Deactivation of the E. coli pH stress sensor CadC by cadaverine.
Haneburger, Ina; Fritz, Georg; Jurkschat, Nicole; Tetsch, Larissa; Eichinger, Andreas; Skerra, Arne; Gerland, Ulrich; Jung, Kirsten
2012-11-23
At acidic pH and in the presence of lysine, the pH sensor CadC activates transcription of the cadBA operon encoding the lysine/cadaverine antiporter CadB and the lysine decarboxylase CadA. In effect, these proteins contribute to acid stress adaptation in Escherichia coli. cadBA expression is feedback inhibited by cadaverine, and a cadaverine binding site is predicted within the central cavity of the periplasmic domain of CadC on the basis of its crystallographic analysis. Our present study demonstrates that this site only partially accounts for the cadaverine response in vivo. Instead, evidence for a second, pivotal binding site was collected, which overlaps with the pH-responsive patch of amino acids located at the dimer interface of the periplasmic domain. The temporal response of the E. coli Cad module upon acid shock was measured and modeled for two CadC variants with mutated cadaverine binding sites. These studies supported a cascade-like binding and deactivation model for the CadC dimer: binding of cadaverine within the pair of central cavities triggers a conformational transition that exposes two further binding sites at the dimer interface, and the occupation of those stabilizes the inactive conformation. Altogether, these data represent a striking example for the deactivation of a pH sensor. Copyright © 2012 Elsevier Ltd. All rights reserved.
Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains.
Naerdal, Ingemar; Pfeifenschneider, Johannes; Brautaset, Trygve; Wendisch, Volker F
2015-03-01
Methanol is regarded as an attractive substrate for biotechnological production of value-added bulk products, such as amino acids and polyamines. In the present study, the methylotrophic and thermophilic bacterium Bacillus methanolicus was engineered into a microbial cell factory for the production of the platform chemical 1,5-diaminopentane (cadaverine) from methanol. This was achieved by the heterologous expression of the Escherichia coli genes cadA and ldcC encoding two different lysine decarboxylase enzymes, and by increasing the overall L-lysine production levels in this host. Both CadA and LdcC were functional in B. methanolicus cultivated at 50°C and expression of cadA resulted in cadaverine production levels up to 500 mg l(-1) during shake flask conditions. A volume-corrected concentration of 11.3 g l(-1) of cadaverine was obtained by high-cell density fed-batch methanol fermentation. Our results demonstrated that efficient conversion of L-lysine into cadaverine presumably has severe effects on feedback regulation of the L-lysine biosynthetic pathway in B. methanolicus. By also investigating the cadaverine tolerance level, B. methanolicus proved to be an exciting alternative host and comparable to the well-known bacterial hosts E. coli and Corynebacterium glutamicum. This study represents the first demonstration of microbial production of cadaverine from methanol. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains
Nærdal, Ingemar; Pfeifenschneider, Johannes; Brautaset, Trygve; Wendisch, Volker F
2015-01-01
Methanol is regarded as an attractive substrate for biotechnological production of value-added bulk products, such as amino acids and polyamines. In the present study, the methylotrophic and thermophilic bacterium Bacillus methanolicus was engineered into a microbial cell factory for the production of the platform chemical 1,5-diaminopentane (cadaverine) from methanol. This was achieved by the heterologous expression of the Escherichia coli genes cadA and ldcC encoding two different lysine decarboxylase enzymes, and by increasing the overall L-lysine production levels in this host. Both CadA and LdcC were functional in B. methanolicus cultivated at 50°C and expression of cadA resulted in cadaverine production levels up to 500 mg l−1 during shake flask conditions. A volume-corrected concentration of 11.3 g l−1 of cadaverine was obtained by high-cell density fed-batch methanol fermentation. Our results demonstrated that efficient conversion of L-lysine into cadaverine presumably has severe effects on feedback regulation of the L-lysine biosynthetic pathway in B. methanolicus. By also investigating the cadaverine tolerance level, B. methanolicus proved to be an exciting alternative host and comparable to the well-known bacterial hosts E. coli and Corynebacterium glutamicum. This study represents the first demonstration of microbial production of cadaverine from methanol. PMID:25644214
Richard, Nicole L; Pivarnik, Lori F; Ellis, P Christopher; Lee, Chong M
2011-01-01
Methanol (MeOH) extraction by AOAC Official Method 996.07 has resulted in low amine recoveries in fresh fish tissue. Addition of 25% 0.4 M HCl to the 75% methanol-water extraction solvent resulted in higher recoveries of putrescine and cadaverine. Average putrescine recovery increased from 55 to 92% in flounder, scup, bluefish, and salmon; from 92 to 98% in mackerel; and from 83 to 107% in processed mackerel. Average cadaverine recovery increased from 57 to 95% in flounder, scup, bluefish, and salmon; from 91 to 97% in mackerel; and from 92 to 108% in processed mackerel. Fish stored on ice for 12 days also showed differences between background concentrations determined with the two solvents. However, the values decreased with storage time, indicating that degradation of the protein matrix may cause more comparable measurements between the two solvents. However, consistently higher putrescine and cadaverine measurements were determined using MeOH-HCl. Although significant differences in the extraction of amines from the high-fat fish tissue were not seen between MeOH and MeOH-HCl, it would be ideal to have one solvent for biogenic amine extraction. This study confirms that MeOH-HCl is a better solvent for complete extraction and recovery of putrescine and cadaverine in fresh and processed fish tissues.
Tabor, H; Hafner, E W; Tabor, C W
1980-12-01
We have previously described a polyamine-deficient strain of Escherichia coli that contained deletions in speA (arginine decarboxylase), speB (agmatine ureohydrolase), speC (ornithine decarboxylase), and speD (adenosylmethionine decarboxylase). Although this strain completely lacked putrescine and spermidine, it was still able to grow at a slow rate indefinitely on amine-deficient media. However, these cells contained some cadaverine (1,5-diaminopentane). To rule out the possibility that the presence of cadaverine permitted the growth of this strain, we isolated a mutant (cadA) that is deficient in cadaverine biosynthesis, namely, a mutant lacking lysine decarboxylase, and transduced this cadA gene into the delta (speA-speB) delta speC delta D strain. The resultant strain had essentially no cadaverine but showed the same phenotypic characteristics as the parent. Thus, these results confirm our previous findings that the polyamines are not essential for the growth of E. coli or for the replication of bacteriophages T4 and T7. We have mapped the cadA gene at 92 min; the gene order is mel cadA groE ampA purA. A regulatory gene for lysine decarboxylase (cadR) was also obtained and mapped at 46 min; the gene order is his cdd cadR fpk gyrA.
Bubelová, Zuzana; Buňka, František; Taťáková, Monika; Štajnochová, Kateřina; Purevdorj, Khatantuul; Buňková, Leona
2015-01-01
The aim of this study was to evaluate the combined effect of temperature (10, 20 and 37°C), pH (4, 5, 6, 7 and 8), and NaCl content (0, 1, 3, 4, 5 and 6% w/v) on the growth and putrescine and cadaverine production of Serratia marcescens CCM 303 under model conditions. The decarboxylase activity of S. marcescens was monitored in broth after cultivation. The cultivation medium was enriched with selected amino acids (ornithine, arginine and lysine; 0.2% w/v each) serving as precursors of biogenic amines. Levels of putrescine and cadaverine in broth were analysed by high-performance liquid chromatography after pre-column derivatisation with o-phthalaldehyde reagent. S. marcescens produced higher amounts of putrescine (up to 2096.8 mg L(-1)) compared to cadaverine content (up to 343.3 mg L(-1)) in all cultivation media. The highest putrescine and cadaverine concentrations were reached during cultivation at 10-20°C, pH 5-7 and NaCl content 1-3% w/v. On the other hand, the highest BAs production of individual cell (recalculated based on a cell; so called "yield factor") was observed at 10°C, pH 4 and salt concentration 3-5% w/v as a response to environmental stress.
Biogenic amines in fish: roles in intoxication, spoilage, and nitrosamine formation--a review.
Al Bulushi, Ismail; Poole, Susan; Deeth, Hilton C; Dykes, Gary A
2009-04-01
Biogenic amines are non-volatile amines formed by decarboxylation of amino acids. Although many biogenic amines have been found in fish, only histamine, cadaverine, and putrescine have been found to be significant in fish safety and quality determination. Despite a widely reported association between histamine and scombroid food poisoning, histamine alone appears to be insufficient to cause food toxicity. Putrescine and cadaverine have been suggested to potentiate histamine toxicity. With respect to spoilage on the other hand, only cadaverine has been found to be a useful index of the initial stage of fish decomposition. The relationship between biogenic amines, sensory evaluation, and trimethylamine during spoilage are influenced by bacterial composition and free amino acid content. A mesophilic bacterial count of log 6-7 cfu/g has been found to be associated with 5 mg histamine/100 g fish, the Food and Drug Administration (FDA) maximum allowable histamine level. In vitro studies have shown the involvement of cadaverine and putrescine in the formation of nitrosamines, nitrosopiperidine (NPIP), and nitrosopyrrolidine (NPYR), respectively. In addition, impure salt, high temperature, and low pH enhance nitrosamine formation, whereas pure sodium chloride inhibits their formation. Understanding the relationships between biogenic amines and their involvement in the formation of nitrosamines could explain the mechanism of scombroid poisoning and assure the safety of many fish products.
Concentrations of biogenic amines in fish, squid and octopus and their changes during storage.
Hu, Yue; Huang, Zhiyong; Li, Jian; Yang, Hong
2012-12-15
The concentrations of seven biogenic amines (BA) were simultaneously determined in 74 samples of fish, squid and octopus, by the method of HPLC coupled with pre-column derivatisation. The relationship between the formation of BA in aquatic products and the growth of microbial flora during storage was also investigated. Results showed that putrescine, cadaverine, histamine and tyramine were the dominant BA in the studied samples, but the concentrations of histamine and tyramine were mostly less than 50 and 100 mgkg(-1), respectively. Freezing can effectively prevent the formation of BA, but the levels of putrescine, cadaverine, histamine and tyramine significantly increased (p<0.05) during storage at 4 and 25°C. The growth of mesophilic or psychrophilic bacteria in blue scad and octopus strongly and positively correlated with the formation of amines (such as putrescine, cadaverine, histamine and tyramine) during storage, except for histamine in octopus. Copyright © 2012 Elsevier Ltd. All rights reserved.
Elimination of a ligand gating site generates a supersensitive olfactory receptor.
Sharma, Kanika; Ahuja, Gaurav; Hussain, Ashiq; Balfanz, Sabine; Baumann, Arnd; Korsching, Sigrun I
2016-06-21
Olfaction poses one of the most complex ligand-receptor matching problems in biology due to the unparalleled multitude of odor molecules facing a large number of cognate olfactory receptors. We have recently deorphanized an olfactory receptor, TAAR13c, as a specific receptor for the death-associated odor cadaverine. Here we have modeled the cadaverine/TAAR13c interaction, exchanged predicted binding residues by site-directed mutagenesis, and measured the activity of the mutant receptors. Unexpectedly we observed a binding site for cadaverine at the external surface of the receptor, in addition to an internal binding site, whose mutation resulted in complete loss of activity. In stark contrast, elimination of the external binding site generated supersensitive receptors. Modeling suggests this site to act as a gate, limiting access of the ligand to the internal binding site and thereby downregulating the affinity of the native receptor. This constitutes a novel mechanism to fine-tune physiological sensitivity to socially relevant odors.
Elimination of a ligand gating site generates a supersensitive olfactory receptor
Sharma, Kanika; Ahuja, Gaurav; Hussain, Ashiq; Balfanz, Sabine; Baumann, Arnd; Korsching, Sigrun I.
2016-01-01
Olfaction poses one of the most complex ligand-receptor matching problems in biology due to the unparalleled multitude of odor molecules facing a large number of cognate olfactory receptors. We have recently deorphanized an olfactory receptor, TAAR13c, as a specific receptor for the death-associated odor cadaverine. Here we have modeled the cadaverine/TAAR13c interaction, exchanged predicted binding residues by site-directed mutagenesis, and measured the activity of the mutant receptors. Unexpectedly we observed a binding site for cadaverine at the external surface of the receptor, in addition to an internal binding site, whose mutation resulted in complete loss of activity. In stark contrast, elimination of the external binding site generated supersensitive receptors. Modeling suggests this site to act as a gate, limiting access of the ligand to the internal binding site and thereby downregulating the affinity of the native receptor. This constitutes a novel mechanism to fine-tune physiological sensitivity to socially relevant odors. PMID:27323929
Leßmeier, Lennart; Pfeifenschneider, Johannes; Carnicer, Marc; Heux, Stephanie; Portais, Jean-Charles; Wendisch, Volker F
2015-12-01
Methanol, a one-carbon compound, can be utilized by a variety of bacteria and other organisms as carbon and energy source and is regarded as a promising substrate for biotechnological production. In this study, a strain of non-methylotrophic Corynebacterium glutamicum, which was able to produce the polyamide building block cadaverine as non-native product, was engineered for co-utilization of methanol. Expression of the gene encoding NAD+-dependent methanol dehydrogenase (Mdh) from the natural methylotroph Bacillus methanolicus increased methanol oxidation. Deletion of the endogenous aldehyde dehydrogenase genes ald and fadH prevented methanol oxidation to carbon dioxide and formaldehyde detoxification via the linear formaldehyde dissimilation pathway. Heterologous expression of genes for the key enzymes hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase of the ribulose monophosphate (RuMP) pathway in this strain restored growth in the presence of methanol or formaldehyde, which suggested efficient formaldehyde detoxification involving RuMP key enzymes. While growth with methanol as sole carbon source was not observed, the fate of 13C-methanol added as co-substrate to sugars was followed and the isotopologue distribution indicated incorporation into central metabolites and in vivo activity of the RuMP pathway. In addition, 13C-label from methanol was traced to the secreted product cadaverine. Thus, this synthetic biology approach led to a C. glutamicum strain that converted the non-natural carbon substrate methanol at least partially to the non-native product cadaverine.
Tomar, Pushpa C; Lakra, Nita; Mishra, S N
2013-01-01
The cadaverine (Cad) a diamine, imino compound produced as a lysine catabolite is also implicated in growth and development of plants depending on environmental condition. This lysine catabolism is catalyzed by lysine decarboxylase, which is developmentally regulated. However, the limited role of Cad in plants is reported, this review is tempted to focus the metabolism and its regulation, transport and responses, interaction and cross talks in higher plants. The Cad varied presence in plant parts/products suggests it as a potential candidate for taxonomic marker as well as for commercial exploitation along with growth and development. PMID:23887488
Wei, Fang; Zhang, Cui; Xue, Rong; Shan, Lidong; Gong, Shan; Wang, Guoqing; Tao, Jin; Xu, Guangyin; Zhang, Guoxing; Wang, Linhui
2017-08-01
It has been proved that cerebrospinal fluid (CSF) in the subarachnoid space could reenter the brain parenchyma via the perivascular space. The present study was designed to explore the pathway of subarachnoid CSF flux into the spinal cord and the potential role of aquaporin-4 (AQP4) in this process. Fluorescently tagged cadaverine, for the first time, was used to study CSF movement in mice. Following intracisternal infusion of CSF tracers, the cervical spinal cord was sliced and prepared for fluorescence imaging. Some sections were subject with immunostaining in order to observe tracer distribution and AQP4 expression. Fluorescently tagged cadaverine rapidly entered the spinal cord. Tracer influx into the spinal parenchyma was time dependent. At 10min post-infusion, cadaverine was largely distributed in the superficial tissue adjacent to the pial surface. At 70min post-infusion, cadaverine was distributed in the whole cord and especially concentrated in the gray matter. Furthermore, fluorescent tracer could enter the spinal parenchyma either along the perivascular space or across the pial surface. AQP4 was observed highly expressed in the astrocytic endfeet surrounding blood vessels and the pial surface. Blocking AQP4 by its specific inhibitor TGN-020 strikingly reduced the inflow of CSF tracers into the spinal cord. Subarachnoid CSF could flow into the spinal cord along the perivascular space or across the pial surface, in which AQP4 is involved. Our observation provides a basis for the study on CSF movement in the spinal cord when some neurological diseases occur. Copyright © 2017 Elsevier Inc. All rights reserved.
Zare, Davood; Muhammad, Kharidah; Bejo, Mohd Hair; Ghazali, H M
2015-02-01
Scombroid fish poisoning is usually associated with consumption of fish containing high levels of histamine. However, reports indicate that some cases have responded to antihistamine therapy while ingested histamine levels in these cases were low. Potentiation of histamine toxicity by some biogenic amines, and release of endogenous histamine by other compounds such as cis-urocanic acid (UCA) are some hypotheses that have been put forth to explain this anomaly. Very little is known about the effects of storage conditions on the production of both UCA isomers and biogenic amines in tuna. Thus, the production of trans- and cis-UCA, histamine, putrescine, and cadaverine in tuna during 15 d of storage at 0, 3, and 10 °C and 2 d storage at ambient temperature were monitored. The initial trans- and cis-UCA contents in fresh tuna were 2.90 and 1.47 mg/kg, respectively, whereas the levels of putrescine and cadaverine were less than 2 mg/kg, and histamine was not detected. The highest levels of trans- and cis-UCA were obtained during 15 d storage at 3 °C (23.74 and 21.79 mg/kg, respectively) while the highest concentrations of histamine (2796 mg/kg), putrescine (220.32 mg/kg) and cadaverine (1045.20 mg/kg) were obtained during storage at room temperature, 10 and 10 °C, respectively. Histamine content increased considerably during storage at 10 °C whereas trans- and cis-UCA contents changed slightly. The initial trans-UCA content decreased during storage at ambient temperature. Thus, unlike histamine, concentrations of trans- and cis-UCA did not result in elevated levels during storage of tuna. © 2015 Institute of Food Technologists®
Gingerich, T M; Lorca, T; Flick, G J; Pierson, M D; McNair, H M
1999-09-01
Changes in histamine, putrescine, and cadaverine concentrations in bluefish filets (Pomatomus saltatrix) stored at 5, 10, and 15 degrees C were determined using high-performance liquid chromatography. An organoleptic assessment was conducted simultaneously with the biogenic amine analyses. The histamine levels found in fresh bluefish obtained from wholesale seafood distributors ranged between <1 ppm and 99 with an average of 39 ppm. Putrescine and cadaverine were not found in fresh bluefish. Fish fillets stored at each of the three temperatures developed histamine. The greatest accumulation of histamine was observed in fish stored at 15 degrees C, which developed histamine levels as high as 2,200 ppm. Putrescine levels increased at each temperature during storage. Cadaverine was present only in uninoculated bluefish stored at 15 degrees C. Histamine achieved higher levels in bluefish pieces inoculated with Morganella morganii, which demonstrates that bluefish support bacterial histamine formation. Histamine levels at each temperature exceeded the 50-ppm advisory level established by the Food and Drug Administration before 100% sensory rejection. Standard plate counts increased during storage of fish at all temperatures, but the correlation between histamine levels and standard plate count was not significant.
Studies of levels of biogenic amines in meat samples in relation to the content of additives.
Jastrzębska, Aneta; Kowalska, Sylwia; Szłyk, Edward
2016-01-01
The impact of meat additives on the concentration of biogenic amines and the quality of meat was studied. Fresh white and red meat samples were fortified with the following food additives: citric and lactic acids, disodium diphosphate, sodium nitrite, sodium metabisulphite, potassium sorbate, sodium chloride, ascorbic acid, α-tocopherol, propyl 3,4,5-trihydroxybenzoate (propyl gallate) and butylated hydroxyanisole. The content of spermine, spermidine, putrescine, cadaverine, histamine, tyramine, tryptamine and 2-phenylethylamine was determined by capillary isotachophoretic methods in meat samples (fresh and fortified) during four days of storage at 4°C. The results were applied to estimate the impact of the tested additives on the formation of biogenic amines in white and red meat. For all tested meats, sodium nitrite, sodium chloride and disodium diphosphate showed the best inhibition. However, cadaverine and putrescine were characterised by the biggest changes in concentration during the storage time of all the additives. Based on the presented data for the content of biogenic amines in meat samples analysed as a function of storage time and additives, we suggest that cadaverine and putrescine have a significant impact on meat quality.
Wolrath, H; Forsum, U; Larsson, P G; Borén, H
2001-11-01
The presence of various amines in vaginal fluid from women with malodorous vaginal discharge has been reported before. The investigations have used several techniques to identify the amines. However, an optimized quantification, together with a sensitive analysis method in connection with a diagnostic procedure for vaginal discharge, including the syndrome of bacterial vaginosis, as defined by the accepted "gold standard," has not been done before. We now report a sensitive gas chromatographic and mass spectrometric method for identifying the amines isobutylamine, phenethylamine, putrescine, cadaverine, and tyramine in vaginal fluid. We used weighted samples of vaginal fluid to obtain a correct quantification. In addition, a proper diagnosis was obtained using Gram-stained smears of the vaginal fluid that were Nugent scored according to the method of Nugent et al. (R. P. Nugent et al., J. Clin. Microbiol., 29:297-301, 1991). We found that putrescine, cadaverine, and tyramine occurred in high concentrations in vaginal fluid from 24 women with Nugent scores between 7 and 10. These amines either were not found or were found only in very low concentrations in vaginal fluid from women with Nugent scores of 0 to 3. There is a strong correlation between bacterial vaginosis and the presence of putrescine, cadaverine, and tyramine in high concentrations in vaginal fluid.
Sagong, Hye-Young; Kim, Kyung-Jin
2017-01-01
Lysine decarboxylase (LDC) catalyzes the decarboxylation of l-lysine to produce cadaverine, an important industrial platform chemical for bio-based polyamides. However, due to high flexibility at the pyridoxal 5-phosphate (PLP) binding site, use of the enzyme for cadaverine production requires continuous supplement of large amounts of PLP. In order to develop an LDC enzyme from Selenomonas ruminantium (SrLDC) with an enhanced affinity for PLP, we introduced an internal disulfide bond between Ala225 and Thr302 residues with a desire to retain the PLP binding site in a closed conformation. The SrLDCA225C/T302C mutant showed a yellow color and the characteristic UV/Vis absorption peaks for enzymes with bound PLP, and exhibited three-fold enhanced PLP affinity compared with the wild-type SrLDC. The mutant also exhibited a dramatically enhanced LDC activity and cadaverine conversion particularly under no or low PLP concentrations. Moreover, introduction of the disulfide bond rendered SrLDC more resistant to high pH and temperature. The formation of the introduced disulfide bond and the maintenance of the PLP binding site in the closed conformation were confirmed by determination of the crystal structure of the mutant. This study shows that disulfide bond-mediated spatial reconstitution can be a platform technology for development of enzymes with enhanced PLP affinity.
Kabir, Ayesha; Suresh Kumar, Gopinatha
2013-01-01
Background The thermodynamics of the base pair specificity of the binding of the polyamines spermine, spermidine, putrescine, and cadaverine with three genomic DNAs Clostridium perfringens, 27% GC, Escherichia coli, 50% GC and Micrococcus lysodeikticus, 72% GC have been studied using titration calorimetry and the data supplemented with melting studies, ethidium displacement and circular dichroism spectroscopy results. Methodology/Principal Findings Isothermal titration calorimetry, differential scanning calorimetry, optical melting studies, ethidium displacement, circular dichroism spectroscopy are the various techniques employed to characterize the interaction of four polyamines, spermine, spermidine, putersine and cadaverine with the DNAs. Polyamines bound stronger with AT rich DNA compared to the GC rich DNA and the binding varied depending on the charge on the polyamine as spermine>spermidine >putrescine>cadaverine. Thermodynamics of the interaction revealed that the binding was entropy driven with small enthalpy contribution. The binding was influenced by salt concentration suggesting the contribution from electrostatic forces to the Gibbs energy of binding to be the dominant contributor. Each system studied exhibited enthalpy-entropy compensation. The negative heat capacity changes suggested a role for hydrophobic interactions which may arise due to the non polar interactions between DNA and polyamines. Conclusion/Significance From a thermodynamic analysis, the AT base specificity of polyamines to DNAs has been elucidated for the first time and supplemented by structural studies. PMID:23894663
Correlations between polyamine ratios and growth patterns in seedling roots
NASA Technical Reports Server (NTRS)
Shen, H. J.; Galston, A. W.
1985-01-01
The levels of putrescine, cadaverine, spermidine and spermine were determined in seedling roots of pea, tomato, millet and corn, as well as in corn coleoptiles and pea internodes. In all roots, putrescine content increased as elongation progressed, and the putrescine/spermine ratio closely paralleled the sigmoid growth curve up until the time of lateral root initiation. Spermidine and spermine were most abundant near the apices and declined progressively with increasing age of the cells. In the zone of differentiation of root hairs in pea roots, putrescine rose progressively with increasing age, while cadaverine declined. In both pea internodes and corn coleoptiles, the putrescine/spermidine ratio rises with increasing age and elongation. Thus, a block in the conversion of the diamine putrescine to the triamine spermidine may be an important step in the change from cell division to cell elongation.
Sánchez, Manuel; Suárez, Lorena; Andrés, María Teresa; Flórez, Blanca Henar; Bordallo, Javier; Riestra, Sabino; Cantabrana, Begoña
2017-01-01
ABSTRACT Background: Gastrointestinal motility modulatory factors include substances of the intestinal content, such as polyamines and trace amines (TAs), the focus of this study. Methods: The amines of food, intestinal content and from faecal bacteria of Swiss mice were determined by HPLC and functionally characterised in isolated distal ileum and medial colon rings. Results: Mouse food and intestinal content contain polyamines (spermidine>putrescine>spermine) and TAs (isoamylamine>cadaverine). Intestinal bacteria mainly produce putrescine and cadaverine. The amines inhibited the spontaneous motility of the ileum (0.1-3 mM) and colon rings (0.01-3 mM, with lower IC50), with: spermine~isoamylamine~spermidine. Spermine inhibition was tetrodotoxin (TTX)-insensitive, while isoamylamine was TTX-sensitive, suggesting neural control. Mainly in the ileum, isoamylamine (3 mM) elicited acute effects modified by TTX, atropine and propranolol, and suppressed by spermine (3 mM), not being localized at the smooth muscle level. The amines assayed (3 mM), except putrescine and cadaverine in the ileum and isoamylamine in the colon, antagonised acetylcholine (ACh, 0.1 mM)-elicited phasic contractions. Isoamylamine and spermine in colon relaxed KCl (100 mM)-elicited tonic contractions, suggesting an effect on smooth muscle, but did not justify the suppression of motility caused by spermine and isoamylamine. Conclusions: Polyamines and TAs of the intestinal content might act on chemosensors and modulate intestinal peristalsis. PMID:28659731
Sagor, G H M; Berberich, Thomas; Kojima, Seiji; Niitsu, Masaru; Kusano, Tomonobu
2016-06-01
Two genes, LAT1 and OCT1 , are likely to be involved in polyamine transport in Arabidopsis. Endogenous spermine levels modulate their expression and determine the sensitivity to cadaverine. Arabidopsis spermine (Spm) synthase (SPMS) gene-deficient mutant was previously shown to be rather resistant to the diamine cadaverine (Cad). Furthermore, a mutant deficient in polyamine oxidase 4 gene, accumulating about twofold more of Spm than wild type plants, showed increased sensitivity to Cad. It suggests that endogenous Spm content determines growth responses to Cad in Arabidopsis thaliana. Here, we showed that Arabidopsis seedlings pretreated with Spm absorbs more Cad and has shorter root growth, and that the transgenic Arabidopsis plants overexpressing the SPMS gene are hypersensitive to Cad, further supporting the above idea. The transgenic Arabidopsis overexpressing L-Amino acid Transporter 1 (LAT1) absorbed more Cad and showed increased Cad sensitivity, suggesting that LAT1 functions as a Cad importer. Recently, other research group reported that Organic Cation Transporter 1 (OCT1) is a causal gene which determines the Cad sensitivity of various Arabidopsis accessions. Furthermore, their results suggested that OCT1 is involved in Cad efflux. Thus we monitored the expression of OCT1 and LAT1 during the above experiments. Based on the results, we proposed a model in which the level of Spm content modulates the expression of OCT1 and LAT1, and determines Cad sensitivity of Arabidopsis.
Zhang, Cui; Lin, Jun; Wei, Fang; Song, Jian; Chen, Wenyue; Shan, Lidong; Xue, Rong; Wang, Guoqing; Tao, Jin; Zhang, Guoxing; Xu, Guang-Yin; Wang, Linhui
2018-05-15
Accumulating evidence supports that cerebrospinal fluid (CSF) in the subarachnoid space (SAS) could reenter the brain parenchyma via the glymphatic influx. The present study was designed to characterize the detailed pathway of subarachnoid CSF influx by using a novel CSF tracer. Fluorescently conjugated cadaverine (A488-ca), for the first time, was employed to investigate CSF movement in the brain. Following intracisternal infusion of CSF tracers, mice brain was sliced and prepared for fluorescence imaging. Some brain sections were immunostained in order to observe tracer distribution and cellular uptake. A488-ca moved into the brain parenchyma rapidly, and the influx was time and region dependent. A488-ca entered the mice brain more readily and spread more widely than another commonly used CSF tracer-fluorescently conjugated ovalbumin (OA-45). Furthermore, A488-ca could enter the brain parenchyma either along the paravascular space or across the pial surface. Suppression of glymphatic transport by administration with acetazolamide strikingly reduced the influx of A488-ca. More importantly, relative to OA-45 largely remained in the extracellular space, A488-ca exhibited obvious cellular uptake by astrocytes surrounding the blood vessels and neurons in the cerebral cortex. Subarachnoid CSF could flow into the brain parenchyma via the glymphatic influx, in which the transcellular pathway was faithfully traced by intracisternal infusion with fluorescently conjugated cadaverine. These observations extend our comprehension on the glymphatic influx pathway. Copyright © 2018 Elsevier Inc. All rights reserved.
Curiel, J A; Ruiz-Capillas, C; de Las Rivas, B; Carrascosa, A V; Jiménez-Colmenero, F; Muñoz, R
2011-07-01
The occurrence of in vitro amino acid activity in bacterial strains associated with fresh pork sausages packaged in different atmospheres and kept in refrigeration was studied. The presence of biogenic amines in decarboxylase broth was confirmed by ion-exchange chromatography and by the presence of the corresponding decarboxylase genes by PCR. From the 93 lactic acid bacteria and 100 enterobacteria strains analysed, the decarboxylase medium underestimates the number of biogenic amine-producer strains. 28% of the lactic acid bacteria produced tyramine and presented the tdc gene. All the tyramine-producer strains were molecularly identified as Carnobacterium divergens. Differences on the relative abundance of C. divergens were observed among the different packaging atmospheres assayed. After 28 days of storage, the presence of argon seems to inhibit C. divergens growth, while packing under vacuum seems to favour it. Among enterobacteria, putrescine was the amine more frequently produced (87%), followed by cadaverine (85%); agmatine and tyramine were only produced by 13 and 1%, respectively, of the strains analysed. Packing under vacuum or in an atmosphere containing nitrogen seems to inhibit the growth of enterobacteria which produce simultaneously putrescine, cadaverine, and agmatine. Contrarily, over-wrapping or packing in an atmosphere containing argon seems to favour the growth of agmatine producer-enterobacteria. The production of putrescine and cadaverine was associated with the presence of the corresponding amino acid decarboxylase genes. The biogenic amine-producer strains were included in a wide range of enterobacterial species, including Kluyvera intermedia, Enterobacter aerogenes, Yersinia kristensenii, Serratia grimesii, Serratia ficaria, Yersinia rodhei, Providencia vermicola and Obesumbacterium proteus. Copyright © 2011 Elsevier Ltd. All rights reserved.
The purification and properties of placental histaminase
Smith, J. K.
1967-01-01
1. Histaminase was extracted from desanguinated human placentae and purified by salt fractionation, ion-exchange chromatography and gel filtration. The purest preparation was still contaminated with haptoglobin–methaemoglobin. 2. Histaminase activity was measured by the o-aminobenzaldehyde method of Holmstedt & Tham (1959), Kapeller-Adler's (1951) test and a modified spectrophotometric indigodisulphonate test of greater sensitivity. 3. Unless contaminant metal ions were removed, enzymic activity on cadaverine, but not on histamine, fell during purification. When EDTA was added to the working buffers, a constant ratio between activities towards cadaverine and histamine was maintained throughout the later stages of purification, and activities towards the two substrates could not be separated by any of the highly resolving chromatographic analyses employed. 4. The purest preparation oxidized histamine, agmatine and benzylamine more slowly than the C4–C6 aliphatic diamines, but mixed-substrate experiments suggested that all these amines were substrates of histaminase. 5. The substrate and inhibitor specificities of placental histaminase were compared with those of related enzymes from other sources. PMID:4962162
Bioactive amines in sorghum: method optimisation and influence of line, tannin and hydric stress.
Paiva, Caroline Liboreiro; Evangelista, Warlley Pinheiro; Queiroz, Valéria Aparecida Vieira; Glória, Maria Beatriz Abreu
2015-04-15
The profile and levels of bioactive amines in different sorghum lines were reported for the first time. The amines were quantified by ion-pair HPLC, post-column derivatisation with o-phthalaldehyde and fluorimetric detection. The extraction procedure was optimised: 420 μm particle size, extraction with 5% trichloroacetic acid and three extractions. The screening of 22 sorghum lines showed that four of the ten amines investigated were detected. Spermine and spermidine were the prevalent amines (100%), followed by putrescine (77%) and cadaverine (14%). Total amines ranged from 5.8 to 41.4 mg/100 g, and the polyamines represented 60-100% of the total. Sorghum without tannin had higher amines levels compared to sorghum with tannin and cadaverine was specific to samples without tannin. Hydric stress caused accumulation of spermidine in the grains and affected the levels of other amines at rates depending on the presence or not of tannin. Sorghum is a significant source of polyamines. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bover-Cid, Sara; Miguelez-Arrizado, M Jesús; Luz Latorre Moratalla, L; Vidal Carou, M Carmen
2006-01-01
Biogenic amine accumulation was studied in spontaneously fermented sausages (Fuet) manufactured from unfrozen-fresh meat (U-sausages) and frozen-thawed meat (F-sausages). The aim was to investigate whether the frozen storage of raw materials affects the microbial composition and its aminogenic activity during sausage fermentation. Tyramine was the major amine in all sausages. Although the final levels were similar, tyramine accumulated more rapidly in F-sausages, which contained putrescine as the second amine. By contrast, U-sausages accumulated much more cadaverine than putrescine. F-sausages showed a slightly lower pH and free amino acid content as well as higher counts of technological flora (lactic acid and gram positive catalase positive bacteria) and lower counts of enterobacteria. Therefore, to freeze the meat raw materials for few days before sausage manufacture could be a useful practice, especially for the artisan fermented sausages (without starter), because it helps to reduce enterobacteria development and cadaverine production.
Drabik-Markiewicz, G; Dejaegher, B; De Mey, E; Kowalska, T; Paelinck, H; Vander Heyden, Y
2011-06-15
The influence of biogenic amines (i.e. putrescine, cadaverine, spermidine and spermine) on the N-nitrosamine formation in heated cured lean meat was studied in the presence or absence of sodium nitrite and at different meat processing temperatures. Experimental evidence was produced using gas chromatography with thermal energy analysis detection (GC-TEA). Concentration of N-nitrosamines was modelled as a function of the temperature and the nitrite concentration for two situations, i.e. presence or absence of added biogenic amines to the meat. The significance of the influence of the changing parameters was evaluated by ANOVA (Analysis of Variance). It was found that higher processing temperatures and higher added amounts of sodium nitrite increase the yields of N-nitrosodimethylamine (NDMA) and N-nitrosopiperidine (NPIP). Spermidine and putrescine amplify the formation of NDMA, but spermine and cadeverine do not influence the formation of this N-nitrosamine. Spermidine and cadeverine cause a significant increase of NPIP. Beside N-nitrosopyrrolidine (NPYR) in some rare cases, no other volatile N-nitrosamines are detected. Copyright © 2010 Elsevier Ltd. All rights reserved.
