Gait Coordination in Parkinson Disease: Effects of Step Length and Cadence Manipulations
Williams, April J.; Peterson, Daniel S.; Earhart, Gammon M.
2013-01-01
Background Gait impairments are well documented in those with PD. Prior studies suggest that gait impairments may be worse and ongoing in those with PD who demonstrate FOG compared to those with PD who do not. Purpose Our aim was to determine the effects of manipulating step length and cadence individually, and together, on gait coordination in those with PD who experience FOG, those with PD who do not experience FOG, healthy older adults, and healthy young adults. Methods Eleven participants with PD and FOG, 16 with PD and no FOG, 18 healthy older, and 19 healthy young adults walked across a GAITRite walkway under four conditions: Natural, Fast (+50% of preferred cadence), Small (−50% of preferred step length), and SmallFast (+50% cadence and −50% step length). Coordination (i.e. phase coordination index) was measured for each participant during each condition and analyzed using mixed model repeated measure ANOVAs. Results FOG was not elicited. Decreasing step length or decreasing step length and increasing cadence together affected coordination. Small steps combined with fast cadence resulted in poorer coordination in both groups with PD compared to healthy young adults and in those with PD and FOG compared to healthy older adults. Conclusions Coordination deficits can be identified in those with PD by having them walk with small steps combined with fast cadence. Short steps produced at high rate elicit worse coordination than short steps or fast steps alone. PMID:23333356
ERIC Educational Resources Information Center
Rota, Viviana; Perucca, Laura; Simone, Anna; Tesio, Luigi
2011-01-01
In healthy adults, the step length/cadence ratio [walk ratio (WR) in mm/(steps/min) and normalized for height] is known to be constant around 6.5 mm/(step/min). It is a speed-independent index of the overall neuromotor gait control, in as much as it reflects energy expenditure, balance, between-step variability, and attentional demand. The speed…
Clinical gait evaluation of patients with knee osteoarthritis.
Sun, Jun; Liu, Yancheng; Yan, Songhua; Cao, Guanglei; Wang, Shasha; Lester, D Kevin; Zhang, Kuan
2017-10-01
Knee osteoarthritis (KOA) is the most common osteoarthritis in lower limbs, and gait measurement is important to evaluate walking function of KOA patients before and after treatment. The third generation Intelligent Device for Energy Expenditure and Activity (IDEEA3) is a portable gait analysis system to evaluate gaits. This study is to evaluate the accuracy and reliability of IDEEA3 for gait measurement of KOA patients. Meanwhile, gait differences between KOA patients and healthy subjects are examined. Twelve healthy volunteers were recruited for measurement comparison of gait cycle (GC), cadence, step length, velocity and step counts between a motion analysis system and a high-speed camera (GoPro Hero3). Twenty-three KOA patients were recruited for measurement comparison of former five parameters between GoPro Hero3 and IDEEA3. Paired t-test, Concordance Correlation Coefficient (CCC) and Intraclass Correlation Coefficient (ICC) were used for data analysis. All p-values of paired t-tests for GC, cadence, step length and velocity were greater than 0.05 while all CCC and ICC results were above 0.95. The measurements of GC, cadence, step length, velocity and step counts by motion analysis system are highly consistent with the measurements by GoPro Hero3. The measurements of former parameters by GoPro Hero3 are not statistically different from the measurements by IDEEA3. IDEEA3 can be effectively used for the measurement of GC, cadence, step length, velocity and step counts in KOA patients. The KOA patients walk with longer GC, lower cadence, shorter step length and slower speed compared with healthy subjects in natural speed with flat shoes. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of walking speed on lower extremity joint loading in graded ramp walking.
Schwameder, Hermann; Lindenhofer, Elke; Müller, Erich
2005-07-01
Lower extremity joint loading during walking is strongly affected by the steepness of the slope and might cause pain and injuries in lower extremity joint structures. One feasible measure to reduce joint loading is the reduction of walking speed. Positive effects have been shown for level walking, but not for graded walking or hiking conditions. The aim of the study was to quantify the effect of walking speed (separated into the two components, step length and cadence) on the joint power of the hip, knee and ankle and to determine the knee joint forces in uphill and downhill walking. Ten participants walked up and down a ramp with step lengths of 0.46, 0.575 and 0.69 m and cadences of 80, 100 and 120 steps per minute. The ramp was equipped with a force platform and the locomotion was filmed with a 60 Hz video camera. Loading of the lower extremity joints was determined using inverse dynamics. A two-dimensional knee model was used to calculate forces in the knee structures during the stance phase. Walking speed affected lower extremity joint loading substantially and significantly. Change of step length caused much greater loading changes for all joints compared with change of cadence; the effects were more distinct in downhill than in uphill walking. The results indicate that lower extremity joint loading can be effectively controlled by varying step length and cadence during graded uphill and downhill walking. Hikers can avoid or reduce pain and injuries by reducing walking speed, particularly in downhill walking.
Kim, Jeong-Soo; Kang, Sun-Young; Jeon, Hye-Seon
2015-01-01
The body-weight-support treadmill (BWST) is commonly used for gait rehabilitation, but other forms of BWST are in development, such as visual-deprivation BWST (VDBWST). In this study, we compare the effect of VDBWST training and conventional BWST training on spatiotemporal gait parameters for three individuals who had hemiparetic strokes. We used a single-subject experimental design, alternating multiple baselines across the individuals. We recruited three individuals with hemiparesis from stroke; two on the left side and one on the right. For the main outcome measures we assessed spatiotemporal gait parameters using GAITRite, including: gait velocity; cadence; step time of the affected side (STA); step time of the non-affected side (STN); step length of the affected side (SLA); step length of the non-affected side (SLN); step-time asymmetry (ST-asymmetry); and step-length asymmetry (SL-asymmetry). Gait velocity, cadence, SLA, and SLN increased from baseline after both interventions, but STA, ST-asymmetry, and SL-asymmetry decreased from the baseline after the interventions. The VDBWST was significantly more effective than the BWST for increasing gait velocity and cadence and for decreasing ST-asymmetry. VDBWST is more effective than BWST for improving gait performance during the rehabilitation for ground walking.
Kimoto, Minoru; Okada, Kyoji; Sakamoto, Hitoshi; Kondou, Takanori
2017-05-01
[Purpose] To improve walking efficiency could be useful for reducing fatigue and extending possible period of walking in children with cerebral palsy (CP). For this purpose, current study compared conventional parameters of gross motor performance, step length, and cadence in the evaluation of walking efficiency in children with CP. [Subjects and Methods] Thirty-one children with CP (21 boys, 10 girls; mean age, 12.3 ± 2.7 years) participated. Parameters of gross motor performance, including the maximum step length (MSL), maximum side step length, step number, lateral step up number, and single leg standing time, were measured in both dominant and non-dominant sides. Spatio-temporal parameters of walking, including speed, step length, and cadence, were calculated. Total heart beat index (THBI), a parameter of walking efficiency, was also calculated from heartbeats and walking distance in 10 minutes of walking. To analyze the relationships between these parameters and the THBI, the coefficients of determination were calculated using stepwise analysis. [Results] The MSL of the dominant side best accounted for the THBI (R 2 =0.759). [Conclusion] The MSL of the dominant side was the best explanatory parameter for walking efficiency in children with CP.
Clinical Gait Evaluation of Patients with Lumbar Spine Stenosis.
Sun, Jun; Liu, Yan-Cheng; Yan, Song-Hua; Wang, Sha-Sha; Lester, D Kevin; Zeng, Ji-Zhou; Miao, Jun; Zhang, Kuan
2018-02-01
The third generation Intelligent Device for Energy Expenditure and Activity (IDEEA3, MiniSun, CA) has been developed for clinical gait evaluation, and this study was designed to evaluate the accuracy and reliability of IDEEA3 for the gait measurement of lumbar spinal stenosis (LSS) patients. Twelve healthy volunteers were recruited to compare gait cycle, cadence, step length, velocity, and number of steps between a motion analysis system and a high-speed video camera. Twenty hospitalized LSS patients were recruited for the comparison of the five parameters between the IDEEA3 and GoPro camera. Paired t-test, intraclass correlation coefficient, concordance correlation coefficient, and Bland-Altman plots were used for the data analysis. The ratios of GoPro camera results to motion analysis system results, and the ratios of IDEEA3 results to GoPro camera results were all around 1.00. All P-values of paired t-tests for gait cycle, cadence, step length, and velocity were greater than 0.05, while all the ICC and CCC results were above 0.950 with P < 0.001. The measurements for gait cycle, cadence, step length, velocity, and number of steps with the GoPro camera are highly consistent with the measurements with the motion analysis system. The measurements for IDEEA3 are consistent with those for the GoPro camera. IDEEA3 can be effectively used in the gait measurement of LSS patients. © 2018 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Freedland, Robert L; Festa, Carmel; Sealy, Marita; McBean, Andrew; Elghazaly, Paul; Capan, Ariel; Brozycki, Lori; Nelson, Arthur J; Rothman, Jeffrey
2002-01-01
The purpose of this study was to examine the Functional Ambulation Performance Score (FAP; a quantitative gait measure) in persons with Parkinson's Disease (PD) using the auditory stimulation of a metronome (ASM). Participants (n = 16; 5F/11M; range 60--84 yrs.) had a primary diagnosis of PD and were all independent ambulators. Footfall data were collected while participants walked multiple times on an electronic walkway under the following conditions: 1) PRETEST: establishing baseline cadence, 2) ASM: metronome set to baseline cadence, 3) 10ASM: metronome set to 10% FAP scores increased between PRETEST and POSTTEST. PRE/POSTTEST comparisons also indicated decreases in cycle time and double support and increases in step length and step-extremity ratio (step length/leg length). The results confirm prior findings that auditory stimulation can be used to positively influence the gait of persons with PD and suggest beneficial effects of ASM as an adjunct to dopaminergic therapy to treat gait dysfunctions in PD.
The effect of cadence on the muscle-tendon mechanics of the gastrocnemius muscle during walking.
Brennan, S F; Cresswell, A G; Farris, D J; Lichtwark, G A
2017-03-01
Humans naturally select a cadence that minimizes metabolic cost at a constant walking velocity. The aim of this study was to examine the effects of cadence on the medial gastrocnemius (MG) muscle and tendon interaction, and examine how this might influence lower limb energetics. We hypothesized that cadences higher than preferred would increase MG fascicle shortening velocity because of the reduced stride time. Furthermore, we hypothesized that cadences lower than preferred would require greater MG fascicle shortening to achieve increased muscle work requirements. We measured lower limb kinematics and kinetics, surface electromyography of the triceps surae and MG fascicle length, via ultrasonography, during walking at a constant velocity at the participants' preferred cadence and offsets of ±10%, ±20%, and ±30%. There was a significant increase in MG fascicle shortening with decreased cadence. However, there was no increase in the MG fascicle shortening velocity at cadences higher than preferred. Cumulative MG muscle activation per minute was significantly increased at higher cadences. We conclude that low cadence walking requires more MG shortening work, while MG muscle and tendon function changes little for each stride at higher cadences, driving up cumulative activation costs due to the increase in steps per minute. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Effects of human running cadence and experimental validation of the bouncing ball model
NASA Astrophysics Data System (ADS)
Bencsik, László; Zelei, Ambrus
2017-05-01
The biomechanical analysis of human running is a complex problem, because of the large number of parameters and degrees of freedom. However, simplified models can be constructed, which are usually characterized by some fundamental parameters, like step length, foot strike pattern and cadence. The bouncing ball model of human running is analysed theoretically and experimentally in this work. It is a minimally complex dynamic model when the aim is to estimate the energy cost of running and the tendency of ground-foot impact intensity as a function of cadence. The model shows that cadence has a direct effect on energy efficiency of running and ground-foot impact intensity. Furthermore, it shows that higher cadence implies lower risk of injury and better energy efficiency. An experimental data collection of 121 amateur runners is presented. The experimental results validate the model and provides information about the walk-to-run transition speed and the typical development of cadence and grounded phase ratio in different running speed ranges.
Yoo, Ha-Na; Chung, Eunjung; Lee, Byoung-Hee
2013-07-01
[Purpose] The purpose of this study was to determine the effects of augmented reality-based Otago exercise on balance, gait, and falls efficacy of elderly women. [Subjects] The subjects were 21 elderly women, who were randomly divided into two groups: an augmented reality-based Otago exercise group of 10 subjects and an Otago exercise group of 11 subjects. [Methods] All subjects were evaluated for balance (Berg Balance Scale, BBS), gait parameters (velocity, cadence, step length, and stride length), and falls efficacy. Within 12 weeks, Otago exercise for muscle strengthening and balance training was conducted three times, for a period of 60 minutes each, and subjects in the experimental group performed augmented reality-based Otago exercise. [Results] Following intervention, the augmented reality-based Otago exercise group showed significant increases in BBS, velocity, cadence, step length (right side), stride length (right side and left side) and falls efficacy. [Conclusion] The results of this study suggest the feasibility and suitability of this augmented reality-based Otago exercise for elderly women.
Stansfield, B; Clarke, C; Dall, P; Godwin, J; Holdsworth, R; Granat, M
2015-02-01
'True cadence' is the rate of stepping during the period of stepping. 'Step accumulation' is the steps within an epoch of time (e.g. 1min). These terms have been used interchangeably in the literature. These outcomes are compared within a population with intermittent claudication (IC). Multiday, 24h stepping activity of those with IC (30) and controls (30) was measured objectively using the activPAL physical activity monitor. 'True cadence' and 'step accumulation' outcomes were calculated. Those with IC took fewer steps/d 6531±2712 than controls 8692±2945 (P=0.003). However, these steps were taken within approximately the same number of minute epochs (IC 301±100min/d; controls 300±70min/d, P=0.894) with only slightly lower true cadence (IC 69 (IQ 66,72) steps/min; controls 72 (IQ 68,76) steps/min, P=0.026), giving substantially lower step accumulation (IC 22 (IQ 19,24) steps/min; controls 30 (IQ 23,34) steps/min) (P<0.001). However, the true cadence of stepping within the blocks of the 1, 5, 20, 30 and 60min with the maximum number of steps accumulated was lower for those with IC than controls (P<0.05). Those with IC took 1300 steps fewer per day above a true cadence of 90 steps/min. True cadence and step accumulation outcomes were radically different for the outcomes examined. 'True cadence' and 'step accumulation' were not equivalent in those with IC or controls. The measurement of true cadence in the population of people with IC provides information about their stepping rate during the time they are stepping. True cadence should be used to correctly describe the rate of stepping as performed. Copyright © 2014 Elsevier B.V. All rights reserved.
2012-01-01
Background Previous studies demonstrated that stroke survivors have a limited capacity to increase their walking speeds beyond their self-selected maximum walking speed (SMWS). The purpose of this study was to determine the capacity of stroke survivors to reach faster speeds than their SMWS while walking on a treadmill belt or while being pushed by a robotic system (i.e. “push mode”). Methods Eighteen chronic stroke survivors with hemiplegia were involved in the study. We calculated their self-selected comfortable walking speed (SCWS) and SMWS overground using a 5-meter walk test (5-MWT). Then, they were exposed to walking at increased speeds, on a treadmill and while in “push mode” in an overground robotic device, the KineAssist, until they were tested at a speed that they could not sustain without losing balance. We recorded the time and number of steps during each trial and calculated gait speed, average cadence and average step length. Results Maximum walking speed in the “push mode” was 13% higher than the maximum walking speed on the treadmill and both were higher (“push mode”: 61%; treadmill: 40%) than the maximum walking speed overground. Subjects achieved these faster speeds by initially increasing both step length and cadence and, once individuals stopped increasing their step length, by only increasing cadence. Conclusions With post-stroke hemiplegia, individuals are able to walk at faster speeds than their SMWS overground, when provided with a safe environment that provides external forces that requires them to attempt dynamic stability maintenance at higher gait speeds. Therefore, this study suggests the possibility that, given the appropriate conditions, people post-stroke can be trained at higher speeds than previously attempted. PMID:23057500
Risk of falls in older people during fast-walking--the TASCOG study.
Callisaya, M L; Blizzard, L; McGinley, J L; Srikanth, V K
2012-07-01
To investigate the relationship between fast-walking and falls in older people. Individuals aged 60-86 years were randomly selected from the electoral roll (n=176). Gait speed, step length, cadence and a walk ratio were recorded during preferred- and fast-walking using an instrumented walkway. Falls were recorded prospectively over 12 months. Log multinomial regression was used to estimate the relative risk of single and multiple falls associated with gait variables during fast-walking and change between preferred- and fast-walking. Covariates included age, sex, mood, physical activity, sensorimotor and cognitive measures. The risk of multiple falls was increased for those with a smaller walk ratio (shorter steps, faster cadence) during fast-walking (RR 0.92, CI 0.87, 0.97) and greater reduction in the walk ratio (smaller increase in step length, larger increase in cadence) when changing to fast-walking (RR 0.73, CI 0.63, 0.85). These gait patterns were associated with poorer physiological and cognitive function (p<0.05). A higher risk of multiple falls was also seen for those in the fastest quarter of gait speed (p=0.01) at fast-walking. A trend for better reaction time, balance, memory and physical activity for higher categories of gait speed was stronger for fallers than non-fallers (p<0.05). Tests of fast-walking may be useful in identifying older individuals at risk of multiple falls. There may be two distinct groups at risk--the frail person with short shuffling steps, and the healthy person exposed to greater risk. Copyright © 2012 Elsevier B.V. All rights reserved.
Nadeau, Alexandra; Lungu, Ovidiu; Duchesne, Catherine; Robillard, Marie-Ève; Bore, Arnaud; Bobeuf, Florian; Plamondon, Réjean; Lafontaine, Anne-Louise; Gheysen, Freja; Bherer, Louis; Doyon, Julien
2017-01-01
Background: There is increasing evidence that executive functions and attention are associated with gait and balance, and that this link is especially prominent in older individuals or those who are afflicted by neurodegenerative diseases that affect cognition and/or motor functions. People with Parkinson’s disease (PD) often present gait disturbances, which can be reduced when PD patients engage in different types of physical exercise (PE), such as walking on a treadmill. Similarly, PE has also been found to improve executive functions in this population. Yet, no exercise intervention investigated simultaneously gait and non-motor symptoms (executive functions, motor learning) in PD patients. Objective: To assess the impact of aerobic exercise training (AET) using a stationary bicycle on a set of gait parameters (walking speed, cadence, step length, step width, single and double support time, as well as variability of step length, step width and double support time) and executive functions (cognitive inhibition and flexibility) in sedentary PD patients and healthy controls. Methods: Two groups, 19 PD patients (Hoehn and Yahr ≤2) and 20 healthy adults, matched on age and sedentary level, followed a 3-month stationary bicycle AET regimen. Results: Aerobic capacity, as well as performance of motor learning and on cognitive inhibition, increased significantly in both groups after the training regimen, but only PD patients improved their walking speed and cadence (all p < 0.05; with no change in the step length). Moreover, in PD patients, training-related improvements in aerobic capacity correlated positively with improvements in walking speed (r = 0.461, p < 0.05). Conclusion: AET using stationary bicycle can independently improve gait and cognitive inhibition in sedentary PD patients. Given that increases in walking speed were obtained through increases in cadence, with no change in step length, our findings suggest that gait improvements are specific to the type of motor activity practiced during exercise (i.e., pedaling). In contrast, the improvements seen in cognitive inhibition were, most likely, not specific to the type of training and they could be due to indirect action mechanisms (i.e., improvement of cardiovascular capacity). These results are also relevant for the development of targeted AET interventions to improve functional autonomy in PD patients. PMID:28127282
Nagai, Taro; Takahashi, Yasuhito; Endo, Kenji; Ikegami, Ryo; Ueno, Ryuichi; Yamamoto, Kengo
2018-01-01
Gait dysfunction associated with spasticity and hyperreflexia is a primary symptom in patients with compression of cervical spinal cord. The objective of this study was to link maximum compression ratio (CR) to spatiotemporal/pedobarographic parameters. Quantitative gait analysis was performed by using a pedobarograph in 75 elderly males with a wide range of cervical compression severity. CR values were characterized on T1-weighted magnetic resonance imaging (MRI). Statistical significances in gait analysis parameters (speed, cadence, stride length, step with, and toe-out angle) were evaluated among different CR groups by the non-parametric Kruskal-Wallis test followed by the Mann-Whitney U test using Bonferroni correction. The Spearman test was performed to verify correlations between CR and gait parameters. The Kruskal-Wallis test revealed significant decline in gait speed and stride length and significant increase in toe-out angle with progression of cervical compression myelopathy. The post-hoc Mann-Whitney U test showed significant differences in these parameters between the control group (0.45
Ji, Sang Gu; Kim, Myoung Kwon
2015-04-01
To investigate the effect of mirror therapy on the gait of patients with subacute stroke. Randomized controlled experimental study. Outpatient rehabilitation hospital. Thirty-four patients with stroke were randomly assigned to two groups: a mirror therapy group (experimental) and a control group. The stroke patients in the experimental group underwent comprehensive rehabilitation therapy and mirror therapy for the lower limbs. The stroke patients in the control group underwent sham therapy and comprehensive rehabilitation therapy. Participants in both groups received therapy five days per week for four weeks. Temporospatial gait characteristics, such as single stance, stance phase, step length, stride, swing phase, velocity, and cadence, were assessed before and after the four weeks therapy period. A significant difference was observed in post-training gains for the single stance (10.32 SD 4.14 vs. 6.54 SD 3.23), step length (8.47 SD 4.12 vs. 4.83 SD 2.14), and stride length (17.03 SD 6.57 vs 10.54 SD 4.34) between the experimental group and the control group (p < 0.05). However, there were no significant differences between two groups on stance phase, swing phase, velocity, cadence, and step width (P > 0.05). We conclude that mirror therapy may be beneficial in improving the effects of stroke on gait ability. © The Author(s) 2014.
Using cadence to study free-living ambulatory behaviour.
Tudor-Locke, Catrine; Rowe, David A
2012-05-01
The health benefits of a physically active lifestyle across a person's lifespan have been established. If there is any single physical activity behaviour that we should measure well and promote effectively, it is ambulatory activity and, more specifically, walking. Since public health physical activity guidelines include statements related to intensity of activity, it follows that we need to measure and promote free-living patterns of ambulatory activity that are congruent with this intent. The purpose of this review article is to present and summarize the potential for using cadence (steps/minute) to represent such behavioural patterns of ambulatory activity in free-living. Cadence is one of the spatio-temporal parameters of gait or walking speed. It is typically assessed using short-distance walks in clinical research and practice, but free-living cadence can be captured with a number of commercially available accelerometers that possess time-stamping technology. This presents a unique opportunity to use the same metric to communicate both ambulatory performance (assessed under testing conditions) and behaviour (assessed in the real world). Ranges for normal walking cadence assessed under laboratory conditions are 96-138 steps/minute for women and 81-135 steps/minute for men across their lifespan. The correlation between mean cadence and intensity (assessed with indirect calorimetry and expressed as metabolic equivalents [METs]) based on five treadmill/overground walking studies, is r = 0.93 and 100 steps/minute is considered to be a reasonable heuristic value indicative of walking at least at absolutely-defined moderate intensity (i.e. minimally, 3 METs) in adults. The weighted mean cadence derived from eight studies that have observed pedestrian cadence under natural conditions was 115.2 steps/minute, demonstrating that achieving 100 steps/minute is realistic in specific settings that occur in real life. However, accelerometer data collected in a large, representative sample suggest that self-selected walking at a cadence equivalent to ≥100 steps/minute is a rare occurrence in free-living adults. Specifically, the National Health and Nutrition Examination Survey (NHANES) data show that US adults spent ≅4.8 hours/day in non-movement (i.e. zero cadence) during wearing time, ≅8.7 hours at 1-59 steps/minute, ≅16 minutes/day at cadences of 60-79 steps/minute, ≅8 minutes at 80-99 steps/minute, ≅5 minutes at 100-119 steps/minute, and ≅2 minutes at 120+ steps/minute. Cadence appears to be sensitive to change with intervention, and capitalizing on the natural tempo of music is an obvious means of targeting cadence. Cadence could potentially be used effectively in epidemiological study, intervention and behavioural research, dose-response studies, determinants studies and in prescription and practice. It is easily interpretable by researchers, clinicians, programme staff and the lay public, and therefore offers the potential to bridge science, practice and real life.
The influence of gait speed on the stability of walking among the elderly.
Fan, Yifang; Li, Zhiyu; Han, Shuyan; Lv, Changsheng; Zhang, Bo
2016-06-01
Walking speed is a basic factor to consider when walking exercises are prescribed as part of a training programme. Although associations between walking speed, step length and falling risk have been identified, the relationship between spontaneous walking pattern and falling risk remains unclear. The present study, therefore, examined the stability of spontaneous walking at normal, fast and slow speed among elderly (67.5±3.23) and young (21.4±1.31) individuals. In all, 55 participants undertook a test that involved walking on a plantar pressure platform. Foot-ground contact data were used to calculate walking speed, step length, pressure impulse along the plantar-impulse principal axis and pressure record of time series along the plantar-impulse principal axis. A forward dynamics method was used to calculate acceleration, velocity and displacement of the centre of mass in the vertical direction. The results showed that when the elderly walked at different speeds, their average step length was smaller than that observed among the young (p=0.000), whereas their anterior/posterior variability and lateral variability had no significant difference. When walking was performed at normal or slow speed, no significant between-group difference in cadence was found. When walking at a fast speed, the elderly increased their stride length moderately and their cadence greatly (p=0.012). In summary, the present study found no correlation between fast walking speed and instability among the elderly, which indicates that healthy elderly individuals might safely perform fast-speed walking exercises. Copyright © 2016 Elsevier B.V. All rights reserved.
Apostolopoulos, Alexandros; Lallos, Stergios; Mastrokalos, Dimitrios; Michos, Ioannis; Darras, Nikolaos; Tzomaki, Magda; Efstathopoulos, Nikolaos
2011-01-01
The objective of this study was to capture and analyze the kinetics and kinematics and determine the functional performance of the osteoarthritic knee after a posterior cruciate ligament (PCL) retaining total knee arthroplasty. Kinematic and kinetic gait analysis of level walking was performed in 20 subjects (12 female and 8 male) with knee ostoarthritis. These patients were free of any neurological diseases that could affect their normal gait. Mean age was 69.6 ± 6.6 years; mean height was 157.6 cm ± 7.6 cm; and mean weight was 77.2 ± 12.1 kg. Full body gait analyses were performed using the BIOKIN 3D motion analysis system before and 9 months after total knee arthroplasty procedures. Single-step ascending kinetic analyses and plantar pressure distribution analyses were also performed for all subjects. International Knee Society Scores (IKSSs) were also assessed pre- and postoperatively. Significant increases were noted postoperatively in average cadence (preoperative mean = 99.26, postoperative mean = 110.5; p < 0.004), step length (preoperative mean = 0.49, postoperative mean = 0.54; p < 0.01) , and walking velocity (preoperative mean = 0.78, preoperatively, postoperative mean = 0.99; p < 0.001). Decreases in stance duration percentage and knee adduction moment were also reported postoperatively. All patients showed a significant improvement of knee kinetics and kinematics after a PCL retaining total knee arthroplasty. Significant differences were found in the cadence, step length, stride length, and walk velocity postoperatively. IKSSs also significantly improved. Further research is warranted to determine the clinical relevance of these findings.
Yu, Lili; Zhang, Qi; Hu, Chunying; Huang, Qiuchen; Ye, Miao; Li, Desheng
2015-02-01
[Purpose] The aim of this study was to explore the effects of different frequencies of rhythmic auditory cueing (RAC) on stride length, cadence, and gait speed in healthy young females. The findings of this study might be used as clinical guidance of physical therapy for choosing the suitable frequency of RAC. [Subjects] Thirteen healthy young females were recruited in this study. [Methods] Ten meters walking tests were measured in all subjects under 4 conditions with each repeated 3 times and a 3-min seated rest period between repetitions. Subjects first walked as usual and then were asked to listen carefully to the rhythm of a metronome and walk with 3 kinds of RAC (90%, 100%, and 110% of the mean cadence). The three frequencies (90%, 100%, and 110%) of RAC were randomly assigned. Gait speed, stride length, and cadence were calculated, and a statistical analysis was performed using the SPSS (version 17.0) computer package. [Results] The gait speed and cadence of 90% RAC walking showed significant decreases compared with normal walking and 100% and 110% RAC walking. The stride length, cadence, and gait speed of 110% RAC walking showed significant increases compared with normal walking and 90% and 100% RAC walking. [Conclusion] Our results showed that 110% RAC was the best of the 3 cueing frequencies for improvement of stride length, cadence, and gait speed in healthy young females.
Gait biomechanics of skipping are substantially different than those of running.
McDonnell, Jessica; Willson, John D; Zwetsloot, Kevin A; Houmard, Joseph; DeVita, Paul
2017-11-07
The inherit injury risk associated with high-impact exercises calls for alternative ways to achieve the benefits of aerobic exercise while minimizing excessive stresses to body tissues. Skipping presents such an alternative, incorporating double support, flight, and single support phases. We used ground reaction forces (GRFs), lower extremity joint torques and powers to compare skipping and running in 20 healthy adults. The two consecutive skipping steps on each limb differed significantly from each other, and from running. Running had the longest step length, the highest peak vertical GRF, peak knee extensor torque, and peak knee negative and positive power and negative and positive work. Skipping had the greater cadence, peak horizontal GRF, peak hip and ankle extensor torques, peak ankle negative power and work, and peak ankle positive power. The second vs first skipping step had the shorter step length, higher cadence, peak horizontal GRF, peak ankle extensor torque, and peak ankle negative power, negative work, and positive power and positive work. The first skipping step utilized predominately net negative joint work (eccentric muscle action) while the second utilized predominately net positive joint work (concentric muscle action). The skipping data further highlight the persistence of net negative work performed at the knee and net positive work performed at the ankle across locomotion gaits. Evidence of step segregation was seen in distribution of the braking and propelling impulses and net work produced across the hip, knee, and ankle joints. Skipping was substantially different than running and was temporally and spatially asymmetrical with successive foot falls partitioned into a dominant function, either braking or propelling whereas running had a single, repeated step in which both braking and propelling actions were performed equally. Copyright © 2017 Elsevier Ltd. All rights reserved.
Demura, Tomohiro; Demura, Shin-ichi; Uchiyama, Masanobu; Sugiura, Hiroki
2014-01-01
Gait properties change with age because of a decrease in lower limb strength and visual acuity or knee joint disorders. Gait changes commonly result from these combined factors. This study aimed to examine the effects of knee extension strength, visual acuity, and knee joint pain on gait properties of for 181 healthy female older adults (age: 76.1 (5.7) years). Walking speed, cadence, stance time, swing time, double support time, step length, step width, walking angle, and toe angle were selected as gait parameters. Knee extension strength was measured by isometric dynamometry; and decreased visual acuity and knee joint pain were evaluated by subjective judgment whether or not such factors created a hindrance during walking. Among older adults without vision problems and knee joint pain that affected walking, those with superior knee extension strength had significantly greater walking speed and step length than those with inferior knee extension strength (P < .05). Persons with visual acuity problems had higher cadence and shorter stance time. In addition, persons with pain in both knees showed slower walking speed and longer stance time and double support time. A decrease of knee extension strength and visual acuity and knee joint pain are factors affecting gait in the female older adults. Decreased knee extension strength and knee joint pain mainly affect respective distance and time parameters of the gait.
Sex modifies the relationship between age and gait: a population-based study of older adults.
Callisaya, Michele L; Blizzard, Leigh; Schmidt, Michael D; McGinley, Jennifer L; Srikanth, Velandai K
2008-02-01
Adequate mobility is essential to maintain an independent and active lifestyle. The aim of this cross-sectional study is to examine the associations of age with temporal and spatial gait variables in a population-based sample of older people, and whether these associations are modified by sex. Men and women aged 60-86 years were randomly selected from the Southern Tasmanian electoral roll (n = 223). Gait speed, step length, cadence, step width, and double-support phase were recorded with a GAITRite walkway. Regression analysis was used to model the relationship between age, sex, and gait variables. For men, after adjusting for height and weight, age was linearly associated with all gait variables (p <.05) except cadence (p =.11). For women, all variables demonstrated a curvilinear association, with age-related change in these variables commencing during the 7th decade. Significant interactions were found between age and sex for speed (p =.04), cadence (p =.01), and double-support phase (p =.03). Associations were observed between age and a broad range of temporal and spatial gait variables in this study. These associations differed by sex, suggesting that the aging process may affect gait in men and women differently. These results provide a basis for further research into sex differences and mechanisms underlying gait changes with advancing age.
Cadence (steps/min) and intensity during ambulation in 6-20 year olds: the CADENCE-kids study.
Tudor-Locke, Catrine; Schuna, John M; Han, Ho; Aguiar, Elroy J; Larrivee, Sandra; Hsia, Daniel S; Ducharme, Scott W; Barreira, Tiago V; Johnson, William D
2018-02-26
Steps/day is widely utilized to estimate the total volume of ambulatory activity, but it does not directly reflect intensity, a central tenet of public health guidelines. Cadence (steps/min) represents an overlooked opportunity to describe the intensity of ambulatory activity. We sought to establish thresholds linking directly observed cadence with objectively measured intensity in 6-20 year olds. One hundred twenty participants completed multiple 5-min bouts on a treadmill, from 13.4 m/min (0.80 km/h) to 134.0 m/min (8.04 km/h). The protocol was terminated when participants naturally transitioned to running, or if they chose to not continue. Steps were visually counted and intensity was objectively measured using a portable metabolic system. Youth metabolic equivalents (METy) were calculated for 6-17 year olds, with moderate intensity defined as ≥4 and < 6 METy, and vigorous intensity as ≥6 METy. Traditional METs were calculated for 18-20 year olds, with moderate intensity defined as ≥3 and < 6 METs, and vigorous intensity defined as ≥6 METs. Optimal cadence thresholds for moderate and vigorous intensity were identified using segmented random coefficients models and receiver operating characteristic (ROC) curves. Participants were on average (± SD) aged 13.1 ± 4.3 years, weighed 55.8 ± 22.3 kg, and had a BMI z-score of 0.58 ± 1.21. Moderate intensity thresholds (from regression and ROC analyses) ranged from 128.4 steps/min among 6-8 year olds to 87.3 steps/min among 18-20 year olds. Comparable values for vigorous intensity ranged from 157.7 steps/min among 6-8 year olds to 119.3 steps/min among 18-20 year olds. Considering both regression and ROC approaches, heuristic cadence thresholds (i.e., evidence-based, practical, rounded) ranged from 125 to 90 steps/min for moderate intensity, and 155 to 125 steps/min for vigorous intensity, with higher cadences for younger age groups. Sensitivities and specificities for these heuristic thresholds ranged from 77.8 to 99.0%, indicating fair to excellent classification accuracy. These heuristic cadence thresholds may be used to prescribe physical activity intensity in public health recommendations. In the research and clinical context, these heuristic cadence thresholds have apparent value for accelerometer-based analytical approaches to determine the intensity of ambulatory activity.
The effects of core stabilization exercise on dynamic balance and gait function in stroke patients.
Chung, Eun-Jung; Kim, Jung-Hee; Lee, Byoung-Hee
2013-07-01
[Purpose] The purpose of this study was to determine the effects of core stabilization exercise on dynamic balance and gait function in stroke patients. [Subjects] The subjects were 16 stroke patients, who were randomly divided into two groups: a core stabilization exercise group of eight subjects and control group of eight subjects. [Methods] Subjects in both groups received general training five times per week. Subjects in the core stabilization exercise group practiced an additional core stabilization exercise program, which was performed for 30 minutes, three times per week, during a period of four weeks. All subjects were evaluated for dynamic balance (Timed Up and Go test, TUG) and gait parameters (velocity, cadence, step length, and stride length). [Results] Following intervention, the core exercise group showed a significant change in TUG, velocity, and cadence. The only significant difference observed between the core group and control group was in velocity. [Conclusion] The results of this study suggest the feasibility and suitability of core stabilization exercise for stroke patients.
Howard, Charla L; Wallace, Chris; Abbas, James; Stokic, Dobrivoje S
2017-01-01
We developed and evaluated properties of a new measure of variability in stride length and cadence, termed residual standard deviation (RSD). To calculate RSD, stride length and cadence are regressed against velocity to derive the best fit line from which the variability (SD) of the distance between the actual and predicted data points is calculated. We examined construct, concurrent, and discriminative validity of RSD using dual-task paradigm in 14 below-knee prosthesis users and 13 age- and education-matched controls. Subjects walked first over an electronic walkway while performing separately a serial subtraction and backwards spelling task, and then at self-selected slow, normal, and fast speeds used to derive the best fit line for stride length and cadence against velocity. Construct validity was demonstrated by significantly greater increase in RSD during dual-task gait in prosthesis users than controls (group-by-condition interaction, stride length p=0.0006, cadence p=0.009). Concurrent validity was established against coefficient of variation (CV) by moderate-to-high correlations (r=0.50-0.87) between dual-task cost RSD and dual-task cost CV for both stride length and cadence in prosthesis users and controls. Discriminative validity was documented by the ability of dual-task cost calculated from RSD to effectively differentiate prosthesis users from controls (area under the receiver operating characteristic curve, stride length 0.863, p=0.001, cadence 0.808, p=0.007), which was better than the ability of dual-task cost CV (0.692, 0.648, respectively, not significant). These results validate RSD as a new measure of variability in below-knee prosthesis users. Future studies should include larger cohorts and other populations to ascertain its generalizability. Copyright © 2016 Elsevier B.V. All rights reserved.
Influence of crank length and crank width on maximal hand cycling power and cadence.
Krämer, Christian; Hilker, Lutz; Böhm, Harald
2009-07-01
The effect of different crank lengths and crank widths on maximal hand cycling power, cadence and handle speed were determined. Crank lengths and crank widths were adapted to anthropometric data of the participants as the ratio to forward reach (FR) and shoulder breadth (SB), respectively. 25 able-bodied subjects performed maximal inertial load hand cycle ergometry using crank lengths of 19, 22.5 and 26% of FR and 72, 85 and 98% of SB. Maximum power ranged from 754 (246) W for the crank geometry short wide (crank length x crank width) to 873 (293) W for the combination long middle. Every crank length differed significantly (P < 0.05) from each other, whereas no significant effect of crank width to maximum power output was revealed. Optimal cadence decreased significantly (P < 0.001) with increasing crank length from 124.8 (0.9) rpm for the short to 107.5 (1.6) rpm for the long cranks, whereas optimal handle speed increased significantly (P < 0.001) with increasing crank length from 1.81 (0.01) m/s for the short to 2.13 (0.03) m/s for the long cranks. Crank width did neither influence optimal cadence nor optimal handle speed significantly. From the results of this study, for maximum hand cycling power, a crank length to FR ratio of 26% for a crank width to SB ratio of 85% is recommended.
Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki
2017-05-01
The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P < 0.01), which was not significant higher correlation than TUG test time. We showed which TUG test parameters were associated with each motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Pedometer accuracy in slow walking older adults.
Martin, Jessica B; Krč, Katarina M; Mitchell, Emily A; Eng, Janice J; Noble, Jeremy W
2012-07-03
The purpose of this study was to determine pedometer accuracy during slow overground walking in older adults (Mean age = 63.6 years). A total of 18 participants (6 males, 12 females) wore 5 different brands of pedometers over 3 pre-set cadences that elicited walking speeds between 0.3 and 0.9 m/s and one self-selected cadence over 80 meters of indoor track. Pedometer accuracy decreased with slower walking speeds with mean percent errors across all devices combined of 56%, 40%, 19% and 9% at cadences of 50, 66, and 80 steps/min, and self selected cadence, respectively. Percent error ranged from 45.3% for Omron HJ105 to 66.9% for Yamax Digiwalker 200. Due to the high level of error across the slowest cadences of all 5 devices, the use of pedometers to monitor step counts in healthy older adults with slower gait speeds is problematic. Further research is required to develop pedometer mechanisms that accurately measure steps at slower walking speeds.
Pedometer accuracy in slow walking older adults
Martin, Jessica B.; Krč, Katarina M.; Mitchell, Emily A.; Eng, Janice J.; Noble, Jeremy W.
2013-01-01
The purpose of this study was to determine pedometer accuracy during slow overground walking in older adults (Mean age = 63.6 years). A total of 18 participants (6 males, 12 females) wore 5 different brands of pedometers over 3 pre-set cadences that elicited walking speeds between 0.3 and 0.9 m/s and one self-selected cadence over 80 meters of indoor track. Pedometer accuracy decreased with slower walking speeds with mean percent errors across all devices combined of 56%, 40%, 19% and 9% at cadences of 50, 66, and 80 steps/min, and self selected cadence, respectively. Percent error ranged from 45.3% for Omron HJ105 to 66.9% for Yamax Digiwalker 200. Due to the high level of error across the slowest cadences of all 5 devices, the use of pedometers to monitor step counts in healthy older adults with slower gait speeds is problematic. Further research is required to develop pedometer mechanisms that accurately measure steps at slower walking speeds. PMID:24795762
Serrao, Mariano; Ranavolo, Alberto; Conte, Carmela; Davassi, Chiara; Mari, Silvia; Fasano, Alfonso; Chini, Giorgia; Coppola, Gianluca; Draicchio, Francesco; Pierelli, Francesco
2015-11-01
The aim of this study was to investigate the effect of a rotigotine transdermal patch on stationary and non-stationary locomotion in de novo Parkinson disease (PD) patients in an open-label uncontrolled study. A 3-D gait analysis system was used to investigate four different locomotor tasks: steady-state linear walking, gait initiation, gait termination and 180°-turning. A series of gait variables were measured for each locomotor task. PD patients who received rotigotine treatment (4-8 mg) displayed: (1) increased step length, gait speed, cadence and arm oscillations, and reduced double support duration and step asymmetry during steady-state linear gait; (2) increased initial step length during gait initiation; (3) increased final step length and gait speed, and decreased stability index during gait termination; (4) decreased duration of turning and head-pelvis delays during 180°-turning. The main finding that emerges from the present study is that the dopamine agonist rotigotine can improve various aspects of gait in de novo PD patients.
EFFECT OF HEEL LIFTS ON PATELLOFEMORAL JOINT STRESS DURING RUNNING.
Mestelle, Zachary; Kernozek, Thomas; Adkins, Kelly S; Miller, Jessica; Gheidi, Naghmeh
2017-10-01
Patellofemoral pain is a debilitating injury for many recreational runners. Excessive patellofemoral joint stress may be the underlying source of pain and interventions often focus on ways to reduce patellofemoral joint stress. Heel lifts have been used as an intervention within Achilles tendon rehabilitation programs and to address leg length discrepancies. The purpose of this study was to examine the effect of running with heel lifts on patellofemoral joint stress, patellofemoral stress impulse, quadriceps force, step length, cadence, and other related kinematic and spatiotemporal variables. A repeated-measures research design. Sixteen healthy female runners completed five running trials in a controlled laboratory setting with and without 11mm heel lifts inserted in a standard running shoe. Kinetic and kinematic data were used in combination with a static optimization technique to estimate individual muscle forces. These data were inserted into a patellofemoral joint model which was used to estimate patellofemoral joint stress and other variables during running. When running with heel lifts, peak patellofemoral joint stress and patellofemoral stress impulse were reduced by a 4.2% (p=0.049) and 9.3% (p=0.002). Initial center of pressure was shifted anteriorly 9.1% when running with heel lifts (p<0.001) despite all runners utilizing a heel strike pattern. Dorsiflexion at initial contact was reduced 28% (p=0.016) when heel lifts were donned. No differences in step length and cadence (p>0.05) were shown between conditions. Heel lift use resulted in decreased patellofemoral joint stress and impulse without associated changes in step length or frequency, or other variables shown to influence patellofemoral joint stress. The center of pressure at initial contact was also more anterior using heel lifts. The use of heel lifts may have therapeutic benefits for runners with patellofemoral pain if the primary goal is to reduce patellofemoral joint stress. 3b.
EFFECT OF HEEL LIFTS ON PATELLOFEMORAL JOINT STRESS DURING RUNNING
Mestelle, Zachary; Kernozek, Thomas; Adkins, Kelly S.; Miller, Jessica; Gheidi, Naghmeh
2017-01-01
Background Patellofemoral pain is a debilitating injury for many recreational runners. Excessive patellofemoral joint stress may be the underlying source of pain and interventions often focus on ways to reduce patellofemoral joint stress. Purpose Heel lifts have been used as an intervention within Achilles tendon rehabilitation programs and to address leg length discrepancies. The purpose of this study was to examine the effect of running with heel lifts on patellofemoral joint stress, patellofemoral stress impulse, quadriceps force, step length, cadence, and other related kinematic and spatiotemporal variables. Study Design A repeated-measures research design Methods Sixteen healthy female runners completed five running trials in a controlled laboratory setting with and without 11mm heel lifts inserted in a standard running shoe. Kinetic and kinematic data were used in combination with a static optimization technique to estimate individual muscle forces. These data were inserted into a patellofemoral joint model which was used to estimate patellofemoral joint stress and other variables during running. Results When running with heel lifts, peak patellofemoral joint stress and patellofemoral stress impulse were reduced by a 4.2% (p=0.049) and 9.3% (p=0.002). Initial center of pressure was shifted anteriorly 9.1% when running with heel lifts (p<0.001) despite all runners utilizing a heel strike pattern. Dorsiflexion at initial contact was reduced 28% (p=0.016) when heel lifts were donned. No differences in step length and cadence (p>0.05) were shown between conditions. Conclusions Heel lift use resulted in decreased patellofemoral joint stress and impulse without associated changes in step length or frequency, or other variables shown to influence patellofemoral joint stress. The center of pressure at initial contact was also more anterior using heel lifts. The use of heel lifts may have therapeutic benefits for runners with patellofemoral pain if the primary goal is to reduce patellofemoral joint stress. Level of Evidence 3b PMID:29181248
A Pilot Study of Gait Function in Farmworkers in Eastern North Carolina.
Nguyen, Ha T; Kritchevsky, Stephen B; Foxworth, Judy L; Quandt, Sara A; Summers, Phillip; Walker, Francis O; Arcury, Thomas A
2015-01-01
Farmworkers endure many job-related hazards, including fall-related work injuries. Gait analysis may be useful in identifying potential fallers. The goal of this pilot study was to explore differences in gait between farmworkers and non-farmworkers. The sample included 16 farmworkers and 24 non-farmworkers. Gait variables were collected using the portable GAITRite system, a 16-foot computerized walkway. Generalized linear regression models were used to examine group differences. All models were adjusted for two established confounders, age and body mass index. There were no significant differences in stride length, step length, double support time, and base of support; but farmworkers had greater irregularity of stride length (P = .01) and step length (P = .08). Farmworkers performed significantly worse on gait velocity (P = .003) and cadence (P < .001) relative to non-farmworkers. We found differences in gait function between farmworkers and non-farmworkers. These findings suggest that measuring gait with a portable walkway system is feasible and informative in farmworkers and may possibly be of use in assessing fall risk.
Effects of Unstable Shoes on Energy Cost During Treadmill Walking at Various Speeds
Koyama, Keiji; Naito, Hisashi; Ozaki, Hayao; Yanagiya, Toshio
2012-01-01
In recent years, shoes having rounded soles in the anterior-posterior direction have been commercially introduced, which are commonly known as unstable shoes (US). However, physiological responses during walking in US, particularly at various speeds, have not been extensively studied to date. The purpose of this study was to investigate the effect of wearing unstable shoes while walking at low to high speeds on the rate of perceived exertion (RPE), muscle activation, oxygen consumption (VO2), and optimum speed. Healthy male adults wore US or normal walking shoes (WS), and walked at various speeds on a treadmill with no inclination. In experiment 1, subjects walked at 3, 4, 5, 6, and 7 km·h-1 (duration, 3 min for all speeds) and were recorded on video from the right sagittal plane to calculate the step length and cadence. Simultaneously, electromyogram (EMG) was recorded from six different thigh and calf muscles, and the integrated EMG (iEMG) was calculated. In experiment 2, RPE, heart rate and VO2 were measured with the walking speed being increased from 3.6 to 7.2 km·h-1 incrementally by 0.9 km·h-1 every 6 min. The optimum speed, defined by the least oxygen cost, was calculated from the fitted quadratic relationship between walking speed and oxygen cost. Wearing US resulted in significantly longer step length and lower cadence compared with WS condition at any given speed. For all speeds, iEMG in the medial gastrocnemius and soleus muscles, heart rate, and VO2 were significantly higher in US than WS. However, RPE and optimum speed (US, 4.75 ± 0.32 km·h-1; WS, 4. 79 ± 0.18 km·h-1) did not differ significantly between the two conditions. These results suggest that unstable shoes can increase muscle activity of lower legs and energy cost without influencing RPE and optimum speed during walking at various speeds. Key points During walking at various speeds, wearing unstable shoes results in longer step length and lower cadence compared with wearing WS. Wearing unstable shoes increases muscle activities of lower leg. Wearing unstable shoes shifts the quadratic relationship between walking speed and oxygen cost upward and increases energy cost about 4% without changes in RPE and optimum speed. PMID:24150072
Silsupadol, Patima; Teja, Kunlanan; Lugade, Vipul
2017-10-01
The assessment of spatiotemporal gait parameters is a useful clinical indicator of health status. Unfortunately, most assessment tools require controlled laboratory environments which can be expensive and time consuming. As smartphones with embedded sensors are becoming ubiquitous, this technology can provide a cost-effective, easily deployable method for assessing gait. Therefore, the purpose of this study was to assess the reliability and validity of a smartphone-based accelerometer in quantifying spatiotemporal gait parameters when attached to the body or in a bag, belt, hand, and pocket. Thirty-four healthy adults were asked to walk at self-selected comfortable, slow, and fast speeds over a 10-m walkway while carrying a smartphone. Step length, step time, gait velocity, and cadence were computed from smartphone-based accelerometers and validated with GAITRite. Across all walking speeds, smartphone data had excellent reliability (ICC 2,1 ≥0.90) for the body and belt locations, with bag, hand, and pocket locations having good to excellent reliability (ICC 2,1 ≥0.69). Correlations between the smartphone-based and GAITRite-based systems were very high for the body (r=0.89, 0.98, 0.96, and 0.87 for step length, step time, gait velocity, and cadence, respectively). Similarly, Bland-Altman analysis demonstrated that the bias approached zero, particularly in the body, bag, and belt conditions under comfortable and fast speeds. Thus, smartphone-based assessments of gait are most valid when placed on the body, in a bag, or on a belt. The use of a smartphone to assess gait can provide relevant data to clinicians without encumbering the user and allow for data collection in the free-living environment. Copyright © 2017 Elsevier B.V. All rights reserved.
The Effects of Music Salience on the Gait Performance of Young Adults.
de Bruin, Natalie; Kempster, Cody; Doucette, Angelica; Doan, Jon B; Hu, Bin; Brown, Lesley A
2015-01-01
The presence of a rhythmic beat in the form of a metronome tone or beat-accentuated original music can modulate gait performance; however, it has yet to be determined whether gait modulation can be achieved using commercially available music. The current study investigated the effects of commercially available music on the walking of healthy young adults. Specific aims were (a) to determine whether commercially available music can be used to influence gait (i.e., gait velocity, stride length, cadence, stride time variability), (b) to establish the effect of music salience on gait (i.e., gait velocity, stride length, cadence, stride time variability), and (c) to examine whether music tempi differentially effected gait (i.e., gait velocity, stride length, cadence, stride time variability). Twenty-five participants walked the length of an unobstructed walkway while listening to music. Music selections differed with respect to the salience or the tempo of the music. The genre of music and artists were self-selected by participants. Listening to music while walking was an enjoyable activity that influenced gait. Specifically, salient music selections increased measures of cadence, velocity, and stride length; in contrast, gait was unaltered by the presence of non-salient music. Music tempo did not differentially affect gait performance (gait velocity, stride length, cadence, stride time variability) in these participants. Gait performance was differentially influenced by music salience. These results have implications for clinicians considering the use of commercially available music as an alternative to the traditional rhythmic auditory cues used in rehabilitation programs. © the American Music Therapy Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Effect of gender, cadence, and water immersion on ground reaction forces during stationary running.
de Brito Fontana, Heiliane; Haupenthal, Alessandro; Ruschel, Caroline; Hubert, Marcel; Ridehalgh, Colette; Roesler, Helio
2012-05-01
Controlled laboratory study. To analyze the vertical and anteroposterior components of the ground reaction force during stationary running performed in water and on dry land, focusing on the effect of gender, level of immersion, and cadence. Stationary running, as a fundamental component of aquatic rehabilitation and training protocols, is little explored in the literature with regard to biomechanical variables, which makes it difficult to determine and control the mechanical load acting on the individuals. Twenty-two subjects performed 1 minute of stationary running on land, immersed to the hip, and immersed to the chest at 3 different cadences: 90 steps per minute, 110 steps per minute, and 130 steps per minute. Force data were acquired with a force plate, and the variables were vertical peak (Fy), loading rate (LR), anterior peak (Fx anterior), and posterior peak (Fx posterior). Data were normalized to subjects' body weight (BW) and analyzed using repeated-measures analysis of variance. Fy ranged from 0.98 to 2.11 BW, LR ranged from 5.38 to 11.52 BW/s, Fx anterior ranged from 0.07 to 0.14 BW, and Fx posterior ranged from 0.06 to 0.09 BW. The gender factor had no effect on the variables analyzed. A significant interaction between level of immersion and cadence was observed for Fy, Fx anterior, and Fx posterior. On dry land, Fy increased with increasing cadence, whereas in water this effect was seen only between 90 steps per minute and the 2 higher cadences. The higher the level of immersion, the lower the magnitude of Fy. LR was reduced under both water conditions and increased with increasing cadence, regardless of the level of immersion. Ground reaction forces during stationary running are similar between genders. Fy and LR are lower in water, though the values are increased at higher cadences.
Barone, V; Verdini, F; Burattini, L; Di Nardo, F; Fioretti, S
2016-03-01
A markerless low cost prototype has been developed for the determination of some spatio-temporal parameters of human gait: step-length, step-width and cadence have been considered. Only a smartphone and a high-definition webcam have been used. The signals obtained by the accelerometer embedded in the smartphone are used to recognize the heel strike events, while the feet positions are calculated through image processing of the webcam stream. Step length and width are computed during gait trials on a treadmill at various speeds (3, 4 and 5 km/h). Six subjects have been tested for a total of 504 steps. Results were compared with those obtained by a stereo-photogrammetric system (Elite, BTS Engineering). The maximum average errors were 3.7 cm (5.36%) for the right step length and 1.63 cm (15.16%) for the right step width at 5 km/h. The maximum average error for step duration was 0.02 s (1.69%) at 5 km/h for the right steps. The system is characterized by a very high level of automation that allows its use by non-expert users in non-structured environments. A low cost system able to automatically provide a reliable and repeatable evaluation of some gait events and parameters during treadmill walking, is relevant also from a clinical point of view because it allows the analysis of hundreds of steps and consequently an analysis of their variability. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Godi, Marco; Giardini, Marica; Arcolin, Ilaria; Nardone, Antonio; Giordano, Andrea; Schieppati, Marco
2018-01-01
Background Several patients with Parkinson´s disease (PD) can walk normally along straight trajectories, and impairment in their stride length and cadence may not be easily discernible. Do obvious abnormalities occur in these high-functioning patients when more challenging trajectories are travelled, such as circular paths, which normally implicate a graded modulation in the duration of the interlimb gait cycle phases? Methods We compared a cohort of well-treated mildly to moderately affected PD patients to a group of age-matched healthy subjects (HS), by deliberately including HS spontaneously walking at the same speed of the patients with PD. All participants performed, in random order: linear and circular walking (clockwise and counter-clockwise) at self-selected speed. By means of pressure-sensitive insoles, we recorded walking speed, cadence, duration of single support, double support, swing phase, and stride time. Stride length-cadence relationships were built for linear and curved walking. Stride-to-stride variability of temporal gait parameters was also estimated. Results Walking speed, cadence or stride length were not different between PD and HS during linear walking. Speed, cadence and stride length diminished during curved walking in both groups, stride length more in PD than HS. In PD compared to HS, the stride length-cadence relationship was altered during curved walking. Duration of the double-support phase was also increased during curved walking, as was variability of the single support, swing phase and double support phase. Conclusion The spatio-temporal gait pattern and variability are significantly modified in well-treated, high-functioning patients with PD walking along circular trajectories, even when they exhibit no changes in speed in straight-line walking. The increased variability of the gait phases during curved walking is an identifying characteristic of PD. We discuss our findings in term of interplay between control of balance and of locomotor progression: the former is challenged by curved trajectories even in high-functioning patients, while the latter may not be critically affected. PMID:29750815
Son, Nam-Kuk; Ryu, Young Uk; Jeong, Hye-Won; Jang, Young-Hwan; Kim, Hyeong-Dong
2016-01-01
Regular exercise can delay age-related risk factors and can maintain or improve physical health and activity in older adults leading to a decrease in fall risk. The purpose of this study was to compare 2 different interventions for fall prevention, tai chi (TC) and Otago, by examining lower extremity strength, balance, and spatiotemporal gait parameters in community-dwelling older women. We performed a randomized trial in which subjects were assigned to 1 of 2 groups: the TC group (n = 21; age, 72.8 ± 4.7 years, range: 65-83 years), which participated in a modified Sun-style TC exercise program; and the Otago group (n = 24; age, 71.5 ± 3.6 years, range: 65-79 years), which participated in the Otago exercise program. The Timed Up and Go (TUG) test, functional reach (FR) test, one-leg standing (OLS) test, 5 times sit-to-stand test (5×STS), 30-second sit-to-stand (30s STS) test, and gait parameters (gait velocity, step length, step width, stride time, and cadence) were measured before and after the intervention. Both groups showed statistically significant improvements in balance (TUG and OLS tests), lower extremity strength (5×STS and 30s STS tests), and spatiotemporal gait parameters, except for step width and step length (P < .05). The Otago group showed a significantly improved FR, whereas the TC group showed a significantly improved step length after the intervention (P < .05). Furthermore, the Otago group exhibited greater improvements in the TUG (P < .001), FR (P < .001), 5×CST (P < .01), and 30-second CST (P < .01) tests: a faster cadence (P < .001) and shorter stride time (P < .001) when compared with the TC group. The TC group showed greater improvements in the OLS test, step length, and step width (P < .01) and faster gait velocity (P < .05) than the Otago group. The findings from this study support the efficacy of the TC and Otago exercise programs in improving mobility in this sample of subjects. Furthermore, the Otago group showed greater improvement in lower extremity strength, whereas the TC group showed greater improvement in balance (OLS test). Also, the TC group showed a greater improvement in gait velocity after TC training program compared with the Otago exercise program. However, this study does not elucidate which exercise program is a more effective intervention method with older women for fall prevention.
Disturbances of automatic gait control mechanisms in higher level gait disorder.
Danoudis, Mary; Ganesvaran, Ganga; Iansek, Robert
2016-07-01
The underlying mechanisms responsible for the gait changes in frontal gait disorder (FGD), a form of higher level gait disorders, are poorly understood. We investigated the relationship between stride length and cadence (SLCrel) in people with FGD (n=15) in comparison to healthy older adults (n=21) to improve our understanding of the changes to gait in FGD. Gait data was captured using an electronic walkway system as participants walked at five self-selected speed conditions: preferred, very slow, slow, fast and very fast. Linear regression was used to determine the strength of the relationship (R(2)), slope and intercept. In the FGD group 9 participants had a strong SLCrel (linear group) (R(2)>0.8) and 6 a weak relationship (R(2)<0.8) (nonlinear group). The linear FGD group did not differ to healthy control for slope (p>0.05) but did have a lower intercept (p<0.001). The linear FGD group modulated gait speed by adjusting stride length and cadence similar to controls whereas the nonlinear FGD participants adjusted stride length but not cadence similar to controls. The non-linear FGD group had greater disturbance to their gait, poorer postural control and greater fear of falling compared to the linear FGD group. Investigation of the SLCrel resulted in new insights into the underlying mechanisms responsible for the gait changes found in FGD. The findings suggest stride length regulation was disrupted in milder FGD but as the disorder worsened, cadence control also became disordered resulting in a break down in the relationship between stride length and cadence. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Carl P C; Huang, Yin-Cheng; Chang, Chen-Nen; Chen, Jean-Lon; Hsu, Chih-Chin; Lin, Wan-Ying
2018-06-01
Normal pressure hydrocephalus (NPH) was the first type of dementia ever described that can be treated using ventriculoperitoneal shunting surgery. Three typical clinical symptoms of NPH include gait disturbance, progressive cognitive dysfunction, and urinary incontinence. Although there are articles that have discovered several cerebrospinal fluid (CSF) protein biomarkers associated with NPH; however, studies examining individual and total protein concentrations from the ventricular CSF before and after shunting surgery are lacking. This study used proteomics to calculate the CSF individual and total protein concentrations before, and one week, one month and three months after the shunting surgery. Parameters of cadence, step length, walking speed, and percentages of single- and double-limb support in a gait cycle were measured. Protein concentrations associated with anti-oxidation, aging, and in the prevention of neurotoxic agent production increased by at least 2-folds after the surgery, indicating that the brain may become less susceptible to neurodegeneration. These proteins were alpha-1B-glycoprotein, apolipoproteins A-1 & A-IV, prostaglandin-H2 D-isomerase, alpha-1-antitrypsin, and serotransferrin. In gait analysis, lower cadence, decreased double-limb support, longer step length, and increased single-limb support were observed after the surgery, indicating a more stable walking balance. These changes lasted for a period of at least 3 months. As a result, shunting surgery may be recommended for geriatric patients with confirmed diagnosis of normal pressure hydrocephalus. Copyright © 2018 Elsevier Inc. All rights reserved.
Zdziarski, Laura Ann; Chen, Cong; Horodyski, Marybeth; Vincent, Kevin R.; Vincent, Heather K.
2017-01-01
Objective To determine the differences in kinematic, cardiopulmonary, and metabolic responses between overweight and healthy weight runners at a self-selected and standard running speed. Design Comparative descriptive study. Setting Tertiary care institution, university-affiliated research laboratory. Participants Overweight runners (n = 21) were matched with runners of healthy weight (n = 42). Methods Participants ran at self-selected and standardized speeds (13.6 km/h). Sagittal plane joint kinematics were captured simultaneously with cardiopulmonary and metabolic measures using a motion capture system and portable gas analyzer, respectively. Main Outcome Measurements Spatiotemporal parameters (cadence, step width and length, center of gravity displacement, stance time) joint kinematics, oxygen cost, heart rate, ventilation and energy expenditure. Results At the self-selected speed, overweight individuals ran slower (8.5 ± 1.3 versus 10.0 ± 1.6 km/h) and had slower cadence (163 versus 169 steps/min; P < .05). The sagittal plane range of motion (ROM) for flexion-extension at the ankle, knee, hip, and anterior pelvic tilt were all less in overweight runners compared to healthy weight runners (all P < .05). At self-selected speed and 13.6 km/h, energy expenditure was higher in the overweight runners compared to their healthy weight counterparts (P < .05). At 13.6 km/h, only the frontal hip and pelvis ROM were higher in the overweight versus the healthy weight runners (P < .05), and energy expenditure, net energy cost, and minute ventilation were higher in the overweight runners compared to the healthy weight runners (P < .05). Conclusion At self-selected running speeds, the overweight runners demonstrated gait strategies (less joint ROM, less vertical displacement, and shorter step lengths) that resulted in cardiopulmonary and energetic responses similar to those of healthy weight individuals. PMID:26146194
Effects of Indoor Footwear on Balance and Gait Patterns in Community-Dwelling Older Women.
Menz, Hylton B; Auhl, Maria; Munteanu, Shannon E
2017-01-01
Footwear worn indoors is generally less supportive than outdoor footwear and may increase the risk of falls. To evaluate balance ability and gait patterns in older women while wearing different styles of indoor footwear: a backless slipper and an enclosed slipper designed to optimise balance. Older women (n = 30) aged 65-83 years (mean 74.4, SD 5.6) performed a series of laboratory tests of balance ability (postural sway, limits of stability, and tandem walking, measured with the NeuroCom® Balance Master) and gait patterns (walking speed, cadence, and step length, measured with the GAITRite® walkway) while wearing (1) socks, (2) backless slippers with a soft sole, and (3) enclosed slippers with a firm sole and Velcro® fastening. Perceptions of the footwear were also documented using a structured questionnaire. Significant overall effects of footwear were observed for postural sway, the limits of stability test (directional control), the tandem walk test (step width and end sway), and temporospatial gait patterns (walking speed, cadence, and step length). No footwear effects were observed for maximum excursion when performing the limits of stability test or for speed when performing the tandem walk test. Post hoc tests indicated that performances were best while wearing the enclosed slippers, intermediate with socks, and worst with backless slippers. The enclosed slippers were perceived to be more attractive, comfortable, and well fitted, but heavier than the backless slippers. Most participants (n = 23; 77%) reported that they would consider wearing the enclosed slippers to reduce their risk of falling. Indoor footwear with an enclosed heel, Velcro® fastening, and a firm sole optimises balance and gait compared to backless slippers, and is therefore recommended to reduce the risk of falling. © 2016 The Author(s) Published by S. Karger AG, Basel.
Yoon, Jungwon; Park, Hyung-Soon; Damiano, Diane Louise
2012-08-28
Virtual reality (VR) technology along with treadmill training (TT) can effectively provide goal-oriented practice and promote improved motor learning in patients with neurological disorders. Moreover, the VR + TT scheme may enhance cognitive engagement for more effective gait rehabilitation and greater transfer to over ground walking. For this purpose, we developed an individualized treadmill controller with a novel speed estimation scheme using swing foot velocity, which can enable user-driven treadmill walking (UDW) to more closely simulate over ground walking (OGW) during treadmill training. OGW involves a cyclic acceleration-deceleration profile of pelvic velocity that contrasts with typical treadmill-driven walking (TDW), which constrains a person to walk at a preset constant speed. In this study, we investigated the effects of the proposed speed adaptation controller by analyzing the gait kinematics of UDW and TDW, which were compared to those of OGW at three pre-determined velocities. Ten healthy subjects were asked to walk in each mode (TDW, UDW, and OGW) at three pre-determined speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s) with real time feedback provided through visual displays. Temporal-spatial gait data and 3D pelvic kinematics were analyzed and comparisons were made between UDW on a treadmill, TDW, and OGW. The observed step length, cadence, and walk ratio defined as the ratio of stride length to cadence were not significantly different between UDW and TDW. Additionally, the average magnitude of pelvic acceleration peak values along the anterior-posterior direction for each step and the associated standard deviations (variability) were not significantly different between the two modalities. The differences between OGW and UDW and TDW were mainly in swing time and cadence, as have been reported previously. Also, step lengths between OGW and TDW were different for 0.5 m/s and 1.5 m/s gait velocities, and walk ratio between OGS and UDW was different for 1.0 m/s gait velocities. Our treadmill control scheme implements similar gait biomechanics of TDW, which has been used for repetitive gait training in a small and constrained space as well as controlled and safe environments. These results reveal that users can walk as stably during UDW as TDW and employ similar strategies to maintain walking speed in both UDW and TDW. Furthermore, since UDW can allow a user to actively participate in the virtual reality (VR) applications with variable walking velocity, it can induce more cognitive activities during the training with VR, which may enhance motor learning effects.
Multidirectional walk test in individuals with Parkinson's disease: a validity study.
Bryant, Mon S; Workman, Craig D; Jackson, George R
2015-03-01
Gait parameters of forward, backward, and sideways walk were studied when the participants walked overground in four directions at their self-selected speed and were compared with walking in the four directions on an instrumented GAITRite walkway. Intraclass correlation coefficients between the overground walk test measures and the instrumented walkway measures of gait speed, cadence, and stride length for the forward walk were 0.85, 0.88, and 0.87, respectively. For the backward walk, the coefficients were 0.91 for gait speed, 0.75 for cadence, and 0.93 for stride length. For the sideways walk, the coefficients were 0.92 for gait speed, 0.93 for cadence, and 0.94 for stride length. Gait parameters of forward, backward, and sideways walk obtained by the overground walk test had excellent agreement with those obtained by the instrumented walkway. The quick timed test provided quantitative data for gait evaluation and was valid for clinical use.
Da Rocha, Emmanuel S; Kunzler, Marcos R; Bobbert, Maarten F; Duysens, Jacques; Carpes, Felipe P
2018-06-01
Walking is one of the preferred exercises among elderly, but could a prolonged walking increase gait variability, a risk factor for a fall in the elderly? Here we determine whether 30 min of treadmill walking increases coefficient of variation of gait in elderly. Because gait responses to exercise depend on fitness level, we included 15 sedentary and 15 active elderly. Sedentary participants preferred a lower gait speed and made smaller steps than the actives. Step length coefficient of variation decreased ~16.9% by the end of the exercise in both the groups. Stride length coefficient of variation decreased ~9% after 10 minutes of walking, and sedentary elderly showed a slightly larger step width coefficient of variation (~2%) at 10 min than active elderly. Active elderly showed higher walk ratio (step length/cadence) than sedentary in all times of walking, but the times did not differ in both the groups. In conclusion, treadmill gait kinematics differ between sedentary and active elderly, but changes over time are similar in sedentary and active elderly. As a practical implication, 30 min of walking might be a good strategy of exercise for elderly, independently of the fitness level, because it did not increase variability in step and stride kinematics, which is considered a risk of fall in this population.
NASA Astrophysics Data System (ADS)
Pineda, Gustavo; Atehortúa, Angélica; Iregui, Marcela; García-Arteaga, Juan D.; Romero, Eduardo
2017-11-01
External auditory cues stimulate motor related areas of the brain, activating motor ways parallel to the basal ganglia circuits and providing a temporary pattern for gait. In effect, patients may re-learn motor skills mediated by compensatory neuroplasticity mechanisms. However, long term functional gains are dependent on the nature of the pathology, follow-up is usually limited and reinforcement by healthcare professionals is crucial. Aiming to cope with these challenges, several researches and device implementations provide auditory or visual stimulation to improve Parkinsonian gait pattern, inside and outside clinical scenarios. The current work presents a semiautomated strategy for spatio-temporal feature extraction to study the relations between auditory temporal stimulation and spatiotemporal gait response. A protocol for auditory stimulation was built to evaluate the integrability of the strategy in the clinic practice. The method was evaluated in transversal measurement with an exploratory group of people with Parkinson's (n = 12 in stage 1, 2 and 3) and control subjects (n =6). The result showed a strong linear relation between auditory stimulation and cadence response in control subjects (R=0.98 +/-0.008) and PD subject in stage 2 (R=0.95 +/-0.03) and stage 3 (R=0.89 +/-0.05). Normalized step length showed a variable response between low and high gait velocity (0.2> R >0.97). The correlation between normalized mean velocity and stimulus was strong in all PD stage 2 (R>0.96) PD stage 3 (R>0.84) and controls (R>0.91) for all experimental conditions. Among participants, the largest variation from baseline was found in PD subject in stage 3 (53.61 +/-39.2 step/min, 0.12 +/- 0.06 in step length and 0.33 +/- 0.16 in mean velocity). In this group these values were higher than the own baseline. These variations are related with direct effect of metronome frequency on cadence and velocity. The variation of step length involves different regulation strategies and could need others specific external cues. In conclusion the current protocol (and their selected parameters, kind of sound time for training, step of variation, range of variation) provide a suitable gait facilitation method specially for patients with the highest gait disturbance (stage 2 and 3). The method should be adjusted for initial stages and evaluated in a rehabilitation program.
Bonnyaud, Céline; Pradon, Didier; Vuillerme, Nicolas; Bensmail, Djamel; Roche, Nicolas
2015-01-01
Background The timed up and go test (TUG) is a functional test which is increasingly used to evaluate patients with stroke. The outcome measured is usually global TUG performance-time. Assessment of spatiotemporal and kinematic parameters during the Oriented gait and Turn sub-tasks of the TUG would provide a better understanding of the mechanisms underlying patients’ performance and therefore may help to guide rehabilitation. The aim of this study was thus to determine the spatiotemporal and kinematic parameters which were most related to the walking and turning sub-tasks of TUG performance in stroke patients. Methods 29 stroke patients carried out the TUG test which was recorded using an optoelectronic system in two conditions: spontaneous and standardized condition (standardized foot position and instructed to turn towards the paretic side). They also underwent a clinical assessment. Stepwise regression was used to determine the parameters most related to Oriented gait and Turn sub-tasks. Relationships between explanatory parameters of Oriented gait and Turn performance and clinical scales were evaluated using Spearman correlations. Results Step length and cadence explained 82% to 95% of the variance for the walking sub-tasks in both conditions. Percentage single support phase and contralateral swing phase (depending on the condition) respectively explained 27% and 56% of the variance during the turning sub-task in the spontaneous and standardized conditions. Discussion and Conclusion Step length, cadence, percentage of paretic single support phase and non-paretic swing phase, as well as dynamic stability were the main parameters related to TUG performance and they should be targeted in rehabilitation. PMID:26091555
Spontaneous Entrainment of Running Cadence to Music Tempo.
Van Dyck, Edith; Moens, Bart; Buhmann, Jeska; Demey, Michiel; Coorevits, Esther; Dalla Bella, Simone; Leman, Marc
Since accumulating evidence suggests that step rate is strongly associated with running-related injuries, it is important for runners to exercise at an appropriate running cadence. As music tempo has been shown to be capable of impacting exercise performance of repetitive endurance activities, it might also serve as a means to (re)shape running cadence. The aim of this study was to validate the impact of music tempo on running cadence. Sixteen recreational runners ran four laps of 200 m (i.e. 800 m in total); this task was repeated 11 times with a short break in between each four-lap sequence. During the first lap of a sequence, participants ran at a self-paced tempo without musical accompaniment. Running cadence of the first lap was registered, and during the second lap, music with a tempo matching the assessed cadence was played. In the final two laps, the music tempo was either increased/decreased by 3.00, 2.50, 2.00, 1.50, or 1.00 % or was kept stable. This range was chosen since the aim of this study was to test spontaneous entrainment (an average person can distinguish tempo variations of about 4 %). Each participant performed all conditions. Imperceptible shifts in musical tempi in proportion to the runner's self-paced running tempo significantly influenced running cadence ( p < .001). Contrasts revealed a linear relation between the tempo conditions and adaptation in running cadence ( p < .001). In addition, a significant effect of condition on the level of entrainment was revealed ( p < .05), which suggests that maximal effects of music tempo on running cadence can only be obtained up to a certain level of tempo modification. Finally, significantly higher levels of tempo entrainment were found for female participants compared to their male counterparts ( p < .05). The applicable contribution of these novel findings is that music tempo could serve as an unprompted means to impact running cadence. As increases in step rate may prove beneficial in the prevention and treatment of common running-related injuries, this finding could be especially relevant for treatment purposes, such as exercise prescription and gait retraining. Music tempo can spontaneously impact running cadence.A basin for unsolicited entrainment of running cadence to music tempo was discovered.The effect of music tempo on running cadence proves to be stronger for women than for men.
Thaut, M H; Leins, A K; Rice, R R; Argstatter, H; Kenyon, G P; McIntosh, G C; Bolay, H V; Fetter, M
2007-01-01
The effectiveness of 2 different types of gait training in stroke rehabilitation, rhythmic auditory stimulation (RAS) versus neurodevelopmental therapy (NDT)/Bobath- based training, was compared in 2 groups of hemiparetic stroke patients over a 3-week period of daily training (RAS group, n = 43; NDT/Bobath group =35). Mean entry date into the study was 21.3 days poststroke for the RAS group and 22.3 days for the control group. Patients entered the study as soon as they were able to complete 5 stride cycles with handheld assistance. Patients were closely equated by age, gender, and lesion site. Motor function in both groups was pre-assessed by the Barthel Index and the Fugl-Meyer Scales. Pre- to posttest measures showed a significant improvement in the RAS group for velocity (P = .006), stride length (P = .0001), cadence (P = .0001) and symmetry (P = .0049) over the NDT/Bobath group. Effect sizes for RAS over NDT/Bobath training were 13.1 m/min for velocity, 0.18 m for stride length, and 19 steps/min for cadence. The data show that after 3 weeks of gait training, RAS is an effective therapeutic method to enhance gait training in hemiparetic stroke rehabilitation. Gains were significantly higher for RAS compared to NDT/Bobath training.
The effects of running cadence manipulation on plantar loading in healthy runners.
Wellenkotter, J; Kernozek, T W; Meardon, S; Suchomel, T
2014-08-01
Our purpose was to evaluate effects of cadence manipulation on plantar loading during running. Participants (n=38) ran on a treadmill at their preferred speed in 3 conditions: preferred, 5% increased, and 5% decreased while measured using in-shoe sensors. Data (contact time [CT], peak force [PF], force time integral [FTI], pressure time integral [PTI] and peak pressure [PP]) were recorded for 30 right footfalls. Multivariate analysis was performed to detect differences in loading between cadences in the total foot and 4 plantar regions. Differences in plantar loading occurred between cadence conditions. Total foot CT and PF were lower with a faster cadence, but no total foot PP differences were observed. Faster cadence reduced CT, pressure and force variables in both the heel and metatarsal regions. Increasing cadence did not elevate metatarsal loads; rather, total foot and all regions were reduced when healthy runners increased their cadence. If a 5% increase in cadence from preferred were maintained over each mile run the impulse at the heel would be reduced by an estimated 565 body weights*s (BW*s) and the metatarsals 140-170 BW*s per mile run despite the increased steps taken. Increasing cadence may benefit overuse injuries associated with elevated plantar loading. © Georg Thieme Verlag KG Stuttgart · New York.
The validity and reliability of a novel activity monitor as a measure of walking
Ryan, C G; Grant, P M; Tigbe, W W; Granat, M H
2006-01-01
Background The accurate measurement of physical activity is crucial to understanding the relationship between physical activity and disease prevention and treatment. Objective The primary purpose of this study was to investigate the validity and reliability of the activPAL physical activity monitor in measuring step number and cadence. Methods The ability of the activPAL monitor to measure step number and cadence in 20 healthy adults (age 34.5±6.9 years; BMI 26.8±4.8 (mean±SD)) was evaluated against video observation. Concurrently, the accuracy of two commonly used pedometers, the Yamax Digi‐Walker SW‐200 and the Omron HJ‐109‐E, was compared to observation for measuring step number. Participants walked on a treadmill at five different speeds (0.90, 1.12, 1.33, 1.56, and 1.78 m/s) and outdoors at three self selected speeds (slow, normal, and fast). Results At all speeds, inter device reliability was excellent for the activPAL (ICC (2,1)⩾0.99) for both step number and cadence. The absolute percentage error for the activPAL was <1.11% for step number and cadence regardless of walking speed. The accuracy of the pedometers was adversely affected by slow walking speeds. Conclusion The activPAL monitor is a valid and reliable measure of walking in healthy adults. Its accuracy is not influenced by walking speed. The activPAL may be a useful device in sports medicine. PMID:16825270
Interrater reliability of videotaped observational gait-analysis assessments.
Eastlack, M E; Arvidson, J; Snyder-Mackler, L; Danoff, J V; McGarvey, C L
1991-06-01
The purpose of this study was to determine the interrater reliability of videotaped observational gait-analysis (VOGA) assessments. Fifty-four licensed physical therapists with varying amounts of clinical experience served as raters. Three patients with rheumatoid arthritis who demonstrated an abnormal gait pattern served as subjects for the videotape. The raters analyzed each patient's most severely involved knee during the four subphases of stance for the kinematic variables of knee flexion and genu valgum. Raters were asked to determine whether these variables were inadequate, normal, or excessive. The temporospatial variables analyzed throughout the entire gait cycle were cadence, step length, stride length, stance time, and step width. Generalized kappa coefficients ranged from .11 to .52. Intraclass correlation coefficients (2,1) and (3,1) were slightly higher. Our results indicate that physical therapists' VOGA assessments are only slightly to moderately reliable and that improved interrater reliability of the assessments of physical therapists utilizing this technique is needed. Our data suggest that there is a need for greater standardization of gait-analysis training.
2012-01-01
Background Virtual reality (VR) technology along with treadmill training (TT) can effectively provide goal-oriented practice and promote improved motor learning in patients with neurological disorders. Moreover, the VR + TT scheme may enhance cognitive engagement for more effective gait rehabilitation and greater transfer to over ground walking. For this purpose, we developed an individualized treadmill controller with a novel speed estimation scheme using swing foot velocity, which can enable user-driven treadmill walking (UDW) to more closely simulate over ground walking (OGW) during treadmill training. OGW involves a cyclic acceleration-deceleration profile of pelvic velocity that contrasts with typical treadmill-driven walking (TDW), which constrains a person to walk at a preset constant speed. In this study, we investigated the effects of the proposed speed adaptation controller by analyzing the gait kinematics of UDW and TDW, which were compared to those of OGW at three pre-determined velocities. Methods Ten healthy subjects were asked to walk in each mode (TDW, UDW, and OGW) at three pre-determined speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s) with real time feedback provided through visual displays. Temporal-spatial gait data and 3D pelvic kinematics were analyzed and comparisons were made between UDW on a treadmill, TDW, and OGW. Results The observed step length, cadence, and walk ratio defined as the ratio of stride length to cadence were not significantly different between UDW and TDW. Additionally, the average magnitude of pelvic acceleration peak values along the anterior-posterior direction for each step and the associated standard deviations (variability) were not significantly different between the two modalities. The differences between OGW and UDW and TDW were mainly in swing time and cadence, as have been reported previously. Also, step lengths between OGW and TDW were different for 0.5 m/s and 1.5 m/s gait velocities, and walk ratio between OGS and UDW was different for 1.0 m/s gait velocities. Conclusions Our treadmill control scheme implements similar gait biomechanics of TDW, which has been used for repetitive gait training in a small and constrained space as well as controlled and safe environments. These results reveal that users can walk as stably during UDW as TDW and employ similar strategies to maintain walking speed in both UDW and TDW. Furthermore, since UDW can allow a user to actively participate in the virtual reality (VR) applications with variable walking velocity, it can induce more cognitive activities during the training with VR, which may enhance motor learning effects. PMID:22929169
A new technique for simultaneous monitoring of electrocardiogram and walking cadence
NASA Technical Reports Server (NTRS)
Hausdorff, J. M.; Forman, D. E.; Pilgrim, D. M.; Rigney, D. R.; Wei, J. Y.; Goldberger, A. L. (Principal Investigator)
1992-01-01
A new technique for simultaneously recording continuous electrocardiographic (ECG) data and walking step rate (cadence) is described. The ECG and gait signals are recorded on 2 channels of an ambulatory Holter monitor. Footfall is detected using ultrathin, force-sensitive foot switches and is frequency modulated. The footfall signal provides an indication of the subject's activity (walking or standing), as well as the instantaneous walking rate. Twenty-three young and elderly subjects were studied to demonstrate the use of this ECG and gait recorder. High-quality gait signals were obtained in all subjects, and the effects of walking on the electrocardiogram were assessed. Initial investigation revealed the following findings: (1) Although walking rates were similar in young and elderly subjects, the elderly had both decreased heart rate (HR) variability (p < 0.005) and increased cadence variability (p < 0.0001). (2) Overall, there was an inverse relation between HR and cadence variability (r = -0.73). Three elderly subjects with no known cardiac disease had HR and cadence variability similar to those of the young, whereas elderly subjects with history of congestive heart failure were among those with the lowest HR variability and the highest cadence variability. (3) Low-frequency (approximately equal to 0.1 Hz) HR oscillations (frequently observed during standing) persisted during walking in all young subjects. (4) In some subjects, both step rate and HR oscillated at the same low frequency (approximately equal to 0.1 Hz) previously identified with autonomic control of the baroreflex.(ABSTRACT TRUNCATED AT 250 WORDS).
