CT scans with a small number of false positives.« less
NASA Astrophysics Data System (ADS)
Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei
2016-02-01
Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.
Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei
2016-01-01
Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology. PMID:26830464
Gidron, Yori; Kupper, Nina; Kwaijtaal, Martijn; Winter, Jobst; Denollet, Johan
2007-12-01
The current understanding of the pathophysiology of atherosclerosis leading to coronary artery disease (CAD) emphasizes the role of inflammatory mediators. Given the bidirectional communication between the immune and central nervous systems, an important question is whether the brain can be "informed" about and modulate CAD-related inflammation. A candidate communicator and modulator is the vagus nerve. Until now, the vagus nerve has received attention in cardiology mainly due to its role in the parasympathetic cardiovascular response. However, the vagus nerve can also "inform" the brain about peripheral inflammation since its paraganglia have receptors for interleukin-1. Furthermore, its efferent branch has a local anti-inflammatory effect. These effects have not been considered in research on the vagus nerve in CAD or in vagus nerve stimulation trials in CAD. In addition, various behavioural interventions, including relaxation, may influence CAD prognosis by affecting vagal activity. Based on this converging evidence, we propose a neuroimmunomodulation approach to atherogenesis. In this model, the vagus nerve "informs" the brain about CAD-related cytokines; in turn, activation of the vagus (via vagus nerve stimulation, vagomimetic drugs or relaxation) induces an anti-inflammatory response that can slow down the chronic process of atherogenesis.
Learning CAD at University through Summaries of the Rules of Design Intent
ERIC Educational Resources Information Center
Barbero, Basilio Ramos; Pedrosa, Carlos Melgosa; Samperio, Raúl Zamora
2017-01-01
The ease with which 3D CAD models may be modified and reused are two key aspects that improve the design-intent variable and that can significantly shorten the development timelines of a product. A set of rules are gathered from various authors that take different 3D modelling strategies into account. These rules are then applied to CAD…
Design and Development of an Automatic Tool Changer for an Articulated Robot Arm
NASA Astrophysics Data System (ADS)
Ambrosio, H.; Karamanoglu, M.
2014-07-01
In the creative industries, the length of time between the ideation stage and the making of physical objects is decreasing due to the use of CAD/CAM systems and adicitive manufacturing. Natural anisotropic materials, such as solid wood can also be transformed using CAD/CAM systems, but only with subtractive processes such as machining with CNC routers. Whilst some 3 axis CNC routing machines are affordable to buy and widely available, more flexible 5 axis routing machines still present themselves as a too big investment for small companies. Small refurbished articulated robots can be a cheaper alternative but they require a light end-effector. This paper presents a new lightweight tool changer that converts a small 3kg payload 6 DOF robot into a robot apprentice able to machine wood and similar soft materials.
Li, Wei; Cao, Peng; Zhao, Dazhe; Wang, Junbo
2016-01-01
Computer aided detection (CAD) systems can assist radiologists by offering a second opinion on early diagnosis of lung cancer. Classification and feature representation play critical roles in false-positive reduction (FPR) in lung nodule CAD. We design a deep convolutional neural networks method for nodule classification, which has an advantage of autolearning representation and strong generalization ability. A specified network structure for nodule images is proposed to solve the recognition of three types of nodules, that is, solid, semisolid, and ground glass opacity (GGO). Deep convolutional neural networks are trained by 62,492 regions-of-interest (ROIs) samples including 40,772 nodules and 21,720 nonnodules from the Lung Image Database Consortium (LIDC) database. Experimental results demonstrate the effectiveness of the proposed method in terms of sensitivity and overall accuracy and that it consistently outperforms the competing methods.
Coronary artery disease in Saudi Arabia.
Al-Nozha, Mansour M; Arafah, Mohammed R; Al-Mazrou, Yaqoub Y; Al-Maatouq, Mohammed A; Khan, Nazeer B; Khalil, Mohamed Z; Al-Khadra, Akram H; Al-Marzouki, Khalid; Abdullah, Moheeb A; Al-Harthi, Saad S; Al-Shahid, Maie S; Nouh, Mohammed S; Al-Mobeireek, Abdulellah
2004-09-01
Coronary artery disease (CAD) is a major public health problem worldwide. To our knowledge, there is no national data available from community based studies on prevalence of CAD in the Kingdom of Saudi Arabia (KSA). Therefore, we designed this study with the objective to determine the prevalence of CAD among Saudis of both sexes, between the ages of 30-70-years in rural as well as urban communities. Further, to determine the prevalence and clinical pattern of the major modifiable risk factors for CAD among the same population. This work is part of a major national study on CAD in Saudis Study (CADISS). This is a community based study conducted by examining subjects in the age group of 30-70-years of selected households during 5-year period between 1995 and 2000 in KSA. Data were obtained from history using a validated questionnaire, and electrocardiography. The data were analyzed to provide prevalence of CAD and risk assessment model. Nine hundred and forty-four subjects, out of 17232 were diagnosed to have CAD. Thus, the overall prevalence of CAD obtained from this study is 5.5% in KSA. The prevalence in males and females were 6.6% and 4.4% (P<0.0001). Urban Saudis have a higher prevalence of 6.2% compared to rural Saudis of 4% (P<0.0001). The following variables are found to be statistically significant risk factors in KSA: age, male gender, body mass index (BMI), hypertension, current smoking, fasting blood glucose, fasting cholesterol and triglycerides. The overall prevalence of CAD in KSA is 5.5%. A national prevention program at community level as well as high risk groups should be implemented sooner to prevent the expected epidemic of CAD that we are seeing, beginning. Measures are needed to change lifestyle and to address the management of the metabolic syndrome, to reduce modifiable risk factors for CAD. A longitudinal study is needed to demonstrate the importance of reducing modifiable risk factors for CAD in KSA.
Vojdani, Mahroo; Torabi, Kianoosh; Atashkar, Berivan; Heidari, Hossein; Torabi Ardakani, Mahshid
2016-01-01
Statement of the Problem: Marginal fitness is the most important criteria for evaluation of the clinical acceptability of a cast restoration. Marginal gap which is due to cement solubility and plaque retention is potentially detrimental to both tooth and periodontal tissues. Purpose: This in vitro study aimed to evaluate the marginal and internal fit of cobalt- chromium (Co-Cr) copings fabricated by two different CAD/CAM systems: (CAD/ milling and CAD/ Ceramill Sintron). Materials and Method: We prepared one machined standard stainless steel master model with following dimensions: 7 mm height, 5mm diameter, 90˚ shoulder marginal finish line with 1 mm width, 10˚ convergence angle and anti-rotational surface on the buccal aspect of the die. There were 10 copings produced from hard presintered Co-Cr blocks according to CAD/ Milling technique and ten copings from soft non- presintered Co-Cr blocks according to CAD/ Ceramill Sintron technique. Marginal and internal accuracies of copings were documented by the replica technique. Replicas were examined at ten reference points under a digital microscope (230X). The Student's t-test was used for statistical analysis. p< 0.001 was considered significant. Results: Statistically significant differences existed between the groups (p< 0.001). The CAD/milling group (hard copings) had a mean marginal discrepancy (MD) of 104 µm, axial discrepancy (AD) of 23 µm and occlusal discrepancy of 130 µm. For CAD/ Ceramill Sintron group, these values were 195 µm (MD), 46 µm (AD), and 232 µm (OD). Internal total discrepancy (ITD) for the CAD/milling group was 77 µm, whereas for the CAD/Ceramill Sintron group was 143 µm. Conclusion: Hard presintered Co-Cr copings had significantly higher marginal and internal accuracies compared to the soft non-presintered copings. PMID:27942545
Orion Active Thermal Control System Dynamic Modeling Using Simulink/MATLAB
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.; Yuko, James
2010-01-01
This paper presents dynamic modeling of the crew exploration vehicle (Orion) active thermal control system (ATCS) using Simulink (Simulink, developed by The MathWorks). The model includes major components in ATCS, such as heat exchangers and radiator panels. The mathematical models of the heat exchanger and radiator are described first. Four different orbits were used to validate the radiator model. The current model results were compared with an independent Thermal Desktop (TD) (Thermal Desktop, PC/CAD-based thermal model builder, developed in Cullimore & Ring (C&R) Technologies) model results and showed good agreement for all orbits. In addition, the Orion ATCS performance was presented for three orbits and the current model results were compared with three sets of solutions- FloCAD (FloCAD, PC/CAD-based thermal/fluid model builder, developed in C&R Technologies) model results, SINDA/FLUINT (SINDA/FLUINT, a generalized thermal/fluid network-style solver ) model results, and independent Simulink model results. For each case, the fluid temperatures at every component on both the crew module and service module sides were plotted and compared. The overall agreement is reasonable for all orbits, with similar behavior and trends for the system. Some discrepancies exist because the control algorithm might vary from model to model. Finally, the ATCS performance for a 45-hr nominal mission timeline was simulated to demonstrate the capability of the model. The results show that the ATCS performs as expected and approximately 2.3 lb water was consumed in the sublimator within the 45 hr timeline before Orion docked at the International Space Station.
CAD-Based Shielding Analysis for ITER Port Diagnostics
NASA Astrophysics Data System (ADS)
Serikov, Arkady; Fischer, Ulrich; Anthoine, David; Bertalot, Luciano; De Bock, Maartin; O'Connor, Richard; Juarez, Rafael; Krasilnikov, Vitaly
2017-09-01
Radiation shielding analysis conducted in support of design development of the contemporary diagnostic systems integrated inside the ITER ports is relied on the use of CAD models. This paper presents the CAD-based MCNP Monte Carlo radiation transport and activation analyses for the Diagnostic Upper and Equatorial Port Plugs (UPP #3 and EPP #8, #17). The creation process of the complicated 3D MCNP models of the diagnostics systems was substantially accelerated by application of the CAD-to-MCNP converter programs MCAM and McCad. High performance computing resources of the Helios supercomputer allowed to speed-up the MCNP parallel transport calculations with the MPI/OpenMP interface. The found shielding solutions could be universal, reducing ports R&D costs. The shield block behind the Tritium and Deposit Monitor (TDM) optical box was added to study its influence on Shut-Down Dose Rate (SDDR) in Port Interspace (PI) of EPP#17. Influence of neutron streaming along the Lost Alpha Monitor (LAM) on the neutron energy spectra calculated in the Tangential Neutron Spectrometer (TNS) of EPP#8. For the UPP#3 with Charge eXchange Recombination Spectroscopy (CXRS-core), an excessive neutron streaming along the CXRS shutter, which should be prevented in further design iteration.
Posadas-Sánchez, Rosalinda; López-Uribe, Ángel René; Posadas-Romero, Carlos; Pérez-Hernández, Nonanzit; Rodríguez-Pérez, José Manuel; Ocampo-Arcos, Wendy Angélica; Fragoso, José Manuel; Cardoso-Saldaña, Guillermo; Vargas-Alarcón, Gilberto
2017-10-01
The aim of this study was to evaluate the potential use of the I148M/PNPLA3 (rs738409) gene polymorphism as a susceptibility marker for premature coronary artery disease (pCAD) and/or cardiovascular risk factors in Mexican type 2 diabetes mellitus patients (T2DM). The polymorphism was genotyped by 5' exonuclease TaqMan assays in a group of 2572 subjects (1103 with pCAD and 1469 healthy controls) belonging to the Genetics of Atherosclerotic Disease (GEA) Mexican Study. Anthropometric and biochemical measurements were performed in all individuals. The association between the I148M/PNPLA3 (rs738409) gene polymorphism with pCAD and other metabolic and cardiovascular risk factors was evaluated using logistic regression analysis under different statistical approaches including dominant, recessive, heterozygous, additive, and co-dominant models. The polymorphism was not associated with pCAD in the whole group of participants, however, when patients and controls were divided into those with and without T2DM, under additive model, the polymorphism was associated with the presence of pCAD only in patients with T2DM (OR=1.20, 95% CI: 1.01-1.42, P add =0.042). On the other hand, under several models adjusted for age, gender, body mass index and T2DM, the polymorphism was associated with increased risk of fatty liver and elevated levels of alanine transaminase (ALT) in the whole group of pCAD patients and controls. In the control group, the polymorphism was associated with insulin resistance and coronary artery calcification (CAC) score≥10 under several models. The results suggest that the I148M/PNPLA3 (rs738409) polymorphism is associated with the presence of pCAD in T2DM patients and with some cardiometabolic parameters. The association detected with CAC in the control group indicates that this polymorphism could be a marker for subclinical atherosclerosis. Copyright © 2016 Elsevier GmbH. All rights reserved.
Design and modeling balloon-expandable coronary stent for manufacturability
NASA Astrophysics Data System (ADS)
Suryawan, D.; Suyitno
2017-02-01
Coronary artery disease (CAD) is a disease that caused by narrowing of the coronary artery. The narrowing coronary artery is usually caused by cholesterol-containing deposit (plaque) which can cause a heart attack. CAD is the most common cause mortality in Indonesia. The commonly CAD treatment use the stent to opens or alleviate the narrowing coronary artery. In this study, the stent design is optimized for the manufacturability. Modeling is used to determine the free stent expansion due to applied pressure in the inner surface of the stent. The stress distribution, outer diameter change, and dogboning phenomena are investigated in the simulation. The result of modeling and simulating was analyzed and used to optimize the stent design before it is manufactured using EDM (Electric Discharge Machine) in the next research.
3D model assisted fully automated scanning laser Doppler vibrometer measurements
NASA Astrophysics Data System (ADS)
Sels, Seppe; Ribbens, Bart; Bogaerts, Boris; Peeters, Jeroen; Vanlanduit, Steve
2017-12-01
In this paper, a new fully automated scanning laser Doppler vibrometer (LDV) measurement technique is presented. In contrast to existing scanning LDV techniques which use a 2D camera for the manual selection of sample points, we use a 3D Time-of-Flight camera in combination with a CAD file of the test object to automatically obtain measurements at pre-defined locations. The proposed procedure allows users to test prototypes in a shorter time because physical measurement locations are determined without user interaction. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. The proposed method is illustrated with vibration measurements of an unmanned aerial vehicle
Workflow of CAD / CAM Scoliosis Brace Adjustment in Preparation Using 3D Printing.
Weiss, Hans-Rudolf; Tournavitis, Nicos; Nan, Xiaofeng; Borysov, Maksym; Paul, Lothar
2017-01-01
High correction bracing is the most effective conservative treatment for patients with scoliosis during growth. Still today braces for the treatment of scoliosis are made by casting patients while computer aided design (CAD) and computer aided manufacturing (CAM) is available with all possibilities to standardize pattern specific brace treatment and improve wearing comfort. CAD / CAM brace production mainly relies on carving a polyurethane foam model which is the basis for vacuuming a polyethylene (PE) or polypropylene (PP) brace. Purpose of this short communication is to describe the workflow currently used and to outline future requirements with respect to 3D printing technology. Description of the steps of virtual brace adjustment as available today are content of this paper as well as an outline of the great potential there is for the future 3D printing technology. For 3D printing of scoliosis braces it is necessary to establish easy to use software plug-ins in order to allow adding 3D printing technology to the current workflow of virtual CAD / CAM brace adjustment. Textures and structures can be added to the brace models at certain well defined locations offering the potential of more wearing comfort without losing in-brace correction. Advances have to be made in the field of CAD / CAM software tools with respect to design and generation of individually structured brace models based on currently well established and standardized scoliosis brace libraries.
Improving aircraft conceptual design - A PHIGS interactive graphics interface for ACSYNT
NASA Technical Reports Server (NTRS)
Wampler, S. G.; Myklebust, A.; Jayaram, S.; Gelhausen, P.
1988-01-01
A CAD interface has been created for the 'ACSYNT' aircraft conceptual design code that permits the execution and control of the design process via interactive graphics menus. This CAD interface was coded entirely with the new three-dimensional graphics standard, the Programmer's Hierarchical Interactive Graphics System. The CAD/ACSYNT system is designed for use by state-of-the-art high-speed imaging work stations. Attention is given to the approaches employed in modeling, data storage, and rendering.
Application of computer-aided dispatch in law enforcement: An introductory planning guide
NASA Technical Reports Server (NTRS)
Sohn, R. L.; Gurfield, R. M.; Garcia, E. A.; Fielding, J. E.
1975-01-01
A set of planning guidelines for the application of computer-aided dispatching (CAD) to law enforcement is presented. Some essential characteristics and applications of CAD are outlined; the results of a survey of systems in the operational or planning phases are summarized. Requirements analysis, system concept design, implementation planning, and performance and cost modeling are described and demonstrated with numerous examples. Detailed descriptions of typical law enforcement CAD systems, and a list of vendor sources, are given in appendixes.
CAD/CAM for development and fabrication of cosecant reflector antennas
NASA Astrophysics Data System (ADS)
Petri, U.
The application of CAD/CAM techniques to lower the cost of redesigning and manufacturing specialized cosecant reflector antennas for use in the mm-wave range is described and demonstrated. Consideration is given to the theoretical computation of reflector surfaces; the representation of a reflector surface in a CAD system; the numerically controlled milling of an Al, wood, or plastic model antenna; and the construction of the antenna (by spraying the 300-micron Sn-alloy conducting layer onto the coated model surface and then applying a 1-mm-thick epoxy-matrix GFRP layer, a 20-30-mm layer of flexible polyurethane foam, and a final GFRP layer). Diagrams and photographs are provided.
Using 3D Geometric Models to Teach Spatial Geometry Concepts.
ERIC Educational Resources Information Center
Bertoline, Gary R.
1991-01-01
An explanation of 3-D Computer Aided Design (CAD) usage to teach spatial geometry concepts using nontraditional techniques is presented. The software packages CADKEY and AutoCAD are described as well as their usefulness in solving space geometry problems. (KR)
Jiwani, Rozmin B; Cleveland, Lisa M; Patel, Darpan I; Virani, Salim S; Gill, Sara L
South Asians (SAs) have a well-documented risk for mortality related to coronary artery disease (CAD). However, there is a lack of evidence to guide the implementation and dissemination of primary and secondary interventions to control and deter progression of CAD in SAs. The aim of this study is to explore and describe self-regulation behaviors in SAs with CAD using Leventhal's Common Sense Model. In this mixed-methods study, quantitative data were collected using 3 survey questionnaires (demographics, Illness Perception Questionnaire-Revised, and Coping/Self-Regulation Behaviors). Before completing the surveys, a subset of the sample (n = 20) participated in individual face-to-face or telephone interviews. A total of 102 SAs were enrolled (age, 53.5 ± 9.98 years). On average, participants rated themselves high (63 ± 3.06) on negative perceptions. In addition, they discussed desi diet, stress, a lack of physical activity, ignoring symptoms, and kismet (fate) as the most important perceived causes of their CAD. Most of the participants modified their lifestyle after their CAD event. Participants expressed regret for not having changed their lifestyle earlier when they were experiencing early symptoms of their CAD. Findings from this study enhance the understanding of self-regulation behaviors of SAs with CAD. Ultimately, these findings will inform the development and implementation of targeted interventions that address culture-specific lifestyle modification for SAs with CAD.
Takaba, Masayuki; Tanaka, Shinpei; Ishiura, Yuichi; Baba, Kazuyoshi
2013-07-01
Recently, fixed dental prostheses (FDPs) with a hybrid structure of CAD/CAM porcelain crowns adhered to a CAD/CAM zirconia framework (PAZ) have been developed. The aim of this report was to describe the clinical application of a newly developed implant-supported FDP fabrication system, which uses PAZ, and to evaluate the outcome after a maximum application period of 36 months. Implants were placed in three patients with edentulous areas in either the maxilla or mandible. After the implant fixtures had successfully integrated with bone, gold-platinum alloy or zirconia custom abutments were first fabricated. Zirconia framework wax-up was performed on the custom abutments, and the CAD/CAM zirconia framework was prepared using the CAD/CAM system. Next, wax-up was performed on working models for porcelain crown fabrication, and CAD/CAM porcelain crowns were fabricated. The CAD/CAM zirconia frameworks and CAD/CAM porcelain crowns were bonded using adhesive resin cement, and the PAZ was cemented. Cementation of the implant superstructure improved the esthetics and masticatory efficiency in all patients. No undesirable outcomes, such as superstructure chipping, stomatognathic dysfunction, or periimplant bone resorption, were observed in any of the patients. PAZ may be a potential solution for ceramic-related clinical problems such as chipping and fracture and associated complicated repair procedures in implant-supported FDPs. © 2012 by the American College of Prosthodontists.
Gao, Jie; Kong, Shu; You, Jiangtao; Sheng, Ying
2017-01-01
Background Coronary artery disease (CAD) is one of the most serious diseases all around the world. Previous studies have shown the function of CXCL12 in the process of atherosclerosis. The aim of this research is to examine whether variants of CXCL12 contribute to CAD. Materials and Methods To examine whether variants of CXCL12 contribute to CAD, we selected 6 single nucleotide polymorphisms (SNPs) of CXCL12, and genotyped by Sequenom MassARRAY technology in 597 CAD patients and 685 healthy control. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated by unconditional logistic regression adjusted for age and gender. We also analysis the differences in continuous variables among the subjects with three genotypes of related genes were assessed using the ANOVA. Results We found significant differences in apoB concentrations with rs1065297 and rs10793538 different genotype. In the allele model, rs1065297, rs266089 and rs10793538 in CXCL12 gene associated with the risk of CAD. Stratified according to gender, rs266089 and rs2839693 in CXCL12 gene were associated with the risk of CAD in men, while rs1065297 and rs10793538 in CXCL12 gene were associated with the risk of CAD in women. Stratified according to age, rs197452 decreased the risk of CAD in less than 50 years old group. While in more than 50 years old group, not find significant results. Haplotype analysis shown that haplotype “TGCC” in the block increased CAD risk (OR=1.26, 95%CI: 1.00-1.58, p=0.046). Conclusion This study provides an evidence for polymorphism of CXCL12 gene associated with CAD development in Chinese Han population. PMID:28903360
Ferreira, António Miguel; Marques, Hugo; Tralhão, António; Santos, Miguel Borges; Santos, Ana Rita; Cardoso, Gonçalo; Dores, Hélder; Carvalho, Maria Salomé; Madeira, Sérgio; Machado, Francisco Pereira; Cardim, Nuno; de Araújo Gonçalves, Pedro
2016-11-01
Current guidelines recommend the use of the Modified Diamond-Forrester (MDF) method to assess the pre-test likelihood of obstructive coronary artery disease (CAD). We aimed to compare the performance of the MDF method with two contemporary algorithms derived from multicenter trials that additionally incorporate cardiovascular risk factors: the calculator-based 'CAD Consortium 2' method, and the integer-based CONFIRM score. We assessed 1069 consecutive patients without known CAD undergoing coronary CT angiography (CCTA) for stable chest pain. Obstructive CAD was defined as the presence of coronary stenosis ≥50% on 64-slice dual-source CT. The three methods were assessed for calibration, discrimination, net reclassification, and changes in proposed downstream testing based upon calculated pre-test likelihoods. The observed prevalence of obstructive CAD was 13.8% (n=147). Overestimations of the likelihood of obstructive CAD were 140.1%, 9.8%, and 18.8%, respectively, for the MDF, CAD Consortium 2 and CONFIRM methods. The CAD Consortium 2 showed greater discriminative power than the MDF method, with a C-statistic of 0.73 vs. 0.70 (p<0.001), while the CONFIRM score did not (C-statistic 0.71, p=0.492). Reclassification of pre-test likelihood using the 'CAD Consortium 2' or CONFIRM scores resulted in a net reclassification improvement of 0.19 and 0.18, respectively, which would change the diagnostic strategy in approximately half of the patients. Newer risk factor-encompassing models allow for a more precise estimation of pre-test probabilities of obstructive CAD than the guideline-recommended MDF method. Adoption of these scores may improve disease prediction and change the diagnostic pathway in a significant proportion of patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Wind Turbine Blade CAD Models Used as Scaffolding Technique to Teach Design Engineers
ERIC Educational Resources Information Center
Irwin, John
2013-01-01
The Siemens PLM CAD software NX is commonly used for designing mechanical systems, and in complex systems such as the emerging area of wind power, the ability to have a model controlled by design parameters is a certain advantage. Formula driven expressions based on the amount of available wind in an area can drive the amount of effective surface…
Dorenkamp, Marc; Bonaventura, Klaus; Sohns, Christian; Becker, Christoph R; Leber, Alexander W
2012-03-01
The study aims to determine the direct costs and comparative cost-effectiveness of latest-generation dual-source computed tomography (DSCT) and invasive coronary angiography for diagnosing coronary artery disease (CAD) in patients suspected of having this disease. The study was based on a previously elaborated cohort with an intermediate pretest likelihood for CAD and on complementary clinical data. Cost calculations were based on a detailed analysis of direct costs, and generally accepted accounting principles were applied. Based on Bayes' theorem, a mathematical model was used to compare the cost-effectiveness of both diagnostic approaches. Total costs included direct costs, induced costs and costs of complications. Effectiveness was defined as the ability of a diagnostic test to accurately identify a patient with CAD. Direct costs amounted to €98.60 for DSCT and to €317.75 for invasive coronary angiography. Analysis of model calculations indicated that cost-effectiveness grew hyperbolically with increasing prevalence of CAD. Given the prevalence of CAD in the study cohort (24%), DSCT was found to be more cost-effective than invasive coronary angiography (€970 vs €1354 for one patient correctly diagnosed as having CAD). At a disease prevalence of 49%, DSCT and invasive angiography were equally effective with costs of €633. Above a threshold value of disease prevalence of 55%, proceeding directly to invasive coronary angiography was more cost-effective than DSCT. With proper patient selection and consideration of disease prevalence, DSCT coronary angiography is cost-effective for diagnosing CAD in patients with an intermediate pretest likelihood for it. However, the range of eligible patients may be smaller than previously reported.
Candia, Roberto; Naimark, David; Sander, Beate; Nguyen, Geoffrey C
2017-11-01
Postoperative recurrence of Crohn's disease is common. This study sought to assess whether the postoperative management should be based on biological therapy alone or combined with thiopurines and whether the therapy should be started immediately after surgery or guided by either endoscopic or clinical recurrence. A Markov model was developed to estimate expected health outcomes in quality-adjusted life years (QALYs) and costs in Canadian dollars (CAD$) accrued by hypothetical patients with high recurrence risk after ileocolic resection. Eight strategies of postoperative management were evaluated. A lifetime time horizon, an annual discount rate of 5%, a societal perspective, and a cost-effectiveness threshold of 50,000 CAD$/QALY were assumed. Deterministic and probabilistic sensitivity analyses were conducted. The model was validated against randomized trials and historical cohorts. Three strategies dominated the others: endoscopy-guided full step-up therapy (14.80 QALYs, CAD$ 462,180), thiopurines immediately post-surgery plus endoscopy-guided biological step-up therapy (14.89 QALYs, CAD$ 464,099) and combination therapy immediately post-surgery (14.94 QALYs, CAD$ 483,685). The second strategy was the most cost-effective, assuming a cost-effectiveness threshold of 50,000 CAD$/QALY. Probabilistic sensitivity analysis showed that the second strategy has the highest probability of being the optimal alternative in all comparisons at cost-effectiveness thresholds from 30,000 to 100,000 CAD$/QALY. The strategies guided only by clinical recurrence and those using biologics alone were dominated. According to this decision analysis, thiopurines immediately after surgery and addition of biologics guided by endoscopic recurrence is the optimal strategy of postoperative management in patients with Crohn's disease with high risk of recurrence (see Video Abstract, Supplemental Digital Content 1, http://links.lww.com/IBD/B654).
Eapen, Danny J; Manocha, Pankaj; Ghasemzadeh, Nima; Ghasemzedah, Nima; Patel, Riyaz S; Al Kassem, Hatem; Hammadah, Muhammad; Veledar, Emir; Le, Ngoc-Anh; Pielak, Tomasz; Thorball, Christian W; Velegraki, Aristea; Kremastinos, Dimitrios T; Lerakis, Stamatios; Sperling, Laurence; Quyyumi, Arshed A
2014-10-23
Soluble urokinase plasminogen activator receptor (suPAR) is an emerging inflammatory and immune biomarker. Whether suPAR level predicts the presence and the severity of coronary artery disease (CAD), and of incident death and myocardial infarction (MI) in subjects with suspected CAD, is unknown. We measured plasma suPAR levels in 3367 subjects (67% with CAD) recruited in the Emory Cardiovascular Biobank and followed them for adverse cardiovascular (CV) outcomes of death and MI over a mean 2.1±1.1 years. Presence of angiographic CAD (≥50% stenosis in ≥1 coronary artery) and its severity were quantitated using the Gensini score. Cox's proportional hazard survival and discrimination analyses were performed with models adjusted for established CV risk factors and C-reactive protein levels. Elevated suPAR levels were independently associated with the presence of CAD (P<0.0001) and its severity (P<0.0001). A plasma suPAR level ≥3.5 ng/mL (cutoff by Youden's index) predicted future risk of MI (hazard ratio [HR]=3.2; P<0.0001), cardiac death (HR=2.62; P<0.0001), and the combined endpoint of death and MI (HR=1.9; P<0.0001), even after adjustment of covariates. The C-statistic for a model based on traditional risk factors was improved from 0.72 to 0.74 (P=0.008) with the addition of suPAR. Elevated levels of plasma suPAR are associated with the presence and severity of CAD and are independent predictors of death and MI in patients with suspected or known CAD. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Eapen, Danny J.; Manocha, Pankaj; Ghasemzedah, Nima; Patel, Riyaz S.; Al Kassem, Hatem; Hammadah, Muhammad; Veledar, Emir; Le, Ngoc‐Anh; Pielak, Tomasz; Thorball, Christian W.; Velegraki, Aristea; Kremastinos, Dimitrios T.; Lerakis, Stamatios; Sperling, Laurence; Quyyumi, Arshed A.
2014-01-01
Introduction Soluble urokinase plasminogen activator receptor (suPAR) is an emerging inflammatory and immune biomarker. Whether suPAR level predicts the presence and the severity of coronary artery disease (CAD), and of incident death and myocardial infarction (MI) in subjects with suspected CAD, is unknown. Methods and Results We measured plasma suPAR levels in 3367 subjects (67% with CAD) recruited in the Emory Cardiovascular Biobank and followed them for adverse cardiovascular (CV) outcomes of death and MI over a mean 2.1±1.1 years. Presence of angiographic CAD (≥50% stenosis in ≥1 coronary artery) and its severity were quantitated using the Gensini score. Cox's proportional hazard survival and discrimination analyses were performed with models adjusted for established CV risk factors and C‐reactive protein levels. Elevated suPAR levels were independently associated with the presence of CAD (P<0.0001) and its severity (P<0.0001). A plasma suPAR level ≥3.5 ng/mL (cutoff by Youden's index) predicted future risk of MI (hazard ratio [HR]=3.2; P<0.0001), cardiac death (HR=2.62; P<0.0001), and the combined endpoint of death and MI (HR=1.9; P<0.0001), even after adjustment of covariates. The C‐statistic for a model based on traditional risk factors was improved from 0.72 to 0.74 (P=0.008) with the addition of suPAR. Conclusion Elevated levels of plasma suPAR are associated with the presence and severity of CAD and are independent predictors of death and MI in patients with suspected or known CAD. PMID:25341887
Sagsoz, N Polat; Yanıkoglu, N
2018-04-01
The purpose of this study was to evaluate the fracture resistance of monolithic computer-aided design/computer-aided manufacturing (CAD/CAM) crowns that are prepared with different cement thickness. For this investigation, a human maxillary premolar tooth was selected. Master model preparation was performed with a demand bur under water spray. Master die was taken to fabricate 105 epoxy resin replicas. The crowns were milled using a CEREC 4 CAD/CAM system (Software Version, 4.2.0.57192). CAD/CAM crowns were made using resin nanoceramic, feldspathic glass ceramic, lithium disilicate, and leucite-reinforced ceramics. Each group was subdivided into three groups in accordance with three different cement thicknesses (30, 90, and 150 μm). Crowns milled out. Then RelyX ™ U200 was used as a luting agent to bond the crowns to the prepared samples. After one hour cementations, the specimens were stored in water bath at 37°C for 1 week before testing. Seven unprepared and unrestored teeth were kept and tested as a control group. A universal test machine was used to assume the fracture resistance of all specimens. The compressive load (N) that caused fracture was recorded for each specimen. Fracture resistance data were statistically analyzed by one-way ANOVA and two-factor interaction modeling test (α = 0.001). There are statistically significant differences between fracture resistances of CAD/CAM monolithic crown materials (P < 0.001). It is seen that cement thickness is not statistically significant for fracture resistance of CAD/CAM monolithic crowns (P > 0.001). CAD/CAM monolithic crown materials affected fracture resistance. Cement thickness (30, 90, and 150 μm) was not effective on fracture resistance of CAD/CAM monolithic crowns.
Dahl, Bjørn Einar; Rønold, Hans Jacob; Dahl, Jon E
2017-03-01
Whether single crowns produced by computer-aided design and computer-aided manufacturing (CAD-CAM) have an internal fit comparable to crowns made by lost-wax metal casting technique is unknown. The purpose of this in vitro study was to compare the internal fit of single crowns produced with the lost-wax and metal casting technique with that of single crowns produced with the CAD-CAM technique. The internal fit of 5 groups of single crowns produced with the CAD-CAM technique was compared with that of single crowns produced in cobalt-chromium with the conventional lost-wax and metal casting technique. Comparison was performed using the triple-scan protocol; scans of the master model, the crown on the master model, and the intaglio of the crown were superimposed and analyzed with computer software. The 5 groups were milled presintered zirconia, milled hot isostatic pressed zirconia, milled lithium disilicate, milled cobalt-chromium, and laser-sintered cobalt-chromium. The cement space in both the mesiodistal and buccopalatal directions was statistically smaller (P<.05) for crowns made by the conventional lost-wax and metal casting technique compared with that of crowns produced by the CAD-CAM technique. Single crowns made using the conventional lost-wax and metal casting technique have better internal fit than crowns produced using the CAD-CAM technique. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Design of Force Sensor Leg for a Rocket Thrust Detector
NASA Astrophysics Data System (ADS)
Woten, Douglas; McGehee, Tripp; Wright, Anne
2005-03-01
A hybrid rocket is composed of a solid fuel and a separate liquid or gaseous oxidizer. These rockets may be throttled like liquid rockets, are safer than solid rockets, and are much less complex than liquid rockets. However, hybrid rockets produce thrust oscillations that are not practical for large scale use. A lab scale hybrid rocket at the University of Arkansas at Little Rock (UALR) Hybrid Rocket Facility is used to develop sensors to measure physical properties of hybrid rockets. Research is currently being conducted to design a six degree of freedom force sensor to measure the thrust and torque in all three spacial dimensions. The detector design uses six force sensor legs. Each leg utilizes strain gauges and a Wheatstone bridge to produce a voltage propotional to the force on the leg. The leg was designed using the CAD software ProEngineer and ProMechanica. Computer models of the strains on the single leg will be presented. A prototype leg was built and was tested in an INSTRON and results will be presented.
Object Creation and Human Factors Evaluation for Virtual Environments
NASA Technical Reports Server (NTRS)
Lindsey, Patricia F.
1998-01-01
The main objective of this project is to provide test objects for simulated environments utilized by the recently established Army/NASA Virtual Innovations Lab (ANVIL) at Marshall Space Flight Center, Huntsville, Al. The objective of the ANVIL lab is to provide virtual reality (VR) models and environments and to provide visualization and manipulation methods for the purpose of training and testing. Visualization equipment used in the ANVIL lab includes head-mounted and boom-mounted immersive virtual reality display devices. Objects in the environment are manipulated using data glove, hand controller, or mouse. These simulated objects are solid or surfaced three dimensional models. They may be viewed or manipulated from any location within the environment and may be viewed on-screen or via immersive VR. The objects are created using various CAD modeling packages and are converted into the virtual environment using dVise. This enables the object or environment to be viewed from any angle or distance for training or testing purposes.
NASA Technical Reports Server (NTRS)
Zubrin, Robert; Price, Steve; Clark, Ben; Cantrell, Jim; Bourke, Roger
1993-01-01
A Mars Aerial Platform (MAP) mission capable of generating thousands of very-high-resolution (20 cm/pixel) pictures of the Martian surface is considered. The MAP entry vehicle will map the global circulation of the planet's atmosphere and examine the surface and subsurface. Data acquisition will use instruments carried aboard balloons flying at nominal altitude of about 7 km over the Martian surface. The MAP balloons will take high- and medium-resolution photographs of Mars, sound its surface with radar, and provide tracking data to chart its winds. Mars vehicle design is based on the fourth-generation NTP, NEP, SEP vehicle set that provides a solid database for determining transportation system costs. Interference analysis and 3D image generation are performed using manual system sizing and sketching in conjunction with precise CAD modeling.
Classification and pose estimation of objects using nonlinear features
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1998-03-01
A new nonlinear feature extraction method called the maximum representation and discrimination feature (MRDF) method is presented for extraction of features from input image data. It implements transformations similar to the Sigma-Pi neural network. However, the weights of the MRDF are obtained in closed form, and offer advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We show its use in estimating the class and pose of images of real objects and rendered solid CAD models of machine parts from single views using a feature-space trajectory (FST) neural network classifier. We show more accurate classification and pose estimation results than are achieved by standard principal component analysis (PCA) and Fukunaga-Koontz (FK) feature extraction methods.
Design of pneumatic proportional flow valve type 5/3
NASA Astrophysics Data System (ADS)
Laski, P. A.; Pietrala, D. S.; Zwierzchowski, J.; Czarnogorski, K.
2017-08-01
In this paper the 5/3-way pneumatic, proportional flow valve was designed and made. Stepper linear actuator was used to move the spool. The valve is controlled by the controlled based on a AVR microcontroller. Virtual model of the valve was created in CAD. The real element was made based on a standard 5/3-way manually actuated valve with hand lever, which was dismounted and replaced by linear stepper motor. All the elements was mounted in a specially made housing. The controller consists of microcontroller Atmega16, integrated circuit L293D, display, two potentiometers, three LEDs and six buttons. Series of research was also conducted. Simulation research were performed using CFD by the Flow Simulation addition to SolidWorks. During the experiments the valve characteristics of flow and pressure was determined.
Rotger, Margalida; Glass, Tracy R.; Junier, Thomas; Lundgren, Jens; Neaton, James D.; Poloni, Estella S.; van 't Wout, Angélique B.; Lubomirov, Rubin; Colombo, Sara; Martinez, Raquel; Rauch, Andri; Günthard, Huldrych F.; Neuhaus, Jacqueline; Wentworth, Deborah; van Manen, Danielle; Gras, Luuk A.; Schuitemaker, Hanneke; Albini, Laura; Torti, Carlo; Jacobson, Lisa P.; Li, Xiuhong; Kingsley, Lawrence A.; Carli, Federica; Guaraldi, Giovanni; Ford, Emily S.; Sereti, Irini; Hadigan, Colleen; Martinez, Esteban; Arnedo, Mireia; Egaña-Gorroño, Lander; Gatell, Jose M.; Law, Matthew; Bendall, Courtney; Petoumenos, Kathy; Rockstroh, Jürgen; Wasmuth, Jan-Christian; Kabamba, Kabeya; Delforge, Marc; De Wit, Stephane; Berger, Florian; Mauss, Stefan; de Paz Sierra, Mariana; Losso, Marcelo; Belloso, Waldo H.; Leyes, Maria; Campins, Antoni; Mondi, Annalisa; De Luca, Andrea; Bernardino, Ignacio; Barriuso-Iglesias, Mónica; Torrecilla-Rodriguez, Ana; Gonzalez-Garcia, Juan; Arribas, José R.; Fanti, Iuri; Gel, Silvia; Puig, Jordi; Negredo, Eugenia; Gutierrez, Mar; Domingo, Pere; Fischer, Julia; Fätkenheuer, Gerd; Alonso-Villaverde, Carlos; Macken, Alan; Woo, James; McGinty, Tara; Mallon, Patrick; Mangili, Alexandra; Skinner, Sally; Wanke, Christine A.; Reiss, Peter; Weber, Rainer; Bucher, Heiner C.; Fellay, Jacques; Telenti, Amalio; Tarr, Philip E.
2013-01-01
Background Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medications, and traditional risk factors to CAD has not been fully evaluated in the setting of HIV infection. Methods In the general population, 23 common single-nucleotide polymorphisms (SNPs) were shown to be associated with CAD through genome-wide association analysis. Using the Metabochip, we genotyped 1875 HIV-positive, white individuals enrolled in 24 HIV observational studies, including 571 participants with a first CAD event during the 9-year study period and 1304 controls matched on sex and cohort. Results A genetic risk score built from 23 CAD-associated SNPs contributed significantly to CAD (P = 2.9×10−4). In the final multivariable model, participants with an unfavorable genetic background (top genetic score quartile) had a CAD odds ratio (OR) of 1.47 (95% confidence interval [CI], 1.05–2.04). This effect was similar to hypertension (OR = 1.36; 95% CI, 1.06–1.73), hypercholesterolemia (OR = 1.51; 95% CI, 1.16–1.96), diabetes (OR = 1.66; 95% CI, 1.10–2.49), ≥1 year lopinavir exposure (OR = 1.36; 95% CI, 1.06–1.73), and current abacavir treatment (OR = 1.56; 95% CI, 1.17–2.07). The effect of the genetic risk score was additive to the effect of nongenetic CAD risk factors, and did not change after adjustment for family history of CAD. Conclusions In the setting of HIV infection, the effect of an unfavorable genetic background was similar to traditional CAD risk factors and certain adverse antiretroviral exposures. Genetic testing may provide prognostic information complementary to family history of CAD. PMID:23532479
Bahit, Maria Cecilia; Lopes, Renato D; Wojdyla, Daniel M; Hohnloser, Stefan H; Alexander, John H; Lewis, Basil S; Aylward, Philip E; Verheugt, Freek W A; Keltai, Matyas; Diaz, Rafael; Hanna, Michael; Granger, Christopher B; Wallentin, Lars
2013-12-10
A substantial portion of patients with atrial fibrillation (AF) also have coronary artery disease (CAD) and are at risk for coronary events. Warfarin is known to reduce these events, but increase the risk of bleeding. We assessed the effects of apixaban compared with warfarin in AF patients with and without prior CAD. In ARISTOTLE, 18,201 patients with AF were randomized to apixaban or warfarin. History of CAD was defined as documented CAD, prior myocardial infarction, and/or history of coronary revascularization. We analyzed baseline characteristics and clinical outcomes of patients with and without prior CAD and compared outcomes by randomized treatment using Cox models. A total of 6639 (36.5%) patients had prior CAD. These patients were more often male, more likely to have prior stroke, diabetes, and hypertension, and more often received aspirin at baseline (42.2% vs. 24.5%). The effects of apixaban were similar among patients with and without prior CAD on reducing stroke or systemic embolism and death from any cause (hazard ratio [HR] 0.95, 95% confidence interval [CI] 0.71-1.27, P for interaction=0.12; HR 0.96, 95% CI 0.81-1.13, P for interaction=0.28). Rates of myocardial infarction were numerically lower with apixaban than warfarin among patients with and without prior CAD. The effect of apixaban on reducing major bleeding and intracranial hemorrhage was consistent in patients with and without CAD. In patients with AF, apixaban more often prevented stroke or systemic embolism and death and caused less bleeding than warfarin, regardless of the presence of prior CAD. Given the common occurrence of AF and CAD and the higher rates of cardiovascular events and death, our results indicate that apixaban may be a better treatment option than warfarin for these high-risk patients. © 2013.
Wong, M S; Cheng, C Y; Ng, B K W; Lam, T P; Chiu, S W
2006-01-01
Spinal orthoses are commonly prescribed to patients with moderate AIS for prevention of further deterioration. In a conventional manufacturing method, plaster bandages are used to get patient's body contour and plaster cast is rectified manually. With the introduction of CAD/CAM system, a series of automated processes from body scanning to digital rectification and milling of positive model can be performed in a fast and accurate fashion. This project is to study the impact of CAD/CAM method as compared with the conventional method. In assessing the 147 recruited subjects fitted with spinal orthoses (43 subjects using conventional method and 104 subjects using CAD/CAM method), significant decreases (p<0.05) were found in the Cobb angles when comparing the pre-intervention data with that of the first year of intervention. Regarding the learning curve, Orthotists are getting more competent with the CAD/CAM technique in four years time. The mean productivity of the CAD/CAM method is 2.75 times higher than that of the conventional method. The CAD/CAM method could achieve similar clinical outcomes and with its high efficiency, could be considered as substitute for conventional methods in fabricating spinal orthoses for patients with AIS.
On the Use of Parmetric-CAD Systems and Cartesian Methods for Aerodynamic Design
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.
2004-01-01
Automated, high-fidelity tools for aerodynamic design face critical issues in attempting to optimize real-life geometry arid in permitting radical design changes. Success in these areas promises not only significantly shorter design- cycle times, but also superior and unconventional designs. To address these issues, we investigate the use of a parmetric-CAD system in conjunction with an embedded-boundary Cartesian method. Our goal is to combine the modeling capabilities of feature-based CAD with the robustness and flexibility of component-based Cartesian volume-mesh generation for complex geometry problems. We present the development of an automated optimization frame-work with a focus on the deployment of such a CAD-based design approach in a heterogeneous parallel computing environment.
Geometric Model for a Parametric Study of the Blended-Wing-Body Airplane
NASA Technical Reports Server (NTRS)
Mastin, C. Wayne; Smith, Robert E.; Sadrehaghighi, Ideen; Wiese, Micharl R.
1996-01-01
A parametric model is presented for the blended-wing-body airplane, one concept being proposed for the next generation of large subsonic transports. The model is defined in terms of a small set of parameters which facilitates analysis and optimization during the conceptual design process. The model is generated from a preliminary CAD geometry. From this geometry, airfoil cross sections are cut at selected locations and fitted with analytic curves. The airfoils are then used as boundaries for surfaces defined as the solution of partial differential equations. Both the airfoil curves and the surfaces are generated with free parameters selected to give a good representation of the original geometry. The original surface is compared with the parametric model, and solutions of the Euler equations for compressible flow are computed for both geometries. The parametric model is a good approximation of the CAD model and the computed solutions are qualitatively similar. An optimal NURBS approximation is constructed and can be used by a CAD model for further refinement or modification of the original geometry.
TinkerCell: modular CAD tool for synthetic biology.
Chandran, Deepak; Bergmann, Frank T; Sauro, Herbert M
2009-10-29
Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD) is necessary in order to bridge the gap between computational modeling and biological data. Using a CAD application, it would be possible to construct models using available biological "parts" and directly generate the DNA sequence that represents the model, thus increasing the efficiency of design and construction of synthetic networks. An application named TinkerCell has been developed in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various third-party C and Python programs that are hosted by TinkerCell via an extensive C and Python application programming interface (API). TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at http://www.tinkercell.com. An ideal CAD application for engineering biological systems would provide features such as: building and simulating networks, analyzing robustness of networks, and searching databases for components that meet the design criteria. At the current state of synthetic biology, there are no established methods for measuring robustness or identifying components that fit a design. The same is true for databases of biological parts. TinkerCell's flexible modeling framework allows it to cope with changes in the field. Such changes may involve the way parts are characterized or the way synthetic networks are modeled and analyzed computationally. TinkerCell can readily accept third-party algorithms, allowing it to serve as a platform for testing different methods relevant to synthetic biology.
TinkerCell: modular CAD tool for synthetic biology
Chandran, Deepak; Bergmann, Frank T; Sauro, Herbert M
2009-01-01
Background Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD) is necessary in order to bridge the gap between computational modeling and biological data. Using a CAD application, it would be possible to construct models using available biological "parts" and directly generate the DNA sequence that represents the model, thus increasing the efficiency of design and construction of synthetic networks. Results An application named TinkerCell has been developed in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various third-party C and Python programs that are hosted by TinkerCell via an extensive C and Python application programming interface (API). TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at . Conclusion An ideal CAD application for engineering biological systems would provide features such as: building and simulating networks, analyzing robustness of networks, and searching databases for components that meet the design criteria. At the current state of synthetic biology, there are no established methods for measuring robustness or identifying components that fit a design. The same is true for databases of biological parts. TinkerCell's flexible modeling framework allows it to cope with changes in the field. Such changes may involve the way parts are characterized or the way synthetic networks are modeled and analyzed computationally. TinkerCell can readily accept third-party algorithms, allowing it to serve as a platform for testing different methods relevant to synthetic biology. PMID:19874625
Baessler, Andrea; Fischer, Marcus; Mayer, Bjoern; Koehler, Martina; Wiedmann, Silke; Stark, Klaus; Doering, Angela; Erdmann, Jeanette; Riegger, Guenter; Schunkert, Heribert; Kwitek, Anne E; Hengstenberg, Christian
2007-04-15
Data from both experimental models and humans provide evidence that ghrelin and its receptor, the growth hormone secretagogue receptor (ghrelin receptor, GHSR), possess a variety of cardiovascular effects. Thus, we hypothesized that genetic variants within the ghrelin system (ligand ghrelin and its receptor GHSR) are associated with susceptibility to myocardial infarction (MI) and coronary artery disease (CAD). Seven single nucleotide polymorphisms (SNPs) covering the GHSR region as well as eight SNPs across the ghrelin gene (GHRL) region were genotyped in index MI patients (864 Caucasians, 'index MI cases') from the German MI family study and in matched controls without evidence of CAD (864 Caucasians, 'controls', MONICA Augsburg). In addition, siblings of these MI patients with documented severe CAD (826 'affected sibs') were matched likewise with controls (n = 826 Caucasian 'controls') and used for verification. The effect of interactions between genetic variants of both genes of the ghrelin system was explored by conditional classification tree models. We found association of several GHSR SNPs with MI [best SNP odds ratio (OR) 1.7 (1.2-2.5); P = 0.002] using a recessive model. Moreover, we identified a common GHSR haplotype which significantly increases the risk for MI [multivariate adjusted OR for homozygous carriers 1.6 (1.1-2.5) and CAD OR 1.6 (1.1-2.5)]. In contrast, no relationship between genetic variants and the disease could be revealed for GHRL. However, the increase in MI/CAD frequency related to the susceptible GHSR haplotype was abolished when it coincided with a common GHRL haplotype. Multivariate adjustments as well as permutation-based methods conveyed the same results. These data are the first to demonstrate an association of SNPs and haplotypes within important genes of the ghrelin system and the susceptibility to MI, whereas association with MI/CAD could be identified for genetic variants across GHSR, no relationship could be revealed for GHRL itself. However, we found an effect of GHRL dependent upon the presence of a common, MI and CAD susceptible haplotype of GHSR. Thus, our data suggest that specific haplotypes of the ghrelin ligand and its receptor act epistatically to affect susceptibility or tolerance to MI and/or CAD.