Li, Miaoyun; Tian, Lu; Zhao, Gaiming; Zhang, Qiuhui; Gao, Xiaoping; Huang, Xianqing; Sun, Lingxia
2014-02-01
The objective of this study was to investigate the evolution of biogenic amines and spoilage-related microorganisms of chilled pork stored at 5 °C under various atmospheric conditions. The experimental packaging systems were pallet packaging, vacuum packaging (VP) and modified atmosphere packaging methods (MAP, 40%O2+40%CO2+20%N2), respectively. The results showed that about 74.26% of the variability could be explained by two first principal components analyzed by PCA in the pallet packaging, while in the vacuum and modified atmosphere packagings were about 85.21% and 79.14%, respectively. PC1 differentiated the indicators from packaging conditions. All the five microbial indicators and partial biogenic amines, gathering together, had high values at the positive side of PC1. Putrescine and cadaverine could reflect the spoilage evolution of fresh pork except for those in the pallet. Therefore, putrescine and cadaverine could be used as the spoilage indicators of chilled pork, of which the contents might reflect the spoilage degree. © 2013.
Determination of biogenic amine profiles in conventional and organic cocoa-based products.
Restuccia, Donatella; Spizzirri, U Gianfranco; Puoci, Francesco; Picci, Nevio
2015-01-01
Cocoa contains many compounds such as biogenic amines (BAs), known to influence consumer health. Spermidine, spermidine, putrescine, histamine, tyramine, β-phenylethylamine, cadaverine and serotonine have been found in several cocoa-based products using HPLC with UV detection after derivatisation with dansyl-chloride. Once optimised in terms of linearity, percentage recovery, LOD, LOQ and repeatability, this method was applied to real samples. Total concentrations of BAs ranged from 5.7 to 79.0 µg g(-)(1) with wide variations depending on the type of sample. BAs present in all samples were in decreasing order: histamine (1.9-38.1 µg g(-)(1)) and tyramine (1.7-31.7 µg g(-)(1)), while putrescine (0.9-32.7 µg g(-)(1)), spermidine (1.0-9.7 µg g(-)(1)) and spermidine (0.6-9.3 µg g(-)(1)) were present in most of the samples. Cadaverine, serotonine and β-phenylethylamine were present in a few samples at much lower concentrations. Organic samples always contained much lower levels of BAs than their conventional counterparts and, generally speaking, the highest amounts of BAs were found in the most processed products.
Changes in polyamine levels in various organs of Bombyx mori during its life cycle.
Hamana, K; Matsuzaki, S; Inoue, K
1984-06-01
Polyamines in various organs of larval, pupal, and moth stages of Bombyx mori, were assayed by high-performance ion-exchange chromatography and paper and thin-layer chromatography. Putrescine and spermidine were especially abundant in the silk gland, gonads, mucous gland, and sucking stomach; spermine was also present in them, but at much lower concentrations. Both norspermidine and norspermine were detected in almost all organs examined, while their precursor 1,3-diaminopropane was found only in a limited number of organs. Low concentrations of sym-homospermidine were observed in the silk gland and ovary. Cadaverine content was particularly high in the mucous gland which contained diapause eggs and the sucking stomach. Diapause eggs contained much higher levels of cadaverine than non-diapause eggs. The concentrations of most polyamines in the silk glands remained rather constant during the larval stage, and decreased markedly at the pupal stage. Polyamines in gonads, in contrast, did not decrease at the pupal stage, but putrescine, diaminopropane, and norspermidine rather increased during the pupal and moth stages.
Buňková, Leona; Adamcová, Gabriela; Hudcová, Kateřina; Velichová, Helena; Pachlová, Vendula; Lorencová, Eva; Buňka, František
2013-11-01
The aim of the study was the monitoring of six biogenic amines (histamine, tyramine, phenylethylamine, tryptamine, putrescine, and cadaverine) and two polyamines (spermidine and spermine) in 112 samples of dairy products purchased in the Czech Republic, namely in 55 cheeses made in small-scale farms and in 57 fermented dairy products. The products were tested at the end of their shelf-life period. Neither tryptamine nor phenylethylamine was detected in the monitored samples; histamine was found only in four cheese samples containing up to 25mg/kg. The contents of spermine and spermidine were low and did not exceed the values of 35 mg/kg. Significant amounts of tyramine, putrescine, and cadaverine occurred especially in cheeses produced from ewe's milk or in long-term ripened cheeses. In about 10% of the tested cheeses, the total concentration of all the monitored biogenic amines and polyamines exceeded the level of 200mg/kg, which can be considered toxicologically significant. In fermented dairy products, the tested biogenic amines occurred in relatively low amounts (generally up to 30 mg/kg) that are regarded safe for the consumer's health. Copyright © 2013 Elsevier Ltd. All rights reserved.
Biogenic amine profile in unripe Arabica coffee beans processed according to dry and wet methods.
Dias, Eduardo C; Pereira, Rosemary G F A; Borém, Flávio M; Mendes, Eulália; de Lima, Renato R; Fernandes, José O; Casal, Susana
2012-04-25
Immature coffee fruit processing contributes to a high amount of defective beans, which determines a significant amount of low-quality coffee sold in the Brazilian internal market. Unripe bean processing was tested, taking the levels of bioactive amines as criteria for evaluating the extent of fermentation and establishing the differences between processing methods. The beans were processed by the dry method after being mechanically depulped immediately after harvest or after a 12 h resting period in a dry pile or immersed in water. Seven bioactive amines were quantified: putrescine, spermine, spermidine, serotonin, cadaverine, histamine, and tyramine, with global amounts ranging from 71.8 to 80.3 mg/kg. The levels of spermine and spermidine were lower in the unripe depulped coffee than in the natural coffee. The specific conditions of dry and wet processing also influenced cadaverine levels, and histamine was reduced in unripe depulped coffee. A resting period of 12 h does not induce significant alteration on the beans and can be improved if performed in water. These results confirm that peeling immature coffee can decrease fermentation processes while providing more uniform drying, thus reducing the number of defects and potentially increasing beverage quality.
Altered Polyamine Profiles in Colorectal Cancer.
Venäläinen, Markus K; Roine, Antti N; Häkkinen, Merja R; Vepsäläinen, Jouko J; Kumpulainen, Pekka S; Kiviniemi, Mikko S; Lehtimäki, Terho; Oksala, Niku K; Rantanen, Tuomo K
2018-06-01
The declining mortality rate of patients with colorectal cancer (CRC) can be explained, at least partially, with early diagnosis. Simple diagnostic methods are needed to achieve a maximal patient participation rate in screening. Liquid chromatography electrospray tandem mass spectrometry (LC-MS/MS) was used to determine urinary polyamine (PA) profiles. In a prospective setting, 116 patients were included in the study: 57 with CRC, 13 with inflammatory bowel disease (IBD), 12 with adenoma, and 34 controls. N1,N12-diacetylspermine (DiAcSPM) level was significantly higher in patients with CRC than controls (sensitivity=78.0%, specificity=70.6%; p=0.00049). The level of diacetylated cadaverine (p=0.0068) was lower and that of diacetylated putrescine (p=0.0078) was higher in patients with CRC than in those with IBD. Cadaverine (p=0.00010) and spermine (p=0.042) levels were lower and that of DiAcSPM (p=0.018) higher in patients with CRC than in those with adenoma. The simultaneous determination of urinary PAs by means of LC-MS/MS can be used to discriminate CRC from controls and patients with benign colorectal diseases. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Xu, Baofu; Lei, Lei; Zhu, Xiaocen; Zhou, Yiqing; Xiao, Youli
2017-04-01
Lysine decarboxylation is the first biosynthetic step of Huperzine A (HupA). Six cDNAs encoding lysine decarboxylases (LDCs) were cloned from Huperzia serrata by degenerate PCR and rapid amplification of cDNA ends (RACE). One HsLDC isoform was functionally characterized as lysine decarboxylase. The HsLDC exhibited greatest catalytic efficiency (k cat /K m , 2.11 s -1 mM -1 ) toward L-lysine in vitro among all reported plant-LDCs. Moreover, transient expression of the HsLDC in tobacco leaves specifically increased cadaverine content from zero to 0.75 mg per gram of dry mass. Additionally, a convenient and reliable method used to detect the two catalytic products was developed. With the novel method, the enzymatic products of HsLDC and HsCAO, namely cadaverine and 5-aminopentanal, respectively, were detected simultaneously both in assay with purified enzymes and in transgenic tobacco leaves. This work not only provides direct evidence of the first two-step in biosynthetic pathway of HupA in Huperzia serrata and paves the way for further elucidation of the pathway, but also enables engineering heterologous production of HupA. Copyright © 2017 Elsevier Ltd. All rights reserved.
Irla, Marta; Heggeset, Tonje M B; Nærdal, Ingemar; Paul, Lidia; Haugen, Tone; Le, Simone B; Brautaset, Trygve; Wendisch, Volker F
2016-01-01
Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 11.3 to 17.5 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium.
Irla, Marta; Heggeset, Tonje M. B.; Nærdal, Ingemar; Paul, Lidia; Haugen, Tone; Le, Simone B.; Brautaset, Trygve; Wendisch, Volker F.
2016-01-01
Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 11.3 to 17.5 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium. PMID:27713731
Romano, Andrea; Trip, Hein; Campbell-Sills, Hugo; Bouchez, Olivier; Sherman, David; Lolkema, Juke S.
2013-01-01
Lactobacillus sp. strain 30a (Lactobacillus saerimneri) produces the biogenic amines histamine, putrescine, and cadaverine by decarboxylating their amino acid precursors. We report its draft genome sequence (1,634,278 bases, 42.6% G+C content) and the principal findings from its annotation, which might shed light onto the enzymatic machineries that are involved in its production of biogenic amines. PMID:23405290
Amine content of vaginal fluid from untreated and treated patients with nonspecific vaginitis.
Chen, K C; Forsyth, P S; Buchanan, T M; Holmes, K K
1979-01-01
We examined the vaginal washings from patients with nonspecific vaginitis (NSV) to seek biochemical markers and possible explanations for the signs and symptoms of this syndrome. Seven amines were identified including methylamine, isobutylamine, putrescine, cadaverine, histamine, tyramine, and phenethylamine. These amines may contribute to the symptoms of NSV and may contribute to the elevated pH of the vaginal discharge. They may also be partly responsible for the "fishy" odor that is characteristic of vaginal discharges from these patients. Among the seven amines, putrescine and cadaverine were the most abundant and were present in all vaginal discharges from each of ten patients before treatment. These amines are produced in vitro during growth of mixed vaginal bacteria in chemically defined medium, presumably by decarboxylation of the corresponding amino acids. We hypothesize the anaerobic vaginal organisms, previously shown to be quantitatively increased in NSV, are responsible for the amine production, because metronidazole inhibited the production of amines by vaginal bacteria in vitro, and Haemophilus vaginalis did not produce amines. H. vaginalis did release high concentrations of pyruvic acid and of amino acids during growth in peptone-starch-dextrose medium, whereas, other vaginal flora consumed both pyruvic acid and amino acids in the same medium during growth. These findings suggest that a symbiotic relationship may exist between H. vaginalis and other vaginal flora in patients with NSV. Images PMID:447831
Lubitz, Dorit; Jorge, João M P; Pérez-García, Fernando; Taniguchi, Hironori; Wendisch, Volker F
2016-10-01
L-arginine is a semi-essential amino acid with application in cosmetic, pharmaceutical, and food industries. Metabolic engineering strategies have been applied for overproduction of L-arginine by Corynebacterium glutamicum. LysE was the only known L-arginine exporter of this bacterium. However, an L-arginine-producing strain carrying a deletion of lysE still accumulated about 10 mM L-arginine in the growth medium. Overexpression of the putative putrescine and cadaverine export permease gene cgmA was shown to compensate for the lack of lysE with regard to L-arginine export. Moreover, plasmid-borne overexpression of cgmA rescued the toxic effect caused by feeding of the dipeptide Arg-Ala to lysE-deficient C. glutamicum and argO-deficient Escherichia coli strains. Deletion of the repressor gene cgmR improved L-arginine titers by 5 %. Production of L-lysine and L-citrulline was not affected by cgmA overexpression. Taken together, CgmA may function as an export system not only for the diamine putrescine and cadaverine but also for L-arginine. The major export system for L-lysine and L-arginine LysE may also play a role in L-citrulline export since production of L-citrulline was reduced when lysE was deleted and improved by 45 % when lysE was overproduced.
Ananou, S; Zentar, H; Martínez-Bueno, M; Gálvez, A; Maqueda, M; Valdivia, E
2014-12-01
The purpose of this study was to determine the effect of enterocin AS-48, packaged under normal atmosphere (NA), vacuum (VP) or modified atmosphere (MAP) on the shelf life and safety of fresh sardines (Sardina pilchardus) stored at 5 °C. We studied the effect of these hurdles, alone or combined, on the relevant autochthonous bacterial populations. Total volatile basic nitrogen (TVB-N) content was used as indicative of freshness. Levels of biogenic amines cadaverine, putrescine, tyramine, and histamine were also determined. The application of AS-48 did not reduce the mesophilic, psychrotrophic, or Gram negative bacteria viable cell counts under any of the storage conditions tested. AS-48 did cause significant reductions in viable staphylococci counts, especially under VP. In sardines under NA treated with AS-48, the populations of histamine- and tyramine-forming total and lactic acid bacteria (LAB) showed no significant reductions. MAP or VP with AS-48 allowed reductions (significant at some storage times) in histamine- and tyramine-forming LAB. The TVB-N content was also reduced under normal atmosphere and, especially, in sardines stored under MAP. The most interesting results are those concerning the decrease (by several fold) in the levels of the biogenic amines cadaverine, putrescine, tyramine, and histamine determined after treatment with AS-48. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nutritional pattern and eco-physiology of Hortaea werneckii, agent of human tinea nigra.
de Hoog, G S; Gerrits van den Ende, A H
1992-11-01
The life cycle of Hortaea werneckii includes yeast-like, hyphal and meristematic growth. The preponderance of each form of propagation can be influenced by environmental conditions. The clinical entity 'tinea nigra' is explained by ecological similarities between supposed natural niches and human hyperhydrotic skin. The species is recognizable by assimilation of lactose, nitrate and nitrite, no or little growth with L-lysine, cadaverine, creatine and creatinine, and tolerance of 10% NaCl. It generally does not grow at 36 degrees C.
dos Santos, Luiz Felipe Lopes; Mársico, Eliane Teixeira; Lázaro, César Aquiles; Teixeira, Rose; Doro, Laís
2015-01-01
The objective of the present study was to evaluate the levels of biogenic amines (cadaverine, putrescine, tyramine, histamine, spermidine and spermine) by high performance liquid chromatography (HPLC) and the physicochemical (moisture, lipids, proteins, pH, water activity and fixed mineral residue) and microbiological (lactic acid bacteria and aerobic heterotrophic mesophilic bacteria count) characteristics of six Italian-type salami brands sold in the city of Niteroi (Rio de Janeiro, Brazil). The salami showed lactic acid bacteria count from 5.7 to 8.6 CFU•mL-1, and heterotrophic mesophilic bacteria count from 5.8 to 8.7 CFU•mL-1. Three brands showed moisture contents above 35% and one brand had protein content below 25%. The mean values obtained for the amines were: 197.43, 143.29, 73.02, 4.52, 90.66 and 36.17 mg•kg-1 for tyramine, putrescine, cadaverine, spermidine, histamine, and spermine respectively. Two brands presented histamine contents above the legal limit established in 100 mg•kg-1. We concluded that the evaluated salami presented a wide variation in the count of the bacterial groups with a predominance of lactic acid bacteria. The moisture contents indicate insufficient drying before commercialization and protein content had values below the minimum limit determined by the Brazilian legislation. Finally, the levels of biogenic amines found could cause adverse reactions in susceptible consumers, depending of the amount and frequency of intake of these products. PMID:27800400
Kopsachilis, Nikolaos; Tsaousis, Konstantinos T; Tsinopoulos, Ioannis T; Kruse, Friedrich E; Welge-Luessen, Ulrich
2013-07-01
Collagen cross-linking using UV-A irradiation combined with the photosensitizer riboflavin is a new technique for treating progressive keratoconus. The purposes of this study were to examine whether primary human corneal keratocytes (HCKs) are capable of expressing and secreting fibronectin and tissue transglutaminase (tTgase), an enzyme cross-linking extracellular matrix protein, and to examine whether fibronectin and tTgase are increased after the treatment of HCK cells with UV-A irradiation combined with riboflavin (RFUV-A), thus providing another possible physiological mechanism of the cross-linking pathway. Cell cultures established from HCKs were treated with 0.025% riboflavin solution and UV-A (370 nm) irradiance 3 mW/cm2 for 30 minutes. Induction of fibronectin and tTgase was investigated by immunohistochemistry, real-time polymerase chain reaction, and Western blot analysis. Cell viability was quantified by a microscopic live-dead assay. External tTgase activity was measured by the ability to form polymerized fibronectin and the incorporation of biotinylated cadaverine into fibronectin. Treatment of cultured HCK cells with RFUV-A increased the fibronectin and tTgase messenger RNA and protein levels. This effect was not observed in cells treated with riboflavin or UV-A radiation alone. Incorporation of biotinylated cadaverine was significantly increased when HCK cells were treated with RFUV-A. The enzymes tTgase and fibronectin are expressed by RFUV-A treatment in cultured HCK cells. This mechanism provides more information about the physiology of corneal cross-linking.
Johnson, T S; Scholfield, C I; Parry, J; Griffin, M
1998-01-01
Treatment of the hamster fibrosarcoma cell lines (Met B, D and E) and BHK-21 hamster fibroblast cells with the glucocorticoid dexamethasone led to a powerful dose-dependent mRNA-synthesis-dependent increase in transglutaminase activity, which can be correlated with dexamethasone-responsive receptor numbers in each cell line. Increasing the number of dexamethasone-responsive receptors by transfection of cells with the HG1 glucocorticoid receptor protein caused an increase in transglutaminase activity that was proportional to the level of transfected receptor. In all experiments the levels of the tissue transglutaminase-mediated detergent-insoluble bodies was found to be comparable with increases in transglutaminase activity. Despite an increase in detergent-insoluble body formation, an increase in apoptosis as measured by DNA fragmentation was not found. Incubation of cells with the non-toxic competitive transglutaminase substrate fluorescein cadaverine led to the incorporation of this fluorescent amine into cellular proteins when cells were damaged after exposure to trypsin during cell passage. These cross-linked proteins containing fluorescein cadaverine were shown to be present in the detergent-insoluble bodies, indicating that the origin of these bodies is via activation of tissue transglutaminase after cell damage by trypsinization rather than apoptosis per se, since Met B cells expressing the bcl-2 cDNA were not protected from detergent-insoluble body formation. We describe a novel mechanism of cell death related to tissue transglutaminase expression and cell damage. PMID:9512467
Yang, Huilin; Peng, Silu; Zhang, Zhibin; Yan, Riming; Wang, Ya; Zhan, Jixun; Zhu, Du
2016-12-01
Huperzine A (HupA) is a drug used for the treatment of Alzheimer's disease. However, the biosynthesis of this medicinally important compound is not well understood. The HupA biosynthetic pathway is thought to be initiated by the decarboxylation of lysine to form cadaverine, which is then converted to 5-aminopentanal by copper amine oxidase (CAO). In this study, we cloned and expressed an SsCAO gene from a HupA-producing endophytic fungus, Shiraia sp. Slf14. Analysis of the deduced protein amino acid sequence showed that it contained the Asp catalytic base, conserved motif Asn-Tyr-Asp/Glu, and three copper-binding histidines. The cDNA of SsCAO was amplified and expressed in Escherichia coli BL21(DE3), from which a 76 kDa protein was obtained. The activity of this enzyme was tested, which provided more information about the SsCAO gene in the endophytic fungus. Gas Chromatograph-Mass Spectrometry (GC-MS) revealed that this SsCAO could accept cadaverine as a substrate to produce 5-aminopentanal, the precursor of HupA. Phylogenetic tree analysis indicated that the SsCAO from Shiraia sp. Slf14 was closely related to Stemphylium lycopersici CAO. This is the first report on the cloning and expression of a CAO gene from HupA-producing endophytic fungi. Functional characterization of this enzyme provides new insights into the biosynthesis of the HupA an anti-Alzheimer's drug. Copyright © 2016 Elsevier Inc. All rights reserved.
Simultaneous extraction and quantitation of several bioactive amines in cheese and chocolate.
Baker, G B; Wong, J T; Coutts, R T; Pasutto, F M
1987-04-17
A method is described for simultaneous extraction and quantitation of the amines 2-phenylethylamine, tele-methylhistamine, histamine, tryptamine, m- and p-tyramine, 3-methoxytyramine, 5-hydroxytryptamine, cadaverine, putrescine, spermidine and spermine. This method is based on extractive derivatization of the amines with a perfluoroacylating agent, pentafluorobenzoyl chloride, under basic aqueous conditions. Analysis was done on a gas chromatograph equipped with an electron-capture detector and a capillary column system. The procedure is relatively rapid and provides derivatives with good chromatographic properties. Its application to analysis of the above amines in cheese and chocolate products is described.
Straub, B; Schollenberger, M; Kicherer, M; Luckas, B; Hammes, W P
1993-09-01
A convenient method is described for the analysis of biogenic amines (BA) by means of reversed-phase-HPLC. The method is characterized by multi-channel UV detection (diodearray), subsequent post-column derivatization with o-phthaldialdehyde and 3-mercaptopropionic acid, and fluorescence detection. For the analysis of meat products and especially fermented sausages an optimized perchloric acid extraction process was introduced to determine putrescine, cadaverine, histamine, tyramine and 2-phenylethylamine. BA recoveries from meat ranged between 96 and 113% with a detection limit for amines of 0.5 mg/kg.
Maurelli, Anthony T.; Fernández, Reinaldo E.; Bloch, Craig A.; Rode, Christopher K.; Fasano, Alessio
1998-01-01
Plasmids, bacteriophages, and pathogenicity islands are genomic additions that contribute to the evolution of bacterial pathogens. For example, Shigella spp., the causative agents of bacillary dysentery, differ from the closely related commensal Escherichia coli in the presence of a plasmid in Shigella that encodes virulence functions. However, pathogenic bacteria also may lack properties that are characteristic of nonpathogens. Lysine decarboxylase (LDC) activity is present in ≈90% of E. coli strains but is uniformly absent in Shigella strains. When the gene for LDC, cadA, was introduced into Shigella flexneri 2a, virulence became attenuated, and enterotoxin activity was inhibited greatly. The enterotoxin inhibitor was identified as cadaverine, a product of the reaction catalyzed by LDC. Comparison of the S. flexneri 2a and laboratory E. coli K-12 genomes in the region of cadA revealed a large deletion in Shigella. Representative strains of Shigella spp. and enteroinvasive E. coli displayed similar deletions of cadA. Our results suggest that, as Shigella spp. evolved from E. coli to become pathogens, they not only acquired virulence genes on a plasmid but also shed genes via deletions. The formation of these “black holes,” deletions of genes that are detrimental to a pathogenic lifestyle, provides an evolutionary pathway that enables a pathogen to enhance virulence. Furthermore, the demonstration that cadaverine can inhibit enterotoxin activity may lead to more general models about toxin activity or entry into cells and suggests an avenue for antitoxin therapy. Thus, understanding the role of black holes in pathogen evolution may yield clues to new treatments of infectious diseases. PMID:9520472
Balamatsia, C C; Paleologos, E K; Kontominas, M G; Savvaidis, I N
2006-01-01
This study evaluated the formation of biogenic amines (BAs) in breast chicken meat during storage under aerobic and modified atmospheric packaging (MAP) conditions at 4 degrees C, the correlation of microbial and sensory changes in chicken meat with formation of BAs and the possible role of BAs as indicators of poultry meat spoilage. Poultry breast fillets were stored aerobically or under MAP (30%, CO(2), 70% N(2)) at 4 degrees C for up to 17 days. Quality evaluation was carried out using microbiological, chemical and sensory analyses. Total viable counts, Pseudomonads and Enterobacteriaceae, were in general higher for chicken samples packaged in air whereas lactic acid bacteria (LAB) and Enterobacteriaceae were among the dominant species for samples under MAP. Levels of putrescine and cadaverine increased linearly with storage time and were higher in aerobically stored chicken samples. Spermine and spermidine levels were also detected in both aerobically and MAP stored chicken meat. Levels of tyramine in both chicken samples stored aerobically and or under MAP were low (< 10 mg kg(-1)) whereas the formation of histamine was only observed after day 11 of storage when Enterobacteriaceae had reached a population of ca. 10(7) CFU g(-1). Based on sensory and microbiological analyses and also taking into account a biogenic amines index (BAI, sum of putrescine, cadaverine and tyramine), BAI values between 96 and 101 mg kg(-1) may be proposed as a quality index of MAP and aerobically-packaged fresh chicken meat. Spermine and spermidine decreased steadily throughout the entire storage period of chicken meat under aerobic and MAP packaging, and thus these two amines cannot be used as indicators of fresh chicken meat quality.
Zepeda, Vanessa K; Busse, Hans-Jürgen; Golke, Jan; Saw, Jimmy H W; Alam, Maqsudul; Donachie, Stuart P
2015-10-01
A Gram-negative, helical bacterium designated PH27AT was cultivated from an anchialine pool on Pearl and Hermes Atoll, Northwestern Hawaiian Islands. The obligately halophilic strain was motile by bipolar tufts of flagella and grew optimally at pH 7, and microaerobically or aerobically. Closest neighbours based on 16S rRNA gene nucleotide sequence identity are Marinospirillum celere v1c_Sn-redT (93.31 %) and M. alkaliphilum Z4T (92.10 %) in the family Oceanospirillaceae, class Gammaproteobacteria. PH27AT is distinguished phenotypically from members of the genus Marinospirillum by its hydrolysis of gelatin, the absence of growth in media containing ≤ 1 % (w/v) NaCl and the ranges of temperature (12–40 °C) and pH (5–8) for growth. The major compound ubiquinone Q-9 distinguishes the quinone system of strain PH27AT from those in members of the genus Marinospirillum and other members of the Oceanospirillaceae, in which the major quinone is Q-8. Major polar lipids in PH27AT were phosphatidylethanolamine and phosphatidylglycerol, with moderate amounts of diphosphatidylglycerol and phosphatidylserine. Spermidine and cadaverine dominated the polyamine pattern; large proportions of cadaverine have not been reported in members of the genus Marinospirillum. Genotypic and chemotaxonomic data show that PH27AT does not belong in the genus Marinospirillum or other genera of the family Oceanospirillaceae or the Halomonadaceae. We propose a new genus, Terasakiispira gen. nov., be created to accommodate Terasakiispira papahanaumokuakeensis gen. nov., sp. nov. as the type species, with PH27AT ( = ATCC BAA-995T = DSM 16455T = DSM 23961T) as the type strain.
Kanbar, G; Engels, W; Nicholson, G J; Hertle, R; Winkelmann, G
2004-05-01
From wounds of honey bee pupae, caused by the mite Varroa destructor, coccoid bacteria were isolated and identified as Melissococcus pluton. The bacterial isolate was grown anaerobically in sorbitol medium to produce a toxic compound that was purified on XAD columns, gelfiltration and preparative HPLC. The toxic agent was identified by GC-MS and FTICR-MS as tyramine. The toxicity of the isolated tyramine was tested by a novel mobility test using the protozoon Stylonychia lemnae. A concentration of 0.2 mg/ml led to immediate inhibition of mobility. In addition the toxicity was studied on honey bee larvae by feeding tyramine/water mixtures added to the larval jelly. The lethal dosis of tyramine on 4-5 days old bee larvae was determined as 0.3 mg/larvae when added as a volume of 20 microl to the larval food in brood cells. Several other biogenic amines, such as phenylethylamine, histamine, spermine, cadaverine, putrescine and trimethylamine, were tested as their hydrochloric salts for comparison and were found to be inhibitory in the Stylonychia mobility test at similar concentrations. A quantitative hemolysis test with human red blood cells revealed that tyramine and histamine showed the highest membranolytic activity, followed by the phenylethylamine, trimethylamine and spermine, while the linear diamines, cadaverine and putrescine, showed a significantly lower hemolysis when calculated on a molar amine basis. The results indicate that tyramine which is a characteristic amine produced by M. pluton in culture, is the causative agent of the observed toxic symptoms in bee larvae. Thus this disease, known as European foulbrood, is possibly an infection transmitted by the Varroa destructor mite.
NASA Astrophysics Data System (ADS)
Maurelli, Anthony T.; Fernandez, Reinaldo E.; Bloch, Craig A.; Rode, Christopher K.; Fasano, Alessio
1998-03-01
Plasmids, bacteriophages, and pathogenicity islands are genomic additions that contribute to the evolution of bacterial pathogens. For example, Shigella spp., the causative agents of bacillary dysentery, differ from the closely related commensal Escherichia coli in the presence of a plasmid in Shigella that encodes virulence functions. However, pathogenic bacteria also may lack properties that are characteristic of nonpathogens. Lysine decarboxylate (LDC) activity is present in ≈ 90% of E. coli strains but is uniformly absent in Shigella strains. When the gene for LDC, cadA, was introduced into Shigella flexneri 2a, virulence became attenuated, and enterotoxin activity was inhibited greatly. The enterotoxin inhibitor was identified as cadaverine, a product of the reaction catalyzed by LDC. Comparison of the S. flexneri 2a and laboratory E. coli K-12 genomes in the region of cadA revealed a large deletion in Shigella. Representative strains of Shigella spp. and enteroinvasive E. coli displayed similar deletions of cadA. Our results suggest that, as Shigella spp. evolved from E. coli to become pathogens, they not only acquired virulence genes on a plasmid but also shed genes via deletions. The formation of these ``black holes,'' deletions of genes that are detrimental to a pathogenic lifestyle, provides an evolutionary pathway that enables a pathogen to enhance virulence. Furthermore, the demonstration that cadaverine can inhibit enterotoxin activity may lead to more general models about toxin activity or entry into cells and suggests an avenue for antitoxin therapy. Thus, understanding the role of black holes in pathogen evolution may yield clues to new treatments of infectious diseases.
Soe, Cho Zin; Telfer, Thomas J; Levina, Aviva; Lay, Peter A; Codd, Rachel
2016-09-01
Cultures of Shewanella putrefaciens grown in medium containing 10mM 1,4-diamino-2-butanone (DBO) as an inhibitor of ornithine decarboxylase and 10mM 1,5-diaminopentane (cadaverine) showed the simultaneous biosynthesis of the macrocyclic dihydroxamic acids: putrebactin (pbH 2 ), avaroferrin (avH 2 ) and bisucaberin (bsH 2 ). The level of DBO did not completely repress the production of endogenous 1,4-diaminobutane (putrescine) as the native diamine substrate of pbH 2 . The relative concentration of pbH 2 :avH 2 :bsH 2 was 1:2:1, which correlated with the substrate selection of putrescine:cadaverine in a ratio of 1:1. The macrocycles were characterised using LC-MS as free ligands and as 1:1 complexes with Fe(III) of the form [Fe(pb)] + , [Fe(av)] + or [Fe(bs)] + , with labile ancillary ligands in six-coordinate complexes displaced during ESI-MS acquisition; or with Mo(VI) of the form [Mo(O) 2 (pb)], [Mo(O) 2 (av)] or [Mo(O) 2 (bs)]. Chromium(V) complexes of the form [CrO(pb)] + were detected from solutions of Cr(VI) and pbH 2 in DMF using X-band EPR spectroscopy. Supplementation of S. putrefaciens medium with DBO and 1,3-diaminopropane, 1,6-diaminohexane or 1,4-diamino-2(Z)-butene (Z-DBE) resulted only in the biosynthesis of pbH 2 . The work has identified a native system for the simultaneous biosynthesis of a suite of three macrocyclic dihydroxamic acid siderophores and highlights both the utility of precursor-directed biosynthesis for expanding the structural diversity of siderophores, and the breadth of their coordination chemistry. Copyright © 2015 Elsevier Inc. All rights reserved.
Production of Avaroferrin and Putrebactin by Heterologous Expression of a Deep-Sea Metagenomic DNA
Fujita, Masaki J.; Sakai, Ryuichi
2014-01-01
The siderophore avaroferrin (1), an inhibitor of Vibrio swarming that was recently identified in Shewanella algae B516, was produced by heterologous expression of the biosynthetic gene cluster cloned from a deep-sea sediment metagenomic DNA, together with two analogues, bisucaberin (2) and putrebactin (3). Avaroferrin (1) is a macrocyclic heterodimer of N-hydroxy-N-succinyl cadaverine (4) and N-hydroxy-N-succinyl-putrescine (5), whereas analogues 2 and 3 are homodimers of 4 and 5, respectively. Heterologous expression of two other related genes from culturable marine bacteria resulted in production of compounds 1–3, but in quite different proportions compared with production through expression of the metagenomic DNA. PMID:25222668
Perez, Marta; Ladero, Victor; Redruello, Begoña; del Rio, Beatriz; Fernandez, Leonides; Rodriguez, Juan Miguel; Martín, Mª Cruz; Fernandez, María; Alvarez, Miguel A.
2016-01-01
Biogenic amines (BAs) are low molecular weight nitrogenous organic compounds with different biological activities. Putrescine, spermidine and spermine are essential for the development of the gut and immune system of newborns, and are all found in human milk. Little is known, however, about the role of histamine, tyramine or cadaverine in breast milk. Nor is it known whether mastitis alters the BA composition of milk. The BA profile of human milk, and the influence of mastitis on BA concentrations, were therefore investigated. Putrescine, spermidine and spermine were the main BAs detected. In mastitis-affected milk, the concentrations of putrescine, spermine and histamine were higher. PMID:27584695
Kallio, A; Nikula, P; Jänne, J
1984-01-01
Treatment of Ehrlich-ascites-carcinoma-bearing mice with methylglyoxal bis(guanylhydrazone) alone or in combination with 2-difluoromethylornithine greatly enhanced the transfer of intragastrically administered radioactive putrescine and cadaverine into the carcinoma cells. Difluoromethylornithine alone did not have any effect on the accumulation of intestine-derived diamines in the tumour cells. The frequently reported restoration of difluoromethylornithine-induced polyamine depletion on administration of methylglyoxal bis(guanylhydrazone) is in all likelihood attributable to a profound inhibition of intestinal diamine oxidase (EC 1.4.3.6), resulting in an enhanced entry of intestinal (bacterial) diamines into general circulation and finally into tumour cells. PMID:6424664
Pieper, Robert; Boudry, Christelle; Bindelle, Jérôme; Vahjen, Wilfried; Zentek, Jürgen
2014-01-01
Although fermentable carbohydrates (CHO) can reduce metabolites derived from dietary protein fermentation in the intestine of pigs, the interaction between site of fermentation and substrate availability along the gut is still unclear. The current study aimed at determining the impact of two different sources of carbohydrates in diets with low or very high protein content on microbial metabolite profiles along the gastrointestinal tract of piglets. Thirty-six piglets (n = 6 per group) were fed diets high (26%, HP) or low (18%, LP) in dietary protein and with or without two different sources of carbohydrates (12% sugar beet pulp, SBP, or 8% lignocellulose, LNC) in a 2 × 3 factorial design. After 3 weeks, contents from stomach, jejunum, ileum, caecum, proximal and distal colon were taken and analysed for major bacterial metabolites (D-lactate, L-lactate, short chain fatty acids, ammonia, amines, phenols and indols). Results indicate considerable fermentation of CHO and protein already in the stomach. HP diets increased the formation of ammonia, amines, phenolic and indolic compounds throughout the different parts of the intestine with most pronounced effects in the distal colon. Dietary SBP inclusion in LP diets favoured the formation of cadaverine in the proximal parts of the intestine. SBP mainly increased CHO-derived metabolites such as SCFA and lactate and decreased protein-derived metabolites in the large intestine. Based on metabolite profiles, LNC was partly fermented in the distal large intestine and reduced mainly phenols, indols and cadaverine, but not ammonia. Multivariate analysis confirmed more diet-specific metabolite patterns in the stomach, whereas the CHO addition was the main determinant in the caecum and proximal colon. The protein level mainly influenced the metabolite patterns in the distal colon. The results confirm the importance of CHO source to influence the formation of metabolites derived from protein fermentation along the intestinal tract of the pig.
