Sample records for cadherin expression pattern

  1. Cadherins in cerebellar development: translation of embryonic patterning into mature functional compartmentalization.

    PubMed

    Redies, Christoph; Neudert, Franziska; Lin, Juntang

    2011-09-01

    Cadherins are cell adhesion molecules with multiple morphogenic functions in brain development, for example, in neuroblast migration and aggregation, axon navigation, neural circuit formation, and synaptogenesis. More than 100 members of the cadherin superfamily are expressed in the developing and mature brain. Most of the cadherins investigated, in particular classic cadherins and δ-protocadherins, are expressed in the cerebellum. For several cadherin subtypes, expression begins at early embryonic stages and persists until mature stages of cerebellar development. At intermediate stages, distinct Purkinje cell clusters exhibit unique rostrocaudal and mediolateral expression profiles for each cadherin. In the chicken, mouse, and other species, the Purkinje cell clusters are separated by intervening raphes of migrating granule cells. This pattern of Purkinje cell clusters/raphes is, at least in part, continuous with the parasagittal striping pattern that is apparent in the mature cerebellar cortex, for example, for zebrin II/aldolase C. Moreover, subregions of the deep cerebellar nuclei, vestibular nuclei and the olivary complex also express cadherins differentially. Neuroanatomical evidence suggests that the nuclear subregions and cortical domains that express the same cadherin subtype are connected to each other, to form neural subcircuits of the cerebellar system. Cadherins thus provide a molecular code that specifies not only embryonic structures but also functional cerebellar compartmentalization. By following the implementation of this code, it can be revealed how mature functional architecture emerges from embryonic patterning during cerebellar development. Dysfunction of some cadherins is associated with psychiatric diseases and developmental impairments and may also affect cerebellar function.

  2. Differential cadherin expression in the developing postnatal telencephalon of a New World monkey.

    PubMed

    Matsunaga, Eiji; Nambu, Sanae; Oka, Mariko; Iriki, Atsushi

    2013-12-01

    Cadherins are cell adhesion molecules widely expressed in the nervous system, where they play various roles in neural patterning, nuclei formation, axon guidance, and synapse formation and function. Although many published articles have reported on cadherin expression in rodents and ferrets, there are limited data on their expression in primate brains. In this study, in situ hybridization analysis was performed for 10 cadherins [nine classic cadherins (Cdh4, -6, -7, -8, -9, -10, -11, -12, and -20) and T-cadherin (Cdh13)] in the developing postnatal telencephalon of the common marmoset (Callithrix jacchus). Each cadherin showed broad expression in the cerebral cortex, basal ganglia, amygdala, and hippocampus, as previously shown in the rodent brain. However, detailed expression patterns differed between rodents and marmosets. In contrast to rodents, cadherin expression was reduced overall and localized to restricted areas of the brain during the developmental process, suggesting that cadherins are more crucially involved in developmental or maturation processes rather than in neural functioning. These results also highlight the possibility that restricted/less redundant cadherin expression allows primate brains to generate functional diversity among neurons, allowing morphological and functional differences between rodents and primates. Copyright © 2013 Wiley Periodicals, Inc.

  3. E-cadherin can replace N-cadherin during secretory-stage enamel development.

    PubMed

    Guan, Xiaomu; Bidlack, Felicitas B; Stokes, Nicole; Bartlett, John D

    2014-01-01

    N-cadherin is a cell-cell adhesion molecule and deletion of N-cadherin in mice is embryonic lethal. During the secretory stage of enamel development, E-cadherin is down-regulated and N-cadherin is specifically up-regulated in ameloblasts when groups of ameloblasts slide by one another to form the rodent decussating enamel rod pattern. Since N-cadherin promotes cell migration, we asked if N-cadherin is essential for ameloblast cell movement during enamel development. The enamel organ, including its ameloblasts, is an epithelial tissue and for this study a mouse strain with N-cadherin ablated from epithelium was generated. Enamel from wild-type (WT) and N-cadherin conditional knockout (cKO) mice was analyzed. μCT and scanning electron microscopy showed that thickness, surface structure, and prism pattern of the cKO enamel looked identical to WT. No significant difference in hardness was observed between WT and cKO enamel. Interestingly, immunohistochemistry revealed the WT and N-cadherin cKO secretory stage ameloblasts expressed approximately equal amounts of total cadherins. Strikingly, E-cadherin was not normally down-regulated during the secretory stage in the cKO mice suggesting that E-cadherin can compensate for the loss of N-cadherin. Previously it was demonstrated that bone morphogenetic protein-2 (BMP2) induces E- and N-cadherin expression in human calvaria osteoblasts and we show that the N-cadherin cKO enamel organ expressed significantly more BMP2 and significantly less of the BMP antagonist Noggin than did WT enamel organ. The E- to N-cadherin switch at the secretory stage is not essential for enamel development or for forming the decussating enamel rod pattern. E-cadherin can substitute for N-cadherin during these developmental processes. Bmp2 expression may compensate for the loss of N-cadherin by inducing or maintaining E-cadherin expression when E-cadherin is normally down-regulated. Notably, this is the first demonstration of a natural endogenous increase in E-cadherin expression due to N-cadherin ablation in a healthy developing tissue.

  4. Comparative analysis of cadherin expression and connectivity patterns in the cerebellar system of ferret and mouse.

    PubMed

    Neudert, Franziska; Nuernberger, Krishna-K Monique; Redies, Christoph

    2008-12-20

    The cerebellum shows remarkable variations in the relative size of its divisions among vertebrate species. In the present study, we compare the cerebella of two mammals (ferret and mouse) by mapping the expression of three cadherins (cadherin-8, protocadherin-7, and protocadherin-10) at similar postnatal stages. The three cadherins are expressed differentially in parasagittal stripes in the cerebellar cortex, in the portions of the deep cerebellar nuclei, in the divisions of the inferior olivary nucleus, and in the lateral vestibular nucleus. The expression profiles suggest that the cadherin-positive structures are interconnected. The expression patterns resemble each other in ferret and mouse, although some differences can be observed. The general resemblance indicates that cerebellar organization is based on a common set of embryonic divisions in the two species. Consequently, the large differences in cerebellar morphology between the two species are more likely caused by differential growth of these embryonic divisions than by differences in early embryonic patterning. Based on the cadherin expression patterns, a model of corticonuclear projection territories in ferret and mouse is proposed. In summary, our results indicate that the cerebellar systems of rodents and carnivores display a relatively large degree of similarity in their molecular and functional organization.

  5. Paradoxical expression of E-cadherin in prostatic bone metastases.

    PubMed

    Bryden, A A; Freemont, A J; Clarke, N W; George, N J

    1999-12-01

    To determine whether the calcium-dependent cell adhesion molecule E-cadherin is expressed in metastatic deposits of prostate cancer in bone. Ten bone biopsies containing metastatic deposits of untreated prostatic cancer were obtained and immunohistochemically stained for E-cadherin with the monoclonal antibody HECD-1, using the streptavidin-biotin complex technique. Benign prostatic tissue was used as the control. Of the 10 specimens, nine showed positive expression of E-cadherin, graded as strong in four. E-cadherin expression was strongest in well-differentiated metastases and decreased with increasing tumour grade. In some specimens there were mixed patterns of expression. E-cadherin is strongly expressed in prostatic bone metastases and the degree of expression appears to reflect local tumour grade. This suggests that loss of E-cadherin expression may not be critically linked to metastatic potential.

  6. High expression of P-cadherin is significantly associated with poor prognosis in patients with non-small-cell lung cancer.

    PubMed

    Imai, Sachiko; Kobayashi, Masashi; Takasaki, Chihiro; Ishibashi, Hironori; Okubo, Kenichi

    2018-04-01

    Placental (P)-cadherin expression is associated with malignant phenotype of cancer cell. The loss of E-cadherin has been thought to play a key role in tumor progression in several cancers. In this study, we aimed to clarify the role of P-cadherin expression in non-small-cell lung cancer (NSCLC). NSCLC patients (n = 172) were enrolled in this study; among them, 107 harbored adenocarcinomas, and 65 had squamous cell carcinomas. We examined P-cadherin and E-cadherin expression by immunohistochemical analysis and assessed the associations between each cadherin expression and both cadherin expression patterns with clinicopathological factors and prognosis. To investigate the pathway to acquire tumor progression associated with P-cadherin and E-cadherin, we examined p120 catenin localization by immunohistochemical analysis. High P-cadherin expression was significantly associated with lymphatic metastasis, pathological stage, and Ki-67 proliferation index (P < .05, respectively). Low E-cadherin expression was significantly associated with maximum standardized uptake value, lymphatic metastasis, and pathological stage (P < .05, respectively). The cytoplasmic p120 catenin localization was associated with the low E-cadherin and high P-cadherin expression group (P < .001). High P-cadherin expression was associated with shorter disease-free survival (P = .044) and shorter overall survival (OS; P = .044). The low E-cadherin and high P-cadherin expression group was associated with shorter OS (P = .024). High P-cadherin expression was associated with tumor progression and poor patient survival in NSCLC. In these patients, the low E-cadherin expression might be associated with tumor progression involving cytoplasmic p120 catenin. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. [Immunohistochemical expression of the E-cadherin-catenin complex in gastric cancer].

    PubMed

    Guzmán, Pablo; Araya, Juan; Villaseca, Miguel; Roa, Iván; Melo, Angélica; Muñoz, Sergio; Roa, Juan

    2006-08-01

    The E-cadherin/catenin complex plays an essential role in the control of epithelial differentiation. Abnormal expression in tumors correlates with histological grade, advanced stage and poor prognosis. To evaluate the expression pattern of E-cadherin/catenin complex in gastric carcinoma and analyze their association with tumor clinicopathological features and patient survival. Inmunohistochemical staining of E-cadherin, alpha and ss-catenin was performed from paraffin specimens of 65 gastric carcinomas. Abnormal expression of E-cadherin, alpha and ss-catenin was demonstrated in 82%, 85% and 88% of gastric carcinomas, respectively. There was a significant correlation between abnormal expression and Lauren pathological classification and depth of infiltration, but not with tumor stage, positive lymph node metastases and survival. Abnormal expression of E-cadherin, alpha and ss-catenin occurs frequently in gastric carcinoma and correlates with histological grade.

  8. Mucinous Colorectal Adenocarcinoma: Influence of EGFR and E-Cadherin Expression on Clinicopathologic Features and Prognosis.

    PubMed

    Foda, Abd AlRahman M; AbdelAziz, Azza; El-Hawary, Amira K; Hosni, Ali; Zalata, Khalid R; Gado, Asmaa I

    2015-08-01

    Previous studies have shown conflicting results on epidermal growth factor receptor (EGFR) and E-cadherin expression in colorectal carcinoma and their prognostic significance. To the best of our knowledge, this study is the first to investigate EGFR and E-cadherin expression, interrelation and relation to clinicopathologic, histologic parameters, and survival in rare colorectal mucinous adenocarcinoma (MA). In this study, we studied tumor tissue specimens from 150 patients with colorectal MA and nonmucinous adenocarcinoma (NMA). High-density manual tissue microarrays were constructed using modified mechanical pencil tips technique, and immunohistochemistry for EGFR and E-cadherin was performed. All relations were analyzed using established statistical methodologies. NMA expressed EGFR and E-cadherin in significantly higher rates with significant heterogenous pattern than MA. EGFR and E-cadherin positivity rates were significantly interrelated in both NMA and MA groups. In the NMA group, high EGFR expression was associated with old age, male sex, multiplicity of tumors, lack of mucinous component, and association with schistosomiasis. However, in the MA group, high EGFR expression was associated only with old age and MA subtype rather than signet ring carcinoma subtype. Conversely, high E-cadherin expression in MA cases was associated with old age, fungating tumor configuration, MA subtype, and negative intratumoral lymphocytic response. However, in the NMA cases, none of these factors was statistically significant. In a univariate analysis, neither EGFR nor E-cadherin expression showed a significant impact on disease-free or overall survival. Targeted therapy against EGFR and E-cadherin may not be useful in patients with MA. Neither EGFR nor E-cadherin is an independent prognostic factor in NMA or MA.

  9. Heterogeneous Cadherin Expression and Multicellular Aggregate Dynamics in Ovarian Cancer Dissemination.

    PubMed

    Klymenko, Yuliya; Johnson, Jeffrey; Bos, Brandi; Lombard, Rachel; Campbell, Leigh; Loughran, Elizabeth; Stack, M Sharon

    2017-07-01

    Epithelial ovarian carcinoma spreads via shedding of cells and multicellular aggregates (MCAs) from the primary tumor into peritoneal cavity, with subsequent intraperitoneal tumor cell:mesothelial cell adhesion as a key early event in metastatic seeding. Evaluation of human tumor extracts and tissues confirms that well-differentiated ovarian tumors express abundant E-cadherin (Ecad), whereas advanced lesions exhibit upregulated N-cadherin (Ncad). Two expression patterns are observed: "mixed cadherin," in which distinct cells within the same tumor express either E- or Ncad, and "hybrid cadherin," wherein single tumor cell(s) simultaneously expresses both cadherins. We demonstrate striking cadherin-dependent differences in cell-cell interactions, MCA formation, and aggregate ultrastructure. Mesenchymal-type Ncad+ cells formed stable, highly cohesive solid spheroids, whereas Ecad+ epithelial-type cells generated loosely adhesive cell clusters covered by uniform microvilli. Generation of "mixed cadherin" MCAs using fluorescently tagged cell populations revealed preferential sorting into cadherin-dependent clusters, whereas mixing of cell lines with common cadherin profiles generated homogeneous aggregates. Recapitulation of the "hybrid cadherin" Ecad+/Ncad+ phenotype, via insertion of the CDH2 gene into Ecad+ cells, resulted in the ability to form heterogeneous clusters with Ncad+ cells, significantly enhanced adhesion to organotypic mesomimetic cultures and peritoneal explants, and increased both migration and matrix invasion. Alternatively, insertion of CDH1 gene into Ncad+ cells greatly reduced cell-to-collagen, cell-to-mesothelium, and cell-to-peritoneum adhesion. Acquisition of the hybrid cadherin phenotype resulted in altered MCA surface morphology with increased surface projections and increased cell proliferation. Overall, these findings support the hypothesis that MCA cadherin composition impacts intraperitoneal cell and MCA dynamics and thereby affects ultimate metastatic success. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Disruption of basement membrane, extracellular matrix metalloproteinases and E-cadherin in renal-cell carcinoma.

    PubMed

    Morell-Quadreny, L; Rubio, Jose; Lopez-Guerrero, Jose Antonio; Casanova, Juan; Ramos, D; Iborra, Inmaculada; Solsona, Eduardo; Llombart-Bosch, A

    2003-01-01

    A retrospective study was performed to determine the prognostic value of Basement Membrane (BM) integrity, Matrix Metalloproteinases (MMPs) and E-Cadherin expression in renal cell carcinoma (RCC). An immunohistochemical study on laminin and collagen IV, MMPs 1 and 2, and E-Cadherin was carried out on 71 RCCs. BM fragmentation was considered taking 75% as a cut-off. MMP 1 and MMP2 immunostaining, as well as E-Cadherin was considered taking 25% as a cut-off. An inverse relationship was seen between E-Cadherin with laminin, collagen IV and MMPs. More than 75% loss of laminin, collagen IV and E-Cadherin, as well as higher expression of MMPs, were associated with symptoms, tumoral size and worse grade. Loss of collagen IV and E-Cadherin were of prognostic value. Both BM and E-Cadherin are good prognostic markers. MMPs patterns show a relationship between BM proteins and E-Cadherin, but evaluation is more time-consuming and provide no better prognostication; consequently they are not useful in routine clinical applications.

  11. Expression of adhesion molecules and cytokeratin 20 in merkel cell carcinomas.

    PubMed

    Tanaka, Yasushi; Sano, Toshiaki; Qian, Zhi Rong; Hirokawa, Mitsuyoshi

    2004-01-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine carcinoma of the skin. MCCs often show characteristic paranuclear dot-like immunopositivity for cytokeratin 20 (CK20), a globular aggregation of CK20 intermediate filaments. These aggregates typically form rhabdoid features and fibrous bodies and may be associated with a down-regulation in adhesion molecules (AMs). To date, the relationship between the expression of AMs and CK20 and clinicopathological findings in MCC has not been well examined. In this immunohistochemical study, we assessed the expression of AMs, CK20, and chromogranin A (CgA) on MCCs in 8 men and 23 women with this disease, and also characterized their clinicopathological features. This study is the largest of its kind that has been undertaken to date in Japanese patients. Compared to normal tissue, E-cadherin and alpha- and beta-catenins showed reduced membranous expression in 95.7%, 46.7%, and 45.2% of MCCs, respectively. Nuclear E-cadherin localization was seen in four tumors, all of which predominantly showed a CK20 dot pattern. However, there was no significant relationship between the membranous expression of AMs and a CK20 dot pattern. E-cadherin expression was significantly lower in tumors of > or =2 cm, and tumors negative for E-cadherin more frequently developed outside of the head and neck than within those regions. CgA was more intensely expressed in tumors with uniform nuclei and a dense lymphocytic infiltrate than in those that showed pleomorphisms and that had few, if any, infiltrating lymphocytes. These findings suggest that MCCs have a reduced expression of AMs and that down-regulation of E-cadherin expression may correlate with increased tumor aggressiveness. The fact that no significant relationship was demonstrable between the membranous expression of AMs and the CK20 expression pattern suggests that the mechanism of aggregation of intermediate filaments may be different in different types of tumors.

  12. Hypoxia reduces the E-cadherin expression and increases OSCC cell migration regardless of the E-cadherin methylation profile.

    PubMed

    Domingos, Patrícia Luciana Batista; Souza, Marcela Gonçalves; Guimarães, Talita Antunes; Santos, Eliane Sobrinho; Farias, Lucyana Conceição; de Carvalho Fraga, Carlos Alberto; Jones, Kimberly Marie; Santos, Sérgio Henrique Souza; de Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena

    2017-05-01

    The purpose of the current study is to investigate the association between E-cadherin methylation status, hypoxia and OSCC. HaCat and SCC9 cell lines were submitted to hypoxic treatment, followed by methylation profile analysis (MS-PCR) and analysis of the expression of mRNA gene E-cadherin (RT-PCR). Study group samples comprise individuals affected by potentially malignant lesions Potential Malignant Oral Lesion (PMOL, n=18) and oral squamous cell carcinoma (OSCC, n=28). The control group oral mucosa (OM, n=15) of patients with an oral mucocele. Cell migration ability was evaluated a scratch wound assay in SCC9 and HaCat cell lines RESULTS: E-cadherin mRNA expression in the cell lines SCC9 and HaCat was significantly reduced under hypoxia, regardless of the methylation profile, when compared to the control group. No differences in methylation profile of the E-cadherin were observed among the groups OM, PMOL and OSCC. HaCat and SCC9 presented increases in cell migration rates under hypoxia. The current study demonstrates that hypoxia reduces E-cadherin expression and increase cell migration, regardless of the methylation profile. Additionally, no differences in E-cadherin methylation patterns were observed among OM, PMOL and OSCC. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Relevance of MicroRNA200 Family and MicroRNA205 for Epithelial to Mesenchymal Transition and Clinical Outcome in Biliary Tract Cancer Patients

    PubMed Central

    Urbas, Romana; Mayr, Christian; Klieser, Eckhard; Fuereder, Julia; Bach, Doris; Stättner, Stefan; Primavesi, Florian; Jaeger, Tarkan; Stanzer, Stefanie; Ress, Anna Lena; Löffelberger, Magdalena; Wagner, Andrej; Berr, Frieder; Ritter, Markus; Pichler, Martin; Neureiter, Daniel; Kiesslich, Tobias

    2016-01-01

    Extensive stromal interaction is one reason for the dismal outcome of biliary tract cancer (BTC) patients. Epithelial to mesenchymal transition (EMT) is involved in tumor invasion and metastasis and is partly regulated by microRNAs (miRs). This study explores the expression of anti-EMT miR200 family (miR141, −200a/b/c, −429) and miR205 as well as the EMT-related proteins E-cadherin and vimentin in a panel of BTC cell lines and clinical specimens by quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry, respectively. MicroRNA expression was correlated to (i) the expression patterns of E-cadherin and vimentin; (ii) clinicopathological characteristics; and (iii) survival data. MicroRNA-200 family and miR205 were expressed in all BTC cells and clinical specimens. E-cadherin and vimentin showed a mutually exclusive expression pattern in both, in vitro and in vivo. Expression of miR200 family members positively correlated with E-cadherin and negatively with vimentin expression in BTC cells and specimens. High expression of miR200 family members (but not miR205) and E-cadherin was associated with longer survival, while low miR200 family and high vimentin expression was a predictor of unfavorable survival. Overall, the current study demonstrates the relevance of the miR200 family in EMT of BTC tumors and suggests these miRs as predictors for positive outcome. PMID:27941621

  14. Increased epithelial cadherin expression among Japanese intestinal-type gastric cancers compared with specimens from American patients of European descent.