Schabrun, Siobhan M; Lamont, Robyn M; Brauer, Sandra G
2016-01-01
To investigate the feasibility and safety of a combined anodal transcranial direct current stimulation (tDCS) and dual task gait training intervention in people with Parkinson's Disease (PD) and to provide data to support a sample size calculation for a fully powered trial should trends of effectiveness be present. A pilot, randomized, double-blind, sham-controlled parallel group trial with 12 week follow-up. A university physiotherapy department. Sixteen participants diagnosed with PD received nine dual task gait training sessions over 3 weeks. Participants were randomized to receive either active or sham tDCS applied for the first 20 minutes of each session. The primary outcome was gait speed while undertaking concurrent cognitive tasks (word lists, counting, conversation). Secondary measures included step length, cadence, Timed Up and Go, bradykinesia and motor speed. Gait speed, step length and cadence improved in both groups, under all dual task conditions. This effect was maintained at follow-up. There was no difference between the active and sham tDCS groups. Time taken to perform the TUGwords also improved, with no difference between groups. The active tDCS group did however increase their correct cognitive response rate during the TUGwords and TUGcount. Bradykinesia improved after training in both groups. Three weeks of dual task gait training resulted in improved gait under dual task conditions, and bradykinesia, immediately following training and at 12 weeks follow-up. The only parameter enhanced by tDCS was the number of correct responses while performing the dual task TUG. tDCS applied to M1 may not be an effective adjunct to dual task gait training in PD. Australia-New Zealand Clinical Trials Registry ACTRN12613001093774.
Matsuda, Mayumi; Mataki, Yuki; Mutsuzaki, Hirotaka; Yoshikawa, Kenichi; Takahashi, Kazushi; Enomoto, Keiko; Sano, Kumiko; Mizukami, Masafumi; Tomita, Kazuhide; Ohguro, Haruka; Iwasaki, Nobuaki
2018-01-01
[Purpose] Robot-assisted gait training (RAGT) using Hybrid Assistive Limb (HAL, CYBERDYNE) was previously reported beneficial for stroke and spinal cord injury patients. Here, we investigate the immediate effect of a single session of RAGT using HAL on gait function for cerebral palsy (CP) patients. [Subjects and Methods] Twelve patients (average age: 16.2 ± 7.3 years) with CP received a single session of RAGT using HAL. Gait speed, step length, cadence, single-leg support per gait cycle, hip and knee joint angle in stance, and swing phase per gait cycle were assessed before, during, and immediately after HAL intervention. [Results] Compared to baseline values, single-leg support per gait cycle (64.5 ± 15.8% to 69.3 ± 12.1%), hip extension angle in mid-stance (149.2 ± 19.0° to 155.5 ± 20.1°), and knee extension angle in mid-stance (137.6 ± 20.2° to 143.1 ± 19.5°) were significantly increased immediately after intervention. Further, the knee flexion angle in mid-swing was significantly decreased immediately after treatment (112.0 ± 15.5° to 105.2 ± 17.1°). Hip flexion angle in mid-swing also decreased following intervention (137.2 ± 14.6° to 129.7 ± 16.6°), but not significantly. Conversely, gait speed, step length, and cadence were unchanged after intervention. [Conclusion] A single-time RAGT with HAL improved single-leg support per gait cycle and hip and knee joint angle during gait, therapeutically improving gait function in CP patients. PMID:29545679
The impact of obesity in the kinematic parameters of gait in young women
da Silva-Hamu, Tânia Cristina Dias; Formiga, Cibelle Kayenne Martins Roberto; Gervásio, Flávia Martins; Ribeiro, Darlan Martins; Christofoletti, Gustavo; de França Barros, Jônatas
2013-01-01
Background The prevalence of obesity is increasing in the population, particularly in women. Obesity has an impact on the musculoskeletal system, leading to knee and ankle overexertion, difficulty with balance, and functional disability. The aim of this study was to identify changes in kinematic parameters of gait in obese young women. Methods A case-control study with 24 obese women (mean age 35.20 ± 9.9 years and mean body mass index of 31.85 ± 2.94 kg/m2) and 24 eutrophic women (mean age of 36.33 ± 11.14 and mean body mass index of 21.82 ± 1.58 kg/m2). The gait of women was evaluated by the system Vicon Motus® 9.2. The linear parameters of speed, cadence, right and left step, and stride lengths were studied, as well as the angular parameters of knee and ankle. Results There was a decrease in linear gait parameters (P < 0.001), speed, cadence, right and left step, and stride lengths. In regard to the angular parameters of the knee and ankle, there were also differences between the analyses (P < 0.001). At the knee joint, obese women have delayed onset of the second wave of flexion, exacerbating such movement in order to compensate. In regard to the ankle, both groups showed curves of normal plantar flexion and dorsiflexion, but there was a delay in the path graph in the ankle of obese women indicating a reduced range of motion and possible over-exertion of the pretibial muscles and soleus muscles simultaneously. Conclusion The results of this study revealed that obesity is a factor that negatively influences the kinematic parameters of gait of young women. PMID:23837005
Matsuda, Mayumi; Mataki, Yuki; Mutsuzaki, Hirotaka; Yoshikawa, Kenichi; Takahashi, Kazushi; Enomoto, Keiko; Sano, Kumiko; Mizukami, Masafumi; Tomita, Kazuhide; Ohguro, Haruka; Iwasaki, Nobuaki
2018-02-01
[Purpose] Robot-assisted gait training (RAGT) using Hybrid Assistive Limb (HAL, CYBERDYNE) was previously reported beneficial for stroke and spinal cord injury patients. Here, we investigate the immediate effect of a single session of RAGT using HAL on gait function for cerebral palsy (CP) patients. [Subjects and Methods] Twelve patients (average age: 16.2 ± 7.3 years) with CP received a single session of RAGT using HAL. Gait speed, step length, cadence, single-leg support per gait cycle, hip and knee joint angle in stance, and swing phase per gait cycle were assessed before, during, and immediately after HAL intervention. [Results] Compared to baseline values, single-leg support per gait cycle (64.5 ± 15.8% to 69.3 ± 12.1%), hip extension angle in mid-stance (149.2 ± 19.0° to 155.5 ± 20.1°), and knee extension angle in mid-stance (137.6 ± 20.2° to 143.1 ± 19.5°) were significantly increased immediately after intervention. Further, the knee flexion angle in mid-swing was significantly decreased immediately after treatment (112.0 ± 15.5° to 105.2 ± 17.1°). Hip flexion angle in mid-swing also decreased following intervention (137.2 ± 14.6° to 129.7 ± 16.6°), but not significantly. Conversely, gait speed, step length, and cadence were unchanged after intervention. [Conclusion] A single-time RAGT with HAL improved single-leg support per gait cycle and hip and knee joint angle during gait, therapeutically improving gait function in CP patients.
Cheng, Fang-Yu; Yang, Yea-Ru; Wu, Yih-Ru; Cheng, Shih-Jung; Wang, Ray-Yau
2017-10-01
The purpose of this study was to investigate the effects of curved-walking training (CWT) on curved-walking performance and freezing of gait (FOG) in people with Parkinson's disease (PD). Twenty-four PD subjects were recruited and randomly assigned to the CWT group or control exercise (CE) group and received 12 sessions of either CWT with a turning-based treadmill or general exercise training for 30 min followed by 10 min of over-ground walking in each session for 4-6 weeks. The primary outcomes included curved-walking performance and FOG. All measurements were assessed at baseline, after training, and at 1-month follow-up. Our results showed significant improvements in curved-walking performance (speed, p = 0.007; cadence, p = 0.003; step length, p < 0.001) and FOG, measured by a FOG questionnaire (p = 0.004). The secondary outcomes including straight-walking performance (speed, cadence and step length, p < 0.001), timed up and go test (p = 0.014), functional gait assessment (p < 0.001), Unified Parkinson's disease Rating Scale III (p = 0.001), and quality of life (p < 0.001) were also improved in the experimental group. We further noted that the improvements were maintained for at least one month after training (p < 0.05). A 12-session CWT program can improve curved-walking ability, FOG, and other measures of functional walking performance in individuals with PD. Most of the improvements were sustained for at least one month after training. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lowry, Kristin A; Carrel, Andrew J; McIlrath, Jessica M; Smiley-Oyen, Ann L
2010-04-01
To determine if gait stability, as measured by harmonic ratios (HRs) derived from trunk accelerations, is improved during 3 amplitude-based cueing strategies (visual cues, lines on the floor 20% longer than preferred step length; verbal cues, experimenter saying "big step" every third; cognitive cues, participants think "big step") in people with Parkinson's disease. Gait analysis with a triaxial accelerometer. University research laboratory. A volunteer sample of persons with Parkinson's disease (N=7) (Hoehn and Yahr stages 2-3). Not applicable Gait stability was quantified by anterior-posterior (AP), vertical, and mediolateral (ML) HRs; higher ratios indicated improved gait stability. Spatiotemporal parameters assessed were walking speed, stride length, cadence, and the coefficient of variation for stride time. Of the amplitude-based cues, verbal and cognitive resulted in the largest improvements in the AP HR (P=.018) with a trend in the vertical HR as well as the largest improvements in both stride length and velocity. None of the cues positively affected stability in the ML direction. Descriptively, all participants increased speed and stride length, but only those in Hoehn and Yahr stage 2 (not Hoehn and Yahr stage 3) showed improvements in HRs. Cueing for "big steps" is effective for improving gait stability in the AP direction with modest improvements in the vertical direction, but it is not effective in the ML direction. These data support the use of trunk acceleration measures in assessing the efficacy of common therapeutic interventions. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
A pilot study of physical activity and sedentary behavior distribution patterns in older women.
Fortune, Emma; Mundell, Benjamin; Amin, Shreyasee; Kaufman, Kenton
2017-09-01
The study aims were to investigate free-living physical activity and sedentary behavior distribution patterns in a group of older women, and assess the cross-sectional associations with body mass index (BMI). Eleven older women (mean (SD) age: 77 (9) yrs) wore custom-built activity monitors, each containing a tri-axial accelerometer (±16g, 100Hz), on the waist and ankle for lab-based walking trials and 4 days in free-living. Daily active time, step counts, cadence, and sedentary break number were estimated from acceleration data. The sedentary bout length distribution and sedentary time accumulation pattern, using the Gini index, were investigated. Associations of the parameters' total daily values and coefficients of variation (CVs) of their hourly values with BMI were assessed using linear regression. The algorithm demonstrated median sensitivity, positive predictive value, and agreement values >98% and <1% mean error in cadence calculations with video identification during lab trials. Participants' sedentary bouts were found to be power law distributed with 56% of their sedentary time occurring in 20min bouts or longer. Meaningful associations were detectable in the relationships of total active time, step count, sedentary break number and their CVs with BMI. Active time and step counts had moderate negative associations with BMI while sedentary break number had a strong negative association. Active time, step count and sedentary break number CVs also had strong positive associations with BMI. The results highlight the importance of measuring sedentary behavior and suggest a more even distribution of physical activity throughout the day is associated with lower BMI. Copyright © 2017 Elsevier B.V. All rights reserved.
Lander, Joshua J; Moran, Matthew F
2017-01-01
Evidence suggests treadmill training (TT) and body weight-supported treadmill training (BWSTT) are effective strategies to improve gait in Parkinson's disease (PD) patients. However, few researchers have investigated the spatiotemporal parameters during TT or BWSTT. The goal of this study is to determine gait adaptations in PD and healthy subjects during positive pressure BWSTT and post-intervention overground walking. Ten PD and ten healthy individuals participated in this study. Baseline spatiotemporal parameters were assessed using a six meter instrumented mat. A 10-min progressive BWSTT trial from 10% to 40% body weight support (BWS) was then completed. Video capture and analysis of 10-min BWSTT trials were performed to determine spatiotemporal gait parameters. Three (5-min, 10-min, and 15-min) post-intervention overground assessments were obtained. During positive pressure BWSTT there was a significant effect of BW support on step length(SL) increase (p < 0.01) and cadence decrease (p < 0.001) in the healthy group but not in the PD group (p = 0.45 SL, p = 0.21 cadence). In post-intervention assessments there was a significant effect of time on velocity (p < 0.002 non-PD, p < 0.001 PD) and cadence (p < 0.05 non-PD, p < 0.01 PD) in both groups. There appears to be a generalized effect of TT on overground gait mechanics after a single session of positive pressure BWSTT regardless of PD impairment.
Shono, Tomoki; Masumoto, Kenji; Fujishima, Kazutaka; Hotta, Noboru; Ogaki, Tetsuro; Adachi, Takahiro
2007-11-01
This study sought to determine the characteristics of gait patterns and muscle activity in the lower extremities of elderly women during underwater treadmill walking against water flow. Eight female subjects (61.4+/-3.9 y) performed underwater and land treadmill walking at varying exercise intensities and velocities. During underwater walking (water level at the xiphoid process) using the Flowmill, which has a treadmill at the base of a water flume, the simultaneous belt and water flow velocities were set to 20, 30 and 4 m.min(-1). Land walking velocities were set to 40, 60 and 80 m.min(-1). Oxygen uptake and heart rate were measured during both walking exercises. Maximum and minimum knee joint angles, and mean angular velocities of knee extension and knee flexion in the swing phase were calculated using two-dimensional motion analysis. Electromyograms were recorded using bipolar surface electrodes for five muscles: the tibialis anterior (TA), medial gastrocnemius (MG), vastus medialis (VM), rectus femoris (RF) and biceps femoris (BF). At the same exercise intensity level, cadence was almost half that on land. Step length did not differ significantly because velocity was halved. Compared to land walking, the maximum and minimum knee joint angles were significantly smaller and the mean angular velocity of knee extension was significantly lower. Knee extension in the swing phase was limited by water resistance. While the muscle activity levels of TA, VM and BF were almost the same as during land walking, those of MG and RF were lower. At the same velocity, exercise intensity was significantly higher than during land walking, cadence was significantly lower, and step length significantly larger. The knee joint showed significantly smaller maximum and minimum angles, and the mean angular velocity of knee flexion was significantly larger. The muscle activity levels of TA, VM, and BF increased significantly in comparison with land walking, although those of MG and RF did not significantly differ. Given our findings, it appears that buoyancy, lower cadence, and a moving floor influenced the muscle activity level of MG and RF at the same exercise intensity level and at the same velocity. These results show promise of becoming the basic data of choice for underwater walking exercise prescription.
The Feasibility and Usability of RunningCoach: A Remote Coaching System for Long-Distance Runners †
Bajcsy, Ruzena
2018-01-01
Studies have shown that about half of the injuries sustained during long-distance running involve the knee. Cadence (steps per minute) has been identified as a factor that is strongly associated with these running-related injuries, making it a worthwhile candidate for further study. As such, it is critical for long-distance runners to minimize their risk of injury by running at an appropriate running cadence. In this paper, we present the results of a study on the feasibility and usability of RunningCoach, a mobile health (mHealth) system that remotely monitors running cadence levels of runners in a continuous fashion, among other variables, and provides immediate feedback to runners in an effort to help them optimize their running cadence. PMID:29320436
ERIC Educational Resources Information Center
Varsamis, Panagiotis; Staikopoulos, Konstantinos; Kartasidou, Lefkothea
2012-01-01
One of the purposes of Rhythmic Auditory Stimulation (RAS) is to improve the control of dysfunctional movement patterns. This study aimed to extend the line of research by focussing on secondary students with mental retardation and cerebral palsy. According to the study's assumption, cadence can be controlled through a stable and low signal…
de Brito Fontana, Heiliane; Ruschel, Caroline; Dell'Antonio, Elisa; Haupenthal, Alessandro; Pereira, Gustavo Soares; Roesler, Helio
2018-04-01
The aim of this study was to analyze the effect of cadence, immersion level as well as body density on the vertical component (Fy max ) of ground reaction force (GRF) during stationary running (SR). In a controlled, laboratory study, thirty-two subjects ran at a wide range of cadences (85-210 steps/min) in water, immersed to the hip and to the chest, and on dry land. Fy max. was verified by a waterproof force measurement system and predicted based on a statistical model including cadence, immersion ratio and body density. The effect of cadence was shown to depend on the environment: while Fy max increases linearly with increasing cadence on land; in water, Fy max reaches a plateau at both hip and chest immersions. All factors analyzed, cadence, immersion level and body density affected Fy max significantly, with immersion (aquatic × land environment) showing the greatest effect. In water, different cadences may lead to bigger changes in Fy max than the changes obtained by moving subjects from hip to chest immersion. A regression model able to predict 69% of Fy max variability in water was proposed and validated. Cadence, Immersion and body density affect Fy max in a significant and non-independent way. Besides a model of potential use in the prescription of stationary running in water, our analysis provides insights into the different responses of GRF to changes in exercise parameters between land and aquatic environment. Copyright © 2018 Elsevier B.V. All rights reserved.
Associations between physical activity and mental health among bariatric surgical candidates
King, Wendy C.; Kalarchian, Melissa A.; Steffen, Kristine J.; Wolfe, Bruce M.; Elder, Katherine A.; Mitchell, James E.
2013-01-01
Objective This study aimed to examine associations between physical activity (PA) and mental health among adults undergoing bariatric surgery. Methods Cross sectional analysis was conducted on pre-operative data of 850 adults with ≥ class 2 obesity. PA was measured with a step activity monitor; mean daily steps, active minutes, and high-cadence minutes (proxy for moderate-vigorous intensity PA) were determined. Mental health functioning, depressive symptoms and treatment for depression or anxiety were measured with the Medical Outcomes Study 36-item Short Form, Beck Depression Inventory, and a study-specific questionnaire, respectively. Logistic regression analyses tested associations between PA and mental health indicators, controlling for potential confounders. Receiver operative characteristic analysis determined PA thresholds that best differentiated odds of each mental health indicator. Results Each PA parameter was significantly (P<.05) associated with a decreased odds of depressive symptoms and/or treatment for depression or anxiety, but not with impaired mental health functioning. After controlling for sociodemographics and physical health, only associations with treatment for depression and anxiety remained statistically significant. PA thresholds that best differentiated those who had vs. had not recently received treatment for depression or anxiety were <191 active minutes/day, <4750 steps/day, and <8 high-cadence minutes/day. Utilizing high-cadence minutes, compared to active minutes or steps, yielded the highest classification accuracy. Conclusion Adults undergoing bariatric surgery who meet relatively low thresholds of PA (e.g., ≥ 8 high-cadence minutes/day, representative of approximately one hour/week of moderate-vigorous intensity PA) are less likely to have recently received treatment for depression or anxiety compared to less active counterparts. PMID:23332532
De Nunzio, Alessandro M; Grasso, Margherita; Nardone, Antonio; Godi, Marco; Schieppati, Marco
2010-02-01
During the administration of timed bilateral alternate vibration to homonymous leg or trunk muscles during quiet upright stance, Parkinsonian (PD) patients undergo cyclic antero-posterior and medio-lateral transfers of the centre of foot pressure. This event might be potentially exploited for improving gait in these patients. Here, we tested this hypothesis by applying alternate muscle vibration during walking in PD. Fifteen patients and 15 healthy subjects walked on an instrumented walkway under four conditions: no vibration (no-Vib), and vibration of tibialis anterior (TA-Vib), soleus (Sol-Vib) and erector spinae (ES-Vib) muscles of both sides. Trains of vibration (internal frequency 100 Hz) were delivered to right and left side at alternating frequency of 10% above preferred step cadence. During vibration, stride length, cadence and velocity increased in both patients and healthy subjects, significantly so for ES-Vib. Stance and swing time tended to decrease. Width of support base increased with Sol-Vib or TA-Vib, but was unaffected by ES-Vib. Alternate ES vibration enhances gait velocity in PD. The stronger effect of ES over leg muscle vibration might depend on the relevance of the proprioceptive inflow from the trunk muscles and on the absence of adverse effects on the support base width. Trunk control is defective in PD. The effect of timed vibratory stimulation on gait suggests the potential use of trunk proprioceptive stimulation for tuning the central pattern generators for locomotion in PD. Copyright (c) 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
By counteracting gravity, triceps surae sets both kinematics and kinetics of gait
Honeine, Jean‐Louis; Schieppati, Marco; Gagey, Oliver; Do, Manh‐Cuong
2014-01-01
Abstract In the single‐stance phase of gait, gravity acting on the center of mass (CoM) causes a disequilibrium torque, which generates propulsive force. Triceps surae activity resists gravity by restraining forward tibial rotation thereby tuning CoM momentum. We hypothesized that time and amplitude modulation of triceps surae activity determines the kinematics (step length and cadence) and kinetics of gait. Nineteen young subjects participated in two experiments. In the gait initiation (GI) protocol, subjects deliberately initiated walking at different velocities for the same step length. In the balance‐recovery (BR) protocol, subjects executed steps of different length after being unexpectedly released from an inclined posture. Ground reaction force was recorded by a large force platform and electromyography of soleus, gastrocnemius medialis and lateralis, and tibialis anterior muscles was collected by wireless surface electrodes. In both protocols, the duration of triceps activity was highly correlated with single‐stance duration (GI, R2 = 0.68; BR, R2 = 0.91). In turn, step length was highly correlated with single‐stance duration (BR, R2 = 0.70). Control of CoM momentum was obtained by decelerating the CoM fall via modulation of amplitude of triceps activity. By modulation of triceps activity, the central nervous system (CNS) varied the position of CoM with respect to the center of pressure (CoP). The CoM‐CoP gap in the sagittal plane was determinant for setting the disequilibrium torque and thus walking velocity. Thus, by controlling the gap, CNS‐modified walking velocity (GI, R2 = 0.86; BR, R2 = 0.92). This study is the first to highlight that by merely counteracting gravity, triceps activity sets the kinematics and kinetics of gait. It also provides evidence that the surge in triceps activity during fast walking is due to the increased requirement of braking the fall of CoM in late stance in order to perform a smoother step‐to‐step transition. PMID:24744898
Kinematics gait disorder in men with fibromyalgia.
Heredia-Jimenez, Jose M; Soto-Hermoso, Victor M
2014-01-01
The aim of this study was to assess the kinematics disorder of gait in men with fibromyalgia. We studied 12 male with fibromyalgia and 14 healthy men. Each participant of the study walked five trials along a 18.6-m walkway. Fibromyalgia patients completed a Spanish version of Fibromyalgia Impact Questionnaire. Significant differences between fibromyalgia and control groups were found in velocity, stride length, and cadence. Gait parameters of men affected by fibromyalgia were impaired when compared to those of healthy group due to bradykinesia. According to previous studies to assess gait variables in female patients, the male with fibromyalgia also showed lower values of velocity, cadence, and stride length than healthy group but not reported significant differences in swing, stance, single, or double support phase.
Patterns of change in daily step counts, where does the change happen?
USDA-ARS?s Scientific Manuscript database
The purpose of this study was to examine the change in the average daily steps taken at different cadence (steps/min) levels when a change in total steps/day occurs. A total of 43 people participated in a one-week intervention with the goal to increase time spent in moderate-to-vigorous physical act...
The Effect of Auditory Cueing on the Spatial and Temporal Gait Coordination in Healthy Adults.
Almarwani, Maha; Van Swearingen, Jessie M; Perera, Subashan; Sparto, Patrick J; Brach, Jennifer S
2017-12-27
Walk ratio, defined as step length divided by cadence, indicates the coordination of gait. During free walking, deviation from the preferential walk ratio may reveal abnormalities of walking patterns. The purpose of this study was to examine the impact of rhythmic auditory cueing (metronome) on the neuromotor control of gait at different walking speeds. Forty adults (mean age 26.6 ± 6.0 years) participated in the study. Gait characteristics were collected using a computerized walkway. In the preferred walking speed, there was no significant difference in walk ratio between uncued (walk ratio = .0064 ± .0007 m/steps/min) and metronome-cued walking (walk ratio = .0064 ± .0007 m/steps/min; p = .791). A higher value of walk ratio at the slower speed was observed with metronome-cued (walk ratio = .0071 ± .0008 m/steps/min) compared to uncued walking (walk ratio = .0068 ± .0007 m/steps/min; p < .001). The walk ratio was less at faster speed with metronome-cued (walk ratio = .0060 ± .0009 m/steps/min) compared to uncued walking (walk ratio = .0062 ± .0009 m/steps/min; p = .005). In healthy adults, the metronome cues may become an attentional demanding task, and thereby disrupt the spatial and temporal integration of gait at nonpreferred speeds.
Shahraki, M; Sohrabi, M; Taheri Torbati, H R; Nikkhah, K; NaeimiKia, M
2017-01-01
Purpose: This study aimed to examine the effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis. Subjects and Methods: In this study, 18 subjects, comprising 4 males and 14 females with Multiple Sclerosis with expanded disability status scale of 3 to 6 were chosen. Subjects were selected by available and targeted sampling and were randomly divided into two experimental (n = 9) and control (n = 9) groups. Exercises were gait with rhythmic auditory stimulation by a metronome device, in addition to gait without stimulation for the experimental and control groups, respectively. Training was carried out for 3 weeks, with 30 min duration for each session 3 times a week. Stride length, stride time, double support time, cadence and gait speed were measured by motion analysis device. Results: There was a significant difference between stride length, stride time, double support time, cadence and gait speed in the experimental group, before and after the training. Furthermore, there was a significant difference between the experimental and control groups in the enhancement of stride length, stride time, cadence and gait speed in favor of the experimental group. While this difference was not significant for double support time. Conclusion: The results of this study showed that rhythmic auditory stimulation is an effective rehabilitation method to improve gait kinematic parameters in patients with multiple sclerosis.
Simoni, David; Rubbieri, Gaia; Baccini, Marco; Rinaldi, Lucio; Becheri, Dimitri; Forconi, Tatiana; Mossello, Enrico; Zanieri, Samanta; Marchionni, Niccolò; Di Bari, Mauro
2013-07-01
Dual task paradigm states that the introduction of a second task during a cognitive or motor performance results in a decreased performance in either task. Treadmill walk, often used in clinical applications of dual task testing, has never been compared to overground walk, to ascertain its susceptibility to interference from a second task. We compared the effects of overground and treadmill gait on dual task performance. Gait kinematic parameters and cognitive performance were obtained in 29 healthy older adults (mean age 75 years, 14 females) when they were walking freely on a sensorized carpet or during treadmill walking with an optoelectronic system, in single task or dual task conditions, using alternate repetition of letters as a cognitive verbal task. During overground walking, speed, cadence, step length stride length, and double support time (all with P value<0.001) and cognitive performance (number of correct words, P<0.001) decreased substantially from single to dual task testing. When subjects walked at a fixed speed on the treadmill, cadence decreased significantly (P=0.005), whereas cognitive performance remained unaffected. Both motor and cognitive performances decline during dual task testing with overground walking. Conversely, cognitive performance remains unaffected in dual task testing on the treadmill. In the light of current dual task paradigm, these findings may have relevant implication for our understanding of motor control, as they suggest that treadmill walk does not involve brain areas susceptible to interference from the introduction of a cognitive task. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lee, Seung-Mi; Cynn, Heon-Seock; Yoon, Tae-Lim; Lee, Ji-Hyun
2017-09-01
The objective of this study was to investigate the effects of Heel-Raise-Lower Exercise (HRLE) interventions on the strength of plantarflexion, balance, and gait parameters in people with stroke. Specifically, this study compared the two different HRLEs to identify whether heels raise-lower with forefoot on a block (HRB) is more effective or ineffective to enhance strength and functional capacities than heels raise-lower on a level floor (HRL) exercise in people with stroke. Repetitive heel raise-lower is a common exercise for improving the strength and power of ankle plantarflexors. It is a simple movement, requires no equipment, and can be performed at home. Each group of 10 people with stroke was given either HRB training or HRL training. The subjects performed the exercise 100 times per day, 5 days per week for 6 weeks. The strength of plantarflexors, static/dynamic balance, and gait parameters were measured using the manual muscle test (MMT), a Biodex Balance System (BBS) SD, and the GAITRite system. After 6 weeks of treatment, there were significant increases in the plantarflexors strength in both groups: by 34% in the HRB group and by 21% in the HRL group. Static and dynamic balance and gait speed also increased significantly in both groups. However, cadence, the paretic side single limb support period (SLSP), paretic side step length, and paretic side stride length significantly increased only in the HRB group. The HRB improved significantly the plantar flexor strength of the paretic side, gait speed, and cadence compared to the HRL.
Holewijn, R M; Kingma, I; de Kleuver, M; Schimmel, J J P; Keijsers, N L W
2017-09-01
Previous studies show a limited alteration of gait at normal walking speed after spinal fusion surgery for adolescent idiopathic scoliosis (AIS), despite the presumed essential role of spinal mobility during gait. This study analyses how spinal fusion affects gait at more challenging walking speeds. More specifically, we investigated whether thoracic-pelvic rotations are reduced to a larger extent at higher gait speeds and whether compensatory mechanisms above and below the stiffened spine are present. 18 AIS patients underwent gait analysis at increasing walking speeds (0.45 to 2.22m/s) before and after spinal fusion. The range of motion (ROM) of the upper (thorax, thoracic-pelvic and pelvis) and lower body (hip, knee and ankle) was determined in all three planes. Spatiotemporal parameters of interest were stride length and cadence. Spinal fusion diminished transverse plane thoracic-pelvic ROM and this difference was more explicit at higher walking speeds. Transversal pelvis ROM was also decreased but this effect was not affected by speed. Lower body ROM, step length and cadence remained unaffected. Despite the reduction of upper body ROM after spine surgery during high speed gait, no altered spatiotemporal parameters or increased compensatory ROM above or below the fusion (i.e. in the shoulder girdle or lower extremities) was identified. Thus, it remains unclear how patients can cope so well with such major surgery. Future studies should focus on analyzing the kinematics of individual spinal levels above and below the fusion during gait to investigate possible compensatory mechanisms within the spine. Copyright © 2017 Elsevier B.V. All rights reserved.
Larsen, Peter; Laessoe, Uffe; Rasmussen, Sten; Graven-Nielsen, Thomas; Berre Eriksen, Christian; Elsoe, Rasmus
2017-01-01
Despite the high number of studies evaluating the outcomes following tibial shaft fractures, the literature lacks studies including objective assessment of patients' recovery regarding gait pattern. The purpose of the present study was to evaluate whether gait patterns at 6 and 12 months post-operatively following intramedullary nailing of a tibial shaft fracture are different compared with a healthy reference population. The study design was a prospective cohort study. The primary outcome measurement was the gait patterns at 6 and 12 months post-operatively measured with a 6-metre-long pressure-sensitive mat. The mat registers footprints and present gait speed, cadence as well as temporal and spatial parameters of the gait cycle. Gait patterns were compared to a healthy reference population. 49 patients were included with a mean age of 43.1 years (18-79 years). Forty-three patients completed the 12-month follow-up (88%). Gait speed and cadence were significantly increased between the 6- and 12-month follow-up (P<0.001). At 6-month follow-up, patients showed considerable asymmetry in the injured leg compared with the non-injured leg: single-support time 12.8% shorter, swing-time 12.8% longer, step-length 11.9% shorter, and rotation of the foot increased by 32.3%. At the 12-month follow-up, gait asymmetry become almost normalized compared to a healthy reference group. In patients treated by intramedullary nailing following a tibial shaft fracture, gait asymmetry accompanied with slower speed and cadence are common during the first 6 months and become normalized compared with a healthy reference population between 6 and 12 months post-operatively. Copyright © 2016 Elsevier B.V. All rights reserved.
Mehta, Saurabh; Szturm, Tony; El-Gabalawy, Hani S.
2011-01-01
ABSTRACT Purpose: The objective of this study was to examine the effects of intra-articular corticosteroid injection (ICI) on ipsilateral knee flexion/extension, ankle dorsiflexion/plantarflexion (DF/PF), and hip abduction/adduction (abd/add) during stance phase in people with an acute exacerbation of rheumatoid arthritis (RA) of the knee joint. The study also assessed the effects of ICI on spatiotemporal parameters of gait and functional status in this group. Methods: Nine people with an exacerbation of RA of the knee were recruited. Kinematic and spatiotemporal gait parameters were obtained for each participant. Knee-related functional status was assessed using the Knee injury and Osteoarthritis Outcome Score (KOOS). Spatiotemporal gait parameters and joint angles (knee flexion, ankle DF/PF, hip abd/add) of the affected side were compared pre- and post-ICI. Results: Data for eight people were available for analysis. Median values for knee flexion and ankle PF increased significantly following ICI. Gait parameters of cadence, velocity, bilateral stride length, bilateral step length, step width, double-support percentage, and step time on the affected side also showed improvement. Pain and knee-related functional status as measured by the KOOS showed improvement. Conclusions: This study demonstrated a beneficial short-term effect of ICI on knee-joint movements, gait parameters, and knee-related functional status in people with acute exacerbation of RA of the knee. PMID:22942516
Novak, A C; Komisar, V; Maki, B E; Fernie, G R
2016-01-01
The incidence of stairway falls and related injuries remains persistently high; however, the risk of stair injuries could be reduced through improved stairway design. The current study investigated dynamic balance control during stair descent and the effects of varying the step geometry. Data were collected from 20 healthy young and 20 older adults as they descended three staircases (riser heights of 7, 7.5 and 8 inches (178, 190 and 203 mm, respectively)). At each riser height, the tread run length was varied between 8 and 14 inches (203 mm and 356 mm) in one-inch (25 mm) increments. Kinematic data provided measures of segmental and whole-body dynamic control. Results demonstrated that older adults had greater lateral tilt of the upper body than young adults, but actually had larger margins of stability than the young in the antero-posterior direction as a result of their slower cadence. Nonetheless, for both age groups, the longer run lengths were found to provide the largest margins of stability. In addition, increase in run length and decrease in riser height tended to reduce forward upper body tilt. These results help to explain the underlying biomechanical factors associated with increased risk of falls and the relationship with step geometry. Considering the importance of stair ambulation in maintaining independence and activity in the community, this study highlights the definite need for safer stair design standards to minimize the risk of falls and increase stair safety across the lifespan. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Thomas, L K; Hislop, H J; Waters, R L
1980-04-01
Fifteen patients were tested before and after treatment in a multifaceted inpatient program for chronic low back pain to determine if a gradually progressive activity program affected gait performance and physiological capacity. Before treatment, all patients demonstrated decreased physiological conditioning by higher-than-expected values for oxygen consumption and heart rate and by lower-than-normal gait velocity, stride length, and cadence. After treatment, an increase in mean walking velocity of 19 meters/minute reflected parallel gains in cadence and stride length. Improved mechanical performance resulted in improved "energetics." Energy spent per unit of distance walked decreased by 18 percent after treatment, providing a useful measure of increased physiological efficiency. Results indicated that patients with chronic low back disability can derive significant conditioning effects from an exercise program based on general function.
Niederer, Daniel; Bumann, Anke; Mühlhauser, Yvonne; Schmitt, Mareike; Wess, Katja; Engeroff, Tobias; Wilke, Jan; Vogt, Lutz; Banzer, Winfried
2018-05-01
Mobile phone tasks like texting, typing, and dialling during walking are known to impact gait characteristics. Beyond that, the effects of performing smartphone-typical actions like researching and taking self-portraits (selfie) on gait have not been investigated yet. We aimed to investigate the effects of smartphone usage on relevant gait characteristics and to reveal potential association of basic cognitive and walking plus smartphone dual-task abilities. Our cross-sectional, cross-over study on physically active, healthy participants was performed on two days, interrupted by a 24-h washout in between. Assessments were: 1) Cognitive testing battery consisting of the trail making test (TMT A and B) and the Stroop test 2) Treadmill walking under five smartphone usage conditions: no use (control condition), reading, dialling, internet searching and taking a selfie in randomized order. Kinematic and kinetic gait characteristics were assessed to estimate conditions influence. In our sample of 36 adults (24.6 ± 1 years, 23 female, 13 male), ANCOVAs followed by post-hoc t-tests revealed that smartphone usage impaired all tested gait characteristics: gait speed (decrease, all conditions): F = 54.7, p < 0.001; cadence (increase, all): F = 38.3, p < 0.001; double stride length (decrease, all): F = 33.8, p < 0.001; foot external rotation (increase during dialling, researching, selfie): F = 16.7, p < 0.001; stride length variability (increase): F = 11.7, p < 0.001; step width variability (increase): F = 5.3, p < 0.001; step width (Friedmann test and Wilcoxon Bonferroni-Holm-corrected post-hoc analyses, increase): Z = -2.3 to -2.9; p < 0.05); plantar pressure proportion (increase during reading and researching) (Z = -2.9; p < 0.01). The ability to keep usual gait quality during smartphone usage was systematically associated with the TMT B time regarding cadence and double stride length for reading (r = -0.37), dialling (r = -0.35) and taking a selfie (r = -0.34). Smartphone usage substantially impacts walking characteristics in most situations. Changes of gait patterns indicate higher cognitive loads and lower awareness. Copyright © 2018 Elsevier B.V. All rights reserved.
How many steps/day are enough? For older adults and special populations
2011-01-01
Older adults and special populations (living with disability and/or chronic illness that may limit mobility and/or physical endurance) can benefit from practicing a more physically active lifestyle, typically by increasing ambulatory activity. Step counting devices (accelerometers and pedometers) offer an opportunity to monitor daily ambulatory activity; however, an appropriate translation of public health guidelines in terms of steps/day is unknown. Therefore this review was conducted to translate public health recommendations in terms of steps/day. Normative data indicates that 1) healthy older adults average 2,000-9,000 steps/day, and 2) special populations average 1,200-8,800 steps/day. Pedometer-based interventions in older adults and special populations elicit a weighted increase of approximately 775 steps/day (or an effect size of 0.26) and 2,215 steps/day (or an effect size of 0.67), respectively. There is no evidence to inform a moderate intensity cadence (i.e., steps/minute) in older adults at this time. However, using the adult cadence of 100 steps/minute to demark the lower end of an absolutely-defined moderate intensity (i.e., 3 METs), and multiplying this by 30 minutes produces a reasonable heuristic (i.e., guiding) value of 3,000 steps. However, this cadence may be unattainable in some frail/diseased populations. Regardless, to truly translate public health guidelines, these steps should be taken over and above activities performed in the course of daily living, be of at least moderate intensity accumulated in minimally 10 minute bouts, and add up to at least 150 minutes over the week. Considering a daily background of 5,000 steps/day (which may actually be too high for some older adults and/or special populations), a computed translation approximates 8,000 steps on days that include a target of achieving 30 minutes of moderate-to-vigorous physical activity (MVPA), and approximately 7,100 steps/day if averaged over a week. Measured directly and including these background activities, the evidence suggests that 30 minutes of daily MVPA accumulated in addition to habitual daily activities in healthy older adults is equivalent to taking approximately 7,000-10,000 steps/day. Those living with disability and/or chronic illness (that limits mobility and or/physical endurance) display lower levels of background daily activity, and this will affect whole-day estimates of recommended physical activity. PMID:21798044
Kim, Soo Ji; Kwak, Eunmi E; Park, Eun Sook; Cho, Sung-Rae
2012-10-01
To investigate the effects of rhythmic auditory stimulation (RAS) on gait patterns in comparison with changes after neurodevelopmental treatment (NDT/Bobath) in adults with cerebral palsy. A repeated-measures analysis between the pretreatment and posttreatment tests and a comparison study between groups. Human gait analysis laboratory. Twenty-eight cerebral palsy patients with bilateral spasticity participated in this study. The subjects were randomly allocated to either neurodevelopmental treatment (n = 13) or rhythmic auditory stimulation (n = 15). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment was performed three sessions per week for three weeks. Temporal and kinematic data were analysed before and after the intervention. Rhythmic auditory stimulation was provided using a combination of a metronome beat set to the individual's cadence and rhythmic cueing from a live keyboard, while neurodevelopmental treatment was implemented following the traditional method. Temporal data, kinematic parameters and gait deviation index as a measure of overall gait pathology were assessed. Temporal gait measures revealed that rhythmic auditory stimulation significantly increased cadence, walking velocity, stride length, and step length (P < 0.05). Kinematic data demonstrated that anterior tilt of the pelvis and hip flexion during a gait cycle was significantly ameliorated after rhythmic auditory stimulation (P < 0.05). Gait deviation index also showed modest improvement in cerebral palsy patients treated with rhythmic auditory stimulation (P < 0.05). However, neurodevelopmental treatment showed that internal and external rotations of hip joints were significantly improved, whereas rhythmic auditory stimulation showed aggravated maximal internal rotation in the transverse plane (P < 0.05). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment elicited differential effects on gait patterns in adults with cerebral palsy.
Ko, Mansoo; Hughes, Lynne; Lewis, Harriet
2012-03-01
The impact of walking speed has not been evaluated as a feasible outcome measure associated with peak plantar pressure (PPP) distribution, which may result in tissue damage in persons with diabetic foot complications. The objective of this pilot study was to determine the walking speed and PPP distribution during barefoot walking in persons with diabetes. Nine individuals with diabetes and nine age-gender matched individuals without diabetes participated in this study. Each individual was marked at 10 anatomical landmarks for vibration and tactile pressure sensation tests to determine the severity of sensory deficits on the plantar surface of the dominant limb foot. A steady state walking speed, PPP, the fore and rear foot (F/R) PPP ratio and gait variables were measured during barefoot walking. Persons with diabetes had a significantly slower walking speed than the age-gender matched group resulting in a significant reduction of PPP at the F/R foot during barefoot walking (p < 0.05). There was no significant difference in F/R foot PPP ratio in the diabetic group compared with the age-gender matched group during barefoot walking (p > 0.05). There was a significant difference between the diabetic and non-diabetic groups for cadence, step time, toe out angle and the anterior-posterior excursion (APE) for centre of force (p < 0.05). Walking speed may be a potential indicator for persons with diabetes to identify PPP distribution during barefoot walking in a diabetic foot. However, the diabetic group demonstrated a more cautious walking pattern than the age-gender matched group by decreasing cadence, step length and APE, and increasing step time and toe in/out angle. People with diabetes may reduce the risk of foot ulcerations as long as they are able to prevent severe foot deformities such as callus, hammer toe or charcot foot. Copyright © 2011 John Wiley & Sons, Ltd.
Fearon, Angela; Neeman, Teresa; Smith, Paul; Scarvell, Jennie; Cook, Jill
2017-02-01
What are the functional differences between people with greater trochanteric pain syndrome (GT), hip osteoarthritis (OA) or an asymptomatic population as measured by walking, Time Up and Go, single leg standing and strength? Cross sectional study with blinded measurers. 38 participants with GT, 20 with end stage hip OA and 21 asymptomatic healthy control (AS) participants. All participants were women. Pain (numeric rating scale), Walking speed (m/s), cadence (steps/min) and step length (m) measured via the 10m walk test and the Timed Up and Go; balance via single leg stance (s) duration; and hip abduction, adduction, medial and lateral rotation strength, standardized to body mass (BM) via the body mass average index (BMavg), measured via a wall mounted dynamometer. The two symptomatic groups reported similar pain levels (p=0.226), more pain then the AS group (p<0.000). Compared to the AS participants, participants with GT or hip OA demonstrated lower walking speed (10mwt and TUG, p<0.001), lower cadence and shorter duration single leg stance on the affected leg (p<0.05). Participants with GT or hip OA also demonstrated bilaterally weaker hip abduction than the AS group (p≤0.005). Compared to AS and GT participants, participants with hip OA demonstrated adduction weakness on the affected side (p=0.008 and p=0.002 respectively). There is a significant level of dysfunction and impairments associated with GT and hip OA. As activity limitations do not appear to be differentiated by structural impairments, we suggest that pain, rather than the underlying pathology may be the driving impairment that leads to walking and single leg standing dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.
Comparing the efficacy of metronome beeps and stepping stones to adjust gait: steps to follow!
Bank, Paulina J M; Roerdink, Melvyn; Peper, C E
2011-03-01
Acoustic metronomes and visual targets have been used in rehabilitation practice to improve pathological gait. In addition, they may be instrumental in evaluating and training instantaneous gait adjustments. The aim of this study was to compare the efficacy of two cue types in inducing gait adjustments, viz. acoustic temporal cues in the form of metronome beeps and visual spatial cues in the form of projected stepping stones. Twenty healthy elderly (aged 63.2 ± 3.6 years) were recruited to walk on an instrumented treadmill at preferred speed and cadence, paced by either metronome beeps or projected stepping stones. Gait adaptations were induced using two manipulations: by perturbing the sequence of cues and by imposing switches from one cueing type to the other. Responses to these manipulations were quantified in terms of step-length and step-time adjustments, the percentage correction achieved over subsequent steps, and the number of steps required to restore the relation between gait and the beeps or stepping stones. The results showed that perturbations in a sequence of stepping stones were overcome faster than those in a sequence of metronome beeps. In switching trials, switching from metronome beeps to stepping stones was achieved faster than vice versa, indicating that gait was influenced more strongly by the stepping stones than the metronome beeps. Together these results revealed that, in healthy elderly, the stepping stones induced gait adjustments more effectively than did the metronome beeps. Potential implications for the use of metronome beeps and stepping stones in gait rehabilitation practice are discussed.
Novak, Peter; Novak, Vera
2006-05-04
Previous studies have suggested that impaired proprioceptive processing in the striatum may contribute to abnormal gait in Parkinson's disease (PD). This pilot study assessed the effects of enhanced proprioceptive feedback using step-synchronized vibration stimulation of the soles (S-VS) on gait in PD. S-VS was used in 8 PD subjects (3 women and 5 men, age range 44-79 years, on medication) and 8 age-matched healthy subjects (5 women and 3 men). PD subjects had mild or moderate gait impairment associated with abnormal balance, but they did not have gait freezing. Three vibratory devices (VDs) were embedded in elastic insoles (one below the heel and two below the forefoot areas) inserted into the shoes. Each VD operates independently and has a pressure switch that activates the underlying vibratory actuator. The VD delivered the 70-Hz suprathreshold vibration pulse upon touch by the heel or forefoot, and the vibration pulse was deactivated upon respective push-offs. Six-minute hallway walking was studied with and without S-VS. Gait characteristics were measured using the force-sensitive foot switches. The primary outcome was the stride variability expressed as a coefficient of variation (CV), a measure of gait steadiness. Secondary outcome measures were walking distance and speed, stride length and duration, cadence, stance, swing and double support duration, and respective CVs (if applicable). The walking speed (p < 0.04) and the CV of the stride interval (p < 0.02) differed between the groups and S-VS conditions. In the PD group, S-VS decreased stride variability (p < 0.002), increased walking speed (p < 0.0001), stride duration (p < 0.01), stride length (p < 0.0002), and cadence (p < 0.03). In the control group, S-VS decreased stride variability (p < 0.006) and increased gait speed (p < 0.03), but other locomotion parameters were not significantly altered. Augmented sensory feedback improves parkinsonian gait steadiness in the short-term setting. Because the suprathreshold stimulation prevented blinding of subjects, the learning effect and increased attention can be a confounding factor underlying results. Long-term studies are needed to establish the clinical value of the S-VS.
Donath, Lars; Faude, Oliver; Bridenbaugh, Stephanie A; Roth, Ralf; Soltermann, Martin; Kressig, Reto W; Zahner, Lukas
2014-07-01
This study examined transfer effects of fall training on fear of falling (Falls Efficacy Scale-International [FES-I]), balance performance, and spatiotemporal gait characteristics in older adults. Eighteen community-dwelling older adults (ages 65-85) were randomly assigned to an intervention or control group. The intervention group completed 12 training sessions (60 min, 6 weeks). During pre- and posttesting, we measured FES-I, balance performance (double limb, closed eyes; single limb, open eyes; double limb, open eyes with motor-interfered task), and gait parameters (e.g., velocity; cadence; stride time, stride width, and stride length; variability of stride time and stride length) under single- and motor-interfered tasks. Dual tasks were applied to appraise improvements of cognitive processing during balance and gait. FES-I (p = .33) and postural sway did not significantly change (0.36 < p < .79). Trends toward significant interaction effects were found for step width during normal walking and stride length variability during the motor dual task (p = .05, ηp 2 = .22). Fall training did not sufficiently improve fear of falling, balance, or gait performance under single- or dual-task conditions in healthy older adults.
Roerdink, Melvyn; Bank, Paulina J M; Peper, C Lieke E; Beek, Peter J
2011-04-01
Acoustic rhythms are frequently used in gait rehabilitation, with positive instantaneous and prolonged transfer effects on various gait characteristics. The gait modifying ability of acoustic rhythms depends on how well gait is tied to the beat, which can be assessed with measures of relative timing of auditory-motor coordination. We examined auditory-motor coordination in 20 healthy elderly individuals walking to metronome beats with pacing frequencies slower than, equal to, and faster than their preferred cadence. We found that more steps were required to adjust gait to the beat, the more the metronome rate deviated from the preferred cadence. Furthermore, participants anticipated the beat with their footfalls to various degrees, depending on the metronome rate; the faster the tempo, the smaller the phase advance or phase lead. Finally, the variability in the relative timing between footfalls and the beat was smaller for metronome rates closer to the preferred cadence, reflecting superior auditory-motor coordination. These observations have three practical implications. First, instantaneous effects of acoustic stimuli on gait characteristics may typically be underestimated given the considerable number of steps required to attune gait to the beat in combination with the usual short walkways. Second, a systematic phase lead of footfalls to the beat does not necessarily reflect a reduced ability to couple gait to the metronome. Third, the efficacy of acoustic rhythms to modify gait depends on metronome rate. Gait is coupled best to the beat for metronome rates near the preferred cadence. Copyright © 2011 Elsevier B.V. All rights reserved.
Effects of Foot Strike and Step Frequency on Achilles Tendon Stress During Running.
Lyght, Michael; Nockerts, Matthew; Kernozek, Thomas W; Ragan, Robert
2016-08-01
Achilles tendon (AT) injuries are common in runners. The AT withstands high magnitudes of stress during running which may contribute to injury. Our purpose was to examine the effects of foot strike pattern and step frequency on AT stress and strain during running utilizing muscle forces based on a musculoskeletal model and subject-specific ultrasound-derived AT cross-sectional area. Nineteen female runners performed running trials under 6 conditions, including rearfoot strike and forefoot strike patterns at their preferred cadence, +5%, and -5% preferred cadence. Rearfoot strike patterns had less peak AT stress (P < .001), strain (P < .001), and strain rate (P < .001) compared with the forefoot strike pattern. A reduction in peak AT stress and strain were exhibited with a +5% preferred step frequency relative to the preferred condition using a rearfoot (P < .001) and forefoot (P=.005) strike pattern. Strain rate was not different (P > .05) between step frequencies within each foot strike condition. Our results suggest that a rearfoot pattern may reduce AT stress, strain, and strain rate. Increases in step frequency of 5% above preferred frequency, regardless of foot strike pattern, may also lower peak AT stress and strain.
The influence of the Re-Link Trainer on gait symmetry in healthy adults.
Ward, Sarah; Wiedemann, Lukas; Stinear, Cathy; Stinear, James; McDaid, Andrew
2017-07-01
Walking function post-stroke is characterized by asymmetries in gait cycle parameters and joint kinematics. The Re-Link Trainer is designed to provide kinematic constraint to the paretic lower limb, to guide a physiologically normal and symmetrical gait pattern. The purpose of this pilot study was to assess the immediate influence of the Re-Link Trainer on measures of gait symmetry in healthy adults. Participants demonstrated a significantly lower cadence and a 62% reduction in walking speed in the Re-Link Trainer compared to normal walking. The step length ratio had a significant increase from 1.0 during normal walking to 2.5 when walking in the Re-Link Trainer. The results from this pilot study suggest in its current iteration the Re-Link Trainer imposes an asymmetrical constraint on lower limb kinematics.
Early presentation of gait impairment in Wolfram Syndrome
2012-01-01
Background Classically characterized by early onset insulin-dependent diabetes mellitus, optic atrophy, deafness, diabetes insipidus, and neurological abnormalities, Wolfram syndrome (WFS) is also associated with atypical brainstem and cerebellar findings in the first decade of life. As such, we hypothesized that gait differences between individuals with WFS and typically developing (TD) individuals may be detectable across the course of the disease. Methods Gait was assessed for 13 individuals with WFS (min 6.4 yrs, max 25.8 yrs) and 29 age-matched, typically developing individuals (min 5.6 yrs, max 28.5 yrs) using a GAITRite ® walkway system. Velocity, cadence, step length, base of support and double support time were compared between groups. Results Across all tasks, individuals with WFS walked slower (p = 0.03), took shorter (p ≤ 0.001) and wider (p ≤ 0.001) steps and spent a greater proportion of the gait cycle in double support (p = 0.03) compared to TD individuals. Cadence did not differ between groups (p = 0.62). Across all tasks, age was significantly correlated with cadence and double support time in the TD group but only double support time was correlated with age in the WFS group and only during preferred pace forward (rs= 0.564, p = 0.045) and dual task forward walking (rs= 0.720, p = 0.006) tasks. Individuals with WFS also had a greater number of missteps during tandem walking (p ≤ 0.001). Within the WFS group, spatiotemporal measures of gait did not correlate with measures of visual acuity. Balance measures negatively correlated with normalized gait velocity during fast forward walking (rs = −0.59, p = 0.03) and percent of gait cycle in double support during backward walking (rs = −0.64, p = 0.03). Conclusions Quantifiable gait impairments can be detected in individuals with WFS earlier than previous clinical observations suggested. These impairments are not fully accounted for by the visual or balance deficits associated with WFS, and may be a reflection of early cerebellar and/or brainstem abnormalities. Effective patient-centered treatment paradigms could benefit from a more complete understanding of the progression of motor and other neurological symptom presentation in individuals with WFS. PMID:23217193
Dual-tasks and walking fast: relationship to extra-pyramidal signs in advanced Alzheimer disease.
Camicioli, Richard; Bouchard, Thomas; Licis, Lisa
2006-10-25
Extra-pyramidal signs (EPS) and cadence predicted falls risk in patients with advanced Alzheimer disease (AD). Dual task performance predicts falls with variable success. Dual-task performance and walking fast were examined in advanced AD patients with EPS (EPS+, >3 modified Unified Parkinson's Disease Rating Scale [UPDRS] signs) or without EPS (EPS-, three or less UPDRS signs). Demographics, mental and functional status, behavioral impairment, EPS, and quantitative gait measures (GaitRite) were determined. The effects of an automatic dual-task (simple counting) and of walking fast on spatial and temporal gait characteristics were compared between EPS+ and EPS- subjects using a repeated measures design. Cadence decreased, while stride time, swing time and variability in swing time increased with the dual task. Results were insignificant after adjusting for secondary task performance. With walking fast, speed, cadence and stride length increased while stride time, swing time and double support time decreased. Although EPS+ subjects were slower and had decreased stride length, dual task and walking fast effects did not differ from EPS- subjects. Patient characteristics, the type of secondary task and the specific gait measures examined vary in the literature. In this moderately to severely demented population, EPS did not affect "unconscious" (dual task) or "conscious" (walking fast) gait modulation. Given their high falls risk, and retained ability to modulate walking, EPS+ AD patients may be ideal candidates for interventions aimed at preventing falls.
Balance and gait in children with dyslexia.
Moe-Nilssen, Rolf; Helbostad, Jorunn L; Talcott, Joel B; Toennessen, Finn Egil
2003-05-01
Tests of postural stability have provided some evidence of a link between deficits in gross motor skills and developmental dyslexia. The ordinal-level scales used previously, however, have limited measurement sensitivity, and no studies have investigated motor performance during walking in participants with dyslexia. The purpose of this study was to investigate if continuous-scaled measures of standing balance and gait could discriminate between groups of impaired and normal readers when investigators were blind to group membership during testing. Children with dyslexia ( n=22) and controls ( n=18), aged 10-12 years, performed walking tests at four different speeds (slow-preferred-fast-very fast) on an even and an uneven surface, and tests of unperturbed and perturbed body sway during standing. Body movements were registered by a triaxial accelerometer over the lower trunk, and measures of reaction time, body sway, walking speed, step length and cadence were calculated. Results were controlled for gender differences. Tests of standing balance with eyes closed did not discriminate between groups. All unperturbed standing tests with eyes open showed significant group differences ( P<0.05) and classified correctly 70-77.5% of the subjects into their respective groups. Mean walking speed during very fast walking on both flat and uneven surface was > or =0.2 m/s ( P< or =0.01) faster for controls than for the group with dyslexia. This test classified 77.5% and 85% of the subjects correctly on flat and uneven surface, respectively. Cadence at preferred or very fast speed did not differ statistically between groups, but revealed significant group differences when all subjects were compared at a normalised walking speed ( P< or =0.04). Very fast walking speed as well as cadence at a normalised speed discriminated better between groups when subjects were walking on an uneven surface compared to a flat floor. Continuous-scaled walking tests performed in field settings may be suitable for motor skill assessment as a component of a screening tool for developmental dyslexia.
Fortune, Emma; Lugade, Vipul; Morrow, Melissa; Kaufman, Kenton
2014-01-01
A subject-specific step counting method with a high accuracy level at all walking speeds is needed to assess the functional level of impaired patients. The study aim was to validate step counts and cadence calculations from acceleration data by comparison to video data during dynamic activity. Custom-built activity monitors, each containing one tri-axial accelerometer, were placed on the ankles, thigh, and waist of 11 healthy adults. ICC values were greater than 0.98 for video inter-rater reliability of all step counts. The activity monitoring system (AMS) algorithm demonstrated a median (interquartile range; IQR) agreement of 92% (8%) with visual observations during walking/jogging trials at gait velocities ranging from 0.1 m/s to 4.8 m/s, while FitBits (ankle and waist), and a Nike Fuelband (wrist) demonstrated agreements of 92% (36%), 93% (22%), and 33% (35%), respectively. The algorithm results demonstrated high median (IQR) step detection sensitivity (95% (2%)), positive predictive value (PPV) (99% (1%)), and agreement (97% (3%)) during a laboratory-based simulated free-living protocol. The algorithm also showed high median (IQR) sensitivity, PPV, and agreement identifying walking steps (91% (5%), 98% (4%), and 96% (5%)), jogging steps (97% (6%), 100% (1%), and 95% (6%)), and less than 3% mean error in cadence calculations. PMID:24656871
Fortune, Emma; Lugade, Vipul; Morrow, Melissa; Kaufman, Kenton
2014-06-01
A subject-specific step counting method with a high accuracy level at all walking speeds is needed to assess the functional level of impaired patients. The study aim was to validate step counts and cadence calculations from acceleration data by comparison to video data during dynamic activity. Custom-built activity monitors, each containing one tri-axial accelerometer, were placed on the ankles, thigh, and waist of 11 healthy adults. ICC values were greater than 0.98 for video inter-rater reliability of all step counts. The activity monitoring system (AMS) algorithm demonstrated a median (interquartile range; IQR) agreement of 92% (8%) with visual observations during walking/jogging trials at gait velocities ranging from 0.1 to 4.8m/s, while FitBits (ankle and waist), and a Nike Fuelband (wrist) demonstrated agreements of 92% (36%), 93% (22%), and 33% (35%), respectively. The algorithm results demonstrated high median (IQR) step detection sensitivity (95% (2%)), positive predictive value (PPV) (99% (1%)), and agreement (97% (3%)) during a laboratory-based simulated free-living protocol. The algorithm also showed high median (IQR) sensitivity, PPV, and agreement identifying walking steps (91% (5%), 98% (4%), and 96% (5%)), jogging steps (97% (6%), 100% (1%), and 95% (6%)), and less than 3% mean error in cadence calculations. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
VizieR Online Data Catalog: 61 main-sequence and subgiant oscillations (Appourchaux+, 2012)
NASA Astrophysics Data System (ADS)
Appourchaux, T.; Chaplin, W. J.; Garcia, R. A.; Gruberbauer, M.; Verner, G. A.; Antia, H. M.; Benomar, O.; Campante, T. L.; Davies, G. R.; Deheuvels, S.; Handberg, R.; Hekker, S.; Howe, R.; Regulo, C.; Salabert, D.; Bedding, T. R.; White, T. R.; Ballot, J.; Mathur, S.; Silva Aguirre, V.; Elsworth, Y. P.; Basu, S.; Gilliland, R. L.; Christensen-Dalsgaard, J.; Kjeldsen, H.; Uddin, K.; Stumpe, M. C.; Barclay, T.
2017-11-01
Kepler observations are obtained in two different operating modes: long cadence (LC) and short cadence (SC) (Gilliland et al., 2010ApJ...713L.160G; Jenkins et al., 2010ApJ...713L..87J). This work is based on SC data. For the brightest stars (down to Kepler magnitude, Kp~=12), SC observations can be obtained for a limited number of stars (up to 512 at any given time) with a faster sampling cadence of 58.84876s (Nyquist frequency of ~8.5mHz), which permits a more precise transit timing and the performance of asteroseismology. Kepler observations are divided into three-month-long quarters (Q). A subset of 61 solar-type stars observed during quarters Q5-Q7 (March 22, 2010 to December 22, 2010) were chosen because they have oscillation modes with high signal-to-noise ratios. This length of data gives a frequency resolution of about 0.04uHz. (2 data files).
Vickers, Joshua; Reed, Austin; Decker, Robert; Conrad, Bryan P; Olegario-Nebel, Marissa; Vincent, Heather K
2017-03-01
Despite the ubiquity of gait assessment in clinic and research, it is unclear how observation impacts gait, particularly in persons with chronic pain and psychological stress. We compared temporal spatial gait patterns in people with and without chronic low back pain (CLBP) when they were aware and unaware of being observed. This was a repeated-measures, deception study in 55 healthy persons (32.0±12.4 yr, 24.2±2.7kg/m 2 ) and persons with CLBP (51.9±17.9 yr, 27.8±4.4kg/m 2 ). Participants performed one condition in which they were unaware of observation (UNW), and three conditions under investigator observation: (1) aware of observation (AWA), (2) investigators watching cadence, (3) investigators watching step length. Participants walked across an 8.4m gait mat, while temporal spatial parameters of gait were collected. The Medical Outcomes Short Form (SF-12), Beck Depression Inventory (BDI), State Trait Anxiety Inventory (STAI), and Oswestry Disability Index (ODI) were completed. Significant condition by group interactions were found for velocity and step length (p<0.05). Main effects of study condition existed for all gait variables except for step width. Main effects of group (healthy, LBP) were significant for all variables except for step width (p<0.05). Regression analyses revealed that after accounting for age, sex, and SF-12 mental component score, BDI scores predict velocity changes during walking from the UNW to AWA conditions. These findings show that people change their gait patterns when being observed. Gait analyses may require additional trials before data can reliably be interpreted and used for clinical decision-making. Copyright © 2017 Elsevier B.V. All rights reserved.
Coelho, Flávia Gomes de Melo; Stella, Florindo; de Andrade, Larissa Pires; Barbieri, Fabio Augusto; Santos-Galduróz, Ruth Ferreira; Gobbi, Sebastião; Costa, José Luiz Riani; Gobbi, Lilian Teresa Bucken
2012-09-01
The decline in frontal cognitive functions contributes to alterations of gait and increases the risk of falls in patients with dementia, a category which included Alzheimer's disease (AD). The objective of the present study was to compare the gait parameters and the risk of falls among patients at different stages of AD, and to relate these variables with cognitive functions. This is a cross-sectional study with 23 patients with mild and moderate AD. The Clinical Dementia Rating was used to classify the dementia severity. The kinematic parameters of gait (cadence, stride length, and stride speed) were analyzed under two conditions: (a) single task (free gait) and (b) dual task (walking and counting down). The risk of falls was evaluated using the Timed Up-and-Go test. The frontal cognitive functions were evaluated using the Frontal Assessment Battery (FAB), the Clock Drawing Test (CDT) and the Symbol Search Subtest. The patients who were at the moderate stage suffered reduced performance in their stride length and stride speed in the single task and had made more counting errors in the dual task and still had a higher fall risk. Both the mild and the moderate patients exhibited significant decreases in stride length, stride speed and cadence in the dual task. Was detected a significant correlation between CDT, FAB, and stride speed in the dual task condition. We also found a significant correlation between subtest Similarities, FAB and cadence in the dual task condition. The dual task produced changes in the kinematic parameters of gait for the mild and moderate AD patients and the gait alterations are related to frontal cognitive functions, particularly executive functions.
Lee, Byoung-Hee
2016-04-01
[Purpose] This study investigated the effects of real-time feedback using infrared camera recognition technology-based augmented reality in gait training for children with cerebral palsy. [Subjects] Two subjects with cerebral palsy were recruited. [Methods] In this study, augmented reality based real-time feedback training was conducted for the subjects in two 30-minute sessions per week for four weeks. Spatiotemporal gait parameters were used to measure the effect of augmented reality-based real-time feedback training. [Results] Velocity, cadence, bilateral step and stride length, and functional ambulation improved after the intervention in both cases. [Conclusion] Although additional follow-up studies of the augmented reality based real-time feedback training are required, the results of this study demonstrate that it improved the gait ability of two children with cerebral palsy. These findings suggest a variety of applications of conservative therapeutic methods which require future clinical trials.
Lopez, William Omar Contreras; Higuera, Carlos Andres Escalante; Fonoff, Erich Talamoni; Souza, Carolina de Oliveira; Albicker, Ulrich; Martinez, Jairo Alberto Espinoza
2014-10-01
Evidence supports the use of rhythmic external auditory signals to improve gait in PD patients (Arias & Cudeiro, 2008; Kenyon & Thaut, 2000; McIntosh, Rice & Thaut, 1994; McIntosh et al., 1997; Morris, Iansek, & Matyas, 1994; Thaut, McIntosh, & Rice, 1997; Suteerawattananon, Morris, Etnyre, Jankovic, & Protas , 2004; Willems, Nieuwboer, Chavert, & Desloovere, 2006). However, few prototypes are available for daily use, and to our knowledge, none utilize a smartphone application allowing individualized sounds and cadence. Therefore, we analyzed the effects on gait of Listenmee®, an intelligent glasses system with a portable auditory device, and present its smartphone application, the Listenmee app®, offering over 100 different sounds and an adjustable metronome to individualize the cueing rate as well as its smartwatch with accelerometer to detect magnitude and direction of the proper acceleration, track calorie count, sleep patterns, steps count and daily distances. The present study included patients with idiopathic PD presented gait disturbances including freezing. Auditory rhythmic cues were delivered through Listenmee®. Performance was analyzed in a motion and gait analysis laboratory. The results revealed significant improvements in gait performance over three major dependent variables: walking speed in 38.1%, cadence in 28.1% and stride length in 44.5%. Our findings suggest that auditory cueing through Listenmee® may significantly enhance gait performance. Further studies are needed to elucidate the potential role and maximize the benefits of these portable devices. Copyright © 2014 Elsevier B.V. All rights reserved.
Novak, Peter; Novak, Vera
2006-01-01
Background Previous studies have suggested that impaired proprioceptive processing in the striatum may contribute to abnormal gait in Parkinson's disease (PD). Methods This pilot study assessed the effects of enhanced proprioceptive feedback using step-synchronized vibration stimulation of the soles (S-VS) on gait in PD. S-VS was used in 8 PD subjects (3 women and 5 men, age range 44–79 years, on medication) and 8 age-matched healthy subjects (5 women and 3 men). PD subjects had mild or moderate gait impairment associated with abnormal balance, but they did not have gait freezing. Three vibratory devices (VDs) were embedded in elastic insoles (one below the heel and two below the forefoot areas) inserted into the shoes. Each VD operates independently and has a pressure switch that activates the underlying vibratory actuator. The VD delivered the 70-Hz suprathreshold vibration pulse upon touch by the heel or forefoot, and the vibration pulse was deactivated upon respective push-offs. Six-minute hallway walking was studied with and without S-VS. Gait characteristics were measured using the force-sensitive foot switches. The primary outcome was the stride variability expressed as a coefficient of variation (CV), a measure of gait steadiness. Secondary outcome measures were walking distance and speed, stride length and duration, cadence, stance, swing and double support duration, and respective CVs (if applicable). Results The walking speed (p < 0.04) and the CV of the stride interval (p < 0.02) differed between the groups and S-VS conditions. In the PD group, S-VS decreased stride variability (p < 0.002), increased walking speed (p < 0.0001), stride duration (p < 0.01), stride length (p < 0.0002), and cadence (p < 0.03). In the control group, S-VS decreased stride variability (p < 0.006) and increased gait speed (p < 0.03), but other locomotion parameters were not significantly altered. Conclusion Augmented sensory feedback improves parkinsonian gait steadiness in the short-term setting. Because the suprathreshold stimulation prevented blinding of subjects, the learning effect and increased attention can be a confounding factor underlying results. Long-term studies are needed to establish the clinical value of the S-VS. PMID:16674823
Improvement in gait following combined ankle and subtalar arthrodesis.
Tenenbaum, Shay; Coleman, Scott C; Brodsky, James W
2014-11-19
This study assessed the hypothesis that arthrodesis of both the ankle and the hindfoot joints produces an objective improvement of function as measured by gait analysis of patients with severe ankle and hindfoot arthritis. Twenty-one patients with severe ankle and hindfoot arthritis who underwent unilateral tibiotalocalcaneal arthrodesis with an intramedullary nail were prospectively studied with three-dimensional (3D) gait analysis at a minimum of one year postoperatively. The mean age at the time of the operation was fifty-nine years, and the mean duration of follow-up was seventeen months (range, twelve to thirty-one months). Temporospatial measurements included cadence, step length, walking velocity, and total support time. The kinematic parameters were sagittal plane motion of the ankle, knee, and hip. The kinetic parameters were sagittal plane ankle power and moment and hip power. Symmetry of gait was analyzed by comparing the step lengths on the affected and unaffected sides. There was significant improvement in multiple parameters of postoperative gait as compared with the patients' own preoperative function. Temporospatial data showed significant increases in cadence (p = 0.03) and walking speed (p = 0.001) and decreased total support time (p = 0.02). Kinematic results showed that sagittal plane ankle motion had decreased, from 13.2° preoperatively to 10.2° postoperatively, in the operatively treated limb (p = 0.02), and increased from 22.2° to 24.1° (p = 0.01) in the contralateral limb. Hip motion on the affected side increased from 39° to 43° (p = 0.007), and knee motion increased from 56° to 60° (p = 0.054). Kinetic results showed significant increases in ankle moment (p < 0.0001) of the operatively treated limb, ankle power of the contralateral limb (p = 0.009), and hip power on the affected side (p = 0.005) postoperatively. There was a significant improvement in gait symmetry (p = 0.01). There was a small loss of sagittal plane motion in the affected limb postoperatively. There were marked increases in gait velocity, ankle moment, and hip motion and power, documenting objective improvements in ambulatory function. The data showed that preoperative ankle motion was greatly diminished. This may suggest that pain is more important than stiffness in asymmetric gait. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Lins, Carolina; Ninomya, André Felipe; Bittar, Cintia Kelly; de Carvalho, Antônio Egydio; Cliquet, Alberto
2013-03-01
Chronic rupture of the Achilles tendon (AT) is a surgical challenge and has effects on the gait. The purpose of this study was to evaluate the kinetic and kinematic parameters of the ankle joint in patients with AT rupture operated using a free semitendinosus tendon graft. Thirteen patients were analyzed 6 and 12 months after surgery in a force platform, while the movements were recorded by six infrared cameras. The kinematic variables analyzed included speed, cadence, step length, percentage of stance phase, and range of movement (ROM) of the ankle joint in the sagittal and frontal planes. Kinetic data were obtained by joint movement in different phases of the gait cycle. Functional assessment was performed using the American Orthopaedic Foot and Ankle Society (AOFAS) score. The patients showed a significant increase (P = 0.0215) in AOFAS from 68.5 (±18.7) to 85.2 (±18.0). Speed, cadence, and length of step of the four groups (1A, 1B, 2A, 2B) were lower than the control group (group 3), and the percentage in stance phase was higher for the nonoperated foot 6-month group (1B) compared to the control group (group 3). For the kinematic data, the ROM of the ankle in stance phase increased from 6 to 12 months showing an effect of time between four groups (1A, 1B, 2A, 2B). During swing phase, the ankle ROM was lower in the operated side (effect of side, P = 0.0255) and groups 1A and 2A demonstrated statistical differences when compared with the control group (group 3) (P = 0.0240 and P = 0.0414, respectively). ROM of inversion and eversion presented effect of time among the same groups (P = 0.0059) cited before. There were no differences in kinetic data between groups. This study showed close proximity between the control group and the operated group. Furthermore, improvement was shown when comparing the 6 and 12 months postsurgery periods. The surgical procedure is therefore helpful for the patient and few changes were present in gait and ankle biomechanics. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Mansfield, Avril; Wong, Jennifer S; Bryce, Jessica; Brunton, Karen; Inness, Elizabeth L; Knorr, Svetlana; Jones, Simon; Taati, Babak; McIlroy, William E
2015-10-01
Regaining independent ambulation is important to those with stroke. Increased walking practice during "down time" in rehabilitation could improve walking function for individuals with stroke. To determine the effect of providing physiotherapists with accelerometer-based feedback on patient activity and walking-related goals during inpatient stroke rehabilitation. Participants with stroke wore accelerometers around both ankles every weekday during inpatient rehabilitation. Participants were randomly assigned to receive daily feedback about walking activity via their physiotherapists (n = 29) or to receive no feedback (n = 28). Changes in measures of daily walking (walking time, number of steps, average cadence, longest bout duration, and number of "long" walking bouts) and changes in gait control and function assessed in-laboratory were compared between groups. There was no significant increase in walking time, number of steps, longest bout duration, or number of long walking bouts for the feedback group compared with the control group (P values > .20). However, individuals who received feedback significantly increased cadence of daily walking more than the control group (P = .013). From the in-laboratory gait assessment, individuals who received feedback had a greater increase in walking speed and decrease in step time variability than the control group (P values < .030). Feedback did not increase the amount of walking completed by individuals with stroke. However, there was a significant increase in cadence, indicating that intensity of daily walking was greater for those who received feedback than the control group. Additionally, more intense daily walking activity appeared to translate to greater improvements in walking speed. © The Author(s) 2015.
King, Wendy C; Hsu, Jesse Y; Belle, Steven H; Courcoulas, Anita P; Eid, George M; Flum, David R; Mitchell, James E; Pender, John R; Smith, Mark D; Steffen, Kristine J; Wolfe, Bruce M
2011-01-01
Background Numerous studies report that bariatric surgery patients report more physical activity (PA) after surgery than before, but the quality of PA assessment has been questionable. Methods The Longitudinal Assessment of Bariatric Surgery-2 is a 10-center longitudinal study of adults undergoing bariatric surgery. Of 2458 participants, 455 were given an activity monitor, which records steps/minute, and an exercise diary before and 1 year after surgery. Mean step/day, active minutes/day, and high-cadence minutes/week were calculated for 310 participants who wore the monitor at least 10 hours/day for at least 3 days at both time points. Pre- and post-surgery PA were compared for differences using the Wilcoxon signed-rank test. Generalized Estimating Equations identified independent pre-operative predictors of post-operative PA. Results PA increased significantly (p<.0001) pre- to post-operative for all PA measures. Median values pre- and post-operative were: 7563 and 8788 steps/day; 309 and 340 active minutes/day; and 72 and 112 high-cadence minutes/week, respectively. However, depending on the PA measure, 24–29% of participants were at least 5% less active post-operative than pre-operative. Controlling for surgical procedure, sex, age and BMI, higher PA preoperative independently predicted higher PA post-operative (p<.0001, all PA measures). Less pain, not having asthma and self-report of increasing PA as a weight loss strategy pre-operative also independently predicted more high-cadence minutes/week post-operative (p<.05). Conclusion The majority of adults increase their PA level following bariatric surgery. However, most remain insufficiently active and some become less active. Increasing PA, addressing pain and treating asthma prior to surgery may have a positive impact on post-operative PA. PMID:21944951
VizieR Online Data Catalog: APOKASC catalog of KIC dwarfs and subgiants (Serenelli+, 2017)
NASA Astrophysics Data System (ADS)
Serenelli, A.; Johnson, J.; Huber, D.; Pinsonneault, M.; Ball, W. H.; Tayar, J.; Aguirre, V. S.; Basu, S.; Troup, N.; Hekker, S.; Kallinger, T.; Stello, D.; Davies, G. R.; Lund, M. N.; Mathur, S.; Mosser, B.; Stassun, K. G.; Chaplin, W. J.; Elsworth, Y.; Garcia, R. A.; Handberg, R.; Holtzman, J.; Hearty, F.; Garcia-Hernandez, D. A.; Gaulme, P.; Zamora, O.
2018-02-01
The catalog consists of stars with detected solar-like oscillations in Kepler short-cadence data as reported in Chaplin+ (2011Sci...332..213C) and with spectroscopic observations from the APOGEE-1 survey (Majewski+ 2017AJ....154...94M). APOGEE spectra cover the H band, between 1.51 and 1.7um, at a resolution R=22500. This work extends the first APOKASC red giants catalog presented in Pinsonneault+ (2014, J/ApJS/215/19) to include 415 dwarf and subgiant stars. It is based on global seismic parameters Δν and νmax obtained from Kepler short-cadence asteroseismic data with length of light curves spanning from 30 up to 1055 days. (3 data files).
Motl, Robert W; Sosnoff, Jacob J; Dlugonski, Deirdre; Pilutti, Lara A; Klaren, Rachel; Sandroff, Brian M
2014-03-01
Performing a cognitive task while walking results in a reduction of walking performance among persons with MS. To date, very little is known about correlates of this dual task cost (DTC) of walking in MS. We examined walking performance, cognitive processing speed, and symptoms of fatigue, depression, anxiety, and pain as correlates of DTC of walking in MS. 82 persons with MS undertook a 6-min walk test (6MWT) and completed the Symbol Digit Modalities Test (SDMT), Fatigue Severity Scale (FSS), Short-form of the McGill Pain Questionnaire (SF-MPQ), Hospital Anxiety and Depression Scale (HADS), and self-reported Expanded Disability Status Scale (SR-EDSS). The participants completed 4 trials of walking at a self-selected pace on an electronic walkway that recorded spatiotemporal parameters of gait. The first 2 trials were performed without a cognitive task, whereas the second 2 trials were completed while performing a modified Word List Generation task. There were significant and large declines in gait performance with the addition of a cognitive task for velocity (p<.001, η2=.52), cadence (p<.001, η2=.49), and step length (p<.001, η2=.23). 6MWT and SDMT scores correlated with DTC for velocity (r=-.41, p<.001 and r=-.32, p<.001, respectively) and step length (r=-.45, p<.001 and r=-.37, p<.001, respectively); there were no significant associations between FSS, SF-MPQ, and HADS scores with the DTC of walking. Regression analyses indicated that 6MW, but not SDMT, explained variance in DTC for velocity (ΔR2=.11, p<.001) and step length (ΔR2=.13, p<.001), after controlling for SR-EDSS scores. Walking performance might be a target of interventions for reducing the DTC of walking in MS. Copyright © 2013 Elsevier B.V. All rights reserved.
Froehle, Andrew W; Nahhas, Ramzi W; Sherwood, Richard J; Duren, Dana L
2013-05-01
Walking gait is generally held to reach maturity, including walking at adult-like velocities, by 7-8 years of age. Lower limb length, however, is a major determinant of gait, and continues to increase until 13-15 years of age. This study used a sample from the Fels Longitudinal Study (ages 8-30 years) to test the hypothesis that walking with adult-like velocity on immature lower limbs results in the retention of immature gait characteristics during late childhood and early adolescence. There was no relationship between walking velocity and age in this sample, whereas the lower limb continued to grow, reaching maturity at 13.2 years in females and 15.6 years in males. Piecewise linear mixed models regression analysis revealed significant age-related trends in normalized cadence, initial double support time, single support time, base of support, and normalized step length in both sexes. Each trend reached its own, variable-specific age at maturity, after which the gait variables' relationships with age reached plateaus and did not differ significantly from zero. Offsets in ages at maturity occurred among the gait variables, and between the gait variables and lower limb length. The sexes also differed in their patterns of maturation. Generally, however, immature walkers of both sexes took more frequent and relatively longer steps than did mature walkers. These results support the hypothesis that maturational changes in gait accompany ongoing lower limb growth, with implications for diagnosing, preventing, and treating movement-related disorders and injuries during late childhood and early adolescence. Copyright © 2012 Elsevier B.V. All rights reserved.
Effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force.
Park, Seung Kyu; Yang, Dae Jung; Kang, Yang Hun; Kim, Je Ho; Uhm, Yo Han; Lee, Yong Seon
2015-09-01
[Purpose] The purpose of this study was to investigate the effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force. [Subjects] The subjects of this study were 30 young adult males, who were divided into a Nordic walking group of 15 subjects and a walking group of 15 subjects. [Methods] To analyze the spatiotemporal parameters and ground reaction force during walking in the two groups, the six-camera Vicon MX motion analysis system was used. The subjects were asked to walk 12 meters using the more comfortable walking method for them between Nordic walking and walking. After they walked 12 meters more than 10 times, their most natural walking patterns were chosen three times and analyzed. To determine the pole for Nordic walking, each subject's height was multiplied by 0.68. We then measured the spatiotemporal gait parameters and ground reaction force. [Results] Compared with the walking group, the Nordic walking group showed an increase in cadence, stride length, and step length, and a decrease in stride time, step time, and vertical ground reaction force. [Conclusion] The results of this study indicate that Nordic walking increases the stride and can be considered as helping patients with diseases affecting their gait. This demonstrates that Nordic walking is more effective in improving functional capabilities by promoting effective energy use and reducing the lower limb load, because the weight of the upper and lower limbs is dispersed during Nordic walking.
Segal, Ava D; Cyr, Krista M; Stender, Christina J; Whittaker, Eric C; Hahn, Michael E; Orendurff, Michael S; Ledoux, William R; Sangeorzan, Bruce J
2018-05-01
End-stage ankle arthritis is a debilitating condition that often requires surgical intervention after failed conservative treatments. Ankle arthrodesis is a common surgical option, especially for younger and highly active patients; however, ankle arthroplasty has become increasingly popular as advancements in implant design improve device longevity. The longitudinal differences in biomechanical outcomes between these surgical treatments remain indistinct, likely due to the challenges associated with objective study of a heterogeneous population. Patients scheduled for arthroplasty (n = 27) and arthrodesis (n = 20) were recruited to participate in this three-year prospective study. Postoperative functional outcomes were compared at distinct annual time increments using measures of gait analysis, average daily step count and survey score. Both surgical groups presented reduced pain, improved survey scores, and increased walking speed at the first-year postoperative session, which were generally consistent across the three-year follow-up. Arthrodesis patients walked with decreased sagittal ankle RoM, increased sagittal hip RoM, increased step length, and increased transient force at heel strike, postoperatively. Arthroplasty patients increased ankle RoM and cadence, with no changes in hip RoM, step length or heel strike transient force. Most postoperative changes were detected at the first-year follow-up session and maintained across the three-year time period. Despite generally favorable outcomes associated with both surgeries, several underlying postoperative biomechanical differences were detected, which may have long-term functional consequences. Furthermore, neither technique was able to completely restore gait biomechanics to the levels of the contralateral unaffected limb, leaving potential for the development of improved surgical and rehabilitative treatments. Published by Elsevier Ltd.