Etkind, P; Wilson, M E; Gallagher, K; Cournoyer, J
1987-12-18
Five persons who attended a medical conference developed symptoms suggestive of an intoxication after a common meal. Although the symptoms were recognized as typical of scombroid poisoning, no fish of the Scrombridae family had been served. However, food histories implicated bluefish (Pomatomus saltatrix). The initially frozen bluefish had been improperly handled in storage and thawing. Elevated levels of histamine, putrescine, and cadaverine were detected in uncooked samples. This outbreak emphasizes that scombroid-type poisoning (1) can be caused by nonscombroid fish such as bluefish, (2) is probably more common than currently recognized, and (3) may become even more widespread as fish become a larger part of our diet. Physicians who work in conjunction with public health officials can help prevent additional cases and outbreaks.
Liu, Sophie F; Petty, Alexander R; Sazama, Graham T; Swager, Timothy M
2015-05-26
Chemiresistive detectors for amine vapors were made from single-walled carbon nanotubes by noncovalent modification with cobalt meso-arylporphyrin complexes. We show that through changes in the oxidation state of the metal, the electron-withdrawing character of the porphyrinato ligand, and the counteranion, the magnitude of the chemiresistive response to ammonia could be improved. The devices exhibited sub-ppm sensitivity and high selectivity toward amines as well as good stability to air, moisture, and time. The application of these chemiresistors in the detection of various biogenic amines (i.e. putrescine, cadaverine) and in the monitoring of spoilage in raw meat and fish samples (chicken, pork, salmon, cod) over several days was also demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bio-based production of monomers and polymers by metabolically engineered microorganisms.
Chung, Hannah; Yang, Jung Eun; Ha, Ji Yeon; Chae, Tong Un; Shin, Jae Ho; Gustavsson, Martin; Lee, Sang Yup
2015-12-01
Recent metabolic engineering strategies for bio-based production of monomers and polymers are reviewed. In the case of monomers, we describe strategies for producing polyamide precursors, namely diamines (putrescine, cadaverine, 1,6-diaminohexane), dicarboxylic acids (succinic, glutaric, adipic, and sebacic acids), and ω-amino acids (γ-aminobutyric, 5-aminovaleric, and 6-aminocaproic acids). Also, strategies for producing diols (monoethylene glycol, 1,3-propanediol, and 1,4-butanediol) and hydroxy acids (3-hydroxypropionic and 4-hydroxybutyric acids) used for polyesters are reviewed. Furthermore, we review strategies for producing aromatic monomers, including styrene, p-hydroxystyrene, p-hydroxybenzoic acid, and phenol, and propose pathways to aromatic polyurethane precursors. Finally, in vivo production of polyhydroxyalkanoates and recombinant structural proteins having interesting applications are showcased. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Snyder, A. Peter; Harden, Charles S.; Davis, Dennis M.; Shoff, Donald B.; Maswadeh, Waleed M.
1995-01-01
A hand-held, portable gas chromatography-ion mobility spectrometer (GC-IMS) device was used to detect the presence of volatile amine compounds in the headspace of decomposing fish. The Food and Drug Administration (FDA) largely relies on olfactory discrimination with respect to fresh and spoiled, frozen and unfrozen fish. The fish are delivered at ship docks on pallets, and each pallet of fish can range from 30-40 thousand dollars in value. Fresh fish were placed in a teflon bag and the direct headspace was interrogated. In the first three days, only low molecular weight volatile amines were detected. On the fourth day, a number of spectral signatures were observed which indicated the presence of 1,5-diaminopentane, cadaverine. Analyses typically took from 0.5-1 minute.
Figueiredo, T C; Assis, D C S; Menezes, L D M; Oliveira, D D; Lima, A L; Souza, M R; Heneine, L G D; Cançado, S V
2014-12-01
This study was carried out with the aim of evaluating the effects of mineral oil application on eggshells and the use of plastic packages with lids on the physical-chemical and microbiological quality and biogenic amine contents of eggs stored under refrigeration for up to 125 d. A total of 1,920 eggs from 46-wk-old Hyline W36 laying hens were randomly distributed into 4 groups soon after classification: (i) 480 eggs were stored in pulp carton tray packages; (ii) 480 eggs were stored in plastic packages with lids; (iii) 480 eggs were stored in carton packages after the application of mineral oil; and (iv) 480 eggs were stored in plastic packages with lids after the application of mineral oil. The internal quality was measured by Haugh units, by the counts of mesophilic and psychrotrophic microorganisms, by the most probable number of total and thermal-tolerant coliforms, by the counts of molds and yeasts, by the analysis of Salmonella spp. and Staphylococcus spp., and by the levels of biogenic amines in the egg yolk and albumen. The application of mineral oil to the eggshell resulted in higher Haugh unit values throughout storage, and the use of plastic packages altered the internal quality. The application of mineral oil and the use of packaging had no effects on the microbiological and biogenic amine results. Microbiological analyses showed the absence of Salmonella spp., Staphylococcus aureus, thermal-tolerant coliforms, and fungi. However, the highest counts of mesophilic (1.1 × 10(7) cfu/g) and psychrotrophic (6.7 × 10(7) cfu/g) microorganisms were recorded. The highest values of biogenic amines detected and quantified were putrescine (2.38 mg/kg) and cadaverine (7.27 mg/kg) in the egg yolk and putrescine (1.95 mg/kg), cadaverine (2.83 mg/kg), and phenylethylamine (2.57 mg/kg) in the albumen. Despite these results, the biogenic amine levels recorded were considered low and would not be harmful to consumer health. ©2014 Poultry Science Association Inc.
Joung, Byung Chun; Min, Jin Gi
2018-06-01
In the present study, we evaluated the changes in quality that can occur during the distribution of nonheated anchovy ( Engraulis japonicus) fish sauce after packaging. The pH values of all samples ranged from 5.5 to 5.8, and there were no significant differences ( P > 0.05) in pH among the samples during storage regardless of storage temperature or salt concentration. The initial total volatile base nitrogen concentration in all samples after bottling was 115 to 121 mg/100 mL, but this concentration increased gradually with storage time. After 1 year of storage, total volatile base nitrogen concentration had increased to approximately 170% of the initial concentration (166 to 194 mg/100 mL). Amino nitrogen increased slightly during storage but was significantly lower than the increase in amino nitrogen during general anchovy fish sauce fermentation with anchovy flesh. Most of the free amino acids increased slightly during the storage period regardless of storage temperature or salt concentration, but tyrosine and histidine increased and then decreased during the storage period. The histamine concentration of the anchovy fish sauce at a salt concentration of 20% was 43.3 mg/100 mL initially, but after 1 year the histamine concentration was 89.7 mg/100 mL in samples stored at 10°C, 102.6 mg/100 mL in samples stored at 25°C, and 116.8 mg/100 mL in samples stored at 35°C . Changes in putrescine and cadaverine concentrations were similar to those in histamine; concentrations increased about twofold from the initial concentrations after 1 year of storage. However, the rate of increase in putrescine from 4 months after storage was very high, and cadaverine slightly decreased by 12 months of storage. High scores for umami and aroma sensory characteristics were given to samples stored at 10°C, but samples stored 35°C were given high scores for rancid. Despite the overall low scores for aroma and umami for samples stored at 35°C, the quality of the anchovy fish sauce as a fermented food was considered acceptable.
Herrero, A; Sanllorente, S; Reguera, C; Ortiz, M C; Sarabia, L A
2016-11-16
A new strategy to approach multiresponse optimization in conjunction to a D-optimal design for simultaneously optimizing a large number of experimental factors is proposed. The procedure is applied to the determination of biogenic amines (histamine, putrescine, cadaverine, tyramine, tryptamine, 2-phenylethylamine, spermine and spermidine) in swordfish by HPLC-FLD after extraction with an acid and subsequent derivatization with dansyl chloride. Firstly, the extraction from a solid matrix and the derivatization of the extract are optimized. Ten experimental factors involved in both stages are studied, seven of them at two levels and the remaining at three levels; the use of a D-optimal design leads to optimize the ten experimental variables, significantly reducing by a factor of 67 the experimental effort needed but guaranteeing the quality of the estimates. A model with 19 coefficients, which includes those corresponding to the main effects and two possible interactions, is fitted to the peak area of each amine. Then, the validated models are used to predict the response (peak area) of the 3456 experiments of the complete factorial design. The variability among peak areas ranges from 13.5 for 2-phenylethylamine to 122.5 for spermine, which shows, to a certain extent, the high and different effect of the pretreatment on the responses. Then the percentiles are calculated from the peak areas of each amine. As the experimental conditions are in conflict, the optimal solution for the multiresponse optimization is chosen from among those which have all the responses greater than a certain percentile for all the amines. The developed procedure reaches decision limits down to 2.5 μg L -1 for cadaverine or 497 μg L -1 for histamine in solvent and 0.07 mg kg -1 and 14.81 mg kg -1 in fish (probability of false positive equal to 0.05), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Ramón-Peréz, Miriam L; Díaz-Cedillo, Francisco; Contreras-Rodríguez, Araceli; Betanzos-Cabrera, Gabriel; Peralta, Humberto; Rodríguez-Martínez, Sandra; Cancino-Diaz, Mario E; Jan-Roblero, Janet; Cancino Diaz, Juan C
2015-02-01
Biofilm formation on medical and surgical devices is the main virulence factor of Staphylococcus epidermidis. A recent study has shown that norspermidine inhibits and disassembles the biofilm in the wild-type Bacillus subtilis NCBI3610 strain. In this study, the effect of norspermidine on S. epidermidis biofilm formation of clinical or commensal strains was tested. Biofilm producing strains of S. epidermidis were isolated from healthy skin (HS; n = 3), healthy conjunctiva (HC; n = 9) and ocular infection (OI; n = 19). All strains were treated with different concentrations of norspermidine, spermidine, putrescine, and cadaverine (1, 10, 25, 50 and 100 μM), and the biofilm formation was tested on microtiter plate. Besides, cell-free supernatants of S. epidermidis growth at 4 h and 40 h were analyzed by gas chromatography coupled to mass spectrometry (GC-MS) to detect norspermidine. Results showed that norspermidine at 25 μM and 100 μM prevented the biofilm formation in 45.16% (14/31) and 16.13% (5/31), respectively; only in one isolate from OI, norspermidine did not have effect. Other polyamines as spermidine, putrescine and cadaverine did not have effect on the biofilm formation of the strains tested. Norspermidine was also capable to disassemble a biofilm already formed. Norspermidine was detected in the 40 h cell-free supernatant of S. epidermidis by GC-MS. Norspermidine inhibited the biofilm development of S. epidermidis on the surface of contact lens. In this work, it was demonstrated that S. epidermidis produces and releases norspermidine causing an inhibitory effect on biofilm formation. Moreover, this is the first time showing that clinical S. epidermidis strains have different sensitivity to norspermidine, which suggest that the composition and structure of the biofilms is varied. We propose that norspermidine could potentially be used in the pre-treating of medical and surgical devices to inhibit the biofilm formation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jastrzębska, Aneta; Piasta, Anna; Szłyk, Edward
2014-01-01
A simple and useful method for the determination of biogenic amines in beverage samples based on isotachophoretic separation is described. The proposed procedure permitted simultaneous analysis of histamine, tyramine, cadaverine, putrescine, tryptamine, 2-phenylethylamine, spermine and spermidine. The data presented demonstrate the utility, simplicity, flexibility, sensitivity and environmentally friendly character of the proposed method. The precision of the method expressed as coefficient of variations varied from 0.1% to 5.9% for beverage samples, whereas recoveries varied from 91% to 101%. The results for the determination of biogenic amines were compared with an HPLC procedure based on a pre-column derivatisation reaction of biogenic amines with dansyl chloride. Furthermore, the derivatisation procedure was optimised by verification of concentration and pH of the buffer, the addition of organic solvents, reaction time and temperature.
Charles, Paul T; Adams, Andre A; Howell, Peter B; Trammell, Scott A; Deschamps, Jeffrey R; Kusterbeck, Anne W
2010-01-01
Fluorescence immunoassays employing monoclonal antibodies directed against the explosive 2,4,6-trinitrotoluene (TNT) were conducted in a multi-channel microimmunosensor. The multi-channel microimmunosensor was prepared in poly (methyl methacrylate) (PMMA) via hot embossing from a brass molding tool. The multi-channeled microfluidic device was sol-gel coated to generate a siloxane surface that provided a scaffold for antibody immobilization. AlexaFluor-cadaverine-trinitrobenzene (AlexaFluor-Cad-TNB) was used as the reporter molecule in a displacement immunoassay. The limit of detection was 1-10 ng/mL (ppb) with a linear dynamic range that covered three orders of magnitude. In addition, antibody crossreactivity was investigated using hexahydro-1,3,5-triazine (RDX), HMX, 2,4-dinitrotoluene (DNT), 4-nitrotoluene (4-NT) and 2-amino-4,6-DNT.
Charles, Paul T.; Adams, Andre A.; Howell, Peter B.; Trammell, Scott A.; Deschamps, Jeffrey R.; Kusterbeck, Anne W.
2010-01-01
Fluorescence immunoassays employing monoclonal antibodies directed against the explosive 2,4,6-trinitrotoluene (TNT) were conducted in a multi-channel microimmunosensor. The multi-channel microimmunosensor was prepared in poly (methyl methacrylate) (PMMA) via hot embossing from a brass molding tool. The multi-channeled microfluidic device was sol-gel coated to generate a siloxane surface that provided a scaffold for antibody immobilization. AlexaFluor-cadaverine-trinitrobenzene (AlexaFluor-Cad-TNB) was used as the reporter molecule in a displacement immunoassay. The limit of detection was 1–10 ng/mL (ppb) with a linear dynamic range that covered three orders of magnitude. In addition, antibody crossreactivity was investigated using hexahydro-1,3,5-triazine (RDX), HMX, 2,4-dinitrotoluene (DNT), 4-nitrotoluene (4-NT) and 2-amino-4,6-DNT. PMID:22315573
Wei, Fashan; Xu, Xinglian; Zhou, Guanghong; Zhao, Gaiming; Li, Chunbao; Zhang, Yingjun; Chen, Lingzhen; Qi, Jun
2009-03-01
N-nitrosamines, biogenic amines and residual nitrite are harmful substances and often present in cured meat. The effects of gamma-irradiation (γ-irradiation) on these chemicals in dry-cured Chinese Rugao ham during ripening and post-ripening were investigated. Rugao hams were irradiated at a dose of 5kGy before ripening and were then ripened in an aging loft. Although γ-irradiation degraded tyramine, putrescine and spermine, on the other hand, it promoted the formation of spermidine, phenylethylamine, cadaverine and tryptamine. Residual nitrite was significantly reduced by γ-irradiation. N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA) and N-nitrosopyrrolidine (NPYR) were found in Chinese Rugao ham during ripening and post-ripening but could be degraded with γ-irradiation. The results suggest that γ-irradiation may be a potential decontamination measure for certain chemical compounds found in dry-cured meat.
Metabolomics and Trace Element Analysis of Camel Tear by GC-MS and ICP-MS.
Ahamad, Syed Rizwan; Raish, Mohammad; Yaqoob, Syed Hilal; Khan, Altaf; Shakeel, Faiyaz
2017-06-01
Camel tear metabolomics and elemental analysis are useful in getting the information regarding the components responsible for maintaining the protective system that allows living in the desert and dry regions. The aim of this study was to correlate that the camel tears can be used as artificial tears for the evaluation of dryness in the eye. Eye biomarkers of camel tears were analyzed by gas chromatography-mass spectroscopy (GC-MS) and inductively coupled plasma mass spectroscopy (ICP-MS). The major compounds detected in camel tears by GC-MS were alanine, valine, leucine, norvaline, glycine, cadaverine, urea, ribitol, sugars, and higher fatty acids like octadecanoic acid and hexadecanoic acid. GC-MS analysis of camel tears also finds several products of metabolites and its associated metabolic participants. ICP-MS analysis showed the presence of different concentration of elemental composition in the camel tears.
Vigentini, Ileana; Romano, Andrea; Compagno, Concetta; Merico, Annamaria; Molinari, Francesco; Tirelli, Antonio; Foschino, Roberto; Volonterio, Gaspare
2008-11-01
Contamination of wine by Dekkera/Brettanomyces bruxellensis is mostly due to the production of off-flavours identified as vinyl- and especially ethyl-phenols, but these yeasts can also produce several other spoiling metabolites, such as acetic acid and biogenic amines. Little information is available about the correlation between growth, viability and off-flavour and biogenic amine production. In the present work, five strains of Dekkera bruxellensis isolated from wine were analysed over 3 months in wine-like environment for growth, cell survival, carbon source utilization and production of volatile phenols and biogenic amines. Our data indicate that the wine spoilage potential of D. bruxellensis is strain dependent, being strictly associated with the ability to grow under oenological conditions. 4-Ethyl-phenol and 4-ethyl-guaiacol production ranged between 0 and 2.7 and 2 mg L(-1), respectively, depending on the growth conditions. Putrescine, cadaverine and spermidine were the biogenic amines found.
Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives.
Cheng, Jie; Chen, Peng; Song, Andong; Wang, Dan; Wang, Qinhong
2018-04-13
L-Lysine is widely used as a nutrition supplement in feed, food, and beverage industries as well as a chemical intermediate. At present, great efforts are made to further decrease the cost of lysine to make it more competitive in the markets. Furthermore, lysine also shows potential as a feedstock to produce other high-value chemicals for active pharmaceutical ingredients, drugs, or materials. In this review, the current biomanufacturing of lysine is first presented. Second, the production of novel derivatives from lysine is discussed. Some chemicals like L-pipecolic acid, cadaverine, and 5-aminovalerate already have been obtained at a lab scale. Others like 6-aminocaproic acid, valerolactam, and caprolactam could be produced through a biological and chemical coupling pathway or be synthesized by a hypothetical pathway. This review demonstrates an active and expansive lysine industry, and these green biomanufacturing strategies could also be applied to enhance the competitiveness of other amino acid industry.
Latorre-Moratalla, M L; Bover-Cid, S; Aymerich, T; Marcos, B; Vidal-Carou, M C; Garriga, M
2007-03-01
The application of high hydrostatic pressure (200MPa) to meat batter just before sausage fermentation and the inoculation of starter culture were studied to improve the safety and quality of traditional Spanish fermented sausages (fuet and chorizo). Higher amounts of biogenic amines were formed in chorizo than in fuet. Without interfering with the ripening performance in terms of acidification, drying and proteolysis, hydrostatic pressure prevented enterobacteria growth but did not affect Gram-positive bacteria significantly. Subsequently, a strong inhibition of diamine (putrescine and cadaverine) accumulation was observed, but that of tyramine was not affected. The inoculated decarboxylase-negative strains, selected from indigenous bacteria of traditional sausages, were resistant to the HHP treatment, being able to lead the fermentation process, prevent enterococci development and significantly reduce enterobacteria counts. In sausages manufactured with either non-pressurized or pressurized meat batter, starter culture was the most protective measure against the accumulation of tyramine and both diamines.
Moncalvo, Alessandro; Marinoni, Laura; Dordoni, Roberta; Duserm Garrido, Guillermo; Lavelli, Vera; Spigno, Giorgia
2016-07-01
Skin powders and aqueous alcohol extracts were obtained from waste marcs from different grape varieties (Barbera, Nebbiolo, Pinot Noir, Chardonnay, Moscato and Müller-Thurgau). Both skins and extracts were analysed for the content of chemical contaminants: ochratoxin A (OTA), biogenic amines (BIAs), pesticides and metals. OTA was detected in low concentrations in Barbera, Moscato and Nebbiolo skins, but only in Barbera and Moscato extracts. Cadaverine, putrescine, ethanolamine and ethylamine were found in extracts at very low levels, while potential allergenic amines, tyramine and histamine, were never detected. Different pesticides were present in both skins and extracts. Pb and Cd were found in trace only in the powders, and K, Ca and Mg were the most abundant elements in both skin powders and extracts. Concentrations of the different contaminants were related to fibre content or total phenolics content of powders and extracts, respectively, in order to evaluate their use in the food sector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui, J.Y.; Taylor, S.L.
When (/sup 14/C)histamine was administered orally to rats, an average of 80% of the administered radioactivity was recovered in the urine at the end of 24 hr. About 10% of the total dose was excreted via the feces. Analysis of 4-hr urine samples found imidazoleacetic acid to be the predominant metabolite (60.6%), with N tau-methylimidazoleacetic acid (8.6%), N tau-methylhistamine (7.3%), and N-acetylhistamine (4.5%) to be the minor metabolites. Histamine metabolism was inhibited by simultaneous oral administration of aminoguanidine, isoniazid, quinacrine, cadaverine, putrescine, tyramine, and beta-phenylethylamine. The administration of inhibitors resulted in an increased amount of unmetabolized histamine and a decreasedmore » amount of metabolites reaching the urine. Pharmacologic inhibitors were found to be more potent and have a longer duration of action than foodborne ones. The inhibitors could potentiate food poisoning caused by histamine by inhibiting its metabolism.« less
Biogenic amine concentrations and evolution in "chilled" Canadian pork for the Japanese market.
Ngapo, Tania M; Vachon, Lise
2017-10-15
The aim of this study was to evaluate concentrations and evolution of biogenic amines in Canadian pork destined for the Japanese market. At 48h post-mortem, export quality loins were aged at -1.7°C for 13, 28, 43 or 58d (chilled) or 4.0°C for 5d (fresh). Increasing concentrations of putrescine, spermine and spermidine were observed with chilled ageing period and were greater in chilled export (43d at -1.7°C) than domestic market (5d at 4.0°C) pork equivalents. Cadaverine was detected, but was not influenced by ageing conditions, and tyramine was only detected in some samples after 43days at -1.7°C. Individual biogenic amines were not correlated with their precursor amino acids. Biogenic amines in Canadian pork for the chilled export Japanese market were not in sufficiently high concentrations to pose a risk of intoxication. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Rütschlin, Sina; Gunesch, Sandra; Böttcher, Thomas
2017-05-18
Shewanella algae B516 produces avaroferrin, an asymmetric hydroxamate siderophore, which has been shown to inhibit swarming motility of Vibrio alginolyticus. We aimed to elucidate the biosynthesis of this siderophore and to investigate how S. algae coordinates the production of avaroferrin and its two symmetric counterparts. We reconstituted the reaction in vitro with the main enzyme AvbD and the putative biosynthetic precursors, and demonstrate that multispecificity of this enzyme results in the production of all three cyclic hydroxamate siderophores that were previously isolated as natural products from S. algae. Surprisingly, purified AvbD exhibited a clear preference for the larger cadaverine-derived substrate. In live cells, however, siderophore ratios are maximized toward avaroferrin production, and we demonstrate that these siderophore ratios are the result of a regulation on substrate pool level, which may allow rapid evolutionary adaptation to environmental changes. Our results thereby give insights into a unique evolutionary strategy toward metabolite diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kallio, A; Jänne, J
1983-01-01
Treatment of mice bearing L1210 leukaemia with 2-difluoromethylornithine, a specific inhibitor of ornithine decarboxylase (EC 4.1.1.17), produced a profound depletion of putrescine and spermidine in the tumour cells. Sequential combination of methylglyoxal bis(guanylhydrazone), an inhibitor of adenosylmethionine decarboxylase (EC 4.1.1.50), with difluoromethylornithine largely reversed the polyamine depletion and led to a marked accumulation of cadaverine in the tumour cells. Experiments carried out with the combination of difluoromethylornithine and aminoguanidine, a potent inhibitor of diamine oxidase (EC 1.4.3.6), indicated that the methylglyoxal bis(guanylhydrazone)-induced reversal of polyamine depletion was mediated by the known inhibition of diamine oxidase by the diguanidine. In spite of the normalization of the tumour cell polyamine pattern upon administration of methylglyoxal bis(guanylhydrazone) to difluoromethylornithine-treated animals, the combination of these two drugs produced a growth-inhibitory effect not achievable with either of the compounds alone. PMID:6411077
Application of PCDA/SPH/CHO/Lysine vesicles to detect pathogenic bacteria in chicken.
de Oliveira, Taíla V; Soares, Nilda de F F; de Andrade, Nélio J; Silva, Deusanilde J; Medeiros, Eber Antônio A; Badaró, Amanda T
2015-04-01
During the course of infection, Salmonella must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments, as lysine decarboxylation to cadaverine. The idea of Salmonella defenses responses could be employed in systems as polydiacetylene (PDA) to detect this pathogen so important to public health system. Beside that PDA is an important substance because of the unique optical property; that undergoes a colorimetric transitions by various external stimuli. Therefore 10,12-pentacosadyinoic acid (PCDA)/Sphingomyelin(SPH)/Cholesterol(CHO)/Lysine system was tested to determine the colorimetric response induced by Salmonella choleraesuis. PCDA/SPH/CHO/Lysine vesicles showed a colour change even in low S. choleraesuis concentration present in laboratory conditions and in chicken meat. Thus, this work showed a PCDA/SPH/CHO/Lysine vesicle application to simplify routine analyses in food industry, as chicken meat industry. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sirocchi, Veronica; Caprioli, Giovanni; Cecchini, Cinzia; Coman, Maria Magdalena; Cresci, Alberto; Maggi, Filippo; Papa, Fabrizio; Ricciutelli, Massimo; Vittori, Sauro; Sagratini, Gianni
2013-12-01
Biogenic amines (BAs) are considered as an important indicator of freshness and quality of food. In this work, a new active packaging (AP) system for meat that, incorporating essential oil of Rosmarinus officinalis at 4% (w/w), inhibits the increase of BAs and the bacteria involved into their production was developed. BAs were analyzed by a SPE-HPLC-DAD method during the storage time of meat (0-7 d, 4 °C). Results showed that, in each monitored day, Biogenic Amine Index (BAI) expressed in mg kg(-1) is lower in meat wrapped in AP with respect to that packed in polycoupled packaging (PP) (from 19% to 62%). A strong correlation was found between the inhibition of increase of putrescine, cadaverine, histamine and their bacteria producers such as Enterobacteriaceae, Pseudomonas spp. and Brocothrix thermospacta. By exploiting antimicrobial and antioxidant action of essential oil of R. officinalis, the new APs contribute to increase the shelf life of fresh meat and to preserve its important nutrients.
Nalazek-Rudnicka, Katarzyna; Wasik, Andrzej
2017-01-01
Biogenic amines are group of organic, basic, nitrogenous compounds that naturally occur in plant, microorganism, and animal organisms. Biogenic amines are mainly produced through decarboxylation of amino acids. They are formed during manufacturing of some kind of food and beverages such as cheese, wine, or beer. Histamine, cadaverine, agmatine, tyramine, putrescine, and β -phenylethylamine are the most common biogenic amines found in wines and beers. This group of compounds can be toxic at high concentrations; therefore, their control is very important. Analysis of biogenic amines in alcoholic drinks (beers and wines) was carried out by HPLC-MS/MS after their derivatization with p -toluenesulfonyl chloride (tosyl chloride). The developed method has been applied for analysis of seventeen biogenic amines in twenty-eight samples of lager beers and in twelve samples of different homemade wines (white grape, red grape, strawberry, chokeberry, black currant, plum, apple, raspberry, and quince). The developed method is sensitive and repeatable for majority of the analytes. It is versatile and can be used for the determination of biogenic amines in various alcoholic beverages.
Peiretti, Pier Giorgio; Gai, Francesco; Ortoffi, Marco; Aigotti, Riccardo; Medana, Claudio
2012-01-01
The effects of three concentrations (0.2%, 1% and 3%) of rosemary oil (RO) on the freshness indicators, oxidative stability, fatty acid and biogenic amine (BA) contents of minced rainbow trout muscle (MTM) were investigated after different periods of storage (three and nine days) at 4 ± 1 °C. Moreover, the terpene and sesquiterpene contents in the treated MTM were also measured. RO treatment improves the pH, oxidative stability of the lipids and the FA profile, which resulted in a significant extension of MTM shelf-life. Storage time influenced all freshness indicators, with the exception of yellowness and chroma. Treatment with RO had a positive effect, leading to low BA content, especially putrescine, cadaverine, tyramine and histamine. Differences in BA were also found to be due to storage time, with the exception of spermidine, which was not influenced by time. Moreover, the presence of the terpenoid fraction of RO in MTM improved the quality of this ready-to-cook fish food. PMID:28239089
Biotechnological production of polyamines by bacteria: recent achievements and future perspectives.
Schneider, Jens; Wendisch, Volker F
2011-07-01
In Bacteria, the pathways of polyamine biosynthesis start with the amino acids L-lysine, L-ornithine, L-arginine, or L-aspartic acid. Some of these polyamines are of special interest due to their use in the production of engineering plastics (e.g., polyamides) or as curing agents in polymer applications. At present, the polyamines for industrial use are mainly synthesized on chemical routes. However, since a commercial market for polyamines as well as an industry for the fermentative production of amino acid exist, and since bacterial strains overproducing the polyamine precursors L-lysine, L-ornithine, and L-arginine are known, it was envisioned to engineer these amino acid-producing strains for polyamine production. Only recently, researchers have investigated the potential of amino acid-producing strains of Corynebacterium glutamicum and Escherichia coli for polyamine production. This mini-review illustrates the current knowledge of polyamine metabolism in Bacteria, including anabolism, catabolism, uptake, and excretion. The recent advances in engineering the industrial model bacteria C. glutamicum and E. coli for efficient production of the most promising polyamines, putrescine (1,4-diaminobutane), and cadaverine (1,5-diaminopentane), are discussed in more detail.
Hughes, Brianna H; Perkins, L Brian; Yang, Tom C; Skonberg, Denise I
2016-03-01
High pressure processing (HPP) of post-rigor abalone at 300MPa for 10min extended the refrigerated shelf-life to four times that of unprocessed controls. Shucked abalone meats were processed at 100 or 300MPa for 5 or 10min, and stored at 2°C for 35days. Treatments were analyzed for aerobic plate count (APC), total volatile base nitrogen (TVBN), K-value, biogenic amines, color, and texture. APC did not exceed 10(6) and TVBN levels remained below 35mg/100g for 35days for the 300MPa treatments. No biogenic amines were detected in the 300MPa treatments, but putrescine and cadaverine were detected in the control and 100MPa treatments. Color and texture were not affected by HPP or storage time. These results indicate that post-rigor processing at 300MPa for 10min can significantly increase refrigerated shelf-life of abalone without affecting chemical or physical quality characteristics important to consumers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Does autophagy in the midgut epithelium of centipedes depend on the day/night cycle?
Rost-Roszkowska, M M; Chajec, Ł; Vilimova, J; Tajovský, K; Kszuk-Jendrysik, M
2015-01-01
The midgut epithelium of two centipedes, Lithobius forficatus and Scolopendra cingulata, is composed of digestive, secretory and regenerative cells. In L. forficatus, the autophagy occurred only in the cytoplasm of the digestive cells as a sporadic process, while in S. cingulata, it occurred intensively in the digestive, secretory and regenerative cells of the midgut epithelium. In both of the species that were analyzed, this process proceeded in a continuous manner and did not depend on the day/night cycle. Ultrastructural analysis showed that the autophagosomes and autolysosomes were located mainly in the apical and perinuclear cytoplasm of the digestive cells in L. forficatus. However, in S. cingulata, the entire cytoplasm was filled with autophagosomes and autolysosomes. Initially the membranes of phagophores surround organelles during autophagosome formation. Autolysosomes result from the fusion of autophagosomes and lysosomes. Residual bodies which are the last stage of autophagy were released into the midgut lumen due to necrosis. Autophagy in the midgut epithelia that were analyzed was confirmed using acid phosphatase and mono-dansyl-cadaverine stainings. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analysis of biogenic amines using corona discharge ion mobility spectrometry.
Hashemian, Z; Mardihallaj, A; Khayamian, T
2010-05-15
A new method based on corona discharge ion mobility spectrometry (CD-IMS) was developed for the analysis of biogenic amines including spermidine, spermine, putrescine, and cadaverine. The ion mobility spectra of the compounds were obtained with and without n-Nonylamine used as the reagent gas. The high proton affinity of n-Nonylamine prevented ion formation from compounds with a proton affinity lower than that of n-Nonylamine and, therefore, enhanced its selectivity. It was also realized that the ion mobility spectrum of n-Nonylamine varied with its concentration. A sample injection port of a gas chromatograph was modified and used as the sample introduction system into the CD-IMS. The detection limits, dynamic ranges, and analytical parameters of the compounds with and without using the reagent gas were obtained. The detection limits and dynamic ranges of the compounds were about 2ng and 2 orders of magnitude, respectively. The wide dynamic range of CD-IMS originates from the high current of the corona discharge. The results revealed the high capability of the CD-IMS for the analysis of biogenic amines.
Signaling induced by hop/STI-1 depends on endocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Americo, Tatiana A.; Chiarini, Luciana B.; Linden, Rafael
The co-chaperone hop/STI-1 is a ligand of the cell surface prion protein (PrP{sup C}), and their interaction leads to signaling and biological effects. Among these, hop/STI-1 induces proliferation of A172 glioblastoma cells, dependent on both PrP{sup C} and activation of the Erk pathway. We tested whether clathrin-mediated endocytosis affects signaling induced by hop/STI-1. Both hyperosmolarity induced by sucrose and monodansyl-cadaverine blocked Erk activity induced by hop/STI-1, without affecting the high basal Akt activity typical of A172. The endocytosis inhibitors also affected the sub-cellular distribution of phosphorylated Erk, consistent with blockade of the latter's activity. The data indicate that signaling inducedmore » by hop/STI-1 depends on endocytosis. These findings are consistent with a role of sub-cellular trafficking in signal transduction following engagement by PrP{sup C} by ligands such as hop/STI-1, and may help help unravel both the functions of the prion protein, as well as possible loss-of-function components of prion diseases.« less
Guo, Xuewu; Guan, Xiangyu; Wang, Yazhou; Li, Lina; Wu, Deguang; Chen, Yefu; Pei, Huadong; Xiao, Dongguang
2015-07-01
Biogenic amines in Chinese rice wine have a potential threat of toxicity to human health. In this study, PEP4 gene in Saccharomyces cerevisiae was knocked out in order to evaluate its effect on biogenic amines production; the enzyme encodes proteinase A (PrA), an enzyme that is responsible for the production of free amino acids. It was found that compared to the wild type strain, the PrA activity and amino acid concentration decreased significantly, and the production of biogenic amines in this knockout strain decreased by 25.5%, from 180.1mg/L to 134.2mg/L. Especially, tyramine, cadaverine and histamine concentrations were also decreased by 57.5%, 24.6% and 54.3%, respectively. The main reason for the decrease of biogenic amines may be due to the low concentration of free amino acids. Our results provide a new strategy to minimize the biogenic amine production during fermentation of Chinese rice wine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Krokan, H; Eriksen, A
1977-02-01
Addition of methyl glyoxal bis(guanylhydrazone) to HeLa S3 suspension cultures resulted in increased putrescine levels and decreased spermidine and spermine levels preceding a drop in incorporation of [3H]thymidine, [3H]uridine and [14C]leucine into macromolecules. When putrescine, spermidine, spermine or cadaverine was added simultaneously with methyl glyoxal bis(guanylhydrazone), the drug had no detectable effect on the synthesis of macromolecules. In nuclei isolated from cells treated with methyl glyoxal bis(guanylhydrazone) the reduction in the rate of DNA synthesis was equal to the reduction of [3H]thymidine incorporation in the corresponding whole cells. The capability of the nuclei to synthesize DNA could not be restored by adding spermidine or spermine to the system in vitro. The rate of DNA chain elongation was only reduced slightly by methyl glyoxal bis(guanylhydrazone) indicating that decreased levels of spermidine and spermine lead to a decrease in the number of replication units active in DNA synthesis within each cell.