    PubMed

    Theuer, Charles P; Al-Kuran, Rasha; Akiyama, Yoshiyuki; Okumura, Minoru; Ziogas, Al; Carpenter, Philip M

    2006-04-01

    The different patterns of gastric cancer in the Far East and West have evolved to the extent that it has been suggested that the disease in Japan is biologically less aggressive than in the West. We studied paraffin-embedded, formalin-fixed tissue blocks from Japanese patients and American patients of European descent who had undergone gastrectomy for gastric cancer not involving the gastroesophageal junction. Specimens were staged (T stage), graded (Lauren classification), and biomarker expression (epithelial cadherin [E-cadherin], c-erbB2, Ki67, and p53) was quantified using immunohistochemistry without knowledge of the country of origin. E-cadherin was expressed in 49 per cent of malignant cells from Japanese specimens compared with 27 per cent of malignant cells from American specimens (P = 0.04). The expression of E-cadherin on diffuse cancers from the two countries was similar (34.4 in Japanese vs 41.5 in American, P = 0.92). E-cadherin expression, however, was significantly higher among intestinal cancers from the two countries: 56.3 per cent of cells from intestinal or mixed cancers from Japan (n = 32) expressed E-cadherin compared with 22.2 per cent of American specimens (n = 12; P = 0.008).-c-erbB2 was expressed on a higher proportion of malignant cells from American specimens (30% vs 22%; P = 0.20). E-cadherin expression, a favorable prognostic factor, is more common in Japanese intestinal-type gastric cancer not involving the gastroesophageal junction. If the biology of gastric cancer in the Far East is less aggressive than that in the United States, it is likely that treatments need to be individualized.

  15. E- and P-cadherin expression during murine hair follicle morphogenesis and cycling.

    PubMed

    Müller-Röver, S; Tokura, Y; Welker, P; Furukawa, F; Wakita, H; Takigawa, M; Paus, R

    1999-08-01

    The role of adhesion molecules in the control of hair follicle (HF) morphogenesis, regression and cycling is still rather enigmatic. Since the adhesion molecules E- and P-cadherin (Ecad and Pcad) are functionally important, e.g. during embryonic pattern formation, we have studied their expression patterns during neonatal HF morphogenesis and cycling in C57/BL6 mice by immunohistology and semi-quantitative RT-PCR. The expression of both cadherins was strikingly hair cycle-dependent and restricted to distinct anatomical HF compartments. During HF morphogenesis, hair bud keratinocytes displayed strong Ecad and Pcad immunoreactivity (IR). While neonatal epidermis showed Ecad IR in all epidermal layers, Pcad IR was restricted to the basal layer. During later stages of HF morphogenesis and during anagen IV-VI of the adolescent murine hair cycle, the outer root sheath showed strong E- and Pcad IR. Instead, the outermost portion of the hair matrix and the inner root sheath displayed isolated Ecad IR, while the innermost portion of the hair matrix exhibited isolated Pcad IR. During telogen, all epidermal and follicular keratinocytes showed strong Ecad IR. This is in contrast to Pcad, whose IR was stringently restricted to matrix and secondary hair germ keratinocytes which are in closest proximity to the dermal papilla. These findings suggest that isolated or combined E- and/or Pcad expression is involved in follicular pattern formation by segregating HF keratinocytes into functionally distinct subpopulations; most notably, isolated Pcad expression may segregate those hair matrix keratinocytes into one functional epithelial tissue unit, which is particularly susceptible to growth control by dermal papilla-derived morphogens. The next challenge is to define which secreted agents implicated in hair growth control modulate these follicular cadherin expression patterns, and to define how these basic parameters of HF topobiology are altered during common hair growth disorders.

  16. Early development of the Drosophila brain: V. Pattern of postembryonic neuronal lineages expressing DE-cadherin.

    PubMed

    Dumstrei, Karin; Wang, Fay; Nassif, Claude; Hartenstein, Volker

    2003-01-20

    The Drosophila E-cadherin homolog, DE-cadherin, is expressed postembryonically by brain neuroblasts and their lineages of neurons ("secondary lineages"). DE-cadherin appears in neuroblasts as soon as they can be identified by their increase in size and then remains expressed uninterruptedly throughout larval life. DE-cadherin remains transiently expressed in the cell bodies and axons of neurons produced by neuroblast proliferation. In general, axons of neurons belonging to one lineage form tight bundles. The trajectories of these bundles are correlated with the location of the neuronal lineages to which they belong. Thus, axon bundles of lineages that are neighbors in the cortex travel parallel to each other and reach the neuropile at similar positions. It is, therefore, possible to assign coherent groups of neuroblasts and their lineages to the individual neuropile compartments and long axon tracts introduced in the accompanying articles (Nassif et al. [2003] J Comp Neurol 455:417-434; Younossi-Hartenstein et al. [2003] J Comp Neurol 455:435-450). In this study, we have reconstructed the pattern of secondary lineages and their projection in relationship to the compartments and Fasciclin II-positive long axon tracts. Based on topology and axonal trajectory, the lineages of the central brain can be subdivided into 11 groups that can be followed throughout successive larval stages. The map of larval lineages and their axonal projection will be important for future studies on postembryonic neurogenesis in Drosophila. It also lays a groundwork for investigating the role of DE-cadherin in larval brain development. Copyright 2002 Wiley-Liss, Inc.

  17. Lacking hypoxia-mediated downregulation of E-cadherin in cancers of the uterine cervix.

    PubMed

    Mayer, A; Höckel, M; Schlischewsky, N; Schmidberger, H; Horn, L-C; Vaupel, P

    2013-02-05

    Experimental studies have established a causal connection between tumour hypoxia, hypoxia-associated proteome changes and downregulation of E-cadherin, the final common pathway of epithelial-to-mesenchymal transition (EMT). Our study aimed at elucidating the interrelationship of these processes in cancers of the uterine cervix in vivo. Tumour oxygenation was assessed in 48 squamous cell carcinomas (SCC) of the uterine cervix using polarographic needle electrodes. The expression pattern of E-cadherin was investigated by immunohistochemistry and western blotting, and was compared with that of the hypoxia-inducible proteins glucose transporter (GLUT)-1 and carbonic anhydrase (CA) IX in biopsy specimens of the oxygenation measurement tracks. The majority of cervical cancers (52%) were E-cadherin positive, with a complete absence of the antigen in only 10% of the tumours. No correlation was found between the level of E-cadherin expression and the oxygenation status (mean pO(2), median pO(2) and hypoxic fractions). In patients showing partial expression of E-cadherin (38%), staining was not preferentially diminished in GLUT-1- or CA IX-positive areas, and loss of E-cadherin occurred independently of tumour cell scattering. Our data provide no evidence in favour of a hypoxia-induced EMT as a mechanistic basis of cervical cancer invasiveness.

  18. Lacking hypoxia-mediated downregulation of E-cadherin in cancers of the uterine cervix

    PubMed Central

    Mayer, A; Höckel, M; Schlischewsky, N; Schmidberger, H; Horn, L-C; Vaupel, P

    2013-01-01

    Background: Experimental studies have established a causal connection between tumour hypoxia, hypoxia-associated proteome changes and downregulation of E-cadherin, the final common pathway of epithelial-to-mesenchymal transition (EMT). Our study aimed at elucidating the interrelationship of these processes in cancers of the uterine cervix in vivo. Methods: Tumour oxygenation was assessed in 48 squamous cell carcinomas (SCC) of the uterine cervix using polarographic needle electrodes. The expression pattern of E-cadherin was investigated by immunohistochemistry and western blotting, and was compared with that of the hypoxia-inducible proteins glucose transporter (GLUT)-1 and carbonic anhydrase (CA) IX in biopsy specimens of the oxygenation measurement tracks. Results: The majority of cervical cancers (52%) were E-cadherin positive, with a complete absence of the antigen in only 10% of the tumours. No correlation was found between the level of E-cadherin expression and the oxygenation status (mean pO2, median pO2 and hypoxic fractions). In patients showing partial expression of E-cadherin (38%), staining was not preferentially diminished in GLUT-1- or CA IX-positive areas, and loss of E-cadherin occurred independently of tumour cell scattering. Conclusion: Our data provide no evidence in favour of a hypoxia-induced EMT as a mechanistic basis of cervical cancer invasiveness. PMID:23322209

  19. Nitric Oxide Increases Arterial Endotheial Permeability through Mediating VE-Cadherin Expression during Arteriogenesis.

    PubMed

    Yang, Baolin; Cai, Baizhen; Deng, Panyue; Wu, Xiaoqiong; Guan, Yinglu; Zhang, Bin; Cai, Weijun; Schaper, Jutta; Schaper, Wolfgang

    2015-01-01

    Macrophage invasion is an important event during arteriogenesis, but the underlying mechanism is still only partially understood. The present study tested the hypothesis that nitric oxide (NO) and VE-cadherin, two key mediators for vascular permeability, contribute to this event in a rat ischemic hindlimb model. In addition, the effect of NO on expression of VE-caherin and endothelial permeability was also studied in cultured HUVECs. We found that: 1) in normal arteriolar vessels (NAV), eNOS was moderately expressed in endothelial cells (EC) and iNOS was rarely detected. In contrast, in collateral vessels (CVs) induced by simple femoral artery ligation, both eNOS and iNOS were significantly upregulated (P<0.05). Induced iNOS was found mainly in smooth muscle cells, but also in other vascular cells and macrophages; 2) in NAV VE-cadherin was strongly expressed in EC. In CVs, VE-cadherin was significantly downregulated, with a discontinuous and punctate pattern. Administration of nitric oxide donor DETA NONOate (NONOate) further reduced the amounts of Ve-cadherin in CVs, whereas NO synthase inhibitor L-NAME inhibited downregulation of VE-cadherin in CVs; 3) in normal rats Evans blue extravasation (EBE) was low in the musculus gracilis, FITC-dextron leakage was not detected in the vascular wall and few macrophages were observed in perivascular space. In contrast, EBE was significantly increased in femoral artery ligation rats, FITC-dextron leakage and increased amounts of macrophages were detected in CVs, which were further enhanced by administration of NONOate, but inhibited by L-NAME supplement; 4) in vitro experiments confirmed that an increase in NO production reduced VE-cadherin expression, correlated with increases in the permeability of HUVECs. In conclusion, our data for the first time reveal the expression profile of VE-cadherin and alterations of vascular permeability in CVs, suggesting that NO-mediated VE-cadherin pathway may be one important mechanism responsible, at least in part, for macrophage invasion during arteriogenesis.

  20. Nitric Oxide Increases Arterial Endotheial Permeability through Mediating VE-Cadherin Expression during Arteriogenesis

    PubMed Central

    Wu, Xiaoqiong; Guan, Yinglu; Zhang, Bin; Cai, Weijun; Schaper, Jutta; Schaper, Wolfgang

    2015-01-01

    Macrophage invasion is an important event during arteriogenesis, but the underlying mechanism is still only partially understood. The present study tested the hypothesis that nitric oxide (NO) and VE-cadherin, two key mediators for vascular permeability, contribute to this event in a rat ischemic hindlimb model. In addition, the effect of NO on expression of VE-caherin and endothelial permeability was also studied in cultured HUVECs. We found that: 1) in normal arteriolar vessels (NAV), eNOS was moderately expressed in endothelial cells (EC) and iNOS was rarely detected. In contrast, in collateral vessels (CVs) induced by simple femoral artery ligation, both eNOS and iNOS were significantly upregulated (P<0.05). Induced iNOS was found mainly in smooth muscle cells, but also in other vascular cells and macrophages; 2) in NAV VE-cadherin was strongly expressed in EC. In CVs, VE-cadherin was significantly downregulated, with a discontinuous and punctate pattern. Administration of nitric oxide donor DETA NONOate (NONOate) further reduced the amounts of Ve-cadherin in CVs, whereas NO synthase inhibitor L-NAME inhibited downregulation of VE-cadherin in CVs; 3) in normal rats Evans blue extravasation (EBE) was low in the musculus gracilis, FITC-dextron leakage was not detected in the vascular wall and few macrophages were observed in perivascular space. In contrast, EBE was significantly increased in femoral artery ligation rats, FITC-dextron leakage and increased amounts of macrophages were detected in CVs, which were further enhanced by administration of NONOate, but inhibited by L-NAME supplement; 4) in vitro experiments confirmed that an increase in NO production reduced VE-cadherin expression, correlated with increases in the permeability of HUVECs. In conclusion, our data for the first time reveal the expression profile of VE-cadherin and alterations of vascular permeability in CVs, suggesting that NO-mediated VE-cadherin pathway may be one important mechanism responsible, at least in part, for macrophage invasion during arteriogenesis. PMID:26133549

  1. Expression of cell adhesion molecules in the normal and T3 blocked development of the tadpole's kidney of Bufo arenarum (Amphibian, Anuran, Bufonidae).

    PubMed

    Izaguirre, M F; García-Sancho, M N; Miranda, L A; Tomas, J; Casco, V H

    2008-08-01

    Cell adhesion molecules act as signal transducers from the extracellular environment to the cytoskeleton and the nucleus and consequently induce changes in the expression pattern of structural proteins. In this study, we showed the effect of thyroid hormone (TH) inhibition and arrest of metamorphosis on the expression of E-cadherin, beta-and alpha-catenin in the developing kidney of Bufo arenarum. Cell adhesion molecules have selective temporal and spatial expression during development suggesting a specific role in nephrogenesis. In order to study mechanisms controlling the expression of adhesion molecules during renal development, we blocked the B. arenarum metamorphosis with a goitrogenic substance that blocks TH synthesis. E-cadherin expression in the proximal tubules is independent of thyroid control. However, the blockage of TH synthesis causes up-regulation of E-cadherin in the collecting ducts, the distal tubules and the glomeruli. The expression of beta-and alpha-catenin in the collecting ducts, the distal tubules, the glomeruli and the mesonephric mesenchyme is independent of TH. TH blockage causes up-regulation of beta-and alpha-catenin in the proximal tubules. In contrast to E-cadherin, the expression of the desmosomal cadherin desmoglein 1 (Dsg-1) is absent in the control of the larvae kidney during metamorphosis and is expressed in some interstitial cells in the KClO4 treated larvae. According to this work, the Dsg-1 expression is down-regulated by TH. We demonstrated that the expression of E-cadherin, Dsg-1, beta-catenin and alpha-catenin are differentially affected by TH levels, suggesting a hormone-dependent role of these proteins in the B. arenarum renal metamorphosis.

  2. Beta-Actin Is Required for Proper Mouse Neural Crest Ontogeny

    PubMed Central

    Tondeleir, Davina; Noelanders, Rivka; Bakkali, Karima; Ampe, Christophe

    2014-01-01

    The mouse genome consists of six functional actin genes of which the expression patterns are temporally and spatially regulated during development and in the adult organism. Deletion of beta-actin in mouse is lethal during embryonic development, although there is compensatory expression of other actin isoforms. This suggests different isoform specific functions and, more in particular, an important function for beta-actin during early mammalian development. We here report a role for beta-actin during neural crest ontogeny. Although beta-actin null neural crest cells show expression of neural crest markers, less cells delaminate and their migration arrests shortly after. These phenotypes were associated with elevated apoptosis levels in neural crest cells, whereas proliferation levels were unchanged. Specifically the pre-migratory neural crest cells displayed higher levels of apoptosis, suggesting increased apoptosis in the neural tube accounts for the decreased amount of migrating neural crest cells seen in the beta-actin null embryos. These cells additionally displayed a lack of membrane bound N-cadherin and dramatic decrease in cadherin-11 expression which was more pronounced in the pre-migratory neural crest population, potentially indicating linkage between the cadherin-11 expression and apoptosis. By inhibiting ROCK ex vivo, the knockout neural crest cells regained migratory capacity and cadherin-11 expression was upregulated. We conclude that the presence of beta-actin is vital for survival, specifically of pre-migratory neural crest cells, their proper emigration from the neural tube and their subsequent migration. Furthermore, the absence of beta-actin affects cadherin-11 and N-cadherin function, which could partly be alleviated by ROCK inhibition, situating the Rho-ROCK signaling in a feedback loop with cadherin-11. PMID:24409333

  3. E-cadherin: A determinant molecule associated with ovarian cancer progression, dissemination and aggressiveness

    PubMed Central

    Devis, Laura; Lapyckyj, Lara; Besso, María José; Llauradó, Marta; Abascal, María Florencia; Matos, María Laura; Lanau, Lucia; Castellví, Josep; Sánchez, José Luis; Pérez Benavente, Asunción; Gil-Moreno, Antonio; Reventós, Jaume; Santamaria Margalef, Anna; Rigau, Marina; Vazquez-Levin, Mónica Hebe

    2017-01-01

    Ovarian cancer (OC) is the fifth cancer death cause in women worldwide. The malignant nature of this disease stems from its unique dissemination pattern. Epithelial-to-mesenchymal transition (EMT) has been reported in OC and downregulation of Epithelial cadherin (E-cadherin) is a hallmark of this process. However, findings on the relationship between E-cadherin levels and OC progression, dissemination and aggressiveness are controversial. In this study, the evaluation of E-cadherin expression in an OC tissue microarray revealed its prognostic value to discriminate between advanced- and early-stage tumors, as well as serous tumors from other histologies. Moreover, E-cadherin, Neural cadherin (N-cadherin), cytokeratins and vimentin expression was assessed in TOV-112, SKOV-3, OAW-42 and OV-90 OC cell lines grown in monolayers and under anchorage-independent conditions to mimic ovarian tumor cell dissemination, and results were associated with cell aggressiveness. According to these EMT-related markers, cell lines were classified as mesenchymal (M; TOV-112), intermediate mesenchymal (IM; SKOV-3), intermediate epithelial (IE; OAW-42) and epithelial (E; OV-90). M- and IM-cells depicted the highest migration capacity when grown in monolayers, and aggregates derived from M- and IM-cell lines showed lower cell death, higher adhesion to extracellular matrices and higher invasion capacity than E- and IE-aggregates. The analysis of E-cadherin, N-cadherin, cytokeratin 19 and vimentin mRNA levels in 20 advanced-stage high-grade serous human OC ascites showed an IM phenotype in all cases, characterized by higher proportions of N- to E-cadherin and vimentin to cytokeratin 19. In particular, higher E-cadherin mRNA levels were associated with cancer antigen 125 levels more than 500 U/mL and platinum-free intervals less than 6 months. Altogether, E-cadherin expression levels were found relevant for the assessment of OC progression and aggressiveness. PMID:28934230

  4. Application of APTES-Anti-E-cadherin film for early cancer monitoring.

    PubMed

    Ben Ismail, Manel; Carreiras, Franck; Agniel, Rémy; Mili, Donia; Sboui, Dejla; Zanina, Nahla; Othmane, Ali

    2016-10-01

    Cancer staging is a way to classify cancer according to the extent of the disease in the body. The stage is usually determined by several factors such as the location of the primary tumor, the tumor size, the degree of spread in the surrounding tissues, etc. The study of E-cadherin (EC) expression on cancerous cells of patients has revealed variations in the molecular expression patterns of primary tumors and metastatic tumors. The detection of these cells requires a long procedure involving conventional techniques, thus, the requirement for development of new rapid devices that permit direct and highly sensitive detection stimulates the sensing field progress. Here, we explore if E-cadherin could be used as a biomarker to bind and detect epithelial cancer cells. Hence, the sensitive and specific detection of E-cadherin expressed on epithelial cells is approached by immobilizing anti-E-cadherin antibody (AEC) onto aminosilanized indium-tin oxide (ITO) surface. The immunosensing surfaces have been characterized by electrochemical measurements, wettability and confocal microscopy and their performance has been assessed in the presence of cancer cell lines. Under optimal conditions, the resulting immunosensor displayed a selective detection of E-cadherin expressing cells, which could be detected either by fluorescence or electrochemical techniques. The developed immunosensing surface could provide a simple tool that can be applied to cancer staging. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Matrilysin (Matrix Metalloproteinase-7) Regulates Anti-Inflammatory and Antifibrotic Pulmonary Dendritic Cells That Express CD103 (αEβ7-Integrin)

    PubMed Central

    Manicone, Anne M.; Huizar, Isham; McGuire, John K.