Vo, Mary L; Chin, Russell L; Miranda, Caroline; Latov, Norman
2017-10-01
Gait impairment is a common presenting symptom in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). However, gait parameters have not previously been evaluated in detail as potential independent outcome measures. We prospectively measured changes in spatiotemporal gait parameters of 20 patients with CIDP at baseline and following treatment with intravenous immunoglobulin (IVIG), using GAITRite® a computerized walkway system with embedded sensors. Overall, study patients showed significant improvements in gait velocity, cadence, stride length, double support time, stance phase, and swing phase following IVIG treatment. Mean changes in velocity, stance phase, and swing phase, exhibited the greatest statistical significance among the subgroup that exhibited clinically meaningful improvement in Inflammatory Neuropathy Cause and Treatment disability score, Medical Research Council sum score, and grip strength. Assessment of gait parameters, in particular velocity, step phase and swing phase, is a potentially sensitive outcome measure for evaluating treatment response in CIDP. Muscle Nerve 56: 732-736, 2017. © 2017 Wiley Periodicals, Inc.
Lee, Byoung-Hee
2016-01-01
[Purpose] This study investigated the effects of real-time feedback using infrared camera recognition technology-based augmented reality in gait training for children with cerebral palsy. [Subjects] Two subjects with cerebral palsy were recruited. [Methods] In this study, augmented reality based real-time feedback training was conducted for the subjects in two 30-minute sessions per week for four weeks. Spatiotemporal gait parameters were used to measure the effect of augmented reality-based real-time feedback training. [Results] Velocity, cadence, bilateral step and stride length, and functional ambulation improved after the intervention in both cases. [Conclusion] Although additional follow-up studies of the augmented reality based real-time feedback training are required, the results of this study demonstrate that it improved the gait ability of two children with cerebral palsy. These findings suggest a variety of applications of conservative therapeutic methods which require future clinical trials. PMID:27190489
Rafferty, Miriam R.; Prodoehl, Janey; Robichaud, Julie A.; David, Fabian J.; Poon, Cynthia; Goelz, Lisa C.; Vaillancourt, David E.; Kohrt, Wendy M.; Comella, Cynthia L.; Corcos, Daniel M.
2016-01-01
Background and Purpose This study presents a secondary analysis from the Progressive Resistance Exercise Training in Parkinson disease (PRET-PD) trial investigating the effects of progressive resistance exercise (PRE) and a PD-specific multimodal exercise program, modified Fitness Counts (mFC), on spatial, temporal, and stability-related gait impairments in people with Parkinson disease (PD). Methods Forty-eight people with PD were randomized to participate in PRE or mFC 2×/week for 24 months; 38 completed the study. Gait velocity, stride length, cadence, and double support time were measured under 4 walking conditions (off/on medication, comfortable/fast speed). Ankle strength was also measured off and on medication. Twenty-four healthy controls provided comparison data at one time point. Results At 24 months, there were no significant differences between exercise groups. Both groups improved fast gait velocity off medication, cadence in all conditions, and plantarflexion strength off/on medication. Both groups with PD had more gait measures that approximated the heathy controls at 24 months than at baseline. Plantarflexion strength was significantly associated with gait velocity and stride length in people with PD at baseline and 24 months, but changes in strength were not associated with changes in gait. Discussion and Conclusions Twenty-four months of PRE and mFC were associated with improved off medication fast gait velocity and improved cadence in all conditions, which is important because temporal gait measures can be resistant to medications. Spatial and stability-related measures were resistant to long-term improvements, but did not decline over 24 months. Strength gains did not appear to transfer to gait. Video Abstract available for more insights from the authors (see Supplemental Digital Content 1). PMID:27977518
Härdi, Irene; Bridenbaugh, Stephanie A; Gschwind, Yves J; Kressig, Reto W
2014-04-01
Gait and balance impairments lead to falls and injuries in older people. Walking aids are meant to increase gait safety and prevent falls, yet little is known about how their use alters gait parameters. This study aimed to quantify gait in older adults during walking without and with different walking aids and to compare gait parameters to matched controls. This retrospective study included 65 older (≥60 years) community dwellers who used a cane, crutch or walker and 195 independently mobile-matched controls. Spatio-temporal gait parameters were measured with an electronic walkway system during normal walking. When walking unaided or aided, walking aid users had significantly worse gait than matched controls. Significant differences between the walking aid groups were found for stride time variability (cane vs. walker) in walking unaided only. Gait performances significantly improved when assessed with vs. without the walking aid for the cane (increased stride time and length, decreased cadence and stride length variability), crutch (increased stride time and length, decreased cadence, stride length variability and double support) and walker (increased gait speed and stride length, decreased base of support and double support) users. Gait in older adults who use a walking aid is more irregular and unstable than gait in independently mobile older adults. Walking aid users have better gait when using their walking aid than when walking without it. The changes in gait were different for the different types of walking aids used. These study results may help better understand gait in older adults and differentiate between pathological gait changes and compensatory gait changes due to the use of a walking aid.
The value of the NDT-Bobath method in post-stroke gait training.
Mikołajewska, Emilia
2013-01-01
Stroke is perceived a major cause of disability, including gait disorders. Looking for more effective methods of gait reeducation in post-stroke survivors is one of the most important issues in contemporary neurorehabilitation. Following a stroke, patients suffer from gait disorders. The aim of this paper is to present the outcomes of a study of post-stroke gait reeducation using the NeuroDevelopmental Treatment-Bobath (NDT-Bobath) method. The research was conducted among 60 adult patients who had undergone ischemic stroke. These patients were treated using the NDT-Bobath method. These patients' gait reeducation was assessed using spatio-temporal gait parameters (gait velocity, cadence and stride length). Measurements of these parameters were conducted by the same therapist twice: on admission, and after the tenth session of gait reeducation. Among the 60 patients involved in the study, the results were as follows: in terms of gait velocity, recovery was observed in 39 cases (65%), in terms of cadence, recovery was observed in 39 cases (65%), in terms of stride length, recovery was observed in 50 cases (83.33%). Benefits were observed after short-term therapy, reflected by measurable statistically significant changes in the patients' gait parameters.
Dribbling determinants in sub-elite youth soccer players.
Zago, Matteo; Piovan, Andrea Gianluca; Annoni, Isabella; Ciprandi, Daniela; Iaia, F Marcello; Sforza, Chiarella
2016-01-01
Dribbling speed in soccer is considered critical to the outcome of the game and can assist in the talent identification process. However, little is known about the biomechanics of this skill. By means of a motion capture system, we aimed to quantitatively investigate the determinants of effective dribbling skill in a group of 10 Under-13 sub-elite players, divided by the median-split technique according to their dribbling test time (faster and slower groups). Foot-ball contacts cadence, centre of mass (CoM), ranges of motion (RoM), velocity and acceleration, as well as stride length, cadence and variability were computed. Hip and knee joint RoMs were also considered. Faster players, as compared to slower players, showed a 30% higher foot-ball cadence (3.0 ± 0.1 vs. 2.3 ± 0.2 contacts · s(-1), P < 0.01); reduced CoM mediolateral (0.91 ± 0.05 vs. 1.14 ± 0.16 m, P < 0.05) and vertical (0.19 ± 0.01 vs. 0.25 ± 0.03 m, P < 0.05) RoMs; higher right stride cadence (+20%, P < 0.05) with lower variability (P < 0.05); reduced hip and knee flexion RoMs (P < 0.05). In conclusion, faster players are able to run with the ball through a shorter path in a more economical way. To effectively develop dribbling skill, coaches are encouraged to design specific practices where high stride frequency and narrow run trajectories are required.
Takayanagi, Naoto; Sudo, Motoki; Fujii, Masahiko; Sakai, Hirokazu; Morimoto, Keiko; Tomisaki, Masumi; Niki, Yoshifumi; Tokimitsu, Ichiro
2018-03-01
[Purpose] This study evaluated gait parameters and foot pressure in two regions of the feet among older females with different personal care support needs to analyze factors that contribute to higher support requirements. [Subjects and Methods] Thirty-two older females were divided into support-need and care-need level groups. Gait parameters (speed, cadence, step length, step width, gait angle, toe angle, double support phase, swing phase, and stance phase) and foot pressure during a 5-m walk were measured and analyzed in the two groups. [Results] The percentage of the double support phase on both feet and the right stance phase were significantly higher in the care-need level group, while that of the right swing phase was significantly lower than that of the support-need level group. Additionally, the phase showing peak pressure on the left rear foot was significantly delayed and the left forefoot pressure in the terminal stance was significantly lower in the care-need level group than in the support-need level group. [Conclusion] These findings show that the temporal duration parameters and foot pressure on a particular side were significantly different between the two groups and suggest that these differences were associated with a higher care level.
3-D System-on-System (SoS) Biomedical-Imaging Architecture for Health-Care Applications.
Sang-Jin Lee; Kavehei, O; Yoon-Ki Hong; Tae Won Cho; Younggap You; Kyoungrok Cho; Eshraghian, K
2010-12-01
This paper presents the implementation of a 3-D architecture for a biomedical-imaging system based on a multilayered system-on-system structure. The architecture consists of a complementary metal-oxide semiconductor image sensor layer, memory, 3-D discrete wavelet transform (3D-DWT), 3-D Advanced Encryption Standard (3D-AES), and an RF transmitter as an add-on layer. Multilayer silicon (Si) stacking permits fabrication and optimization of individual layers by different processing technology to achieve optimal performance. Utilization of through silicon via scheme can address required low-power operation as well as high-speed performance. Potential benefits of 3-D vertical integration include an improved form factor as well as a reduction in the total wiring length, multifunctionality, power efficiency, and flexible heterogeneous integration. The proposed imaging architecture was simulated by using Cadence Spectre and Synopsys HSPICE while implementation was carried out by Cadence Virtuoso and Mentor Graphic Calibre.
Resolving discrete pulsar spin-down states with current and future instrumentation
NASA Astrophysics Data System (ADS)
Shaw, B.; Stappers, B. W.; Weltevrede, P.
2018-04-01
An understanding of pulsar timing noise offers the potential to improve the timing precision of a large number of pulsars as well as facilitating our understanding of pulsar magnetospheres. For some sources, timing noise is attributable to a pulsar switching between two different spin-down rates (\\dot{ν }). Such transitions may be common but difficult to resolve using current techniques. In this work, we use simulations of \\dot{ν }-variable pulsars to investigate the likelihood of resolving individual \\dot{ν } transitions. We inject step changes in the value of \\dot{ν } with a wide range of amplitudes and switching time-scales. We then attempt to redetect these transitions using standard pulsar timing techniques. The pulse arrival-time precision and the observing cadence are varied. Limits on \\dot{ν } detectability based on the effects such transitions have on the timing residuals are derived. With the typical cadences and timing precision of current timing programmes, we find that we are insensitive to a large region of Δ \\dot{ν } parameter space that encompasses small, short time-scale switches. We find, where the rotation and emission states are correlated, that using changes to the pulse shape to estimate \\dot{ν } transition epochs can improve detectability in certain scenarios. The effects of cadence on Δ \\dot{ν } detectability are discussed, and we make comparisons with a known population of intermittent and mode-switching pulsars. We conclude that for short time-scale, small switches, cadence should not be compromised when new generations of ultra-sensitive radio telescopes are online.
Chang, Shuo-Hsiu; Afzal, Taimoor; Berliner, Jeffrey; Francisco, Gerard E
2018-01-01
Robotic wearable exoskeletons have been utilized as a gait training device in persons with spinal cord injury. This pilot study investigated the feasibility of offering exoskeleton-assisted gait training (EGT) on gait in individuals with incomplete spinal cord injury (iSCI) in preparation for a phase III RCT. The objective was to assess treatment reliability and potential efficacy of EGT and conventional physical therapy (CPT). Forty-four individuals were screened, and 13 were eligible to participate in the study. Nine participants consented and were randomly assigned to receive either EGT or CPT with focus on gait. Subjects received EGT or CPT, five sessions a week (1 h/session daily) for 3 weeks. American Spinal Injury Association (ASIA) Lower Extremity Motor Score (LEMS), 10-Meter Walk Test (10MWT), 6-Minute Walk Test (6MWT), Timed Up and Go (TUG) test, and gait characteristics including stride and step length, cadence and stance, and swing phase durations were assessed at the pre- and immediate post- training. Mean difference estimates with 95% confidence intervals were used to analyze the differences. After training, improvement was observed in the 6MWT for the EGT group. The CPT group showed significant improvement in the TUG test. Both the EGT and the CPT groups showed significant increase in the right step length. EGT group also showed improvement in the stride length. EGT could be applied to individuals with iSCI to facilitate gait recovery. The subjects were able to tolerate the treatment; however, exoskeleton size range may be a limiting factor in recruiting larger cohort of patients. Future studies with larger sample size are needed to investigate the effectiveness and efficacy of exoskeleton-assisted gait training as single gait training and combined with other gait training strategies. Clinicaltrials.org, NCT03011099, retrospectively registered on January 3, 2017.
2D trajectory estimation during free walking using a tiptoe-mounted inertial sensor.
Sagawa, Koichi; Ohkubo, Kensuke
2015-07-16
An estimation method for a two-dimensional walking trajectory during free walking, such as forward walking, side stepping and backward walking, was investigated using a tiptoe-mounted inertial sensor. The horizontal trajectory of the toe-tip is obtained by double integration of toe-tip acceleration during the moving phase in which the sensor is rotated before foot-off or after foot-contact, in addition to the swing phase. Special functions that determine the optimum moving phase as the integral duration in every one step are developed statistically using the gait cycle and the resultant angular velocity of dorsi/planter flexion, pronation/supination and inversion/eversion so that the difference between the estimated trajectory and actual one gives a minimum value during free walking with several cadences. To develop the functions, twenty healthy volunteers participated in free walking experiments in which subjects performed forward walking, side stepping to the right, side stepping to the left, and backward walking at 39 m down a straight corridor with several predetermined cadences. To confirm the effect of the developed functions, five healthy subjects participated in the free walking experiment in which each subject performed free walking with different velocities of normal, fast, and slow based on their own assessment in a square course with 7 m side. The experimentally obtained results of free walking with a combination of forward walking, backward walking, and side stepping indicate that the proposed method produces walking trajectory with high precision compared with the constant threshold method which determines swing phase using the size of the angular velocity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity: A Pilot Study.
Ardic, Fusun; Göcer, Esra
2016-03-01
The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer.A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland-Altman analyses were performed to show the relationship and agreement between the results of 2 devices.Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P < 0.001, r = 0.96). Correlations across all three BMI categories and both sex remained consistently high ranging from 0.92 to 0.95. There was a high level of agreement between the ECE PEDO and YX200 pedometer in the Bland-Altman analysis.Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a desired speed.
Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity
Ardic, Fusun; Göcer, Esra
2016-01-01
Abstract The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer. A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland–Altman analyses were performed to show the relationship and agreement between the results of 2 devices. Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P < 0.001, r = 0.96). Correlations across all three BMI categories and both sex remained consistently high ranging from 0.92 to 0.95. There was a high level of agreement between the ECE PEDO and YX200 pedometer in the Bland–Altman analysis. Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a desired speed. PMID:26962822
Jung, Taeyou; Kim, Yumi; Lim, Hyosok; Vrongistinos, Konstantinos
2018-01-16
The purpose of this study was to investigate kinematic and spatiotemporal variables of aquatic treadmill walking at three different water depths. A total of 15 healthy individuals completed three two-minute walking trials at three different water depths. The aquatic treadmill walking was conducted at waist-depth, chest-depth and neck-depth, while a customised 3-D underwater motion analysis system captured their walking. Each participant's self-selected walking speed at the waist level was used as a reference speed, which was applied to the remaining two test conditions. A repeated measures ANOVA showed statistically significant differences among the three walking conditions in stride length, cadence, peak hip extension, hip range of motion (ROM), peak ankle plantar flexion and ankle ROM (All p values < 0.05). The participants walked with increased stride length and decreased cadence during neck level as compared to waist and chest level. They also showed increased ankle ROM and decreased hip ROM as the water depth rose from waist and chest to the neck level. However, our study found no significant difference between waist and chest level water in all variables. Hydrodynamics, such as buoyancy and drag force, in response to changes in water depths, can affect gait patterns during aquatic treadmill walking.
Elsoe, Rasmus; Larsen, Peter
2017-07-01
Despite the high number of studies evaluating outcomes following tibial plateau fractures, the literature lacks studies including the objective assessment of gait pattern. The purpose of the present study was to evaluate asymmetry in gait patterns at 12 months after frame removal following ring fixation of a tibial plateau fracture. The study design was a prospective cohort study. The primary outcome measurement was the gait patterns 12 months after frame removal measured with a pressure-sensitive mat. The mat registers footprints and present gait speed, cadence, as well as temporal and spatial parameters of the gait cycle. Gait patterns were compared to a healthy reference population. Twenty-three patients were included with a mean age of 54.4 years (32-78 years). Patients presented with a shorter step-length of the injured leg compared to the non-injured leg (asymmetry of 11.3%). Analysis of single-support showed shorter support time of the injured leg compared to the non-injured leg (asymmetry of 8.7%). Moreover, analysis of swing-time showed increased swing-time of the injured leg (asymmetry of 8.9%). Compared to a healthy reference population, increased asymmetry in all gait patterns was observed. The association between asymmetry and health-related quality of life (HRQOL) showed moderate associations (single-support: R=0.50, P=0.03; step-length: R=0.43, P=0.07; swing-time: R=0.46, P=0.05). Compared to a healthy reference population, gait asymmetry is common 12 months after frame removal in patients treated with external ring fixation following a tibial plateau fracture of the tibia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chung, EunJung; Park, Sang-In; Jang, Yun-Yung; Lee, Byoung-Hee
2015-01-01
[Purpose] The purpose of this study was to determine the effects of brain-computer interface (BCI)-based functional electrical stimulation (FES) on balance and gait function in patients with stroke. [Subjects] Subjects were randomly allocated to a BCI-FES group (n=5) and a FES group (n=5). [Methods] The BCI-FES group received ankle dorsiflexion training with FES according to a BCI-based program for 30 minutes per day for 5 days. The FES group received ankle dorsiflexion training with FES for the same duration. [Results] Following the intervention, the BCI-FES group showed significant differences in Timed Up and Go test value, cadence, and step length on the affected side. The FES group showed no significant differences after the intervention. However, there were no significant differences between the 2 groups after the intervention. [Conclusion] The results of this study suggest that BCI-based FES training is a more effective exercise for balance and gait function than FES training alone in patients with stroke. PMID:25729205
Camerota, Filippo; Galli, Manuela; Celletti, Claudia; Ancillao, Andrea; Blow, David; Albertini, Giorgio
2015-01-01
Objective: In this case study, biomechanical alterations induced by neuromuscular taping (NMT) were quantified, during walking, in a patient with joint hypermobility syndrome/Ehlers–Danlos syndrome hypermobility type (JHS/EDS-HT). Methods: A female JHS/EDS-HT patient underwent NMT applications over the low back spine and bilaterally to the knee. Quantitative gait analyses were collected before the NMT application and at the end of the treatment (2 weeks after the first application of NMT). Results: At the end of treatment following the NMT application, left step length showed improvements in cadence and velocity, the left knee showed a reduction in its flexed position at initial contact, and the right ankle joint improved its position at initial contact and in the swing phase. Improvements were also found in kinetics, in terms of the ankle moment and power. Conclusions: Results show that NMT seems to be a promising low-cost intervention for improving gait strategy in patients with JHS/EDS-HT. Further investigations are needed to assess the effects of this treatment intervention on pathological symptoms. PMID:25649985
Camerota, Filippo; Galli, Manuela; Cimolin, Veronica; Celletti, Claudia; Ancillao, Andrea; Blow, David; Albertini, Giorgio
2015-02-01
In this case study, biomechanical alterations induced by neuromuscular taping (NMT) were quantified, during walking, in a patient with joint hypermobility syndrome/Ehlers-Danlos syndrome hypermobility type (JHS/EDS-HT). A female JHS/EDS-HT patient underwent NMT applications over the low back spine and bilaterally to the knee. Quantitative gait analyses were collected before the NMT application and at the end of the treatment (2 weeks after the first application of NMT). At the end of treatment following the NMT application, left step length showed improvements in cadence and velocity, the left knee showed a reduction in its flexed position at initial contact, and the right ankle joint improved its position at initial contact and in the swing phase. Improvements were also found in kinetics, in terms of the ankle moment and power. Results show that NMT seems to be a promising low-cost intervention for improving gait strategy in patients with JHS/EDS-HT. Further investigations are needed to assess the effects of this treatment intervention on pathological symptoms.
Chung, EunJung; Park, Sang-In; Jang, Yun-Yung; Lee, Byoung-Hee
2015-02-01
[Purpose] The purpose of this study was to determine the effects of brain-computer interface (BCI)-based functional electrical stimulation (FES) on balance and gait function in patients with stroke. [Subjects] Subjects were randomly allocated to a BCI-FES group (n=5) and a FES group (n=5). [Methods] The BCI-FES group received ankle dorsiflexion training with FES according to a BCI-based program for 30 minutes per day for 5 days. The FES group received ankle dorsiflexion training with FES for the same duration. [Results] Following the intervention, the BCI-FES group showed significant differences in Timed Up and Go test value, cadence, and step length on the affected side. The FES group showed no significant differences after the intervention. However, there were no significant differences between the 2 groups after the intervention. [Conclusion] The results of this study suggest that BCI-based FES training is a more effective exercise for balance and gait function than FES training alone in patients with stroke.
All-Sky Census of Variable Stars from the ATLAS Survey
NASA Astrophysics Data System (ADS)
Heinze, Aren Nathaniel; Tonry, John; Denneau, Larry; Stalder, Brian
2018-01-01
The Asteroid Terrestrial-Impact Last Alert Survey uses two custom-built 0.5 meter telescopes to scan the whole accessible sky down to magnitude 19.5 every two nights, with a cadence optimized to detect small asteroids on their 'final plunge' toward impact with Earth. This cadence is also well suited to the detection of variable stars with a huge range of periods and properties, while ATLAS' use of two filters provides additional scientific depth. From the first two years of ATLAS data we have constructed a catalog of several hundred thousand variable objects with periods from one hour to hundreds of days. These include RR Lyrae stars, Cepheids, eclipsing binaries, spotted stars, ellipsoidal variables, Miras; and other objects both regular and irregular. We describe the construction of this catalog, including our multi-step confirmation process for genuine variables; some big-picture scientific conclusions; and prospects for more detailed results.
Geerse, Daphne J; Coolen, Bert H; Roerdink, Melvyn
2015-01-01
Walking ability is frequently assessed with the 10-meter walking test (10MWT), which may be instrumented with multiple Kinect v2 sensors to complement the typical stopwatch-based time to walk 10 meters with quantitative gait information derived from Kinect's 3D body point's time series. The current study aimed to evaluate a multi-Kinect v2 set-up for quantitative gait assessments during the 10MWT against a gold-standard motion-registration system by determining between-systems agreement for body point's time series, spatiotemporal gait parameters and the time to walk 10 meters. To this end, the 10MWT was conducted at comfortable and maximum walking speed, while 3D full-body kinematics was concurrently recorded with the multi-Kinect v2 set-up and the Optotrak motion-registration system (i.e., the gold standard). Between-systems agreement for body point's time series was assessed with the intraclass correlation coefficient (ICC). Between-systems agreement was similarly determined for the gait parameters' walking speed, cadence, step length, stride length, step width, step time, stride time (all obtained for the intermediate 6 meters) and the time to walk 10 meters, complemented by Bland-Altman's bias and limits of agreement. Body point's time series agreed well between the motion-registration systems, particularly so for body points in motion. For both comfortable and maximum walking speeds, the between-systems agreement for the time to walk 10 meters and all gait parameters except step width was high (ICC ≥ 0.888), with negligible biases and narrow limits of agreement. Hence, body point's time series and gait parameters obtained with a multi-Kinect v2 set-up match well with those derived with a gold standard in 3D measurement accuracy. Future studies are recommended to test the clinical utility of the multi-Kinect v2 set-up to automate 10MWT assessments, thereby complementing the time to walk 10 meters with reliable spatiotemporal gait parameters obtained objectively in a quick, unobtrusive and patient-friendly manner.
Geerse, Daphne J.; Coolen, Bert H.; Roerdink, Melvyn
2015-01-01
Walking ability is frequently assessed with the 10-meter walking test (10MWT), which may be instrumented with multiple Kinect v2 sensors to complement the typical stopwatch-based time to walk 10 meters with quantitative gait information derived from Kinect’s 3D body point’s time series. The current study aimed to evaluate a multi-Kinect v2 set-up for quantitative gait assessments during the 10MWT against a gold-standard motion-registration system by determining between-systems agreement for body point’s time series, spatiotemporal gait parameters and the time to walk 10 meters. To this end, the 10MWT was conducted at comfortable and maximum walking speed, while 3D full-body kinematics was concurrently recorded with the multi-Kinect v2 set-up and the Optotrak motion-registration system (i.e., the gold standard). Between-systems agreement for body point’s time series was assessed with the intraclass correlation coefficient (ICC). Between-systems agreement was similarly determined for the gait parameters’ walking speed, cadence, step length, stride length, step width, step time, stride time (all obtained for the intermediate 6 meters) and the time to walk 10 meters, complemented by Bland-Altman’s bias and limits of agreement. Body point’s time series agreed well between the motion-registration systems, particularly so for body points in motion. For both comfortable and maximum walking speeds, the between-systems agreement for the time to walk 10 meters and all gait parameters except step width was high (ICC ≥ 0.888), with negligible biases and narrow limits of agreement. Hence, body point’s time series and gait parameters obtained with a multi-Kinect v2 set-up match well with those derived with a gold standard in 3D measurement accuracy. Future studies are recommended to test the clinical utility of the multi-Kinect v2 set-up to automate 10MWT assessments, thereby complementing the time to walk 10 meters with reliable spatiotemporal gait parameters obtained objectively in a quick, unobtrusive and patient-friendly manner. PMID:26461498
Reddy, Prabhav Nadipi; Cooper, Glen; Weightman, Andrew; Hodson-Tole, Emma; Reeves, Neil D
2017-02-01
This study examined the relationship between (1) foot temperature in healthy individuals and walking cadence, (2) temperature change at different locations of the foot, and (3) temperature change and its relationship with vertical pressures exerted on the foot. Eighteen healthy adult volunteers (10 between 30 and 40 years - Age: 33.4±2.4years; 8 above 40 years - Age: 54.1±7.7years) were recruited. A custom-made insole with temperature sensors was placed directly onto the plantar surface of the foot and held in position using a sock. The foot was placed on a pressure sensor and the whole system placed in a canvas shoe. Participants visited the lab on three separate occasions when foot temperature and pressure data were recorded during walking on a treadmill at one of three cadences (80, 100, 120steps/min). The plantar foot temperature increased during walking in both age groups 30-40 years: 4.62±2.00°C, >40years: 5.49±2.30°C, with the rise inversely proportional to initial foot temperature (30-40 years: R 2 =-0.669, >40years: R 2 =-0.816). Foot temperature changes were not different between the two age groups or the different foot locations and did not depend on vertical pressures. Walking cadence affected the rate of change of plantar foot temperature but not the final measured value and no association between temperature change and vertical pressure was found. These results provide baseline values for comparing foot temperature changes in pathological conditions which could inform understanding of pathophysiology and support development of evidence based healthcare guidelines for managing conditions such as diabetic foot ulceration (DFU). Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Moreno, Jackeline; Vogeley, Michael S.; Richards, Gordon; O'Brien, John T.; Kasliwal, Vishal
2018-01-01
We present rigorous testing of survey cadences (K2, SDSS, CRTS, & Pan-STARRS) for quasar variability science using a magnetohydrodynamics synthetic lightcurve and the canonical lightcurve from Kepler, Zw 229.15. We explain where the state of the art is in regards to physical interpretations of stochastic models (CARMA) applied to AGN variability. Quasar variability offers a time domain approach of probing accretion physics at the SMBH scale. Evidence shows that the strongest amplitude changes in the brightness of AGN occur on long timescales ranging from months to hundreds of days. These global behaviors can be constrained by survey data despite low sampling resolution. CARMA processes provide a flexible family of models used to interpolate between data points, predict future observations and describe behaviors in a lightcurve. This is accomplished by decomposing a signal into rise and decay timescales, frequencies for cyclic behavior and shock amplitudes. Characteristic timescales may point to length-scales over which a physical process operates such as turbulent eddies, warping or hotspots due to local thermal instabilities. We present the distribution of SDSS Stripe 82 quasars in CARMA parameters space that pass our cadence tests and also explain how the Damped Harmonic Oscillator model, CARMA(2,1), reduces to the Damped Random Walk, CARMA(1,0), given the data in a specific region of the parameter space.
47 CFR 10.530 - Common vibration cadence.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Common vibration cadence. 10.530 Section 10.530....530 Common vibration cadence. A Participating CMS Provider and equipment manufacturers may only market devices for public use under part 10 that include a vibration cadence capability that meets the...
47 CFR 10.530 - Common vibration cadence.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Common vibration cadence. 10.530 Section 10.530....530 Common vibration cadence. A Participating CMS Provider and equipment manufacturers may only market devices for public use under part 10 that include a vibration cadence capability that meets the...
Kristoffersen, Morten; Gundersen, Hilde; Leirdal, Stig; Iversen, Vegard V.
2014-01-01
Purpose: The aim of the present study was to investigate effects of low cadence training at moderate intensity on aerobic capacity, cycling performance, gross efficiency, freely chosen cadence, and leg strength in veteran cyclists. Method: Twenty-two well trained veteran cyclists [age: 47 ± 6 years, maximal oxygen consumption (VO2max): 57.9 ± 3.7 ml · kg−1 · min−1] were randomized into two groups, a low cadence training group and a freely chose cadence training group. Respiratory variables, power output, cadence and leg strength were tested before and after a 12 weeks training intervention period. The low cadence training group performed 12 weeks of moderate [73–82% of maximal heart rate (HRmax)] interval training (5 × 6 min) with a cadence of 40 revolutions per min (rpm) two times a week, in addition to their usual training. The freely chosen cadence group added 90 min of training at freely chosen cadence at moderate intensity. Results: No significant effects of the low cadence training on aerobic capacity, cycling performance, power output, cadence, gross efficiency, or leg strength was found. The freely chosen cadence group significantly improved both VO2max (58.9 ± 2.4 vs. 62.2 ± 3.2 ml · kg−1 · min−1), VO2 consumption at lactate threshold (49.4 ± 3.8 vs. 51.8 ± 3.5 ml · kg−1 · min−1) and during the 30 min performance test (52.8 ± 3.0 vs. 54.7 ± 3.5 ml · kg−1 · min−1), and power output at lactate threshold (284 ± 47 vs. 294 ± 48 W) and during the 30 min performance test (284 ± 42 vs. 297 ± 50 W). Moreover, a significant difference was seen when comparing the change in freely chosen cadence from pre- to post between the groups during the 30 min performance test (2.4 ± 5.0 vs. −2.7 ± 6.2). Conclusion: Twelve weeks of low cadence (40 rpm) interval training at moderate intensity (73–82% of HRmax) twice a week does not improve aerobic capacity, cycling performance or leg strength in highly trained veteran cyclists. However, adding training at same intensity (% of HRmax) and duration (90 min weekly) at freely chosen cadence seems beneficial for performance and physiological adaptations. PMID:24550843
Magnetic Feature Tracking in the SDO Era: Past Sacrifices, Recent Advances, and Future Possibilities
NASA Astrophysics Data System (ADS)
Lamb, D. A.; DeForest, C. E.; Van Kooten, S.
2014-12-01
When implementing computer vision codes, a common reaction to the high angular resolution and the high cadence of SDO's image products has been to reduce the resolution and cadence of the data so that it "looks like" SOHO data. This can be partially justified on physical grounds: if the phenomenon that a computer vision code is trying to detect was characterized in low-resolution, low cadence data, then the higher quality data may not be needed. But sacrificing at least two, and sometimes all four main advantages of SDO's imaging data (the other two being a higher duty cycle and additional data products) threatens to also discard the perhaps more subtle discoveries waiting to be made: a classic baby-with-the-bath-water situation. In this presentation, we discuss some of the sacrifices made in implementing SWAMIS-EF, an automatic emerging magnetic flux region detection code for SDO/HMI, and how those sacrifices simultaneously simplified and complicated development of the code. SWAMIS-EF is a feature-finding code, and we will describe some situations and analyses in which a feature-finding code excels, and some in which a different type of algorithm may produce more favorable results. In particular, because the solar magnetic field is irreducibly complex at the currently observed spatial scales, searching for phenomena such as flux emergence using even semi-strict physical criteria often leads to large numbers of false or missed detections. This undesirable behavior can be mitigated by relaxing the imposed physical criteria, but here too there are tradeoffs: decreased numbers of missed detections may increase the number of false detections if the selection criteria are not both sensitive and specific to the searched-for phenomenon. Finally, we describe some recent steps we have taken to overcome these obstacles, by fully embracing the high resolution, high cadence SDO data, optimizing and partially parallelizing our existing code as a first step to allow fast magnetic feature tracking of full resolution HMI magnetograms. Even with the above caveats, if used correctly such a tool can provide a wealth of information on the positions, motions, and patterns of features, enabling large, cross-scale analyses that can answer important questions related to the solar dynamo and to coronal heating.
47 CFR 10.530 - Common vibration cadence.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Common vibration cadence. 10.530 Section 10.530... § 10.530 Common vibration cadence. A Participating CMS Provider and equipment manufacturers may only market devices for public use under part 10 that include a vibration cadence capability that meets the...
47 CFR 10.530 - Common vibration cadence.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Common vibration cadence. 10.530 Section 10.530... § 10.530 Common vibration cadence. A Participating CMS Provider and equipment manufacturers may only market devices for public use under part 10 that include a vibration cadence capability that meets the...
El-Shamy, Shamekh Mohamed
2017-11-01
The aim of this study was to investigate the effects of antigravity treadmill training on gait, balance, and fall risk in children with diplegic cerebral palsy. Thirty children with diplegic cerebral palsy were selected for this randomized controlled study. They were randomly assigned to (1) an experimental group that received antigravity treadmill training (20 mins/d, 3 d/wk) together with traditional physical therapy for 3 successive mos and (2) a control group that received only traditional physical therapy program for the same period. Outcomes included selected gait parameters, postural stability, and fall risk. Outcomes were measured at baseline and after 3 mos of intervention. Children in both groups showed significant improvements in the mean values of all measured variables (P < 0.05), with significantly greater improvements in the experimental group than the control group. The posttreatment gait parameters (i.e., velocity, stride length, cadence, and percent of time spent in double-limb support) were 0.74 m/sec, 119 steps/min, 0.75 m/sec, 0.65 sec, and 55.9% as well as 0.5 m, 125 steps/min, 0.6 m/sec, 0.49 sec, and 50.4% for the experimental and control group, respectively. Antigravity treadmill training may be a useful tool for improving gait parameters, balance, and fall risk in children with diplegic cerebral palsy.
Lindemann, Ulrich; Schwenk, Michael; Schmitt, Syn; Weyrich, Michael; Schlicht, Wolfgang; Becker, Clemens
2017-08-01
Wheeled walkers are recommended to improve walking performance in older persons and to encourage and assist participation in daily life. Nevertheless, using a wheeled walker can cause serious problems in the natural environment. This study aimed to compare uphill and downhill walking with walking level in geriatric patients using a wheeled walker. Furthermore, we investigated the effect of using a wheeled walker with respect to dual tasking when walking level. A total of 20 geriatric patients (median age 84.5 years) walked 10 m at their habitual pace along a level surface, uphill and downhill, with and without a standard wheeled walker. Gait speed, stride length and cadence were assessed by wearable sensors and the walk ratio was calculated. When using a wheeled walker while walking level the walk ratio improved (0.58 m/[steps/min] versus 0.57 m/[steps/min], p = 0.023) but gait speed decreased (1.07 m/s versus 1.12 m/s, p = 0.020) when compared to not using a wheeled walker. With respect to the walk ratio, uphill and downhill walking with a wheeled walker decreased walking performance when compared to level walking (0.54 m/[steps/min] versus 0.58 m/[steps/min], p = 0.023 and 0.55 m/[steps/min] versus 0.58 m/[steps/min], p = 0.001, respectively). At the same time, gait speed decreased (0.079 m/s versus 1.07 m/s, p < 0.0001) or was unaffected. The use of a wheeled walker improved the quality of level walking but the performance of uphill and downhill walking was worse compared to walking level when using a wheeled walker.
The most economical cadence increases with increasing workload.
Foss, Øivind; Hallén, Jostein
2004-08-01
Several studies have suggested that the most economical cadence in cycling increases with increasing workload. However, none of these studies have been able to demonstrate this relationship with experimental data. The purpose of this study was to test the hypothesis that the most economical cadence in elite cyclists increases with increasing workload and to explore the effect of cadence on performance. Six elite road cyclists performed submaximal and maximal tests at four different cadences (60, 80, 100 and 120 rpm) on separate days. Respiratory data was measured at 0, 50, 125, 200, 275 and 350 W during the submaximal test and at the end of the maximal test. The maximal test was carried out as an incremental test, conducted to reveal differences in maximal oxygen uptake and time to exhaustion (short-term performance) between cadences. The results showed that the lowest oxygen uptake, i.e. the best work economy, shifted from 60 rpm at 0 W to 80 rpm at 350 W ( P<0.05). No difference was found in maximal oxygen uptake among cadences ( P>0.05), while the best performance was attained at the same cadence that elicited the best work economy (80 rpm) at 350 W ( P<0.05). This study demonstrated that the most economical cadence increases with increasing workload in elite cyclists. It was further shown that work economy and performance are related during short efforts (approximately 5 min) over a wide range of cadences.
Bonacci, Jason; Hall, Michelle; Fox, Aaron; Saunders, Natalie; Shipsides, Tristan; Vicenzino, Bill
2018-06-01
To determine the effect of a combination of a minimalist shoe and increased cadence on measures of patellofemoral joint loading during running in individuals with patellofemoral pain. Within-participant repeated measures with four conditions presented in random order: (1) control shoe at preferred cadence; (2) control shoe with +10% cadence; (3) minimalist shoe at preferred cadence; (4) minimalist shoe with +10% cadence. Fifteen recreational runners with patellofemoral pain ran on an instrumented treadmill while three-dimensional motion capture data were acquired. Peak patellofemoral joint stress, joint reaction force, knee extensor moment and knee joint angle during the stance phase of running were calculated. One-way repeated measures ANOVA was used to compare the control condition (1) to the three experimental conditions (2-4). Running in a minimalist shoe at an increased cadence reduced patellofemoral stress and joint reaction force on average by approximately 29% (p<0.001) compared to the control condition. Running in a minimalist shoe at preferred cadence reduced patellofemoral joint stress by 15% and joint reaction force by 17% (p<0.001), compared to the control condition. Running in control shoes at an increased cadence reduced patellofemoral joint stress and joint reaction force by 16% and 19% (p<0.001), respectively, compared to the control condition. In individuals with patellofemoral pain, running in a minimalist shoe at an increased cadence had the greatest reduction in patellofemoral joint loading compared to a control shoe at preferred cadence. This may be an effective intervention to modulate biomechanical factors related to patellofemoral pain. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Xudong; Hoeksema, J. Todd; Liu Yang
The solar active region photospheric magnetic field evolves rapidly during major eruptive events, suggesting appreciable feedback from the corona. Previous studies of these “magnetic imprints” are mostly based on line of sight only or lower-cadence vector observations; a temporally resolved depiction of the vector field evolution is hitherto lacking. Here, we introduce the high-cadence (90 s or 135 s) vector magnetogram data set from the Helioseismic and Magnetic Imager, which is well suited for investigating the phenomenon. These observations allow quantitative characterization of the permanent, step-like changes that are most pronounced in the horizontal field component (B {sub h}). Amore » highly structured pattern emerges from analysis of an archetypical event, SOL2011-02-15T01:56, where B {sub h} near the main polarity inversion line increases significantly during the earlier phase of the associated flare with a timescale of several minutes, while B {sub h} in the periphery decreases at later times with smaller magnitudes and a slightly longer timescale. The data set also allows effective identification of the “magnetic transient” artifact, where enhanced flare emission alters the Stokes profiles and the inferred magnetic field becomes unreliable. Our results provide insights on the momentum processes in solar eruptions. The data set may also be useful to the study of sunquakes and data-driven modeling of the corona.« less
Gait characteristics before hardware removal in patients operated upon for tibial plateau fractures.
Deleanu, Bogdan; Prejbeanu, Radu; Crisan, Dan; Predescu, Vlad; Popa, Iulian; Poenaru, Dan V
2015-07-01
The reporting of gait analysis data on operated fractures of the tibial plateau, while extensive for studies of knee osteoarthritis of mostly undisclosed aetiology and ACL deficient knees, is rather limited in literature. In the present study we investigated 25 tibial plateau fractures classified as Schatzker II, IV, V and VI that underwent operative reduction and lateral plate osteosynthesis. Apart from routine radiographic exploration and patient completed (KOOS) scores at three (mean of 3.2 months), six (mean of 5.6 months) and 12 months (mean of 11.3 months) postoperatively, gait analysis was performed at these intervals as well. Cadence, step time and knee flexion were the gait parameters that were selected for the comparison at six and 12 months postoperatively. The analysed gait parameters were significantly improved between the six and the 12-month session and statistically significant differences were found between the two groups of values. Cadence had a mean value of 41 steps/minute at six months and 45 steps/minute at 12 months (p = 0.99). Step time was a mean of 0.74 seconds at six months while at 12 months the median value was 0.66 seconds (p = 0.94). Knee flexion angles evolved in a similar manner with mean values of 58° at six months and 69° at 12 months (p = 0.95). The mean KOOS scores were 42.4, 56.3 and 67.99 at three, six and 12 months postoperatively, respectively. Complex intra-articular fractures, classified as Schatzker IV, V and VI, had a higher impact on joint function than Schatzker II fractures treated with similar techniques and implants. There were statistically significant improvements in the recovery status at 12 months postoperatively compared to six months with extended chances for improvement.
Gait consistency over a 7-day interval in people with Parkinson's disease.
Urquhart, D M; Morris, M E; Iansek, R
1999-06-01
To evaluate the consistency of temporal and spatial parameters of the walking pattern in subjects with idiopathic Parkinson's disease (PD) over a 7-day interval during the "on" phase of the levodopa medication cycle. Walking patterns were measured on a 12-meter walkway at the Kingston Gait Laboratory, Cheltenham, using a computerized stride analyzer. Sixteen subjects (7 women, 9 men) with PD recruited from the Movement Disorders Clinic at Kingston Centre. Speed of walking, stride length, cadence, and the percentage of the walking cycle spent in the double limb support phase of gait were measured, together with the level of disability as indexed by the modified Webster scale. Product-moment correlation coefficients and intraclass correlation coefficients (ICC 2,1) for repeat measures over a 7-day interval were high for speed (r = .90; ICC = .93), cadence (r = .90; ICC = .86), and stride length (r = 1.00; ICC = .97) and moderate for double limb support duration after removal of outliers (r = .75; ICC = .73); 95% confidence intervals for the change scores were within clinically acceptable limits for all variables. The mean modified Webster score was 11.4 on the first day and 10.1 7 days later. The gait pattern and level of disability in subjects with PD without severe motor fluctuations remained stable over a 1-week period when optimal medication prevailed.
Effects of Different Lifting Cadences on Ground Reaction Forces during the Squat Exercise
NASA Technical Reports Server (NTRS)
Bentley, Jason R.; Amonette, William E.; Hagan, R. Donald
2008-01-01
The purpose of this investigation was to determine the effect of different cadences on the ground reaction force (GRF(sub R)) during the squat exercise. It is known that squats performed with greater acceleration will produce greater inertial forces; however, it is not well understood how different squat cadences affect GRF(sub R). It was hypothesized that faster squat cadences will result in greater peak GRF(sub R). METHODS: Six male subjects (30.8+/-4.4 y, 179.5+/-8.9 cm, 88.8+/-13.3 kg) with previous squat experience performed three sets of three squats using three different cadences (FC = 1 sec descent/1 sec ascent; MC = 3 sec descent/1 sec ascent; SC = 4 sec descent/2 sec ascent) with barbell mass equal to body mass. Ground reaction force was used to calculate inertial force trajectories of the body plus barbell (FI(sub system)). Forces were normalized to body mass. RESULTS: Peak GRF(sub R) and peak FI(sub system) were significantly higher in FC squats compared to MC (p=0.0002) and SC (p=0.0002). Range of GRF(sub R) and FI(sub system) were also significantly higher in FC compared to MC (p<0.05), and MC were significantly higher than SC (p<0.05). DISCUSSION: Faster squat cadences result in significantly greater peak GRF(sub R) due to the inertia of the system. GRF(sub R) was more dependent upon decent cadence than on ascent cadence. PRACTICAL APPLICATION: This study demonstrates that faster squat cadences produce greater ground reaction forces. Therefore, the use of faster squat cadences might enhance strength and power adaptations to long-term resistance exercise training. Key Words: velocity, weight training, resistive exercise
How many steps/day are enough? for children and adolescents
2011-01-01
Worldwide, public health physical activity guidelines include special emphasis on populations of children (typically 6-11 years) and adolescents (typically 12-19 years). Existing guidelines are commonly expressed in terms of frequency, time, and intensity of behaviour. However, the simple step output from both accelerometers and pedometers is gaining increased credibility in research and practice as a reasonable approximation of daily ambulatory physical activity volume. Therefore, the purpose of this article is to review existing child and adolescent objectively monitored step-defined physical activity literature to provide researchers, practitioners, and lay people who use accelerometers and pedometers with evidence-based translations of these public health guidelines in terms of steps/day. In terms of normative data (i.e., expected values), the updated international literature indicates that we can expect 1) among children, boys to average 12,000 to 16,000 steps/day and girls to average 10,000 to 13,000 steps/day; and, 2) adolescents to steadily decrease steps/day until approximately 8,000-9,000 steps/day are observed in 18-year olds. Controlled studies of cadence show that continuous MVPA walking produces 3,300-3,500 steps in 30 minutes or 6,600-7,000 steps in 60 minutes in 10-15 year olds. Limited evidence suggests that a total daily physical activity volume of 10,000-14,000 steps/day is associated with 60-100 minutes of MVPA in preschool children (approximately 4-6 years of age). Across studies, 60 minutes of MVPA in primary/elementary school children appears to be achieved, on average, within a total volume of 13,000 to 15,000 steps/day in boys and 11,000 to 12,000 steps/day in girls. For adolescents (both boys and girls), 10,000 to 11,700 may be associated with 60 minutes of MVPA. Translations of time- and intensity-based guidelines may be higher than existing normative data (e.g., in adolescents) and therefore will be more difficult to achieve (but not impossible nor contraindicated). Recommendations are preliminary and further research is needed to confirm and extend values for measured cadences, associated speeds, and MET values in young people; continue to accumulate normative data (expected values) for both steps/day and MVPA across ages and populations; and, conduct longitudinal and intervention studies in children and adolescents required to inform the shape of step-defined physical activity dose-response curves associated with various health parameters. PMID:21798014
The impact of weight classification on safety: timing steps to adapt to external constraints
Gill, S.V.
2015-01-01
Objectives: The purpose of the current study was to evaluate how weight classification influences safety by examining adults’ ability to meet a timing constraint: walking to the pace of an audio metronome. Methods: With a cross-sectional design, walking parameters were collected as 55 adults with normal (n=30) and overweight (n=25) body mass index scores walked to slow, normal, and fast audio metronome paces. Results: Between group comparisons showed that at the fast pace, those with overweight body mass index (BMI) had longer double limb support and stance times and slower cadences than the normal weight group (all ps<0.05). Examinations of participants’ ability to meet the metronome paces revealed that participants who were overweight had higher cadences at the slow and fast paces (all ps<0.05). Conclusions: Findings suggest that those with overweight BMI alter their gait to maintain biomechanical stability. Understanding how excess weight influences gait adaptation can inform interventions to improve safety for individuals with obesity. PMID:25730658
Skovereng, Knut; Ettema, Gertjan; van Beekvelt, Mireille C P
2016-06-01
The present study investigates the effect of cadence on joint specific power and oxygenation and local muscle oxygen consumption in the vastus lateralis and vastus medialis in addition to the relationship between joint specific power and local muscle oxygen consumption (mVO2). Seventeen recreationally active cyclists performed 6 stages of constant load cycling using cadences of 60, 70, 80, 90, 100 and 110 rpm. Joint specific power was calculated using inverse dynamics and mVO2 and oxygenation were measured using near-infrared spectroscopy. Increasing cadence led to increased knee joint power and decreased hip joint power while the ankle joint was unaffected. Increasing cadence also led to an increased deoxygenation in both the vastus lateralis and vastus medialis. Vastus lateralis mVO2 increased when cadence was increased. No effect of cadence was found for vastus medialis mVO2. This study demonstrates a different effect of cadence on the mVO2 of the vastus lateralis and vastus medialis. The combined mVO2 of the vastus lateralis and medialis showed a linear increase with increasing knee joint specific power, demonstrating that the muscles combined related to power generated over the joint.
Human ethology: age and sex differences in mall walking.
Hangland, A; Cimbalo, R S
1997-12-01
Well-controlled experimental research has examined the biomechanical aspects of walking in homo sapiens on a track. The research reported here also examined cadence, velocity, and stride length for estimated ages ranging from 15 to over 55 years but in a shopping mall. Women at all ages walked faster than men in the mall setting which was opposite to what was found in the track research. Apparently context may influence how fast people walk. Hunter-gatherer differences could explain these results.
How many steps/day are enough? For adults.
Tudor-Locke, Catrine; Craig, Cora L; Brown, Wendy J; Clemes, Stacy A; De Cocker, Katrien; Giles-Corti, Billie; Hatano, Yoshiro; Inoue, Shigeru; Matsudo, Sandra M; Mutrie, Nanette; Oppert, Jean-Michel; Rowe, David A; Schmidt, Michael D; Schofield, Grant M; Spence, John C; Teixeira, Pedro J; Tully, Mark A; Blair, Steven N
2011-07-28
Physical activity guidelines from around the world are typically expressed in terms of frequency, duration, and intensity parameters. Objective monitoring using pedometers and accelerometers offers a new opportunity to measure and communicate physical activity in terms of steps/day. Various step-based versions or translations of physical activity guidelines are emerging, reflecting public interest in such guidance. However, there appears to be a wide discrepancy in the exact values that are being communicated. It makes sense that step-based recommendations should be harmonious with existing evidence-based public health guidelines that recognize that "some physical activity is better than none" while maintaining a focus on time spent in moderate-to-vigorous physical activity (MVPA). Thus, the purpose of this review was to update our existing knowledge of "How many steps/day are enough?", and to inform step-based recommendations consistent with current physical activity guidelines. Normative data indicate that healthy adults typically take between 4,000 and 18,000 steps/day, and that 10,000 steps/day is reasonable for this population, although there are notable "low active populations." Interventions demonstrate incremental increases on the order of 2,000-2,500 steps/day. The results of seven different controlled studies demonstrate that there is a strong relationship between cadence and intensity. Further, despite some inter-individual variation, 100 steps/minute represents a reasonable floor value indicative of moderate intensity walking. Multiplying this cadence by 30 minutes (i.e., typical of a daily recommendation) produces a minimum of 3,000 steps that is best used as a heuristic (i.e., guiding) value, but these steps must be taken over and above habitual activity levels to be a true expression of free-living steps/day that also includes recommendations for minimal amounts of time in MVPA. Computed steps/day translations of time in MVPA that also include estimates of habitual activity levels equate to 7,100 to 11,000 steps/day. A direct estimate of minimal amounts of MVPA accumulated in the course of objectively monitored free-living behaviour is 7,000-8,000 steps/day. A scale that spans a wide range of incremental increases in steps/day and is congruent with public health recognition that "some physical activity is better than none," yet still incorporates step-based translations of recommended amounts of time in MVPA may be useful in research and practice. The full range of users (researchers to practitioners to the general public) of objective monitoring instruments that provide step-based outputs require good reference data and evidence-based recommendations to be able to design effective health messages congruent with public health physical activity guidelines, guide behaviour change, and ultimately measure, track, and interpret steps/day.
Aldridge Whitehead, Jennifer M; Wolf, Erik J; Scoville, Charles R; Wilken, Jason M
2014-10-01
Stair ascent can be difficult for individuals with transfemoral amputation because of the loss of knee function. Most individuals with transfemoral amputation use either a step-to-step (nonreciprocal, advancing one stair at a time) or skip-step strategy (nonreciprocal, advancing two stairs at a time), rather than a step-over-step (reciprocal) strategy, because step-to-step and skip-step allow the leading intact limb to do the majority of work. A new microprocessor-controlled knee (Ottobock X2(®)) uses flexion/extension resistance to allow step-over-step stair ascent. We compared self-selected stair ascent strategies between conventional and X2(®) prosthetic knees, examined between-limb differences, and differentiated stair ascent mechanics between X2(®) users and individuals without amputation. We also determined which factors are associated with differences in knee position during initial contact and swing within X2(®) users. Fourteen individuals with transfemoral amputation participated in stair ascent sessions while using conventional and X2(®) knees. Ten individuals without amputation also completed a stair ascent session. Lower-extremity stair ascent joint angles, moment, and powers and ground reaction forces were calculated using inverse dynamics during self-selected strategy and cadence and controlled cadence using a step-over-step strategy. One individual with amputation self-selected a step-over-step strategy while using a conventional knee, while 10 individuals self-selected a step-over-step strategy while using X2(®) knees. Individuals with amputation used greater prosthetic knee flexion during initial contact (32.5°, p = 0.003) and swing (68.2°, p = 0.001) with higher intersubject variability while using X2(®) knees compared to conventional knees (initial contact: 1.6°, swing: 6.2°). The increased prosthetic knee flexion while using X2(®) knees normalized knee kinematics to individuals without amputation during swing (88.4°, p = 0.179) but not during initial contact (65.7°, p = 0.002). Prosthetic knee flexion during initial contact and swing were positively correlated with prosthetic limb hip power during pull-up (r = 0.641, p = 0.046) and push-up/early swing (r = 0.993, p < 0.001), respectively. Participants with transfemoral amputation were more likely to self-select a step-over-step strategy similar to individuals without amputation while using X2(®) knees than conventional prostheses. Additionally, the increased prosthetic knee flexion used with X2(®) knees placed large power demands on the hip during pull-up and push-up/early swing. A modified strategy that uses less knee flexion can be used to allow step-over-step ascent in individuals with less hip strength.
How many steps/day are enough? for adults
2011-01-01
Physical activity guidelines from around the world are typically expressed in terms of frequency, duration, and intensity parameters. Objective monitoring using pedometers and accelerometers offers a new opportunity to measure and communicate physical activity in terms of steps/day. Various step-based versions or translations of physical activity guidelines are emerging, reflecting public interest in such guidance. However, there appears to be a wide discrepancy in the exact values that are being communicated. It makes sense that step-based recommendations should be harmonious with existing evidence-based public health guidelines that recognize that "some physical activity is better than none" while maintaining a focus on time spent in moderate-to-vigorous physical activity (MVPA). Thus, the purpose of this review was to update our existing knowledge of "How many steps/day are enough?", and to inform step-based recommendations consistent with current physical activity guidelines. Normative data indicate that healthy adults typically take between 4,000 and 18,000 steps/day, and that 10,000 steps/day is reasonable for this population, although there are notable "low active populations." Interventions demonstrate incremental increases on the order of 2,000-2,500 steps/day. The results of seven different controlled studies demonstrate that there is a strong relationship between cadence and intensity. Further, despite some inter-individual variation, 100 steps/minute represents a reasonable floor value indicative of moderate intensity walking. Multiplying this cadence by 30 minutes (i.e., typical of a daily recommendation) produces a minimum of 3,000 steps that is best used as a heuristic (i.e., guiding) value, but these steps must be taken over and above habitual activity levels to be a true expression of free-living steps/day that also includes recommendations for minimal amounts of time in MVPA. Computed steps/day translations of time in MVPA that also include estimates of habitual activity levels equate to 7,100 to 11,000 steps/day. A direct estimate of minimal amounts of MVPA accumulated in the course of objectively monitored free-living behaviour is 7,000-8,000 steps/day. A scale that spans a wide range of incremental increases in steps/day and is congruent with public health recognition that "some physical activity is better than none," yet still incorporates step-based translations of recommended amounts of time in MVPA may be useful in research and practice. The full range of users (researchers to practitioners to the general public) of objective monitoring instruments that provide step-based outputs require good reference data and evidence-based recommendations to be able to design effective health messages congruent with public health physical activity guidelines, guide behaviour change, and ultimately measure, track, and interpret steps/day. PMID:21798015
Sale, Patrizio; Stocchi, Fabrizio; Galafate, Daniele; De Pandis, Maria Francesca; Le Pera, Domenica; Sova, Ivan; Galli, Manuela; Foti, Calogero; Franceschini, Marco
2014-01-01
Background and Purpose: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease clinically characterized by prominent axial extrapyramidal motor symptoms with frequent falls. Over the last years the introduction of robotic technologies to recover lower limb function has been greatly employed in the rehabilitative practice. This observational trial is aimed at investigating the changes in the main spatiotemporal following end-effector robot training in people with PSP. Method: Pilot observational trial. Participants: Five cognitively intact participants with PSP and gait disorders. Interventions: Patients were submitted to a rehabilitative program of robot-assisted walking sessions for 45 min, 5 times a week for 4 weeks. Main outcome measures: The spatiotemporal parameters at the beginning (T0) and at the end of treatment (T1) were recorded by a gait analysis laboratory. Results: Robot training was feasible, acceptable and safe and all participants completed the prescribed training sessions. All patients showed an improvement in the gait spatiotemporal index (Mean velocity, Cadence, Step length, and Step width) (T0 vs. T1). Conclusions: Robot training is a feasible and safe form of rehabilitation for cognitively intact people with PSP. The lack of side effects and the positive results in the gait parameter index in all patients support the recommendation to extend the trials of this treatment. Further investigation regarding the effectiveness of robot training in time is necessary. Trial registration: ClinicalTrials.gov NCT01668407. PMID:24860459
Monticone, Marco; Ambrosini, Emilia; Fiorentini, Roberta; Rocca, Barbara; Liquori, Valentina; Pedrocchi, Alessandra; Ferrante, Simona
2014-09-01
To evaluate the reliability and minimum detectable change (MDC) of spatial-temporal gait parameters in subjects with multiple sclerosis (MS) during dual tasking. This cross-sectional study involved 25 healthy subjects (mean age 49.9 ± 15.8 years) and 25 people with MS (mean age 49.2 ± 11.5 years). Gait under motor-cognitive and motor-motor dual tasking conditions was evaluated in two sessions separated by a one-day interval using the GAITRite Walkway System. Test-retest reliability was assessed using intraclass correlation coefficients (ICCs), standard errors of measurement (SEM), and coefficients of variation (CV). MDC scores were computed for the velocity, cadence, step and stride length, step and stride time, double support time, the % of gait cycle for single support and stance phase, and base of support. All of the gait parameters reported good to excellent ICCs under both conditions, with healthy subject values of >0.69 and MS subject values of >0.84. SEM values were always below 18% for both groups of subjects. The gait patterns of the people with MS were slightly more variable than those of the normal controls (CVs: 5.88-41.53% vs 2.84-30.48%). The assessment of quantitative gait parameters in healthy subjects and people with MS is highly reliable under both of the investigated dual tasking conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Validity and repeatability of inertial measurement units for measuring gait parameters.
Washabaugh, Edward P; Kalyanaraman, Tarun; Adamczyk, Peter G; Claflin, Edward S; Krishnan, Chandramouli
2017-06-01
Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults. Copyright © 2017 Elsevier B.V. All rights reserved.
Motor impairment predicts falls in specialized Alzheimer care units.
Camicioli, Richard; Licis, Lisa
2004-01-01
We sought to identify clinical risk factors for falls in people with advanced Alzheimer disease (AD) in a prospective longitudinal observational study set in specialized AD care units. Forty-two patients with probable or possible AD were recruited. Age, sex, Mini-Mental Status Examination, Clinical Dementia Rating Scale, Neuropsychiatric Inventory/Nursing Home, Morse Fall Scale (MFS), modified Unified Parkinson's Rating Scale (mUPDRS), and gait parameters using a GAITRite Gold Walkway System with and without dual-task performance were examined. Time to a first fall was the primary outcome measure, and independent risk factors were identified. Participating subjects were old (non-fallers age, 82.3 +/- 6.7 years; fallers: 83.1 +/- 9.6 years; p = 0.76) and predominantly women (36 female/6 male). Fallers did not differ from non-fallers on any parameter except the MFS (non-fallers: 35.6 +/- 26.1; fallers: 54.4 +/- 29.8; p = 0.04), the UPDRS (non-fallers: 4.75 +/- 3.98; fallers: 7.61 +/- 4.3, p = 0.03) and cadence (steps per minute: non-fallers: 102.3 +/- 12.3; fallers: 91.7 +/- 16, p = 0.02). Fallers and non-fallers were equally affected by dual-task performance. The hazard ratios for MFS, UPDRS, and cadence were not affected by adjusting for age, sex, MMSE, or NPI scores. In conclusion, falls in advanced AD can be predicted using simple clinical measures of motor impairment or cadence. These measures may be useful for targeting interventions.
47 CFR 10.530 - Common vibration cadence.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Common vibration cadence. 10.530 Section 10.530 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM Equipment Requirements § 10.530 Common vibration cadence. A Participating CMS Provider and equipment manufacturers may only...
2018-01-01
Objective To investigate the immediate therapeutic effects of mental singing while walking intervention on gait disturbances in hemiplegic stroke patients. Methods Eligible, post-stroke, hemiplegic patients were prospectively enrolled in this study. The inclusion criteria were a diagnosis of hemiplegia due to stroke, and ability to walk more than 10 m with or without gait aids. Each patient underwent structured music therapy sessions comprising 7 consecutive tasks, and were trained to sing in their mind (mental singing) while walking. Before, and after training sessions, gait ability was assessed using the 10-Meter Walk Test (10MWT), the Timed Up and Go test (TUG), gait velocity, cadence and stride length. Results Twenty patients were enrolled in the interventions. Following the mental singing while walking intervention, significant improvement was observed in the 10MWT (13.16±7.61 to 12.27±7.58; p=0.002) and the TUG test (19.36±15.37 to 18.42±16.43; p=0.006). Significant improvement was also seen in gait cadence (90.36±29.11 to 95.36±30.2; p<0.001), stride length (90.99±33.4 to 98.17±35.33; p<0.001) and velocity (0.66±0.45 to 0.71±0.47; p<0.002). Conclusion These results indicate the possible effects of mental singing while walking on gait in patients diagnosed with hemiplegic stroke. PMID:29560318
The feasibility of singing to improve gait in Parkinson disease
Harrison, Elinor C.; McNeely, Marie E.; Earhart, Gammon M.
2017-01-01
Brain regions important for controlling movement are also responsible for rhythmic processing. In Parkinson disease (PD), defective internal timing within the brain has been linked to impaired beat discrimination, and may contribute to a loss of ability to maintain a steady gait rhythm. Less rhythmic gait is inherently less efficient, and this may lead to gait impairment including reduced speed, cadence, and stride length, as well as increased variability. While external rhythmic auditory stimulation (e.g. a metronome beat) is well-established as an effective tool to stabilize gait in PD, little is known about whether self-generated cues such as singing have the same beneficial effect on gait in PD. Thus, we compared gait patterns of 23 people with mild to moderate PD under five cued conditions: uncued, music only, singing only, singing with music, and a verbal dual-task condition. In our single session study, singing while walking did not significantly alter velocity, cadence, or stride length, indicating that it was not excessively demanding for people with PD. In addition, walking was less variable when singing than during other cued conditions. This was further supported by the comparison between singing trials and a verbal dual-task condition. In contrast to singing, the verbal dual-task negatively affected gait performance. These findings suggest that singing holds promise as an effective cueing technique that may be as good as or better than traditional cueing techniques for improving gait among people with PD. PMID:28226309
The feasibility of singing to improve gait in Parkinson disease.
Harrison, Elinor C; McNeely, Marie E; Earhart, Gammon M
2017-03-01
Brain regions important for controlling movement are also responsible for rhythmic processing. In Parkinson disease (PD), defective internal timing within the brain has been linked to impaired beat discrimination, and may contribute to a loss of ability to maintain a steady gait rhythm. Less rhythmic gait is inherently less efficient, and this may lead to gait impairment including reduced speed, cadence, and stride length, as well as increased variability. While external rhythmic auditory stimulation (e.g. a metronome beat) is well-established as an effective tool to stabilize gait in PD, little is known about whether self-generated cues such as singing have the same beneficial effect on gait in PD. Thus, we compared gait patterns of 23 people with mild to moderate PD under five cued conditions: uncued, music only, singing only, singing with music, and a verbal dual-task condition. In our single-session study, singing while walking did not significantly alter velocity, cadence, or stride length, indicating that it was not excessively demanding for people with PD. In addition, walking was less variable when singing than during other cued conditions. This was further supported by the comparison between singing trials and a verbal dual-task condition. In contrast to singing, the verbal dual-task negatively affected gait performance. These findings suggest that singing holds promise as an effective cueing technique that may be as good as or better than traditional cueing techniques for improving gait among people with PD. Copyright © 2017 Elsevier B.V. All rights reserved.
Good agreement between smart device and inertial sensor-based gait parameters during a 6-min walk.
Proessl, F; Swanson, C W; Rudroff, T; Fling, B W; Tracy, B L
2018-05-28
Traditional laboratory-based kinetic and kinematic gait analyses are expensive, time-intensive, and impractical for clinical settings. Inertial sensors have gained popularity in gait analysis research and more recently smart devices have been employed to provide quantification of gait. However, no study to date has investigated the agreement between smart device and inertial sensor-based gait parameters during prolonged walking. Compare spatiotemporal gait metrics measured with a smart device versus previously validated inertial sensors. Twenty neurologically healthy young adults (7 women; age: 25.0 ± 3.7 years; BMI: 23.4 ± 2.9 kg/m 2 ) performed a 6-min walk test (6MWT) wearing inertial sensors and smart devices to record stride duration, stride length, cadence, and gait speed. Pearson correlations were used to assess associations between spatiotemporal measures from the two devices and agreement between the two methods was assessed with Bland-Altman plots and limits of agreement. All spatiotemporal gait metrics (stride duration, cadence, stride length and gait speed) showed strong (r>0.9) associations and good agreement between the two devices. Smart devices are capable of accurately reflecting many of the spatiotemporal gait metrics of inertial sensors. As the smart devices also accurately reflected individual leg output, future studies may apply this analytical strategy to clinical populations, to identify hallmarks of disability status and disease progression in a more ecologically valid environment. Copyright © 2018. Published by Elsevier B.V.
Mobility and Agility During Locomotion in the Mark III Space Suit.
Cullinane, Conor R; Rhodes, Richard A; Stirling, Leia A
2017-06-01
The Mark III (MIII) space suit assembly (SSAs) implements a multibearing, hard-material hip brief assembly (HBA). We hypothesize that: 1) the MIII HBA restricts operator mobility and agility which manifests in effects to gait parameters; 2) the waist bearing provides rotational motion, partially alleviating the restrictions; and 3) there are resistive, speed-dependent torques associated with the spinning bearings which further diminish mobility and agility. A subject (Suited and Unsuited) performed two planetary tasks-walking forward (WF) and backward (WB). An analysis of variance (ANOVA) and post hoc comparisons were performed to determine interaction effects. Motion capture data was processed to obtain gait parameters: static base (m), dynamic base (m), step length (m), stride length (m), cadence (steps/min), center of mass speed (m · s-1), foot clearance (toe and heel) (m), and bearing angular velocities (° · s-1). The static base when Suited (0.355 m) was larger than Unsuited (0.263 m). The Suited dynamic base (pooled, 0.200 m) was larger than both Unsuited WF (0.081 m) and WB (0.107 m). When Suited, the operator had lower clearance heights. The waist bearings provided about 7.2° of rotation when WB and WF. The maximum torque, while WF, in the right upper and mid bearings was 15.6 ± 1.35 Nm and 16.3 ± 1.28 Nm. This study integrated suit component properties and the emergent biomechanics of the operator to investigate how biomechanics are affected. The human hip has three collocated degrees of freedom (DOFs), whereas the HBA has a single DOF per bearing. The results can inform requirements for future SSA and other wearable system designs and evaluations.Cullinane CR, Rhodes RA, Stirling LA. Mobility and agility during locomotion in the Mark III space suit. Aerosp Med Hum Perform. 2017; 88(6):589-596.
Hamzaid, N A; Fornusek, C; Ruys, A; Davis, G M
2007-12-01
The mechanical design of a constant velocity (isokinetic) leg stepping trainer driven by functional electrical stimulation-evoked muscle contractions was the focus of this paper. The system was conceived for training the leg muscles of neurologically-impaired patients. A commercially available slider crank mechanism for elliptical stepping exercise was adapted to a motorized isokinetic driving mechanism. The exercise system permits constant-velocity pedalling at cadences of 1-60 rev x min(-1). The variable-velocity feature allows low pedalling forces for individuals with very weak leg muscles, yet provides resistance to higher pedalling effort in stronger patients. In the future, the system will be integrated with a computer-controlled neuromuscular stimulator and a feedback control unit to monitor training responses of spinal cord-injured, stroke and head injury patients.
Effect of cadence on locomotor-respiratory coupling during upper-body exercise.
Tiller, Nicholas B; Price, Mike J; Campbell, Ian G; Romer, Lee M
2017-02-01
Asynchronous arm-cranking performed at high cadences elicits greater cardiorespiratory responses compared to low cadences. This has been attributed to increased postural demand and locomotor-respiratory coupling (LRC), and yet, this has not been empirically tested. This study aimed to assess the effects of cadence on cardiorespiratory responses and LRC during upper-body exercise. Eight recreationally-active men performed arm-cranking exercise at moderate and severe intensities that were separated by 10 min of rest. At each intensity, participants exercised for 4 min at each of three cadences (50, 70, and 90 rev min -1 ) in a random order, with 4 min rest-periods applied in-between cadences. Exercise measures included LRC via whole- and half-integer ratios, cardiorespiratory function, perceptions of effort (RPE and dyspnoea), and diaphragm EMG using an oesophageal catheter. The prevalence of LRC during moderate exercise was highest at 70 vs. 50 rev min -1 (27 ± 10 vs. 13 ± 9%, p = 0.000) and during severe exercise at 90 vs. 50 rev min -1 (24 ± 7 vs. 18 ± 5%, p = 0.034), with a shorter inspiratory time and higher mean inspiratory flow (p < 0.05) at higher cadences. During moderate exercise, [Formula: see text] and f C were higher at 90 rev min -1 (p < 0.05) relative to 70 and 50 rev min -1 ([Formula: see text] 1.19 ± 0.25 vs. 1.05 ± 0.21 vs. 0.97 ± 0.24 L min -1 ; f C 116 ± 11 vs. 101 ± 13 vs. 101 ± 12 b min -1 ), with concomitantly elevated dyspnoea. There were no discernible cadence-mediated effects on diaphragm EMG. Participants engage in LRC to a greater extent at moderate-high cadences which, in turn, increase respiratory airflow. Cadence rate should be carefully considered when designing aerobic training programmes involving the upper-limbs.
Menz, Hylton B; Auhl, Maria; Munteanu, Shannon E
2017-09-11
Footwear has the potential to influence balance in either a detrimental or beneficial manner, and is therefore an important consideration in relation to falls prevention. The objective of this study was to evaluate balance ability and gait patterns in older women while wearing prototype footwear and insoles designed to improve balance. Older women (n = 30) aged 65 - 83 years (mean 74.4, SD 5.6) performed a series of laboratory tests of balance ability (postural sway on a foam rubber mat, limits of stability and tandem walking, measured with the Neurocom® Balance Master) and gait patterns (walking speed, cadence, step length and step width at preferred speed, measured with the GAITRite® walkway) while wearing (i) flexible footwear (Dunlop Volley™), (ii) their own footwear, and (iii) prototype footwear and insoles designed to improve dynamic balance. Perceptions of the footwear were also documented using a structured questionnaire. There was no difference in postural sway, limits of stability or gait patterns between the footwear conditions. However, when performing the tandem walking test, there was a significant reduction in step width and end sway when wearing the prototype footwear compared to both the flexible footwear and participants' own footwear. Participants perceived their own footwear to be more attractive, comfortable, well-fitted and easier to put on and off compared to the prototype footwear. Despite this, most participants (n = 18, 60%) reported that they would consider wearing the prototype footwear to reduce their risk of falling. The prototype footwear and insoles used in this study improve balance when performing a tandem walk test, as evidenced by a narrower step width and decreased sway at completion of the task. However, further development of the design is required to make the footwear acceptable to older women from the perspective of aesthetics and comfort. Australian New Zealand Clinical Trials Registry. ACTRN12617001128381 , 01/08/2017 (retrospectively registered).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-05
...,058C; Cadence Design Systems, Inc., Custom Integrated Circuit Design, West Valley, Austin, TX May 18...., Silicon Package Board (SPB) Division, Austin, TX. May 18, 2008 TA-W-70,058Q; Cadence Design Systems, Inc... Systems, Inc., Global Customer Support (GCS) Division, Austin, TX May 18, 2008 TA-W-70,058V; Cadence...
Torque, power and muscle activation of eccentric and concentric isokinetic cycling.
Green, David J; Thomas, Kevin; Ross, Emma Z; Green, Steven C; Pringle, Jamie S M; Howatson, Glyn
2018-06-01
This study aimed to establish the effect of cycling mode and cadence on torque, external power output, and lower limb muscle activation during maximal, recumbent, isokinetic cycling. After familiarisation, twelve healthy males completed 6 × 10 s of maximal eccentric (ECC) and concentric (CON) cycling at 20, 40, 60, 80, 100, and 120 rpm with five minutes recovery. Vastus lateralis, medial gastrocnemius, rectus femoris, and biceps femoris surface electromyography was recorded throughout. As cadence increased, peak torque linearly decreased during ECC (350-248 N·m) and CON (239-117 N·m) and peak power increased in a parabolic manner. Crank angle at peak torque increased with cadence in CON (+13°) and decreased in ECC (-9.0°). At all cadences, peak torque (mean +129 N·m, range 111-143 N·m), and power (mean +871 W, range 181-1406 W), were greater during ECC compared to CON. For all recorded muscles the crank angle at peak muscle activation was greater during ECC compared to CON. This difference increased with cadence in all muscles except the vastus lateralis. Additionally, peak vastus laterallis and biceps femoris activation was greater during CON compared to ECC. Eccentric cycling offers a greater mechanical stimulus compared to concentric cycling but the effect of cadence is similar between modalities. Markers of technique (muscle activation, crank angle at peak activation and torque) were different between eccentric and concentric cycling and respond differently to changes in cadence. Such data should be considered when comparing between, and selecting cadences for, recumbent, isokinetic, eccentric and concentric cycling. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Protas, Elizabeth J; Raines, Mary Lynn; Tissier, Sandrine
2007-06-01
To compare temporal, spatial, and oxygen costs of gait while elderly subjects walked without an assistive device, with a new assistive device, and with 2 other commercially available assistive devices. Descriptive, repeated measures. University-based research laboratory. Thirteen healthy older subjects who could walk without an assistive device. Not applicable. Gait speed, normalized gait speed, cadence, stride lengths, 5-minute walk distance and gait speed, oxygen consumption (Vo2) per meter walked, respiratory exchange ratio (RER) per meter walked, and minute ventilation per meter walked. Gait speed, normalized gait speed, and stride lengths decreased when the Merry Walker device was used, compared with walking without an assistive device. Outcome measures when walking with either the wheeled walker or the WalkAbout did not differ significantly from walking without a device except for a faster cadence with the WalkAbout. The distance walked and gait speed were decreased and the RER and minute ventilation were increased during the 5-minute walk with the Merry Walker compared with normal walking. The Vo2 was higher with the wheeled walker and Merry Walker than when walking without an assistive device, but there was no difference when the WalkAbout was used. Older adults walked in the new assistive device, the WalkAbout, with parameters that did not differ significantly from their gait without a device. The oxygen demands of walking were similar to unassisted walking for the WalkAbout, but were higher for the wheeled walker and Merry Walker. These results may help guide the prescription of assistive devices for older adults.
Global Erratum for Kepler Q0-Q17 and K2 C0-C5 Short Cadence Data
NASA Technical Reports Server (NTRS)
Caldwell, Douglas; Van Cleve, Jeffrey E.
2016-01-01
An accounting error has scrambled much of the short-cadence collateral smear data used to correct for the effects of Keplers shutterless readout. This error has been present since launch and affects approximately half of all short-cadence targets observed by Kepler and K2 to date. The resulting calibration errors are present in both the short-cadence target pixel files and the short-cadence light curves for Kepler Data Releases 1-24 and K2 Data Releases 1-7. This error does not affect long-cadence data. Since it will take some time to correct this error and reprocess all Kepler and K2 data, a list of affected targets is provided. Even though the affected targets are readily identified, the science impact for any particular target may be difficult to assess. Since the smear signal is often small compared to the target signal, the effect is negligible for many targets. However, the smear signal is scene-dependent, so time varying signals can be introduced into any target by the other stars falling on the same CCD column. Some tips on how to assess the severity of the calibration error are provided in this document.
Yong, Jennifer R; Silder, Amy; Montgomery, Kate L; Fredericson, Michael; Delp, Scott L
2018-05-18
Tibial stress fractures are a common and debilitating injury that occur in distance runners. Runners may be able to decrease tibial stress fracture risk by adopting a running pattern that reduces biomechanical parameters associated with a history of tibial stress fracture. The purpose of this study was to test the hypothesis that converting to a forefoot striking pattern or increasing cadence without focusing on changing foot strike type would reduce injury risk parameters in recreational runners. Running kinematics, ground reaction forces and tibial accelerations were recorded from seventeen healthy, habitual rearfoot striking runners while running in their natural running pattern and after two acute retraining conditions: (1) converting to forefoot striking without focusing on cadence and (2) increasing cadence without focusing on foot strike. We found that converting to forefoot striking decreased two risk factors for tibial stress fracture: average and peak loading rates. Increasing cadence decreased one risk factor: peak hip adduction angle. Our results demonstrate that acute adaptation to forefoot striking reduces different injury risk parameters than acute adaptation to increased cadence and suggest that both modifications may reduce the risk of tibial stress fractures. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kepler K2 observations of the transitional millisecond pulsar PSR J1023+0038
NASA Astrophysics Data System (ADS)
Kennedy, M. R.; Clark, C. J.; Voisin, G.; Breton, R. P.
2018-06-01
For 80 d in 2017, the Kepler Space Telescope continuously observed the transitional millisecond pulsar system PSR J1023+0038 in its accreting state. We present analyses of the 59-s cadence data, focusing on investigations of the orbital light curve of the irradiated companion star and of flaring activity in the neutron star's accretion disc. The underlying orbital modulation from the companion star retains a similar amplitude and asymmetric heating profile as seen in previous photometric observations of the system in its radio pulsar state, suggesting that the heating mechanism has not been affected by the state change. We also find tentative evidence that this asymmetry may vary with time. The light curve also exhibits `flickering' activity, evident as short time-scale flux correlations throughout the observations, and periods of rapid mode-switching activity on time-scales shorter than the observation cadence. Finally, the system spent ˜ 20 per cent of the observations in a flaring state, with the length of these flares varying from <2 min up to several hours. The flaring behaviour is consistent with a self-organized criticality mechanism, most likely related to the build-up and release of mass at the inner edge of the accretion disc.
Rapid-cadence optical monitoring for short-period variability of ɛ Aurigae
NASA Astrophysics Data System (ADS)
Billings, Gary
2013-07-01
ɛ Aurigae was observed with CCD cameras and 35 mm SLR camera lenses, at rapid cadence (>1/minute), for long runs (up to 11 hours), on multiple occasions during 2009 - 2011, to monitor for variability of the system at scales of minutes to hours. The lens and camera were changed during the period to improve results, finalizing on a 135 mm focal length Canon f/2 lens (at f/2.8), an ND8 neutral density filter, a Johnson V filter, and an SBIG ST-8XME camera (Kodak KAF-1603ME microlensed chip). Differential photometry was attempted, but because of the large separation between the variable and comparison star (η Aur), noise caused by transient extinction variations was not consistently eliminated. The lowest-noise time series for searching for short-period variability proved to be the extinction-corrected instrumental magnitude of ɛ Aur obtained on "photometric nights", with η Aur used to determine and monitor the extinction coefficient for the night. No flares or short-period variations of ɛ Aur were detected by visual inspection of the light curves from observing runs with noise levels as low as 0.008 magnitudes rms.
Walking stability and sensorimotor function in older people with diabetic peripheral neuropathy.
Menz, Hylton B; Lord, Stephen R; St George, Rebecca; Fitzpatrick, Richard C
2004-02-01
To evaluate, in older people with diabetic peripheral neuropathy (DPN) and in age-matched controls, acceleration patterns of the head and pelvis when walking to determine the effect of lower-limb sensory loss on walking stability. Case-control study. Falls and balance laboratory in Australia. Thirty persons with diabetes mellitus (age range, 55-91 y) and 30 age-matched controls. Acceleration patterns of the head and pelvis were measured while participants walked on a level surface and an irregular walkway. Participants also underwent tests of vision, sensation, strength, reaction time, and balance. Temporospatial gait parameters and variables derived from acceleration signals. Participants with DPN had reduced walking speed, cadence, and step length, and less rhythmic acceleration patterns at the head and pelvis compared with controls. These differences were particularly evident when participants walked on the irregular surface. Participants with DPN also had impaired peripheral sensation, reaction time, and balance. Older people with DPN have an impaired ability to stabilize their body when walking on irregular surfaces, even if they adopt a more conservative gait pattern. These results provide further insights into the role of peripheral sensory input in the control of gait stability, and suggest possible mechanisms underlying the increased risk of falling in older people with diabetic neuropathy.