Rendenbach, Carsten; Sellenschloh, Kay; Gerbig, Lucca; Morlock, Michael M; Beck-Broichsitter, Benedicta; Smeets, Ralf; Heiland, Max; Huber, Gerd; Hanken, Henning
2017-11-01
CAD/CAM reconstruction plates have become a viable option for mandible reconstruction. The aim of this study was to determine whether CAD/CAM plates provide higher fatigue strength compared with conventional fixation systems. 1.0 mm miniplates, 2.0 mm conventional locking plates (DePuy Synthes, Umkirch, Germany), and 2.0 mm CAD/CAM plates (Materialise, Leuven, Belgium/DePuy Synthes) were used to reconstruct a polyurethane mandible model (Synbone, Malans, CH) with cortical and cancellous bone equivalents. Mastication was simulated via cyclic dynamic testing using a universal testing machine (MTS, Bionix, Eden Prairie, MN, USA) until material failure reached a rate of 1 Hz with increasing loads on the left side. No significant difference was found between the groups until a load of 300 N. At higher loads, vertical displacement differed increasingly, with a poorer performance of miniplates (p = 0.04). Plate breakage occurred in miniplates and conventional locking plates. Screw breakage was recorded as the primary failure mechanism in CAD/CAM plates. Stiffness was significantly higher with the CAD/CAM plates (p = 0.04). CAD/CAM plates and reconstruction plates provide higher fatigue strength than miniplates, and stiffness is highest in CAD/CAM systems. All tested fixation methods seem sufficiently stable for mandible reconstruction. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Castellazzi, Giovanni; D'Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro
2015-07-28
In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation.
Al-Ekrish, Asma'a A; Alfadda, Sara A; Ameen, Wadea; Hörmann, Romed; Puelacher, Wolfgang; Widmann, Gerlig
2018-06-16
To compare the surface of computer-aided design (CAD) models of the maxilla produced using ultra-low MDCT doses combined with filtered backprojection (FBP), adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR) reconstruction techniques with that produced from a standard dose/FBP protocol. A cadaveric completely edentulous maxilla was imaged using a standard dose protocol (CTDIvol: 29.4 mGy) and FBP, in addition to 5 low dose test protocols (LD1-5) (CTDIvol: 4.19, 2.64, 0.99, 0.53, and 0.29 mGy) reconstructed with FBP, ASIR 50, ASIR 100, and MBIR. A CAD model from each test protocol was superimposed onto the reference model using the 'Best Fit Alignment' function. Differences between the test and reference models were analyzed as maximum and mean deviations, and root-mean-square of the deviations, and color-coded models were obtained which demonstrated the location, magnitude and direction of the deviations. Based upon the magnitude, size, and distribution of areas of deviations, CAD models from the following protocols were comparable to the reference model: FBP/LD1; ASIR 50/LD1 and LD2; ASIR 100/LD1, LD2, and LD3; MBIR/LD1. The following protocols demonstrated deviations mostly between 1-2 mm or under 1 mm but over large areas, and so their effect on surgical guide accuracy is questionable: FBP/LD2; MBIR/LD2, LD3, LD4, and LD5. The following protocols demonstrated large deviations over large areas and therefore were not comparable to the reference model: FBP/LD3, LD4, and LD5; ASIR 50/LD3, LD4, and LD5; ASIR 100/LD4, and LD5. When MDCT is used for CAD models of the jaws, dose reductions of 86% may be possible with FBP, 91% with ASIR 50, and 97% with ASIR 100. Analysis of the stability and accuracy of CAD/CAM surgical guides as directly related to the jaws is needed to confirm the results.
The effect of cement on hip stem fixation: a biomechanical study.
Çelik, Talip; Mutlu, İbrahim; Özkan, Arif; Kişioğlu, Yasin
2017-06-01
This study presents the numerical analysis of stem fixation in hip surgery using with/without cement methods since the use of cement is still controversial based on the clinical studies in the literature. Many different factors such as stress shielding, aseptic loosening, material properties of the stem, surgeon experiences etc. play an important role in the failure of the stem fixations. The stem fixation methods, cemented and uncemented, were evaluated in terms of mechanical failure aspects using computerized finite element method. For the modeling processes, three dimensional (3D) femur model was generated from computerized tomography (CT) images taken from a patient using the MIMICS Software. The design of the stem was also generated as 3D CAD model using the design parameters taken from the manufacturer catalogue. These 3D CAD models were generated and combined with/without cement considering the surgical procedure using SolidWorks program and then imported into ANSYS Workbench Software. Two different material properties, CoCrMo and Ti6Al4V, for the stem model and Poly Methyl Methacrylate (PMMA) for the cement were assigned. The material properties of the femur were described according to a density calculated from the CT images. Body weight and muscle forces were applied on the femur and the distal femur was fixed for the boundary conditions. The calculations of the stress distributions of the models including cement and relative movements of the contacts examined to evaluate the effects of the cement and different stem material usage on the failure of stem fixation. According to the results, the use of cement for the stem fixation reduces the stress shielding but increases the aseptic loosening depending on the cement crack formations. Additionally, using the stiffer material for the stem reduces the cement stress but increases the stress shielding. Based on the results obtained in the study, even when taking the disadvantages into account, the cement usage is more suitable for the hip fixations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linguraru, Marius George; Panjwani, Neil; Fletcher, Joel G.
2011-12-15
Purpose: To evaluate the performance of a computer-aided detection (CAD) system for detecting colonic polyps at noncathartic computed tomography colonography (CTC) in conjunction with an automated image-based colon cleansing algorithm. Methods: An automated colon cleansing algorithm was designed to detect and subtract tagged-stool, accounting for heterogeneity and poor tagging, to be used in conjunction with a colon CAD system. The method is locally adaptive and combines intensity, shape, and texture analysis with probabilistic optimization. CTC data from cathartic-free bowel preparation were acquired for testing and training the parameters. Patients underwent various colonic preparations with barium or Gastroview in divided dosesmore » over 48 h before scanning. No laxatives were administered and no dietary modifications were required. Cases were selected from a polyp-enriched cohort and included scans in which at least 90% of the solid stool was visually estimated to be tagged and each colonic segment was distended in either the prone or supine view. The CAD system was run comparatively with and without the stool subtraction algorithm. Results: The dataset comprised 38 CTC scans from prone and/or supine scans of 19 patients containing 44 polyps larger than 10 mm (22 unique polyps, if matched between prone and supine scans). The results are robust on fine details around folds, thin-stool linings on the colonic wall, near polyps and in large fluid/stool pools. The sensitivity of the CAD system is 70.5% per polyp at a rate of 5.75 false positives/scan without using the stool subtraction module. This detection improved significantly (p = 0.009) after automated colon cleansing on cathartic-free data to 86.4% true positive rate at 5.75 false positives/scan. Conclusions: An automated image-based colon cleansing algorithm designed to overcome the challenges of the noncathartic colon significantly improves the sensitivity of colon CAD by approximately 15%.« less
Horne, Benjamin D.; May, Heidi T.; Anderson, Jeffrey L.; Kfoury, Abdallah G.; Bailey, Beau M.; McClure, Brian S.; Renlund, Dale G.; Lappé, Donald L.; Carlquist, John F.; Fisher, Patrick W.; Pearson, Robert R.; Bair, Tami L.; Adams, Ted D.; Muhlestein, Joseph B.
2008-01-01
Coronary artery disease (CAD) is common and multi-factorial. Members of the Church of Jesus Christ of Latter-day Saints (LDS, or Mormons) in Utah may have lower cardiac mortality than other Utahns and the US population. While the LDS proscription of smoking likely contributes to lower cardiac risk, it is unknown whether other shared behaviors also contribute. This study evaluated potential CAD-associated effects of fasting. Patients (N1=4,629) enrolled in the Intermountain Heart Collaborative Study registry (1994-2002) were evaluated for association of religious preference with CAD diagnosis (≥70% coronary stenosis on angiography) or no CAD (normal coronaries, <10% stenosis). Consequently, another set of patients (N2=448) were surveyed (2004-2006) for association of behavioral factors with CAD, with the primary variable being routine fasting (i.e., abstinence from food and drink). Secondary survey measures included proscription of alcohol, tea, and coffee, social support, and religious worship patterns. In population 1 (initial), 61% of LDS and 66% of all others had CAD (adjusted [including for smoking]: odds ratio [OR]=0.81; p=0.009). In population 2 (survey), fasting was associated with lower risk of CAD (64% vs. 76% CAD; OR=0.55, CI=0.35, 0.87; p=0.010) and this remained after adjustment for traditional risk factors (OR=0.46, CI=0.27, 0.81; p=0.007). Fasting was also associated with lower diabetes prevalence (p=0.048). In regression models entering other secondary behavioral measures, fasting remained significant with similar effect size. In conclusion, not only proscription of tobacco, but also routine periodic fasting was associated with lower risk of CAD. PMID:18805103
Impact of cardiac hybrid imaging-guided patient management on clinical long-term outcome.
Benz, Dominik C; Gaemperli, Lara; Gräni, Christoph; von Felten, Elia; Giannopoulos, Andreas A; Messerli, Michael; Buechel, Ronny R; Gaemperli, Oliver; Pazhenkottil, Aju P; Kaufmann, Philipp A
2018-06-15
Although randomized trials have provided evidence for invasive fractional flow reserve to guide revascularization, evidence for non-invasive imaging is less well established. The present study investigated whether hybrid coronary computed tomography (CCTA)/single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) can identify patients who benefit from early revascularization compared to medical therapy. This retrospective study consists of 414 patients referred for evaluation of known or suspected coronary artery disease (CAD) with CCTA/SPECT hybrid imaging. CCTA categorized patients into no CAD, non-high-risk CAD and high-risk CAD. In patients with CAD (n = 329), a matched finding (n = 75) was defined as a reversible perfusion defect in a territory subtended by a coronary artery with CAD. All other combinations of pathologic findings were classified as unmatched (n = 254). Death, myocardial infarction, unstable angina requiring hospitalization, and late coronary revascularization were defined as major adverse cardiac events (MACE). Cox hazards models included covariates age, male gender, more than two risk factors, previous CABG, high-risk CAD and early revascularization. During median follow-up of 6.0 years, 112 patients experienced a MACE (27%). Early revascularization (n = 50) was independently associated with improved outcome among patients with a matched finding (p < 0.001). There was no benefit among patients with an unmatched finding (p = 0.787), irrespective of presence (p = 0.505) or absence of high-risk CAD (p = 0.631). Early revascularization is associated with an outcome benefit in CAD patients with a matched finding documented by cardiac hybrid imaging while no benefit of revascularization was observed in patients with an unmatched finding. Copyright © 2018 Elsevier B.V. All rights reserved.
Bittencourt, Marcio S; Hulten, Edward A; Ghoshhajra, Brian; Abbara, Suhny; Murthy, Venkatesh L; Divakaran, Sanjay; Nasir, Khurram; Gowdak, Luis Henrique W; Riella, Leonardo V; Chiumiento, Marco; Hoffmann, Udo; Di Carli, Marcelo F; Blankstein, Ron
2015-07-01
It is unknown whether mild chronic kidney disease (CKD) is associated with adverse cardiovascular (CV) prognosis after accounting for coronary artery disease (CAD). Here we evaluated the interplay between CKD and CAD in predicting CV death or myocardial infarction (MI) and all-cause death. We included 1541 consecutive patients in the Partners registry (mean age 55 years, 43% female) over 18 years old with no known prior CAD who underwent coronary computed tomography angiography (CCTA). The results of CCTA were categorized as normal, nonobstructive (under half), or obstructive (half and over). Overall, 653 of the patients had no CAD, 583 had nonobstructive CAD, and 305 had obstructive CAD, while 1299 had eGFR over 60 ml/min per 1.73 m(2) and 242 had an eGFR under this value. The presence and severity of CAD was significantly associated with an increased rate of CV death or MI and all-cause death, even after adjustment for age, gender, symptoms, and risk factors. Similarly, reduced eGFR was significantly associated with CV death or MI and all-cause death after similar adjustment. The addition of reduced GFR to a model which included both clinical variables and CCTA findings resulted in significant improvement in the prediction of CV death or MI and all-cause death. Thus, among individuals referred for CCTA to evaluate CAD, renal dysfunction is associated with an increased rate of CV events, mainly driven by an increase in the rate of noncoronary CV events. In this group of patients, both eGFR and the presence and severity of CAD together improve the prediction of future CV events and death.
Bouvier d'Yvoire, Madeleine; Bouchabke-Coussa, Oumaya; Voorend, Wannes; Antelme, Sébastien; Cézard, Laurent; Legée, Frédéric; Lebris, Philippe; Legay, Sylvain; Whitehead, Caragh; McQueen-Mason, Simon J; Gomez, Leonardo D; Jouanin, Lise; Lapierre, Catherine; Sibout, Richard
2013-02-01
Brachypodium distachyon (Brachypodium) has been proposed as a model for grasses, but there is limited knowledge regarding its lignins and no data on lignin-related mutants. The cinnamyl alcohol dehydrogenase (CAD) genes involved in lignification are promising targets to improve the cellulose-to-ethanol conversion process. Down-regulation of CAD often induces a reddish coloration of lignified tissues. Based on this observation, we screened a chemically induced population of Brachypodium mutants (Bd21-3 background) for red culm coloration. We identified two mutants (Bd4179 and Bd7591), with mutations in the BdCAD1 gene. The mature stems of these mutants displayed reduced CAD activity and lower lignin content. Their lignins were enriched in 8-O-4- and 4-O-5-coupled sinapaldehyde units, as well as resistant inter-unit bonds and free phenolic groups. By contrast, there was no increase in coniferaldehyde end groups. Moreover, the amount of sinapic acid ester-linked to cell walls was measured for the first time in a lignin-related CAD grass mutant. Functional complementation of the Bd4179 mutant with the wild-type BdCAD1 allele restored the wild-type phenotype and lignification. Saccharification assays revealed that Bd4179 and Bd7591 lines were more susceptible to enzymatic hydrolysis than wild-type plants. Here, we have demonstrated that BdCAD1 is involved in lignification of Brachypodium. We have shown that a single nucleotide change in BdCAD1 reduces the lignin level and increases the degree of branching of lignins through incorporation of sinapaldehyde. These changes make saccharification of cells walls pre-treated with alkaline easier without compromising plant growth. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.
On the Use of CAD and Cartesian Methods for Aerodynamic Optimization
NASA Technical Reports Server (NTRS)
Nemec, M.; Aftosmis, M. J.; Pulliam, T. H.
2004-01-01
The objective for this paper is to present the development of an optimization capability for Curt3D, a Cartesian inviscid-flow analysis package. We present the construction of a new optimization framework and we focus on the following issues: 1) Component-based geometry parameterization approach using parametric-CAD models and CAPRI. A novel geometry server is introduced that addresses the issue of parallel efficiency while only sparingly consuming CAD resources; 2) The use of genetic and gradient-based algorithms for three-dimensional aerodynamic design problems. The influence of noise on the optimization methods is studied. Our goal is to create a responsive and automated framework that efficiently identifies design modifications that result in substantial performance improvements. In addition, we examine the architectural issues associated with the deployment of a CAD-based approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute engines. We demonstrate the effectiveness of the framework for a design problem that features topology changes and complex geometry.
Comparing two types of engineering visualizations: task-related manipulations matter.
Cölln, Martin C; Kusch, Kerstin; Helmert, Jens R; Kohler, Petra; Velichkovsky, Boris M; Pannasch, Sebastian
2012-01-01
This study focuses on the comparison of traditional engineering drawings with a CAD (computer aided design) visualization in terms of user performance and eye movements in an applied context. Twenty-five students of mechanical engineering completed search tasks for measures in two distinct depictions of a car engine component (engineering drawing vs. CAD model). Besides spatial dimensionality, the display types most notably differed in terms of information layout, access and interaction options. The CAD visualization yielded better performance, if users directly manipulated the object, but was inferior, if employed in a conventional static manner, i.e. inspecting only predefined views. An additional eye movement analysis revealed longer fixation durations and a stronger increase of task-relevant fixations over time when interacting with the CAD visualization. This suggests a more focused extraction and filtering of information. We conclude that the three-dimensional CAD visualization can be advantageous if its ability to manipulate is used. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Pepine, Carl J.; Ferdinand, Keith C.; Shaw, Leslee J; Light-McGroary, KellyAnn; Shah, Rashmee U.; Gulati, Martha; Duvernoy, Claire; Walsh, Mary Norine; Bairey Merz, C. Noel
2015-01-01
Recognition of ischemic heart disease (IHD) is often delayed or deferred in women. Thus, many at risk for adverse outcomes are not provided specific diagnostic, preventive, and/or treatment strategies. This lack of recognition is related to sex-specific IHD pathophysiology that differs from traditional models using data from men with flow-limiting coronary artery disease (CAD) obstructions. Symptomatic women are less likely to have obstructive CAD than men with similar symptoms, and tend to have coronary microvascular dysfunction, plaque erosion, and thrombus formation. Emerging data document that more extensive, nonobstructive CAD involvement, hypertension, and diabetes are associated with major adverse events similar to those with obstructive CAD. A central emerging paradigm is the concept of nonobstructive CAD as a cause of IHD and related adverse outcomes among women. This position paper summarizes currently available knowledge and gaps in that knowledge, and recommends management options that could be useful until additional evidence emerges. PMID:26493665
Li, Yan-yan
2012-01-01
The polymorphism of plasminogen activator inhibitor-1 (PAI-1) 4G/5G gene has been indicated to be correlated with coronary artery disease (CAD) susceptibility, but study results are still debatable. The present meta-analysis was performed to investigate the association between PAI-1 4G/5G gene polymorphism and CAD in the Chinese Han population. A total of 879 CAD patients and 628 controls from eight separate studies were involved. The pooled odds ratio (OR) for the distribution of the 4G allele frequency of PAI-1 4G/5G gene and its corresponding 95% confidence interval (CI) was assessed by the random effect model. The distribution of the 4 G allele frequency was 0.61 for the CAD group and 0.51 for the control group. The association between PAI-1 4G/5G gene polymorphism and CAD in the Chinese Han population was significant under an allelic genetic model (OR = 1.70, 95% CI = 1.18 to 2.44, P = 0.004). The heterogeneity test was also significant (P<0.0001). Meta-regression was performed to explore the heterogeneity source. Among the confounding factors, the heterogeneity could be explained by the publication year (P = 0.017), study region (P = 0.014), control group sample size (P = 0.011), total sample size (P = 0.011), and ratio of the case to the control group sample size (RR) (P = 0.019). In a stratified analysis by the total sample size, significantly increased risk was only detected in subgroup 2 under an allelic genetic model (OR = 1.93, 95% CI = 1.09 to 3.35, P = 0.02). In the Chinese Han population, PAI-1 4G/5G gene polymorphism was implied to be associated with increased CAD risk. Carriers of the 4G allele of the PAI-1 4G/5G gene might predispose to CAD.
Li, Yan-yan
2012-01-01
Background The polymorphism of plasminogen activator inhibitor-1 (PAI-1) 4G/5G gene has been indicated to be correlated with coronary artery disease (CAD) susceptibility, but study results are still debatable. Objective and Methods The present meta-analysis was performed to investigate the association between PAI-1 4G/5G gene polymorphism and CAD in the Chinese Han population. A total of 879 CAD patients and 628 controls from eight separate studies were involved. The pooled odds ratio (OR) for the distribution of the 4G allele frequency of PAI-1 4G/5G gene and its corresponding 95% confidence interval (CI) was assessed by the random effect model. Results The distribution of the 4 G allele frequency was 0.61 for the CAD group and 0.51 for the control group. The association between PAI-1 4G/5G gene polymorphism and CAD in the Chinese Han population was significant under an allelic genetic model (OR = 1.70, 95% CI = 1.18 to 2.44, P = 0.004). The heterogeneity test was also significant (P<0.0001). Meta-regression was performed to explore the heterogeneity source. Among the confounding factors, the heterogeneity could be explained by the publication year (P = 0.017), study region (P = 0.014), control group sample size (P = 0.011), total sample size (P = 0.011), and ratio of the case to the control group sample size (RR) (P = 0.019). In a stratified analysis by the total sample size, significantly increased risk was only detected in subgroup 2 under an allelic genetic model (OR = 1.93, 95% CI = 1.09 to 3.35, P = 0.02). Conclusions In the Chinese Han population, PAI-1 4G/5G gene polymorphism was implied to be associated with increased CAD risk. Carriers of the 4G allele of the PAI-1 4G/5G gene might predispose to CAD. PMID:22496752
In Situ Manufacturing is a Necessary Part of Any Planetary Architecture
NASA Technical Reports Server (NTRS)
Edmunson, Jennifer E.; McLemore, Carole A.
2012-01-01
The key to any sustainable presence in space is the ability to manufacture necessary tools, parts, structures, spares, etc. in situ and on demand. Cost, volume, and up-mass constraints prohibit launching everything needed for long-duration or long-distance missions from Earth, including spare parts and replacement systems. There are many benefits to building items as-needed in situ using computer aided drafting (CAD) models and additive manufacturing technology: (1) Cost, up-mass, and volume savings for launch due to the ability to manufacture specific parts when needed. (2) CAD models can be generated on Earth and transmitted to the station or spacecraft, or they can be designed in situ for any task. Thus, multiple people in many locations can work on a single problem. (3) Items can be produced that will enhance the safety of crew and vehicles (e.g., latches or guards). (4) Items can be produced on-demand in a small amount of time (i.e., hours or days) compared to traditional manufacturing methods and, therefore, would not require the lengthy amount of time needed to machine the part from a solid block of material nor the wait time required if the part had to be launched from Earth. (5) Used and obsolete parts can be recycled into powder or wire feedstock for use in later manufacturing. (6) Ultimately, the ability to produce items as-needed will reduce mission risk, as one will have everything they need to fix a broken system or fashion a new part making it available on a more timely basis.
NASA Technical Reports Server (NTRS)
Bao, Han P.
1989-01-01
The CAD/CAM of custom shoes is discussed. The solid object for machining is represented by a wireframe model with its nodes or vertices specified systematically in a grid pattern covering its entire length (point-to-point configuration). Two sets of data from CENCIT and CYBERWARE were used for machining purposes. It was found that the indexing technique (turning the stock by a small angle then moving the tool on a longitudinal path along the foot) yields the best result in terms of ease of programming, savings in wear and tear of the machine and cutting tools, and resolution of fine surface details. The work done using the LASTMOD last design system results in a shoe last specified by a number of congruent surface patches of different sizes. This data format was converted into a form amenable to the machine tool. It involves a series of sorting algorithms and interpolation algorithms to provide the grid pattern that the machine tool needs as was the case in the point to point configuration discussed above. This report also contains an in-depth treatment of the design and production technique of an integrated sole to complement the task of design and manufacture of the shoe last. Clinical data and essential production parameters are discussed. Examples of soles made through this process are given.
Design of Complete Dentures by Adopting CAD Developed for Fixed Prostheses.
Li, Yanfeng; Han, Weili; Cao, Jing; Iv, Yuan; Zhang, Yue; Han, Yishi; Shen, Yi; Ma, Zheng; Liu, Huanyue
2018-02-01
The demand for complete dentures is expected to increase worldwide, but complete dentures are mainly designed and fabricated manually involving a broad series of clinical and laboratory procedures. Therefore, the quality of complete dentures largely depends on the skills of the dentist and technician, leading to difficulty in quality control. Computer-aided design and manufacturing (CAD/CAM) has been used to design and fabricate various dental restorations including dental inlays, veneers, crowns, partial crowns, and fixed partial dentures (FPDs). It has been envisioned that the application of CAD/CAM technology could reduce intensive clinical/laboratory work for the fabrication of complete dentures; however, CAD/CAM is seldom used to fabricate complete dentures due to the lack of suitable CAD software to design virtual complete dentures although the CAM techniques are in a much advanced stage. Here we report the successful design of virtual complete dentures using CAD software of 3Shape Dental System 2012, which was developed for designing fixed prostheses instead of complete dentures. Our results demonstrated that complete dentures could be successfully designed by the combination of two modeling processes, single coping and full anatomical FPD, available in the 3Shape Dental System 2012. © 2016 by the American College of Prosthodontists.
Predicting coronary artery disease using different artificial neural network models.
Colak, M Cengiz; Colak, Cemil; Kocatürk, Hasan; Sağiroğlu, Seref; Barutçu, Irfan
2008-08-01
Eight different learning algorithms used for creating artificial neural network (ANN) models and the different ANN models in the prediction of coronary artery disease (CAD) are introduced. This work was carried out as a retrospective case-control study. Overall, 124 consecutive patients who had been diagnosed with CAD by coronary angiography (at least 1 coronary stenosis > 50% in major epicardial arteries) were enrolled in the work. Angiographically, the 113 people (group 2) with normal coronary arteries were taken as control subjects. Multi-layered perceptrons ANN architecture were applied. The ANN models trained with different learning algorithms were performed in 237 records, divided into training (n=171) and testing (n=66) data sets. The performance of prediction was evaluated by sensitivity, specificity and accuracy values based on standard definitions. The results have demonstrated that ANN models trained with eight different learning algorithms are promising because of high (greater than 71%) sensitivity, specificity and accuracy values in the prediction of CAD. Accuracy, sensitivity and specificity values varied between 83.63%-100%, 86.46%-100% and 74.67%-100% for training, respectively. For testing, the values were more than 71% for sensitivity, 76% for specificity and 81% for accuracy. It may be proposed that the use of different learning algorithms other than backpropagation and larger sample sizes can improve the performance of prediction. The proposed ANN models trained with these learning algorithms could be used a promising approach for predicting CAD without the need for invasive diagnostic methods and could help in the prognostic clinical decision.
Analysis on the workspace of palletizing robot based on AutoCAD
NASA Astrophysics Data System (ADS)
Li, Jin-quan; Zhang, Rui; Guan, Qi; Cui, Fang; Chen, Kuan
2017-10-01
In this paper, a four-degree-of-freedom articulated palletizing robot is used as the object of research. Based on the analysis of the overall configuration of the robot, the kinematic mathematical model is established by D-H method to figure out the workspace of the robot. In order to meet the needs of design and analysis, using AutoCAD secondary development technology and AutoLisp language to develop AutoCAD-based 2D and 3D workspace simulation interface program of palletizing robot. At last, using AutoCAD plugin, the influence of structural parameters on the shape and position of the working space is analyzed when the structure parameters of the robot are changed separately. This study laid the foundation for the design, control and planning of palletizing robots.
Using a 3D CAD plant model to simplify process hazard reviews
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolpa, G.
A Hazard and Operability (HAZOP) review is a formal predictive procedure used to identify potential hazard and operability problems associated with certain processes and facilities. The HAZOP procedure takes place several times during the life cycle of the facility. Replacing plastic models, layout and detail drawings with a 3D CAD electronic model, provides access to process safety information and a detailed level of plant topology that approaches the visualization capability of the imagination. This paper describes the process that is used for adding the use of a 3D CAD model to flowsheets and proven computer programs for the conduct ofmore » hazard and operability reviews. Using flowsheets and study nodes as a road map for the review the need for layout and other detail drawings is all but eliminated. Using the 3D CAD model again for a post-P and ID HAZOP supports conformance to layout and safety requirements, provides superior visualization of the plant configuration and preserves the owners equity in the design. The response from the review teams are overwhelmingly in favor of this type of review over a review that uses only drawings. Over the long term the plant model serves more than just process hazards analysis. Ongoing use of the model can satisfy the required access to process safety information, OHSA documentation and other legal requirements. In this paper extensive instructions address the logic for the process hazards analysis and the preparation required to assist anyone who wishes to add the use of a 3D model to their review.« less
NASA Technical Reports Server (NTRS)
Fabanich, William A., Jr.
2014-01-01
SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractor's thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces/solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing/repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the "mark-up" of that geometry. These so-called "mark-ups" control how finite element (FE) meshes are to be generated through the "tagging" of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. "Domain-tags" were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine the objects each time as one would if using TDMesher. The use of SpaceClaim/TD Direct helps simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It also saves time and effort in the subsequent analysis.
NASA Technical Reports Server (NTRS)
Fabanich, William
2014-01-01
SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractors thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the mark-up of that geometry. These so-called mark-ups control how finite element (FE) meshes were generated and allowed the tagging of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. Domain-tags were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine these objects each time as one would if using TD Mesher.The use of SpaceClaim/TD Direct has helped simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It has also saved time and effort in the subsequent analysis.
Reconstruction of Consistent 3d CAD Models from Point Cloud Data Using a Priori CAD Models
NASA Astrophysics Data System (ADS)
Bey, A.; Chaine, R.; Marc, R.; Thibault, G.; Akkouche, S.
2011-09-01
We address the reconstruction of 3D CAD models from point cloud data acquired in industrial environments, using a pre-existing 3D model as an initial estimate of the scene to be processed. Indeed, this prior knowledge can be used to drive the reconstruction so as to generate an accurate 3D model matching the point cloud. We more particularly focus our work on the cylindrical parts of the 3D models. We propose to state the problem in a probabilistic framework: we have to search for the 3D model which maximizes some probability taking several constraints into account, such as the relevancy with respect to the point cloud and the a priori 3D model, and the consistency of the reconstructed model. The resulting optimization problem can then be handled using a stochastic exploration of the solution space, based on the random insertion of elements in the configuration under construction, coupled with a greedy management of the conflicts which efficiently improves the configuration at each step. We show that this approach provides reliable reconstructed 3D models by presenting some results on industrial data sets.
A rule based computer aided design system
NASA Technical Reports Server (NTRS)
Premack, T.
1986-01-01
A Computer Aided Design (CAD) system is presented which supports the iterative process of design, the dimensional continuity between mating parts, and the hierarchical structure of the parts in their assembled configuration. Prolog, an interactive logic programming language, is used to represent and interpret the data base. The solid geometry representing the parts is defined in parameterized form using the swept volume method. The system is demonstrated with a design of a spring piston.
Altered asparagine and glutamate homeostasis precede coronary artery disease and type-2 diabetes.
Ottosson, Filip; Smith, Einar; Melander, Olle; Fernandez, Céline
2018-05-16
Type 2 diabetes (T2DM) is accompanied by an increased risk of coronary artery disease (CAD), but the overlapping metabolic disturbances preceding both diseases are insufficiently described. We hypothesized that alterations in metabolism occur years before clinical manifestation of T2DM and CAD and that these alterations are reflected in the plasma metabolome. We thus aimed to identify plasma metabolites that predict future T2DM and CAD. Using targeted liquid chromatography-mass spectrometry (LC-MS), 35 plasma metabolites (amino acid metabolites and acylcarnitines) were quantified in 1049 individuals, free from CAD and diabetes, drawn from a population sample of 5386 in the Malmö Preventive Project (mean age 69.5y, 31% women). The sample included 204 individuals who developed T2DM, 384 who developed CAD and 496 who remained T2DM and CAD free, during a mean follow-up of 6.1 years. In total, 16 metabolites were significantly associated with risk of developing T2DM using logistic regression models. Glutamate (OR=1.96, p=5.4e-12) was the most strongly associated metabolite, followed by increased levels of branched-chain amino acids. Incident CAD was predicted by three metabolites, glutamate (OR=1.28, p=6.6e-4), histidine (OR=0.76, p=5.1e-4) and asparagine (OR=0.80, p=2.2e-3). Glutamate (OR=1.48, p=1.6e-8) and asparagine (OR=0.75, p=1.8e-5) were both associated with a composite endpoint of developing either T2DM or CAD. We identified several plasma metabolites that associated with incidence of T2DM and CAD, where elevated glutamate and reduced asparagine levels associated with both diseases. We thus discovered novel associations that might help shed additional light on why T2DM and CAD commonly co-occur.
Two-body wear rate of CAD/CAM resin blocks and their enamel antagonists.
Stawarczyk, Bogna; Özcan, Mutlu; Trottmann, Albert; Schmutz, Felix; Roos, Malgorzata; Hämmerle, Christoph
2013-05-01
Computer-aided design and computer-aided manufacturing (CAD/CAM) resins exhibit good mechanical properties and can be used as long-term restorations. The wear rate of such resins and their enamel antagonists is unknown. The purpose of this study was to test and compare the 2-body wear rate of CAD/CAM resin blocks. Wear specimens (N=42, n=6) were made from 5 CAD/CAM resins: ZENO PMMA (ZP), artBloc Temp (AT), Telio CAD (TC), Blanc High-class (HC), CAD-Temp (CT); 1 manually polymerized resin: Integral esthetic press (negative control group, IEP); and 1 glass-ceramic: VITA Mark II (positive control group, VM2). The specimens for the wear resistance were aged in a thermomechanical loading machine (49 N, 1.67 Hz, 5/50°C) with human enamel antagonists. The material loss of all specimens before, during, and after aging was evaluated with a 3DS profilometer. The measured material loss data of all tested groups were statistically evaluated with linear mixed model analysis (a=.05). Manually polymerized resin showed significantly higher material wear (P<.001) than all other tested groups. Glass-ceramic showed significantly lower wear values (P<.001) than CAD/CAM resins ZP, AT, HC, CT, and IES. CAD/CAM resin TC was not significantly different from the positive control group. Glass-ceramic showed the highest enamel wear values (P<.001) of all tested resins. No differences were found in the enamel wear among all resins. The glass-ceramic group showed damage in the form of cracks on the worn enamel surface in 50% of specimens. CAD/CAM resins showed lower wear rates than those conventionally polymerized. Only one CAD/CAM resin, TC, presented material wear values comparable with glass-ceramic. The tested glass-ceramic developed cracks in the enamel antagonist and showed the highest enamel wear values of all other tested groups. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Design Automation Using Script Languages. High-Level CAD Templates in Non-Parametric Programs
NASA Astrophysics Data System (ADS)
Moreno, R.; Bazán, A. M.
2017-10-01
The main purpose of this work is to study the advantages offered by the application of traditional techniques of technical drawing in processes for automation of the design, with non-parametric CAD programs, provided with scripting languages. Given that an example drawing can be solved with traditional step-by-step detailed procedures, is possible to do the same with CAD applications and to generalize it later, incorporating references. In today’s modern CAD applications, there are striking absences of solutions for building engineering: oblique projections (military and cavalier), 3D modelling of complex stairs, roofs, furniture, and so on. The use of geometric references (using variables in script languages) and their incorporation into high-level CAD templates allows the automation of processes. Instead of repeatedly creating similar designs or modifying their data, users should be able to use these templates to generate future variations of the same design. This paper presents the automation process of several complex drawing examples based on CAD script files aided with parametric geometry calculation tools. The proposed method allows us to solve complex geometry designs not currently incorporated in the current CAD applications and to subsequently create other new derivatives without user intervention. Automation in the generation of complex designs not only saves time but also increases the quality of the presentations and reduces the possibility of human errors.
Wong, M S; Cheng, J C Y; Wong, M W; So, S F
2005-04-01
A study was conducted to compare the CAD/CAM method with the conventional manual method in fabrication of spinal orthoses for patients with adolescent idiopathic scoliosis. Ten subjects were recruited for this study. Efficiency analyses of the two methods were performed from cast filling/ digitization process to completion of cast/image rectification. The dimensional changes of the casts/ models rectified by the two cast rectification methods were also investigated. The results demonstrated that the CAD/CAM method was faster than the conventional manual method in the studied processes. The mean rectification time of the CAD/CAM method was shorter than that of the conventional manual method by 108.3 min (63.5%). This indicated that the CAD/CAM method took about 1/3 of the time of the conventional manual to finish cast rectification. In the comparison of cast/image dimensional differences between the conventional manual method and the CAD/CAM method, five major dimensions in each of the five rectified regions namely the axilla, thoracic, lumbar, abdominal and pelvic regions were involved. There were no significant dimensional differences (p < 0.05) in 19 out of the 25 studied dimensions. This study demonstrated that the CAD/CAM system could save the time in the rectification process and offer a relatively high resemblance in cast rectification as compared with the conventional manual method.
Genetic Basis of Atherosclerosis: Insights from Mice and Humans
Stylianou, Ioannis M.; Bauer, Robert C.; Reilly, Muredach P.; Rader, Daniel J.
2012-01-01
Atherosclerosis is a complex and heritable disease involving multiple cell types and the interactions of many different molecular pathways. The genetic and molecular mechanisms of atherosclerosis have in part been elucidated by mouse models; at least 100 different genes have been shown to influence atherosclerosis in mice. Importantly, unbiased genome-wide association studies have recently identified a number of novel loci robustly associated with atherosclerotic coronary artery disease (CAD). Here we review the genetic data elucidated from mouse models of atherosclerosis, as well as significant associations for human CAD. Furthermore, we discuss in greater detail some of these novel human CAD loci. The combination of mouse and human genetics has the potential to identify and validate novel genes that influence atherosclerosis, some of which may be candidates for new therapeutic approaches. PMID:22267839
THE MAN&RSQUO;S JACKET DESIGN FOR DISASSEMBLY: AN IMPLEMENTATION OF C2CAD FRAMEWORK
The C2CAD model served as the basis in the man’s jacket design and production. In man’s jackets, both natural and synthetic materials are commonly used for fabrics, threads, and buttons. To promote disassembly and value retention, we minimized material diversity an...
Correlating Trainee Attributes to Performance in 3D CAD Training
ERIC Educational Resources Information Center
Hamade, Ramsey F.; Artail, Hassan A.; Sikstrom, Sverker
2007-01-01
Purpose: The purpose of this exploratory study is to identify trainee attributes relevant for development of skills in 3D computer-aided design (CAD). Design/methodology/approach: Participants were trained to perform cognitive tasks of comparable complexity over time. Performance data were collected on the time needed to construct test models, and…
Teaching Computer-Aided Design of Fluid Flow and Heat Transfer Engineering Equipment.
ERIC Educational Resources Information Center
Gosman, A. D.; And Others
1979-01-01
Describes a teaching program for fluid mechanics and heat transfer which contains both computer aided learning (CAL) and computer aided design (CAD) components and argues that the understanding of the physical and numerical modeling taught in the CAL course is essential to the proper implementation of CAD. (Author/CMV)
Leipsic, Jonathon; Taylor, Carolyn M; Gransar, Heidi; Shaw, Leslee J; Ahmadi, Amir; Thompson, Angus; Humphries, Karin; Berman, Daniel S; Hausleiter, Jörg; Achenbach, Stephan; Al-Mallah, Mouaz; Budoff, Matthew J; Cademartiri, Fillippo; Callister, Tracy Q; Chang, Hyuk-Jae; Chow, Benjamin J W; Cury, Ricardo C; Delago, Augustin J; Dunning, Allison L; Feuchtner, Gudrun M; Hadamitzky, Martin; Kaufmann, Philipp A; Lin, Fay Y; Chinnaiyan, Kavitha M; Maffei, Erica; Raff, Gilbert L; Villines, Todd C; Gomez, Millie J; Min, James K
2014-11-01
To determine the clinical outcomes of women and men with nonobstructive coronary artery disease ( CAD coronary artery disease ) with coronary computed tomographic (CT) angiography data in patients who were similar in terms of CAD coronary artery disease risk factors, angina typicality, and CAD coronary artery disease extent and distribution. Institutional review board approval was obtained for all participating sites, with either informed consent or waiver of informed consent. In a prospective international multicenter cohort study of 27 125 patients undergoing coronary CT angiography at 12 centers, 18 158 patients with no CAD coronary artery disease or nonobstructive (<50% stenosis) CAD coronary artery disease were examined. Men and women were propensity matched for age, CAD coronary artery disease risk factors, angina typicality, and CAD coronary artery disease extent and distribution, which resulted in a final cohort of 11 462 subjects. Nonobstructive CAD coronary artery disease presence and extent were related to incident major adverse cardiovascular events ( MACE major adverse cardiovascular events ), which were inclusive of death and myocardial infarction and were estimated by using multivariable Cox proportional hazards models. At a mean follow-up ± standard deviation of 2.3 years ± 1.1, MACE major adverse cardiovascular events occurred in 164 patients (0.6% annual event rate). After matching, women and men experienced identical annualized rates of myocardial infarction (0.2% vs 0.2%, P = .72), death (0.5% vs 0.5%, P = .98), and MACE major adverse cardiovascular events (0.6% vs 0.6%, P = .94). In multivariable analysis, nonobstructive CAD coronary artery disease was associated with similarly increased MACE major adverse cardiovascular events for both women (hazard ratio: 1.96 [95% confidence interval { CI confidence interval }: 1.17, 3.28], P = .01) and men (hazard ratio: 1.77 [95% CI confidence interval : 1.07, 2.93], P = .03). When matched for age, CAD coronary artery disease risk factors, angina typicality, and nonobstructive CAD coronary artery disease extent, women and men experience comparable rates of incident mortality and myocardial infarction.
Mossmann, Márcio; Wainstein, Marco V; Gonçalves, Sandro C; Wainstein, Rodrigo V; Gravina, Gabriela L; Sangalli, Marlei; Veadrigo, Francine; Matte, Roselene; Reich, Rejane; Costa, Fernanda G; Bertoluci, Marcello C
2015-01-01
Insulin resistance is a major component of metabolic syndrome, type 2 Diabetes Mellitus (T2DM) and coronary artery disease (CAD). Although important in T2DM, its role as a predictor of CAD in non-diabetic patients is less studied. In the present study, we aimed to evaluate the association of HOMA-IR with significant CAD, determined by coronary angiography in non-obese, non-T2DM patients. We also evaluate the association between 3 oral glucose tolerance test (OGTT) based insulin sensitivity indexes (Matsuda, STUMVOLL-ISI and OGIS) and CAD. We conducted a cross-sectional study with 54 non-obese, non-diabetic individuals referred for coronary angiography due to suspected CAD. CAD was classified as the "anatomic burden score" corresponding to any stenosis equal or larger than 50 % in diameter on the coronary distribution. Patients without lesions were included in No-CAD group. Patients with at least 1 lesion were included in the CAD group. A 75 g oral glucose tolerance test (OGTT) with measurements of plasma glucose and serum insulin at 0, 30, 60, 90 and 120 min was obtained to calculate insulin sensitivity parameters. HOMA-IR results were ranked and patients were also categorized into insulin resistant (IR) or non-insulin resistant (NIR) if they were respectively above or below the 75th percentile (HOMA-IR > 4.21). The insulin sensitivity tests results were also divided into IR and NIR, respectively below and above each 25th percentile. Chi square was used to study association. Poisson Regression Model was used to compare prevalence ratios between categorized CAD and IR groups. Fifty-four patients were included in the study. There were 26 patients (48 %) with significant CAD. The presence of clinically significant CAD was significant associated with HOMA-IR above p75 (Chi square 4.103, p = 0.0428) and 71 % of patients with HOMA-IR above p75 had significant CAD. Subjects with CAD had increased prevalence ratio of HOMA-IR above p75 compared to subjects without CAD (PR 1.78; 95 % CI 1.079-2.95; p = 0.024). Matsuda index, Stumvoll-ISI and OGIS index were not associated with significant CAD. We concluded that, in patients without diabetes or obesity, in whom a coronary angiography study is indicated, a single determination of HOMA-IR above 4.21 indicates increased risk for clinical significant coronary disease. The same association was not seen with insulin sensitivity indexes such as Matsuda, Stunvoll-ISI or OGIS. These findings support the need for further longitudinal research using HOMA-IR as a predictor of cardiovascular disease.
Recent development on computer aided tissue engineering--a review.
Sun, Wei; Lal, Pallavi
2002-02-01
The utilization of computer-aided technologies in tissue engineering has evolved in the development of a new field of computer-aided tissue engineering (CATE). This article reviews recent development and application of enabling computer technology, imaging technology, computer-aided design and computer-aided manufacturing (CAD and CAM), and rapid prototyping (RP) technology in tissue engineering, particularly, in computer-aided tissue anatomical modeling, three-dimensional (3-D) anatomy visualization and 3-D reconstruction, CAD-based anatomical modeling, computer-aided tissue classification, computer-aided tissue implantation and prototype modeling assisted surgical planning and reconstruction.
Low Complexity Models to improve Incomplete Sensitivities for Shape Optimization
NASA Astrophysics Data System (ADS)
Stanciu, Mugurel; Mohammadi, Bijan; Moreau, Stéphane
2003-01-01
The present global platform for simulation and design of multi-model configurations treat shape optimization problems in aerodynamics. Flow solvers are coupled with optimization algorithms based on CAD-free and CAD-connected frameworks. Newton methods together with incomplete expressions of gradients are used. Such incomplete sensitivities are improved using reduced models based on physical assumptions. The validity and the application of this approach in real-life problems are presented. The numerical examples concern shape optimization for an airfoil, a business jet and a car engine cooling axial fan.
CT-assisted reverse engineering for aging aircraft resupply
NASA Astrophysics Data System (ADS)
Yancey, Robert N.
1998-03-01
The service life of military aircraft is being extended beyond original design intents. When the C-130 is eventually retired, it will have been in service for 79 years, well beyond its planned life expectancy of 40 years. Similarly, the KC-135s are presently expected to remain operational for 86 years, and the B-52 for 94 years. Not only are inventories of parts in short supply, but it is necessary to acquire parts no one expected to replace. The first step in any resupply activity is the creation of a data package. If nor computer-aided design (CAD) model exists, the demands of modern electronic commerce dictate than one be created. Creating a CAD model of an existing part is referred to as 'reverse engineering.' Computed tomography (CT) offers an ideal way to obtain metrology data critical to reveres engineering activities. Industrial CT systems have progressed to the point where they can nondestructively measure part dimensions at an accuracy competitive with coordinate measuring machines and a speed competitive with laser scanners. However, of the existing methods, only CT can nondestructively dimension interior surfaces, and only CT has the ability to densitometrically quantify the internal state of materials. The use of CT to help create CAD models for resupply efforts will be described and examples presented. Additionally, examples will be presented how the CT-created CAD models were then sued to fabricate replacement parts for aging systems.
Badin, Jill K; Kole, Ayeeshik; Stivers, Benjamin; Progar, Victor; Pareddy, Anisha; Alloosh, Mouhamad; Sturek, Michael
2018-03-09
There is a preponderance of evidence implicating diabetes with increased coronary artery disease (CAD) and calcification (CAC) in human patients with metabolic syndrome (MetS), but the effect of diabetes on CAD severity in animal models remains controversial. We investigated whether diabetes exacerbates CAD/CAC and intracellular free calcium ([Ca 2+ ] i ) dysregulation in the clinically relevant Ossabaw miniature swine model of MetS. Sixteen swine, eight with alloxan-induced diabetes, were fed a hypercaloric, atherogenic diet for 6 months. Alloxan-induced pancreatic beta cell damage was examined by immunohistochemical staining of insulin. The metabolic profile was confirmed by body weight, complete blood panel, intravenous glucose tolerance test (IVGTT), and meal tolerance test. CAD severity was assessed with intravascular ultrasound and histology. [Ca 2+ ] i handling in coronary smooth muscle (CSM) cells was assessed with fura-2 ratiometric imaging. Fasting and post-prandial blood glucose, total cholesterol, and serum triglycerides were elevated in MetS-diabetic swine. This group also exhibited hypoinsulinemia during IVGTT and less pancreatic beta cell mass when compared to lean and MetS-nondiabetic swine. IVUS analysis revealed that MetS-diabetic swine had greater percent wall coverage, percent plaque burden, and calcium index when compared to lean and MetS-nondiabetic swine. Fura-2 imaging of CSM [Ca 2+ ] i revealed that MetS-nondiabetic swine exhibited increased sarcoplasmic reticulum Ca 2+ store release and Ca 2+ influx through voltage-gated Ca 2+ channels compared to lean swine. MetS-diabetic swine exhibited impaired Ca 2+ efflux. Diabetes exacerbates coronary atherosclerosis and calcification in Ossabaw miniature swine with MetS, accompanied by progression of [Ca 2+ ] i dysregulation in advanced CAD/CAC. These results recapitulate increased CAD in humans with diabetes and establish Ossabaw miniature swine as an animal model for future MetS/diabetes comorbidity studies.