    2009-01-01

    The E-cadherin receptor CD103 (αEβ7-integrin) is expressed on specific populations of pulmonary dendritic cells (DC) and T cells. However, CD103 function in the lung is not well understood. Matrilysin (MMP-7) expression is increased in lung injury and cleaves E-cadherin from injured lung epithelium. Thus, to assess matrilysin effects on CD103-E-cadherin interactions in lung injury, wild-type, CD103−/−, and Mmp7−/− mice, in which E-cadherin isn’t cleaved in the lung, were treated with bleomycin or bleomycin with nFMLP to reverse the defect in acute neutrophil influx seen in Mmp7−/− mice. Pulmonary CD103+ DC were significantly increased in injured wild-type compared with Mmp7−/− mice, and CD103+ leukocytes showed significantly enhanced interaction with E-cadherin on injured wild-type epithelium than with Mmp7−/− epithelium in vitro and in vivo. Bleomycin-treated CD103−/− mice had persistent neutrophilic inflammation, increased fibrosis, and increased mortality compared with wild-type mice, a phenotype that was partially recapitulated in bleomycin/nFMLP-treated Mmp7−/− mice. Soluble E-cadherin increased IL-12 and IL-10 and reduced IL-6 mRNA expression in wild-type bone marrow-derived DC but not in CD103−/− bone marrow-derived DC. Similar mRNA patterns were seen in lungs of bleomycin-injured wild-type, but not CD103−/− or Mmp7−/−, mice. In conclusion, matrilysin regulates pulmonary localization of DC that express CD103, and E-cadherin cleavage may activate CD103+ DC to limit inflammation and inhibit fibrosis. PMID:19893044

  6. Differential expression patterns of metastasis suppressor proteins in basal cell carcinoma.

    PubMed

    Bozdogan, Onder; Yulug, Isik G; Vargel, Ibrahim; Cavusoglu, Tarik; Karabulut, Ayse A; Karahan, Gurbet; Sayar, Nilufer

    2015-08-01

    Basal cell carcinomas (BCCs) are common malignant skin tumors. Despite having a significant invasion capacity, they metastasize only rarely. Our aim in this study was to detect the expression patterns of the NM23-H1, NDRG1, E-cadherin, RHOGDI2, CD82/KAI1, MKK4, and AKAP12 metastasis suppressor proteins in BCCs. A total of 96 BCC and 10 normal skin samples were included for the immunohistochemical study. Eleven frozen BCC samples were also studied by quantitative real time polymerase chain reaction (qRT-PCR) to detect the gene expression profile. NM23-H1 was strongly and diffusely expressed in all types of BCC. Significant cytoplasmic expression of NDRG1 and E-cadherin was also detected. However, AKAP12 and CD82/KAI1 expression was significantly decreased. The expressions of the other proteins were somewhere between the two extremes. Similarly, qRT-PCR analysis showed down-regulation of AKAP12 and up-regulation of NM23-H1 and NDRG1 in BCC. Morphologically aggressive BCCs showed significantly higher cytoplasmic NDRG1 expression scores and lower CD82/KAI1 scores than non-aggressive BCCs. The relatively preserved levels of NM23-H1, NDRG1, and E-cadherin proteins may have a positive effect on the non-metastasizing features of these tumors. © 2014 The International Society of Dermatology.

  7. HPV-16 E6/E7 promotes cell migration and invasion in cervical cancer via regulating cadherin switch in vitro and in vivo.

    PubMed

    Hu, Dongxiao; Zhou, Jiansong; Wang, Fenfen; Shi, Haiyan; Li, Yang; Li, Baohua

    2015-12-01

    Cadherin switch, as a key hallmark of epithelial-mesenchymal transition (EMT), is characterized by reduced E-cadherin expression and increased N-cadherin or P-cadherin expression, and has been implicated in many aggressive tumors, but the importance and regulatory mechanism of cadherin switch in cervical cancer have not been investigated. Our study aimed to explore the role of cadherin switch by regulation of HPV-16 E6/E7 in progression and metastasis of cervical cancer. The expressions of E-cadherin and P-cadherin were examined by immunohistochemical staining in 40 cases of high-grade cervical lesions with HPV-16 infection only in which HPV-16 E6 and E7 expression had been detected using qRT-PCR method. Through modulating E6 and E7 expression using HPV-16 E6/E7 promoter-targeting siRNAs or expressed vector in vitro, cell growth, migration, and invasion were separately tested by MTT, wound-healing and transwell invasion assays, as well as the expressions of these cadherins by western blot analyses. Finally, the expressions of these cadherins in cancerous tissues of BALB/c-nu mouse model inoculated with the stable HPV-16 E6/E7 gene silencing Siha and Caski cells were also measured by immunohistochemical staining. Pearson correlation coefficient analyses showed the strongly inverse correlation of E-cadherin expression and strongly positive correlation of P-cadherin expression with E6/E7 level in 40 cases of high-grade cervical lesions. Furthermore, the modulation of HPV-16 E6/E7 expression remarkably influenced cell proliferation, migration, and invasion, as well as the protein levels of E-cadherin and P-cadherin in cervical cell lines. Finally, the reduction of HPV-16 E6/E7 expression led to up-regulated expression of E-cadherin and down-regulated expression of P-cadherin in BALB/c-nu mouse model in vivo assay. Our results unraveled the possibility that HPV-16 E6/E7 could promote cell invasive potential via regulating cadherin switching, and consequently contribute to progression and metastasis of cervical cancer.

  8. E-cadherin is required for cranial neural crest migration in Xenopus laevis.

    PubMed

    Huang, Chaolie; Kratzer, Marie-Claire; Wedlich, Doris; Kashef, Jubin

    2016-03-15

    The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Loss of intercellular adhesion activates a transition from low- to high-grade human squamous cell carcinoma.

    PubMed

    Margulis, Alexander; Zhang, Weitian; Alt-Holland, Addy; Pawagi, Sujata; Prabhu, Padmaja; Cao, Jian; Zucker, Stanley; Pfeiffer, Laurence; Garfield, Jacqueline; Fusenig, Norbert E; Garlick, Jonathan A

    2006-02-15

    The relationship between loss of intercellular adhesion and the biologic properties of human squamous cell carcinoma is not well understood. We investigated how abrogation of E-cadherin-mediated adhesion influenced the behavior and phenotype of squamous cell carcinoma in 3D human tissues. Cell-cell adhesion was disrupted in early-stage epithelial tumor cells (HaCaT-II-4) through expression of a dominant-negative form of E-cadherin (H-2Kd-Ecad). Three-dimensional human tissue constructs harboring either H-2Kd-Ecad-expressing or control II-4 cells (pBabe, H-2Kd-EcadDeltaC25) were cultured at an air-liquid interface for 8 days and transplanted to nude mice; tumor phenotype was analyzed 2 days and 2 and 4 weeks later. H-2Kd-Ecad-expressing tumors demonstrated a switch to a high-grade aggressive tumor phenotype characterized by poorly differentiated tumor cells that infiltrated throughout the stroma. This high-grade carcinoma revealed elevated cell proliferation in a random pattern, loss of keratin 1 and diffuse deposition of laminin 5 gamma2 chain. When II-4 cell variants were seeded into type I collagen gels as an in vitro assay for cell migration, we found that only E-cadherin-deficient cells detached, migrated as single cells and expressed N-cadherin. Function-blocking studies demonstrated that this migration was matrix metalloproteinase-dependent, as GM-6001 and TIMP-2, but not TIMP-1, could block migration. Gene expression profiles revealed that E-cadherin-deficient II-4 cells demonstrated increased expression of proteases and cell-cell and cell-matrix proteins. These findings showed that loss of E-cadherin-mediated adhesion plays a causal role in the transition from low- to high-grade squamous cell carcinomas and that the absence of E-cadherin is an important prognostic marker in the progression of this disease.

  10. Expression of E-cadherin and vimentin in oral squamous cell carcinoma

    PubMed Central

    Zhou, Jingping; Tao, Detao; Xu, Qing; Gao, Zhenlin; Tang, Daofang

    2015-01-01

    The aim of the study is to determine the levels of E-cadherin, vimentin expression in tumor tissues from patients with oral squamous cell carcinoma (OSCC), and the relationship between the expression of E-cadherin, vimentin and epithelial-mesenchymal transition, in order to explore its values for predicting the invasion and metastasis of oral squamous cell carcinoma, short survival of patients in many types of cancer. E-cadherin and vimentin expression of 10 benign and 42 OSCC tumor tissues was examined by immunohistochemical staining. E-cadherin is positively expressed in normal oral mucosa epithelium, but vimentin expression is not found in normal oral mucosa epithelia; the E-cadherin and vimentin were expressed in 26 of 42 (61.9%) and 16 of 42 (38.1%), respectively. No statistically difference was found for E-cadherin and vimentin expression in patients with different age, gender and tumor location, E-cadherin and vimentin expression was significantly associated with lymph node metastasis and tissue location (P < 0.05); E-cadherin expression was also significantly associated with tumor stage (P < 0.05); there are significantly difference between infiltrative margin and central area in patients with oral squamous cell carcinoma for E-cadherin and vimentin positive expression (P < 0.05). E-cadherin and vimentin positive expression was associated with tumor metastasis of oral squamous cell carcinoma. Our study preliminarily confirmed that EMT phenomenon is existed during the development of oral squamous cell carcinoma. Co-evaluation of E-cadherin and vimentin might be a valuable tool for predicting OSCC patient outcome. PMID:26045832

  11. Human Langerhans cells express E-cadherin.

    PubMed

    Blauvelt, A; Katz, S I; Udey, M C

    1995-02-01

    Murine Langerhans cells (LC) synthesize and express E-cadherin, a Ca(++)-dependent homophilic cell adhesion molecule that mediates LC-keratinocyte (KC) binding in vitro. In vivo, E-cadherin expression by LC may promote localization and persistence of LC within the epidermis through LC-KC adhesion. In addition, changes in LC E-cadherin expression or affinity may be an important factor in the egress of LC from the epidermis after exposure to antigen. The aim of the present study was to determine if human LC also express E-cadherin. Suction blister roofs were obtained from normal volunteers and epidermal cell (EC) suspensions were prepared by limited trypsinization in the presence of 1 mM Ca++. EC were then incubated with antibodies to E-cadherin and CD1a or HLA-DR, and examined by two-color analytical flow cytometry or immunofluorescence microscopy. Most (82.9% +/- 7.4% [mean +/- SD], range 67-89%, n = 7) freshly prepared human LC expressed E-cadherin, as did the majority of KC. The amount of E-cadherin (as determined by mean fluorescence intensity) expressed by LC and KC was similar. Trypsin/EDTA treatment of freshly prepared EC abrogated expression of E-cadherin by LC and KC, whereas E-cadherin was not degraded by trypsin in the presence of Ca++. LC expressed lower levels of E-cadherin after 3 d in culture. Thus, human LC, like murine LC, express the homophilic adhesion molecule E-cadherin, which may be important in establishing and maintaining interactions between LC and KC in mammalian epidermis.

  12. CpG site hypermethylation of E-cadherin and Connexin26 genes in hepatocellular carcinomas induced by a choline-deficient L-Amino Acid-defined diet in rats.

    PubMed

    Tsujiuchi, Toshifumi; Shimizu, Kyoko; Itsuzaki, Yumi; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Honoki, Kanya

    2007-04-01

    We investigated DNA methylation patterns of E-cadherin and Connexin26 (Cx26) genes in rat hepatocellular carcinomas (HCCs) induced by a choline-deficient L-Amino Acid-defined (CDAA) diet. Six-wks-old F344 male rats were continuously fed with a CDAA diet for 75 wks, and were then killed. A total of five HCCs were obtained, and genomic DNA was extracted from each HCC for assessment of methylation status in the 5' upstream regions of E-cadherin and Cx26 genes by bisulfite sequencing, comparing to two normal liver tissues. The five HCCs showed highly methylated E-cadherin and Cx26 genes, while these genes in two normal liver tissues were all unmethylated. For analysis of gene expression, real-time quantitative reverse transcription (RT)-polymerase chain reaction (PCR) was performed. Expressions of E-cadherin and Cx26 genes were significantly reduced in the five HCCs (P < 0.0001 and P < 0.001, respectively) compared to normal liver tissues, correlating with their methylation statuses. These results suggested that hypermethylation of E-cadherin and Cx26 genes may be involved in the development of HCCs induced by a CDAA diet in rats.

  13. The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor-endothelial cell interactions.

    PubMed

    Rezaei, Maryam; Cao, Jiahui; Friedrich, Katrin; Kemper, Björn; Brendel, Oliver; Grosser, Marianne; Adrian, Manuela; Baretton, Gustavo; Breier, Georg; Schnittler, Hans-Joachim

    2018-01-01

    The cadherin switch has profound consequences on cancer invasion and metastasis. The endothelial-specific vascular endothelial cadherin (VE-cadherin) has been demonstrated in diverse cancer types including breast cancer and is supposed to modulate tumor progression and metastasis, but underlying mechanisms need to be better understood. First, we evaluated VE-cadherin expression by tissue microarray in 392 cases of breast cancer tumors and found a diverse expression and distribution of VE-cadherin. Experimental expression of fluorescence-tagged VE-cadherin (VE-EGFP) in undifferentiated, fibroblastoid and E-cadherin-negative MDA-231 (MDA-VE-EGFP) as well as in differentiated E-cadherin-positive MCF-7 human breast cancer cell lines (MCF-VE-EGFP), respectively, displayed differentiation-dependent functional differences. VE-EGFP expression reversed the fibroblastoid MDA-231 cells to an epithelial-like phenotype accompanied by increased β-catenin expression, actin and vimentin remodeling, increased cell spreading and barrier function and a reduced migration ability due to formation of VE-cadherin-mediated cell junctions. The effects were largely absent in both MDA-VE-EGFP and in control MCF-EGFP cell lines. However, MCF-7 cells displayed a VE-cadherin-independent planar cell polarity and directed cell migration that both developed in MDA-231 only after VE-EGFP expression. Furthermore, VE-cadherin expression had no effect on tumor cell proliferation in monocultures while co-culturing with endothelial cells enhanced tumor cell proliferation due to integration of the tumor cells into monolayer where they form VE-cadherin-mediated cell contacts with the endothelium. We propose an interactive VE-cadherin-based crosstalk that might activate proliferation-promoting signals. Together, our study shows a VE-cadherin-mediated cell dynamics and an endothelial-dependent proliferation in a differentiation-dependent manner.

  14. Loss of N-Cadherin Expression in Tumor Transplants Produced From As+3- and Cd+2-Transformed Human Urothelial (UROtsa) Cell Lines.

    PubMed

    Sandquist, Elizabeth J; Somji, Seema; Dunlevy, Jane R; Garrett, Scott H; Zhou, Xu Dong; Slusser-Nore, Andrea; Sens, Donald A

    2016-01-01

    Epithelial to mesenchymal transition is a process in which a cell experiences a loss of epithelial cell characteristics and acquires a more mesenchymal cell phenotype. In cancer, epithelial to mesenchymal transition has been proposed to play an important role during specific stages of tumor progression. The role epithelial to mesenchymal transition and mesenchymal to epithelial transition might play in toxicant-induced urothelial cancer is unknown. Real-time PCR, Western blotting, immuno-histochemistry and immuno-fluorescence were used to determine the expression of E- and N-cadherin in the UROtsa parent, the As+3- and Cd+2-transformed cell lines, the spheroids isolated from these cell lines as well as the tumor heterotransplants that were produced by the injection of the transformed cells into immune compromised mice. This study showed that N-cadherin expression was increased in 6 As+3- and 7 Cd+2- transformed cell lines generated from human urothelial cells (UROtsa). The expression varied within each cell line, with 10% to 95% of the cells expressing N-cadherin. Tumors produced from these cell lines showed no expression of the N-cadherin protein. Spheroids which are made up of putative cancer initiating cells produced from these cell lines showed only background expression of N-cadherin mRNA, increased expression of aldehyde dehydrogenase 1 mRNA and produced tumors which did not express N-cadherin. There was no change in the expression of E-cadherin in the tumors, and the tumors formed by all the As+3 and Cd+2-transformed cell lines and cancer initiating cells stained intensely and uniformly for E-cadherin. The finding that the cells expressing N-cadherin gave rise to tumors with no expression of N-cadherin is in agreement with the classical view of epithelial to mesenchymal transition. Epithelial to mesenchymal transition and N-cadherin are associated with dissemination and not with the ability to establish new tumor growth. Mesenchymal to epithelial transition and E-cadherin are viewed as necessary for a cell to establish a new metastatic site. The lack of N-cadherin expression in tumor transplants is consistent with E-cadherin expressing cells "seeding" a site for tumor growth. The study shows that a minority population of cultured cells can be the initiators of tumor growth.

  15. Loss of N-Cadherin Expression in Tumor Transplants Produced From As+3- and Cd+2-Transformed Human Urothelial (UROtsa) Cell Lines

    PubMed Central

    Sandquist, Elizabeth J.; Somji, Seema; Dunlevy, Jane R.; Garrett, Scott H.; Zhou, Xu Dong; Slusser-Nore, Andrea

    2016-01-01

    Background Epithelial to mesenchymal transition is a process in which a cell experiences a loss of epithelial cell characteristics and acquires a more mesenchymal cell phenotype. In cancer, epithelial to mesenchymal transition has been proposed to play an important role during specific stages of tumor progression. The role epithelial to mesenchymal transition and mesenchymal to epithelial transition might play in toxicant-induced urothelial cancer is unknown. Methods Real-time PCR, Western blotting, immuno-histochemistry and immuno-fluorescence were used to determine the expression of E- and N-cadherin in the UROtsa parent, the As+3- and Cd+2-transformed cell lines, the spheroids isolated from these cell lines as well as the tumor heterotransplants that were produced by the injection of the transformed cells into immune compromised mice. Results This study showed that N-cadherin expression was increased in 6 As+3- and 7 Cd+2- transformed cell lines generated from human urothelial cells (UROtsa). The expression varied within each cell line, with 10% to 95% of the cells expressing N-cadherin. Tumors produced from these cell lines showed no expression of the N-cadherin protein. Spheroids which are made up of putative cancer initiating cells produced from these cell lines showed only background expression of N-cadherin mRNA, increased expression of aldehyde dehydrogenase 1 mRNA and produced tumors which did not express N-cadherin. There was no change in the expression of E-cadherin in the tumors, and the tumors formed by all the As+3 and Cd+2-transformed cell lines and cancer initiating cells stained intensely and uniformly for E-cadherin. Conclusions The finding that the cells expressing N-cadherin gave rise to tumors with no expression of N-cadherin is in agreement with the classical view of epithelial to mesenchymal transition. Epithelial to mesenchymal transition and N-cadherin are associated with dissemination and not with the ability to establish new tumor growth. Mesenchymal to epithelial transition and E-cadherin are viewed as necessary for a cell to establish a new metastatic site. The lack of N-cadherin expression in tumor transplants is consistent with E-cadherin expressing cells “seeding” a site for tumor growth. The study shows that a minority population of cultured cells can be the initiators of tumor growth. PMID:27224422

  16. Cadherin Expression, Vectorial Active Transport, and Metallothionein Isoform 3 Mediated EMT/MET Responses in Cultured Primary and Immortalized Human Proximal Tubule Cells

    PubMed Central

    Slusser, Andrea; Bathula, Chandra S.; Sens, Donald A.; Somji, Seema; Sens, Mary Ann; Zhou, Xu Dong; Garrett, Scott H.

    2015-01-01

    Background Cultures of human proximal tubule cells have been widely utilized to study the role of EMT in renal disease. The goal of this study was to define the role of growth media composition on classic EMT responses, define the expression of E- and N-cadherin, and define the functional epitope of MT-3 that mediates MET in HK-2 cells. Methods Immunohistochemistry, microdissection, real-time PCR, western blotting, and ELISA were used to define the expression of E- and N-cadherin mRNA and protein in HK-2 and HPT cell cultures. Site-directed mutagenesis, stable transfection, measurement of transepithelial resistance and dome formation were used to define the unique amino acid sequence of MT-3 associated with MET in HK-2 cells. Results It was shown that both E- and N-cadherin mRNA and protein are expressed in the human renal proximal tubule. It was shown, based on the pattern of cadherin expression, connexin expression, vectorial active transport, and transepithelial resistance, that the HK-2 cell line has already undergone many of the early features associated with EMT. It was shown that the unique, six amino acid, C-terminal sequence of MT-3 is required for MT-3 to induce MET in HK-2 cells. Conclusions The results show that the HK-2 cell line can be an effective model to study later stages in the conversion of the renal epithelial cell to a mesenchymal cell. The HK-2 cell line, transfected with MT-3, may be an effective model to study the process of MET. The study implicates the unique C-terminal sequence of MT-3 in the conversion of HK-2 cells to display an enhanced epithelial phenotype. PMID:25803827

  17. Cadherin-11 modulates cell morphology and collagen synthesis in periodontal ligament cells under mechanical stress.

    PubMed

    Feng, Lishu; Zhang, Yimei; Kou, Xiaoxing; Yang, Ruili; Liu, Dawei; Wang, Xuedong; Song, Yang; Cao, Haifeng; He, Danqing; Gan, Yehua; Zhou, Yanheng

    2017-03-01

    To examine the role of cadherin-11, an integral membrane adhesion molecule, in periodontal ligament cells (PDLCs) under mechanical stimulation. Human PDLCs were cultured and subjected to mechanical stress. Cadherin-11 expression and cell morphology of PDLCs were investigated via immunofluorescence staining. The mRNA and protein expressions of cadherin-11 and type I collagen (Col-I) of PDLCs were evaluated by quantitative real-time polymerase chain reaction and Western blot, respectively. Small interfering RNA was used to knock down cadherin-11 expression in PDLCs. The collagen matrix of PDLCs was examined using toluidine blue staining. Cadherin-11 was expressed in PDLCs. Mechanical stress suppressed cadherin-11 expression in PDLCs with prolonged force treatment time and increased force intensity, accompanied by suppressed β-catenin expression. Simultaneously, mechanical stress altered cell morphology and repressed Col-I expression in a time- and dose-dependent manner in PDLCs. Moreover, knockdown of cadherin-11 with suppressed β-catenin expression resulted in altered PDLC morphology and repressed collagen expression, which were consistent with the changes observed under mechanical stress. Results of this study suggest that cadherin-11 is expressed in PDLCs and modulates PDLC morphology and collagen synthesis in response to mechanical stress, which may play an important role in the homeostasis and remodeling of the PDL under mechanical stimulation.