Bäzner, H; Oster, M; Daffertshofer, M; Hennerici, M
2000-11-01
In subcortical vascular encephalopathy (SVE) gait disturbance is a common and early clinical sign which might be used to monitor disease progression. In the absence of reliable scales and with regard to the equivocal results of highly complex gait imaging devices we assessed the natural course of SVE in a prospective study, using a new straight forward technique to quantify and compare sequential gait studies. We report the results of 300 computerized gait analyses in 119 patients with SVE and 63 age-matched controls. Thirty-nine SVE patients were re-evaluated to monitor the natural course of the disease and to study the correlation of gait disturbances with MRI changes and neuropsychological findings. The system consists of a set of shoes containing 16 load sensors and a measuring-unit reading each sensor at 20-ms intervals. By off-line analysis we graded each recording on a Gait Disorder Score (GDS) with six variables indicating gait steadiness: step frequency, length of gait lines (which represent the movement of the centre of gravity during heel to toe movement), length of single support lines, variability of single and of double support lines, and double support time. In cross-sectional analysis, patients with SVE showed cadence (steps/min) to be reduced at 87.3 +/- 19.5 (96.4 +/- 7.8 in controls, P < 0.05). Length of gait lines was significantly less: 0.70 +/- 0.13 vs. 0.80 +/- 0.05 in controls, with length of single support gait lines reduced at 0.42 +/- 0.14 in SVE (0.58 +/- 0.06 in controls, P < 0.05). Variability of both single support lines (5.69 +/- 1.90%; 4.24 +/- 1.07% in controls, P < 0.05) and double support lines was elevated (3.59 +/- 1.62% vs. 2.54 +/- 0.59%), while duration of double support phases was increased (0.19 +/- 0.10 s vs. 0.13 +/- 0.02 s in controls, P < 0.05). The progressive character of the disease was demonstrated by increasing GDS values in 39 SVE patients with a frontal gait disorder who were re-investigated after a mean interval of 26 months (5.4 +/- 4.5 vs. 8.4 +/- 5.5, P < 0.05). This study shows the value of a new and practicable gait analysis system for the evaluation of gait disorders and it quantifies the deterioration of gait in SVE patients.
VizieR Online Data Catalog: Transit times for Kepler-79's known planets (Jontof-Hutter+, 2014)
NASA Astrophysics Data System (ADS)
Jontof-Hutter, D.; Lissauer, J. J.; Rowe, J. F.; Fabrycky, D. C.
2017-06-01
Variations in the brightness of Kepler-79 were monitored with an effective duty cycle exceeding 90% starting at barycentric Julian date (BJD) 2454964.512, with all data returned to Earth at a cadence of 29.426 minutes (long cadence, LC); data were also returned at a cadence of 58.85 s (short cadence, SC) beginning from BJD 2455093.216. Here and throughout we base our timeline for transit data from T=JD-2454900. Our analysis uses SC data where available, augmented by the LC data set primarily during the epoch prior to T<193 days, for which no SC data were returned to Earth. (1 data file).
Buesing, Carolyn; Fisch, Gabriela; O'Donnell, Megan; Shahidi, Ida; Thomas, Lauren; Mummidisetty, Chaithanya K; Williams, Kenton J; Takahashi, Hideaki; Rymer, William Zev; Jayaraman, Arun
2015-08-20
Robots offer an alternative, potentially advantageous method of providing repetitive, high-dosage, and high-intensity training to address the gait impairments caused by stroke. In this study, we compared the effects of the Stride Management Assist (SMA®) System, a new wearable robotic device developed by Honda R&D Corporation, Japan, with functional task specific training (FTST) on spatiotemporal gait parameters in stroke survivors. A single blinded randomized control trial was performed to assess the effect of FTST and task-specific walking training with the SMA® device on spatiotemporal gait parameters. Participants (n=50) were randomly assigned to FTST or SMA. Subjects in both groups received training 3 times per week for 6-8 weeks for a maximum of 18 training sessions. The GAITRite® system was used to collect data on subjects' spatiotemporal gait characteristics before training (baseline), at mid-training, post-training, and at a 3-month follow-up. After training, significant improvements in gait parameters were observed in both training groups compared to baseline, including an increase in velocity and cadence, a decrease in swing time on the impaired side, a decrease in double support time, an increase in stride length on impaired and non-impaired sides, and an increase in step length on impaired and non-impaired sides. No significant differences were observed between training groups; except for SMA group, step length on the impaired side increased significantly during self-selected walking speed trials and spatial asymmetry decreased significantly during fast-velocity walking trials. SMA and FTST interventions provided similar, significant improvements in spatiotemporal gait parameters; however, the SMA group showed additional improvements across more parameters at various time points. These results indicate that the SMA® device could be a useful therapeutic tool to improve spatiotemporal parameters and contribute to improved functional mobility in stroke survivors. Further research is needed to determine the feasibility of using this device in a home setting vs a clinic setting, and whether such home use provides continued benefits. This study is registered under the title "Development of walk assist device to improve community ambulation" and can be located in clinicaltrials.gov with the study identifier: NCT01994395 .
What to measure when determining orthotic needs in children with Down syndrome: a pilot study.
Looper, Julia; Benjamin, Danielle; Nolan, Mindy; Schumm, Laura
2012-01-01
To compare the effects of off-the-shelf foot orthoses and supramalleolar orthoses on the gait of children with Down syndrome (DS), and establish criteria for determining orthoses prescription for a child with DS. We assessed the gait of 6 children (aged 4-7 years) with DS using the GAITRite system, and obtained height, weight, leg length, hypermobility, calcaneal eversion, navicular drop, and tibial torsion measurements. Supramalleolar orthoses lead to a longer cycle time than foot orthoses (P = .05) and barefoot walking (P = .03) and a lower cadence than barefoot walking (P = .04). Significant strong correlations with gait parameters were obtained for height, leg length, and hypermobility. Biomechanical measurements showed no significant correlations with gait parameters. The role of physical examination data, including anthropometric and biomechanical measurements in the prescription of orthoses requires further investigation.
Alberton, Cristine Lima; Cadore, Eduardo Lusa; Pinto, Stephanie Santana; Tartaruga, Marcus Peikriszwili; da Silva, Eduardo Marczwski; Kruel, Luiz Fernando Martins
2011-06-01
The purpose of this study was to analyze the cardiorespiratory, neuromuscular and kinematic responses obtained during the stationary running in aquatic and dry land environments. Twelve women took part in the experimental protocol. Stationary running was performed for 4 min at three submaximal cadences and for 15 s at maximal velocity, with the collection of kinematic (peak hip angular velocity (AV)), cardiorespiratory (oxygen uptake (VO(2))) and neuromuscular variables (electromyographic (EMG) signal from the rectus femoris (RF), vastus lateralis (VL), semitendinosus (ST) and short head of the biceps femoris (BF) muscles) in land-based and water-based test protocols. Factorial ANOVA was used, with an alpha level of 0.05. AV was significantly higher when the exercise was performed on land, and became significantly higher as the execution cadence increased. Similarly, VO(2) was significantly higher in the land-based exercise and rose as cadence increased. With the increase in the submaximal execution cadences, there was no corresponding increase in the EMG signal from the VL, BF, RF and ST muscles in either environment, though such a significantly increase was seen between the submaximal cadences and the maximal velocity. Dry land presented significantly greater EMG signal responses for all muscles at the submaximal cadences, except for the ST muscle. However, at the maximal velocity, all the analyzed muscle groups showed similar responses in both environments. In summary, for both environments, cardiorespiratory responses can be maximized by increasing the submaximal cadences, while neuromuscular responses are only optimized by using maximal velocity.
Rankin, Jeffery W; Kwarciak, Andrew M; Richter, W Mark; Neptune, Richard R
2012-11-01
The majority of manual wheelchair users will experience upper extremity injuries or pain, in part due to the high force requirements, repetitive motion and extreme joint postures associated with wheelchair propulsion. Recent studies have identified cadence, contact angle and peak force as important factors for reducing upper extremity demand during propulsion. However, studies often make comparisons between populations (e.g., able-bodied vs. paraplegic) or do not investigate specific measures of upper extremity demand. The purpose of this study was to use a musculoskeletal model and forward dynamics simulations of wheelchair propulsion to investigate how altering cadence, peak force and contact angle influence individual muscle demand. Forward dynamics simulations of wheelchair propulsion were generated to emulate group-averaged experimental data during four conditions: 1) self-selected propulsion technique, and while 2) minimizing cadence, 3) maximizing contact angle, and 4) minimizing peak force using biofeedback. Simulations were used to determine individual muscle mechanical power and stress as measures of muscle demand. Minimizing peak force and cadence had the lowest muscle power requirements. However, minimizing peak force increased cadence and recovery power, while minimizing cadence increased average muscle stress. Maximizing contact angle increased muscle stress and had the highest muscle power requirements. Minimizing cadence appears to have the most potential for reducing muscle demand and fatigue, which could decrease upper extremity injuries and pain. However, altering any of these variables to extreme values appears to be less effective; instead small to moderate changes may better reduce overall muscle demand. Copyright © 2012 Elsevier Ltd. All rights reserved.
Influence of step length and landing pattern on patellofemoral joint kinetics during running.
Willson, J D; Ratcliff, O M; Meardon, S A; Willy, R W
2015-12-01
Elevated patellofemoral joint kinetics during running may contribute to patellofemoral joint symptoms. The purpose of this study was to test for independent effects of foot strike pattern and step length on patellofemoral joint kinetics while running. Effects were tested relative to individual steps and also taking into account the number of steps required to run a kilometer with each step length. Patellofemoral joint reaction force and stress were estimated in 20 participants running at their preferred speed. Participants ran using a forefoot strike and rearfoot strike pattern during three different step length conditions: preferred step length, long (+10%) step length, and short (-10%) step length. Patellofemoral kinetics was estimated using a biomechanical model of the patellofemoral joint that accounted for cocontraction of the knee flexors and extensors. We observed independent effects of foot strike pattern and step length. Patellofemoral joint kinetics per step was 10-13% less during forefoot strike conditions and 15-20% less with a shortened step length. Patellofemoral joint kinetics per kilometer decreased 12-13% using a forefoot strike pattern and 9-12% with a shortened step length. To the extent that patellofemoral joint kinetics contribute to symptoms among runners, these running modifications may be advisable for runners with patellofemoral pain. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Dongo, R.; Moscoso, M.; Callupe, R.; Pajaya, J.; Elías, D.
2017-11-01
Gait analysis is of clinical relevance for clinicians. However, normal gait patterns used in foreign literature could be different from local individuals. The aim of this study was to determine the normal gait patterns and parameters of Peruvian individuals in order to have a local referent for clinical assessments and making diagnosis and treatment Peruvian people with lower motor neuron injuries. A descriptive study with 34 subjects was conducted to assess their gait cycle. VICON® cameras were used to capture body movements. For the analyses, we calculated spatiotemporal gait parameters and average angles of displacement of the hip, knee, and ankle joints with their respective 95% confidence intervals. The results showed gait speed was 0.58m/s, cadence was 102.1steps/min, and the angular displacement of the hip, knee and ankle joints were all lower than those described in the literature. In the graphs, gait cycles were close to those reported in previous studies, but the parameters of speed, cadence and angles of displacements are lower than the ones shown in the literature. These results could be used as a better reference pattern in the clinical setting.
Neurofeedback training improves the dual-task performance ability in stroke patients.
Lee, Young-Shin; Bae, Sea-Hyun; Lee, Sung-Hee; Kim, Kyung-Yoon
2015-05-01
Owing to the reduced capacity for information processing following a stroke, patients commonly present with difficulties in performing activities of daily living that combine two or more tasks. To address this problem, in the present study, we investigated the effects of neurofeedback training on the abilities of stroke patients to perform dual motor tasks. We randomly assigned 20 patients who had sustained a stroke within the preceding 6 months to either a pseudo-neurofeedback (n = 10) or neurofeedback (n = 10) group. Both groups participated in a general exercise intervention for 8 weeks, three times a week for 30 min per session, under the same conditions. An electrode was secured to the scalp over the region of the central lobe (Cz), in compliance with the International 10-20 System. The electrode was inactive for the pseudo-training group. Participants in the neurofeedback training group received the 30-min neurofeedback training per session for reinforcing the sensorimotor rhythm. Electroencephalographic activity of the two groups was compared. In addition, selected parameters of gait (velocity, cadence [step/min], stance phase [%], and foot pressure) were analyzed using a 10-m walk test, attention-demanding task, walk task and quantified by the SmartStep system. The neurofeedback group showed significantly improved the regulation of the sensorimotor rhythm (p < 0.001) and ability to execute dual tasks (p < 0.01). Significant improvements on selected gait parameters (velocity and cadence; p < 0.05) were also observed. We thus propose that the neurofeedback training is effective to improve the dual-task performance in stroke patients.
Subtasks affecting step-length asymmetry in post-stroke hemiparetic walking.
Kim, Woo-Sub
2016-10-01
This study was performed to investigate whether components from trunk progression (TP) and step length were related to step length asymmetry in walking in patients with hemiparesis. Gait analysis was performed for participants with hemiparesis and healthy controls. The distance between the pelvis and foot in the anterior-posterior axis was calculated at initial-contact. Step length was partitioned into anterior foot placement (AFP) and posterior foot placement (PFP). TP was partitioned into anterior trunk progression (ATP) and posterior trunk progression (PTP). The TP pattern and step length pattern were defined to represent intra-TP and intra-step spatial balance, respectively. Of 29 participants with hemiparesis, nine participants showed longer paretic step length, eight participants showed symmetric step length, and 12 participants showed shorter paretic step length. For the hemiparesis group, linear regression analysis showed that ATP asymmetry, AFP asymmetry, and TP patterns had significant predictability regarding step length asymmetry. Prolonged paretic ATP and shortened paretic AFP was the predominant pattern in the hemiparesis group, even in participants with symmetric step length. However, some participants showed same direction of ATP and AFP asymmetry. These findings indicate the following: (1) ATP asymmetries should be observed to determine individual characteristics of step length asymmetry, and (2) TP patterns can provide complementary information for non-paretic limb compensation. Copyright © 2016 Elsevier B.V. All rights reserved.
Kaewkaen, Kitchana; Wongsamud, Phongphat; Ngaothanyaphat, Jiratchaya; Supawarapong, Papawarin; Uthama, Suraphong; Ruengsirarak, Worasak; Chanabun, Suthin; Kaewkaen, Pratchaya
2018-02-01
The walking gait of older adults with balance impairment is affected by dual tasking. Several studies have shown that external cues can stimulate improvement in older adults' performance. There is, however, no current evidence to support the usefulness of external cues, such as audio-visual cueing, in dual task walking in older adults. Thus, the aim of this study was to investigate the influence of an audio-visual cue (simulated traffic light) on dual task walking in healthy older adults and in older adults with balance impairments. A two-way repeated measures study was conducted on 14 healthy older adults and 14 older adults with balance impairment, who were recruited from the community in Chiang Rai, Thailand. Their walking performance was assessed using a four-metre walking test at their preferred gait speed and while walking under two further gait conditions, in randomised order: dual task walking and dual task walking with a simulated traffic light. Each participant was tested individually, with the testing taking between 15 and 20 minutes to perform, including two-minute rest periods between walking conditions. Two Kinect cameras recorded the spatio-temporal parameters using MFU gait analysis software. Each participant was tested for each condition twice. The mean parameters for each condition were analysed using a two-way repeated measures analysis of variance (ANOVA) with participant group and gait condition as factors. There was no significant between-group effect for walking speed, stride length and cadence. There were also no significant effects between gait condition and stride length or cadence. However, the effect between gait condition and walking speed was found to be significant [F(1.557, 40.485) = 4.568, P = 0.024, [Formula: see text
Hession, Caren E; Eastwood, Brian; Watterson, David; Lehane, Christine M; Oxley, Nigel; Murphy, Barbara A
2014-01-01
The objectives of this study were to evaluate the effects of the physical motion of a horse (riding therapy) combined with the audiovisual perception of this motion on a group of children with dyspraxia in terms of cognition, mood arousal, and gait variability. The study design was a pretest/post-test. The study was conducted at the Fettercairn Youth Horse Project, Fettercairn, Tallaght, Dublin. Forty (40) children ranging from 6 to 15 years of age with a primary diagnosis of dyspraxia were the study subjects. Children meeting inclusion criteria participated in six 30-minute horse-riding sessions and two 30-minute audiovisual screening sessions. A Standard Progressive Matrices test (also known as the Ravens test) was used to measure aspects of general intelligence. A Childhood Depression Inventory (CDI) questionnaire was used to assess cognitive, affective, and behavioral signs of depression. A GAITRite Pressure Mapping System analyzed foot function and gait variability by measuring single and double support, cycle time, cadence, toe in/out, and stride length. Significant improvements were evident on the Ravens test and the CDI by the end of the study period. The amount of both single and double support required while completing the walking task also was significantly reduced. Improvements were visible on toe in/out values, cycle time, and cadence. Changes in stride length did not reach statistical significance. These findings support the theory that riding therapy and/or the perception of beat-based rhythms, as experienced by the rider on the horse, stimulates cognition, mood, and gait parameters. In addition, the data also pointed to the potential value of an audiovisual approach to equine therapy.
Gardner, Andrew W; Montgomery, Polly S; Casanegra, Ana I; Silva-Palacios, Federico; Ungvari, Zoltan; Csiszar, Anna
2016-06-01
The aim of the study was to determine whether gait characteristics were associated with endothelial cell inflammation, oxidative stress, and apoptosis and with circulating biomarkers of inflammation and antioxidant capacity in older patients with symptomatic peripheral artery disease (PAD). Gait measurements of 231 symptomatic men and women with PAD were assessed during a 4-m walk test. Patients were further characterized on endothelial effects of circulating factors present in the sera using a cell culture-based bioassay on primary human arterial endothelial cells and on circulating inflammatory and vascular biomarkers. In a multivariate regression model for gait speed, the significant independent variables were age (p < 0.001), intercellular cell adhesion molecule-1 (ICAM-1) (p < 0.001), diabetes (p = 0.003), sex (p = 0.003), and history of cerebrovascular accidents (p = 0.021). In multivariate analyses for gait cadence, the significant independent predictors included high-sensitivity C-reactive protein (HsCRP) (p < 0.001), diabetes (p = 0.001), and hypertension (p = 0.001). In a multivariate regression model for gait stride length, the significant independent variables were HsCRP (p < 0.001), age (p < 0.001), ICAM-1 (p < 0.001), hypertension (p = 0.002), cellular reactive oxygen species production (p = 0.007), and sex (p = 0.008). Higher levels of circulating biomarkers of inflammation and endothelial cell oxidative stress were associated with slower gait speed, slower cadence, and shorter stride length in older symptomatic patients with PAD. Additionally, this profile of impaired gait was more evident in older patients, in women, and in those with diabetes, hypertension, and history of cerebrovascular accidents.
Insights into gait disorders: walking variability using phase plot analysis, Parkinson's disease.
Esser, Patrick; Dawes, Helen; Collett, Johnny; Howells, Ken
2013-09-01
Gait variability may have greater utility than spatio-temporal parameters and can, be an indication for risk of falling in people with Parkinson's disease (PD). Current methods rely on prolonged data collection in order to obtain large datasets which may be demanding to obtain. We set out to explore a phase plot variability analysis to differentiate typically developed adults (TDAs) from PD obtained from two 10 m walks. Fourteen people with PD and good mobility (Rivermead Mobility Index≥8) and ten aged matched TDA were recruited and walked over 10-m at self-selected walking speed. An inertial measurement unit was placed over the projected centre of mass (CoM) sampling at 100 Hz. Vertical CoM excursion was derived to determine modelled spatiotemporal data after which the phase plot analysis was applied producing a cloud of datapoints. SDA described the spread and SDB the width of the cloud with β the angular vector of the data points. The ratio (∀) was defined as SDA: SDB. Cadence (p=.342) and stride length (p=.615) did not show a significance between TDA and PD. A difference was found for walking speed (p=.041). Furthermore a significant difference was found for β (p=.010), SDA (p=.004) other than SDB (p=.385) or ratio ∀ (p=.830). Two sequential 10-m walks showed no difference in PD for cadence (p=.193), stride length (p=.683), walking speed (p=.684) and β (p=.194), SDA (p=.051), SDB (p=.145) or ∀ (p=.226). The proposed phase plot analysis, performed on CoM motion could be used to reliably differentiate PD from TDA over a 10-m walk. Copyright © 2013 Elsevier B.V. All rights reserved.
STRONG LENS TIME DELAY CHALLENGE. II. RESULTS OF TDC1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Kai; Treu, Tommaso; Marshall, Phil
2015-02-10
We present the results of the first strong lens time delay challenge. The motivation, experimental design, and entry level challenge are described in a companion paper. This paper presents the main challenge, TDC1, which consisted of analyzing thousands of simulated light curves blindly. The observational properties of the light curves cover the range in quality obtained for current targeted efforts (e.g., COSMOGRAIL) and expected from future synoptic surveys (e.g., LSST), and include simulated systematic errors. Seven teams participated in TDC1, submitting results from 78 different method variants. After describing each method, we compute and analyze basic statistics measuring accuracy (ormore » bias) A, goodness of fit χ{sup 2}, precision P, and success rate f. For some methods we identify outliers as an important issue. Other methods show that outliers can be controlled via visual inspection or conservative quality control. Several methods are competitive, i.e., give |A| < 0.03, P < 0.03, and χ{sup 2} < 1.5, with some of the methods already reaching sub-percent accuracy. The fraction of light curves yielding a time delay measurement is typically in the range f = 20%-40%. It depends strongly on the quality of the data: COSMOGRAIL-quality cadence and light curve lengths yield significantly higher f than does sparser sampling. Taking the results of TDC1 at face value, we estimate that LSST should provide around 400 robust time-delay measurements, each with P < 0.03 and |A| < 0.01, comparable to current lens modeling uncertainties. In terms of observing strategies, we find that A and f depend mostly on season length, while P depends mostly on cadence and campaign duration.« less
Surface Peroneal Nerve Stimulation in Lower Limb Hemiparesis: Effect on Quantitative Gait Parameters
Sheffler, Lynne R.; Taylor, Paul N.; Bailey, Stephanie Nogan; Gunzler, Douglas D.; Buurke, Jaap H.; IJzerman, Maarten J.; Chae, John
2015-01-01
Objective To evaluate possible mechanisms for functional improvement and compare ambulation training with surface peroneal nerve stimulation (PNS) versus usual care (UC) via quantitative gait analysis. Design Randomized controlled clinical trial. Setting Teaching hospital of academic medical center. Participants 110 chronic stroke survivors (> 12-wks post-stroke) with unilateral hemiparesis. Interventions Subjects were randomized to a surface PNS device or UC intervention. Subjects were treated for 12-wks and followed for 6-months post-treatment. Main Outcome Measures Spatiotemporal, kinematic, and kinetic parameters of gait. Results Cadence (F3,153=5.81, p=.012), stride length (F3,179=20.01, p<.001), walking speed (F3,167=18.2, p<.001), anterior posterior ground reaction force (F3,164=6.61, p=.004), peak hip power in pre-swing (F3,156=8.76, p<.001), and peak ankle power at push-off (F3,149=6.38, p=.005) all improved with respect to time. However, peak ankle DF in swing (F3,184=4.99, p=.031) worsened. In general, the greatest change for all parameters occurred during the treatment period. There was no significant treatment group by time interaction effects for any of the spatiotemporal, kinematic, or kinetic parameters. Conclusions Gait training with PNS and usual care was associated with improvements in peak hip power in pre-swing and peak ankle power at push-off, which may have resulted in improved cadence, stride length, and walking speed; however, there were no differences between treatment groups. Both treatment groups also experienced a decrease in peak ankle DF in swing, though the clinical implications of this finding are unclear. PMID:25802966
Anterior or posterior walkers for children with cerebral palsy? A systematic review.
Poole, Marilyn; Simkiss, Doug; Rose, Alice; Li, François-Xavier
2018-05-01
To review the literature comparing use of anterior and posterior walkers (PW's) by children with cerebral palsy (CP) to determine which walker type is preferable. Electronic databases were searched using pre-defined terms by two independent reviewers. Reference lists of included studies were hand searched. Studies published between 1985 and 2016 comparing use of anterior and PW's by children with CP were included. All study designs and outcomes were accepted. Risk of bias was assessed using the "Quality assessment standard for a cross-over study". Quality of evidence was evaluated using GRADE. Six studies were analysed. All studies had small sample sizes. A total of 4/6 studies were randomized. A total of 4/6 had high risk of bias. Outcomes included velocity, pelvic tilt, hip flexion, knee flexion, step length, stride length, cadence, double stance time, oxygen cost and participant/parental preference. Velocity, trunk flexion/pelvic tilt, and stability may be improved by using a PW, however, GRADE quality was very low for all outcomes and there was heterogeneity between studies. The majority of participants and parents preferred the PW. Heterogeneity and low quality of existing evidence prevented recommendation of one walker type. Well-designed studies with adequate power are needed to inform clinical recommendations. Implications for rehabilitation Clinical recommendations cannot be made for whether anterior or posterior walkers are preferable for children with cerebral palsy based on the existing evidence. Velocity, trunk flexion/pelvic tilt, and stability may be improved by using a posterior walker. The majority of walking aid users and their parents preferred posterior walkers. Adequately powered studies designed to minimize bias are needed.
Relative variances of the cadence frequency of cycling under two differential saddle heights
Chang, Wen-Dien; Fan Chiang, Chin-Yun; Lai, Ping-Tung; Lee, Chia-Lun; Fang, Sz-Ming
2016-01-01
[Purpose] Bicycle saddle height is a critical factor for cycling performance and injury prevention. The present study compared the variance in cadence frequency after exercise fatigue between saddle heights with 25° and 35° knee flexion. [Methods] Two saddle heights, which were determined by setting the pedal at the bottom dead point with 35° and 25° knee flexion, were used for testing. The relative variances of the cadence frequency were calculated at the end of a 5-minute warm-up period and 5 minutes after inducing exercise fatigue. Comparison of the absolute values of the cadence frequency under the two saddle heights revealed a difference in pedaling efficiency. [Results] Five minutes after inducing exercise fatigue, the relative variances of the cadence frequency for the saddle height with 35° knee flexion was higher than that for the saddle height with 25° knee flexion. [Conclusion] The current finding demonstrated that a saddle height with 25° knee flexion is more appropriate for cyclists than a saddle height with 35° knee flexion. PMID:27065522
Compliant walking appears metabolically advantageous at extreme step lengths.
Kim, Jaehoon; Bertram, John E A
2018-05-19
Humans alter gait in response to unusual gait circumstances to accomplish the task of walking. For instance, subjects spontaneously increase leg compliance at a step length threshold as step length increases. Here we test the hypothesis that this transition occurs based on the level of energy expenditure, where compliant walking becomes less energetically demanding at long step lengths. To map and compare the metabolic cost of normal and compliant walking as step length increases. 10 healthy individuals walked on a treadmill using progressively increasing step lengths (100%, 120%, 140% and 160% of preferred step length), in both normal and compliant leg walking as energy expenditure was recorded via indirect calorimetry. Leg compliance was controlled by lowering the center-of-mass trajectory during stance, forcing the leg to flex and extend as the body moved over the foot contact. For normal step lengths, compliant leg walking was more costly than normal walking gait, but compliant leg walking energetic cost did not increase as rapidly for longer step lengths. This led to an intersection between normal and compliant walking cost curves at 114% relative step length (regression analysis; r 2 = 0.92 for normal walking; r 2 = 0.65 for compliant walking). Compliant leg walking is less energetically demanding at longer step lengths where a spontaneous shift to compliant walking has been observed, suggesting the human motor control system is sensitive to energetic requirements and will employ alternate movement patterns if advantageous strategies are available. The transition could be attributed to the interplay between (i) leg work controlling body travel during single stance and (ii) leg work to control energy loss in the step-to-step transition. Compliant leg walking requires more stance leg work at normal step lengths, but involves less energy loss at the step-to-step transition for very long steps. Copyright © 2018 Elsevier B.V. All rights reserved.
Maximum step length: relationships to age and knee and hip extensor capacities.
Schulz, Brian W; Ashton-Miller, James A; Alexander, Neil B
2007-07-01
Maximum Step Length may be used to identify older adults at increased risk for falls. Since leg muscle weakness is a risk factor for falls, we tested the hypotheses that maximum knee and hip extension speed, strength, and power capacities would significantly correlate with Maximum Step Length and also that the "step out and back" Maximum Step Length [Medell, J.L., Alexander, N.B., 2000. A clinical measure of maximal and rapid stepping in older women. J. Gerontol. A Biol. Sci. Med. Sci. 55, M429-M433.] would also correlate with the Maximum Step Length of its two sub-tasks: stepping "out only" and stepping "back only". These sub-tasks will be referred to as versions of Maximum Step Length. Unimpaired younger (N=11, age=24[3]years) and older (N=10, age=73[5]years) women performed the above three versions of Maximum Step Length. Knee and hip extension speed, strength, and power capacities were determined on a separate day and regressed on Maximum Step Length and age group. Version and practice effects were quantified and subjective impressions of test difficulty recorded. Hypotheses were tested using linear regressions, analysis of variance, and Fisher's exact test. Maximum Step Length explained 6-22% additional variance in knee and hip extension speed, strength, and power capacities after controlling for age group. Within- and between-block and test-retest correlation values were high (>0.9) for all test versions. Shorter Maximum Step Lengths are associated with reduced knee and hip extension speed, strength, and power capacities after controlling for age. A single out-and-back step of maximal length is a feasible, rapid screening measure that may provide insight into underlying functional impairment, regardless of age.
Wittwer, Joanne E; Webster, Kate E; Hill, Keith
2013-02-01
Rhythmic auditory cues including music and metronome beats have been used, sometimes interchangeably, to improve disordered gait arising from a range of clinical conditions. There has been limited investigation into whether there are optimal cue types. Different cue types have produced inconsistent effects across groups which differed in both age and clinical condition. The possible effect of normal ageing on response to different cue types has not been reported for gait. The aim of this study was to determine the effects of both rhythmic music and metronome cues on gait spatiotemporal measures (including variability) in healthy older people. Twelve women and seven men (>65 years) walked on an instrumented walkway at comfortable pace and then in time to each of rhythmic music and metronome cues at comfortable pace stepping frequency. Music but not metronome cues produced a significant increase in group mean gait velocity of 4.6 cm/s, due mostly to a significant increase in group mean stride length of 3.1cm. Both cue types produced a significant but small increase in cadence of 1 step/min. Mean spatio-temporal variability was low at baseline and did not increase with either cue type suggesting cues did not disrupt gait timing. Study findings suggest music and metronome cues may not be used interchangeably and cue type as well as frequency should be considered when evaluating effects of rhythmic auditory cueing on gait. Further work is required to determine whether optimal cue types and frequencies to improve walking in different clinical groups can be identified. Copyright © 2012 Elsevier B.V. All rights reserved.
2016-01-01
Training subjects to step in place on a rotating platform while maintaining a fixed body orientation in space produces a posteffect consisting in inadvertent turning around while stepping in place eyes closed (podokinetic after-rotation, PKAR). We tested the hypothesis that voluntary turning around while stepping in place also produces a posteffect similar to PKAR. Sixteen subjects performed 12 min of voluntary turning while stepping around their vertical axis eyes closed and 12 min of stepping in place eyes open on the center of a platform rotating at 60°/s (pretests). Then, subjects continued stepping in place eyes closed for at least 10 min (posteffect). We recorded the positions of markers fixed to head, shoulder, and feet. The posteffect of voluntary turning shared all features of PKAR. Time decay of angular velocity, stepping cadence, head acceleration, and ratio of angular velocity after to angular velocity before were similar between both protocols. Both postrotations took place inadvertently. The posteffects are possibly dependent on the repeated voluntary contraction of leg and foot intrarotating pelvic muscles that rotate the trunk over the stance foot, a synergy common to both protocols. We propose that stepping in place and voluntary turning can be a scheme ancillary to the rotating platform for training body segment coordination in patients with impairment of turning synergies of various origin. PMID:27635264
Rizzo, John-Ross; Raghavan, Preeti; McCrery, J R; Oh-Park, Mooyeon; Verghese, Joe
2015-04-01
To evaluate the effect of a novel divided attention task-walking under auditory constraints-on gait performance in older adults and to determine whether this effect was moderated by cognitive status. Validation cohort. General community. Ambulatory older adults without dementia (N=104). Not applicable. In this pilot study, we evaluated walking under auditory constraints in 104 older adults who completed 3 pairs of walking trials on a gait mat under 1 of 3 randomly assigned conditions: 1 pair without auditory stimulation and 2 pairs with emotionally charged auditory stimulation with happy or sad sounds. The mean age of subjects was 80.6±4.9 years, and 63% (n=66) were women. The mean velocity during normal walking was 97.9±20.6cm/s, and the mean cadence was 105.1±9.9 steps/min. The effect of walking under auditory constraints on gait characteristics was analyzed using a 2-factorial analysis of variance with a 1-between factor (cognitively intact and minimal cognitive impairment groups) and a 1-within factor (type of auditory stimuli). In both happy and sad auditory stimulation trials, cognitively intact older adults (n=96) showed an average increase of 2.68cm/s in gait velocity (F1.86,191.71=3.99; P=.02) and an average increase of 2.41 steps/min in cadence (F1.75,180.42=10.12; P<.001) as compared with trials without auditory stimulation. In contrast, older adults with minimal cognitive impairment (Blessed test score, 5-10; n=8) showed an average reduction of 5.45cm/s in gait velocity (F1.87,190.83=5.62; P=.005) and an average reduction of 3.88 steps/min in cadence (F1.79,183.10=8.21; P=.001) under both auditory stimulation conditions. Neither baseline fall history nor performance of activities of daily living accounted for these differences. Our results provide preliminary evidence of the differentiating effect of emotionally charged auditory stimuli on gait performance in older individuals with minimal cognitive impairment compared with those without minimal cognitive impairment. A divided attention task using emotionally charged auditory stimuli might be able to elicit compensatory improvement in gait performance in cognitively intact older individuals, but lead to decompensation in those with minimal cognitive impairment. Further investigation is needed to compare gait performance under this task to gait on other dual-task paradigms and to separately examine the effect of physiological aging versus cognitive impairment on gait during walking under auditory constraints. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Linking pedestrian flow characteristics with stepping locomotion
NASA Astrophysics Data System (ADS)
Wang, Jiayue; Boltes, Maik; Seyfried, Armin; Zhang, Jun; Ziemer, Verena; Weng, Wenguo
2018-06-01
While properties of human traffic flow are described by speed, density and flow, the locomotion of pedestrian is based on steps. To relate characteristics of human locomotor system with properties of human traffic flow, this paper aims to connect gait characteristics like step length, step frequency, swaying amplitude and synchronization with speed and density and thus to build a ground for advanced pedestrian models. For this aim, observational and experimental study on the single-file movement of pedestrians at different densities is conducted. Methods to measure step length, step frequency, swaying amplitude and step synchronization are proposed by means of trajectories of the head. Mathematical models for the relations of step length or frequency and speed are evaluated. The problem how step length and step duration are influenced by factors like body height and density is investigated. It is shown that the effect of body height on step length and step duration changes with density. Furthermore, two different types of step in-phase synchronization between two successive pedestrians are observed and the influence of step synchronization on step length is examined.
Effects of step length and step frequency on lower-limb muscle function in human gait.
Lim, Yoong Ping; Lin, Yi-Chung; Pandy, Marcus G
2017-05-24
The aim of this study was to quantify the effects of step length and step frequency on lower-limb muscle function in walking. Three-dimensional gait data were used in conjunction with musculoskeletal modeling techniques to evaluate muscle function over a range of walking speeds using prescribed combinations of step length and step frequency. The body was modeled as a 10-segment, 21-degree-of-freedom skeleton actuated by 54 muscle-tendon units. Lower-limb muscle forces were calculated using inverse dynamics and static optimization. We found that five muscles - GMAX, GMED, VAS, GAS, and SOL - dominated vertical support and forward progression independent of changes made to either step length or step frequency, and that, overall, changes in step length had a greater influence on lower-limb joint motion, net joint moments and muscle function than step frequency. Peak forces developed by the uniarticular hip and knee extensors, as well as the normalized fiber lengths at which these muscles developed their peak forces, correlated more closely with changes in step length than step frequency. Increasing step length resulted in larger contributions from the hip and knee extensors and smaller contributions from gravitational forces (limb posture) to vertical support. These results provide insight into why older people with weak hip and knee extensors walk more slowly by reducing step length rather than step frequency and also help to identify the key muscle groups that ought to be targeted in exercise programs designed to improve gait biomechanics in older adults. Copyright © 2017 Elsevier Ltd. All rights reserved.
Detection of abnormal muscle activations during walking following spinal cord injury (SCI).
Wang, Ping; Low, K H; McGregor, Alison H; Tow, Adela
2013-04-01
In order to identify optimal rehabilitation strategies for spinal cord injury (SCI) participants, assessment of impaired walking is required to detect, monitor and quantify movement disorders. In the proposed assessment, ten healthy and seven SCI participants were recruited to perform an over-ground walking test at slow walking speeds. SCI participants were given assistance from physiotherapists, if required, while they were walking. In agreement with other research, larger cadence and smaller step length and swing phase of SCI gait were observed as a result of muscle weakness and resultant gait instability. Muscle activation patterns of seven major leg muscles were collected. The EMG signal was processed by the RMS in frequency domain to represent the muscle activation power, and the distribution of muscle activation was compared between healthy and SCI participants. The alternations of muscle activation within the phases of the gait cycle are highlighted to facilitate our understanding of the underlying muscular activation following SCI. Key differences were observed (p-value=0.0006) in the reduced activation of tibialis anterior (TA) in single stance phase and rectus femoris (RF) in swing phase (p-value=0.0011). We can then conclude that the proposed assessment approach of gait provides valuable information that can be used to target and define therapeutic interventions and their evaluation; hence impacting the functional outcome of SCI individuals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Funato, Tetsuro; Aoi, Shinya; Oshima, Hiroko; Tsuchiya, Kazuo
2010-09-01
Step length, cadence and joint flexion all increase in response to increases in gradient and walking speed. However, the tuning strategy leading to these changes has not been elucidated. One characteristic of joint variation that occurs during walking is the close relationship among the joints. This property reduces the number of degrees of freedom and seems to be a key issue in discussing the tuning strategy. This correlation has been analyzed for the lower limbs, but the relation between the trunk and lower body is generally ignored. Two questions about posture during walking are discussed in this paper: (1) whether there is a low-dimensional restriction that determines walking posture, which depends not just on the lower limbs but on the whole body, including the trunk and (2) whether some simple rules appear in different walking conditions. To investigate the correlation, singular value decomposition was applied to a measured walking pattern. This showed that the whole movement can be described by a closed loop on a two-dimensional plane in joint space. Furthermore, by investigating the effect of the walking condition on the decomposed patterns, the position and the tilt of the constraint plane was found to change significantly, while the loop pattern on the constraint plane was shown to be robust. This result indicates that humans select only certain kinematic characteristics for adapting to various walking conditions.
Kiliçoğlu, Onder; Dönmez, Arif; Karagülle, Zeki; Erdoğan, Nergis; Akalan, Ekin; Temelli, Yener
2010-04-01
Effects of balneotherapy on gait properties of patients with osteoarthritis of the knee were investigated prospectively. A total of 30 patients with knee osteoarthritis received balneotherapy consisting of two daily thermomineral water baths for 2 weeks. Patients were evaluated using gait analysis and clinical scores, both within 2 weeks, before and after spa treatment. Patients were walking faster in their control analyses (0.81 +/- 0.21 to 0.89 +/- 0.19 m/s; P = 0.017), with a shorter mean stance time (63.0 +/- 3.3 to 61.8 +/- 2.5% stride; P = 0.007), an increased cadence (96 +/- 13.1 to 100 +/- 11.9 steps/min; P = 0.094) and stride length (996 +/- 174 to 1,058 +/- 142 mm; P = 0.017). Balneotherapy also resulted in a significant decrease in Lequesne knee osteoarthritis index (12.1 +/- 3.7 to 10.0 +/- 3.3 points; P = 0.003), VAS for pain (58 +/- 25 to 33 +/- 15; P = 0.0001), VAS for patients' (56 +/- 24 to 29 +/- 19; P < 0.001) and investigator's global assessment (55 +/- 20 to 26 +/- 15; P < 0.0001) and WOMAC score (2.1 +/- 0.7 to 1.6 +/- 0.8; P = 0.0004). Balneotherapy has positive effects on gait properties and clinical health quality parameters of patients with knee osteoarthritis in short-term evaluations.
Gender differences associated with rearfoot, midfoot, and forefoot kinematics during running.
Takabayashi, Tomoya; Edama, Mutsuaki; Nakamura, Masatoshi; Nakamura, Emi; Inai, Takuma; Kubo, Masayoshi
2017-11-01
Females, as compared with males, have a higher proportion of injuries in the foot region. However, the reason for this gender difference regarding foot injuries remains unclear. This study aimed to investigate gender differences associated with rearfoot, midfoot, and forefoot kinematics during running. Twelve healthy males and 12 females ran on a treadmill. The running speed was set to speed which changes from walking to running. Three-dimensional kinematics of rearfoot, midfoot, and forefoot were collected and compared between males and females. Furthermore, spatiotemporal parameters (speed, cadence, and step length) were measured. In the rearfoot angle, females showed a significantly greater peak value of plantarflexion and range of motion in the sagittal plane as compared with males (effect size (ES) = 1.55 and ES = 1.12, respectively). In the midfoot angle, females showed a significantly greater peak value of dorsiflexion and range of motion in the sagittal plane as compared with males (ES = 1.49 and ES = 1.71, respectively). The forefoot peak angles and ranges of motion were not significantly different between the genders in all three planes. A previous study suggested that a gender-related difference in excessive motions of the lower extremities during running has been suggested as a contributing factor to running injuries. Therefore, the present investigation may provide insight into the reason for the high incidence of foot injuries in females.
Lunn, William R; Zenoni, Maria A; Crandall, Ian H; Dress, Ashley E; Berglund, Michelle L
2015-08-01
The aim of the present study was to determine the effect of different pretest pedaling cadences on power outcomes obtained during the Wingate Anaerobic Test (WAnT). Vigorously exercising adult men (n = 14, 24.9 ± 1.2 years) and women (n = 14, 20.4 ± 0.6 years) participated in a randomized crossover study during which they performed the 30-second WAnT on a mechanically braked cycle ergometer (0.075 kg·kg(-1) body weight) under 2 conditions. Participants pedaled maximally with an unloaded flywheel during 5 seconds before resistance was applied and the test began (FAST). In another trial, participants maintained a moderate cadence (80 revolutions per minute [rpm]) during 5 seconds before the test began (MOD). All other components of the WAnT were identical. Peak power (PP), mean power (MP), minimum power (MinP), fatigue index (%FAT), and maximum cadence during test were recorded. Comparisons were made using a 2 × 2 factorial repeated-measures analysis of variance. Regardless of gender, the FAST condition resulted in 22.2% lower PP (612.6 ± 33.0 W vs. 788.3 ± 43.5 W), 13.3% lower MP (448.4 ± 22.2 W vs. 517.2 ± 26.4 W), 11.7% lower MinP (280.9 ± 14.8 W vs. 318.3 ± 17.2 W), and 9.0% lower %FAT (53.5 ± 1.3% vs. 58.8 ± 1.5%) than MOD condition (p < 0.01; mean ± SD). Similar outcomes were observed within gender. The authors conclude that practitioners of the WAnT should instruct participants to maintain a moderate pedal cadence (∼80 rpm) during 5 seconds before the test commences to avoid bias from software sampling and peripheral fatigue. Standardizing the pretest pedal cadence will be important to exercise testing professionals who compare data with norms or generate norms for specific populations.
Kepler Commissioning Data for Measurement of the Pixel Response Function and Focal Plane Geometry
NASA Technical Reports Server (NTRS)
Bryson, Stephen T.
2017-01-01
This document describes the Kepler PRF/FPG data release. This data was taken on April 27-29, 2009, during Kepler's commissioning phase in order to measure the pixel response function (PRF) (Bryson et al., 2010a) and focal plane geometry (FPG) (Tenenbaum and Jenkins, 2010). 33,424 stellar targets were observed for 243 long cadences, each with a duration of 14.7 minutes (half the duration of a normal Kepler long cadence). During these 243 cadences the Kepler photometer was moved, pointing in a dither pattern to facilitate PRF measurement. Motion occurred during the even cadences (second, fourth, etc.), with the telescope in stable fine point at each pointing in the dither pattern during the odd cadences (first, third, etc.). The first and last cadences were at the center of the dither pattern. Motion cadences are included in this release, but they do not contain any data. For details on how this data was used to derive the Kepler PRF and FPG models, see Bryson et al. (2010a) and Tenenbaum and Jenkins (2010). Descriptions of the PRF and FPG models are found in Thompson et al. (2016), x2.3.5.17 and x2.3.5.16 respectively. The data in this release can be used to recompute the Kepler PRF and FPG. Such a reconstruction, however, would not reflect measured seasonal changes in the PRF described in Van Cleve et al. (2016b), x5.2.The dither pattern is shown in Figure 1. The crosses show the commanded pointings and the circles show the measured pointings. Measured pointings are different from the commanded pointings due to the early state of calibration of the fine guidance sensors during commissioning (Van Cleve et al., 2016a). The measured offsets from the center of the pattern are given in RADEC offsets and pixel offsets in Table 1. The order of the offsets was randomized during data collection to avoid time-dependent systematics.
Janssen, Sabine; Bolte, Benjamin; Nonnekes, Jorik; Bittner, Marian; Bloem, Bastiaan R; Heida, Tjitske; Zhao, Yan; van Wezel, Richard J A
2017-01-01
External cueing is a potentially effective strategy to reduce freezing of gait (FOG) in persons with Parkinson's disease (PD). Case reports suggest that three-dimensional (3D) cues might be more effective in reducing FOG than two-dimensional cues. We investigate the usability of 3D augmented reality visual cues delivered by smart glasses in comparison to conventional 3D transverse bars on the floor and auditory cueing via a metronome in reducing FOG and improving gait parameters. In laboratory experiments, 25 persons with PD and FOG performed walking tasks while wearing custom-made smart glasses under five conditions, at the end-of-dose. For two conditions, augmented visual cues (bars/staircase) were displayed via the smart glasses. The control conditions involved conventional 3D transverse bars on the floor, auditory cueing via a metronome, and no cueing. The number of FOG episodes and percentage of time spent on FOG were rated from video recordings. The stride length and its variability, cycle time and its variability, cadence, and speed were calculated from motion data collected with a motion capture suit equipped with 17 inertial measurement units. A total of 300 FOG episodes occurred in 19 out of 25 participants. There were no statistically significant differences in number of FOG episodes and percentage of time spent on FOG across the five conditions. The conventional bars increased stride length, cycle time, and stride length variability, while decreasing cadence and speed. No effects for the other conditions were found. Participants preferred the metronome most, and the augmented staircase least. They suggested to improve the comfort, esthetics, usability, field of view, and stability of the smart glasses on the head and to reduce their weight and size. In their current form, augmented visual cues delivered by smart glasses are not beneficial for persons with PD and FOG. This could be attributable to distraction, blockage of visual feedback, insufficient familiarization with the smart glasses, or display of the visual cues in the central rather than peripheral visual field. Future smart glasses are required to be more lightweight, comfortable, and user friendly to avoid distraction and blockage of sensory feedback, thus increasing usability.
Schulz, Brian W.; Jongprasithporn, Manutchanok; Hart-Hughes, Stephanie J.; Bulat, Tatjana
2017-01-01
Background Maximum step length is a brief clinical test involving stepping out and back as far as possible with the arms folded across the chest. This test has been shown to predict fall risk, but the biomechanics of this test are not fully understood. Knee and hip kinetics (moments and powers) are greater for longer steps and for younger subjects, but younger subjects also step farther. Methods To separate effects of step length, age, and fall history on joint kinetics; 14 healthy younger, 14 older non-fallers, and 11 older fallers (27(5), 72(5), 75(6) years respectively) all stepped to the same relative target distances of 20-80% of their height. Knee and hip kinetics and knee co-contraction were calculated. Findings Hip and knee kinetics and knee co-contraction all increased with step length, but older non-fallers and fallers utilized greater stepping hip and less stepping knee extensor kinetics. Fallers had greater stepping knee co-contraction than non-fallers. Stance knee co-contraction of non-fallers was similar to young for shorter steps and similar to fallers for longer steps. Interpretation Age had minimal effects and fall history had no effects on joint kinetics of steps to similar distances. Effects of age and fall history on knee co-contraction may contribute to age-related kinetic differences and shorter maximal step lengths of older non-fallers and fallers, but step length correlated with every variable tested. Thus, declines in maximum step length could indicate declines in hip and knee extensor kinetics and impaired performance on similar tasks like recovering from a trip. PMID:23978310
NASA Astrophysics Data System (ADS)
Sheets, Holly A.; Deming, Drake
2017-10-01
We present the results of our work to determine the average albedo for small, close-in planets in the Kepler candidate catalog. We have adapted our method of averaging short-cadence light curves of multiple Kepler planet candidates to long-cadence data, in order to detect an average albedo for the group of candidates. Long-cadence data exist for many more candidates than the short-cadence data, and so we separate the candidates into smaller radius bins than in our previous work: 1-2 {R}\\oplus , 2-4 {R}\\oplus , and 4-6 {R}\\oplus . We find that, on average, all three groups appear darker than suggested by the short-cadence results, but not as dark as many hot Jupiters. The average geometric albedos for the three groups are 0.11 ± 0.06, 0.05 ± 0.04, and 0.23 ± 0.11, respectively, for the case where heat is uniformly distributed about the planet. If heat redistribution is inefficient, the albedos are even lower, since there will be a greater thermal contribution to the total light from the planet. We confirm that newly identified false-positive Kepler Object of Interest (KOI) 1662.01 is indeed an eclipsing binary at twice the period listed in the planet candidate catalog. We also newly identify planet candidate KOI 4351.01 as an eclipsing binary, and we report a secondary eclipse measurement for Kepler-4b (KOI 7.01) of ˜7.50 ppm at a phase of ˜0.7, indicating that the planet is on an eccentric orbit.
Savin, Douglas N.; Morton, Susanne M.; Whitall, Jill
2013-01-01
Objectives Determine whether adaptation to a swing phase perturbation during gait transferred from treadmill to overground walking, the rate of overground deadaptation, and whether overground aftereffects improved step length asymmetry in persons with hemiparetic stroke and gait asymmetry. Methods Ten participants with stroke and hemiparesis and 10 controls walked overground on an instrumented gait mat, adapted gait to a swing phase perturbation on a treadmill, then walked overground on the gait mat again. Outcome measures, primary: overground step length symmetry, rates of treadmill step length symmetry adaptation and overground step length symmetry deadaptation; secondary: overground gait velocity, stride length, and stride cycle duration. Results Step length symmetry aftereffects generalized to overground walking and adapted at a similar rate on the treadmill in both groups. Aftereffects decayed at a slower rate overground in participants with stroke and temporarily improved overground step length asymmetry. Both groups’ overground gait velocity increased post adaptation due to increased stride length and decreased stride duration. Conclusions Stroke and hemiparesis do not impair generalization of step length symmetry changes from adapted treadmill to overground walking, but prolong overground aftereffects. Significance Motor adaptation during treadmill walking may be an effective treatment for improving overground gait asymmetries post-stroke. PMID:24286858
The effects of age and step length on joint kinematics and kinetics of large out-and-back steps.
Schulz, Brian W; Ashton-Miller, James A; Alexander, Neil B
2008-06-01
Maximum step length (MSL) is a clinical test that has been shown to correlate with age, various measures of fall risk, and knee and hip joint extension speed, strength, and power capacities, but little is known about the kinematics and kinetics of the large out-and-back step utilized. Body motions and ground reaction forces were recorded for 11 unimpaired younger and 10 older women while attaining maximum step length. Joint kinematics and kinetics were calculated using inverse dynamics. The effects of age group and step length on the biomechanics of these large out-and-back steps were determined. Maximum step length was 40% greater in the younger than in the older women (P<0.0001). Peak knee and hip, but not ankle, angle, velocity, moment, and power were generally greater for younger women and longer steps. After controlling for age group, step length generally explained significant additional variance in hip and torso kinematics and kinetics (incremental R2=0.09-0.37). The young reached their peak knee extension moment immediately after landing of the step out, while the old reached their peak knee extension moment just before the return step liftoff (P=0.03). Maximum step length is strongly associated with hip kinematics and kinetics. Delays in peak knee extension moment that appear to be unrelated to step length, may indicate a reduced ability of older women to rapidly apply force to the ground with the stepping leg and thus arrest the momentum of a fall.
The effects of age and step length on joint kinematics and kinetics of large out-and-back steps
Schulz, Brian W.; Ashton-Miller, James A.; Alexander, Neil B.
2008-01-01
Background Maximum Step Length is a clinical test that has been shown to correlate with age, various measures of fall risk, and knee and hip joint extension speed, strength, and power capacities, but little is known about the kinematics and kinetics of the large out-and-back step utilized. Methods Body motions and ground reaction forces were recorded for 11 unimpaired younger and 10 older women while attaining Maximum Step Length. Joint kinematics and kinetics were calculated using inverse dynamics. The effects of age group and step length on the biomechanics of these large out-and-back steps were determined. Findings Maximum Step Length was 40% greater in the younger than in the older women (p<0.0001). Peak knee and hip, but not ankle, angle, velocity, moment, and power were generally greater for younger women and longer steps. After controlling for age group, step length generally explained significant additional variance in hip and torso kinematics and kinetics (incremental R2=0.09–0.37). The young reached their peak knee extension moment immediately after landing of the step out, while the old reached their peak knee extension moment just before the return step lift off (p=0.03). Interpretation Maximum Step Length is strongly associated with hip kinematics and kinetics. Delays in peak knee extension moment that appear to be unrelated to step length, may indicate a reduced ability of older women to rapidly apply force to the ground with the stepping leg and thus arrest the momentum of a fall. PMID:18308435
Fonseca, Lucas O da; Bó, Antônio P L; Guimarães, Juliana A; Gutierrez, Miguel E; Fachin-Martins, Emerson
2017-11-01
Functional electrical stimulation cycling has been proposed as an assistive technology with numerous health and fitness benefits for people with spinal cord injury, such as improvement in cardiovascular function, increase in muscular mass, and reduction of bone mass loss. However, some limitations, for example, lack of optimal control strategies that would delay fatigue, may still prevent this technology from achieving its full potential. In this work, we performed experiments on a person with complete spinal cord injury using a stationary tadpole trike when both cadence tracking and disturbance rejection were evaluated. In addition, two sets of experiments were conducted 6 months apart and considering activation of different muscles. The results showed that reference tracking is achieved above the cadence of 25 rpm with mean absolute errors between 1.9 and 10% when only quadriceps are activated. The disturbance test revealed that interferences may drop the cadence but do not interrupt a continuous movement if the cadence does not drop below 25 rpm, again when only quadriceps are activated. When other muscle groups were added, strong spasticity caused larger errors on reference tracking, but not when a disturbance was applied. In addition, spasticity caused the last experiments to result in less smooth cycling. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Multi-instrument study of chromospheric jets
NASA Astrophysics Data System (ADS)
Vanninathan, Kamalam; Madjarska, Maria; Doyle, Gerry
2012-03-01
The contribution to coronal heating by jets of various kinds like spicules, mottles, surges etc. originating in the solar chromosphere is an issue which is being currently largely explored. We analyse multi-instrument data taken in the plage area of active regions during dedicated observing runs with ROSA, IBIS at Sac Peak, USA, SOT, EIS/XRT/Hinode and AIA/SDO. The high-resolution and high-cadence data allow us to track chromospheric jets through the solar atmosphere and thus helps us to understand the dynamics and plasma properties of these features. The study is a forward step towards the exploration of the forthcoming state-of-art IRIS observations.
Early signs of gait deviation in Duchenne muscular dystrophy.
Doglio, L; Pavan, E; Pernigotti, I; Petralia, P; Frigo, C; Minetti, C
2011-12-01
Most analytical studies found in literature only focus on specific aspects of Duchenne muscular dystrophy (DMD) gait and posture (joint range of motion, standing balance, variations of gait spatial-temporal parameters). Some of them analyze single cases and do not provide a comprehensive evaluation of locomotion. There are few studies about DMD gait patterns, most of them concerning small groups of patients, sometimes not homogeneous, in which the clinical manifestations of the next stages of DMD were present. The goal of our study was to analyze the characteristics of gait patterns in early stage patients, when clinical and functional evaluation do not allow to quantify initial walking worsening or to identify the changes adopted to compensate for muscle weakness. Gait Analysis Laboratory by using a six-camera motion capture system (Vicon, Oxford Metrics, UK), set at a sampling rate of 60 Hz. Subjects were asked to walk barefoot at their usual cadence, along a 10-m walkway, where one force platform (Kistler, Switzerland), embedded in the middle portion of the pathway, measured the foot-ground reaction forces. Retroreflective markers were placed on the subjects according to the protocol described in Davis et al. A group of 15 patients aging from 5 to 6.8 years was compared with a similar age control group composed of 9 healthy children. Spatial and temporal parameters showed significant differences between the two groups: cadence was increased and step length was decreased significantly in the DMD group. We found a significant increase in the range of anterior-posterior pelvic tilt and in pelvic rotation. In the frontal plane there was a tendency for an increased pelvic obliquity. Dynamic range of motion in sagittal plane showed a significant difference at the ankle, with an increased plantarflexion in swing in the dystrophic patients. Maximum dorsiflexion was reduced in the DMD group. Kinetic analysis showed significant differences in power generation and absorption at the hip joint and at the ankle joint. At knee there was a reduced flexor moment in mid-stance. Ankle showed a reduced dorsiflexor moment in terminal stance and pre-swing with a consequent reduction in the peak-to-peak excursion. It was shown that instrumented gait analysis, being more sensitive than other clinical and functional assessment methods, allowed to quantify the very early modifications characterizing locomotion worsening in the first stage of the DMD.
Gardner, Andrew W; Montgomery, Polly S; Zhao, Yan D; Silva-Palacios, Federico; Ungvari, Zoltan; Csiszar, Anna; Sonntag, William E
2017-06-01
The primary aim of the study was to assess whether both the amount and pace of daily walking were associated with circulating antioxidant capacity in symptomatic patients with peripheral artery disease (PAD). Community-based walking was measured in 244 men and women who were limited by symptomatic PAD during a 1-week period in which they wore an ankle-mounted step activity monitor. Patients were further characterized by circulating antioxidant capacity with the OxiSelect (Cell Biolabs Inc, San Diego, Calif) hydroxyl radical antioxidant capacity (HORAC) activity assay. To assess the amount of walking, patients were grouped into low (≤2440 strides/d), middle (2441-3835 strides/d), and high (>3835 strides/d) stride tertiles. HORAC was higher in the middle (P = .03) and high (P = .01) stride tertiles than in the low tertile, but there was no difference between middle and high tertiles (P = .44). To assess the pace of walking, patients were grouped into slow (<25.0 strides/min), middle (25.0-31.6 strides/min), and fast (>31.6 strides/min) cadence tertiles. HORAC was higher in the high cadence tertile than in the low (P < .01) and middle (P < .01) tertiles, but there was no difference between low and middle tertiles (P = .48). Similar findings were obtained on group differences in HORAC after adjusting for age, sex, race, and ankle-brachial index for both the amount and pace of daily walking. Walking >2440 strides each day and walking at a cadence faster than 31.6 strides/min for 30 minutes each day are both associated with greater circulating antioxidant capacity in symptomatic patients with PAD. The clinical significance is that a home-based walking program may be one approach to increase endogenous antioxidant capacity. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
SURVEY SIMULATIONS OF A NEW NEAR-EARTH ASTEROID DETECTION SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mainzer, A.; Bauer, J.; Giorgini, J.
We have carried out simulations to predict the performance of a new space-based telescopic survey operating at thermal infrared wavelengths that seeks to discover and characterize a large fraction of the potentially hazardous near-Earth asteroid (NEA) population. Two potential architectures for the survey were considered: one located at the Earth–Sun L1 Lagrange point, and one in a Venus-trailing orbit. A sample cadence was formulated and tested, allowing for the self-follow-up necessary for objects discovered in the daytime sky on Earth. Synthetic populations of NEAs with sizes as small as 140 m in effective spherical diameter were simulated using recent determinationsmore » of their physical and orbital properties. Estimates of the instrumental sensitivity, integration times, and slew speeds were included for both architectures assuming the properties of newly developed large-format 10 μm HgCdTe detector arrays capable of operating at ∼35 K. Our simulation included the creation of a preliminary version of a moving object processing pipeline suitable for operating on the trial cadence. We tested this pipeline on a simulated sky populated with astrophysical sources such as stars and galaxies extrapolated from Spitzer Space Telescope and Wide-field Infrared Explorer data, the catalog of known minor planets (including Main Belt asteroids, comets, Jovian Trojans, planets, etc.), and the synthetic NEA model. Trial orbits were computed for simulated position-time pairs extracted from the synthetic surveys to verify that the tested cadence would result in orbits suitable for recovering objects at a later time. Our results indicate that the Earth–Sun L1 and Venus-trailing surveys achieve similar levels of integral completeness for potentially hazardous asteroids larger than 140 m; placing the telescope in an interior orbit does not yield an improvement in discovery rates. This work serves as a necessary first step for the detailed planning of a next-generation NEA survey.« less
Müller, Carsten; Krauth, Konstantin A; Gerß, Joachim; Rosenbaum, Dieter
2016-09-01
Chronic health conditions and impaired quality of life are commonly experienced in childhood cancer survivors. While rehabilitation clinics support patients in coping with the disease, studies evaluating an inpatient rehabilitation program on promoting physical activity (PA) and health-related quality of life (HRQoL) are missing. A 4-week inpatient rehabilitation program was prospectively evaluated. One hundred fifty patients with leukemia or lymphoma (N = 86), brain tumors (N = 38), and sarcomas (N = 26) were enrolled on average 17 months after cessation of acute medical treatment. PA amount and cadence (indicating the intensity of walking activity) using the StepWatch™ 3 Activity Monitor and HRQoL global and physical well-being scores using the KINDL(®) questionnaire were assessed before, immediately after, and 6 and 12 months following the program and analyzed using multiple linear mixed models. Significant effects on PA were only found at 12-month follow-up for amount and cadence variables (all p < 0.05). While leukemia and lymphoma patients revealed the highest PA level throughout the study, rehabilitation effects were more pronounced for cadence variables in brain tumor and sarcoma patients. The rehabilitation program had immediate (t = 4.56, p < 0.001) and sustainable effects on HRQoL global scores (6-month follow-up, t = 4.08, p < 0.001; 12-month follow-up, t = 3.13, p < 0.006). Immediate and sustainable increases in HRQoL indicate that a 4-week rehabilitation program is beneficial for improving psychosocial well-being, while the significant increase in PA levels could be related to general recovery as well. The lack of a control group hampers the evaluation of the rehabilitation program on promoting PA levels in pediatric cancer patients.
Meyers, Robert W; Oliver, Jon L; Hughes, Michael G; Lloyd, Rhodri S; Cronin, John B
2017-04-01
Meyers, RW, Oliver, JL, Hughes, MG, Lloyd, RS, and Cronin, JB. Influence of age, maturity, and body size on the spatiotemporal determinants of maximal sprint speed in boys. J Strength Cond Res 31(4): 1009-1016, 2017-The aim of this study was to investigate the influence of age, maturity, and body size on the spatiotemporal determinants of maximal sprint speed in boys. Three-hundred and seventy-five boys (age: 13.0 ± 1.3 years) completed a 30-m sprint test, during which maximal speed, step length, step frequency, contact time, and flight time were recorded using an optical measurement system. Body mass, height, leg length, and a maturity offset represented somatic variables. Step frequency accounted for the highest proportion of variance in speed (∼58%) in the pre-peak height velocity (pre-PHV) group, whereas step length explained the majority of the variance in speed (∼54%) in the post-PHV group. In the pre-PHV group, mass was negatively related to speed, step length, step frequency, and contact time; however, measures of stature had a positive influence on speed and step length yet a negative influence on step frequency. Speed and step length were also negatively influence by mass in the post-PHV group, whereas leg length continued to positively influence step length. The results highlighted that pre-PHV boys may be deemed step frequency reliant, whereas those post-PHV boys may be marginally step length reliant. Furthermore, the negative influence of body mass, both pre-PHV and post-PHV, suggests that training to optimize sprint performance in youth should include methods such as plyometric and strength training, where a high neuromuscular focus and the development force production relative to body weight are key foci.
Bood, Robert Jan; Nijssen, Marijn; van der Kamp, John; Roerdink, Melvyn
2013-01-01
Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1) a control condition without acoustic stimuli, 2) a metronome condition with a sequence of beeps matching participants’ cadence (synchronization), and 3) a music condition with synchronous motivational music matched to participants’ cadence (synchronization+motivation). Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-)maximal running intensity. The beat of the stimuli –which was most salient during the metronome condition– helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music) and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps). These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner’s cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by auditory-motor synchronization helps to optimize running economy. PMID:23951000
Bood, Robert Jan; Nijssen, Marijn; van der Kamp, John; Roerdink, Melvyn
2013-01-01
Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1) a control condition without acoustic stimuli, 2) a metronome condition with a sequence of beeps matching participants' cadence (synchronization), and 3) a music condition with synchronous motivational music matched to participants' cadence (synchronization+motivation). Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-)maximal running intensity. The beat of the stimuli -which was most salient during the metronome condition- helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music) and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps). These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner's cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by auditory-motor synchronization helps to optimize running economy.
Sanderson, D J; Hennig, E M; Black, A H
2000-03-01
The aim of this study was to determine the response of cyclists to manipulations of cadence and power output in terms of force application and plantar pressure distribution. Two groups of cyclists, 17 recreational and 12 competitive, rode at three nominal cadences (60, 80, 100 rev x min(-1)) and four power outputs (100, 200, 300, 400 W) while simultaneous force and in-shoe pressure data were collected. Two piezoelectric triaxial force transducers mounted in the right pedal measured components of the pedal force and orientation, and a discrete transducer system with 12 transducers recorded the in-shoe pressures. Force application was characterized by calculating peak resultant and peak effective pedal forces and positive and negative impulses. In-shoe pressures were analysed as peak pressures and as the percent relative load. The force data showed no significant group effect but there was a cadence and power main effect. The impulse data showed a significant three-way interaction. Increased cadence resulted in a decreased positive impulse, while increased power output resulted in an increased impulse. The competitive group produced less positive impulse but the difference became less at higher cadences. Few between-group differences were found in pressure, notable only in the pressure under the first metatarsal region. This showed a consistent pattern of in-shoe pressure distribution, where the primary loading structures were the first metatarsal and hallux. There was no indication that pressure at specific sites influenced the pedal force application. The absence of group differences indicated that pressure distribution was not the result of training, but reflected the intrinsic relationship between the foot, the shoe and the pedal.
The influence of musical cadence into aquatic jumping jacks kinematics.
Costa, Mário J; Oliveira, Cristiana; Teixeira, Genoveva; Marinho, Daniel A; Silva, António J; Barbosa, Tiago M
2011-01-01
The aim of this study was to analyze the relationships between the head-out aquatic exercise "Jumping jacks" kinematics and the musical cadence in healthy and fit subjects. Five young women, with at least one year of experience conducting head- out aquatic programs were videotaped in the frontal plane, with a pair of cameras providing a double projection (above and below the water surface). Subjects performed an incremental protocol of five bouts (120 b·min(-1), 135 b·min(-1), 150 b·min(-1), 165 b·min(-1) and 180 b·min(-1)) with 16 full cycles of the "Jumping jacks" exercise. Data processing and calculation of upper limbs' (i.e. hands), lower limbs' (i.e. feet) and center of mass' 2D linear velocity and displacement were computed with the software Ariel Performance Analysis System and applying the 2D-DLT algorithm. Subjects decreased the cycle period during the incremental protocol. Significant and negative relationships with the musical cadence were verified for the center of mass and upper limbs vertical displacement. On the other hand, for the lower limbs lateral velocity, a significant and positive relationship was observed. It is concluded that expert and fit subjects increase the lower limb's velocity to maintain the range of motion, while the upper limb's displacement is reduced to coupe the music cadence. Key pointsWhile performing the Jumping Jacks, expert and fit subjects increase their lower limbs segmental velocity to maintain the range of motion.The upper limbs displacement is reduced to maintain the music cadence.Expert and fit subjects present similar response for alternating or simultaneously head-out aquatic exercises when increasing the music cadence.
METABOLIC SYNDROME AND DAILY AMBULATION IN CHILDREN, ADOLESCENTS, AND YOUNG ADULTS
Gardner, Andrew W.; Parker, Donald E.; Krishnan, Sowmya; Chalmers, Laura J.
2012-01-01
Purposes To compare daily ambulatory measures in children, adolescents, and young adults with and without metabolic syndrome, and to assess which metabolic syndrome components, demographic measures, and body composition measures are associated with daily ambulatory measures. Methods Two-hundred fifty subjects between the ages of 10 and 30 years were assessed on metabolic syndrome components, demographic and clinical measures, body fat percentage, and daily ambulatory strides, durations, and cadences during seven consecutive days. Forty-five of the 250 subjects had metabolic syndrome, as defined by the International Diabetes Federation. Results Subjects with metabolic syndrome ambulated at a slower daily average cadence than those without metabolic syndrome (13.6 ± 2.2 strides/min vs. 14.9 ± 3.2 strides/min; p=0.012), and they had slower cadences for continuous durations of 60 minutes (p=0.006), 30 minutes (p=0.005), 20 minutes (p=0.003), 5 minutes (p=0.002), and 1 minute (p=0.001). However, the total amount of time spent ambulating each day was not different (p=0.077). After adjustment for metabolic syndrome status, average cadence is linearly associated with body fat percentage (p<0.001) and fat mass (p<0.01). Group difference in average cadence was no longer significant after adjusting for body fat percentage (p=0.683) and fat mass (p=0.973). Conclusion Children, adolescents, and young adults with metabolic syndrome ambulate more slowly and take fewer strides throughout the day than those without metabolic syndrome, even though the total amount of time spent ambulating is not different. Furthermore, the detrimental influence of metabolic syndrome on ambulatory cadence is primarily a function of body fatness. PMID:22811038
Liang, Bo Wei; Wu, Wen Hua; Meijer, Onno G; Lin, Jian Hua; Lv, Go Rong; Lin, Xiao Cong; Prins, Maarten R; Hu, Hai; van Dieën, Jaap H; Bruijn, Sjoerd M
2014-01-01
Transverse plane pelvis rotations during walking may be regarded as the "first determinant of gait". This would assume that pelvis rotations increase step length, and thereby reduce the vertical movements of the centre of mass-"the pelvic step". We analysed the pelvic step using 20 healthy young male subjects, walking on a treadmill at 1-5 km/h, with normal or big steps. Step length, pelvis rotation amplitude, leg-pelvis relative phase, and the contribution of pelvis rotation to step length were calculated. When speed increased in normal walking, pelvis rotation changed from more out-of-phase to in-phase with the upper leg. Consequently, the contribution of pelvis rotation to step length was negative at lower speeds, switching to positive at 3 km/h. With big steps, leg and pelvis were more in-phase, and the contribution of pelvis rotation to step length was always positive, and relatively large. Still, the overall contribution of pelvis rotations to step length was small, less than 3%. Regression analysis revealed that leg-pelvis relative phase predicted about 60% of the variance of this contribution. The results of the present study suggest that, during normal slow walking, pelvis rotations increase, rather than decrease, the vertical movements of the centre of mass. With large steps, this does not happen, because leg and pelvis are in-phase at all speeds. Finally, it has been suggested that patients with hip flexion limitation may use larger pelvis rotations to increase step length. This, however, may only work as long as the pelvis rotates in-phase with the leg. Copyright © 2013 Elsevier B.V. All rights reserved.
Burnfield, Judith M; Eberly, Valerie J; Gronely, Joanne K; Perry, Jacquelin; Yule, William Jared; Mulroy, Sara J
2012-03-01
Microprocessor controlled prosthetic knees (MPK) offer opportunities for improved walking stability and function, but some devices' swing phase features may exceed needs of users with invariable cadence. One MPK offers computerized control of only stance (C-Leg Compact). To assess Medicare Functional Classification Level K2 walkers' ramp negotiation performance, function and balance while using a non-MPK (NMPK) compared to the C-Leg Compact. Crossover. Gait while ascending and descending a ramp (stride characteristics, kinematics, electromyography) and function were assessed in participant's existing NMPK and again in the C-Leg Compact following accommodation. Ramp ascent and descent were markedly faster in the C-Leg Compact compared to the NMPK (p ≤ 0.006), owing to increases in stride length (p ≤ 0.020) and cadence (p ≤ 0.020). Residual limb peak knee flexion and ankle dorsiflexion were significantly greater (12.9° and 4.9° more, respectively) during single limb support while using the C-Leg Compact to descend ramps. Electromyography (mean, peak) did not differ significantly between prosthesis. Function improved in the C-Leg Compact as evidenced by a significantly faster Timed Up and Go and higher functional questionnaire scores. Transfemoral K2 walkers exhibited significantly improved function and balance while using the stance-phase only MPK compared to their traditional NMPK.
Finding False Positives Planet Candidates Due To Background Eclipsing Binaries in K2
NASA Astrophysics Data System (ADS)
Mullally, Fergal; Thompson, Susan E.; Coughlin, Jeffrey; DAVE Team
2016-06-01
We adapt the difference image centroid approach, used for finding background eclipsing binaries, to vet K2 planet candidates. Difference image centroids were used with great success to vet planet candidates in the original Kepler mission, where the source of a transit could be identified by subtracting images of out-of-transit cadences from in-transit cadences. To account for K2's roll pattern, we reconstruct out-of-transit images from cadences that are nearby in both time and spacecraft roll angle. We describe the method and discuss some K2 planet candidates which this method suggests are false positives.
Super-Nyquist White Dwarf Pulsations in K2 Long-Cadence Data
NASA Astrophysics Data System (ADS)
Bell, Keaton J.; Hermes, JJ; Montgomery, Michael H.; Vanderbosch, Zach
2017-06-01
The Kepler and K2 missions have recently revolutionized the field of white dwarf asteroseismology. Since white dwarfs pulsate on timescales of order 10 minutes, we aim to observe these objects at K2’s short cadence (1 minute). Occasionally we find signatures of pulsations in white dwarf targets that were only observed by K2 at long cadence (30 minute). These signals suffer extreme aliasing since the intrinsic frequencies exceed the Nyquist sampling limit. We present our work to recover accurate frequency determinations for these targets, guided by a limited amount of supplementary, ground-based photometry from McDonald Observatory.
Step styles of pedestrians at different densities
NASA Astrophysics Data System (ADS)
Wang, Jiayue; Weng, Wenguo; Boltes, Maik; Zhang, Jun; Tordeux, Antoine; Ziemer, Verena
2018-02-01
Stepping locomotion is the basis of human movement. The investigation of stepping locomotion and its affecting factors is necessary for a more realistic knowledge of human movement, which is usually referred to as walking with equal step lengths for the right and left leg. To study pedestrians’ stepping locomotion, a set of single-file movement experiments involving 39 participants of the same age walking on a highly curved oval course is conducted. The microscopic characteristics of the pedestrians including 1D Voronoi density, speed, and step length are calculated based on a projected coordinate. The influence of the projection lines with different radii on the measurement of these quantities is investigated. The step lengths from the straight and curved parts are compared using the Kolmogorov-Smirnov test. During the experiments, six different step styles are observed and the proportions of different step styles change with the density. At low density, the main step style is the stable-large step style and the step lengths of one pedestrian are almost constant. At high density, some pedestrians adjust and decrease their step lengths. Some pedestrians take relatively smaller and larger steps alternately to adapt to limited space.
Independent influence of gait speed and step length on stability and fall risk.
Espy, D D; Yang, F; Bhatt, T; Pai, Y-C
2010-07-01
With aging, individuals' gaits become slower and their steps shorter; both are thought to improve stability against balance threats. Recent studies have shown that shorter step lengths, which bring the center of mass (COM) closer to the leading foot, improve stability against slip-related falls. However, a slower gait, hence lower COM velocity, does the opposite. Due to the inherent coupling of step length and speed in spontaneous gait, the extent to which the benefit of shorter steps can offset the slower speed is unknown. The purpose of this study was to investigate, through decoupling, the independent effects of gait speed and step length on gait stability and the likelihood of slip-induced falls. Fifty-seven young adults walked at one of three target gait patterns, two of equal speed and two of equal step length; at a later trial, they encountered an unannounced slip. The results supported our hypotheses that faster gait as well as shorter steps each ameliorates fall risk when a slip is encountered. This appeared to be attributable to the maintenance of stability from slip initiation to liftoff of the recovery foot during the slip. Successful decoupling of gait speed from step length reveals for the first time that, although slow gait in itself leads to instability and falls (a one-standard-deviation decrease in gait speed increases the odds of fall by 4-fold), this effect is offset by the related decrease in step length (the same one-standard-deviation decrease in step length lowers fall risk by 6 times). Copyright © 2010 Elsevier B.V. All rights reserved.
Bowersock, Collin D; Willy, Richard W; DeVita, Paul; Willson, John D
2017-10-01
The purpose of this study was to examine the effects of step length and foot strike pattern along with their interaction on tibiofemoral joint (TFJ) and medial compartment TFJ kinetics during running. Nineteen participants ran with a rear foot strike pattern at their preferred speed using a short (-10%), preferred, and long (+10%) step length. These step length conditions were then repeated using a forefoot strike pattern. Regardless of foot strike pattern, a 10% shorter step length resulted in decreased peak contact force, force impulse per step, force impulse per kilometre, and average loading rate at the TFJ and medial compartment, while a 10% increased step length had the opposite effects (all P < 0.05). A forefoot strike pattern significantly lowered TFJ and medial compartment TFJ average loading rates compared with a rear foot strike pattern (both <0.05) but did not change TFJ or medial compartment peak force, force impulse per step, or force impulse per km. The combination of a shorter step length and forefoot strike pattern produced the greatest reduction in peak medial compartment contact force (P < 0.05). Knowledge of these running modification effects may be relevant to the management or prevention of TFJ injury or pathology among runners.
Triolo, Ronald J.; Bailey, Stephanie Nogan; Lombardo, Lisa M.; Miller, Michael E.; Foglyano, Kevin; Audu, Musa L.
2014-01-01
Objective To quantify the effects of stabilizing the paralyzed trunk and pelvis with electrical stimulation on manual wheelchair propulsion. Design Single-subject design case series with subjects acting as their own concurrent controls. Setting Hospital-based clinical biomechanics laboratory. Participants Six (4M, 2F age 46±10.8yrs) long-time users (6.1±3.9yrs) of implanted neuroprostheses for lower extremity function with chronic (8.6±2.8yrs) mid-cervical or thoracic level injuries (C6-T10). Interventions Continuous low level stimulation to the hip (gluteus maximus, posterior adductor or hamstrings) and trunk extensor (lumbar erector spinae and/or quadratus lumborum) muscles with implanted intramuscular electrodes. Main Outcome Measure(s) Pushrim kinetics (peak resultant force, fraction effective force), kinematics (cadence, stroke length and maximum forward lean), and peak shoulder moment at preferred speed over 10m level surface; speed, pushrim kinetics and subjective ratings of effort for level 100m sprints and up a 30.5m ramp of approximately 5% grade. Results Three out of five subjects demonstrated reduced peak resultant pushrim forces (p≤0.014) and improved efficiency, (p≤0.048) with stimulation during self-paced level propulsion. Peak sagittal shoulder moment remained unchanged in three subjects and increased in two others (p<0.001). Maximal forward trunk lean also increased by 19-26% (p<0.001) with stimulation in these three subjects. Stroke lengths were unchanged by stimulation in all subjects, and two showed extremely small (5%) but statistically significant increases in cadence (p≤0.021). Performance measures for sprints and inclines were generally unchanged with stimulation, however subjects consistently rated propulsion with stimulation to be easier for both surfaces. Conclusions Stabilizing the pelvis and trunk with low levels of continuous electrical stimulation to the lumbar trunk and hip extensors can positively impact the mechanics of manual wheelchair propulsion and reduce both perceived and physical measures of effort. PMID:23628377
Gastaldi, Laura; Rosso, Valeria; Knaflitz, Marco; Tadano, Shigeru
2017-01-01
Background: Wearable magneto-inertial sensors are being increasingly used to obtain human motion measurements out of the lab, although their performance in applications requiring high accuracy, such as gait analysis, are still a subject of debate. The aim of this work was to validate a gait analysis system (H-Gait) based on magneto-inertial sensors, both in normal weight (NW) and overweight/obese (OW) subjects. The validation is performed against a reference multichannel recording system (STEP32), providing direct measurements of gait timings (through foot-switches) and joint angles in the sagittal plane (through electrogoniometers). Methods: Twenty-two young male subjects were recruited for the study (12 NW, 10 OW). After positioning body-fixed sensors of both systems, each subject was asked to walk, at a self-selected speed, over a 14-m straight path for 12 trials. Gait signals were recorded, at the same time, with the two systems. Spatio-temporal parameters, ankle, knee, and hip joint kinematics were extracted analyzing an average of 89 ± 13 gait cycles from each lower limb. Intraclass correlation coefficient and Bland-Altmann plots were used to compare H-Gait and STEP32 measurements. Changes in gait parameters and joint kinematics of OW with respect NW were also evaluated. Results: The two systems were highly consistent for cadence, while a lower agreement was found for the other spatio-temporal parameters. Ankle and knee joint kinematics is overall comparable. Joint ROMs values were slightly lower for H-Gait with respect to STEP32 for the ankle (by 1.9° for NW, and 1.6° for OW) and for the knee (by 4.1° for NW, and 1.8° for OW). More evident differences were found for hip joint, with ROMs values higher for H-Gait (by 6.8° for NW, and 9.5° for OW). NW and OW showed significant differences considering STEP32 (p = 0.0004), but not H-Gait (p = 0.06). In particular, overweight/obese subjects showed a higher cadence (55.0 vs. 52.3 strides/min) and a lower hip ROM (23.0° vs. 27.3°) than normal weight subjects. Conclusions: The two systems can be considered interchangeable for what concerns joint kinematics, except for the hip, where discrepancies were evidenced. Differences between normal and overweight/obese subjects were statistically significant using STEP32. The same tendency was observed using H-Gait. PMID:29065485
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
... Human Capital Staffing (TA-W-64,715C); Cadence Innovation, LLC, Hillsdale Plant, Hillsdale, Michigan... Innovation, LLC, Groesbeck Plant, Including On-Site Leased Workers from Michigan Staffing, LLC, Modern Professional Services, LLC, TAC Transportation, Time Services, Inc., and Human Capital Staffing Clinton...
Two Independent Contributions to Step Variability during Over-Ground Human Walking
Collins, Steven H.; Kuo, Arthur D.