Rosenberg, Steven; Elashoff, Michael R; Beineke, Philip; Daniels, Susan E; Wingrove, James A; Tingley, Whittemore G; Sager, Philip T; Sehnert, Amy J; Yau, May; Kraus, William E; Newby, L Kristin; Schwartz, Robert S; Voros, Szilard; Ellis, Stephen G; Tahirkheli, Naeem; Waksman, Ron; McPherson, John; Lansky, Alexandra; Winn, Mary E; Schork, Nicholas J; Topol, Eric J
2010-10-05
Diagnosing obstructive coronary artery disease (CAD) in at-risk patients can be challenging and typically requires both noninvasive imaging methods and coronary angiography, the gold standard. Previous studies have suggested that peripheral blood gene expression can indicate the presence of CAD. To validate a previously developed 23-gene, expression-based classification test for diagnosis of obstructive CAD in nondiabetic patients. Multicenter prospective trial with blood samples obtained before coronary angiography. (ClinicalTrials.gov registration number: NCT00500617) SETTING: 39 centers in the United States. An independent validation cohort of 526 nondiabetic patients with a clinical indication for coronary angiography. Receiver-operating characteristic (ROC) analysis of classifier score measured by real-time polymerase chain reaction, additivity to clinical factors, and reclassification of patient disease likelihood versus disease status defined by quantitative coronary angiography. Obstructive CAD was defined as 50% or greater stenosis in 1 or more major coronary arteries by quantitative coronary angiography. The area under the ROC curve (AUC) was 0.70 ± 0.02 (P < 0.001); the test added to clinical variables (Diamond-Forrester method) (AUC, 0.72 with the test vs. 0.66 without; P = 0.003) and added somewhat to an expanded clinical model (AUC, 0.745 with the test vs. 0.732 without; P = 0.089). The test improved net reclassification over both the Diamond-Forrester method and the expanded clinical model (P < 0.001). At a score threshold that corresponded to a 20% likelihood of obstructive CAD (14.75), the sensitivity and specificity were 85% and 43% (yielding a negative predictive value of 83% and a positive predictive value of 46%), with 33% of patient scores below this threshold. Patients with chronic inflammatory disorders, elevated levels of leukocytes or cardiac protein markers, or diabetes were excluded. A noninvasive whole-blood test based on gene expression and demographic characteristics may be useful for assessing obstructive CAD in nondiabetic patients without known CAD. CardioDx.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reich, N.H.; van Sark, W.G.J.H.M.; Turkenburg, W.C.
2010-08-15
In this paper, we show that photovoltaic (PV) energy yields can be simulated using standard rendering and ray-tracing features of Computer Aided Design (CAD) software. To this end, three-dimensional (3-D) sceneries are ray-traced in CAD. The PV power output is then modeled by translating irradiance intensity data of rendered images back into numerical data. To ensure accurate results, the solar irradiation data used as input is compared to numerical data obtained from rendered images, showing excellent agreement. As expected, also ray-tracing precision in the CAD software proves to be very high. To demonstrate PV energy yield simulations using this innovativemore » concept, solar radiation time course data of a few days was modeled in 3-D to simulate distributions of irradiance incident on flat, single- and double-bend shapes and a PV powered computer mouse located on a window sill. Comparisons of measured to simulated PV output of the mouse show that also in practice, simulation accuracies can be very high. Theoretically, this concept has great potential, as it can be adapted to suit a wide range of solar energy applications, such as sun-tracking and concentrator systems, Building Integrated PV (BIPV) or Product Integrated PV (PIPV). However, graphical user interfaces of 'CAD-PV' software tools are not yet available. (author)« less
Defect modelling in an interactive 3-D CAD environment
NASA Astrophysics Data System (ADS)
Reilly, D.; Potts, A.; McNab, A.; Toft, M.; Chapman, R. K.
2000-05-01
This paper describes enhancement of the NDT Workbench, as presented at QNDE '98, to include theoretical models for the ultrasonic inspection of smooth planar defects, developed by British Energy and BNFL-Magnox Generation. The Workbench is a PC-based software package for the reconstruction, visualization and analysis of 3-D ultrasonic NDT data in an interactive CAD environment. This extension of the Workbeach now provides the user with a well established modelling approach, coupled with a graphical user interface for: a) configuring the model for flaw size, shape, orientation and location; b) flexible specification of probe parameters; c) selection of scanning surface and scan pattern on the CAD component model; d) presentation of the output as a simulated ultrasound image within the component, or as graphical or tabular displays. The defect modelling facilities of the Workbench can be used for inspection procedure assessment and confirmation of data interpretation, by comparison of overlay images generated from real and simulated data. The modelling technique currently implemented is based on the Geometrical Theory of Diffraction, for simulation of strip-like, circular or elliptical crack responses in the time harmonic or time dependent cases. Eventually, the Workbench will also allow modelling using elastodynamic Kirchhoff theory.
NASA Technical Reports Server (NTRS)
Noor, A. K. (Editor); Housner, J. M.
1983-01-01
The mechanics of materials and material characterization are considered, taking into account micromechanics, the behavior of steel structures at elevated temperatures, and an anisotropic plasticity model for inelastic multiaxial cyclic deformation. Other topics explored are related to advances and trends in finite element technology, classical analytical techniques and their computer implementation, interactive computing and computational strategies for nonlinear problems, advances and trends in numerical analysis, database management systems and CAD/CAM, space structures and vehicle crashworthiness, beams, plates and fibrous composite structures, design-oriented analysis, artificial intelligence and optimization, contact problems, random waves, and lifetime prediction. Earthquake-resistant structures and other advanced structural applications are also discussed, giving attention to cumulative damage in steel structures subjected to earthquake ground motions, and a mixed domain analysis of nuclear containment structures using impulse functions.
National Combustion Code: A Multidisciplinary Combustor Design System
NASA Technical Reports Server (NTRS)
Stubbs, Robert M.; Liu, Nan-Suey
1997-01-01
The Internal Fluid Mechanics Division conducts both basic research and technology, and system technology research for aerospace propulsion systems components. The research within the division, which is both computational and experimental, is aimed at improving fundamental understanding of flow physics in inlets, ducts, nozzles, turbomachinery, and combustors. This article and the following three articles highlight some of the work accomplished in 1996. A multidisciplinary combustor design system is critical for optimizing the combustor design process. Such a system should include sophisticated computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. The goal of the present effort is to develop some of the enabling technologies and to demonstrate their overall performance in an integrated system called the National Combustion Code.
Pereira, Andreia; Mendonca, Maria Isabel; Sousa, Ana Célia; Borges, Sofia; Freitas, Sónia; Henriques, Eva; Rodrigues, Mariana; Freitas, Ana Isabel; Guerra, Graça; Ornelas, Ilídio; Pereira, Décio; Brehm, António; Palma Dos Reis, Roberto
2017-06-01
Several genetic risk scores (GRS) have been associated with cardiovascular disease; their role, however, in survival from proven coronary artery disease (CAD) have yielded conflicting results. The objective of this study was to evaluate long-term cardiovascular mortality according to the genetic risk score in a Southern European population with CAD. A cohort of 1464 CAD patients with angiographic proven CAD were followed up prospectively for up to 58.3 (interquartile range: 25.8-88.1) months. Genotyping of 32 single-nucleotide polymorphisms previously associated with CAD was performed using oligonucleotides probes marked with fluorescence for each allele. GRS was constructed according to the additive model assuming codominance and categorised using the median (=26). Cox Regression analysis was performed to determine independent multivariate predictors of cardiovascular mortality. Kaplan-Meier survival curves compared high vs low GRS using log-rank test. C-index was done for our population, as a measure of discrimination in survival analysis model. During a mean follow-up of 58.3 months, 156 patients (10.7%) died, 107 (7.3%) of CV causes. High GRS (≥26) was associated with reduced cardiovascular survival. Survival analysis with Cox regression model adjusted for 8 variables showed that high GRS, dyslipidemia, diabetes and 3-vessel disease were independent risk factors for cardiovascular mortality (HR=1.53, P=.037; HR=3.64, P=.012; HR=1.75, P=.004; HR=2.97, P<.0001, respectively). At the end of follow-up, the estimated survival probability was 70.8% for high GRS and 80.8% for low GRS (Log-rank test 5.6; P=.018). C-Index of 0.71 was found when GRS was added to a multivariate survival model of diabetes, dyslipidemia, smoking, hypertension and 3 vessel disease, stable angina and dual antiplatelet therapy. Besides the classical risk factors management, this work highlights the relevance of the genetic profile in survival from CAD. It is expected that new therapies will be dirsected to gene targets with proven value in cardiovascular survival. © 2017 John Wiley & Sons Ltd.
Loley, Christina; Alver, Maris; Assimes, Themistocles L; Bjonnes, Andrew; Goel, Anuj; Gustafsson, Stefan; Hernesniemi, Jussi; Hopewell, Jemma C; Kanoni, Stavroula; Kleber, Marcus E; Lau, King Wai; Lu, Yingchang; Lyytikäinen, Leo-Pekka; Nelson, Christopher P; Nikpay, Majid; Qu, Liming; Salfati, Elias; Scholz, Markus; Tukiainen, Taru; Willenborg, Christina; Won, Hong-Hee; Zeng, Lingyao; Zhang, Weihua; Anand, Sonia S; Beutner, Frank; Bottinger, Erwin P; Clarke, Robert; Dedoussis, George; Do, Ron; Esko, Tõnu; Eskola, Markku; Farrall, Martin; Gauguier, Dominique; Giedraitis, Vilmantas; Granger, Christopher B; Hall, Alistair S; Hamsten, Anders; Hazen, Stanley L; Huang, Jie; Kähönen, Mika; Kyriakou, Theodosios; Laaksonen, Reijo; Lind, Lars; Lindgren, Cecilia; Magnusson, Patrik K E; Marouli, Eirini; Mihailov, Evelin; Morris, Andrew P; Nikus, Kjell; Pedersen, Nancy; Rallidis, Loukianos; Salomaa, Veikko; Shah, Svati H; Stewart, Alexandre F R; Thompson, John R; Zalloua, Pierre A; Chambers, John C; Collins, Rory; Ingelsson, Erik; Iribarren, Carlos; Karhunen, Pekka J; Kooner, Jaspal S; Lehtimäki, Terho; Loos, Ruth J F; März, Winfried; McPherson, Ruth; Metspalu, Andres; Reilly, Muredach P; Ripatti, Samuli; Sanghera, Dharambir K; Thiery, Joachim; Watkins, Hugh; Deloukas, Panos; Kathiresan, Sekar; Samani, Nilesh J; Schunkert, Heribert; Erdmann, Jeanette; König, Inke R
2016-10-12
In recent years, genome-wide association studies have identified 58 independent risk loci for coronary artery disease (CAD) on the autosome. However, due to the sex-specific data structure of the X chromosome, it has been excluded from most of these analyses. While females have 2 copies of chromosome X, males have only one. Also, one of the female X chromosomes may be inactivated. Therefore, special test statistics and quality control procedures are required. Thus, little is known about the role of X-chromosomal variants in CAD. To fill this gap, we conducted a comprehensive X-chromosome-wide meta-analysis including more than 43,000 CAD cases and 58,000 controls from 35 international study cohorts. For quality control, sex-specific filters were used to adequately take the special structure of X-chromosomal data into account. For single study analyses, several logistic regression models were calculated allowing for inactivation of one female X-chromosome, adjusting for sex and investigating interactions between sex and genetic variants. Then, meta-analyses including all 35 studies were conducted using random effects models. None of the investigated models revealed genome-wide significant associations for any variant. Although we analyzed the largest-to-date sample, currently available methods were not able to detect any associations of X-chromosomal variants with CAD.
Jullien, Frédéric; Moja, Sandrine; Bony, Aurélie; Legrand, Sylvain; Petit, Cécile; Benabdelkader, Tarek; Poirot, Kévin; Fiorucci, Sébastien; Guitton, Yann; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis
2014-01-01
In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-β-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-β-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender.
Chao, Nan; Liu, Shu-Xin; Liu, Bing-Mei; Li, Ning; Jiang, Xiang-Ning; Gai, Ying
2014-11-01
Nine CAD/CAD-like genes in P. tomentosa were classified into four classes based on expression patterns, phylogenetic analysis and biochemical properties with modification for the previous claim of SAD. Cinnamyl alcohol dehydrogenase (CAD) functions in monolignol biosynthesis and plays a critical role in wood development and defense. In this study, we isolated and cloned nine CAD/CAD-like genes in the Populus tomentosa genome. We investigated differential expression using microarray chips and found that PtoCAD1 was highly expressed in bud, root and vascular tissues (xylem and phloem) with the greatest expression in the root. Differential expression in tissues was demonstrated for PtoCAD3, PtoCAD6 and PtoCAD9. Biochemical analysis of purified PtoCADs in vitro indicated PtoCAD1, PtoCAD2 and PtoCAD8 had detectable activity against both coniferaldehyde and sinapaldehyde. PtoCAD1 used both substrates with high efficiency. PtoCAD2 showed no specific requirement for sinapaldehyde in spite of its high identity with so-called PtrSAD (sinapyl alcohol dehydrogenase). In addition, the enzymatic activity of PtoCAD1 and PtoCAD2 was affected by temperature. We classified these nine CAD/CAD-like genes into four classes: class I included PtoCAD1, which was a bone fide CAD with the highest activity; class II included PtoCAD2, -5, -7, -8, which might function in monolignol biosynthesis and defense; class III genes included PtoCAD3, -6, -9, which have a distinct expression pattern; class IV included PtoCAD12, which has a distinct structure. These data suggest divergence of the PtoCADs and its homologs, related to their functions. We propose genes in class II are a subset of CAD genes that evolved before angiosperms appeared. These results suggest CAD/CAD-like genes in classes I and II play a role in monolignol biosynthesis and contribute to our knowledge of lignin biosynthesis in P. tomentosa.
Structural Modeling Using "Scanning and Mapping" Technique
NASA Technical Reports Server (NTRS)
Amos, Courtney L.; Dash, Gerald S.; Shen, J. Y.; Ferguson, Frederick; Noga, Donald F. (Technical Monitor)
2000-01-01
Supported by NASA Glenn Center, we are in the process developing a structural damage diagnostic and monitoring system for rocket engines, which consists of five modules: Structural Modeling, Measurement Data Pre-Processor, Structural System Identification, Damage Detection Criterion, and Computer Visualization. The function of the system is to detect damage as it is incurred by the engine structures. The scientific principle to identify damage is to utilize the changes in the vibrational properties between the pre-damaged and post-damaged structures. The vibrational properties of the pre-damaged structure can be obtained based on an analytic computer model of the structure. Thus, as the first stage of the whole research plan, we currently focus on the first module - Structural Modeling. Three computer software packages are selected, and will be integrated for this purpose. They are PhotoModeler-Pro, AutoCAD-R14, and MSC/NASTRAN. AutoCAD is the most popular PC-CAD system currently available in the market. For our purpose, it plays like an interface to generate structural models of any particular engine parts or assembly, which is then passed to MSC/NASTRAN for extracting structural dynamic properties. Although AutoCAD is a powerful structural modeling tool, the complexity of engine components requires a further improvement in structural modeling techniques. We are working on a so-called "scanning and mapping" technique, which is a relatively new technique. The basic idea is to producing a full and accurate 3D structural model by tracing on multiple overlapping photographs taken from different angles. There is no need to input point positions, angles, distances or axes. Photographs can be taken by any types of cameras with different lenses. With the integration of such a modeling technique, the capability of structural modeling will be enhanced. The prototypes of any complex structural components will be produced by PhotoModeler first based on existing similar components, then passed to AutoCAD for modification and correction of any discrepancies seen in the Photomodeler version of the 3Dmodel. These three software packages are fully compatible. The DXF file can be used to transfer drawings among those packages. To begin this entire process, we are using a small replica of an actual engine blade as a test object. This paper introduces the accomplishment of our recent work.
A distributed data base management facility for the CAD/CAM environment
NASA Technical Reports Server (NTRS)
Balza, R. M.; Beaudet, R. W.; Johnson, H. R.
1984-01-01
Current/PAD research in the area of distributed data base management considers facilities for supporting CAD/CAM data management in a heterogeneous network of computers encompassing multiple data base managers supporting a variety of data models. These facilities include coordinated execution of multiple DBMSs to provide for administration of and access to data distributed across them.
Designers workbench: toward real-time immersive modeling
NASA Astrophysics Data System (ADS)
Kuester, Falko; Duchaineau, Mark A.; Hamann, Bernd; Joy, Kenneth I.; Ma, Kwan-Liu
2000-05-01
This paper introduces the Designers Workbench, a semi- immersive virtual environment for two-handed modeling, sculpting and analysis tasks. The paper outlines the fundamental tools, design metaphors and hardware components required for an intuitive real-time modeling system. As companies focus on streamlining productivity to cope with global competition, the migration to computer-aided design (CAD), computer-aided manufacturing, and computer-aided engineering systems has established a new backbone of modern industrial product development. However, traditionally a product design frequently originates form a clay model that, after digitization, forms the basis for the numerical description of CAD primitives. The Designers Workbench aims at closing this technology or 'digital gap' experienced by design and CAD engineers by transforming the classical design paradigm into its fully integrate digital and virtual analog allowing collaborative development in a semi- immersive virtual environment. This project emphasizes two key components form the classical product design cycle: freeform modeling and analysis. In the freedom modeling stage, content creation in the form of two-handed sculpting of arbitrary objects using polygonal, volumetric or mathematically defined primitives is emphasized, whereas the analysis component provides the tools required for pre- and post-processing steps for finite element analysis tasks applied to the created models.
Melzer, David; Osborne, Nicholas J; Henley, William E; Cipelli, Riccardo; Young, Anita; Money, Cathryn; McCormack, Paul; Luben, Robert; Khaw, Kay-Tee; Wareham, Nicholas J; Galloway, Tamara S
2012-03-27
The endocrine-disrupting chemical bisphenol A (BPA) is widely used in food and beverage packaging. Higher urinary BPA concentrations were cross-sectionally associated with heart disease in National Health and Nutrition Examination Survey (NHANES) 2003-2004 and NHANES 2005-2006, independent of traditional risk factors. We included 758 incident coronary artery disease (CAD) cases and 861 controls followed for 10.8 years from the European Prospective Investigation of Cancer-Norfolk UK. Respondents aged 40 to 74 years and free of CAD, stroke, or diabetes mellitus provided baseline spot urine samples. Urinary BPA concentrations (median value, 1.3 ng/mL) were low. Per-SD (4.56 ng/mL) increases in urinary BPA concentration were associated with incident CAD in age-, sex-, and urinary creatinine-adjusted models (n=1919; odds ratio=1.13; 95% confidence interval, 1.02-1.24; P=0.017). With CAD risk factor adjustment (including education, occupational social class, body mass index category, systolic blood pressure, lipid concentrations, and exercise), the estimate was similar but narrowly missed 2-sided significance (n=1744; odds ratio=1.11; 95% confidence interval, 1.00-1.23; P=0.058). Sensitivity analyses with the fully adjusted model, excluding those with early CAD (<3-year follow-up), body mass index >30, or abnormal renal function or with additional adjustment for vitamin C, C-reactive protein, or alcohol consumption, all produced similar estimates, and all showed associations at P≤0.05. Associations between higher BPA exposure (reflected in higher urinary concentrations) and incident CAD during >10 years of follow-up showed trends similar to previously reported cross-sectional findings in the more highly exposed NHANES respondents. Further work is needed to accurately estimate the prospective exposure-response curve and to establish the underlying mechanisms.
Kleber, M E; Goliasch, G; Grammer, T B; Pilz, S; Tomaschitz, A; Silbernagel, G; Maurer, G; März, W; Niessner, A
2014-08-01
Algorithms to predict the future long-term risk of patients with stable coronary artery disease (CAD) are rare. The VIenna and Ludwigshafen CAD (VILCAD) risk score was one of the first scores specifically tailored for this clinically important patient population. The aim of this study was to refine risk prediction in stable CAD creating a new prediction model encompassing various pathophysiological pathways. Therefore, we assessed the predictive power of 135 novel biomarkers for long-term mortality in patients with stable CAD. We included 1275 patients with stable CAD from the LUdwigshafen RIsk and Cardiovascular health study with a median follow-up of 9.8 years to investigate whether the predictive power of the VILCAD score could be improved by the addition of novel biomarkers. Additional biomarkers were selected in a bootstrapping procedure based on Cox regression to determine the most informative predictors of mortality. The final multivariable model encompassed nine clinical and biochemical markers: age, sex, left ventricular ejection fraction (LVEF), heart rate, N-terminal pro-brain natriuretic peptide, cystatin C, renin, 25OH-vitamin D3 and haemoglobin A1c. The extended VILCAD biomarker score achieved a significantly improved C-statistic (0.78 vs. 0.73; P = 0.035) and net reclassification index (14.9%; P < 0.001) compared to the original VILCAD score. Omitting LVEF, which might not be readily measureable in clinical practice, slightly reduced the accuracy of the new BIO-VILCAD score but still significantly improved risk classification (net reclassification improvement 12.5%; P < 0.001). The VILCAD biomarker score based on routine parameters complemented by novel biomarkers outperforms previous risk algorithms and allows more accurate classification of patients with stable CAD, enabling physicians to choose more personalized treatment regimens for their patients.
Computer-aided Classification of Mammographic Masses Using Visually Sensitive Image Features
Wang, Yunzhi; Aghaei, Faranak; Zarafshani, Ali; Qiu, Yuchen; Qian, Wei; Zheng, Bin
2017-01-01
Purpose To develop a new computer-aided diagnosis (CAD) scheme that computes visually sensitive image features routinely used by radiologists to develop a machine learning classifier and distinguish between the malignant and benign breast masses detected from digital mammograms. Methods An image dataset including 301 breast masses was retrospectively selected. From each segmented mass region, we computed image features that mimic five categories of visually sensitive features routinely used by radiologists in reading mammograms. We then selected five optimal features in the five feature categories and applied logistic regression models for classification. A new CAD interface was also designed to show lesion segmentation, computed feature values and classification score. Results Areas under ROC curves (AUC) were 0.786±0.026 and 0.758±0.027 when to classify mass regions depicting on two view images, respectively. By fusing classification scores computed from two regions, AUC increased to 0.806±0.025. Conclusion This study demonstrated a new approach to develop CAD scheme based on 5 visually sensitive image features. Combining with a “visual aid” interface, CAD results may be much more easily explainable to the observers and increase their confidence to consider CAD generated classification results than using other conventional CAD approaches, which involve many complicated and visually insensitive texture features. PMID:27911353
2013-01-01
Background Lignin is a significant barrier in the conversion of plant biomass to bioethanol. Cinnamyl alcohol dehydrogenase (CAD) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the pathway of lignin monomer biosynthesis. Brown midrib mutants in Zea mays and Sorghum bicolor with impaired CAD or COMT activity have attracted considerable agronomic interest for their altered lignin composition and improved digestibility. Here, we identified and functionally characterized candidate genes encoding CAD and COMT enzymes in the grass model species Brachypodium distachyon with the aim of improving crops for efficient biofuel production. Results We developed transgenic plants overexpressing artificial microRNA designed to silence BdCAD1 or BdCOMT4. Both transgenes caused altered flowering time and increased stem count and weight. Downregulation of BdCAD1 caused a leaf brown midrib phenotype, the first time this phenotype has been observed in a C3 plant. While acetyl bromide soluble lignin measurements were equivalent in BdCAD1 downregulated and control plants, histochemical staining and thioacidolysis indicated a decrease in lignin syringyl units and reduced syringyl/guaiacyl ratio in the transgenic plants. BdCOMT4 downregulated plants exhibited a reduction in total lignin content and decreased Maule staining of syringyl units in stem. Ethanol yield by microbial fermentation was enhanced in amiR-cad1-8 plants. Conclusion These results have elucidated two key genes in the lignin biosynthetic pathway in B. distachyon that, when perturbed, may result in greater stem biomass yield and bioconversion efficiency. PMID:23902793
Video display engineering and optimization system
NASA Technical Reports Server (NTRS)
Larimer, James (Inventor)
1997-01-01
A video display engineering and optimization CAD simulation system for designing a LCD display integrates models of a display device circuit, electro-optics, surface geometry, and physiological optics to model the system performance of a display. This CAD system permits system performance and design trade-offs to be evaluated without constructing a physical prototype of the device. The systems includes a series of modules which permit analysis of design trade-offs in terms of their visual impact on a viewer looking at a display.
A voxel visualization and analysis system based on AutoCAD
NASA Astrophysics Data System (ADS)
Marschallinger, Robert
1996-05-01
A collection of AutoLISP programs is presented which enable the visualization and analysis of voxel models by AutoCAD rel. 12/rel. 13. The programs serve as an interactive, graphical front end for manipulating the results of three-dimensional modeling software producing block estimation data. ASCII data files describing geometry and attributes per estimation block are imported and stored as a voxel array. Each voxel may contain multiple attributes, therefore different parameters may be incorporated in one voxel array. Voxel classification is implemented on a layer basis providing flexible treatment of voxel classes such as recoloring, peeling, or volumetry. A versatile clipping tool enables slicing voxel arrays according to combinations of three perpendicular clipping planes. The programs feature an up-to-date, graphical user interface for user-friendly operation by non AutoCAD specialists.
Parallel Robot for Lower Limb Rehabilitation Exercises.
Rastegarpanah, Alireza; Saadat, Mozafar; Borboni, Alberto
2016-01-01
The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises.
Parallel Robot for Lower Limb Rehabilitation Exercises
Saadat, Mozafar; Borboni, Alberto
2016-01-01
The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises. PMID:27799727
Wind tunnel and numerical data on the ventilation performance of windcatcher with wing wall.
Nejat, Payam; Calautit, John Kaiser; Abd Majid, Muhd Zaimi; Hughes, Ben Richard; Zeynali, Iman; Jomehzadeh, Fatemeh
2016-12-01
The data presented in this article were the basis for the study reported in the research articles entitled "Evaluation of a two-sided windcatcher integrated with wing wall (as a new design) and comparison with a conventional windcatcher" (P. Nejat, J.K. Calautit, M.Z.A. Majid, B.R. Hughes, I. Zeynali, F. Jomehzadeh, 2016) [1] which presents the effect of wing wall on the air flow distribution under using the windcatchers as a natural ventilation equipment. Here, we detail the wind tunnel testing and numerical set-up used for obtaining the data on ventilation rates and indoor airflow distribution inside a test room with a two-sided windcatcher and wing wall. Three models were integrated with wing wall angled at 30°, 45° and 60° and another windcatcher was a conventional two-sided device. The computer-aided design (CAD) three-dimensional geometries which were produced using Solid Edge modeler are also included in the data article.
Demirtas, Sinan; Caliskan, Ahmet; Guclu, Orkut; Yazici, Suleyman; Karahan, Oguz; Yavuz, Celal; Mavitas, Binali
2013-01-01
Background Calcium dobesilate (CaD) is a member of the synthetic veno-active drug family. Only a small number of reports are available that describe the micro-angiogenic effects of CaD in the current literature. Material/Methods The antiangiogenic potential of CaD was compared with bevacizumab (Bb), which is a potent angiogenesis inhibitor, in a chick chorioallantoic membrane model. Four different concentrations (10−7, 10−6, 10−5, and 10−4 M) of drug pellet were prepared for each drug. Changes in vessel formation were scored and compared for each drug according to the previous literature. Result The antiangiogenic behavior of CaD was lower than Bb, despite the significant dose-dependent manner of escalation. The anti-angiogenic scores of CaD were determined as 0.20, 0.47, 0.66, 1.0 in 10−7, 10−6, 10−5, and 10−4 M concentrations, respectively (average score >0.5 was significant). Conclusions According to the data obtained, this agent should be used carefully for cases in which angiogenesis plays an important role in healing. PMID:24072135
Emoto, Takuo; Yamashita, Tomoya; Kobayashi, Toshio; Sasaki, Naoto; Hirota, Yushi; Hayashi, Tomohiro; So, Anna; Kasahara, Kazuyuki; Yodoi, Keiko; Matsumoto, Takuya; Mizoguchi, Taiji; Ogawa, Wataru; Hirata, Ken-Ichi
2017-01-01
The association between atherosclerosis and gut microbiota has been attracting increased attention. We previously demonstrated a possible link between gut microbiota and coronary artery disease. Our aim of this study was to clarify the gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism (T-RFLP). This study included 39 coronary artery disease (CAD) patients and 30 age- and sex- matched no-CAD controls (Ctrls) with coronary risk factors. Bacterial DNA was extracted from their fecal samples and analyzed by T-RFLP and data mining analysis using the classification and regression algorithm. Five additional CAD patients were newly recruited to confirm the reliability of this analysis. Data mining analysis could divide the composition of gut microbiota into 2 characteristic nodes. The CAD group was classified into 4 CAD pattern nodes (35/39 = 90 %), while the Ctrl group was classified into 3 Ctrl pattern nodes (28/30 = 93 %). Five additional CAD samples were applied to the same dividing model, which could validate the accuracy to predict the risk of CAD by data mining analysis. We could demonstrate that operational taxonomic unit 853 (OTU853), OTU657, and OTU990 were determined important both by the data mining method and by the usual statistical comparison. We classified the gut microbiota profiles in coronary artery disease patients using data mining analysis of T-RFLP data and demonstrated the possibility that gut microbiota is a diagnostic marker of suffering from CAD.
Genetic loci associated with nonobstructive coronary artery disease in Caucasian women.
Weng, Liming; Taylor, Kent D; Chen, Yii-Der Ida; Sopko, George; Kelsey, Sheryl F; Bairey Merz, C Noel; Pepine, Carl J; Miller, Virginia M; Rotter, Jerome I; Gulati, Martha; Goodarzi, Mark O; Cooper-DeHoff, Rhonda M
2016-01-01
Nonobstructive coronary artery disease (CAD) in women is associated with adverse cardiovascular (CV) outcomes; however, information regarding genetic variants that predispose women to nonobstructive CAD is lacking. Women from the Women's Ischemia Syndrome Evaluation (WISE) Study and the St. James Women Take Heart (WTH) Study were genotyped with the Cardio-MetaboChip. WISE enrolled women with symptoms and signs of ischemia referred for coronary angiography; WTH enrolled asymptomatic, community-based women without heart disease. Analyses were conducted with a case (WISE)--control (WTH) design and multivariate logistic regression models to investigate genetic variation associated with likelihood of nonobstructive CAD. One genetic marker, single nucleotide polymorphism (SNP) rs2301753 on chromosome 6 in RNF39, achieved chip-wide significance for nonobstructive CAD (P < 9.5 × 10(-7)). After adjusting for baseline characteristics, we found no variants achieved chip-wide significance. However, SNP rs2301753 on chromosome 6 in RNF39 was associated with reduced likelihood of nonobstructive CAD [odds ratio (OR) 0.42 and 95% confidence interval (CI) of 0.29 to 0.68], at a nominal level of P = 5.6 × 10(-6), while SNP rs12818945 in the ATP2B1 locus on chromosome 12 was associated with increased odds for nonobstructive CAD (OR 2.38 and 95% CI of 1.63 to 3.45) and nominal P = 5.8 × 10(-6). The functions of RNF39 and ATP2B1 raise the possibility that genes involved in cardio-dysfunction may contribute to nonobstructive CAD in Caucasian women and may provide insights into novel approaches for therapy and prevention. If replicated, incorporation of these genetic variants into diagnostic evaluation may identify women at high risk for nonobstructive CAD.
Alqahtani, Fawaz
2017-01-01
The purpose of this study was to determine the effect of two extraoral computer-aided design (CAD) and computer-aided manufacturing (CAM) systems, in comparison with conventional techniques, on the marginal fit of monolithic CAD/CAM lithium disilicate ceramic crowns. This is an in vitro interventional study. The study was carried out at the Department of Prosthodontics, School of Dentistry, Prince Sattam Bin Abdul-Aziz University, Saudi Arabia, from December 2015 to April 2016. A marginal gap of 60 lithium disilicate crowns was evaluated by scanning electron microscopy. In total, 20 pressable lithium disilicate (IPS e.max Press [Ivoclar Vivadent]) ceramic crowns were fabricated using the conventional lost-wax technique as a control group. The experimental all-ceramic crowns were produced based on a scan stone model and milled using two extraoral CAD/CAM systems: the Cerec group was fabricated using the Cerec CAD/CAM system, and the Trios group was fabricated using Trios CAD and milled using Wieland Zenotec CAM. One-way analysis of variance (ANOVA) and the Scheffe post hoc test were used for statistical comparison of the groups (α=0.05). The mean (±standard deviation) of the marginal gap of each group was as follows: the Control group was 91.15 (±15.35) µm, the Cerec group was 111.07 (±6.33) µm, and the Trios group was 60.17 (±11.09) µm. One-way ANOVA and the Scheffe post hoc test showed a statistically significant difference in the marginal gap between all groups. It can be concluded from the current study that all-ceramic crowns, fabricated using the CAD/CAM system, show a marginal accuracy that is acceptable in clinical environments. The Trios CAD group displayed the smallest marginal gap.
Matsumura, Takuma; Kinoshita, Taku; Sakurai, Yoriko; Yahaba, Misuzu; Tsushima, Kenji; Sakao, Seiichiro; Nagashima, Kengo; Ozaki, Toshinori; Kobayashi, Yoshio; Hiwasa, Takaki; Tatsumi, Koichiro
2018-01-01
Objective Although severe obstructive sleep apnea (OSA) is an important risk factor for atherosclerosis-related diseases including coronary artery disease (CAD), there is no reliable biomarker of CAD risks in patients with OSA. This study aimed to test our hypothesis that circulating autoantibodies against neuroblastoma suppressor of tumorigenicity 1 (NBL1-Abs) are associated with the prevalence of CAD in patients with OSA. Methods Eighty-two adults diagnosed with OSA by polysomnography, 96 patients with a diagnosis of acute coronary syndrome (ACS) and 64 healthy volunteers (HVs) were consecutively enrolled. Serum samples were collected from patients with OSA at diagnostic polysomnography and from patients with ACS at disease onset. Serum NBL1-Ab level was measured by amplified luminescence proximity homogeneous assay and its association with clinical variables related to atherosclerosis was evaluated. Results NBL1-Ab level was significantly elevated in patients with both OSA and ACS compared with HVs. Subgroup analyses showed that NBL1-Ab level was markedly higher in patients with severe OSA and OSA patients with a history of CAD. Weak associations were observed between NBL1-Ab level and apnea-hypopnea index, age, mean SpO2 and arousal index, whereas significantly higher NBL1-Ab levels were observed in OSA patients with a history of CAD than in those without a history of CAD. Sensitivity analysis using a logistic regression model also demonstrated that increased NBL1-Ab levels were associated with the previous history of CAD in patients with OSA. Conclusions Elevated NBL1-Ab levels may be associated with the prevalence of CAD in patients with OSA, which needs to be confirmed further. PMID:29596467
Lathia, Nina; Isogai, Pierre K; De Angelis, Carlo; Smith, Thomas J; Cheung, Matthew; Mittmann, Nicole; Hoch, Jeffrey S; Walker, Scott
2013-08-07
Febrile neutropenia is a serious toxicity of cancer chemotherapy that is usually treated in hospital. We assessed the cost-effectiveness of filgrastim and pegfilgrastim as primary prophylaxis against febrile neutropenia in diffuse large B-cell lymphoma (DLBCL) patients undergoing chemotherapy. We used a Markov model that followed patients through induction chemotherapy to compare the three prophylaxis strategies: 1) no primary prophylaxis against febrile neutropenia; 2) primary prophylaxis with 10 days of filgrastim therapy; and 3) primary prophylaxis with a single dose of pegfilgrastim. The target population was a hypothetical cohort of 64-year-old men and women with DLBCL. Data sources included published literature and current clinical practice. The analysis was conducted from a publicly funded health-care system perspective. The main outcome measures included costs, quality-adjusted life years (QALYs), and incremental cost-effectiveness ratios (ICERs). In the base-case analysis, costs associated with no primary prophylaxis, primary prophylaxis with 10 days of filgrastim, and primary prophylaxis with pegfilgrastim were CaD $7314, CaD $13947, and CaD $16290, respectively. The QALYs associated with the three strategies were 0.2004, 0.2015, and 0.2024, respectively. The ICER for the filgrastim vs no primary prophylaxis strategy was CaD $5796000 per QALY. The ICER for the pegfilgrastim vs filgrastim primary prophylaxis strategy was CaD $2611000 per QALY. All one-way sensitivity analyses yielded ICERs greater than CaD $400000 per QALY. Cost-effectiveness acceptability curves show that 20.0% of iterations are cost-effective at a willingness-to-pay threshold of CaD $1595000 for the filgrastim strategy and CaD $561000 for the pegfilgrastim strategy. Primary prophylaxis against febrile neutropenia with either filgrastim or pegfilgrastim is not cost-effective in DLBCL patients.
Modelling of industrial robot in LabView Robotics
NASA Astrophysics Data System (ADS)
Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.
2017-08-01
Currently can find many models of industrial systems including robots. These models differ from each other not only by the accuracy representation parameters, but the representation range. For example, CAD models describe the geometry of the robot and some even designate a mass parameters as mass, center of gravity, moment of inertia, etc. These models are used in the design of robotic lines and sockets. Also systems for off-line programming use these models and many of them can be exported to CAD. It is important to note that models for off-line programming describe not only the geometry but contain the information necessary to create a program for the robot. Exports from CAD to off-line programming system requires additional information. These models are used for static determination of reachability points, and testing collision. It’s enough to generate a program for the robot, and even check the interaction of elements of the production line, or robotic cell. Mathematical models allow robots to study the properties of kinematic and dynamic of robot movement. In these models the geometry is not so important, so are used only selected parameters such as the length of the robot arm, the center of gravity, moment of inertia. These parameters are introduced into the equations of motion of the robot and motion parameters are determined.
Husser, Oliver; Bodí, Vicente; Sanchís, Juan; Mainar, Luis; Núñez, Julio; López-Lereu, María P; Monmeneu, José V; Ruiz, Vicente; Rumiz, Eva; Moratal, David; Chorro, Francisco J; Llácer, Angel
2009-04-01
Dipyridamole stress perfusion cardiovascular magnetic resonance (CMR) is used to detect coronary artery disease (CAD). However, few data are available on the diagnostic value of the systolic dysfunction induced by dipyridamole. This study investigated whether the induction of systolic dysfunction supplements the diagnostic information provided by perfusion imaging in the detection of CAD. Overall, 166 patients underwent dipyridamole CMR and quantitative coronary angiography, with CAD being defined as a stenosis > or =70%. Systolic dysfunction at rest, systolic dysfunction with dipyridamole, induced systolic dysfunction, and stress first-pass perfussion deficit (PD) and delayed enhancement were quantified. In the multivariate analysis, PD (hazard ratio [HR]=1.6; 95% confidence interval [CI], 1.33-1.91;P< .0001) and induced systolic dysfunction (OR=1.8; 95% CI, 1.18-2.28; P< .007) were independently associated with CAD and had a sensitivity and specificity of 92% and 62% and 43% and 96%, respectively. Patients were categorized as having no ischemia (Group 1), PD but no induced systolic dysfunction (Group 2), or induced systolic dysfunction irrespective of PD (Group 3). In Group 3, the prevalence of CAD was higher than in Group 1 or 2 (96% vs. 22% and 79%, respectively; P=.001) and the risk of CAD was two-fold higher than in Group 2 (OR=2.34; 95% CI, 1.07-5.13; P=.034). Compared with Group 2, more hypoperfused segments were observed in Group 3 (6.2+/-2.6 vs. 7.4+/-3.4; P=.044), and more diseased vessels (1.4+/-1.0 vs. 1.8+/-0.9; P=.036). Adding induced systolic dysfunction to perfusion and clinical data improved the multivariate model's C-statistic for predicting CAD (0.81 vs. 0.87; P=.02). Combining induced systolic dysfunction with perfusion imaging increases the diagnostic accuracy of detecting CAD and enables patients with severe ischemia and a high probability of CAD to be identified.
de França, Danilo Gonzaga; Morais, Maria Helena; das Neves, Flávio D; Carreiro, Adriana Fonte; Barbosa, Gustavo As
The aim of this study was to evaluate the effectiveness of fabrication methods (computer-aided design/computer-aided manufacture [CAD/CAM], copy-milling, and conventional casting) in the fit accuracy of three-unit, screw-retained fixed dental prostheses. Sixteen three-unit implant-supported screw-retained frameworks were fabricated to fit an in vitro model. Eight frameworks were fabricated using the CAD/CAM system, four in zirconia and four in cobalt-chromium. Four zirconia frameworks were fabricated using the copy-milled system, and four were cast in cobalt-chromium using conventional casting with premachined abutments. The vertical and horizontal misfit at the implant-framework interface was measured using scanning electron microscopy at ×250. The results for vertical misfit were analyzed using Kruskal-Wallis and Mann-Whitney tests. The horizontal misfits were categorized as underextended, equally extended, or overextended. Statistical analysis established differences between groups according to the chi-square test (α = .05). The mean vertical misfit was 5.9 ± 3.6 μm for CAD/CAM-fabricated zirconia, 1.2 ± 2.2 μm for CAD/CAM-fabricated cobalt-chromium frameworks, 7.6 ± 9.2 μm for copy-milling-fabricated zirconia frameworks, and 11.8 (9.8) μm for conventionally fabricated frameworks. The Mann-Whitney test revealed significant differences between all but the zirconia-fabricated frameworks. A significant association was observed between the horizontal misfits and the fabrication method. The percentage of horizontal misfits that were underextended and overextended was higher in milled zirconia (83.3%), CAD/CAM cobaltchromium (66.7%), cast cobalt-chromium (58.3%), and CAD/CAM zirconia (33.3%) frameworks. CAD/CAM-fabricated frameworks exhibit better vertical misfit and low variability compared with copy-milled and conventionally fabricated frameworks. The percentage of interfaces equally extended was higher when CAD/CAM and zirconia were used.
Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine
Wosnik, Martin; Gunawan, Budi; Neary, Vincent S.
2016-01-01
The mechanical power, total rotor drag, and near-wake velocity of a 1:6 scale model (1.075 m diameter) of the US Department of Energy’s Reference Model vertical-axis cross-flow turbine were measured experimentally in a towing tank, to provide a comprehensive open dataset for validating numerical models. Performance was measured for a range of tip speed ratios and at multiple Reynolds numbers by varying the rotor’s angular velocity and tow carriage speed, respectively. A peak power coefficient CP = 0.37 and rotor drag coefficient CD = 0.84 were observed at a tip speed ratio λ0 = 3.1. A regime of weak linear Re-dependence of the power coefficient was observed above a turbine diameter Reynolds number ReD ≈ 106. The effects of support strut drag on turbine performance were investigated by covering the rotor’s NACA 0021 struts with cylinders. As expected, this modification drastically reduced the rotor power coefficient. Strut drag losses were also measured for the NACA 0021 and cylindrical configurations with the rotor blades removed. For λ = λ0, wake velocity was measured at 1 m (x/D = 0.93) downstream. Mean velocity, turbulence kinetic energy, and mean kinetic energy transport were compared with results from a high solidity turbine acquired with the same test apparatus. Like the high solidity case, mean vertical advection was calculated to be the largest contributor to near-wake recovery. However, overall, lower levels of streamwise wake recovery were calculated for the RM2 case—a consequence of both the relatively low solidity and tapered blades reducing blade tip vortex shedding—responsible for mean vertical advection—and lower levels of turbulence caused by higher operating tip speed ratio and therefore reduced dynamic stall. Datasets, code for processing and visualization, and a CAD model of the turbine have been made publicly available. PMID:27684076
Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine.
Bachant, Peter; Wosnik, Martin; Gunawan, Budi; Neary, Vincent S
The mechanical power, total rotor drag, and near-wake velocity of a 1:6 scale model (1.075 m diameter) of the US Department of Energy's Reference Model vertical-axis cross-flow turbine were measured experimentally in a towing tank, to provide a comprehensive open dataset for validating numerical models. Performance was measured for a range of tip speed ratios and at multiple Reynolds numbers by varying the rotor's angular velocity and tow carriage speed, respectively. A peak power coefficient CP = 0.37 and rotor drag coefficient CD = 0.84 were observed at a tip speed ratio λ0 = 3.1. A regime of weak linear Re-dependence of the power coefficient was observed above a turbine diameter Reynolds number ReD ≈ 106. The effects of support strut drag on turbine performance were investigated by covering the rotor's NACA 0021 struts with cylinders. As expected, this modification drastically reduced the rotor power coefficient. Strut drag losses were also measured for the NACA 0021 and cylindrical configurations with the rotor blades removed. For λ = λ0, wake velocity was measured at 1 m (x/D = 0.93) downstream. Mean velocity, turbulence kinetic energy, and mean kinetic energy transport were compared with results from a high solidity turbine acquired with the same test apparatus. Like the high solidity case, mean vertical advection was calculated to be the largest contributor to near-wake recovery. However, overall, lower levels of streamwise wake recovery were calculated for the RM2 case-a consequence of both the relatively low solidity and tapered blades reducing blade tip vortex shedding-responsible for mean vertical advection-and lower levels of turbulence caused by higher operating tip speed ratio and therefore reduced dynamic stall. Datasets, code for processing and visualization, and a CAD model of the turbine have been made publicly available.
Space crew radiation exposure analysis system based on a commercial stand-alone CAD system
NASA Technical Reports Server (NTRS)
Appleby, Matthew H.; Golightly, Michael J.; Hardy, Alva C.
1992-01-01
Major improvements have recently been completed in the approach to spacecraft shielding analysis. A Computer-Aided Design (CAD)-based system has been developed for determining the shielding provided to any point within or external to the spacecraft. Shielding analysis is performed using a commercially available stand-alone CAD system and a customized ray-tracing subroutine contained within a standard engineering modeling software package. This improved shielding analysis technique has been used in several vehicle design projects such as a Mars transfer habitat, pressurized lunar rover, and the redesigned Space Station. Results of these analyses are provided to demonstrate the applicability and versatility of the system.
NASA Astrophysics Data System (ADS)
Gong, Jun; Zhu, Qing
2006-10-01
As the special case of VGE in the fields of AEC (architecture, engineering and construction), Virtual Building Environment (VBE) has been broadly concerned. Highly complex, large-scale 3d spatial data is main bottleneck of VBE applications, so 3d spatial data organization and management certainly becomes the core technology for VBE. This paper puts forward 3d spatial data model for VBE, and the performance to implement it is very high. Inherent storage method of CAD data makes data redundant, and doesn't concern efficient visualization, which is a practical bottleneck to integrate CAD model, so An Efficient Method to Integrate CAD Model Data is put forward. Moreover, Since the 3d spatial indices based on R-tree are usually limited by their weakness of low efficiency due to the severe overlap of sibling nodes and the uneven size of nodes, a new node-choosing algorithm of R-tree are proposed.
An esthetics rehabilitation with computer-aided design/ computer-aided manufacturing technology.
Mazaro, Josá Vitor Quinelli; de Mello, Caroline Cantieri; Zavanelli, Adriana Cristina; Santiago, Joel Ferreira; Amoroso, Andressa Paschoal; Pellizzer, Eduardo Piza
2014-07-01
This paper describes a case of a rehabilitation involving Computer Aided Design/Computer Aided Manufacturing (CAD-CAM) system in implant supported and dental supported prostheses using zirconia as framework. The CAD-CAM technology has developed considerably over last few years, becoming a reality in dental practice. Among the widely used systems are the systems based on zirconia which demonstrate important physical and mechanical properties of high strength, adequate fracture toughness, biocompatibility and esthetics, and are indicated for unitary prosthetic restorations and posterior and anterior framework. All the modeling was performed by using CAD-CAM system and prostheses were cemented using resin cement best suited for each situation. The rehabilitation of the maxillary arch using zirconia framework demonstrated satisfactory esthetic and functional results after a 12-month control and revealed no biological and technical complications. This article shows the important of use technology CAD/CAM in the manufacture of dental prosthesis and implant-supported.
Generation and use of human 3D-CAD models
NASA Astrophysics Data System (ADS)
Grotepass, Juergen; Speyer, Hartmut; Kaiser, Ralf
2002-05-01
Individualized Products are one of the ten mega trends of the 21st Century with human modeling as the key issue for tomorrow's design and product development. The use of human modeling software for computer based ergonomic simulations within the production process increases quality while reducing costs by 30- 50 percent and shortening production time. This presentation focuses on the use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production. Today, the entire production chain can be designed, individualized models generated and analyzed in 3D computer environments. Anthropometric design for ergonomics is matched to human needs, thus preserving health. Ergonomic simulation includes topics as human vision, reachability, kinematics, force and comfort analysis and international design capabilities. In German more than 17 billions of Mark are moved to other industries, because clothes do not fit. Individual clothing tailored to the customer's preference means surplus value, pleasure and perfect fit. The body scanning technology is the key to generation and use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production.
A Comparison of Marginal Gaps of All-Ceramic Crowns Constructed from Scanned Impressions and Models.
Tabesh, Raena; Dudley, James
This study compared the marginal gaps of computer-aided design/computer-aided manufacture (CAD/CAM)-fabricated all-ceramic crowns constructed from scanned impressions and models and with two different occlusal reduction designs. Two typodont mandibular first molars were prepared to receive CAD/CAM-fabricated all-ceramic crowns. Both molars were prepared to ideal crown reduction, the first with anatomical occlusal reduction (AOR) and the second with completely flat occlusal reduction (FOR). Nine polyvinyl siloxane impressions (PVS) were taken, and nine stone replicas fabricated for each preparation. All impressions and stone models were scanned using a laser scanner (Planmeca Planscan, E4D technologies), and 36 lithium disilicate (IPS e.max CAD) crowns were milled. The marginal gap was measured in four locations using a light stereomicroscope. Crowns constructed from preparations with both occlusal reduction designs demonstrated similar marginal gaps (FOR = 97.98; AOR = 89.12; P = .739). However, all crowns constructed from scanned impressions presented significantly larger marginal gaps than the crowns fabricated from scanned models (impressions = 109.26; models = 77.84; P = .002). Scanning stone models produced all-ceramic crowns with significantly smaller marginal gaps than scanning impressions, irrespective of the occlusal reduction design.
van der Harst, Pim; Verweij, Niek
2018-02-02
Coronary artery disease (CAD) is a complex phenotype driven by genetic and environmental factors. Ninety-seven genetic risk loci have been identified to date, but the identification of additional susceptibility loci might be important to enhance our understanding of the genetic architecture of CAD. To expand the number of genome-wide significant loci, catalog functional insights, and enhance our understanding of the genetic architecture of CAD. We performed a genome-wide association study in 34 541 CAD cases and 261 984 controls of UK Biobank resource followed by replication in 88 192 cases and 162 544 controls from CARDIoGRAMplusC4D. We identified 75 loci that replicated and were genome-wide significant ( P <5×10 -8 ) in meta-analysis, 13 of which had not been reported previously. Next, to further identify novel loci, we identified all promising ( P <0.0001) loci in the CARDIoGRAMplusC4D data and performed reciprocal replication and meta-analyses with UK Biobank. This led to the identification of 21 additional novel loci reaching genome-wide significance ( P <5×10 -8 ) in meta-analysis. Finally, we performed a genome-wide meta-analysis of all available data revealing 30 additional novel loci ( P <5×10 -8 ) without further replication. The increase in sample size by UK Biobank raised the number of reconstituted gene sets from 4.2% to 13.9% of all gene sets to be involved in CAD. For the 64 novel loci, 155 candidate causal genes were prioritized, many without an obvious connection to CAD. Fine mapping of the 161 CAD loci generated lists of credible sets of single causal variants and genes for functional follow-up. Genetic risk variants of CAD were linked to development of atrial fibrillation, heart failure, and death. We identified 64 novel genetic risk loci for CAD and performed fine mapping of all 161 risk loci to obtain a credible set of causal variants. The large expansion of reconstituted gene sets argues in favor of an expanded omnigenic model view on the genetic architecture of CAD. © 2017 The Authors.