  18. Expression of E-cadherin in canine anal sac gland carcinoma and its association with survival.

    PubMed

    Polton, G A; Brearley, M J; Green, L M; Scase, T J

    2007-12-01

    The objective of this study was to determine whether an association could be demonstrated between survival and the expression of the adhesion molecule E-cadherin by the neoplastic cells in a group of dogs with anal sac gland carcinomas (ASGCs). Archived formalin-fixed, paraffin wax-embedded primary tumour specimens were obtained for 36 cases of canine ASGC with known clinical management and survival data. Immunohistochemical methods were used to evaluate E-cadherin expression by the neoplastic cells and data were evaluated for an association between E-cadherin expression and survival. On univariate analysis, the median survival time for cases with tumours expressing E-cadherin in more than 75% of cells was significantly greater than that for cases with tumours expressing E-cadherin in fewer than 75% of cells (1168 versus 448 days, P = 0.0246). Both E-cadherin expression and presence or absence of distant metastases were significantly associated with survival on multivariate analysis. This study demonstrates that expression of E-cadherin at the cytoplasmic membrane in canine ASGCs is variable and potentially predictive of survival.

  19. E-cadherin expression increases cell proliferation by regulating energy metabolism through nuclear factor-κB in AGS cells.

    PubMed

    Park, Song Yi; Shin, Jee-Hye; Kee, Sun-Ho

    2017-09-01

    β-Catenin is a central player in Wnt signaling, and activation of Wnt signaling is associated with cancer development. E-cadherin in complex with β-catenin mediates cell-cell adhesion, which suppresses β-catenin-dependent Wnt signaling. Recently, a tumor-suppressive role for E-cadherin has been reconsidered, as re-expression of E-cadherin was reported to enhance the metastatic potential of malignant tumors. To explore the role of E-cadherin, we established an E-cadherin-expressing cell line, EC96, from AGS cells that featured undetectable E-cadherin expression and a high level of Wnt signaling. In EC96 cells, E-cadherin re-expression enhanced cell proliferation, although Wnt signaling activity was reduced. Subsequent analysis revealed that nuclear factor-κB (NF-κB) activation and consequent c-myc expression might be involved in E-cadherin expression-mediated cell proliferation. To facilitate rapid proliferation, EC96 cells enhance glucose uptake and produce ATP using both mitochondria oxidative phosphorylation and glycolysis, whereas AGS cells use these mechanisms less efficiently. These events appeared to be mediated by NF-κB activation. Therefore, E-cadherin re-expression and subsequent induction of NF-κB signaling likely enhance energy production and cell proliferation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  20. Relation of glypican-3 and E-cadherin expressions to clinicopathological features and prognosis of mucinous and non-mucinous colorectal adenocarcinoma.

    PubMed

    Foda, Abd Al-Rahman Mohammad; Mohammad, Mie Ali; Abdel-Aziz, Azza; El-Hawary, Amira Kamal

    2015-06-01

    Glypican-3 (GPC3) is a member of the membrane-bound heparin sulfate proteoglycans. E-cadherin is an adhesive receptor that is believed to act as a tumor suppressor gene. Many studies had investigated E-cadherin expressions in colorectal carcinoma (CRC) while only one study had investigated GPC3 expression in CRC. This study aims to investigate expression of GCP3 and E-cadherin in colorectal mucinous carcinoma (MA) and non-mucinous adenocarcinoma (NMA) using manual tissue microarray technique. Tumor tissue specimens are collected from 75 cases of MC and 75 cases of NMA who underwent radical surgery from Jan 2007 to Jan 2012 at the Gastroenterology Centre, Mansoura University, Egypt. Their clinicopathological parameters and survival data were revised and analyzed using established statistical methodologies. High-density manual tissue microarrays were constructed using modified mechanical pencil tip technique and immunohistochemistry for GPC3 and E-cadherin was done. NMA showed higher expression of GPC3 than MA with no statistically significant relation. NMA showed a significantly higher E-cadherin expression than MA. GPC3 and E-cadherin positivity rates were significantly interrelated in NMA, but not in MA, group. In NMA group, there was no significant relation between either GPC3 or E-cadherin expression and the clinicopathological features. In a univariate analysis, neither GPC3 nor E-cadherin expression showed a significant impact on disease-free survival (DFS) or overall survival (OS). GPC3 and E-cadherin expressions are not independent prognostic factors in CRC. However, expressions of both are significantly interrelated in NMA patients, suggesting an excellent interplay between both, in contrast to MA. Further molecular studies are needed to further explore the relationship between GCP3 and E-cadherin in colorectal carcinogenesis.

  1. E-cadherin and beta-catenin are down-regulated in prostatic bone metastases.

    PubMed

    Bryden, A A G; Hoyland, J A; Freemont, A J; Clarke, N W; Schembri Wismayer, D; George, N J R

    2002-03-01

    To determine the E-cadherin and beta-catenin expression phenotype in untreated primary prostate cancer and corresponding bone metastases. Paired bone metastasis and primary prostate specimens were obtained from 14 men with untreated metastatic prostate carcinoma. The tumours were histologically graded by an independent pathologist. Expression of mRNA for E-cadherin and beta-catenin was detected within the tumour cells using in-situ hybridization with a 35S-labelled cDNA probe. The expression of E-cadherin and beta-catenin were graded as uniform, heterogeneous or negative. The mRNA for E-cadherin was expressed in 13 of 14 primary carcinomas and 11 bone metastases; beta-catenin was expressed by 13 and nine, respectively. Of the primary tumours, nine expressed E-cadherin and beta-catenin uniformly; in contrast, all metastases had down-regulated E-cadherin and/or beta-catenin. The down-regulation of E-cadherin and beta-catenin are a feature of the metastatic phenotype, which may be a significant factor in the genesis of bone metastases. However, this does not appear to be reflected in the expression of these molecules in the primary tumours.

  2. In vivo and in vitro invasion in relation to phenotypic characteristics of human colorectal carcinoma cells.

    PubMed Central

    de Vries, J. E.; Dinjens, W. N.; De Bruyne, G. K.; Verspaget, H. W.; van der Linden, E. P.; de Bruïne, A. P.; Mareel, M. M.; Bosman, F. T.; ten Kate, J.

    1995-01-01

    In this study we investigated the tumorigenicity, growth pattern and spontaneous metastatic ability of a series of nine human colorectal carcinoma cell lines after subcutaneous and intracaecal xenografting in nude mice. CaCo2 cells were found to be poorly tumorigenic to non-tumorigenic in either site; the other cell lines were tumorigenic in both sites. SW1116, SW480 and SW620 did not show local invasive in the NCI-H716 and LS174T cells were both invasive in the caecum, but only NCI-H716 was invasive in the subcutis. HT29 and 5583 (S and E) cells were invasive in the caecum and from that site metastatic to the lungs and/or the liver. HT29 and 5583S cells were both invasive in the subcutis, but 5583E cells were not. Of each category of in vivo behaviour in the caecum, one cell line was further investigated with regard to invasion in vitro (into embryonic chick heart fragments), E-cadherin expression in vivo and in vitro and in vitro production of u-PA and t-PA. These parameters were chosen in view of their purported role in extracellular matrix degradation and intercellular adhesion, which are all involved in the invasive and metastatic cascade. Invasion in vitro was not predictive for invasion or metastasis in vivo. In the cell line which showed invasion in embryonic chick heart tissue, heterogeneous E-cadherin expression was observed in vitro together with a relatively high production of u-PA. The non-invasive cell lines showed in vitro homogeneous expression of E-cadherin with a relatively low production of u-PA. In vivo expression of E-cadherin was either absent or heterogeneous. We conclude that: (1) colorectal carcinoma xenografts show site-specific modification of in vivo invasive and metastatic behaviour; (2) invasion in vitro does not correlate with invasion and metastasis in vivo; (3) in vitro non-invasion might be associated with homogeneous E-cadherin expression and low production of u-PA; (4) E-cadherin expression in vitro differs from E-cadherin expression in vivo. The results support the notion that the microenvironment in which cancer cells grow is one of the factors involved in the regulation of invasive and metastatic behaviour. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7841040

  3. Colorectal laterally spreading tumors show characteristic expression of cell polarity factors, including atypical protein kinase C λ/ι, E-cadherin, β-catenin and basement membrane component.

    PubMed

    Ichikawa, Yasushi; Nagashima, Yoji; Morioka, Kaori; Akimoto, Kazunori; Kojima, Yasuyuki; Ishikawa, Takashi; Goto, Ayumu; Kobayashi, Noritoshi; Watanabe, Kazuteru; Ota, Mitsuyoshi; Fujii, Shoichi; Kawamata, Mayumi; Takagawa, Ryo; Kunizaki, Chikara; Takahashi, Hirokazu; Nakajima, Atsushi; Maeda, Shin; Shimada, Hiroshi; Inayama, Yoshiaki; Ohno, Shigeo; Endo, Itaru

    2014-09-01

    Colorectal flat-type tumors include laterally spreading tumors (LSTs) and flat depressed-type tumors. The former of which shows a predominant lateral spreading growth rather than an invasive growth. The present study examined the morphological characteristics of LSTs, in comparison with polypoid- or flat depressed-type tumors, along with the expression of atypical protein kinase C (aPKC) λ/ι, a pivotal cell polarity regulator, and the hallmarks of cell polarity, as well as with type IV collagen, β-catenin and E-cadherin. In total, 37 flat-type (24 LSTs and 13 flat depressed-type tumors) and 20 polypoid-type colorectal tumors were examined. The LSTs were classified as 15 LST adenoma (LST-A) and nine LST cancer in adenoma (LST-CA). An immunohistochemical examination was performed on aPKC λ/ι, type IV collagen, β-catenin and E-cadherin. The LST-A and -CA showed a superficial replacing growth pattern, with expression of β-catenin and E-cadherin in the basolateral membrane and type IV collagen along the basement membrane. In addition, 86.6% of LST-A and 55.6% of LST-CA showed aPKC λ/ι expression of 1+ (weak to normal intensity staining in the cytoplasm compared with the normal epithelium). Furthermore, ~45% of the polypoid-type adenomas showed 2+ (moderate intensity staining in the cytoplasm and/or nucleus) and 66.7% of the polypoid-type cancer in adenoma were 3+ (strong intensity staining in the cytoplasm and nucleus). A statistically significant positive correlation was observed between the expression of aPKC λ/ι and β-catenin (r=0.842; P<0.001), or type IV collagen (r=0.823; P<0.001). The LSTs showed a unique growth pattern, different from the expanding growth pattern presented by a polypoid tumor and invasive cancer. The growth characteristics of LST appear to be caused by adequate coexpression of β-catenin, type IV collagen and aPKC λ/ι.

  4. N-cadherin expression in palisade nerve endings of rat vellus hairs.

    PubMed

    Kaidoh, Toshiyuki; Inoué, Takao

    2008-02-01

    Palisade nerve endings (PNs) are mechanoreceptors around vellus hairs of mammals. Each lanceolate nerve ending (LN) of the PN is characterized by a sensory nerve ending symmetrically sandwiched by two processes of type II terminal Schwann cells (tSCIIs). However, the molecular mechanisms underlying the structural organization of the PN are poorly understood. Electron microscopy showed that adherens junctions appeared to adhere to the sensory nerve ending and tSCII processes, so we examined the location of the N-cadherin adhesion system in PNs of rat vellus hairs by using immunoelectron microscopy. N-cadherin localized near both ends of the cell boundary between sensory nerve ending and tSCII processes, which corresponded to the sites of adherens junctions. We further found cadherin-associated proteins, alpha- and beta-catenins, at the linings of adherens junctions. Three-dimensional reconstruction of immunoelectron microscopic serial thin sections showed four linear arrays of N-cadherin arranged longitudinally along the LN beneath the four longitudinal borders of two tSCII processes. In contrast, sensory nerve fibers just proximal to the LNs formed common unmyelinated nerve fibers, in which N-cadherin was located mainly at the mesaxon of type I terminal Schwann cells (tSCIs). These results suggest that the four linear arrays of N-cadherin-mediated junctions adhere the sensory nerve ending and tSCII processes side by side to form the characteristic structure of the LN, and the structural differences between the LNs and the proximal unmyelinated nerve fibers possibly are due to the difference in the pattern of N-cadherin expression between sensory nerve endings and tSCII or tSCI processes. (c) 2007 Wiley-Liss, Inc.

  5. Low-expression of E-cadherin in leukaemia cells causes loss of homophilic adhesion and promotes cell growth.

    PubMed

    Rao, Qing; Wang, Ji-Ying; Meng, Jihong; Tang, Kejing; Wang, Yanzhong; Wang, Min; Xing, Haiyan; Tian, Zheng; Wang, Jianxiang

    2011-09-01

    E-cadherin (epithelial cadherin) belongs to the calcium-dependent adhesion molecule superfamily and is implicated in the interactions of haematopoietic progenitors and bone marrow stromal cells. Adhesion capacity to bone marrow stroma was impaired for leukaemia cells, suggesting that a breakdown of adhesive mechanisms governed by an adhesion molecule may exist in leukaemic microenvironment. We previously found that E-cadherin was low expressed in primary acute leukaemia cells compared with normal bone marrow mononuclear cells. In this study, we investigate the functional importance of low E-cadherin expression in leukaemia cell behaviours and investigate its effects in the abnormal interaction of leukaemic cells with stromal cells. After expression of E-cadherin was restored by a demethylating agent in leukaemia cells, E-cadherin-specific adhesion was enhanced. Additionally, siRNA (small interfering RNA)-mediated silencing of E-cadherin in Raji cells resulted in a reduction of cell homophilic adhesion and enhancement of cell proliferation and colony formation. These results suggest that low expression of E-cadherin contributes to the vigorous growth and transforming ability of leukaemic cells.

  6. M-cadherin and its sisters in development of striated muscle.

    PubMed

    Kaufmann, U; Martin, B; Link, D; Witt, K; Zeitler, R; Reinhard, S; Starzinski-Powitz, A

    1999-04-01

    Cadherins are calcium-dependent, transmembrane intercellular adhesion proteins with morphoregulatory functions in the development and maintenance of tissues. In the development of striated muscle, the expression and function of mainly M-, N-, and R-cadherin has been studied so far. While these three cadherins are expressed in skeletal muscle cells, of these only N-cadherin is expressed in cardiac muscle. In this review, M-, N-, and R-cadherin are discussed as important players in the terminal differentiation and possibly also in the commitment of skeletal muscle cells. Furthermore, reports are described which evaluate the essential role of N-cadherin in the formation of heart tissue.

  7. Molecular cloning of a human Ca2+-dependent cell-cell adhesion molecule homologous to mouse placental cadherin: its low expression in human placental tissues

    PubMed Central

    1989-01-01

    P-cadherin is a subclass of Ca2+-dependent cell-cell adhesion molecules present in mouse placenta, where its localization suggests a function of connecting the embryo to the uterus (Nose, A., and M. Takeichi. 1986. J. Cell Biol. 103:2649-2658). We recently identified a human cadherin detected by an mAb capable of disrupting cell-cell adhesion of A-431 cells, and found that it was closely related immunochemically to mouse P-cadherin. Curiously, this cadherin was undetectable in human placenta by immunohistochemical examination (Shimoyama, Y., S. Hirohashi, S. Hirano, M. Noguchi, Y. Shimosato, M. Takeichi, and O. Abe. 1989. Cancer Res. 49:2128-2133). We here report the cloning and sequencing of cDNA clone encoding the human homologue of mouse P- cadherin. The deduced amino acid sequence of the human P-cadherin consists of 829 amino acid and shows striking homology with mouse P- cadherin. On Northern blot analysis, human P-cadherin was scarcely expressed in human placenta in contrast to mouse P-cadherin, which was abundantly expressed in mouse placenta throughout pregnancy, and it was shown that E-cadherin, but not P-cadherin, was the major cadherin molecule in human placenta. Moreover, NIH3T3 cells transfected with human P-cadherin cDNA expressed the functional cadherin molecule, which was identical to the cadherin we had previously identified using the mAb, showing that this molecule really does mediate cell-cell adhesion and that the cadherin we detected immunochemically is undoubtedly human P-cadherin. The results obtained in this study support the idea that P- cadherin plays little role, if any, in Ca2+-dependent cell-cell binding in human placental tissue at least after several weeks of pregnancy. PMID:2793940

  8. Modulation of N-glycosylation by mesalamine facilitates membranous E-cadherin expression in colon epithelial cells☆

    PubMed Central

    Khare, Vineeta; Lang, Michaela; Dammann, Kyle; Campregher, Christoph; Lyakhovich, Alex; Gasche, Christoph

    2014-01-01

    Genome wide association studies have implicated intestinal barrier function genes in the pathogenesis of ulcerative colitis. One of such loci CDH1, encoding E-cadherin, a transmembrane glycoprotein with known tumor suppressor functions, is also linked to the susceptibility to colorectal cancer. Loss of membranous E-cadherin expression is common in both colitis and cancer. We have recently demonstrated that mesalamine (5-ASA); the anti-inflammatory drug used to treat ulcerative colitis, induces membranous expression of E-cadherin and increases intercellular adhesion. Using colorectal cancer epithelial cells with aberrant E-cadherin expression, we investigated the mechanism underlying such an effect of 5-ASA. Post-translational modification of E-cadherin glycosylation was analyzed by biotin/streptavidin detection of sialylated glycoproteins. GnT-III (N-acetylglucosaminyltransferase III) expression was assessed by qRT-PCR, Western blot and immunofluorescence. GnT-III activity was analyzed by reactivity with E-4/L-4-PHA. Expression, localization and interaction of E-cadherin and β-catenin were analyzed by Western blot, immunocytochemistry and RNA interference. 5-ASA activity modulated E-cadherin glycosylation and increased both mRNA and protein levels of GnT-III and its activity as detected by increased E4-lectin reactivity. Intestinal APCMin polyps in mice showed low expression of GnT-III and 5-ASA was effective in increasing its expression. The data demonstrated that remodeling of glycans by GnT-III mediated bisect glycosylation, contributes to the membranous retention of E-cadherin by 5-ASA; facilitating intercellular adhesion. Induction of membranous expression of E-cadherin by 5-ASA is a novel mechanism for mucosal healing in colitis that might impede tumor progression by modulation of GnT-III expression. PMID:24184502

  9. E-cadherin breast tumor expression, risk factors and survival: Pooled analysis of 5,933 cases from 12 studies in the Breast Cancer Association Consortium.

    PubMed

    Horne, Hisani N; Oh, Hannah; Sherman, Mark E; Palakal, Maya; Hewitt, Stephen M; Schmidt, Marjanka K; Milne, Roger L; Hardisson, David; Benitez, Javier; Blomqvist, Carl; Bolla, Manjeet K; Brenner, Hermann; Chang-Claude, Jenny; Cora, Renata; Couch, Fergus J; Cuk, Katarina; Devilee, Peter; Easton, Douglas F; Eccles, Diana M; Eilber, Ursula; Hartikainen, Jaana M; Heikkilä, Päivi; Holleczek, Bernd; Hooning, Maartje J; Jones, Michael; Keeman, Renske; Mannermaa, Arto; Martens, John W M; Muranen, Taru A; Nevanlinna, Heli; Olson, Janet E; Orr, Nick; Perez, Jose I A; Pharoah, Paul D P; Ruddy, Kathryn J; Saum, Kai-Uwe; Schoemaker, Minouk J; Seynaeve, Caroline; Sironen, Reijo; Smit, Vincent T H B M; Swerdlow, Anthony J; Tengström, Maria; Thomas, Abigail S; Timmermans, A Mieke; Tollenaar, Rob A E M; Troester, Melissa A; van Asperen, Christi J; van Deurzen, Carolien H M; Van Leeuwen, Flora F; Van't Veer, Laura J; García-Closas, Montserrat; Figueroa, Jonine D

    2018-04-26

    E-cadherin (CDH1) is a putative tumor suppressor gene implicated in breast carcinogenesis. Yet, whether risk factors or survival differ by E-cadherin tumor expression is unclear. We evaluated E-cadherin tumor immunohistochemistry expression using tissue microarrays of 5,933 female invasive breast cancers from 12 studies from the Breast Cancer Consortium. H-scores were calculated and case-case odds ratios (OR) and 95% confidence intervals (CIs) were estimated using logistic regression. Survival analyses were performed using Cox regression models. All analyses were stratified by estrogen receptor (ER) status and histologic subtype. E-cadherin low cases (N = 1191, 20%) were more frequently of lobular histology, low grade, >2 cm, and HER2-negative. Loss of E-cadherin expression (score < 100) was associated with menopausal hormone use among ER-positive tumors (ever compared to never users, OR = 1.24, 95% CI = 0.97-1.59), which was stronger when we evaluated complete loss of E-cadherin (i.e. H-score = 0), OR = 1.57, 95% CI = 1.06-2.33. Breast cancer specific mortality was unrelated to E-cadherin expression in multivariable models. E-cadherin low expression is associated with lobular histology, tumor characteristics and menopausal hormone use, with no evidence of an association with breast cancer specific survival. These data support loss of E-cadherin expression as an important marker of tumor subtypes.