2013-01-01
Human walking exhibits small variations in both step length and step width, some of which may be related to active balance control. Lateral balance is thought to require integrative sensorimotor control through adjustment of step width rather than length, contributing to greater variability in step width. Here we propose that step length variations are largely explained by the typical human preference for step length to increase with walking speed, which itself normally exhibits some slow and spontaneous fluctuation. In contrast, step width variations should have little relation to speed if they are produced more for lateral balance. As a test, we examined hundreds of overground walking steps by healthy young adults (N = 14, age < 40 yrs.). We found that slow fluctuations in self-selected walking speed (2.3% coefficient of variation) could explain most of the variance in step length (59%, P < 0.01). The residual variability not explained by speed was small (1.5% coefficient of variation), suggesting that step length is actually quite precise if not for the slow speed fluctuations. Step width varied over faster time scales and was independent of speed fluctuations, with variance 4.3 times greater than that for step length (P < 0.01) after accounting for the speed effect. That difference was further magnified by walking with eyes closed, which appears detrimental to control of lateral balance. Humans appear to modulate fore-aft foot placement in precise accordance with slow fluctuations in walking speed, whereas the variability of lateral foot placement appears more closely related to balance. Step variability is separable in both direction and time scale into balance- and speed-related components. The separation of factors not related to balance may reveal which aspects of walking are most critical for the nervous system to control. PMID:24015308
NASA Astrophysics Data System (ADS)
Zeng, Guang; Cao, Shuchao; Liu, Chi; Song, Weiguo
2018-06-01
It is important to study pedestrian stepping behavior and characteristics for facility design and pedestrian flow study due to pedestrians' bipedal movement. In this paper, data of steps are extracted based on trajectories of pedestrians from a single-file experiment. It is found that step length and step frequency will decrease 75% and 33%, respectively, when global density increases from 0.46 ped/m to 2.28 ped/m. With the increment of headway, they will first increase and then remain constant when the headway is beyond 1.16 m and 0.91 m, respectively. Step length and frequency under different headways can be described well by normal distributions. Meanwhile, relationships between step length and frequency under different headways exist. Step frequency decreases with the increment of step length. However, the decrease tendencies depend on headways as a whole. And there are two decrease tendencies: when the headway is between about 0.6 m and 1.0 m, the decrease rate of the step frequency will increase with the increment of step length; while it will decrease when the headway is beyond about 1.0 m and below about 0.6 m. A model is built based on the experiment results. In fundamental diagrams, the results of simulation agree well with those of experiment. The study can be helpful for understanding pedestrian stepping behavior and designing public facilities.
Forecasting Sensorimotor Adaptability from Baseline Inter-Trial Correlations
NASA Technical Reports Server (NTRS)
Beaton, K. H.; Bloomberg, J. J.
2014-01-01
One of the greatest challenges surrounding adaptation to the spaceflight environment is the large variability in symptoms, and corresponding functional impairments, from one crewmember to the next. This renders preflight training and countermeasure development difficult, as a "one-size-fits-all" approach is inappropriate. Therefore, it would be highly advantageous to know ahead of time which crewmembers might have more difficulty adjusting to the novel g-levels inherent to spaceflight. Such knowledge could guide individually customized countermeasures, which would enable more efficient use of crew time, both preflight and inflight, and provide better outcomes. The primary goal of this project is to look for a baseline performance metric that can forecast sensorimotor adaptability without exposure to an adaptive stimulus. We propose a novel hypothesis that considers baseline inter-trial correlations, the trial-to-trial fluctuations in motor performance, as a predictor of individual sensorimotor adaptive capabilities. To-date, a strong relationship has been found between baseline inter-trial correlations and adaptability in two oculomotor systems. For this project, we will explore an analogous predictive mechanism in the locomotion system. METHODS: Baseline Inter-trial Correlations: Inter-trial correlations specify the relationships among repeated trials of a given task that transpire as a consequence of correcting for previous performance errors over multiple timescales. We can quantify the strength of inter-trial correlations by measuring the decay of the autocorrelation function (ACF), which describes how rapidly information from past trials is "forgotten." Processes whose ACFs decay more slowly exhibit longer-term inter-trial correlations (longer memory processes), while processes whose ACFs decay more rapidly exhibit shorterterm inter-trial correlations (shorter memory processes). Longer-term correlations reflect low-frequency activity, which is more easily measured in the frequency domain. Therefore, we use the power spectrum (PS), which is the Fourier transform of the ACF, to describe our inter-trial correlations. The decay of the PS yields a straight line on a log-log frequency plot, which we quantify by Beta = - (slope of PS on log-log axes). Hence, Beta is a measure of the strength of inter- trial correlations in the baseline data. Larger Beta values are indicative of longer inter-trial correlations. Experimental Approach: We will begin by performing a retrospective analysis of treadmill-gait adaptation data previously collected by Dr. Bloomberg and colleagues. Specifically, we will quantify the strength of inter-trial correlations in the baseline step cadence and heart rate data and compare it to the locomotor adaptability performance results already described by these investigators. Incorporating these datasets will also allow us to explore the applicability of (and potential limitations surrounding) the use of Beta in forecasting physiological performance. We will also perform a new experiment, in which Beta will be derived from baseline data collected during over-ground (non-treadmill) walking, which will enable us to consider locomotor performance, through the parameter Beta, under the most functionallyrelevant, natural gait condition. This experiment will incorporate two baseline and five post-training over-ground locomotion tests to explore the consistency and potential adaptability of the Beta values themselves. HYPOTHESES: We hypothesize that the strength of baseline inter-trial correlations of step cadence and heart rate will relate to locomotor adaptability. Specifically, we anticipate that individuals who show weaker longer-term inter-trial correlations in baseline step cadence data will be the better adaptors, as step cadence can be modified in real-time (i.e., online corrections are an inherent property of the locomotor system; analogous to results observed in the VOR). Conversely, because heart rate is not altered mid-beat, we expect that individuals who demonstrate stronger longer-term correlations in heart rate will be the better adaptors (analogous to results observed in the saccadic system). CONCLUSIONS: At the conclusion of this project we hope to uncover a baseline predictor of locomotor adaptability. If our hypotheses hold true, our results will demonstrate that the temporal structure of baseline behavioral data contains important information that may aid in forecasting adaptive capacities. The ability to predict such adaptability in the sensorimotor system has significant implications for spaceflight, where astronauts must adjust their motor programs following a change in g-level to retain movement accuracy.
NASA Technical Reports Server (NTRS)
Hall, William A.; Gilbert, John
1990-01-01
Electronic metronome paces users through wide range of exercise routines. Conceptual programmable cadence timer provides rhythmic aural and visual cues. Timer automatically changes cadence according to program entered by the user. It also functions as clock, stopwatch, or alarm. Modular pacer operated as single unit or as two units. With audiovisual module moved away from base module, user concentrates on exercise cues without distraction from information appearing on the liquid-crystal display. Variety of uses in rehabilitative medicine, experimental medicine, sports, and gymnastics. Used in intermittent positive-pressure breathing treatment, in which patient must rhythmically inhale and retain medication delivered under positive pressure; and in incentive spirometer treatment, in which patient must inhale maximally at regular intervals.
Effect of cold indoor environment on physical performance of older women living in the community.
Lindemann, Ulrich; Oksa, Juha; Skelton, Dawn A; Beyer, Nina; Klenk, Jochen; Zscheile, Julia; Becker, Clemens
2014-07-01
the effects of cold on older persons' body and mind are not well documented, but with an increased number of older people with decreasing physical performance, these possible effects need to be understood. to investigate the effect of cold indoor environment on physical performance of older women. cross-sectional experimental study with two test conditions. movement laboratory in a climate chamber. eighty-eight community-dwelling, cognitively unimpaired older women (mean age 78 years). participants were exposed to moderately cold (15°C) and warm/normal (25°C) temperature in a climate chamber in random order with an interval of 1 week. The assessment protocol included leg extensor power (Nottingham Power Rig), sit-to-stand performance velocity (linear encoder), gait speed, walk-ratio (i.e. step length/cadence on an instrumented walk way), maximal quadriceps and hand grip strength. physical performance was lower in 15°C room temperature compared with 25°C room temperature for leg extensor power (P < 0.0001), sit-to-stand performance velocity (P < 0.0001), gait speed (P < 0.0001), walk-ratio (P = 0.016) and maximal quadriceps strength (P = 0.015), but not for hand grip strength. in healthy older women a moderately cold indoor environment decreased important physical performance measures necessary for independent living. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Development of a novel virtual reality gait intervention.
Boone, Anna E; Foreman, Matthew H; Engsberg, Jack R
2017-02-01
Improving gait speed and kinematics can be a time consuming and tiresome process. We hypothesize that incorporating virtual reality videogame play into variable improvement goals will improve levels of enjoyment and motivation and lead to improved gait performance. To develop a feasible, engaging, VR gait intervention for improving gait variables. Completing this investigation involved four steps: 1) identify gait variables that could be manipulated to improve gait speed and kinematics using the Microsoft Kinect and free software, 2) identify free internet videogames that could successfully manipulate the chosen gait variables, 3) experimentally evaluate the ability of the videogames and software to manipulate the gait variables, and 4) evaluate the enjoyment and motivation from a small sample of persons without disability. The Kinect sensor was able to detect stride length, cadence, and joint angles. FAAST software was able to identify predetermined gait variable thresholds and use the thresholds to play free online videogames. Videogames that involved continuous pressing of a keyboard key were found to be most appropriate for manipulating the gait variables. Five participants without disability evaluated the effectiveness for modifying the gait variables and enjoyment and motivation during play. Participants were able to modify gait variables to permit successful videogame play. Motivation and enjoyment were high. A clinically feasible and engaging virtual intervention for improving gait speed and kinematics has been developed and initially tested. It may provide an engaging avenue for achieving thousands of repetitions necessary for neural plastic changes and improved gait. Copyright © 2016 Elsevier B.V. All rights reserved.
Two peculiar fast transients in a strongly lensed host galaxy
NASA Astrophysics Data System (ADS)
Rodney, S. A.; Balestra, I.; Bradac, M.; Brammer, G.; Broadhurst, T.; Caminha, G. B.; Chirivı, G.; Diego, J. M.; Filippenko, A. V.; Foley, R. J.; Graur, O.; Grillo, C.; Hemmati, S.; Hjorth, J.; Hoag, A.; Jauzac, M.; Jha, S. W.; Kawamata, R.; Kelly, P. L.; McCully, C.; Mobasher, B.; Molino, A.; Oguri, M.; Richard, J.; Riess, A. G.; Rosati, P.; Schmidt, K. B.; Selsing, J.; Sharon, K.; Strolger, L.-G.; Suyu, S. H.; Treu, T.; Weiner, B. J.; Williams, L. L. R.; Zitrin, A.
2018-04-01
A massive galaxy cluster can serve as a magnifying glass for distant stellar populations, as strong gravitational lensing magnifies background galaxies and exposes details that are otherwise undetectable. In time-domain astronomy, imaging programmes with a short cadence are able to detect rapidly evolving transients, previously unseen by surveys designed for slowly evolving supernovae. Here, we describe two unusual transient events discovered in a Hubble Space Telescope programme that combined these techniques with high-cadence imaging on a field with a strong-lensing galaxy cluster. These transients were faster and fainter than any supernovae, but substantially more luminous than a classical nova. We find that they can be explained as separate eruptions of a luminous blue variable star or a recurrent nova, or as an unrelated pair of stellar microlensing events. To distinguish between these hypotheses will require clarification of the cluster lens models, along with more high-cadence imaging of the field that could detect related transient episodes. This discovery suggests that the intersection of strong lensing with high-cadence transient surveys may be a fruitful path for future astrophysical transient studies.
Presearch data conditioning in the Kepler Science Operations Center pipeline
NASA Astrophysics Data System (ADS)
Twicken, Joseph D.; Chandrasekaran, Hema; Jenkins, Jon M.; Gunter, Jay P.; Girouard, Forrest; Klaus, Todd C.
2010-07-01
We describe the Presearch Data Conditioning (PDC) software component and its context in the Kepler Science Operations Center (SOC) Science Processing Pipeline. The primary tasks of this component are to correct systematic and other errors, remove excess flux due to aperture crowding, and condition the raw flux light curves for over 160,000 long cadence (~thirty minute) and 512 short cadence (~one minute) stellar targets. Long cadence corrected flux light curves are subjected to a transiting planet search in a subsequent pipeline module. We discuss science algorithms for long and short cadence PDC: identification and correction of unexplained (i.e., unrelated to known anomalies) discontinuities; systematic error correction; and removal of excess flux due to aperture crowding. We discuss the propagation of uncertainties from raw to corrected flux. Finally, we present examples from Kepler flight data to illustrate PDC performance. Corrected flux light curves produced by PDC are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy.
Presearch Data Conditioning in the Kepler Science Operations Center Pipeline
NASA Technical Reports Server (NTRS)
Twicken, Joseph D.; Chandrasekaran, Hema; Jenkins, Jon M.; Gunter, Jay P.; Girouard, Forrest; Klaus, Todd C.
2010-01-01
We describe the Presearch Data Conditioning (PDC) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this component are to correct systematic and other errors, remove excess flux due to aperture crowding, and condition the raw flux light curves for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) targets across the focal plane array. Long cadence corrected flux light curves are subjected to a transiting planet search in a subsequent pipeline module. We discuss the science algorithms for long and short cadence PDC: identification and correction of unexplained (i.e., unrelated to known anomalies) discontinuities; systematic error correction; and excess flux removal. We discuss the propagation of uncertainties from raw to corrected flux. Finally, we present examples of raw and corrected flux time series for flight data to illustrate PDC performance. Corrected flux light curves produced by PDC are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and will be made available to the general public in accordance with the NASA/Kepler data release policy.
Milner, Clare E; Meardon, Stacey A; Hawkins, Jillian L; Willson, John D
2018-04-28
Knee osteoarthritis is a major public health problem and adults with obesity are particularly at risk. One approach to alleviating this problem is to reduce the mechanical load at the joint during daily activity. Adjusting temporospatial parameters of walking could mitigate cumulative knee joint mechanical loads. The purpose of this study was to determine how adjustments to velocity and step length affects knee joint loading in healthy weight adults and adults with obesity. We collected three-dimensional gait analysis data on 10 adults with a normal body mass index and 10 adults with obesity during over ground walking in nine different conditions. In addition to preferred velocity and step length, we also conducted combinations of 15% increased and decreased velocity and step length. Peak tibiofemoral joint impulse and knee adduction angular impulse were reduced in the decreased step length conditions in both healthy weight adults (main effect) and those with obesity (interaction effect). Peak knee joint adduction moment was also reduced with decreased step length, and with decreased velocity in both groups. We conclude from these results that adopting shorter step lengths during daily activity and when walking for exercise can reduce mechanical stimuli associated with articular cartilage degenerative processes in adults with and without obesity. Thus, walking with reduced step length may benefit adults at risk for disability due to knee osteoarthritis. Adopting a shorter step length during daily walking activity may reduce knee joint loading and thus benefit those at risk for knee cartilage degeneration. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:XX-XX, 2018. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Effect of load, cadence, and fatigue on tibio-femoral joint force during a half squat.
Hattin, H C; Pierrynowski, M R; Ball, K A
1989-10-01
Ten male university student volunteers were selected to investigate the 3D articular force at the tibio-femoral joint during a half squat exercise, as affected by cadence, different barbell loads, and fatigue. Each subject was required to perform a half squat exercise with a barbell weight centered across the shoulders at two different cadences (1 and 2 s intervals) and three different loads (15, 22 and 30% of the one repetition maximum). Fifty repetitions at each experimental condition were recorded with an active optoelectronic kinematic data capture system (WATSMART) and a force plate (Kistler). Processing the data involved a photogrammetric technique to obtain subject tailored anthropometric data. The findings of this study were: 1) the maximal antero-posterior shear and compressive force consistently occurred at the lowest position of the weight, and the forces were very symmetrically disposed on either side of this halfway point; 2) the medio-lateral shear forces were small over the squat cycle with few peaks and troughs; 3) cadence increased the antero-posterior shear (50%) and the compressive forces (28%); 4) as a subject fatigues, load had a significant effect on the antero-posterior shear force; 5) fatigue increased all articular force components but it did not manifest itself until about halfway through the 50 repetitions of the exercise; 6) the antero-posterior shear force was most affected by fatigue; 7) cadence had a significant effect on fatigue for the medio-lateral shear and compressive forces.
NASA Astrophysics Data System (ADS)
Sheets, Holly A.; Deming, Drake; Arney, Giada; Meadows, Victoria
2016-01-01
We present the results of our method to detect small atmospheric signals in Kepler's close-in, sub-Saturn planet candidate light curves. We detect an average secondary eclipse for groups of super-Earth, Neptune-like, and other sub-Saturn-sized candidates by scaling and combining photometric data of the groups of candidates such that the eclipses add constructively. This greatly increases the signal-to-noise compared to combining eclipses for individual planets. We have modified our method for averaging short cadence light curves of multiple planet candidates (2014, ApJ, 794, 133), and have applied it to long cadence data, accounting for the broadening of the eclipse due to the 30 minute cadence. We then use the secondary eclipse depth to determine the average albedo for the group. In the short cadence data, we found that a group of close-in sub-Saturn candidates (1 to 6 Earth radii) was more reflective (geometric A ~ 0.22) than typical hot Jupiters (geometric A ~ 0.06 to 0.11: Demory 2014, ApJL, 789, L20). With the larger number of candidates available in long cadence, we improve the resolution in radius and consider groups of candidates with radii between 1 and 2, 2 and 4, and 4 and 6 Earth radii. We also modify our averaging technique to search for refracted light just before and after transit in the Kepler candidate light curves, as modelled by Misra and Meadows (2014, ApJL, 795, L14).
The Evryscopes: monitoring the entire sky for exciting events
NASA Astrophysics Data System (ADS)
Law, Nicholas; Corbett, Hank; Howard, Ward S.; Fors, Octavi; Ratzloff, Jeff; Barlow, Brad; Hermes, JJ
2018-01-01
The Evryscope is a new type of array telescope which monitors the entire accessible sky in each exposure. The system, with 700 MPix covering an 8000-square-degree field of view, is building many-year-length, high-cadence light curves for every accessible object brighter than ∼16th magnitude. Every night, we add 600 million object detections to our databases, including exoplanet transits, microlensing events, nearby extragalactic transients, and a wide range of other short timescale events. I will present our science plans, the status of our current Evryscope systems (operational in Chile and soon California), the big-data analysis required to explore the petabyte-scale dataset we are collecting over the next few years, and the first results from the telescopes.
Acute response of high-intensity and traditional resistance exercise on anaerobic power.
Austad, Mark A; Gay, Chip R; Murray, Steven R; Pettitt, Robert W
2013-09-01
Quantifying the maximal work capacity (W') above the aerobic critical power (CP) has emerged as a method for estimating anaerobic work capacity. Slower cadence, lower-load resistance training (RT), colloquially referred to as high-intensity training (HIT), is purported to be a better metabolic stressor than faster cadence higher-load RT, but to date, this belief has not been supported by research. We compared the acute effects of HIT and traditional RT bouts on average power within a 150-second time period (P(150 s)), CP, and W', as measured from a 3-minute all-out exercise test using cycling ergometry (3 MT). Eight recreationally active male subjects (mean ± SD: age 22 ± 2 years, body mass 85 ± 14 kg, and height 18 ± 9 cm) completed a baseline 3 MT 10 repetition maximum testing on leg press and leg extension machines, and post-bout 3 MTs after an HIT (4:2 second cadence) or a traditional RT bout (1:1 second cadence). Measurements of CP from the 3 MTs were similar between the baseline, post-HIT (α = 0.96), and post-traditional RT bouts (α = 0.98). Neither HIT (269.2 ± 51.3 W) nor traditional RT (275.1 ± 51.3 W) evoked depreciations (p > 0.05) in P(150 s) from the baseline (275.1 ± 45.4 W). Moreover, estimates of W' at the baseline (8.3 ± 3.2 kJ) were unaffected (p > 0.05) either by the HIT (7.6 ± 2.3 kJ) or by the traditional RT (8.3 ± 1.3 kJ) bouts. These data indicate that the 4:2 cadence is insufficient to exhaust a person's capacity for high-intensity work. Longer RT durations, either by slower cadences or by multiple sets, are necessary to evoke substantive declines on W' and should be investigated.
Simulating the Performance of Ground-Based Optical Asteroid Surveys
NASA Astrophysics Data System (ADS)
Christensen, Eric J.; Shelly, Frank C.; Gibbs, Alex R.; Grauer, Albert D.; Hill, Richard E.; Johnson, Jess A.; Kowalski, Richard A.; Larson, Stephen M.
2014-11-01
We are developing a set of asteroid survey simulation tools in order to estimate the capability of existing and planned ground-based optical surveys, and to test a variety of possible survey cadences and strategies. The survey simulator is composed of several layers, including a model population of solar system objects and an orbital integrator, a site-specific atmospheric model (including inputs for seeing, haze and seasonal cloud cover), a model telescope (with a complete optical path to estimate throughput), a model camera (including FOV, pixel scale, and focal plane fill factor) and model source extraction and moving object detection layers with tunable detection requirements. We have also developed a flexible survey cadence planning tool to automatically generate nightly survey plans. Inputs to the cadence planner include camera properties (FOV, readout time), telescope limits (horizon, declination, hour angle, lunar and zenithal avoidance), preferred and restricted survey regions in RA/Dec, ecliptic, and Galactic coordinate systems, and recent coverage by other asteroid surveys. Simulated surveys are created for a subset of current and previous NEO surveys (LINEAR, Pan-STARRS and the three Catalina Sky Survey telescopes), and compared against the actual performance of these surveys in order to validate the model’s performance. The simulator tracks objects within the FOV of any pointing that were not discovered (e.g. too few observations, too trailed, focal plane array gaps, too fast or slow), thus dividing the population into “discoverable” and “discovered” subsets, to inform possible survey design changes. Ongoing and future work includes generating a realistic “known” subset of the model NEO population, running multiple independent simulated surveys in coordinated and uncoordinated modes, and testing various cadences to find optimal strategies for detecting NEO sub-populations. These tools can also assist in quantifying the efficiency of novel yet unverified survey cadences (e.g. the baseline LSST cadence) that sparsely spread the observations required for detection over several days or weeks.
Brasileiro, A; Gama, G; Trigueiro, L; Ribeiro, T; Silva, E; Galvão, É; Lindquist, A
2015-02-01
Stroke is an important causal factor of deficiency and functional dependence worldwide. To determine the immediate effects of visual and auditory biofeedback, combined with partial body weight supported (PBWS) treadmill training on the gait of individuals with chronic hemiparesis. Randomized controlled trial. Outpatient rehabilitation hospital. Thirty subjects with chronic hemiparesis and ability to walk with some help. Participants were randomized to a control group that underwent only PBWS treadmill training; or experimental I group with visual biofeedback from the display monitor, in the form of symbolic feet as the subject took a step; or experimental group II with auditory biofeedback associated display, using a metronome at 115% of the individual's preferred cadence. They trained for 20 minutes and were evaluated before and after training. Spatio-temporal and angular gait variables were obtained by kinematics from the Qualisys Motion Analysis system. Increases in speed and stride length were observed for all groups over time (speed: F=25.63; P<0.001; stride length: F=27.18; P<0.001), as well as changes in hip and ankle range of motion - ROM (hip ROM: F=14.43; P=0.001; ankle ROM: F=4.76; P=0.038), with no time*groups interaction. Other spatio-temporal and angular parameters remain unchanged. Visual biofeedback and auditory biofeedback had no influence on PBWS treadmill training of individuals with chronic hemiparesis, in short term. Additional studies are needed to determine whether, in long term, the biofeedback will promote additional benefit to the PBWS treadmill training. The findings of this study indicate that visual and auditory biofeedback does not bring immediate benefits on PBWS treadmill training of individuals with chronic hemiparesis. This suggest that, for additional benefits are achieved with biofeedback, effects should be investigated after long-term training, which may determine if some kind of biofeedback is superior to another to improve the hemiparetic gait.
Steeplechase barriers affect women less than men.
Hunter, Iain; Bushnell, Tyler D
2006-01-01
Women began contesting the 3000 m steeplechase during the 1990's using barriers of different dimensions than men. Whenever a new event is introduced for women, consideration should be taken as to whether different technique or training methods should be utilized. This study investigated three aspects of hurdling technique: 1) Differences in the ratio of the landing step to the penultimate step between men and women around each non-water jump steeplechase barrier, 2) differences in step lengths between the four non-water jump barriers, and 3) changes in the step lengths around the barrier throughout the race. The step lengths around the 28 non-water jump barriers of the top seven men and women at the 2003 USA Track and Field Championships were measured using a two-dimensional analysis. A t-test determined any differences between men and women for the ratio of the landing to penultimate steps. A 2x4 repeated measures ANOVA tested for differences between the four non-water jump barriers. Linear regression tested for changes in step lengths throughout the race. Men exhibited a smaller ratio between the lengths of the landing to penultimate steps than women (0.73 ± 0.09 and 0.77 ± 0.10 for men and women respectively, p = 0.002). No step length differences were observed between the four barriers in the step lengths around each barrier (p = 0.192 and p = 0.105 for men and women respectively). Athletes gradually increased the total length of all steps around the barriers throughout the race (R(2) = 0.021, p = 0.048 and R(2) = 0.137, p < 0.001 for men and women respectively). The smaller ratio between landing to penultimate steps shows that the barriers affect women less than men. There may be a need to train men and women differently for the non-water jump barriers in the steeplechase or slightly alter racing strategy. Key PointsNon-water jump barriers disrupt the stride of men more than women.There is no difference between any of the four non-water jump barriers in the step lengths used around each barrier.Stride length gradually increases throughout a 3000m steeplechase race even if race pace is maintain.
Janssen, Sabine; Bolte, Benjamin; Nonnekes, Jorik; Bittner, Marian; Bloem, Bastiaan R.; Heida, Tjitske; Zhao, Yan; van Wezel, Richard J. A.
2017-01-01
External cueing is a potentially effective strategy to reduce freezing of gait (FOG) in persons with Parkinson’s disease (PD). Case reports suggest that three-dimensional (3D) cues might be more effective in reducing FOG than two-dimensional cues. We investigate the usability of 3D augmented reality visual cues delivered by smart glasses in comparison to conventional 3D transverse bars on the floor and auditory cueing via a metronome in reducing FOG and improving gait parameters. In laboratory experiments, 25 persons with PD and FOG performed walking tasks while wearing custom-made smart glasses under five conditions, at the end-of-dose. For two conditions, augmented visual cues (bars/staircase) were displayed via the smart glasses. The control conditions involved conventional 3D transverse bars on the floor, auditory cueing via a metronome, and no cueing. The number of FOG episodes and percentage of time spent on FOG were rated from video recordings. The stride length and its variability, cycle time and its variability, cadence, and speed were calculated from motion data collected with a motion capture suit equipped with 17 inertial measurement units. A total of 300 FOG episodes occurred in 19 out of 25 participants. There were no statistically significant differences in number of FOG episodes and percentage of time spent on FOG across the five conditions. The conventional bars increased stride length, cycle time, and stride length variability, while decreasing cadence and speed. No effects for the other conditions were found. Participants preferred the metronome most, and the augmented staircase least. They suggested to improve the comfort, esthetics, usability, field of view, and stability of the smart glasses on the head and to reduce their weight and size. In their current form, augmented visual cues delivered by smart glasses are not beneficial for persons with PD and FOG. This could be attributable to distraction, blockage of visual feedback, insufficient familiarization with the smart glasses, or display of the visual cues in the central rather than peripheral visual field. Future smart glasses are required to be more lightweight, comfortable, and user friendly to avoid distraction and blockage of sensory feedback, thus increasing usability. PMID:28659862
Estimating the Geoelectric Field Using Precomputed EMTFs: Effect of Magnetometer Cadence
NASA Astrophysics Data System (ADS)
Grawe, M.; Butala, M.; Makela, J. J.; Kamalabadi, F.
2017-12-01
Studies that make use of electromagnetic transfer functions (EMTFs) to calculate the surface electric field from a specified surface magnetic field often use historical magnetometer information for validation and comparison purposes. Depending on the data source, the magnetometer cadence is typically between 1 and 60 seconds. It is often implied that a 60 (and sometimes 10) second cadence is acceptable for purposes of geoelectric field calculation using a geophysical model. Here, we quantitatively assess this claim under different geological settings and using models of varying complexity (using uniform/1D/3D EMTFs) across several different space weather events. Conclusions are made about sampling rate sufficiency as a function of local geology and the spectral content of the surface magnetic field.
Kepler Data Release 25 Notes (Q0-Q17)
NASA Technical Reports Server (NTRS)
Mullally, Susan E.; Caldwell, Douglas A.; Barclay, Thomas Stewart; Barentsen, Geert; Clarke, Bruce Donald; Bryson, Stephen T.; Burke, Christopher James; Campbell, Jennifer Roseanna; Catanzarite, Joseph H.; Christiansen, Jessie;
2016-01-01
These Data Release Notes provide information specific to the current reprocessing and re-export of the Q0-Q17 data. The data products included in this data release include target pixel files, light curve files, FFIs,CBVs, ARP, Background, and Collateral files. This release marks the final processing of the Kepler Mission Data. See Tables 1 and 2 for a list of the reprocessed Kepler cadence data. See Table 3 for a list of the available FFIs. The Long Cadence Data, Short Cadence Data, and FFI data are documented in these data release notes. The ancillary files (i.e., cotrending basis vectors, artifact removal pixels, background, and collateral data) are described in the Archive Manual (Thompson et al., 2016).
Effects of stroke resistance on rowing economy in club rowers post-season.
Kane, D A; Mackenzie, S J; Jensen, R L; Watts, P B
2013-02-01
In the sport of rowing, increasing the impulse applied to the oar handle during the stroke can result in greater boat velocities; this may be facilitated by increasing the surface area of the oar blade and/or increasing the length of the oars. The purpose of this study was to compare the effects of different rowing resistances on the physiological response to rowing. 5 male and 7 female club rowers completed progressive, incremental exercise tests on an air-braked rowing ergometer, using either low (LO; 100) or high (HI; 150) resistance (values are according to the adjustable "drag factor" setting on the ergometer). Expired air, blood lactate concentration, heart rate, rowing cadence, and ergometer power output were monitored during the tests. LO rowing elicited significantly greater cadences (P<0.01) and heart rates (P<0.05), whereas rowing economy (J · L O(2) equivalents(-1)) was significantly greater during HI rowing (P<0.05). These results suggest that economically, rowing with a greater resistance may be advantageous for performance. Moreover, biomechanical analysis of ergometer rowing support the notion that the impulse generated during the stroke increases positively as a function of rowing resistance. We conclude that an aerobic advantage associated with greater resistance parallels the empirical trend toward larger oar blades in competitive rowing. This may be explained by a greater stroke impulse at the higher resistance. © Georg Thieme Verlag KG Stuttgart · New York.
Eikema, D J A; Forrester, L W; Whitall, J
2014-09-01
One target for rehabilitating locomotor disorders in older adults is to increase mobility by improving walking velocity. Combining rhythmic auditory cueing (RAC) and treadmill training permits the study of the stride length/stride velocity ratio (SL/SV), often reduced in those with mobility deficits. We investigated the use of RAC to increase velocity by manipulating the SL/SV ratio in older adults. Nine participants (6 female; age: 61.1 ± 8.8 years) walked overground on a gait mat at preferred and fast speeds. After acclimatization to comfortable speed on a treadmill, participants adjusted their cadence to match the cue for 3 min at 115% of preferred speed by either (a) increasing stride length only or (b) increasing stride frequency only. Following training, participants walked across the gait mat at preferred velocity without, and then with, RAC. Group analysis determined no immediate overground velocity increase, but reintroducing RAC did produce an increase in velocity after both conditions. Group and single subject analysis determined that the SL/SV ratio changed in the intended direction only in the stride length condition. We conclude that RAC is a powerful organizer of gait parameters, evidenced by its induced after-effects following short duration training. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Xiao Hong; Lu, Gang; Hu, Xiang; Tsang, Kam Sze; Kwong, Wing Hang; Wu, Feng Xia; Meng, Hai Wei; Jiang, Shu; Liu, Shu Wei; Ng, Ho Keung; Poon, Wai Sang
2012-11-14
Gait deficits are important clinical symptoms of Parkinson's disease (PD). However, existing behavioral tests for the detection of motor impairments in rodents with systemic dopamine depletion only measure akinesia and dyskinesia, and data focusing on gait are scarce. We evaluated gait changes in the methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced C57BL/6 murine model of PD by using a computer-assisted CatWalk system. Correlations of gait parameters with tyrosine hydroxylase (TH) protein levels in the substantia nigra (SN) were also investigated. The gait readouts, including the walking duration, variation of walking speed, step cycle, duty cycle, stance, initial dual stance, terminal dual stance, three- and four-point supports, and the base of support between hind limbs was noted to increase significantly one week after MPTP injection. In contrast, values of the stride length, cadence, swing speed, and diagonal dual support decreased substantially following MPTP treatment (p < 0.05). All of these changes lasted for three weeks after the last MPTP administration. Except for the stance in the fore limbs and the swing speed in the hind limbs, the gait variability in the PD mice showed a closer correlation with the protein levels of TH in the SN than the walking distances in the conventional open field test. Coordination parameters of the regularity index and step pattern were not affected in mice treated with MPTP. Data of the study suggest that the computer-assisted CatWalk system can provide reliable and objective criteria to stratify gait changes arising from MPTP-induced bilateral lesions in C57/BL6 mice. The extent of gait changes was noted to correlate with the expression of the biomarker for dopaminergic neurons. This novel analytical method may hold promise in the study of disease progression and new drug screening in a murine PD model.
2012-01-01
Background Gait deficits are important clinical symptoms of Parkinson’s disease (PD). However, existing behavioral tests for the detection of motor impairments in rodents with systemic dopamine depletion only measure akinesia and dyskinesia, and data focusing on gait are scarce. We evaluated gait changes in the methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced C57BL/6 murine model of PD by using a computer-assisted CatWalk system. Correlations of gait parameters with tyrosine hydroxylase (TH) protein levels in the substantia nigra (SN) were also investigated. Results The gait readouts, including the walking duration, variation of walking speed, step cycle, duty cycle, stance, initial dual stance, terminal dual stance, three- and four-point supports, and the base of support between hind limbs was noted to increase significantly one week after MPTP injection. In contrast, values of the stride length, cadence, swing speed, and diagonal dual support decreased substantially following MPTP treatment (p < 0.05). All of these changes lasted for three weeks after the last MPTP administration. Except for the stance in the fore limbs and the swing speed in the hind limbs, the gait variability in the PD mice showed a closer correlation with the protein levels of TH in the SN than the walking distances in the conventional open field test. Coordination parameters of the regularity index and step pattern were not affected in mice treated with MPTP. Conclusion Data of the study suggest that the computer-assisted CatWalk system can provide reliable and objective criteria to stratify gait changes arising from MPTP-induced bilateral lesions in C57/BL6 mice. The extent of gait changes was noted to correlate with the expression of the biomarker for dopaminergic neurons. This novel analytical method may hold promise in the study of disease progression and new drug screening in a murine PD model. PMID:23151254
Chang, Sarah R; Kobetic, Rudi; Triolo, Ronald J
2017-01-01
An important consideration in the design of a practical system to restore walking in individuals with spinal cord injury is to minimize metabolic energy demand on the user. In this study, the effects of exoskeletal constraints on metabolic energy expenditure were evaluated in able-bodied volunteers to gain insight into the demands of walking with a hybrid neuroprosthesis after paralysis. The exoskeleton had a hydraulic mechanism to reciprocally couple hip flexion and extension, unlocked hydraulic stance controlled knee mechanisms, and ankles fixed at neutral by ankle-foot orthoses. These mechanisms added passive resistance to the hip (15 Nm) and knee (6 Nm) joints while the exoskeleton constrained joint motion to the sagittal plane. The average oxygen consumption when walking with the exoskeleton was 22.5 ± 3.4 ml O2/min/kg as compared to 11.7 ± 2.0 ml O2/min/kg when walking without the exoskeleton at a comparable speed. The heart rate and physiological cost index with the exoskeleton were at least 30% and 4.3 times higher, respectively, than walking without it. The maximum average speed achieved with the exoskeleton was 1.2 ± 0.2 m/s, at a cadence of 104 ± 11 steps/min, and step length of 70 ± 7 cm. Average peak hip joint angles (25 ± 7°) were within normal range, while average peak knee joint angles (40 ± 8°) were less than normal. Both hip and knee angular velocities were reduced with the exoskeleton as compared to normal. While the walking speed achieved with the exoskeleton could be sufficient for community ambulation, metabolic energy expenditure was significantly increased and unsustainable for such activities. This suggests that passive resistance, constraining leg motion to the sagittal plane, reciprocally coupling the hip joints, and weight of exoskeleton place considerable limitations on the utility of the device and need to be minimized in future designs of practical hybrid neuroprostheses for walking after paraplegia.
First steps towards the development of regional magnetic indices designed for South America
NASA Astrophysics Data System (ADS)
Denardini, Clezio Marcos; Moro, Juliano; Araujo Resende, Laysa Cristina; Chen, Sony Su
In the present paper we present the first steps towards the development of regional magnetic indices designed for South America, based on data collected by the EMBRACE Magnetometer Network, which so far is planned to cover most of the Easter Southern American longitudinal sector. Thereafter, we provide details of the development of the region K, named Ksa (K South America), and of the proxy for the Dst Index, obtained in near real-time (1 minute cadence with 5 minutes latency). We also compare the evolution of our indices with the evolution of the Kp and Dst index during geomagnetic storms occurred in 2012 and 2013. We will show some similarities representing the accuracy of our measurements and some dissimilarity that may be attributed the presence of the South American Magnetic Anomaly (SAMA). This, in turn, may reflect in the global models that use such indices for disturbance time estimates during different solar cycles. Contacting Author: C. M. Denardini (clezio.denardin@inpe.br)
Kurz, Max J; Stuberg, Wayne; Dejong, Stacey; Arpin, David J
2013-08-01
The aim of this investigation was to determine if body-weight-supported (BWS) overground gait training has the potential to improve the walking abilities of children and youth with childhood onset motor impairments and intellectual disabilities. Eight participants (mean age of 16.3 years) completed 12 weeks of BWS overground gait training that was performed two times a week. BWS was provided during the training sessions by an overhead harness system that rolls overground. There was a significant improvement in the preferred walking speed after the training (p < .01; pre = 0.51 ± 0.2 m/s; post = 0.67 ± 0.3 m/s; Cohen's d = 0.80) and cadence (p = .04; pre = 37 ± 7 steps/min; post = 43 ± 8 steps/min; Cohen's d = 0.94). Our results indicate that overground BWS gait training may be an effective treatment strategy for improving the preferred walking speed of children and youth with motor impairments.
Real-Time Gait Cycle Parameter Recognition Using a Wearable Accelerometry System
Yang, Che-Chang; Hsu, Yeh-Liang; Shih, Kao-Shang; Lu, Jun-Ming
2011-01-01
This paper presents the development of a wearable accelerometry system for real-time gait cycle parameter recognition. Using a tri-axial accelerometer, the wearable motion detector is a single waist-mounted device to measure trunk accelerations during walking. Several gait cycle parameters, including cadence, step regularity, stride regularity and step symmetry can be estimated in real-time by using autocorrelation procedure. For validation purposes, five Parkinson’s disease (PD) patients and five young healthy adults were recruited in an experiment. The gait cycle parameters among the two subject groups of different mobility can be quantified and distinguished by the system. Practical considerations and limitations for implementing the autocorrelation procedure in such a real-time system are also discussed. This study can be extended to the future attempts in real-time detection of disabling gaits, such as festinating or freezing of gait in PD patients. Ambulatory rehabilitation, gait assessment and personal telecare for people with gait disorders are also possible applications. PMID:22164019
Accretion and Magnetic Reconnection in the Classical T Tauri Binary DQ Tau
NASA Astrophysics Data System (ADS)
Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Johns-Krull, Christopher; Herczeg, Gregory J.; Quijano-Vodniza, Alberto
2017-01-01
The theory of binary star formation predicts that close binaries (a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (˜daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres near periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.
Effect of cycling cadence on subsequent 3 km running performance in well trained triathletes
Bernard, T; Vercruyssen, F; Grego, F; Hausswirth, C; Lepers, R; Vallier, J; Brisswalter, J; Vleck, V
2003-01-01
Objectives: To investigate the effect of three cycling cadences on a subsequent 3000 m track running performance in well trained triathletes. Methods: Nine triathletes completed a maximal cycling test, three cycle-run succession sessions (20 minutes of cycling + a 3000 m run) in random order, and one isolated run (3000 m). During the cycling bout of the cycle-run sessions, subjects had to maintain for 20 minutes one of the three cycling cadences corresponding to 60, 80, and 100 rpm. The metabolic intensity during these cycling bouts corresponded approximately to the cycling competition intensity of our subjects during a sprint triathlon (> 80% O2max). Results: A significant effect of the prior cycling exercise was found on middle distance running performance without any cadence effect (625.7 (40.1), 630.0 (44.8), 637.7 (57.9), and 583.0 (28.3) seconds for the 60 rpm run, 80 rpm run, 100 rpm run, and isolated run respectively). However, during the first 500 m of the run, stride rate and running velocity were significantly higher after cycling at 80 or 100 rpm than at 60 rpm (p<0.05). Furthermore, the choice of 60 rpm was associated with a higher fraction of O2max sustained during running compared with the other conditions (p<0.05). Conclusions: The results confirm the alteration in running performance completed after the cycling event compared with the isolated run. However, no significant effect of the cadence was observed within the range usually used by triathletes. PMID:12663359
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.
The theory of binary star formation predicts that close binaries ( a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (∼daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres nearmore » periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.« less
Stretching single atom contacts at multiple subatomic step-length.
Wei, Yi-Min; Liang, Jing-Hong; Chen, Zhao-Bin; Zhou, Xiao-Shun; Mao, Bing-Wei; Oviedo, Oscar A; Leiva, Ezequiel P M
2013-08-14
This work describes jump-to-contact STM-break junction experiments leading to novel statistical distribution of last-step length associated with conductance of a single atom contact. Last-step length histograms are observed with up to five for Fe and three for Cu peaks at integral multiples close to 0.075 nm, a subatomic distance. A model is proposed in terms of gliding from a fcc hollow-site to a hcp hollow-site of adjacent atomic planes at 1/3 regular layer spacing along with tip stretching to account for the multiple subatomic step-length behavior.
Fast cadence planet-searches with the all-sky, gigapixel-scale Evryscope
NASA Astrophysics Data System (ADS)
Ratzloff, Jeff; Law, Nicholas
2018-01-01
The Evryscope is a 24-camera robotic telescope that continuously images 8,000 square degrees in 2-minute exposures, that has been collecting data continuously since deployment to CTIO in mid-2015. The telescope provides the fast cadence observations necessary for detecting minute to tens-of-minute time-scale exoplanet transits, which would occur around small, compact host stars including White Dwarfs and Hot Subdwarfs. We are conducting target surveys for each of these types of stars searching for potential planet transit signals. Our surveys will be the largest performed to date with several thousand targets in each group and years of observations, and the only surveys with minute-scale cadence. We present the status of the surveys, our estimated detection ability, interesting candidates, and preliminary results.
VizieR Online Data Catalog: Broadband photometry of Neptune from K2 (Rowe+, 2017)
NASA Astrophysics Data System (ADS)
Rowe, J. F.; Gaulme, P.; Lissauer, J. J.; Marley, M. S.; Simon, A. A.; Hammel, H. B.; Silva Aguirre, V.; Barclay, T.; Benomar, O.; Boumier, P.; Caldwell, D. A.; Casewell, S. L.; Chaplin, W. J.; Colon, K. D.; Corsaro, E.; Davies, G. R.; Fortney, J. J.; Garcia, R. A.; Gizis, J. E.; Haas, M. R.; Mosser, B.; Schmider, F.-X.
2017-08-01
The K2 C3 field provided the first opportunity to observe the planet Neptune for up to 80 days with short-cadence (1 minute) sampling (the C3 campaign had an actual duration of 69.2 days, limited by on-board data storage). We were awarded sufficient pixel allocation from Guest Observer Programs GO3060 (PI: Rowe) and GO3057 (PI: Gaulme) to continuously monitor Neptune for 49 days. Short-cadence target pixel files were obtained from Mikulski Archive for Space Telescopes (MAST). The Neptune short-cadence subraster was spread across 161 FITS files. Each file contained 1 column of time-series pixel data. Each target pixel file contains observations starting on 2014 November 15 and finishing on 2015 January 18. (1 data file).
Vegter, Riemer J. K.; Hensen, Alexander H. R.; Wagner, Heiko; van der Woude, Lucas H. V.
2017-01-01
Background With the introduction of an add-on handcycle, a crank system that can be placed in front of a wheelchair, handcycling was made widely available for daily life. With it, people go into town more easily, e.g. to do groceries; meet up with friends, etc. They have more independency and can be socially active. Our aim is to explore some settings of the handcycle, so that it can be optimally used as a transportation device. Therefore, the effects of cadence and added resistance on gross mechanical efficiency and force application during sub-maximal synchronous handcycling were investigated. We hypothesized that a cadence of 52 rpm with a higher resistance (35 W) would lead to a higher gross mechanical efficiency and a more tangential force application than a higher cadence of 70 rpm and no extra resistance (15 W). Methods Twelve able-bodied men rode in an instrumented add-on handcycle on a motorized level treadmill at 1.94 m/s. They performed three sessions of three four-minute blocks of steady state exercise. Gear (70, 60 and 52 rpm) was changed in-between the blocks and resistance (rolling resistance +0 W, +10 W, +20 W) was changed across sessions, both in a counterbalanced order. 3D force production, oxygen uptake and heart rate were measured continuously. Gross mechanical efficiency (ME) and fraction of effective force (FEF) were calculated as main outcomes. The effects of cadence and resistance were analyzed using a repeated measures ANOVA (P<0.05) with Bonferroni-corrected post-hoc pairwise comparisons. Results With a decrease in cadence a slight increase in ME (70 rpm: 5.5 (0.2)%, 60 rpm: 5.7 (0.2)%, 52 rpm: 5.8 (0.2)%, P = 0.008, η2p = 0.38), while an increase in FEF (70 rpm: 58.0 (3.2)%, 60 rpm: 66.0 (2.8)%, 52 rpm: 71.3 (2.3)%, P<0.001, η2p = 0.79) is seen simultaneously. Also with an increase in resistance an increase in ME (+0 W: 4.0 (0.2)%, +10 W: 6.0 (0.3)%, +20 W: 7.0 (0.2)%, P<0.001, η2p = 0.92) and FEF (+0 W: 59.0 (2.9)%, +10 W: 66.1 (3.4)%, +20 W: 70.2 (2.4)%, P<0.001, η2p = 0.56) was found. Interpretation A cadence of 52 rpm against a higher resistance of about 35 W leads to a more optimal direction of forces and is more mechanically efficient than propelling at a higher cadence or lower resistance. Therefore, changing gears on a handcycle is important, and it is advised to keep the linear hand velocity relatively low for locomotion purposes. PMID:28841704
Costa-Ribeiro, Adriana; Maux, Ariadne; Bosford, Thamyris; Aoki, Yumi; Castro, Rebeca; Baltar, Adriana; Shirahige, Lívia; Moura Filho, Alberto; Nitsche, Michael A; Monte-Silva, Kátia
2017-04-01
The aim of this study is to investigate the effects of transcranial direct current stimulation (tDCS) combined with cueing gait training (CGT) on functional mobility in patients with Parkinson´s disease (PD). A pilot double-blind controlled, randomized clinical trial was conducted with 22 patients with PD assigned to the experimental (anodal tDCS plus CGT) and control group (sham tDCS plus CGT). The primary outcome (functional mobility) was assessed by 10-m walk test, cadence, stride length, and Timed Up and Go test. Motor impairment, bradykinesia, balance, and quality of life were analyzed as secondary outcomes. Minimal clinically important differences (MCIDs) were observed when assessing outcome data. Both groups demonstrated similar gains in all outcome measures, except for the stride length. The number of participants who showed MCID was similar between groups. The CGT provided many benefits to functional mobility, motor impairment, bradykinesia, balance, and quality of life. However, these effect magnitudes were not influenced by stimulation, but tDCS seems to prolong the effects of cueing therapy on functional mobility.
Spatial-temporal parameters of gait in women with fibromyalgia.
Heredia Jiménez, José María; Aparicio García-Molina, Virginia A; Porres Foulquie, Jesús M; Delgado Fernández, Manuel; Soto Hermoso, Victor M
2009-05-01
The aim of the present study was to determine if there are differences in such parameters among patients affected by fibromyalgia (FM) and healthy subjects and whether the degree of affectation by FM can decrease the gait parameters. We studied 55 women with FM and 44 controls. Gait analysis was performed using an instrumented walkway for measurement of the kinematic parameters of gait (GAITRite system), and patients completed a Spanish version of Fibromyalgia Impact Questionnaire (FIQ). Significant differences (p < 0.001) between FM and control groups were found in velocity, stride length, cadence, single support ratio, double support ratio, stance phase ratio, and swing phase ratio. There were significant inverse correlations between FIQ and velocity, stride length, swing phase, and single support, whereas significant direct correlations were found with stance phase and double support. Gait parameters of women affected by FM were severely impaired when compared to those of healthy women. Different factors such as lack of physical activity, bradikinesia, overweight, fatigue, and pain together with a lower isometric force in the legs can be responsible for the alterations in gait and poorer life quality of women with FM.
Allet, Lara; Kim, Hogene; Ashton-Miller, James; De Mott, Trina; Richardson, James K
2014-01-01
Distal symmetric polyneuropathy increases fall risk due to inability to cope with perturbations. We aimed to 1) identify the frontal plane lower limb sensorimotor functions which are necessary for robustness to a discrete, underfoot perturbation during gait; and 2) determine whether changes in the post-perturbed step parameters could distinguish between fallers and non fallers. Forty-two subjects (16 healthy old and 26 with diabetic PN) participated. Frontal plane lower limb sensorimotor functions were determined using established laboratory-based techniques. The subjects' most extreme alterations in step width or step length in response to a perturbation were measured. In addition, falls and fall-related injuries were prospectively recorded. Ankle proprioceptive threshold (APrT; p=.025) and hip abduction rate of torque generation (RTG; p=.041) independently predicted extreme step length after medial perturbation, with precise APrT and greater hip RTG allowing maintenance of step length. Injured subjects demonstrated greater extreme step length changes after medial perturbation than non-injured subjects (percent change = 18.5 ± 9.2 vs. 11.3 ± 4.57; p = .01). The ability to rapidly generate frontal plane hip strength and/or precisely perceive motion at the ankle is needed to maintain a normal step length after perturbation, a parameter which distinguishes between subjects sustaining a fall-related injury and those who did not. © 2014.
Allet, L; Kim, H; Ashton-Miller, JA; De Mott, T; Richardson, JK
2013-01-01
Aims Distal symmetric polyneuropathy increases fall risk due to inability to cope with perturbations. We aimed to 1) identify the frontal plane lower limb sensorimotor functions which are necessary for robustness to a discrete, underfoot perturbation during gait; and 2) determine whether changes in the post-perturbed step parameters could distinguish between fallers and non fallers. Methods Forty-two subjects (16 healthy old and 26 with diabetic PN) participated. Frontal plane lower limb sensorimotor functions were determined using established laboratory-based techniques. The subjects' most extreme alterations in step width or step length in response to a perturbation were measured. In addition, falls and fall-related injuries were prospectively recorded. Results Ankle proprioceptive threshold (APrT; p=.025) and hip abduction rate of torque generation (RTG; p=.041) independently predicted extreme step length after medial perturbation, with precise APrT and greater hip RTG allowing maintenance of step length. Fallers demonstrated greater extreme step length changes after medial perturbation than non fallers (percent change = 16.41±8.42 vs 11.0±4.95; p=.06) Conclusions The ability to rapidly generate frontal plane hip strength and/or precisely perceive motion at the ankle is needed to maintain a normal step length after perturbation, a parameter, which distinguishes between fallers and non fallers. PMID:24183899
NASA Astrophysics Data System (ADS)
Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Herczeg, Gregory; Johns-Krull, Christopher M.; Vodniza, Alberto
2016-01-01
Protostellar disks are integral to the formation and evolution of low-mass stars and planets. A paradigm for the star-disk interaction has been extensively developed through theory and observation in the case of single stars. Most stars, however, form in binaries or higher order systems where the distribution of disk material and mass flows are more complex. Pre-main sequence (PMS) binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces.The archetype for this theory is the eccentric, PMS binary DQ Tau. Moderate-cadence broadband photometry (~10 observations per orbital period) has shown pulsed brightening events near most periastron passages, just as numerical simulations would predict for a binary of similar orbital parameters. While this observed behavior supports the accretion stream theory, it is not exclusive to variable accretion rates. Magnetic reconnection events (flares) during the collision of stellar magnetospheres at periastron (when separated by 8 stellar radii) could produce the same periodic, broadband behavior when observed at a one-day cadence. Further evidence for magnetic activity comes from gyrosynchrotron, radio flares (typical of stellar flares) observed near multiple periastron passages. To reveal the physical mechanism seen in DQ Tau's moderate-cadence observations, we have obtained continuous, moderate-cadence, multi-band photometry over 10 orbital periods (LCOGT 1m network), supplemented with 32 nights of minute-cadence photometry centered on 4 separate periastron passages (WIYN 0.9m; APO ARCSAT). With detailed lightcurve morphologies we distinguish between the gradual rise and fall on multi-day time-scales predicted by the accretion stream theory and the hour time-scale, rapid-rise and exponential-decay typical of flares. While both are present, accretion dominates the observed variability providing evidence for the accretion stream theory and detailed mass accretion rates for comparison with numerical simulations.
Effects of protocol step length on biomechanical measures in swimming.
Barbosa, Tiago M; de Jesus, Kelly; Abraldes, J Arturo; Ribeiro, João; Figueiredo, Pedro; Vilas-Boas, João Paulo; Fernandes, Ricardo J
2015-03-01
The assessment of energetic and mechanical parameters in swimming often requires the use of an intermittent incremental protocol, whose step lengths are corner stones for the efficiency of the evaluation procedures. To analyze changes in swimming kinematics and interlimb coordination behavior in 3 variants, with different step lengths, of an intermittent incremental protocol. Twenty-two male swimmers performed n×di variants of an intermittent and incremental protocol (n≤7; d1=200 m, d2=300 m, and d3=400 m). Swimmers were videotaped in the sagittal plane for 2-dimensional kinematical analysis using a dual-media setup. Video images were digitized with a motion-capture system. Parameters that were assessed included the stroke kinematics, the segmental and anatomical landmark kinematics, and interlimb coordination. Movement efficiency was also estimated. There were no significant variations in any of the selected variables according to the step lengths. A high to very high relationship was observed between step lengths. The bias was much reduced and the 95%CI fairly tight. Since there were no meaningful differences between the 3 protocol variants, the 1 with shortest step length (ie, 200 m) should be adopted for logistical reasons.
Spatiotemporal Variables of Able-bodied and Amputee Sprinters in Men's 100-m Sprint.
Hobara, H; Kobayashi, Y; Mochimaru, M
2015-06-01
The difference in world records set by able-bodied sprinters and amputee sprinters in the men's 100-m sprint is still approximately 1 s (as of 28 March 2014). Theoretically, forward velocity in a 100-m sprint is the product of step frequency and step length. The goal of this study was to examine the hypothesis that differences in the sprint performance of able-bodied and amputee sprinters would be due to a shorter step length rather than lower step frequency. Men's elite-level 100-m races with a total of 36 able-bodied, 25 unilateral and 17 bilateral amputee sprinters were analyzed from the publicly available internet broadcasts of 11 races. For each run of each sprinter, the average forward velocity, step frequency and step length over the whole 100-m distance were analyzed. The average forward velocity of able-bodied sprinters was faster than that of the other 2 groups, but there was no significant difference in average step frequency among the 3 groups. However, the average step length of able-bodied sprinters was significantly longer than that of the other 2 groups. These results suggest that the differences in sprint performance between 2 groups would be due to a shorter step length rather than lower step frequency. © Georg Thieme Verlag KG Stuttgart · New York.
Waldron, Mark; Knight, Francesca; Tallent, Jamie; Patterson, Stephen; Jeffries, Owen
2018-06-01
This study investigated the effects of taurine on repeated sprint exercise, performed after fixed incremental ramp exercise to exhaustion at isokinetic high (90 r/min) or low (50 r/min) cadences. In a double-blind, repeated measures design, nine females completed an incremental ramp test to volitional exhaustion, followed by 2 min active recovery and 6 × 10 s sprints on a cycle ergometer, in one of four conditions: high cadence (90 r/min) + taurine (50 mg/kg body mass); high cadence + placebo (3 mg/kg body mass maltodextrin); low cadence (50 r/min) + taurine; low cadence + placebo. Heart rate (HR) and blood lactate concentration B[La] were measured before and after the ramp test and after the sprints. Taurine lowered HR vs. placebo prior to the ramp test (P = 0.004; d = 2.1). There was an effect of condition on ramp performance (P < 0.001), with higher end-test power (d = 3.7) in taurine conditions. During repeated sprints, there was a condition × time interaction (P = 0.002), with higher peak sprint power in the placebo conditions compared to taurine (sprint 2-6; P < 0.05). B[La] was higher in taurine compared to placebo post-ramp (P = 0.004; d = 4.7). Taurine-lowered pre-exercise HR and improved incremental end-test power output, with subsequent detrimental effects on sprint performance, independent of cadence. Short endurance performance can be acutely enhanced after taurine ingestion but this effect might not be maintained across longer periods of exercise or induce the need for longer recovery periods.
Martínez-Nova, Alfonso; Pascual Huerta, Javier; Sánchez-Rodríguez, Raquel
2008-01-01
We evaluated normal plantar pressures and studied the effect of weight, cadence, and age on forefoot plantar pressures in healthy subjects by using the Biofoot (Instituto de Biomecánica de Valencia, Valencia, Spain) in-shoe measurement system. The feet of 45 healthy subjects with no evident foot or lower-limb diseases were measured with the Biofoot in-shoe system. The forefoot was divided into seven areas: the first through fifth metatarsal heads, the hallux, and the second through fifth lesser toes. Three trials of 8 sec each were recorded twice in each subject, and the mean was used to analyze peak and mean plantar pressures. A multiple regression model including weight, age, and cadence was run for each metatarsal head, the hallux, and the lesser toes. Intraclass correlation coefficients and coefficients of variation were also calculated to assess reliability. The second metatarsal head had the greatest peak (960 kPa) and mean (585.1 kPa) pressures, followed by the third metatarsal head. Weight and cadence combined explained 18% and 23% of peak plantar pressure at the second and third metatarsal heads, respectively (P < .001). The intraclass correlation coefficient varied from 0.76 to 0.96 for all variables. The coefficient of variation between sessions ranged from 5.8% to 9.0%. The highest peak and mean plantar pressures were found at the second and third metatarsal heads in healthy subjects. Weight, cadence, and age explained a low variability of this pressure pattern. The Biofoot in-shoe system has good reliability to measure plantar pressures. These data will have implications for the understanding of normal foot biomechanics and its determinants.
Ginis, Pieter; Heremans, Elke; Ferrari, Alberto; Dockx, Kim; Canning, Colleen G; Nieuwboer, Alice
2017-01-01
Rhythmic auditory cueing is a well-accepted tool for gait rehabilitation in Parkinson's disease (PD), which can now be applied in a performance-adapted fashion due to technological advance. This study investigated the immediate differences on gait during a prolonged, 30 min, walk with performance-adapted (intelligent) auditory cueing and verbal feedback provided by a wearable sensor-based system as alternatives for traditional cueing. Additionally, potential effects on self-perceived fatigue were assessed. Twenty-eight people with PD and 13 age-matched healthy elderly (HE) performed four 30 min walks with a wearable cue and feedback system. In randomized order, participants received: (1) continuous auditory cueing; (2) intelligent cueing (10 metronome beats triggered by a deviating walking rhythm); (3) intelligent feedback (verbal instructions triggered by a deviating walking rhythm); and (4) no external input. Fatigue was self-scored at rest and after walking during each session. The results showed that while HE were able to maintain cadence for 30 min during all conditions, cadence in PD significantly declined without input. With continuous cueing and intelligent feedback people with PD were able to maintain cadence ( p = 0.04), although they were more physically fatigued than HE. Furthermore, cadence deviated significantly more in people with PD than in HE without input and particularly with intelligent feedback (both: p = 0.04). In PD, continuous and intelligent cueing induced significantly less deviations of cadence ( p = 0.006). Altogether, this suggests that intelligent cueing is a suitable alternative for the continuous mode during prolonged walking in PD, as it induced similar effects on gait without generating levels of fatigue beyond that of HE.
Comparing Automatic CME Detections in Multiple LASCO and SECCHI Catalogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Phillip; Colaninno, Robin C., E-mail: phillip.hess.ctr@nrl.navy.mil, E-mail: robin.colaninno@nrl.navy.mil
With the creation of numerous automatic detection algorithms, a number of different catalogs of coronal mass ejections (CMEs) spanning the entirety of the Solar and Heliospheric Observatory ( SOHO ) Large Angle Spectrometric Coronagraph (LASCO) mission have been created. Some of these catalogs have been further expanded for use on data from the Solar Terrestrial Earth Observatory ( STEREO ) Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) as well. We compare the results from different automatic detection catalogs (Solar Eruption Event Detection System (SEEDS), Computer Aided CME Tracking (CACTus), and Coronal Image Processing (CORIMP)) to ensure the consistency ofmore » detections in each. Over the entire span of the LASCO catalogs, the automatic catalogs are well correlated with one another, to a level greater than 0.88. Focusing on just periods of higher activity, these correlations remain above 0.7. We establish the difficulty in comparing detections over the course of LASCO observations due to the change in the instrument image cadence in 2010. Without adjusting catalogs for the cadence, CME detection rates show a large spike in cycle 24, despite a notable drop in other indices of solar activity. The output from SEEDS, using a consistent image cadence, shows that the CME rate has not significantly changed relative to sunspot number in cycle 24. These data, and mass calculations from CORIMP, lead us to conclude that any apparent increase in CME rate is a result of the change in cadence. We study detection characteristics of CMEs, discussing potential physical changes in events between cycles 23 and 24. We establish that, for detected CMEs, physical parameters can also be sensitive to the cadence.« less
Desloovere, Kaat; Molenaers, Guy; Van Gestel, Leen; Huenaerts, Catherine; Van Campenhout, Anja; Callewaert, Barbara; Van de Walle, Patricia; Seyler, J
2006-10-01
Several studies indicated that walking with an ankle foot orthosis (AFO) impaired third rocker. The purpose of this study was to evaluate the effects of two types of orthoses, with similar goal settings, on gait, in a homogeneous group of children, using both barefoot and shoe walking as control conditions. Fifteen children with hemiplegia, aged between 4 and 10 years, received two types of individually tuned AFOs: common posterior leaf-spring (PLS) and Dual Carbon Fiber Spring AFO (CFO) (with carbon fibre at the dorsal part of the orthosis). Both orthoses were expected to prevent plantar flexion, thus improving first rocker, allowing dorsiflexion to improve second rocker, absorbing energy during second rocker, and returning it during the third rocker. The effect of the AFOs was studied using objective gait analysis, including 3D kinematics, and kinetics in four conditions: barefoot, shoes without AFO, and PLS and CFO combined with shoes. Several gait parameters significantly changed in shoe walking compared to barefoot walking (cadence, ankle ROM and velocity, knee shock absorption, and knee angle in swing). The CFO produced a significantly larger ankle ROM and ankle velocity during push-off, and an increased plantar flexion moment and power generation at pre-swing compared to the PLS (<0.01). The results of this study further support the findings of previous studies indicating that orthoses improve specific gait parameters compared to barefoot walking (velocity, step length, first and second ankle rocker, sagittal knee and hip ROM). However, compared to shoes, not all improvements were statistically significant.
Gaudreault, Nathaly; Gravel, Denis; Nadeau, Sylvie; Houde, Sylvie; Gagnon, Denis
2010-07-01
3D analysis of the gait of children with Duchenne muscular dystrophy (DMD) was the topic of only a few studies and none of these considered the effect of gait velocity on the gait parameters of children with DMD. Gait parameters of 11 children with DMD were compared to those of 14 control children while considering the effect of gait velocity using 3D biomechanical analysis. Kinematic and kinetic gait parameters were measured using an Optotrak motion analysis system and AMTI force plates embedded in the floor. The data profiles of children with DMD walking at natural gait velocity were compared to those of the control children who walked at both natural and slow gait velocities. When both groups walked at similar velocity, children with DMD had higher cadence and shorter step length. They demonstrated a lower hip extension moment as well as a minimal or absent knee extension moment. At the ankle, a dorsiflexion moment was absent at heel strike due to the anterior location of the center of pressure. The magnitude of the medio-lateral ground reaction force was higher in children with DMD. Despite this increase, the hip abductor moment was lower. Hip power generation was also observed at the mid-stance in DMD children. These results suggest that most of the modifications observed are strategies used by children with DMD to cope with possible muscle weakness in order to provide support, propulsion and balance of the body during gait. Copyright © 2010 Elsevier B.V. All rights reserved.
Galli, Manuela; Cimolin, Veronica; Crugnola, Veronica; Priano, Lorenzo; Menegoni, Francesco; Trotti, Claudio; Milano, Eva; Mauro, Alessandro
2012-03-15
We investigated the gait pattern of 10 patients with myotonic dystrophy (Steinert disease; 4 females, 6 males; age: 41.5+7.6 years), compared to 20 healthy controls, through manual muscle test and gait analysis, in terms of kinematic, kinetic and EMG data. In most of patients (80%) distal muscle groups were weaker than proximal ones. Weakness at lower limbs was in general moderate to severe and MRC values evidenced a significant correlation between tibialis anterior and gastrocnemius medialis (R=0.91). An overall observation of gait pattern in patients when compared to controls showed that most spatio-temporal parameters (velocity, step length and cadence) were significantly different. As concerns kinematics, patients' pelvic tilt was globally in a higher position than control group, with reduced hip extension ability in stance phase and limited range of motion; 60% of the limbs revealed knee hyperextension during midstance and ankle joints showed a quite physiological position at initial contact and higher dorsiflexion during stance phase if compared to healthy individuals. Kinetic plots evidenced higher hip power during loading response and lower ankle power generation in terminal stance. The main EMG abnormalities were seen in tibialis anterior and gastrocnemius medialis muscles. In this study gait analysis gives objective and quantitative information about the gait pattern and the deviations due to the muscular situation of these patients; these results are important from a clinical point of view and suggest that rehabilitation programs for them should take these findings into account. Copyright © 2011 Elsevier B.V. All rights reserved.
Gait analysis in patients with chronic obstructive pulmonary disease: a systematic review.
Zago, Matteo; Sforza, Chiarella; Bonardi, Daniela Rita; Guffanti, Enrico Eugenio; Galli, Manuela
2018-03-01
Gait instability is a major fall-risk factor in patients with chronic obstructive pulmonary disease (COPD). Clinical gait analysis is a reliable tool to predict fall onsets. However, controversy still exists on gait impairments associated with COPD. Thus, the aims of this review were to evaluate the current understanding of spatiotemporal, kinematic and kinetic gait features in patients with COPD. In line with PRISMA guidelines, a systematic literature search was performed throughout Web of Science, PubMed Medline, Scopus, PEDro and Scielo databases. We considered observational cross-sectional studies evaluating gait features in patients with COPD as their primary outcome. Risk of bias and applicability of these papers were assessed according to the QUADAS-2 tool. Seven articles, cross-sectional studies published from 2011 to 2017, met the inclusion criteria. Sample size of patients with COPD ranged 14-196 (mean age range: 64-75 years). The main reported gait abnormalities were reduced step length and cadence, and altered variability of spatiotemporal parameters. Only subtle biomechanical changes were reported at the ankle level. A convincing mechanistic link between such gait impairments and falls in patients with COPD is still lacking. The paucity of studies, small sample sizes, gender and disease status pooling were the main risk of biases affecting the results uncertainty. Two research directions emerged: stricter cohorts characterization in terms of COPD phenotype and longitudinal studies. Quantitative assessment of gait would identify abnormalities and sensorimotor postural deficiencies that in turn may lead to better falling prevention strategies in COPD. Copyright © 2018 Elsevier B.V. All rights reserved.
Franklin, Simon; Grey, Michael J; Heneghan, Nicola; Bowen, Laura; Li, François-Xavier
2015-09-01
Habitual footwear use has been reported to influence foot structure with an acute exposure being shown to alter foot position and mechanics. The foot is highly specialised thus these changes in structure/position could influence functionality. This review aims to investigate the effect of footwear on gait, specifically focussing on studies that have assessed kinematics, kinetics and muscle activity between walking barefoot and in common footwear. In line with PRISMA and published guidelines, a literature search was completed across six databases comprising Medline, EMBASE, Scopus, AMED, Cochrane Library and Web of Science. Fifteen of 466 articles met the predetermined inclusion criteria and were included in the review. All articles were assessed for methodological quality using a modified assessment tool based on the STROBE statement for reporting observational studies and the CASP appraisal tool. Walking barefoot enables increased forefoot spreading under load and habitual barefoot walkers have anatomically wider feet. Spatial-temporal differences including, reduced step/stride length and increased cadence, are observed when barefoot. Flatter foot placement, increased knee flexion and a reduced peak vertical ground reaction force at initial contact are also reported. Habitual barefoot walkers exhibit lower peak plantar pressures and pressure impulses, whereas peak plantar pressures are increased in the habitually shod wearer walking barefoot. Footwear particularly affects the kinematics and kinetics of gait acutely and chronically. Little research has been completed in older age populations (50+ years) and thus further research is required to better understand the effect of footwear on walking across the lifespan. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Gait strategy in genetically obese patients: a 7-year follow up.
Cimolin, V; Vismara, L; Galli, M; Grugni, G; Cau, N; Capodaglio, P
2014-07-01
The aim of this study was to quantitatively evaluate the change in gait and body weight in the long term in patients with Prader-Willi Syndrome (PWS). Eight adults with PWS were evaluated at baseline and after 7 years. During this period patient participated an in- and out-patient rehabilitation programs including nutritional and adapted physical activity interventions. Two different control groups were included: the first group included 14 non-genetically obese patients (OCG: obese control group) and the second group included 10 age-matched healthy individuals (HCG: healthy control group). All groups were quantitatively assessed during walking with 3D-GA. The results at the 7-year follow-up revealed significant weight loss in the PWS group and spatial-temporal changes in gait parameters (velocity, step length and cadence). With regard to the hip joint, there were significant changes in terms of hip position, which is less flexed. Knee flexion-extension showed a reduction of flexion in swing phase and of its excursion. No changes of the ankle position were evident. As for ankle kinetics, we observed in the second session higher values for the peak of ankle power in terminal stance in comparison to the first session. No changes were found in terms of ankle kinetics. The findings demonstrated improvements associated to long-term weight loss, especially in terms of spatial-temporal parameters and at hip level. Our results back the call for early weight loss interventions during childhood, which would allow the development of motor patterns under normal body weight conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
VizieR Online Data Catalog: Catalog of Kepler flare stars (Van Doorsselaere+, 2017)
NASA Astrophysics Data System (ADS)
van Doorsselaere, T.; Shariati, H.; Debosscher, J.
2017-11-01
With an automated detection method, we have identified stellar flares in the long cadence observations of Kepler during quarter 15. We list each flare time for the respective Kepler objects. Furthermore, we list the flare amplitude and decay time after fitting the flare light curve with an exponential decay. Flare start times in long cadence data of Kepler during quarter 15. (1 data file).
Ground Reaction Force and Cadence during Stationary Running Sprint in Water and on Land.
Fontana, H de Brito; Ruschel, C; Haupenthal, A; Hubert, M; Roesler, H
2015-06-01
This study was aimed at analyzing the cadence (Cadmax) and the peak vertical ground reaction force (Fymax) during stationary running sprint on dry land and at hip and chest level of water immersion. We hypothesized that both Fymax and Cadmax depend on the level of immersion and that differences in Cadmax between immersions do not affect Fymax during stationary sprint. 32 subjects performed the exercise at maximum cadence at each immersion level and data were collected with force plates. The results show that Cadmax and Fymax decrease 17 and 58% from dry land to chest immersion respectively, with no effect of cadence on Fymax. While previous studies have shown similar neuromuscular responses between aquatic and on land stationary sprint, our results emphasize the differences in Fymax between environments and levels of immersion. Additionally, the characteristics of this exercise permit maximum movement speed in water to be close to the maximum speed on dry land. The valuable combination of reduced risk of orthopedic trauma with similar neuromuscular responses is provided by the stationary sprint exercise in water. The results of this study support the rationale behind the prescription of stationary sprinting in sports training sessions as well as rehabilitation programs. © Georg Thieme Verlag KG Stuttgart · New York.
LSST: Cadence Design and Simulation
NASA Astrophysics Data System (ADS)
Cook, Kem H.; Pinto, P. A.; Delgado, F.; Miller, M.; Petry, C.; Saha, A.; Gee, P. A.; Tyson, J. A.; Ivezic, Z.; Jones, L.; LSST Collaboration
2009-01-01
The LSST Project has developed an operations simulator to investigate how best to observe the sky to achieve its multiple science goals. The simulator has a sophisticated model of the telescope and dome to properly constrain potential observing cadences. This model has also proven useful for investigating various engineering issues ranging from sizing of slew motors, to design of cryogen lines to the camera. The simulator is capable of balancing cadence goals from multiple science programs, and attempts to minimize time spent slewing as it carries out these goals. The operations simulator has been used to demonstrate a 'universal' cadence which delivers the science requirements for a deep cosmology survey, a Near Earth Object Survey and good sampling in the time domain. We will present the results of simulating 10 years of LSST operations using realistic seeing distributions, historical weather data, scheduled engineering downtime and current telescope and camera parameters. These simulations demonstrate the capability of the LSST to deliver a 25,000 square degree survey probing the time domain including 20,000 square degrees for a uniform deep, wide, fast survey, while effectively surveying for NEOs over the same area. We will also present our plans for future development of the simulator--better global minimization of slew time and eventual transition to a scheduler for the real LSST.
Power output of field-based downhill mountain biking.
Hurst, Howard Thomas; Atkins, Stephen
2006-10-01
The purpose of this study was to assess the power output of field-based downhill mountain biking. Seventeen trained male downhill cyclists (age 27.1 +/- 5.1 years) competing nationally performed two timed runs of a measured downhill course. An SRM powermeter was used to simultaneously record power, cadence, and speed. Values were sampled at 1-s intervals. Heart rates were recorded at 5-s intervals using a Polar S710 heart rate monitor. Peak and mean power output were 834 +/- 129 W and 75 +/- 26 W respectively. Mean power accounted for only 9% of peak values. Paradoxically, mean heart rate was 168 +/- 9 beats x min(-1) (89% of age-predicted maximum heart rate). Mean cadence (27 +/- 5 rev x min(-1)) was significantly related to speed (r = 0.51; P < 0.01). Analysis revealed an average of 38 pedal actions per run, with average pedalling periods of 5 s. Power and cadence were not significantly related to run time or any other variable. Our results support the intermittent nature of downhill mountain biking. The poor relationships between power and run time and between cadence and run time suggest they are not essential pre-requisites to downhill mountain biking performance and indicate the importance of riding dynamics to overall performance.
A Pearson Random Walk with Steps of Uniform Orientation and Dirichlet Distributed Lengths
NASA Astrophysics Data System (ADS)
Le Caër, Gérard
2010-08-01
A constrained diffusive random walk of n steps in ℝ d and a random flight in ℝ d , which are equivalent, were investigated independently in recent papers (J. Stat. Phys. 127:813, 2007; J. Theor. Probab. 20:769, 2007, and J. Stat. Phys. 131:1039, 2008). The n steps of the walk are independent and identically distributed random vectors of exponential length and uniform orientation. Conditioned on the sum of their lengths being equal to a given value l, closed-form expressions for the distribution of the endpoint of the walk were obtained altogether for any n for d=1,2,4. Uniform distributions of the endpoint inside a ball of radius l were evidenced for a walk of three steps in 2D and of two steps in 4D. The previous walk is generalized by considering step lengths which have independent and identical gamma distributions with a shape parameter q>0. Given the total walk length being equal to 1, the step lengths have a Dirichlet distribution whose parameters are all equal to q. The walk and the flight above correspond to q=1. Simple analytical expressions are obtained for any d≥2 and n≥2 for the endpoint distributions of two families of walks whose q are integers or half-integers which depend solely on d. These endpoint distributions have a simple geometrical interpretation. Expressed for a two-step planar walk whose q=1, it means that the distribution of the endpoint on a disc of radius 1 is identical to the distribution of the projection on the disc of a point M uniformly distributed over the surface of the 3D unit sphere. Five additional walks, with a uniform distribution of the endpoint in the inside of a ball, are found from known finite integrals of products of powers and Bessel functions of the first kind. They include four different walks in ℝ3, two of two steps and two of three steps, and one walk of two steps in ℝ4. Pearson-Liouville random walks, obtained by distributing the total lengths of the previous Pearson-Dirichlet walks according to some specified probability law are finally discussed. Examples of unconstrained random walks, whose step lengths are gamma distributed, are more particularly considered.
Naruse, Hiroaki; Fujisawa, Takashi X; Yatsuga, Chiho; Kubota, Masafumi; Matsuo, Hideaki; Takiguchi, Shinichiro; Shimada, Seiichiro; Imai, Yuto; Hiratani, Michio; Kosaka, Hirotaka; Tomoda, Akemi
2017-01-01
Children with attention deficit/hyperactivity disorder (ADHD) frequently have motor problems. Previous studies have reported that the characteristic gait in children with ADHD is immature and that subjects demonstrate higher levels of variability in gait characteristics for the lower extremities than healthy controls. However, little is known about body movement during gait in children with ADHD. The purpose of this study was to identify the characteristic body movements associated with ADHD symptoms in children with ADHD. Using a three-dimensional motion analysis system, we compared gait variables in boys with ADHD (n = 19; mean age, 9.58 years) and boys with typical development (TD) (n = 21; mean age, 10.71 years) to determine the specific gait characteristics related to ADHD symptoms. We assessed spatiotemporal gait variables (i.e. speed, stride length, and cadence), and kinematic gait variables (i.e. angle of pelvis, hip, knee, and ankle) to measure body movement when walking at a self-selected pace. In comparison with the TD group, the ADHD group demonstrated significantly higher values in cadence (t = 3.33, p = 0.002) and anterior pelvic angle (t = 3.08, p = 0.004). In multiple regression analysis, anterior pelvic angle was associated with the ADHD rating scale hyperactive/impulsive scores (β = 0.62, t = 2.58, p = 0.025), but not other psychiatric symptoms in the ADHD group. Our results suggest that anterior pelvic angle represents a specific gait variable related to ADHD symptoms. Our kinematic findings could have potential implications for evaluating the body movement in boys with ADHD.
Morgan, P; Murphy, A; Opheim, A; McGinley, J
2016-07-01
The relationship between spatiotemporal gait parameters, balance performance and falls history was investigated in ambulant adults with cerebral palsy (CP). Participants completed a single assessment of gait using an instrumented walkway at preferred and fast speeds, balance testing (Balance Evaluation Systems Test; BESTest), and reported falls history. Seventeen ambulatory adults with CP, mean age 37 years, participated. Gait speed was typically slow at both preferred and fast speeds (mean 0.97 and 1.21m/s, respectively), with short stride length and high cadence relative to speed. There was a significant, large positive relationship between preferred gait speed and BESTest total score (ρ=0.573; p<0.05) and fast gait speed and BESTest total score (ρ=0.647, p<0.01). The stride lengths of fallers at both preferred and fast speeds differed significantly from non-fallers (p=0.032 and p=0.025, respectively), with those with a prior history of falls taking shorter strides. Faster gait speed was associated with better performance on tests of anticipatory and postural response components of the BESTest, suggesting potential therapeutic training targets to address either gait speed or balance performance. Future exploration of the implications of slow walking speed and reduced stride length on falls and community engagement, and the potential prognostic value of stride length on identifying falls risk is recommended. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Biomechanical influences on balance recovery by stepping.
Hsiao, E T; Robinovitch, S N
1999-10-01
Stepping represents a common means for balance recovery after a perturbation to upright posture. Yet little is known regarding the biomechanical factors which determine whether a step succeeds in preventing a fall. In the present study, we developed a simple pendulum-spring model of balance recovery by stepping, and used this to assess how step length and step contact time influence the effort (leg contact force) and feasibility of balance recovery by stepping. We then compared model predictions of step characteristics which minimize leg contact force to experimentally observed values over a range of perturbation strengths. At all perturbation levels, experimentally observed step execution times were higher than optimal, and step lengths were smaller than optimal. However, the predicted increase in leg contact force associated with these deviations was substantial only for large perturbations. Furthermore, increases in the strength of the perturbation caused subjects to take larger, quicker steps, which reduced their predicted leg contact force. We interpret these data to reflect young subjects' desire to minimize recovery effort, subject to neuromuscular constraints on step execution time and step length. Finally, our model predicts that successful balance recovery by stepping is governed by a coupling between step length, step execution time, and leg strength, so that the feasibility of balance recovery decreases unless declines in one capacity are offset by enhancements in the others. This suggests that one's risk for falls may be affected more by small but diffuse neuromuscular impairments than by larger impairment in a single motor capacity.
Emergence of an optimal search strategy from a simple random walk
Sakiyama, Tomoko; Gunji, Yukio-Pegio
2013-01-01
In reports addressing animal foraging strategies, it has been stated that Lévy-like algorithms represent an optimal search strategy in an unknown environment, because of their super-diffusion properties and power-law-distributed step lengths. Here, starting with a simple random walk algorithm, which offers the agent a randomly determined direction at each time step with a fixed move length, we investigated how flexible exploration is achieved if an agent alters its randomly determined next step forward and the rule that controls its random movement based on its own directional moving experiences. We showed that our algorithm led to an effective food-searching performance compared with a simple random walk algorithm and exhibited super-diffusion properties, despite the uniform step lengths. Moreover, our algorithm exhibited a power-law distribution independent of uniform step lengths. PMID:23804445
Emergence of an optimal search strategy from a simple random walk.
Sakiyama, Tomoko; Gunji, Yukio-Pegio
2013-09-06
In reports addressing animal foraging strategies, it has been stated that Lévy-like algorithms represent an optimal search strategy in an unknown environment, because of their super-diffusion properties and power-law-distributed step lengths. Here, starting with a simple random walk algorithm, which offers the agent a randomly determined direction at each time step with a fixed move length, we investigated how flexible exploration is achieved if an agent alters its randomly determined next step forward and the rule that controls its random movement based on its own directional moving experiences. We showed that our algorithm led to an effective food-searching performance compared with a simple random walk algorithm and exhibited super-diffusion properties, despite the uniform step lengths. Moreover, our algorithm exhibited a power-law distribution independent of uniform step lengths.