Bolland, Mark J; Grey, Andrew; Gamble, Greg D; Reid, Ian R
2015-01-01
Observational studies (OS) and randomized controlled trials (RCTs) often report discordant results. In the Women's Health Initiative Calcium and Vitamin D (WHI CaD) RCT, women were randomly assigned to CaD or placebo, but were permitted to use personal calcium and vitamin D supplements, creating a unique opportunity to compare results from randomized and observational analyses within the same study. WHI CaD was a 7-year RCT of 1g calcium/400IU vitamin D daily in 36,282 post-menopausal women. We assessed the effects of CaD on cardiovascular events, death, cancer and fracture in a randomized design- comparing CaD with placebo in 43% of women not using personal calcium or vitamin D supplements- and in a observational design- comparing women in the placebo group (44%) using personal calcium and vitamin D supplements with non-users. Incidence was assessed using Cox proportional hazards models, and results from the two study designs deemed concordant if the absolute difference in hazard ratios was ≤0.15. We also compared results from WHI CaD to those from the WHI Observational Study(WHI OS), which used similar methodology for analyses and recruited from the same population. In WHI CaD, for myocardial infarction and stroke, results of unadjusted and 6/8 covariate-controlled observational analyses (age-adjusted, multivariate-adjusted, propensity-adjusted, propensity-matched) were not concordant with the randomized design results. For death, hip and total fracture, colorectal and total cancer, unadjusted and covariate-controlled observational results were concordant with randomized results. For breast cancer, unadjusted and age-adjusted observational results were concordant with randomized results, but only 1/3 other covariate-controlled observational results were concordant with randomized results. Multivariate-adjusted results from WHI OS were concordant with randomized WHI CaD results for only 4/8 endpoints. Results of randomized analyses in WHI CaD were concordant with observational analyses for 5/8 endpoints in WHI CaD and 4/8 endpoints in WHI OS.
Bolland, Mark J.; Grey, Andrew; Gamble, Greg D.; Reid, Ian R.
2015-01-01
Background Observational studies (OS) and randomized controlled trials (RCTs) often report discordant results. In the Women’s Health Initiative Calcium and Vitamin D (WHI CaD) RCT, women were randomly assigned to CaD or placebo, but were permitted to use personal calcium and vitamin D supplements, creating a unique opportunity to compare results from randomized and observational analyses within the same study. Methods WHI CaD was a 7-year RCT of 1g calcium/400IU vitamin D daily in 36,282 post-menopausal women. We assessed the effects of CaD on cardiovascular events, death, cancer and fracture in a randomized design- comparing CaD with placebo in 43% of women not using personal calcium or vitamin D supplements- and in a observational design- comparing women in the placebo group (44%) using personal calcium and vitamin D supplements with non-users. Incidence was assessed using Cox proportional hazards models, and results from the two study designs deemed concordant if the absolute difference in hazard ratios was ≤0.15. We also compared results from WHI CaD to those from the WHI Observational Study(WHI OS), which used similar methodology for analyses and recruited from the same population. Results In WHI CaD, for myocardial infarction and stroke, results of unadjusted and 6/8 covariate-controlled observational analyses (age-adjusted, multivariate-adjusted, propensity-adjusted, propensity-matched) were not concordant with the randomized design results. For death, hip and total fracture, colorectal and total cancer, unadjusted and covariate-controlled observational results were concordant with randomized results. For breast cancer, unadjusted and age-adjusted observational results were concordant with randomized results, but only 1/3 other covariate-controlled observational results were concordant with randomized results. Multivariate-adjusted results from WHI OS were concordant with randomized WHI CaD results for only 4/8 endpoints. Conclusions Results of randomized analyses in WHI CaD were concordant with observational analyses for 5/8 endpoints in WHI CaD and 4/8 endpoints in WHI OS. PMID:26440516
Toutouzas, Konstantinos; Benetos, Georgios; Koutagiar, Iosif; Barampoutis, Nikolaos; Mitropoulou, Fotini; Davlouros, Periklis; Sfikakis, Petros P; Alexopoulos, Dimitrios; Stefanadis, Christodoulos; Siores, Elias; Tousoulis, Dimitris
2017-07-01
Limited prospective data have been reported regarding the impact of carotid inflammation on cardiovascular events in patients with coronary artery disease (CAD). Microwave radiometry (MWR) is a noninvasive, simple method that has been used for evaluation of carotid artery temperature which, when increased, predicts 'inflamed' plaques with vulnerable characteristics. We prospectively tested the hypothesis that increased carotid artery temperature predicts future cerebro- and cardiovascular events in patients with CAD. Consecutive patients from 3 centers, with documented CAD by coronary angiography, were studied. In both carotid arteries, common carotid intima-media thickness and plaque thickness were evaluated by ultrasound. Temperature difference (ΔT), measured by MWR, was considered as the maximal temperature along the carotid artery minus the minimum; ΔT ≥0.90 °C was assigned as high. Major cardiovascular events (MACE, death, stroke, myocardial infarction or revascularization) were recorded during the following year. In total, 250 patients were studied; of them 40 patients (16%) had high ΔT values in both carotid arteries. MACEs occurred in 30% of patients having bilateral high ΔT versus 3.8% in the remaining patients (p<0.001). Bilateral high ΔT was independently associated with increased one-year MACE rate (HR = 6.32, 95% CI 2.42-16.53, p<0.001, by multivariate cox regression hazard model). The addition of ΔT information on a baseline model based on cardiovascular risk factors and extent of CAD significantly increased the prognostic value of the model (c-statistic increase 0.744 to 0.845, p dif = 0.05) CONCLUSIONS: Carotid inflammation, detected by MWR, has an incremental prognostic value in patients with documented CAD. Copyright © 2017 Elsevier B.V. All rights reserved.
Krejci, Ivo; Daher, René
2017-04-01
The goal of this short communication is to present finite element analysis comparison of the stress distribution between CAD/CAM full crowns made of Lava Ultimate and of IPS e.max CAD, adhesively luted to natural teeth and to implant abutments with the shape of natural teeth. Six 3D models were prepared using a 3D content-creating software, based on a micro-CT scan of a human mandibular molar. The geometry of the full crown and of the abutment was the same for all models representing Lava Ultimate full crowns (L) and IPS e.max CAD full crowns (E) on three different abutments: prepared natural tooth (n), titanium abutment (t) and zirconia abutment (z). A static load of 400 N was applied on the vestibular and lingual cusps, and fixtures were applied to the base of the models. After running the static linear analysis, the post-processing data we analyzed. The stress values at the interface between the crown and the abutment of the Lt and Lz groups were significantly higher than the stress values at the same interface of all the other models. The high stress concentration in the adhesive at the interface between the crown and the abutment of the Lava Ultimate group on implants might be one of the factors contributing to the reported debondings of crowns.
Hoseini, Fatemeh; Mahmazi, Sanaz; Mahmoodi, Khalil; Jafari, Gholam Ali; Soltanpour, Mohammad Soleiman
2018-03-01
Interleukin-18 (IL-18) is a proinflammatory and proatherogenic cytokine, and its genetic variations may contribute to the development of coronary artery disease (CAD). We sought to investigate the role of -137G/C polymorphism and gene expression levels of IL-18 in patients with CAD. The study population included 100 patients with angiographically proven CAD and 100 matched controls. Total RNA and DNA were extracted from leukocytes using appropriate kits. The genotype of -137G/C polymorphism and gene expression level of IL-18 was determined using allele-specific polymerase chain reaction (PCR) and real-time (RT)-PCR assay, respectively. The genotypic and allelic distribution of IL-18 -137G/C polymorphism was not significantly different between the two groups ( p > 0.050). Moreover, the -137G/C polymorphism did not increase the risk of CAD in dominant and recessive genetic models ( p > 0.050). However, subgroup analysis of CAD patients revealed that the IL-18 -137G/C polymorphism was significantly associated with increased risk of CAD in hypertensive patients (odds ratio (OR) = 7.51; 95% confidence interval (CI): 1.24-25.17; p = 0.019) and smokers (OR = 4.90; 95% CI: 1.21-19.70; p = 0.031) but not in the diabetic subpopulation ( p = 0.261). The genotype distribution of IL-18 -137G/C genetic polymorphism was significantly different among patients with one, two, and three stenotic vessels ( p < 0.050). The gene expression level of IL-18 was significantly higher in the CAD group than the control group ( p < 0.001). Moreover, the carriers of CC genotype had significantly lower gene expression levels of IL-18 than carriers of GG genotype ( p < 0.050). The -137G/C polymorphism of IL-18 may be associated with the CAD risk in hypertensive and smoker subgroup of CAD patients. The -137G/C polymorphism seems to play an important role in determining the severity of CAD. Increased IL-18 gene expression level is a significant risk factor for the development of CAD. The CC genotype of -137G/C polymorphism is associated with lower IL-18 gene expression levels.
Automated extraction of knowledge for model-based diagnostics
NASA Technical Reports Server (NTRS)
Gonzalez, Avelino J.; Myler, Harley R.; Towhidnejad, Massood; Mckenzie, Frederic D.; Kladke, Robin R.
1990-01-01
The concept of accessing computer aided design (CAD) design databases and extracting a process model automatically is investigated as a possible source for the generation of knowledge bases for model-based reasoning systems. The resulting system, referred to as automated knowledge generation (AKG), uses an object-oriented programming structure and constraint techniques as well as internal database of component descriptions to generate a frame-based structure that describes the model. The procedure has been designed to be general enough to be easily coupled to CAD systems that feature a database capable of providing label and connectivity data from the drawn system. The AKG system is capable of defining knowledge bases in formats required by various model-based reasoning tools.
Elaborate SMART MCNP Modelling Using ANSYS and Its Applications
NASA Astrophysics Data System (ADS)
Song, Jaehoon; Surh, Han-bum; Kim, Seung-jin; Koo, Bonsueng
2017-09-01
An MCNP 3-dimensional model can be widely used to evaluate various design parameters such as a core design or shielding design. Conventionally, a simplified 3-dimensional MCNP model is applied to calculate these parameters because of the cumbersomeness of modelling by hand. ANSYS has a function for converting the CAD `stp' format into an MCNP input in the geometry part. Using ANSYS and a 3- dimensional CAD file, a very detailed and sophisticated MCNP 3-dimensional model can be generated. The MCNP model is applied to evaluate the assembly weighting factor at the ex-core detector of SMART, and the result is compared with a simplified MCNP SMART model and assembly weighting factor calculated by DORT, which is a deterministic Sn code.
Solid Freeform Fabrication of Composite-Material Objects
NASA Technical Reports Server (NTRS)
Wang, C. Jeff; Yang, Jason; Jang, Bor Z.
2005-01-01
Composite solid freeform fabrication (C-SFF) or composite layer manufacturing (CLM) is an automated process in which an advanced composite material (a matrix reinforced with continuous fibers) is formed into a freestanding, possibly complex, three-dimensional object. In CLM, there is no need for molds, dies, or other expensive tooling, and there is usually no need for machining to ensure that the object is formed to the desired net size and shape. CLM is a variant of extrusion-type rapid prototyping, in which a model or prototype of a solid object is built up by controlled extrusion of a polymeric or other material through an orifice that is translated to form patterned layers. The second layer is deposited on top of the first layer, the third layer is deposited on top of the second layer, and so forth, until the stack of layers reaches the desired final thickness and shape. The elements of CLM include (1) preparing a matrix resin in a form in which it will solidify subsequently, (2) mixing the fibers and matrix material to form a continuous pre-impregnated tow (also called "towpreg"), and (3) dispensing the pre-impregnated tow from a nozzle onto a base while moving the nozzle to form the dispensed material into a patterned layer of controlled thickness. When the material deposited into a given layer has solidified, the material for the next layer is deposited and patterned similarly, and so forth, until the desired overall object has been built up as a stack of patterned layers. Preferably, the deposition apparatus is controlled by a computer-aided design (CAD) system. The basic CLM concept can be adapted to the fabrication of parts from a variety of matrix materials. It is conceivable that a CLM apparatus could be placed at a remote location on Earth or in outer space where (1) spare parts are expected to be needed but (2) it would be uneconomical or impractical to store a full inventory of spare parts. A wide variety of towpregs could be prepared and stored on spools until needed. Long-shelf-life towpreg materials suitable for such use could include thermoplastic-coated carbon fibers and metal-coated SiC fibers. When a spare part was needed, the part could be fabricated by CLM under control by a CAD data file; thus, the part could be built automatically, at the scene, within hours or minutes.
NASA Astrophysics Data System (ADS)
Carette, Yannick; Vanhove, Hans; Duflou, Joost
2018-05-01
Single Point Incremental Forming is a flexible process that is well-suited for small batch production and rapid prototyping of complex sheet metal parts. The distributed nature of the deformation process and the unsupported sheet imply that controlling the final accuracy of the workpiece is challenging. To improve the process limits and the accuracy of SPIF, the use of multiple forming passes has been proposed and discussed by a number of authors. Most methods use multiple intermediate models, where the previous one is strictly smaller than the next one, while gradually increasing the workpieces' wall angles. Another method that can be used is the manufacture of a smoothed-out "base geometry" in the first pass, after which more detailed features can be added in subsequent passes. In both methods, the selection of these intermediate shapes is freely decided by the user. However, their practical implementation in the production of complex freeform parts is not straightforward. The original CAD model can be manually adjusted or completely new CAD models can be created. This paper discusses an automatic method that is able to extract the base geometry from a full STL-based CAD model in an analytical way. Harmonic decomposition is used to express the final geometry as the sum of individual surface harmonics. It is then possible to filter these harmonic contributions to obtain a new CAD model with a desired level of geometric detail. This paper explains the technique and its implementation, as well as its use in the automatic generation of multi-step geometries.
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2015-07-01
In the field of orthodontic planning, the creation of a complete digital dental model to simulate and predict treatments is of utmost importance. Nowadays, orthodontists use panoramic radiographs (PAN) and dental crown representations obtained by optical scanning. However, these data do not contain any 3D information regarding tooth root geometries. A reliable orthodontic treatment should instead take into account entire geometrical models of dental shapes in order to better predict tooth movements. This paper presents a methodology to create complete 3D patient dental anatomies by combining digital mouth models and panoramic radiographs. The modeling process is based on using crown surfaces, reconstructed by optical scanning, and root geometries, obtained by adapting anatomical CAD templates over patient specific information extracted from radiographic data. The radiographic process is virtually replicated on crown digital geometries through the Discrete Radon Transform (DRT). The resulting virtual PAN image is used to integrate the actual radiographic data and the digital mouth model. This procedure provides the root references on the 3D digital crown models, which guide a shape adjustment of the dental CAD templates. The entire geometrical models are finally created by merging dental crowns, captured by optical scanning, and root geometries, obtained from the CAD templates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhou, Jia; Liu, Yujie; Huang, Lingyu; Tan, Yahang; Li, Xingchen; Zhang, Hong; Ma, Yanhe; Zhang, Ying
We sought to compare the performance of the updated Diamond-Forrester method (UDFM), Duke clinical score (DCS), Genders clinical model (GCM) and Genders extended model (GEM) in a Chinese population referred to coronary computed tomography angiography (coronary CTA). The reliability of existing models to calculate the pretest proability (PTP) of obstructive coronary artery disease (CAD) have not been fully investigated, especially in a Chinese population. We identified 5743 consecutive patients with suspected stable CAD who underwent coronary calcium scoring (CCS) and coronary CCTA. Obstructive CAD was defined as with the presence of ≥50% diameter stenosis in coronary CTA or unassessable segments due to severe calcification. Area under the receiver operating characteristic curve (AUC), integrated discrimination improvement (IDI), net reclassification improvement (NRI) and Hosmer-Lemeshow goodness-of-fit statistic (H-L χ 2 ) were assessed to validate and compare these models. Overall, 1872 (32%) patients had obstructive CAD and 2467 (43%) had a CCS of 0. GEM demonstrated improved discrimination over the other models through the largest AUC (0.816 for GEM, 0.774 for GCM, 0.772 for DCS and 0.765 for UDFM). UDFM (-0.3255, p < 0.0001), DCS (-0.3149, p < 0.0001) and GCM (-0.2264, p < 0.0001) showed negative IDI compared to GEM. The NRI was significantly higher for GEM than the other models (0.7152, p < 0.0001, 0.5595, p < 0.0001 and 0.3195, p < 0.0001, respectively). All of the four models overestimated the prevalence of obstructive CAD, with unsatisfactory (p < 0.01 for all) calibration for UDFM (H-L χ 2 = 137.82), DCS (H-L χ 2 = 156.70), GCM (H-L χ 2 = 51.17) and GEM (H-L χ 2 = 29.67), respectively. Although GEM was superior for calculating PTP in a Chinese population referred for coronary CTA, developing new models allowing for more accurate and operational estimation are warranted. Copyright © 2017 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Loley, Christina; Alver, Maris; Assimes, Themistocles L.; Bjonnes, Andrew; Goel, Anuj; Gustafsson, Stefan; Hernesniemi, Jussi; Hopewell, Jemma C.; Kanoni, Stavroula; Kleber, Marcus E.; Lau, King Wai; Lu, Yingchang; Lyytikäinen, Leo-Pekka; Nelson, Christopher P.; Nikpay, Majid; Qu, Liming; Salfati, Elias; Scholz, Markus; Tukiainen, Taru; Willenborg, Christina; Won, Hong-Hee; Zeng, Lingyao; Zhang, Weihua; Anand, Sonia S.; Beutner, Frank; Bottinger, Erwin P.; Clarke, Robert; Dedoussis, George; Do, Ron; Esko, Tõnu; Eskola, Markku; Farrall, Martin; Gauguier, Dominique; Giedraitis, Vilmantas; Granger, Christopher B.; Hall, Alistair S.; Hamsten, Anders; Hazen, Stanley L.; Huang, Jie; Kähönen, Mika; Kyriakou, Theodosios; Laaksonen, Reijo; Lind, Lars; Lindgren, Cecilia; Magnusson, Patrik K. E.; Marouli, Eirini; Mihailov, Evelin; Morris, Andrew P.; Nikus, Kjell; Pedersen, Nancy; Rallidis, Loukianos; Salomaa, Veikko; Shah, Svati H.; Stewart, Alexandre F. R.; Thompson, John R.; Zalloua, Pierre A.; Chambers, John C.; Collins, Rory; Ingelsson, Erik; Iribarren, Carlos; Karhunen, Pekka J.; Kooner, Jaspal S.; Lehtimäki, Terho; Loos, Ruth J. F.; März, Winfried; McPherson, Ruth; Metspalu, Andres; Reilly, Muredach P.; Ripatti, Samuli; Sanghera, Dharambir K.; Thiery, Joachim; Watkins, Hugh; Deloukas, Panos; Kathiresan, Sekar; Samani, Nilesh J.; Schunkert, Heribert; Erdmann, Jeanette; König, Inke R.
2016-01-01
In recent years, genome-wide association studies have identified 58 independent risk loci for coronary artery disease (CAD) on the autosome. However, due to the sex-specific data structure of the X chromosome, it has been excluded from most of these analyses. While females have 2 copies of chromosome X, males have only one. Also, one of the female X chromosomes may be inactivated. Therefore, special test statistics and quality control procedures are required. Thus, little is known about the role of X-chromosomal variants in CAD. To fill this gap, we conducted a comprehensive X-chromosome-wide meta-analysis including more than 43,000 CAD cases and 58,000 controls from 35 international study cohorts. For quality control, sex-specific filters were used to adequately take the special structure of X-chromosomal data into account. For single study analyses, several logistic regression models were calculated allowing for inactivation of one female X-chromosome, adjusting for sex and investigating interactions between sex and genetic variants. Then, meta-analyses including all 35 studies were conducted using random effects models. None of the investigated models revealed genome-wide significant associations for any variant. Although we analyzed the largest-to-date sample, currently available methods were not able to detect any associations of X-chromosomal variants with CAD. PMID:27731410
Software for Building Models of 3D Objects via the Internet
NASA Technical Reports Server (NTRS)
Schramer, Tim; Jensen, Jeff
2003-01-01
The Virtual EDF Builder (where EDF signifies Electronic Development Fixture) is a computer program that facilitates the use of the Internet for building and displaying digital models of three-dimensional (3D) objects that ordinarily comprise assemblies of solid models created previously by use of computer-aided-design (CAD) programs. The Virtual EDF Builder resides on a Unix-based server computer. It is used in conjunction with a commercially available Web-based plug-in viewer program that runs on a client computer. The Virtual EDF Builder acts as a translator between the viewer program and a database stored on the server. The translation function includes the provision of uniform resource locator (URL) links to other Web-based computer systems and databases. The Virtual EDF builder can be used in two ways: (1) If the client computer is Unix-based, then it can assemble a model locally; the computational load is transferred from the server to the client computer. (2) Alternatively, the server can be made to build the model, in which case the server bears the computational load and the results are downloaded to the client computer or workstation upon completion.
Optimization of wood plastic composite decks
NASA Astrophysics Data System (ADS)
Ravivarman, S.; Venkatesh, G. S.; Karmarkar, A.; Shivkumar N., D.; Abhilash R., M.
2018-04-01
Wood Plastic Composite (WPC) is a new class of natural fibre based composite material that contains plastic matrix reinforced with wood fibres or wood flour. In the present work, Wood Plastic Composite was prepared with 70-wt% of wood flour reinforced in polypropylene matrix. Mechanical characterization of the composite was done by carrying out laboratory tests such as tensile test and flexural test as per the American Society for Testing and Materials (ASTM) standards. Computer Aided Design (CAD) model of the laboratory test specimen (tensile test) was created and explicit finite element analysis was carried out on the finite element model in non-linear Explicit FE code LS - DYNA. The piecewise linear plasticity (MAT 24) material model was identified as a suitable model in LS-DYNA material library, describing the material behavior of the developed composite. The composite structures for decking application in construction industry were then optimized for cross sectional area and distance between two successive supports (span length) by carrying out various numerical experiments in LS-DYNA. The optimized WPC deck (Elliptical channel-2 E10) has 45% reduced weight than the baseline model (solid cross-section) considered in this study with the load carrying capacity meeting acceptance criterion (allowable deflection & stress) for outdoor decking application.
Castellazzi, Giovanni; D’Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro
2015-01-01
In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation. PMID:26225978
Jaworski, Rafał; Jankowska, Ewa A; Ponikowski, Piotr; Banasiak, Waldemar
2012-01-01
Treatment of coronary artery disease (CAD) generates the major part of public health expenditure in the developed countries. The aim of the study was to estimate costs associated with the diagnosis and treatment of patients with CAD in Poland. Costs were estimated in a representative sample of 2593 patients with CAD receiving general practitioner (n = 1977) or specialist care (n = 616) in 2005 (the multicenter RECENT study). Data from the National Health Fund, Social Insurance Institution, Central Statistical Office, and current literature were used. The total annual cost of CAD reached €2254.17 per patient, with 48% accounting for direct medical costs (drugs, medical consultations, laboratory tests, diagnostic procedures, invasive treatment, hospitalizations, emergency care) and 52% for indirect costs (related to absence at work and disability). Eighty-one percent of total direct medical costs were covered by the public payer (including 30% of pharmacological treatment costs). Direct medical costs covered by the public payer were higher in men and in patients with more severe angina symptoms (both P <0.05). In the model based on the lowest prevalence of CAD (estimated based on the real population of patients treated in 2005), direct medical costs covered by the public payer reached €617.6 million, i.e., around 7% of the total public health expenditure in Poland in 2005. Modern management of CAD imposes enormous economic burden on the public health system in Poland. There is a need to develop and implement strategies that would optimize health care costs associated with the treatment of CAD.
The application of CAD / CAM technology in Dentistry
NASA Astrophysics Data System (ADS)
Susic, I.; Travar, M.; Susic, M.
2017-05-01
Information and communication technologies have found their application in the healthcare sector, including the frameworks of modern dentistry. CAD / CAM application in dentistry is the process by which is attained finished dental restoration through fine milling process of ready ceramic blocks. CAD / CAM is an acronym of english words Computer-Aided-Design (CAD) / Computer-Aided-Manufacture (CAM), respectively dental computer aided design and computer aided manufacture of inlays, onlays, crowns and bridges. CAD / CAM technology essentially allows you to create a two-dimensional and three-dimensional models and their materialization by numerical controlled machines. In order to operate more efficiently, reduce costs, increase user/patient satisfaction and ultimately achieve profits, many dental offices in the world have their attention focused on implementation of modern IT solutions in everyday practice. In addition to the specialized clinic management software, inventory control, etc., or hardware such as the use of lasers in cosmetic dentistry or intraoral scanning, recently the importance is given to the application of CAD / CAM technology in the field of prosthetic. After the removal of pathologically altered tooth structure, it is necessary to achieve restoration that will be most similar to the anatomy of a natural tooth. Applying CAD / CAM technology on applicable ceramic blocks it can be obtained very quick, but also very accurate restoration, in the forms of inlays, onlays, bridges and crowns. The paper presents the advantages of using this technology as well as satisfaction of the patients and dentists by using systems as: Cercon, Celay, Cerec, Lava, Everest, which represent imperative of modern dentistry in creating fixed dental restorations.
Khodaei, Banafsheh; Saeedi, Hassan; Jalali, Maryam; Farzadi, Maede; Norouzi, Ehsan
2017-12-01
The effect of foot orthoses on plantar pressure distribution has been proven by researchers but there are some controversies about advantages of custom-made foot orthoses to less expensive prefabricated foot orthoses. Nineteen flatfeet adults between 18 and 45 participated in this study. CAD-CAM foot orthoses were made for these patients according to their foot scan. Prefabricated foot orthoses were prepared according to their foot size. Plantar pressure, force and contact area were measured using pedar ® -x in-shoe system wearing shoe alone, wearing CAD-CAM foot orthoses and wearing prefabricated foot orthoses. Repeated measures ANOVA model with post-hoc, Bonferroni comparison were used to test differences. CAD-CAM and prefabricated foot orthoses both decreased pressure and force under 2nd, 3-5 metatarsal and heel regions comparing to shoe alone condition. CAD-CAM foot orthosis increased pressure under lateral toe region in comparison to shoe alone and prefabricated foot orthosis. Both foot orthoses increased pressure and contact area in medial midfoot region comparing to shoe alone condition. Increased forces were seen at hallux and lateral toes by prefabricated foot orthoses in comparison with CAD-CAM foot orthoses and control condition, respectively. According to the results, both foot orthoses could decrease the pressure under heel and metatarsal area. It seems that the special design of CAD-CAM foot orthoses could not make great differences in plantar pressure distribution in this sample. Further research is required to determine whether these results are associated with different scan systems or design software. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of Smartphone Educational Application for Patients with Coronary Artery Disease
Cho, Min Jung; Sim, Jae Lan
2014-01-01
Objectives This study was conducted to develop a smartphone application (app) as an educational learning instrument for coronary artery disease (CAD) patients and to assess the users' level of satisfaction. Methods This methodological research involves elicited learning content for CAD patients to develop a learning instrument using the smartphone app. The app was developed according to the steps of Assessment, Design, Development, Implementation, and Evaluation, which is a systematic instructional design model. The levels of satisfaction with the developed smartphone app among 30 outpatients with CAD were assessed via a questionnaire during their visits to a cardiology outpatient department. Results A smartphone app 'Strong Heart' was developed through reviewing the literature associated with education for CAD patients under professional supervision and searching for medical smartphone apps that are already available. The learning contents include six main sections containing essential learning issues in managing CAD and additional information to attract the user's attention, such as patient cases and quizzes. After modification with feedback from experts, the app was finally developed and evaluated by patients who reported that they were satisfied with the usefulness of the app. Conclusions The developed smartphone app is available on both the iPhone App Store and the Android Play Store. Patients with CAD may utilize the app for supporting educational material without limitations of time and space. PMID:24872910
Alam, Md Shahid; Sugavaneswaran, M; Arumaikkannu, G; Mukherjee, Bipasha
2017-08-01
Ocular prosthesis is either a readymade stock shell or custom made prosthesis (CMP). Presently, there is no other technology available, which is either superior or even comparable to the conventional CMP. The present study was designed to fabricate ocular prosthesis using computer aided design (CAD) and rapid manufacturing (RM) technology and to compare it with custom made prosthesis (CMP). The ocular prosthesis prepared by CAD was compared with conventional CMP in terms of time taken for fabrication, weight, cosmesis, comfort, and motility. Two eyes of two patients were included. Computerized tomography scan of wax model of socket was converted into three dimensional format using Materialize Interactive Medical Image Control System (MIMICS)software and further refined. This was given as an input to rapid manufacturing machine (Polyjet 3-D printer). The final painting on prototype was done by an ocularist. The average effective time required for fabrication of CAD prosthesis was 2.5 hours; and weight 2.9 grams. The same for CMP were 10 hours; and 4.4 grams. CAD prosthesis was more comfortable for both the patients. The study demonstrates the first ever attempt of fabricating a complete ocular prosthesis using CAD and rapid manufacturing and comparing it with conventional CMP. This prosthesis takes lesser time for fabrication, and is more comfortable. Studies with larger sample size will be required to further validate this technique.
Suarez, Maria J; Paisal, Iria; Rodriguez-Alonso, Veronica; Lopez-Suarez, Carlos
This study compared the marginal gaps of computer-aided design/computer-aided manufacture (CAD/CAM)-fabricated all-ceramic crowns constructed from scanned impressions and models and with two different occlusal reduction designs. Two typodont mandibular first molars were prepared to receive CAD/CAM-fabricated all-ceramic crowns. Both molars were prepared to ideal crown reduction, the first with anatomical occlusal reduction (AOR) and the second with completely flat occlusal reduction (FOR). Nine polyvinyl siloxane impressions (PVS) were taken, and nine stone replicas fabricated for each preparation. All impressions and stone models were scanned using a laser scanner (Planmeca Planscan, E4D technologies), and 36 lithium disilicate (IPS e.max CAD) crowns were milled. The marginal gap was measured in four locations using a light stereomicroscope. Crowns constructed from preparations with both occlusal reduction designs demonstrated similar marginal gaps (FOR = 97.98; AOR = 89.12; P = .739). However, all crowns constructed from scanned impressions presented significantly larger marginal gaps than the crowns fabricated from scanned models (impressions = 109.26; models = 77.84; P = .002). Scanning stone models produced all-ceramic crowns with significantly smaller marginal gaps than scanning impressions, irrespective of the occlusal reduction design.
MHDL CAD tool with fault circuit handling
NASA Astrophysics Data System (ADS)
Espinosa Flores-Verdad, Guillermo; Altamirano Robles, Leopoldo; Osorio Roque, Leticia
2003-04-01
Behavioral modeling and simulation, with Analog Hardware and Mixed Signal Description High Level Languages (MHDLs), have generated the development of diverse simulation tools that allow handling the requirements of the modern designs. These systems have million of transistors embedded and they are radically diverse between them. This tendency of simulation tools is exemplified by the development of languages for modeling and simulation, whose applications are the re-use of complete systems, construction of virtual prototypes, realization of test and synthesis. This paper presents the general architecture of a Mixed Hardware Description Language, based on the standard 1076.1-1999 IEEE VHDL Analog and Mixed-Signal Extensions known as VHDL-AMS. This architecture is novel by consider the modeling and simulation of faults. The main modules of the CAD tool are briefly described in order to establish the information flow and its transformations, starting from the description of a circuit model, going throw the lexical analysis, mathematical models generation and the simulation core, ending at the collection of the circuit behavior as simulation"s data. In addition, the incorporated mechanisms to the simulation core are explained in order to realize the handling of faults into the circuit models. Currently, the CAD tool works with algebraic and differential descriptions for the circuit models, nevertheless the language design is open to be able to handle different model types: Fuzzy Models, Differentials Equations, Transfer Functions and Tables. This applies for fault models too, in this sense the CAD tool considers the inclusion of mutants and saboteurs. To exemplified the results obtained until now, the simulated behavior of a circuit is shown when it is fault free and when it has been modified by the inclusion of a fault as a mutant or a saboteur. The obtained results allow the realization of a virtual diagnosis for mixed circuits. This language works in a UNIX system; it was developed with an object-oriented methodology and programmed in C++.
Micro sculpting technology using DPSSL
NASA Astrophysics Data System (ADS)
Chang, Won-Seok; Shin, Bosung; Kim, Jae-gu; Whang, Kyung-Hyun
2003-11-01
Multiple pulse laser ablation of polymer is performed with DPSS (Diode Pumped Solid State) 3rd harmonic Nd:YVO4 laser (355 nm) in order to fabricate three-dimensional micro components. Here we considered mechanistic aspects of the interaction between UV laser and polymer to obtain optimum process conditions for maskless photomachining using DPSSL. The photo-physical and photochemical parameters such as laser wavelength and optical characteristics of polymers are investigated by experiments to reduce plume effect, which induce the re-deposited debris on the surface of substrate. In this study, LDST (laser direct sculpting technique) are developed to gain various three-dimensional shape with size less than 500 micrometer. Main process sequences are from rapid prototyping technology such as CAD/CAM modeling of products, machining path generation, layer-by-layer machining, and so on. This method can be applied to manufacture the prototype of micro device and the polymer mould for mass production without expensive mask fabrication.
Designers Workbench: Towards Real-Time Immersive Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuester, F; Duchaineau, M A; Hamann, B
2001-10-03
This paper introduces the DesignersWorkbench, a semi-immersive virtual environment for two-handed modeling, sculpting and analysis tasks. The paper outlines the fundamental tools, design metaphors and hardware components required for an intuitive real-time modeling system. As companies focus on streamlining productivity to cope with global competition, the migration to computer-aided design (CAD), computer-aided manufacturing (CAM), and computer-aided engineering (CAE) systems has established a new backbone of modern industrial product development. However, traditionally a product design frequently originates from a clay model that, after digitization, forms the basis for the numerical description of CAD primitives. The DesignersWorkbench aims at closing this technologymore » or ''digital gap'' experienced by design and CAD engineers by transforming the classical design paradigm into its filly integrated digital and virtual analog allowing collaborative development in a semi-immersive virtual environment. This project emphasizes two key components from the classical product design cycle: freeform modeling and analysis. In the freeform modeling stage, content creation in the form of two-handed sculpting of arbitrary objects using polygonal, volumetric or mathematically defined primitives is emphasized, whereas the analysis component provides the tools required for pre- and post-processing steps for finite element analysis tasks applied to the created models.« less
Uzelac, Ilija; Ji, Yanyan C.; Hornung, Daniel; Schröder-Scheteling, Johannes; Luther, Stefan; Gray, Richard A.; Cherry, Elizabeth M.; Fenton, Flavio H.
2017-01-01
Rationale: Discordant alternans, a phenomenon in which the action potential duration (APDs) and/or intracellular calcium transient durations (CaDs) in different spatial regions of cardiac tissue are out of phase, present a dynamical instability for complex spatial dispersion that can be associated with long-QT syndrome (LQTS) and the initiation of reentrant arrhythmias. Because the use of numerical simulations to investigate arrhythmic effects, such as acquired LQTS by drugs is beginning to be studied by the FDA, it is crucial to validate mathematical models that may be used during this process. Objective: In this study, we characterized with high spatio-temporal resolution the development of discordant alternans patterns in transmembrane voltage (Vm) and intracellular calcium concentration ([Cai]+2) as a function of pacing period in rabbit hearts. Then we compared the dynamics to that of the latest state-of-the-art model for ventricular action potentials and calcium transients to better understand the underlying mechanisms of discordant alternans and compared the experimental data to the mathematical models representing Vm and [Cai]+2 dynamics. Methods and Results: We performed simultaneous dual optical mapping imaging of Vm and [Cai]+2 in Langendorff-perfused rabbit hearts with higher spatial resolutions compared with previous studies. The rabbit hearts developed discordant alternans through decreased pacing period protocols and we quantified the presence of multiple nodal points along the direction of wave propagation, both in APD and CaD, and compared these findings with results from theoretical models. In experiments, the nodal lines of CaD alternans have a steeper slope than those of APD alternans, but not as steep as predicted by numerical simulations in rabbit models. We further quantified several additional discrepancies between models and experiments. Conclusions: Alternans in CaD have nodal lines that are about an order of magnitude steeper compared to those of APD alternans. Current action potential models lack the necessary coupling between voltage and calcium compared to experiments and fail to reproduce some key dynamics such as, voltage amplitude alternans, smooth development of calcium alternans in time, conduction velocity and the steepness of the nodal lines of APD and CaD. PMID:29104543
2010-01-01
Background Cinnamyl Alcohol Dehydrogenase (CAD) proteins function in lignin biosynthesis and play a critical role in wood development and plant defense against stresses. Previous phylogenetic studies did not include genes from seedless plants and did not reflect the deep evolutionary history of this gene family. We reanalyzed the phylogeny of CAD and CAD-like genes using a representative dataset including lycophyte and bryophyte sequences. Many CAD/CAD-like genes do not seem to be associated with wood development under normal growth conditions. To gain insight into the functional evolution of CAD/CAD-like genes, we analyzed their expression in Populus plant tissues in response to feeding damage by gypsy moth larvae (Lymantria dispar L.). Expression of CAD/CAD-like genes in Populus tissues (xylem, leaves, and barks) was analyzed in herbivore-treated and non-treated plants by real time quantitative RT-PCR. Results CAD family genes were distributed in three classes based on sequence conservation. All the three classes are represented by seedless as well as seed plants, including the class of bona fide lignin pathway genes. The expression of some CAD/CAD-like genes that are not associated with xylem development were induced following herbivore damage in leaves, while other genes were induced in only bark or xylem tissues. Five of the CAD/CAD-like genes, however, showed a shift in expression from one tissue to another between non-treated and herbivore-treated plants. Systemic expression of the CAD/CAD-like genes was generally suppressed. Conclusions Our results indicated a correlation between the evolution of the CAD gene family and lignin and that the three classes of genes may have evolved in the ancestor of land plants. Our results also suggest that the CAD/CAD-like genes have evolved a diversity of expression profiles and potentially different functions, but that they are nonetheless co-regulated under stress conditions. PMID:20509918
Nonobstructive coronary artery disease and risk of myocardial infarction.
Maddox, Thomas M; Stanislawski, Maggie A; Grunwald, Gary K; Bradley, Steven M; Ho, P Michael; Tsai, Thomas T; Patel, Manesh R; Sandhu, Amneet; Valle, Javier; Magid, David J; Leon, Benjamin; Bhatt, Deepak L; Fihn, Stephan D; Rumsfeld, John S
2014-11-05
Little is known about cardiac adverse events among patients with nonobstructive coronary artery disease (CAD). To compare myocardial infarction (MI) and mortality rates between patients with nonobstructive CAD, obstructive CAD, and no apparent CAD in a national cohort. Retrospective cohort study of all US veterans undergoing elective coronary angiography for CAD between October 2007 and September 2012 in the Veterans Affairs health care system. Patients with prior CAD events were excluded. Angiographic CAD extent, defined by degree (no apparent CAD: no stenosis >20%; nonobstructive CAD: ≥1 stenosis ≥20% but no stenosis ≥70%; obstructive CAD: any stenosis ≥70% or left main [LM] stenosis ≥50%) and distribution (1, 2, or 3 vessel). The primary outcome was 1-year hospitalization for nonfatal MI after the index angiography. Secondary outcomes included 1-year all-cause mortality and combined 1-year MI and mortality. Among 37,674 patients, 8384 patients (22.3%) had nonobstructive CAD and 20,899 patients (55.4%) had obstructive CAD. Within 1 year, 845 patients died and 385 were rehospitalized for MI. Among patients with no apparent CAD, the 1-year MI rate was 0.11% (n = 8, 95% CI, 0.10%-0.20%) and increased progressively by 1-vessel nonobstructive CAD, 0.24% (n = 10, 95% CI, 0.10%-0.40%); 2-vessel nonobstructive CAD, 0.56% (n = 13, 95% CI, 0.30%-1.00%); 3-vessel nonobstructive CAD, 0.59% (n = 6, 95% CI, 0.30%-1.30%); 1-vessel obstructive CAD, 1.18% (n = 101, 95% CI, 1.00%-1.40%); 2-vessel obstructive CAD, 2.18% (n = 110, 95% CI, 1.80%-2.60%); and 3-vessel or LM obstructive CAD, 2.47% (n = 137, 95% CI, 2.10%-2.90%). After adjustment, 1-year MI rates increased with increasing CAD extent. Relative to patients with no apparent CAD, patients with 1-vessel nonobstructive CAD had a hazard ratio (HR) for 1-year MI of 2.0 (95% CI, 0.8-5.1); 2-vessel nonobstructive HR, 4.6 (95% CI, 2.0-10.5); 3-vessel nonobstructive HR, 4.5 (95% CI, 1.6-12.5); 1-vessel obstructive HR, 9.0 (95% CI, 4.2-19.0); 2-vessel obstructive HR, 16.5 (95% CI, 8.1-33.7); and 3-vessel or LM obstructive HR, 19.5 (95% CI, 9.9-38.2). One-year mortality rates were associated with increasing CAD extent, ranging from 1.38% among patients without apparent CAD to 4.30% with 3-vessel or LM obstructive CAD. After risk adjustment, there was no significant association between 1- or 2-vessel nonobstructive CAD and mortality, but there were significant associations with mortality for 3-vessel nonobstructive CAD (HR, 1.6; 95% CI, 1.1-2.5), 1-vessel obstructive CAD (HR, 1.9; 95% CI, 1.4-2.6), 2-vessel obstructive CAD (HR, 2.8; 95% CI, 2.1-3.7), and 3-vessel or LM obstructive CAD (HR, 3.4; 95% CI, 2.6-4.4). Similar associations were noted with the combined outcome. In this cohort of patients undergoing elective coronary angiography, nonobstructive CAD, compared with no apparent CAD, was associated with a significantly greater 1-year risk of MI and all-cause mortality. These findings suggest clinical importance of nonobstructive CAD and warrant further investigation of interventions to improve outcomes among these patients.
Bhattacharyya, Dipto; Hazra, Saptarshi; Banerjee, Anindyajit; Datta, Riddhi; Kumar, Deepak; Chakrabarti, Saikat; Chattopadhyay, Sharmila
2016-09-01
Podophyllotoxin (ptox) is a therapeutically important lignan derived from Podophyllum hexandrum and is used as a precursor for the synthesis of anticancer drugs etoposide, teniposide and etopophose. In spite of its enormous economic significance, genomic information on this endangered medicinal herb is scarce. We have performed de novo transcriptome analysis of methyl jasmonate (MeJA)-treated P. hexandrum cell cultures exhibiting enhanced ptox accumulation. The results revealed the maximum up-regulation of several isoforms of cinnamyl alcohol dehydrogenase (CAD). CAD catalyzes the synthesis of coniferyl alcohol and sinapyl alcohol from coniferaldehyde (CAld) and sinapaldehyde respectively. Coniferyl alcohol can produce both lignin and lignan while sinapyl alcohol produces only lignin. To isolate the CAD isoforms favoring ptox, we deduced full length cDNA sequences of four CAD isoforms: PhCAD1, PhCAD2, PhCAD3 and PhCAD4 from the contigs of the transcriptome data. In vitro enzyme assays indicated a higher affinity for CAld over sinapaldehyde for each isoform. In silico molecular docking analyses also suggested that PhCAD3 has a higher binding preference with CAld over sinapaldehyde, followed by PhCAD4, PhCAD2, and PhCAD1, respectively. The transgenic cell cultures overexpressing these isoforms independently revealed that PhCAD3 favored the maximum accumulation of ptox as compared to lignin followed by PhCAD4 and PhCAD2, whereas, PhCAD1 favored both equally. Together, our study reveals transcriptome-wide identification and characterization of ptox specific CAD isoforms from P. hexandrum. It provides a useful resource for future research not only on the ptox biosynthetic pathway but on overall P. hexandrum, an endangered medicinal herb with immense therapeutic importance.
Alqahtani, Fawaz
2017-01-01
Objective The purpose of this study was to determine the effect of two extraoral computer-aided design (CAD) and computer-aided manufacturing (CAM) systems, in comparison with conventional techniques, on the marginal fit of monolithic CAD/CAM lithium disilicate ceramic crowns. Study design This is an in vitro interventional study. Place and duration of study The study was carried out at the Department of Prosthodontics, School of Dentistry, Prince Sattam Bin Abdul-Aziz University, Saudi Arabia, from December 2015 to April 2016. Methodology A marginal gap of 60 lithium disilicate crowns was evaluated by scanning electron microscopy. In total, 20 pressable lithium disilicate (IPS e.max Press [Ivoclar Vivadent]) ceramic crowns were fabricated using the conventional lost-wax technique as a control group. The experimental all-ceramic crowns were produced based on a scan stone model and milled using two extraoral CAD/CAM systems: the Cerec group was fabricated using the Cerec CAD/CAM system, and the Trios group was fabricated using Trios CAD and milled using Wieland Zenotec CAM. One-way analysis of variance (ANOVA) and the Scheffe post hoc test were used for statistical comparison of the groups (α=0.05). Results The mean (±standard deviation) of the marginal gap of each group was as follows: the Control group was 91.15 (±15.35) µm, the Cerec group was 111.07 (±6.33) µm, and the Trios group was 60.17 (±11.09) µm. One-way ANOVA and the Scheffe post hoc test showed a statistically significant difference in the marginal gap between all groups. Conclusion It can be concluded from the current study that all-ceramic crowns, fabricated using the CAD/CAM system, show a marginal accuracy that is acceptable in clinical environments. The Trios CAD group displayed the smallest marginal gap. PMID:28352204
Knuuti, Juhani; Ballo, Haitham; Juarez-Orozco, Luis Eduardo; Saraste, Antti; Kolh, Philippe; Rutjes, Anne Wilhelmina Saskia; Jüni, Peter; Windecker, Stephan; Bax, Jeroen J; Wijns, William
2018-05-29
To determine the ranges of pre-test probability (PTP) of coronary artery disease (CAD) in which stress electrocardiogram (ECG), stress echocardiography, coronary computed tomography angiography (CCTA), single-photon emission computed tomography (SPECT), positron emission tomography (PET), and cardiac magnetic resonance (CMR) can reclassify patients into a post-test probability that defines (>85%) or excludes (<15%) anatomically (defined by visual evaluation of invasive coronary angiography [ICA]) and functionally (defined by a fractional flow reserve [FFR] ≤0.8) significant CAD. A broad search in electronic databases until August 2017 was performed. Studies on the aforementioned techniques in >100 patients with stable CAD that utilized either ICA or ICA with FFR measurement as reference, were included. Study-level data was pooled using a hierarchical bivariate random-effects model and likelihood ratios were obtained for each technique. The PTP ranges for each technique to rule-in or rule-out significant CAD were defined. A total of 28 664 patients from 132 studies that used ICA as reference and 4131 from 23 studies using FFR, were analysed. Stress ECG can rule-in and rule-out anatomically significant CAD only when PTP is ≥80% (76-83) and ≤19% (15-25), respectively. Coronary computed tomography angiography is able to rule-in anatomic CAD at a PTP ≥58% (45-70) and rule-out at a PTP ≤80% (65-94). The corresponding PTP values for functionally significant CAD were ≥75% (67-83) and ≤57% (40-72) for CCTA, and ≥71% (59-81) and ≤27 (24-31) for ICA, demonstrating poorer performance of anatomic imaging against FFR. In contrast, functional imaging techniques (PET, stress CMR, and SPECT) are able to rule-in functionally significant CAD when PTP is ≥46-59% and rule-out when PTP is ≤34-57%. The various diagnostic modalities have different optimal performance ranges for the detection of anatomically and functionally significant CAD. Stress ECG appears to have very limited diagnostic power. The selection of a diagnostic technique for any given patient to rule-in or rule-out CAD should be based on the optimal PTP range for each test and on the assumed reference standard.
Calculus domains modelled using an original bool algebra based on polygons
NASA Astrophysics Data System (ADS)
Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.
2016-08-01
Analytical and numerical computer based models require analytical definitions of the calculus domains. The paper presents a method to model a calculus domain based on a bool algebra which uses solid and hollow polygons. The general calculus relations of the geometrical characteristics that are widely used in mechanical engineering are tested using several shapes of the calculus domain in order to draw conclusions regarding the most effective methods to discretize the domain. The paper also tests the results of several CAD commercial software applications which are able to compute the geometrical characteristics, being drawn interesting conclusions. The tests were also targeting the accuracy of the results vs. the number of nodes on the curved boundary of the cross section. The study required the development of an original software consisting of more than 1700 computer code lines. In comparison with other calculus methods, the discretization using convex polygons is a simpler approach. Moreover, this method doesn't lead to large numbers as the spline approximation did, in that case being required special software packages in order to offer multiple, arbitrary precision. The knowledge resulted from this study may be used to develop complex computer based models in engineering.