Pinto, Edgar; Melo, Armindo; Ferreira, Isabel M P L V O
2014-05-14
A new method involving ultrasound-assisted benzoylation and dispersive liquid-liquid microextraction was optimized with the aid of chemometrics for the extraction, cleanup, and determination of polyamines in plant foods. Putrescine, cadaverine, spermidine, and spermine were derivatized with 3,5-dinitrobenzoyl chloride and extracted by dispersive liquid-liquid microextraction using acetonitrile and carbon tetrachloride as dispersive and extraction solvents, respectively. Two-level full factorial design and central composite design were applied to select the most appropriate derivatization and extraction conditions. The developed method was linear in the 0.5-10.0 mg/L range, with a R(2) ≥ 0.9989. Intra- and interday precisions ranged from 0.8 to 6.9% and from 3.0 to 10.3%, respectively, and the limit of detection ranged between 0.018 and 0.042 μg/g of fresh weight. This method was applied to the analyses of six different types of plant foods, presenting recoveries between 81.7 and 114.2%. The method is inexpensive, versatile, simple, and sensitive.
Laranjo, Marta; Gomes, Ana; Agulheiro-Santos, Ana Cristina; Potes, Maria Eduarda; Cabrita, Maria João; Garcia, Raquel; Rocha, João Miguel; Roseiro, Luísa Cristina; Fernandes, Maria José; Fraqueza, Maria João; Elias, Miguel
2017-03-01
Meat industry needs to reduce salt in their products due to health issues. The present study evaluated the effect of salt reduction from 6% to 3% in two Portuguese traditional blood dry-cured sausages. Physicochemical and microbiological parameters, biogenic amines, fatty acids and texture profiles and sensory panel evaluations were considered. Differences due to salt reduction were perceptible in a faint decline of water activity, which slightly favoured microbial growth. Total biogenic amines content ranged from 88.86 to 796.68mgkg -1 fresh matter, with higher amounts, particularly of cadaverine, histamine and tyramine, in low-salt products. Still, histamine and other vasoactive amines remained at low levels, thus not affecting consumers' health. Regarding fatty acids, no significant differences were observed due to salt. However, texture profile analysis revealed lower resilience and cohesiveness in low-salt products, although no textural changes were observed by the sensory panel. Nevertheless, low-salt sausages were clearly preferred by panellists. Copyright © 2016 Elsevier Ltd. All rights reserved.
Piva, A; Grilli, E; Fabbri, L; Pizzamiglio, V; Gatta, P P; Galvano, F; Bognanno, M; Fiorentini, L; Woliński, J; Zabielski, R; Patterson, J A
2008-11-01
The aim of the study was to investigate the effects of supplementation of a microencapsulated blend of tributyrin and lactitol (TL) to a standard European (EU) diet without antibiotic growth promoters on intestinal metabolism and mucosa development of weaned piglets and to compare it with a standard US diet containing animal proteins, zinc oxide, copper sulfate, and carbadox. Ninety piglets weaned at 21 d were divided into 3 dietary groups consisting of 5 replicates each: 1) US diet supplemented with 55 mg/kg of carbadox, and 2.5% each of plasma proteins and spray-dried blood cells in the first phase, 3,055 mg/kg of Zn in the first and second phases, and 180 mg/kg of Cu in the third phase; 2) EU diet based on vegetable proteins and no antibiotics; and 3) the same EU diet supplemented with 3,000 mg/kg of microencapsulated TL. The study was divided into 3 phases: 0 to 7, 8 to 21, and 22 to 35 d. On d 7, 21, and 35, animals were weighed, and feed consumption and efficiency were determined. On d 14 and 35, one pig per pen was killed, and the intestinal contents and mucosa from the proximal, middle, distal jejunum and the ileum were sampled. Intestinal wall sections were fixed for histological analysis, and intestinal content was used for VFA, ammonia, and polyamine analysis. Throughout the study (d 0 to 35), the US diet had greater ADG and ADFI than the EU diet (P < 0.05). The EU diet supplemented with TL tended to have 11% greater ADG (P = 0.17). Feeding the EU diet caused a reduction in proximal and middle jejunum villi length by 10% (P < 0.05) and an increase in crypt size in proximal jejunum (P < 0.05) compared with the US diet, probably due to an increased rate of cell loss and crypt cell production. The TL supplementation resulted in longer villi along the jejunum and less deep crypts in the proximal jejunum (+15.9 and -8.9%, respectively; P < 0.05) than the unsupplemented EU diet. The TL diet increased the concentrations of cadaverine and putrescine in the small intestine (P < 0.05) and seemed to increase cadaverine, histamine, putrescine, and spermine in the large intestine by 1.5- to 10-fold compared with the US or EU diet. In conclusion, although the US diet had a greater effect on growth performance and mucosal trophic status than the EU diets, the supplementation with slowly released TL seemed to be an effective tool to partially overcome the adverse effects of vegetable protein diets.
Maria, A P J; Ayane, L; Putarov, T C; Loureiro, B A; Neto, B P; Casagrande, M F; Gomes, M O S; Glória, M B A; Carciofi, A C
2017-06-01
The present study compared the effects of diets formulated with fibers of different fermentability and protein sources of animal or vegetable origins on old and adult dogs. The experiment was organized in a 3 (diets) × 2 (ages) factorial arrangement, totaling 6 treatments. Thirty-six Beagle dogs were used (18 old dogs [10.2 ± 1.0 yr] and 18 young adult dogs [2.6 ± 0.9 yr]), with 6 dogs per treatment. Three diets with similar compositions were used: a nonfermentable insoluble fiber source (sugarcane fiber) and chicken byproduct meal (nonfermentable fiber [NFF] diet), a fermentable fiber source (beet pulp) and chicken byproduct meal (fermentable fiber [FF] diet), and soybean meal as a protein and fiber source (soybean meal [SM] diet). Data were evaluated using the MIXED procedure and considering the effects and interactions of block, animal, diets, and age. Means were compared using Tukey's test ( < 0.05). Age × diet interactions were evaluated when < 0.1. Old dogs had a reduced coefficient of total tract apparent digestibility of DM, which was explained by the age and diet interaction of CP and fat digestibility that was lower for old than for adult dogs fed the FF diet ( < 0.05). The SM diet obtained higher DM, OM, CP, and fiber digestibility compared with the NFF diet ( < 0.05). The feces of dogs fed the NFF diet had increased DM content ( < 0.05). The short-chain fatty acids (SCFA) did not change by age group and were higher for dogs fed the FF and SM diets compared with dogs fed the NFF diet ( < 0.05). An age and diet interaction was observed for lactate and was increased in the feces of old dogs compared with adult dogs fed the FF diet ( < 0.05). Fecal putrescine, cadaverine, and spermine were increased for old dogs compared with adult dogs ( < 0.05), and the spermidine fecal concentration was increased for dogs fed the SM diet regardless of age ( < 0.05). Old dogs had reduced peripheral T and B lymphocytes ( < 0.05). An age and diet interaction was observed for fecal IgA ( < 0.001). Adult dogs fed the SM diet had increased IgA in feces compared with animals fed the NFF and FF diets ( < 0.05). However, for old dogs, both the FF and SM diets induced increased IgA compared with the NFF diet ( < 0.05). In conclusion, beet pulp may reduce digestibility and induce increased lactate in the feces of old dogs. The protein and oligosaccharides of soybean meal are digestible by dogs, induce the production of SCFA and spermidine, and increase fecal IgA. Old dogs had increased putrecine, cadaverine, and spermine fecal concentrations.
Gubartallah, Elbaleeq A; Makahleh, Ahmad; Quirino, Joselito P; Saad, Bahruddin
2018-05-08
A rapid and green analytical method based on capillary electrophoresis with capacitively coupled contactless conductivity detection (C⁴D) for the determination of eight environmental pollutants, the biogenic amines (putrescine, cadaverine, spermidine, spermine, tyramine, 2-phenylamine, histamine and tryptamine), is described. The separation was achieved under normal polarity mode at 24 °C and 25 kV with a hydrodynamic injection (50 mbar for 5 s) and using a bare fused-silica capillary (95 cm length × 50 µm i.d.) (detection length of 10.5 cm from the outlet end of the capillary). The optimized background electrolyte consisted of 400 mM malic acid. C⁴D parameters were set at a fixed amplitude (50 V) and frequency (600 kHz). Under the optimum conditions, the method exhibited good linearity over the range of 1.0⁻100 µg mL −1 ( R ² ≥ 0.981). The limits of detection based on signal to noise (S/N) ratios of 3 and 10 were ≤0.029 µg mL −1 . The method was used for the determination of seawater samples that were spiked with biogenic amines. Good recoveries (77⁻93%) were found.
Prester, Ljerka; Macan, Jelena; Varnai, Veda Marija; Orct, Tatjana; Vukusic, Jelena; Kipcic, Dubravka
2009-03-01
Whole Atlantic mackerel (Scomber scombrus), sardine (Sardina pilchardus) and Mediterranean hake (Merluccius merluccius) from the Croatian Adriatic were stored at 22 degrees C and changes in histamine, putrescine, tyramine and cadaverine levels were monitored in relation to bacterial endotoxin. After 12 h, histamine levels in sardine were above the legal limit of 50 mg kg(-1), set by the US Food and Drug Administration, and an increase in putrescine content preceded the increase in histamine. After 24 h, histamine contents in mackerel and sardine reached 1090 +/- 101 and 577 +/- 275 mg kg(-1), respectively, which exceeded the toxic threshold of 500 mg kg(-1). At the same time, the putrescine content was also high in both fish (353-420 mg kg(-1)). The time-course of endotoxin production was similar in all fish species stored at 22 degrees C. A high correlation was found between endotoxin and histamine, and between endotoxin and putrescine in mackerel and sardine. On the other hand, high endotoxin levels in hake, after 24 h, were associated with the low histamine and putrescine content (40-60 mg kg(-1)).
Tordiffe, Adrian Stephen Wolferstan; van Reenen, Mari; Reyers, Fred; Mienie, Lodewyk Jacobus
2017-04-01
In captivity, cheetahs (Acinonyx jubatus) frequently suffer from several unusual chronic diseases that rarely occur in their free-ranging counterparts. In order to develop a better understanding of their metabolism and health we documented the urine organic acids of 41 apparently healthy captive cheetahs, in an untargeted metabolomic study, using gas chromatography-mass spectrometry. A total of 339 organic acids were detected and annotated. Phenolic compounds, thought to be produced by the anaerobic fermentation of aromatic amino acids in the distal colon, as well as their corresponding glycine conjugates, were present in high concentrations. The most abundant organic acids in the cheetahs' urine were an as yet unidentified compound and a novel cadaverine metabolite, tentatively identified as N 1 ,N 5 -dimethylpentane-1,5-diamine. Pantothenic acid and citramalic acid concentrations correlated negatively with age, while glutaric acid concentrations correlated positively with age, suggesting possible dysregulation of coenzyme A metabolism in older cheetahs. This study provides a baseline of urine organic acid reference values in captive cheetahs and suggests important avenues for future research in this species. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Ling; Wang, Peng; Xu, Xinglian; Zhou, Guanghong
2012-05-01
N-nitrosamines, biogenic amines, and residual nitrites are harmful substances and are often present in cured meats. The effects of different cooking methods (boiling, pan-frying, deep-frying, and microwave) were investigated on their contents in dry-cured sausage. The various N-nitrosamines were isolated by a steam distillation method and analyzed by gas chromatography mass spectrometry (GC-MS). The biogenic amines were determined after extraction with perchloric acid as dansyl derivatives by high-performance liquid chromatography (HPLC) method. The results showed that initial dry-cured raw sausage contained 5.31 μg/kg of total N-nitrosamines. Cooking by deep-frying or pan-frying resulted in products having the highest (P < 0.05) contents, compared with boiling or microwave treatments, which were not different from the raw. Although frying increased the content of N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), and N-nitrosopyrrolidine (NPYR), it decreased the contents of histamine and cadaverine. Boiling and microwave treatments decreased the total biogenic amines significantly (P < 0.05). Residual nitrite was significantly reduced by cooking treatments. The results suggest that boiling and microwave treatments were more suitable methods for cured meat. © 2012 Institute of Food Technologists®
Control of Biogenic Amines in Food—Existing and Emerging Approaches
Naila, Aishath; Flint, Steve; Fletcher, Graham; Bremer, Phil; Meerdink, Gerrit
2010-01-01
Biogenic amines have been reported in a variety of foods, such as fish, meat, cheese, vegetables, and wines. They are described as low molecular weight organic bases with aliphatic, aromatic, and heterocyclic structures. The most common biogenic amines found in foods are histamine, tyramine, cadaverine, 2-phenylethylamine, spermine, spermidine, putrescine, tryptamine, and agmatine. In addition octopamine and dopamine have been found in meat and meat products and fish. The formation of biogenic amines in food by the microbial decarboxylation of amino acids can result in consumers suffering allergic reactions, characterized by difficulty in breathing, itching, rash, vomiting, fever, and hypertension. Traditionally, biogenic amine formation in food has been prevented, primarily by limiting microbial growth through chilling and freezing. However, for many fishing based subsistence populations, such measures are not practical. Therefore, secondary control measures to prevent biogenic amine formation in foods or to reduce their levels once formed need to be considered as alternatives. Such approaches to limit microbial growth may include hydrostatic pressures, irradiation, controlled atmosphere packaging, or the use of food additives. Histamine may potentially be degraded by the use of bacterial amine oxidase or amine-negative bacteria. Only some will be cost-effective and practical for use in subsistence populations. PMID:21535566
De Mey, Eveline; De Klerck, Katrijn; De Maere, Hannelore; Dewulf, Lore; Derdelinckx, Guy; Peeters, Marie-Christine; Fraeye, Ilse; Vander Heyden, Yvan; Paelinck, Hubert
2014-02-01
Regarding food borne intoxications, the accumulation of biogenic amines must be avoided in all kinds of food products. Moreover, biogenic amines can function as precursors for the formation of carcinogenic N-nitrosamines when nitrite is present. To estimate the food safety of the dry fermented sausages available on the Belgian market, a screening of the residual sodium nitrite and nitrate contents, biogenic amines and volatile N-nitrosamine concentrations was performed on 101 samples. The median concentrations of residual NaNO2 and NaNO3 were each individually lower than 20mg/kg. In general, the biogenic amine accumulation remained low at the end of shelf life. Only in one product the amounts of cadaverine and putrescine reached intoxicating levels. Concerning the occurrence of N-nitrosamines, only N-nitrosopiperidine and N-nitrosomorpholine were detected in a high number of samples (resp. 22% and 28%). No correlation between the presence of N-nitrosamines and the biogenic amines content was observed. Although the N-nitrosamines could not been linked to specific product categories, the occurrence of N-nitrosopiperidine could probably be attributed to the use of pepper. © 2013.
Wang, Yongli; Li, Feng; Zhuang, Hong; Li, Lianghao; Chen, Xiao; Zhang, Jianhao
2015-03-01
Effects of plant polyphenols (tea polyphenol [TP], grape seed extract [GSE], and gingerol) and α-tocopherol on physicochemical parameters, microbiological counts, and biogenic amines were determined in dry-cured bacons at the end of ripening. Results showed that plant polyphenols and α-tocopherol significantly decreased pH, thiobarbituric acid reactive substances content, and total volatile basic nitrogen (TVBN) compared with the control (P < 0.05). Microbial counts and biogenic amine contents in dry-cured bacons were affected by plant polyphenols or α-tocopherol, with TP being the most effective (P < 0.05) in reducing aerobic plate counts, Enterobacteriaceae, Micrococcaceae, yeast, and molds, as well as in inhibiting formation of putrescine, cadaverine, tyramine, and spermine. Principal component analysis indicated that the first 2 principal components (PC) explained about 85.5% of the total variation. PC1 was related with physicochemical factors, parts of biogenic amines, and spoilage microorganisms, whereas PC2 grouped the TVBN, tyramine, 2-phenylethylamine, yeast, and molds. These findings suggest that plant polyphenols, especially TP, could be used to process dry-cured bacons to improve the quality and safety of finished products. © 2015 Institute of Food Technologists®
Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell.
Miller-Fleming, Leonor; Olin-Sandoval, Viridiana; Campbell, Kate; Ralser, Markus
2015-10-23
The polyamines (PAs) spermidine, spermine, putrescine and cadaverine are an essential class of metabolites found throughout all kingdoms of life. In this comprehensive review, we discuss their metabolism, their various intracellular functions and their unusual and conserved regulatory features. These include the regulation of translation via upstream open reading frames, the over-reading of stop codons via ribosomal frameshifting, the existence of an antizyme and an antizyme inhibitor, ubiquitin-independent proteasomal degradation, a complex bi-directional membrane transport system and a unique posttranslational modification-hypusination-that is believed to occur on a single protein only (eIF-5A). Many of these features are broadly conserved indicating that PA metabolism is both concentration critical and evolutionary ancient. When PA metabolism is disrupted, a plethora of cellular processes are affected, including transcription, translation, gene expression regulation, autophagy and stress resistance. As a result, the role of PAs has been associated with cell growth, aging, memory performance, neurodegenerative diseases, metabolic disorders and cancer. Despite comprehensive studies addressing PAs, a unifying concept to interpret their molecular role is missing. The precise biochemical function of polyamines is thus one of the remaining mysteries of molecular cell biology. Copyright © 2015. Published by Elsevier Ltd.
Kung, Hsien-Feng; Huang, Chun-Yung; Lin, Chia-Min; Liaw, Lon-Hsiu; Lee, Yi-Chen; Tsai, Yung-Hsiang
2015-06-01
Thirty dried flying fish products were purchased from fishing village stores in Taiwan and tested to detect the presence of histamine and histamine-forming bacteria. Except for histamine and cadaverine, the average content of various biogenic amines in the tested samples was less than 3.5 mg/100 g. Eight (26.6%) dried flying fish samples had histamine levels greater than the United States Food and Drug Administration guideline of 5 mg/100 g for scombroid fish and/or scombroid products, whereas four (13.3%) samples contained more than the hazard action level of 50 mg/100 g. One histamine-producing bacterial isolate was identified as Staphylococcus xylosus by 16S rDNA sequencing with polymerase chain reaction amplification. This isolate was capable of producing 507.8 ppm of histamine in trypticase soy broth supplemented with 1.0% l-histidine (TSBH). The S. xylosus isolate was a halotolerant bacterium that had a consistent ability to produce more than 300 ppm of histamine at 3% sodium chloride concentration in TSBH medium after 72 hours. Copyright © 2015. Published by Elsevier B.V.
The Negative Effects of Volatile Sulphur Compounds.
Milella, Lisa
2015-01-01
Oral malodor has been studied extensively in humans but not necessarily to the same degree in our veterinary patients where malodor constitutes a significant problem. Breath malodor may originate from the mouth, or from an extra oral source, originating from other organ systems such as gastrointestinal, respiratory, or even systemic disease. Oral malodor is a result of microbial metabolism of exogenous and endogenous proteinaceous substrates leading to the production of compounds such as indole, skatole, tyramine, cadaverine, puterescine, mercaptans, and sulphides. Volatile sulphur compounds have been shown to be the main cause of oral malodor. Although most clients perceive oral malodor to be primarily a cosmetic problem, there is an increasing volume of evidence in human dental literature demonstrating that volatile sulphur compounds produced by bacteria, even at low concentrations, are toxic to tissues and play a role in the pathogenesis of periodontitis. This article reviews the current available literature in human dentistry looking at these negative effects. No veterinary studies have been conducted looking at the negative effects of volatile sulphur compounds specifically, but as this article highlights, we should be aware of the potential negative effects of volatile sulphur compounds and consider this an area of future research.
Sziderics, Astrid Heide; Oufir, Mouhssin; Trognitz, Friederike; Kopecky, Dieter; Matusíková, Ildikó; Hausman, Jean-Francois; Wilhelm, Eva
2010-03-01
Drought is one of the major factors that limits crop production and reduces yield. To understand the early response of plants under nearly natural conditions, pepper plants (Capsicum annuum L.) were grown in a greenhouse and stressed by withholding water for 1 week. Plants adapted to the decreasing water content of the soil by adjustment of their osmotic potential in root tissue. As a consequence of drought, strong accumulation of raffinose, glucose, galactinol and proline was detected in the roots. In contrast, in leaves the levels of fructose, sucrose and also galactinol increased. Due to the water deficit cadaverine, putrescine, spermidine and spermine accumulated in leaves, whereas the concentration of polyamines was reduced in roots. To study the molecular basis of these responses, a combined approach of suppression subtractive hybridisation and microarray technique was performed on the same material. A total of 109 unique ESTs were detected as responsive to drought, while additional 286 ESTs were selected from the bulk of rare transcripts on the array. The metabolic profiles of stressed pepper plants are discussed with respect to the transcriptomic changes detected, while attention is given to the differences between defence strategies of roots and leaves.
Vaginal biogenic amines: biomarkers of bacterial vaginosis or precursors to vaginal dysbiosis?
Nelson, Tiffanie M.; Borgogna, Joanna-Lynn C.; Brotman, Rebecca M.; Ravel, Jacques; Walk, Seth T.; Yeoman, Carl J.
2015-01-01
Bacterial vaginosis (BV) is the most common vaginal disorder among reproductive age women. One clinical indicator of BV is a “fishy” odor. This odor has been associated with increases in several biogenic amines (BAs) that may serve as important biomarkers. Within the vagina, BA production has been linked to various vaginal taxa, yet their genetic capability to synthesize BAs is unknown. Using a bioinformatics approach, we show that relatively few vaginal taxa are predicted to be capable of producing BAs. Many of these taxa (Dialister, Prevotella, Parvimonas, Megasphaera, Peptostreptococcus, and Veillonella spp.) are more abundant in the vaginal microbial community state type (CST) IV, which is depleted in lactobacilli. Several of the major Lactobacillus species (L. crispatus, L. jensenii, and L. gasseri) were identified as possessing gene sequences for proteins predicted to be capable of putrescine production. Finally, we show in a small cross sectional study of 37 women that the BAs putrescine, cadaverine and tyramine are significantly higher in CST IV over CSTs I and III. These data support the hypothesis that BA production is conducted by few vaginal taxa and may be important to the outgrowth of BV-associated (vaginal dysbiosis) vaginal bacteria. PMID:26483694
Vaginal biogenic amines: biomarkers of bacterial vaginosis or precursors to vaginal dysbiosis?
Nelson, Tiffanie M; Borgogna, Joanna-Lynn C; Brotman, Rebecca M; Ravel, Jacques; Walk, Seth T; Yeoman, Carl J
2015-01-01
Bacterial vaginosis (BV) is the most common vaginal disorder among reproductive age women. One clinical indicator of BV is a "fishy" odor. This odor has been associated with increases in several biogenic amines (BAs) that may serve as important biomarkers. Within the vagina, BA production has been linked to various vaginal taxa, yet their genetic capability to synthesize BAs is unknown. Using a bioinformatics approach, we show that relatively few vaginal taxa are predicted to be capable of producing BAs. Many of these taxa (Dialister, Prevotella, Parvimonas, Megasphaera, Peptostreptococcus, and Veillonella spp.) are more abundant in the vaginal microbial community state type (CST) IV, which is depleted in lactobacilli. Several of the major Lactobacillus species (L. crispatus, L. jensenii, and L. gasseri) were identified as possessing gene sequences for proteins predicted to be capable of putrescine production. Finally, we show in a small cross sectional study of 37 women that the BAs putrescine, cadaverine and tyramine are significantly higher in CST IV over CSTs I and III. These data support the hypothesis that BA production is conducted by few vaginal taxa and may be important to the outgrowth of BV-associated (vaginal dysbiosis) vaginal bacteria.
Bowen, Christopher H; Bonin, Jeff; Kogler, Anna; Barba-Ostria, Carlos; Zhang, Fuzhong
2016-03-18
In search of sustainable approaches to plastics production, many efforts have been made to engineer microbial conversions of renewable feedstock to short-chain (C2-C8) bifunctional polymer precursors (e.g., succinic acid, cadaverine, 1,4-butanediol). Less attention has been given to medium-chain (C12-C14) monomers such as ω-hydroxy fatty acids (ω-OHFAs) and α,ω-dicarboxylic acids (α,ω-DCAs), which are precursors to high performance polyesters and polyamides. Here we engineer a complete microbial conversion of glucose to C12 and C14 ω-OHFAs and α,ω-DCAs, with precise control of product chain length. Using an expanded bioinformatics approach, we screen a wide range of enzymes across phyla to identify combinations that yield complete conversion of intermediates to product α,ω-DCAs. Finally, through optimization of culture conditions, we enhance production titer of C12 α,ω-DCA to nearly 600 mg/L. Our results indicate potential for this microbial factory to enable commercially relevant, renewable production of C12 α,ω-DCA-a valuable precursor to the high-performance plastic, nylon-6,12.
Sakanaka, Akito; Kuboniwa, Masae; Hashino, Ei; Bamba, Takeshi; Fukusaki, Eiichiro; Amano, Atsuo
2017-01-01
Onset of chronic periodontitis is associated with an aberrant polymicrobial community, termed dysbiosis. Findings regarding its etiology obtained using high-throughput sequencing technique suggested that dysbiosis holds a conserved metabolic signature as an emergent property. The purpose of this study was to identify robust biomarkers for periodontal inflammation severity. Furthermore, we investigated disease-associated metabolic signatures of periodontal microbiota using a salivary metabolomics approach. Whole saliva samples were obtained from adult subjects before and after removal of supragingival plaque (debridement). Periodontal inflamed surface area (PISA) was employed as an indicator of periodontal inflammatory status. Based on multivariate analyses using pre-debridement salivary metabolomics data, we found that metabolites associated with higher PISA included cadaverine and hydrocinnamate, while uric acid and ethanolamine were associated with lower PISA. Next, we focused on dental plaque metabolic byproducts by selecting salivary metabolites significantly decreased following debridement. Metabolite set enrichment analysis revealed that polyamine metabolism, arginine and proline metabolism, butyric acid metabolism, and lysine degradation were distinctive metabolic signatures of dental plaque in the high PISA group, which may be related to the metabolic signatures of disease-associated communities. Collectively, our findings identified potential biomarkers of periodontal inflammatory status and also provide insight into metabolic signatures of dysbiotic communities. PMID:28220901
Hazar, Fatma Yağmur; Kaban, Güzin; Kaya, Mükerrem
2017-11-01
Pastırma, a Turkish dry-cured meat product, was cured at two different temperatures (4 or 10 °C) with two different curing agents (150 mg/kg NaNO 2 or 300 mg/kg KNO 3 ). The aim of this research was to determine the effects of these factors on biogenic amine content and other qualitative properties (pH, a w , color, residual nitrite, TBARS, NPN-M, microbiological properties). Residual nitrite was below 10 mg/kg in all samples. Both the curing agent and temperature were found to have a very significant effect on the TBARS value, and the curing agent had a significant effect on the NPN-M content. Curing at 10 °C increased the L* value; the use of nitrate increased the a* value. The use of nitrite had a negative effect on the growth of lactic acid bacteria. Micrococcus/Staphylococcus showed good growth in the presence of nitrate. In all samples, Enterobacteriaceae counts were below detectable levels. Neither temperature nor curing agent had significant effects on the amounts of tryptamine, cadaverine, histamine, tyramine, or spermine. There were very significant effects of temperature on the amount of putrescine and of the curing agent on the amount of spermidine.
Qi, Wei; Hou, Li-Hua; Guo, Hong-Lian; Wang, Chun-Ling; Fan, Zhen-Chuan; Liu, Jin-Fu; Cao, Xiao-Hong
2014-06-01
This study aimed to enhance and improve the quality and safety of soy sauce. In the present work, the change of biogenic amines, such as histamine, tyramine, cadaverine, spermidine, was examined by the treatment of Candida versatilis and Zygosaccharomyces rouxii, and the influence of salt-tolerant yeast on biogenic amines was analysed during the whole fermentation process. The results showed that the content of biogenic amines was elevated after yeast treatment and the content of biogenic amines was influenced by using yeast. The dominating biogenic amine in soy sauce was tyramine. At the end of fermentation, the concentrations of biogenic amines produced by Zygosaccharomyces rouxii and Candida versatilis in the soy mash were 122.71 mg kg(-1) and 69.96 mg kg(-1) . The changes of biogenic amines in high-salt liquid soy mash during fermentation process indicated that a variety of biogenic amines were increased in the fermentation ageing period, which may be due to amino acid decarboxylation to form biogenic amines by yeast decarboxylase. The fermentation period of soy sauce should be longer than 5 months because biogenic amines began to decline after this time period. © 2013 Society of Chemical Industry.
Yanxiao, Li; Xiao-bo, Zou; Xiao-wei, Huang; Ji-yong, Shi; Jie-wen, Zhao; Holmes, Mel; Hao, Limin
2015-05-15
A new room temperature gas sensor was fabricated with pigment-sensitized TiO2 thin film as the sensing layer. Four natural pigments were extracted from spinach (Spinacia oleracea), red radish (Raphanus sativus L), winter jasmine (Jasminum nudiflorum), and black rice (Oryza sativa L. indica) by ethanol. Natural pigment-sensitized TiO2 sensor was prepared by immersing porous TiO2 films in an ethanol solution containing a natural pigment for 24h. The hybrid organic-inorganic formed films here were firstly exposed to atmospheres containing methylamine vapours with concentrations over the range 2-10 ppm at room temperature. The films sensitized by the pigments from black-rice showed an excellent gas-sensitivity to methylamine among the four natural pigments sensitized films due to the anthocyanins. The relative change resistance, S, of the films increased almost linearly with increasing concentrations of methylamine (r=0.931). At last, the black rice pigment sensitized TiO2 thin film was used to determine the biogenic amines generated by pork during storage. The developed films had good sensitivity to analogous gases such as putrscine, and cadaverine that will increase during storage. Copyright © 2014 Elsevier B.V. All rights reserved.
Technological Factors Affecting Biogenic Amine Content in Foods: A Review
Gardini, Fausto; Özogul, Yesim; Suzzi, Giovanna; Tabanelli, Giulia; Özogul, Fatih
2016-01-01
Biogenic amines (BAs) are molecules, which can be present in foods and, due to their toxicity, can cause adverse effects on the consumers. BAs are generally produced by microbial decarboxylation of amino acids in food products. The most significant BAs occurring in foods are histamine, tyramine, putrescine, cadaverine, tryptamine, 2-phenylethylamine, spermine, spermidine, and agmatine. The importance of preventing the excessive accumulation of BAs in foods is related to their impact on human health and food quality. Quality criteria in connection with the presence of BAs in food and food products are necessary from a toxicological point of view. This is particularly important in fermented foods in which the massive microbial proliferation required for obtaining specific products is often relater with BAs accumulation. In this review, up-to-date information and recent discoveries about technological factors affecting BA content in foods are reviewed. Specifically, BA forming-microorganism and decarboxylation activity, genetic and metabolic organization of decarboxylases, risk associated to BAs (histamine, tyramine toxicity, and other BAs), environmental factors influencing BA formation (temperature, salt concentration, and pH). In addition, the technological factors for controlling BA production (use of starter culture, technological additives, effects of packaging, other non-thermal treatments, metabolizing BA by microorganisms, effects of pressure treatments on BA formation and antimicrobial substances) are addressed. PMID:27570519
Biogenic amines in table olives. Analysis by high-performance liquid chromatography.
Hornero-Méndez, D; Garrido-Fernández, A
1994-09-01
Biogenic amines in fermented vegetables have scarcely been studied. Available data show that in table olives and fermented cucumbers their presence is rare and any determinations made have been restricted mainly to histamine. However, some microorganisms, especially those related to spoilage, found in the fermentation brines of such products may have amino acid decarboxylase activity and give rise to biogenic amines by unusual processes. A method for the simultaneous determination of eight biogenic amines (tryptamine, beta-phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine, and spermine) has been developed to study their occurrence in fermented vegetables in more detail. The method consists of extraction of the amines from olive paste with 5% m/v trichloracetic acid and successive transfers into water-saturated n-BuOH and 0.1 mol l-1 HCl. An aliquot of this mixture is dried and derivatized with dansyl chloride. The dansyl derivatives are then analysed by high-performance liquid chromatography. Special emphasis has been given to optimization of the n-BuOH and 0.1 mol l-1 HCl extractions and to the derivatization conditions. By applying this method to the analysis of spoilt olives, the presence of some biogenic amines has been demonstrated. Thus a new method for monitoring the presence of biogenic amines during the fermentation of olives and for detecting anomalous fermentations is envisaged.
Yeoman, Carl J.; Thomas, Susan M.; Miller, Margret E. Berg; Ulanov, Alexander V.; Torralba, Manolito; Lucas, Sarah; Gillis, Marcus; Cregger, Melissa; Gomez, Andres; Ho, Mengfei; Leigh, Steven R.; Stumpf, Rebecca; Creedon, Douglas J.; Smith, Michael A.; Weisbaum, Jon S.; Nelson, Karen E.; Wilson, Brenda A.; White, Bryan A.
2013-01-01
Background Bacterial vaginosis (BV) is the most common vaginal disorder of reproductive-age women. Yet the cause of BV has not been established. To uncover key determinants of BV, we employed a multi-omic, systems-biology approach, including both deep 16S rRNA gene-based sequencing and metabolomics of lavage samples from 36 women. These women varied demographically, behaviorally, and in terms of health status and symptoms. Principal Findings 16S rRNA gene-based community composition profiles reflected Nugent scores, but not Amsel criteria. In contrast, metabolomic profiles were markedly more concordant with Amsel criteria. Metabolomic profiles revealed two distinct symptomatic BV types (SBVI and SBVII) with similar characteristics that indicated disruption of epithelial integrity, but each type was correlated to the presence of different microbial taxa and metabolites, as well as to different host behaviors. The characteristic odor associated with BV was linked to increases in putrescine and cadaverine, which were both linked to Dialister spp. Additional correlations were seen with the presence of discharge, 2-methyl-2-hydroxybutanoic acid, and Mobiluncus spp., and with pain, diethylene glycol and Gardnerella spp. Conclusions The results not only provide useful diagnostic biomarkers, but also may ultimately provide much needed insight into the determinants of BV. PMID:23405259
Yeoman, Carl J; Thomas, Susan M; Miller, Margret E Berg; Ulanov, Alexander V; Torralba, Manolito; Lucas, Sarah; Gillis, Marcus; Cregger, Melissa; Gomez, Andres; Ho, Mengfei; Leigh, Steven R; Stumpf, Rebecca; Creedon, Douglas J; Smith, Michael A; Weisbaum, Jon S; Nelson, Karen E; Wilson, Brenda A; White, Bryan A
2013-01-01
Bacterial vaginosis (BV) is the most common vaginal disorder of reproductive-age women. Yet the cause of BV has not been established. To uncover key determinants of BV, we employed a multi-omic, systems-biology approach, including both deep 16S rRNA gene-based sequencing and metabolomics of lavage samples from 36 women. These women varied demographically, behaviorally, and in terms of health status and symptoms. 16S rRNA gene-based community composition profiles reflected Nugent scores, but not Amsel criteria. In contrast, metabolomic profiles were markedly more concordant with Amsel criteria. Metabolomic profiles revealed two distinct symptomatic BV types (SBVI and SBVII) with similar characteristics that indicated disruption of epithelial integrity, but each type was correlated to the presence of different microbial taxa and metabolites, as well as to different host behaviors. The characteristic odor associated with BV was linked to increases in putrescine and cadaverine, which were both linked to Dialister spp. Additional correlations were seen with the presence of discharge, 2-methyl-2-hydroxybutanoic acid, and Mobiluncus spp., and with pain, diethylene glycol and Gardnerella spp. The results not only provide useful diagnostic biomarkers, but also may ultimately provide much needed insight into the determinants of BV.
Technological Factors Affecting Biogenic Amine Content in Foods: A Review.