Bowersock, Collin D; Willy, Richard W; DeVita, Paul; Willson, John D
2017-03-01
Anterior cruciate ligament reconstruction is associated with early onset knee osteoarthritis. Running is a typical activity following this surgery, but elevated knee joint contact forces are thought to contribute to osteoarthritis degenerative processes. It is therefore clinically relevant to identify interventions to reduce contact forces during running among individuals after anterior cruciate ligament reconstruction. The primary purpose of this study was to evaluate the effect of reducing step length during running on patellofemoral and tibiofemoral joint contact forces among people with a history of anterior cruciate ligament reconstruction. Inter limb knee joint contact force differences during running were also examined. 18 individuals at an average of 54.8months after unilateral anterior cruciate ligament reconstruction ran in 3 step length conditions (preferred, -5%, -10%). Bilateral patellofemoral, tibiofemoral, and medial tibiofemoral compartment peak force, loading rate, impulse, and impulse per kilometer were evaluated between step length conditions and limbs using separate 2 factor analyses of variance. Reducing step length 5% decreased patellofemoral, tibiofemoral, and medial tibiofemoral compartment peak force, impulse, and impulse per kilometer bilaterally. A 10% step length reduction further decreased peak forces and force impulses, but did not further reduce force impulses per kilometer. Tibiofemoral joint impulse, impulse per kilometer, and patellofemoral joint loading rate were lower in the previously injured limb compared to the contralateral limb. Running with a shorter step length is a feasible clinical intervention to reduce knee joint contact forces during running among people with a history of anterior cruciate ligament reconstruction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Photometric analysis in the Kepler Science Operations Center pipeline
NASA Astrophysics Data System (ADS)
Twicken, Joseph D.; Clarke, Bruce D.; Bryson, Stephen T.; Tenenbaum, Peter; Wu, Hayley; Jenkins, Jon M.; Girouard, Forrest; Klaus, Todd C.
2010-07-01
We describe the Photometric Analysis (PA) software component and its context in the Kepler Science Operations Center (SOC) Science Processing Pipeline. The primary tasks of this module are to compute the photometric flux and photocenters (centroids) for over 160,000 long cadence (~thirty minute) and 512 short cadence (~one minute) stellar targets from the calibrated pixels in their respective apertures. We discuss science algorithms for long and short cadence PA: cosmic ray cleaning; background estimation and removal; aperture photometry; and flux-weighted centroiding. We discuss the end-to-end propagation of uncertainties for the science algorithms. Finally, we present examples of photometric apertures, raw flux light curves, and centroid time series from Kepler flight data. PA light curves, centroid time series, and barycentric timestamp corrections are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy.
The DECam Minute Cadence Survey
NASA Astrophysics Data System (ADS)
Belardi, C.; Kilic, M.; Munn, J. A.; Gianninas, A.; Barber, S. D.; Dey, A.; Stetson, P. B.
2017-03-01
We present the first results from a minute cadence survey of a 3 deg2 field obtained with the Dark Energy Camera. We imaged part of the Canada- France-Hawaii Telescope Legacy Survey area over eight half-nights. We use the stacked images to identify 111 high proper motion white dwarf candidates with g≤ 24.5 mag and search for eclipse-like events and other sources of variability. We find a new g=20.64 mag pulsating ZZ Ceti star with pulsation periods of 11-13 min. However, we do not find any transiting planetary companions in the habitable zone of our target white dwarfs. Given the probability of eclipses of 1% and our observing window from the ground, the non-detection of such companions in this first field is not surprising. Minute cadence DECam observations of additional fields will provide stringent constraints on the frequency of planets in the white dwarf habitable zone.
Photometric Analysis in the Kepler Science Operations Center Pipeline
NASA Technical Reports Server (NTRS)
Twicken, Joseph D.; Clarke, Bruce D.; Bryson, Stephen T.; Tenenbaum, Peter; Wu, Hayley; Jenkins, Jon M.; Girouard, Forrest; Klaus, Todd C.
2010-01-01
We describe the Photometric Analysis (PA) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this module are to compute the photometric flux and photocenters (centroids) for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) stellar targets from the calibrated pixels in their respective apertures. We discuss the science algorithms for long and short cadence PA: cosmic ray cleaning; background estimation and removal; aperture photometry; and flux-weighted centroiding. We discuss the end-to-end propagation of uncertainties for the science algorithms. Finally, we present examples of photometric apertures, raw flux light curves, and centroid time series from Kepler flight data. PA light curves, centroid time series, and barycentric timestamp corrections are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy.
NASA Technical Reports Server (NTRS)
Dotson, Jessie L.; Batalha, Natalie; Bryson, Stephen T.; Caldwell, Douglas A.; Clarke, Bruce D.
2010-01-01
NASA's exoplanet discovery mission Kepler provides uninterrupted 1-min and 30-min optical photometry of a 100 square degree field over a 3.5 yr nominal mission. Downlink bandwidth is filled at these short cadences by selecting only detector pixels specific to 105 preselected stellar targets. The majority of the Kepler field, comprising 4 x 10(exp 6) m_v < 20 sources, is sampled at much lower 1-month cadence in the form of a full-frame image. The Full Frame Images (FFIs) are calibrated by the Science Operations Center at NASA Ames Research Center. The Kepler Team employ these images for astrometric and photometric reference but make the images available to the astrophysics community through the Multimission Archive at STScI (MAST). The full-frame images provide a resource for potential Kepler Guest Observers to select targets and plan observing proposals, while also providing a freely-available long-cadence legacy of photometric variation across a swathe of the Galactic disk.
Variability in the Length and Frequency of Steps of Sighted and Visually Impaired Walkers
ERIC Educational Resources Information Center
Mason, Sarah J.; Legge, Gordon E.; Kallie, Christopher S.
2005-01-01
The variability of the length and frequency of steps was measured in sighted and visually impaired walkers at three different paces. The variability was low, especially at the preferred pace, and similar for both groups. A model incorporating step counts and step frequency provides good estimates of the distance traveled. Applications to…
Empirical scaling of the length of the longest increasing subsequences of random walks
NASA Astrophysics Data System (ADS)
Mendonça, J. Ricardo G.
2017-02-01
We provide Monte Carlo estimates of the scaling of the length L n of the longest increasing subsequences of n-step random walks for several different distributions of step lengths, short and heavy-tailed. Our simulations indicate that, barring possible logarithmic corrections, {{L}n}∼ {{n}θ} with the leading scaling exponent 0.60≲ θ ≲ 0.69 for the heavy-tailed distributions of step lengths examined, with values increasing as the distribution becomes more heavy-tailed, and θ ≃ 0.57 for distributions of finite variance, irrespective of the particular distribution. The results are consistent with existing rigorous bounds for θ, although in a somewhat surprising manner. For random walks with step lengths of finite variance, we conjecture that the correct asymptotic behavior of L n is given by \\sqrt{n}\\ln n , and also propose the form for the subleading asymptotics. The distribution of L n was found to follow a simple scaling form with scaling functions that vary with θ. Accordingly, when the step lengths are of finite variance they seem to be universal. The nature of this scaling remains unclear, since we lack a working model, microscopic or hydrodynamic, for the behavior of the length of the longest increasing subsequences of random walks.
Donelan, J Maxwell; Kram, Rodger; Kuo, Arthur D
2002-12-01
In the single stance phase of walking, center of mass motion resembles that of an inverted pendulum. Theoretically, mechanical work is not necessary for producing the pendular motion, but work is needed to redirect the center of mass velocity from one pendular arc to the next during the transition between steps. A collision model predicts a rate of negative work proportional to the fourth power of step length. Positive work is required to restore the energy lost, potentially exacting a proportional metabolic cost. We tested these predictions with humans (N=9) walking over a range of step lengths (0.4-1.1 m) while keeping step frequency fixed at 1.8 Hz. We measured individual limb external mechanical work using force plates, and metabolic rate using indirect calorimetry. As predicted, average negative and positive external mechanical work rates increased with the fourth power of step length (from 1 W to 38 W; r(2)=0.96). Metabolic rate also increased with the fourth power of step length (from 7 W to 379 W; r(2)=0.95), and linearly with mechanical work rate. Mechanical work for step-to-step transitions, rather than pendular motion itself, appears to be a major determinant of the metabolic cost of walking.
Estimation of spatial-temporal gait parameters using a low-cost ultrasonic motion analysis system.
Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon; Thomas, Rijil
2014-08-20
In this paper, a low-cost motion analysis system using a wireless ultrasonic sensor network is proposed and investigated. A methodology has been developed to extract spatial-temporal gait parameters including stride length, stride duration, stride velocity, stride cadence, and stride symmetry from 3D foot displacements estimated by the combination of spherical positioning technique and unscented Kalman filter. The performance of this system is validated against a camera-based system in the laboratory with 10 healthy volunteers. Numerical results show the feasibility of the proposed system with average error of 2.7% for all the estimated gait parameters. The influence of walking speed on the measurement accuracy of proposed system is also evaluated. Statistical analysis demonstrates its capability of being used as a gait assessment tool for some medical applications.
[Update rehabilitation therapy for Parkinson disease].
Hayashi, Akito
2013-01-01
Rehabilitation is essential for treatment of Parkinson's disease. New rehabilitation therapy is updated, in addition to evidence shown with "Parkinson's disease treatment guidelines 2011". Furthermore, a portable gait rhythmogram (acceleration sensor) is presented (not publication). Parkinsonian gait was significantly slow and the steps were small, but the cadence was not different compared as that of normal control. The strength of parkinsonian gait was apparently week compared as normal control. We also could examine consecutive changes of gait rhythm and detect freezing gait in patients. In this study, we could extract the characteristic of the parkinsonian gait and evaluate especially freeing events more objectively. This method may bring us to evaluate severity of parkinsonian gait not only in a consulting room but also daily profile even not to see directly, using the portable gait rhythmogram.
Architectural Implications of DevOps
2014-03-27
Project Management Approach Size Metrics Years In Use Release Cadence CI Cadence A Agile/ Scrum (last 2 years and traditional before...that) 1M SLOC 17 Client release available every 2 months (not all accept it) Daily CI build B Water/ Scrum /F all 3M SLOC, team size 6– 8...90,000 users 3+ Internal release every 2–3 weeks, external release as needed Daily CI build C Agile/ Scrum Team size 30 2+ Internal release every
On HMI's Mod-L Sequence: Test and Evaluation
NASA Astrophysics Data System (ADS)
Liu, Yang; Baldner, Charles; Bogart, R. S.; Bush, R.; Couvidat, S.; Duvall, Thomas L.; Hoeksema, Jon Todd; Norton, Aimee Ann; Scherrer, Philip H.; Schou, Jesper
2016-05-01
HMI Mod-L sequence can produce full Stokes parameters at a cadence of 90 seconds by combining filtergrams from both cameras, the front camera and the side camera. Within the 90-second, the front camera takes two sets of Left and Right Circular Polarizations (LCP and RCP) at 6 wavelengths; the side camera takes one set of Linear Polarizations (I+/-Q and I+/-U) at 6 wavelengths. By combining two cameras, one can obtain full Stokes parameters of [I,Q,U,V] at 6 wavelengths in 90 seconds. In norminal Mod-C sequence that HMI currently uses, the front camera takes LCP and RCP at a cadence of 45 seconds, while the side camera takes observation of the full Stokes at a cadence of 135 seconds. Mod-L should be better than Mod-C for providing vector magnetic field data because (1) Mod-L increases cadence of full Stokes observation, which leads to higher temporal resolution of vector magnetic field measurement; (2) decreases noise in vector magnetic field data because it uses more filtergrams to produce [I,Q,U,V]. There are two potential issues in Mod-L that need to be addressed: (1) scaling intensity of the two cameras’ filtergrams; and (2) if current polarization calibration model, which is built for each camera separately, works for the combined data from both cameras. This presentation will address these questions, and further place a discussion here.
Gama, Gabriela L; Celestino, Melissa L; Barela, José A; Forrester, Larry; Whitall, Jill; Barela, Ana M
2017-04-01
To investigate the effects of gait training with body weight support (BWS) on a treadmill versus overground in individuals with chronic stroke. Randomized controlled trial. University research laboratory. Individuals (N=28) with chronic stroke (>6mo from the stroke event). Participants were randomly assigned to receive gait training with BWS on a treadmill (n=14) or overground (n=14) 3 times a week for 6 weeks. Gait speed measured using the 10-meter walk test, endurance measured using the 6-minute walk test, functional independence measured using the motor domain of the FIM, lower limb recovery measured using the lower extremity domain of the Fugl-Meyer assessment, step length, step length symmetry ratio, and single-limb support duration. Measurements were obtained at baseline, immediately after the training session, and 6 weeks after the training session. At 1 week after the last training session, both groups improved in all outcome measures except paretic step length and step length symmetry ratio, which were improved only in the overground group (P=.01 and P=.01, respectively). At 6 weeks after the last training session, all improvements remained and the treadmill group also improved paretic step length (P<.001) but not step length symmetry ratio (P>.05). Individuals with chronic stroke equally improve gait speed and other gait parameters after 18 sessions of BWS gait training on either a treadmill or overground. Only the overground group improved step length symmetry ratio, suggesting a role of integrating overground walking into BWS interventions poststroke. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Liu, Yan-Ci; Yang, Yea-Ru; Tsai, Yun-An; Wang, Ray-Yau
2017-06-22
This study investigated effects of cognitive and motor dual task gait training on dual task gait performance in stroke. Participants (n = 28) were randomly assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or conventional physical therapy (CPT) group. Participants in CDTT or MDTT group practiced the cognitive or motor tasks respectively during walking. Participants in CPT group received strengthening, balance, and gait training. The intervention was 30 min/session, 3 sessions/week for 4 weeks. Three test conditions to evaluate the training effects were single walking, walking while performing cognitive task (serial subtraction), and walking while performing motor task (tray-carrying). Parameters included gait speed, dual task cost of gait speed (DTC-speed), cadence, stride time, and stride length. After CDTT, cognitive-motor dual task gait performance (stride length and DTC-speed) was improved (p = 0.021; p = 0.015). After MDTT, motor dual task gait performance (gait speed, stride length, and DTC-speed) was improved (p = 0.008; p = 0.008; p = 0.008 respectively). It seems that CDTT improved cognitive dual task gait performance and MDTT improved motor dual task gait performance although such improvements did not reach significant group difference. Therefore, different types of dual task gait training can be adopted to enhance different dual task gait performance in stroke.
Godi, Marco; Giardini, Marica; Nardone, Antonio; Turcato, Anna Maria; Caligari, Marco; Pisano, Fabrizio; Schieppati, Marco
2017-01-01
Training subjects to step-in-place eyes open on a rotating platform while maintaining a fixed body orientation in space [podokinetic stimulation (PKS)] produces a posteffect consisting in inadvertent turning around while stepping-in-place eyes closed [podokinetic after-rotation (PKAR)]. Since the rationale for rehabilitation of curved walking in Parkinson’s disease is not fully known, we tested the hypothesis that repeated PKS favors the production of curved walking in these patients, who are uneasy with turning, even when straight walking is little affected. Fifteen patients participated in 10 training sessions distributed in 3 weeks. Both counterclockwise and clockwise PKS were randomly administered in each session. PKS velocity and duration were gradually increased over sessions. The velocity and duration of the following PKAR were assessed. All patients showed PKAR, which increased progressively in peak velocity and duration. In addition, before and at the end of the treatment, all patients walked overground along linear and circular trajectories. Post-training, the velocity of walking bouts increased, more so for the circular than the linear trajectory. Cadence was not affected. This study has shown that parkinsonian patients learn to produce turning while stepping when faced with appropriate training and that this capacity translates into improved overground curved walking. PMID:28293213
Godi, Marco; Giardini, Marica; Nardone, Antonio; Turcato, Anna Maria; Caligari, Marco; Pisano, Fabrizio; Schieppati, Marco
2017-01-01
Training subjects to step-in-place eyes open on a rotating platform while maintaining a fixed body orientation in space [podokinetic stimulation (PKS)] produces a posteffect consisting in inadvertent turning around while stepping-in-place eyes closed [podokinetic after-rotation (PKAR)]. Since the rationale for rehabilitation of curved walking in Parkinson's disease is not fully known, we tested the hypothesis that repeated PKS favors the production of curved walking in these patients, who are uneasy with turning, even when straight walking is little affected. Fifteen patients participated in 10 training sessions distributed in 3 weeks. Both counterclockwise and clockwise PKS were randomly administered in each session. PKS velocity and duration were gradually increased over sessions. The velocity and duration of the following PKAR were assessed. All patients showed PKAR, which increased progressively in peak velocity and duration. In addition, before and at the end of the treatment, all patients walked overground along linear and circular trajectories. Post-training, the velocity of walking bouts increased, more so for the circular than the linear trajectory. Cadence was not affected. This study has shown that parkinsonian patients learn to produce turning while stepping when faced with appropriate training and that this capacity translates into improved overground curved walking.
The stepping behavior analysis of pedestrians from different age groups via a single-file experiment
NASA Astrophysics Data System (ADS)
Cao, Shuchao; Zhang, Jun; Song, Weiguo; Shi, Chang'an; Zhang, Ruifang
2018-03-01
The stepping behavior of pedestrians with different age compositions in single-file experiment is investigated in this paper. The relation between step length, step width and stepping time are analyzed by using the step measurement method based on the calculation of curvature of the trajectory. The relations of velocity-step width, velocity-step length and velocity-stepping time for different age groups are discussed and compared with previous studies. Finally effects of pedestrian gender and height on stepping laws and fundamental diagrams are analyzed. The study is helpful for understanding pedestrian dynamics of movement. Meanwhile, it offers experimental data to develop a microscopic model of pedestrian movement by considering stepping behavior.
Sellers, Ceri; Dall, Philippa; Grant, Margaret; Stansfield, Ben
2016-01-01
Characterisation of free-living physical activity requires the use of validated and reliable monitors. This study reports an evaluation of the validity and reliability of the activPAL3 monitor for the detection of posture and stepping in both adults and young people. Twenty adults (median 27.6y; IQR22.6y) and 8 young people (12.0y; IQR4.1y) performed standardised activities and activities of daily living (ADL) incorporating sedentary, upright and stepping activity. Agreement, specificity and positive predictive value were calculated between activPAL3 outcomes and the gold-standard of video observation. Inter-device reliability was calculated between 4 monitors. Sedentary and upright times for standardised activities were within ±5% of video observation as was step count (excluding jogging) for both adults and young people. Jogging step detection accuracy reduced with increasing cadence >150stepsmin(-1). For ADLs, sensitivity to stepping was very low for adults (40.4%) but higher for young people (76.1%). Inter-device reliability was either good (ICC(1,1)>0.75) or excellent (ICC(1,1)>0.90) for all outcomes. An excellent level of detection of standardised postures was demonstrated by the activPAL3. Postures such as seat-perching, kneeling and crouching were misclassified when compared to video observation. The activPAL3 appeared to accurately detect 'purposeful' stepping during ADL, but detection of smaller stepping movements was poor. Small variations in outcomes between monitors indicated that differences in monitor placement or hardware may affect outcomes. In general, the detection of posture and purposeful stepping with the activPAL3 was excellent indicating that it is a suitable monitor for characterising free-living posture and purposeful stepping activity in healthy adults and young people. Copyright © 2015 Elsevier B.V. All rights reserved.
Photometer Performance Assessment in Kepler Science Data Processing
NASA Technical Reports Server (NTRS)
Li, Jie; Allen, Christopher; Bryson, Stephen T.; Caldwell, Douglas A.; Chandrasekaran, Hema; Clarke, Bruce D.; Gunter, Jay P.; Jenkins, Jon M.; Klaus, Todd C.; Quintana, Elisa V.;
2010-01-01
This paper describes the algorithms of the Photometer Performance Assessment (PPA) software component in the science data processing pipeline of the Kepler mission. The PPA performs two tasks: One is to analyze the health and performance of the Kepler photometer based on the long cadence science data down-linked via Ka band approximately every 30 days. The second is to determine the attitude of the Kepler spacecraft with high precision at each long cadence. The PPA component is demonstrated to work effectively with the Kepler flight data.
Optimization of the MINERVA Exoplanet Search Strategy via Simulations
NASA Astrophysics Data System (ADS)
Nava, Chantell; Johnson, Samson; McCrady, Nate; Minerva
2015-01-01
Detection of low-mass exoplanets requires high spectroscopic precision and high observational cadence. MINERVA is a dedicated observatory capable of sub meter-per-second radial velocity precision. As a dedicated observatory, MINERVA can observe with every-clear-night cadence that is essential for low-mass exoplanet detection. However, this cadence complicates the determination of an optimal observing strategy. We simulate MINERVA observations to optimize our observing strategy and maximize exoplanet detections. A dispatch scheduling algorithm provides observations of MINERVA targets every day over a three-year observing campaign. An exoplanet population with a distribution informed by Kepler statistics is assigned to the targets, and radial velocity curves induced by the planets are constructed. We apply a correlated noise model that realistically simulates stellar astrophysical noise sources. The simulated radial velocity data is fed to the MINERVA planet detection code and the expected exoplanet yield is calculated. The full simulation provides a tool to test different strategies for scheduling observations of our targets and optimizing the MINERVA exoplanet search strategy.
Minerva exoplanet detection sensitivity from simulated observations
NASA Astrophysics Data System (ADS)
McCrady, Nate; Nava, C.
2014-01-01
Small rocky planets induce radial velocity signals that are difficult to detect in the presence of stellar noise sources of comparable or larger amplitude. Minerva is a dedicated, robotic observatory that will attain 1 meter per second precision to detect these rocky planets in the habitable zone around nearby stars. We present results of an ongoing project investigating Minerva’s planet detection sensitivity as a function of observational cadence, planet mass, and orbital parameters (period, eccentricity, and argument of periastron). Radial velocity data is simulated with realistic observing cadence, accounting for weather patterns at Mt. Hopkins, Arizona. Instrumental and stellar noise are added to the simulated observations, including effects of oscillation, jitter, starspots and rotation. We extract orbital parameters from the simulated RV data using the RVLIN code. A Monte Carlo analysis is used to explore the parameter space and evaluate planet detection completeness. Our results will inform the Minerva observing strategy by providing a quantitative measure of planet detection sensitivity as a function of orbital parameters and cadence.
Improved method of step length estimation based on inverted pendulum model.
Zhao, Qi; Zhang, Boxue; Wang, Jingjing; Feng, Wenquan; Jia, Wenyan; Sun, Mingui
2017-04-01
Step length estimation is an important issue in areas such as gait analysis, sport training, or pedestrian localization. In this article, we estimate the step length of walking using a waist-worn wearable computer named eButton. Motion sensors within this device are used to record body movement from the trunk instead of extremities. Two signal-processing techniques are applied to our algorithm design. The direction cosine matrix transforms vertical acceleration from the device coordinates to the topocentric coordinates. The empirical mode decomposition is used to remove the zero- and first-order skew effects resulting from an integration process. Our experimental results show that our algorithm performs well in step length estimation. The effectiveness of the direction cosine matrix algorithm is improved from 1.69% to 3.56% while the walking speed increased.
NASA Technical Reports Server (NTRS)
Olson, Roland E; Land, Norman S
1949-01-01
Tests were made to fill partly the need for information on the effect of afterbody dimensions on the hydrodynamic stability of a flying boat in smooth water. The dimensions investigated were depth of step, angle of afterbody keel, and length of afterbody. An analysis of the data showed that as either the afterbody length or keel angle was increased an accompanying increase in depth of step was required in order to maintain adequate landing stability. The landing-tests results have been reduced to an empirical formula giving the minimum depth of step in terms of afterbody length and keel angle. This formula is compared with results from other tank tests, and the correlation is fairly good. The formula thus becomes of use in preliminary design.
Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.
Massey, Steven M; Spring, Justin B; Russell, Timothy H
2008-07-21
Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.
Jones, Brian A; Hull, Melissa A; Potanos, Kristina M; Zurakowski, David; Fitzgibbons, Shimae C; Ching, Y Avery; Duggan, Christopher; Jaksic, Tom; Kim, Heung Bae
2016-01-01
Background The International Serial Transverse Enteroplasty (STEP) Data Registry is a voluntary online database created in 2004 to collect information on patients undergoing the STEP procedure. The aim of this study was to identify preoperative factors significantly associated with 1) transplantation or death, or 2) attainment of enteral autonomy following STEP. Study Design Data were collected from September 2004 to January 2010. Univariate and multivariate logistic regression analyses were applied to determine predictors of transplantation/death or enteral autonomy post-STEP. Time to reach full enteral nutrition was estimated using a Kaplan-Meier curve. Results Fourteen of the 111 patients in the Registry were excluded due to inadequate follow-up. Of the remaining 97 patients, 11 patients died, and 5 progressed to intestinal transplantation. On multivariate analysis, higher direct bilirubin and shorter pre-STEP bowel length were independently predictive of progression to transplantation or death (p = .05 and p < .001, respectively). Of the 78 patients who were ≥7 days of age and required parenteral nutrition (PN) at the time of STEP, 37 (47%) achieved enteral autonomy after the first STEP. Longer pre-STEP bowel length was also independently associated with enteral autonomy (p = .002). The median time to reach enteral autonomy based on Kaplan-Meier analysis was 21 months (95% CI: 12-30). Conclusions Overall mortality post-STEP was 11%. Pre-STEP risk factors for progressing to transplantation or death were higher direct bilirubin and shorter bowel length. Among patients who underwent STEP for short bowel syndrome, 47% attained full enteral nutrition post-STEP. Patients with longer pre-STEP bowel length were significantly more likely to achieve enteral autonomy. PMID:23357726
De Asha, Alan R; Munjal, Ramesh; Kulkarni, Jai; Buckley, John G
2014-08-01
If a prosthetic foot creates resistance to forwards shank rotation as it deforms during loading, it will exert a braking effect on centre of mass progression. The present study determines whether the centre of mass braking effect exerted by an amputee's habitual rigid 'ankle' foot was reduced when they switched to using an 'Echelon' hydraulic ankle-foot device. Nineteen lower limb amputees (eight trans-femoral, eleven trans-tibial) walked overground using their habitual dynamic-response foot with rigid 'ankle' or 'Echelon' hydraulic ankle-foot device. Analysis determined changes in how the centre of mass was transferred onto and above the prosthetic-foot, freely chosen walking speed, and spatio-temporal parameters of gait. When using the hydraulic device both groups had a smoother/more rapid progression of the centre of pressure beneath the prosthetic hindfoot (p≤0.001), and a smaller reduction in centre of mass velocity during prosthetic-stance (p<0.001). As a result freely chosen walking speed was higher in both groups when using the device (p≤0.005). In both groups stance and swing times and cadence were unaffected by foot condition whereas step length tended (p<0.07) to increase bilaterally when using the hydraulic device. Effect size differences between foot types were comparable across groups. Use of a hydraulic ankle-foot device reduced the foot's braking effect for both amputee groups. Findings suggest that attenuation of the braking effect from the foot in early stance may be more important to prosthetic-foot function than its ability to return energy in late stance. Copyright © 2014. Published by Elsevier Ltd.
Herssens, Nolan; Verbecque, Evi; Hallemans, Ann; Vereeck, Luc; Van Rompaey, Vincent; Saeys, Wim
2018-06-12
Aging is often associated with changes in the musculoskeletal system, peripheral and central nervous system. These age-related changes often result in mobility problems influencing gait performance. Compensatory strategies are used as a way to adapt to these physiological changes. The aim of this review is to investigate the differences in spatiotemporal and gait variability measures throughout the healthy adult life. This systematic review was conducted according to the PRISMA guidelines and registered in the PROSPERO database (no. CRD42017057720). Databases MEDLINE (Pubmed), Web of Science (Web of Knowledge), Cochrane Library and ScienceDirect were systematically searched until March 2018. Eighteen of the 3195 original studies met the eligibility criteria and were included in this review. The majority of studies reported spatiotemporal and gait variability measures in adults above the age of 65, followed by the young adult population, information of middle-aged adults is lacking. Spatiotemporal parameters and gait variability measures were extracted from 2112 healthy adults between 18 and 98 years old and, in general, tend to deteriorate with increasing age. Variability measures were only reported in an elderly population and show great variety between studies. The findings of this review suggest that most spatiotemporal parameters significantly differ across different age groups. Elderly populations show a reduction of preferred walking speed, cadence, step and stride length, all related to a more cautious gait, while gait variability measures remain stable over time. A preliminary framework of normative reference data is provided, enabling insights into the influence of aging on spatiotemporal parameters, however spatiotemporal parameters of middle-aged adults should be investigated more thoroughly. Copyright © 2018 Elsevier B.V. All rights reserved.
Lucareli, P R; Lima, M O; Lima, F P S; de Almeida, J G; Brech, G C; D'Andréa Greve, J M
2011-09-01
Single-blind randomized, controlled clinical study. To evaluate, using kinematic gait analysis, the results obtained from gait training on a treadmill with body weight support versus those obtained with conventional gait training and physiotherapy. Thirty patients with sequelae from traumatic incomplete spinal cord injuries at least 12 months earlier; patients were able to walk and were classified according to motor function as ASIA (American Spinal Injury Association) impairment scale C or D. Patients were divided randomly into two groups of 15 patients by the drawing of opaque envelopes: group A (weight support) and group B (conventional). After an initial assessment, both groups underwent 30 sessions of gait training. Sessions occurred twice a week, lasted for 30 min each and continued for four months. All of the patients were evaluated by a single blinded examiner using movement analysis to measure angular and linear kinematic gait parameters. Six patients (three from group A and three from group B) were excluded because they attended fewer than 85% of the training sessions. There were no statistically significant differences in intra-group comparisons among the spatial-temporal variables in group B. In group A, the following significant differences in the studied spatial-temporal variables were observed: increases in velocity, distance, cadence, step length, swing phase and gait cycle duration, in addition to a reduction in stance phase. There were also no significant differences in intra-group comparisons among the angular variables in group B. However, group A achieved significant improvements in maximum hip extension and plantar flexion during stance. Gait training with body weight support was more effective than conventional physiotherapy for improving the spatial-temporal and kinematic gait parameters among patients with incomplete spinal cord injuries.
Deviations in gait metrics in patients with chronic ankle instability: a case control study.
Gigi, Roy; Haim, Amir; Luger, Elchanan; Segal, Ganit; Melamed, Eyal; Beer, Yiftah; Nof, Matityahu; Nyska, Meir; Elbaz, Avi
2015-01-01
Gait metric alterations have been previously reported in patients suffering from chronic ankle instability (CAI). Previous studies of gait in this population have been comprised of relatively small cohorts, and the findings of these studies are not uniform. The objective of the present study was to examine spatiotemporal gait metrics in patients with CAI and examine the relationship between self-reported disease severity and the magnitude of gait abnormalities. Forty-four patients with CAI were identified and compared to 53 healthy controls. Patients were evaluated with spatiotemporal gait analysis via a computerized mat and with the Short Form (SF) - 36 health survey. Patients with CAI were found to walk with approximately 16% slower walking velocity, 9% lower cadence and approximately 7% lower step length. Furthermore, the base of support, during walking, in the CAI group was approximately 43% wider, and the single limb support phase was 3.5% shorter compared to the control group. All of the SF-36 8-subscales, as well as the SF-36 physical component summary and SF-36 mental component summary, were significantly lower in patients with CAI compared to the control group. Finally, significant correlations were found between most of the objective gait measures and the SF-36 mental component summary and SF-36 physical component summary. The results outline a gait profile for patients suffering from CAI. Significant differences were found in most spatiotemporal gait metrics. An important finding was a significantly wider base of support. It may be speculated that these gait alterations may reflect a strategy to deal with imbalance and pain. These findings suggest the usefulness of gait metrics, alongside with the use of self-evaluation questionnaires, in assessing disease severity of patients with CAI.
Arazpour, Mokhtar; Moradi, Alireza; Samadian, Mohammad; Bahramizadeh, Mahmood; Joghtaei, Mahmoud; Ahmadi Bani, Monireh; Hutchins, Stephen W; Mardani, Mohammad A
2016-06-01
Traditionally, the anatomical knee joint is locked in extension when walking with a conventional knee-ankle-foot orthosis. A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine differences of the powered knee-ankle-foot orthosis compared to a locked knee-ankle-foot orthosis in kinematic data and temporospatial parameters during ambulation. Quasi-experimental design. Subjects with poliomyelitis (n = 7) volunteered for this study and undertook gait analysis with both the powered and the conventional knee-ankle-foot orthoses. Three trials per orthosis were collected while each subject walked along a 6-m walkway using a calibrated six-camera three-dimensional video-based motion analysis system. Walking with the powered knee-ankle-foot orthosis resulted in a significant reduction in both walking speed and step length (both 18%), but a significant increase in stance phase percentage compared to walking with the conventional knee-ankle-foot orthosis. Cadence was not significantly different between the two test conditions (p = 0.751). There was significantly higher knee flexion during swing phase and increased hip hiking when using the powered orthosis. The new powered orthosis permitted improved knee joint kinematic for knee-ankle-foot orthosis users while providing knee support in stance and active knee motion in swing in the gait cycle. Therefore, the new powered orthosis provided more natural knee flexion during swing for orthosis users compared to the locked knee-ankle-foot orthosis. This orthosis has the potential to improve knee joint kinematics and gait pattern in poliomyelitis subjects during walking activities. © The International Society for Prosthetics and Orthotics 2015.
Bayón, C; Lerma, S; Ramírez, O; Serrano, J I; Del Castillo, M D; Raya, R; Belda-Lois, J M; Martínez, I; Rocon, E
2016-11-14
Cerebral Palsy (CP) is a disorder of posture and movement due to a defect in the immature brain. The use of robotic devices as alternative treatment to improve the gait function in patients with CP has increased. Nevertheless, current gait trainers are focused on controlling complete joint trajectories, avoiding postural control and the adaptation of the therapy to a specific patient. This paper presents the applicability of a new robotic platform called CPWalker in children with spastic diplegia. CPWalker consists of a smart walker with body weight and autonomous locomotion support and an exoskeleton for joint motion support. Likewise, CPWalker enables strategies to improve postural control during walking. The integrated robotic platform provides means for testing novel gait rehabilitation therapies in subjects with CP and similar motor disorders. Patient-tailored therapies were programmed in the device for its evaluation in three children with spastic diplegia for 5 weeks. After ten sessions of personalized training with CPWalker, the children improved the mean velocity (51.94 ± 41.97 %), cadence (29.19 ± 33.36 %) and step length (26.49 ± 19.58 %) in each leg. Post-3D gait assessments provided kinematic outcomes closer to normal values than Pre-3D assessments. The results show the potential of the novel robotic platform to serve as a rehabilitation tool. The autonomous locomotion and impedance control enhanced the children's participation during therapies. Moreover, participants' postural control was substantially improved, which indicates the usefulness of the approach based on promoting the patient's trunk control while the locomotion therapy is executed. Although results are promising, further studies with bigger sample size are required.
Gandolfi, Marialuisa; Geroin, Christian; Picelli, Alessandro; Munari, Daniele; Waldner, Andreas; Tamburin, Stefano; Marchioretto, Fabio; Smania, Nicola
2014-01-01
Background: Extensive research on both healthy subjects and patients with central nervous damage has elucidated a crucial role of postural adjustment reactions and central sensory integration processes in generating and “shaping” locomotor function, respectively. Whether robotic-assisted gait devices might improve these functions in Multiple sclerosis (MS) patients is not fully investigated in literature. Purpose: The aim of this study was to compare the effectiveness of end-effector robot-assisted gait training (RAGT) and sensory integration balance training (SIBT) in improving walking and balance performance in patients with MS. Methods: Twenty-two patients with MS (EDSS: 1.5–6.5) were randomly assigned to two groups. The RAGT group (n = 12) underwent end-effector system training. The SIBT group (n = 10) underwent specific balance exercises. Each patient received twelve 50-min treatment sessions (2 days/week). A blinded rater evaluated patients before and after treatment as well as 1 month post treatment. Primary outcomes were walking speed and Berg Balance Scale. Secondary outcomes were the Activities-specific Balance Confidence Scale, Sensory Organization Balance Test, Stabilometric Assessment, Fatigue Severity Scale, cadence, step length, single and double support time, Multiple Sclerosis Quality of Life-54. Results: Between groups comparisons showed no significant differences on primary and secondary outcome measures over time. Within group comparisons showed significant improvements in both groups on the Berg Balance Scale (P = 0.001). Changes approaching significance were found on gait speed (P = 0.07) only in the RAGT group. Significant changes in balance task-related domains during standing and walking conditions were found in the SIBT group. Conclusion: Balance disorders in patients with MS may be ameliorated by RAGT and by SIBT. PMID:24904361
Strategies adopted by younger and older adults while operating a non-pedal tricycle.
Calve, Tatiane; Russo Júnior, Douglas Vicente; Barela, Ana Maria Forti
Exercises that could prevent gait impairment of older adults should be implemented in such a way that practitioners can keep motivation and adherence independent of older adults fitness levels. This study describes how younger and older adults use a non-pedal tricycle to transport their bodies along a pathway. Nine younger (24±4.9y) and nine older (66±4.0y) adults participated in this study. They moved along a straight pathway at a self-selected comfortable speed with reflective markers on their main lower limb landmarks. A computerized gait analysis system with infrared cameras was used to obtain kinematic data to calculate spatial-temporal parameters and lower limb angles. Overall, participants from both groups were able to perform the task moving at a similar mean speed, with similar stride length and ankle joint excursion. Older adults had higher cadence (mean difference of 17steps/min; 95% CI=0.99-1.15) and hip excursion (mean difference of 12°; 95% CI=28-33), longer stance duration (mean difference of 3.4%; 95% CI=56.2-59.5), and lower knee excursion (mean difference of 6°; 95% CI=47.9-53.8) than younger adults. Older adults were able to transport their body with a non-pedal tricycle with more hip and less knee excursion than younger adults. Professionals that work with the older population should look at and take into consideration the use of non-pedal tricycles in exercise protocols and investigate the long-term impacts. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.
Ghédira, Mouna; Albertsen, Inke Marie; Mardale, Valentina; Gracies, Jean-Michel; Bayle, Nicolas; Hutin, Émilie
2017-01-01
In hemiparesis, Wireless, Accelerometry-Triggered Functional Electrical Stimulation (WAFES) of the common peroneal nerve may hold intrinsic rehabilitative properties. The present pilot study analyzes WAFES against conventional therapy. Twenty adults with chronic hemiparesis (time since lesion 7(6) years; median (interquartile range)) were randomized into 2 10-week rehabilitation programs: a 45-minute (min) daily walk using WAFES (n = 10) and conventional physical therapy (CPT), 3 × 45 min per week (n = 10). The outcomes were 3D sagittal speed measurements, step length, cadence, maximal amplitude and velocity of hip, knee, and ankle during gait at free and fast speed without WAFES and clinical assessments of plantar flexor angles of shortening, spasticity, and weakness, before (D1) and after the program (W10). Kinematic and spasticity improvements occurred in the WAFES group only: (i) ankle dorsiflexion velocity (D1 versus W10, free speed, WAFES, +4(5)°/sec, p = 0.002; CPT, -3(8)°/sec, p = 0.007; fast, WAFES, +8(6)°/sec, p = 0.03; CPT, -1(4)°/sec, NS); (ii) maximal passive ankle dorsiflexion (WAFES,+26(85)%; CPT,+0(27)%; group-visit, p = 0.007) and knee flexion (WAFES, +13(17)%; CPT, -1(11)%; group-visit, p = 0.006) at fast speed only; (iii) 15% plantar flexor spasticity grade reduction with WAFES. Over 10 weeks, gait training using WAFES improved ankle and knee kinematics and reduced plantar flexor spasticity compared with CPT. Studies with longer WAFES use should explore functional effects.
Rylands, Lee P; Roberts, Simon J; Hurst, Howard T; Bentley, Ian
2017-07-01
The aims of this study were to analyse the optimal cadence for peak power production and time to peak power in bicycle motocross (BMX) riders. Six male elite BMX riders volunteered for the study. Each rider completed 3 maximal sprints at a cadence of 80, 100, 120 and 140 revs · min -1 on a laboratory Schoberer Rad Messtechnik (SRM) cycle ergometer in isokinetic mode. The riders' mean values for peak power and time of power production in all 3 tests were recorded. The BMX riders produced peak power (1105 ± 139 W) at 100 revs · min -1 with lower peak power produced at 80 revs · min -1 (1060 ± 69 W, (F(2,15) = 3.162; P = .266; η 2 = 0.960), 120 revs · min -1 (1077 ± 141 W, (F(2,15) = 4.348; P = .203; η 2 = 0.970) and 140 revs · min -1 (1046 ± 175 W, (F(2,15) = 12.350; P = 0.077; η 2 = 0.989). The shortest time to power production was attained at 120 revs · min -1 in 2.5 ± 1.07 s. Whilst a cadence of 80 revs · min -1 (3.5 ± 0.8 s, (F(2,15) = 2.667; P = .284; η 2 = 0.800) 100 revs · min -1 (3.00 ± 1.13 s, (F(2,15) = 24.832; P = .039; η 2 = 0.974) and 140 revs · min -1 (3.50 ± 0.88 s, (F(2,15) = 44.167; P = .006; η 2 = 0.967)) all recorded a longer time to peak power production. The results indicate that the optimal cadence for producing peak power output and reducing the time to peak power output are attained at comparatively low cadences for sprint cycling events. These findings could potentially inform strength and conditioning training to maximise dynamic force production and enable coaches to select optimal gear ratios.
Kobetic, Rudi; Triolo, Ronald J.
2017-01-01
An important consideration in the design of a practical system to restore walking in individuals with spinal cord injury is to minimize metabolic energy demand on the user. In this study, the effects of exoskeletal constraints on metabolic energy expenditure were evaluated in able-bodied volunteers to gain insight into the demands of walking with a hybrid neuroprosthesis after paralysis. The exoskeleton had a hydraulic mechanism to reciprocally couple hip flexion and extension, unlocked hydraulic stance controlled knee mechanisms, and ankles fixed at neutral by ankle-foot orthoses. These mechanisms added passive resistance to the hip (15 Nm) and knee (6 Nm) joints while the exoskeleton constrained joint motion to the sagittal plane. The average oxygen consumption when walking with the exoskeleton was 22.5 ± 3.4 ml O2/min/kg as compared to 11.7 ± 2.0 ml O2/min/kg when walking without the exoskeleton at a comparable speed. The heart rate and physiological cost index with the exoskeleton were at least 30% and 4.3 times higher, respectively, than walking without it. The maximum average speed achieved with the exoskeleton was 1.2 ± 0.2 m/s, at a cadence of 104 ± 11 steps/min, and step length of 70 ± 7 cm. Average peak hip joint angles (25 ± 7°) were within normal range, while average peak knee joint angles (40 ± 8°) were less than normal. Both hip and knee angular velocities were reduced with the exoskeleton as compared to normal. While the walking speed achieved with the exoskeleton could be sufficient for community ambulation, metabolic energy expenditure was significantly increased and unsustainable for such activities. This suggests that passive resistance, constraining leg motion to the sagittal plane, reciprocally coupling the hip joints, and weight of exoskeleton place considerable limitations on the utility of the device and need to be minimized in future designs of practical hybrid neuroprostheses for walking after paraplegia. PMID:28817701
Walking efficiency before and after total hip replacement.
Brown, M; Hislop, H J; Waters, R L; Porell, D
1980-10-01
The energy cost of walking and gait characteristics of patients with hip disease were studied to determine changes in walking efficiency following total hip replacement. Twenty-nine patients, 24 with unilateral hip disease and 5 with bilateral hip disease, were tested preoperatively and at various times postoperatively. Oxygen uptake was measured by a modified Douglas bag procedure. The temporal and distance characteristics of gait were measured with contact closing heel switches. Results showed postoperative increases in velocity, cadence, and stride length in patients with unilateral disease and with bilateral disease with bilateral replacement. After surgery, energy cost tended toward more normal levels, but the subjects were not within normal limits for oxygen uptake per minute, oxygen uptake per distance walked, or percent of predicted maximum aerobic capacity. Comparison of energy expenditure data with temporal and distance factors of gait indicated that all subjects became more physiologically efficient after hip replacement.
High Cadence Observations and Analysis of Spicular-type Events Using CRISP Onboard SST
NASA Astrophysics Data System (ADS)
Shetye, J.; Doyle, J. G.; Scullion, E.; Nelson, C. J.; Kuridze, D.
2016-04-01
We present spectroscopic and imaging observations of apparent ultra-fast spicule-like features observed with CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish 1-m Solar Telescope (SST). The data shows spicules with an apparent velocity above 500 km s-1, very short lifetimes of up to 20 s and length/height around 3500 km. The spicules are seen as dark absorption structures in the Hα wings ±516 mÅ, ±774 mÅ and ±1032 mÅ which suddenly appear and disappear from the FOV. These features show a time delay in their appearance in the blue and red wings by 3-5 s. We suggest that their appearance/disappearance is due to their Doppler motion in and out of the 60 mÅ filter. See Fig. 1 for the evolution of the event at two line positions.
NASA Astrophysics Data System (ADS)
Panda, D. K.; Lenka, T. R.
2017-06-01
An enhancement mode p-GaN gate AlGaN/GaN HEMT is proposed and a physics based virtual source charge model with Landauer approach for electron transport has been developed using Verilog-A and simulated using Cadence Spectre, in order to predict device characteristics such as threshold voltage, drain current and gate capacitance. The drain current model incorporates important physical effects such as velocity saturation, short channel effects like DIBL (drain induced barrier lowering), channel length modulation (CLM), and mobility degradation due to self-heating. The predicted I d-V ds, I d-V gs, and C-V characteristics show an excellent agreement with the experimental data for both drain current and capacitance which validate the model. The developed model was then utilized to design and simulate a single-pole single-throw (SPST) RF switch.
Schulze, Stephan; Schwesig, René; Edel, Melanie; Fieseler, Georg; Delank, Karl-Stefan; Hermassi, Souhail; Laudner, Kevin G
2017-10-01
To obtain spatiotemporal and dynamic running parameters of healthy participants and to identify relationships between running parameters, speed, and physical characteristics. A dynamometric treadmill was used to collect running data among 417 asymptomatic subjects during speeds ranging from 10 to 24km/h. Spatiotemporal and dynamic running parameters were calculated and measured. Results of the analyses showed that assessing running parameters is dependent on running speed. Body height correlated with stride length (r=0.5), cadence (r=-0.5) and plantar forefoot force (r=0.6). Body mass also had a strong relationship to plantar forefoot forces at 14 and 24km/h and plantar midfoot forces at 14 and 24km/h. This reference data base can be used in the kinematic and kinetic evaluation of running under a wide range of speeds. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Land, Norman S
1945-01-01
A program of model tests has been completed at Langley tank no. 1 which will furnish a qualitative guide as to the relation of length of afterbody and depth of step. The model used for the tests was a l/12-size unpowered dynamic model of a hypothetical 160,000-pound airplane. The results showed that an increase in length of afterbody requires an accompanying increase in depth of step to maintain adequate landing stability. Changing the length of afterbody and depth of step in such a manner as to maintain a given landing stability will result in only small changes in take-off stability.
The Kanzelhöhe Online Data Archive
NASA Astrophysics Data System (ADS)
Pötzi, W.; Hirtenfellner-Polanec, W.; Temmer, M.
The Kanzelhöhe Observatory provides high-cadence full-disk observations of solar activity phenomena like sunspots, flares and prominence eruptions on a regular basis. The data are available for download from the KODA (Kanzelhöhe Observatory Data Archive) which is freely accessible. The archive offers sunspot drawings back to 1950 and high cadence H-α data back to 1973. Images from other instruments, like white-light and CaIIK, are available since 2007 and 2010, respectively. In the following we describe how to access the archive and the format of the data.
2007-12-01
Using this timing information and kinematic information from the Optotrak ® motion analysis system, it was found that cadence (the number of strides...la synchronisation et de l’information sur la cinématique du système d’analyse des mouvements Optotrak ®, on a trouvé que la cadence (le nombre... Optotrak and upper body accelerations. .... 20 Figure 1-8. Accelerometer and vertical force plots showing heel strike and toe-off ..... 22 Figure 2-1
Spatial parameters of walking gait and footedness.
Zverev, Y P
2006-01-01
The present study was undertaken to assess whether footedness has effects on selected spatial and angular parameters of able-bodied gait by evaluating footprints of young adults. A total of 112 males and 93 females were selected from among students and staff members of the University of Malawi using a simple random sampling method. Footedness of subjects was assessed by the Waterloo Footedness Questionnaire Revised. Gait at natural speed was recorded using the footprint method. The following spatial parameters of gait were derived from the inked footprint sequences of subjects: step and stride lengths, gait angle and base of gait. The anthropometric measurements taken were weight, height, leg and foot length, foot breadth, shoulder width, and hip and waist circumferences. The prevalence of right-, left- and mix-footedness in the whole sample of young Malawian adults was 81%, 8.3% and 10.7%, respectively. One-way analysis of variance did not reveal a statistically significant difference between footedness categories in the mean values of anthropometric measurements (p > 0.05 for all variables). Gender differences in step and stride length values were not statistically significant. Correction of these variables for stature did not change the trend. Males had significantly broader steps than females. Normalized values of base of gait had similar gender difference. The group means of step length and normalized step length of the right and left feet were similar, for males and females. There was a significant side difference in the gait angle in both gender groups of volunteers with higher mean values on the left side compared to the right one (t = 2.64, p < 0.05 for males, and t = 2.78, p < 0.05 for females). One-way analysis of variance did not demonstrate significant difference between footedness categories in the mean values of step length, gait angle, bilateral differences in step length and gait angle, stride length, gait base and normalized gait variables of male and female volunteers (p > 0.05 for all variables). The present study demonstrated that footedness does not affect spatial and angular parameters of walking gait.
Stepping strategies for regulating gait adaptability and stability.
Hak, Laura; Houdijk, Han; Steenbrink, Frans; Mert, Agali; van der Wurff, Peter; Beek, Peter J; van Dieën, Jaap H
2013-03-15
Besides a stable gait pattern, gait in daily life requires the capability to adapt this pattern in response to environmental conditions. The purpose of this study was to elucidate the anticipatory strategies used by able-bodied people to attain an adaptive gait pattern, and how these strategies interact with strategies used to maintain gait stability. Ten healthy subjects walked in a Computer Assisted Rehabilitation ENvironment (CAREN). To provoke an adaptive gait pattern, subjects had to hit virtual targets, with markers guided by their knees, while walking on a self-paced treadmill. The effects of walking with and without this task on walking speed, step length, step frequency, step width and the margins of stability (MoS) were assessed. Furthermore, these trials were performed with and without additional continuous ML platform translations. When an adaptive gait pattern was required, subjects decreased step length (p<0.01), tended to increase step width (p=0.074), and decreased walking speed while maintaining similar step frequency compared to unconstrained walking. These adaptations resulted in the preservation of equal MoS between trials, despite the disturbing influence of the gait adaptability task. When the gait adaptability task was combined with the balance perturbation subjects further decreased step length, as evidenced by a significant interaction between both manipulations (p=0.012). In conclusion, able-bodied people reduce step length and increase step width during walking conditions requiring a high level of both stability and adaptability. Although an increase in step frequency has previously been found to enhance stability, a faster movement, which would coincide with a higher step frequency, hampers accuracy and may consequently limit gait adaptability. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mojaver, Ali; Arazpour, Mokhtar; Aminian, Gholamreza; Ahmadi Bani, Monireh; Bahramizadeh, Mahmood; Sharifi, Guive; Sherafatvaziri, Arash
2017-10-01
Knee-ankle-foot orthoses (KAFOs) are used by people with poliomyelitis to ambulate. Whist advances in orthotic knee joint designs for use in KAFOs such the provision of stance control capability have proven efficacy, little attention has been paid to shoe adaptations which may also improve gait. The aim of this study was to evaluate the alteration to the kinematics and temporal-spatial parameters of gait caused by the use of heel-to-toe rocker-soled footwear when ambulating with KAFOs. Nine adults with a history of poliomyelitis who routinely wore KAFOs participated in the study. A heel-to-toe rocker sole was added to footwear and worn on the affected side. A three-dimensional motion capture system was used to quantify the resulting alteration to specific gait parameters. Maximum hip joint extension was significantly increased (p = 0.011), and hip abduction and adduction were both significantly reduced (p = 0.011 and p = 0.007, respectively) when walking with the rocker sole. A significant increase in stride length (p = 0.035) was demonstrated but there were no significant increases in either walking speed or cadence. A heel-to-toe rocker sole adaptation may be useful for walking in patients with poliomyelitis who use KAFOs. Implications for Rehabilitation The poor functionality and difficulty in walking when using an orthotic device such as a KAFO which keeps the knee locked during ambulation, plus the significant energy required to walk, are complications of orthoses using. Little evidence exists regarding the biomechanical effect of walking with a KAFO incorporating fixed knee joints, in conjunction with rocker-soled footwear. The main aim of walking with a heel-to-toe rocker sole is to facilitate forward progression of the tibia when used with an AFO or KAFO or to provide easier walking for patients who have undergone an ankle arthrodesis. In this study, a rocker sole profile adaptation produced no significant alteration to hip joint flexion, but hip joint maximum extension was significantly increased in subjects suffering from poliomyelitis, and maximum hip adduction and abduction were both significantly reduced. The most significant alterations were seen in stride length, and although there was a significant increase in this parameter, there was no statistically significant increase in walking velocity or cadence.
Ringenbach, S D R; Holzapfel, S D; Mulvey, G M; Jimenez, A; Benson, A; Richter, M
2016-11-01
Reports of positive effects of aerobic exercise on cognitive function in persons with Down syndrome are extremely limited. However, a novel exercise intervention, termed assisted cycling therapy (ACT), has resulted in acutely improved cognitive planning ability and reaction times as well as improved cognitive planning after 8 weeks of ACT in adolescents and young adults with Down syndrome. Here, we report the effects of 8 weeks of ACT on reaction time, set-shifting, inhibition and language fluency in adolescents with Down syndrome. Adolescents with Down syndrome (age: ~18 years) were randomly assigned to 8 weeks of ACT (n = 17) or voluntary cycling (VC: n = 16), and a convenience sample (n = 11) was assigned to be an inactive comparison group (NC: n = 11). During ACT, the cycling cadence of the participants was augmented to an average cadence that was 80% faster than the voluntary cadence of the VC group. The increase in cadence was achieved with an electric motor in the stationary bicycle. Reaction time, set-shifting, inhibition and language fluency were assessed before and after 8 weeks of intervention. Power output and heart rates of the ACT and VC groups were almost identical, but the ACT cadence was significantly faster. The ACT group, but not the VC or NC groups, showed significantly improved reactions times (Hedges' g = -0.42) and inhibitory control (g = 0.18). Only the VC group showed improved set-shifting ability (g = 0.57). The ACT and VC groups displayed improved semantic language fluency (g = 0.25, g = 0.22, respectively). These and previous results support the hypothesis of increased neuroplasticity and prefrontal cortex function following ACT and, to a smaller extent, following VC. Both ACT and VC appear to be associated with cortical benefits, but based on current and previous results, ACT seems to maximize the benefits. © 2016 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Oerbekke, Michiel S; Stukstette, Mirelle J; Schütte, Kurt; de Bie, Rob A; Pisters, Martijn F; Vanwanseele, Benedicte
2017-01-01
The OpenGo seems promising to take gait analysis out of laboratory settings due to its capability of long-term measurements and mobility. However, the OpenGo's concurrent validity and reliability need to be assessed to determine if the instrument is suitable for validation in patient samples. Twenty healthy volunteers participated. Center of pressure data were collected under eyes open and closed conditions with participants performing unilateral stance trials on the gold standard (AMTI OR6-7 force plate) while wearing the OpenGo. Temporal gait data (stance time, gait cycle time, and cadence) were collected at a self-selected comfortable walking speed with participants performing test-retest trials on an instrumented treadmill while wearing the OpenGo. Validity was assessed using Bland-Altman plots. Reliability was assessed with Intraclass Correlation Coefficient (2,1) and smallest detectable changes were calculated. Negative means of differences were found in all measured parameters, illustrating lower scores for the OpenGo on average. The OpenGo showed negative upper limits of agreement in center of pressure parameters on the mediolateral axis. Temporal reliability ICCs ranged from 0.90-0.93. Smallest detectable changes for both stance times were 0.04 (left) and 0.05 (right) seconds, for gait cycle time 0.08s, and for cadence 4.5 steps per minute. The OpenGo is valid and reliable for the measurement of temporal gait parameters during walking. Measurements of center of pressure parameters during unilateral stance are not considered valid. The OpenGo seems a promising instrument for clinically screening and monitoring temporal gait parameters in patients, however validation in patient populations is needed. Copyright © 2016 Elsevier B.V. All rights reserved.
Wakeling, James M.
2015-01-01
This study investigated the influence of cycle frequency and workload on muscle coordination and the ensuing relationship with mechanical efficiency and power output of human limb movement. Eleven trained cyclists completed an array of cycle frequency (cadence)-power output conditions while excitation from 10 leg muscles and power output were recorded. Mechanical efficiency was maximized at increasing cadences for increasing power outputs and corresponded to muscle coordination and muscle fiber type recruitment that minimized both the total muscle excitation across all muscles and the ineffective pedal forces. Also, maximum efficiency was characterized by muscle coordination at the top and bottom of the pedal cycle and progressive excitation through the uniarticulate knee, hip, and ankle muscles. Inefficiencies were characterized by excessive excitation of biarticulate muscles and larger duty cycles. Power output and efficiency were limited by the duration of muscle excitation beyond a critical cadence (120–140 rpm), with larger duty cycles and disproportionate increases in muscle excitation suggesting deteriorating muscle coordination and limitations of the activation-deactivation capabilities. Most muscles displayed systematic phase shifts of the muscle excitation relative to the pedal cycle that were dependent on cadence and, to a lesser extent, power output. Phase shifts were different for each muscle, thereby altering their mechanical contribution to the pedaling action. This study shows that muscle coordination is a key determinant of mechanical efficiency and power output of limb movement across a wide range of mechanical demands and that the excitation and coordination of the muscles is limited at very high cycle frequencies. PMID:26445873
Biewener, Andrew A.; Wakeling, James M.
2017-01-01
ABSTRACT Hill-type models are ubiquitous in the field of biomechanics, providing estimates of a muscle's force as a function of its activation state and its assumed force–length and force–velocity properties. However, despite their routine use, the accuracy with which Hill-type models predict the forces generated by muscles during submaximal, dynamic tasks remains largely unknown. This study compared human gastrocnemius forces predicted by Hill-type models with the forces estimated from ultrasound-based measures of tendon length changes and stiffness during cycling, over a range of loads and cadences. We tested both a traditional model, with one contractile element, and a differential model, with two contractile elements that accounted for independent contributions of slow and fast muscle fibres. Both models were driven by subject-specific, ultrasound-based measures of fascicle lengths, velocities and pennation angles and by activation patterns of slow and fast muscle fibres derived from surface electromyographic recordings. The models predicted, on average, 54% of the time-varying gastrocnemius forces estimated from the ultrasound-based methods. However, differences between predicted and estimated forces were smaller under low speed–high activation conditions, with models able to predict nearly 80% of the gastrocnemius force over a complete pedal cycle. Additionally, the predictions from the Hill-type muscle models tested here showed that a similar pattern of force production could be achieved for most conditions with and without accounting for the independent contributions of different muscle fibre types. PMID:28202584
Energy-Containing Length Scale at the Base of a Coronal Hole: New Observational Findings
NASA Astrophysics Data System (ADS)
Abramenko, V.; Dosch, A.; Zank, G. P.; Yurchyshyn, V.; Goode, P. R.
2012-12-01
Dynamics of the photospheric flux tubes is thought to be a key factor for generation and propagation of MHD waves and magnetic stress into the corona. Recently, New Solar Telescope (NST, Big Bear Solar Observatory) imaging observations in helium I 10830 Å revealed ultrafine, hot magnetic loops reaching from the photosphere to the corona and originating from intense, compact magnetic field elements. One of the essential input parameters to run the models of the fast solar wind is a characteristic energy-containing length scale, lambda, of the dynamical structures transverse to the mean magnetic field in a coronal hole (CH) in the base of the corona. We used NST time series of solar granulation motions to estimate the velocity fluctuations, as well as NST near-infrared magnetograms to derive the magnetic field fluctuations. The NST adaptive optics corrected speckle-reconstructed images of 10 seconds cadence were an input for the local correlation tracking (LCT) code to derive the squared transverse velocity patterns. We found that the characteristic length scale for the energy-carrying structures in the photosphere is about 300 km, which is two orders of magnitude lower than it was adopted in previous models. The influence of the result on the coronal heating and fast solar wind modeling will be discussed.; Correlation functions calculated from the squared velocities for the three data sets: a coronal hole, quiet sun and active region plage area.
Mechanisms for regulating step length while running towards and over an obstacle.
Larsen, Roxanne J; Jackson, William H; Schmitt, Daniel
2016-10-01
The ability to run across uneven terrain with continuous stable movement is critical to the safety and efficiency of a runner. Successful step-to-step stabilization while running may be mediated by minor adjustments to a few key parameters (e.g., leg stiffness, step length, foot strike pattern). However, it is not known to what degree runners in relatively natural settings (e.g., trails, paved road, curbs) use the same strategies across multiple steps. This study investigates how three readily measurable running parameters - step length, foot placement, and foot strike pattern - are adjusted in response to encountering a typical urban obstacle - a sidewalk curb. Thirteen subjects were video-recorded as they ran at self-selected slow and fast paces. Runners targeted a specific distance before the curb for foot placement, and lengthened their step over the curb (p<0.0001) regardless of where the step over the curb was initiated. These strategies of adaptive locomotion disrupt step cycles temporarily, and may increase locomotor cost and muscle loading, but in the end assure dynamic stability and minimize the risk of injury over the duration of a run. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Balembois, F.; Forget, S.; Papadopoulos, D.; Druon, F.; Georges, P.; Devilder, P.-J.; Lefort, L.
2005-06-01
De nombreuses applications requièrent des sources lasers impulsionnelles ultraviolettes, présentant des durées d'impulsion et des cadences spécifiques. Grâce à l'utilisation de structures d'oscillateurs et d'amplificateurs originales il est possible de réaliser de telles sources à partir de lasers solides pompés par diodes et de profiter ainsi de la compacité, de l'efficacité et de la robustesse de ces sources. Nous présentons ici la réalisation d'un laser à verrouillage de modes et d'un microlaser déclenché permettant d'obtenir des impulsions ultraviolettes picosecondes à une cadence de quelques MHz en vue d'application à la microscopie de fluorescence résolue en temps, ainsi que la mise en œuvre pour le traitement des matériaux d'un système oscillateur-amplificateur produisant plus de 600 mW de rayonnement UV à 266 ou 355 nm avec des impulsions sub-nanosecondes.
Gait and energy consumption in adolescent idiopathic scoliosis: A literature review.
Daryabor, Aliyeh; Arazpour, Mokhtar; Sharifi, Guive; Bani, Monireh Ahmadi; Aboutorabi, Atefeh; Golchin, Navid
2017-04-01
Adolescent idiopathic scoliosis (AIS) is a progressive growth disease that affects spinal anatomy, mobility, and left-right trunk symmetry. The disease can modify human gait. We aimed to review articles describing the measurement of gait parameters and energy consumption in AIS during walking without any intervention. Literature review. The search strategy was based on the Population Intervention Comparison Outcome method and included all relevant articles published from 1996 to 2015. Articles were searched in MEDLINE via PubMed, Science Direct, Google Scholar, and ISI Web of Knowledge databases. We selected 33 studies investigating the effect of scoliosis deformity on gait parameters and energy expenditure during walking. Most of the studies concluded no significant differences in walking speed, cadence and step width in scoliosis patients and normal participants. However, patients showed decreased hip and pelvic motion, excessive energy cost of walking, stepping pattern asymmetry and ground reaction force asymmetry. We lack consistent evidence of the effect of scoliosis on temporal spatial and kinematic parameters in AIS patients as compared with normal people. However, further research is needed to assess the effect of scoliosis on gait and energy consumption. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Humphries, Nicolas E.
2015-09-01
The comprehensive review of Lévy patterns observed in the moves and pauses of a vast array of organisms by Reynolds [1] makes clear a need to attempt to unify phenomena to understand how organism movement may have evolved. However, I would contend that the research on Lévy 'movement patterns' we detect in time series of animal movements has to a large extent been misunderstood. The statistical techniques, such as Maximum Likelihood Estimation, used to detect these patterns look only at the statistical distribution of move step-lengths and not at the actual pattern, or structure, of the movement path. The path structure is lost altogether when move step-lengths are sorted prior to analysis. Likewise, the simulated movement paths, with step-lengths drawn from a truncated power law distribution in order to test characteristics of the path, such as foraging efficiency, in no way match the actual paths, or trajectories, of real animals. These statistical distributions are, therefore, null models of searching or foraging activity. What has proved surprising about these step-length distributions is the extent to which they improve the efficiency of random searches over simple Brownian motion. It has been shown unequivocally that a power law distribution of move step lengths is more efficient, in terms of prey items located per unit distance travelled, than any other distribution of move step-lengths so far tested (up to 3 times better than Brownian), and over a range of prey field densities spanning more than 4 orders of magnitude [2].
NASA Astrophysics Data System (ADS)
Gatto, Riccardo
2017-12-01
This article considers the random walk over Rp, with p ≥ 2, where a given particle starts at the origin and moves stepwise with uniformly distributed step directions and step lengths following a common distribution. Step directions and step lengths are independent. The case where the number of steps of the particle is fixed and the more general case where it follows an independent continuous time inhomogeneous counting process are considered. Saddlepoint approximations to the distribution of the distance from the position of the particle to the origin are provided. Despite the p-dimensional nature of the random walk, the computations of the saddlepoint approximations are one-dimensional and thus simple. Explicit formulae are derived with dimension p = 3: for uniformly and exponentially distributed step lengths, for fixed and for Poisson distributed number of steps. In these situations, the high accuracy of the saddlepoint approximations is illustrated by numerical comparisons with Monte Carlo simulation. Contribution to the "Topical Issue: Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Componentry for lower extremity prostheses.
Friel, Karen
2005-09-01
Prosthetic components for both transtibial and transfemoral amputations are available for patients of every level of ambulation. Most current suspension systems, knees, foot/ankle assemblies, and shock absorbers use endoskeletal construction that emphasizes total contact and weight distribution between bony structures and soft tissues. Different components offer varying benefits to energy expenditure, activity level, balance, and proprioception. Less dynamic ambulators may use fixed-cadence knees and non-dynamic response feet; higher functioning walkers benefit from dynamic response feet and variable-cadence knees. In addition, specific considerations must be kept in mind when fitting a patient with peripheral vascular disease or diabetes.
Selecting Pixels for Kepler Downlink
NASA Technical Reports Server (NTRS)
Bryson, Stephen T.; Jenkins, Jon M.; Klaus, Todd C.; Cote, Miles T.; Quintana, Elisa V.; Hall, Jennifer R.; Ibrahim, Khadeejah; Chandrasekaran, Hema; Caldwell, Douglas A.; Van Cleve, Jeffrey E.;
2010-01-01
The Kepler mission monitors > 100,000 stellar targets using 42 2200 1024 pixel CCDs. Bandwidth constraints prevent the downlink of all 96 million pixels per 30-minute cadence, so the Kepler spacecraft downlinks a specified collection of pixels for each target. These pixels are selected by considering the object brightness, background and the signal-to-noise of each pixel, and are optimized to maximize the signal-to-noise ratio of the target. This paper describes pixel selection, creation of spacecraft apertures that efficiently capture selected pixels, and aperture assignment to a target. Diagnostic apertures, short-cadence targets and custom specified shapes are discussed.
NASA Technical Reports Server (NTRS)
Mashiku, Alinda K.; Carpenter, J. Russell
2016-01-01
The cadence of proximity operations for the OSIRIS-REx mission may have an extra induced challenge given the potential of the detection of a natural satellite orbiting the asteroid Bennu. Current ground radar observations for object detection orbiting Bennu show no found objects within bounds of specific size and rotation rates. If a natural satellite is detected during approach, a different proximity operation cadence will need to be implemented as well as a collision avoidance strategy for mission success. A collision avoidance strategy will be analyzed using the Wald Sequential Probability Ratio Test.
NASA Technical Reports Server (NTRS)
Mashiku, Alinda; Carpenter, Russell
2016-01-01
The cadence of proximity operations for the OSIRIS-REx mission may have an extra induced challenge given the potential of the detection of a natural satellite orbiting the asteroid Bennu. Current ground radar observations for object detection orbiting Bennu show no found objects within bounds of specific size and rotation rates. If a natural satellite is detected during approach, a different proximity operation cadence will need to be implemented as well as a collision avoidance strategy for mission success. A collision avoidance strategy will be analyzed using the Wald Sequential Probability Ratio Test.
Sylos-Labini, Francesca; d'Avella, Andrea; Lacquaniti, Francesco; Ivanenko, Yury
2018-01-01
Handholding can naturally occur between two walkers. When people walk side-by-side, either with or without hand contact, they often synchronize their steps. However, despite the importance of haptic interaction in general and the natural use of hand contact between humans during walking, few studies have investigated forces arising from physical interactions. Eight pairs of adult subjects participated in this study. They walked on side-by-side treadmills at 4 km/h independently and with hand contact. Only hand contact-related sensory information was available for unintentional synchronization, while visual and auditory communication was obstructed. Subjects walked at their natural cadences or following a metronome. Limb kinematics, hand contact 3D interaction forces and EMG activity of 12 upper limb muscles were recorded. Overall, unintentional step frequency locking was observed during about 40% of time in 88% of pairs walking with hand contact. On average, the amplitude of contact arm oscillations decreased while the contralateral (free) arm oscillated in the same way as during normal walking. Interestingly, EMG activity of the shoulder muscles of the contact arm did not decrease, and their synergistic pattern remained similar. The amplitude of interaction forces and of trunk oscillations was similar for synchronized and non-synchronized steps, though the synchronized steps were characterized by significantly more regular orientations of interaction forces. Our results further support the notion that gait synchronization during natural walking is common, and that it may occur through interaction forces. Conservation of the proximal muscle activity of the contact (not oscillating) arm is consistent with neural coupling between cervical and lumbosacral pattern generation circuitries ("quadrupedal" arm-leg coordination) during human gait. Overall, the findings suggest that individuals might integrate force interaction cues to communicate and coordinate steps during walking.
Sylos-Labini, Francesca; d'Avella, Andrea; Lacquaniti, Francesco; Ivanenko, Yury
2018-01-01
Handholding can naturally occur between two walkers. When people walk side-by-side, either with or without hand contact, they often synchronize their steps. However, despite the importance of haptic interaction in general and the natural use of hand contact between humans during walking, few studies have investigated forces arising from physical interactions. Eight pairs of adult subjects participated in this study. They walked on side-by-side treadmills at 4 km/h independently and with hand contact. Only hand contact-related sensory information was available for unintentional synchronization, while visual and auditory communication was obstructed. Subjects walked at their natural cadences or following a metronome. Limb kinematics, hand contact 3D interaction forces and EMG activity of 12 upper limb muscles were recorded. Overall, unintentional step frequency locking was observed during about 40% of time in 88% of pairs walking with hand contact. On average, the amplitude of contact arm oscillations decreased while the contralateral (free) arm oscillated in the same way as during normal walking. Interestingly, EMG activity of the shoulder muscles of the contact arm did not decrease, and their synergistic pattern remained similar. The amplitude of interaction forces and of trunk oscillations was similar for synchronized and non-synchronized steps, though the synchronized steps were characterized by significantly more regular orientations of interaction forces. Our results further support the notion that gait synchronization during natural walking is common, and that it may occur through interaction forces. Conservation of the proximal muscle activity of the contact (not oscillating) arm is consistent with neural coupling between cervical and lumbosacral pattern generation circuitries (“quadrupedal” arm-leg coordination) during human gait. Overall, the findings suggest that individuals might integrate force interaction cues to communicate and coordinate steps during walking. PMID:29563883
Bilateral step length estimation using a single inertial measurement unit attached to the pelvis
2012-01-01
Background The estimation of the spatio-temporal gait parameters is of primary importance in both physical activity monitoring and clinical contexts. A method for estimating step length bilaterally, during level walking, using a single inertial measurement unit (IMU) attached to the pelvis is proposed. In contrast to previous studies, based either on a simplified representation of the human gait mechanics or on a general linear regressive model, the proposed method estimates the step length directly from the integration of the acceleration along the direction of progression. Methods The IMU was placed at pelvis level fixed to the subject's belt on the right side. The method was validated using measurements from a stereo-photogrammetric system as a gold standard on nine subjects walking ten laps along a closed loop track of about 25 m, varying their speed. For each loop, only the IMU data recorded in a 4 m long portion of the track included in the calibrated volume of the SP system, were used for the analysis. The method takes advantage of the cyclic nature of gait and it requires an accurate determination of the foot contact instances. A combination of a Kalman filter and of an optimally filtered direct and reverse integration applied to the IMU signals formed a single novel method (Kalman and Optimally filtered Step length Estimation - KOSE method). A correction of the IMU displacement due to the pelvic rotation occurring in gait was implemented to estimate the step length and the traversed distance. Results The step length was estimated for all subjects with less than 3% error. Traversed distance was assessed with less than 2% error. Conclusions The proposed method provided estimates of step length and traversed distance more accurate than any other method applied to measurements obtained from a single IMU that can be found in the literature. In healthy subjects, it is reasonable to expect that, errors in traversed distance estimation during daily monitoring activity would be of the same order of magnitude of those presented. PMID:22316235
Mechanical and energetic consequences of rolling foot shape in human walking
Adamczyk, Peter G.; Kuo, Arthur D.
2013-01-01
SUMMARY During human walking, the center of pressure under the foot progresses forward smoothly during each step, creating a wheel-like motion between the leg and the ground. This rolling motion might appear to aid walking economy, but the mechanisms that may lead to such a benefit are unclear, as the leg is not literally a wheel. We propose that there is indeed a benefit, but less from rolling than from smoother transitions between pendulum-like stance legs. The velocity of the body center of mass (COM) must be redirected in that transition, and a longer foot reduces the work required for the redirection. Here we develop a dynamic walking model that predicts different effects from altering foot length as opposed to foot radius, and test it by attaching rigid, arc-like foot bottoms to humans walking with fixed ankles. The model suggests that smooth rolling is relatively insensitive to arc radius, whereas work for the step-to-step transition decreases approximately quadratically with foot length. We measured the separate effects of arc-foot length and radius on COM velocity fluctuations, work performed by the legs and metabolic cost. Experimental data (N=8) show that foot length indeed has much greater effect on both the mechanical work of the step-to-step transition (23% variation, P=0.04) and the overall energetic cost of walking (6%, P=0.03) than foot radius (no significant effect, P>0.05). We found the minimum metabolic energy cost for an arc foot length of approximately 29% of leg length, roughly comparable to human foot length. Our results suggest that the foot's apparently wheel-like action derives less benefit from rolling per se than from reduced work to redirect the body COM. PMID:23580717
Mechanical and energetic consequences of rolling foot shape in human walking.
Adamczyk, Peter G; Kuo, Arthur D
2013-07-15
During human walking, the center of pressure under the foot progresses forward smoothly during each step, creating a wheel-like motion between the leg and the ground. This rolling motion might appear to aid walking economy, but the mechanisms that may lead to such a benefit are unclear, as the leg is not literally a wheel. We propose that there is indeed a benefit, but less from rolling than from smoother transitions between pendulum-like stance legs. The velocity of the body center of mass (COM) must be redirected in that transition, and a longer foot reduces the work required for the redirection. Here we develop a dynamic walking model that predicts different effects from altering foot length as opposed to foot radius, and test it by attaching rigid, arc-like foot bottoms to humans walking with fixed ankles. The model suggests that smooth rolling is relatively insensitive to arc radius, whereas work for the step-to-step transition decreases approximately quadratically with foot length. We measured the separate effects of arc-foot length and radius on COM velocity fluctuations, work performed by the legs and metabolic cost. Experimental data (N=8) show that foot length indeed has much greater effect on both the mechanical work of the step-to-step transition (23% variation, P=0.04) and the overall energetic cost of walking (6%, P=0.03) than foot radius (no significant effect, P>0.05). We found the minimum metabolic energy cost for an arc foot length of approximately 29% of leg length, roughly comparable to human foot length. Our results suggest that the foot's apparently wheel-like action derives less benefit from rolling per se than from reduced work to redirect the body COM.
Building a strategic security organisation.
Howard, Mike
2016-01-01
In everyone's day-to-day jobs there is constant need to deal with current and newly detected matters. This is now a world of immediacy, driven by the cadence of the business and its needs. These concerns should not be ignored, as failing to deal with these issues would not bode well for the future. It is essential that the gears are kept spinning. The challenge for any security organisation is to identify its short-term tactical requirements, while developing longer-term strategic needs. Once done, the differences can be accounted for and strides can be made toward a desired future state. This paper highlights several steps that the author and his team have taken in their own journey. There is no magic answer, each organisation will have its own unique challenges. Nevertheless, some of the approaches to building a strategic security organisation described in this paper are applicable to all organisations, irrespective of their size.
Radiation Hard 0.13 Micron CMOS Library at IHP
NASA Astrophysics Data System (ADS)
Jagdhold, U.
2013-08-01
To support space applications we have developed an 0.13 micron CMOS library which should be radiation hard up to 200 krad. The article describes the concept to come to a radiation hard digital circuit and was introduces in 2010 [1]. By introducing new radiation hard design rules we will minimize IC-level leakage and single event latch-up (SEL). To reduce single event upset (SEU) we add two p-MOS transistors to all flip flops. For reliability reasons we use double contacts in all library elements. The additional rules and the library elements are integrated in our Cadence mixed signal design kit, “Virtuoso” IC6.1 [2]. A test chip is produced with our in house 0.13 micron BiCMOS technology, see Ref. [3]. As next step we will doing radiation tests according the european space agency (ESA) specifications, see Ref. [4], [5].
[Gait characteristics of women with fibromyalgia: a premature aging pattern].
Góes, Suelen M; Leite, Neiva; de Souza, Ricardo M; Homann, Diogo; Osiecki, Ana C V; Stefanello, Joice M F; Rodacki, André L F
2014-01-01
Fibromyalgia is a condition which involves chronic pain. Middle-aged individuals with fibromyalgia seem to exhibit changes in gait pattern, which may prematurely expose them to a gait pattern which resembles that found in the elderly population. To determine the 3D spatial (linear and angular) gait parameters of middle-aged women with fibromyalgia and compare to elderly women without this condition. 25 women (10 in the fibromyalgia group and 15 in the elderly group) volunteered to participate in the study. Kinematics was performed using an optoelectronic system, and linear and angular kinematic variables were determined. There was no difference in walking speed, stride length, cadence, hip, knee and ankle joints range of motion between groups, except the pelvic rotation, in which the fibromyalgia group showed greater rotation (P<0.05) compared to the elderly group. Also, there was a negative correlation with pelvic rotation and gluteus pain (r = -0.69; P<0.05), and between pelvic obliquity and greater trochanter pain (r = -0.69; P<0.05) in the fibromyalgia group. Middle-aged women with fibromyalgia showed gait pattern resemblances to elderly, women, which is characterized by reduced lower limb ROM, stride length and walking speed. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
Effect of rhythmic auditory stimulation on gait performance in children with spastic cerebral palsy.
Kwak, Eunmi Emily
2007-01-01
The purpose of this study was to use Rhythmic Auditory Stimulation (RAS) for children with spastic cerebral palsy (CP) in a clinical setting in order to determine its effectiveness in gait training for ambulation. RAS has been shown to improve gait performance in patients with significant gait deficits. All 25 participants (6 to 20 years old) had spastic CP and were ambulatory, but needed to stabilize and gain more coordinated movement. Participants were placed in three groups: the control group, the therapist-guided training (TGT) group, and the self-guided training (SGT) group. The TGT group showed a statistically significant difference in stride length, velocity, and symmetry. The analysis of the results in SGT group suggests that the self-guided training might not be as effective as therapist-guided depending on motivation level. The results of this study support three conclusions: (a) RAS does influence gait performance of people with CP; (b) individual characteristics, such as cognitive functioning, support of parents, and physical ability play an important role in designing a training application, the effectiveness of RAS, and expected benefits from the training; and (c) velocity and stride length can be improved by enhancing balance, trajectory, and kinematic stability without increasing cadence.
Elek, J; Prochazka, A; Hulliger, M; Vincent, S
1990-01-01
1. It has been claimed that stretch in the non-contractile (extramysial) portion of muscles is substantial, and may produce large discrepancies between the origin-to-insertion muscle length and the internal length variations 'seen' by muscle spindle endings. 2. In eight pentobarbitone-anaesthetized cats, we estimated stretch in the extramysial portion of medial gastrocnemius (MG) muscle with a method similar to the spindle null technique. 3. Length variations of MG previously monitored in a normal step cycle were reproduced with a computer-controlled length servo. The responses of test MG spindle endings were monitored in dorsal root filaments. Distributed stimulation of ventral root filaments, rate-modulated by the step-cycle EMG envelope, served to reproduce step-cycle forces. The filaments were selected so as to have no fusimotor action on the test spindle. 4. Spindle responses in active cycles were compared with those in passive cycles (stretch, but no distributed stimulation). In some cases concomitant tonic fusimotor stimulation was used to maintain spindle responsiveness throughout the cycle, both in active and passive trials. Generally, small discrepancies in spindle firing were seen. The passive trials were now repeated, with iterative adjustments of the length function, until the response matched the spindle firing profile in the active trial. The spindle 'saw' the same internal length change in the final passive trial as in the active trial. Any difference between the corresponding length profiles was attributed to extramysial displacement. 5. Extramysial displacement estimated in this was was maximal at short mean muscle lengths, reaching about 0.5 mm in a typical step cycle (force rising from 0 to 10 N). At longer mean muscle lengths where muscle force rose from say 2 to 12 N in the cycle, extramysial displacement was in the range 0.2-0.4 mm. 6. Except at very short lengths, the displacement was probably mainly tendinous. On this assumption, our results suggested that the stiffness of the MG tendinous compartment was force related, and about double that of cat soleus muscle at any given force. Calculations indicated that though the stretch was small, the MG tendon would store and release enough strain energy per cycle to contribute significantly to the E3 phase of the step cycle. The discrepancies in spindle firing were generally quite subtle, so we reject the claim that extramysial stretch poses a serious difficulty for inferences about fusimotion from chronic spindle afferent recordings. PMID:2148952
Lauzière, Séléna; Miéville, Carole; Betschart, Martina; Duclos, Cyril; Aissaoui, Rachid; Nadeau, Sylvie
2014-10-01
To assess plantarflexion moment and hip joint moment after-effects following walking on a split-belt treadmill in healthy individuals and individuals post-stroke. Cross-sectional study. Ten healthy individuals (mean age 57.6 years (standard deviation; SD 17.2)) and twenty individuals post-stroke (mean age 49.3 years (SD 13.2)). Participants walked on an instrumented split-belt treadmill under 3 gait periods: i) baseline (tied-belt); ii) adaptation (split-belt); and iii) post-adaptation (tied-belt). Participants post-stroke performed the protocol with the paretic and nonparetic leg on the faster belt when belts were split. Kinematic data were recorded with the Optotrak system and ground reaction forces were collected via the instrumented split-belt treadmill. In both groups, the fast plantarflexion moment was reduced and the slow plantarflexion moment was increased from mid-stance to toe-off in the post-adaptation period. Significant relationships were found between the plantarflexion moment and contralateral step length. Split-belt treadmills could be useful for restoring step length symmetry in individuals post-stroke who present with a longer paretic step length because the use of this type of intervention increases paretic plantarflexion moments. This intervention might be less recommended for individuals post-stroke with a shorter paretic step length because it reduces the paretic plantarflexion moment.