Ko, Dennis T; Tu, Jack V; Austin, Peter C; Wijeysundera, Harindra C; Samadashvili, Zaza; Guo, Helen; Cantor, Warren J; Hannan, Edward L
2013-07-10
Prior studies have shown that physicians in New York State (New York) perform twice as many cardiac catheterizations per capita as those in Ontario for stable patients. However, the role of patient selection in these findings and their implications for detection of obstructive coronary artery disease (CAD) are largely unknown. To evaluate the extent of obstructive CAD and to compare the probability of detecting obstructive CAD for patients undergoing cardiac catheterization. An observational study was conducted involving patients without a history of cardiac disease who underwent elective cardiac catheterization between October 1, 2008, and September 30, 2011. Obstructive CAD was defined as diameter stenosis of 50% or more in the left main coronary artery or stenosis of 70% or more in a major epicardial vessel. Observed rates and predicted probabilities of obstructive CAD. Predicted probabilities were estimated using logistic regression models. A total of 18,114 patients from New York and 54,933 from Ontario were included. The observed rate of obstructive CAD was significantly lower in New York at 30.4% (95% CI, 29.7%-31.0%) than in Ontario at 44.8% (95% CI, 44.4%-45.3%; P < .001). The percentage of patients with left main or 3-vessel CAD was also significantly lower in New York than in Ontario (7.0% [95% CI, 6.6%-7.3%] vs 13.0% [95% CI, 12.8%-13.3%]; P < .001). In New York, a substantially higher percentage of patients with low predicted probability of obstructive CAD underwent cardiac catheterization; for example, only 19.3% (95% CI, 18.7%-19.9%) of patients undergoing cardiac catheterization in New York had a greater than 50% predicted probability of having obstructive CAD than those in Ontario at 41% (95% CI, 40.6%-41.4%; P < .001). At 30 days, crude mortality for patients undergoing cardiac catheterization was slightly higher in New York at 0.65% (90 of 13,824; 95% CI, 0.51%-0.78%) than in Ontario at 0.38% (153 of 40,794; 95% CI, 0.32%-0.43%; P < .001). In Ontario compared with New York State, patients undergoing elective cardiac catheterization were significantly more likely to have obstructive CAD. This appears to be related to a higher percentage of patients in New York with low predicted probability of CAD undergoing cardiac catheterization.
A/E/C CAD Standard, Release 4.0
2009-07-01
Insulating (Transformer) Oil System Lubrication Oil Hot Water Heating System Machine Design Appendix A Model File Level/Layer Assignment Tables A51...of the A /E/C CAD Standard are: “Uniform Drawing System ” The Construction Specifications Institute 99 Canal Center Plaza, Suite 300 Alexandria, VA...FM – Facility Management GIS – Geographic Information System IAI – International Alliance for Interoperability IFC – Industry Foundation
Increasing productivity of the McAuto CAD/CAE system by user-specific applications programming
NASA Technical Reports Server (NTRS)
Plotrowski, S. M.; Vu, T. H.
1985-01-01
Significant improvements in the productivity of the McAuto Computer-Aided Design/Computer-Aided Engineering (CAD/CAE) system were achieved by applications programming using the system's own Graphics Interactive Programming language (GRIP) and the interface capabilities with the main computer on which the system resides. The GRIP programs for creating springs, bar charts, finite element model representations and aiding management planning are presented as examples.
Bradley, Charles W.; Morris, Daniel O.; Rankin, Shelley C.; Cain, Christine L.; Misic, Ana M.; Houser, Timothy; Mauldin, Elizabeth A.; Grice, Elizabeth A.
2016-01-01
Host-microbe interactions may play a fundamental role in the pathogenesis of atopic dermatitis (AD), a chronic relapsing inflammatory skin disorder characterized by universal colonization with Staphylococcus. To examine the relationship between epidermal barrier function and the cutaneous microbiota in AD, this study employed a spontaneous model of canine AD (cAD). In a cohort of 14 dogs with cAD, the skin microbiota was longitudinally evaluated with parallel assessment of skin barrier function at disease flare, during antimicrobial therapy and posttherapy. Sequencing of the bacterial 16S ribosomal RNA gene revealed decreased bacterial diversity and increased proportions of Staphylococcus (S. pseudintermedius in particular) and Corynebacterium in comparison to a cohort of healthy control dogs (n=16). Treatment restored bacterial diversity with decreased Staphylococcus proportions, concurrent with decreased cAD severity. Skin barrier function, as measured by corneometry, pH, and transepidermal water loss (TEWL) also normalized with treatment. Bacterial diversity correlated with TEWL and pH, but not corneometry. These findings provide insights into the relationship between the cutaneous microbiome and skin barrier function in AD, the impact of antimicrobial therapy on the skin microbiome, and highlight the utility of cAD as a spontaneous non-rodent model of AD. PMID:26854488
The application of CAD, CAE & CAM in development of butterfly valve’s disc
NASA Astrophysics Data System (ADS)
Asiff Razif Shah Ranjit, Muhammad; Hanie Abdullah, Nazlin
2017-06-01
The improved design of a butterfly valve disc is based on the concept of sandwich theory. Butterfly valves are mostly used in various industries such as oil and gas plant. The primary failure modes for valves are indented disc, keyways and shaft failure and the cavitation damage. Emphasis on the application of CAD, a new model of the butterfly valve’s disc structure was designed. The structure analysis was analysed using the finite element analysis. Butterfly valve performance factors can be obtained is by using Computational Fluid Dynamics (CFD) software to simulate the physics of fluid flow in a piping system around a butterfly valve. A comparison analysis was done using the finite element to justify the performance of the structure. The second application of CAE is the computational fluid flow analysis. The upstream pressure and the downstream pressure was analysed to calculate the cavitation index and determine the performance throughout each opening position of the valve. The CAM process was done using 3D printer to produce a prototype and analysed the structure in form of prototype. The structure was downscale fabricated based on the model designed initially through the application of CAD. This study is utilized the application of CAD, CAE and CAM for a better improvement of the butterfly valve’s disc components.
Ulusoy, Nuran
2017-01-01
The aim of this study was to evaluate the effects of two endocrown designs and computer aided design/manufacturing (CAD/CAM) materials on stress distribution and failure probability of restorations applied to severely damaged endodontically treated maxillary first premolar tooth (MFP). Two types of designs without and with 3 mm intraradicular extensions, endocrown (E) and modified endocrown (ME), were modeled on a 3D Finite element (FE) model of the MFP. Vitablocks Mark II (VMII), Vita Enamic (VE), and Lava Ultimate (LU) CAD/CAM materials were used for each type of design. von Mises and maximum principle values were evaluated and the Weibull function was incorporated with FE analysis to calculate the long term failure probability. Regarding the stresses that occurred in enamel, for each group of material, ME restoration design transmitted less stress than endocrown. During normal occlusal function, the overall failure probability was minimum for ME with VMII. ME restoration design with VE was the best restorative option for premolar teeth with extensive loss of coronal structure under high occlusal loads. Therefore, ME design could be a favorable treatment option for MFPs with missing palatal cusp. Among the CAD/CAM materials tested, VMII and VE were found to be more tooth-friendly than LU. PMID:29119108
Ji, Min-Kyung; Park, Ji-Hee; Park, Sang-Won; Yun, Kwi-Dug; Oh, Gye-Jeong; Lim, Hyun-Pil
2015-08-01
This study was to evaluate the marginal fit of two CAD-CAM anatomic contour zirconia crown systems compared to lithium disilicate glass-ceramic crowns. Shoulder and deep chamfer margin were formed on each acrylic resin tooth model of a maxillary first premolar. Two CAD-CAM systems (Prettau®Zirconia and ZENOSTAR®ZR translucent) and lithium disilicate glass ceramic (IPS e.max®press) crowns were made (n=16). Each crown was bonded to stone dies with resin cement (Rely X Unicem). Marginal gap and absolute marginal discrepancy of crowns were measured using a light microscope equipped with a digital camera (Leica DFC295) magnified by a factor of 100. Two-way analysis of variance (ANOVA) and post-hoc Tukey's HSD test were conducted to analyze the significance of crown marginal fit regarding the finish line configuration and the fabrication system. The mean marginal gap of lithium disilicate glass ceramic crowns (IPS e.max®press) was significantly lower than that of the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia) (P<.05). Both fabrication systems and finish line configurations significantly influenced the absolute marginal discrepancy (P<.05). The lithium disilicate glass ceramic crown (IPS e.max®press) had significantly smaller marginal gap than the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia). In terms of absolute marginal discrepancy, the CAD-CAM anatomic contour zirconia crown system (ZENOSTAR®ZR translucent) had under-extended margin, whereas the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia) and lithium disilicate glass ceramic crowns (IPS e.max®press) had overextended margins.
Lin, Lichi; Chen, Chyong-Mei; Chiou, Jeng-Yuan; Wang, Yu-Hsun; Wang, Paul Yung-Pou; Wei, James Cheng-Chung
2017-01-01
Objectives To determine whether anti-rheumatic drug usage is associated with risk of coronary artery diseases (CAD) in incident Rheumatoid Arthritis (RA) patients. Methods Data were obtained from the Taiwan National Health Insurance Research Database. The study cohort comprised 6260 patients who were newly diagnosed with RA between 2001–2010. The study endpoint was occurrence of CAD according to the ICD-9-CM codes. We used the WHO Defined Daily Dose (DDD) as a tool to assess the drugs exposure. The Cox proportional hazards regression model was used to estimate the hazard ratio (HR) of disease after controlling for demographic and other co-morbidities. When the proportionality assumption is violated, a spline curve of the Scaled Schoenfeld residuals is fitted to demonstrate the estimated effect on CAD over time for drug usage. Results Among RA patients, use of celecoxib, and etoricoxib was associated with significantly decreased incidence of CAD. The adjusted HR(95% CI) of CAD for low-dose celecoxib (DDD≦1) and high-dose user were 0.47(0.34, 0.65) and 0.37(0.24, 0.58) during the 4 year follow-up time; however, it became 0.98(0.70, 1.37) and1.29(0.85, 1.95). Adjusted HR(95% CI) of CAD for etoricoxib users remained 0.47(0.26, 0.84). Conclusions This study revealed association of decreased CAD risk in RA patients taking 2 different kinds of COX-2i in comparison with nonusers. The effect might be changed over time, after about 4 years. PMID:28658301
NASA Astrophysics Data System (ADS)
Ma, Kevin; Wong, Jonathan; Zhong, Mark; Zhang, Jeff; Liu, Brent
2014-03-01
In the past, we have presented an imaging-informatics based eFolder system for managing and analyzing imaging and lesion data of multiple sclerosis (MS) patients, which allows for data storage, data analysis, and data mining in clinical and research settings. The system integrates the patient's clinical data with imaging studies and a computer-aided detection (CAD) algorithm for quantifying MS lesion volume, lesion contour, locations, and sizes in brain MRI studies. For compliance with IHE integration protocols, long-term storage in PACS, and data query and display in a DICOM compliant clinical setting, CAD results need to be converted into DICOM-Structured Report (SR) format. Open-source dcmtk and customized XML templates are used to convert quantitative MS CAD results from MATLAB to DICOM-SR format. A web-based GUI based on our existing web-accessible DICOM object (WADO) image viewer has been designed to display the CAD results from generated SR files. The GUI is able to parse DICOM-SR files and extract SR document data, then display lesion volume, location, and brain matter volume along with the referenced DICOM imaging study. In addition, the GUI supports lesion contour overlay, which matches a detected MS lesion with its corresponding DICOM-SR data when a user selects either the lesion or the data. The methodology of converting CAD data in native MATLAB format to DICOM-SR and displaying the tabulated DICOM-SR along with the patient's clinical information, and relevant study images in the GUI will be demonstrated. The developed SR conversion model and GUI support aim to further demonstrate how to incorporate CAD post-processing components in a PACS and imaging informatics-based environment.
Shimabukuro, Michio; Hirata, Yoichiro; Tabata, Minoru; Dagvasumberel, Munkhbaatar; Sato, Hiromi; Kurobe, Hirotsugu; Fukuda, Daiju; Soeki, Takeshi; Kitagawa, Tetsuya; Takanashi, Shuichiro; Sata, Masataka
2013-05-01
The impact of epicardial adipose tissue (EAT) over abdominal or overall adiposity on coronary artery disease (CAD) is currently unknown. We compared the association among EAT volume (EATV), cytokine/adipocytokine profiles in EAT and subcutaneous fat, and atherogenic CAD. Paired samples were obtained from EAT and subcutaneous adipose tissue during elective cardiac surgery for CAD (n=50) or non-CAD (n=50). EATV was the sum of cross-sectional EAT areas, and visceral and subcutaneous fat areas were determined at the umbilicus level on computed tomography scans. CD68(+), CD11c(+), and CD206(+) cells were counted using immunohistochemical staining. Cytokine/adipocytokine expression was evaluated using quantitative real-time polymerase chain reaction. Multivariate analysis indicated that male sex, age, diabetes mellitus, high triglycerides, and low high-density lipoprotein cholesterol, and EATV index (EATV/body surface area, cm(3)/m(2)) were significant CAD predictors (corrected R(2)=0.401; P<0.001); visceral fat area, hypertension, smoking, low-density lipoprotein cholesterol (140 mg/dL [3.63 mmol/L]) or statin use were not predictors. The EATV index positively correlated with the CD68(+) and CD11c(+) cell numbers and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3), interleukin-1β, and interleukin-1R expression; and negatively correlated with adiponectin expression in EAT. A multivariate analysis model, including CD68(+) cells and interleukin-1β, and adiponectin expression in EAT strongly predicted CAD (corrected R(2)=0.756; P<0.001). EATV and macrophage and cytokine/adipocytokine signals in EAT strongly correlated with CAD. Our findings suggest that EATV and adipocytokine imbalance are strongly linked to human coronary atherosclerosis.
Nomura, Yukihiro; Higaki, Toru; Fujita, Masayo; Miki, Soichiro; Awaya, Yoshikazu; Nakanishi, Toshio; Yoshikawa, Takeharu; Hayashi, Naoto; Awai, Kazuo
2017-02-01
This study aimed to evaluate the effects of iterative reconstruction (IR) algorithms on computer-assisted detection (CAD) software for lung nodules in ultra-low-dose computed tomography (ULD-CT) for lung cancer screening. We selected 85 subjects who underwent both a low-dose CT (LD-CT) scan and an additional ULD-CT scan in our lung cancer screening program for high-risk populations. The LD-CT scans were reconstructed with filtered back projection (FBP; LD-FBP). The ULD-CT scans were reconstructed with FBP (ULD-FBP), adaptive iterative dose reduction 3D (AIDR 3D; ULD-AIDR 3D), and forward projected model-based IR solution (FIRST; ULD-FIRST). CAD software for lung nodules was applied to each image dataset, and the performance of the CAD software was compared among the different IR algorithms. The mean volume CT dose indexes were 3.02 mGy (LD-CT) and 0.30 mGy (ULD-CT). For overall nodules, the sensitivities of CAD software at 3.0 false positives per case were 78.7% (LD-FBP), 9.3% (ULD-FBP), 69.4% (ULD-AIDR 3D), and 77.8% (ULD-FIRST). Statistical analysis showed that the sensitivities of ULD-AIDR 3D and ULD-FIRST were significantly higher than that of ULD-FBP (P < .001). The performance of CAD software in ULD-CT was improved by using IR algorithms. In particular, the performance of CAD in ULD-FIRST was almost equivalent to that in LD-FBP. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
On the Use of CAD-Native Predicates and Geometry in Surface Meshing
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.
1999-01-01
Several paradigms for accessing CAD geometry during surface meshing for CFD are discussed. File translation, inconsistent geometry engines and non-native point construction are all identified as sources of non-robustness. The paper argues in favor of accessing CAD parts and assemblies in their native format, without translation, and for the use of CAD-native predicates and constructors in surface mesh generation. The discussion also emphasizes the importance of examining the computational requirements for exact evaluation of triangulation predicates during surface meshing. The native approach is demonstrated through an algorithm for the generation of closed manifold surface triangulations from CAD geometry. CAD parts and assemblies are used in their native format, and a part's native geometry engine is accessed through a modeler-independent application programming interface (API). In seeking a robust and fully automated procedure, the algorithm is based on a new physical space manifold triangulation technique specially developed to avoid robustness issues associated with poorly conditioned mappings. In addition, this approach avoids the usual ambiguities associated with floating-point predicate evaluation on constructed coordinate geometry in a mapped space. The technique is incremental, so that each new site improves the triangulation by some well defined quality measure. The algorithm terminates after achieving a prespecified measure of mesh quality and produces a triangulation such that no angle is less than a given angle bound, a or greater than pi - 2alpha. This result also sets bounds on the maximum vertex degree, triangle aspect-ratio and maximum stretching rate for the triangulation. In addition to the output triangulations for a variety of CAD parts, the discussion presents related theoretical results which assert the existence of such an angle bound, and demonstrate that maximum bounds of between 25 deg and 30 deg may be achieved in practice.
Wei, Xuelei; Dong, Fuhui
2011-12-01
To review recent advance in the research and application of computer aided forming techniques for constructing bone tissue engineering scaffolds. The literature concerning computer aided forming techniques for constructing bone tissue engineering scaffolds in recent years was reviewed extensively and summarized. Several studies over last decade have focused on computer aided forming techniques for bone scaffold construction using various scaffold materials, which is based on computer aided design (CAD) and bone scaffold rapid prototyping (RP). CAD include medical CAD, STL, and reverse design. Reverse design can fully simulate normal bone tissue and could be very useful for the CAD. RP techniques include fused deposition modeling, three dimensional printing, selected laser sintering, three dimensional bioplotting, and low-temperature deposition manufacturing. These techniques provide a new way to construct bone tissue engineering scaffolds with complex internal structures. With rapid development of molding and forming techniques, computer aided forming techniques are expected to provide ideal bone tissue engineering scaffolds.
Czar, Michael J; Cai, Yizhi; Peccoud, Jean
2009-07-01
Chemical synthesis of custom DNA made to order calls for software streamlining the design of synthetic DNA sequences. GenoCAD (www.genocad.org) is a free web-based application to design protein expression vectors, artificial gene networks and other genetic constructs composed of multiple functional blocks called genetic parts. By capturing design strategies in grammatical models of DNA sequences, GenoCAD guides the user through the design process. By successively clicking on icons representing structural features or actual genetic parts, complex constructs composed of dozens of functional blocks can be designed in a matter of minutes. GenoCAD automatically derives the construct sequence from its comprehensive libraries of genetic parts. Upon completion of the design process, users can download the sequence for synthesis or further analysis. Users who elect to create a personal account on the system can customize their workspace by creating their own parts libraries, adding new parts to the libraries, or reusing designs to quickly generate sets of related constructs.
Modular Aero-Propulsion System Simulation
NASA Technical Reports Server (NTRS)
Parker, Khary I.; Guo, Ten-Huei
2006-01-01
The Modular Aero-Propulsion System Simulation (MAPSS) is a graphical simulation environment designed for the development of advanced control algorithms and rapid testing of these algorithms on a generic computational model of a turbofan engine and its control system. MAPSS is a nonlinear, non-real-time simulation comprising a Component Level Model (CLM) module and a Controller-and-Actuator Dynamics (CAD) module. The CLM module simulates the dynamics of engine components at a sampling rate of 2,500 Hz. The controller submodule of the CAD module simulates a digital controller, which has a typical update rate of 50 Hz. The sampling rate for the actuators in the CAD module is the same as that of the CLM. MAPSS provides a graphical user interface that affords easy access to engine-operation, engine-health, and control parameters; is used to enter such input model parameters as power lever angle (PLA), Mach number, and altitude; and can be used to change controller and engine parameters. Output variables are selectable by the user. Output data as well as any changes to constants and other parameters can be saved and reloaded into the GUI later.
Zhang, Zhi-cheng; Sun, Tian-sheng; Li, Fang; Tang, Guo-lin
2009-05-19
To explore the effect of CAD and CAE related technique in separation of Pygopagus Conjoined Twins. CT images of Pygopagus conjoined twins were obtained and reconstructed in three-dimensional by Mimics software. 3D entity model of skin and spine of conjoined twins were made by fast plastic technique and equipment according to 3D data model. The circumference and area of fused and independent dural sac were measured by software of AutoCAD. The entity model is real reflection of skin and spine of Pygopagus. It was used in the procedures of discussion, sham operation, skin flap design and informed consent. In the measure of MRI, the circumference and area of fused dural sac was more than of independent dural sac, that is to say, the defect of dural sac can be repaired by direct suture. The intraoperative finding match with imaging measure results. The application of CAD and CAE in the procedure of preoperative plan have gave big help to successful separation of Pygopagus Conjoined Twins.
Conditional random field modelling of interactions between findings in mammography
NASA Astrophysics Data System (ADS)
Kooi, Thijs; Mordang, Jan-Jurre; Karssemeijer, Nico
2017-03-01
Recent breakthroughs in training deep neural network architectures, in particular deep Convolutional Neural Networks (CNNs), made a big impact on vision research and are increasingly responsible for advances in Computer Aided Diagnosis (CAD). Since many natural scenes and medical images vary in size and are too large to feed to the networks as a whole, two stage systems are typically employed, where in the first stage, small regions of interest in the image are located and presented to the network as training and test data. These systems allow us to harness accurate region based annotations, making the problem easier to learn. However, information is processed purely locally and context is not taken into account. In this paper, we present preliminary work on the employment of a Conditional Random Field (CRF) that is trained on top the CNN to model contextual interactions such as the presence of other suspicious regions, for mammography CAD. The model can easily be extended to incorporate other sources of information, such as symmetry, temporal change and various patient covariates and is general in the sense that it can have application in other CAD problems.
Matching tire tracks on the head using forensic photogrammetry.
Thali, M J; Braun, M; Brüschweiler, W; Dirnhofer, R
2000-09-11
In the field of the documentation of forensics-relevant injuries, from the reconstructive point of view, the forensic, CAD-supported photogrammetry plays an important role; particularly so when a detailed 3-D reconstruction is vital. This is demonstrated with a soft-tissue injury to the face caused by being run over by a car tire. Since the objects (injury and surface of the tire) to be investigated will be evaluated in virtual space, they must be series photographed. These photo sequences are then evaluated with the RolleiMetric multi-image evaluation system. This system measures and calculates the spatial location of points shown in the photo sequences, and creates 3-D data models of the objects. In a 3-D CAD program, the model of the injury is then compared against the model of the possible injury-causing instrument. The validation of the forensic, CAD-supported photogrammetry, as shown by the perfect 3-D match between the tire tread and the facial injury, demonstrates how greatly this 3-D method surpasses the classic 2-D overlay method (one-to-one photography).
Teramoto, Keiji; Asahina, Ryota; Nishida, Hidetaka; Kamishina, Hiroaki; Maeda, Sadatoshi
2018-05-21
Previous studies indicate that tight junctions are involved in the pathogenesis of canine atopic dermatitis (cAD). An in vitro skin model is needed to elucidate the specific role of tight junctions in cAD. A 3D epidermal equivalent model using canine progenitor epidermal keratinocytes (CPEK) has been established; the expression of tight junctions within this model is uncharacterized. To investigate the expression of tight junctions in the 3D epidermal equivalent. Two normal laboratory beagle dogs served as donors of full-thickness skin biopsy samples for comparison to the in vitro model. Immunohistochemical techniques were employed to investigate the expression of tight junctions including zonula occludens (ZO)-1 and claudin-1 in normal canine skin, and in the CPEK 3D epidermal equivalent. Results demonstrated the expression of ZO-1 and claudin-1 in the CPEK 3D epidermal equivalent, with staining patterns that were similar to those in normal canine skin. The CPEK 3D epidermal equivalent has the potential to be a suitable in vitro research tool for clarifying the specific role of tight junctions in cAD. © 2018 ESVD and ACVD.
A smartphone photogrammetry method for digitizing prosthetic socket interiors.
Hernandez, Amaia; Lemaire, Edward
2017-04-01
Prosthetic CAD/CAM systems require accurate 3D limb models; however, difficulties arise when working from the person's socket since current 3D scanners have difficulties scanning socket interiors. While dedicated scanners exist, they are expensive and the cost may be prohibitive for a limited number of scans per year. A low-cost and accessible photogrammetry method for socket interior digitization is proposed, using a smartphone camera and cloud-based photogrammetry services. 15 two-dimensional images of the socket's interior are captured using a smartphone camera. A 3D model is generated using cloud-based software. Linear measurements were comparing between sockets and the related 3D models. 3D reconstruction accuracy averaged 2.6 ± 2.0 mm and 0.086 ± 0.078 L, which was less accurate than models obtained by high quality 3D scanners. However, this method would provide a viable 3D digital socket reproduction that is accessible and low-cost, after processing in prosthetic CAD software. Clinical relevance The described method provides a low-cost and accessible means to digitize a socket interior for use in prosthetic CAD/CAM systems, employing a smartphone camera and cloud-based photogrammetry software.
Precision reconstruction of manufactured free-form components
NASA Astrophysics Data System (ADS)
Ristic, Mihailo; Brujic, Djordje; Ainsworth, Iain
2000-03-01
Manufacturing needs in many industries, especially the aerospace and the automotive, involve CAD remodeling of manufactured free-form parts using NURBS. This is typically performed as part of 'first article inspection' or 'closing the design loop.' The reconstructed model must satisfy requirements such as accuracy, compatibility with the original CAD model and adherence to various constraints. The paper outlines a methodology for realizing this task. Efficiency and quality of the results are achieved by utilizing the nominal CAD model. It is argued that measurement and remodeling steps are equally important. We explain how the measurement was optimized in terms of accuracy, point distribution and measuring speed using a CMM. Remodeling steps include registration, data segmentation, parameterization and surface fitting. Enforcement of constraints such as continuity was performed as part of the surface fitting process. It was found necessary that the relevant algorithms are able to perform in the presence of measurement noise, while making no special assumptions about regularity of data distribution. In order to deal with real life situations, a number of supporting functions for geometric modeling were required and these are described. The presented methodology was applied using real aeroengine parts and the experimental results are presented.
Evaluation of internal fit of interim crown fabricated with CAD/CAM milling and 3D printing system.
Lee, Wan-Sun; Lee, Du-Hyeong; Lee, Kyu-Bok
2017-08-01
This study is to evaluate the internal fit of the crown manufactured by CAD/CAM milling method and 3D printing method. The master model was fabricated with stainless steel by using CNC machine and the work model was created from the vinyl-polysiloxane impression. After scanning the working model, the design software is used to design the crown. The saved STL file is used on the CAD/CAM milling method and two types of 3D printing method to produce 10 interim crowns per group. Internal discrepancy measurement uses the silicon replica method and the measured data are analyzed with One-way ANOVA to verify the statistic significance. The discrepancy means (standard deviation) of the 3 groups are 171.6 (97.4) µm for the crown manufactured by the milling system and 149.1 (65.9) and 91.1 (36.4) µm, respectively, for the crowns manufactured with the two types of 3D printing system. There was a statistically significant difference and the 3D printing system group showed more outstanding value than the milling system group. The marginal and internal fit of the interim restoration has more outstanding 3D printing method than the CAD/CAM milling method. Therefore, the 3D printing method is considered as applicable for not only the interim restoration production, but also in the dental prosthesis production with a higher level of completion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsey, Nicholas C.
The growth of additive manufacturing as a disruptive technology poses nuclear proliferation concerns worthy of serious consideration. Additive manufacturing began in the early 1980s with technological advances in polymer manipulation, computer capabilities, and computer-aided design (CAD) modeling. It was originally limited to rapid prototyping; however, it eventually developed into a complete means of production that has slowly penetrated the consumer market. Today, additive manufacturing machines can produce complex and unique items in a vast array of materials including plastics, metals, and ceramics. These capabilities have democratized the manufacturing industry, allowing almost anyone to produce items as simple as cup holdersmore » or as complex as jet fuel nozzles. Additive manufacturing, or three-dimensional (3D) printing as it is commonly called, relies on CAD files created or shared by individuals with additive manufacturing machines to produce a 3D object from a digital model. This sharing of files means that a 3D object can be scanned or rendered as a CAD model in one country, and then downloaded and printed in another country, allowing items to be shared globally without physically crossing borders. The sharing of CAD files online has been a challenging task for the export controls regime to manage over the years, and additive manufacturing could make these transfers more common. In this sense, additive manufacturing is a disruptive technology not only within the manufacturing industry but also within the nuclear nonproliferation world. This paper provides an overview of additive manufacturing concerns of proliferation.« less
Drew, Trafton; Cunningham, Corbin; Wolfe, Jeremy
2012-01-01
Rational and Objectives Computer Aided Detection (CAD) systems are intended to improve performance. This study investigates how CAD might actually interfere with a visual search task. This is a laboratory study with implications for clinical use of CAD. Methods 47 naïve observers in two studies were asked to search for a target, embedded in 1/f2.4 noise while we monitored their eye-movements. For some observers, a CAD system marked 75% of targets and 10% of distractors while other observers completed the study without CAD. In Experiment 1, the CAD system’s primary function was to tell observers where the target might be. In Experiment 2, CAD provided information about target identity. Results In Experiment 1, there was a significant enhancement of observer sensitivity in the presence of CAD (t(22)=4.74, p<.001), but there was also a substantial cost. Targets that were not marked by the CAD system were missed more frequently than equivalent targets in No CAD blocks of the experiment (t(22)=7.02, p<.001). Experiment 2 showed no behavioral benefit from CAD, but also no significant cost on sensitivity to unmarked targets (t(22)=0.6, p=n.s.). Finally, in both experiments, CAD produced reliable changes in eye-movements: CAD observers examined a lower total percentage of the search area than the No CAD observers (Ex 1: t(48)=3.05, p<.005; Ex 2: t(50)=7.31, p<.001). Conclusions CAD signals do not combine with observers’ unaided performance in a straight-forward manner. CAD can engender a sense of certainty that can lead to incomplete search and elevated chances of missing unmarked stimuli. PMID:22958720
IANTORNO, Micaela; SCHÄR, Michael; SOLEIMANIFARD, Sahar; BROWN, Todd T.; MOORE, Richard; BARDITCH-CROVO, Patricia; STUBER, Matthias; LAI, Shenghan; GERSTENBLITH, Gary; WEISS, Robert G.; HAYS, Allison G.
2017-01-01
Objective HIV+ individuals experience an increased burden of coronary artery disease (CAD) not adequately accounted for by traditional CAD risk factors. Coronary endothelial function (CEF), a barometer of vascular health, is depressed early in atherosclerosis and predicts future events but has not been studied in HIV+ individuals. We tested whether CEF is impaired in HIV+ subjects without CAD as compared to an HIV- population matched for cardiac risk factors. Design/Methods In this observational study, CEF was measured noninvasively by quantifying isometric handgrip exercise (IHE)-induced changes in coronary vasoreactivity with MRI in 18 participants with HIV but no CAD (HIV+CAD-, based on prior imaging), 36 age- and cardiac risk factor-matched healthy participants with neither HIV nor CAD (HIV-CAD-), 41 subjects with no HIV but with known CAD (HIV-CAD+) and 17 subjects with both HIV and CAD (HIV+CAD+). Results CEF was significantly depressed in HIV+CAD- subjects as compared to that of risk-factor-matched HIV-CAD- subjects (p<0.0001), and was depressed to the level of that in HIV- participants with established CAD. Mean IL-6 levels were higher in HIV+ participants (p<0.0001), and inversely related to CEF in the HIV+ subjects (p=0.007). Conclusions Marked coronary endothelial dysfunction is present in HIV+ subjects without significant CAD and is as severe as that in clinical CAD patients. Furthermore, endothelial dysfunction appears inversely related to the degree of inflammation in HIV+ subjects, as measured by IL-6. CEF testing in HIV+ patients may be useful for assessing cardiovascular risk and testing new CAD treatment strategies, including those targeting inflammation. PMID:28353539
Kolovou, Genovefa; Yiannakouris, Nikos; Hatzivassiliou, Marilena; Malakos, John; Daskalova, Deliana; Hatzigeorgiou, George; Cariolou, Marios A; Cokkinos, Dennis V
2002-01-01
Studies in several populations have indicated that genetic variation at the apolipoprotein E (apoE) structural locus influences the risk of coronary artery disease (CAD) and myocardial infarction (MI). This study aimed at investigating whether apoE polymorphism has an allelic and/or genotypic impact on the risk of MI in Greek patients with CAD. We compared apoE gene polymorphism in a group of patients with angiographically confirmed CAD but not MI [CAD/MI (-)-group, n = 143] and a group of age and sex-matched CAD patients who had experienced a non-fatal Ml [CAD/MI (+)-group, n = 124]. The patients were also compared with a group of healthy younger individuals (n = 240) with no family history of CAD. The apoE genotype distribution differed significantly between the two groups of CAD patients (p = 0.02). The epsilon2 allele was 5.3-fold less frequent in the CAD/ MI (+)-group compared with the CAD/MI (-)-group (1.2% vs. 6.3%, p = 0.01). The frequency of the epsilon2 allele in healthy subjects was 8.1%, which is 6.8-fold higher than in CAD/MI (+)-patients (p = 0.001) and twice as high compared with all CAD patients (p = 0.02). No differences in epsilon4 allele frequencies were observed between CAD/MI (+)- and CAD/MI (-)-patients (10.9% vs. 9.8%), or between patients with CAD and healthy subjects (10.3% vs. 10.2%). In summary, the epsilon4 allele was not found to be associated with an increased risk for CAD or MI. In contrast, a negative association of the epsilon2 allele with Ml was observed among Greek patients with CAD.
CAD-RADS - a new clinical decision support tool for coronary computed tomography angiography.
Foldyna, Borek; Szilveszter, Bálint; Scholtz, Jan-Erik; Banerji, Dahlia; Maurovich-Horvat, Pál; Hoffmann, Udo
2018-04-01
Coronary computed tomography angiography (CTA) has been established as an accurate method to non-invasively assess coronary artery disease (CAD). The proposed 'Coronary Artery Disease Reporting and Data System' (CAD-RADS) may enable standardised reporting of the broad spectrum of coronary CTA findings related to the presence, extent and composition of coronary atherosclerosis. The CAD-RADS classification is a comprehensive tool for summarising findings on a per-patient-basis dependent on the highest-grade coronary artery lesion, ranging from CAD-RADS 0 (absence of CAD) to CAD-RADS 5 (total occlusion of a coronary artery). In addition, it provides suggestions for clinical management for each classification, including further testing and therapeutic options. Despite some limitations, CAD-RADS may facilitate improved communication between imagers and patient caregivers. As such, CAD-RADS may enable a more efficient use of coronary CTA leading to more accurate utilisation of invasive coronary angiograms. Furthermore, widespread use of CAD-RADS may facilitate registry-based research of diagnostic and prognostic aspects of CTA. • CAD-RADS is a tool for standardising coronary CTA reports. • CAD-RADS includes clinical treatment recommendations based on CTA findings. • CAD-RADS has the potential to reduce variability of CTA reports.
Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whyatt, Greg A.; Chick, Lawrence A.
This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electricalmore » generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 7878 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the effect of elevated pressure and to represent the expected enhancement obtained using a promising cell material set which has been tested in button cells but not yet used to produce full-scale stacks. The predictions for the effect of pressure on stack performance were based on literature. As part of this study, additional data were obtained on button cells at elevated pressure to confirm the validity of the predictions. The impact of adding weight to the 787-8 fuel consumption was determined as a function of flight distance using a PianoX model. A conceptual design for a SOFC power system for the Boeing 787 is developed and the weight estimated. The results indicate that the power density of the stacks must increase by at least a factor of 2 to begin saving fuel on the 787 aircraft. However, the conceptual design of the power system may still be useful for other applications which are less weight sensitive.« less
NASA Astrophysics Data System (ADS)
Zbiciak, M.; Grabowik, C.; Janik, W.
2015-11-01
Nowadays the design constructional process is almost exclusively aided with CAD/CAE/CAM systems. It is evaluated that nearly 80% of design activities have a routine nature. These design routine tasks are highly susceptible to automation. Design automation is usually made with API tools which allow building original software responsible for adding different engineering activities. In this paper the original software worked out in order to automate engineering tasks at the stage of a product geometrical shape design is presented. The elaborated software works exclusively in NX Siemens CAD/CAM/CAE environment and was prepared in Microsoft Visual Studio with application of the .NET technology and NX SNAP library. The software functionality allows designing and modelling of spur and helicoidal involute gears. Moreover, it is possible to estimate relative manufacturing costs. With the Generator module it is possible to design and model both standard and non-standard gear wheels. The main advantage of the model generated in such a way is its better representation of an involute curve in comparison to those which are drawn in specialized standard CAD systems tools. It comes from fact that usually in CAD systems an involute curve is drawn by 3 points that respond to points located on the addendum circle, the reference diameter of a gear and the base circle respectively. In the Generator module the involute curve is drawn by 11 involute points which are located on and upper the base and the addendum circles therefore 3D gear wheels models are highly accurate. Application of the Generator module makes the modelling process very rapid so that the gear wheel modelling time is reduced to several seconds. During the conducted research the analysis of differences between standard 3 points and 11 points involutes was made. The results and conclusions drawn upon analysis are shown in details.
Incremental value of the CT coronary calcium score for the prediction of coronary artery disease
Genders, Tessa S. S.; Pugliese, Francesca; Mollet, Nico R.; Meijboom, W. Bob; Weustink, Annick C.; van Mieghem, Carlos A. G.; de Feyter, Pim J.
2010-01-01
Objectives: To validate published prediction models for the presence of obstructive coronary artery disease (CAD) in patients with new onset stable typical or atypical angina pectoris and to assess the incremental value of the CT coronary calcium score (CTCS). Methods: We searched the literature for clinical prediction rules for the diagnosis of obstructive CAD, defined as ≥50% stenosis in at least one vessel on conventional coronary angiography. Significant variables were re-analysed in our dataset of 254 patients with logistic regression. CTCS was subsequently included in the models. The area under the receiver operating characteristic curve (AUC) was calculated to assess diagnostic performance. Results: Re-analysing the variables used by Diamond & Forrester yielded an AUC of 0.798, which increased to 0.890 by adding CTCS. For Pryor, Morise 1994, Morise 1997 and Shaw the AUC increased from 0.838 to 0.901, 0.831 to 0.899, 0.840 to 0.898 and 0.833 to 0.899. CTCS significantly improved model performance in each model. Conclusions: Validation demonstrated good diagnostic performance across all models. CTCS improves the prediction of the presence of obstructive CAD, independent of clinical predictors, and should be considered in its diagnostic work-up. PMID:20559838
RESEARCH AND DESIGN ABOUT VERSATILE 3D-CAD ENGINE FOR CONSTRUCTION
NASA Astrophysics Data System (ADS)
Tanaka, Shigenori; Kubota, Satoshi; Kitagawa, Etsuji; Monobe, Kantaro; Nakamura, Kenji
In the construction field of Japan, it is an important subject to build the environment where 3D-CAD data is used for CALS/EC, information construction, and an improvement in productivity. However, in the construction field, 3D-CAD software does not exist under the present circumstances. Then, in order to support development of domestic 3D-CAD software, it is required to develop a 3D-CAD engine. In this research, in order to familiarize the 3D-CAD software at low cost and quickly and build the environment where the 3D-CAD software is utilizable, investigation for designing a 3D-CAD engine is proposed. The target for investigation are the use scene of 3D-CAD, the seeds which accompany 3D-CAD, a standardization trend, existing products, IT component engineering. Based on results of the investigation, the functional requirements for the 3D-CAD engine for the construction field were concluded.
NASA Astrophysics Data System (ADS)
Ramakrishna, Bharath; Saiprasad, Ganesh; Safdar, Nabile; Siddiqui, Khan; Chang, Chein-I.; Siegel, Eliot
2008-03-01
Osteoarthritis (OA) is the most common form of arthritis and a major cause of morbidity affecting millions of adults in the US and world wide. In the knee, OA begins with the degeneration of joint articular cartilage, eventually resulting in the femur and tibia coming in contact, and leading to severe pain and stiffness. There has been extensive research examining 3D MR imaging sequences and automatic/semi-automatic techniques for 2D/3D articular cartilage extraction. However, in routine clinical practice the most popular technique still remain radiographic examination and qualitative assessment of the joint space. This may be in large part because of a lack of tools that can provide clinically relevant diagnosis in adjunct (in near real time fashion) with the radiologist and which can serve the needs of the radiologists and reduce inter-observer variation. Our work aims to fill this void by developing a CAD application that can generate clinically relevant diagnosis of the articular cartilage damage in near real time fashion. The algorithm features a 2D Active Shape Model (ASM) for modeling the bone-cartilage interface on all the slices of a Double Echo Steady State (DESS) MR sequence, followed by measurement of the cartilage thickness from the surface of the bone, and finally by the identification of regions of abnormal thinness and focal/degenerative lesions. A preliminary evaluation of CAD tool was carried out on 10 cases taken from the Osteoarthritis Initiative (OAI) database. When compared with 2 board-certified musculoskeletal radiologists, the automatic CAD application was able to get segmentation/thickness maps in little over 60 seconds for all of the cases. This observation poses interesting possibilities for increasing radiologist productivity and confidence, improving patient outcomes, and applying more sophisticated CAD algorithms to routine orthopedic imaging tasks.
Excretion of anti-angiogenic proteins in patients with chronic allograft dysfunction.
Moskowitz-Kassai, Eliza; Mackelaite, Lina; Chen, Jun; Patel, Kaushal; Dadhania, Darshana M; Gross, Steven S; Chander, Praveen; Delaney, Vera; Deng, Luqin; Chen, Ligong; Cui, Xiangqin; Suthanthiran, Manikkam; Goligorsky, Michael S
2012-02-01
We have recently documented the appearance of an anti-angiogenic peptide, endorepellin, in the urine of patients with chronic allograft dysfunction (CAD). Here, we analyzed using enzyme-linked immunosorbent assay the excretion of anti-angiogenic peptides endostatin, pigment epithelium-derived factor (PEDF) and Kruppel-like factor-2 (KLF-2), in healthy individuals, patients with stable graft function and patients with various degrees of CAD. In healthy subjects and patients with CAD-0, endostatin, PEDF and KLF-2 excretions were at the level of detection. In contrast, there were significant differences between the patients with CAD-3 and CAD-0, CAD-1 and healthy controls for endostatin and CAD-0 versus CAD-3 for PEDF, but no differences in KLF-2 excretion. Receiver operating characteristic (ROC) curve analyses demonstrated a highly discriminative profile for all three biomarkers: the combination of these parameters offered 83% sensitivity and 90% specificity in distinguishing CAD-0 from CAD-1-3. The quality of these potential biomarkers of CAD was, however, highest in discriminating CAD status in biopsy-proven cases and dropped when CAD-0 was diagnosed based on clinical criteria. In conclusion, these findings indicate the diagnostic potential of urinary detection of endostatin, PEDF and to lesser degree KLF-2 and suggest a mechanistic role played by anti-angiogenic substances in the developing vasculopathy and vascular rarefaction in patients with CAD.
NASA-IGES Translator and Viewer
NASA Technical Reports Server (NTRS)
Chou, Jin J.; Logan, Michael A.
1995-01-01
NASA-IGES Translator (NIGEStranslator) is a batch program that translates a general IGES (Initial Graphics Exchange Specification) file to a NASA-IGES-Nurbs-Only (NINO) file. IGES is the most popular geometry exchange standard among Computer Aided Geometric Design (CAD) systems. NINO format is a subset of IGES, implementing the simple and yet the most popular NURBS (Non-Uniform Rational B-Splines) representation. NIGEStranslator converts a complex IGES file to the simpler NINO file to simplify the tasks of CFD grid generation for models in CAD format. The NASA-IGES Viewer (NIGESview) is an Open-Inventor-based, highly interactive viewer/ editor for NINO files. Geometry in the IGES files can be viewed, copied, transformed, deleted, and inquired. Users can use NIGEStranslator to translate IGES files from CAD systems to NINO files. The geometry then can be examined with NIGESview. Extraneous geometries can be interactively removed, and the cleaned model can be written to an IGES file, ready to be used in grid generation.
IGA: A Simplified Introduction and Implementation Details for Finite Element Users
NASA Astrophysics Data System (ADS)
Agrawal, Vishal; Gautam, Sachin S.
2018-05-01
Isogeometric analysis (IGA) is a recently introduced technique that employs the Computer Aided Design (CAD) concept of Non-uniform Rational B-splines (NURBS) tool to bridge the substantial bottleneck between the CAD and finite element analysis (FEA) fields. The simplified transition of exact CAD models into the analysis alleviates the issues originating from geometrical discontinuities and thus, significantly reduces the design-to-analysis time in comparison to traditional FEA technique. Since its origination, the research in the field of IGA is accelerating and has been applied to various problems. However, the employment of CAD tools in the area of FEA invokes the need of adapting the existing implementation procedure for the framework of IGA. Also, the usage of IGA requires the in-depth knowledge of both the CAD and FEA fields. This can be overwhelming for a beginner in IGA. Hence, in this paper, a simplified introduction and implementation details for the incorporation of NURBS based IGA technique within the existing FEA code is presented. It is shown that with little modifications, the available standard code structure of FEA can be adapted for IGA. For the clear and concise explanation of these modifications, step-by-step implementation of a benchmark plate with a circular hole under the action of in-plane tension is included.
Sardinha, A; Araújo, C G S; Nardi, A E
2012-12-01
Regular physical exercise has been shown to favorably influence mood and anxiety; however, there are few studies regarding psychiatric aspects of physically active patients with coronary artery disease (CAD). The objective of the present study was to compare the prevalence of psychiatric disorders and cardiac anxiety in sedentary and exercising CAD patients. A total sample of 119 CAD patients (74 men) were enrolled in a case-control study. The subjects were interviewed to identify psychiatric disorders and responded to the Cardiac Anxiety Questionnaire. In the exercise group (N = 60), there was a lower prevalence (45 vs 81%; P < 0.001) of at least one psychiatric diagnosis, as well as multiple comorbidities, when compared to the sedentary group (N = 59). Considering the Cardiac Anxiety Questionnaire, sedentary patients presented higher scores compared to exercisers (mean ± SEM = 55.8 ± 1.9 vs 37.3 ± 1.6; P < 0.001). In a regression model, to be attending a medically supervised exercise program presented a relevant potential for a 35% reduction in cardiac anxiety. CAD patients regularly attending an exercise program presented less current psychiatric diagnoses and multiple mental-related comorbidities and lower scores of cardiac anxiety. These salutary mental effects add to the already known health benefits of exercise for CAD patients.
Sardinha, A.; Araújo, C.G.S.; Nardi, A.E.
2012-01-01
Regular physical exercise has been shown to favorably influence mood and anxiety; however, there are few studies regarding psychiatric aspects of physically active patients with coronary artery disease (CAD). The objective of the present study was to compare the prevalence of psychiatric disorders and cardiac anxiety in sedentary and exercising CAD patients. A total sample of 119 CAD patients (74 men) were enrolled in a case-control study. The subjects were interviewed to identify psychiatric disorders and responded to the Cardiac Anxiety Questionnaire. In the exercise group (N = 60), there was a lower prevalence (45 vs 81%; P < 0.001) of at least one psychiatric diagnosis, as well as multiple comorbidities, when compared to the sedentary group (N = 59). Considering the Cardiac Anxiety Questionnaire, sedentary patients presented higher scores compared to exercisers (mean ± SEM = 55.8 ± 1.9 vs 37.3 ± 1.6; P < 0.001). In a regression model, to be attending a medically supervised exercise program presented a relevant potential for a 35% reduction in cardiac anxiety. CAD patients regularly attending an exercise program presented less current psychiatric diagnoses and multiple mental-related comorbidities and lower scores of cardiac anxiety. These salutary mental effects add to the already known health benefits of exercise for CAD patients. PMID:23011407
Perspective on CFD studies of coronary artery disease lesions and hemodynamics: a review.
Zhang, Jun-Mei; Zhong, Liang; Su, Boyang; Wan, Min; Yap, Jinq Shya; Tham, Jasmine P L; Chua, Leok Poh; Ghista, Dhanjoo N; Tan, Ru San
2014-06-01
Coronary artery disease (CAD) is the most common cardiovascular disease. Early diagnosis of CAD's physiological significance is of utmost importance for guiding individualized risk-tailored treatment strategies. In this paper, we first review the state-of-the-art clinical diagnostic indices to quantify the severity of CAD and the associated invasive and noninvasive imaging technologies in order to quantify the anatomical parameters of diameter stenosis, area stenosis, and hemodynamic indices of coronary flow reserve and fractional flow reserve. With the development of computational technologies and CFD methods, tremendous progress has been made in applying image-based CFD simulation techniques to elucidate the effects of hemodynamics in vascular pathophysiology toward the initialization and progression of CAD. So then, we review the advancements of CFD technologies in patient-specific modeling, involving the development of geometry reconstruction, boundary conditions, and fluid-structure interaction. Next, we review the applications of CFD to stenotic sites, in order to compute their hemodynamic parameters and study the relationship between the hemodynamic conditions and the clinical indices, to thereby assess the amount of viable myocardium and candidacy for percutaneous coronary intervention. Finally, we review the strengths and limitations of current researches of applying CFD to CAD studies. Copyright © 2014 John Wiley & Sons, Ltd.
Kulshreshtha, Bindu; Singh, Seerat; Arora, Arpita
2013-12-01
The phenotypic variability among PCOS could be due to differences in insulin patterns. Hyperinsulinemia commonly accompanies Diabetes Mellitus (DM), obesity, hypertension and CAD, though, to a variable degree. We speculate that a family history of these diseases could differentially affect the phenotype of PCOS. To study the effect of DM/CAD/HT and obesity on the phenotype of PCOS. PCOS patients and age matched controls were enquired for a family background of DM, hypertension, CAD and obesity among parents and grandparents. Regression modelling was employed to examine predictors of obesity and first symptom in PCOS patients. There were 88 PCOS women and 77 age-matched controls (46 lean, 31 obese). A high prevalence of DM, CAD, obesity and hypertension was observed among parents and grandparents of women with PCOS compared to controls. Hypertension and CAD manifested more in father's side of family. BMI of PCOS subjects was significantly related to parental DM and obesity after correcting for age. First symptom of weight gain was significantly associated with number of parents with DM (p = 0.02) and first symptom of irregular periods was associated with number of parents with hypertension (p = 0.06). A family background of DM/HT and obesity diseases affects the phenotype of PCOS.