  10. Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.

    PubMed

    Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R

    2012-01-11

    Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.

  11. Downregulation of P-cadherin expression in hepatocellular carcinoma induces tumorigenicity

    PubMed Central

    Bauer, Richard; Valletta, Daniela; Bauer, Karin; Thasler, Wolfgang E; Hartmann, Arndt; Müller, Martina; Reichert, Torsten E; Hellerbrand, Claus

    2014-01-01

    P-cadherin is a major contributor to cell-cell adhesion in epithelial tissues, playing pivotal roles in important morphogenetic and differentiation processes and in maintaining tissue integrity and homeostasis. Alterations of P-cadherin expression have been observed during the progression of several carcinomas where it appears to act as tumor suppressive or oncogenic in a context-dependent manner. Here, we found a significant downregulation of P-cadherin in hepatocellular carcinoma (HCC) cell lines and tissues compared to primary human hepatocytes and non-malignant liver tissues. Combined immunohistochemical analysis of a tissue microarray containing matched pairs of HCC tissue and corresponding non-tumorous liver tissue of 69 patients confirmed reduced P-cadherin expression in more than half of the cases. In 35 human HCC tissues, the P-cadherin immunosignal was completely lost which correlated with tumor staging and proliferation. Also in vitro, P-cadherin suppression in HCC cells via siRNA induced proliferation compared to cells transfected with control-siRNA. In summary, downregulation of P-cadherin expression appears to induce tumorigenicity in HCC. Therefore, P-cadherin expression may serve as a prognostic marker and therapeutic target of this highly aggressive tumor. PMID:25337260

  12. Downregulation of P-cadherin expression in hepatocellular carcinoma induces tumorigenicity.

    PubMed

    Bauer, Richard; Valletta, Daniela; Bauer, Karin; Thasler, Wolfgang E; Hartmann, Arndt; Müller, Martina; Reichert, Torsten E; Hellerbrand, Claus

    2014-01-01

    P-cadherin is a major contributor to cell-cell adhesion in epithelial tissues, playing pivotal roles in important morphogenetic and differentiation processes and in maintaining tissue integrity and homeostasis. Alterations of P-cadherin expression have been observed during the progression of several carcinomas where it appears to act as tumor suppressive or oncogenic in a context-dependent manner. Here, we found a significant downregulation of P-cadherin in hepatocellular carcinoma (HCC) cell lines and tissues compared to primary human hepatocytes and non-malignant liver tissues. Combined immunohistochemical analysis of a tissue microarray containing matched pairs of HCC tissue and corresponding non-tumorous liver tissue of 69 patients confirmed reduced P-cadherin expression in more than half of the cases. In 35 human HCC tissues, the P-cadherin immunosignal was completely lost which correlated with tumor staging and proliferation. Also in vitro, P-cadherin suppression in HCC cells via siRNA induced proliferation compared to cells transfected with control-siRNA. In summary, downregulation of P-cadherin expression appears to induce tumorigenicity in HCC. Therefore, P-cadherin expression may serve as a prognostic marker and therapeutic target of this highly aggressive tumor.

  13. Expression pattern of cadherins in the naked mole rat (Heterocephalus glaber) suggests innate cortical diversification of the cerebrum.

    PubMed

    Matsunaga, Eiji; Nambu, Sanae; Iriki, Atsushi; Okanoya, Kazuo

    2011-06-15

    The cerebral cortex is an indispensable region for higher cognitive function that is remarkably diverse among mammalian species. Although previous research has shown that the cortical area map in the mammalian cerebral cortex is formed by innate and activity-dependent mechanisms, it remains unknown how these mechanisms contribute to the evolution and diversification of the functional cortical areas in various species. The naked mole rat (Heterocephalus glaber) is a subterranean, eusocial rodent. Physiological and anatomical studies have revealed that the visual system is regressed and the somatosensory system is enlarged. To examine whether species differences in cortical area development are caused by intrinsic factors or environmental factors, we performed comparative gene expression analysis of neonatal naked mole rat and mouse brains. The expression domain of cadherin-6, a somatosensory marker, was expanded caudally and shifted dorsally in the cortex, whereas the expression domain of cadherin-8, a visual marker, was reduced caudally in the neonatal naked mole rat cortex. The expression domain of cadherin-8 was also reduced in other visual areas, such as the lateral geniculate nucleus and superior colliculus. Immunohistochemical analysis of thalamocortical fibers further suggested that somatosensory input did not affect cortical gene expression in the neonatal naked mole rat brain. These results suggest that the development of the somatosensory system and the regression of the visual system in the naked mole rat cortex are due to intrinsic genetic mechanisms as well as sensory input-dependent mechanisms. Intrinsic genetic mechanisms thus appear to contribute to species diversity in cortical area formation. Copyright © 2011 Wiley-Liss, Inc.

  14. Loss of CDH1 (E-cadherin) expression is associated with infiltrative tumour growth and lymph node metastasis.

    PubMed

    Kim, Sun A; Inamura, Kentaro; Yamauchi, Mai; Nishihara, Reiko; Mima, Kosuke; Sukawa, Yasutaka; Li, Tingting; Yasunari, Mika; Morikawa, Teppei; Fitzgerald, Kathryn C; Fuchs, Charles S; Wu, Kana; Chan, Andrew T; Zhang, Xuehong; Ogino, Shuji; Qian, Zhi Rong

    2016-01-19

    Loss of CDH1 (E-cadherin) expression in cancer cells may promote cell migration and invasion. Therefore, we hypothesised that loss of CDH1 expression in colorectal carcinoma might be associated with aggressive features and clinical outcome. Utilising molecular pathological epidemiology database of 689 rectal and colon cancer cases in the Nurses' Health Study and the Health Professionals Follow-up Study, we assessed tumour CDH1 expression by immunohistochemistry. Multivariate logistic regression analysis was conducted to assess association of CDH1 loss with tumour growth pattern (expansile-intermediate vs infiltrative) and lymph node metastasis and distant metastasis, controlling for potential confounders including microsatellite instability, CpG island methylator phenotype, LINE-1 methylation, and PIK3CA, BRAF and KRAS mutations. Mortality according to CDH1 status was assessed using Cox proportional hazards model. Loss of tumour CDH1 expression was observed in 356 cases (52%), and associated with infiltrative tumour growth pattern (odds ratio (OR), 2.02; 95% confidence interval (CI), 1.23-3.34; P=0.006) and higher pN stage (OR, 1.73; 95% CI, 1.23-2.43; P=0.001). Tumour CDH1 expression was not significantly associated with distant metastasis or prognosis. Loss of CDH1 expression in colorectal cancer is associated with infiltrative tumour growth pattern and lymph node metastasis.

  15. Differences in E-Cadherin and Syndecan-1 Expression in Different Types of Ameloblastomas

    PubMed Central

    López-Verdín, Sandra; Pereira-Prado, Vanesa

    2018-01-01

    Ameloblastomas are a group of benign, locally aggressive, recurrent tumors characterized by their slow and infiltrative growth. E-Cadherin and syndecan-1 are cell adhesion molecules related to the behavior of various tumors, including ameloblastomas. Ninety-nine ameloblastoma samples were studied; the expression of E-cadherin and syndecan-1 were evaluated by immunohistochemistry. E-Cadherin and epithelial syndecan-1 were more highly expressed in intraluminal/luminal unicystic ameloblastoma than in mural unicystic ameloblastoma and solid/multicystic ameloblastoma, whereas the stromal expression of syndecan-1 was higher in mural unicystic ameloblastoma and solid/multicystic ameloblastoma. Synchronicity was observed between E-cadherin and epithelial syndecan-1; the expression was correlated with intensity in all cases. There was a strong association between expression and tumor size and recurrence. The evaluation of the expression of E-cadherin and syndecan-1 are important for determining the potential aggressiveness of ameloblastoma variants. Future studies are required to understand how the expression of these markers is related to tumor aggressiveness.

  16. Immunohistochemical expression of E-cadherin does not distinguish canine cutaneous histiocytoma from other canine round cell tumors.

    PubMed

    Ramos-Vara, J A; Miller, M A

    2011-05-01

    Immunohistochemistry for E-cadherin (ECAD) has been used to distinguish canine cutaneous histiocytoma from other leukocytic neoplasms ("round cell tumors"). To determine the specificity of this test, 5 types of canine cutaneous round cell tumors were evaluated for immunohistochemical expression of ECAD. Tumors of all 5 types had variable cytoplasmic, plasma membrane, and/or paranuclear ECAD expression: All 13 cutaneous histiocytomas were ECAD+; all but 1 of 14 mast cell tumors expressed ECAD; 10 of 12 epitheliotropic lymphomas reacted with E-cadherin antibody; of 72 plasmacytomas, 54 were ECAD+; and 5 of 5 histiocytic sarcomas were positive. Conclusions based on these results include the following: First, immunoreactivity for ECAD is not limited to leukocytes of cutaneous histiocytoma; second, antibody to ECAD also labels neoplastic cells in most mast cell tumors, plasmacytomas, cutaneous histiocytic sarcomas, and epitheliotropic lymphomas; third, although most histiocytomas have membranous ECAD expression, the immunoreactivity varies among round cell tumors and is frequently concurrent in different cellular compartments; fourth, the distinctively paranuclear ECAD expression pattern in epitheliotropic lymphomas might distinguish them from other round cell tumors; and, fifth, ECAD should be used with other markers (eg, MUM1 for plasmacytomas, KIT for mast cell tumors, CD3 and CD79a for lymphomas) to distinguish among canine round cell tumors.

  17. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer

    PubMed Central

    Carvalho, S; Catarino, TA; Dias, AM; Kato, M; Almeida, A; Hessling, B; Figueiredo, J; Gärtner, F; Sanches, JM; Ruppert, T; Miyoshi, E; Pierce, M; Carneiro, F; Kolarich, D; Seruca, R; Yamaguchi, Y; Taniguchi, N; Reis, CA; Pinho, SS

    2016-01-01

    E-cadherin is a central molecule in the process of gastric carcinogenesis and its posttranslational modifications by N-glycosylation have been described to induce a deleterious effect on cell adhesion associated with tumor cell invasion. However, the role that site-specific glycosylation of E-cadherin has in its defective function in gastric cancer cells needs to be determined. Using transgenic mice models and human clinical samples, we demonstrated that N-acetylglucosaminyltransferase V (GnT-V)-mediated glycosylation causes an abnormal pattern of E-cadherin expression in the gastric mucosa. In vitro models further indicated that, among the four potential N-glycosylation sites of E-cadherin, Asn-554 is the key site that is selectively modified with β1,6 GlcNAc-branched N-glycans catalyzed by GnT-V. This aberrant glycan modification on this specific asparagine site of E-cadherin was demonstrated to affect its critical functions in gastric cancer cells by affecting E-cadherin cellular localization, cis-dimer formation, molecular assembly and stability of the adherens junctions and cell–cell aggregation, which was further observed in human gastric carcinomas. Interestingly, manipulating this site-specific glycosylation, by preventing Asn-554 from receiving the deleterious branched structures, either by a mutation or by silencing GnT-V, resulted in a protective effect on E-cadherin, precluding its functional dysregulation and contributing to tumor suppression. PMID:26189796

  18. E-Cadherin-Dependent Stimulation of Traction Force at Focal Adhesions via the Src and PI3K Signaling Pathways

    PubMed Central

    Jasaitis, Audrius; Estevez, Maruxa; Heysch, Julie; Ladoux, Benoit; Dufour, Sylvie

    2012-01-01

    The interplay between cadherin- and integrin-dependent signals controls cell behavior, but the precise mechanisms that regulate the strength of adhesion to the extracellular matrix remains poorly understood. We deposited cells expressing a defined repertoire of cadherins and integrins on fibronectin (FN)-coated polyacrylamide gels (FN-PAG) and on FN-coated pillars used as a micro-force sensor array (μFSA), and analyzed the functional relationship between these adhesion receptors to determine how it regulates cell traction force. We found that cadherin-mediated adhesion stimulated cell spreading on FN-PAG, and this was modulated by the substrate stiffness. We compared S180 cells with cells stably expressing different cadherins on μFSA and found that traction forces were stronger in cells expressing cadherins than in parental cells. E-cadherin-mediated contact and mechanical coupling between cells are required for this increase in cell-FN traction force, which was not observed in isolated cells, and required Src and PI3K activities. Traction forces were stronger in cells expressing type I cadherins than in cells expressing type II cadherins, which correlates with our previous observation of a higher intercellular adhesion strength developed by type I compared with type II cadherins. Our results reveal one of the mechanisms whereby molecular cross talk between cadherins and integrins upregulates traction forces at cell-FN adhesion sites, and thus provide additional insight into the molecular control of cell behavior. PMID:22853894

  19. Reduced E-cadherin expression is associated with abdominal pain and symptom duration in a study of alternating and diarrhea predominant IBS.

    PubMed

    Wilcz-Villega, E; McClean, S; O'Sullivan, M

    2014-03-01

    Increased intestinal permeability and altered expression of tight junction (TJ) proteins may be implicated in the pathogenesis of irritable bowel syndrome (IBS). This study aimed to investigate the expression of adherens junction (AJ) protein E-cadherin and TJ proteins zonula occludens (ZO)-1 and claudin (CLD)-1 and associations with IBS symptoms. Junctional proteins were immunostained in cecal biopsy tissue of Rome II IBS patients (n = 34) comprising both alternating (IBS-A) and diarrhea predominant (IBS-D) subtypes, and controls (n = 12). IBS symptom duration, abdominal pain severity and stool frequency were assessed for IBS patients. Protein expression was determined by immunofluorescence. E-cadherin and ZO-1 protein expression was significantly lower (p = 0.03 and p = 0.016, respectively) in the cecal surface epithelium of the IBS group comprising both IBS-A and IBS-D subtypes. CLD-1 expression was not significantly altered compared with controls. On subtype analysis, ZO-1 expression was significantly reduced in both IBS-A and IBS-D compared with controls, whereas E-cadherin was reduced only in IBS-A. Lower E-cadherin expression was associated with longer symptoms duration specifically in IBS-A patients (rs = -0.76, p = 0.004). Reduced E-cadherin associated with abdominal pain severity in the overall IBS group (rs = -0.36, p = 0.041), but this association was unrelated to IBS subtype. E-cadherin protein expression in the cecum was significantly lower in IBS-A compared with controls and associated with longstanding symptoms. E-cadherin was further associated with abdominal pain severity in the IBS group overall, but unrelated to IBS subtype. Altered E-cadherin expression may provide novel insights into mechanisms underlying intestinal barrier dysfunction in IBS. © 2013 John Wiley & Sons Ltd.

  20. DE-Cadherin Is Required for Intercellular Motility during Drosophila Oogenesis

    PubMed Central

    Niewiadomska, Paulina; Godt, Dorothea; Tepass, Ulrich

    1999-01-01

    Cadherins are involved in a variety of morphogenetic movements during animal development. However, it has been difficult to pinpoint the precise function of cadherins in morphogenetic processes due to the multifunctional nature of cadherin requirement. The data presented here indicate that homophilic adhesion promoted by Drosophila E-cadherin (DE-cadherin) mediates two cell migration events during Drosophila oogenesis. In Drosophila follicles, two groups of follicle cells, the border cells and the centripetal cells migrate on the surface of germline cells. We show that the border cells migrate as an epithelial patch in which two centrally located cells retain epithelial polarity and peripheral cells are partially depolarized. Both follicle cells and germline cells express DE-cadherin, and border cells and centripetal cells strongly upregulate the expression of DE-cadherin shortly before and during their migration. Removing DE-cadherin from either the follicle cells or the germline cells blocks migration of border cells and centripetal cells on the surface of germline cells. The function of DE-cadherin in border cells appears to be specific for migration as the formation of the border cell cluster and the adhesion between border cells are not disrupted in the absence of DE-cadherin. The speed of migration depends on the level of DE-cadherin expression, as border cells migrate more slowly when DE-cadherin activity is reduced. Finally, we show that the upregulation of DE-cadherin expression in border cells depends on the activity of the Drosophila C/EBP transcription factor that is essential for border cell migration. PMID:9971747

  1. ZEB1 promotes the progression and metastasis of cervical squamous cell carcinoma via the promotion of epithelial-mesenchymal transition

    PubMed Central

    Ma, Yihui; Zheng, Xiangyu; Zhou, Jun; Zhang, Ying; Chen, Kuisheng

    2015-01-01

    Objective: The process of epithelial-mesenchymal transition (EMT) clearly contributes to cancer metastasis. The aim of this study was to investigate the expression of the EMT-related transcription repressor ZEB1 and the expression of EMT-associated markers (E-cadherin, β-catenin and N-cadherin) in cervical squamous cell carcinoma. In addition, the role of ZEB1 and these EMT-associated markers in the progression and metastasis of cervical squamous cell carcinoma was explored. Methods: The expression of ZEB1, E-cadherin, β-catenin and N-cadherin was evaluated in 81 specimens of cervical squamous cell carcinoma by immunohistochemistry; the clinicopathological significance of these markers was then analyzed. Results: 1) Of the 81 samples, 37 cases (45.7%) were positive for ZEB1, and nuclear expression of ZEB1 in tumor cells was positively associated with the differentiation status of the tumor tissue (P < 0.05), vascular invasion (P < 0.05) and lymph node metastasis (P < 0.05). 2) The loss of E-cadherin and β-catenin expression in tumor cells and the acquisition of N-cadherin expression were positively associated with the differentiation status of the tumor tissue (P < 0.05) and with the occurrence of vascular invasion (P < 0.05). 3) A significant negative correlation was observed between ZEB1 and E-cadherin expression (Spearman = -0.636, P < 0.05) and between ZEB1 and β-catenin expression (Spearman = -0.417, P < 0.05). Moreover, a significant positive correlation was observed between ZEB1 and N-cadherin expression (Spearman = 0.557, P < 0.05). Conclusions: These results emphasize the role of EMT in cervical squamous cell carcinoma. The upregulation of ZEB1 is associated with the abnormal expression of E-cadherin, β-catenin and N-cadherin, which might promote the progression and metastasis of cervical squamous cell carcinoma. PMID:26617850

  2. ERβ1 inhibits the migration and invasion of breast cancer cells through upregulation of E-cadherin in a Id1-dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yan; Ming, Jia; Xu, Yan

    2015-02-06

    Highlights: • Expression of ERβ1 was positively correlated with E-cadherin in breast cancer cell. • ERβ1 upregulates E-cadherin expression in breast cancer cell lines. • ERβ1 upregulates E-cadherin expression in a Id1-dependent manner. - Abstract: ERβ1 is a member of the nuclear receptor superfamily of ligand-regulated transcription factors. It plays an important role in regulating the progression of breast cancer. However, the mechanisms of ERβ1 in tumorigenesis, metastasis and prognosis are still not fully clear. In this study, we showed that the expression of ERβ1 was positively correlated with E-cadherin expression in breast cancer cell lines. In addition, we foundmore » that ERβ1 upregulates E-cadherin expression in breast cancer cell lines. Furthermore, we also found that ERβ1 inhibits the migration and invasion of breast cancer cells and upregulated E-cadherin expression in a Id1-dependent manner. Taken together, our study provides further understanding of the molecular mechanism of ERβ1 in tumor metastasis and suggests the feasibility of developing novel therapeutic approaches to target Id1 to inhibit breast cancer metastasis.« less

  3. DHEA increases epithelial markers and decreases mesenchymal proteins in breast cancer cells and reduces xenograft growth.

    PubMed

    Colín-Val, Zaira; González-Puertos, Viridiana Yazmín; Mendoza-Milla, Criselda; Gómez, Erika Olivia; Huesca-Gómez, Claudia; López-Marure, Rebeca

    2017-10-15

    Breast cancer is one of the most common neoplasias and the leading cause of cancer death in women worldwide. Its high mortality rate is linked to a great metastatic capacity associated with the epithelial-mesenchymal transition (EMT). During this process, a decrease in epithelial proteins expression and an increase of mesenchymal proteins are observed. On the other hand, it has been shown that dehydroepiandrosterone (DHEA), the most abundant steroid in human plasma, inhibits migration of breast cancer cells; however, the underlying mechanisms have not been elucidated. In this study, the in vitro effect of DHEA on the expression pattern of some EMT-related proteins, such as E-cadherin (epithelial), N-cadherin, vimentin and Snail (mesenchymal) was measured by Western blot and immunofluorescence in MDA-MB-231 breast cancer cells with invasive, metastatic and mesenchymal phenotype. Also, the in vivo effect of DHEA on xenograft tumor growth in nude mice (nu - /nu - ) and on expression of the same epithelial and mesenchymal proteins in generated tumors was evaluated. We found that DHEA increased expression of E-cadherin and decreased N-cadherin, vimentin and Snail expression both in MD-MB-231 cells and in the formed tumors, possibly by DHEA-induced reversion of mesenchymal phenotype. These results were correlated with a tumor size reduction in mouse xenografts following DHEA administration either a week earlier or concurrent with breast cancer cells inoculation. In conclusion, DHEA could be useful in the treatment of breast cancer with mesenchymal phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Tuberin-deficiency downregulates N-cadherin and upregulates vimentin in kidney tumor of TSC patients

    PubMed Central

    Liang, Sitai; Salas, Tiffanie; Gencaslan, Emre; Li, Baojie; Habib, Samy L.