Gardini, Fausto; Özogul, Yesim; Suzzi, Giovanna; Tabanelli, Giulia; Özogul, Fatih
2016-01-01
Biogenic amines (BAs) are molecules, which can be present in foods and, due to their toxicity, can cause adverse effects on the consumers. BAs are generally produced by microbial decarboxylation of amino acids in food products. The most significant BAs occurring in foods are histamine, tyramine, putrescine, cadaverine, tryptamine, 2-phenylethylamine, spermine, spermidine, and agmatine. The importance of preventing the excessive accumulation of BAs in foods is related to their impact on human health and food quality. Quality criteria in connection with the presence of BAs in food and food products are necessary from a toxicological point of view. This is particularly important in fermented foods in which the massive microbial proliferation required for obtaining specific products is often relater with BAs accumulation. In this review, up-to-date information and recent discoveries about technological factors affecting BA content in foods are reviewed. Specifically, BA forming-microorganism and decarboxylation activity, genetic and metabolic organization of decarboxylases, risk associated to BAs (histamine, tyramine toxicity, and other BAs), environmental factors influencing BA formation (temperature, salt concentration, and pH). In addition, the technological factors for controlling BA production (use of starter culture, technological additives, effects of packaging, other non-thermal treatments, metabolizing BA by microorganisms, effects of pressure treatments on BA formation and antimicrobial substances) are addressed.
Study on biogenic amines in various dry salted fish consumed in China
NASA Astrophysics Data System (ADS)
Wu, Yanyan; Chen, Yufeng; Li, Laihao; Yang, Xianqing; Yang, Shaoling; Lin, Wanling; Zhao, Yongqiang; Deng, Jianchao
2016-08-01
This study was carried out to investigate the biogenic amines (BAs), physicochemical property and microorganisms in dry salted fish, a traditional aquatic food consumed in China. Forty three samples of dry salted fish were gathered from retail and wholesale markets and manufacturers, which had been produced in various regions in China. Cadaverine (CAD) and putrescine (PUT) were quantitatively the most common biogenic amines. About 14% of the samples exceeded the histamine content standards established by the FDA and/or EU. The highest histamine content was found in Silver pomfret ( Pampus argenteus) (347.79 mg kg-1). Five of forty three samples exceeded the acceptable content of TYR (100 mg kg-1), and 23.26% of dried-salted fish contained high contents of biogenic amines (above 600 mg kg-1). In addition, species, regions, pickling processes and drying methods made the physicochemical property, microorganisms and biogenic amines in dry salted fish to be different to some extents. The total plate count (TPC) was much higher than that of total halophilic bacteria in all samples. The biogenic amines, physicochemical property and microbiological counts exhibited large variations among samples. Furthermore, no significant correlation between biogenic amines and physicochemical property and TPC was observed. This study indicated that dry salted fish may still present healthy risk for BAs, depending on the processing methods, storage conditions among others.
Juettner, Norbert E; Schmelz, Stefan; Bogen, Jan P; Happel, Dominic; Fessner, Wolf-Dieter; Pfeifer, Felicitas; Fuchsbauer, Hans-Lothar; Scrima, Andrea
2018-05-01
Transglutaminase from Streptomyces mobaraensis (MTG) has become a powerful tool to covalently and highly specifically link functional amines to glutamine donor sites of therapeutic proteins. However, details regarding the mechanism of substrate recognition and interaction of the enzyme with proteinaceous substrates still remain mostly elusive. We have determined the crystal structure of the Streptomyces papain inhibitory protein (SPI p ), a substrate of MTG, to study the influence of various substrate amino acids on positioning glutamine to the active site of MTG. SPI p exhibits a rigid, thermo-resistant double-psi-beta-barrel fold that is stabilized by two cysteine bridges. Incorporation of biotin cadaverine identified Gln-6 as the only amine acceptor site on SPI p accessible for MTG. Substitution of Lys-7 demonstrated that small and hydrophobic residues in close proximity to Gln-6 favor MTG-mediated modification and are likely to facilitate introduction of the substrate into the front vestibule of MTG. Moreover, exchange of various surface residues of SPI p for arginine and glutamate/aspartate outside the glutamine donor region influences the efficiency of modification by MTG. These results suggest the occurrence of charged contact areas between MTG and the acyl donor substrates beyond the front vestibule, and pave the way for protein engineering approaches to improve the properties of artificial MTG-substrates used in biomedical applications. © 2018 The Protein Society.
A Cleavage-potentiated Fragment of Tear Lacritin Is Bactericidal*
McKown, Robert L.; Coleman Frazier, Erin V.; Zadrozny, Kaneil K.; Deleault, Andrea M.; Raab, Ronald W.; Ryan, Denise S.; Sia, Rose K.; Lee, Jae K.; Laurie, Gordon W.
2014-01-01
Antimicrobial peptides are important as the first line of innate defense, through their tendency to disrupt bacterial membranes or intracellular pathways and potentially as the next generation of antibiotics. How they protect wet epithelia is not entirely clear, with most individually inactive under physiological conditions and many preferentially targeting Gram-positive bacteria. Tears covering the surface of the eye are bactericidal for Gram-positive and -negative bacteria. Here we narrow much of the bactericidal activity to a latent C-terminal fragment in the prosecretory mitogen lacritin and report that the mechanism combines membrane permeabilization with rapid metabolic changes, including reduced levels of dephosphocoenzyme A, spermidine, putrescine, and phosphatidylethanolamines and elevated alanine, leucine, phenylalanine, tryptophan, proline, glycine, lysine, serine, glutamate, cadaverine, and pyrophosphate. Thus, death by metabolic stress parallels cellular attempts to survive. Cleavage-dependent appearance of the C-terminal cationic amphipathic α-helix is inducible within hours by Staphylococcus epidermidis and slowly by another mechanism, in a chymotrypsin- or leupeptin protease-inhibitable manner. Although bactericidal at low micromolar levels, within a biphasic 1–10 nm dose optimum, the same domain is mitogenic and cytoprotective for epithelia via a syndecan-1 targeting mechanism dependent on heparanase. Thus, the C terminus of lacritin is multifunctional by dose and proteolytic processing and appears to play a key role in the innate protection of the eye, with wider potential benefit elsewhere as lacritin flows from exocrine secretory cells. PMID:24942736
Ehsani, Ali; Jasour, Mohammad Sedigh
2012-12-01
The biogenic amines (tyramine, histamine, cadaverine, and puterscine) and microbiological properties (mesophilic, psychrotrophic, and Pseudomonas spp.) of whole pike-perch (Sander lucioperca) was investigated during 2 d prestorage icing and 90 d frozen storage (-24 °C). At the end of ice storage, a noticeable increase only was found for puterscine level (P < 0.05), and microbial loads of fish increased in comparison with fresh fish (P < 0.05). During the frozen storage, as time passed, a continuous increase of biogenic amines and decrease of bacterial load (except for Pseudomonas spp. at the last 30 d) was detected (P < 0.05). The total contents of biogenic amines ranged from 6.24 to 91.76 μg/g during the investigated period. Puterscine was the major amine detected in pike-perch and its concentration varied between 1.75 and 56.95 μg/g; due to a more step-wise increase it was a good quality indicator. At the end of storage, all of the obtained values are below the tolerable maximum amounts based on available regulations. Based on biogenic amines content and microbial load, it could be concluded that pike-perch can be consumed without any health risks after 2 d icing condition and 90 d frozen storage. © 2012 Institute of Food Technologists®
Jia, Shiliang; Liu, Xiaochang; Huang, Zhan; Li, Yan; Zhang, Longteng; Luo, Yongkang
2018-03-02
This study evaluated the effects of chitosan oligosaccharides (COS) on the changes in quality and microbiota of silver carp fillets stored at 4 °C. During storage, 1% (w/v) COS treated samples maintained good quality, as evidenced by retarding sensory deterioration, inhibiting microbial growth, attenuating the production of total volatile basic nitrogen, putrescine, cadaverine and hypoxanthine, and delaying degradation of inosine monophosphate and hypoxanthine ribonucleotide. Meanwhile, variability in the predominant microbiota in different samples was investigated by culture-dependent and -independent methods. Based on sensory analysis, shelf-life of silver carp fillets was 4 days for the control and 6 days for COS treated samples. Meanwhile, Pseudomonas, followed by Aeromonas, Acinetobacter, and Shewanella were dominated in the control samples at day 4 and contributed to fish spoilage at day 6. However, COS inhibited the growth of Pseudomonas, Aeromonas, and Shewanella significantly. Consequently, Acinetobacter followed by Pseudomonas became the predominant microbiota in COS treated samples at day 6. With the growth of Pseudomonas, COS treated samples were spoiled at day 8. Therefore, COS improved the quality of fillets and prolonged the shelf life of silver carp fillets by 2 days during chilled storage, which was mainly due to their modulating effects on microbiota. Copyright © 2018 Elsevier B.V. All rights reserved.
Activities of Arginine and Ornithine Decarboxylases in Various Plant Species 1
Birecka, Helena; Bitonti, Alan J.; McCann, Peter P.
1985-01-01
In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to Vmax, ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. α-Difluoromethylornithine and α-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species. No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed. In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum. PMID:16664442
Activities of arginine and ornithine decarboxylases in various plant species.
Birecka, H; Bitonti, A J; McCann, P P
1985-10-01
In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to V(max), ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. alpha-Difluoromethylornithine and alpha-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species.No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed.In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum.
Occurrence of biogenic amines in beers produced with malted organic Emmer wheat (Triticum dicoccum).
Mozzon, Massimo; Boselli, Emanuele; Obiedziński, Mieczysław W; Frega, Natale G
2015-01-01
Because several groups of microorganisms are able to decarboxylate amino acids, the presence of biogenic amines (BA) can be seen as an index of the microbiological quality of the brewing process. BAs were quantified for the first time in the intermediate products and craft beers produced with malted organic Emmer wheat (Triticum dicoccum) in a small size brewery in order to assess the possible presence of critical control points related to biological hazard in the brewing process. BA levels in beers produced exclusively from malted organic Emmer wheat were between 15.4 and 25.2 mg l(-1) in the samples of light beer (Lt) and between 8.9 and 15.3 mg l(-1) in double malt beers (DM) ready for consumption (the beers stored for 90 days at 1-2°C). Cadaverine and tyramine were the main BAs in the Lt and DM beers, respectively. Increased concentrations of BAs seemed to be more related to the heat treatment of the processing product during mashing and wort boiling, rather than to the fermentation process. Much lower concentrations were found in finished beers obtained from 50% malted organic Emmer wheat and 50% malted barley (up to 3.2 mg l(-1)) or from 30% malted Emmer wheat (up to 8.3 mg l(-1)). Thus, Emmer wheat malt can be a useful alternative to wheat and spelt for the production of beer with a limited content of BA, if the processing technology is kept under control.
Alteration of metabolomic markers of amino-acid metabolism in piglets with in-feed antibiotics.
Mu, Chunlong; Yang, Yuxiang; Yu, Kaifan; Yu, Miao; Zhang, Chuanjian; Su, Yong; Zhu, Weiyun
2017-04-01
In-feed antibiotics have been used to promote growth in piglets, but its impact on metabolomics profiles associated with host metabolism is largely unknown. In this study, to test the hypothesis that antibiotic treatment may affect metabolite composition both in the gut and host biofluids, metabolomics profiles were analyzed in antibiotic-treated piglets. Piglets were fed a corn-soy basal diet with or without in-feed antibiotics from postnatal day 7 to day 42. The serum biochemical parameters, metabolomics profiles of the serum, urine, and jejunal digesta, and indicators of microbial metabolism (short-chain fatty acids and biogenic amines) were analyzed. Compared to the control group, antibiotics treatment did not have significant effects on serum biochemical parameters except that it increased (P < 0.05) the concentration of urea. Antibiotics treatment increased the relative concentrations of metabolites involved in amino-acid metabolism in the serum, while decreased the relative concentrations of most amino acids in the jejunal content. Antibiotics reduced urinary 2-ketoisocaproate and hippurate. Furthermore, antibiotics decreased (P < 0.05) the concentrations of propionate and butyrate in the feces. Antibiotics significantly affected the concentrations of biogenic amines, which are derived from microbial amino-acid metabolism. The three major amines, putrescine, cadaverine, and spermidine, were all increased (P < 0.05) in the large intestine of antibiotics-treated piglets. These results identified the phenomena that in-feed antibiotics may have significant impact on the metabolomic markers of amino-acid metabolism in piglets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, M; Wang, Xiliang
Melanoma is a malignant tumor of melanocytes with high capability of invasion and rapid metastasis to other organs. Malignant melanoma is the most common metastatic malignancy found in gastrointestinal tract (GI). To the best of our knowledge, previous studies of melanoma in gastrointestinal tract are all clinical case reports. In this work, 1H NMR-based metabolomics approach is used to investigate the metabolite profiles differences of stomach tissue extracts of metastatic B16-F10 melanoma in C57BL/6J mouse and search for specific metabolite biomarker candidates. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonalmore » Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to evaluate important metabolites responsible for discriminating the control and the melanoma groups. Both PCA and OPLS results reveal that the melanoma group can be well separated from its control group. Among the 50 identified metabolites, it is found that the concentrations of 19 metabolites are statistically and significantly changed with the levels of O-phosphocholine and hypoxanthine down-regulated while the levels of isoleucine, leucine, valine, isobutyrate, threonine, cadaverine, alanine, glutamate, glutamine, methionine, citrate, asparagine, tryptophan, glycine, serine, uracil, and formate up-regulated in the melanoma group. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in stomach.« less
Deciphering the Translation Initiation Factor 5A Modification Pathway in Halophilic Archaea
Graf, Michael; Blaby, Ian K.; Makkay, Andrea M.; Starosta, Agata L.; Papke, R. Thane; Oshima, Tairo; Wilson, Daniel N.
2016-01-01
Translation initiation factor 5A (IF5A) is essential and highly conserved in Eukarya (eIF5A) and Archaea (aIF5A). The activity of IF5A requires hypusine, a posttranslational modification synthesized in Eukarya from the polyamine precursor spermidine. Intracellular polyamine analyses revealed that agmatine and cadaverine were the main polyamines produced in Haloferax volcanii in minimal medium, raising the question of how hypusine is synthesized in this halophilic Archaea. Metabolic reconstruction led to a tentative picture of polyamine metabolism and aIF5A modification in Hfx. volcanii that was experimentally tested. Analysis of aIF5A from Hfx. volcanii by LC-MS/MS revealed it was exclusively deoxyhypusinylated. Genetic studies confirmed the role of the predicted arginine decarboxylase gene (HVO_1958) in agmatine synthesis. The agmatinase-like gene (HVO_2299) was found to be essential, consistent with a role in aIF5A modification predicted by physical clustering evidence. Recombinant deoxyhypusine synthase (DHS) from S. cerevisiae was shown to transfer 4-aminobutyl moiety from spermidine to aIF5A from Hfx. volcanii in vitro. However, at least under conditions tested, this transfer was not observed with the Hfx. volcanii DHS. Furthermore, the growth of Hfx. volcanii was not inhibited by the classical DHS inhibitor GC7. We propose a model of deoxyhypusine synthesis in Hfx. volcanii that differs from the canonical eukaryotic pathway, paving the way for further studies. PMID:28053595
Silbande, Adèle; Adenet, Sandra; Chopin, Christine; Cornet, Josiane; Smith-Ravin, Juliette; Rochefort, Katia; Leroi, Françoise
2018-02-02
The effect of vacuum (VP - 4°C) and CO 2 /N 2 -atmosphere (MAP - 4°C) packaging on the quality of red drum fillets compared with whole gutted iced fish was investigated. A metagenomic approach, bacterial enumeration and isolation, biochemical and sensory analyses were carried out. The organoleptic rejection of whole fish was observed at day 15 whereas VP and MAP fillets appeared unacceptable only after 29days. At these dates, total mesophilic counts reached 10 7 -10 8 CFU g -1 . According to Illumina MiSeq sequencing, Arthrobacter, Chryseobacterium, Brevibacterium, Staphylococcus and Kocuria were the main genera of the fresh red drum fillets. At the sensory rejection time, lactic acid bacteria (LAB), particularly Carnobacterium sp., dominated the microbiota of both types of packaging. The pH value of fresh samples was between 5.96 and 6.37 and did not vary greatly in all trials. Total volatile basic nitrogen (TVBN) and trimethylamine (TMA) concentrations were low and not represent reliable indicators of the spoilage, contrary to some biogenic amines (cadaverine, putrescine and tyramine). Chilled packed fillets of red drum have an extended shelf-life compared to whole gutted iced fish. Overall, few differences in sensory and microbial quality were observed between the VP and MAP samples. Next-Generation Sequencing (NGS) provided data on the microbiota of a tropical fish. Copyright © 2017 Elsevier B.V. All rights reserved.
Oteng-Pabi, Samuel K; Clouthier, Christopher M; Keillor, Jeffrey W
2018-01-01
Transglutaminases (TGases) are enzymes that catalyse protein cross-linking through a transamidation reaction between the side chain of a glutamine residue on one protein and the side chain of a lysine residue on another. Generally, TGases show low substrate specificity with respect to their amine substrate, such that a wide variety of primary amines can participate in the modification of specific glutamine residue. Although a number of different TGases have been used to mediate these bioconjugation reactions, the TGase from Bacillus subtilis (bTG) may be particularly suited to this application. It is smaller than most TGases, can be expressed in a soluble active form, and lacks the calcium dependence of its mammalian counterparts. However, little is known regarding this enzyme and its glutamine substrate specificity, limiting the scope of its application. In this work, we designed a FRET-based ligation assay to monitor the bTG-mediated conjugation of the fluorescent proteins Clover and mRuby2. This assay allowed us to screen a library of random heptapeptide glutamine sequences for their reactivity with recombinant bTG in bacterial cells, using fluorescence assisted cell sorting. From this library, several reactive sequences were identified and kinetically characterized, with the most reactive sequence (YAHQAHY) having a kcat/KM value of 19 ± 3 μM-1 min-1. This sequence was then genetically appended onto a test protein as a reactive 'Q-tag' and fluorescently labelled with dansyl-cadaverine, in the first demonstration of protein labelling mediated by bTG.
Kelly, Mary T; Blaise, Alain; Larroque, Michel
2010-11-19
This paper reports a new, simple, rapid and economical method for routine determination of 24 amino acids and biogenic amines in grapes and wine. No sample clean-up is required and total run time including column re-equilibration is less than 40min. Following automated in-loop automated pre-column derivatisation with an o-phthaldialdehyde, N-acetyl-l-cysteine reagent, compounds were separated on a 3mm×25cm C(18) column using a binary mobile phase. The method was validated in the range 0.25-10mg/l; repeatability was less than 3% RSD and the intermediate precision ranged from 2 to 7% RSD. The method was shown to be linear by the 'lack of fit' test and the accuracy was between 97 and 101%. The LLOQ varied between 10μg/l for aspartic and glutamic acids, ethanolamine and GABA, and 100μg/l for tyrosine, phenylalanine, putrescine and cadaverine. The method was applied to grapes, white wine, red wine, honey and three species of physalis fruit. Grapes and physalis fruit were crushed, sieved, centrifuged and diluted 1/20 and 1/100, respectively, for analysis; wines and honeys were simply diluted 10-fold. It was shown using this method that the amino acid content of grapes was strongly correlated with berry volume, moderately correlated with sugar concentration and inversely correlated with total acidity. Copyright © 2010 Elsevier B.V. All rights reserved.
Managing Your Wine Fermentation to Reduce the Risk of Biogenic Amine Formation
Smit, Anita Yolandi; Engelbrecht, Lynn; du Toit, Maret
2012-01-01
Biogenic amines are nitrogenous organic compounds produced in wine from amino acid precursors mainly by microbial decarboxylation. The concentration of biogenic amines that can potentially be produced is dependent on the amount of amino acid precursors in the medium, the presence of decarboxylase positive microorganisms and conditions that enable microbial or biochemical activity such as the addition of nutrients to support the inoculated starter cultures for alcoholic and malolactic fermentation (MLF). MLF can be conducted using co-inoculation or an inoculation after the completion of alcoholic fermentation that may also affect the level of biogenic amines in wine. This study focused on the impact of the addition of complex commercial yeast and bacterial nutrients and the use of different MLF inoculation scenarios on the production of biogenic amines in wine. Results showed that the addition of complex nutrients to real grape must could potentially increase histamine concentrations in wine. The same experiment in synthetic grape must showed a similar trend for putrescine and cadaverine. The effect of different MLF inoculation scenarios was examined in two cultivars, Pinotage and Shiraz. Conflicting results was obtained. In the Shiraz, co-inoculation resulted in lower biogenic amine concentrations after MLF compared to before MLF, while the concentration was higher in the Pinotage. However, the production of biogenic amines was affected more by the presence of decarboxylase positive lactic acid bacteria than by the addition of complex nutrients or the inoculation scenario. PMID:22419915
Hu, M; Wang, Xiliang
2014-12-05
Melanoma is a malignant tumor of melanocytes with high capability of invasion and rapid metastasis to other organs. Malignant melanoma is the most common metastatic malignancy found in gastrointestinal tract (GI). To the best of our knowledge, previous studies of melanoma in gastrointestinal tract are all clinical case reports. In this work, 1H NMR-based metabolomics approach is used to investigate the metabolite profiles differences of stomach tissue extracts of metastatic B16-F10 melanoma in C57BL/6J mouse and search for specific metabolite biomarker candidates. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonalmore » Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to evaluate important metabolites responsible for discriminating the control and the melanoma groups. Both PCA and OPLS results reveal that the melanoma group can be well separated from its control group. Among the 50 identified metabolites, it is found that the concentrations of 19 metabolites are statistically and significantly changed with the levels of O-phosphocholine and hypoxanthine down-regulated while the levels of isoleucine, leucine, valine, isobutyrate, threonine, cadaverine, alanine, glutamate, glutamine, methionine, citrate, asparagine, tryptophan, glycine, serine, uracil, and formate up-regulated in the melanoma group. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in stomach.« less
Zarghampour, Fereshteh; Yamini, Yadollah; Baharfar, Mahroo; Faraji, Mohammad
2018-06-29
In the present research, an on-chip electromembrane extraction coupled with high performance liquid chromatography was developed for monitoring the trace levels of biogenic amines (BAs), including histamine, tryptamine, putrescine, cadaverine and spermidine in food samples. A porous polypropylene sheet membrane impregnated with an organic solvent was placed between the two parts of the chip device to separate the channels. Two platinum electrodes were mounted at the bottom of these channels, which were connected to a power supply, providing the electrical driving force for migration of ionized analytes from the sample solution through the porous sheet membrane into the acceptor phase. BAs were extracted from 2 mL aqueous sample solutions at neutral pH into 50 μL of acidified (HCl 90 mM) acceptor solution. Supported liquid membrane including NPOE containing 10% DEHP was used to ensure efficient extraction. Low voltage of 40 V was applied over the SLMs during extraction time. The influences of fundamental parameters affecting the transport of BAs were optimized. Under the optimized conditions, the relative standard deviations based on four replicate measurements were less than 8.0% and limit of detections were in range of 3.0-8.0 μg L -1 . Finally, the method was successfully applied to determinate BAs in the food samples and satisfactory results (recovery > 95.6) were obtained. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhu, Li-Xia; Wang, Guan-Qiong; Xue, Ju-Lan; Gou, Dong-Qi; Duan, Chang-Qing
2017-08-01
Saccharomyces cerevisiae strains worldwide show genetic and phenotypic diversity and their population substructures are greatly affected by their technological application or geographical origins. Msalais is a traditional wine obtained via a unique method of spontaneous fermentation of local boiled grape juice in Southern Xinjiang. We analyzed 436 indigenous S. cerevisiae strains associated with Msalais fermentation. These strains were highly diverse with respect to the interdelta region and 24 phenotypic traits, with apparent differentiation according to strain origins and technologies used to produce Msalais. The genetic and phenotypic diversity of strains from traditional workshops was higher than in strains from modern plants. These local strains had different origin- or technology-specific fermentative characteristics. Strains growing in large-scale fermentation tanks tolerated high temperature, whereas strains from traditional workshops tolerated high alcohol content (16%) and low temperature (13°C). Almost all the strains were characterized by the highest fermenting vigor, with weak H2S production and no histamine, cadaverine, phenethylamine and tryptamine production. Majority of strains had pronounced autolytic activity with high β-glucosidase and polygalacturonase activity and alcohol production. Our study reveals a direct stamp of technology or origin on genotypic and phenotypic variation of an indigenous S. cerevisiae population. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Spizzirri, U. Gianfranco; Picci, Nevio
2016-01-01
Biogenic amines (BAs), that is, spermine, spermidine, putrescine, histamine, tyramine, β-phenylethylamine, cadaverine, and serotonin, have been determined in several samples of tea leaves, tea infusions, and tea drinks by LC-UV method after derivatization with dansyl chloride. Different extraction solvents have been tested and TCA 5% showed better analytical performances in terms of linearity, recovery percentages, LOD, LOQ, and repeatability than HCl 0.1 M and HClO4 0.1 M and was finally exploited for the quantitative determination of BAs in all samples. In tea leaves total BAs concentration ranged from 2.23 μg g−1 to 11.24 μg g−1 and PUT (1.05–2.25 μg g−1) and SPD (1.01–1.95 μg g−1) were always present, while SER (nd–1.56 μg g−1), HIS (nd–2.44 μg g−1), and SPM (nd–1.64 μg g−1) were detected more rarely. CAD and PHE were determined in few samples at much lower concentrations while none of the samples contained TYR. Tea infusions showed the same trend with total BAs concentrations never exceeding 80.7 μg L−1. Black teas showed higher amounts of BAs than green teas and organic and decaffeinated samples always contained much lower BAs levels than their conventional counterparts. PMID:27555979
Bacteria isolated from Korean black raspberry vinegar with low biogenic amine production in wine.
Song, Nho-Eul; Cho, Hyoun-Suk; Baik, Sang-Ho
2016-01-01
A high concentration of histamine, one of the biogenic amines (BAs) usually found in fermented foods, can cause undesirable physiological side effects in sensitive humans. The objective of this study is to isolate indigenous Acetobacter strains from naturally fermented Bokbunja vinegar in Korea with reduced histamine production during starter fermentation. Further, we examined its physiological and biochemical properties, including BA synthesis. The obtained strain MBA-77, identified as Acetobacter aceti by 16S rDNA homology and biochemical analysis and named A. aceti MBA-77. A. aceti MBA-77 showed optimal acidity % production at pH 5; the optimal temperature was 25°C. When we prepared and examined the BAs synthesis spectrum during the fermentation process, Bokbunja wine fermented with Saccharomyces cerevisiae showed that the histamine concentration increased from 2.72 of Bokbunja extract to 5.29mg/L and cadaverine and dopamine was decreased to 2.6 and 10.12mg/L, respectively. Bokbunja vinegar prepared by A. aceti MBA-77 as the starter, the histamine concentration of the vinegar preparation step was decreased up to 3.66mg/L from 5.29mg/L in the wine preparation step. To our knowledge, this is the first report to demonstrate acetic acid bacteria isolated from Bokbunja seed vinegar with low spectrum BA and would be useful for wellbeing vinegar preparation. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
S-adenosylmethionine decarboxylase from baker's yeast.
Pösö, H; Sinervirta, R; Jänne, J
1975-01-01
1. S-Adenosyl-L-methionine decarboxylase (S-adenosyl-L-methionine carboxy-lyase, EC 4.1.1.50) was purified more than 1100-fold from extracts of Saccharomyces cerevisiae by affinity chromatography on columns of Sepharose containing covalently bound methylglyoxal bis(guanylhydrazone) (1,1'[(methylethanediylidene)dinitrilo]diguanidine) [Pegg, (1974) Biochem J. 141, 581-583]. The final preparation appeared to be homogeneous on polyacrylamide-gel electrophoresis at pH 8.4. 2. S-Adenosylmethionine decarboxylase activity was completely separated from spermidine synthase activity [5'-deoxyadenosyl-(5'),3-aminopropyl-(1),methylsulphonium-salt-putrescine 3-aminopropyltransferase, EC 2.5.1.16] during the purification procedure. 3. Adenosylmethionine decarboxylase activity from crude extracts of baker's yeast was stimulated by putrescine, 1,3-diamino-propane, cadaverine (1,5-diaminopentane) and spermidine; however, the purified enzyme, although still stimulated by the diamines, was completely insensitive to spermidine. 4. Adenosylmethionine decarboxylase has an apparent Km value of 0.09 mM for adenosylmethionine in the presence of saturating concentrations of putrescine. The omission of putrescine resulted in a five-fold increase in the apparent Km value for adenosylmethionine. 5. The apparent Ka value for putrescine, as the activator of the reaction, was 0.012 mM. 6. Methylglyoxal bis(guanylhydrazone) and S-methyladenosylhomocysteamine (decarboxylated adenosylmethionine) were powerful inhibitors of the enzyme. 7. Adenosylmethionine decarboxylase from baker's yeast was inhibited by a number of conventional carbonyl reagents, but in no case could the inhibition be reversed with exogenous pyridoxal 5'-phosphate. PMID:1108876
Ozawa, Rika; Bertea, Cinzia M; Foti, Maria; Narayana, Ravishankar; Arimura, Gen-Ichiro; Muroi, Atsushi; Horiuchi, Jun-Ichiro; Nishioka, Takaaki; Maffei, Massimo E; Takabayashi, Junji
2009-12-01
We investigated the role of polyamines (PAs) in lima bean (Phaseolus lunatus) leaves on the production of herbivorous mite (Tetranychus urticae)-induced plant volatiles that attract carnivorous natural enemies of the herbivores. To do this, we focused on the effects of the exogenous PAs [cadaverine, putrescine, spermidine and spermine (Spm)] on the production of volatiles, H(2)O(2) and jasmonic acid (JA) and the levels of defensive genes, cytosolic calcium and reactive oxygen species (ROS). Among the tested PAs, Spm was the most active in inducing the production of volatile terpenoids known to be induced by T. urticae. An increase in JA levels was also found after Spm treatment, indicating that Spm induces the biosynthesis of JA, which has been shown elsewhere to regulate the production of some volatile terpenoids. Further, treatment with JA and Spm together resulted in greater volatile emission than that with JA alone. In a Y-tube olfactometer, leaves treated with Spm + JA attracted more predatory mites (Phytoseiulus persimilis) than those treated with JA alone. After treatment with Spm + JA, no effects were found on the enzyme activity of polyamine oxidase and copper amine oxidase. However, induction of calcium influx and ROS production, and increased enzyme activities and gene expression for NADPH oxidase complex, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and glutathione peroxidase were found after treatment with Spm + JA. These results indicate that Spm plays an important role in the production of T. urticae-induced lima bean leaf volatiles.
Whole-cell bioluminescent bioreporter sensing of foodborne toxicants
NASA Astrophysics Data System (ADS)
Ripp, Steve A.; Applegate, Bruce M.; Simpson, Michael L.; Sayler, Gary S.
2001-03-01
The presence of biologically derived toxins in foods is of utmost significance to food safety and human health concerns. Biologically active amines, referred to as biogenic amines, serve as a noteworthy example, having been implicated as the causative agent in numerous food poisoning episodes. Of the various biogenic amines encountered, histamine, putrescine, cadaverine, tyramine, tryptamine, beta-phenylethylamine, spermine, and spermidine are considered to be the most significant, and can be used as hygienic-quality indicators of food. Biogenic amines can be monitored using whole-cell bioluminescent bioreporters, which represent a family of genetically engineered microorganisms that generate visible light in response to specific chemical or physical agents in their environment. The light response occurs due to transcriptional activation of a genetically incorporated lux cassette, and can be measured using standard photomultiplier devices. We have successfully engineered a lux-based bioreporter capable of detecting and monitoring the biogenic amine beta-phenylethylamine. This research represents a biologically-based sensor technology that can be readily integrated into Hazard Analysis Critical Control Point programs to provide a rugged monitoring regime that can be uniformly applied for field-based and in-house laboratory quality control analyses. Since the bioreporter and biosensing elements are completely self-contained within the sensor design, this system provides ease of use, with operational capabilities realized by simply combining the food sample with the bioreporter and allowing the sensor to process the ensuing bioluminescent signal and communicate the results. The application of this technology to the critically important issue of food safety and hygienic quality represents a novel method for detecting, monitoring, and preventing biologically active toxins in food commodities.
Selection of potential probiotic Enterococcus faecium isolated from Portuguese fermented food.
Barbosa, Joana; Borges, Sandra; Teixeira, Paula
2014-11-17
Four Enterococcus faecium strains isolated from fermented products were evaluated for potential use as probiotic strains. In addition to efaAfm gene, commonly found in E. faecium food isolates, none of the isolates possessed virulence genes and none had positive reactions for the production of tyramine, histamine, putrescine and cadaverine in the screening medium used. All of these four isolates proved to be resistant to 65 °C. E. faecium 119 did not show antimicrobial activity against any of the target bacteria investigated. E. faecium 85 and 101 inhibited Listeria innocua and E. faecium DSMZ 13590. The strain E. faecium 120 inhibited seven target bacteria (Listeria monocytogenes 7946, L. monocytogenes 7947, L. innocua 2030c, L. innocua NCTC 11286, E. faecium DSMZ 13590, Enterococcus faecalis ATCC 29212 and Staphylococcus aureus ATCC 29213) and was chosen as the representative to assess the ability to survive gastrointestinal tract passage simulation, as well as the protective role of two food matrices (skim milk and Alheira) during its passage. For both matrices used, no significant differences (p<0.05) were obtained between the types of digestion - quick and slow passage simulation. In the skim milk matrix the isolate was reduced to values below the detection limit of the enumeration technique by the end of the two digestions, in contrast to the Alheira matrix, for which isolate 120 showed a reduction of only ca. 1 log CFU/ml. The E. faecium strain 120 was shown to be a potential candidate for further investigations as a potential probiotic culture. Copyright © 2014. Published by Elsevier B.V.
Comamonas aquatilis sp. nov., isolated from a garden pond.
Kämpfer, Peter; Busse, Hans-Jürgen; Baars, Sophie; Wilharm, Gottfried; Glaeser, Stefanie P
2018-04-01
A beige-pigmented bacterial strain, SB30-Chr27-3 T , isolated from a garden pond, was studied for its taxonomic position. Cells of the isolate were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequence with the sequences of the type strains of the most closely related species showed that the strain belongs to the genus Comamonas and showed highest sequence similarities to the type strains of Comamonas jiangduensis (97.5 %), Comamonas aquatica (97.4 %) and Comamonas phosphati (97.3 %). The 16S rRNA gene sequence similarities to all other Comamonas species were below 97.0 %. The fatty acid profile of strain SB30-Chr27-3 T consisted of the major fatty acids C16 : 0, C15 : 0iso 2-OH/ C16 : 1ω7c, C18 : 1ω7c/C18 : 1ω9c and, in a minor amount, C10 : 0 3-OH. Major compounds in the polar lipid profile were phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine and diphosphatidylglycerol. The quinone system was exclusively composed of ubiquinone Q-8. The polyamine pattern contained the major compounds putrescine, cadaverine and 2-hydroxyputrescine. These data and the differentiating biochemical properties indicated that isolate SB30-CHR27-3 T represents a novel species of the genus Comamonas, for which we propose the name >Comamonas aquatilis sp. nov. with the type strain SB30-Chr27-3 T (=CIP 111491 T =CCM 8815 T ).
Peng, Silu; Yang, Huilin; Zhu, Du; Zhang, Zhibin; Yan, Riming; Wang, Ya
2016-04-14
Huperzine A (HupA) was approved as a drug for the treatment of Alzheimer's disease. The HupA biosynthetic pathway was started from lysine decarboxylase (LDC), which catalyzes lysine to cadaverine. In this study, we cloned and expressed an LDC gene from a HupA-producing endophytic fungus, and tested LDC activities. An endophytic fungus Shiraia sp. Slf14 from Huperzia serrata was used. LDC gene was obtained by RT-PCR, and cloned into pET-22b(+) and pET-32a(+) vectors to construct recombinant plasmids pET- 22b-LDC and pET-32a-LDC. These two recombinant plasmids were transformed into E. coli BL21, cultured for 8 h at 24 °C, 200 r/min with 1×10–3 mol/L IPTG into medium to express the LDC proteins, respectively. LDC proteins were purified by Ni2+ affinity chromatography. Catalytic activities were measured by Thin Layer Chromatography. At last, the physicochemical properties and structures of these two LDCs were obtained by bioinformatics software. LDC and Trx-LDC were expressed in E. coli BL21 successfully. SDS-PAGE analysis shows that the molecular weight of LDC and Trx-LDC were 24.4 kDa and 42.7 kDa respectively, which are consistent with bioinformatics analysis. In addition, TLC analysis reveals that both LDC and Trx-LDC had catalytic abilities. This work can provide fundamental data for enriching LDC molecular information and reveal the HupA biosynthetic pathway in endophytic fungi.