Association between vaspin level and coronary artery disease in patients with type 2 diabetes.
Hao, Fei; Zhang, Hiujuan; Zhu, Jinying; Kuang, Hongyu; Yu, Qiuxia; Bai, Mengmeng; Mu, Jiawei
2016-03-01
Adipokines contribute to the atherosclerotic process, connecting obesity and diabetes to cardiovascular disease. Vaspin is a recently discovered adipokine, so data about the relationship of vaspin to coronary artery disease in type-2 diabetes mellitus (T2DM) is limited. The current study was designed to evaluate the association of vaspin with the presence of coronary artery disease in T2DM. We enrolled 228 patients with T2DM, with or without CAD, between March 2010 and July 2011, and 120 healthy control participants. Serum vaspin, homeostasis model assessment of insulin resistance (HOMA-IR) and other cardiovascular risk factors were assayed. Vaspin levels were significantly increased in patients with T2DM compared to healthy individuals, and were further increased in patients with both T2DM and CAD compared to those with T2DM but without CAD. Moreover, vaspin correlated positively with body mass index, fasting plasma glucose, insulin and HOMA-IR in all patients with T2DM (P<0.05). Furthermore, in multivariate logistic regression analysis, vaspin level was associated with the presence of CAD in patients with T2DM. Vaspin correlates with CAD in T2DM. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ghayour-Mobarhan, Majid; Ayati, Nayyereh; Sahebkar, Amirhossein; Moohebati, Mohsen; Ayati, Narjes; Elyasi, Sepideh; Mohammadpour, Amir Houshang
2018-06-07
Previous studies have shown that Asymmetric Dimethyl Arginine (ADMA) is increased significantly during coronary artery diseases (CAD). However it is not clear either this increase is due to cardiovascular disease (CVD) risk factors or ADMA is increased independently in CAD. The aim of this study is to evaluate ADMA's plasma level as an independent biomarker in CADs. In current study a total of 165 subjects with no traditional CVD's RFs, who fulfilled the inclusion and exclusion criteria, were recruited; 55 CAD+ patients which had more than 50% stenosis (CAD+); 55 CAD- patients which had less than 50% stenosis in their coronary arteries (CAD-), based on their angiography record and 55 healthy individuals as controls. CAD+ patients were divided into three groups: single (SVD), double (2VD), and triple vessel (3VD) disease. Plasma level of soluble ADMA was measured with an enzyme-linked immono sorbent assay (ELISA) kit. No significant difference between ADMA's plasma levels was found between CAD+, CAD- and healthy groups. In addition ADMA's plasma levels was not significantly different between CAD+'s subgroups. The result of this study indicates no significant relation between ADMA's plasma levels and either presence or severity of coronary artery stenosis. Therefore, it is presumed that ADMA may not be an independent biomarker for CADs.
Study of CPM Device used for Rehabilitation and Effective Pain Management Following Knee Alloplasty
NASA Astrophysics Data System (ADS)
Trochimczuk, R.; Kuźmierowski, T.; Anchimiuk, P.
2017-02-01
This paper defines the design assumptions for the construction of an original demonstration of a CPM device, based on which a solid virtual model will be created in a CAD software environment. The overall dimensions and other input parameters for the design were determined for the entire patient population according to an anatomical atlas of human measures. The medical and physiotherapeutic community were also consulted with respect to the proposed engineering solutions. The virtual model of the CPM device that will be created will be used for computer simulations of changes in motion parameters as a function of time, accounting for loads and static states. The results obtained from computer simulation will be used to confirm the correctness of the design adopted assumptions and of the accepted structure of the CPM mechanism, and potentially to introduce necessary corrections. They will also provide a basis for the development of a control strategy for the laboratory prototype and for the selection of the strategy of the patient's rehabilitation in the future. This paper will be supplemented with identification of directions of further research.
Liu, Min; Zhang, Chunsun; Liu, Feifei
2015-09-03
In this work, we first introduce the fabrication of microfluidic cloth-based analytical devices (μCADs) using a wax screen-printing approach that is suitable for simple, inexpensive, rapid, low-energy-consumption and high-throughput preparation of cloth-based analytical devices. We have carried out a detailed study on the wax screen-printing of μCADs and have obtained some interesting results. Firstly, an analytical model is established for the spreading of molten wax in cloth. Secondly, a new wax screen-printing process has been proposed for fabricating μCADs, where the melting of wax into the cloth is much faster (∼5 s) and the heating temperature is much lower (75 °C). Thirdly, the experimental results show that the patterning effects of the proposed wax screen-printing method depend to a certain extent on types of screens, wax melting temperatures and melting time. Under optimized conditions, the minimum printing width of hydrophobic wax barrier and hydrophilic channel is 100 μm and 1.9 mm, respectively. Importantly, the developed analytical model is also well validated by these experiments. Fourthly, the μCADs fabricated by the presented wax screen-printing method are used to perform a proof-of-concept assay of glucose or protein in artificial urine with rapid high-throughput detection taking place on a 48-chamber cloth-based device and being performed by a visual readout. Overall, the developed cloth-based wax screen-printing and arrayed μCADs should provide a new research direction in the development of advanced sensor arrays for detection of a series of analytes relevant to many diverse applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Masud, Rizwan; Qureshi, Irfan Zia
2011-09-01
Cardiovascular disorders and coronary artery disease (CAD) are significant contributors to morbidity and mortality in heart patients. As genes of the folate/homocysteine pathway have been linked with the vascular disease, we investigated association of these gene polymorphisms with CAD/myocardial infarction (MI) using the novel approach of tetraprimer ARMS-PCR. A total of 230 participants (129 MI cases, 101 normal subjects) were recruited. We genotyped rs1801133 and rs1801131 SNPs in 5'10' methylenetetrahydrofolate reductase (MTHFR), rs1805087 SNP in 5' methyltetrahydrofolate homocysteine methyltransferase (MTR), rs662 SNP in paroxanse1 (PON1), and rs5742905 polymorphism in cystathionine beta synthase (CBS). Angiotensin converting enzyme (ACE) insertion/deletion polymorphism was detected through conventional PCR. Covariates included blood pressure, fasting blood sugar, serum cholesterol, and creatinine concentrations. Our results showed allele frequencies at rs1801133, rs1801131, rs1805087 and the ACE insertion/deletion (I/D) polymorphism varied between cases and controls. Logistic regression, after adjusting for covariates, demonstrated significant associations of rs1801133 and rs1805087 with CAD in the additive, dominant, and genotype model. In contrast, ACE I/D polymorphism was significantly related with CAD where recessive model was applied. Gene-gene interaction against the disease status revealed two polymorphism groups: rs1801133, rs662, and rs1805087; and rs1801131, rs662, and ACE I/D. Only the latter interaction maintained significance after adjusted for covariates. Our study concludes that folate pathway variants exert contributory influence on susceptibility to CAD. We further suggest that tetraprimer ARMS-PCR successfully resolves the genotypes in selected samples and might prove to be a superior technique compared to the conventional approach.
Fragoso, Jose Manuel; Alvarez-León, Edith; Delgadillo-Rodríguez, Hilda; Arellano-González, Marva; López-Pacheco, Filogonio Caín; Cruz-Robles, David; Peña-Duque, Marco Antonio; Pérez-Méndez, Oscar; Martínez-Ríos, Marco Antonio; Vargas-Alarcón, Gilberto
2015-08-01
The aim of the present study was to evaluate the role of AGT and REN gene polymorphisms as susceptibility markers for coronary artery disease (CAD) and/or restenosis after coronary stent placement in a group of Mexican patients. Five polymorphisms of the AGT (rs699, rs4762, rs5051, rs5049, rs5046) and two of the REN (rs5707, rs5705) genes were analyzed by 5' exonuclease TaqMan genotyping assays in 240 patients with CAD who underwent coronary artery stenting (76 with restenosis and 164 without restenosis). A group of 610 individuals without clinical and familial antecedents of cardiovascular diseases were included as controls. The results showed that the distribution of AGT and REN polymorphisms were similar in patients with and without restenosis. However, when the whole group of patients (with and without restenosis) was compared to healthy controls, under co-dominant, dominant, heterozygous and additive models, the REN A4280C (rs5705) polymorphism was associated with increased risk of CAD (OR=1.76, PCo-dom=0.006, OR=1.81, PDom=0.001, OR=1.75, PHet=0.003 and OR=1.59, PAdd=0.003, respectively). All models were adjusted for age, gender, diabetes, dyslipidemia, hypertension and smoking habit. The TC haplotype of the REN gene was associated with increased risk of CAD (OR=1.53, P=0.014). The data suggest that the REN C4280A (rs5705) polymorphism plays an important role in the risk of developing CAD with the highest risk for C allele, but do not support its role as a risk factor for developing restenosis after coronary stenting. Copyright © 2015. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Heidari, Morteza; Zargari Khuzani, Abolfazl; Danala, Gopichandh; Qiu, Yuchen; Zheng, Bin
2018-02-01
Objective of this study is to develop and test a new computer-aided detection (CAD) scheme with improved region of interest (ROI) segmentation combined with an image feature extraction framework to improve performance in predicting short-term breast cancer risk. A dataset involving 570 sets of "prior" negative mammography screening cases was retrospectively assembled. In the next sequential "current" screening, 285 cases were positive and 285 cases remained negative. A CAD scheme was applied to all 570 "prior" negative images to stratify cases into the high and low risk case group of having cancer detected in the "current" screening. First, a new ROI segmentation algorithm was used to automatically remove useless area of mammograms. Second, from the matched bilateral craniocaudal view images, a set of 43 image features related to frequency characteristics of ROIs were initially computed from the discrete cosine transform and spatial domain of the images. Third, a support vector machine model based machine learning classifier was used to optimally classify the selected optimal image features to build a CAD-based risk prediction model. The classifier was trained using a leave-one-case-out based cross-validation method. Applying this improved CAD scheme to the testing dataset, an area under ROC curve, AUC = 0.70+/-0.04, which was significantly higher than using the extracting features directly from the dataset without the improved ROI segmentation step (AUC = 0.63+/-0.04). This study demonstrated that the proposed approach could improve accuracy on predicting short-term breast cancer risk, which may play an important role in helping eventually establish an optimal personalized breast cancer paradigm.
Assessing operating characteristics of CAD algorithms in the absence of a gold standard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy Choudhury, Kingshuk; Paik, David S.; Yi, Chin A.
2010-04-15
Purpose: The authors examine potential bias when using a reference reader panel as ''gold standard'' for estimating operating characteristics of CAD algorithms for detecting lesions. As an alternative, the authors propose latent class analysis (LCA), which does not require an external gold standard to evaluate diagnostic accuracy. Methods: A binomial model for multiple reader detections using different diagnostic protocols was constructed, assuming conditional independence of readings given true lesion status. Operating characteristics of all protocols were estimated by maximum likelihood LCA. Reader panel and LCA based estimates were compared using data simulated from the binomial model for a range ofmore » operating characteristics. LCA was applied to 36 thin section thoracic computed tomography data sets from the Lung Image Database Consortium (LIDC): Free search markings of four radiologists were compared to markings from four different CAD assisted radiologists. For real data, bootstrap-based resampling methods, which accommodate dependence in reader detections, are proposed to test of hypotheses of differences between detection protocols. Results: In simulation studies, reader panel based sensitivity estimates had an average relative bias (ARB) of -23% to -27%, significantly higher (p-value <0.0001) than LCA (ARB -2% to -6%). Specificity was well estimated by both reader panel (ARB -0.6% to -0.5%) and LCA (ARB 1.4%-0.5%). Among 1145 lesion candidates LIDC considered, LCA estimated sensitivity of reference readers (55%) was significantly lower (p-value 0.006) than CAD assisted readers' (68%). Average false positives per patient for reference readers (0.95) was not significantly lower (p-value 0.28) than CAD assisted readers' (1.27). Conclusions: Whereas a gold standard based on a consensus of readers may substantially bias sensitivity estimates, LCA may be a significantly more accurate and consistent means for evaluating diagnostic accuracy.« less
Luo, Jinghuan; Lu, Xueqin; Liu, Jianyong; Qian, Guangren; Lu, Yongsheng
2014-12-01
Biogas, generated from an expanded granular sludge bed (EGSB) reactor treating municipal solid waste (MSW) leachate, was recirculated for calcium removal from the leachate via a carbonation process with simultaneous biogas purification. Batch trials were performed to optimize the solution pH and imported biogas (CO2) for CaCO3 precipitation. With applicable pH of 10-11 obtained, continuous trials achieved final calcium concentrations of 181-375 mg/L (removal efficiencies≈92.8-96.5%) in the leachate and methane contents of 87.1-91.4% (purification efficiencies≈65.4-82.2%) in the biogas. Calcium-balance study indicates that 23-986 mg Ca/d was released from the bio-system under the carbonized condition where CaCO3 precipitating was moved outside the bioreactor, whereas 7918-9517 mg Ca/d was trapped into the system for the controlled one. These findings demonstrate that carbonation removal of calcium by biogas recirculation could be a promising alternative to pretreat calcium-rich MSW leachate and synergistically to improve methane content. Copyright © 2014 Elsevier Ltd. All rights reserved.
Extending a CAD-Based Cartesian Mesh Generator for the Lattice Boltzmann Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, J Nathan; Inclan, Eric J; Joshi, Abhijit S
2012-01-01
This paper describes the development of a custom preprocessor for the PaRAllel Thermal Hydraulics simulations using Advanced Mesoscopic methods (PRATHAM) code based on an open-source mesh generator, CartGen [1]. PRATHAM is a three-dimensional (3D) lattice Boltzmann method (LBM) based parallel flow simulation software currently under development at the Oak Ridge National Laboratory. The LBM algorithm in PRATHAM requires a uniform, coordinate system-aligned, non-body-fitted structured mesh for its computational domain. CartGen [1], which is a GNU-licensed open source code, already comes with some of the above needed functionalities. However, it needs to be further extended to fully support the LBM specificmore » preprocessing requirements. Therefore, CartGen is being modified to (i) be compiler independent while converting a neutral-format STL (Stereolithography) CAD geometry to a uniform structured Cartesian mesh, (ii) provide a mechanism for PRATHAM to import the mesh and identify the fluid/solid domains, and (iii) provide a mechanism to visually identify and tag the domain boundaries on which to apply different boundary conditions.« less
Exploring a new bilateral focal density asymmetry based image marker to predict breast cancer risk
NASA Astrophysics Data System (ADS)
Aghaei, Faranak; Mirniaharikandehei, Seyedehnafiseh; Hollingsworth, Alan B.; Wang, Yunzhi; Qiu, Yuchen; Liu, Hong; Zheng, Bin
2017-03-01
Although breast density has been widely considered an important breast cancer risk factor, it is not very effective to predict risk of developing breast cancer in a short-term or harboring cancer in mammograms. Based on our recent studies to build short-term breast cancer risk stratification models based on bilateral mammographic density asymmetry, we in this study explored a new quantitative image marker based on bilateral focal density asymmetry to predict the risk of harboring cancers in mammograms. For this purpose, we assembled a testing dataset involving 100 positive and 100 negative cases. In each of positive case, no any solid masses are visible on mammograms. We developed a computer-aided detection (CAD) scheme to automatically detect focal dense regions depicting on two bilateral mammograms of left and right breasts. CAD selects one focal dense region with the maximum size on each image and computes its asymmetrical ratio. We used this focal density asymmetry as a new imaging marker to divide testing cases into two groups of higher and lower focal density asymmetry. The first group included 70 cases in which 62.9% are positive, while the second group included 130 cases in which 43.1% are positive. The odds ratio is 2.24. As a result, this preliminary study supported the feasibility of applying a new focal density asymmetry based imaging marker to predict the risk of having mammography-occult cancers. The goal is to assist radiologists more effectively and accurately detect early subtle cancers using mammography and/or other adjunctive imaging modalities in the future.
Matin, Ivan; Hadzistevic, Miodrag; Vukelic, Djordje; Potran, Michal; Brajlih, Tomaz
2017-07-01
Nowadays, the integrated CAD/CAE systems are favored solutions for the design of simulation models for casting metal substructures of metal-ceramic crowns. The worldwide authors have used different approaches to solve the problems using an expert system. Despite substantial research progress in the design of experts systems for the simulation model design and manufacturing have insufficiently considered the specifics of casting in dentistry, especially the need for further CAD, RE, CAE for the estimation of casting parameters and the control of the casting machine. The novel expert system performs the following: CAD modeling of the simulation model for casting, fast modeling of gate design, CAD eligibility and cast ability check of the model, estimation and running of the program code for the casting machine, as well as manufacturing time reduction of the metal substructure. The authors propose an integration method using common data model approach, blackboard architecture, rule-based reasoning and iterative redesign method. Arithmetic mean roughness values was determinated with constant Gauss low-pass filter (cut-off length of 2.5mm) according to ISO 4287 using Mahr MARSURF PS1. Dimensional deviation between the designed model and manufactured cast was determined using the coordinate measuring machine Zeiss Contura G2 and GOM Inspect software. The ES allows for obtaining the castings derived roughness grade number N7. The dimensional deviation between the simulation model of the metal substructure and the manufactured cast is 0.018mm. The arithmetic mean roughness values measured on the casting substructure are from 1.935µm to 2.778µm. The realized developed expert system with the integrated database is fully applicable for the observed hardware and software. Values of the arithmetic mean roughness and dimensional deviation indicate that casting substructures are surface quality, which is more than enough and useful for direct porcelain veneering. The manufacture of the substructure shows that the proposed ES allows the improvement of the design process while reducing the manufacturing time. Copyright © 2017 Elsevier B.V. All rights reserved.
Djoudi, Farid
2013-01-01
Two separate themes are presented in this paper. The first theme is to present a graphical modeling approach of human anatomical structures namely, the femur and the tibia. The second theme involves making a finite element analysis of stresses, displacements and deformations in prosthetic implants (the femoral implant and the polyethylene insert). The graphical modeling approach comes in two parts. The first is the segmentation of MRI scanned images, retrieved in DICOM format for edge detection. In the second part, 3D-CAD models are generated from the results of the segmentation stage. The finite element analysis is done by first extracting the prosthetic implants from the reconstructed 3D-CAD model, then do a finite element analysis of these implants under objectively determined conditions such as; forces, allowed displacements, the materials composing implant, and the coefficient of friction. The objective of this work is to implement an interface for exchanging data between 2D MRI images obtained from a medical diagnosis of a patient and the 3D-CAD model used in various applications, such as; the extraction of the implants, stress analysis at the knee joint and can serve as an aid to surgery, also predict the behavior of the prosthetic implants vis-a-vis the forces acting on the knee joints.
Use of CAD systems in design of Space Station and space robots
NASA Technical Reports Server (NTRS)
Dwivedi, Suren N.; Yadav, P.; Jones, Gary; Travis, Elmer W.
1988-01-01
The evolution of CAD systems is traced. State-of-the-art CAD systems are reviewed and various advanced CAD facilities and supplementing systems being used at NASA-Goddard are described. CAD hardware, computer software, and protocols are detailed.
Prognostic Value of MicroRNAs in Coronary Artery Diseases: A Meta-Analysis.
Kim, Ji Suk; Pak, Kyoungjune; Goh, Tae Sik; Jeong, Dae Cheon; Han, Myoung Eun; Kim, Jihyun; Oh, Sae Ock; Kim, Chi Dae; Kim, Yun Hak
2018-06-01
Coronary artery diseases (CADs) are the leading causes of death in the world. Recent studies have reported that differentially expressed microRNAs (miRNAs) are associated with prognosis or major adverse cardiac events (MACEs) in CAD patients. In a previous meta-analysis, the authors made serious mistakes that we aimed to correct through an updated systematic review and meta-analysis of the prognostic value of altered miRNAs in patients with CADs. We performed a systematic search of MEDLINE (from inception to May 2017) and EMBASE (from inception to May 2017) for English-language publications. Studies of CADs with results on miRNAs that reported survival data or MACEs were included. Data were extracted from each publication independently by two reviewers. After reviewing 515 articles, a total eight studies were included in this study. We measured pooled hazard ratios (HRs) and 95% confidence intervals (CIs) of miRNA 133a with a fixed-effect model (pooled HR, 2.35; 95% CI, 1.56-3.55). High expression of miRNA 133a, 208b, 126, 197, 223, and 122-5p were associated with high mortality. Additionally, high levels of miRNA 208b, 499-5p, 134, 328, and 34a were related with MACEs. The present study confirmed that miRNA 133a, which was associated with high mortality in CAD patients, holds prognostic value in CAD. More importantly, this study corrected issues raised against a prior meta-analysis and provides accurate information. © Copyright: Yonsei University College of Medicine 2018.
Urinary Bisphenol A Concentration and Angiography-Defined Coronary Artery Stenosis
Melzer, David; Gates, Phil; Osborn, Nicholas J.; Henley, William E.; Cipelli, Ricardo; Young, Anita; Money, Cathryn; McCormack, Paul; Schofield, Peter; Mosedale, David; Grainger, David; Galloway, Tamara S.
2012-01-01
Background Bisphenol A is widely used in food and drinks packaging. There is evidence of associations between raised urinary bisphenol A (uBPA) and increased incidence of reported cardiovascular diagnoses. Methodology/Principal Findings To estimate associations between BPA exposure and angiographically graded coronary atherosclerosis. 591 patients participating in The Metabonomics and Genomics in Coronary Artery Disease (MaGiCAD) study in Cambridgeshire UK, comparing urinary BPA (uBPA) with grades of severity of coronary artery disease (CAD) on angiography. Linear models were adjusted for BMI, occupational social class and diabetes status. Severe (one to three vessel) CAD was present in 385 patients, 86 had intermediate disease (n = 86) and 120 had normal coronary arteries. The (unadjusted) median uBPA concentration was 1.28 ng/mL with normal coronary arteries, and 1.53 ng/mL with severe CAD. Compared to those with normal coronary arteries, uBPA concentration was significantly higher in those with severe CAD (OR per uBPA SD = 5.96 ng/ml OR = 1.43, CI 1.03 to 1.98, p = 0.033), and near significant for intermediate disease (OR = 1.69, CI 0.98 to 2.94, p = 0.061). There was no significant uBPA difference between patients with severe CAD (needing surgery) and the remaining groups combined. Conclusions/Significance BPA exposure was higher in those with severe coronary artery stenoses compared to those with no vessel disease. Larger studies are needed to estimate true dose response relationships. The mechanisms underlying the association remain to be established. PMID:22916252
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biondo, Elliott D; Ibrahim, Ahmad M; Mosher, Scott W
2015-01-01
Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNcemore » reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).« less
Evaluation of Five Microcomputer CAD Packages.
ERIC Educational Resources Information Center
Leach, James A.
1987-01-01
Discusses the similarities, differences, advanced features, applications and number of users of five microcomputer computer-aided design (CAD) packages. Included are: "AutoCAD (V.2.17)"; "CADKEY (V.2.0)"; "CADVANCE (V.1.0)"; "Super MicroCAD"; and "VersaCAD Advanced (V.4.00)." Describes the…
Unit cell geometry of multiaxial preforms for structural composites
NASA Technical Reports Server (NTRS)
Ko, Frank; Lei, Charles; Rahman, Anisur; Du, G. W.; Cai, Yun-Jia
1993-01-01
The objective of this study is to investigate the yarn geometry of multiaxial preforms. The importance of multiaxial preforms for structural composites is well recognized by the industry but, to exploit their full potential, engineering design rules must be established. This study is a step in that direction. In this work the preform geometry for knitted and braided preforms was studied by making a range of well designed samples and studying them by photo microscopy. The structural geometry of the preforms is related to the processing parameters. Based on solid modeling and B-spline methodology a software package is developed. This computer code enables real time structural representations of complex fiber architecture based on the rule of preform manufacturing. The code has the capability of zooming and section plotting. These capabilities provide a powerful means to study the effect of processing variables on the preform geometry. the code also can be extended to an auto mesh generator for downstream structural analysis using finite element method. This report is organized into six sections. In the first section the scope and background of this work is elaborated. In section two the unit cell geometries of braided and multi-axial warp knitted preforms is discussed. The theoretical frame work of yarn path modeling and solid modeling is presented in section three. The thin section microscopy carried out to observe the structural geometry of the preforms is the subject in section four. The structural geometry is related to the processing parameters in section five. Section six documents the implementation of the modeling techniques into the computer code MP-CAD. A user manual for the software is also presented here. The source codes and published papers are listed in the Appendices.
Gautam, Arvind; Rani, A Bhargavi; Callejas, Miguel A; Acharyya, Swati Ghosh; Acharyya, Amit; Biswas, Dwaipayan; Bhandari, Vasundhra; Sharma, Paresh; Naik, Ganesh R
2016-08-01
In this paper we introduce Shape Memory Alloy (SMA) for designing the tibial part of Total Knee Arthroplasty (TKA) by exploiting the shape-memory and pseudo-elasticity property of the SMA (e.g. NiTi). This would eliminate the drawbacks of the state-of-the art PMMA based knee-spacer including fracture, sustainability, dislocation, tilting, translation and subluxation for tackling the Osteoarthritis especially for the aged people of 45-plus or the athletes. In this paper a Computer Aided Design (CAD) model using SolidWorks for the knee-spacer is presented based on the proposed SMA adopting the state-of-the art industry-standard geometry that is used in the PMMA based spacer design. Subsequently Ansys based Finite Element Analysis is carried out to measure and compare the performance between the proposed SMA based model with the state-of-the art PMMA ones. 81% more bending is noticed in the PMMA based spacer compared to the proposed SMA that would eventually cause fracture and tilting or translation of spacer. Permanent shape deformation of approximately 58.75% in PMMA based spacer is observed compared to recoverable 11% deformation in SMA when same load is applied on both separately.
Lops, Diego; Bressan, Eriberto; Parpaiola, Andrea; Sbricoli, Luca; Cecchinato, Denis; Romeo, Eugenio
2015-12-01
Aim of this study was to verify if the type of implant abutment manufacturing, stock or cad-cam, could influence the maintenance of stable gingival margins around single restorations in anterior areas. After 16 weeks of healing, implants (Osseospeed, Astra Tech Dental Implant) were positioned. Depending on the different fixture inclination and the thickness of buccal peri-implant soft tissue, abutment selection resulted in four groups: Group 1 (patients with zirconia ZirDesign(®) stock abutments), Group 2 (titanium stock TiDesign(®) abutments), Group 3 (zirconia cad-cam abutments), and Group 4 (titanium cad-cam abutments). The following parameters were assessed: buccal gingival margin modification (BGM). The modification of the implant gingival margin was followed at 1 and 2 years of follow-up. A computerized analysis was performed for measurements. Differences between soft tissue margin at baseline and after 2 years measured the gingival margin recession. A general linear model was used to evaluate each group in relation to gingival recession after two years. Tukey's post hoc test was used to compare the mean REC indexes of each group of abutments. Seventy-two healthy patients (39 males and 33 females; mean age of 46 years) scheduled for single gap rehabilitation in anterior areas were enrolled. A 100% of implant survival rate was observed after 24 months of function. One failure occurred due to fracture of a Zirconia cad-cam abutment. Moreover, two abutment screw unscrewing were observed. Both for zirconia and titanium stock abutments (Group 1 and 2), the mean recession of implant buccal soft tissue was of 0.3 mm (SD of 0.3 and 0.4 mm, respectively). Soft tissue mean recession of zirconia and titanium cad-cam abutments (Group 3 and 4) was of 0.1 and -0.3 mm, respectively (SD of 0.3 and 0.4 mm, respectively). REC values of cad-cam titanium abutments (Group 4) were significantly lower than that of Group 1 (-0.57 mm), Group 2 (-0.61 mm), and Group 3 (-0.40 mm), respectively (Table 4). In the anterior area, the use of cad-cam abutments is related to a better soft tissue stability. Such a relationship is significant if cad-cam titanium abutments are compared to both titanium and zirconia stock abutments. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Integration of a CAD System Into an MDO Framework
NASA Technical Reports Server (NTRS)
Townsend, J. C.; Samareh, J. A.; Weston, R. P.; Zorumski, W. E.
1998-01-01
NASA Langley has developed a heterogeneous distributed computing environment, called the Framework for Inter-disciplinary Design Optimization, or FIDO. Its purpose has been to demonstrate framework technical feasibility and usefulness for optimizing the preliminary design of complex systems and to provide a working environment for testing optimization schemes. Its initial implementation has been for a simplified model of preliminary design of a high-speed civil transport. Upgrades being considered for the FIDO system include a more complete geometry description, required by high-fidelity aerodynamics and structures codes and based on a commercial Computer Aided Design (CAD) system. This report presents the philosophy behind some of the decisions that have shaped the FIDO system and gives a brief case study of the problems and successes encountered in integrating a CAD system into the FEDO framework.
Analog Computer-Aided Detection (CAD) information can be more effective than binary marks.
Cunningham, Corbin A; Drew, Trafton; Wolfe, Jeremy M
2017-02-01
In socially important visual search tasks, such as baggage screening and diagnostic radiology, experts miss more targets than is desirable. Computer-aided detection (CAD) programs have been developed specifically to improve performance in these professional search tasks. For example, in breast cancer screening, many CAD systems are capable of detecting approximately 90% of breast cancer, with approximately 0.5 false-positive detections per image. Nevertheless, benefits of CAD in clinical settings tend to be small (Birdwell, 2009) or even absent (Meziane et al., 2011; Philpotts, 2009). The marks made by a CAD system can be "binary," giving the same signal to any location where the signal is above some threshold. Alternatively, a CAD system presents an analog signal that reflects strength of the signal at a location. In the experiments reported, we compare analog and binary CAD presentations using nonexpert observers and artificial stimuli defined by two noisy signals: a visible color signal and an "invisible" signal that informed our simulated CAD system. We found that analog CAD generally yielded better overall performance than binary CAD. The analog benefit is similar at high and low target prevalence. Our data suggest that the form of the CAD signal can directly influence performance. Analog CAD may allow the computer to be more helpful to the searcher.
Cullati, Stéphane
2014-07-01
Self-rated health (SRH) trajectories tend to decline over a lifetime. Moreover, the Cumulative Advantage and Disadvantage (CAD) model indicates that SRH trajectories are known to consistently diverge along socioeconomic positions (SEP) over the life course. However, studies of working adults to consider the influence of work and family conflict (WFC) on SRH trajectories are scarce. We test the CAD model and hypothesise that SRH trajectories diverge over time according to socioeconomic positions and WFC trajectories accentuate this divergence. Using longitudinal data from the Swiss Household Panel (N = 2327 working respondents surveyed from 2004 to 2010), we first examine trajectories of SRH and potential divergence over time across age, gender, SEP and family status using latent growth curve analysis. Second, we assess changes in SRH trajectories in relation to changes in WFC trajectories and divergence in SRH trajectories according to gender, SEP and family status using parallel latent growth curve analysis. Three measures of WFC are used: exhaustion after work, difficulty disconnecting from work, and work interference in private family obligations. The results show that SRH trajectories slowly decline over time and that the rate of change is not influenced by age, gender or SEP, a result which does not support the CAD model. SRH trajectories are significantly correlated with exhaustion after work trajectories but not the other two WFC measures. When exhaustion after work trajectories are taken into account, SRH trajectories of higher educated people decline slower compared to less educated people, supporting the CAD hypothesis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Adatia, Falisha; Galway, Shannon; Grubisic, Maja; Lee, May; Daniele, Patrick; Humphries, Karin H; Sedlak, Tara L
2017-11-01
Patients with acute myocardial infarction (MI) and nonobstructive coronary artery disease (CAD) have an elevated cardiac event rate, suggesting that these patients may benefit from cardiac medication. We evaluated the rates of cardiac medication use 3 months before angiography and 3 months following clinically indicated angiography for MI in patients with no CAD, nonobstructive CAD, and obstructive CAD. We also examined the sex differences in cardiac medication use 3 months following angiography in patients by extent of angiographic CAD. We studied patients ≥20 years old with MI undergoing coronary angiography in British Columbia, Canada, from January 1, 2008, to March 31, 2010 (n = 3,841). No CAD, nonobstructive CAD, and obstructive CAD were defined as 0%, 1% to 49%, and ≥50% luminal narrowing in any epicardial coronary artery, respectively. Medication use, 3 months before and 3 months following angiography, was obtained through British Columbia PharmaNet for angiotensin-converting enzyme inhibitors (ACE-Is), angiotensin receptor blockers (ARBs), calcium channel blockers (CCBs), beta-blockers, statins, and antiplatelet agents. Optimal medical therapy (OMT) was defined as filled prescriptions for all three: ACE-Is/ARBs, beta-blockers, and statins. Following angiography, in all medication categories except CCBs, patients with no CAD and nonobstructive CAD had significantly lower rates of prescriptions filled than patients with obstructive CAD (all p < 0.001). After adjusting for age and prior medication use, patients with nonobstructive CAD were still less likely to receive these medications than patients with obstructive CAD, including OMT with an odds ratio = 0.25 (95% confidence interval: 0.18-0.36). There were no significant sex differences in medication use 3 months postangiography. In post-MI patients, medication use following angiography is significantly lower in nonobstructive CAD than obstructive CAD at 3 months. While sex was not an independent predictor of medication use 3 months post-catheterization, future studies should explore methods of improving medication use in both females and males with nonobstructive CAD post-MI.
Guess, Petra C; Vagkopoulou, Thaleia; Zhang, Yu; Wolkewitz, Martin; Strub, Joerg R
2014-02-01
The aim of the study was to evaluate the marginal and internal fit of heat-pressed and CAD/CAM fabricated all-ceramic onlays before and after luting as well as after thermo-mechanical fatigue. Seventy-two caries-free, extracted human mandibular molars were randomly divided into three groups (n=24/group). All teeth received an onlay preparation with a mesio-occlusal-distal inlay cavity and an occlusal reduction of all cusps. Teeth were restored with heat-pressed IPS-e.max-Press* (IP, *Ivoclar-Vivadent) and Vita-PM9 (VP, Vita-Zahnfabrik) as well as CAD/CAM fabricated IPS-e.max-CAD* (IC, Cerec 3D/InLab/Sirona) all-ceramic materials. After cementation with a dual-polymerising resin cement (VariolinkII*), all restorations were subjected to mouth-motion fatigue (98 N, 1.2 million cycles; 5°C/55°C). Marginal fit discrepancies were examined on epoxy replicas before and after luting as well as after fatigue at 200× magnification. Internal fit was evaluated by multiple sectioning technique. For the statistical analysis, a linear model was fitted with accounting for repeated measurements. Adhesive cementation of onlays resulted in significantly increased marginal gap values in all groups, whereas thermo-mechanical fatigue had no effect. Marginal gap values of all test groups were equal after fatigue exposure. Internal discrepancies of CAD/CAM fabricated restorations were significantly higher than both press manufactured onlays. Mean marginal gap values of the investigated onlays before and after luting as well as after fatigue were within the clinically acceptable range. Marginal fit was not affected by the investigated heat-press versus CAD/CAM fabrication technique. Press fabrication resulted in a superior internal fit of onlays as compared to the CAD/CAM technique. Clinical requirements of 100 μm for marginal fit were fulfilled by the heat-press as well as by the CAD/CAM fabricated all-ceramic onlays. Superior internal fit was observed with the heat-press manufacturing method. The impact of present findings on the clinical long-term behaviour of differently fabricated all-ceramic onlays warrants further investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Okamura, Tomonori; Kokubo, Yoshihiro; Watanabe, Makoto; Higashiyama, Aya; Ono, Yuu; Nishimura, Kunihiro; Okayama, Akira; Miyamoto, Yoshihiro
2011-07-01
Recently, several major organizations have proposed a unified definition for the metabolic syndrome (MetS), which should be evaluated in multiethnic groups. The effect of Mets on the incidence of cardiovascular disease needs to be assessed after adjusting for serum low density lipoprotein cholesterol (LDLC), a major risk factor for atherosclerotic diseases. This is especially needed to be evaluated in Asian populations with low incidence of coronary artery disease (CAD). We conducted a 13-year prospective study of 4939 Japanese living in an urban area. The MetS was defined using a unified classification that included cut-off points for waist circumference in Asians. The multivariable adjusted hazard ratios (HRs) of MetS for CAD and stroke were calculated using a Cox proportional model adjusted for other potential confounding factors with LDLC. During the follow-up period, there were 155 cases of CAD and 204 of stroke including 118 cerebral infarctions. In participants under 65 years old, the multivariable HRs of MetS for CAD were 1.21 (95% C.I., 0.64-2.28) in men and 4.44 (95% C.I., 1.73-11.4) in women; the HRs for ischemic stroke were 3.24 (95% C.I., 1.55-6.77) in men and 3.99 (95% C.I., 1.34-11.8) in women. In participants aged 65 years old and over, MetS only showed a significant association with CAD in men (HR 1.89, 95% C.I., 1.11-3.21). Serum LDLC was associated with increased risk of CAD in men irrespective of age group; however, it was not associated with CAD in women. There was no association between serum LDLC and ischemic stroke in any group stratified by sex and the age of 65. These results indicate that the new uniform MetS definition is useful for detecting high risk individuals, especially for middle-aged population. However, continuous screening for hypercholesterolemia is necessary to prevent CAD, especially in men, even in Asian countries such as Japan. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Presotto, Anna Gabriella Camacho; Bhering, Cláudia Lopes Brilhante; Mesquita, Marcelo Ferraz; Barão, Valentim Adelino Ricardo
2017-03-01
Several studies have shown the superiority of computer-assisted design and computer-assisted manufacturing (CAD-CAM) technology compared with conventional casting. However, an advanced technology exists for casting procedures (the overcasting technique), which may serve as an acceptable and affordable alternative to CAD-CAM technology for fabricating 3-unit implant-supported fixed dental prostheses (FDPs). The purpose of this in vitro study was to evaluate, using quantitative photoelastic analysis, the effect of the prosthetic framework fabrication method (CAD-CAM and overcasting) on the marginal fit and stress transmitted to implants. The correlation between marginal fit and stress was also investigated. Three-unit implant-supported FDP frameworks were made using the CAD-CAM (n=10) and overcasting (n=10) methods. The frameworks were waxed to simulate a mandibular first premolar (PM region) to first molar (M region) FDP using overcast mini-abutment cylinders. The wax patterns were overcast (overcast experimental group) or scanned to obtain the frameworks (CAD-CAM control group). All frameworks were fabricated from cobalt-chromium (CoCr) alloy. The marginal fit was analyzed according to the single-screw test protocol, obtaining an average value for each region (M and PM) and each framework. The frameworks were tightened for the photoelastic model with standardized 10-Ncm torque. Stress was measured by quantitative photoelastic analysis. The results were submitted to the Student t test, 2-way ANOVA, and Pearson correlation test (α=.05). The framework fabrication method (FM) and evaluation site (ES; M and PM regions) did not affect the marginal fit values (P=.559 for FM and P=.065 for ES) and stress (P=.685 for FM and P=.468 for ES) in the implant-supported system. Positive correlations between marginal fit and stress were observed (CAD-CAM: r=0.922; P<.001; overcast: r=0.908; P<.001). CAD-CAM and overcasting methods present similar marginal fit and stress values for 3-unit FDP frameworks. The decreased marginal fit of frameworks induces greater stress in the implant-supported system. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Guess, Petra C.; Vagopoulou, Thaleia; Zhang, Yu; Wolkewitz, Martin; Strub, Joerg R.
2015-01-01
Objectives The aim of the study was to evaluate the marginal and internal fit of heat-pressed and CAD/CAM fabricated all-ceramic onlays before and after luting as well as after thermo-mechanical fatigue. Materials and Methods Seventy-two caries-free, extracted human mandibular molars were randomly divided into three groups (n=24/group). All teeth received an onlay preparation with a mesio-occlusal-distal inlay cavity and an occlusal reduction of all cusps. Teeth were restored with heat-pressed IPS-e.max-Press* (IP, *Ivoclar-Vivadent) and Vita-PM9 (VP, Vita-Zahnfabrik) as well as CAD/CAM fabricated IPS-e.max-CAD* (IC, Cerec 3D/InLab/Sirona) all-ceramic materials. After cementation with a dual-polymerizing resin cement (VariolinkII*), all restorations were subjected to mouth-motion fatigue (98N, 1.2 million cycles; 5°C/55°C). Marginal fit discrepancies were examined on epoxy replicas before and after luting as well as after fatigue at 200x magnification. Internal fit was evaluated by multiple sectioning technique. For the statistical analysis, a linear model was fitted with accounting for repeated measurements. Results Adhesive cementation of onlays resulted in significantly increased marginal gap values in all groups, whereas thermo-mechanical fatigue had no effect. Marginal gap values of all test groups were equal after fatigue exposure. Internal discrepancies of CAD/CAM fabricated restorations were significantly higher than both press manufactured onlays. Conclusions Mean marginal gap values of the investigated onlays before and after luting as well as after fatigue were within the clinically acceptable range. Marginal fit was not affected by the investigated heat-press versus CAD/CAM fabrication technique. Press fabrication resulted in a superior internal fit of onlays as compared to the CAD/CAM technique. Clinical Relevance Clinical requirements of 100 μm for marginal fit were fulfilled by the heat-press as well as by the CAD/CAM fabricated all-ceramic onlays. Superior internal fit was observed with the heat-press manufacturing method. The impact of present findings on the clinical long-term behaviour of differently fabricated all-ceramic onlays warrants further investigation. PMID:24161516
Mardan-Nik, Maryam; Pasdar, Alireza; Jamialahmadi, Khadijeh; Biabangard-Zak, Atefeh; Mirhafez, Seyed Reza; Ghalandari, Marzieh; Tajfard, Mohammad; Mohebati, Mohsen; Esmaily, Habibollah; Ferns, Gordon A; Ghayour-Mobarhan, Majid
2014-10-25
Coronary artery disease (CAD) is an inflammatory process and a major cause of mortality and morbidity. The (heat shock protein70-2) HSP70-2 gene is reported to be associated with coronary artery disease possibly by affecting the regulation of pro-inflammatory cytokines such as TNF-α. The association between CAD and the HSP70-2 gene +1267A>G polymorphism has been studied in some populations but there are no data about this association in the Iranian population. We have investigated the association between the HSP70-2 gene +1267A>G polymorphism and angiographically defined CAD within an Iranian population. We determined the presence of the HSP70-2 gene +1267A>G polymorphism in 628 patients with CAD and 307 healthy individuals using PCR-RFLP. Of the patients, 433 (68%) had >50% stenosis (CAD+) and the remaining 195 patients had <50% stenosis (CAD-), based on coronary angiography. Angiogram positive patients were subdivided into three groups: those with single (n=113), double (n=134), and triple vessels (n=186) disease. A significant higher frequency of AG+GG genotypes (G allele carriers) was observed in angiogram positive and angiogram negative groups compared to controls in a dominant analysis model of the HSP70-2 gene +1267A>G position (51.2 vs. 43.2, P=0.002, OR=1.37) (51.0 vs. 43.2, P=0.01, OR=1.37). The allele frequency of the HSP70-2 G was also significantly higher in angiogram positive and angiogram negative groups compared to the control group (51.2 vs. 43.2, P=0.002, OR=1.37) (51.0 vs. 43.2, P=0.01, OR=1.37). These results suggest that HSP70-2 +1267 polymorphism may influence the risk of CAD in Iranian population, however further studies are needed to clarify the role of other HSP70-2 gene polymorphisms in the pathogenesis of the CAD. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Adnan, F. A.; Romlay, F. R. M.; Shafiq, M.
2018-04-01
Owing to the advent of the industrial revolution 4.0, the need for further evaluating processes applied in the additive manufacturing application particularly the computational process for slicing is non-trivial. This paper evaluates a real-time slicing algorithm for slicing an STL formatted computer-aided design (CAD). A line-plane intersection equation was applied to perform the slicing procedure at any given height. The application of this algorithm has found to provide a better computational time regardless the number of facet in the STL model. The performance of this algorithm is evaluated by comparing the results of the computational time for different geometry.
A combined system for 3D printing cybersecurity
NASA Astrophysics Data System (ADS)
Straub, Jeremy
2017-06-01
Previous work has discussed the impact of cybersecurity breaches on 3D printed objects. Multiple attack types that could weaken objects, make them unsuitable for certain applications and even create safety hazards have been presented. This paper considers a visible light sensing-based verification system's efficacy as a means of thwarting cybersecurity threats to 3D printing. This system detects discrepancies between expected and actual printed objects (based on an independent pristine CAD model). Whether reliance on an independent CAD model is appropriate is also considered. The future of 3D printing is projected and the importance of cybersecurity in this future is discussed.
Particle tracking acceleration via signed distance fields in direct-accelerated geometry Monte Carlo
Shriwise, Patrick C.; Davis, Andrew; Jacobson, Lucas J.; ...
2017-08-26
Computer-aided design (CAD)-based Monte Carlo radiation transport is of value to the nuclear engineering community for its ability to conduct transport on high-fidelity models of nuclear systems, but it is more computationally expensive than native geometry representations. This work describes the adaptation of a rendering data structure, the signed distance field, as a geometric query tool for accelerating CAD-based transport in the direct-accelerated geometry Monte Carlo toolkit. Demonstrations of its effectiveness are shown for several problems. The beginnings of a predictive model for the data structure's utilization based on various problem parameters is also introduced.
ACTOMP - AUTOCAD TO MASS PROPERTIES
NASA Technical Reports Server (NTRS)
Jones, A.
1994-01-01
AutoCAD to Mass Properties was developed to facilitate quick mass properties calculations of structures having many simple elements in a complex configuration such as trusses or metal sheet containers. Calculating the mass properties of structures of this type can be a tedious and repetitive process, but ACTOMP helps automate the calculations. The structure can be modelled in AutoCAD or a compatible CAD system in a matter of minutes using the 3-Dimensional elements. This model provides all the geometric data necessary to make a mass properties calculation of the structure. ACTOMP reads the geometric data of a drawing from the Drawing Interchange File (DXF) used in AutoCAD. The geometric entities recognized by ACTOMP include POINTs, 3DLINEs, and 3DFACEs. ACTOMP requests mass, linear density, or area density of the elements for each layer, sums all the elements and calculates the total mass, center of mass (CM) and the mass moments of inertia (MOI). AutoCAD utilizes layers to define separate drawing planes. ACTOMP uses layers to differentiate between multiple types of similar elements. For example if a structure is made of various types of beams, modeled as 3DLINEs, each with a different linear density, the beams can be grouped by linear density and each group placed on a separate layer. The program will request the linear density of 3DLINEs for each new layer it finds as it processes the drawing information. The same is true with POINTs and 3DFACEs. By using layers this way a very complex model can be created. POINTs are used for point masses such as bolts, small machine parts, or small electronic boxes. 3DLINEs are used for beams, bars, rods, cables, and other similarly slender elements. 3DFACEs are used for planar elements. 3DFACEs may be created as 3 or 4 Point faces. Some examples of elements that might be modelled using 3DFACEs are plates, sheet metal, fabric, boxes, large diameter hollow cylinders and evenly distributed masses. ACTOMP was written in Microsoft QuickBasic (Version 2.0). It was developed for the IBM PC microcomputer and has been implemented on an IBM PC compatible under DOS 3.21. ACTOMP was developed in 1988 and requires approximately 5K bytes to operate.
CAD and CAE Analysis for Siphon Jet Toilet
NASA Astrophysics Data System (ADS)
Wang, Yuhua; Xiu, Guoji; Tan, Haishu
The high precision 3D laser scanner with the dual CCD technology was used to measure the original design sample of a siphon jet toilet. The digital toilet model was constructed from the cloud data measured with the curve and surface fitting technology and the CAD/CAE systems. The Realizable k - ɛ double equation model of the turbulence viscosity coefficient method and the VOF multiphase flow model were used to simulate the flushing flow in the toilet digital model. Through simulating and analyzing the distribution of the flushing flow's total pressure, the flow speed at the toilet-basin surface and the siphoning bent tube, the toilet performance can be evaluated efficiently and conveniently. The method of "establishing digital model, flushing flow simulating, performances evaluating, function shape modifying" would provide a high efficiency approach to develop new water-saving toilets.
Regulation of endothelial barrier function by p120-catenin∙VE-cadherin interaction
Garrett, Joshua P.; Lowery, Anthony M.; Adam, Alejandro P.; Kowalczyk, Andrew P.; Vincent, Peter A.