    2014-01-01

    Angiomyolipomas (AMLs) are associated with cell fibrosis in kidney of Tuberous Sclerosis Complex patients. The mechanism by which the fibrotic proteins accumulated in AMLs has not been explored. In the present study, we investigated the role of Akt/tuberin/mTOR pathway in the regulation cell fibrosis proteins. AML cells that expressed low levels of tuberin showed less expression of N-cadherin and higher of vimentin proteins compared to HEK293 cells. AML cells infected with Ad-tuberin showed a significant decrease in vimentin and an increase in N-cadherin protein expression. In addition, cells treated with rapamycin showed a significant increase in p-Akt and a decrease in p-p70S6K that was associated with a decrease expression of vimentin and a slight increase expression in N-cadherin. On the other hand, cells treated with Akt inhibitor revealed a significant decrease in p-Akt and p-p70S6K that was associated with a significant decrease in vimentin and an increase in N-cadherin expression. In addition, cells transfected with DN-Akt or DN-S6K show significant increase expression in N-cadherin and a decrease in vimentin. Moreover, cells transfected with siRNA against rictor or siRNA against raptor resulted in a decrease in vimentin and an increase N-cadherin expression. Kidney tumors from TSC patients showed significant decrease in N-cadherin and significant increased in vimentin protein expression compared to control kidney tissues. These data comprise the first report to provide the role of Akt/tuberin/mTORC1/2 in the regulation of N-cadherin and vimentin that are involved in the progression of fibrosis in kidney tumor of TSC patients. PMID:25149531

  5. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma.

    PubMed

    Elloul, Sivan; Elstrand, Mari Bukholt; Nesland, Jahn M; Tropé, Claes G; Kvalheim, Gunnar; Goldberg, Iris; Reich, Reuven; Davidson, Ben

    2005-04-15

    It was demonstrated previously that the Snail family of transcription factors and Smad-interacting protein 1 (Sip1) regulate E-cadherin and matrix metalloproteinase 2 (MMP-2) expression, cellular morphology, and invasion in carcinoma. For the current study, the authors analyzed the relation between the expression of Snail, Slug, and Sip1; the expression of MMP-2 and E-cadherin; and clinical parameters in patients with metastatic ovarian and breast carcinoma. One hundred one fresh-frozen, malignant effusions from patients who were diagnosed with gynecologic carcinomas (78 ovarian carcinomas and 23 breast carcinomas) were studied for mRNA expression of Snail, Slug, Sip1, MMP-2, and E-cadherin using reverse transcriptase-polymerase chain reaction analysis. Snail mRNA and E-cadherin protein expression levels also were studied in ovarian carcinoma effusions using in situ hybridization and immunocytochemistry. The results were analyzed for possible correlation with clinicopathologic parameters in both tumor types. E-cadherin mRNA expression was lower in breast carcinoma (P = 0.001), whereas Snail expression was higher (P = 0.003). The Snail/E-cadherin ratio (P < 0.001) and the Sip1/E-cadherin ratio (P = 0.002) were higher in breast carcinomas. Sip1 mRNA expression (P < 0.001) and Slug mRNA expression (P < 0.001) were correlated with the expression of MMP-2 in ovarian carcinomas. The Sip1/E-cadherin ratio was higher in primary ovarian carcinomas at the time of diagnosis compared with postchemotherapy ovarian carcinoma effusions (P = 0.003), higher in Stage IV tumors compared with Stage III tumors (P = 0.049), and higher in pleural effusions compared with peritoneal effusions (P = 0.044). In a univariate survival analysis of patients with ovarian carcinoma, a high Sip1/E-cadherin ratio predicted poor overall survival (P = 0.018). High E-cadherin mRNA expression predicted better disease-free survival (P = 0.023), with a similar trend for a low Slug/E-cadherin ratio (P = 0.07). High Snail mRNA expression predicted shorter effusion-free survival (P = 0.008), disease-free survival (P = 0.03), and overall survival (P = 0.008) in patients with breast carcinoma. Transcription factors that regulate E-cadherin were expressed differentially in metastatic ovarian and breast carcinoma. Snail may predict a poor outcome in patients who have breast carcinoma metastatic to effusions. E-cadherin expression generally was conserved in effusions from patients with ovarian carcinoma, but the subset of patients with postulated Sip1-induced repression of this adhesion molecule had a significantly worse outcome. This finding was in agreement with the stronger suppression of E-cadherin by Snail and Sip1 in breast carcinoma effusions, a clinical condition associated with extremely poor survival. (c) 2005 American Cancer Society.

  6. Drosophila E-Cadherin Functions in Hematopoietic Progenitors to Maintain Multipotency and Block Differentiation

    PubMed Central

    Gao, Hongjuan; Wu, Xiaorong; Fossett, Nancy

    2013-01-01

    A fundamental question in stem cell biology concerns the regulatory strategies that control the choice between multipotency and differentiation. Drosophila blood progenitors or prohemocytes exhibit key stem cell characteristics, including multipotency, quiescence, and niche dependence. As a result, studies of Drosophila hematopoiesis have provided important insights into the molecular mechanisms that control these processes. Here, we show that E-cadherin is an important regulator of prohemocyte fate choice, maintaining prohemocyte multipotency and blocking differentiation. These functions are reminiscent of the role of E-cadherin in mammalian embryonic stem cells. We also show that mis-expression of E-cadherin in differentiating hemocytes disrupts the boundary between these cells and undifferentiated prohemocytes. Additionally, upregulation of E-cadherin in differentiating hemocytes increases the number of intermediate cell types expressing the prohemocyte marker, Patched. Furthermore, our studies indicate that the Drosophila GATA transcriptional co-factor, U-shaped, is required for E-cadherin expression. Consequently, E-cadherin is a downstream target of U-shaped in the maintenance of prohemocyte multipotency. In contrast, we showed that forced expression of the U-shaped GATA-binding partner, Serpent, repressed E-cadherin expression and promoted lamellocyte differentiation. Thus, U-shaped may maintain E-cadherin expression by blocking the inhibitory activity of Serpent. Collectively, these observations suggest that GATA:FOG complex formation regulates E-cadherin levels and, thereby, the choice between multipotency and differentiation. The work presented in this report further defines the molecular basis of prohemocyte cell fate choice, which will provide important insights into the mechanisms that govern stem cell biology. PMID:24040319

  7. DNA methylation-induced E-cadherin silencing is correlated with the clinicopathological features of melanoma.

    PubMed

    Venza, Mario; Visalli, Maria; Catalano, Teresa; Biondo, Carmelo; Beninati, Concetta; Teti, Diana; Venza, Isabella

    2016-04-01

    E-cadherin, a calcium-dependent cell-cell adhesion molecule, has an important role in epithelial cell function, maintenance of tissue architecture and cancer suppression. Loss of E-cadherin promotes tumor metastatic dissemination and predicts poor prognosis. The present study investigated the clinicopathological significance of E-cadherin expression in cutaneous, mucosal and uveal melanoma related to epigenetic mechanisms that may contribute to E-cadherin silencing. E-cadherin expression was reduced in 55/130 cutaneous (42.3%), 49/82 mucosal (59.7%) and 36/64 uveal (56.2%) melanoma samples as compared to normal skin controls and was inversely associated with promoter methylation. Of the 10 different CpG sites studied (nt 863, 865, 873, 879, 887, 892, 901, 918, 920 and 940), two sites (nt 892 and 940) were 90-100% methylated in all the melanoma specimens examined and the other ones were partially methylated (range, 53-86%). In contrast, the methylation rate of the E-cadherin gene was low in normal tissues (range, 5-24%). In all the three types of melanoma studied, a significant correlation was found between reduced levels of E-cadherin and reduced survival, high mitotic index and metastasis, accounting for the predilection of lymph nodal localization. In cutaneous and mucosal melanoma, low E-cadherin expression was positively correlated also with head/neck localization and ulceration. A high frequency of reduced E-cadherin levels occurred in choroid melanomas. In vitro experiments showed that E-cadherin transcription was restored following 5-aza-2'-deoxycytidine (5-aza-dC) treatment or DNMT1 silencing and was negatively correlated with the invasive potential of melanoma cells. The significant relationship between E-cadherin silencing and several poor prognostic factors indicates that this adhesion molecule may play an important role in melanomagenesis. Therefore, the inverse association of E-cadherin expression with promoter methylation raises the intriguing possibility that reactivation of E-cadherin expression through promoter demethylation may represent a potential therapeutic strategy for the treatment of melanoma.

  8. Silibinin Synergizes with Histone Deacetylase and DNA Methyltransferase Inhibitors in Upregulating E-cadherin Expression Together with Inhibition of Migration and Invasion of Human Non-small Cell Lung Cancer Cells

    PubMed Central

    Mateen, Samiha; Raina, Komal; Agarwal, Chapla; Chan, Daniel

    2013-01-01

    Aggressive cancers in the epithelial-to-mesenchymal transition (EMT) phase are characterized by loss of cell adhesion, repression of E-cadherin, and increased cell mobility. Non-small cell lung cancer (NSCLC) differs in basal level of E-cadherin; predominantly exhibiting silenced expression due to epigenetic-related modifications. Accordingly, effective treatments are needed to modulate these epigenetic events that in turn can positively regulate E-cadherin levels. Herein, we investigated silibinin, a natural flavonolignan with anticancer efficacy against lung cancer, either alone or in combination with epigenetic therapies to modulate E-cadherin expression in a panel of NSCLC cell lines. Silibinin combined with HDAC inhibitor Trichostatin A [TSA; 7-[4-(dimethylamino)phenyl]-N-hydroxy-4,6-dimethyl-7-oxohepta-2,4-dienamide] or DNMT inhibitor 5′-Aza-deoxycytidine (Aza) significantly restored E-cadherin levels in NSCLC cells harboring epigenetically silenced E-cadherin expression. These combination treatments also strongly decreased the invasion/migration of these cells, which further emphasized the biologic significance of E-cadherin restoration. Treatment of NSCLC cells, with basal E-cadherin levels, by silibinin further increased the E-cadherin expression and inhibited their migratory and invasive potential. Additional studies showed that silibinin alone as well as in combination with TSA or Aza downmodulate the expression of Zeb1, which is a major transcriptional repressor of E-cadherin. Overall these findings demonstrate the potential of combinatorial treatments of silibinin with HDAC or DNMT inhibitor to modulate EMT events in NSCLC cell lines, leading to a significant inhibition in their migratory and invasive potentials. These results are highly significant, since loss of E-cadherin and metastatic spread of the disease via EMT is associated with poor prognosis and high mortalities in NSCLC. PMID:23461975

  9. Prognostic Potential of N-Cadherin in Oral Squamous Cell Carcinoma via Immunohistochemical Methods.

    PubMed

    Chandolia, Betina; Rajliwal, Jai Parkash; Bajpai, Manas; Arora, Manika

    2017-08-01

    To assess the prognostic potential for N-cadherin in oral squamous cell carcinoma and oral epithelial dysplasia. Across-sectional study, analytical study. Maharishi Markandeshwar College of Dental Science Research (MMCDSR), Ambala, India, from 2011 to 2014. Immunohistochemistry was used to observe the N-cadherin expression in 100 cases having epithelium with normal oral mucosa, oral epithelial dysplastic lesions and oral squamous cell carcinoma (OSCC). For statistical significance, SPSS 13.0 was used to calculate the data by Mann-Whitney and Kruskal-Wallis tests. In OSCC, N-cadherin expression was more evident than in oral epithelial dysplasia followed by the normal oral epithelium that did not show any dysplastic changes (p=0.001). Conversely, N-cadherin expression was not significant among the histological grade of OSCC. N-cadherin can be used as a potential biomarker for early diagnosis of OSCC. However, the N-cadherin expression did not show any correlation with the histological grade of OSCC.

  10. 14-3-3ε Overexpression Contributes to Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma

    PubMed Central

    Liang, Shu-Man; Chen, Shyh-Chang; Wang, John; Hsu, Chiun; Wu, Yao-Ming; Liou, Jun-Yang

    2013-01-01

    Background 14-3-3ε is implicated in regulating tumor progression, including hepatocellular carcinoma (HCC). Our earlier study indicated that elevated 14-3-3ε expression is significantly associated with higher risk of metastasis and lower survival rates of HCC patients. However, the molecular mechanisms of how 14-3-3ε regulates HCC tumor metastasis are still unclear. Methodology and Principal Findings In this study, we show that increased 14-3-3ε expression induces HCC cell migration and promotes epithelial-mesenchymal transition (EMT), which is determined by the reduction of E-cadherin expression and induction of N-cadherin and vimentin expression. Knockdown with specific siRNA abolished 14-3-3ε-induced cell migration and EMT. Furthermore, 14-3-3ε selectively induced Zeb-1 and Snail expression, and 14-3-3ε-induced cell migration was abrogated by Zeb-1 or Snail siRNA. In addition, the effect of 14-3-3ε-reduced E-cadherin was specifically restored by Zeb-1 siRNA. Positive 14-3-3ε expression was significantly correlated with negative E-cadherin expression, as determined by immunohistochemistry analysis in HCC tumors. Analysis of 14-3-3ε/E-cadherin expression associated with clinicopathological characteristics revealed that the combination of positive 14-3-3ε and negative E-cadherin expression is significantly correlated with higher incidence of HCC metastasis and poor 5-year overall survival. In contrast, patients with positive 14-3-3ε and positive E-cadherin expression had better prognostic outcomes than did those with negative E-cadherin expression. Significance Our findings show for the first time that E-cadherin is one of the downstream targets of 14-3-3ε in modulating HCC tumor progression. Thus, 14-3-3ε may act as an important regulator in modulating tumor metastasis by promoting EMT as well as cell migration, and it may serve as a novel prognostic biomarker or therapeutic target for HCC. PMID:23483955

  11. Epithelial-Mesenchymal Transition in Non Small-cell Lung Cancer.

    PubMed

    Tsoukalas, Nikolaos; Aravantinou-Fatorou, Eleni; Tolia, Maria; Giaginis, Constantinos; Galanopoulos, Michail; Kiakou, Maria; Kostakis, Ioannis D; Dana, Eugene; Vamvakaris, Ioannis; Korogiannos, Athanasios; Tsiambas, Evangelos; Salemis, Nikolaos; Kyrgias, George; Karameris, Andreas; Theocharis, Stamatios

    2017-04-01

    Lung cancer is the first cause of cancer related deaths in both males and females. Epithelial-mesenchymal transition (EMT) is a reversible process by which epithelial cells transform to mesenchymal stem cells by losing their cell polarity and cell-to-cell adhesion, gaining migratory and invasive properties. High levels of E-cadherin are expressed in epithelial cells, whereas mesenchymal cells express high levels of N-cadherin, fibronectin and vimentin. The aim of this study was to evaluate the correlation between E-cadherin and vimentin expression and their clinical significance in non-small cell lung cancer (NSCLC). The immunohistochemical expression of E-cadherin, vimentin and Ki-67 was performed on tissue microarrays from NSCLC specimens obtained from 112 newly- diagnosed cases and were studied using classical pathological evaluation. Associations between E-cadherin, vimentin and Ki-67 expression, clinicopathological variables and survival were analyzed. In all cases, a value of p≤0.05 was considered significant. Low E-cadherin expression was significantly correlated with tumor necrosis (p=0.019). Moreover, there was a trend for correlation between high E-cadherin expression and better overall survival (hazard ratio=1.02, and 95% confidence interval=0.45-1.87, p=0.091). There was also a significant negative correlation between vimentin expression and overall survival (hazard ratio=1.13, and 95% confidence interval=0.78-1.65, p=0.026). Additionally, there was a significant negative correlation between vimentin expression and grade I tumors (p=0.031). Finally, a positive correlation trend between vimentin expression and Ki-67 was found (p=0.073). High E-cadherin and low vimentin expression correlate with better prognosis and overall survival. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Ezrin and E-cadherin expression profile in cervical cytology: a prognostic marker for tumor progression in cervical cancer.

    PubMed

    Zacapala-Gómez, Ana E; Navarro-Tito, Napoleón; Alarcón-Romero, Luz Del C; Ortuño-Pineda, Carlos; Illades-Aguiar, Berenice; Castañeda-Saucedo, Eduardo; Ortiz-Ortiz, Julio; Garibay-Cerdenares, Olga L; Jiménez-López, Marco A; Mendoza-Catalán, Miguel A

    2018-03-27

    Cervical cancer (CC) is the fourth cause of mortality by neoplasia in women worldwide. The use of immunomarkers is an alternative tool to complement currently used algorithms for detection of cancer, and to improve selection of therapeutic schemes. Aberrant expression of Ezrin and E-cadherin play an important role in tumor invasion. In this study we analyzed Ezrin and E-cadherin expression in liquid-based cervical cytology samples, and evaluated their potential use as prognostic immunomarkers. Immunocytochemical staining of Ezrin and E-cadherin was performed in cervical samples of 125 patients. The cytological or histological diagnostic was performed by Papanicolaou staining or H&E staining, respectively. HPV genotyping was determined using INNO-LIPA Genotyping Extra kit and the HPV physical status by in situ hybridization. Ezrin expression in HaCaT, HeLa and SiHa cell lines was determined by immunocytochemistry, immunofluorescence and Western blot. High Ezrin expression was observed in cervical cancer samples (70%), samples with multiple infection by HR-HPV (43%), and samples with integrated viral genome (47%). High Ezrin expression was associated with degree of SIL, viral genotype and physical status. In contrast, low E-cadherin expression was found in cervical cancer samples (95%), samples with multiple infection by HR-HPV/LR-HPV (87%) and integrated viral genome (72%). Low E-cadherin expression was associated with degree of SIL and viral genotype. Interestingly, Ezrin nuclear staining was associated with degree of SIL and viral genotype. High Ezrin expression, high percent of nuclear Ezrin and low E-cadherin expression behaved as risk factors for progression to HSIL and cervical cancer. Ezrin and E-cadherin expression profile in cervical cytology samples could be a potential prognostic marker, useful for identifying cervical lesions with a high-risk of progression to cervical cancer.

  13. The over expression of long non-coding RNA ANRIL promotes epithelial-mesenchymal transition by activating the ATM-E2F1 signaling pathway in pancreatic cancer: An in vivo and in vitro study.

    PubMed

    Chen, Shi; Zhang, Jia-Qiang; Chen, Jiang-Zhi; Chen, Hui-Xing; Qiu, Fu-Nan; Yan, Mao-Lin; Chen, Yan-Ling; Peng, Cheng-Hong; Tian, Yi-Feng; Wang, Yao-Dong

    2017-09-01

    This study aims to investigate the roles of lncRNA ANRIL in epithelial-mesenchymal transition (EMT) by regulating the ATM-E2F1 signaling pathway in pancreatic cancer (PC). PC rat models were established and ANRIL overexpression and interference plasmids were transfected. The expression of ANRIL, EMT markers (E-cadherin, N-cadherin and Vimentin) and ATM-E2F1 signaling pathway-related proteins (ATM, E2F1, INK4A, INK4B and ARF) were detected. Small molecule drugs were applied to activate and inhibit the ATM-E2F1 signaling pathway. Transwell assay and the scratch test were adopted to detect cell invasion and migration abilities. ANRIL expression in the PC cells was higher than in normal pancreatic duct epithelial cells. In the PC rat models and PC cells, ANRIL interference promoted the expressions of INK4B, INK4A, ARF and E-cadherin, while reduced N-cadherin and Vimentin expression. Over-expressed ANRIL decreased the expression of INK4B, INK4A, ARF and E-cadherin, but raised N-cadherin and Vimentin expressions. By inhibiting the ATM-E2F1 signaling pathway in PC cells, E-cadherin expression increased but N-cadherin and Vimentin expressions decreased. After ANRIL was silenced or the ATM-E2F1 signaling pathway inhibited, PC cell migration and invasion abilities were decreased. In conclusion, over-expression of lncRNA ANRIL can promote EMT of PC cells by activating the ATM-E2F1 signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Reactive oxygen species promote ovarian cancer progression via the HIF-1α/LOX/E-cadherin pathway.