Variable Cadence Walking and Ground Adaptive Standing with a Powered Ankle Prosthesis
Shultz, Amanda H.; Lawson, Brian E.; Goldfarb, Michael
2015-01-01
Abstract This paper describes a control approach that provides walking and standing functionality for a powered ankle prosthesis, and demonstrates the efficacy of the approach in experiments in which a unilateral transtibial amputee subject walks with the prosthesis at variable cadences, and stands on various slopes. Both controllers incorporate a finite-state structure that emulates healthy ankle joint behavior via a series of piecewise passive impedance functions. The walking controller incorporates an algorithm to modify impedance parameters based on estimated cadence, while the standing controller incorporates an algorithm to modulate the ankle equilibrium angle in order to adapt to the ground slope and user posture, and the supervisory controller selects between the walking and standing controllers. The system is shown to reproduce several essential biomechanical features of the healthy joint during walking, particularly relative to a passive prosthesis, and is shown to adapt to variable cadences. The system is also shown to adapt to slopes over a range of ± 15 deg and to provide support to the user in a manner that is biomimetic, as validated by quasi-static stiffness measurements recorded by the prosthesis. Data from standing trials indicate that the user places more weight on the powered prosthesis than on his passive prosthesis when standing on sloped surfaces, particularly at angles of 10 deg or greater. The authors also demonstrated that the prosthesis typically began providing support within 1 s of initial contact with the ground. Further, the supervisory controller was shown to be effective in switching between walking and standing, as well as in determining ground slope just prior to the transition from the standing controller to the walking controller, where the estimated ground slope was within 1.25 deg of the actual ground slope for all trials. PMID:25955789
Sources and Propagation of High Frequency Waves in the Solar Photosphere and Chromosphere
NASA Astrophysics Data System (ADS)
Lawrence, John K.; Cadavid, A. C.
2009-05-01
We study the spatial distribution of oscillatory power in two sequences of high-cadence, high-resolution images taken by the Solar Optical Telescope on board Hinode. The sequences consist of simultaneous, co-registered G-Band (GB) and Ca II H-Line (HL) images with pixel scale 80 km and fields of view 40 x 40 Mm and 80 x 40 Mm. The first sequence has cadence 21 s over 3 hours on 2007 April 14; the other has cadence 24 s over 2 hours on 2007 March 30. Both sequences include network and internetwork at heliocentric angle 35 degrees. Time averaging of Morlet wavelet transforms gives smoothed Fourier spectra for each spatial location in the GB and HL data. We averaged over four different frequency bands to highlight different physical regimes: "evolutionary” timescales (f < 1.2 mHz); evanescent frequencies just below the acoustic cutoff ( 2.6 mHz < f < 4.2 mHz); high frequencies just above the cutoff (5.5 mHz
Testing the Accuracy of Data-driven MHD Simulations of Active Region Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leake, James E.; Linton, Mark G.; Schuck, Peter W., E-mail: james.e.leake@nasa.gov
Models for the evolution of the solar coronal magnetic field are vital for understanding solar activity, yet the best measurements of the magnetic field lie at the photosphere, necessitating the development of coronal models which are “data-driven” at the photosphere. We present an investigation to determine the feasibility and accuracy of such methods. Our validation framework uses a simulation of active region (AR) formation, modeling the emergence of magnetic flux from the convection zone to the corona, as a ground-truth data set, to supply both the photospheric information and to perform the validation of the data-driven method. We focus ourmore » investigation on how the accuracy of the data-driven model depends on the temporal frequency of the driving data. The Helioseismic and Magnetic Imager on NASA’s Solar Dynamics Observatory produces full-disk vector magnetic field measurements at a 12-minute cadence. Using our framework we show that ARs that emerge over 25 hr can be modeled by the data-driving method with only ∼1% error in the free magnetic energy, assuming the photospheric information is specified every 12 minutes. However, for rapidly evolving features, under-sampling of the dynamics at this cadence leads to a strobe effect, generating large electric currents and incorrect coronal morphology and energies. We derive a sampling condition for the driving cadence based on the evolution of these small-scale features, and show that higher-cadence driving can lead to acceptable errors. Future work will investigate the source of errors associated with deriving plasma variables from the photospheric magnetograms as well as other sources of errors, such as reduced resolution, instrument bias, and noise.« less
Image Quality in High-resolution and High-cadence Solar Imaging
NASA Astrophysics Data System (ADS)
Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.
2018-03-01
Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.
A kinematic analysis of the rapid step test in balance-impaired and unimpaired older women.
Schulz, Brian W; Ashton-Miller, James A; Alexander, Neil B
2007-04-01
Little is known about the kinematic and kinetic determinants that might explain age and balance-impairment alterations in the results of volitional stepping performance tests. Maximal unipedal stance time (UST) was used to distinguish "balance-impaired" old (BI, UST<10s, N=15, mean age=76 years) from unimpaired old (O, UST>30s, N=12, mean age=71 years) before they and healthy young females (Y, UST>30s, N=13, mean age=23 years) performed the rapid step test (RST). The RST evaluates the time required to take volitional front, side, and back steps of at least 80% maximum step length in response to verbal commands. Kinematic and kinetic data were recorded during the RST. The results indicate that the initiation phase of the step was the major source of age- and balance impairment-related delays. The delays in BI were primarily caused by increased postural adjustments prior to step initiation, as measured by center-of-pressure (COP) path length (p<0.003). The Step landing phase showed similar, but non-significant, temporal trends. Step length and peak center-of-mass (COM) deceleration during the Step-Out landing decreased in O by 18% (p=0.0002) and 24% (p=0.001), respectively, and a further 12% (p=0.04) and 18% (p=0.08) in BI. We conclude that the delay in BI step initiation was due to the increase in their postural adjustments prior to step initiation.
Dall, Philippa Margaret; Ellis, Sarah Lesley Helen; Ellis, Brian Martin; Grant, P Margaret; Colyer, Alison; Gee, Nancy Renee; Granat, Malcolm Howard; Mills, Daniel Simon
2017-06-09
There is some evidence to suggest that dog ownership may improve physical activity (PA) among older adults, but to date, studies examining this, have either depended on self-report or incomplete datasets due to the type of activity monitor used to record physical activity. Additionally, the effect of dog ownership on sedentary behaviour (SB) has not been explored. The aim of the current study was to address these issues by using activPAL monitors to evaluate the influence of dog ownership on health enhancing PA and SB in a longitudinal study of independently-mobile, community-dwelling older adults. Study participants (43 pairs of dog owners and non-dog owners, matched on a range of demographic variables) wore an activPAL monitor continuously for three, one-week data collection periods over the course of a year. Participants also reported information about their own and their dog demographics, caring responsibilities, and completed a diary of wake times. Diary data was used to isolate waking times, and outcome measures of time spent walking, time spent walking at a moderate cadence (>100 steps/min), time spent standing, time spent sitting, number of sitting events (continuous periods of sitting), and the number of and of time spent sitting in prolonged events (>30 min). For each measure, a linear mixed effects model with dog ownership as a fixed effect, and a random effects structure of measurement point nested in participant nested in pair was used to assess the effect of dog ownership. Owning a dog indicated a large, potentially health improving, average effect of 22 min additional time spent walking, 95%CI (12, 34), and 2760 additional steps per day, 95%CI (1667, 3991), with this additional walking undertaken at a moderate intensity cadence. Dog owners had significantly fewer sitting events. However, there were no significant differences between the groups for either the total time spent sitting, or the number or duration of prolonged sedentary events. The scale of the influence of dog ownership on PA found in this study, indicates that future research regarding PA in older adults should assess and report dog ownership and/or dog walking status.
Parkinsonian gait ameliorated with a moving handrail, not with a banister.
Rabin, Ely; Demin, Aleksandr; Pirrotta, Stefania; Chen, Jason; Patel, Hemal; Bhambri, Ankur; Noyola, Estella; Lackner, James R; DiZio, Paul; DiFrancisco-Donoghue, Joanne; Werner, William
2015-04-01
To determine whether haptic (touch and proprioception) cues from touching a moving handrail while walking can ameliorate the gait symptoms of Parkinson disease (PD), such as slowness and small stride length. Nonrandomized, controlled before-after trial. Physical therapy clinic. People with PD (n=16) and healthy age-matched control subjects (n=16) with no neurologic disorders volunteered. No participants withdrew. We compared gait using a moving handrail as a novel assistive aid (speed self-selected) versus a banister and unassisted walking. Participants with PD were tested on and off dopaminergic medication. Mean gait speed, stride length, stride duration, double-support duration, and medial-lateral excursion. With the moving handrail, participants with PD increased gait speed relative to unassisted gait by 16% (.166m/s, P=.009, d=.76; 95% confidence interval [CI], .054-.278m/s) and increased stride length by 10% (.053m, P=.022, d=.37; 95% CI, .009-.097m) without significantly changing stride or double-support duration. The banister reduced speed versus unassisted gait by 11% (-.097m/s, P=.040, d=.40; 95% CI, .002-.193m/s) and reduced stride length by 8% (.32m, P=.004, d=.26; 95% CI, .010-.054m), whereas it increased stride duration by 3% (.023s, P=.022, d=.21; 95% CI, .004-.041s) and double-support duration by 35% (.044s, P=.031, d=.58; 95% CI, .005-.083s). All medication × condition interactions were P>.05. Using haptic speed cues from the moving handrail, people with PD walked faster by spontaneously (ie, without specific instruction) increasing stride length without altering cadence; banisters slowed gait. Haptic cues from the moving handrail can be used by people with PD to engage biomechanical and neural mechanisms for interpreting tactile and proprioception changes related to gait speed to control gait better than static cues afforded by banisters. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen; iPTF Team
2016-10-01
In order to look for kilometer-sized super-fast rotators (large SFRs) and understand the spin-rate distributions of small (i.e. D of several kilometers) asteroids, we have been conducting asteroid rotation period surveys of large sky area using intermediate Palomar Transient Factory (iPTF) since 2014. So far, we have observed 261 deg2 with 20 min cadence, 188 deg2 with 10 min cadence, and 65 deg2 with 5 min cadence. From these surveys, we found that the spin-rate distributions of small asteroids at different locations in the main-belt are very similar. Moreover, the distributions of asteroids with 3 < D < 15 km show number decrease along with increase of spin rate for frequency > 5 rev/day, and that of asteroids with D < 3 km have a significant number drop at frequency = 5 rev/day. However, we only discover two new large SFRs and 24 candidates. Comparing with the ordinary asteroids, the population of large SFR seems to be far less than the whole asteroid population. This might indicate a peculiar group of asteroid for large SFRs.
The origin of Total Solar Irradiance variability on timescales less than a day
NASA Astrophysics Data System (ADS)
Shapiro, Alexander; Krivova, Natalie; Schmutz, Werner; Solanki, Sami K.; Leng Yeo, Kok; Cameron, Robert; Beeck, Benjamin
2016-07-01
Total Solar Irradiance (TSI) varies on timescales from minutes to decades. It is generally accepted that variability on timescales of a day and longer is dominated by solar surface magnetic fields. For shorter time scales, several additional sources of variability have been proposed, including convection and oscillation. However, available simplified and highly parameterised models could not accurately explain the observed variability in high-cadence TSI records. We employed the high-cadence solar imagery from the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory and the SATIRE (Spectral And Total Irradiance Reconstruction) model of solar irradiance variability to recreate the magnetic component of TSI variability. The recent 3D simulations of solar near-surface convection with MURAM code have been used to calculate the TSI variability caused by convection. This allowed us to determine the threshold timescale between TSI variability caused by the magnetic field and convection. Our model successfully replicates the TSI measurements by the PICARD/PREMOS radiometer which span the period of July 2010 to February 2014 at 2-minute cadence. Hence, we demonstrate that solar magnetism and convection can account for TSI variability at all timescale it has ever been measured (sans the 5-minute component from p-modes).
NASA Astrophysics Data System (ADS)
Frith, J.; Barker, E.; Cowardin, H.; Buckalew, B.; Anz-Meador, P.; Lederer, S.
The National Aeronautics and Space Administration (NASA) Orbital Debris Program Office (ODPO) recently commissioned the Meter Class Autonomous Telescope (MCAT) on Ascension Island with the primary goal of obtaining population statistics of the geosynchronous (GEO) orbital debris environment. To help facilitate this, studies have been conducted using MCAT’s known and projected capabilities to estimate the accuracy and timeliness in which it can survey the GEO environment, including collected weather data and the proposed observational data collection cadence. To optimize observing cadences and probability of detection, on-going work using a simulated GEO debris population sampled at various cadences are run through the Constrained Admissible Region Multi Hypotheses Filter (CAR-MHF). The orbits computed from the results are then compared to the simulated data to assess MCAT’s ability to determine accurately the orbits of debris at various sample rates. The goal of this work is to discriminate GEO and near-GEO objects from GEO transfer orbit objects that can appear as GEO objects in the environmental models due to the short arc observation and an assumed circular orbit. The specific methods and results are presented here.
Ridgel, Angela L.; Abdar, Hassan Mohammadi; Alberts, Jay L.; Discenzo, Fred M.; Loparo, Kenneth A.
2014-01-01
Variability in severity and progression of Parkinson’s disease symptoms makes it challenging to design therapy interventions that provide maximal benefit. Previous studies showed that forced cycling, at greater pedaling rates, results in greater improvements in motor function than voluntary cycling. The precise mechanism for differences in function following exercise is unknown. We examined the complexity of biomechanical and physiological features of forced and voluntary cycling and correlated these features to improvements in motor function as measured by the Unified Parkinson’s Disease Rating Scale (UPDRS). Heart rate, cadence, and power were analyzed using entropy signal processing techniques. Pattern variability in heart rate and power were greater in the voluntary group when compared to forced group. In contrast, variability in cadence was higher during forced cycling. UPDRS Motor III scores predicted from the pattern variability data were highly correlated to measured scores in the forced group. This study shows how time series analysis methods of biomechanical and physiological parameters of exercise can be used to predict improvements in motor function. This knowledge will be important in the development of optimal exercise-based rehabilitation programs for Parkinson’s disease. PMID:23144045
Do Long-cadence Data of the Kepler Spacecraft Capture Basic Properties of Flares?
NASA Astrophysics Data System (ADS)
Yang, Huiqin; Liu, Jifeng; Qiao, Erlin; Zhang, Haotong; Gao, Qing; Cui, Kaiming; Han, Henggeng
2018-06-01
Flare research is becoming a burgeoning realm of interest in the study of stellar activity due to the launch of Kepler in 2009. Kepler provides data with two time resolutions, i.e., the long-cadence (LC) data with a time resolution of 30 minutes and the short-cadence (SC) data with a time resolution of 1 minute, both of which can be used to study stellar flares. In this paper, we search flares in light curves with both LC data and SC data, and compare them in aspects of the true-flare rate, the flare energy, the flare amplitude, and the flare duration. It is found that LC data systematically underestimated the energies of flares by 25%, and underestimated the amplitudes of flares by 60% compared with SC flares. The durations are systematically overestimated by 50% compared with SC flares. However, the above percentages are poorly constrained and there is a lot of scatter. About 60% of SC flares have not been detected by LC data. We investigate the limitation of LC data, and suggest that although LC data cannot reflect the detailed profiles of flares, they can also capture the basic properties of stellar flares.
Estimating physical activity in children: impact of pedometer wear time and metric.
Laurson, Kelly R; Welk, Gregory J; Eisenmann, Joey C
2015-01-01
The purpose of this study was to provide a practical demonstration of the impact of monitoring frame and metric when assessing pedometer-determined physical activity (PA) in youth. Children (N = 1111) were asked to wear pedometers over a 7-day period during which time worn and steps were recorded each day. Varying data-exclusion criteria were used to demonstrate changes in estimates of PA. Steps were expressed using several metrics and criteria, and construct validity was demonstrated via correlations with adiposity. Meaningful fluctuations in average steps per day and percentage meeting PA recommendations were apparent when different criteria were used. Children who wore the pedometer longer appeared more active, with each minute the pedometer was worn each day accounting for an approximate increase of 11 and 8 steps for boys and girls, respectively (P < .05). Using more restrictive exclusion criteria led to stronger correlations between indices of steps per day, steps per minute, steps per leg length, steps per minute per leg length, and obesity. Wear time has a meaningful impact on estimates of PA. This should be considered when determining exclusion criteria and making comparisons between studies. Results also suggest that incorporating wear time per day and leg length into the metric may increase validity of PA estimates.
Effects of gyrokinesis exercise on the gait pattern of female patients with chronic low back pain
Seo, Kook-Eun; Park, Tae-Jin
2016-01-01
[Purpose] The purpose of the present study was to use kinematic variables to identify the effects of 8/weeks’ performance of a gyrokinesis exercise on the gait pattern of females with chronic low back pain. [Subjects] The subjects of the present study were females in their late 20s to mid 30s who were chronic back pain patients. [Methods] A 3-D motion analysis system was used to measure the changes in their gait patterns between pre and post-gyrokintic exercise. The SPSS 21.0 statistics program was used to perform the paired t-test, to compare the gait patterns of pre-post-gyrokinesis exercise. [Results] In the gait analysis, pre-post-gyrokinesis exercise gait patterns showed statistically significant differences in right and left step length, stride length, right-left step widths, and stride speed. [Conclusion] Gait pattern analysis revealed increases in step length, stride length, and stride speed along with a decrease in step width after 8 weeks of gyrokinesis exercise, demonstrating it improved gait pattern. PMID:27065537
Trukhmanov, I M; Suslova, G A; Ponomarenko, G N
This paper is devoted to the characteristic of the informative value of the functional step test with the application of the heel cushions in the children for the purpose of differential diagnostics of anatomic and functional differences in the length of the lower extremities. A total of 85 schoolchildren with different length of the lower extremities have been examined. The comparative evaluation of the results of clinical and instrumental examinations was undertaken. The data obtained with the help of the functional step test give evidence of its very high sensitivity, specificity, and clinical significant as a tool for the examination of the children with different length of the low extremities. It is concluded that the test is one of the most informative predictors of the effectiveness of rehabilitation in the children with different length of the lower extremities.
Quantitative Gait Markers and Incident Fall Risk in Older Adults
Holtzer, Roee; Lipton, Richard B.; Wang, Cuiling
2009-01-01
Background Identifying quantitative gait markers of falls in older adults may improve diagnostic assessments and suggest novel intervention targets. Methods We studied 597 adults aged 70 and older (mean age 80.5 years, 62% women) enrolled in an aging study who received quantitative gait assessments at baseline. Association of speed and six other gait markers (cadence, stride length, swing, double support, stride length variability, and swing time variability) with incident fall rate was studied using generalized estimation equation procedures adjusted for age, sex, education, falls, chronic illnesses, medications, cognition, disability as well as traditional clinical tests of gait and balance. Results Over a mean follow-up period of 20 months, 226 (38%) of the 597 participants fell. Mean fall rate was 0.44 per person-year. Slower gait speed (risk ratio [RR] per 10 cm/s decrease 1.069, 95% confidence interval [CI] 1.001–1.142) was associated with higher risk of falls in the fully adjusted models. Among six other markers, worse performance on swing (RR 1.406, 95% CI 1.027–1.926), double-support phase (RR 1.165, 95% CI 1.026–1.321), swing time variability (RR 1.007, 95% CI 1.004–1.010), and stride length variability (RR 1.076, 95% CI 1.030–1.111) predicted fall risk. The associations remained significant even after accounting for cognitive impairment and disability. Conclusions Quantitative gait markers are independent predictors of falls in older adults. Gait speed and other markers, especially variability, should be further studied to improve current fall risk assessments and to develop new interventions. PMID:19349593
Dick, Taylor J M; Biewener, Andrew A; Wakeling, James M
2017-05-01
Hill-type models are ubiquitous in the field of biomechanics, providing estimates of a muscle's force as a function of its activation state and its assumed force-length and force-velocity properties. However, despite their routine use, the accuracy with which Hill-type models predict the forces generated by muscles during submaximal, dynamic tasks remains largely unknown. This study compared human gastrocnemius forces predicted by Hill-type models with the forces estimated from ultrasound-based measures of tendon length changes and stiffness during cycling, over a range of loads and cadences. We tested both a traditional model, with one contractile element, and a differential model, with two contractile elements that accounted for independent contributions of slow and fast muscle fibres. Both models were driven by subject-specific, ultrasound-based measures of fascicle lengths, velocities and pennation angles and by activation patterns of slow and fast muscle fibres derived from surface electromyographic recordings. The models predicted, on average, 54% of the time-varying gastrocnemius forces estimated from the ultrasound-based methods. However, differences between predicted and estimated forces were smaller under low speed-high activation conditions, with models able to predict nearly 80% of the gastrocnemius force over a complete pedal cycle. Additionally, the predictions from the Hill-type muscle models tested here showed that a similar pattern of force production could be achieved for most conditions with and without accounting for the independent contributions of different muscle fibre types. © 2017. Published by The Company of Biologists Ltd.
Hesse, S; Werner, C; Uhlenbrock, D; von Frankenberg, S; Bardeleben, A; Brandl-Hesse, B
2001-01-01
Modern concepts of gait rehabilitation after stroke favor a task-specific repetitive approach. In practice, the required physical effort of the therapists limits the realization of this approach. Therefore, a mechanized gait trainer enabling nonambulatory patients to have the repetitive practice of a gait-like movement without overstraining therapists was constructed. This preliminary study investigated whether an additional 4-week daily therapy on the gait trainer could improve gait ability in 14 chronic wheelchair-bound hemiparetic subjects. The 4 weeks of physiotherapy and gait-trainer therapy resulted in a relevant improvement of gait ability in all subjects. Velocity, cadence, and stride length improved significantly (p < 0.01). The kinesiologic electromyogram of selected lower-limb muscles revealed a more physiologic pattern. The confounding influence of spontaneous recovery, the lack of a control group, and the double amount of therapy limit the clinical relevance of this study. Nevertheless, the gait trainer seems feasible as an adjunctive tool in gait rehabilitation after stroke; further studies are needed.
Cai, Xi; Han, Guang; Song, Xin; Wang, Jinkuan
2017-11-01
single-camera-based gait monitoring is unobtrusive, inexpensive, and easy-to-use to monitor daily gait of seniors in their homes. However, most studies require subjects to walk perpendicularly to camera's optical axis or along some specified routes, which limits its application in elderly home monitoring. To build unconstrained monitoring environments, we propose a method to measure step length symmetry ratio (a useful gait parameter representing gait symmetry without significant relationship with age) from unconstrained straight walking using a single camera, without strict restrictions on walking directions or routes. according to projective geometry theory, we first develop a calculation formula of step length ratio for the case of unconstrained straight-line walking. Then, to adapt to general cases, we propose to modify noncollinear footprints, and accordingly provide general procedure for step length ratio extraction from unconstrained straight walking. Our method achieves a mean absolute percentage error (MAPE) of 1.9547% for 15 subjects' normal and abnormal side-view gaits, and also obtains satisfactory MAPEs for non-side-view gaits (2.4026% for 45°-view gaits and 3.9721% for 30°-view gaits). The performance is much better than a well-established monocular gait measurement system suitable only for side-view gaits with a MAPE of 3.5538%. Independently of walking directions, our method can accurately estimate step length ratios from unconstrained straight walking. This demonstrates our method is applicable for elders' daily gait monitoring to provide valuable information for elderly health care, such as abnormal gait recognition, fall risk assessment, etc. single-camera-based gait monitoring is unobtrusive, inexpensive, and easy-to-use to monitor daily gait of seniors in their homes. However, most studies require subjects to walk perpendicularly to camera's optical axis or along some specified routes, which limits its application in elderly home monitoring. To build unconstrained monitoring environments, we propose a method to measure step length symmetry ratio (a useful gait parameter representing gait symmetry without significant relationship with age) from unconstrained straight walking using a single camera, without strict restrictions on walking directions or routes. according to projective geometry theory, we first develop a calculation formula of step length ratio for the case of unconstrained straight-line walking. Then, to adapt to general cases, we propose to modify noncollinear footprints, and accordingly provide general procedure for step length ratio extraction from unconstrained straight walking. Our method achieves a mean absolute percentage error (MAPE) of 1.9547% for 15 subjects' normal and abnormal side-view gaits, and also obtains satisfactory MAPEs for non-side-view gaits (2.4026% for 45°-view gaits and 3.9721% for 30°-view gaits). The performance is much better than a well-established monocular gait measurement system suitable only for side-view gaits with a MAPE of 3.5538%. Independently of walking directions, our method can accurately estimate step length ratios from unconstrained straight walking. This demonstrates our method is applicable for elders' daily gait monitoring to provide valuable information for elderly health care, such as abnormal gait recognition, fall risk assessment, etc.
Thies, Sibylle B; Richardson, James K; Demott, Trina; Ashton-Miller, James A
2005-08-01
Patients with peripheral neuropathy (PN) report greater difficulty walking on irregular surfaces with low light (IL) than on flat surfaces with regular lighting (FR). We tested the primary hypothesis that older PN patients would demonstrate greater step width and step width variability under IL conditions than under FR conditions. Forty-two subjects (22 male, 20 female: mean +/- S.D.: 64.7 +/- 9.8 years) with PN underwent history, physical examination, and electrodiagnostic testing. Subjects were asked to walk 10 m at a comfortable speed while kinematic and force data were measured at 100 Hz using optoelectronic markers and foot switches. Ten trials were conducted under both IL and FR conditions. Step width, time, length, and speed were calculated with a MATLAB algorithm, with the standard deviation serving as the measure of variability. The results showed that under IL, as compared to FR, conditions subjects demonstrated greater step width (197.1 +/- 40.8 mm versus 180.5 +/- 32.4 mm; P < 0.001) and step width variability (40.4 +/- 9.0 mm versus 34.5 +/- 8.4 mm; P < 0.001), step time and its variability (P < 0.001 and P = 0.003, respectively), and step length variability (P < 0.001). Average step length and gait speed decreased under IL conditions (P < 0.001 for both). Step width variability and step time variability correlated best under IL conditions with a clinical measure of PN severity and fall history, respectively. We conclude that IL conditions cause PN patients to increase the variability of their step width and other gait parameters.
Gait parameter and event estimation using smartphones.
Pepa, Lucia; Verdini, Federica; Spalazzi, Luca
2017-09-01
The use of smartphones can greatly help for gait parameters estimation during daily living, but its accuracy needs a deeper evaluation against a gold standard. The objective of the paper is a step-by-step assessment of smartphone performance in heel strike, step count, step period, and step length estimation. The influence of smartphone placement and orientation on estimation performance is evaluated as well. This work relies on a smartphone app developed to acquire, process, and store inertial sensor data and rotation matrices about device position. Smartphone alignment was evaluated by expressing the acceleration vector in three reference frames. Two smartphone placements were tested. Three methods for heel strike detection were considered. On the basis of estimated heel strikes, step count is performed, step period is obtained, and the inverted pendulum model is applied for step length estimation. Pearson correlation coefficient, absolute and relative errors, ANOVA, and Bland-Altman limits of agreement were used to compare smartphone estimation with stereophotogrammetry on eleven healthy subjects. High correlations were found between smartphone and stereophotogrammetric measures: up to 0.93 for step count, to 0.99 for heel strike, 0.96 for step period, and 0.92 for step length. Error ranges are comparable to those in the literature. Smartphone placement did not affect the performance. The major influence of acceleration reference frames and heel strike detection method was found in step count. This study provides detailed information about expected accuracy when smartphone is used as a gait monitoring tool. The obtained results encourage real life applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Bezodis, Ian N; Kerwin, David G; Cooper, Stephen-Mark; Salo, Aki I T
2017-11-15
To understand how training periodization influences sprint performance and key step characteristics over an extended training period in an elite sprint training group. Four sprinters were studied during five months of training. Step velocities, step lengths and step frequencies were measured from video of the maximum velocity phase of training sprints. Bootstrapped mean values were calculated for each athlete for each session and 139 within-athlete, between-session comparisons were made with a repeated measures ANOVA. As training progressed, a link in the changes in velocity and step frequency was maintained. There were 71 between-session comparisons with a change in step velocity yielding at least a large effect size (>1.2), of which 73% had a correspondingly large change in step frequency in the same direction. Within-athlete mean session step length remained relatively constant throughout. Reductions in step velocity and frequency occurred during training phases of high volume lifting and running, with subsequent increases in step velocity and frequency happening during phases of low volume lifting and high intensity sprint work. The importance of step frequency over step length to the changes in performance within a training year was clearly evident for the sprinters studied. Understanding the magnitudes and timings of these changes in relation to the training program is important for coaches and athletes. The underpinning neuro-muscular mechanisms require further investigation, but are likely explained by an increase in force producing capability followed by an increase in the ability to produce that force rapidly.
The Ergogenic Effect of Elastic Therapeutic Tape on Stride and Step Length in Fatigued Runners
Ward, John; Sorrels, Kenneth; Coats, Jesse; Pourmoghaddam, Amir; Moskop, JoAnn; Ueckert, Kate; Glass, Amanda
2014-01-01
Objective The purpose of this study was to determine if elastic therapeutic tape placed on anterior lower limbs would affect stride and step length in fatigued runners’ gait. Methods Forty-two healthy participants were equally divided into a kinesiology tape group (Rocktape) and a no-tape control group. Participants in both groups underwent a baseline running gait test at 6 mph without tape. After this, participants engaged in an exhaustive lower body fatigue protocol until they reached maximal volitional exhaustion. Participants were then randomized to 1 of 2 interventions: (1) Experimental group, which had kinesiology tape placed under tension on the anterior aspect of their lower limbs bilaterally from the upper thigh to just below the patella, or (2) Control group, which did not receive taping. All participants then engaged in a similar 6-mph running gait postanalysis. Participant’s gait was analyzed for 90 seconds during each test iteration. Researchers used a 2-way repeated-measures analysis of variance considering fatigue (prefatigue, postfatigue) and group (tape, no-tape) as subject factors. Results After the fatigue protocol, the no-tape group demonstrated a significant decrease in step length of 14.2 mm (P = .041) and stride length of 29.4 mm (P = .043). The kinesiology tape group did not demonstrate a significant decline in these gait parameters. Conclusions In this preliminary study, placing elastic therapeutic tape over the anterior lower limbs demonstrated short-term preservation of runner step length and stride length in a fatigued state. PMID:25435835
Najafi, Bijan; Talal, Talal K.; Grewal, Gurtej Singh; Menzies, Robert; Armstrong, David G.; Lavery, Lawrence A.
2017-01-01
Objective: People with diabetic peripheral neuropathy (DPN) often exhibit deteriorations in motor-performance mainly due to lack of plantar-sensation. The study explored effectiveness of plantar electrical-stimulation therapy to enhance motor-performance among people with DPN. Design and methods: Using a double-blinded model, 28 volunteers with DPN (age: 57.8 ± 10.2 years) were recruited and randomized to either intervention (IG: n = 17) or control (CG: n = 11) group. Both groups received identical plantar-stimulation devices for six weeks of daily use at home; however, only the IG devices were set to deliver stimulation. Balance (ankle, hip, and center of mass [COM] sway) and gait (stride velocity [SV], stride time [ST], stride length [SL], and cadence) were measured using validated wearable sensors. Outcomes were assessed at baseline and at six-week. Clinical assessment including vascular as measured by ankle-brachial-index (ABI) and plantar-sensation as quantified by vibratory plantar threshold (VPT) were also measured at baseline and six weeks. Results: No difference were observed between groups for baseline characteristics (P > .050). Posttherapy, ankle and COM sway with eyes open were significantly improved (P < .05, Cohen’s effect size d = 0.67-0.76) in the IG with no noticeable changes in CG. All gait parameters were significantly improved in the IG with highest effect size observed for cadence (d = 1.35, P = .000). Results revealed improvement in VPT (P = .004, d = 1.15) with significant correlation with stride velocity improvement (r = .56, P = .037). ABI was improved in the IG in particulate among those with ABI>1.20 (P = .041, d = 0.99) Conclusion: This study suggests that daily home use of plantar electrical-stimulation may be a practical means to enhance motor-performance and plantar-sensation in people with DPN. PMID:28627217
Control of Walking Speed in Children With Cerebral Palsy.
Davids, Jon R; Cung, Nina Q; Chen, Suzy; Sison-Williamson, Mitell; Bagley, Anita M
2017-03-21
Children's ability to control the speed of gait is important for a wide range of activities. It is thought that the ability to increase the speed of gait for children with cerebral palsy (CP) is common. This study considered 3 hypotheses: (1) most ambulatory children with CP can increase gait speed, (2) the characteristics of free (self-selected) and fast walking are related to motor impairment level, and (3) the strategies used to increase gait speed are distinct among these levels. A retrospective review of time-distance parameters (TDPs) for 212 subjects with CP and 34 typically developing subjects walking at free and fast speeds was performed. Only children who could increase their gait speed above the minimal clinically important difference were defined as having a fast walk. Analysis of variance was used to compare TDPs of children with CP, among Gross Motor Function Classification System (GMFCS) levels, and children in typically developing group. Eight-five percent of the CP group (GMFCS I, II, III; 96%, 99%, and 34%, respectively) could increase gait speed on demand. At free speed, children at GMFCS I and II were significantly faster than children at GMFCS level III. At free speed, children at GMFCS I and II had significantly greater stride length than those at GMFCS levels III. At free speed, children at GMFCS level III had significantly lower cadence than those at GMFCS I and II. There were no significant differences in cadence among GMFCS levels at fast speeds. There were no significant differences among GMFCS levels for percent change in any TDP between free and fast walking. Almost all children with CP at GMFCS levels I and II can control the speed of gait, however, only one-third at GMFCS III level have this ability. This study suggests that children at GMFCS III level can be divided into 2 groups based on their ability to control gait speed; however, the prognostic significance of such categorization remains to be determined. Diagnostic level II.
Kumar, Deepak; McDermott, Kelly; Feng, Haojun; Goldman, Veronica; Luke, Anthony; Souza, Richard B; Hecht, Frederick M
2015-01-01
Objective To investigate the changes in running biomechanics after training in Form-Focused running using ChiRunning vs. Not-Form focused training and Self-Directed training in untrained individuals. Design Pilot study - Randomized controlled trial. Setting Research Institution with Tertiary Care Medical Center. Participants Seventeen subjects (9 males, 8 females) with pre-hypertension. Methods Twenty-two participants were randomized to three study arms but 17 completed the study. The study arms were: 1) group-based Form-Focused running using ChiRunning (enrolled, n =10; completed, n=7); 2) group-based conventional running (enrolled, n=6; completed, n=4); 3) self-directed training with educational materials (enrolled, n =6; completed, n=6). The training schedule was prescribed for 8 weeks with 4 weeks of follow-up. All subjects completed overground running motion analyses before and after training. Outcomes Ankle, knee, hip joint peak moments and powers; Average vertical loading rate (AVLR), impact peak, cadence, stride length, strike index, and stride reach. Paired T-tests were used to compare differences with-in groups over-time. Results Form-Focused group reduced their Stride Reach (P = .047) after the training but not the other groups. Form-Focused group showed a close to significant reduction in knee adduction moment (P = .051) and a reduction in the peak ankle eversion moment (P = .027). Self-Directed group showed an increase in the running speed, (P =.056) and increases in ankle and knee joint powers and moments. Conclusions There are differences in the changes in running biomechanics between individuals trained in running form that emphazies mid-foot strike, higher cadence, and shorter stride compared to those not trained in the thise technique. These differences may be associated with reduced lower extremity stress in individuals trained in this running form but future studies are needed to confirm these findings in larger samples. PMID:25633634
Gastrocnemius tightness on joint angle and work of lower extremity during gait.
You, Jia-Yuan; Lee, Hsin-Min; Luo, Hong-Ji; Leu, Chwan-Chin; Cheng, Pen-Gang; Wu, Shyi-Kuen
2009-11-01
Muscular tightness is a common clinical musculoskeletal disorder and is regarded as a predisposing factor for muscle injuries. In this study, a two-way mixed design ANOVA was applied to investigate the effects of the gastrocnemius tightness on the joint angle and joint work during walking. Twenty-two patients with muscular tightness of gastrocnemius muscle (<12 degrees of ankle dorsiflexion with knee extended) and 22 age- and gender-matched subjects with normal gastrocnemius flexibility (>15 degrees of ankle dorsiflexion with knee extended) participated in this study. The joint angle and work at hip, knee, and ankle joints during the stance phase were analyzed at two preset cadences of 100 steps/min and 140 steps/min. Significantly greater flexion angles at hip (P=0.025) and knee (P=0.001) were found in the tightness group at the time of maximal ankle dorsiflexion. Significantly less work generation at knee (P=0.034) and greater work absorption at ankle (P=0.024) were detected in the tightness group. The subjects with gastrocnemius tightness revealed a compensatory gait pattern, which included the changes in the joint angles and associated work productions. The potential disturbance of the knee control and strain injuries of plantar flexors might be crucial in the clinical considerations for subjects with gastrocnemius tightness.
Hyodo, Masaki; Saito, Mayumi; Ushiba, Junichi; Tomita, Yutaka; Minami, Mihoko; Masakado, Yoshihisa
2012-07-01
Compensatory steps are essential for preventing falls following perturbations. This study aimed to explore age-related changes in compensatory steps to unilateral perturbations, specifically in terms of whether anticipatory postural adjustments (APAs) play a role in stabilizing lateral balance. Five young and five elderly male adults participated. The split-belt treadmill was used to provide bi- and unilateral perturbations, as forward or backward transitions, applied 10 times in random order. Backward steps evoked by unilateral forward perturbations were evaluated. We measured temporal characteristics, mediolateral (ML) center of mass (COM) motion, and ML step length of compensatory steps. Compensatory steps to unexpected perturbations showed delayed onset of foot-off (FO) and expanded lateral swing length in elderly compared to young subjects. Differences in COM motions and step width arose related to APAs. Elderly subjects showing APAs exhibited no significant differences in ML COM, ML COM velocity, or ML swing length compared to young subjects. However, elderly subjects without APAs showed significant changes toward instability in these parameters. The fact that APAs play a notable role, particularly in the elderly, in stability offers a new insight into preventing falls. However, APAs occurred in 29% of the steps of young and 35% of the steps of elderly subjects. If the occurrence of APAs in elderly people in response to compensatory steps was more frequent, fall risk would be reduced. Further studies, particularly into APA frequency, might contribute to improved intervention to prevent falls. Copyright © 2012 Elsevier B.V. All rights reserved.
Rapid Cadence Collections with the Space Surveillance Telescope
NASA Astrophysics Data System (ADS)
Monet, David G.; Axelrod, T.; Blake, T.; Claver, C. F.; Lupton, R.; Pearce, E.; Shah, R.; Woods, D.
2013-01-01
The Defense Advanced Research Projects Agency (DARPA) has constructed the 3.5-m Space Surveillance Telescope (SST) on North Oscura Peak in the White Sands Missle Range in New Mexico. The primary goal of the SST program is the monitoring of the Earth's geosynchronous belt for microsatellites and debris. DARPA has announced that SST may also provide the science community a unique asset for astronomical surveys. This paper presents preliminary results from rapid cadence science collections (1.0-sec exposures every 2.5-sec) of a 9.5 square degree area centered near the open cluster M67. The goal of this survey is to find and study astronomical objects whose brightness varies over these short time scales.
Select injury-related variables are affected by stride length and foot strike style during running.
Boyer, Elizabeth R; Derrick, Timothy R
2015-09-01
Some frontal plane and transverse plane variables have been associated with running injury, but it is not known if they differ with foot strike style or as stride length is shortened. To identify if step width, iliotibial band strain and strain rate, positive and negative free moment, pelvic drop, hip adduction, knee internal rotation, and rearfoot eversion differ between habitual rearfoot and habitual mid-/forefoot strikers when running with both a rearfoot strike (RFS) and a mid-/forefoot strike (FFS) at 3 stride lengths. Controlled laboratory study. A total of 42 healthy runners (21 habitual rearfoot, 21 habitual mid-/forefoot) ran overground at 3.35 m/s with both a RFS and a FFS at their preferred stride lengths and 5% and 10% shorter. Variables did not differ between habitual groups. Step width was 1.5 cm narrower for FFS, widening to 0.8 cm as stride length shortened. Iliotibial band strain and strain rate did not differ between foot strikes but decreased as stride length shortened (0.3% and 1.8%/s, respectively). Pelvic drop was reduced 0.7° for FFS compared with RFS, and both pelvic drop and hip adduction decreased as stride length shortened (0.8° and 1.5°, respectively). Peak knee internal rotation was not affected by foot strike or stride length. Peak rearfoot eversion was not different between foot strikes but decreased 0.6° as stride length shortened. Peak positive free moment (normalized to body weight [BW] and height [h]) was not affected by foot strike or stride length. Peak negative free moment was -0.0038 BW·m/h greater for FFS and decreased -0.0004 BW·m/h as stride length shortened. The small decreases in most variables as stride length shortened were likely associated with the concomitant wider step width. RFS had slightly greater pelvic drop, while FFS had slightly narrower step width and greater negative free moment. Shortening one's stride length may decrease or at least not increase propensity for running injuries based on the variables that we measured. One foot strike style does not appear universally better than the other; rather, different foot strike styles may predispose runners to different types of injuries. © 2015 The Author(s).
Moreira, Bruno de Souza; Dos Anjos, Daniela Maria da Cruz; Pereira, Daniele Sirineu; Sampaio, Rosana Ferreira; Pereira, Leani Souza Máximo; Dias, Rosângela Corrêa; Kirkwood, Renata Noce
2016-03-03
Fear of falling is a common and potentially disabling problem among older adults. However, little is known about this condition in older adults with diabetes mellitus. The aims of this study were to investigate the impact of the fear of falling on clinical, functional and gait variables in older women with type 2 diabetes and to identify which variables could predict the fear of falling in this population. Ninety-nine community-dwelling older women with type 2 diabetes (aged 65 to 89 years) were stratified in two groups based on their Falls Efficacy Scale-International score. Participants with a score < 23 were assigned to the group without the fear of falling (n = 50) and those with a score ≥ 23 were assigned to the group with the fear of falling (n = 49). Clinical data included demographics, anthropometrics, number of diseases and medications, physical activity level, fall history, frailty level, cognition, depressive symptoms, fasting glucose level and disease duration. Functional measures included the Timed Up and Go test (TUG), the five times sit-to-stand test (5-STS) and handgrip strength. Gait parameters were obtained using the GAITRite® system. Participants with a fear of falling were frailer and presented more depressive symptoms and worse performance on the TUG and 5-STS tests compared with those without a fear of falling. The group with the fear of falling also walked with a lower velocity, cadence and step length and increased step time and swing time variability. The multivariate regression analysis showed that the likelihood of having a fear of falling increased 1.34 times (OR 1.34, 95 % CI 1.11-1.61) for a one-point increase in the Geriatric Depression Scale (GDS-15) score and 1.36 times (OR 1.36, 95 % CI 1.07-1.73) for each second of increase in the TUG performance. The fear of falling in community-dwelling older women with type 2 diabetes mellitus is associated with frailty, depressive symptoms and dynamic balance, functional mobility and gait deficits. Furthermore, both the GDS-15 and the TUG test predict a fear of falling in this population. Therefore, these instruments should be considered during the assessment of diabetic older women with fear of falling.
A New Family of Solvable Pearson-Dirichlet Random Walks
NASA Astrophysics Data System (ADS)
Le Caër, Gérard
2011-07-01
An n-step Pearson-Gamma random walk in ℝ d starts at the origin and consists of n independent steps with gamma distributed lengths and uniform orientations. The gamma distribution of each step length has a shape parameter q>0. Constrained random walks of n steps in ℝ d are obtained from the latter walks by imposing that the sum of the step lengths is equal to a fixed value. Simple closed-form expressions were obtained in particular for the distribution of the endpoint of such constrained walks for any d≥ d 0 and any n≥2 when q is either q = d/2 - 1 ( d 0=3) or q= d-1 ( d 0=2) (Le Caër in J. Stat. Phys. 140:728-751, 2010). When the total walk length is chosen, without loss of generality, to be equal to 1, then the constrained step lengths have a Dirichlet distribution whose parameters are all equal to q and the associated walk is thus named a Pearson-Dirichlet random walk. The density of the endpoint position of a n-step planar walk of this type ( n≥2), with q= d=2, was shown recently to be a weighted mixture of 1+ floor( n/2) endpoint densities of planar Pearson-Dirichlet walks with q=1 (Beghin and Orsingher in Stochastics 82:201-229, 2010). The previous result is generalized to any walk space dimension and any number of steps n≥2 when the parameter of the Pearson-Dirichlet random walk is q= d>1. We rely on the connection between an unconstrained random walk and a constrained one, which have both the same n and the same q= d, to obtain a closed-form expression of the endpoint density. The latter is a weighted mixture of 1+ floor( n/2) densities with simple forms, equivalently expressed as a product of a power and a Gauss hypergeometric function. The weights are products of factors which depends both on d and n and Bessel numbers independent of d.
Venter, Jan A; Prins, Herbert H T; Mashanova, Alla; Slotow, Rob
2017-01-01
Finding suitable forage patches in a heterogeneous landscape, where patches change dynamically both spatially and temporally could be challenging to large herbivores, especially if they have no a priori knowledge of the location of the patches. We tested whether three large grazing herbivores with a variety of different traits improve their efficiency when foraging at a heterogeneous habitat patch scale by using visual cues to gain a priori knowledge about potential higher value foraging patches. For each species (zebra ( Equus burchelli ), red hartebeest ( Alcelaphus buselaphus subspecies camaa ) and eland ( Tragelaphus oryx )), we used step lengths and directionality of movement to infer whether they were using visual cues to find suitable forage patches at a habitat patch scale. Step lengths were significantly longer for all species when moving to non-visible patches than to visible patches, but all movements showed little directionality. Of the three species, zebra movements were the most directional. Red hartebeest had the shortest step lengths and zebra the longest. We conclude that these large grazing herbivores may not exclusively use visual cues when foraging at a habitat patch scale, but would rather adapt their movement behaviour, mainly step length, to the heterogeneity of the specific landscape.
Fransen, Erik; Perkisas, Stany; Verhoeven, Veronique; Beauchet, Olivier; Remmen, Roy
2017-01-01
Background Gait characteristics measured at usual pace may allow profiling in patients with cognitive problems. The influence of age, gender, leg length, modified speed or dual tasking is unclear. Methods Cross-sectional analysis was performed on a data registry containing demographic, physical and spatial-temporal gait parameters recorded in five walking conditions with a GAITRite® electronic carpet in community-dwelling older persons with memory complaints. Four cognitive stages were studied: cognitively healthy individuals, mild cognitive impaired patients, mild dementia patients and advanced dementia patients. Results The association between spatial-temporal gait characteristics and cognitive stages was the most prominent: in the entire study population using gait speed, steps per meter (translation for mean step length), swing time variability, normalised gait speed (corrected for leg length) and normalised steps per meter at all five walking conditions; in the 50-to-70 years old participants applying step width at fast pace and steps per meter at usual pace; in the 70-to-80 years old persons using gait speed and normalised gait speed at usual pace, fast pace, animal walk and counting walk or steps per meter and normalised steps per meter at all five walking conditions; in over-80 years old participants using gait speed, normalised gait speed, steps per meter and normalised steps per meter at fast pace and animal dual-task walking. Multivariable logistic regression analysis adjusted for gender predicted in two compiled models the presence of dementia or cognitive impairment with acceptable accuracy in persons with memory complaints. Conclusion Gait parameters in multiple walking conditions adjusted for age, gender and leg length showed a significant association with cognitive impairment. This study suggested that multifactorial gait analysis could be more informative than using gait analysis with only one test or one variable. Using this type of gait analysis in clinical practice could facilitate screening for cognitive impairment. PMID:28570662
NASA Astrophysics Data System (ADS)
Perera, B. B. P.; Stappers, B. W.; Babak, S.; Keith, M. J.; Antoniadis, J.; Bassa, C. G.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Graikou, E.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lentati, L.; Liu, K.; Lyne, A. G.; McKee, J. W.; Osłowski, S.; Perrodin, D.; Sanidas, S. A.; Sesana, A.; Shaifullah, G.; Theureau, G.; Verbiest, J. P. W.; Taylor, S. R.
2018-07-01
We search for continuous gravitational waves (CGWs) produced by individual supermassive black hole binaries in circular orbits using high-cadence timing observations of PSR J1713+0747. We observe this millisecond pulsar using the telescopes in the European Pulsar Timing Array with an average cadence of approximately 1.6 d over the period between 2011 April and 2015 July, including an approximately daily average between 2013 February and 2014 April. The high-cadence observations are used to improve the pulsar timing sensitivity across the gravitational wave frequency range of 0.008-5μHz. We use two algorithms in the analysis, including a spectral fitting method and a Bayesian approach. For an independent comparison, we also use a previously published Bayesian algorithm. We find that the Bayesian approaches provide optimal results and the timing observations of the pulsar place a 95 per cent upper limit on the sky-averaged strain amplitude of CGWs to be ≲3.5 × 10-13 at a reference frequency of 1 μHz. We also find a 95 per cent upper limit on the sky-averaged strain amplitude of low-frequency CGWs to be ≲1.4 × 10-14 at a reference frequency of 20 nHz.
Asteroids in the High Cadence Transient Survey
NASA Astrophysics Data System (ADS)
Peña, J.; Fuentes, C.; Förster, F.; Maureira, J. C.; San Martín, J.; Littín, J.; Huijse, P.; Cabrera-Vives, G.; Estévez, P. A.; Galbany, L.; González-Gaitán, S.; Martínez, J.; de Jaeger, Th.; Hamuy, M.
2018-03-01
We report on the serendipitous observations of solar system objects imaged during the High cadence Transient Survey 2014 observation campaign. Data from this high-cadence wide-field survey was originally analyzed for finding variable static sources using machine learning to select the most-likely candidates. In this work, we search for moving transients consistent with solar system objects and derive their orbital parameters. We use a simple, custom motion detection algorithm to link trajectories and assume Keplerian motion to derive the asteroid’s orbital parameters. We use known asteroids from the Minor Planet Center database to assess the detection efficiency of the survey and our search algorithm. Trajectories have an average of nine detections spread over two days, and our fit yields typical errors of {σ }a∼ 0.07 {au}, σ e ∼ 0.07 and σ i ∼ 0.°5 in semimajor axis, eccentricity, and inclination, respectively, for known asteroids in our sample. We extract 7700 orbits from our trajectories, identifying 19 near-Earth objects, 6687 asteroids, 14 Centaurs, and 15 trans-Neptunian objects. This highlights the complementarity of supernova wide-field surveys for solar system research and the significance of machine learning to clean data of false detections. It is a good example of the data-driven science that Large Synoptic Survey Telescope will deliver.
Measures for assessing architectural speech security (privacy) of closed offices and meeting rooms.
Gover, Bradford N; Bradley, John S
2004-12-01
Objective measures were investigated as predictors of the speech security of closed offices and rooms. A new signal-to-noise type measure is shown to be a superior indicator for security than existing measures such as the Articulation Index, the Speech Intelligibility Index, the ratio of the loudness of speech to that of noise, and the A-weighted level difference of speech and noise. This new measure is a weighted sum of clipped one-third-octave-band signal-to-noise ratios; various weightings and clipping levels are explored. Listening tests had 19 subjects rate the audibility and intelligibility of 500 English sentences, filtered to simulate transmission through various wall constructions, and presented along with background noise. The results of the tests indicate that the new measure is highly correlated with sentence intelligibility scores and also with three security thresholds: the threshold of intelligibility (below which speech is unintelligible), the threshold of cadence (below which the cadence of speech is inaudible), and the threshold of audibility (below which speech is inaudible). The ratio of the loudness of speech to that of noise, and simple A-weighted level differences are both shown to be well correlated with these latter two thresholds (cadence and audibility), but not well correlated with intelligibility.
SUDDEN PHOTOSPHERIC MOTION AND SUNSPOT ROTATION ASSOCIATED WITH THE X2.2 FLARE ON 2011 FEBRUARY 15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shuo; Liu, Chang; Deng, Na
2014-02-20
The Helioseismic and Magnetic Imager provides 45 s cadence intensity images and 720 s cadence vector magnetograms. These unprecedented high-cadence and high-resolution data give us a unique opportunity to study the change of photospheric flows and sunspot rotations associated with flares. By using the differential affine velocity estimator method and the Fourier local correlation tracking method separately, we calculate velocity and vorticity of photospheric flows in the flaring NOAA AR 11158, and investigate their temporal evolution around the X2.2 flare on 2011 February 15. It is found that the shear flow around the flaring magnetic polarity inversion line exhibits a sudden decrease,more » and both of the two main sunspots undergo a sudden change in rotational motion during the impulsive phase of the flare. These results are discussed in the context of the Lorentz-force change that was proposed by Hudson et al. and Fisher et al. This mechanism can explain the connections between the rapid and irreversible photospheric vector magnetic field change and the observed short-term motions associated with the flare. In particular, the torque provided by the horizontal Lorentz force change agrees with what is required for the measured angular acceleration.« less
NASA Astrophysics Data System (ADS)
Perera, B. B. P.; Stappers, B. W.; Babak, S.; Keith, M. J.; Antoniadis, J.; Bassa, C. G.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Graikou, E.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lentati, L.; Liu, K.; Lyne, A. G.; McKee, J. W.; Osłowski, S.; Perrodin, D.; Sanidas, S. A.; Sesana, A.; Shaifullah, G.; Theureau, G.; Verbiest, J. P. W.; Taylor, S. R.
2018-05-01
We search for continuous gravitational waves (CGWs) produced by individual super-massive black-hole binaries (SMBHBs) in circular orbits using high-cadence timing observations of PSR J1713+0747. We observe this millisecond pulsar using the telescopes in the European Pulsar Timing Array (EPTA) with an average cadence of approximately 1.6 days over the period between April 2011 and July 2015, including an approximately daily average between February 2013 and April 2014. The high-cadence observations are used to improve the pulsar timing sensitivity across the GW frequency range of 0.008 - 5 μHz. We use two algorithms in the analysis, including a spectral fitting method and a Bayesian approach. For an independent comparison, we also use a previously published Bayesian algorithm. We find that the Bayesian approaches provide optimal results and the timing observations of the pulsar place a 95 per cent upper limit on the sky-averaged strain amplitude of CGWs to be ≲ 3.5 × 10-13 at a reference frequency of 1 μHz. We also find a 95 per cent upper limit on the sky-averaged strain amplitude of low-frequency CGWs to be ≲ 1.4 × 10-14 at a reference frequency of 20 nHz.
Sensorimotor and Cognitive Predictors of Impaired Gait Adaptability in Older People.
Caetano, Maria Joana D; Menant, Jasmine C; Schoene, Daniel; Pelicioni, Paulo H S; Sturnieks, Daina L; Lord, Stephen R
2017-09-01
The ability to adapt gait when negotiating unexpected hazards is crucial to maintain stability and avoid falling. This study investigated whether impaired gait adaptability in a task including obstacle and stepping targets is associated with cognitive and sensorimotor capacities in older adults. Fifty healthy older adults (74±7 years) were instructed to either (a) avoid an obstacle at usual step distance or (b) step onto a target at either a short or long step distance projected on a walkway two heel strikes ahead and then continue walking. Participants also completed cognitive and sensorimotor function assessments. Stroop test and reaction time performance significantly discriminated between participants who did and did not make stepping errors, and poorer Trail-Making test performance predicted shorter penultimate step length in the obstacle avoidance condition. Slower reaction time predicted poorer stepping accuracy; increased postural sway, weaker quadriceps strength, and poorer Stroop and Trail-Making test performances predicted increased number of steps taken to approach the target/obstacle and shorter step length; and increased postural sway and higher concern about falling predicted slower step velocity. Superior executive function, fast processing speed, and good muscle strength and balance were all associated with successful gait adaptability. Processing speed appears particularly important for precise foot placements; cognitive capacity for step length adjustments; and early and/or additional cognitive processing involving the inhibition of a stepping pattern for obstacle avoidance. This information may facilitate fall risk assessments and fall prevention strategies. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A theory of growing crystalline nanorods - Mode I
NASA Astrophysics Data System (ADS)
Du, Feng; Huang, Hanchen
2018-08-01
Nanorods grow in two possible modes during physical vapor deposition (PVD). In mode I, monolayer surface steps dictate the diameter of nanorods. In mode II, multiple-layer surface steps dictate the diameter, which is the smallest possible under physical vapor deposition [5,10]. This paper reports closed-form theories of terrace lengths and nanorod diameter during the growth in mode I, as a function of deposition conditions. The accompanying lattice kinetic Monte Carlo simulations verify these theories. This study reveals that (1) quasi-steady growth exists for each set of nanorod growth conditions, and (2) the characteristic length scales, including terrace lengths and nanorod diameter at the quasi-steady state, depend on the deposition conditions - deposition rate F, substrate temperature T, and incidence angle θ - only as a function of l2D/tan θ, with l2 D = 2(v2 D/Fcosθ) 1/3 as a diffusion-limited length scale and v2D as the atomic diffusion jump rate over monolayer surface steps.
Treadmill vs. overground walking: different response to physical interaction.
Ochoa, Julieth; Sternad, Dagmar; Hogan, Neville
2017-10-01
Rehabilitation of human motor function is an issue of growing significance, and human-interactive robots offer promising potential to meet the need. For the lower extremity, however, robot-aided therapy has proven challenging. To inform effective approaches to robotic gait therapy, it is important to better understand unimpaired locomotor control: its sensitivity to different mechanical contexts and its response to perturbations. The present study evaluated the behavior of 14 healthy subjects who walked on a motorized treadmill and overground while wearing an exoskeletal ankle robot. Their response to a periodic series of ankle plantar flexion torque pulses, delivered at periods different from, but sufficiently close to, their preferred stride cadence, was assessed to determine whether gait entrainment occurred, how it differed across conditions, and if the adapted motor behavior persisted after perturbation. Certain aspects of locomotor control were exquisitely sensitive to walking context, while others were not. Gaits entrained more often and more rapidly during overground walking, yet, in all cases, entrained gaits synchronized the torque pulses with ankle push-off, where they provided assistance with propulsion. Furthermore, subjects entrained to perturbation periods that required an adaption toward slower cadence, even though the pulses acted to accelerate gait, indicating a neural adaptation of locomotor control. Lastly, during 15 post-perturbation strides, the entrained gait period was observed to persist more frequently during overground walking. This persistence was correlated with the number of strides walked at the entrained gait period (i.e., longer exposure), which also indicated a neural adaptation. NEW & NOTEWORTHY We show that the response of human locomotion to physical interaction differs between treadmill and overground walking. Subjects entrained to a periodic series of ankle plantar flexion torque pulses that shifted their gait cadence, synchronizing ankle push-off with the pulses (so that they assisted propulsion) even when gait cadence slowed. Entrainment was faster overground and, on removal of torque pulses, the entrained gait period persisted more prominently overground, indicating a neural adaptation of locomotor control. Copyright © 2017 the American Physiological Society.
Emotional influences on locomotor behavior.
Naugle, Kelly M; Joyner, Jessica; Hass, Chris J; Janelle, Christopher M
2010-12-01
Emotional responses to appetitive and aversive stimuli motivate approach and avoidance behaviors essential for survival. The purpose of the current study was to determine the impact of specific emotional stimuli on forward, approach-oriented locomotion. Steady state walking was assessed while participants walked toward pictures varying in emotional content (erotic, happy people, attack, mutilation, contamination, and neutral). Step length and step velocity were calculated for the first two steps following picture onset. Exposure to the mutilation and contamination pictures shortened the lengths of step one and step two compared to the erotic pictures. Additionally, step velocity was greater during exposure to the erotic pictures compared to (1) the contamination and mutilation pictures for step one and (2) all other picture categories for step two. These findings suggest that locomotion is facilitated when walking toward approach-oriented emotional stimuli but compromised when walking toward aversive emotional stimuli. The data extend our understanding of fundamental interactions among motivational orientations, emotional reactions, and resultant actions. Theoretical and practical implications are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
High S/N Ratio Slotted Step Piezoresistive Microcantilever Designs for Biosensors
Ansari, Mohd Zahid; Cho, Chongdu
2013-01-01
This study proposes new microcantilever designs in slotted step configuration to improve the S/N ratio of surface stress-based sensors used in physical, chemical, biochemical and biosensor applications. The cantilevers are made of silicon dioxide with a u-shaped silicon piezoresistor in p-doped. The cantilever step length and piezoresistor length is varied along with the operating voltage to characterise the surface stress sensitivity and thermal drifting sensitivity of the cantilevers when used as immunosensor. The numerical analysis is performed using ANSYS Multiphysics. Results show the surface stress sensitivity and the S/N ratio of the slotted step cantilevers is improved by more than 32% and 22%, respectively, over its monolithic counterparts. PMID:23535637
High S/N ratio slotted step piezoresistive microcantilever designs for biosensors.
Ansari, Mohd Zahid; Cho, Chongdu
2013-03-26
This study proposes new microcantilever designs in slotted step configuration to improve the S/N ratio of surface stress-based sensors used in physical, chemical, biochemical and biosensor applications. The cantilevers are made of silicon dioxide with a u-shaped silicon piezoresistor in p-doped. The cantilever step length and piezoresistor length is varied along with the operating voltage to characterise the surface stress sensitivity and thermal drifting sensitivity of the cantilevers when used as immunosensor. The numerical analysis is performed using ANSYS Multiphysics. Results show the surface stress sensitivity and the S/N ratio of the slotted step cantilevers is improved by more than 32% and 22%, respectively, over its monolithic counterparts.
Boxing training for patients with Parkinson disease: a case series.
Combs, Stephanie A; Diehl, M Dyer; Staples, William H; Conn, Lindsay; Davis, Kendra; Lewis, Nicole; Schaneman, Katie
2011-01-01
A nontraditional form of exercise recently applied for patients with Parkinson disease (PD) is boxing training. The primary purpose of this case series is to describe the effects of disease severity and duration of boxing training (short term and long term) on changes in balance, mobility, and quality of life for patients with mild or moderate to severe PD. The feasibility and safety of the boxing training program also were assessed. Six patients with idiopathic PD attended 24 to 36 boxing training sessions for 12 weeks, with the option of continuing the training for an additional 24 weeks (a seventh patient attended sessions for only 4 weeks). The 90-minute sessions included boxing drills and traditional stretching, strengthening, and endurance exercises. Outcomes were tested at the baseline and after 12, 24, and 36 weeks of boxing sessions (12-, 24-, and 36-week tests). The outcome measures were the Functional Reach Test, Berg Balance Scale, Activities-specific Balance Confidence Scale, Timed "Up & Go" Test, Six-Minute Walk Test, gait speed, cadence, stride length, step width, activities of daily living and motor examination subscales of the Unified Parkinson Disease Rating Scale, and Parkinson Disease Quality of Life Scale. Six patients completed all phases of the case series, showed improvements on at least 5 of the 12 outcome measures over the baseline at the 12-week test, and showed continued improvements at the 24- and 36-week tests. Patients with mild PD typically showed improvements earlier than those with moderate to severe PD. Despite the progressive nature of PD, the patients in this case series showed short-term and long-term improvements in balance, gait, activities of daily living, and quality of life after the boxing training program. A longer duration of training was necessary for patients with moderate to severe PD to show maximal training outcomes. The boxing training program was feasible and safe for these patients with PD.
Lee, Su-Hyun; Lee, Hwang-Jae; Chang, Won Hyuk; Choi, Byung-Ok; Lee, Jusuk; Kim, Jeonghun; Ryu, Gyu-Ha; Kim, Yun-Hee
2017-11-28
A robotic exoskeleton device is an intelligent system designed to improve gait performance and quality of life for the wearer. Robotic technology has developed rapidly in recent years, and several robot-assisted gait devices were developed to enhance gait function and activities of daily living in elderly adults and patients with gait disorders. In this study, we investigated the effects of the Gait-enhancing Mechatronic System (GEMS), a new wearable robotic hip-assist device developed by Samsung Electronics Co, Ltd., Korea, on gait performance and foot pressure distribution in elderly adults. Thirty elderly adults who had no neurological or musculoskeletal abnormalities affecting gait participated in this study. A three-dimensional (3D) motion capture system, surface electromyography and the F-Scan system were used to collect data on spatiotemporal gait parameters, muscle activity and foot pressure distribution under three conditions: free gait without robot assistance (FG), robot-assisted gait with zero torque (RAG-Z) and robot-assisted gait (RAG). We found increased gait speed, cadence, stride length and single support time in the RAG condition. Reduced rectus femoris and medial gastrocnemius muscle activity throughout the terminal stance phase and reduced effort of the medial gastrocnemius muscle throughout the pre-swing phase were also observed in the RAG condition. In addition, walking with the assistance of GEMS resulted in a significant increase in foot pressure distribution, specifically in maximum force and peak pressure of the total foot, medial masks, anterior masks and posterior masks. The results of the present study reveal that GEMS may present an alternative way of restoring age-related changes in gait such as gait instability with muscle weakness, reduced step force and lower foot pressure in elderly adults. In addition, GEMS improved gait performance by improving push-off power and walking speed and reducing muscle activity in the lower extremities. NCT02843828 .
Multi-Step Time Series Forecasting with an Ensemble of Varied Length Mixture Models.
Ouyang, Yicun; Yin, Hujun
2018-05-01
Many real-world problems require modeling and forecasting of time series, such as weather temperature, electricity demand, stock prices and foreign exchange (FX) rates. Often, the tasks involve predicting over a long-term period, e.g. several weeks or months. Most existing time series models are inheritably for one-step prediction, that is, predicting one time point ahead. Multi-step or long-term prediction is difficult and challenging due to the lack of information and uncertainty or error accumulation. The main existing approaches, iterative and independent, either use one-step model recursively or treat the multi-step task as an independent model. They generally perform poorly in practical applications. In this paper, as an extension of the self-organizing mixture autoregressive (AR) model, the varied length mixture (VLM) models are proposed to model and forecast time series over multi-steps. The key idea is to preserve the dependencies between the time points within the prediction horizon. Training data are segmented to various lengths corresponding to various forecasting horizons, and the VLM models are trained in a self-organizing fashion on these segments to capture these dependencies in its component AR models of various predicting horizons. The VLM models form a probabilistic mixture of these varied length models. A combination of short and long VLM models and an ensemble of them are proposed to further enhance the prediction performance. The effectiveness of the proposed methods and their marked improvements over the existing methods are demonstrated through a number of experiments on synthetic data, real-world FX rates and weather temperatures.
Single-task and dual-task tandem gait test performance after concussion.
Howell, David R; Osternig, Louis R; Chou, Li-Shan
2017-07-01
To compare single-task and dual-task tandem gait test performance between athletes after concussion with controls on observer-timed, spatio-temporal, and center-of-mass (COM) balance control measurements. Ten participants (19.0±5.5years) were prospectively identified and completed a tandem gait test protocol within 72h of concussion and again 1 week, 2 weeks, 1 month, and 2 months post-injury. Seven uninjured controls (20.0±4.5years) completed the same protocol in similar time increments. Tandem gait test trials were performed with (dual-task) and without (single-task) concurrently performing a cognitive test as whole-body motion analysis was performed. Outcome variables included test completion time, average tandem gait velocity, cadence, and whole-body COM frontal plane displacement. Concussion participants took significantly longer to complete the dual-task tandem gait test than controls throughout the first 2 weeks post-injury (mean time=16.4 [95% CI: 13.4-19.4] vs. 10.1 [95% CI: 6.4-13.7] seconds; p=0.03). Single-task tandem gait times were significantly lower 72h post-injury (p=0.04). Dual-task cadence was significantly lower for concussion participants than controls (89.5 [95% CI: 68.6-110.4] vs. 127.0 [95% CI: 97.4-156.6] steps/minute; p=0.04). Moderately-high to high correlations between tandem gait test time and whole-body COM medial-lateral displacement were detected at each time point during dual-task gait (r s =0.70-0.93; p=0.03-0.001). Adding a cognitive task during the tandem gait test resulted in longer detectable deficits post-concussion compared to the traditional single-task tandem gait test. As a clinical tool to assess dynamic motor function, tandem gait may assist with return to sport decisions after concussion. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Implementation of a Smart Phone for Motion Analysis.
Yodpijit, Nantakrit; Songwongamarit, Chalida; Tavichaiyuth, Nicha
2015-01-01
In todays information-rich environment, one of the most popular devices is a smartphone. Research has shown significant growth in the use of smartphones and apps all over the world. Accelerometer within smartphone is a motion sensor that can be used to detect human movements. Compared to other major vital signs, gait characteristics represent general health status, and can be determined using smartphones. The objective of the current study is to design and develop the alternative technology that can potentially predict health status and reduce healthcare cost. This study uses a smartphone as a wireless accelerometer for quantifying human motion characteristics from four steps of the system design and development (data acquisition operation, feature extraction algorithm, classifier design, and decision making strategy). Findings indicate that it is possible to extract features from a smartphones accelerometer using a peak detection algorithm. Gait characteristics obtain from the peak detection algorithm include stride time, stance time, swing time and cadence. Applications and limitations of this study are also discussed.
Verrel, Julius; Lövdén, Martin; Lindenberger, Ulman
2012-01-01
Stable walking depends on the coordination of multiple biomechanical degrees of freedom to ensure the dynamic maintenance of whole-body equilibrium as well as continuous forward progression. We investigated adult age-related differences in whole-body coordination underlying stabilization of center of mass (CoM) position and step pattern during locomotion. Sixteen younger (20-30 years) and 16 healthy older men (65-80 years) walked on a motorized treadmill at 80%, 100% and 120% of their self-selected preferred speed. Preferred speeds did not differ between the age groups. Motor-equivalent stabilization of step parameters (step length and width) and CoM position relative to the support (back and front foot) was examined using a generalized covariation analysis. Across age groups, covariation indices were highest for CoM position relative to the front foot, the measure most directly related to body equilibrium. Compared to younger adults, older adults showed lower covariation indices with respect to step length, extending previous findings of age-related differences in motor-equivalent coordination. In contrast, no reliable age differences were found regarding stabilization of step width or any of the CoM parameters. The observed pattern of results may reflect robust prioritization of balance over step pattern regularity, which may be adaptive in the face of age-associated sensorimotor losses and decline of coordinative capacities.
Kumar, Nitin; Conwell, Darwin L; Thompson, Christopher C
2014-11-01
Infected walled-off pancreatic necrosis (WOPN) is a complication of acute pancreatitis requiring intervention. Surgery is associated with considerable morbidity. Percutaneous catheter drainage (PCD), initial therapy in the step-up approach, minimizes complications. Direct endoscopic necrosectomy (DEN) has demonstrated safety and efficacy. We compared outcome and health care utilization of DEN versus step-up approach. This was a matched cohort study using a prospective registry. Twelve consecutive DEN patients were matched with 12 step-up approach patients. Outcomes were clinical resolution after primary therapeutic modality, new organ failure, mortality, endocrine or exocrine insufficiency, length of stay, and health care utilization. Clinical resolution in 11 of 12 patients after DEN versus 3 of 12 step-up approach patients after PCD (P < 0.01). Nine step-up approach patients required surgery; 7 of these experienced complications. Direct endoscopic necrosectomy resulted in less new antibiotic use, pulmonary failure, endocrine insufficiency, and shorter length of stay (P < 0.05). Health care utilization was lower after DEN by 5.2:1 (P < 0.01). Direct endoscopic necrosectomy may be superior to step-up approach for WOPN with suspected or established infection. Primary PCD generally delayed definitive therapy. Given the higher efficacy, shorter length of stay, and lower health care utilization, DEN could be the first-line therapy for WOPN, with primary PCD for inaccessible or immature collections.
Zijlstra, Agnes; Zijlstra, Wiebren
2013-09-01
Inverted pendulum (IP) models of human walking allow for wearable motion-sensor based estimations of spatio-temporal gait parameters during unconstrained walking in daily-life conditions. At present it is unclear to what extent different IP based estimations yield different results, and reliability and validity have not been investigated in older persons without a specific medical condition. The aim of this study was to compare reliability and validity of four different IP based estimations of mean step length in independent-living older persons. Participants were assessed twice and walked at different speeds while wearing a tri-axial accelerometer at the lower back. For all step-length estimators, test-retest intra-class correlations approached or were above 0.90. Intra-class correlations with reference step length were above 0.92 with a mean error of 0.0 cm when (1) multiplying the estimated center-of-mass displacement during a step by an individual correction factor in a simple IP model, or (2) adding an individual constant for bipedal stance displacement to the estimated displacement during single stance in a 2-phase IP model. When applying generic corrections or constants in all subjects (i.e. multiplication by 1.25, or adding 75% of foot length), correlations were above 0.75 with a mean error of respectively 2.0 and 1.2 cm. Although the results indicate that an individual adjustment of the IP models provides better estimations of mean step length, the ease of a generic adjustment can be favored when merely evaluating intra-individual differences. Further studies should determine the validity of these IP based estimations for assessing gait in daily life. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Desormeaux, A.; Lefebvre, M.
2004-11-01
Nous avons développé et caractérisé un oscillateur paramétrique optique doublement résonnant monomode longitudinal pour des applications de spectroscopie dans le domaine 3,5 - 4 μm. Cette source délivre des impulsions de 7 ns à haute cadence de répétition (10 kHz). L'énergie disponible est d'environ 0.5 μJ à 3,8 μm. La largeur spectrale est de 100 MHz accordable sur plus de 150 GHz. Une expérience d'absorption réalisée sur N{2}O illustre les potentialités de cette source.
Extracting 5m Shorelines From Multi-Temporal Images
NASA Astrophysics Data System (ADS)
Kapadia, A.; Jordahl, K. A.; Kington, J. D., IV
2016-12-01
Planet operates the largest Earth observing constellation of satellites, collecting imagery at an unprecedented temporal resolution. While daily cadence is expected in early 2017, Planet has already imaged the majority of landmass several dozen times over the past year. The current dataset provides enough value to build and test algorithms to automatically extract information. Here we demonstrate the extraction of shorelines across California using image stacks. The method implemented uses as input an uncalibrated RGB data product and limited NIR combined with the National Land Cover Database 2011 (NLCD2011) and Shuttle Radar Topography Mission (SRTM) to extract shorelines at 5 meter resolution. In the near future these methods along with daily cadence of imagery will allow for temporal monitoring of shorelines on a global scale.
Dynamics in the Chromosphere Imaged at Four Second Cadence
NASA Astrophysics Data System (ADS)
Schmit, D.; De Pontieu, B.
2017-12-01
In this work we present analysis of rapid intensity fluctuations that are observed in the chromosphere and transition region using the slit-jaw datasets of IRIS and CLASP. While chromospheric oscillations have been a topic of interest for 30 years, the instrumentation to image those dynamics at high-cadence has only recently been developed. We use filtergraph data from 1215A, 2800A, and 1400A to examine the occurrence rate and morphology of rapid intensity fluctuations in different magnetic environments. There are indications of rapidly propagating disturbances with phase speeds greater than 100 km/s in all passbands although the morphology of the features differs significantly between passbands. The relationship between intensity fluctuations, spicules, and waves is discussed.
Meteorology and the physical activity of the elderly: the Nakanojo Study
NASA Astrophysics Data System (ADS)
Togo, Fumiharu; Watanabe, Eiji; Park, Hyuntae; Shephard, Roy J.; Aoyagi, Yukitoshi
2005-11-01
Seasonal changes in ambient temperature and day length are thought to modify habitual physical activity. However, relationships between such environmental factors and the daily physical activity of older populations remain unclear. The present study thus examined associations between meteorological variables and the number of steps taken per day by elderly Japanese. Continuous pedometer counts over a 450-day period were collected from 41 healthy subjects (age 71±4 years), none of whom engaged in any specific occupational activity or exercise programs. An electronic physical activity monitor was attached to a belt worn on the left side of the body throughout the day. Daily values for mean ambient temperature, duration of bright sunshine, mean wind speed, mean relative humidity, and precipitation were obtained from local meteorological stations. The day length was calculated from times of sunrise and sunset. Based on the entire group of 41 subjects (ensemble average), a subject’s step count per day decreased exponentially with increasing precipitation (r2=0.19, P<0.05). On days when precipitation was <1 mm, the step count increased with the mean ambient temperature over the range of 2 to 17°C, but decreased over the range 17 29°C. The daily step count also tended to increase with day length, but the regression coefficient of determination attributable to step count and mean ambient temperature (r2=0.32, P<0.05) exceeded that linking the step count and day length (r2=0.13, P<0.05). The influence of other meteorological factors was small (r2≤0.03) and of little practical significance. On days when precipitation is <1 mm, physical activity is associated more strongly with ambient temperature than with day length, duration of bright sunshine, wind speed, or relative humidity. Our findings have practical implications for health promotion efforts designed to increase the physical activity of elderly people consistently in the face of seasonal variations in environmental conditions.
Optimizing the Performance of X-Ray Optics for MaGIXS
NASA Astrophysics Data System (ADS)
Yadlapalli, N.; Hertz, E.; Cheimets, P.
2017-12-01
The Marshall Grazing Incidence X-Ray Spectrometer (MaGIXS) is an X-ray imaging spectrometer that will observe the solar corona in the soft X-ray regime with both spatial and spectral resolution. The science goal of MaGIXS is to better understand the problem of coronal heating by measuring the temperature distribution, composition, and temporal variability of hot plasmas (>4 MK) in active regions. In order to do this, the instrument will observe the corona with a fast cadence ( 5 seconds) in wavelengths between 6-24 A with a 6" spatial resolution and a 0.1 A spectral resolution. To ensure that this instrument can achieve such a resolution, it is crucial to have exact measurements of the focal lengths of the mirrors. The mirrors will be aligned and mounted using the Centroid Detector Assembly (CDA) (a steerable laser originally developed for aligning the AXAF mirrors), a CMM Romer arm, and Hartmann aperture masks to perform the focal length measurements. We have designed metrology supports that elevate the aperture mask and mirror up to the height of the optical axis defined by the CDA of the laser, allows the aperture mask 3 translational degrees of freedom, and the allows the mirror 3 translational and 3 rotational degrees of freedom needed for alignment. The measured and verified focal lengths will then be used to carry out the alignment of the mirrors as the MaGIXS instrument is assembled for launch. MaGIXS is supported by NASA's Marshall Space Flight Center, contract number NNM15AA15C. This work is additionally supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313.
Asymmetry in Determinants of Running Speed During Curved Sprinting.
Ishimura, Kazuhiro; Sakurai, Shinji
2016-08-01
This study investigates the potential asymmetries between inside and outside legs in determinants of curved running speed. To test these asymmetries, a deterministic model of curved running speed was constructed based on components of step length and frequency, including the distances and times of different step phases, takeoff speed and angle, velocities in different directions, and relative height of the runner's center of gravity. Eighteen athletes sprinted 60 m on the curved path of a 400-m track; trials were recorded using a motion-capture system. The variables were calculated following the deterministic model. The average speeds were identical between the 2 sides; however, the step length and frequency were asymmetric. In straight sprinting, there is a trade-off relationship between the step length and frequency; however, such a trade-off relationship was not observed in each step of curved sprinting in this study. Asymmetric vertical velocity at takeoff resulted in an asymmetric flight distance and time. The runners changed the running direction significantly during the outside foot stance because of the asymmetric centripetal force. Moreover, the outside leg had a larger tangential force and shorter stance time. These asymmetries between legs indicated the outside leg plays an important role in curved sprinting.
Manikandan, A.; Biplab, Sarkar; David, Perianayagam A.; Holla, R.; Vivek, T. R.; Sujatha, N.
2011-01-01
For high dose rate (HDR) brachytherapy, independent treatment verification is needed to ensure that the treatment is performed as per prescription. This study demonstrates dosimetric quality assurance of the HDR brachytherapy using a commercially available two-dimensional ion chamber array called IMatriXX, which has a detector separation of 0.7619 cm. The reference isodose length, step size, and source dwell positional accuracy were verified. A total of 24 dwell positions, which were verified for positional accuracy gave a total error (systematic and random) of –0.45 mm, with a standard deviation of 1.01 mm and maximum error of 1.8 mm. Using a step size of 5 mm, reference isodose length (the length of 100% isodose line) was verified for single and multiple catheters of same and different source loadings. An error ≤1 mm was measured in 57% of tests analyzed. Step size verification for 2, 3, 4, and 5 cm was performed and 70% of the step size errors were below 1 mm, with maximum of 1.2 mm. The step size ≤1 cm could not be verified by the IMatriXX as it could not resolve the peaks in dose profile. PMID:21897562
Pylorus preserving loop duodeno-enterostomy with sleeve gastrectomy - preliminary results
2014-01-01
Background Bariatric operations mostly combine a restrictive gastric component with a rerouting of the intestinal passage. The pylorus can thereby be alternatively preserved or excluded. With the aim of performing a “pylorus-preserving gastric bypass”, we present early results of a proximal postpyloric loop duodeno-jejunostomy associated with a sleeve gastrectomy (LSG) compared to results of a parallel, but distal LSG with a loop duodeno-ileostomy as a two-step procedure. Methods 16 patients underwent either a two-step LSG with a distal loop duodeno-ileostomy (DIOS) as revisional bariatric surgery or a combined single step operation with a proximal duodeno-jejunostomy (DJOS). Total small intestinal length was determined to account for inter-individual differences. Results Mean operative time for the second-step of the DIOS operation was 121 min and 147 min for the combined DJOS operation. The overall intestinal length was 750.8 cm (range 600-900 cm) with a bypassed limb length of 235.7 cm in DJOS patients. The mean length of the common channel in DIOS patients measured 245.6 cm. Overall excess weight loss (%EWL) of the two-step DIOS procedure came to 38.31% and 49.60%, DJOS patients experienced an %EWL of 19.75% and 46.53% at 1 and 6 months, resp. No complication related to the duodeno-enterostomy occurred. Conclusions Loop duodeno-enterosomies with sleeve gastrectomy can be safely performed and may open new alternatives in bariatric surgery with the possibility for inter-individual adaptation. PMID:24725654
Visual control of foot placement when walking over complex terrain.
Matthis, Jonathan S; Fajen, Brett R
2014-02-01
The aim of this study was to investigate the role of visual information in the control of walking over complex terrain with irregularly spaced obstacles. We developed an experimental paradigm to measure how far along the future path people need to see in order to maintain forward progress and avoid stepping on obstacles. Participants walked over an array of randomly distributed virtual obstacles that were projected onto the floor by an LCD projector while their movements were tracked by a full-body motion capture system. Walking behavior in a full-vision control condition was compared with behavior in a number of other visibility conditions in which obstacles did not appear until they fell within a window of visibility centered on the moving observer. Collisions with obstacles were more frequent and, for some participants, walking speed was slower when the visibility window constrained vision to less than two step lengths ahead. When window sizes were greater than two step lengths, the frequency of collisions and walking speed were weakly affected or unaffected. We conclude that visual information from at least two step lengths ahead is needed to guide foot placement when walking over complex terrain. When placed in the context of recent research on the biomechanics of walking, the findings suggest that two step lengths of visual information may be needed because it allows walkers to exploit the passive mechanical forces inherent to bipedal locomotion, thereby avoiding obstacles while maximizing energetic efficiency. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Rhythm perturbations in acoustically paced treadmill walking after stroke.