Geddes, Ryan D.; Wang, Xuan; Yomano, Lorraine P.; Miller, Elliot N.; Zheng, Huabao; Shanmugam, Keelnatham T.
2014-01-01
Expression of genes encoding polyamine transporters from plasmids and polyamine supplements increased furfural tolerance (growth and ethanol production) in ethanologenic Escherichia coli LY180 (in AM1 mineral salts medium containing xylose). This represents a new approach to increase furfural tolerance and may be useful for other organisms. Microarray comparisons of two furfural-resistant mutants (EMFR9 and EMFR35) provided initial evidence for the importance of polyamine transporters. Each mutant contained a single polyamine transporter gene that was upregulated over 100-fold (microarrays) compared to that in the parent LY180, as well as a mutation that silenced the expression of yqhD. Based on these genetic changes, furfural tolerance was substantially reconstructed in the parent, LY180. Deletion of potE in EMFR9 lowered furfural tolerance to that of the parent. Deletion of potE and puuP in LY180 also decreased furfural tolerance, indicating functional importance of the native genes. Of the 8 polyamine transporters (18 genes) cloned and tested, half were beneficial for furfural tolerance (PotE, PuuP, PlaP, and PotABCD). Supplementing AM1 mineral salts medium with individual polyamines (agmatine, putrescine, and cadaverine) also increased furfural tolerance but to a smaller extent. In pH-controlled fermentations, polyamine transporter plasmids were shown to promote the metabolism of furfural and substantially reduce the time required to complete xylose fermentation. This increase in furfural tolerance is proposed to result from polyamine binding to negatively charged cellular constituents such as nucleic acids and phospholipids, providing protection from damage by furfural. PMID:25063650
Schophuizen, Carolien M S; Wilmer, Martijn J; Jansen, Jitske; Gustavsson, Lena; Hilgendorf, Constanze; Hoenderop, Joost G J; van den Heuvel, Lambert P; Masereeuw, Rosalinde
2013-12-01
Several organic cations, such as guanidino compounds and polyamines, have been found to accumulate in plasma of patients with kidney failure due to inadequate renal clearance. Here, we studied the interaction of cationic uremic toxins with renal organic cation transport in a conditionally immortalized human proximal tubule epithelial cell line (ciPTEC). Transporter activity was measured and validated in cell suspensions by studying uptake of the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP(+)). Subsequently, the inhibitory potencies of the cationic uremic toxins, cadaverine, putrescine, spermine and spermidine (polyamines), acrolein (polyamine breakdown product), guanidine, and methylguanidine (guanidino compounds) were determined. Concentration-dependent inhibition of ASP(+) uptake by TPA, cimetidine, quinidine, and metformin confirmed functional endogenous organic cation transporter 2 (OCT2) expression in ciPTEC. All uremic toxins tested inhibited ASP(+) uptake, of which acrolein required the lowest concentration to provoke a half-maximal inhibition (IC50 = 44 ± 2 μM). A Dixon plot was constructed for acrolein using three independent inhibition curves with 10, 20, or 30 μM ASP(+), which demonstrated competitive or mixed type of interaction (K i = 93 ± 16 μM). Exposing the cells to a mixture of cationic uremic toxins resulted in a more potent and biphasic inhibitory response curve, indicating complex interactions between the toxins and ASP(+) uptake. In conclusion, ciPTEC proves a suitable model to study cationic xenobiotic interactions. Inhibition of cellular uptake transport was demonstrated for several uremic toxins, which might indicate a possible role in kidney disease progression during uremia.
Nærdal, Ingemar; Netzer, Roman; Irla, Marta; Krog, Anne; Heggeset, Tonje Marita Bjerkan; Wendisch, Volker F; Brautaset, Trygve
2017-02-20
Bacillus methanolicus is a methylotrophic bacterium with an increasing interest in academic research and for biotechnological applications. This bacterium was previously applied for methanol-based production of l-glutamate, l-lysine and the five-carbon diamine cadaverine by wild type, classical mutant and recombinant strains. The genomes of two different l-lysine secreting B. methanolicus classical mutant strains, NOA2#13A52-8A66 and M168-20, were sequenced. We focused on mutational mapping in genes present in l-lysine and other relevant amino acid biosynthetic pathways, as well as in the primary cell metabolism important for precursor supply. In addition to mutations in the aspartate pathway genes dapG, lysA and hom-1, new mutational target genes like alr, proA, proB1, leuC, odhA and pdhD were identified. Surprisingly, no mutations were found in the putative l-lysine transporter gene lysE MGA3 . Inspection of the wild type B. methanolicus strain PB1 genome sequence identified two homologous putative l-lysine transporter genes, lysE PB1 and lysE2 PB1 . The biological role of these putative l-lysine transporter genes, together with the heterologous l-lysine exporter gene lysE Cg from Corynebacterium glutamicum, were therefore investigated. Our results demonstrated that the titer of secreted l-lysine in B. methanolicus was significantly increased by overexpression of lysE Cg while overexpression of lysE MGA3 , lysE PB1 and lysE2 PB1 had no measurable effect. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Yeseung; Khan, Adnan; Hong, Seri; Jee, Sun Ha; Park, Youngja H
2017-05-30
Identifying changes in serum metabolites during cerebral ischemia is an important approach for early diagnosis of thrombotic stroke. Herein, we highlight novel biomarkers for early diagnosis of patients at high risk of thrombotic stroke using high resolution metabolomics (HRM). In this retrospective cohort study, serum samples obtained from patients at risk of thrombotic stroke (n = 62) and non-risk individuals (n = 348) were tested using HRM, coupled with LC-MS/MS, to discriminate between metabolic profiles of control and stroke risk patients. Multivariate analysis and orthogonal partial least square-discriminant analysis (OPLS-DA) were performed to determine the top 5% metabolites within 95% group identities, followed by filtering with p-value <0.05 and annotating significant metabolites using a Metlin database. Mapping identified features from Kyoto Encyclopedia of Genes and Genomes (KEGG) and Mummichog resulted in 341 significant features based on OPLS-DA with p-value <0.05. Among these 341 features, nine discriminated the thrombotic stroke risk group from the control group: low levels of N 6 -acetyl-l-lysine, 5-aminopentanoate, cadaverine, 2-oxoglutarate, nicotinamide, l-valine, S-(2-methylpropionyl)-dihydrolipoamide-E and ubiquinone, and elevated levels of homocysteine sulfinic acid. Further analysis showed that these metabolite biomarkers are specifically related to stroke occurrence, and unrelated to other factors such as diabetes or smoking. Lower levels of lysine catabolites in thrombotic stroke risk patients, as compared to the control, supports targeting these compounds as novel biomarkers for early and non-invasive detection of a thrombotic stroke.
Taciak, Marcin; Barszcz, Marcin; Święch, Ewa; Tuśnio, Anna; Bachanek, Ilona
2017-06-01
The study aimed at determining the effect of protein type and indigestible carbohydrates on the concentration of microbial metabolites in the large intestine of pigs. The experiment involved 36 pigs (15 kg initial body weight) divided into six groups, fed cereal-based diets with highly digestible casein (CAS) or potato protein concentrate (PPC) of lower ileal digestibility. Each diet was supplemented with cellulose, raw potato starch or pectin. After 2 weeks of feeding, pigs were sacrificed and samples of caecal and ascending, transverse and descending colon digesta were collected for analyses of microbial metabolites. PPC increased the concentration of ammonia, p-cresol, indole, n-butyrate, isovalerate and most of the amines in comparison with CAS. Pectin reduced the production of p-cresol, indole, phenylethylamine and isovalerate in the large intestine compared with potato starch. Starch and pectin increased mainly the concentration of n-butyrate and n-valerate in the colon compared to cellulose. Interaction affected mainly amines. Feeding PPC diet with potato starch considerably increased putrescine, cadaverine, tyramine and total amines concentrations compared with PPC diets with pectin and cellulose, whereas feeding CAS diet with starch reduced their concentrations. There was also a significant effect of interaction between diet and intestinal segment on microbial metabolites. In conclusion, PPC intensifies proteolysis in the large intestine and also n-butyrate production. Raw starch and pectin similarly increase n-butyrate concentration but pectin inhibits proteolysis more efficiently than starch. The interactive effects of both factors indicate that pectin and cellulose may beneficially affect fermentative processes in case of greater protein flow to the large intestine.
Lázaro, C A; Conte-Júnior, C A; Monteiro, M L G; Canto, A C V S; Costa-Lima, B R C; Mano, S B; Franco, R M
2014-09-01
Radiation from UV-C has been demonstrated as a potential surface decontamination method in addition to several advantages over regular sanitation methods. However, UV-C radiation possibly affects the physicochemical properties of meat products. To determine the optimum exposure time for bacterial reduction, 39 chicken breasts, inoculated with a pool of Salmonella spp., were submitted to 3 levels of UV-C intensities (0.62, 1.13, and 1.95 mW/cm²) for up to 120 s. After the optimum exposure time of 90 s was determined, changes in the biogenic amines, total aerobic mesophilic bacteria, Enterobacteriaceae, lipid oxidation, pH, and instrumental color were evaluated in 84 chicken breasts that were irradiated (0.62, 1.13, and 1.95 mW/cm²) and stored at 4°C for 9 d. The groups treated with UV-C radiation exhibited an increase in tyramine, cadaverine, and putrescine contents (P < 0.05). The highest UV-C intensity (1.95 mW/cm²) promoted a decrease in the initial bacterial load, and extended the lag phase and the shelf life. The groups irradiated with 1.13 and 1.95 mW/cm² exhibited a more stable b* value than the other groups; similar trends for L*, a*, pH, and TBA reactive substance values were observed among all groups. The UV-C light was demonstrated to be an efficient alternative technology to improve the bacteriological quality of chicken meat without negatively affecting the physical and chemical parameters of chicken breast meat. Nonetheless, the increases on the biogenic amines content should be considered as an effect of the UV processing and not as an indicator of bacterial growth. © 2014 Poultry Science Association Inc.
Rampin, Olivier; Jerôme, Nathalie; Saint-Albin, Audrey; Ouali, Christian; Boué, Frank; Meunier, Nicolas; Nielsen, Birte L
2018-02-02
TMT (2,5-dihydro-2,4,5-trimethylthiazoline) is known as a component of fox feces inducing fear in rodents. However, no recent chemical analyses of fox feces are available, and few studies make direct comparisons between TMT and fox feces. Fox feces from 3 individuals were used to prepare 24 samples to be analyzed for the presence of TMT using gas chromatography-mass spectrometry (GC-MS). When TMT was added in low amounts (50-2000 nmol/g), TMT was detected in 10 out of 11 samples. When no TMT was added, TMT was detected in only 1 out of 13 samples. In a second experiment, we tested the behavioral response of male Brown Norway (BN) and Wistar rats to either fox feces, a low amount of TMT (0.6 nmol) or 1-hexanol. TMT induced freezing in the rats, but fox feces induced significantly more freezing episodes and longer total duration of freezing in both rat strains. In experiment 3, male BN rats were exposed over several days to fox feces, rat feces, 1-hexanol, cadaverine, 2-phenylethylamine, and TMT, one odor at a time. Fox feces induced significantly more freezing episodes of a longer total duration than any of the other odors, with rat feces and 1-hexanol giving rise to the lowest amount of freezing. This finding, together with our inability to verify the presence of TMT in fox feces, indicates that the concentration of TMT in our fox feces samples was below 50 nmol/g. It may also be that other compounds in fox feces play a role in its fear-inducing properties. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
van Eijk, H M; Rooyakkers, D R; Deutz, N E
1996-04-12
Recently, a new fully endcapped reversed-phase packing material, Inertsil, was introduced, especially suitable for the determination of basic compounds. We used this packing material to separate ophthaldialdehyde (OPA) derivatives of amino acid derivatives completely from the OPA derivatives of spermine (SPM), spermidine (SPD), putrescine (PUT) and cadaverine (CAD). The obtained separation made the commonly used off-line extraction procedure redundant and thus an on-line sample clean-up was introduced. This enabled automation of the procedure resulting in a better reproducibility and a more efficient use of equipment. Furthermore, no studies are required to determine the extraction recovery. The present method has a cycle time of 30 min. A linear response for each polyamine was found up to 250 pmol, with an R2 ranging from 0.9981 (SPM) to 0.9998 (CAD). The limit of detection, calculated at a signal-to-noise ratio of 3, was 0.1 pmol, corresponding to a plasma concentration of 0.1 mumol/l. The coefficient of variation (C.V.) for the peak area was below 3% and for retention times below 0.5% (n = 15). In order to evaluate the applicability of the method, three different types of sample were chromatographed, e.g. urine (obtained from healthy human volunteers), pig plasma and sulfosalicylic acid homogenates of pig intestine biopsies. Tissue homogenates and urine-specimen could easily be quantitated, while plasma concentrations were just above the limit of detection, resulting in a plasma C.V. ranging from 4.8% (SPM) to 13.6% (SPD) and a tissue C.V. ranging from 2.1% (SPM) to 8.5% (CAD), The urinary C.V.s were not determined. In conclusion, the present method provides an easy way to measure polyamine concentrations for most applications.
A quantitative analysis of the polyamine in lung cancer patient fingernails by LC-ESI-MS/MS.
Min, Jun Zhe; Matsumoto, Akihito; Li, Gao; Jiang, Ying-Zi; Yu, Hai-Fu; Todoroki, Kenichiro; Inoue, Koichi; Toyo'oka, Toshimasa
2014-04-01
A quantitative analysis of polyamines in lung cancer patient fingernails by the combination of 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole derivatives and liquid chromatography-electrospray ionization tandem mass spectrometry is described. The reaction of the reagent with eight kinds of polyamines, that is, N(1) -acetylputrescine (N(1) -actPUT), N(8) -acetylspermidine, N(1) -acetylspermine, 1,3-diaminopropane, putrescine (PUT), cadaverine, spermidine and spermine (SPM) effectively occurs at 60 °C for 30 min. The detection limits (signal-to-noise ratio 5) were 5-100 fmol. A good linearity was achieved from the calibration curves, which was obtained by plotting the peak area ratios of the analytes relative to the internal standard (IS), that is, 1,6-diaminohexane, vs the injected amounts of polyamines (r(2) > 0.996), and the intra-day and inter-day assay precisions were <9.84%. Furthermore, the recoveries (%) of the polyamines spiked in the human fingernails were 89.14-110.64. The present method was applied to human fingernail samples from 17 lung cancer patients and 39 healthy volunteers. The polyamine concentration was different based on the gender, that is, the N(1) -actPUT and PUT contents were 3.10 times and 2.56 times higher in healthy men than in women, respectively. Additionally, in the lung cancer patient group, as compared with the healthy volunteers, the concentrations of SPM had a statistically significant (p < 0.05) correlation. Therefore, because the proposed method provides a good mass accuracy and the trace detection of the polyamines in human fingernails, this analytical technique could be a noninvasive technique to assist in the diagnosis and assessment of disease activity in lung cancer patients. Copyright © 2013 John Wiley & Sons, Ltd.
Ozogul, Yesim; Durmus, Mustafa; Kuley Boga, Esmeray; Uçar, Yılmaz; Ozogul, Fatih
2018-02-01
The impacts of emulsions based on commercial oils on the biogenic amine formation and their indices of vacuumed packed sea bass fillets were investigated. The results showed that among biogenic amines, cadaverine, putrescine, spermidine, spermine, serotonin, dopamine, and agmatine were predominant amines in sea bass fillets stored under vacuum packaging. Significant differences (P < 0.05) in biogenic amines concentrations of vacuumed packed sea bass treated with emulsions were observed. All groups contained histamine lower than 5.0 mg/100 g, regarded as the allowable limit by the U.S. Food and Drug Administration. Polyamine levels were not affected by application of emulsion. Quality index (QI) showed an increase and after 14 d of storage it decreased in all groups. The control generally seemed to higher QI value than those of treatment groups except at 14 and 18 days while soybean and corn gave lower QI among treatment groups. Only biogenic amine index correlated with sensory acceptability of vacuumed packed sea bass, indicating that this index can be used for determination of the degree of spoilage of vacuumed packed sea bass. Emulsions extended the shelf-life (approximately 2 to 4 d) of vacuumed packed sea bass fillets by inhibiting microbial growth compared to the control. Emulsions have become popular since they are regarded as ideal carrier for the delivery of lipophilic substances due to the ease of preparation, small particle size, their enhanced bioavailability, and long term kinetic stability. They have been proven to be self-preserving antimicrobials due to bound water in their structure and thus no available water to microorganisms. Antimicrobial emulsions have potential applications in many fields because they are inexpensive, stable, and nontoxic agents. © 2018 Institute of Food Technologists®.
Zhang, Xiangmei; Xia, Qianqian; Zhao, Xinmei; Ahn, Youngjoon; Ahmed, Nevin; Cosoveanu, Andreea; Wang, Mo; Wang, Jialu; Shu, Shaohua
2015-01-01
Huperzine A is important in the treatment of Alzheimer’s disease. There are major challenges for the mass production of huperzine A from plants due to the limited number of huperzine-A-producing plants, as well as the low content of huperzine A in these plants. Various endophytic fungi produce huperzine A. Colletotrichum gloeosporioides ES026 was previously isolated from a huperzine-A-producing plant Huperzia serrata, and this fungus also produces huperzine A. In this study, de novo RNA sequencing of C. gloeosporioides ES026 was carried out with an Illumina HiSeq2000. A total of 4,324,299,051 bp from 50,442,617 high-quality sequence reads of ES026 were obtained. These raw data were assembled into 24,998 unigenes, 40,536,684 residues and 19,790 genes. The majority of the unique sequences were assigned to corresponding putative functions based on BLAST searches of public databases. The molecular functions, biological processes and biochemical pathways of these unique sequences were determined using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) assignments. A gene encoding copper amine oxidase (CAO) (unigene 9322) was annotated for the conversion of cadaverine to 5-aminopentanal in the biosynthesis of huperzine A. This gene was also detected in the root, stem and leaf of H. serrata. Furthermore, a close relationship was observed between expression of the CAO gene (unigene 9322) and quantity of crude huperzine A extracted from ES026. Therefore, CAO might be involved in the biosynthesis of huperzine A and it most likely plays a key role in regulating the content of huperzine A in ES026. PMID:25799531
Agmatine is transported into liver mitochondria by a specific electrophoretic mechanism
Salvi, Mauro; Battaglia, Valentina; Mancon, Mario; Colombatto, Sebastiano; Cravanzola, Carlo; Calheiros, Rita; Marques, Maria P. M.; Grillo, Maria A.; Toninello, Antonio
2006-01-01
Agmatine, a divalent diamine with two positive charges at physiological pH, is transported into the matrix of liver mitochondria by an energy-dependent mechanism the driving force of which is ΔΨ (electrical membrane potential). Although this process showed strict electrophoretic behaviour, qualitatively similar to that of polyamines, agmatine is most probably transported by a specific uniporter. Shared transport with polyamines by means of their transporter is excluded, as divalent putrescine and cadaverine are ineffective in inhibiting agmatine uptake. Indeed, the use of the electroneutral transporter of basic amino acids can also be discarded as ornithine, arginine and lysine are completely ineffective at inducing the inhibition of agmatine uptake. The involvement of the monoamine transporter or the existence of a leak pathway are also unlikely. Flux-voltage analysis and the determination of activation enthalpy, which is dependent upon the valence of agmatine, are consistent with the hypothesis that the mitochondrial agmatine transporter is a channel or a single-binding centre-gated pore. The transport of agmatine was non-competitively inhibited by propargylamines, in particular clorgilyne, that are known to be inhibitors of MAO (monoamine oxidase). However, agmatine is normally transported in mitoplasts, thus excluding the involvement of MAO in this process. The I2 imidazoline receptor, which binds agmatine to the mitochondrial membrane, can also be excluded as a possible transporter since its inhibitor, idazoxan, was ineffective at inducing the inhibition of agmatine uptake. Scatchard analysis of membrane binding revealed two types of binding site, S1 and S2, both with mono-co-ordination, and exhibiting high-capacity and low-affinity binding for agmatine compared with polyamines. Agmatine transport in liver mitochondria may be of physiological importance as an indirect regulatory system of cytochrome c oxidase activity and as an inducer mechanism of mitochondrial-mediated apoptosis. PMID:16509824
β2-adrenoceptor-induced modulation of transglutaminase 2 transamidase activity in cardiomyoblasts.
Vyas, Falguni S; Nelson, Carl P; Freeman, Fiona; Boocock, David J; Hargreaves, Alan J; Dickenson, John M
2017-10-15
Tissue transglutaminase 2 (TG2) is modulated by protein kinase A (PKA) mediated phosphorylation: however, the precise mechanism(s) of its modulation by G-protein coupled receptors coupled to PKA activation are not fully understood. In the current study we investigated the potential regulation of TG2 activity by the β 2 -adrenoceptor in rat H9c2 cardiomyoblasts. Transglutaminase transamidation activity was assessed using amine-incorporating and protein cross-linking assays. TG2 phosphorylation was determined via immunoprecipitation and Western blotting. The long acting β 2 -adrenoceptor agonist formoterol induced time- and concentration-dependent increases in TG2 transamidation. Increases in TG2 activity were reduced by the TG2 inhibitors Z-DON (Benzyloxycarbonyl-(6-Diazo-5-oxonorleucinyl)-L-valinyl-L-prolinyl-L-leucinmethylester) and R283 ((1,3,dimethyl-2[2-oxo-propyl]thio)imidazole chloride). Responses to formoterol were blocked by pharmacological inhibition of PKA, extracellular signal-regulated kinase 1 and 2 (ERK1/2), or phosphatidylinositol 3-kinase (PI-3K) signalling. Furthermore, the removal of extracellular Ca 2+ also attenuated formoterol-induced TG2 activation. Fluorescence microscopy demonstrated TG2-induced biotin-X-cadaverine incorporation into proteins. Formoterol increased the levels of TG2-associated phosphoserine and phosphothreonine, which were blocked by inhibition of PKA, ERK1/2 or PI-3K signalling. Subsequent proteomic analysis identified known (e.g. lactate dehydrogenase A chain) and novel (e.g. Protein S100-A6) protein substrates for TG2. Taken together, the data obtained suggest that β 2 -adrenoceptor-induced modulation of TG2 represents a novel paradigm in β 2 -adrenoceptor cell signalling, expanding the repertoire of cellular functions responsive to catecholamine stimulation. Copyright © 2017 Elsevier B.V. All rights reserved.
Geddes, Ryan D; Wang, Xuan; Yomano, Lorraine P; Miller, Elliot N; Zheng, Huabao; Shanmugam, Keelnatham T; Ingram, Lonnie O
2014-10-01
Expression of genes encoding polyamine transporters from plasmids and polyamine supplements increased furfural tolerance (growth and ethanol production) in ethanologenic Escherichia coli LY180 (in AM1 mineral salts medium containing xylose). This represents a new approach to increase furfural tolerance and may be useful for other organisms. Microarray comparisons of two furfural-resistant mutants (EMFR9 and EMFR35) provided initial evidence for the importance of polyamine transporters. Each mutant contained a single polyamine transporter gene that was upregulated over 100-fold (microarrays) compared to that in the parent LY180, as well as a mutation that silenced the expression of yqhD. Based on these genetic changes, furfural tolerance was substantially reconstructed in the parent, LY180. Deletion of potE in EMFR9 lowered furfural tolerance to that of the parent. Deletion of potE and puuP in LY180 also decreased furfural tolerance, indicating functional importance of the native genes. Of the 8 polyamine transporters (18 genes) cloned and tested, half were beneficial for furfural tolerance (PotE, PuuP, PlaP, and PotABCD). Supplementing AM1 mineral salts medium with individual polyamines (agmatine, putrescine, and cadaverine) also increased furfural tolerance but to a smaller extent. In pH-controlled fermentations, polyamine transporter plasmids were shown to promote the metabolism of furfural and substantially reduce the time required to complete xylose fermentation. This increase in furfural tolerance is proposed to result from polyamine binding to negatively charged cellular constituents such as nucleic acids and phospholipids, providing protection from damage by furfural. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Minato, Yusuke; Halang, Petra; Quinn, Matthew J.; Faulkner, Wyatt J.; Aagesen, Alisha M.; Steuber, Julia; Stevens, Jan F.; Häse, Claudia C.
2014-01-01
The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ΔnqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ΔnqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ΔnqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology. PMID:24811312
Baciak, Michał; Sikorski, Łukasz; Piotrowicz-Cieślak, Agnieszka I; Adomas, Barbara
2016-11-01
Aquatic plants are continuously exposed to a variety of stress factors. No data on the impact of antibiotics on the biogenic amines in duckweed (Lemna minor) have been available so far, and such data could be significant, considering the ecological role of this plant in animal food chains. In the tissues of control (non-stressed) nine-day-old duckweed, the following biogenic amines were identified: tyramine, putrescine, cadaverine, spermidine and spermine. Based on the tetracycline contents and the computed EC values, the predicted toxicity units have been calculated. The obtained results demonstrated phytoxicity caused by tetracycline in relation to duckweed growth rate, yield and the contents of chlorophylls a and b. The carotenoid content was not modified by tetracycline. It was found that tetracycline as a water pollutant was a stress factor triggering an increase in the synthesis of amines. Tetracycline at 19, 39 and 78μM concentrations increased biogenic amine synthesis by 3.5 times. Although the content of tyramine increased fourteen times with the highest concentration of the drug (and of spermidine - only three-fold) the increase of spermidine was numerically the highest. Among the biogenic amines the most responsive to tetracycline were spermine and tyramine, while the least affected were putrescine and spermidine. Despite putrescine and spermidine being the least sensitive, their sum of contents increased five-fold compared to the control. These studies suggest that tetracycline in water reservoirs is taken up by L. minor as the antibiotic clearly modifies the metabolism of this plant and it may likely pose a risk. Copyright © 2016 Elsevier B.V. All rights reserved.
Baptista, R F; Lemos, M; Teixeira, C E; Vital, H C; Carneiro, C S; Mársico, E T; Conte Júnior, C A; Mano, S B
2014-06-01
The combined effects of cooking, vacuum packing, freezing, and high-dose gamma irradiation in the microbiological conservation and in biogenic amine (BA) contents of ready-to-eat grilled breast chicken fillets are investigated in this work. After seasoning, cooking, and vacuum packing, one-third of the samples were stored at -25°C (T1). The remaining two-thirds were treated with 48 kGy, one-third being stored at -25°C (T2) and the other one-third kept at room temperature (T3). All samples were periodically analyzed to determine growth of heterotrophic aerobic mesophilic bacteria (HAMB) and levels of BA (tyramine, TYM; putrescine, PUT; cadaverine, CAD; spermidine, SPD; histamine, HYM; and spermine, SPM). Variance analysis was performed to determine significant changes in the measured data. Grilling caused HAMB counts in seasoned samples to drop from 5.3 log cfu/g to zero. In addition, no viable HAMB cells were detected in the samples throughout the 12-mo storage time. Regarding the BA analyses, the highest mean levels were measured for SPM and CAD with significantly higher levels (P < 0.05) being determined in nonirradiated samples (T1). Furthermore, significantly lower mean levels for the total content of BA were observed in the irradiated samples. Relative to T1 (7.5 ± 1.5 mg/kg), the figures were 47 ± 23% for T2 and 60 ± 25% for T3, mostly due to loss of CAD by radiolysis. Therefore, it can be concluded that the combination of grilling, vacuum packing, freezing, and high-dose gamma irradiation efficiently eliminated HAMB, while sustaining acceptable levels of BA in ready-to-eat chicken breast fillets throughout the 12 mo of storage at room temperature. Poultry Science Association Inc.
Gil-Amado, Jose A; Gomez-Jimenez, Maria C
2012-06-01
Exogenous ethylene and some inhibitors of polyamine biosynthesis can induce mature-fruit abscission in olive, which could be associated with decreased nitric oxide production as a signaling molecule. Whether H₂O₂ also plays a signaling role in mature-fruit abscission is unknown. The possible involvement of H₂O₂ and polyamine in ethylene-induced mature-fruit abscission was examined in the abscission zone and adjacent cells of two olive cultivars. Endogenous H₂O₂ showed an increase in the abscission zone during mature-fruit abscission, suggesting that accumulated H₂O₂ may participate in abscission signaling. On the other hand, we followed the expression of two genes involved in the polyamine biosynthesis pathway during mature-fruit abscission and in response to ethylene or inhibitors of ethylene and polyamine. OeSAMDC1 and OeSPDS1 were expressed differentially within and between the abscission zones of the two cultivars. OeSAMDC1 showed slightly lower expression in association with mature-fruit abscission. Furthermore, our data show that exogenous ethylene or inhibitors of polyamine encourage the free putrescine pool and decrease the soluble-conjugated spermidine, spermine, homospermidine, and cadaverine in the olive abscission zone, while ethylene inhibition by CoCl₂ increases these soluble conjugates, but does not affect free putrescine. Although the impact of these treatments on polyamine metabolism depends on the cultivar, the results confirm that the mature-fruit abscission may be accompanied by an inhibition of S-adenosyl methionine decarboxylase activity, and the promotion of putrescine synthesis in olive abscission zone, suggesting that endogenous putrescine may play a complementary role to ethylene in the normal course of mature-fruit abscission.
2004-01-01
The putative diamine N-acetyltransferase D2023.4 has been cloned from the model nematode Caenorhabditis elegans. The 483 bp open reading frame of the cDNA encodes a deduced polypeptide of 18.6 kDa. Accordingly, the recombinantly expressed His6-tagged protein forms an enzymically active homodimer with a molecular mass of approx. 44000 Da. The protein belongs to the GNAT (GCN5-related N-acetyltransferase) superfamily, and its amino acid sequence exhibits considerable similarity to mammalian spermidine/spermine-N1-acetyltransferases. However, neither the polyamines spermidine and spermine nor the diamines putrescine and cadaverine were efficiently acetylated by the protein. The smaller diamines diaminopropane and ethylenediamine, as well as L-lysine, represent better substrates, but, surprisingly, the enzyme most efficiently catalyses the N-acetylation of amino acids analogous with L-lysine. As determined by the kcat/Km values, the C. elegans N-acetyltransferase prefers thialysine [S-(2-aminoethyl)-L-cysteine], followed by O-(2-aminoethyl)-L-serine and S-(2-aminoethyl)-D,L-homocysteine. Reversed-phase HPLC and mass spectrometric analyses revealed that N-acetylation of L-lysine and L-thialysine occurs exclusively at the amino moiety of the side chain. Remarkably, heterologous expression of C. elegans N-acetyltransferase D2023.4 in Escherichia coli, which does not possess a homologous gene, results in a pronounced resistance against the anti-metabolite thialysine. Furthermore, C. elegans N-acetyltransferase D2023.4 exhibits the highest homology with a number of GNATs found in numerous genomes from bacteria to mammals that have not been biochemically characterized so far, suggesting a novel group of GNAT enzymes closely related to spermidine/spermine-N1-acetyltransferase, but with a distinct substrate specificity. Taken together, we propose to name the enzyme ‘thialysine Nε-acetyltransferase’. PMID:15283700
Li, Ming-yu; Wang, Jun; Xu, Zhu-ting
2010-01-01
Background: The principal components of halitosis are volatile sulfur compounds (VSCs) such as hydrogen sulfide, methyl mercaptan, and dimethylsulfide or compounds such as butyric acid, propionic acid, putrescine, and cadaverine. Objective: The aim of this study was to evaluate the effect of Chinese herbs on VSCs in vitro. Methods: Saliva samples from volunteers were used as the source for the evaluation of bacterial activity and VSC inhibition. Extracted substances from Chinese herbs were identified by VSC inhibition tests with a Halimeter and microbial sensitivity testing. The effectiveness on halitosis was compared between a dentifrice containing one of the effective Chinese herbs (ie, chrysanthemum flower [Chrysanthemum morifolium flos]), 4 commercially available antihalitosis dentifrices, and a positive control that received no treatment. Results: Ten volunteers provided saliva samples for VSC testing. Of the 40 herbs tested, 14 extracts had percent inhibition rates of VSCs >50%. Ten herbs showed greatest effect against all culturable microorganisms with bacterial inhibition >70%. There was a weak positive correlation between bacteriostasis and the anti-VSC activity of the herbs with a correlation coefficient of 0.2579 (Pearson). The mean (SD) values of the VSC testing were as follows: dentifrice containing chrysanthemum flower, 55.91 (8.16) ppb; Crest Tea Refreshing Dentifrice®, 48.39 (7.48) ppb (P = NS); Cortex Phellodendri Dentifrice®, 139.90 (14.70) ppb (P < 0.01); Colgate Total Plus Whitening®, 120.94 (15.58) ppb (P < 0.01); Zhong Hua Chinese Herbs Dentifrice®, 136.96 (13.06) ppb (P < 0.01); and positive control, 312.38 (28.58) ppb (P < 0.01). Conclusions: Of 40 herbs tested, 14 Chinese herbs were found to be effective for VSC inhibition. A dentifrice containing chrysanthemum flower reduced the formation of VSC in vitro, showing a significantly greater effect than the control group and 3 of 4 dentifrices already on the market. PMID:24683259
Chemical characterization of territorial marking fluid of male Bengal tiger, Panthera tigris.
Burger, B V; Viviers, M Z; Bekker, J P I; le Roux, M; Fish, N; Fourie, W B; Weibchen, G
2008-05-01
The territorial marking fluid of the male Bengal tiger, Panthera tigris, consists of a mixture of urine and a small quantity of lipid material that may act as a controlled-release carrier for the volatile constituents of the fluid. Using gas chromatography and gas chromatography-mass spectrometry, 98 volatile compounds and elemental sulfur were identified in the marking fluid. Another 16 volatiles were tentatively identified. The majority of these compounds were alkanols, alkanals, 2-alkanones, branched and unbranched alkanoic acids, dimethyl esters of dicarboxylic acids, gamma- and delta-lactones, and compounds containing nitrogen or sulfur. Several samples of the marking fluid contained pure (R)-3-methyl-2-octanone, (R)-3-methyl-2-nonanone, and (R)-3-methyl-2-decanone, but these ketones were partly or completely racemized in other samples. The gamma-lactone (S)-(+)-(Z)-6-dodecen-4-olide and the C(8) to C(16) saturated (R)-gamma-lactones and (S)-delta-lactones were present in high enantiomeric purities. The chiral carboxylic acids, 2-methylnonanoic acid, 2-methyldecanoic acid, 2-methylundecanoic acid, and 2-ethylhexanoic acid were racemates. Cadaverine, putrescine, and 2-acetylpyrroline, previously reported as constituents of tiger urine, were not detected. The dominant contribution of some ketones, fatty acids, and lactones to the composition of the headspace of the marking fluid suggests that these compounds may be important constituents of the pheromone. Although it constitutes only a small proportion, the lipid fraction of the fluid contained larger quantities of the volatile organic compounds than the aqueous fraction (urine). The lipid derives its role as controlled-release carrier of the chemical message left by the tiger, from its affinity for the volatiles of the marking fluid. Six proteins with masses ranging from 16 to 69 kDa, inter alia, the carboxylesterase-like urinary protein known as cauxin, previously identified in the urine of the domestic cat and other felid species, were identified in the urine fraction of the marking fluid.
Biogenic amines in dry fermented sausages: a review.