2017-01-01
Endothelial p120-catenin (p120) maintains the level of vascular endothelial cadherin (VE-Cad) by inhibiting VE-Cad endocytosis. Loss of p120 results in a decrease in VE-Cad levels, leading to the formation of monolayers with decreased barrier function (as assessed by transendothelial electrical resistance [TEER]), whereas overexpression of p120 increases VE-Cad levels and promotes a more restrictive monolayer. To test whether reduced endocytosis mediated by p120 is required for VE-Cad formation of a restrictive barrier, we restored VE-Cad levels using an endocytic-defective VE-Cad mutant. This endocytic-defective mutant was unable to rescue the loss of TEER associated with p120 or VE-Cad depletion. In contrast, the endocytic-defective mutant was able to prevent sprout formation in a fibrin bead assay, suggesting that p120•VE-Cad interaction regulates barrier function and angiogenic sprouting through different mechanisms. Further investigation found that depletion of p120 increases Src activity and that loss of p120 binding results in increased VE-Cad phosphorylation. In addition, expression of a Y658F–VE-Cad mutant or an endocytic-defective Y658F–VE-Cad double mutant were both able to rescue TEER independently of p120 binding. Our results show that in addition to regulating endocytosis, p120 also allows the phosphorylated form of VE-Cad to participate in the formation of a restrictive monolayer. PMID:27852896
Posadas-Sánchez, Rosalinda; Angeles-Martínez, Javier; Pérez-Hernández, Nonanzit; Rodríguez-Pérez, José Manuel; López-Bautista, Fabiola; Flores-Dominguez, Carmina; Fragoso, José Manuel; Posadas-Romero, Carlos; Vargas-Alarcón, Gilberto
2018-06-01
Interleukin 10 (IL-10) is an anti-inflammatory cytokine with a protective role in the formation and the development of the atherosclerotic plaque. The aim of the present study was to establish if IL-10 gene polymorphisms are associated with the development of premature coronary artery disease (pCAD) and cardiovascular risk factors in Mexican individuals. Three IL-10 gene polymorphisms [-592C/A (rs1800872), -819C/T (rs1800871), and -1082 A/G (rs1800896)] and IL-10 plasma levels were analyzed in 2266 individuals (1160 pCAD patients and 1106 healthy controls). Under recessive and co-dominant2 models, the -1082 A/G (rs1800896) G allele was associated with decreased risk of developing pCAD (OR = 0.572, P rec = 0.022 and OR = 0.567, P cod2 = 0.023). In pCAD patients, the polymorphisms were associated with hyperinsulinemia, small and dense LDLs, hypertension, and diabetes mellitus. In the control group, the polymorphisms were associated with hypertension, hyperuricemia, and small and dense LDLs. pCAD patients have significantly higher IL-10 plasma levels than healthy controls [0.91 (0.55-1.67) pg/mL vs 0.45 (0.24-0.98) pg/mL, respectively, P < 0.0001]. Nevertheless, these levels were not associated with the genotypes analyzed in the present study. The results suggest that the IL-10-1082 A/G (rs1800896) G allele is associated with a decreased risk of developing pCAD. In patients and controls, the polymorphisms analyzed were associated with some cardiovascular risk factors. Although, in pCAD patients the IL-10 plasma levels were higher, they were not associated with the genotypes of the polymorphisms examined. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hagen, G; Wisløff, T; Kristiansen, I S
2016-06-01
Some studies indicate that calcium supplementation increases cardiovascular risk. We assessed whether such effects could counterbalance the fracture benefits from supplementation. Accounting for cardiovascular outcomes, calcium may cause net harm and would not be cost-effective. Clinicians may do well considering cardiovascular effects when prescribing calcium supplementation. Accounting for possible cardiovascular effect of calcium and vitamin D supplementation (CaD), the aims of this study were to assess whether CaD on balance would improve population health and to evaluate the cost-effectiveness of such supplementation. We created a probabilistic Markov simulation model that was analysed at the individual patient level. We analysed 65-year-old Norwegian women with a 2.3 % 10-year risk of hip fracture and a 9.3 % risk of any major fracture according to the WHO fracture risk assessment tool (FRAX®). Consistent with a recent Cochrane review, we assumed that CaD reduces the risk of hip, vertebral, and wrist fractures by 16, 11, and 5 %, respectively. We included the increased risk of acute myocardial infarction (AMI) and stroke under a no-, medium-, and high-risk scenario. Assuming no cardiovascular effects, CaD supplementation produces improved health outcomes resulting in an incremental gain of 0.0223 quality-adjusted life years (QALYs) and increases costs by €322 compared with no treatment (cost-effectiveness ratio €14,453 per QALY gained). Assuming a Norwegian cost-effectiveness threshold of €60,000 per QALY, CaD is likely to be considered a cost-effective treatment alternative. In a scenario with a medium or high increased risk of cardiovascular events, CaD produces net health losses, respectively, -0.0572 and -0.0784 QALY at additional costs of €481 and €1033. We conclude that the magnitude of potential cardiovascular side effects is crucial for the effectiveness and cost-effectiveness of CaD supplementation in elderly women.
Therapeutic interventions and success in risk factor control for secondary prevention of stroke.
Alvarez-Sabin, Jose; Quintana, Manuel; Hernandez-Presa, Miguel Angel; Alvarez, Carlos; Chaves, Jose; Ribo, Marc
2009-01-01
We sought to evaluate the success rates in achieving preventive therapeutic goals in patients who experienced an ischemic stroke (IS) and compare them with those achieved in patients with coronary artery disease (CAD). This was an observational multicenter case-control study (3 patients with IS and one control subject with CAD) performed in 1444 primary health centers in Spain. Preventive therapeutic objectives according to American Heart Association guidelines were predefined. Demographic data, vascular risk factors, and success/failure in achievement of objectives were recorded and compared between patients with IS and CAD. A total of 5458 patients were included, 4098 (75.1%) had IS and 1360 (24.9%) had CAD. Although more than 90% of patients with hypertension, diabetes, or dyslipidemia were under specific drug regimens, only about 25% achieved the recommended therapeutic objective for each risk factor. Success rate was especially low among patients with IS compared with CAD: hypertension (23.8% v 27.2%; P = .028); dyslipidemia (13.6% v 20.3%; P < .001); and abdominal obesity (49.1% v 54.6%; P = .002). The only objective widely achieved in both groups was the use of antithrombotic drugs in atrial fibrillation (97.2% v 94.7%; P = .125). Only 3.3% of patients with IS had all risk factors under control, compared with 5.6% of those with CAD (P = .006). For all patients, multivariate logistic regression model showed that independent predictors of full risk factor control were: presence of CAD as compared with IS (odds ratio [OR] 2.11; 95% confidence interval [CI] 1.35-3.29; P = .001), older age (OR 1.02; 95% CI 1.00-1.04; P = .028), and having less than 3 risk factors (OR 16.98; 95% CI 9.02-31.97; P < .001). Success in achieving preventive therapeutic objectives for secondary prevention of vascular events is low, especially among patients with IS. There is an urgent need to devise strategies to improve risk factor control.
Robson, John; Ayerbe, Luis; Mathur, Rohini; Addo, Juliet; Wragg, Andrew
2015-04-15
The recognition of coronary artery disease (CAD) among patients who report chest pain remains difficult in primary care. This study investigates the association between chest pain (specified, unspecified or musculoskeletal) and prodromes (dyspepsia, fatigue or dyspnoea), with first-ever acute CAD, and increased longer term cardiovascular risk. Cohort study. Anonymised clinical data recorded electronically by general practitioners from 140 primary care surgeries in London (UK) between April 2008 and April 2013. Data were extracted for all patients aged 30 years and over at the beginning of the study period, registered in the surgeries. Clinical data included chest pain, dyspepsia, dyspnoea and fatigue, first-ever CAD and long-term cardiovascular risk (QRisk2). Regression models were used to analyse the association between chest pain together with prodromes and CAD and QRisk2≥20%. 354,052 patients were included in the study. 4842 patients had first-ever CAD of which 270 reported chest pain in the year before the acute event. 257,019 patients had QRisk2 estimations. Chest pain was associated with a higher risk of CAD. HRs: 21.12 (16.68 to 26.76), p<0.001; 7.51 (6.49 to 8.68), p<0.001; and 1.84 (1.14 to 3.00), p<0.001 for specified, unspecified and musculoskeletal chest pain. Dyspepsia, dyspnoea or fatigue was also associated with a higher risk of CAD. Chest pain of all subtypes, dyspepsia and dyspnoea were also associated with an increased 10-year cardiovascular risk of 20% or more. All patients with chest pain, including those with atypical symptoms, require careful assessment for acute and longer term cardiovascular risk. Prodromes may have independent diagnostic value in the estimation of cardiovascular disease risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Cobetto, N; Aubin, C E; Parent, S; Clin, J; Barchi, S; Turgeon, I; Labelle, Hubert
2016-10-01
Clinical assessment of immediate in-brace effect of braces designed using CAD/CAM and FEM vs. only CAD/CAM for conservative treatment of AIS, using a randomized blinded and controlled study design. Forty AIS patients were prospectively recruited and randomized into two groups. For 19 patients (control group), the brace was designed using a scan of patient's torso and a conventional CAD/CAM approach (CtrlBrace). For the 21 other patients (test group), the brace was additionally designed using finite element modeling (FEM) and 3D reconstructions of spine, rib cage and pelvis (NewBrace). The NewBrace design was simulated and iteratively optimized to maximize the correction and minimize the contact surface and material. Both groups had comparable age, sex, weight, height, curve type and severity. Scoliosis Research Society standardized criteria for bracing were followed. Average Cobb angle prior to bracing was 27° and 28° for main thoracic (MT) and lumbar (L) curves, respectively, for the control group, while it was 33° and 28° for the test group. CtrlBraces reduced MT and L curves by 8° (29 %) and 10° (40 %), respectively, compared to 14° (43 %) and 13° (46 %) for NewBraces, which were simulated with a difference inferior to 5°. NewBraces were 50 % thinner and had 20 % less covering surface than CtrlBraces. Braces designed with CAD/CAM and 3D FEM simulation were more efficient and lighter than standard CAD/CAM TLSO's at first immediate in-brace evaluation. These results suggest that long-term effect of bracing in AIS may be improved using this new platform for brace fabrication. NCT02285621.
Satoh, Mamoru; Nasu, Takahito; Takahashi, Yuji; Osaki, Takuya; Hitomi, Sho; Morino, Yoshihiro; Nakamura, Motoyuki
2017-08-01
Telomeric repeat binding factor (TRF) 2 (TRF2) plays an important role in telomere maintenance. miR-23a may directly inhibit TRF2 expression, thereby, inducing telomere shortening and cellular senescence. The present study aimed to determine whether miR-23a and TRF2 are expressed in patients with coronary artery disease (CAD), and whether pitavastatin might affect these levels. The present study included 104 patients with CAD and 50 controls. Patients with CAD were randomly divided into two subgroups (a moderate lipid lowering therapy (LLT) group and an aggressive LLT group). Peripheral blood mononuclear cells (PBMCs) were taken from patients with CAD and from controls at baseline and after 12 months. Levels of miR-23a were higher in the CAD group than in the controls. Levels of TRF2 protein were lower in the CAD group than in the controls. Our randomized clinical study showed that aggressive LLT decreased miR-23a and increased TRF2 levels, whereas moderate LLT generated no change in these levels. Our transfected cell model showed that miR-23a controlled TRF2 expression. After a mean follow-up of 339 days, cardiovascular events were associated with high miR-23a , low TRF2 or low relative telomere length. Multivariate analysis showed that levels of miR-23a (RR: 4.9, 95% CI: 1.9-14.3) were a strong predictor of cardiovascular events after adjustment for baseline characteristics. In conclusion, elevated levels of miR-23a play an important role in coronary atherosclerosis via down-regulated TRF2, and may provide important prognostic information in patients with CAD. Additionally, aggressive LLT may prevent telomere erosion via down-regulated miR-23a . © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
NASA Astrophysics Data System (ADS)
Beyer, F.; Zierott, L.; Fallenberg, E. M.; Juergens, K.; Stoeckel, J.; Heindel, W.; Wormanns, D.
2006-03-01
Purpose: To compare sensitivity and reading time when using CAD as second reader resp. concurrent reader. Materials and Methods: Fifty chest MDCT scans due to clinical indication were analysed independently by four radiologists two times: First with CAD as concurrent reader (display of CAD results simultaneously to the primary reading by the radiologist); then after a median of 14 weeks with CAD as second reader (CAD results were shown after completion of a reading session without CAD). A prototype version of Siemens LungCAD (Siemens,Malvern,USA) was used. Sensitivities and reading times for detecting nodules >=4mm of concurrent reading, reading without CAD and second reading were recorded. In a consensus conference false positive findings were eliminated. Student's T-Test was used to compare sensitivities and reading times. Results: 108 true positive nodules were found. Mean sensitivity was .68 for reading without CAD, .68 for concurrent reading and .75 for second reading. Differences of sensitivities were significant between concurrent and second reading (p<.001) resp. reading without CAD and second reading (p=.001). Mean reading time for concurrent reading was significant shorter (274s) compared to reading without CAD (294s;p=.04) and second reading (337sp<.001). New work to be presented: To our knowledge this is the first study that compares sensitivities and reading times between use of CAD as concurrent resp. second reader. Conclusion: CAD can either be used to speed up reading of chest CT cases for pulmonary nodules without loss of sensitivity as concurrent reader -OR (and not AND) to increase sensitivity and reading time as second reader.
Bahari, Mahmoud; Savadi Oskoee, Siavash; Kimyai, Soodabeh; Pouralibaba, Firoz; Farhadi, Farrokh; Norouzi, Marouf
2014-01-01
Background and aims. The aim was to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on microtensile bond strength (μTBS) to carious affected dentin (CAD) using etch-and-rinse and self-etch adhesive systems. Materials and methods. The occlusal surface of 32 human molars with moderate occlusal caries was removed. Infected dentin was removed until reaching CAD and the teeth were randomly divided into two groups based on the Single Bond (SB) and Clearfil SE Bond (CSE) adhesive systems. Before composite resin bonding, each group was subdivided into three subgroups of ND, CAD and CPP-ACP-treated CAD (CAD-CPP) based on the dentin substrate. After dissecting samples to l-mm-thick cross-sections (each subgroup: n = 13), μTBS was measured at a strain rate of 0.5 mm/min. Data was analyzed using two-way ANOVA, independent samples t-test and post-hoc Tukey tests (α=0.05). Results. Bond strength of both adhesive systems to ND was significantly higher than that to CAD (P <0.001) and CAD/CPP (P < 0.001). There were no significant differences between the μTBS of SB to CAD and CAD-CPP (P > 0.05).μTBS of CSE to CAD-CPP was higher than that to CAD; however, the difference was not significant (P > 0.05). Significant differences were found between SB and CSE systems only with CAD substrate (P < 0.001). Conclusion. Regardless of the adhesive system used, surface treatment of CAD with CPP-ACP did not have a significant effect on bond strength. However, bond strength to CAD was higher with SB rather than with CSE. PMID:25346832
Rossi, Andrea; Gaibazzi, Nicola; Dandale, Raje; Agricola, Eustachio; Moreo, Antonella; Berlinghieri, Nicola; Sartorio, Daniele; Loffi, Marco; De Chiara, Benedetta; Rigo, Fausto; Vassanelli, Corrado; Faggiano, Pompilio
2014-03-15
There are no studies analyzing the association between aortic valve sclerosis (AVS) and coronary artery disease (CAD) in a large and multicenter patient population with an overall low prevalence of CAD. We hypothesized that AVS could predict the presence and degree of CAD in patients with severe organic mitral regurgitation. We retrospectively analyzed consecutive patients with flail mitral leaflet who had coronary angiography for pre-surgical screening and not because suspect of CAD. End-points were considered: 1) any degree of CAD (stenosis>20%) and 2) obstructive CAD (stenosis>75% of at least one coronary artery). AVS was defined as focal areas of increased echogenicity and thickening of the leaflets. Traditional clinical risk factors were considered: age, male gender, hypertension (>140/90 mmHg or medical therapy), hypercholesterolemia (total cholesterol>200 mg/dl or statin), diabetes, family history of CAD and smoking habit. 675 patients (mean age: 64±12; 27% female) formed the study population. Among patients with AVS, 60% and 39% had any-CAD and ob-CAD respectively, on the opposite among patients without AVS 12% and 7% had any-CAD and ob-cad. After adjustment for clinical risk factors, AVS was associated with a 22.7 fold increased risk of any degree of CAD (95% CI 8.1 63.6 p<0.0001) and with a 21.8 fold increased risk of obstructive-CAD (95% CI 6.6 71.9; p<0.0001). In a large and multicenter sample of patient with flail mitral leaflet, AVS was strongly associated with the presence and degree of CAD independently of clinical risk factors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Alkhawam, Hassan; Nguyen, James; Sayanlar, Jason; Sogomonian, Robert; Desai, Ronak; Jolly, JoshPaul; Vyas, Neil; Syed, Umer; Homsi, Maher; Rubinstein, David
2016-01-01
In this study, we evaluated obesity as a single risk factor for coronary artery disease (CAD), along with the synergistic effect of obesity and other risk factors. A retrospective study of 7,567 patients admitted to hospital for chest pain from 2005 to 2014 and underwent cardiac catheterization. Patients were divided into two groups: obese and normal with body mass index (BMI) calculated as ≥30 kg/m(2) and <25, respectively. We assessed the modifiable and non-modifiable risk factors in obese patients and the degree of CAD. Of the 7,567 patients who underwent cardiac catheterization, 414 (5.5%) had a BMI ≥30. Of 414 obese patients, 332 (80%) had evidence of CAD. Obese patients displayed evidence of CAD at the age of 57 versus 63.3 in non-obese patients (p<0.001). Of the 332 patients with CAD and obesity, 55.4% had obstructive CAD versus 44.6% with non-obstructive CAD. In obese patients with CAD, male gender and history of smoking were major risk factors for development of obstructive CAD (p=0.001 and 0.01, respectively) while dyslipidemia was a major risk factor for non-obstructive CAD (p=0.01). Additionally, obese patients with more than one risk factor developed obstructive CAD compared to non-obstructive CAD (p=0.003). Having a BMI ≥30 appears to be a risk factor for early development of CAD. Severity of CAD in obese patients is depicted on non-modifiable and modifiable risk factors such as the male gender and smoking or greater than one risk factor, respectively.
Lee, Myung-Shin; Lee, Jisu; Kim, Joo Heon; Kim, Won Tae; Kim, Wun-Jae; Ahn, Hanjong; Park, Jinsung
2015-01-01
The expression and function of caldesmon (CAD) in urothelial bladder carcinoma (BC) have not been reported. Here, we investigated the expression, prognostic value, and potential functional mechanism of CAD in primary non-muscle-invasive bladder cancer (NMIBC). Protein profiling of tissue samples using antibody microarrays showed significantly higher CAD expression in muscle-invasive BC tissues compared with NMIBC tissues. We then validated the CAD expression in BC cells by immunohistochemistry analysis using paraffin-embedded tissue blocks and western blots using BC cell lines. In addition, we examined the expression of CAD variants by reverse transcription-polymerase chain reaction, and confirmed the expression of low-molecular-weight isoforms (L-CAD), specifically encoded by WI-38 L-CAD II (transcript variant 2), in BC cells. Survival analysis in an independent primary NMIBC cohort comprising 132 patients showed that positive CAD expression was significantly associated with poorer prognosis than no CAD expression with regard to recurrence- and progression-free survival (p = 0.001 and 0.014, respectively). Multivariate analyses further indicated that positive CAD expression was an independent predictor of progression-free survival (p = 0.032; HR = 5.983). Data obtained from in vitro silencing and overexpression studies indicated that L-CAD promotes migration and invasiveness of BC cells. Immunofluorescence assays showed dramatic structural changes in the actin cytoskeleton of BC cells after L-CAD overexpression. Our findings collectively suggest that L-CAD overexpression in primary NMIBC is significantly associated with tumor progression and that a possible mechanism for L-CAD's activity is implicated in increased cell motility and invasive characteristics through morphological changes in BC cells. PMID:26430961
A novel aromatic alcohol dehydrogenase in higher plants: molecular cloning and expression.
Goffner, D; Van Doorsselaere, J; Yahiaoui, N; Samaj, J; Grima-Pettenati, J; Boudet, A M
1998-03-01
Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.195) catalyses the conversion of p-hydroxy-cinnamaldehydes to the corresponding alcohols and is considered a key enzyme in lignin biosynthesis. In a previous study, an atypical form of CAD (CAD 1) was identified in Eucalyptus gunnii [12]. We report here the molecular cloning and characterization of the corresponding cDNA, CAD 1-5, which encodes this novel aromatic alcohol dehydrogenase. The identity of CAD 1-5 was unambiguously confirmed by sequence comparison of the cDNA with peptide sequences derived from purified CAD 1 protein and by functional expression of CAD 1 recombinant protein in Escherichia coli. Both native and recombinant CAD 1 exhibit high affinity towards lignin precursors including 4-coumaraldehyde and coniferaldehyde, but they do not accept sinapaldehyde. Moreover, recombinant CAD 1 can also utilize a wide range of aromatic substrates including unsubstituted and substituted benzaldehydes. The open reading frame of CAD 1-5 encodes a protein with a calculated molecular mass of 35,790 Da and an isoelectric point of 8.1. Although sequence comparisons with proteins in databases revealed significant similarities with dihydroflavonol-4-reductases (DFR; EC 1.1.1.219) from a wide range of plant species, the most striking similarity was found with cinnamoyl-CoA reductase (CCR; EC 1.2.1.44), the enzyme which directly precedes CAD in the lignin biosynthetic pathway. RNA blot analysis and immunolocalization experiments indicated that CAD 1 is expressed in both lignified and unlignified tissues/cells. Based on the catalytic activity of CAD 1 in vitro and its localization in planta, CAD 1 may function as an 'alternative' enzyme in the lignin biosynthetic pathway. However, additional roles in phenolic metabolism are not excluded.
Galway, Shannon; Adatia, Falisha; Grubisic, Maja; Lee, May; Daniele, Patrick; Humphries, Karin H; Sedlak, Tara L
2017-09-01
Treatment of patients with stable angina and nonobstructive coronary artery disease (CAD) has not been well characterized. We comparatively evaluated medication use in males and females with stable angina with no CAD, nonobstructive CAD, and obstructive CAD. We studied all patients ≥20 years old with stable angina undergoing coronary angiography in British Columbia (BC), Canada, from January 2008 to March 2010 (n = 7,535). No CAD, nonobstructive CAD, and obstructive CAD were defined as 0%, 1%-49%, and ≥50% luminal narrowing in any epicardial coronary artery, respectively. Medication use, 3 months before and 3 months following angiography, was obtained through BC PharmaNet for angiotensin-converting enzyme inhibitors (ACE-I), angiotensin receptor blockers (ARBs), calcium channel blockers (CCBs), beta-blockers, statins, antiplatelet agents, and prescriptions for all three ACE-I/ARBs, beta-blockers, and statins (combination therapy). Following angiography, patients with no and nonobstructive CAD had significantly lower rates of prescription use of all medications, including combination therapy, than patients with obstructive CAD (p < 0.001). Use of ACE-I/ARBs, beta-blockers, statins, and combination therapy did not differ by sex, but females had higher use of CCB in all CAD groups, and clopidogrel in nonobstructive and obstructive CAD groups, compared to males. In patients with stable angina, medication use following angiography is low in nonobstructive CAD with only 58.9% prescribed a statin and 19.4% on combination therapy at 3 months. There are no important sex differences in medication use in any CAD category post-angiography. Future studies should explore methods of improving quality of care in patients with nonobstructive CAD.
Analog Computer-Aided Detection (CAD) information can be more effective than binary marks
Cunningham, Corbin A.; Drew, Trafton; Wolfe, Jeremy M.
2017-01-01
In socially important visual search tasks such as baggage screening and diagnostic radiology, experts miss more targets than is desirable. Computer Aided Detection (CAD) programs have been developed specifically to help improve performance in these professional search tasks. For example, in breast cancer screening, many CAD systems are capable of detecting approximately 90% of breast cancer, with approximately 0.5 false positive detections per image. Nevertheless, benefits of CAD in clinical settings tend to be small (Birdwell, 2009) or even absent (Meziane et al., 2011; Philpotts, 2009). The marks made by a CAD system can be “Binary”, giving the same signal to any location where the signal is above some threshold. Alternatively, a CAD system present an Analog signal that reflected strength of the signal at a location. In the experiments reported here, we compare analog and binary CAD presentations using non-expert observers and artificial stimuli defined by two noisy signals: a visible color signal and an "invisible" signal that informed our simulated CAD system. We found that analog CAD generally yielded better overall performance than binary CAD. The analog benefit is similar at high and low target prevalence. Our data suggest that the form of the CAD signal can directly influence performance. Analog CAD may allow the computer to be more helpful to the searcher. PMID:27928658
Bi, Nan; Yan, Sheng-kai; Li, Guo-ping; Yin, Zhi-nong; Chen, Bao-sheng
2004-11-01
The disorder of triglyceride (TG) metabolism leading to hypertriglyceridemia is an independent risk factor for coronary artery disease (CAD). Variants in the newly identified apolipoprotein APOA5 gene were found to be strongly associated with elevated TG levels in different racial groups. In this study, we investigated the phenotypic effects of two polymorphisms (APOA5-1131T>C and APOC3-482C>T) on susceptibility to CAD in 312 Chinese CAD patients diagnosed by angiography. The frequency of the APOA5-1131C allele in these patients was significantly higher than that of the control group (39.9 vs. 33.3%, P=0.02). Compared with the wild type TT, CC homozygotes had a significantly increased CAD risk (OR=1.93 and OR=1.80 using unadjusted and adjusted logistic regression models, respectively). This association still existed after adjustment for the APOC3-482 variant. The APOA5-1131C allele also showed a correlation with increasing plasma TG levels (P<0.001). These data suggest that the APOA5-1131T>C polymorphism might contribute to an increased risk of CAD among Chinese as a result of its effect on TG metabolism; this effect was found to be independent of the APOC3-482C>T variant.
Bone age assessment by content-based image retrieval and case-based reasoning
NASA Astrophysics Data System (ADS)
Fischer, Benedikt; Welter, Petra; Grouls, Christoph; Günther, Rolf W.; Deserno, Thomas M.
2011-03-01
Skeletal maturity is assessed visually by comparing hand radiographs to a standardized reference image atlas. Most common are the methods by Greulich & Pyle and Tanner & Whitehouse. For computer-aided diagnosis (CAD), local image regions of interest (ROI) such as the epiphysis or the carpal areas are extracted and evaluated. Heuristic approaches trying to automatically extract, measure and classify bones and distances between bones suffer from the high variability of biological material and the differences in bone development resulting from age, gender and ethnic origin. Content-based image retrieval (CBIR) provides a robust solution without delineating and measuring bones. In this work, epiphyseal ROIs (eROIS) of a hand radiograph are compared to previous cases with known age, mimicking a human observer. Leaving-one-out experiments are conducted on 1,102 left hand radiographs and 15,428 metacarpal and phalangeal eROIs from the publicly available USC hand atlas. The similarity of the eROIs is assessed by a combination of cross-correlation, image distortion model, and Tamura texture features, yielding a mean error rate of 0.97 years and a variance of below 0.63 years. Furthermore, we introduce a publicly available online-demonstration system, where queries on the USC dataset as well as on uploaded radiographs are performed for instant CAD. In future, we plan to evaluate physician with CBIR-CAD against physician without CBIR-CAD rather than physician vs. CBIR-CAD.
An application protocol for CAD to CAD transfer of electronic information
NASA Technical Reports Server (NTRS)
Azu, Charles C., Jr.
1993-01-01
The exchange of Computer Aided Design (CAD) information between dissimilar CAD systems is a problem. This is especially true for transferring electronics CAD information such as multi-chip module (MCM), hybrid microcircuit assembly (HMA), and printed circuit board (PCB) designs. Currently, there exists several neutral data formats for transferring electronics CAD information. These include IGES, EDIF, and DXF formats. All these formats have limitations for use in exchanging electronic data. In an attempt to overcome these limitations, the Navy's MicroCIM program implemented a project to transfer hybrid microcircuit design information between dissimilar CAD systems. The IGES (Initial Graphics Exchange Specification) format is used since it is well established within the CAD industry. The goal of the project is to have a complete transfer of microelectronic CAD information, using IGES, without any data loss. An Application Protocol (AP) is being developed to specify how hybrid microcircuit CAD information will be represented by IGES entity constructs. The AP defines which IGES data items are appropriate for describing HMA geometry, connectivity, and processing as well as HMA material characteristics.
Fine Particulate Matter and Cardiovascular Disease ...
Background Adverse cardiovascular events have been linked with PM2.5 exposure obtained primarily from air quality monitors, which rarely co-locate with participant residences. Modeled PM2.5 predictions at finer resolution may more accurately predict residential exposure; however few studies have compared results across different exposure assessment methods. Methods We utilized a cohort of 5679 patients who had undergone a cardiac catheterization between 2002–2009 and resided in NC. Exposure to PM2.5 for the year prior to catheterization was estimated using data from air quality monitors (AQS), Community Multiscale Air Quality (CMAQ) fused models at the census tract and 12 km spatial resolutions, and satellite-based models at 10 km and 1 km resolutions. Case status was either a coronary artery disease (CAD) index >23 or a recent myocardial infarction (MI). Logistic regression was used to model odds of having CAD or an MI with each 1-unit (μg/m3) increase in PM2.5, adjusting for sex, race, smoking status, socioeconomic status, and urban/rural status. Results We found that the elevated odds for CAD>23 and MI were nearly equivalent for all exposure assessment methods. One difference was that data from AQS and the census tract CMAQ showed a rural/urban difference in relative risk, which was not apparent with the satellite or 12 km-CMAQ models. Conclusions
Design and fabrication of complete dentures using CAD/CAM technology
Han, Weili; Li, Yanfeng; Zhang, Yue; lv, Yuan; Zhang, Ying; Hu, Ping; Liu, Huanyue; Ma, Zheng; Shen, Yi
2017-01-01
Abstract The aim of the study was to test the feasibility of using commercially available computer-aided design and computer-aided manufacturing (CAD/CAM) technology including 3Shape Dental System 2013 trial version, WIELAND V2.0.049 and WIELAND ZENOTEC T1 milling machine to design and fabricate complete dentures. The modeling process of full denture available in the trial version of 3Shape Dental System 2013 was used to design virtual complete dentures on the basis of 3-dimensional (3D) digital edentulous models generated from the physical models. The virtual complete dentures designed were exported to CAM software of WIELAND V2.0.049. A WIELAND ZENOTEC T1 milling machine controlled by the CAM software was used to fabricate physical dentitions and baseplates by milling acrylic resin composite plates. The physical dentitions were bonded to the corresponding baseplates to form the maxillary and mandibular complete dentures. Virtual complete dentures were successfully designed using the software through several steps including generation of 3D digital edentulous models, model analysis, arrangement of artificial teeth, trimming relief area, and occlusal adjustment. Physical dentitions and baseplates were successfully fabricated according to the designed virtual complete dentures using milling machine controlled by a CAM software. Bonding physical dentitions to the corresponding baseplates generated the final physical complete dentures. Our study demonstrated that complete dentures could be successfully designed and fabricated by using CAD/CAM. PMID:28072686
Balleyguier, Corinne; Arfi-Rouche, Julia; Levy, Laurent; Toubiana, Patrick R; Cohen-Scali, Franck; Toledano, Alicia Y; Boyer, Bruno
2017-12-01
Evaluate concurrent Computer-Aided Detection (CAD) with Digital Breast Tomosynthesis (DBT) to determine impact on radiologist performance and reading time. The CAD system detects and extracts suspicious masses, architectural distortions and asymmetries from DBT planes that are blended into corresponding synthetic images to form CAD-enhanced synthetic images. Review of CAD-enhanced images and navigation to corresponding planes to confirm or dismiss potential lesions allows radiologists to more quickly review DBT planes. A retrospective, crossover study with and without CAD was conducted with six radiologists who read an enriched sample of 80 DBT cases including 23 malignant lesions in 21 women. Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) compared the readings with and without CAD to determine the effect of CAD on overall interpretation performance. Sensitivity, specificity, recall rate and reading time were also assessed. Multi-reader, multi-case (MRMC) methods accounting for correlation and requiring correct lesion localization were used to analyze all endpoints. AUCs were based on a 0-100% probability of malignancy (POM) score. Sensitivity and specificity were based on BI-RADS scores, where 3 or higher was positive. Average AUC across readers without CAD was 0.854 (range: 0.785-0.891, 95% confidence interval (CI): 0.769,0.939) and 0.850 (range: 0.746-0.905, 95% CI: 0.751,0.949) with CAD (95% CI for difference: -0.046,0.039), demonstrating non-inferiority of AUC. Average reduction in reading time with CAD was 23.5% (95% CI: 7.0-37.0% improvement), from an average 48.2 (95% CI: 39.1,59.6) seconds without CAD to 39.1 (95% CI: 26.2,54.5) seconds with CAD. Per-patient sensitivity was the same with and without CAD (0.865; 95% CI for difference: -0.070,0.070), and there was a small 0.022 improvement (95% CI for difference: -0.046,0.089) in per-lesion sensitivity from 0.790 without CAD to 0.812 with CAD. A slight reduction in specificity with a -0.014 difference (95% CI for difference: -0.079,0.050) and a small 0.025 increase (95% CI for difference: -0.036,0.087) in recall rate in non-cancer cases were observed with CAD. Concurrent CAD resulted in faster reading time with non-inferiority of radiologist interpretation performance. Radiologist sensitivity, specificity and recall rate were similar with and without CAD. Copyright © 2017 Elsevier B.V. All rights reserved.
Dynamic Modeling and Simulation of an Underactuated System
NASA Astrophysics Data System (ADS)
Libardo Duarte Madrid, Juan; Ospina Henao, P. A.; González Querubín, E.
2017-06-01
In this paper, is used the Lagrangian classical mechanics for modeling the dynamics of an underactuated system, specifically a rotary inverted pendulum that will have two equations of motion. A basic design of the system is proposed in SOLIDWORKS 3D CAD software, which based on the material and dimensions of the model provides some physical variables necessary for modeling. In order to verify the results obtained, a comparison the CAD model simulated in the environment SimMechanics of MATLAB software with the mathematical model who was consisting of Euler-Lagrange’s equations implemented in Simulink MATLAB, solved with the ODE23tb method, included in the MATLAB libraries for the solution of systems of equations of the type and order obtained. This article also has a topological analysis of pendulum trajectories through a phase space diagram, which allows the identification of stable and unstable regions of the system.
1997-04-01
implied, with respect to the accuracy, completeness or usefulness of the information contained in this report/ manual , or that the use of any information...shipyards throughout the world have introduced various aspects of CAD/CAM piecemeal as substitutes for manual processes, the greatest improvement in...possibility of multiple models of the molded geometry being developed, which would cause the loss of geometry control. Numerous AutoLisp routines were used
Vane Pump Casing Machining of Dumpling Machine Based on CAD/CAM
NASA Astrophysics Data System (ADS)
Huang, Yusen; Li, Shilong; Li, Chengcheng; Yang, Zhen
Automatic dumpling forming machine is also called dumpling machine, which makes dumplings through mechanical motions. This paper adopts the stuffing delivery mechanism featuring the improved and specially-designed vane pump casing, which can contribute to the formation of dumplings. Its 3D modeling in Pro/E software, machining process planning, milling path optimization, simulation based on UG and compiling post program were introduced and verified. The results indicated that adoption of CAD/CAM offers firms the potential to pursue new innovative strategies.
Prakashini, K; Babu, Satish; Rajgopal, K V; Kokila, K Raja
2016-01-01
To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated. Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4-10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance. CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toyama, Hirofumi; Arai, Fumio; Hosokawa, Kentaro
Highlights: Black-Right-Pointing-Pointer High N-cad expression was detected in E12.5 mouse FL LT-HSCs (EPCR{sup +} LSK cells). Black-Right-Pointing-Pointer Immunohistochemically, N-cad{sup +} HSCs co-localized with sinusoidal ECs (Lyve-1{sup +} cells) in E12.5 FL, but these gradually detached in E15.5 and E18.5 FL. Black-Right-Pointing-Pointer N-cad{sup +} LSK cells in E12.5 FL exhibited higher LTR activity versus N-cad{sup -} LSK cells, which decreased in E15.5 and E18.5. Black-Right-Pointing-Pointer N-cad expression may confer high LTR activity to HSCs by facilitating interactions with the perisinusoidal niche in FL. -- Abstract: Adult hematopoietic stem cells (HSCs) are maintained in a microenvironment known as the stem cell niche.more » The regulation of HSCs in fetal liver (FL) and their niche, however, remains to be elucidated. In this study, we investigated the role of N-cadherin (N-cad) in the maintenance of HSCs during FL hematopoiesis. By using anti-N-cad antibodies (Abs) produced by our laboratory, we detected high N-cad expression in embryonic day 12.5 (E12.5) mouse FL HSCs, but not in E15.5 and E18.5 FL. Immunofluorescence staining revealed that N-cad{sup +}c-Kit{sup +} and N-cad{sup +} endothelial protein C receptor (EPCR){sup +} HSCs co-localized with Lyve-1{sup +} sinusoidal endothelial cells (ECs) in E12.5 FL and that some of these cells also expressed N-cad. However, N-cad{sup +} HSCs were also observed to detach from the perisinusoidal niche at E15.5 and E18.5, concomitant with a down-regulation of N-cad and an up-regulation of E-cadherin (E-cad) in hepatic cells. Moreover, EPCR{sup +} long-term (LT)-HSCs were enriched in the N-cad{sup +}Lin{sup -}Sca-1{sup +}c-Kit{sup +} (LSK) fraction in E12.5 FL, but not in E15.5 or E18.5 FL. In a long-term reconstitution (LTR) activity assay, higher engraftment associated with N-cad{sup +} LSK cells versus N-cad{sup -} LSK cells in E12.5 FL when transplanted into lethally irradiated recipient mice. However, the higher engraftment of N-cad{sup +} LSK cells decreased subsequently in E15.5 and E18.5 FL. It is possible that N-cad expression conferred higher LTR activity to HSCs by facilitating interactions with the perisinusoidal niche, especially at E12.5. The down-regulation of N-cad during FL hematopoiesis may help us better understand the regulation and mobility of HSCs before migration into BM.« less
Observer training for computer-aided detection of pulmonary nodules in chest radiography.
De Boo, Diederick W; van Hoorn, François; van Schuppen, Joost; Schijf, Laura; Scheerder, Maeke J; Freling, Nicole J; Mets, Onno; Weber, Michael; Schaefer-Prokop, Cornelia M
2012-08-01
To assess whether short-term feedback helps readers to increase their performance using computer-aided detection (CAD) for nodule detection in chest radiography. The 140 CXRs (56 with a solitary CT-proven nodules and 84 negative controls) were divided into four subsets of 35; each were read in a different order by six readers. Lesion presence, location and diagnostic confidence were scored without and with CAD (IQQA-Chest, EDDA Technology) as second reader. Readers received individual feedback after each subset. Sensitivity, specificity and area under the receiver-operating characteristics curve (AUC) were calculated for readings with and without CAD with respect to change over time and impact of CAD. CAD stand-alone sensitivity was 59 % with 1.9 false-positives per image. Mean AUC slightly increased over time with and without CAD (0.78 vs. 0.84 with and 0.76 vs. 0.82 without CAD) but differences did not reach significance. The sensitivity increased (65 % vs. 70 % and 66 % vs. 70 %) and specificity decreased over time (79 % vs. 74 % and 80 % vs. 77 %) but no significant impact of CAD was found. Short-term feedback does not increase the ability of readers to differentiate true- from false-positive candidate lesions and to use CAD more effectively. • Computer-aided detection (CAD) is increasingly used as an adjunct for many radiological techniques. • Short-term feedback does not improve reader performance with CAD in chest radiography. • Differentiation between true- and false-positive CAD for low conspicious possible lesions proves difficult. • CAD can potentially increase reader performance for nodule detection in chest radiography.
Genetics of coronary artery disease and myocardial infarction
Dai, Xuming; Wiernek, Szymon; Evans, James P; Runge, Marschall S
2016-01-01
Atherosclerotic coronary artery disease (CAD) comprises a broad spectrum of clinical entities that include asymptomatic subclinical atherosclerosis and its clinical complications, such as angina pectoris, myocardial infarction (MI) and sudden cardiac death. CAD continues to be the leading cause of death in industrialized society. The long-recognized familial clustering of CAD suggests that genetics plays a central role in its development, with the heritability of CAD and MI estimated at approximately 50% to 60%. Understanding the genetic architecture of CAD and MI has proven to be difficult and costly due to the heterogeneity of clinical CAD and the underlying multi-decade complex pathophysiological processes that involve both genetic and environmental interactions. This review describes the clinical heterogeneity of CAD and MI to clarify the disease spectrum in genetic studies, provides a brief overview of the historical understanding and estimation of the heritability of CAD and MI, recounts major gene discoveries of potential causal mutations in familial CAD and MI, summarizes CAD and MI-associated genetic variants identified using candidate gene approaches and genome-wide association studies (GWAS), and summarizes the current status of the construction and validations of genetic risk scores for lifetime risk prediction and guidance for preventive strategies. Potential protective genetic factors against the development of CAD and MI are also discussed. Finally, GWAS have identified multiple genetic factors associated with an increased risk of in-stent restenosis following stent placement for obstructive CAD. This review will also address genetic factors associated with in-stent restenosis, which may ultimately guide clinical decision-making regarding revascularization strategies for patients with CAD and MI. PMID:26839654
Undertreatment of hyperlipidemia in patients with coronary artery disease and heart failure.
Sueta, Carla A; Massing, Mark W; Chowdhury, Mridul; Biggs, David P; Simpson, Ross J
2003-02-01
Coronary artery disease patients with heart failure (CAD+HF) are at high risk for cardiovascular events. We examined the frequency of lipid assessment and prescription of lipid-lowering agents in outpatients with combined CAD+HF compared with patients with CAD alone. We analyzed an administrative data set from the Quality Assurance Program II, a Merck & Co., Inc., sponsored national retrospective chart audit of 41,487 CAD patients seen at 296 ambulatory medical practices. About 34% of these patients had CAD+HF. Documentation of low-density lipoprotein (LDL) cholesterol was significantly lower in patients with CAD+HF (53%) compared with those with CAD alone (69%). Lipid-lowering drugs were prescribed in only 36% of patients with CAD+HF, compared with 52% of patients with CAD alone. Lipid levels alone did not justify this disparity. Patients with documented LDL cholesterol values were 4 times more likely to receive a prescription for a lipid-lowering medication than those without recorded values. Other predictors of lipid-lowering prescription included: younger age, history of myocardial infarction, revascularization, care by a cardiologist, and geographic region. Patients with CAD, HF, and advanced age simultaneously experience among the highest risk and the lowest lipid-lowering treatment rates. Strategies to increase LDL testing and aggressively treat patients with heart failure and CAD are warranted.
Huo, Zhimin; Summers, Ronald M.; Paquerault, Sophie; Lo, Joseph; Hoffmeister, Jeffrey; Armato, Samuel G.; Freedman, Matthew T.; Lin, Jesse; Ben Lo, Shih-Chung; Petrick, Nicholas; Sahiner, Berkman; Fryd, David; Yoshida, Hiroyuki; Chan, Heang-Ping
2013-01-01
Computer-aided detection/diagnosis (CAD) is increasingly used for decision support by clinicians for detection and interpretation of diseases. However, there are no quality assurance (QA) requirements for CAD in clinical use at present. QA of CAD is important so that end users can be made aware of changes in CAD performance both due to intentional or unintentional causes. In addition, end-user training is critical to prevent improper use of CAD, which could potentially result in lower overall clinical performance. Research on QA of CAD and user training are limited to date. The purpose of this paper is to bring attention to these issues, inform the readers of the opinions of the members of the American Association of Physicists in Medicine (AAPM) CAD subcommittee, and thus stimulate further discussion in the CAD community on these topics. The recommendations in this paper are intended to be work items for AAPM task groups that will be formed to address QA and user training issues on CAD in the future. The work items may serve as a framework for the discussion and eventual design of detailed QA and training procedures for physicists and users of CAD. Some of the recommendations are considered by the subcommittee to be reasonably easy and practical and can be implemented immediately by the end users; others are considered to be “best practice” approaches, which may require significant effort, additional tools, and proper training to implement. The eventual standardization of the requirements of QA procedures for CAD will have to be determined through consensus from members of the CAD community, and user training may require support of professional societies. It is expected that high-quality CAD and proper use of CAD could allow these systems to achieve their true potential, thus benefiting both the patients and the clinicians, and may bring about more widespread clinical use of CAD for many other diseases and applications. It is hoped that the awareness of the need for appropriate CAD QA and user training will stimulate new ideas and approaches for implementing such procedures efficiently and effectively as well as funding opportunities to fulfill such critical efforts. PMID:23822459
NASA Astrophysics Data System (ADS)
Hudson, C. A.
1982-02-01
CAD/CAM advances and applications for enhancing productivity in industry are explored. Wide-spread use of CAD/CAM devices are projected to occur by the time period 1992-1997, resulting in a higher percentage of technicians in the manufacturing process, while the cost of computers and software will continue to fall and become more widely available. Computer aided design is becoming a commercially viable system for design and geometric modeling, engineering analysis, kinematics, and drafting, and efforts to bridge the gap between CAD and CAM are indicated, with particular attention given to layering, wherein individual monitoring of different parts of the manufacturing process can be effected without crossover of unnecessary information. The potentials and barriers to the use of robotics are described, with the added optimism that displaced workers to date have moved up to jobs of higher skill and interest.
Applying a CAD-generated imaging marker to assess short-term breast cancer risk
NASA Astrophysics Data System (ADS)
Mirniaharikandehei, Seyedehnafiseh; Zarafshani, Ali; Heidari, Morteza; Wang, Yunzhi; Aghaei, Faranak; Zheng, Bin
2018-02-01
Although whether using computer-aided detection (CAD) helps improve radiologists' performance in reading and interpreting mammograms is controversy due to higher false-positive detection rates, objective of this study is to investigate and test a new hypothesis that CAD-generated false-positives, in particular, the bilateral summation of false-positives, is a potential imaging marker associated with short-term breast cancer risk. An image dataset involving negative screening mammograms acquired from 1,044 women was retrospectively assembled. Each case involves 4 images of craniocaudal (CC) and mediolateral oblique (MLO) view of the left and right breasts. In the next subsequent mammography screening, 402 cases were positive for cancer detected and 642 remained negative. A CAD scheme was applied to process all "prior" negative mammograms. Some features from CAD scheme were extracted, which include detection seeds, the total number of false-positive regions, an average of detection scores and the sum of detection scores in CC and MLO view images. Then the features computed from two bilateral images of left and right breasts from either CC or MLO view were combined. In order to predict the likelihood of each testing case being positive in the next subsequent screening, two logistic regression models were trained and tested using a leave-one-case-out based cross-validation method. Data analysis demonstrated the maximum prediction accuracy with an area under a ROC curve of AUC=0.65+/-0.017 and the maximum adjusted odds ratio of 4.49 with a 95% confidence interval of [2.95, 6.83]. The results also illustrated an increasing trend in the adjusted odds ratio and risk prediction scores (p<0.01). Thus, the study showed that CAD-generated false-positives might provide a new quantitative imaging marker to help assess short-term breast cancer risk.
Bertoldi, Eduardo G; Stella, Steffen F; Rohde, Luis Eduardo P; Polanczyk, Carisi A
2017-05-04
The aim of this research is to evaluate the relative cost-effectiveness of functional and anatomical strategies for diagnosing stable coronary artery disease (CAD), using exercise (Ex)-ECG, stress echocardiogram (ECHO), single-photon emission CT (SPECT), coronary CT angiography (CTA) or stress cardiacmagnetic resonance (C-MRI). Decision-analytical model, comparing strategies of sequential tests for evaluating patients with possible stable angina in low, intermediate and high pretest probability of CAD, from the perspective of a developing nation's public healthcare system. Hypothetical cohort of patients with pretest probability of CAD between 20% and 70%. The primary outcome is cost per correct diagnosis of CAD. Proportion of false-positive or false-negative tests and number of unnecessary tests performed were also evaluated. Strategies using Ex-ECG as initial test were the least costly alternatives but generated more frequent false-positive initial tests and false-negative final diagnosis. Strategies based on CTA or ECHO as initial test were the most attractive and resulted in similar cost-effectiveness ratios (I$ 286 and I$ 305 per correct diagnosis, respectively). A strategy based on C-MRI was highly effective for diagnosing stable CAD, but its high cost resulted in unfavourable incremental cost-effectiveness (ICER) in moderate-risk and high-risk scenarios. Non-invasive strategies based on SPECT have been dominated. An anatomical diagnostic strategy based on CTA is a cost-effective option for CAD diagnosis. Functional strategies performed equally well when based on ECHO. C-MRI yielded acceptable ICER only at low pretest probability, and SPECT was not cost-effective in our analysis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Farahani, Navid; Liu, Zheng; Jutt, Dylan; Fine, Jeffrey L
2017-10-01
- Pathologists' computer-assisted diagnosis (pCAD) is a proposed framework for alleviating challenges through the automation of their routine sign-out work. Currently, hypothetical pCAD is based on a triad of advanced image analysis, deep integration with heterogeneous information systems, and a concrete understanding of traditional pathology workflow. Prototyping is an established method for designing complex new computer systems such as pCAD. - To describe, in detail, a prototype of pCAD for the sign-out of a breast cancer specimen. - Deidentified glass slides and data from breast cancer specimens were used. Slides were digitized into whole-slide images with an Aperio ScanScope XT, and screen captures were created by using vendor-provided software. The advanced workflow prototype was constructed by using PowerPoint software. - We modeled an interactive, computer-assisted workflow: pCAD previews whole-slide images in the context of integrated, disparate data and predefined diagnostic tasks and subtasks. Relevant regions of interest (ROIs) would be automatically identified and triaged by the computer. A pathologist's sign-out work would consist of an interactive review of important ROIs, driven by required diagnostic tasks. The interactive session would generate a pathology report automatically. - Using animations and real ROIs, the pCAD prototype demonstrates the hypothetical sign-out in a stepwise fashion, illustrating various interactions and explaining how steps can be automated. The file is publicly available and should be widely compatible. This mock-up is intended to spur discussion and to help usher in the next era of digitization for pathologists by providing desperately needed and long-awaited automation.