    PubMed

    Wang, Yu; Ma, Jun; Shen, Haoran; Wang, Chengjie; Sun, Yueping; Howell, Stephen B; Lin, Xinjian

    2014-11-01

    Reactive oxygen species (ROS) can drive the de‑differentiation of tumor cells leading to the process of epithelial-to-mesenchymal transition (EMT) to enhance invasion and metastasis. The invasive and metastatic phenotype of malignant cells is often linked to loss of E-cadherin expression, a hallmark of EMT. Recent studies have demonstrated that hypoxic exposure causes HIF-1-dependent repression of E-cadherin. However, the mechanism by which ROS and/or HIF suppresses E-cadherin expression remains less clear. In the present study, we found that ROS accumulation in ovarian carcinoma cells upregulated HIF-1α expression and subsequent transcriptional induction of lysyl oxidase (LOX) which repressed E-cadherin. Loss of E-cadherin facilitated ovarian cancer (OC) cell migration in vitro and promoted tumor growth in vivo. E-cadherin immunoreactivity correlated with International Federation of Gynecology and Obstetrics (FIGO) stage, tumor differentiation and metastasis. Negative E-cadherin expression along with FIGO stage, tumor differentiation and metastasis significantly predicted for a lower 5-year survival rate. These findings suggest that ROS play an important role in the initiation of metastatic growth of OC cells and support a molecular pathway from ROS to aggressive transformation which involves upregulation of HIF-1α and its downstream target LOX to suppress E-cadherin expression leading to an increase in cell motility and invasiveness.

  15. Insulin/IGF-I Signaling Pathways Enhances Tumor Cell Invasion through Bisecting GlcNAc N-glycans Modulation. An Interplay with E-Cadherin

    PubMed Central

    Dias, Ana M.; Oliveira, Patrícia; Cabral, Joana; Seruca, Raquel; Oliveira, Carla; Morgado-Díaz, José Andrés; Reis, Celso A.; Pinho, Salomé S.

    2013-01-01

    Changes in glycosylation are considered a hallmark of cancer, and one of the key targets of glycosylation modifications is E-cadherin. We and others have previously demonstrated that E-cadherin has a role in the regulation of bisecting GlcNAc N-glycans expression, remaining to be determined the E-cadherin-dependent signaling pathway involved in this N-glycans expression regulation. In this study, we analysed the impact of E-cadherin expression in the activation profile of receptor tyrosine kinases such as insulin receptor (IR) and IGF-I receptor (IGF-IR). We demonstrated that exogenous E-cadherin expression inhibits IR, IGF-IR and ERK 1/2 phosphorylation. Stimulation with insulin and IGF-I in MDA-MD-435 cancer cells overexpressing E-cadherin induces a decrease of bisecting GlcNAc N-glycans that was accompanied with alterations on E-cadherin cellular localization. Concomitantly, IR/IGF-IR signaling activation induced a mesenchymal-like phenotype of cancer cells together with an increased tumor cell invasion capability. Altogether, these results demonstrate an interplay between E-cadherin and IR/IGF-IR signaling as major networking players in the regulation of bisecting N-glycans expression, with important effects in the modulation of epithelial characteristics and tumor cell invasion. Here we provide new insights into the role that Insulin/IGF-I signaling play during cancer progression through glycosylation modifications. PMID:24282611

  16. [The expression and clinical significance of EphA2 and E-cadherin in papillary thyroid carcinoma].

    PubMed

    Liu, Yan; Miao, Yuhua; Li, Xiaoming

    2015-06-01

    To investigate the expression and clinical significance of EphA2 and E cadherin proteins in papillary thyroid carcinoma tissues, and to explore the relationship between them. Using immunohistochemical SP/PV method, we detected the expression of EphA2 and E cadherin in tumors of 43 papillary thyroid carcinomas, 11 thyroid adenoma and 10 normal thyroid tissues, then studied their relationships with clinic pathological factors. The total positive rates of EphA2 and E cadherin expression were 58. 14% and 32. 56% in papillary thyroid carcinoma tissues, 18. 18% and 81. 81% in thyroid adenoma.tissues and they were 10. 00% and 100. 00% in normal thyroid tissues respectively. The positive expression of EphA2 in carcinoma tissues was higher than in the thyroid adenoma tissues and normal thyroid tissues (P<0. 05) and the positive expression of E cadherin in carcinoma tissues was lower than that in the thyroid adenoma tissues and normal thyroid tissues (P<0. 05). The positive expression of EphA2 and E cadherin was associated with lymph node metastasis and histological grade (P<0. 05), but it was not associated with all the clinic-pathological factors including age, sex and the tumor size (P>0. 05). In papillary thyroid carcinoma tissues, the expression of EphA2 was negatively correlated with the expression of E cadherin protein (r= -0. 416, P<0. 01). EphA2 and E cadherin may be involved in carcinogenesis and development of papillary thyroid carcinoma.

  17. WNT7a induces E-cadherin in lung cancer cells.

    PubMed

    Ohira, Tatsuo; Gemmill, Robert M; Ferguson, Kevin; Kusy, Sophie; Roche, Joëlle; Brambilla, Elisabeth; Zeng, Chan; Baron, Anna; Bemis, Lynne; Erickson, Paul; Wilder, Elizabeth; Rustgi, Anil; Kitajewski, Jan; Gabrielson, Edward; Bremnes, Roy; Franklin, Wilbur; Drabkin, Harry A

    2003-09-02

    E-cadherin loss in cancer is associated with de-differentiation, invasion, and metastasis. Drosophila DE-cadherin is regulated by Wnt/beta-catenin signaling, although this has not been demonstrated in mammalian cells. We previously reported that expression of WNT7a, encoded on 3p25, was frequently downregulated in lung cancer, and that loss of E-cadherin or beta-catenin was a poor prognostic feature. Here we show that WNT7a both activates E-cadherin expression via a beta-catenin specific mechanism in lung cancer cells and is involved in a positive feedback loop. Li+, a GSK3 beta inhibitor, led to E-cadherin induction in an inositol-independent manner. Similarly, exposure to mWNT7a specifically induced free beta-catenin and E-cadherin. Among known transcriptional suppressors of E-cadherin, ZEB1 was uniquely correlated with E-cadherin loss in lung cancer cell lines, and its inhibition by RNA interference resulted in E-cadherin induction. Pharmacologic reversal of E-cadherin and WNT7a losses was achieved with Li+, histone deacetylase inhibition, or in some cases only with combined inhibitors. Our findings provide support that E-cadherin induction by WNT/beta-catenin signaling is an evolutionarily conserved pathway operative in lung cancer cells, and that loss of WNT7a expression may be important in lung cancer development or progression by its effects on E-cadherin.

  18. VE-cadherin RGD motifs promote metastasis and constitute a potential therapeutic target in melanoma and breast cancers.

    PubMed

    Bartolomé, Rubén A; Torres, Sofía; Isern de Val, Soledad; Escudero-Paniagua, Beatriz; Calviño, Eva; Teixidó, Joaquín; Casal, J Ignacio

    2017-01-03

    We have investigated the role of vascular-endothelial (VE)-cadherin in melanoma and breast cancer metastasis. We found that VE-cadherin is expressed in highly aggressive melanoma and breast cancer cell lines. Remarkably, inactivation of VE-cadherin triggered a significant loss of malignant traits (proliferation, adhesion, invasion and transendothelial migration) in melanoma and breast cancer cells. These effects, except transendothelial migration, were induced by the VE-cadherin RGD motifs. Co-immunoprecipitation experiments demonstrated an interaction between VE-cadherin and α2β1 integrin, with the RGD motifs found to directly affect β1 integrin activation. VE-cadherin-mediated integrin signaling occurred through specific activation of SRC, ERK and JNK, including AKT in melanoma. Knocking down VE-cadherin suppressed lung colonization capacity of melanoma or breast cancer cells inoculated in mice, while pre-incubation with VE-cadherin RGD peptides promoted lung metastasis for both cancer types. Finally, an in silico study revealed the association of high VE-cadherin expression with poor survival in a subset of melanoma patients and breast cancer patients showing low CD34 expression. These findings support a general role for VE-cadherin and other RGD cadherins as critical regulators of lung and liver metastasis in multiple solid tumours. These results pave the way for cadherin-specific RGD targeted therapies to control disseminated metastasis in multiple cancers.

  19. Cadherin-11 Regulation of Fibrosis through Modulation of Epithelial-to-Mesenchymal Transition: Implications for Pulmonary Fibrosis in Scleroderma

    DTIC Science & Technology

    2013-10-01

    4A, TGFbeta decreased E- cadherin expression and increase Col1a1 expression in MLE12 cells. Soluble Cad11 Fc fusion protein inhibited EMT induced by...TGFbeta as noted my higher E-cadherin levels and a significant reduction in Col1a1 mRNA. In contrast, when Cad11 Fc fusion protein was immobilized...Fc fusion protein alone was able to induce Col1a1 expression at the 50 ug/ml concentration, although E-cadherin expression was also increased. In

  20. NANOG regulates epithelial-mesenchymal transition and chemoresistance in ovarian cancer.

    PubMed

    Qin, Shan; Li, Yanfang; Cao, Xuexia; Du, Jiexian; Huang, Xianghua

    2017-02-28

    A key transcription factor associated with poor prognosis and resistance to chemotherapy in ovarian cancer is NANOG. However, the mechanism by which NANOG functions remains undefined. It has been suggested that epithelial-to-mesenchymal transition (EMT) also contributes to development of drug resistance in different cancers. We thus determined whether NANOG expression was associated with EMT and chemoresistance in epithelial ovarian cancer cells. NANOG expression was increased in epithelial ovarian cancer cell lines compared with its expression in normal epithelial ovarian cell lines. NANOG expression in SKOV-3 or OV2008 cells directly correlated with high expression of mesenchymal cell markers and inversely with low expression of epithelial cell marker. RNAi-mediated silencing of NANOG in SKOV-3 reversed the expression of mesenchymal cell markers and restored expression of E-cadherin. Reversibly, stable overexpression of NANOG in Moody cells increased expression of N-cadherin whereas down-regulating expression of E-cadherin, cumulatively indicating that NANOG plays an important role in maintaining the mesenchymal cell markers. Modulating NANOG expression did not have any effect on proliferation or colony formation. Susceptibility to cisplatin increased in SKOV-3 cells on down-regulating NANOG and reversible results were obtained in Moody cells post-overexpression of NANOG. NANOG silencing in SKOV-3 and OV2008 robustly attenuated in vitro migration and invasion. NANOG expression exhibited a biphasic pattern in patients with ovarian cancer and expression was directly correlated to chemoresistance retrospectively. Cumulatively, our data demonstrate that NANOG expression modulates chemosensitivity and EMT resistance in ovarian cancer. © 2017 The Author(s).

  1. Reduced expression of E-cadherin and p120-catenin and elevated expression of PLC-γ1 and PIKE are associated with aggressiveness of oral squamous cell carcinoma

    PubMed Central

    Jiang, Yi; Liao, Liyan; Shrestha, Chandrama; Ji, Shangli; Chen, Ying; Peng, Jian; Wang, Larry; Liao, Eryuan; Xie, Zhongjian

    2015-01-01

    Oral squamous cell carcinoma (OSCC) is one of the most lethal malignant tumors. The cadherin/catenin cell-cell adhesion complex plays a major role in cancer development and progression. p120-catenin (p120) is a cytoplasmic molecule closely associated with E-cadherin which activates phospholipase C-γ1 (PLC-γ1). Our previous studies indicate that activation of PLC-γ1 plays a critical role in epidermal growth factor (EGF)-induced migration and proliferation of squamous cell carcinoma (SCC) cells and phosphatidylinositol 3-kinase enhancer (PIKE) is highly expressed in SCC cells and mediates EGFR-dependent SCC cell proliferation. Our current study was to determine whether the expression of E-cadherin, p120, PLC-γ1, and PIKE, is associated with OSCC. To address this issue, we assessed levels and localization of E-cadherin, p120, PLC-γ1, and PIKE in specimen of 92 patients with OSCC by immunohistochemistry. The results showed that the expression of E-cadherin, and p120 negatively correlated with the tumor differentiation and the expression of PLC-γ1 and PIKE positively correlated with the tumor differentiation. The expression of PLC-γ1 and PIKE in OSCC stage T3 + T4 or in OSCC with lymph node metastasis was significantly higher than that in OSCC stage T1 + T2 or in OSCC without lymph node metastasis. The expression of p120 positively correlated with levels of E-cadherin but negatively correlated with levels of PLC-γ1 and PIKE in OSCC. These data indicate that increased expression of PLC-γ1 and PIKE and decreased expression of E-cadherin and p120 are associated with the aggressiveness of OSCC. PMID:26464646

  2. Expression of Inapproptriate Cadherins in Human Breast Carcinomas

    DTIC Science & Technology

    2000-08-01

    fibroblast growth factor receptor signaling. * We showed that cadherin 11 acts in a manner... fibroblast growth factor receptor signaling; and that cadherin 11 promotes epithelial cell motility in a manner similar to N-cadherin. 28 N-Cadherin...levels of E-cadherin; and that N- cadherin-dependent motility may be mediated by fibroblast growth factor receptor signaling. 14. SUBJECT TERMS

  3. Immunohistochemical localization of cell adhesion molecule epithelial cadherin in human arachnoid villi and meningiomas.

    PubMed

    Tohma, Y; Yamashima, T; Yamashita, J

    1992-04-01

    Cadherins are a family of intercellular glycoproteins responsible for calcium-dependent cell adhesion and are currently divided into four types: epithelial (E), neuronal (N), placental (P), and vascular (V). Since cadherins are known to be indispensable for not only morphogenesis in the embryo but also maintenance of tumor cell nest, we examined the expression of E-cadherin in 31 meningiomas (11 syncytial, 12 transitional, 8 fibroblastic) and 3 arachnoid villi by immunoblot and immunohistochemical analyses. In the immunoblot analysis, E-cadherin was detected at the main band of Mr 124,000 in all of the arachnoid villi, as well as syncytial and transitional types of meningiomas, but not in the fibroblastic type. The immunohistochemical examination showed that E-cadherin was expressed at the cell borders of syncytial and transitional types, but the expression was absent in the fibroblastic type. Immunoelectron microscopy showed that E-cadherin was localized at the intermediate junctions in arachnoid villi, while it was detected diffusely at the cell surface in meningiomas. It is suggested from these data that the expression of E-cadherin might be closely related to the differentiation and organogenesis of meningioma cells.

  4. E-cadherin immunohistochemical expression in mammary gland neoplasms in bitches.

    PubMed

    Rodo, A; Malicka, E

    2008-01-01

    The aim of the study was to investigate E-cadherin expression in correlation with other neoplasm traits such as: histological type, the differentiation grade and proliferative activity. Material for the investigation comprised mammary gland tumours, collected from dogs, the patients of veterinary clinics, during surgical procedures and archival samples. All together 21 adenomas, 32 complex carcinomas, 35 simple carcinomas and 13 solid carcinomas were qualified for further investigation. E-cadherin expression was higher in adenomas as compared with carcinomas but lower in solid carcinomas as compared with simple and complex carcinomas. More over, the expression of E-cadherin decreased with the increase in the neoplasm malignancy and proliferative activity (value of the mitotic index and number of cells showing Ki67). The study has shown that the expression of E-cadherin can be used as a prognostic factor.

  5. Oncogenic ALK regulates EMT in non-small cell lung carcinoma through repression of the epithelial splicing regulatory protein 1.

    PubMed

    Voena, Claudia; Varesio, Lydia M; Zhang, Liye; Menotti, Matteo; Poggio, Teresa; Panizza, Elena; Wang, Qi; Minero, Valerio G; Fagoonee, Sharmila; Compagno, Mara; Altruda, Fiorella; Monti, Stefano; Chiarle, Roberto

    2016-05-31

    A subset of Non-Small Cell Lung Carcinoma (NSCLC) carries chromosomal rearrangements involving the Anaplastic Lymphoma Kinase (ALK) gene. ALK-rearranged NSCLC are typically adenocarcinoma characterized by a solid signet-ring cell pattern that is frequently associated with a metastatic phenotype. Recent reports linked the presence of ALK rearrangement to an epithelial-mesenchymal transition (EMT) phenotype in NSCLC, but the extent and the mechanisms of an ALK-mediated EMT in ALK-rearranged NSCLC are largely unknown. We found that the ALK-rearranged H2228 and DFCI032, but not the H3122, cell lines displayed a mesenchymal phenotype. In these cell lines, oncogenic ALK activity dictated an EMT phenotype by directly suppressing E-cadherin and up-regulating vimentin expression, as well as expression of other genes involved in EMT. We found that the epithelial splicing regulatory protein 1 (ESRP1), a key regulator of the splicing switch during EMT, was repressed by EML4-ALK activity. The treatment of NSCLC cells with ALK tyrosine kinase inhibitors (TKIs) led to up-regulation of ESRP1 and E-cadherin, thus reverting the phenotype from mesenchymal to epithelial (MET). Consistently, ESRP1 knock-down impaired E-cadherin up-regulation upon ALK inhibition, whereas enforced expression of ESRP1 was sufficient to increase E-cadherin expression. These findings demonstrate an ALK oncogenic activity in the regulation of an EMT phenotype in a subset of NSCLC with potential implications for the biology of ALK-rearranged NSCLC in terms of metastatic propensity and resistance to therapy.

  6. Oncogenic ALK regulates EMT in non-small cell lung carcinoma through repression of the epithelial splicing regulatory protein 1

    PubMed Central

    Menotti, Matteo; Poggio, Teresa; Panizza, Elena; Wang, Qi; Minero, Valerio G.; Fagoonee, Sharmila; Compagno, Mara; Altruda, Fiorella; Monti, Stefano; Chiarle, Roberto

    2016-01-01

    A subset of Non-Small Cell Lung Carcinoma (NSCLC) carries chromosomal rearrangements involving the Anaplastic Lymphoma Kinase (ALK) gene. ALK-rearranged NSCLC are typically adenocarcinoma characterized by a solid signet-ring cell pattern that is frequently associated with a metastatic phenotype. Recent reports linked the presence of ALK rearrangement to an epithelial-mesenchymal transition (EMT) phenotype in NSCLC, but the extent and the mechanisms of an ALK-mediated EMT in ALK-rearranged NSCLC are largely unknown. We found that the ALK-rearranged H2228 and DFCI032, but not the H3122, cell lines displayed a mesenchymal phenotype. In these cell lines, oncogenic ALK activity dictated an EMT phenotype by directly suppressing E-cadherin and up-regulating vimentin expression, as well as expression of other genes involved in EMT. We found that the epithelial splicing regulatory protein 1 (ESRP1), a key regulator of the splicing switch during EMT, was repressed by EML4-ALK activity. The treatment of NSCLC cells with ALK tyrosine kinase inhibitors (TKIs) led to up-regulation of ESRP1 and E-cadherin, thus reverting the phenotype from mesenchymal to epithelial (MET). Consistently, ESRP1 knock-down impaired E-cadherin up-regulation upon ALK inhibition, whereas enforced expression of ESRP1 was sufficient to increase E-cadherin expression. These findings demonstrate an ALK oncogenic activity in the regulation of an EMT phenotype in a subset of NSCLC with potential implications for the biology of ALK-rearranged NSCLC in terms of metastatic propensity and resistance to therapy. PMID:27119231

  7. CDH4 suppresses the progression of salivary adenoid cystic carcinoma via E-cadherin co-expression.

    PubMed

    Xie, Jian; Feng, Yan; Lin, Ting; Huang, Xiao-Yu; Gan, Rui-Huan; Zhao, Yong; Su, Bo-Hua; Ding, Lin-Can; She, Lin; Chen, Jiang; Lin, Li-Song; Lin, Xu; Zheng, Da-Li; Lu, You-Guang

    2016-12-13

    The cadherin-4 gene (CDH4) of the cadherin family encodes non-epithelial R-cadherin (R-cad); however, the function of this gene in different types of cancer remains controversial. In this study, we found higher expression of CDH4 mRNA in a salivary adenoid cystic carcinoma (SACC) cell line with low metastatic potential (SACC-83) than in a cell line with high metastatic potential (SACC-LM). By analyzing 67 samples of SACC tissues and 40 samples of paraneoplastic normal tissues, we found R-cad highly expressed in 100% of normal paraneoplastic tissue but only expressed in 64% of SACC tumor tissues (P<0.001). Knockdown of CDH4 expression in vitro promoted the growth, mobility and invasion of SACC cells, and in vivo experiments showed that decreased CDH4 expression enhanced SACC tumorigenicity. Furthermore, CDH4 suppression resulted in down-regulation of E-cadherin (E-cad), which is encoded by CDH1 gene and is a well-known tumor suppressor gene by inhibition of cell proliferation and migration. These results indicate that CDH4 may play a negative role in the growth and metastasis of SACC via co-expression with E-cadherin.