Suzzi, Giovanna; Gardini, Fausto
2003-11-15
Biogenic amines are compounds commonly present in living organisms in which they are responsible for many essential functions. They can be naturally present in many foods such as fruits and vegetables, meat, fish, chocolate and milk, but they can also be produced in high amounts by microorganisms through the activity of amino acid decarboxylases. Excessive consumption of these amines can be of health concern because their not equilibrate assumption in human organism can generate different degrees of diseases determined by their action on nervous, gastric and intestinal systems and blood pressure. High microbial counts, which characterise fermented foods, often unavoidably lead to considerable accumulation of biogenic amines, especially tyramine, 2-phenylethylamine, tryptamine, cadaverine, putrescine and histamine. However, great fluctuations of amine content are reported in the same type of product. These differences depend on many variables: the quali-quantitative composition of microbial microflora, the chemico-physical variables, the hygienic procedure adopted during production, and the availability of precursors. Dry fermented sausages are worldwide diffused fermented meat products that can be a source of biogenic amines. Even in the absence of specific rules and regulations regarding the presence of these compounds in sausages and other fermented products, an increasing attention is given to biogenic amines, especially in relation to the higher number of consumers with enhanced sensitivity to biogenic amines determined by the inhibition of the action of amino oxidases, the enzymes involved in the detoxification of these substances. The aim of this paper is to give an overview on the presence of these compounds in dry fermented sausages and to discuss the most important factors influencing their accumulation. These include process and implicit factors as well as the role of starter and nonstarter microflora growing in the different steps of sausage production. Moreover, the role of microorganisms with amino oxidase activity as starter cultures to control or reduce the accumulation of biogenic amines during ripening and storage of sausages is discussed.
Naccarato, Attilio; Elliani, Rosangela; Cavaliere, Brunella; Sindona, Giovanni; Tagarelli, Antonio
2018-05-11
Polyamines are aliphatic amines with low molecular weight that are widely recognized as one of the most important cancer biomarkers for early diagnosis and treatment. The goal of the work herein presented is the development of a rapid and simple method for the quantification of free polyamines (i.e., putrescine, cadaverine, spermidine, spermine) and N-monoacetylated polyamines (i.e., N 1 -Acetylspermidine, N 8 -Acetylspermidine, and N 1 -Acetylspermine) in human urine. A preliminary derivatization with propyl chloroformate combined with the use of solid phase microextraction (SPME) allowed for an easy and automatable protocol involving minimal sample handling and no consumption of organic solvents. The affinity of the analytes toward five commercial SPME coatings was evaluated in univariate mode, and the best result in terms of analyte extraction was achieved using the divinylbenzene/carboxen/polydimethylsiloxane fiber. The variables affecting the performance of SPME analysis were optimized by the multivariate approach of experimental design and, in particular, using a central composite design (CCD). The optimal working conditions in terms of response values are the following: extraction temperature 40 °C, extraction time of 15 min and no addition of NaCl. Analyses were carried out by gas chromatography-triple quadrupole mass spectrometry (GC-QqQ-MS) in selected reaction monitoring (SRM) acquisition mode. The developed method was validated according to the guidelines issued by the Food and Drug Administration (FDA). The satisfactory performances reached in terms of linearity, sensitivity (LOQs between 0.01 and 0.1 μg/mL), matrix effect (68-121%), accuracy, and precision (inter-day values between -24% and +16% and in the range 3.3-28.4%, respectively) make the proposed protocol suitable to be adopted for quantification of these important biomarkers in urine samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Peters, Jennifer L; DeMars, Paul L; Collins, Lindsay M; Stoner, Julie A; Matsumoto, Hiroyuki; Komori, Naoka; Singh, Anil; Feasley, Christa L; Haddock, James A; Levine, Martin
2012-10-19
Periodontal disease, gingival inflammation (gingivitis) and periodontal attachment loss (periodontitis), causes tooth loss and susceptibility to chronic inflammation. Professionally scaling and cleaning the teeth regularly controls the disease, but is expensive in companion animals. Eikenella corrodens is common in canine oral cavities where it is a source of lysine decarboxylase (LDC). In human dental biofilms (plaques), LDC converts lysine to cadaverine and impairs the gingival epithelial barrier to bacteria. LDC vaccination may therefore retard gingivitis development. Year-old beagle dogs provided blood samples, and had weight and clinical measurements (biofilm and gingivitis) recorded. After scaling and cleaning, two dogs were immunized subcutaneously with 0.2mg native LDC from E. corrodens and 2 sets of four dogs with 0.2mg recombinant LDC purified from Escherichia coli. A third set of 4 dogs was immunized intranasally. Rehydragel(®), Emulsigen(®), Polygen™ or Carbigen™ were used as adjuvant. Four additional pairs of dogs were sham-immunized with each adjuvant alone (controls). Immunizations were repeated twice, 3 weeks apart, and clinical measurements were obtained after another 2 weeks, when the teeth were scaled and cleaned again. Tooth brushing was then stopped and the diet was changed from hard to soft chow. Clinical measurements were repeated after 1, 2, 3, 4, 6 and 8 weeks. Compared with sham-immunized dogs, gingivitis was reduced over all 8 weeks of soft diet after subcutaneous immunization with native LDC, or after intranasal immunization with recombinant LDC in Carbigen™, but for only 6 of the 8 weeks after subcutaneous immunization with recombinant LDC in Emulsigen(®) (repeated measures ANOVA). Subcutaneous vaccination induced a strong serum IgG antibody response that decreased during the soft diet period, whereas intranasal immunization induced a weak serum IgA antibody response that did not decrease. Immunization with recombinant LDC may provide protection from gingivitis if procedures are optimized. Copyright © 2012 Elsevier Ltd. All rights reserved.
Algarni, Alanood S; Hargreaves, Alan J; Dickenson, John M
2018-02-05
NGF (nerve growth factor) and tissue transglutaminase (TG2) play important roles in neurite outgrowth and modulation of neuronal cell survival. In this study, we investigated the regulation of TG2 transamidase activity by NGF in retinoic acid-induced differentiating mouse N2a and human SH-SY5Y neuroblastoma cells. TG2 transamidase activity was determined using an amine incorporation and a peptide cross linking assay. In situ TG2 activity was assessed by visualising the incorporation of biotin-X-cadaverine using confocal microscopy. The role of TG2 in NGF-induced cytoprotection and neurite outgrowth was investigated by monitoring hypoxia-induced cell death and appearance of axonal-like processes, respectively. The amine incorporation and protein crosslinking activity of TG2 increased in a time and concentration-dependent manner following stimulation with NGF in N2a and SH-SY5Y cells. NGF mediated increases in TG2 activity were abolished by the TG2 inhibitors Z-DON (Z-ZON-Val-Pro-Leu-OMe; Benzyloxycarbonyl-(6-Diazo-5-oxonorleucinyl)-l-valinyl-l-prolinyl-l-leucinmethylester) and R283 (1,3,dimethyl-2[2-oxo-propyl]thio)imidazole chloride) and by pharmacological inhibition of extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase B (PKB) and protein kinase C (PKC), and removal of extracellular Ca 2+ . Fluorescence microscopy demonstrated NGF induced in situ TG2 activity. TG2 inhibition blocked NGF-induced attenuation of hypoxia-induced cell death and neurite outgrowth in both cell lines. Together, these results demonstrate that NGF stimulates TG2 transamidase activity via a ERK1/2, PKB and PKC-dependent pathway in differentiating mouse N2a and human SH-SY5Y neuroblastoma cells. Furthermore, NGF-induced cytoprotection and neurite outgrowth are dependent upon TG2. These results suggest a novel and important role of TG2 in the cellular functions of NGF. Copyright © 2017 Elsevier B.V. All rights reserved.
Almami, Ibtesam; Dickenson, John M; Hargreaves, Alan J; Bonner, Philip L R
2014-01-01
BACKGROUND AND PURPOSE Tissue transglutaminase (TG2) has been shown to mediate cell survival in many cell types. In this study, we investigated whether the role of TG2 in cytoprotection was mediated by the activation of PKA and PKC in cardiomyocyte-like H9c2 cells. EXPERIMENTAL APPROACH H9c2 cells were extracted following stimulation with phorbol-12-myristate-13-acetate (PMA) and forskolin. Transglutaminase activity was determined using an amine incorporating and a protein crosslinking assay. The presence of TG isoforms (TG1, 2, 3) was determined using Western blot analysis. The role of TG2 in PMA- and forskolin-induced cytoprotection was investigated by monitoring H2O2-induced oxidative stress in H9c2 cells. KEY RESULTS Western blotting showed TG2 >> TG1 protein expression but no detectable TG3. The amine incorporating activity of TG2 in H9c2 cells increased in a time and concentration-dependent manner following stimulation with PMA and forskolin. PMA and forskolin-induced TG2 activity was blocked by PKC (Ro 31-8220) and PKA (KT 5720 and Rp-8-Cl-cAMPS) inhibitors respectively. The PMA- and forskolin-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Immunocytochemistry revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (β-tubulin) and novel (α-actinin) protein substrates for TG2. Pretreatment with PMA and forskolin reversed H2O2-induced decrease in MTT reduction and release of LDH. TG2 inhibitors R283 and Z-DON blocked PMA- and forskolin-induced cytoprotection. CONCLUSIONS AND IMPLICATIONS TG2 activity was stimulated via PKA- and PKC-dependent signalling pathways in H9c2 cells These results suggest a role for TG2 in cytoprotection induced by these kinases. PMID:24821315
Algarni, Alanood S; Hargreaves, Alan J; Dickenson, John M
2017-03-15
The PAC 1 receptor and tissue transglutaminase (TG2) play important roles in neurite outgrowth and modulation of neuronal cell survival. In this study, we investigated the regulation of TG2 activity by the PAC 1 receptor in retinoic acid-induced differentiating N2a neuroblastoma cells. TG2 transamidase activity was determined using an amine incorporation and a peptide cross linking assay. In situ TG2 activity was assessed by visualising the incorporation of biotin-X-cadaverine using confocal microscopy. TG2 phosphorylation was monitored via immunoprecipitation and Western blotting. The role of TG2 in PAC 1 receptor-induced cytoprotection and neurite outgrowth was investigated by monitoring hypoxia-induced cell death and appearance of axonal-like processes, respectively. The amine incorporation and protein crosslinking activity of TG2 increased in a time and concentration-dependent manner following stimulation with pituitary adenylate cyclase-activating polypeptide-27 (PACAP-27). PACAP-27 mediated increases in TG2 activity were abolished by the TG2 inhibitors Z-DON and R283 and by pharmacological inhibition of protein kinase A (KT 5720 and Rp-cAMPs), protein kinase C (Ro 31-8220), MEK1/2 (PD 98059), and removal of extracellular Ca 2+ . Fluorescence microscopy demonstrated PACAP-27 induced in situ TG2 activity. TG2 inhibition blocked PACAP-27 induced attenuation of hypoxia-induced cell death and outgrowth of axon-like processes. TG2 activation and cytoprotection were also observed in human SH-SY5Y cells. Together, these results demonstrate that TG2 activity was stimulated downstream of the PAC 1 receptor via a multi protein kinase dependent pathway. Furthermore, PAC 1 receptor-induced cytoprotection and neurite outgrowth are dependent upon TG2. These results highlight the importance of TG2 in the cellular functions of the PAC 1 receptor. Copyright © 2017 Elsevier Inc. All rights reserved.
Vyas, Falguni S; Hargreaves, Alan J; Bonner, Philip L R; Boocock, David J; Coveney, Clare; Dickenson, John M
2016-05-01
The regulation of tissue transglutaminase (TG2) activity by the GPCR family is poorly understood. In this study, we investigated the modulation of TG2 activity by the A1 adenosine receptor in cardiomyocyte-like H9c2 cells. H9c2 cells were lysed following stimulation with the A1 adenosine receptor agonist N(6)-cyclopentyladenosine (CPA). Transglutaminase activity was determined using an amine incorporating and a protein cross linking assay. TG2 phosphorylation was assessed via immunoprecipitation and Western blotting. The role of TG2 in A1 adenosine receptor-induced cytoprotection was investigated by monitoring hypoxia-induced cell death. CPA induced time and concentration-dependent increases in amine incorporating and protein crosslinking activity of TG2. CPA-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Responses to CPA were blocked by PKC (Ro 31-8220), MEK1/2 (PD 98059), p38 MAPK (SB 203580) and JNK1/2 (SP 600125) inhibitors and by removal of extracellular Ca(2+). CPA triggered robust increases in the levels of TG2-associated phosphoserine and phosphothreonine, which were attenuated by PKC, MEK1/2 and JNK1/2 inhibitors. Fluorescence microscopy revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (Histone H4) and novel (Hexokinase 1) protein substrates for TG2. CPA pre-treatment reversed hypoxia-induced LDH release and decreases in MTT reduction. TG2 inhibitors R283 and Z-DON attenuated A1 adenosine receptor-induced cytoprotection. TG2 activity was stimulated by the A1 adenosine receptor in H9c2 cells via a multi protein kinase dependent pathway. These results suggest a role for TG2 in A1 adenosine receptor-induced cytoprotection. Copyright © 2016 Elsevier Inc. All rights reserved.
Fiber-optic array using molecularly imprinted microspheres for antibiotic analysis.
Carrasco, Sergio; Benito-Peña, Elena; Walt, David R; Moreno-Bondi, María C
2015-05-01
In this article we describe a new class of high-density optical microarrays based on molecularly imprinted microsphere sensors that directly incorporate specific recognition capabilities to detect enrofloxacin (ENRO), an antibiotic widely used for both human and veterinary applications. This approach involves the preparation of highly cross-linked polymer microspheres by thermal precipitation-polymerization in the presence and absence of the target analyte ENRO to generate either molecularly imprinted (MIP) or non-imprinted polymer (NIP) microspheres, respectively. Each polymer type of tailor-made microsphere is fluorescently encoded with either coumarin-30 or tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(ii) dichloride [Ru(dip) 3 ]Cl 2 to enable the microspheres to be distinguished. The new MIP-based sensing platform utilizes an optical fiber bundle containing approximately 50 000 individual 3.1 μm diameter fibers that are chemically etched to create microwells in which MIP and NIP microspheres can be deposited and imaged using an epi-fluorescence microscope. The method enables multiplexed detection by independently addressing both types of beads through their separate light channels. The unique response to the presence of ENRO is manifested on the basis of a competitive immunoassay. A red-fluorescent dye-tagged ENRO, labeled with BODIPY® TR Cadaverine, competes with ENRO for specific binding sites. The developed immuno-like assay displayed a limit of detection (LOD) of 0.04 μM (10% binding inhibition) and a dynamic range of 0.29-21.54 μM (20-80% binding inhibition). The selectivity of the assay was evaluated by measuring the cross-reactivity of other fluoroquinolones (ciprofloxacin, norfloxacin, danofloxacin, and flumequine) and non-related antibiotics (penicillin G and doxycycline). This work demonstrates, for the first time, the applicability of MIPs, as an alternative to biomolecule receptors, for the development of multiplexed detection fiber-optic microarrays paving the way for a new generation of biomimetic sensors.
Li, Ming-Yu; Wang, Jun; Xu, Zhu-Ting
2010-04-01
The principal components of halitosis are volatile sulfur compounds (VSCs) such as hydrogen sulfide, methyl mercaptan, and dimethylsulfide or compounds such as butyric acid, propionic acid, putrescine, and cadaverine. The aim of this study was to evaluate the effect of Chinese herbs on VSCs in vitro. Saliva samples from volunteers were used as the source for the evaluation of bacterial activity and VSC inhibition. Extracted substances from Chinese herbs were identified by VSC inhibition tests with a Halimeter and microbial sensitivity testing. The effectiveness on halitosis was compared between a dentifrice containing one of the effective Chinese herbs (ie, chrysanthemum flower [Chrysanthemum morifolium flos]), 4 commercially available antihalitosis dentifrices, and a positive control that received no treatment. Ten volunteers provided saliva samples for VSC testing. Of the 40 herbs tested, 14 extracts had percent inhibition rates of VSCs >50%. Ten herbs showed greatest effect against all culturable microorganisms with bacterial inhibition >70%. There was a weak positive correlation between bacteriostasis and the anti-VSC activity of the herbs with a correlation coefficient of 0.2579 (Pearson). The mean (SD) values of the VSC testing were as follows: dentifrice containing chrysanthemum flower, 55.91 (8.16) ppb; Crest Tea Refreshing Dentifrice®, 48.39 (7.48) ppb (P = NS); Cortex Phellodendri Dentifrice®, 139.90 (14.70) ppb (P < 0.01); Colgate Total Plus Whitening®, 120.94 (15.58) ppb (P < 0.01); Zhong Hua Chinese Herbs Dentifrice®, 136.96 (13.06) ppb (P < 0.01); and positive control, 312.38 (28.58) ppb (P < 0.01). Of 40 herbs tested, 14 Chinese herbs were found to be effective for VSC inhibition. A dentifrice containing chrysanthemum flower reduced the formation of VSC in vitro, showing a significantly greater effect than the control group and 3 of 4 dentifrices already on the market.
Khodayari, Samira; Moharramipour, Saeid; Larvor, Vanessa; Hidalgo, Kévin; Renault, David
2013-01-01
Diapause is a common feature in several arthropod species that are subject to unfavorable growing seasons. The range of environmental cues that trigger the onset and termination of diapause, in addition to associated hormonal, biochemical, and molecular changes, have been studied extensively in recent years; however, such information is only available for a few insect species. Diapause and cold hardening usually occur together in overwintering arthropods, and can be characterized by recording changes to the wealth of molecules present in the tissue, hemolymph, or whole body of organisms. Recent technological advances, such as high throughput screening and quantification of metabolites via chromatographic analyses, are able to identify such molecules. In the present work, we examined the survival ability of diapausing and non-diapausing females of the two-spotted spider mite, Tetranychus urticae, in the presence (0 or 5°C) or absence of cold acclimation. Furthermore, we examined the metabolic fingerprints of these specimens via gas chromatography-mass spectrophotometry (GC-MS). Partial Least Square Discriminant Analysis (PLS-DA) of metabolites revealed that major metabolic variations were related to diapause, indicating in a clear cut-off between diapausing and non-diapausing females, regardless of acclimation state. Signs of metabolic depression were evident in diapausing females, with most amino acids and TCA cycle intermediates being significantly reduced. Out of the 40 accurately quantified metabolites, seven metabolites remained elevated or were accumulated in diapausing mites, i.e. cadaverine, gluconolactone, glucose, inositol, maltose, mannitol and sorbitol. The capacity to accumulate winter polyols during cold-acclimation was restricted to diapausing females. We conclude that the induction of increased cold hardiness in this species is associated with the diapause syndrome, rather than being a direct effect of low temperature. Our results provide novel information about biochemical events related to the cold hardening process in the two-spotted spider mite. PMID:23349779
A salivary incubation test for evaluation of oral malodor: a pilot study.
Quirynen, Marc; Zhao, Hong; Avontroodt, Pieter; Soers, Catherine; Pauwels, Martine; Coucke, Wim; van Steenberghe, Daniel
2003-07-01
Breath odor is scored by different techniques, each with its own shortcomings. Organoleptic ratings are uncomfortable for the patient, subjective, influenced by external parameters including food and cosmetics, and especially lack international calibration. Portable sulphide monitors are relatively expensive and neglect several major malodorous molecules (e.g., butyric and propionic acids, putrescine, and cadaverine). Gas chromatography necessitates expensive devices and experienced technicians. This pilot study explored the applicability of a new technique (saliva incubation) by comparing its discrimination power, in a morning bad breath inhibition study of antiseptics, to those of hydrogen sulphide (H2S) measurement devices and organoleptic ratings. After a professional cleaning, 8 periodontally healthy students abstained from all means of mechanical plaque control for 5 experimental periods of 7 days, with intervening washout periods of at least 2 weeks. During each experimental period, the students rinsed only twice daily with different antiseptics. At day 7, morning breath was scored clinically (volatile sulphide compound [VSC] level and organoleptic ratings), and 1.5 ml of saliva was collected and divided between 3 glass tubes that were sealed and incubated (37 degrees C, anaerobic chamber). Immediately after collection and after 3 and 6 hours of incubation, the headspace air in one of the tubes was examined for VSC production and organoleptic measurements. The investigations of the incubated saliva correlated well with the 7-day intraoral VSC recordings and organoleptic ratings (P < or = 0.005). Moreover, evaluations showed a similar interproduct ranking for their efficacy in malodor control. The power analyses indicated a higher discrimination power for the saliva incubation test than for the intraoral registrations. The strong correlation between odor production of incubated saliva and clinical assessments suggests that the saliva incubation test may be used as an indirect method to measure oral malodor and can be employed to investigate the antimalodor effectiveness of oral hygiene products.
Paenalcaligenes suwonensis sp. nov., isolated from spent mushroom compost.
Moon, Ji-Young; Lim, Jun-Muk; Ahn, Jae-Hyung; Weon, Hang-Yeon; Kwon, Soon-Wo; Kim, Soo-Jin
2014-03-01
A bacterial strain, ABC02-12(T), was isolated from spent mushroom compost, a waste product of button mushroom cultivation. Cells of the strain were Gram-stain-negative, catalase- and oxidase-positive, non-spore-forming, aerobic flagellated rods. Optimum growth occurred at 28 °C and pH 7.0. 16S rRNA gene sequence analysis showed that strain ABC02-12(T) shared the highest sequence similarities with Paenalcaligenes hominis CCUG 53761A(T) (96.0 %), Alcaligenes faecalis subsp. parafaecalis G(T) (95.7 %), Alcaligenes faecalis subsp. faecalis IAM 12369(T) (95.4 %) and Pusillimonas noertemannii BN9(T) (95.3 %). According to the phylogenetic tree, strain ABC02-12(T) formed a robust cluster with Paenalcaligenes hominis CCUG 53761A(T) and Paenalcaligenes hermetiae KBL009(T). The quinone system was ubiquinone Q-8 with minor amounts of Q-7. The major fatty acids (>5 % of total fatty acids) were C16 : 0, C16 : 1ω6c and/or C16 : 1ω7c (summed feature 3), C18 : 1ω7c and/or C18 : 1ω6c (summed feature 8), C17 : 0 cyclo, and iso-C16 : 1 I, C14 : 0 3-OH and/or an unknown fatty acid (summed feature 2). The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unknown aminolipid. Putrescine was the principal polyamine, with small amounts of 2-hydroxyputrescine and cadaverine. On the basis of the evidence presented in this study, strain ABC02-12(T) is a representative of a novel species within the genus Paenalcaligenes, for which the name Paenalcaligenes suwonensis sp. nov. is proposed. The type strain is ABC02-12(T) ( = KACC 16537(T) = NBRC 108927(T)).
Zhang, Yuemei; Li, Dongping; Lv, Jian; Li, Qingzheng; Kong, Chunli; Luo, Yongkang
2017-05-16
The present study investigated the effect of cinnamon essential oil on the quality of vacuum-packaged common carp (Cyprinus carpio) fillets stored at 4±1°C in terms of sensory scores, physicochemical characteristics (total volatile basic nitrogen (TVB-N), biogenic amines, and color), and presence of spoilage microbiota. A total of 290,753 bacterial sequences and 162 different genera belonging to 14 phyla were observed by a high-throughput sequencing technique targeting the V3-V4 region of 16S rDNA, which showed a more comprehensive estimate of microbial diversity in carp samples compared with microbial enumeration. Before storage, Macrococcus and Aeromonas were the prevalent populations in the control samples, but cinnamon essential oil decreased the relative abundance of Macrococcus in the treated samples. Variability in the predominant microbiota in different samples during chilled storage was observed. Aeromonas followed by Lactococcus were the major contaminants in the spoiled control samples. Microbial enumeration also observed relatively higher counts of Aeromonas than other spoilage microorganisms. Compared with the control samples, cinnamon essential oil inhibited the growth of Aeromonas and Lactococcus were the predominant components in the treated samples on day 10; plate counts also revealed a relatively high level of lactic acid bacteria during refrigerated storage. However, there were no significant differences (P>0.05) in the composition of dominant microbiota between these two treatments at the end of the shelf-life. Furthermore, cinnamon essential oil treatment was more effective in inhibiting the increase of TVB-N and the accumulation of biogenic amines (especially for putrescine and cadaverine levels). Based primarily on sensory analysis, the use of cinnamon essential oil extended the shelf-life of vacuum-packaged common carp fillets by about 2days. Copyright © 2016 Elsevier B.V. All rights reserved.
Alvarez-Cisneros, Y M; Fernández, F J; Sainz-Espuñez, T; Ponce-Alquicira, E
2017-02-01
Enterococcus faecium MXVK29 has the ability to produce an antimicrobial compound that belongs to Class IIa of the Klaenhammer classification, and could be used as part of a biopreservation technology through direct inoculation of the strain as a starter or protective culture. However, Enterococcus is considered as an opportunistic pathogen, hence, the purpose of this work was to study the food safety determinants of E. faecium MXVK29. The strain was sensitive to all of the antibiotics tested (penicillin, tetracycline, vancomycin, erythromycin, chloramphenicol, gentamicin, neomycin, kanamycin and netilmicin) and did not demonstrate histamine, cadaverine or putrescine formation. Furthermore, tyrosine-decarboxylase activity was detected by qualitative assays and PCR. Among the virulence factors analysed for the strain, only the genes encoding the sexual pheromone cCF10 precursor lipoprotein (ccf) and cell-wall adhesion (efaA fm ) were amplified. The presence of these genes has low impact on pathogenesis, as there are no other genes encoding for virulence factors, such as aggregation proteins. Therefore, Enterococcus faecium could be employed as part of a bioconservation method, because it does not produce risk factors for consumer's health; in addition, it could be used as part of the hurdle technology in foods. The use of molecular techniques has allowed, in recent years, to detect pathogenicity genes present in the genome of starter cultures used in food processing and preservation. The presence of these genes is undesirable, because horizontal transfer may occur with the natural biota of consumers. For this reason, it is important to analyse the presence of pathogenicity genes in such cultures. In this work, virulence factors and antibiotic resistance of Enterococcus faecium strain MXVK29, producing an antimicrobial compound with high antilisterial activity, were analysed. The results indicate that the strain is safe to be used in food processing as starter culture. © 2016 The Society for Applied Microbiology.
Pinna, Carlo; Vecchiato, Carla Giuditta; Cardenia, Vladimiro; Rodriguez-Estrada, Maria Teresa; Stefanelli, Claudio; Grandi, Monica; Gatta, Pier Paolo; Biagi, Giacomo
2017-10-01
The in vitro effect of a Yucca schidigera extract (YSE) and tannins from chestnut wood on composition and metabolic activity of canine and feline faecal microbiota was evaluated. Four treatments were carried out: control diet, chestnut tannins (CT), YSE and CT + YSE. The YSE was added to canine and feline faecal cultures at 0.1 g/l, while CT were added at 0.3 g/l for a 24-h incubation. A total of 130 volatile compounds were detected by means of headspace-solid phase microextraction gas-chromatography/mass spectrometry analyses. Several changes in the metabolite profiles of fermentation fluids were found, including a decrease of alcohols (-19%) and esters (-42%) in feline and canine inoculum, respectively, which was due to the antibacterial properties of tannins. In canine inoculum, after 6 h, YSE + CT caused lower cadaverine concentrations (-37%), while ammonia (-4%) and quinolone (-27%) were reduced by addition of CT. After 24 h, the presence of CT resulted in a decrease of sulphur compounds, such as dimethyl sulphide (-69%) and dimethyl disulphide (-20%). In feline faecal cultures, after 6 h, CT lowered the amount of indole (-48%), whereas YSE tended to decrease trimethylamine levels (-16%). Both in canine and feline inoculum, addition of CT and, to a minor extent, YSE affected volatile fatty acids patterns. In canine faecal cultures, CT exerted a marginal inhibitory effect on Escherichia coli population (-0.45 log 10 numbers of DNA copies/ml), while enterococci were increased (+2.06 log 10 numbers of DNA copies/ml) by YSE. The results from the present study show that YSE and tannins from chestnut wood exert different effects on the composition and metabolism of canine and feline faecal microbiota. In particular, the supplementation of YSE and tannins to diets for dogs and cats may be beneficial due to the reduction of the presence of some potentially toxic volatile metabolites in the animals' intestine.
Šimat, Vida; Miletić, Jelena; Bogdanović, Tanja; Poljak, Vedran; Mladineo, Ivona
2015-12-02
Infective third-stage larvae (L3) of nematode Anisakis spp. have been recognized as one of the major food-borne threats in lightly processed fish products in Europe, particularly in the Mediterranean region. Therefore, the effect of different storage temperatures of fish on larval post-mortem migration from visceral cavity into fillets is an important parameter to take into account when evaluating the risk for consumer safety. The European anchovy (Engraulis encrasicolus) were caught during fishing season, a subsample of fillets was checked for the presence of Anisakis larvae at capture (mean abundance=0.07), and the rest was stored at four different temperatures (-18, 0, 4 and 22°C) in order to count migrating larvae and measure the production of biogenic amines over a period of time. Larvae were identified by morphological features and molecular tools. Post-mortem migration was observed in fillets stored at 0 and 4°C after three and five days, respectively, but not at 22 and -18°C. In case of storage at 22°C for two days, at the onset of putrefaction of the visceral organs, larvae migrated out of the visceral cavity towards the fish surface. Measured pH and biogenic amine profile during storage indicated that certain biochemical conditions trigger larval migration into fillets. Likewise, migration was observed at pH ~6.4 when sensory degradation of the fish was markedly visible. Although larval migration was delayed for approximately four days at a temperature of <4°C the correlation between pH and abundance of A. pegreffii larvae in the fillet was high and statistically significant at both 0 (r=0.998, p<0.01) and 4°C (r=0.946, p<0.05). Out of eight biogenic amines measured, cadaverine and putrescine levels correlated the most with the post-mortem migration at 4°C, while tyramine levels were significant at both temperatures. Copyright © 2015 Elsevier B.V. All rights reserved.
Shukla, Shruti; Lee, Jong Suk; Bajpai, Vivek K; Nile, Shivraj Hariram; Huh, Yun Suk; Han, Young-Kyu; Kim, Myunghee
2018-04-10
Meju, a cooked and fermented soy bean based food product, is used as a major ingredient in Korean traditional fermented foods such as Doenjang. We developed a novel type of Meju using single and combined extracts of Allium sativum (garlic clove), Nelumbo nucifera (lotus leaves), and Ginkgo biloba (ginkgo leaves) at 1% and 10% concentrations to improve the safety of Meju-based fermented products. Biogenic amines (BAs) in protein-rich fermented food products pose considerable toxical risks. The objective of this study was to investigate the effects of adding selected plant extracts in Meju samples during fermentation. Nine BAs, including tryptamine, 2-phenylethylamine, putrescine, cadaverine, agmatine, histamine, tyramine, spermidine and spermine, were isolated from Meju samples after sample derivatization with dansyl chloride and analyzed by high performance liquid chromatography. As a result, all tested Meju samples with added plant extracts showed total BAs levels in the range of 20.12 ± 2.03 to 118.42 ± 10.68 mg/100 g, which were below the safety limit set by various regulatory authorities (USFDA/KFDA/EFSA). However, among all tested Meju samples, LOM10 (Meju fermented with Nelumbo nucifera at 10% concentration) showed higher levels of BAs content than others either due to batch-to-batch variability or reduced beneficial microorganisms and/or due to increase in BA forming microorganisms. Also, none of the samples showed the aflatoxin level above the detection limit. Furthermore, all the tested Meju samples improved microbial safety as confirmed by the complete absence of Salmonella species and Staphylococcus aureus. However, some of the Meju samples showed the presence of coliforms (in range of 1.6 × 10 0 -1.1 × 10 3 CFU/g), which is under regulatory limits. These results suggested that the use of plant extracts in Meju during fermentation have potential to improve microbial and toxicological safety of Meju products. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1
Bhowmick, Tridib; Berk, Erik; Cui, Xiumin; Muzykantov, Vladimir R.; Muro, Silvia
2011-01-01
Delivery of drugs into the endothelium by nanocarriers targeted to endothelial determinants may improve treatment of vascular maladies. This is the case for intercellular adhesion molecule 1 (ICAM-1), a glycoprotein overexpressed on endothelial cells (ECs) in many pathologies. ICAM-1-targeted nanocarriers bind to and are internalized by ECs via a non-classical pathway, CAM-mediated endocytosis. In this work we studied the effects of endothelial adaptation to physiological flow on the endocytosis of model polymer nanocarriers targeted to ICAM-1 (anti-ICAM/NCs, ~180-nm diameter). Culturing established endothelial-like cells (EAhy926 cells) and primary human umbilical vein ECs (HUVECs) under 4 dyn/cm2 laminar shear stress for 24 h resulted in flow adaptation: cell elongation and formation of actin stress fibers aligned to the flow direction. Fluorescence microscopy showed that flow-adapted cells internalized anti-ICAM/NCs under flow, although at slower rate versus non flow-adapted cells under static incubation (~35% reduction). Uptake was inhibited by amiloride, whereas marginally affected by filipin and cadaverine, implicating that CAM-endocytosis accounts for anti-ICAM/NC uptake under flow. Internalization under flow was more modestly affected by inhibiting protein kinase C, which regulates actin remodeling during CAM-endocytosis. Actin recruitment to stress fibers that maintain the cell shape under flow may delay uptake of anti-ICAM/NCs under this condition by interfering with actin reorganization needed for CAM-endocytosis. Electron microscopy revealed somewhat slow, yet effective endocytosis of anti-ICAM/NCs by pulmonary endothelium after i.v. injection in mice, similar to that of flow-adapted cell cultures: ~40% (30 min) and 80% (3 h) internalization. Similar to cell culture data, uptake was slightly faster in capillaries with lower shear stress. Further, LPS treatment accelerated internalization of anti-ICAM/NCs in mice. Therefore, regulation of endocytosis of ICAM-1-targeted nanocarriers by flow and endothelial status may modulate drug delivery into ECs exposed to different physiological (capillaries vs. arterioles/venules) or pathological (ischemia, inflammation) levels and patterns of blood flow. PMID:21951807
Francisella guangzhouensis sp. nov., isolated from air-conditioning systems.
Qu, Ping-Hua; Chen, Shou-Yi; Scholz, Holger C; Busse, Hans-Jürgen; Gu, Quan; Kämpfer, Peter; Foster, Jeffrey T; Glaeser, Stefanie P; Chen, Cha; Yang, Zhi-Chong
2013-10-01
Four strains (08HL01032(T), 09HG994, 10HP82-6 and 10HL1960) were isolated from water of air-conditioning systems of various cooling towers in Guangzhou city, China. Cells were Gram-stain-negative coccobacilli without flagella, catalase-positive and oxidase-negative, showing no reduction of nitrate, no hydrolysis of urea and no production of H2S. Growth was characteristically enhanced in the presence of l-cysteine, which was consistent with the properties of members of the genus Francisella. The quinone system was composed of ubiquinone Q-8 with minor amounts of Q-9. The polar lipid profile consisted of the predominant lipids phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, two unidentified phospholipids (PL2, PL3), an unidentified aminophospholipid and an unidentified glycolipid (GL2). The polyamine pattern consisted of the major compounds spermidine, cadaverine and spermine. The major cellular fatty acids were C10 : 0, C14 : 0, C16 : 0, C18 : 1ω9c and C18 : 1 3-OH. A draft whole-genome sequence of the proposed type strain 08HL01032(T) was generated. Comparative sequence analysis of the complete 16S and 23S rRNA genes confirmed affiliation to the genus Francisella, with 95 % sequence identity to the closest relatives in the database, the type strains of Francisella philomiragia and Francisella noatunensis subsp. orientalis. Full-length deduced amino acid sequences of various housekeeping genes, recA, gyrB, groEL, dnaK, rpoA, rpoB, rpoD, rpoH, fopA and sdhA, exhibited similarities of 67-92 % to strains of other species of the genus Francisella. Strains 08HL01032(T), 09HG994, 10HP82-6 and 10HL1960 exhibited highly similar pan-genome PCR profiles. Both the phenotypic and molecular data support the conclusion that the four strains belong to the genus Francisella but exhibit considerable divergence from all recognized Francisella species. Therefore, we propose the name Francisella guangzhouensis sp. nov., with the type strain 08HL01032(T) ( = CCUG 60119(T) = NCTC 13503(T)).