Shufelt, Chrisandra; Johnson, B. Delia; Berga, Sarah L.; Braunstein, Glenn D.; Reis, Steven E.; Bittner, Vera; Yang, YuChing; Pepine, Carl J.; Sharaf, Barry L.; Sopko, George; Kelsey, Sheryl F.; Merz, C. Noel Bairey
2011-01-01
Objective To assess the relationship of timing of hormone therapy (HT) use with angiographic coronary artery disease (CAD) and cardiovascular disease (CVD) events in women with natural versus surgical menopause. Methods We studied 654 postmenopausal women undergoing coronary angiography for evaluation of suspected ischemia. Timing and type of menopause, HT use, and quantitative angiographic evaluations were obtained at baseline, and the women were followed for a median of 6 years for CVD events. Results Ever users of HT had a significantly lower prevalence of obstructive CAD compared to never users (age-adjusted OR=0.41 [0.28, 0.60]). Naturally menopausal women initiating HT at age <55 years had lower CAD severity compared to never users (age-adjusted beta [SE] = −6.23 [1.50], p<0.0001) while those initiating HT age ≥55 years did not differ statistically from never users (−3.34 [2.13], p=0.12). HT use remained a significant predictor of obstructive CAD when adjusting for a “healthy user” model OR 0.44 [0.30, 0.73] (p=0.002). An association between HT and fewer CVD events was observed only in the natural menopause group (HR [95%CI] = 0.60[0.41, 0.88], p=0.009) but became non-significant when adjusting for presence or severity of obstructive CAD. Conclusions Using quantitative measurements of timing and type of menopause and HT use, earlier initiation of HT was associated with less angiographic CAD in women with natural but not surgical menopause. Our data suggest that the effect of HT use on reduced cardiovascular event rates is mediated by the presence or absence of angiographic obstructive atherosclerosis. PMID:21532511
Shufelt, Chrisandra L; Johnson, B Delia; Berga, Sarah L; Braunstein, Glenn D; Reis, Steven E; Bittner, Vera; Yang, YuChing; Pepine, Carl J; Sharaf, Barry L; Sopko, George; Kelsey, Sheryl F; Merz, C Noel Bairey
2011-09-01
The aim of this study was to assess the relationship of the timing of hormone therapy (HT) use with angiographic coronary artery disease (CAD) and cardiovascular disease (CVD) events in women with natural versus surgical menopause. We studied 654 postmenopausal women undergoing coronary angiography for the evaluation of suspected ischemia. Timing and type of menopause, HT use, and quantitative angiographic evaluations were obtained at baseline, and the women were followed for a median of 6 years for CVD events. Ever users of HT had a significantly lower prevalence of obstructive CAD compared with never users (age-adjusted odds ratio, 0.41 [0.28-0.60]). Women with natural menopause initiating HT before age 55 years had lower CAD severity compared with never users (age-adjusted β [SE] = -6.23 [1.50], P < 0.0001), whereas those initiating HT at age 55 years or more did not differ statistically from never users (-3.34 [2.13], P = 0.12). HT use remained a significant predictor of obstructive CAD when adjusted for a "healthy user" model (odds ratio, 0.44 [0.30-0.73]; P = 0.002). An association between HT and fewer CVD events was observed only in the natural menopause group (hazard ratio [95% CI], 0.60 [0.41-0.88]; P = 0.009) but became nonsignificant when adjusted for the presence or severity of obstructive CAD. Using the quantitative measurements of the timing and type of menopause and HT use, earlier initiation of HT was associated with less angiographic CAD in women with natural but not surgical menopause. Our data suggest that the effect of HT use on reduced cardiovascular event rates is mediated by the presence or absence of angiographic obstructive atherosclerosis.
Ozawa, Daisuke; Suzuki, Yasunori; Kawamura, Noboru; Ohkubo, Chikahiro
2015-04-01
A crown restoration engaged by a clasp as an abutment tooth for a removable partial denture (RPD) occasionally might be removed and eliminated due to secondary caries or apical lesions. However, if the RPD is clinically acceptable without any problems and refabricating the RPD is not recommended, the new crown must be made to retrofit to the existing clasp of the RPD. This in vitro study evaluated the conventional and CAD/CAM procedures for retrofitting crown restorations to the existing clasps by measuring the fitness accuracy and the retentive forces. The crown restoration on #44 was fabricated with CP titanium and zirconium on the plaster model with #45 and #46 teeth missing to retrofit to the existing clasp using conventional thin coping and CAD/CAM procedures. The gap distance between the clasp (tip, shoulder, and rest regions) and the fabricated crown was measured using silicone impression material. The retentive force of the clasp was also measured, using an autograph at a crosshead speed of 50mm/min. The obtained data were analyzed by one-way ANOVA/Tukey's multiple comparison test (α=0.05). The CAD/CAM procedure caused significantly smaller gap distances in all of the clasp regions, as compared to the conventional procedure (p<0.05). The retentive force of the CAD/CAM crown was significantly higher than for the conventional one (p<0.05). When a crown restoration must be remade to retrofit an existing clasp, CAD/CAM fabrication can be recommended so that both appropriate fitness and retentive force are obtained. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Snow, Thomas M; Ludman, Peter; Banya, Winston; DeBelder, Mark; MacCarthy, Philip M; Davies, Simon W; Di Mario, Carlo; Moat, Neil E
2015-11-15
The management and impact of concomitant coronary artery disease in patients referred for TAVI remains contentious. We describe the prevalence, clinical impact and management of coronary artery disease (CAD) in patients in the United Kingdom TAVI Registry. All-inclusive study of patients undergoing TAVI in the United Kingdom (excluding Northern Ireland) from January 2007 to December 2011. Coronary artery disease at the time of TAVI was demonstrated on invasive angiography. 2588 consecutive patients were entered in the U.K. TAVI Registry. CAD was reported in 1171 pts with left main stem involvement in 12.4% of this cohort (n=145). Most patients were free of chest pain, but limited by dyspnoea (NYHA Class III & IV 81.9%). Angina was however more prevalent in those patients with CAD (p<0.0001). Hybrid PCI was uncommon, performed in only 14.7% of the CAD cohort (n=172). Survival at 30days, 1year, and 4years was 93.7%, 81.4% and 72.0% respectively. Adjusting for confounders in a multivariate model the presence and extent of CAD was not associated with early (30-days, p=0.36) or late (4years, p=0.10) survival. This contemporary study of coronary artery disease management in an "all-comers" patient population undergoing TAVI demonstrates that whilst often an indicator of significant underlying comorbidity coronary artery disease is not associated with decreased short or long-term survival. The majority of patients with aortic stenosis and concomitant CAD can be managed effectively by TAVI alone. However, the importance of the Heart Team in making decisions on individual patients must not be underestimated. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
de Miranda, E J F Peixoto; Bittencourt, M S; Staniak, H L; Sharovsky, R; Pereira, A C; Foppa, M; Santos, I S; Lotufo, P A; Benseñor, I M
2018-03-15
Data on the association between subclinical thyroid dysfunction and coronary artery disease (CAD) is scarce. We aimed to analyze the association between thyroid function and CAD using baseline data from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). We included subjects with normal thyroid function (0.4-4.0 mIU/L, and normal free thyroxine, FT4, or 0.8 to 1.9 ng/dL), subclinical hypothyroidism (SCHypo; TSH>4.0 mIU/L and normal FT4), and subclinical hyperthyroidism (SCHyper; TSH<0.4 mIU/L and normal FT4) evaluated by coronary computed tomography angiography. We excluded individuals using medications that interfere in thyroid function or with past medical history of cardiovascular disease. Logistic regression models evaluated the presence of CAD, segment involvement score (SIS) >4, and segment severity score (SSS) >4 of coronary arteries as the dependent variables, and quintiles of TSH and FT4 as the independent variables, adjusted for demographical data and cardiovascular risk factors. We included 767 subjects, median age 58 years (IQR=55-63), 378 (49.3%) women, 697 euthyroid (90.9%), 57 (7.4%) with SCHypo, and 13 (1.7%) with SCHyper. No association between TSH and FT4 quintiles and CAD prevalence was noted. Similarly, no association between TSH levels and the extent or severity of CAD, represented by SIS>4 and SSS>4 were seen. Restricting analysis to euthyroid subjects did not alter the results. TSH levels were not significantly associated with the presence, extent, or severity of CAD in a middle-aged healthy population.
Prolonged survival of reconstituted skin grafts without immunosuppression.
Sasamoto, Y; Alexander, J W; Babcock, G F
1990-01-01
Reconstituted skin composed of a cultured allogeneic epithelial sheet (CAES) and a cultured allogeneic dermis (CAD) was evaluated in a rat model to determine whether it could survive for a prolonged period without immunosuppression. Additionally, free CAD grafts were evaluated for their suitability as dermal substitutes. Male Buffalo rats were used as donors and male Lewis rats as recipients. Split-thickness skin obtained from Buffalo rats was separated into epidermis and dermis by means of Dispase II enzyme. The epidermal layers were minced and trypsinized. Then dispersed single keratinocytes were inoculated onto a irradiated 3T3 cell feeder layer. After a suitable period, a confluent cultured keratinocyte layer was detached and provided CAES grafts. Cultured allogeneic dermis grafts were prepared from cultures of the dermal component. Cultured allogeneic dermis grafts, covered by split thickness isografts (STIG) or local skin flaps, became revascularized at a rate of 94.6% and 90.9%, respectively, 7 days after grafting. However, only 25% of CAD grafts covered by synthetic materials became vascularized. Four types of wound coverage were compared including: (1) CAES grafts, (2) CAES over CAD grafts, (3) split-thickness isografts, and (4) STIG over CAD grafts. In groups 2 and 4, CAD grafts were applied 7 days before CAES grafts or STIG. Grafts of groups 1 and 2 were successful in only 36.7% and 31.1% of the animals and resulted in a high rate of wound contracture--72.4%, 66.7%, respectively. On the other hand, in groups 3 and 4, higher average rates of revascularization (92.0% and 88.3%) and lower rates of wound contracture (25.4% and 24.2%) were obtained.(ABSTRACT TRUNCATED AT 250 WORDS)
Rai, Himanshu; Sinha, Nakul; Finn, James; Agrawal, Suraksha; Mastana, Sarabjit
2016-01-01
Abstract Genetic variants are considered as one of the main determinants of the concentration of serum lipids and coronary artery disease (CAD). Polymorphisms in the Apolipoprotein (Apo) AI-CIII-AIV gene cluster has been known to affect the concentrations of various lipid sub-fractions and the risk of CAD. The present study assessed associations between polymorphisms of the Apo AI-CIII-AIV gene cluster, [ApoA-I,-75G > A, (rs1799837); ApoC-III 3238C > G, (SstI), (rs5128) and ApoA-IV, Thr347Ser(347A > T), (rs675)] with serum lipids and their contributions to CAD in North Indian population. We recruited age, sex matched, 200 CAD patients and 200 healthy controls and tested them for fasting levels of serum lipids. We genotyped selected polymorphisms using polymerase chain reaction-restriction fragment length polymorphism. There were no statistically significant association of selected polymorphisms (or their combinations) with CAD even after employing additive, dominant and recessive models. However there was significant association of selected polymorphisms with various lipid traits amongst the control cohort (p < 0.05). Mean levels of high density lipoprotein cholesterol and triglycerides were found to be significantly higher among controls carrying at least one mutant allele at ApoA1-75G > A (p = 0.019) and ApoCIII SstI (p < 0.001) polymorphism respectively. Our study observed that the selected polymorphisms in the ApoAI-CIII-AIV gene cluster although significantly affect various lipid traits but this affect does not seem to translate into association with CAD, at least among North Indian population. PMID:28261635
Kijima, Kumiko; Mita, Hajime; Kawakami, Mitsuyasu; Amada, Kei
2018-02-02
In the present study, we confirm that 2,4-dichlorophenoxyacetic acid (2,4-D) oxygenase from Sphingomonas agrestis 58-1 belongs to the family of Rieske non-heme iron aromatic ring-hydroxylating oxygenases, which comprise a core enzyme (oxygenase), ferredoxin, and oxidoreductase. It has previously been shown that cadAB genes are necessary for the conversion of 2,4-D to 2,4-dichlorophenol; however, the respective roles of ferredoxin and oxidoreductase in the 2,4-D oxygenase system from S. agrestis 58-1 remain unknown. Using nucleotide sequence analysis of the plasmid pCADAB1 from Sphingomonas sp. ERG5, which degrades 4-chloro-2-methylphenoxyacetic acid and 2,4-D, Nielsen et al. identified orf95, upstream of cadA, and orf98, downstream of cadB, which were predicted and designated as cadD (oxidoreductase) and cadC (ferredoxin), respectively (Nielsen et al., PLoS One, 8, 1-9, 2013). These designations were the result of sequence analysis; therefore, we constructed an expression system of CadABC and CadABCD in Escherichia coli and assayed their enzyme activities. Our findings indicate that CadC is essential for the activity of 2,4-D oxygenase and CadD promotes CadABC activity in recombinant E. coli cells. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Nonlinear features for classification and pose estimation of machined parts from single views
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1998-10-01
A new nonlinear feature extraction method is presented for classification and pose estimation of objects from single views. The feature extraction method is called the maximum representation and discrimination feature (MRDF) method. The nonlinear MRDF transformations to use are obtained in closed form, and offer significant advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We consider MRDFs on image data, provide a new 2-stage nonlinear MRDF solution, and show it specializes to well-known linear and nonlinear image processing transforms under certain conditions. We show the use of MRDF in estimating the class and pose of images of rendered solid CAD models of machine parts from single views using a feature-space trajectory neural network classifier. We show new results with better classification and pose estimation accuracy than are achieved by standard principal component analysis and Fukunaga-Koontz feature extraction methods.
ISS-CREAM Thermal and Fluid System Design and Analysis
NASA Technical Reports Server (NTRS)
Thorpe, Rosemary S.
2015-01-01
Thermal and Fluids Analysis Workshop (TFAWS), Silver Spring MD NCTS 21070-15. The ISS-CREAM (Cosmic Ray Energetics And Mass for the International Space Station) payload is being developed by an international team and will provide significant cosmic ray characterization over a long time frame. Cold fluid provided by the ISS Exposed Facility (EF) is the primary means of cooling for 5 science instruments and over 7 electronics boxes. Thermal fluid integrated design and analysis was performed for CREAM using a Thermal Desktop model. This presentation will provide some specific design and modeling examples from the fluid cooling system, complex SCD (Silicon Charge Detector) and calorimeter hardware, and integrated payload and ISS level modeling. Features of Thermal Desktop such as CAD simplification, meshing of complex hardware, External References (Xrefs), and FloCAD modeling will be discussed.
Association of rs662799 in APOA5 with CAD in Chinese Han population.
Chen, Hua; Ding, Shifang; Zhou, Mi; Wu, Xiayin; Liu, Xi; Wu, Yun; Liu, Dechao
2018-01-08
CAD (Coronary Artery Disease) is a complex disease that influenced by various environmental and genetic factors. Previous studies have found many single nucleotide polymorphisms (SNPs) associated with the risk of CAD occurrence. However, the results are inconsistent. In this study, we aim to investigate genetic etiology in Chinese Han population by analysis of 7 SNPs in lipid metabolism pathway that previously has been reported to be associated with CAD. A total of 631 samples were used in this study, including 435 CAD cases and 196 normal healthy controls. SNP genotyping were conducted via multiplex PCR amplifying followed by NGS (next-generation sequencing). Rs662799 in APOA5 (Apolipoprotein A5) gene was associated with CAD in Chinese Han population (Odds-ratio = 1.374, P-value = 0.03). No significant association was observed between the rest of SNPs and CAD. Stratified association analysis revealed rs5882 was associated with CAD in non-hypertension group (Odds-ratio = 1.593, P-value = 0.023). Rs1800588 was associated with CAD in smoking group (Odds-ratio = 1.603, P-value = 0.035). The minor allele of rs662799 was the risk factor of CAD occurrences in Chinese Han population.
Brain volume and cognitive function in patients with revascularized coronary artery disease.
Ottens, Thomas H; Hendrikse, Jeroen; Nathoe, Hendrik M; Biessels, Geert Jan; van Dijk, Diederik
2017-03-01
The pathogenesis of cognitive dysfunction in patients with CAD remains unclear. CAD is associated with brain atrophy and specific lesions. Detailed knowledge about the association of brain volume measured with MRI, and cognitive function in patients with CAD is lacking. We therefore investigated brain volume and cognitive function in patients with revascularized coronary artery disease (CAD), and controls without CAD. Brain MRI scans and cognitive tests from patients with CAD were compared with data from control subjects without CAD. Cognitive performance was assessed with the Rey Auditory Verbal Learning (short term memory) and Trailmaking (divided attention) tests. Multivariable regression analysis was used to study associations between CAD, brain volume and cognitive function. A total of 102 patients with CAD and 48 control subjects were included. Level of education and age were comparable between the groups. Compared with controls, patients with CAD had smaller total brain volume (expressed as fraction of intracranial volume) [%ICV, mean (SD), 0.78 (0.03) vs 0.80 (0.02), P=0.001] and larger volume of non-ventricular cerebrospinal fluid [%ICV, median (IQR) 0.19 (0.18 to 0.21) vs 0.18 (0.17 to 0.20), P=0.001]. Patients in the CAD group had poorer cognitive function [mean (SD) Z-score -0.16 (0.72) vs 0.41 (0.69), P<0.01]. Multivariable regression showed that CAD, higher age, lower level of education and greater cerebrospinal fluid volume were independent predictors of poorer cognitive function. CAD patients had a smaller total brain volume and poorer cognitive function than controls. Greater volume of cerebrospinal fluid was an independent predictor of poorer cognitive function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ortaç Ersoy, Ebru; Fırat, Hikmet; Akaydın, Sevgi; Özkan, Yeşim; Durusu, Mine; Darılmaz Yüce, Gülbahar; Ergün, Recai; Topeli, Arzu; Ardıç, Sadık
2014-01-01
Obstructive sleep apnea (OSA) is associated with cardiovascular morbidity and mortality. Deficiency of nitric oxide (NO) and plasma levels of homocystein have been implicated in the pathogenesis of cardiovascular disease. OSA results in oxygen desaturation and arousal from sleep. Free oxygen radicals can be produced by hypoxia-reoxygenation. To test for the hypothesis that OSA is associated with cardiovascular morbidity, we investigated levels of homocystein, NO and total antioxidant capacity in OSA patients with and without coronary artery disease (CAD) in comparison with normal subjects and patients with CAD without OSA. Polysomnography was performed in 27 patients who had a myocardial infarction and in 25 patients without evidence of CAD. Patients were grouped according their polysomnography results as OSA with CAD (group 1), OSA without CAD (group 2), CAD (group 3), and normal (group 4) . Levels of homocystein, NO and total antioxidant capacity were determined after an overnight fasting. Data were analysed with parametric and non parametric statistical tests. According to apnea-hypopnea index (AHI) 44.4% of CAD patients were OSA. After polysomnographic evaluation, the patients were re-distributed as follows: OSA with CAD (n= 12), OSA without CAD (n= 14), CAD (n= 15), and normal (n= 11). Homocystein levels were higher in 3 groups compared to controls. AHI, MDI and desaturation time was higher in three -vessel disease compared to one and two- vessel diseases (p< 0.05). NO levels were correlated with the period of oxygen desaturation (r: -0.45, p= 0.031). The antioxidant capacity did not differ between OSA and healthy groups. OSA is frequent in CAD. AHI, MDI and desaturation time are higher in patients with severe CAD. It is important to evaluate OSA patients for CAD.
Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns
ABDULLAH, Adil Othman; TSITROU, Effrosyni A; POLLINGTON, Sarah
2016-01-01
ABSTRACT Objective This study compared the marginal gap, internal fit, fracture strength, and mode of fracture of CAD/CAM provisional crowns with that of direct provisional crowns. Material and Methods An upper right first premolar phantom tooth was prepared for full ceramic crown following tooth preparation guidelines. The materials tested were: VITA CAD-Temp®, Polyetheretherketone “PEEK”, Telio CAD-Temp, and Protemp™4 (control group). The crowns were divided into four groups (n=10), Group1: VITA CAD-Temp®, Group 2: PEEK, Group 3: Telio CAD-Temp, and Group 4: Protemp™4. Each crown was investigated for marginal and internal fit, fracture strength, and mode of fracture. Statistical analysis was performed using GraphPad Prism software version 6.0. Results The average marginal gap was: VITA CAD-Temp® 60.61 (±9.99) µm, PEEK 46.75 (±8.26) µm, Telio CAD-Temp 56.10 (±5.65) µm, and Protemp™4 193.07(±35.96) µm (P<0.001). The average internal fit was: VITA CAD-Temp® 124.94 (±22.96) µm, PEEK 113.14 (±23.55) µm, Telio CAD-Temp 110.95 (±11.64) µm, and Protemp™4 143.48(±26.74) µm. The average fracture strength was: VITA CAD-Temp® 361.01 (±21.61) N, PEEK 802.23 (±111.29) N, Telio CAD-Temp 719.24 (±95.17) N, and Protemp™4 416.40 (±69.14) N. One-way ANOVA test showed a statistically significant difference for marginal gap, internal gap, and fracture strength between all groups (p<0.001). However, the mode of fracture showed no differences between the groups (p>0.05). Conclusions CAD/CAM fabricated provisional crowns demonstrated superior fit and better strength than direct provisional crowns. PMID:27383707
Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns.
Abdullah, Adil Othman; Tsitrou, Effrosyni A; Pollington, Sarah
2016-01-01
This study compared the marginal gap, internal fit, fracture strength, and mode of fracture of CAD/CAM provisional crowns with that of direct provisional crowns. An upper right first premolar phantom tooth was prepared for full ceramic crown following tooth preparation guidelines. The materials tested were: VITA CAD-Temp®, Polyetheretherketone "PEEK", Telio CAD-Temp, and Protemp™4 (control group). The crowns were divided into four groups (n=10), Group1: VITA CAD-Temp®, Group 2: PEEK, Group 3: Telio CAD-Temp, and Group 4: Protemp™4. Each crown was investigated for marginal and internal fit, fracture strength, and mode of fracture. Statistical analysis was performed using GraphPad Prism software version 6.0. The average marginal gap was: VITA CAD-Temp® 60.61 (±9.99) µm, PEEK 46.75 (±8.26) µm, Telio CAD-Temp 56.10 (±5.65) µm, and Protemp™4 193.07(±35.96) µm (P<0.001). The average internal fit was: VITA CAD-Temp® 124.94 (±22.96) µm, PEEK 113.14 (±23.55) µm, Telio CAD-Temp 110.95 (±11.64) µm, and Protemp™4 143.48(±26.74) µm. The average fracture strength was: VITA CAD-Temp® 361.01 (±21.61) N, PEEK 802.23 (±111.29) N, Telio CAD-Temp 719.24 (±95.17) N, and Protemp™4 416.40 (±69.14) N. One-way ANOVA test showed a statistically significant difference for marginal gap, internal gap, and fracture strength between all groups (p<0.001). However, the mode of fracture showed no differences between the groups (p>0.05). CAD/CAM fabricated provisional crowns demonstrated superior fit and better strength than direct provisional crowns.
Kaur, Harleen; Shaker, Kamel; Heinzel, Nicolas; Ralph, John; Gális, Ivan; Baldwin, Ian T
2012-08-01
The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants.
Kaur, Harleen; Shaker, Kamel; Heinzel, Nicolas; Ralph, John; Gális, Ivan; Baldwin, Ian T.
2012-01-01
The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants. PMID:22645069
Schultheis, Stefan; Strub, Joerg R; Gerds, Thomas A; Guess, Petra C
2013-06-01
The authors analyzed the effect of fatigue on the survival rate and fracture load of monolithic and bi-layer CAD/CAM lithium-disilicate posterior three-unit fixed dental prostheses (FDPs) in comparison to the metal-ceramic gold standard. The authors divided 96 human premolars and molars into three equal groups. Lithium-disilicate ceramic (IPS-e.max-CAD) was milled with the CEREC-3-system in full-anatomic FDP dimensions (monolithic: M-LiCAD) or as framework (Bi-layer: BL-LiCAD) with subsequent hand-layer veneering. Metal-ceramic FDPs (MC) served as control. Single-load-to-failure tests were performed before and after mouth-motion fatigue. No fracture failures occurred during fatigue. Median fracture loads in [N], before and after fatigue were, respectively, as follows: M-LiCAD, 1,298/1,900; BL-LiCAD, 817/699; MC, 1,966/1,818. M-LiCAD and MC FPDs revealed comparable fracture loads and were both significantly higher than BL-LiCAD. M-LiCAD and BL-LiCAD both failed from core/veneer bulk fracture within the connector area. MC failures were limited to ceramic veneer fractures exposing the metal core. Fatigue had no significant effect on any group. Posterior monolithic CAD/CAM fabricated lithium-disilicate FPDs were shown to be fracture resistant with failure load results comparable to the metal-ceramic gold standard. Clinical investigations are needed to confirm these promising laboratory results. Monolithic CAD/CAM fabricated lithium-disilicate FDPs appeared to be a reliable treatment alternative for the posterior load-bearing area, whereas FDPs in bi-layer configuration were susceptible to low load fracture failure.
Han, Yaling; Chen, Jiyan; Qiu, Miaohan; Li, Yi; Li, Jing; Feng, Yingqing; Qiu, Jian; Meng, Liang; Sun, Yihong; Tao, Guizhou; Wu, Zhaohui; Yang, Chunyu; Guo, Jincheng; Pu, Kui; Chen, Shaoliang; Wang, Xiaozeng
2018-06-05
The prognosis of patients with coronary artery disease (CAD) at hospital discharge was constantly varying, and post-discharge risk of ischemic events remain a concern. However, risk prediction tools to identify risk of ischemia for these patients has not yet been reported. We sought to develop a scoring system for predicting long-term ischemic events in CAD patients receiving antiplatelet therapy that would be beneficial in appropriate personalized decision-making for these patients. In this prospective Optimal antiPlatelet Therapy for Chinese patients with Coronary Artery Disease (OPT-CAD, NCT01735305) registry, a total of 14,032 patients with CAD receiving at least one kind of antiplatelet agent were enrolled from 107 centers across China, from January 2012 to March 2014. The risk scoring system was developed in a derivation cohort (enrolled initially 10,000 patients in the database) using a logistic regression model and was subsequently tested in a validation cohort (the last 4,032 patients). Points in risk score was assigned based on the multivariable odds ratio of each factor. Ischemic events were defined as the composite of cardiac death, myocardial infarction or stroke. Ischemic events occurred in 342 (3.4%) patients in the derivation cohort and 160 (4.0%) patients in the validation cohort during 1-year follow-up. The OPT-CAD score, ranging from 0-257 points, consist of 10 independent risk factors, including age (0-71 points), heart rates (0-36 points), hypertension (0-20 points), prior myocardial infarction (16 points), prior stroke (16 points), renal insufficient (21 points), anemia (19 points), low ejection fraction (22 points), positive cardiac troponin (23 points) and ST-segment deviation (13 points). In predicting 1-year ischemic events, the area under receiver operating characteristics curve were 0.73 and 0.72 in derivation and validation cohort, respectively. The incidences of ischemic events in low- (0-90 points), medium- (91-150 points) and high-risk (≥151 points) patients were 1.6%, 5.5%, and 15.0%, respectively. Compared to GRACE score, OPT-CAD score had a better discrimination in predicting ischemic events and all-cause mortality (ischemic events: 0.72 vs 0.65, all-cause mortality: 0.79 vs 0.72, both P<0.001). Among CAD patients, a risk score based on 10 baseline clinical variables performed better than the GRACE risk score in predicting long-term ischemic events. However, further research is needed to assess the value of the OPT-CAD score in guiding the management of antiplatelet therapy for patients with CAD. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Zhang, Li; Wu, Wei-Chun; Ma, Hong; Wang, Hao
2016-11-15
Layer-specific strain allows the assessment of the function of every layer of myocardium. To evaluate the changes of non-ST-segment elevation acute coronary syndrome(NSTE-ACS) patients with and without complex coronary artery disease(CAD) by layer-specific strain and determine if myocardial strain can identify complex CAD and assess the severity of coronary lesions as defined by Syntax score (SS). A total of 139 patients undergoing coronary angiography due to suspected NSTE-ACS were prospectively enrolled. Echocardiography was performed 1h before angiography. Global longitudinal strain (GLS), territorial longitudinal strain (TLS), global circumferential strain (GCS) and territorial circumferential strain (TCS) of the three layers of LV wall were assessed by two-dimensional (2D) speckle tracking echocardiography (STE) with layer-specific myocardial deformation quantitative analysis based on the perfusion territories of the three major coronary arteries in an 18-segment model of LV. SS was used for predicting the severity of coronary lesions in patients with complex CAD. 78 had complex CAD, 32 had 1- or 2-vessel disease and 29 had no significant coronary stenosis confirmed by coronary angiography. According to SS value, 78 complex CAD subjects were subdivided into three groups, 24 in group SS 1 (SS≤22), 26 in group SS 2 (SS 23-32) and 28 in group SS 3 (SS≥33). Compared to the other two groups without complex CAD, patients with NSTE-ACS due to complex CAD had worse function in all 3 myocardial layers assessed by GLS, TLS, GCS and TCS. Endocardial GLS and TLS (all, P<0.01) were most affected. The absolute differences between endocardial and epicardial GLS and TLS were lower in magnitude in patients with complex CAD than in those without (all, P<0.001), and the more complex of coronary lesion, the lower magnitude of the parameters(all, P<0.001). Endocardial GLS and TLS were closely correlated with SS value(r=-0.751 and r=-0.753, respectively; P<0.001). By receiver-operating characteristic curve analysis, endocardial GLS and TLS demonstrated the highest area under curve, showing better diagnostic accuracy (endocardial GLS: value<-21.35% had 72% sensitivity, 84% specificity and area under the curve ¼0.846; endocardial TLS: value<-20.15% had 72% sensitivity, 88% specificity and area under the curve ¼0.852) than GCS, TCS, mid-myocardial and epicardial GLS, and TLS(all, P<0.05). Strains, particularly endocardial GLS and TLS measurement by 2DSTE might enable a non-invasive method to identify complex CAD and predict the severity of coronary lesions in patients with NSTE-ACS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
1st Order Modeling of a SAW Delay Line using MathCAD(Registered)
NASA Technical Reports Server (NTRS)
Wilson, William C.; Atkinson, Gary M.
2007-01-01
To aid in the development of SAW sensors for Integrated Vehicle Health Monitoring applications, a first order model of a SAW Delay line has been created using MathCadA. The model implements the Impulse Response method to calculate the frequency response, impedance, and insertion loss. This paper presents the model and the results from the model for a SAW delay line design. Integrated Vehicle Health Monitoring (IVHM) of aerospace vehicles requires rugged sensors having reduced volume, mass, and power that can be used to measure a variety of phenomena. Wireless systems are preferred when retro-fitting sensors onto existing vehicles [1]. Surface Acoustic Wave (SAW) devices are capable of sensing: temperature, pressure, strain, chemical species, mass loading, acceleration, and shear stress. SAW technology is low cost, rugged, lightweight, and extremely low power. Passive wireless sensors have been developed using SAW technology. For these reasons new SAW sensors are being investigated for aerospace applications.
[Establishment of database with standard 3D tooth crowns based on 3DS MAX].
Cheng, Xiaosheng; An, Tao; Liao, Wenhe; Dai, Ning; Yu, Qing; Lu, Peijun
2009-08-01
The database with standard 3D tooth crowns has laid the groundwork for dental CAD/CAM system. In this paper, we design the standard tooth crowns in 3DS MAX 9.0 and create a database with these models successfully. Firstly, some key lines are collected from standard tooth pictures. Then we use 3DS MAX 9.0 to design the digital tooth model based on these lines. During the design process, it is important to refer to the standard plaster tooth model. After some tests, the standard tooth models designed with this method are accurate and adaptable; furthermore, it is very easy to perform some operations on the models such as deforming and translating. This method provides a new idea to build the database with standard 3D tooth crowns and a basis for dental CAD/CAM system.
Cost-effectiveness of Lung Cancer Screening in Canada.
Goffin, John R; Flanagan, William M; Miller, Anthony B; Fitzgerald, Natalie R; Memon, Saima; Wolfson, Michael C; Evans, William K
2015-09-01
The US National Lung Screening Trial supports screening for lung cancer among smokers using low-dose computed tomographic (LDCT) scans. The cost-effectiveness of screening in a publically funded health care system remains a concern. To assess the cost-effectiveness of LDCT scan screening for lung cancer within the Canadian health care system. The Cancer Risk Management Model (CRMM) simulated individual lives within the Canadian population from 2014 to 2034, incorporating cancer risk, disease management, outcome, and cost data. Smokers and former smokers eligible for lung cancer screening (30 pack-year smoking history, ages 55-74 years, for the reference scenario) were modeled, and performance parameters were calibrated to the National Lung Screening Trial (NLST). The reference screening scenario assumes annual scans to age 75 years, 60% participation by 10 years, 70% adherence to screening, and unchanged smoking rates. The CRMM outputs are aggregated, and costs (2008 Canadian dollars) and life-years are discounted 3% annually. The incremental cost-effectiveness ratio. Compared with no screening, the reference scenario saved 51,000 quality-adjusted life-years (QALY) and had an incremental cost-effectiveness ratio of CaD $52,000/QALY. If smoking history is modeled for 20 or 40 pack-years, incremental cost-effectiveness ratios of CaD $62,000 and CaD $43,000/QALY, respectively, were generated. Changes in participation rates altered life years saved but not the incremental cost-effectiveness ratio, while the incremental cost-effectiveness ratio is sensitive to changes in adherence. An adjunct smoking cessation program improving the quit rate by 22.5% improves the incremental cost-effectiveness ratio to CaD $24,000/QALY. Lung cancer screening with LDCT appears cost-effective in the publicly funded Canadian health care system. An adjunct smoking cessation program has the potential to improve outcomes.
An integrated CAD/CAM/robotic milling method for custom cementless femoral prostheses.
Wen-ming, Xi; Ai-min, Wang; Qi, Wu; Chang-hua, Liu; Jian-fei, Zhu; Fang-fang, Xia
2015-09-01
Aseptic loosening is the primary cause of cementless femoral prosthesis failure and is related to the primary stability of the cementless femoral prosthesis in the femoral cavity. The primary stability affects both the osseointegration and the long-term stability of cementless femoral prostheses. A custom cementless femoral prosthesis can improve the fit and fill of the prosthesis in the femoral cavity and decrease the micromotion of the proximal prosthesis such that the primary stability of the custom prosthesis can be improved, and osseointegration of the proximal prosthesis is achieved. These results will help to achieve long-term stability in total hip arthroplasty (THA). In this paper, we introduce an integrated CAD/CAM/robotic method of milling custom cementless femoral prostheses. The 3D reconstruction model uses femoral CT images and 3D design software to design a CAD model of the custom prosthesis. After the transformation matrices between two units of the robotic system are calibrated, consistency between the CAM software and the robotic system can be achieved, and errors in the robotic milling can be limited. According to the CAD model of the custom prosthesis, the positions of the robotic tool points are produced by the CAM software of the CNC machine. The normal vector of the three adjacent robotic tool point positions determines the pose of the robotic tool point. In conclusion, the fit rate of custom pig femur stems in the femoral cavities was 90.84%. After custom femoral prostheses were inserted into the femoral cavities, the maximum gaps between the prostheses and the cavities measured less than 1 mm at the diaphysis and 1.3 mm at the metaphysis. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Kumpatla, Satyavani; Karuppiah, Kirubakaran; Immaneni, Sathyamurthy; Muthukumaran, Parthiban; Krishnan, Jayanthi; Narayanamoorthy, Srinivasan Kanthallu; Viswanathan, Vijay
2014-01-01
Background & objectives: The association between adiponectin and risk of cardiovascular disease is well known. The aim of the present study was to evaluate adiponectin and certain inflammatory markers and to determine the correlations between them in angiographically proven coronary artery disease (CAD) in subjects with and without diabetes. Methods: A total of 180 subjects who underwent coronary angiography for symptoms suggestive of CAD were categorised into groups based on their diabetes and/or CAD status: group1 (non-diabetic non-CAD); group2 (non-diabetic CAD); group3 (diabetic non-CAD) and group4 (diabetic CAD). Adiponectin, tumour necrosis factor α (TNF-α) and soluble form of E-selectin (sE-selectin) were estimated using quantitative sandwich enzyme immunoassay and high sensitive C-reactive protein (hsCRP) by particle enhanced immunoturbidimetric method. Results: Adiponectin levels were significantly lower in subjects with either diabetes or CAD and were much lower in subjects who had both. hsCRP was elevated in CAD and diabetes but did not differ significantly between groups. sE-selectin and TNF-α levels were elevated in CAD. Adiponectin negatively correlated with age, glucose, sE-selectin, total and LDL cholesterol. hsCRP correlated with BMI, sE-selectin and urea. sE-selectin correlated with BMI, triglycerides and VLDL cholesterol, whereas TNF-α correlated with fasting plasma glucose. In the logistic regression analysis, adiponectin had a significant inverse association with CAD. sE-selectin and TNF-α also showed significant independent association with CAD. Interpretation & conclusions: Adiponectin and other inflammatory markers such as sE-selectin and TNF-α showed a significant association with CAD. Hence, early assessment of such markers can help to identify high risk patients, and to reduce the inflammatory component of diabetes and CAD. PMID:25109718
Hirata, Yoshihiro; Yamamoto, Eiichiro; Tokitsu, Takanori; Kusaka, Hiroaki; Fujisue, Koichiro; Kurokawa, Hirofumi; Sugamura, Koichi; Maeda, Hirofumi; Tsujita, Kenichi; Kaikita, Koichi; Hokimoto, Seiji; Sugiyama, Seigo; Ogawa, Hisao
2015-01-01
Background Reactive oxygen species (ROS) are associated with development of coronary artery disease (CAD). However, there's no useful biomarker of ROS in CAD. Methods and Results We recruited 395 consecutive CAD patients who were performed coronary angiography (262 male and 133 female, age 70.2±10), and we measured serum derivatives of reactive oxidative metabolites (DROM) were measured. Two hundred twenty‐seven non‐CAD patients were also enrolled. We performed follow‐up study in these 395 CAD patients and case‐control study after risk factor and 1:1 pair matching (both, n=163). As subgroup analysis, DROM were also measured at the aortic root and the coronary sinus in 59 CAD patients. DROM were significantly higher in CAD patients (n=163, median [inter‐quartile range, IQR]=338 [302 to 386]) than in risk factor‐matched non‐CAD patients (n=163, 311 [282 to 352.5], effect size=0.33, P<0.001). During a mean follow‐up period of 20 months of 395 CAD patients, 83 cardiovascular events were recorded. Kaplan‐Meier analysis showed a higher probability of cardiovascular events in the high‐DROM group (>346 U.CARR) than in the low‐DROM group (≤346 U.CARR) (P=0.001 [log‐rank test]). Multivariate Cox hazard analysis identified ln‐DROM as an independent predictor for cardiovascular events (hazard ratio: 10.8, 95% confidence interval: 2.76 to 42.4, P=0.001). The transcardiac gradient of DROM was significantly higher in CAD patients than in non‐CAD patients (−2.0 [−9.0 to 9.0] versus 8 [−8.0 to 28.3], effect size=0.21, P=0.04), indicating that DROM production in coronary circulation is associated with development of CAD. Conclusion DROM are increased in CAD patients and associated with future cardiovascular events. DROM might provide clinical benefits for risk stratification of CAD. Clinical Trial Registration URL: http://www.umin.ac.jp/ctr/. Unique identifier: UMIN000012990. PMID:25630910
Bell, L T O; Gandhi, S
2018-06-01
To directly compare the accuracy and speed of analysis of two commercially available computer-assisted detection (CAD) programs in detecting colorectal polyps. In this retrospective single-centre study, patients who had colorectal polyps identified on computed tomography colonography (CTC) and subsequent lower gastrointestinal endoscopy, were analysed using two commercially available CAD programs (CAD1 and CAD2). Results were compared against endoscopy to ascertain sensitivity and positive predictive value (PPV) for colorectal polyps. Time taken for CAD analysis was also calculated. CAD1 demonstrated a sensitivity of 89.8%, PPV of 17.6% and mean analysis time of 125.8 seconds. CAD2 demonstrated a sensitivity of 75.5%, PPV of 44.0% and mean analysis time of 84.6 seconds. The sensitivity and PPV for colorectal polyps and CAD analysis times can vary widely between current commercially available CAD programs. There is still room for improvement. Generally, there is a trade-off between sensitivity and PPV, and so further developments should aim to optimise both. Information on these factors should be made routinely available, so that an informed choice on their use can be made. This information could also potentially influence the radiologist's use of CAD results. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Optical comparison of multizone and single-zone photorefractive keratectomy
NASA Astrophysics Data System (ADS)
Gonzalez-Cirre, Xochitl; Manns, Fabrice; Rol, Pascal O.; Parel, Jean-Marie A.
1997-05-01
The purpose is to calculate and compare the point-spread function and the central ablation depth (CAD) of a paraxial eye model after photo-refractive keratectomy (PRK), with single and multizone treatments. A modified Le Grand-El Hage paraxial eye model, with a pupil diameter ranging from 2 to 8 mm was used. Ray-tracing was performed for initial myopia ranging from 1 to 10D; after single zone PRK; after double zone PRK; and after tripe zone PRK. The ray-tracing of a parallel incident beam was calculated by using the paraxial matrix method. At equal CAD, the optical image quality is better after single zone treatments. Multizone treatments do not seem to be advantageous optically.
Characteristics study of the gears by the CAD/CAE
NASA Astrophysics Data System (ADS)
Wang, P. Y.; Chang, S. L.; Lee, B. Y.; Nguyen, D. H.; Cao, C. W.
2017-09-01
Gears are the most important transmission component in machines. The rapid development of the machines in industry requires a shorter time of the analysis process. In traditional, the gears are analyzed by setting up the complete mathematical model firstly, considering the profile of cutter and coordinate systems relationship between the machine and the cutter. It is a really complex and time-consuming process. Recently, the CAD/CAE software is well developed and useful in the mechanical design. In this paper, the Autodesk Inventor® software is introduced to model the spherical gears firstly, and then the models can also be transferred into ANSYS Workbench for the finite element analysis. The proposed process in this paper is helpful to the engineers to speed up the analyzing process of gears in the design stage.
Computer-aided design of polymers and composites
NASA Technical Reports Server (NTRS)
Kaelble, D. H.
1985-01-01
This book on computer-aided design of polymers and composites introduces and discusses the subject from the viewpoint of atomic and molecular models. Thus, the origins of stiffness, strength, extensibility, and fracture toughness in composite materials can be analyzed directly in terms of chemical composition and molecular structure. Aspects of polymer composite reliability are considered along with characterization techniques for composite reliability, relations between atomic and molecular properties, computer aided design and manufacture, polymer CAD/CAM models, and composite CAD/CAM models. Attention is given to multiphase structural adhesives, fibrous composite reliability, metal joint reliability, polymer physical states and transitions, chemical quality assurance, processability testing, cure monitoring and management, nondestructive evaluation (NDE), surface NDE, elementary properties, ionic-covalent bonding, molecular analysis, acid-base interactions, the manufacturing science, and peel mechanics.
Marginal discrepancy of CAD-CAM complete-arch fixed implant-supported frameworks.
Yilmaz, Burak; Kale, Ediz; Johnston, William M
2018-02-21
Computer-aided design and computer-aided manufacturing (CAD-CAM) high-density polymers (HDPs) have recently been marketed for the fabrication of long-term interim implant-supported fixed prostheses. However, information regarding the precision of fit of CAD-CAM HDP implant-supported complete-arch screw-retained prostheses is scarce. The purpose of this in vitro study was to evaluate the marginal discrepancy of CAD-CAM HDP complete-arch implant-supported screw-retained fixed prosthesis frameworks and compare them with conventional titanium (Ti) and zirconia (Zir) frameworks. A screw-retained complete-arch acrylic resin prototype with multiunit abutments was fabricated on a typodont model with 2 straight implants in the anterior region and 2 implants with a 30-degree distal tilt in the posterior region. A 3-dimensional (3D) laboratory laser scanner was used to digitize the typodont model with scan bodies and the resin prototype to generate a virtual 3D CAD framework. A CAM milling unit was used to fabricate 5 frameworks from HDP, Ti, and Zir blocks. The 1-screw test was performed by tightening the prosthetic screw in the maxillary left first molar abutment (terminal location) when the frameworks were on the typodont model, and the marginal discrepancy of frameworks was evaluated using an industrial computed tomographic scanner and a 3D volumetric software. The 3D marginal discrepancy at the abutment-framework interface of the maxillary left canine (L1), right canine (L2), and right first molar (L3) sites was measured. The mean values for 3D marginal discrepancy were calculated for each location in a group with 95% confidence limits. The results were analyzed by repeated-measures 2-way ANOVA using the restricted maximum likelihood estimation and the Satterthwaite degrees of freedom methods, which do not require normality and homoscedasticity in the data. The between-subjects factor was material, the within-subjects factor was location, and the interaction was included in the model. Tukey tests were applied to resolve any statistically significant source of variation (overall α=.05). The 3D marginal discrepancy measurement was possible only for L2 and L3 because the L1 values were too small to detect. The mean discrepancy values at L2 were 60 μm for HDP, 74 μm for Ti, and 84 μm for Zir. At the L3 location, the mean discrepancy values were 55 μm for HDP, 102 μm for Ti, and 94 μm for Zir. The ANOVA did not find a statistically significant overall effect for implant location (P=.072) or a statistically significant interaction of location and material (P=.078), but it did find a statistically significant overall effect of material (P=.019). Statistical differences were found overall between HDP and the other 2 materials (P≤.037). When the tested materials were used with the CAD-CAM system, the 3D marginal discrepancy of CAD-CAM HDP frameworks was smaller than that of titanium or zirconia frameworks. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Papadiochou, Sofia; Pissiotis, Argirios L
2018-04-01
The comparative assessment of computer-aided design and computer-aided manufacturing (CAD-CAM) technology and other fabrication techniques pertaining to marginal adaptation should be documented. Limited evidence exists on the effect of restorative material on the performance of a CAD-CAM system relative to marginal adaptation. The purpose of this systematic review was to investigate whether the marginal adaptation of CAD-CAM single crowns, fixed dental prostheses, and implant-retained fixed dental prostheses or their infrastructures differs from that obtained by other fabrication techniques using a similar restorative material and whether it depends on the type of restorative material. An electronic search of English-language literature published between January 1, 2000, and June 30, 2016, was conducted of the Medline/PubMed database. Of the 55 included comparative studies, 28 compared CAD-CAM technology with conventional fabrication techniques, 12 contrasted CAD-CAM technology and copy milling, 4 compared CAD-CAM milling with direct metal laser sintering (DMLS), and 22 investigated the performance of a CAD-CAM system regarding marginal adaptation in restorations/infrastructures produced with different restorative materials. Most of the CAD-CAM restorations/infrastructures were within the clinically acceptable marginal discrepancy (MD) range. The performance of a CAD-CAM system relative to marginal adaptation is influenced by the restorative material. Compared with CAD-CAM, most of the heat-pressed lithium disilicate crowns displayed equal or smaller MD values. Slip-casting crowns exhibited similar or better marginal accuracy than those fabricated with CAD-CAM. Cobalt-chromium and titanium implant infrastructures produced using a CAD-CAM system elicited smaller MD values than zirconia. The majority of cobalt-chromium restorations/infrastructures produced by DMLS displayed better marginal accuracy than those fabricated with the casting technique. Compared with copy milling, the majority of zirconia restorations/infrastructures produced by CAD-CAM milling exhibited better marginal adaptation. No clear conclusions can be drawn about the superiority of CAD-CAM milling over the casting technique and DMLS regarding marginal adaptation. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Prakashini, K; Babu, Satish; Rajgopal, KV; Kokila, K Raja
2016-01-01
Aims and Objectives: To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. Materials and Methods: A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated. Observations and Results: Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4–10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance. Conclusion: CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time. PMID:27578931
Lise, Diogo Pedrollo; Van Ende, Annelies; De Munck, Jan; Yoshihara, Kumiko; Nagaoka, Noriyuki; Cardoso Vieira, Luiz Clovis; Van Meerbeek, Bart
2018-02-01
To assess light irradiance (LI) delivered by two light-curing units (LCU's) and to measure the degree of conversion (DC) of three composite cements, when cured through different thicknesses of two novel CAD-CAM block materials. 100-μm-thick films of a dual-curable composite cement (G-CEM LinkAce, GC), a light-curable flowable resin-based composite (RBC) (G-ænial Universal Flo, GC) and a micro-hybrid RBC (G-ænial Posterior, GC) were investigated as luting agents. Two 'polymer-ceramic' CAD-CAM blocks (Cerasmart, GC; Enamic, Vita Zahnfabrik) were sectioned in slabs with different thicknesses (1, 3 and 5mm). LI at the bottom of the specimens was measured using a calibrated spectrometer, while being light-cured through the CAD-CAM block slabs for 40s with a low- (±500mW/cm 2 ) or high- (±1,600mW/cm 2 ) irradiance LCU (n=5). After light-curing, micro-Raman spectra of the composite films were acquired to determine DC at 5min, 10min, 1h and 24h. LI data were statistically analyzed by Kruskal-Wallis followed by post-hoc comparisons, while a linear mixed-effect model was applied for the DC analysis. In addition, the CAD-CAM blocks ultrastructure was characterized upon argon-ion slicing using scanning transmission electron microscopy (STEM). Finally, light transmission (LT) through each CAD-CAM block material was assessed using a spectrophotometer. Curing-light attenuation and DC were significantly influenced by thickness and type of the overlying material. LCU only had a significant effect on DC of the micro-hybrid RBC. DC significantly increased over time for all composite cements. CAD-CAM block structural analysis revealed a relatively small and homogenous filler configuration (mean filler size of 0.2-0.5μm) for Cerasmart, while Enamic contained ceramic grains varying in shape and size (1-10μm), which were interconnected by the polymer-based network. LT was much higher at a wavelength range of 300-800nm for Cerasmart than for Enamic. Light-curable composite cements can be cured through a restoration up to 2.7-mm thickness, depending on the kind of CAD-CAM material. A high-irradiance LCU only has a limited effect on the maximum thickness of the polymer-ceramic CAD-CAM material that can be cured through. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.