Roerdink, Melvyn; Lamoth, Claudine J C; van Kordelaar, Joost; Elich, Peter; Konijnenbelt, Manin; Kwakkel, Gert; Beek, Peter J
2009-09-01
In rehabilitation, acoustic rhythms are often used to improve gait after stroke. Acoustic cueing may enhance gait coordination by creating a stable coupling between heel strikes and metronome beats and provide a means to train the adaptability of gait coordination to environmental changes, as required in everyday life ambulation. To examine the stability and adaptability of auditory-motor synchronization in acoustically paced treadmill walking in stroke patients. Eleven stroke patients and 10 healthy controls walked on a treadmill at preferred speed and cadence under no metronome, single-metronome (pacing only paretic or nonparetic steps), and double-metronome (pacing both footfalls) conditions. The stability of auditory-motor synchronization was quantified by the variability of the phase relation between footfalls and beats. In a separate session, the acoustic rhythms were perturbed and adaptations to restore auditory-motor synchronization were quantified. For both groups, auditory-motor synchronization was more stable for double-metronome than single-metronome conditions, with stroke patients exhibiting an overall weaker coupling of footfalls to metronome beats than controls. The recovery characteristics following rhythm perturbations corroborated the stability findings and further revealed that stroke patients had difficulty in accelerating their steps and instead preferred a slower-step response to restore synchronization. In gait rehabilitation practice, the use of acoustic rhythms may be more effective when both footfalls are paced. In addition, rhythm perturbations during acoustically paced treadmill walking may not only be employed to evaluate the stability of auditory-motor synchronization but also have promising implications for evaluation and training of gait adaptations in neurorehabilitation practice.
A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia.
Chang, Sarah R; Nandor, Mark J; Li, Lu; Kobetic, Rudi; Foglyano, Kevin M; Schnellenberger, John R; Audu, Musa L; Pinault, Gilles; Quinn, Roger D; Triolo, Ronald J
2017-05-30
Functional neuromuscular stimulation, lower limb orthosis, powered lower limb exoskeleton, and hybrid neuroprosthesis (HNP) technologies can restore stepping in individuals with paraplegia due to spinal cord injury (SCI). However, a self-contained muscle-driven controllable exoskeleton approach based on an implanted neural stimulator to restore walking has not been previously demonstrated, which could potentially result in system use outside the laboratory and viable for long term use or clinical testing. In this work, we designed and evaluated an untethered muscle-driven controllable exoskeleton to restore stepping in three individuals with paralysis from SCI. The self-contained HNP combined neural stimulation to activate the paralyzed muscles and generate joint torques for limb movements with a controllable lower limb exoskeleton to stabilize and support the user. An onboard controller processed exoskeleton sensor signals, determined appropriate exoskeletal constraints and stimulation commands for a finite state machine (FSM), and transmitted data over Bluetooth to an off-board computer for real-time monitoring and data recording. The FSM coordinated stimulation and exoskeletal constraints to enable functions, selected with a wireless finger switch user interface, for standing up, standing, stepping, or sitting down. In the stepping function, the FSM used a sensor-based gait event detector to determine transitions between gait phases of double stance, early swing, late swing, and weight acceptance. The HNP restored stepping in three individuals with motor complete paralysis due to SCI. The controller appropriately coordinated stimulation and exoskeletal constraints using the sensor-based FSM for subjects with different stimulation systems. The average range of motion at hip and knee joints during walking were 8.5°-20.8° and 14.0°-43.6°, respectively. Walking speeds varied from 0.03 to 0.06 m/s, and cadences from 10 to 20 steps/min. A self-contained muscle-driven exoskeleton was a feasible intervention to restore stepping in individuals with paraplegia due to SCI. The untethered hybrid system was capable of adjusting to different individuals' needs to appropriately coordinate exoskeletal constraints with muscle activation using a sensor-driven FSM for stepping. Further improvements for out-of-the-laboratory use should include implantation of plantar flexor muscles to improve walking speed and power assist as needed at the hips and knees to maintain walking as muscles fatigue.
Performance of a visuomotor walking task in an augmented reality training setting.
Haarman, Juliet A M; Choi, Julia T; Buurke, Jaap H; Rietman, Johan S; Reenalda, Jasper
2017-12-01
Visual cues can be used to train walking patterns. Here, we studied the performance and learning capacities of healthy subjects executing a high-precision visuomotor walking task, in an augmented reality training set-up. A beamer was used to project visual stepping targets on the walking surface of an instrumented treadmill. Two speeds were used to manipulate task difficulty. All participants (n = 20) had to change their step length to hit visual stepping targets with a specific part of their foot, while walking on a treadmill over seven consecutive training blocks, each block composed of 100 stepping targets. Distance between stepping targets was varied between short, medium and long steps. Training blocks could either be composed of random stepping targets (no fixed sequence was present in the distance between the stepping targets) or sequenced stepping targets (repeating fixed sequence was present). Random training blocks were used to measure non-specific learning and sequenced training blocks were used to measure sequence-specific learning. Primary outcome measures were performance (% of correct hits), and learning effects (increase in performance over the training blocks: both sequence-specific and non-specific). Secondary outcome measures were the performance and stepping-error in relation to the step length (distance between stepping target). Subjects were able to score 76% and 54% at first try for lower speed (2.3 km/h) and higher speed (3.3 km/h) trials, respectively. Performance scores did not increase over the course of the trials, nor did the subjects show the ability to learn a sequenced walking task. Subjects were better able to hit targets while increasing their step length, compared to shortening it. In conclusion, augmented reality training by use of the current set-up was intuitive for the user. Suboptimal feedback presentation might have limited the learning effects of the subjects. Copyright © 2017 Elsevier B.V. All rights reserved.
VizieR Online Data Catalog: M67 variable stars from Kepler/K2-Campaign-5 (Gonzalez, 2016)
NASA Astrophysics Data System (ADS)
Gonzalez, G.
2017-06-01
M 67 was observed continuously between 2015 April 27 and July 10 during the Kepler/K2-Campaign-5 (hereafter, 'Campaign-5 field'). It includes 28 850 long-cadence, 204 short-cadence, and several other special targets. Several data products for the Campaign-5 field were released to the public on the NASA Barbara A. Mikulski Archive for Space Telescopes (MAST) website on 2015 October 30 (https://archive.stsci.edu/k2/). We downloaded tar files containing all the long-cadence light-curve (CLC) files of the Campaign-5 targets from the MAST archive. In addition, we downloaded the comprehensive K2 input catalogue (EPIC) for the Campaign-5 field. We supplemented the NASA K2 data with ground-based data, of which Nardiello et al. (2016, Cat. J/MNRAS/455/2337) is our primary source. Nardiello et al. (2016, Cat. J/MNRAS/455/2337) list the positions and white-light magnitudes for 6905 objects in the M 67 field, but they only list BVRI magnitudes, proper motions and membership probabilities for a subset of this large sample. Cross-referencing (using coordinates) the Campaign-5 input catalogue with the Nardiello et al. (2016, Cat. J/MNRAS/455/2337) catalogue resulted in 3201 matches. Of these, 639 have light curves available in the MAST Campaign-5 archive. This will be the working sample. (1 data file).
EVA: Evryscopes for the Arctic and Antarctic
NASA Astrophysics Data System (ADS)
Richichi, A.; Law, N.; Tasuya, O.; Fors, O.; Dennihy, E.; Carlberg, R.; Tuthill, P.; Ashley, M.; Soonthornthum, B.
2017-06-01
We are planning to build Evryscopes for the Arctic and Antarctic (EVA), which will enable the first ultra-wide-field, high-cadence sky survey to be conducted from both Poles. The system is based on the successful Evryscope concept, already installed and operating since 2015 at Cerro Tololo in Chile with the following characteristics: robotic operation, 8,000 square degrees simultaneous sky coverage, 2-minute cadence, milli-mag level photometric accuracy, pipelined data processing for real-time analysis and full data storage for off-line analysis. The initial location proposed for EVA is the PEARL station on Ellesmere island; later also an antarctic location shall be selected. The science goals enabled by this unique combination of almost full-sky coverage and high temporal cadence are numerous, and include among others ground-breaking forays in the fields of exoplanets, stellar variability, asteroseismology, supernovae and other transient events. The EVA polar locations will enable uninterrupted observations lasting in principle over weeks and months. EVA will be fully robotic. We discuss the EVA science drivers and expected results, and present the logistics and the outline of the project which is expected to have first light in the winter of 2018. The cost envelope can be kept very competitive thanks to R&D already employed for the CTIO Evryscope, to our experience with both Arctic and Antarctic locations, and to the use of off-the-shelf components.
THOR Turbulence Electron Analyser: TEA
NASA Astrophysics Data System (ADS)
Fazakerley, Andrew; Moore, Tom; Owen, Chris; Pollock, Craig; Wicks, Rob; Samara, Marilia; Rae, Jonny; Hancock, Barry; Kataria, Dhiren; Rust, Duncan
2016-04-01
Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Turbulence Electron Analyser (TEA) will measure the plasma electron populations in the mission's Regions of Interest. It will collect a 3D electron velocity distribution with cadences as short as 5 ms. The instrument will be capable of measuring energies up to 30 keV. TEA consists of multiple electrostatic analyser heads arranged so as to measure electrons arriving from look directions covering the full sky, i.e. 4 pi solid angle. The baseline concept is similar to the successful FPI-DES instrument currently operating on the MMS mission. TEA is intended to have a similar angular resolution, but a larger geometric factor. In comparison to earlier missions, TEA improves on the measurement cadence. For example, MMS FPI-DES routinely operates at 30 ms cadence. The objective of measuring distributions at rates as fast as 5 ms is driven by the mission's scientific requirements to resolve electron gyroscale size structures, where plasma heating and fluctuation dissipation is predicted to occur. TEA will therefore be capable of making measurements of the evolution of distribution functions across thin (a few km) current sheets travelling past the spacecraft at up to 600 km/s, of the Power Spectral Density of fluctuations of electron moments and of distributions fast enough to match frequencies with waves expected to be dissipating turbulence (e.g. with 100 Hz whistler waves).
NASA Technical Reports Server (NTRS)
Rabin, Douglas M.; Thomas, Roger J.; Brosius, Jeffrey W.
2008-01-01
The Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) sounding rocket instrument is a two-channel imaging spectrograph that observes the solar corona with high spectral resolution and a rapid cadence made possible by unprecedented sensitivity. EUNIS flew for the first time on 2006 April 12 (EUNIS-06), returning over 140 science exposures at a cadence of 2.1 s; each exposure comprises six 1K x 1K active pixel sensor (APS) images, three for each wavelength channel (170-205 $\\AA$ and 300-370 $\\AA$). Analysis of EUNIS-06 data has so far shed new light on the nature of coronal bright points, cool transients, and coronal loop arcades and has enabled calibration updates for TRACE and SOHO's CDS and EIT. EUNIS flew successfully again on 2007 November 6 (EUNIS-07). Because the APS's were operated in video rather than snapshot mode, a faster cadence of 1.3 s was possible (97% duty cycle), resulting in 276 science exposures. We present an overview of the EUNIS-07 spectra and describe the coordinated observing program executed by the Hinode Extreme ultraviolet Imaging Spectrograph (EIS) that will, in conjunction with the absolute radiometric calibration of EUNIS-07, result in the first on-orbit radiometric calibration of EIS. EUNIS data are freely available to the solar physics community. EUNIS is supported by the NASA Heliophysics Division through its Low Cost Access to Space Program in Solar and Heliospheric Physics.
Validation of Foot Placement Locations from Ankle Data of a Kinect v2 Sensor
Geerse, Daphne; Coolen, Bert; Kolijn, Detmar; Roerdink, Melvyn
2017-01-01
The Kinect v2 sensor may be a cheap and easy to use sensor to quantify gait in clinical settings, especially when applied in set-ups integrating multiple Kinect sensors to increase the measurement volume. Reliable estimates of foot placement locations are required to quantify spatial gait parameters. This study aimed to systematically evaluate the effects of distance from the sensor, side and step length on estimates of foot placement locations based on Kinect’s ankle body points. Subjects (n = 12) performed stepping trials at imposed foot placement locations distanced 2 m or 3 m from the Kinect sensor (distance), for left and right foot placement locations (side), and for five imposed step lengths. Body points’ time series of the lower extremities were recorded with a Kinect v2 sensor, placed frontoparallelly on the left side, and a gold-standard motion-registration system. Foot placement locations, step lengths, and stepping accuracies were compared between systems using repeated-measures ANOVAs, agreement statistics and two one-sided t-tests to test equivalence. For the right side at the 2 m distance from the sensor we found significant between-systems differences in foot placement locations and step lengths, and evidence for nonequivalence. This distance by side effect was likely caused by differences in body orientation relative to the Kinect sensor. It can be reduced by using Kinect’s higher-dimensional depth data to estimate foot placement locations directly from the foot’s point cloud and/or by using smaller inter-sensor distances in the case of a multi-Kinect v2 set-up to estimate foot placement locations at greater distances from the sensor. PMID:28994731
Validation of Foot Placement Locations from Ankle Data of a Kinect v2 Sensor.
Geerse, Daphne; Coolen, Bert; Kolijn, Detmar; Roerdink, Melvyn
2017-10-10
The Kinect v2 sensor may be a cheap and easy to use sensor to quantify gait in clinical settings, especially when applied in set-ups integrating multiple Kinect sensors to increase the measurement volume. Reliable estimates of foot placement locations are required to quantify spatial gait parameters. This study aimed to systematically evaluate the effects of distance from the sensor, side and step length on estimates of foot placement locations based on Kinect's ankle body points. Subjects (n = 12) performed stepping trials at imposed foot placement locations distanced 2 m or 3 m from the Kinect sensor (distance), for left and right foot placement locations (side), and for five imposed step lengths. Body points' time series of the lower extremities were recorded with a Kinect v2 sensor, placed frontoparallelly on the left side, and a gold-standard motion-registration system. Foot placement locations, step lengths, and stepping accuracies were compared between systems using repeated-measures ANOVAs, agreement statistics and two one-sided t -tests to test equivalence. For the right side at the 2 m distance from the sensor we found significant between-systems differences in foot placement locations and step lengths, and evidence for nonequivalence. This distance by side effect was likely caused by differences in body orientation relative to the Kinect sensor. It can be reduced by using Kinect's higher-dimensional depth data to estimate foot placement locations directly from the foot's point cloud and/or by using smaller inter-sensor distances in the case of a multi-Kinect v2 set-up to estimate foot placement locations at greater distances from the sensor.
A Wearable System for Real-Time Continuous Monitoring of Physical Activity
2018-01-01
Over the last decades, wearable systems have gained interest for monitoring of physiological variables, promoting health, and improving exercise adherence in different populations ranging from elite athletes to patients. In this paper, we present a wearable system for the continuous real-time monitoring of respiratory frequency (fR), heart rate (HR), and movement cadence during physical activity. The system has been experimentally tested in the laboratory (by simulating the breathing pattern with a mechanical ventilator) and by collecting data from one healthy volunteer. Results show the feasibility of the proposed device for real-time continuous monitoring of fR, HR, and movement cadence both in resting condition and during activity. Finally, different synchronization techniques have been investigated to enable simultaneous data collection from different wearable modules. PMID:29849993
Towards a Passive Low-Cost In-Home Gait Assessment System for Older Adults
Wang, Fang; Stone, Erik; Skubic, Marjorie; Keller, James M.; Abbott, Carmen; Rantz, Marilyn
2013-01-01
In this paper, we propose a webcam-based system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed, step time and step length from a three-dimensional voxel reconstruction, which is built from two calibrated webcam views. The gait parameters are validated with a GAITRite mat and a Vicon motion capture system in the lab with 13 participants and 44 tests, and again with GAITRite for 8 older adults in senior housing. An excellent agreement with intra-class correlation coefficients of 0.99 and repeatability coefficients between 0.7% and 6.6% was found for walking speed, step time and step length given the limitation of frame rate and voxel resolution. The system was further tested with 10 seniors in a scripted scenario representing everyday activities in an unstructured environment. The system results demonstrate the capability of being used as a daily gait assessment tool for fall risk assessment and other medical applications. Furthermore, we found that residents displayed different gait patterns during their clinical GAITRite tests compared to the realistic scenario, namely a mean increase of 21% in walking speed, a mean decrease of 12% in step time, and a mean increase of 6% in step length. These findings provide support for continuous gait assessment in the home for capturing habitual gait. PMID:24235111
Genomic analyses of modern dog breeds.
Parker, Heidi G
2012-02-01
A rose may be a rose by any other name, but when you call a dog a poodle it becomes a very different animal than if you call it a bulldog. Both the poodle and the bulldog are examples of dog breeds of which there are >400 recognized worldwide. Breed creation has played a significant role in shaping the modern dog from the length of his leg to the cadence of his bark. The selection and line-breeding required to maintain a breed has also reshaped the genome of the dog, resulting in a unique genetic pattern for each breed. The breed-based population structure combined with extensive morphologic variation and shared human environments have made the dog a popular model for mapping both simple and complex traits and diseases. In order to obtain the most benefit from the dog as a genetic system, it is necessary to understand the effect structured breeding has had on the genome of the species. That is best achieved by looking at genomic analyses of the breeds, their histories, and their relationships to each other.
Genomic Analyses of Modern Dog Breeds
Parker, Heidi G.
2013-01-01
A rose may be a rose by any other name, but when you call a dog a poodle it becomes a very different animal than if you call it a bulldog. Both the poodle and the bulldog are examples of dog breeds of which there are >400 recognized world-wide. Breed creation has played a significant role in shaping the modern dog from the length of his leg to the cadence of his bark. The selection and line-breeding required to maintain a breed has also reshaped the genome of the dog resulting in a unique genetic pattern for each breed. The breed-based population structure combined with extensive morphologic variation and shared human environments have made the dog a popular model for mapping both simple and complex traits and diseases. In order to obtain the most benefit from the dog as a genetic system, it is necessary to understand the effect structured breeding has had on the genome of the species. That is best achieved by looking at genomic analyses of the breeds, their histories, and their relationships to each other. PMID:22231497
Flamand, Véronique H; Schneider, Cyril
2014-10-01
Motor deficits in cerebral palsy disturb functional independence. This study tested whether noninvasive and painless repetitive peripheral magnetic stimulation could improve motor function in a 7-year-old boy with spastic hemiparetic cerebral palsy. Stimulation was applied over different nerves of the lower limbs for 5 sessions. We measured the concurrent aftereffects of this intervention on ankle motor control, gait (walking velocity, stride length, cadence, cycle duration), and function of brain motor pathways. We observed a decrease of ankle plantar flexors resistance to stretch, an increase of active dorsiflexion range of movement, and improvements of corticospinal control of ankle dorsiflexors. Joint mobility changes were still present 15 days after the end of stimulation, when all gait parameters were also improved. Resistance to stretch was still lower than prestimulation values 45 days after the end of stimulation. This case illustrates the sustained effects of repetitive peripheral magnetic stimulation on brain plasticity, motor function, and gait. It suggests a potential impact for physical rehabilitation in cerebral palsy. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Schuck, Peter W.; Linton, Mark; Muglach, Karin; Welsch, Brian; Hageman, Jacob
2010-01-01
The imminent launch of Solar Dynamics Observatory (SDO) will carry the first full-disk imaging vector magnetograph, the Helioseismic and Magnetic Imager (HMI), into an inclined geosynchronous orbit. This magnetograph will provide nearly continuous measurements of photospheric vector magnetic fields at cadences of 90 seconds to 12 minutes with I" resolution, precise pointing, and unfettered by atmospheric seeing. The enormous data stream of 1.5 Terabytes per day from SDO will provide an unprecedented opportunity to understand the mysteries of solar eruptions. These ground-breaking observations will permit the application of a new technique, the differential affine velocity estimator for vector magnetograms (DAVE4VM), to measure photospheric plasma flows in active regions. These measurements will permit, for the first time, accurate assessments of the coronal free energy available for driving CMEs and flares. The details of photospheric plasma flows, particularly along magnetic neutral-lines, are critical to testing models for initiating coronal mass ejections (CMEs) and flares. Assimilating flows and fields into state-of-the art 3D MHD simulations that model the highly stratified solar atmosphere from the convection zone to the corona represents the next step towards achieving NASA's Living with a Star forecasting goals of predicting "when a solar eruption leading to a CME will occur." This talk will describe these major science and predictive advances that will be delivered by SDO /HMI.
NASA Technical Reports Server (NTRS)
Schuck, Peter W.; Linton, M.; Muglach, K.; Hoeksema, T.
2010-01-01
The Solar Dynamics Observatory (SDO) is carrying the first full-disk imaging vector magnetograph, the Helioseismic and Magnetic Imager (HMI), into an inclined geosynchronous orbit. This magnetograph will provide nearly continuous measurements of photospheric vector magnetic fields at cadences of 90 seconds to 12 minutes with 1" resolution, precise pointing, and unfettered by atmospheric seeing. The enormous data stream of 1.5 Terabytes per day from SAO will provide an unprecedented opportunity to understand the mysteries of solar eruptions. These ground-breaking observations will permit the application of a new technique, the differential affine velocity estimator for vector magnetograms (DAVE4VM), to measure photospheric plasma flows in active regions. These measurements will permit, for the first time, accurate assessments of the coronal free energy available for driving CMEs and flares. The details of photospheric plasma flows, particularly along magnetic neutral-lines, are critical to testing models for initiating coronal mass ejections (CMEs) and flares. Assimilating flows and fields into state-of-the art 3D MHD simulations that model the highly stratified solar atmosphere from the convection zone to the corona represents the next step towards achieving NASA's Living with a Star forecasting goals of predicting "when a solar eruption leading to a CME will occur." Our presentation will describe these major science and predictive advances that will be delivered by SDO/HMI.
The Influence of Added Mass on Optimal Step Length in Running.
Reenalda, Jasper; Maas, Maurice T F; de Koning, Jos J
2016-10-01
To examine the influence of induced changes in the morphology of the leg by adding mass on the optimal step length (OSL) in experienced runners to get more insight into parameters that influence preferred step length (PSL) and OSL. Thirteen experienced male runners (mean age 26.9 ± 6.1 y, height 183.7 ± 7.1 cm, mass 71.8 ± 5.9 kg) ran on a treadmill in 3 different conditions: unloaded (UL), loaded with 2 kg mass at the ankles (MA), and loaded with 2 kg mass at the hips (MH) at 7 different step lengths (SLs). SL deviations were expressed as deviations in relative leg length (%LL) from the individual PSL: 0%LL, ±5%LL, ±10%LL, and ±15%LL. Trials lasted 8 min, and 8 min of rest was given between trials. Oxygen uptake (V̇O 2 ) was expressed as a fraction of V̇O 2 at PSL + 0%LL in the unloaded condition (%V̇O 2 ). The %SL with the lowest value of %V̇O 2 was considered the OSL for this group of participants. OSL at the UL condition was 6% shorter than PSL. The MA condition resulted in a 7%LL larger OSL than at UL and MH (P < .05). The mass distribution of the leg is a determinant of the OSL. As a consequence of the added mass to the ankles, OSL was 7%LL longer. Morphological characteristics of the leg might therefore play an important role in determining the runner's individual optimal SL.
Stepped chute training wall height requirements
USDA-ARS?s Scientific Manuscript database
Stepped chutes are commonly used for overtopping protection for embankment dams. Aerated flow is commonly associated with stepped chutes if the chute has sufficient length. The aeration and turbulence of the flow can create a significant amount of splash over the training wall if not appropriately...
Menz, Hylton B; Lord, Stephen R; Fitzpatrick, Richard C
2007-02-01
Many falls in older people occur while walking, however the mechanisms responsible for gait instability are poorly understood. Therefore, the aim of this study was to develop a plausible model describing the relationships between impaired sensorimotor function, fear of falling and gait patterns in older people. Temporo-spatial gait parameters and acceleration patterns of the head and pelvis were obtained from 100 community-dwelling older people aged between 75 and 93 years while walking on an irregular walkway. A theoretical model was developed to explain the relationships between these variables, assuming that head stability is a primary output of the postural control system when walking. This model was then tested using structural equation modeling, a statistical technique which enables the testing of a set of regression equations simultaneously. The structural equation model indicated that: (i) reduced step length has a significant direct and indirect association with reduced head stability; (ii) impaired sensorimotor function is significantly associated with reduced head stability, but this effect is largely indirect, mediated by reduced step length, and; (iii) fear of falling is significantly associated with reduced step length, but has little direct influence on head stability. These findings provide useful insights into the possible mechanisms underlying gait characteristics and risk of falling in older people. Particularly important is the indication that fear-related step length shortening may be maladaptive.
Mutoh, Tomoko; Mutoh, Tatsushi; Takada, Makoto; Doumura, Misato; Ihara, Masayo; Taki, Yasuyuki; Tsubone, Hirokazu; Ihara, Masahiro
2016-01-01
[Purpose] This case series aims to evaluate the effects of hippotherapy on gait and balance ability of children and adolescents with cerebral palsy using quantitative parameters for physical activity. [Subjects and Methods] Three patients with gait disability as a sequela of cerebral palsy (one female and two males; age 5, 12, and 25 years old) were recruited. Participants received hippotherapy for 30 min once a week for 2 years. Gait parameters (step rate, step length, gait speed, mean acceleration, and horizontal/vertical displacement ratio) were measured using a portable motion recorder equipped with a tri-axial accelerometer attached to the waist before and after a 10-m walking test. [Results] There was a significant increase in step length between before and after a single hippotherapy session. Over the course of 2 year intervention, there was a significant increase in step rate, gait speed, step length, and mean acceleration and a significant improvement in horizontal/vertical displacement ratio. [Conclusion] The data suggest that quantitative parameters derived from a portable motion recorder can track both immediate and long-term changes in the walking ability of children and adolescents with cerebral palsy undergoing hippotherapy. PMID:27821971
Comparison of step-by-step kinematics of resisted, assisted and unloaded 20-m sprint runs.
van den Tillaar, Roland; Gamble, Paul
2018-03-26
This investigation examined step-by-step kinematics of sprint running acceleration. Using a randomised counterbalanced approach, 37 female team handball players (age 17.8 ± 1.6 years, body mass 69.6 ± 9.1 kg, height 1.74 ± 0.06 m) performed resisted, assisted and unloaded 20-m sprints within a single session. 20-m sprint times and step velocity, as well as step length, step frequency, contact and flight times of each step were evaluated for each condition with a laser gun and an infrared mat. Almost all measured parameters were altered for each step under the resisted and assisted sprint conditions (η 2 ≥ 0.28). The exception was step frequency, which did not differ between assisted and normal sprints. Contact time, flight time and step frequency at almost each step were different between 'fast' vs. 'slow' sub-groups (η 2 ≥ 0.22). Nevertheless overall both groups responded similarly to the respective sprint conditions. No significant differences in step length were observed between groups for the respective condition. It is possible that continued exposure to assisted sprinting might allow the female team-sports players studied to adapt their coordination to the 'over-speed' condition and increase step frequency. It is notable that step-by-step kinematics in these sprints were easy to obtain using relatively inexpensive equipment with possibilities of direct feedback.
Planning energy-efficient bipedal locomotion on patterned terrain
NASA Astrophysics Data System (ADS)
Zamani, Ali; Bhounsule, Pranav A.; Taha, Ahmad
2016-05-01
Energy-efficient bipedal walking is essential in realizing practical bipedal systems. However, current energy-efficient bipedal robots (e.g., passive-dynamics-inspired robots) are limited to walking at a single speed and step length. The objective of this work is to address this gap by developing a method of synthesizing energy-efficient bipedal locomotion on patterned terrain consisting of stepping stones using energy-efficient primitives. A model of Cornell Ranger (a passive-dynamics inspired robot) is utilized to illustrate our technique. First, an energy-optimal trajectory control problem for a single step is formulated and solved. The solution minimizes the Total Cost Of Transport (TCOT is defined as the energy used per unit weight per unit distance travelled) subject to various constraints such as actuator limits, foot scuffing, joint kinematic limits, ground reaction forces. The outcome of the optimization scheme is a table of TCOT values as a function of step length and step velocity. Next, we parameterize the terrain to identify the location of the stepping stones. Finally, the TCOT table is used in conjunction with the parameterized terrain to plan an energy-efficient stepping strategy.
NASA Astrophysics Data System (ADS)
Eastes, R.; McClintock, W. E.; Anderson, D. N.; Andersson, L.; Burns, A. G.; Codrescu, M.; Daniell, R. E.; England, S.; Krywonos, A.; Lumpe, J. D.; Richmond, A. D.; Rusch, D. W.; Siegmund, O.; Solomon, S. C.; Strickland, D. J.; Woods, T. N.; Budzien, S. A.; Dymond, K.; Eparvier, F. G.; Jones, S.; Martinis, C. R.; Oberheide, J.; Talaat, E. R.; Barrett, R.; Harvey, J.
2016-12-01
The GOLD mission of opportunity will fly a far ultraviolet imaging spectrograph in geostationary (GEO) orbit as a hosted payload. The mission is scheduled for launch in late 2017 on SES-14, a commercial communications satellite that will be stationed over eastern South America at 47.5 degrees west longitude. GOLD is on schedule to be the first NASA science mission to fly as a hosted payload on a commercial communications satellite. The GOLD imager has two identical channels. Each channel can scan the full disk at a 30 minute cadence, making spectral images of Earth's UV emission from 132 to 162 nm, as well as make a measurement on the Earth's limb. Remote sensing techniques that have been proven on previous Low Earth Orbit (LEO) missions will be used to derive fundamental parameters for the neutral and ionized space environment. Parameters that will be derived include composition (O/N2 ratio) and temperature of the neutral atmosphere on the dayside disk. On the nightside, peak electron densities will be obtained in the low latitude ionosphere. Similar imaging of atmospheric composition from LEO, at only a daily cadence for revisiting locations, has already provided many new insights into the behavior of Earth's Thermosphere-Ionosphere (T-I) system. From geostationary orbit, GOLD can repeatedly image the same geographic locations over most of the hemisphere at a cadence comparable to that of the T-I system (order of an hour). Such time resolution and spatial coverage will allow the mission to track the changes due to geomagnetic storms, variations in solar extreme ultraviolet radiation, and forcing from the lower atmosphere. In addition to providing a new perspective by being able to repeatedly remotely sense the same hemisphere at a high cadence, GOLD's simultaneous measurements of not only composition but also temperatures across the disk will provide a valuable, new parameter for understanding of how the T-I system responds to forcing from the sun and the lower atmosphere.
The SUVIT Instrument on the Solar-C Mission
NASA Astrophysics Data System (ADS)
Tarbell, Theodore D.; Ichimoto, Kiyoshi
2014-06-01
Solar-C is a new space mission being proposed to JAXA, with significant contributions anticipated from NASA, ESA, and EU countries. The main scientific objectives are to: reveal the mechanisms for heating and dynamics of the chromosphere and corona and acceleration of the solar wind; determine the physical origin of the large-scale explosions and eruptions that drive short-term solar, heliospheric, and geospace variability; use the solar atmosphere as a laboratory for understanding fundamental physical processes; make unprecedented observations of the polar magnetic fields. The unique approaches of Solar-C to achieve these goals are to: determine the properties and evolution of the 3-dimensional magnetic field, especially on small spatial scales, and for the first time observed in the crucial low beta plasma region; observe all the temperature regimes of the atmosphere seamlessly at the highest spatial resolution ever achieved; observe at high cadence the prevailing dynamics in all regions of the atmosphere; determine physical properties from high resolution spectroscopic measurements throughout the atmosphere and into the solar wind. The powerful suite of instruments onboard Solar-C will be sensitive to temperatures from the photosphere 5500 K) to solar flares 20 MK) with no temperature gap, with spatial resolution at all temperatures of 0.3″ or less (0.1″ in the lower atmosphere) and at high cadence. The purpose of the Solar UV-Visible-IR Telescope (SUVIT) is to obtain chromospheric velocity, temperature, density and magnetic field diagnostics over as wide arange of heights as possible, through high cadence spectral line profiles and vector spectro-polarimetry. SUVIT is a meter-class telescope currently under study at 1.4m in order to obtain sufficientresolution and S/N. SUVIT has two complementary focal plane packages, the Filtergraph that makes high cadence imaging observations with the highest spatial resolution and the Spectro-polarimeter that makes precise spectro-polarimetric observations. With their powerful sets of spectral lines, FG and SP collect physical measurements from the lower photosphere to upper chromosphere with much better spatial and temporal resolution than Hinode SOT.
Estimated splash and training wall height requirements for stepped chutes applied to embankment dams
USDA-ARS?s Scientific Manuscript database
Aging embankment dams are commonly plagued with insufficient spillway capacity. To provide increased spillway capacity, stepped chutes are frequently applied as an overtopping protection system for embankment dams. Stepped chutes with sufficient length develops aerated flow. The aeration and flow...
The effect of cane use on the compensatory step following posterior perturbations.
Hall, Courtney D; Jensen, Jody L
2004-08-01
The compensatory step is a critical component of the balance response and is impaired in older fallers. The purpose of this research was to examine whether utilization of a cane modified the compensatory step response following external posterior perturbations. Single subject withdrawal design was employed. Single subject statistical analysis--the standard deviation bandwidth-method--supplemented visual analysis of the data. Four older adults (range: 73-83 years) with balance impairment who habitually use a cane completed this study. Subjects received a series of sudden backward pulls that were large enough to elicit compensatory stepping. We examined the following variables both with and without cane use: timing of cane loading relative to step initiation and center of mass acceleration, stability margin, center of mass excursion and velocity, step length and width. No participant loaded the cane prior to initiation of the first compensatory step. There was no effect of cane use on the stability margin, nor was there an effect of cane use on center of mass excursion or velocity, or step length or width. These data suggest that cane use does not necessarily improve balance recovery following an external posterior perturbation when the individual is forced to rely on compensatory stepping. Instead these data suggest that the strongest factor in modifying step characteristics is experience with the perturbation.
Hansen, Andrew H; Meier, Margrit R; Sessoms, Pinata H; Childress, Dudley S
2006-12-01
The Shape&Roll prosthetic foot was used to examine the effect of roll-over shape arc length on the gait of 14 unilateral trans-tibial prosthesis users. Simple modifications to the prosthetic foot were used to alter the effective forefoot rocker length, leaving factors such as alignment, limb length, and heel and mid-foot characteristics unchanged. Shortening the roll-over shape arc length caused a significant reduction in the maximum external dorsiflexion moment on the prosthetic side at all walking speeds (p < 0.001 for main effect of arc length), due to a reduction in forefoot leverage (moment arm) about the ankle. Roll-over shape arc length significantly affected the initial loading on the sound limb at normal and fast speeds (p = 0.001 for the main effect of arc length), with participants experiencing larger first peaks of vertical ground reaction forces on their sound limbs when using the foot with the shortest effective forefoot rocker arc length. Additionally, the difference between step lengths on the sound and prosthetic limbs was larger with the shortest arc length condition, although this difference was not statistically significant (p = 0.06 for main effect). It appears that prosthesis users may experience a drop-off effect at the end of single limb stance on prosthetic feet with short roll-over shape arc lengths, leading to increased loading and/or a shortened step on the contralateral limb.
Nnodim, Joseph O; Strasburg, Debra; Nabozny, Martina; Nyquist, Linda; Galecki, Andrzej; Chen, Shu; Alexander, Neil B
2006-12-01
To compare the effect of two 10-week balance training programs, Combined Balance and Step Training (CBST) versus tai chi (TC), on balance and stepping measures. Prospective intervention trial. Local senior centers and congregate housing facilities. Aged 65 and older with at least mild impairment in the ability to perform unipedal stance and tandem walk. Participants were allocated to TC (n = 107, mean age 78) or CBST, an intervention focused on improving dynamic balance and stepping (n = 106, mean age 78). At baseline and 10 weeks, participants were tested in their static balance (Unipedal Stance and Tandem Stance (TS)), stepping (Maximum Step Length, Rapid Step Test), and Timed Up and Go (TUG). Performance improved more with CBST than TC, ranging from 5% to 10% for the stepping tests (Maximum Step Length and Rapid Step Test) and 9% for TUG. The improvement in TUG represented an improvement of more than 1 second. Greater improvements were also seen in static balance ability (in TS) with CBST than TC. Of the two training programs, in which variants of each program have been proven to reduce falls, CBST results in modest improvements in balance, stepping, and functional mobility versus TC over a 10-week period. Future research should include a prospective comparison of fall rates in response to these two balance training programs.
Shani, Guy; Shapiro, Amir; Oded, Goldstein; Dima, Kagan; Melzer, Itshak
2017-01-01
Rapid compensatory stepping plays an important role in preventing falls when balance is lost; however, these responses cannot be accurately quantified in the clinic. The Microsoft Kinect™ system provides real-time anatomical landmark position data in three dimensions (3D), which may bridge this gap. Compensatory stepping reactions were evoked in 8 young adults by a sudden platform horizontal motion on which the subject stood or walked on a treadmill. The movements were recorded with both a 3D-APAS motion capture and Microsoft Kinect™ systems. The outcome measures consisted of compensatory step times (milliseconds) and length (centimeters). The average values of two standing and walking trials for Microsoft Kinect™ and the 3D-APAS systems were compared using t -test, Pearson's correlation, Altman-bland plots, and the average difference of root mean square error (RMSE) of joint position. The Microsoft Kinect™ had high correlations for the compensatory step times ( r = 0.75-0.78, p = 0.04) during standing and moderate correlations for walking ( r = 0.53-0.63, p = 0.05). The step length, however had a very high correlations for both standing and walking ( r > 0.97, p = 0.01). The RMSE showed acceptable differences during the perturbation trials with smallest relative error in anterior-posterior direction (2-3%) and the highest in the vertical direction (11-13%). No systematic bias were evident in the Bland and Altman graphs. The Microsoft Kinect™ system provides comparable data to a video-based 3D motion analysis system when assessing step length and less accurate but still clinically acceptable for step times during balance recovery when balance is lost and fall is initiated.
Konik, Anita; Kuklewicz, Stanisław; Rosłoniec, Ewelina; Zając, Marcin; Spannbauer, Anna; Nowobilski, Roman; Mika, Piotr
2016-01-01
The purpose of the study was to evaluate selected temporal and spatial gait parameters in patients with intermittent claudication after completion of 12-week supervised treadmill walking training. The study included 36 patients (26 males and 10 females) aged: mean 64 (SD 7.7) with intermittent claudication. All patients were tested on treadmill (Gait Trainer, Biodex). Before the programme and after its completion, the following gait biomechanical parameters were tested: step length (cm), step cycle (cycle/s), leg support time (%), coefficient of step variation (%) as well as pain-free walking time (PFWT) and maximal walking time (MWT) were measured. Training was conducted in accordance with the current TASC II guidelines. After 12 weeks of training, patients showed significant change in gait biomechanics consisting in decreased frequency of step cycle (p < 0.05) and extended step length (p < 0.05). PFWT increased by 96% (p < 0.05). MWT increased by 100% (p < 0.05). After completing the training, patients' gait was more regular, which was expressed via statistically significant decrease of coefficient of variation (p < 0.05) for both legs. No statistically significant relation between the post-training improvement of PFWT and MWT and step length increase and decreased frequency of step cycle was observed (p > 0.05). Twelve-week treadmill walking training programme may lead to significant improvement of temporal and spatial gait parameters in patients with intermittent claudication. Twelve-week treadmill walking training programme may lead to significant improvement of pain-free walking time and maximum walking time in patients with intermittent claudication.
Balasubramanian, Chitralakshmi K.; Neptune, Richard R.; Kautz, Steven A.
2010-01-01
Background Foot placement during walking is closely linked to the body position, yet it is typically quantified relative to the other foot. The purpose of this study was to quantify foot placement patterns relative to body post-stroke and investigate its relationship to hemiparetic walking performance. Methods Thirty-nine participants with hemiparesis walked on a split-belt treadmill at their self-selected speeds and twenty healthy participants walked at matched slow speeds. Anterior-posterior and medial-lateral foot placements (foot center-of-mass) relative to body (pelvis center-of-mass) quantified stepping in body reference frame. Walking performance was quantified using step length asymmetry ratio, percent of paretic propulsion and paretic weight support. Findings Participants with hemiparesis placed their paretic foot further anterior than posterior during walking compared to controls walking at matched slow speeds (p < .05). Participants also placed their paretic foot further lateral relative to pelvis than non-paretic (p < .05). Anterior-posterior asymmetry correlated with step length asymmetry and percent paretic propulsion but some persons revealed differing asymmetry patterns in the translating reference frame. Lateral foot placement asymmetry correlated with paretic weight support (r = .596; p < .001), whereas step widths showed no relation to paretic weight support. Interpretation Post-stroke gait is asymmetric when quantifying foot placement in a body reference frame and this asymmetry related to the hemiparetic walking performance and explained motor control mechanisms beyond those explained by step lengths and step widths alone. We suggest that biomechanical analyses quantifying stepping performance in impaired populations should investigate foot placement in a body reference frame. PMID:20193972
Balasubramanian, Chitralakshmi K; Neptune, Richard R; Kautz, Steven A
2010-06-01
Foot placement during walking is closely linked to the body position, yet it is typically quantified relative to the other foot. The purpose of this study was to quantify foot placement patterns relative to body post-stroke and investigate its relationship to hemiparetic walking performance. Thirty-nine participants with hemiparesis walked on a split-belt treadmill at their self-selected speeds and 20 healthy participants walked at matched slow speeds. Anterior-posterior and medial-lateral foot placements (foot center-of-mass) relative to body (pelvis center-of-mass) quantified stepping in body reference frame. Walking performance was quantified using step length asymmetry ratio, percent of paretic propulsion and paretic weight support. Participants with hemiparesis placed their paretic foot further anterior than posterior during walking compared to controls walking at matched slow speeds (P<.05). Participants also placed their paretic foot further lateral relative to pelvis than non-paretic (P<.05). Anterior-posterior asymmetry correlated with step length asymmetry and percent paretic propulsion but some persons revealed differing asymmetry patterns in the translating reference frame. Lateral foot placement asymmetry correlated with paretic weight support (r=.596; P<.001), whereas step widths showed no relation to paretic weight support. Post-stroke gait is asymmetric when quantifying foot placement in a body reference frame and this asymmetry related to the hemiparetic walking performance and explained motor control mechanisms beyond those explained by step lengths and step widths alone. We suggest that biomechanical analyses quantifying stepping performance in impaired populations should investigate foot placement in a body reference frame. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
High-cadence observations of spicular-type events on the Sun
NASA Astrophysics Data System (ADS)
Shetye, J.; Doyle, J. G.; Scullion, E.; Nelson, C. J.; Kuridze, D.; Henriques, V.; Woeger, F.; Ray, T.
2016-05-01
Context. Chromospheric observations taken at high-cadence and high-spatial resolution show a range of spicule-like features, including Type-I, Type-II (as well as rapid blue-shifted excursions (RBEs) and rapid red-shifted excursions (RREs) which are thought to be on-disk counterparts of Type-II spicules) and those which seem to appear within a few seconds, which if interpreted as flows would imply mass flow velocities in excess of 1000 km s-1. Aims: This article seeks to quantify and study rapidly appearing spicular-type events. We also compare the multi-object multi-frame blind deconvolution (MOMFBD) and speckle reconstruction techniques to understand if these spicules are more favourably observed using a particular technique. Methods: We use spectral imaging observations taken with the CRisp Imaging SpectroPolarimeter (CRISP) on the Swedish 1-m Solar Telescope. Data was sampled at multiple positions within the Hα line profile for both an on-disk and limb location. Results: The data is host to numerous rapidly appearing features which are observed at different locations within the Hα line profile. The feature's durations vary between 10-20 s and lengths around 3500 km. Sometimes, a time delay in their appearance between the blue and red wings of 3-5 s is evident, whereas, sometimes they are near simultaneous. In some instances, features are observed to fade and then re-emerge at the same location several tens of seconds later. Conclusions: We provide the first statistical analysis of these spicules and suggest that these observations can be interpreted as the line-of-sight (LOS) movement of highly dynamic spicules moving in and out of the narrow 60 mÅ transmission filter that is used to observe in different parts of the Hα line profile. The LOS velocity component of the observed fast chromospheric features, manifested as Doppler shifts, are responsible for their appearance in the red and blue wings of Hα line. Additional work involving data at other wavelengths is required to investigate the nature of their possible wave-like activity.
Dual-task gait differences in female and male adolescents following sport-related concussion.
Howell, David R; Stracciolini, Andrea; Geminiani, Ellen; Meehan, William P
2017-05-01
Concussion may affect females and males differentially. Identification of gender-related differences after concussion, therefore, may help clinicians with individualized evaluations. We examined potential differences in dual-task gait between females and males after concussion. Thirty-five participants diagnosed with a concussion (49% female, mean age=15.0±2.1 years, 7.5±3.0 days post-injury) and 51 controls (51% female, mean age=14.4±2.1 years) completed a symptom inventory and single/dual-task gait assessment. The primary outcome variable, the dual-task cost, was calculated as the percent change between single-task and dual-task conditions to account for individual differences in spatio-temporal gait variables. No significant differences in symptom severity measured by the post-concussion symptom scale were observed between females (32.0±18.0) and males (27.8±18.2). Compared with males, adolescent females walked with significantly decreased cadence dual-task costs after concussion (-19.7%±10.0% vs. -11.3%±9.2%, p=0.007) when adjusted for age, height, and prior concussion history. No significant differences were found between female and male control groups on other dual-task cost gait measures. Females and males with concussion also walked with significantly shorter stride lengths than controls during single-task (females: 1.13±0.11m vs. 1.26±0.11m, p=0.001; males: 1.14±0.14m vs. 1.22±0.15m, p=0.04) and dual-task gait (females: 0.99±0.10m vs. 1.10±0.11m, p=0.001; males: 1.00±0.13m vs. 1.08±0.14m, p=0.04). Females demonstrated a significantly greater amount of cadence change between single-task and dual-task gait than males after a sport-related concussion. Thus, differential alterations may exist during gait among those with a concussion; gender may be one prominent factor affecting dual-task gait. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Fayock, Brian; Winebarger, Amy; De Pontieu, Bart; Alexander, Caroline
2016-01-01
The Interface Region Imaging Spectrograph (IRIS), launched in the summer of 2013, is designed specifically to observe and investigate the transition region and adjacent layers of the solar atmosphere, obtaining images in high spatial, temporal, and spectral resolution. Our particular work is focused on the evolution of inter-moss loops, which have been detected in the lower corona by the Atmospheric Imaging Assembly (AIA) and the High-Resolution Coronal Imager (Hi- C), but are known to have foot points below the transition region. With the high-resolution capabilities of IRIS and its Si IV pass band, which measures activity in the upper chromosphere, we can study these magnetic loops in detail and compare their characteristic length and time scales to those obtained from several AIA image sets, particularly the 171, 193, and 211 pass bands. By comparing the results between these four data sets, one can potentially establish a measure of the ionization equilibrium for the location in question. To explore this idea, we found a large, sit-and-stare observation within the IRIS database that fit our specifications. This data set contained a number of well-defined inter-moss loops (by visual inspection) with a cadence less than or equal to that of AIA (approximately 12 seconds). This particular data set was recorded on October 23, 2013 at 07:09:30, lasting for 3219 seconds with a field of view of 120.6 by 128.1 arcseconds, centered on -53.9 by 59.1 arcseconds from disk center. For ease of comparison, the AIA data has been interpolated to match the IRIS cadence and resolution. In the main portion of the poster, we demonstrate the detection of events, the information collected, and the immediate results to the right, showing the progress of an event with green as the start, blue as the peak, and red as the end. Below here, we demonstrate how pixels are combined to form groups. The 3D results are shown to the right
Schättin, Alexandra; Arner, Rendel; Gennaro, Federico; de Bruin, Eling D.
2016-01-01
During aging, the prefrontal cortex (PFC) undergoes age-dependent neuronal changes influencing cognitive and motor functions. Motor-learning interventions are hypothesized to ameliorate motor and cognitive deficits in older adults. Especially, video game-based physical exercise might have the potential to train motor in combination with cognitive abilities in older adults. The aim of this study was to compare conventional balance training with video game-based physical exercise, a so-called exergame, on the relative power (RP) of electroencephalographic (EEG) frequencies over the PFC, executive function (EF), and gait performance. Twenty-seven participants (mean age 79.2 ± 7.3 years) were randomly assigned to one of two groups. All participants completed 24 trainings including three times a 30 min session/week. The EEG measurements showed that theta RP significantly decreased in favor of the exergame group [L(14) = 6.23, p = 0.007]. Comparing pre- vs. post-test, EFs improved both within the exergame (working memory: z = −2.28, p = 0.021; divided attention auditory: z = −2.51, p = 0.009; divided attention visual: z = −2.06, p = 0.040; go/no-go: z = −2.55, p = 0.008; set-shifting: z = −2.90, p = 0.002) and within the balance group (set-shifting: z = −2.04, p = 0.042). Moreover, spatio-temporal gait parameters primarily improved within the exergame group under dual-task conditions (speed normal walking: z = −2.90, p = 0.002; speed fast walking: z = −2.97, p = 0.001; cadence normal walking: z = −2.97, p = 0.001; stride length fast walking: z = −2.69, p = 0.005) and within the balance group under single-task conditions (speed normal walking: z = −2.54, p = 0.009; speed fast walking: z = −1.98, p = 0.049; cadence normal walking: z = −2.79, p = 0.003). These results indicate that exergame training as well as balance training positively influence prefrontal cortex activity and/or function in varying proportion. PMID:27932975
NASA Technical Reports Server (NTRS)
Fayock, Brian; Winebarger, Amy; De Pontieu, Bart
2014-01-01
The Interface Region Imaging Spectrograph (IRIS), launched in the summer of 2013, is designed specifically to observe and investigate the transition region and adjacent layers of the solar atmosphere, obtaining images in high spatial, temporal, and spectral resolution. Our particular work is focused on the evolution of inter-moss loops, which have been detected in the lower corona by the Atmospheric Imaging Assembly (AIA) and the High-Resolution Coronal Imager (Hi- C), but are known to have foot points below the transition region. With the high-resolution capabilities of IRIS and its Si IV pass band, which measures activity in the upper chromosphere, we can study these magnetic loops in detail and compare their characteristic length and time scales to those obtained from several AIA image sets, particularly the 171, 193, and 211 pass bands. By comparing the results between these four data sets, one can potentially establish a measure of the ionization equilibrium for the location in question. To explore this idea, we found a large, sit-and-stare observation within the IRIS database that fit our specifications. This data set contained a number of well-defined inter-moss loops (by visual inspection) with a cadence less than or equal to that of AIA (approximately 12 seconds). This particular data set was recorded on October 23, 2013 at 07:09:30, lasting for 3219 seconds with a field of view of 120.6 by 128.1 arcseconds, centered on -53.9 by 59.1 arcseconds from disk center. For ease of comparison, the AIA data has been interpolated to match the IRIS cadence and resolution. In the main portion of the poster, we demonstrate the detection of events, the information collected, and the immediate results to the right, showing the progress of an event with green as the start, blue as the peak, and red as the end. Below here, we demonstrate how pixels are combined to form groups. The 3D results are shown to the right.
NASA Astrophysics Data System (ADS)
Chakraborty, S.; Dasgupta, A.; Das, R.; Kar, M.; Kundu, A.; Sarkar, C. K.
2017-12-01
In this paper, we explore the possibility of mapping devices designed in TCAD environment to its modeled version developed in cadence virtuoso environment using a look-up table (LUT) approach. Circuit simulation of newly designed devices in TCAD environment is a very slow and tedious process involving complex scripting. Hence, the LUT based modeling approach has been proposed as a faster and easier alternative in cadence environment. The LUTs are prepared by extracting data from the device characteristics obtained from device simulation in TCAD. A comparative study is shown between the TCAD simulation and the LUT-based alternative to showcase the accuracy of modeled devices. Finally the look-up table approach is used to evaluate the performance of circuits implemented using 14 nm nMOSFET.
A Bayesian Approach to Period Searching in Solar Coronal Loops
NASA Astrophysics Data System (ADS)
Scherrer, Bryan; McKenzie, David
2017-03-01
We have applied a Bayesian generalized Lomb-Scargle period searching algorithm to movies of coronal loop images obtained with the Hinode X-ray Telescope (XRT) to search for evidence of periodicities that would indicate resonant heating of the loops. The algorithm makes as its only assumption that there is a single sinusoidal signal within each light curve of the data. Both the amplitudes and noise are taken as free parameters. It is argued that this procedure should be used alongside Fourier and wavelet analyses to more accurately extract periodic intensity modulations in coronal loops. The data analyzed are from XRT Observation Program #129C: “MHD Wave Heating (Thin Filters),” which occurred during 2006 November 13 and focused on active region 10293, which included coronal loops. The first data set spans approximately 10 min with an average cadence of 2 s, 2″ per pixel resolution, and used the Al-mesh analysis filter. The second data set spans approximately 4 min with a 3 s average cadence, 1″ per pixel resolution, and used the Al-poly analysis filter. The final data set spans approximately 22 min at a 6 s average cadence, and used the Al-poly analysis filter. In total, 55 periods of sinusoidal coronal loop oscillations between 5.5 and 59.6 s are discussed, supporting proposals in the literature that resonant absorption of magnetic waves is a viable mechanism for depositing energy in the corona.
A Bayesian Approach to Period Searching in Solar Coronal Loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherrer, Bryan; McKenzie, David
2017-03-01
We have applied a Bayesian generalized Lomb–Scargle period searching algorithm to movies of coronal loop images obtained with the Hinode X-ray Telescope (XRT) to search for evidence of periodicities that would indicate resonant heating of the loops. The algorithm makes as its only assumption that there is a single sinusoidal signal within each light curve of the data. Both the amplitudes and noise are taken as free parameters. It is argued that this procedure should be used alongside Fourier and wavelet analyses to more accurately extract periodic intensity modulations in coronal loops. The data analyzed are from XRT Observation Programmore » 129C: “MHD Wave Heating (Thin Filters),” which occurred during 2006 November 13 and focused on active region 10293, which included coronal loops. The first data set spans approximately 10 min with an average cadence of 2 s, 2″ per pixel resolution, and used the Al-mesh analysis filter. The second data set spans approximately 4 min with a 3 s average cadence, 1″ per pixel resolution, and used the Al-poly analysis filter. The final data set spans approximately 22 min at a 6 s average cadence, and used the Al-poly analysis filter. In total, 55 periods of sinusoidal coronal loop oscillations between 5.5 and 59.6 s are discussed, supporting proposals in the literature that resonant absorption of magnetic waves is a viable mechanism for depositing energy in the corona.« less
Yang, Chao-Yang; Wu, Cheng-Tse
2017-03-01
This research investigated the risks involved in bicycle riding while using various sensory modalities to deliver training information. To understand the risks associated with using bike computers, this study evaluated hazard perception performance through lab-based simulations of authentic riding conditions. Analysing hazard sensitivity (d') of signal detection theory, the rider's response time, and eye glances provided insights into the risks of using bike computers. In this study, 30 participants were tested with eight hazard perception tasks while they maintained a cadence of 60 ± 5 RPM and used bike computers with different sensory displays, namely visual, auditory, and tactile feedback signals. The results indicated that synchronously using different sense organs to receive cadence feedback significantly affects hazard perception performance; direct visual information leads to the worst rider distraction, with a mean sensitivity to hazards (d') of -1.03. For systems with multiple interacting sensory aids, auditory aids were found to result in the greatest reduction in sensitivity to hazards (d' mean = -0.57), whereas tactile sensory aids reduced the degree of rider distraction (d' mean = -0.23). Our work complements existing work in this domain by advancing the understanding of how to design devices that deliver information subtly, thereby preventing disruption of a rider's perception of road hazards. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sogin, H.H.; Goldstein, R.J.
1960-02-01
Experiments were performed on mass transfer by forced convection from naphthalene strips on a flat plate to an air stream at ordinary temperature and pressure. Turbulence was induced in the boundary layer by means of a wire strip. In all cases there was a hydrodynamic starting length upstream of the strips. The ratio of this inert length to the total length was varied from about 0.80 to 0.96. The flow was practically incompressible with Reynolds number, based on the total length, varying from 175,000 to 486,000. The Schmidt number was 2.5. The experimental results fell in proximity to the Sebanmore » step function factor when they were reduced after the massmomentum analysis of Deissler and Loeffler for a surface of uniform vapor pressure. When Karman's formulation of the mass- momentum analogy was assumed, the data fell between the values predicted by the Seban and by the Rubesin expression for the step function factor. The results were well correlated by the Colburn analogy in conjunction with the Rubesin step function factor. (auth)« less
Effects of age and step length on joint kinetics during stepping task.
Bieryla, Kathleen A; Buffinton, Christine
2015-07-16
Following a balance perturbation, a stepping response is commonly used to regain support, and the distance of the recovery step can vary. To date, no other studies have examined joint kinetics in young and old adults during increasing step distances, when participants are required to bring their rear foot forward. Therefore, the purpose of this study was to examine age-related differences in joint kinetics with increasing step distance. Twenty young and 20 old adults completed the study. Participants completed a step starting from double support, at an initial distance equal to the individual's average step length. The distance was increased by 10% body height until an unsuccessful attempt. A one-way, repeated measures ANOVA was used to determine the effects of age on joint kinetics during the maximum step distance. A two-way, repeated measures, mixed model ANOVA was used to determine the effects of age, step distance, and their interaction on joint kinetics during the first three step distances for all participants. Young adults completed a significantly longer step than old adults. During the maximum step, in general, kinetic measures were greater in the young than in the old. As step distance increased, all but one kinetic measure increased for both young and old adults. This study has shown the ability to discriminate between young and old adults, and could potentially be used in the future to distinguish between fallers and non-fallers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Output power stability of a HCN laser using a stepping motor for the EAST interferometer system
NASA Astrophysics Data System (ADS)
Zhang, J. B.; Wei, X. C.; Liu, H. Q.; Shen, J. J.; Zeng, L.; Jie, Y. X.
2015-11-01
The HCN laser on EAST is a continuous wave glow discharge laser with 3.4 m cavity length and 120 mW power output at 337 μ m wavelength. Without a temperature-controlled system, the cavity length of the laser is very sensitive to the environmental temperature. An external power feedback control system is applied on the HCN laser to stabilize the laser output power. The feedback system is composed of a stepping motor, a PLC, a supervisory computer, and the corresponding control program. One step distance of the stepping motor is 1 μ m and the time response is 0.5 s. Based on the power feedback control system, a stable discharge for the HCN laser is obtained more than eight hours, which satisfies the EAST experiment.
Vector Graph Assisted Pedestrian Dead Reckoning Using an Unconstrained Smartphone
Qian, Jiuchao; Pei, Ling; Ma, Jiabin; Ying, Rendong; Liu, Peilin
2015-01-01
The paper presents a hybrid indoor positioning solution based on a pedestrian dead reckoning (PDR) approach using built-in sensors on a smartphone. To address the challenges of flexible and complex contexts of carrying a phone while walking, a robust step detection algorithm based on motion-awareness has been proposed. Given the fact that step length is influenced by different motion states, an adaptive step length estimation algorithm based on motion recognition is developed. Heading estimation is carried out by an attitude acquisition algorithm, which contains a two-phase filter to mitigate the distortion of magnetic anomalies. In order to estimate the heading for an unconstrained smartphone, principal component analysis (PCA) of acceleration is applied to determine the offset between the orientation of smartphone and the actual heading of a pedestrian. Moreover, a particle filter with vector graph assisted particle weighting is introduced to correct the deviation in step length and heading estimation. Extensive field tests, including four contexts of carrying a phone, have been conducted in an office building to verify the performance of the proposed algorithm. Test results show that the proposed algorithm can achieve sub-meter mean error in all contexts. PMID:25738763
Gjoka, Xhorxhi; Gantier, Rene; Schofield, Mark
2017-01-20
The goal of this study was to adapt a batch mAb purification chromatography platform for continuous operation. The experiments and rationale used to convert from batch to continuous operation are described. Experimental data was used to design chromatography methods for continuous operation that would exceed the threshold for critical quality attributes and minimize the consumables required as compared to batch mode of operation. Four unit operations comprising of Protein A capture, viral inactivation, flow-through anion exchange (AEX), and mixed-mode cation exchange chromatography (MMCEX) were integrated across two Cadence BioSMB PD multi-column chromatography systems in order to process a 25L volume of harvested cell culture fluid (HCCF) in less than 12h. Transfer from batch to continuous resulted in an increase in productivity of the Protein A step from 13 to 50g/L/h and of the MMCEX step from 10 to 60g/L/h with no impact on the purification process performance in term of contaminant removal (4.5 log reduction of host cell proteins, 50% reduction in soluble product aggregates) and overall chromatography process yield of recovery (75%). The increase in productivity, combined with continuous operation, reduced the resin volume required for Protein A and MMCEX chromatography by more than 95% compared to batch. The volume of AEX membrane required for flow through operation was reduced by 74%. Moreover, the continuous process required 44% less buffer than an equivalent batch process. This significant reduction in consumables enables cost-effective, disposable, single-use manufacturing. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Length and time for development of laminar flow in tubes following a step increase of volume flux
NASA Astrophysics Data System (ADS)
Chaudhury, Rafeed A.; Herrmann, Marcus; Frakes, David H.; Adrian, Ronald J.
2015-01-01
Laminar flows starting up from rest in round tubes are relevant to numerous industrial and biomedical applications. The two most common types are flows driven by an abruptly imposed constant pressure gradient or by an abruptly imposed constant volume flux. Analytical solutions are available for transient, fully developed flows, wherein streamwise development over the entrance length is absent (Szymanski in J de Mathématiques Pures et Appliquées 11:67-107, 1932; Andersson and Tiseth in Chem Eng Commun 112(1):121-133, 1992, respectively). They represent the transient responses of flows in tubes that are very long compared with the entrance length, a condition that is seldom satisfied in biomedical tube networks. This study establishes the entrance (development) length and development time of starting laminar flow in a round tube of finite length driven by a piston pump that produces a step change from zero flow to a constant volume flux for Reynolds numbers between 500 and 3,000. The flows are examined experimentally, using stereographic particle image velocimetry and computationally using computational fluid dynamics, and are then compared with the known analytical solutions for fully developed flow conditions in infinitely long tubes. Results show that step function volume flux start-up flows reach steady state and fully developed flow five times more quickly than those driven by a step function pressure gradient, a 500 % change when compared with existing estimates. Based on these results, we present new, simple guidelines for achieving experimental flows that are fully developed in space and time in realistic (finite) tube geometries. To a first approximation, the time to achieve steady spatially developing flow is nearly equal to the time needed to achieve steady, fully developed flow. Conversely, the entrance length needed to achieve fully developed transient flow is approximately equal to the length needed to achieve fully developed steady flow. Beyond this level of description, the numerical results reveal interaction between the effects of space and time development and nonlinear Reynolds number effects.
Maestas, Gabrielle; Hu, Jiyao; Trevino, Jessica; Chunduru, Pranathi; Kim, Seung-Jae; Lee, Hyunglae
2018-01-01
The use of visual feedback in gait rehabilitation has been suggested to promote recovery of locomotor function by incorporating interactive visual components. Our prior work demonstrated that visual feedback distortion of changes in step length symmetry entails an implicit or unconscious adaptive process in the subjects’ spatial gait patterns. We investigated whether the effect of the implicit visual feedback distortion would persist at three different walking speeds (slow, self-preferred and fast speeds) and how different walking speeds would affect the amount of adaption. In the visual feedback distortion paradigm, visual vertical bars portraying subjects’ step lengths were distorted so that subjects perceived their step lengths to be asymmetric during testing. Measuring the adjustments in step length during the experiment showed that healthy subjects made spontaneous modulations away from actual symmetry in response to the implicit visual distortion, no matter the walking speed. In all walking scenarios, the effects of implicit distortion became more significant at higher distortion levels. In addition, the amount of adaptation induced by the visual distortion was significantly greater during walking at preferred or slow speed than at the fast speed. These findings indicate that although a link exists between supraspinal function through visual system and human locomotion, sensory feedback control for locomotion is speed-dependent. Ultimately, our results support the concept that implicit visual feedback can act as a dominant form of feedback in gait modulation, regardless of speed. PMID:29632481
Design of resolution/power controllable Asynchronous Sigma-Delta Modulator
NASA Astrophysics Data System (ADS)
Deshmukh, Anita Arvind; Deshmukh, Raghvendra B.
2016-12-01
This paper presents the design of a Programmable Asynchronous Modulator (PAM) with field control of resolution and power. A novel variable hysteresis Schmitt Trigger (ST) is used for external programmability. Asynchronous Sigma-Delta Modulator (ASDM) implementation with external control voltages is proposed to supervise the resolution and power. This architecture with reduced circuit complexity considerably improves the earlier realizations by eliminating multiple current sources as well switched capacitor circuits and results in power saving up to 87 %. Proposed PAM design demonstrates an improved SNDR of 115 dB, DR of 96 dB, and power consumption below 280 μW. It illustrates Effective Number of Bits (ENOB) to 18.81 and Figure of Merit (FoM) to 0.15 fJ/conversion step. Modulator is implemented in Cadence UMC Hspice 0.18 μm CMOS analog technology. Off-chip PAM control for resolution/power performance has potential applications in battery operated ultra low power applications like IoT; where ADC is one of the major power consuming components. It offers the promise for an efficient performance with power saving.
Wang, Ling; Muralikrishnan, Bala; Rachakonda, Prem; Sawyer, Daniel
2017-01-01
Terrestrial laser scanners (TLS) are increasingly used in large-scale manufacturing and assembly where required measurement uncertainties are on the order of few tenths of a millimeter or smaller. In order to meet these stringent requirements, systematic errors within a TLS are compensated in-situ through self-calibration. In the Network method of self-calibration, numerous targets distributed in the work-volume are measured from multiple locations with the TLS to determine parameters of the TLS error model. In this paper, we propose two new self-calibration methods, the Two-face method and the Length-consistency method. The Length-consistency method is proposed as a more efficient way of realizing the Network method where the length between any pair of targets from multiple TLS positions are compared to determine TLS model parameters. The Two-face method is a two-step process. In the first step, many model parameters are determined directly from the difference between front-face and back-face measurements of targets distributed in the work volume. In the second step, all remaining model parameters are determined through the Length-consistency method. We compare the Two-face method, the Length-consistency method, and the Network method in terms of the uncertainties in the model parameters, and demonstrate the validity of our techniques using a calibrated scale bar and front-face back-face target measurements. The clear advantage of these self-calibration methods is that a reference instrument or calibrated artifacts are not required, thus significantly lowering the cost involved in the calibration process. PMID:28890607
Comparison of step-by-step kinematics in repeated 30m sprints in female soccer players.
van den Tillaar, Roland
2018-01-04
The aim of this study was to compare kinematics in repeated 30m sprints in female soccer players. Seventeen subjects performed seven 30m sprints every 30s in one session. Kinematics were measured with an infrared contact mat and laser gun, and running times with an electronic timing device. The main findings were that sprint times increased in the repeated sprint ability test. The main changes in kinematics during the repeated sprint ability test were increased contact time and decreased step frequency, while no change in step length was observed. The step velocity increased in almost each step until the 14, which occurred around 22m. After this, the velocity was stable until the last step, when it decreased. This increase in step velocity was mainly caused by the increased step length and decreased contact times. It was concluded that the fatigue induced in repeated 30m sprints in female soccer players resulted in decreased step frequency and increased contact time. Employing this approach in combination with a laser gun and infrared mat for 30m makes it very easy to analyse running kinematics in repeated sprints in training. This extra information gives the athlete, coach and sports scientist the opportunity to give more detailed feedback and help to target these changes in kinematics better to enhance repeated sprint performance.
Model Predictive Control-based gait pattern generation for wearable exoskeletons.
Wang, Letian; van Asseldonk, Edwin H F; van der Kooij, Herman
2011-01-01
This paper introduces a new method for controlling wearable exoskeletons that do not need predefined joint trajectories. Instead, it only needs basic gait descriptors such as step length, swing duration, and walking speed. End point Model Predictive Control (MPC) is used to generate the online joint trajectories based on these gait parameters. Real-time ability and control performance of the method during the swing phase of gait cycle is studied in this paper. Experiments are performed by helping a human subject swing his leg with different patterns in the LOPES gait trainer. Results show that the method is able to assist subjects to make steps with different step length and step duration without predefined joint trajectories and is fast enough for real-time implementation. Future study of the method will focus on controlling the exoskeletons in the entire gait cycle. © 2011 IEEE
An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, part 1
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Gutknecht, Martin H.; Nachtigal, Noel M.
1990-01-01
The nonsymmetric Lanczos method can be used to compute eigenvalues of large sparse non-Hermitian matrices or to solve large sparse non-Hermitian linear systems. However, the original Lanczos algorithm is susceptible to possible breakdowns and potential instabilities. We present an implementation of a look-ahead version of the Lanczos algorithm which overcomes these problems by skipping over those steps in which a breakdown or near-breakdown would occur in the standard process. The proposed algorithm can handle look-ahead steps of any length and is not restricted to steps of length 2, as earlier implementations are. Also, our implementation has the feature that it requires roughly the same number of inner products as the standard Lanczos process without look-ahead.
Controllable 3D architectures of aligned carbon nanotube arrays by multi-step processes
NASA Astrophysics Data System (ADS)
Huang, Shaoming
2003-06-01
An effective way to fabricate large area three-dimensional (3D) aligned CNTs pattern based on pyrolysis of iron(II) phthalocyanine (FePc) by two-step processes is reported. The controllable generation of different lengths and selective growth of the aligned CNT arrays on metal-patterned (e.g., Ag and Au) substrate are the bases for generating such 3D aligned CNTs architectures. By controlling experimental conditions 3D aligned CNT arrays with different lengths/densities and morphologies/structures as well as multi-layered architectures can be fabricated in large scale by multi-step pyrolysis of FePc. These 3D architectures could have interesting properties and be applied for developing novel nanotube-based devices.
Thermal characteristics of a B8.3 flare observed on July 04, 2009
NASA Astrophysics Data System (ADS)
Awasthi, Arun Kumar; Sylwester, Barbara; Sylwester, Janusz; Jain, Rajmal
We explore the temporal evolution of flare plasma parameters including temperature (T) - differential emission measure (DEM) relationship by analyzing high spectral and temporal cadence of X-ray emission in 1.6-8.0 keV energy band, recorded by SphinX (Polish) and Solar X-ray Spectrometer (SOXS; Indian) instruments, during a B8.3 flare which occurred on July 04, 2009. SphinX records X-ray emission in 1.2-15.0 keV energy band with the temporal and spectral cadence as good as 6 μs and 0.4 keV, respectively. On the other hand, SOXS provides X-ray observations in 4-25 keV energy band with the temporal and spectral resolution of 3 s and 0.7 keV, respectively. We derive the thermal plasma parameters during impulsive phase of the flare employing well-established Withbroe-Sylwester DEM inversion algorithm.
THE TAOS PROJECT: RESULTS FROM SEVEN YEARS OF SURVEY DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.-W.; Lehner, M. J.; Wang, J.-H.
2013-07-01
The Taiwanese-American Occultation Survey (TAOS) aims to detect serendipitous occultations of stars by small ({approx}1 km diameter) objects in the Kuiper Belt and beyond. Such events are very rare (<10{sup -3} events per star per year) and short in duration ({approx}200 ms), so many stars must be monitored at a high readout cadence. TAOS monitors typically {approx}500 stars simultaneously at a 5 Hz readout cadence with four telescopes located at Lulin Observatory in central Taiwan. In this paper, we report the results of the search for small Kuiper Belt objects (KBOs) in seven years of data. No occultation events weremore » found, resulting in a 95% c.l. upper limit on the slope of the faint end of the KBO size distribution of q = 3.34-3.82, depending on the surface density at the break in the size distribution at a diameter of about 90 km.« less
Modulated neural processing of Western harmony in folk musicians.
Brattico, Elvira; Tupala, Tiina; Glerean, Enrico; Tervaniemi, Mari
2013-07-01
A chord deviating from the conventions of Western tonal music elicits an early right anterior negativity (ERAN) in inferofrontal brain regions. Here, we tested whether the ERAN is modulated by expertise in more than one music culture, as typical of folk musicians. Finnish folk musicians and nonmusicians participated in electroencephalography recordings. The cadences consisted of seven chords. In incongruous cadences, the third, fifth, or seventh chord was a Neapolitan. The ERAN to the Neapolitans was enhanced in folk musicians compared to nonmusicians. Folk musicians showed an enhanced P3a for the ending Neapolitan. The Neapolitan at the fifth position was perceived differently and elicited a late enhanced ERAN in folk musicians. Hence, expertise in more than one music culture seems to modify chord processing by enhancing the ERAN to ambivalent chords and the P3a to incongruous chords, and by altering their perceptual attributes. Copyright © 2013 Society for Psychophysiological Research.
Olenšek, Andrej; Zadravec, Matjaž; Matjačić, Zlatko
2016-06-11
The most common approach to studying dynamic balance during walking is by applying perturbations. Previous studies that investigated dynamic balance responses predominantly focused on applying perturbations in frontal plane while walking on treadmill. The goal of our work was to develop balance assessment robot (BAR) that can be used during overground walking and to assess normative balance responses to perturbations in transversal plane in a group of neurologically healthy individuals. BAR provides three passive degrees of freedom (DoF) and three actuated DoF in pelvis that are admittance-controlled in such a way that the natural movement of pelvis is not significantly affected. In this study BAR was used to assess normative balance responses in neurologically healthy individuals by applying linear perturbations in frontal and sagittal planes and angular perturbations in transversal plane of pelvis. One way repeated measure ANOVA was used to statistically evaluate the effect of selected perturbations on stepping responses. Standard deviations of assessed responses were similar in unperturbed and perturbed walking. Perturbations in frontal direction evoked substantial pelvis displacement and caused statistically significant effect on step length, step width and step time. Likewise, perturbations in sagittal plane also caused statistically significant effect on step length, step width and step time but with less explicit impact on pelvis movement in frontal plane. On the other hand, except from substantial pelvis rotation angular perturbations did not have substantial effect on pelvis movement in frontal and sagittal planes while statistically significant effect was noted only in step length and step width after perturbation in clockwise direction. Results indicate that the proposed device can repeatedly reproduce similar experimental conditions. Results also suggest that "stepping strategy" is the dominant strategy for coping with perturbations in frontal plane, perturbations in sagittal plane are to greater extent handled by "ankle strategy" while angular perturbations in transversal plane do not pose substantial challenge for balance. Results also show that specific perturbation in general elicits responses that extend also to other planes of movement that are not directly associated with plane of perturbation as well as to spatio temporal parameters of gait.
Asymmetry of short-term control of spatio-temporal gait parameters during treadmill walking
NASA Astrophysics Data System (ADS)
Kozlowska, Klaudia; Latka, Miroslaw; West, Bruce J.
2017-03-01
Optimization of energy cost determines average values of spatio-temporal gait parameters such as step duration, step length or step speed. However, during walking, humans need to adapt these parameters at every step to respond to exogenous and/or endogenic perturbations. While some neurological mechanisms that trigger these responses are known, our understanding of the fundamental principles governing step-by-step adaptation remains elusive. We determined the gait parameters of 20 healthy subjects with right-foot preference during treadmill walking at speeds of 1.1, 1.4 and 1.7 m/s. We found that when the value of the gait parameter was conspicuously greater (smaller) than the mean value, it was either followed immediately by a smaller (greater) value of the contralateral leg (interleg control), or the deviation from the mean value decreased during the next movement of ipsilateral leg (intraleg control). The selection of step duration and the selection of step length during such transient control events were performed in unique ways. We quantified the symmetry of short-term control of gait parameters and observed the significant dominance of the right leg in short-term control of all three parameters at higher speeds (1.4 and 1.7 m/s).
Domain ordering of strained 5 ML SrTiO3 films on Si(001)
NASA Astrophysics Data System (ADS)
Ryan, P.; Wermeille, D.; Kim, J. W.; Woicik, J. C.; Hellberg, C. S.; Li, H.
2007-05-01
High resolution x-ray diffraction data indicate ordered square shaped coherent domains, ˜1200Å in length, coexisting with longer, ˜9500Å correlated regions in highly strained 5 ML SrTiO3 films grown on Si(001). These long range film structures are due to the Si substrate terraces defined by the surface step morphology. The silicon surface "step pattern" is comprised of an "intrinsic" terrace length from strain relaxation and a longer "extrinsic" interstep distance due to the surface miscut.
Tang, Kit Tzu; Richardson, Alison M; Maxwell, Douglas; Spence, William D; Stansfield, Benedict W
2013-12-01
To explore the use of an activity monitor (AM) to objectively characterize free-living physical activity (F-LPA) in children with mobility impairment resulting from cerebral palsy (CP). First, a validation study compared outcomes from the AM with video evidence. Second, multiday F-LPA was characterized. Relationships between laboratory measures and F-LPA were explored. The evaluation study was conducted in a laboratory environment. F-LPA monitoring was conducted in the participants' free-living environment. Convenience sample of ambulatory children (N=15; 11 boys, 4 girls) aged 5 to 17 years with CP undergoing gait analysis. Not applicable. Accuracy of the AM for sitting/lying time, upright time, stepping time, and strides taken. Daily volumes of F-LPA of children with CP. AM outcomes in comparison with video-based analysis were (mean ± SD) 97.4%±2.7%, 101.1%±1.5%, 99.5%±6.6%, 105.6%±15.8%, and 103.8%±10.1% for sitting/lying time, upright time, standing time, stepping time, and stride count, respectively. Participants' daily F-LPA demonstrated considerable variation: mean standing time ± SD, 2.33±.96h/d; mean stepping time ± SD, 1.68±.86h/d; mean steps per day ± SD, 8477±4528; and mean sit-to-stand transitions per day ± SD, 76±49. Laboratory-measured cadence and mobility level were related to F-LPA, but not directly. The AM demonstrated excellent ability to determine sitting/lying and upright times in children with CP. Stepping time and stride count had lower levels of agreement with video-based analysis but were comparable to findings in previous studies. Crouch gait and toe walking had an adverse effect on outcomes. The F-LPA data provided additional information on children's performance not related to laboratory measures, demonstrating the added value of using this objective measurement technique. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Patel, Prakruti J; Bhatt, Tanvi
2016-10-01
We examined whether aging with and without a cerebral lesion such as stroke affects modulation of reactive balance response for recovery from increasing intensity of sudden slip-like stance perturbations. Ten young adults, older age-match adults and older chronic stroke survivors were exposed to three different levels of slip-like perturbations, level 1 (7.75m/s(2)), Level II (12.00m/s(2)) and level III (16.75m/s(2)) in stance. The center of mass (COM) state stability was computed as the shortest distance of the instantaneous COM position and velocity relative to base of support (BOS) from a theoretical threshold for backward loss of balance (BLOB). The COM position (XCOM/BOS) and velocity (ẊCOM/BOS) relative to BOS at compensatory step touchdown, compensatory step length and trunk angle at touchdown were also recorded. At liftoff, stability reduced with increasing perturbation intensity across all groups (main effect of intensity p<0.05). At touchdown, while the young group showed a linear improvement in stability with increasing perturbation intensity, such a trend was absent in other groups (intensity×group interaction, p<0.05). Between-group differences in stability at touchdown were thus observed at levels II and III. Further, greater stability at touchdown positively correlated with anterior XCOM/BOS however not with ẊCOM/BOS. Young adults maintained anterior XCOM/BOS by increasing compensatory step length and preventing greater trunk extension at higher perturbation intensities. The age-match group attempted to increase step length from intensity I to II to maintain stability however could not further increase step length at intensity III, resulting in lower stability on this level compared with the young group. Stroke group on the other hand was unable to modulate compensatory step length or control trunk extension at higher perturbation intensities resulting in reduced stability on levels II and III compared with the other groups. The findings reflect impaired modulation of recovery response with increasing intensity of sudden perturbations among stroke survivors compared with their healthy counter parts. Thus, aging superimposed with a cortical lesion could further impair reactive balance control, potentially contributing toward a higher fall risk in older stroke survivors. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
...-step method for determining the status of fish stocks in the Southeast Region. SEDAR is a three step... information on life history characteristics, catch statistics, discard estimates, length and age composition...
Borzooeian, Zahra; Taslim, Mohammad E; Ghasemi, Omid; Rezvani, Saina; Borzooeian, Giti; Nourbakhsh, Amirhasan
2018-01-01
Parametric separation of carbon nanotubes, especially based on their length is a challenge for a number of nano-tech researchers. We demonstrate a method to combine bio-conjugation, SDS-PAGE, and silver staining in order to separate carbon nanotubes on the basis of length. Egg-white lysozyme, conjugated covalently onto the single-walled carbon nanotubes surfaces using carbodiimide method. The proposed conjugation of a biomolecule onto the carbon nanotubes surfaces is a novel idea and a significant step forward for creating an indicator for length-based carbon nanotubes separation. The conjugation step was followed by SDS-PAGE and the nanotube fragments were precisely visualized using silver staining. This high precision, inexpensive, rapid and simple separation method obviates the need for centrifugation, additional chemical analyses, and expensive spectroscopic techniques such as Raman spectroscopy to visualize carbon nanotube bands. In this method, we measured the length of nanotubes using different image analysis techniques which is based on a simplified hydrodynamic model. The method has high precision and resolution and is effective in separating the nanotubes by length which would be a valuable quality control tool for the manufacture of carbon nanotubes of specific lengths in bulk quantities. To this end, we were also able to measure the carbon nanotubes of different length, produced from different sonication time intervals.
Tarantino, Mary E; Bilotti, Katharina; Huang, Ji; Delaney, Sarah
2015-08-21
Flap endonuclease 1 (FEN1) is a structure-specific nuclease responsible for removing 5'-flaps formed during Okazaki fragment maturation and long patch base excision repair. In this work, we use rapid quench flow techniques to examine the rates of 5'-flap removal on DNA substrates of varying length and sequence. Of particular interest are flaps containing trinucleotide repeats (TNR), which have been proposed to affect FEN1 activity and cause genetic instability. We report that FEN1 processes substrates containing flaps of 30 nucleotides or fewer at comparable single-turnover rates. However, for flaps longer than 30 nucleotides, FEN1 kinetically discriminates substrates based on flap length and flap sequence. In particular, FEN1 removes flaps containing TNR sequences at a rate slower than mixed sequence flaps of the same length. Furthermore, multiple-turnover kinetic analysis reveals that the rate-determining step of FEN1 switches as a function of flap length from product release to chemistry (or a step prior to chemistry). These results provide a kinetic perspective on the role of FEN1 in DNA replication and repair and contribute to our understanding of FEN1 in mediating genetic instability of TNR sequences. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.