Zarei, Adel; Trobacher, Christopher P; Cooke, Alison R; Meyers, Ashley J; Hall, J Christopher; Shelp, Barry J
2015-01-01
4-Aminobutyrate (GABA) accumulates in apple fruit during controlled atmosphere storage. A potential source of GABA is the polyamine putrescine, which can be oxidized via copper-containing amine oxidase (CuAO), resulting in the production 4-aminobutanal/Δ(1)-pyrroline, with the consumption of O2 and release of H2O2 and ammonia. Five putative CuAO genes (MdAO genes) were cloned from apple (Malus domestica Borkh. cv. Empire) fruit, and the deduced amino acid sequences found to contain the active sites typically conserved in CuAOs. Genes encoding two of these enzymes, MdAO1 and MdAO2, were highly expressed in apple fruit and selected for further analysis. Amino acid sequence analysis predicted the presence of a C-terminal peroxisomal targeting signal 1 tripeptide in MdAO1 and an N-terminal signal peptide and N-glycosylation site in MdAO2. Transient expression of green fluorescent fusion proteins in Arabidopsis protoplasts or onion epidermal cells revealed a peroxisomal localization for MdAO1 and an extracellular localization for MdAO2. The enzymatic activities of purified recombinant MdAO1 and MdAO2 were measured continuously as H2O2 production using a coupled reaction. MdAO1 did not use monoamines or polyamines and displayed high catalytic efficiency for 1,3-diaminopropane, putrescine and cadaverine, whereas MdAO2 exclusively utilized aliphatic and aromatic monoamines, including 2-phenylethylamine and tyramine. Together, these results indicate that MdAO1 may contribute to GABA production via putrescine oxidation in the peroxisome of apple fruit under controlled atmosphere conditions. MdAO2 seems to be involved in deamination of 2-phenylethylamine, which is a step in the biosynthesis of 2-phenylethanol, a contributor to fruit flavor and flower fragrance. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
2010-01-01
Background The fungal pathogen Fusarium graminearum causes Fusarium Head Blight (FHB) disease on wheat which can lead to trichothecene mycotoxin (e.g. deoxynivalenol, DON) contamination of grain, harmful to mammalian health. DON is produced at low levels under standard culture conditions when compared to plant infection but specific polyamines (e.g. putrescine and agmatine) and amino acids (e.g. arginine and ornithine) are potent inducers of DON by F. graminearum in axenic culture. Currently, host factors that promote mycotoxin synthesis during FHB are unknown, but plant derived polyamines could contribute to DON induction in infected heads. However, the temporal and spatial accumulation of polyamines and amino acids in relation to that of DON has not been studied. Results Following inoculation of susceptible wheat heads by F. graminearum, DON accumulation was detected at two days after inoculation. The accumulation of putrescine was detected as early as one day following inoculation while arginine and cadaverine were also produced at three and four days post-inoculation. Transcripts of ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), two key biosynthetic enzymes for putrescine biosynthesis, were also strongly induced in heads at two days after inoculation. These results indicated that elicitation of the polyamine biosynthetic pathway is an early response to FHB. Transcripts for genes encoding enzymes acting upstream in the polyamine biosynthetic pathway as well as those of ODC and ADC, and putrescine levels were also induced in the rachis, a flower organ supporting DON production and an important route for pathogen colonisation during FHB. A survey of 24 wheat genotypes with varying responses to FHB showed putrescine induction is a general response to inoculation and no correlation was observed between the accumulation of putrescine and infection or DON accumulation. Conclusions The activation of the polyamine biosynthetic pathway and putrescine in infected heads prior to detectable DON accumulation is consistent with a model where the pathogen exploits the generic host stress response of polyamine synthesis as a cue for production of trichothecene mycotoxins during FHB disease. However, it is likely that this mechanism is complicated by other factors contributing to resistance and susceptibility in diverse wheat genetic backgrounds. PMID:21192794
Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1.
Bhowmick, Tridib; Berk, Erik; Cui, Xiumin; Muzykantov, Vladimir R; Muro, Silvia
2012-02-10
Delivery of drugs into the endothelium by nanocarriers targeted to endothelial determinants may improve treatment of vascular maladies. This is the case for intercellular adhesion molecule 1 (ICAM-1), a glycoprotein overexpressed on endothelial cells (ECs) in many pathologies. ICAM-1-targeted nanocarriers bind to and are internalized by ECs via a non-classical pathway, CAM-mediated endocytosis. In this work we studied the effects of endothelial adaptation to physiological flow on the endocytosis of model polymer nanocarriers targeted to ICAM-1 (anti-ICAM/NCs, ~180 nm diameter). Culturing established endothelial-like cells (EAhy926 cells) and primary human umbilical vein ECs (HUVECs) under 4 dyn/cm(2) laminar shear stress for 24 h resulted in flow adaptation: cell elongation and formation of actin stress fibers aligned to the flow direction. Fluorescence microscopy showed that flow-adapted cells internalized anti-ICAM/NCs under flow, although at slower rate versus non flow-adapted cells under static incubation (~35% reduction). Uptake was inhibited by amiloride, whereas marginally affected by filipin and cadaverine, implicating that CAM-endocytosis accounts for anti-ICAM/NC uptake under flow. Internalization under flow was more modestly affected by inhibiting protein kinase C, which regulates actin remodeling during CAM-endocytosis. Actin recruitment to stress fibers that maintain the cell shape under flow may delay uptake of anti-ICAM/NCs under this condition by interfering with actin reorganization needed for CAM-endocytosis. Electron microscopy revealed somewhat slow, yet effective endocytosis of anti-ICAM/NCs by pulmonary endothelium after i.v. injection in mice, similar to that of flow-adapted cell cultures: ~40% (30 min) and 80% (3 h) internalization. Similar to cell culture data, uptake was slightly faster in capillaries with lower shear stress. Further, LPS treatment accelerated internalization of anti-ICAM/NCs in mice. Therefore, regulation of endocytosis of ICAM-1-targeted nanocarriers by flow and endothelial status may modulate drug delivery into ECs exposed to different physiological (capillaries vs. arterioles/venules) or pathological (ischemia, inflammation) levels and patterns of blood flow. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mackelprang, R.; Douglas, T. A.; Waldrop, M. P.
2014-12-01
Permafrost soils have received tremendous interest due to their importance as a global carbon store with the potential to be thawed over the coming centuries. Instead of being 'frozen in time,' permafrost contains active microbes. Most metagenomic studies have focused on Holocene aged permafrost. Here, we target Pleistocene aged ice and carbon rich permafrost (Yedoma), which can differ in carbon content and stage of decay. Our aim was to understand how microbes in the permafrost transform organic matter over geologic time and to identify physiological and biochemical adaptations that enable long-term survival. We used next-generation sequencing to characterize microbial communities along a permafrost age gradient. Samples were collected from the Cold Regions Research and Engineering Laboratory (CRREL) Permafrost Tunnel near Fox, AK, which penetrates a hillside providing access to permafrost ranging in age from 12 to 40 kyr. DNA was extracted directly from unthawed samples. 16S rRNA amplicon (16S) and shotgun metagenome sequencing revealed significant age-driven differences. First, microbial diversity declines with permafrost age, likely due to long-term exposure to environmental stresses and a reduction in metabolic resources. Second, we observed taxonomic differences among ages, with an increasing abundance of Firmicutes (endospore-formers) in older samples, suggesting that dormancy is a common survival strategy in older permafrost. Ordination of 16S and metagenome data revealed age-based clustering. Genes differing significantly between age categories included those involved in lipopolysaccharide assembly, cold-response, and carbon processing. These data point to the physiological adaptations to long-term frozen conditions and to the metabolic processes utilized in ancient permafrost. In fact, a gene common in older samples is involved in cadaverine production, which could potentially explain the putrefied smell of Pleistocene aged permafrost. Coupled with soil chemistry analysis, these processes show how a tightly linked microbial food web can survive over geologic time with no influx of new energy or materials. This web may also help to explain differences in Pleistocene carbon chemistry and why this carbon is highly bioavailable for microbial consumption post thaw.
Jänne, Juhani; Hovi, Tapani; Hölttä, Erkki
1979-01-01
1. The activation of human peripheral blood lymphocytes by phytohaemagglutinin in vitro was accompanied by striking increases in the concentrations of the natural polyamines putrescine, spermidine and spermine. 2. The enhanced accumulation of polyamines could be almost totally abolished by dl-α-difluoromethylornithine, a newly discovered irreversible inhibitor of l-ornithine decarboxylase (EC 4.1.1.17), or by methylglyoxal bis(guanylhydrazone) {1,1′-[(methylethanediylidene)dinitrilo]diguanidine}, an inhibitor of S-adenosyl-l-methionine decarboxylase (EC 4.1.1.50). The inhibition of polyamine accumulation was associated with a marked suppression of DNA synthesis, which was partially or totally reversed by low concentrations of exogenous putrescine, spermidine, spermine and cadaverine and by higher concentrations of 1,3-diaminopropane. 3. In contrast with some earlier studies, we found that methylglyoxal bis(guanylhydrazone), at concentrations that were sufficient to prevent polyamine accumulation, also caused a clear inhibition of protein synthesis in the activated lymphocytes. Similar results were obtained with difluoromethylornithine. The decrease in protein synthesis caused by both compounds preceded the impairment of DNA synthesis. The inhibition of protein synthesis by difluoromethylornithine was fully reversed by exogenous putrescine, spermidine and spermine, and that caused by methylglyoxal bis(guanylhydrazone) by spermidine and spermine. In further support of the idea that the inhibition of protein synthesis by these compounds was related to the polyamine depletion, we found that difluoromethylornithine caused a dose-dependent decrease in the incorporation of [14C]leucine into lymphocyte proteins which closely correlated with the decreased concentrations of cellular spermidine. 4. Difluoromethylornithine and methylglyoxal bis(guanylhydrazone) also elicited a variable depression in the incorporation of [3H]uridine and [14C]adenine into total RNA. The apparent turnover of lymphocyte RNA remained essentially unchanged in spite of severe polyamine depletion brought about by difluoromethylornithine. 5. The present results, as well as confirming the anti-proliferative action of the inhibitors of polyamine biosynthesis, suggest that polyamine depletion may interfere with reactions at different levels of gene expression. PMID:435270
Hölttä, E; Jänne, J; Hovi, T
1979-01-15
1. The activation of human peripheral blood lymphocytes by phytohaemagglutinin in vitro was accompanied by striking increases in the concentrations of the natural polyamines putrescine, spermidine and spermine. 2. The enhanced accumulation of polyamines could be almost totally abolished by dl-alpha-difluoromethylornithine, a newly discovered irreversible inhibitor of l-ornithine decarboxylase (EC 4.1.1.17), or by methylglyoxal bis(guanylhydrazone) {1,1'-[(methylethanediylidene)dinitrilo]diguanidine}, an inhibitor of S-adenosyl-l-methionine decarboxylase (EC 4.1.1.50). The inhibition of polyamine accumulation was associated with a marked suppression of DNA synthesis, which was partially or totally reversed by low concentrations of exogenous putrescine, spermidine, spermine and cadaverine and by higher concentrations of 1,3-diaminopropane. 3. In contrast with some earlier studies, we found that methylglyoxal bis(guanylhydrazone), at concentrations that were sufficient to prevent polyamine accumulation, also caused a clear inhibition of protein synthesis in the activated lymphocytes. Similar results were obtained with difluoromethylornithine. The decrease in protein synthesis caused by both compounds preceded the impairment of DNA synthesis. The inhibition of protein synthesis by difluoromethylornithine was fully reversed by exogenous putrescine, spermidine and spermine, and that caused by methylglyoxal bis(guanylhydrazone) by spermidine and spermine. In further support of the idea that the inhibition of protein synthesis by these compounds was related to the polyamine depletion, we found that difluoromethylornithine caused a dose-dependent decrease in the incorporation of [(14)C]leucine into lymphocyte proteins which closely correlated with the decreased concentrations of cellular spermidine. 4. Difluoromethylornithine and methylglyoxal bis(guanylhydrazone) also elicited a variable depression in the incorporation of [(3)H]uridine and [(14)C]adenine into total RNA. The apparent turnover of lymphocyte RNA remained essentially unchanged in spite of severe polyamine depletion brought about by difluoromethylornithine. 5. The present results, as well as confirming the anti-proliferative action of the inhibitors of polyamine biosynthesis, suggest that polyamine depletion may interfere with reactions at different levels of gene expression.
Carrot Juice Fermentations as Man-Made Microbial Ecosystems Dominated by Lactic Acid Bacteria.
Wuyts, Sander; Van Beeck, Wannes; Oerlemans, Eline F M; Wittouck, Stijn; Claes, Ingmar J J; De Boeck, Ilke; Weckx, Stefan; Lievens, Bart; De Vuyst, Luc; Lebeer, Sarah
2018-06-15
Spontaneous vegetable fermentations, with their rich flavors and postulated health benefits, are regaining popularity. However, their microbiology is still poorly understood, therefore raising concerns about food safety. In addition, such spontaneous fermentations form interesting cases of man-made microbial ecosystems. Here, samples from 38 carrot juice fermentations were collected through a citizen science initiative, in addition to three laboratory fermentations. Culturing showed that Enterobacteriaceae were outcompeted by lactic acid bacteria (LAB) between 3 and 13 days of fermentation. Metabolite-target analysis showed that lactic acid and mannitol were highly produced, as well as the biogenic amine cadaverine. High-throughput 16S rRNA gene sequencing revealed that mainly species of Leuconostoc and Lactobacillus (as identified by 8 and 20 amplicon sequence variants [ASVs], respectively) mediated the fermentations in subsequent order. The analyses at the DNA level still detected a high number of Enterobacteriaceae , but their relative abundance was low when RNA-based sequencing was performed to detect presumptive metabolically active bacterial cells. In addition, this method greatly reduced host read contamination. Phylogenetic placement indicated a high LAB diversity, with ASVs from nine different phylogenetic groups of the Lactobacillus genus complex. However, fermentation experiments with isolates showed that only strains belonging to the most prevalent phylogenetic groups preserved the fermentation dynamics. The carrot juice fermentation thus forms a robust man-made microbial ecosystem suitable for studies on LAB diversity and niche specificity. IMPORTANCE The usage of fermented food products by professional chefs is steadily growing worldwide. Meanwhile, this interest has also increased at the household level. However, many of these artisanal food products remain understudied. Here, an extensive microbial analysis was performed of spontaneous fermented carrot juices which are used as nonalcoholic alternatives for wine in a Belgian Michelin star restaurant. Samples were collected through an active citizen science approach with 38 participants, in addition to three laboratory fermentations. Identification of the main microbial players revealed that mainly species of Leuconostoc and Lactobacillus mediated the fermentations in subsequent order. In addition, a high diversity of lactic acid bacteria was found; however, fermentation experiments with isolates showed that only strains belonging to the most prevalent lactic acid bacteria preserved the fermentation dynamics. Finally, this study showed that the usage of RNA-based 16S rRNA amplicon sequencing greatly reduces host read contamination. Copyright © 2018 American Society for Microbiology.
Mu, Chunlong; Yang, Yuxiang; Luo, Zhen; Guan, Leluo; Zhu, Weiyun
2016-03-01
A high-protein diet (HPD) can produce hazardous compounds and reduce butyrate-producing bacteria in feces, which may be detrimental to gut health. However, information on whether HPD affects intestinal function is limited. The aim of this study was to determine the impact of an HPD on the microbiota, microbial metabolites, and epithelial transcriptome in the colons of rats. Adult male Wistar rats were fed either a normal-protein diet (20% protein, 56% carbohydrate) or an HPD (45% protein, 30% carbohydrate) for 6 wk (n = 10 rats per group, individually fed). After 6 wk, the colonic microbiome, microbial metabolites, and epithelial transcriptome were determined. Compared with the normal-protein diet, the HPD adversely altered the colonic microbiota by increasing (P < 0.05) Escherichia/Shigella, Enterococcus, Streptococcus, and sulfate-reducing bacteria by 54.9-fold, 31.3-fold, 5.36-fold, and 2.59-fold, respectively. However, the HPD reduced Ruminococcus (8.04-fold), Akkermansia (not detected in HPD group), and Faecalibacterium prausnitzii (3.5-fold) (P < 0.05), which are generally regarded as beneficial bacteria in the colon. Concomitant increases in cadaverine (4.88-fold), spermine (31.2-fold), and sulfide (4.8-fold) (P < 0.05) and a decrease in butyrate (2.16-fold) (P < 0.05) in the HPD rats indicated an evident shift toward the production of unhealthy microbial metabolites. In the colon epithelium of the HPD rats, transcriptome analysis identified an upregulation of genes (P < 0.05) involved in disease pathogenesis; these genes are involved in chemotaxis, the tumor necrosis factor signal process, and apoptosis. The HPD was also associated with a downregulation of many genes (P < 0.05) involved in immunoprotection, such as genes involved in innate immunity, O-linked glycosylation of mucin, and oxidative phosphorylation, suggesting there may be an increased disease risk in these rats. The abundance of Escherichia/Shigella, Enterococcus, and Streptococcus was positively correlated (Spearman's ρ > 0.7, P < 0.05) with genes and metabolites generally regarded as being involved in disease pathogenesis, suggesting these bacteria may mediate the detrimental effects of HPDs on colonic health. Our findings suggest that the HPD altered the colonic microbial community, shifted the metabolic profile, and affected the host response in the colons of rats toward an increased risk of colonic disease. © 2016 American Society for Nutrition.
Sugiura, Koichi; Min, Jun Zhe; Toyo'oka, Toshimasa; Inagaki, Shinsuke
2008-09-26
The rapid, sensitive and simultaneous determination of six polyamines, i.e., ornithine (ORN), 1,3-diaminopropane (DAP), putrescine (PUT), cadaverine (CAD), spermidine (SPD) and spermine (SPM), in human hairs was performed by ultra-performance liquid chromatography (UPLC) with fluorescence (FL) detection and electrospray-ionization time-of-flight mass spectrometry (ESI-TOF-MS). The primary (-NH(2)) and secondary (-NH) amines in the polyamine structures were first labeled with 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F) at 60 degrees C for 30 min in the mixture of 0.1M borax (pH 9.3) and acetonitrile (CH(3)CN). The resulting derivatives were perfectly separated using an ACQUITY UPLC BEH C(18) column (1.7 microm, 100 mm x 2.1mm i.d.) by a gradient elution with a mixture of water-acetonitrile containing 0.1% formic acid (HCOOH). The separated polyamine derivatives were sensitively detected with both FL and TOF-MS. The detection limits in FL and TOF-MS were 11-86 and 2-5 fmol, respectively. However, the determination of several polyamines by FL detection was interfered with by endogenous substances in the hair. Therefore, the simultaneous determination in hair was carried out by the combination of UPLC separation and the ESI-TOF-MS detection. The structures of the polyamines were identified from the protonated-molecular ions [M+H](+) obtained from the TOF-MS measurement. A good linearity was achieved from the calibration curves, that was obtained by plotting the peak area ratios of the analytes relative to the internal standard (IS), i.e., 1,6-diaminohexane (DAH), against the injected amounts of each polyamine (0.05-50 pmol, r(2)>0.999). The proposed method was applied to the determination in the hairs of healthy volunteers. The mean concentrations of ORN, DAP, PUT, CAD, SPD and SPM in 1mg of human hairs (n=20) were 1.46, 0.18, 1.18, 0.11, 1.97 and 0.98 pmol, respectively. Because the proposed method provides a good mass accuracy and the trace detection of the polyamines in hair, this analytical technique seems to be applicable for the determination of various biological compounds in hair.
Deus, D; Kehrenberg, C; Schaudien, D; Klein, G; Krischek, C
2017-02-01
Nano-silver is used in consumer products due to its antibacterial properties. The aim of this study was to evaluate the effect of a nano-silver-coated film on the quality of turkey meat during vacuum-sealed and modified atmosphere packaging up to 12 days of storage. In the first part of the experiment, turkey breasts were packaged using either vacuum packaging or modified atmosphere packages (MAPs) and contained films with or without a nano-silver coating (control film). Parameters such as pH, electrical conductivity, color (lightness L*, redness a*), myoglobin redox forms, thiobarbituric acid-reactive substances (TBARS), biogenic amines (BAs), total viable bacterial counts, Pseudomonas species counts, and Enterobacteriaceae species counts were evaluated on storage days 4, 8, and 12. In the second part of the study, the antimicrobial effect of a nano-silver-coated film on turkey breast was evaluated after inoculation with Escherichia coli (E. coli). Turkey meat packaged with the nano-silver film exhibited lower a* values on days 1 (3.15 ± 0.62), 4 (3.90 ± 0.68), and 8 (4.27 ± 0.76) compared to the packaged meat with the control film (3.41 ± 0.73, 4.35 ± 0.94, 4.85 ± 0.89, respectively), indicating special optical properties of nanoparticles. Concerning the BAs, silver packaged meat showed higher values of tyramine on day 12 (1274 ± 392 ng/g meat) and cadaverine on day 4 (1224 ± 435 ng/g meat) compared to the normal packaged products (647 ± 576 and 508 ± 314 ng/g meat, respectively). MAP meat revealed higher L* and TBARS values and lower microbial counts than the vacuum packaged products on all days. The MAP meat also showed lower a* results on days 4 and 8 and higher metmyoglobin (metMb) values on days 8 and 12 compared to th E: vacuum products. In the inoculation study, the microbial counts of the turkey meat were comparable between the two film types. The study showed that the nano-silver coating did not exhibit any advantageous effects on the quality and microbiological parameters of the turkey meat. © 2016 Poultry Science Association Inc.
Oyanagui, Y
1984-02-01
Serotonin paw edema of mice and carrageenan paw edema of rats were inhibited by subcutaneously or orally administered certain polyamines. They must be given at least 2 h before serotonin challenge to get inhibitions which were blocked by the concomitant injections of cycloheximide. Thirty percent inhibitory dose (ID30) of polyamines (s.c.) 3 h before serotonin (s.c.) were: spermidine (8 mg/kg), spermine 28 mg/kg) and putrescine (55 mg/kg). Agmatine, cadaverine, ornithine, citrulline, lysine and arginine were not inhibitory even at 200 mg/kg. Three inhibitory polyamines were effective by oral administration but were not inhibitory by local administration into the paws. Intravenous injections of spermidine also required 2 h of lag period for inhibitions. Serotonin edema was inhibited by dexamethasone (1 mg/kg), prednisolone (1 mg/kg) or by superoxide dismutase (SOD, 5 mg/kg) in lag period requiring manner (s.c. and i.v.). High dose of cyclo-oxygenase inhibitors indomethacin and diclofenac sodium, lipo-oxygenase inhibitor BW755C (30 mg/kg s.c., respectively) and phospholipase A2 inhibitor quinacrine (100 mg/kg s.c.) failed to inhibit serotonin edema, suggesting that arachidonate metabolites are not participating in this model. ID30 of polyamines which were administered (s.c. and oral) to rats 3 h before carrageenan and determined at 3 h by paw weight were: spermidine (28 and 100 mg/kg), spermine (18 and 90 mg/kg) and putrescine (both greater than 200 mg/kg). Adrenalectomized rats responded to polyamines just as normal rats. Local vascular permeability, irritancy and acute toxicity were also tested in mice. Polyamines were proved to be glucocorticoid-type anti-inflammatory drugs. Polyamines may be mediators of glucocorticoids for the synthesis of the postulated vascular permeability inhibitory protein (called as 'vasoregulin' for convenience). Anti-inflammatory effect of glucocorticoid is recently explained by its capacity to induce phospholipase A2 inhibitory protein(s) (macrocortin or lipomodulin). However, this hypothesis has not yet been proved by in vivo experiment and our data suggest that there is induction by glucocorticoid of another kind of protein which does not inhibit phospholipase A2 activity.
Mansouri, Majdi; Nounou, Mohamed N; Nounou, Hazem N
2017-09-01
In our previous work, we have demonstrated the effectiveness of the linear multiscale principal component analysis (PCA)-based moving window (MW)-generalized likelihood ratio test (GLRT) technique over the classical PCA and multiscale principal component analysis (MSPCA)-based GLRT methods. The developed fault detection algorithm provided optimal properties by maximizing the detection probability for a particular false alarm rate (FAR) with different values of windows, and however, most real systems are nonlinear, which make the linear PCA method not able to tackle the issue of non-linearity to a great extent. Thus, in this paper, first, we apply a nonlinear PCA to obtain an accurate principal component of a set of data and handle a wide range of nonlinearities using the kernel principal component analysis (KPCA) model. The KPCA is among the most popular nonlinear statistical methods. Second, we extend the MW-GLRT technique to one that utilizes exponential weights to residuals in the moving window (instead of equal weightage) as it might be able to further improve fault detection performance by reducing the FAR using exponentially weighed moving average (EWMA). The developed detection method, which is called EWMA-GLRT, provides improved properties, such as smaller missed detection and FARs and smaller average run length. The idea behind the developed EWMA-GLRT is to compute a new GLRT statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data. This provides a more accurate estimation of the GLRT statistic and provides a stronger memory that will enable better decision making with respect to fault detection. Therefore, in this paper, a KPCA-based EWMA-GLRT method is developed and utilized in practice to improve fault detection in biological phenomena modeled by S-systems and to enhance monitoring process mean. The idea behind a KPCA-based EWMA-GLRT fault detection algorithm is to combine the advantages brought forward by the proposed EWMA-GLRT fault detection chart with the KPCA model. Thus, it is used to enhance fault detection of the Cad System in E. coli model through monitoring some of the key variables involved in this model such as enzymes, transport proteins, regulatory proteins, lysine, and cadaverine. The results demonstrate the effectiveness of the proposed KPCA-based EWMA-GLRT method over Q , GLRT, EWMA, Shewhart, and moving window-GLRT methods. The detection performance is assessed and evaluated in terms of FAR, missed detection rates, and average run length (ARL 1 ) values.
Peng, Yu; Yu, Kaifan; Mu, Chunlong; Hang, Suqin; Che, Lianqiang; Zhu, Weiyun
2017-07-01
The study aimed to determine the effects of reduction of dietary crude protein (CP) level with balanced essential amino acids (EAA) on intestinal bacteria and their metabolites of growing pigs. Forty pigs (initial BW 13.50 ± 0.50 kg, 45 ± 2 days of age) were randomly assigned to four dietary treatments containing CP levels at 20.00% (normal crude protein, NP); 17.16% (medium crude protein, MP); 15.30% (low crude protein, LP); and 13.90% (extremely low crude protein, ELP), respectively. Crystalline AAs were added to meet the EAA requirement of pigs. After 4-week feeding, eight pigs per treatment (n = 8) were randomly selected and slaughtered for sampling of ileal, cecal, and colonic digesta and mucosa. Pigs with moderately reduced CP level had increased bacterial diversity, with the Shannon diversity indices for the colon digesta in the LP group and mucosa in the MP and LP groups significantly (P < 0.05) higher than those in the NP and ELP groups. As the CP level reduces, the Bifidobacterium population were linearly decreased (P < 0.05) both in ileum, cecum, and colon, and the ELP group had the lowest Bifidobacterium population in the cecum and colon, with its value significantly lower than NP and MP groups (P < 0.05). However, the ELP group had the highest population of Escherichia coli in the colon, with its value significantly higher than the LP group (P < 0.05). For bacterial metabolites, as CP level decreased, total short-chain fatty acid (T-SCFA), acetate, and butyrate were linearly increased (linear, P < 0.05) in the ileum, while all SCFAs except formate in the cecum and T-SCFA and acetate in the colon, were linearly decreased (P < 0.05). Reducing CP level led to a linear decrease of microbial crude protein (MCP) in the ileum (P < 0.05) and ammonia in all intestine segments (P < 0.05). The spermidine in cecum and total amines, cadaverine, methylamine, and spermidine in colon were shown a quadratic change (P < 0.05) as dietary CP decreases, with the highest concentration in LP group. These findings suggest that moderate reduction of dietary CP level may benefit large intestinal bacterial community and its fermentation, which was negatively affected by extremely low CP diet.
Zhang, Chuanjian; Yu, Miao; Yang, Yuxiang; Mu, Chunlong; Su, Yong; Zhu, Weiyun
2016-12-01
This study investigated the effects of early antibiotic administration (EAA) on cecal bacterial communities and their metabolic profiles in pigs fed diets with different protein levels. Eighteen litters (total 180) of piglets on day (d) 7 were fed either a commercial creep feed or commercial creep feed + antibiotic (Olaquindox, Oxytetracycline Calcium and Kitasamycin) until d 42. On d 42, pigs within each group were further randomly fed a normal crude protein (CP) diet (20% and 18% CP from d 42 to d 77 and d 77 to d 120, respectively) or a low-CP diet (16% and 14% CP from d 42 to d 77 and d 77 to d 120, respectively), generating 4 groups, control-low CP (Con-LP), control-normal CP (Con-NP), antibiotic-low CP (Ant-LP) and antibiotic-normal CP (Ant-NP), respectively. On d 77 and d 120, 5 pigs per group were slaughtered and cecal materials were collected for bacterial analysis. With cecal bacteria, principle component analysis (PCA) of the denaturing gradient gel electrophoresis (DGGE) profile showed two distinct groups of samples from low-CP diet and samples from normal-CP diet. Real-time PCR showed that EAA did not have significant effect on major bacterial groups, only showed significant interactions (P < 0.05) with CP level for Lactobacillus counts on d 77 and Clostridium cluster XIVa counts on d 120 with higher values in the Con-NP group compared to the Ant-NP groups. Low-CP diet increased (P < 0.05) short-chain fatty acids (SCFA) producing bacteria counts (Bacteroidetes on d 77 and d 120; Clostridium cluster IV and Clostridium cluster XIVa on d 77), but decreased (P < 0.05) Escherichia coli counts on d 77 and d 120. For metabolites, EAA increased (P < 0.05) protein fermentation products (p-cresol, indole and skatole on d 77; ammonia, putrescine and spermidine on d 120), and showed significant interactions (P < 0.05) with CP level for p-cresol and skatole concentrations on d 77 and putrescine and spermidine concentrations on d 120 with higher values in the Ant-LP group compared to the Con-LP groups. Low-CP diet increased (P < 0.05) SCFA concentration (propionate and butyrate) on d 77, but reduced (P < 0.05) the protein fermentation products (ammonia, phenol and indole on d 77; branched chain fatty acid (BCFA), ammonia, tyramine, cadaverine and indole on d 120). These results indicate that EAA had less effect on bacterial communities, but increased bacterial fermentation of protein in the cecum under low-CP diet. Low-CP diet altered bacterial communities with an increase in the counts of SCFA-producing bacteria and a decrease in the counts of Escherichia coli, and markedly reduced the protein fermentation products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Safety Evaluations of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI.
Kim, Min Jeong; Ku, Seockmo; Kim, Sun Young; Lee, Hyun Ha; Jin, Hui; Kang, Sini; Li, Rui; Johnston, Tony V; Park, Myeong Soo; Ji, Geun Eog
2018-05-09
Over the past decade, a variety of lactic acid bacteria have been commercially available to and steadily used by consumers. However, recent studies have shown that some lactic acid bacteria produce toxic substances and display properties of virulence. To establish safety guidelines for lactic acid bacteria, the Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO) has suggested that lactic acid bacteria be characterized and proven safe for consumers’ health via multiple experiments (e.g., antibiotic resistance, metabolic activity, toxin production, hemolytic activity, infectivity in immune-compromised animal species, human side effects, and adverse-outcome analyses). Among the lactic acid bacteria, Bifidobacterium and Lactobacillus species are probiotic strains that are most commonly commercially produced and actively studied. Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI have been used in global functional food markets (e.g., China, Germany, Jordan, Korea, Lithuania, New Zealand, Poland, Singapore, Thailand, Turkey, and Vietnam) as nutraceutical ingredients for decades, without any adverse events. However, given that the safety of some newly screened probiotic species has recently been debated, it is crucial that the consumer safety of each commercially utilized strain be confirmed. Accordingly, this paper details a safety assessment of B. bifidum BGN4 and B. longum BORI via the assessment of ammonia production, hemolysis of blood cells, biogenic amine production, antimicrobial susceptibility pattern, antibiotic resistance gene transferability, PCR data on antibiotic resistance genes, mucin degradation, genome stability, and possession of virulence factors. These probiotic strains showed neither hemolytic activity nor mucin degradation activity, and they did not produce ammonia or biogenic amines (i.e., cadaverine, histamine or tyramine). B. bifidum BGN4 and B. longum BORI produced a small amount of putrescine, commonly found in living cells, at levels similar to or lower than that found in other foods (e.g., spinach, ketchup, green pea, sauerkraut, and sausage). B. bifidum BGN4 showed higher resistance to gentamicin than the European Food Safety Authority (EFSA) cut-off. However, this paper shows the gentamicin resistance of B. bifidum BGN4 was not transferred via conjugation with L. acidophilus ATCC 4356, the latter of which is highly susceptible to gentamicin. The entire genomic sequence of B. bifidum BGN4 has been published in GenBank (accession no.: CP001361.1), documenting the lack of retention of plasmids capable of transferring an antibiotic-resistant gene. Moreover, there was little genetic mutation between the first and 25th generations of B. bifidum BGN4. Tetracycline-resistant genes are prevalent among B. longum strains; B. longum BORI has a tet (W) gene on its chromosome DNA and has also shown resistance to tetracycline. However, this research shows that its tetracycline resistance was not transferred via conjugation with L. fermentum AGBG1, the latter of which is highly sensitive to tetracycline. These findings support the continuous use of B. bifidum BGN4 and B. longum BORI as probiotics, both of which have been reported as safe by several clinical studies, and have been used in food supplements for many years.
Effects of stress temperatures of germination on polyamine titers of soybean seeds
NASA Astrophysics Data System (ADS)
Pineda-Mejia, Renan
High and low stress temperatures during seed germination and seedling development limit total germination and the rate of germination and growth. Changes in polyamine (PA) concentrations in seeds of different species have been associated with germination, growth and environmental stresses such as temperature, drought, oxygen, chilling injury and osmotic conditions. Two studies were conducted to determine the effect of stress temperatures during germination and seedling development on polyamine titers in soybean seeds. Three germination temperatures, 25, 30, and 36°C were used in the first study to evaluate their influence on changes in polyamine concentrations in soybean seeds germinated at 76 and 90 hours. The polyamines (PAs), cadaverine (Cad), putrescine (Put), spermidine (Spd), agmatine (Agm), and spermine (Spin) were quantified by HPLC using a cation exchange column and an electrochemical detector. Cad, Put, Agm, and Spd declined as the germination temperatures increased from 25 to 36°C. Conversely, Spin increased considerably with an increase in temperature. Total germination was reduced from 97.2 to 92.5% as germination temperatures increased from 25 to 36°C. Germination time did not affect Cad, Agm and Spm, and total germination, however, the interaction between temperature and germination time for Put and Spd concentrations was significant. In the second study, changes in PA concentrations, seedling growth, germination time (t50), fresh and dry weight, and moisture content were measured in the embryonic axis and cotyledons of soybean seeds germinated at 10 and 25°C through six stages of germination dry seed (DS), testa split (TS), radicle at 10 mm (Ra-10), root hairs visible (RHV), secondary root primordia (SRP), and complete seedling (CS). The concentrations of Cad and Put in the embryonic axis, were significantly higher in seeds germinated under low temperature than in seeds at 25°C (approximately 10 and 3 fold respectively). However, this difference was not observed until the last three stages of germination. The stage of germination also influenced the levels of these polyamines. The concentrations of Cad and Put detected at the CS stage were 50 and 18 fold respectively, relative to the initial concentrations found at the DS stage. Spd levels in seeds under stress temperatures also increased, but to a lesser extent compared to Cad and Put. Differences in Spd concentrations between temperatures were observed only at the CS stage. Agm concentrations were higher at 25 than at 10°C at SRP and CS. Spm concentrations of seeds germinated at 25°C remained higher during the first four stages of development but at the end of germination, seeds at 10°C had higher quantities of Spm. In the cotyledons, Polyamines tended to decline with stages of germination, regardless of the temperature. However, Agm levels increased in the cotyledons of soybean seeds. Maximum dry weight and seedling growth was found at RHV, SRP, and CS. Maximum levels of Cad and Put were also found during these stages. Spd increased with both temperatures from DS to Ra-10, thereafter, Spd levels in seeds at 10°C continued increasing while seeds at 25°C declined. High and low stress germination temperatures caused significant changes in polyamine concentrations, reduced germination and seedling growth of soybean seeds.