  8. Antioxidants Maintain E-Cadherin Levels to Limit Drosophila Prohemocyte Differentiation

    PubMed Central

    Gao, Hongjuan; Wu, Xiaorong; Simon, LaTonya; Fossett, Nancy

    2014-01-01

    Mitochondrial reactive oxygen species (ROS) regulate a variety of biological processes by networking with signal transduction pathways to maintain homeostasis and support adaptation to stress. In this capacity, ROS have been shown to promote the differentiation of progenitor cells, including mammalian embryonic and hematopoietic stem cells and Drosophila hematopoietic progenitors (prohemocytes). However, many questions remain about how ROS alter the regulatory machinery to promote progenitor differentiation. Here, we provide evidence for the hypothesis that ROS reduce E-cadherin levels to promote Drosophila prohemocyte differentiation. Specifically, we show that knockdown of the antioxidants, Superoxide dismutatase 2 and Catalase reduce E-cadherin protein levels prior to the loss of Odd-skipped-expressing prohemocytes. Additionally, over-expression of E-cadherin limits prohemocyte differentiation resulting from paraquat-induced oxidative stress. Furthermore, two established targets of ROS, Enhancer of Polycomb and FOS, control the level of E-cadherin protein expression. Finally, we show that knockdown of either Superoxide dismutatase 2 or Catalase leads to an increase in the E-cadherin repressor, Serpent. As a result, antioxidants and targets of ROS can control E-cadherin protein levels, and over-expression of E-cadherin can ameliorate the prohemocyte response to oxidative stress. Collectively, these data strongly suggest that ROS promote differentiation by reducing E-cadherin levels. In mammalian systems, ROS promote embryonic stem cell differentiation, whereas E-cadherin blocks differentiation. However, it is not known if elevated ROS reduce E-cadherin to promote embryonic stem cell differentiation. Thus, our findings may have identified an important mechanism by which ROS promote stem/progenitor cell differentiation. PMID:25226030

  9. CD8 T-cells and E-cadherin in host responses against oropharyngeal candidiasis

    PubMed Central

    Quimby, K.; Lilly, E.A.; Zacharek, M.; McNulty, K.; Leigh, J.E.; Vazquez, J.E.; Fidel, P.L.

    2011-01-01

    Oropharyngeal candidiasis (OPC) is the most common oral infection in HIV+ persons. Previous studies suggest a role for CD8+ T-cells against OPC when CD4+ T-cells are lost, but enhanced susceptibility to infection occurs when CD8+ T-cell migration is inhibited by reduced tissue E-cadherin. Objective Conduct a longitudinal study of tissue CD8+ T-cells and E-cadherin expression before, during, and after episodes of OPC. Methods Oral fungal burden was monitored and tissue was evaluated for CD8+ T-cells and E-cadherin over a one-year period in HIV+ persons with a history of, or an acute episode of OPC. Results While longitudinal analyses precluded formal interpretations, point prevalence analyses of the dataset revealed that when patients experiencing OPC were successfully treated, tissue E-cadherin expression was similar to patients who had not experienced OPC, and higher numbers of CD8+ T-cells were distributed throughout OPC− tissue under normal expression of E-cadherin. Conclusion These results suggest that 1) reduction in tissue E-cadherin expression in OPC+ patients is not permanent, and 2) high numbers of CD8+ T-cells can be distributed throughout OPC− tissue under normal E-cadherin expression. Together these results extend our previous studies and continue to support a role for CD8+ T-cells in host defense against OPC. PMID:21958417

  10. The Anoikis Effector Bit1 Inhibits EMT through Attenuation of TLE1-Mediated Repression of E-Cadherin in Lung Cancer Cells

    PubMed Central

    Yao, Xin; Pham, Tri; Temple, Brandi; Gray, Selena; Cannon, Cornita; Chen, Renwei; Abdel-Mageed, Asim B.; Biliran, Hector

    2016-01-01

    The mitochondrial Bcl-2 inhibitor of transcription 1 (Bit1) protein is part of an anoikis-regulating pathway that is selectively dependent on integrins. We previously demonstrated that the caspase-independent apoptotic effector Bit1 exerts tumor suppressive function in lung cancer in part by inhibiting anoikis resistance and anchorage-independent growth in vitro and tumorigenicity in vivo. Herein we show a novel function of Bit1 as an inhibitor cell migration and epithelial–mesenchymal transition (EMT) in the human lung adenocarcinoma A549 cell line. Suppression of endogenous Bit1 expression via siRNA and shRNA strategies promoted mesenchymal phenotypes, including enhanced fibroblastoid morphology and cell migratory potential with concomitant downregulation of the epithelial marker E-cadherin expression. Conversely, ectopic Bit1 expression in A549 cells promoted epithelial transition characterized by cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Specific downregulation of E-cadherin in Bit1-transfected cells was sufficient to block Bit1-mediated inhibition of cell motility while forced expression of E-cadherin alone attenuated the enhanced migration of Bit1 knockdown cells, indicating that E-cadherin is a downstream target of Bit1 in regulating cell motility. Furthermore, quantitative real-time PCR and reporter analyses revealed that Bit1 upregulates E-cadherin expression at the transcriptional level through the transcriptional regulator Amino-terminal Enhancer of Split (AES) protein. Importantly, the Bit1/AES pathway induction of E-cadherin expression involves inhibition of the TLE1-mediated repression of E-cadherin, by decreasing TLE1 corepressor occupancy at the E-cadherin promoter as revealed by chromatin immunoprecipitation assays. Consistent with its EMT inhibitory function, exogenous Bit1 expression significantly suppressed the formation of lung metastases of A549 cells in an in vivo experimental metastasis model. Taken together, our studies indicate Bit1 is an inhibitor of EMT and metastasis in lung cancer and hence can serve as a molecular target in curbing lung cancer aggressiveness. PMID:27655370

  11. Should I stay or should I go? Cadherin function and regulation in the neural crest

    PubMed Central

    Taneyhill, Lisa A.; Schiffmacher, Andrew T.

    2017-01-01

    Our increasing comprehension of neural crest cell development has reciprocally advanced our understanding of cadherin expression, regulation, and function. As a transient population of multipotent stem cells that significantly contribute to the vertebrate body plan, neural crest cells undergo a variety of transformative processes and exhibit many cellular behaviors, including epithelial-to-mesenchymal-transition (EMT), motility, collective cell migration, and differentiation. Multiple studies have elucidated regulatory and mechanistic details of specific cadherins during neural crest cell development in a highly contextual manner. Collectively, these results reveal that gradual changes within neural crest cells are accompanied by often times subtle, yet important, alterations in cadherin expression and function. The primary focus of this review is to coalesce recent data on cadherins in neural crest cells, from their specification to their emergence as motile cells soon after EMT, and to highlight the complexities of cadherin expression beyond our current perceptions, including the hypothesis that the neural crest EMT is a transition involving a predominantly singular cadherin switch. Further advancements in genetic approaches and molecular techniques will provide greater opportunities to integrate data from various model systems in order to distinguish unique or overlapping functions of cadherins expressed at any point throughout the ontogeny of the neural crest. PMID:28253541

  12. The Nonreceptor Protein Tyrosine Phosphatase PTP1B Binds to the Cytoplasmic Domain of N-Cadherin and Regulates the Cadherin–Actin Linkage

    PubMed Central

    Balsamo, Janne; Arregui, Carlos; Leung, TinChung; Lilien, Jack

    1998-01-01

    Cadherin-mediated adhesion depends on the association of its cytoplasmic domain with the actin-containing cytoskeleton. This interaction is mediated by a group of cytoplasmic proteins: α-and β- or γ- catenin. Phosphorylation of β-catenin on tyrosine residues plays a role in controlling this association and, therefore, cadherin function. Previous work from our laboratory suggested that a nonreceptor protein tyrosine phosphatase, bound to the cytoplasmic domain of N-cadherin, is responsible for removing tyrosine-bound phosphate residues from β-catenin, thus maintaining the cadherin–actin connection (Balsamo et al., 1996). Here we report the molecular cloning of the cadherin-associated tyrosine phosphatase and identify it as PTP1B. To definitively establish a causal relationship between the function of cadherin-bound PTP1B and cadherin-mediated adhesion, we tested the effect of expressing a catalytically inactive form of PTP1B in L cells constitutively expressing N-cadherin. We find that expression of the catalytically inactive PTP1B results in reduced cadherin-mediated adhesion. Furthermore, cadherin is uncoupled from its association with actin, and β-catenin shows increased phosphorylation on tyrosine residues when compared with parental cells or cells transfected with the wild-type PTP1B. Both the transfected wild-type and the mutant PTP1B are found associated with N-cadherin, and recombinant mutant PTP1B binds to N-cadherin in vitro, indicating that the catalytically inactive form acts as a dominant negative, displacing endogenous PTP1B, and rendering cadherin nonfunctional. Our results demonstrate a role for PTP1B in regulating cadherin-mediated cell adhesion. PMID:9786960

  13. Slug, Twist, and E-Cadherin as Immunohistochemical Biomarkers in Meningeal Tumors

    PubMed Central

    Nagaishi, Masaya; Nobusawa, Sumihito; Tanaka, Yuko; Ikota, Hayato; Yokoo, Hideaki; Nakazato, Yoichi

    2012-01-01

    The overexpression of Twist and Slug and subsequent down-regulation of E-cadherin facilitate the acquirement of invasive growth properties in cancer cells. It is unclear which of these molecules are expressed in mesenchymal tumors in the central nervous system. Here, we investigated 10 cases each of hemangiopericytoma, solitary fibrous tumor, meningothelial, fibrous, angiomatous, and atypical meningiomas, and 5 cases of anaplastic meningioma for Slug, Twist, E-cadherin, and N-cadherin immunoexpression. Nuclear Slug expression was observed in 9/10 (90%) hemangiopericytomas and 5/10 (50%) solitary fibrous tumors, but not in any meningiomas, except for 1 case. Similarly, nuclear Twist expression was more extensive in hemangiopericytomas and solitary fibrous tumors than meningiomas. In contrast to Slug and Twist, the positive expression of E-cadherin was observed in 39/45 (87%) meningiomas, but not in any hemangiopericytomas or solitary fibrous tumors (P<0.0001). The fraction of tumor cells expressing E-cadherin in meningeal tumors was negatively correlated to those of Twist (P = 0.004) and Slug (P<0.0001). The overexpression of Slug and Twist with down-regulation of E-cadherin was characteristic findings in hemangiopericytomas and solitary fibrous tumors, but not in meningiomas. The immunohistochemical profiles of the two tumor groups may be useful as diagnostic markers in cases that present a differential diagnosis challenge. PMID:23029385

  14. Adhesion mechanisms in embryogenesis and in cancer invasion and metastasis.

    PubMed

    Thiery, J P; Boyer, B; Tucker, G; Gavrilovic, J; Valles, A M

    1988-01-01

    Cell-substratum and cell-cell adhesion mechanisms contribute to the development of animal form. The adhesive status of embryonic cells has been analysed during epithelial-mesenchymal cell interconversion and in cell migrations. Clear-cut examples of the modulation of cell adhesion molecules (CAMs) have been described at critical periods of morphogenesis. In chick embryos the three primary CAMs (N-CAM. L-CAM and N-cadherin) present early in embryogenesis are expressed later in a defined pattern during morphogenesis and histogenesis. The axial mesoderm derived from gastrulating cells expresses increasing amounts of N-cadherin and N-CAM. During metamerization these two adhesion molecules become abundant at somitic cell surfaces. Both CAMs are functional in an in vitro aggregation assay; however, the calcium-dependent adhesion molecule N-cadherin is more sensitive to perturbation by specific antibodies. Neural crest cells which separate from the neural epithelium lose their primary CAMs in a defined time-sequence. Adhesion to fibronectins via specific surface receptors becomes a predominant interaction during the migratory process, while some primary and secondary CAMs are expressed de novo during the ontogeny of the peripheral nervous system. In vitro, different fibronectin functional domains have been identified in the attachment, spreading and migration of neural crest cells. The fibronectin receptors which transduce the adhesive signals play a key role in the control of cell movement. All these results have prompted us to examine whether similar mechanisms operate in carcinoma cell invasion and metastasis. In vitro, rat bladder transitional carcinoma cells convert reversibly into invasive mesenchymal cells. A rapid modulation of adhesive properties is found during the epithelial-mesenchymal carcinoma cell interconversion. The different model systems analysed demonstrate that a limited repertoire of adhesion molecules, expressed in a well-defined spatiotemporal pattern, is involved in tissue formation and in key processes of tumour spread.

  15. Integrin alpha 10, CD44, PTEN, cadherin-11 and lactoferrin expressions are potential biomarkers for selecting patients in need of central nervous system prophylaxis in diffuse large B-cell lymphoma

    PubMed Central

    Lemma, Siria A; Kuusisto, Milla; Haapasaari, Kirsi-Maria; Sormunen, Raija; Lehtinen, Tuula; Klaavuniemi, Tuula; Eray, Mine; Jantunen, Esa; Soini, Ylermi; Vasala, Kaija; Böhm, Jan; Salokorpi, Niina; Koivunen, Petri; Karihtala, Peeter; Vuoristo, Jussi; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2017-01-01

    Abstract Central nervous system (CNS) relapse is a devastating complication that occurs in about 5% of diffuse large B-cell lymphoma (DLBCL) patients. Currently, there are no predictive biological markers. We wanted to study potential biomarkers of CNS tropism that play a role in adhesion, migration and/or in the regulation of inflammatory responses. The expression levels of ITGA10, CD44, PTEN, cadherin-11, CDH12, N-cadherin, P-cadherin, lactoferrin and E-cadherin were studied with IHC and IEM. GEP was performed to see whether found expressional changes are regulated at DNA/RNA level. IHC included 96 samples of primary CNS lymphoma (PCNSL), secondary CNS lymphoma (sCNSL) and systemic DLBCL (sDLBCL). IEM included two PCNSL, one sCNSL, one sDLBCL and one reactive lymph node samples. GEP was performed on two DLBCL samples, one with and one without CNS relapse. CNS disease was associated with enhanced expression of cytoplasmic and membranous ITGA10 and nuclear PTEN (P < 0.0005, P = 0.002, P = 0.024, respectively). sCNSL presented decreased membranous CD44 and nuclear and cytoplasmic cadherin-11 expressions (P = 0.001, P = 0.006, P = 0.048, respectively). In PCNSL lactoferrin expression was upregulated (P < 0.0005). IEM results were mainly supportive of the IHC results. In GEP CD44, cadherin-11, lactoferrin and E-cadherin were under-expressed in CNS disease. Our results are in line with previous studies, where gene expressions in extracellular matrix and adhesion-related pathways are altered in CNS lymphoma. This study gives new information on the DLBCL CNS tropism. If further verified, these markers might become useful in predicting CNS relapses. PMID:28854563

  16. Carcinoembryonic antigen promotes colorectal cancer progression by targeting adherens junction complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajenova, Olga, E-mail: o.bazhenova@spbu.ru; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034; Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178

    2014-06-10

    Oncomarkers play important roles in the detection and management of human malignancies. Carcinoembryonic antigen (CEA, CEACAM5) and epithelial cadherin (E-cadherin) are considered as independent tumor markers in monitoring metastatic colorectal cancer. They are both expressed by cancer cells and can be detected in the blood serum. We investigated the effect of CEA production by MIP101 colorectal carcinoma cell lines on E-cadherin adherens junction (AJ) protein complexes. No direct interaction between E-cadherin and CEA was detected; however, the functional relationships between E-cadherin and its AJ partners: α-, β- and p120 catenins were impaired. We discovered a novel interaction between CEA andmore » beta-catenin protein in the CEA producing cells. It is shown in the current study that CEA overexpression alters the splicing of p120 catenin and triggers the release of soluble E-cadherin. The influence of CEA production by colorectal cancer cells on the function of E-cadherin junction complexes may explain the link between the elevated levels of CEA and the increase in soluble E-cadherin during the progression of colorectal cancer. - Highlights: • Elevated level of CEA increases the release of soluble E-cadherin during the progression of colorectal cancer. • CEA over-expression alters the binding preferences between E-cadherin and its partners: α-, β- and p120 catenins in adherens junction complexes. • CEA produced by colorectal cancer cells interacts with beta-catenin protein. • CEA over-expression triggers the increase in nuclear beta-catenin. • CEA over-expression alters the splicing of p120 catenin protein.« less

  17. The Effects of HSP27 on Gemcitabine-Resistant Pancreatic Cancer Cell Line Through Snail.

    PubMed

    Zhang, Song; Zhang, Xiao-qi; Huang, Shu-ling; Chen, Min; Shen, Shan-shan; Ding, Xi-wei; Lv, Ying; Zou, Xiao-ping

    2015-10-01

    To evaluate the regulation mechanism of heat shock protein 27 (HSP27) on gemcitabine (GEM) resistance of pancreatic cancer cell. The expression vectors pEGFP-C1-HSP27 and the vectors of MicroRNA targeting Snail were introduced into GEM-sensitive pancreatic cancer SW1990 cells, and the vectors of small hairpin RNA targeting HSP27 were transfected into SW1990 and GEM-resistant SW1990/GEM cells. The expressions of HSP27, p-HSP27 (Ser82), Snail, ERCC1, and E-cadherin were evaluated by Western blotting. The sensitivity of transfected cells to GEM was detected by CCK-8 assay and Annexin V-FITC apoptosis assay. As compared to SW1990, SW1990/GEM showed significantly increased expressions of HSP27, p-HSP27, Snail and ERCC1 with decreased expression of E-cadherin. By increasing HSP27 expression, we found increase of Snail and ERCC1 with reduction of E-cadherin expressions, while reduction of HSP27 expression caused reduction of Snail and ERCC1 but increase of E-cadherin expressions. Downregulation of Snail resulted in the reduction of ERCC1 expression and increase of E-cadherin. Furthermore, downregulation of HSP27 or snail caused increased GEM sensitivity of pancreatic cancer cells, and upregulation of HSP27 showed the opposite results. There is an inverse correlation between HSP27 expression and GEM sensitivity of SW1990 cells, which might be realized by regulating E-cadherin and ERCC1 expressions through Snail.

  18. E-cadherin suppression accelerates squamous cell carcinoma progression in three-dimensional, human tissue constructs.

    PubMed

    Margulis, Alexander; Zhang, Weitian; Alt-Holland, Addy; Crawford, Howard C; Fusenig, Norbert E; Garlick, Jonathan A

    2005-03-01

    We studied the link between loss of E-cadherin-mediated adhesion and acquisition of malignant properties in three-dimensional, human tissue constructs that mimicked the initial stages of squamous cell cancer progression. Suppression of E-cadherin expression in early-stage, skin-derived tumor cells (HaCaT-II-4) was induced by cytoplasmic sequestration of beta-catenin upon stable expression of a dominant-negative E-cadherin fusion protein (H-2Kd-Ecad). In monolayer cultures, expression of H-2Kd-Ecad resulted in decreased levels of E-cadherin, redistribution of beta-catenin to the cytoplasm, and complete loss of intercellular adhesion when compared with control II-4 cells. This was accompanied by a 7-fold decrease in beta-catenin-mediated transcription and a 12-fold increase in cell migration. In three-dimensional constructs, E-cadherin-deficient tissues showed disruption of architecture, loss of adherens junctional proteins from cell contacts, and focal tumor cell invasion. Invasion was linked to activation of matrix metalloproteinase (MMP)-mediated degradation of basement membrane in H-2Kd-Ecad-expressing tissue constructs that was blocked by MMP inhibition (GM6001). Quantitative reverse transcription-PCR showed a 2.5-fold increase in MMP-2 and an 8-fold increase in MMP-9 in cells expressing the H-2Kd-Ecad fusion protein when compared with controls, and gel zymography showed increased MMP protein levels. Following surface transplantation of three-dimensional tissues, suppression of E-cadherin expression greatly accelerated tumorigenesis in vivo by inducing a switch to high-grade carcinomas that resulted in a 5-fold increase in tumor size after 4 weeks. Suppression of E-cadherin expression and loss of its function fundamentally modified squamous cell carcinoma progression by activating a highly invasive, aggressive tumor phenotype, whereas maintenance of E-cadherin prevented invasion in vitro and limited tumor progression in vivo.

  19. E-Cadherin As A Chemotherapy Resistance Mechanism On Metastatic Breast Cancer

    DTIC Science & Technology

    2011-05-01

    chemotherapy. REPORTABLE OUTCOMES Publications 1. Chao Y, Wu Q, Shepard C, and Wells A. “Hepatocyte induced re-expression of E-cadherin in breast...Microenvironment (Appendix 2) 3. Chao Y*, Shepard CR*, Wells A (2010). Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial...Metastases.” Academy of Clinical Laboratory Physicians and Scientists. Redondo Beach, PA. June 2009. 2. Chao Y, Shepard CR, Wells, A. “E-cadherin

  20. P-cadherin promotes collective cell migration via a Cdc42-mediated increase in mechanical forces

    PubMed Central

    Plutoni, Cédric; Bazellieres, Elsa; Le Borgne-Rochet, Maïlys; Comunale, Franck; Brugues, Agusti; Séveno, Martial; Planchon, Damien; Thuault, Sylvie; Morin, Nathalie; Bodin, Stéphane; Trepat, Xavier

    2016-01-01

    Collective cell migration (CCM) is essential for organism development, wound healing, and metastatic transition, the primary cause of cancer-related death, and it involves cell–cell adhesion molecules of the cadherin family. Increased P-cadherin expression levels are correlated with tumor aggressiveness in carcinoma and aggressive sarcoma; however, how P-cadherin promotes tumor malignancy remains unknown. Here, using integrated cell biology and biophysical approaches, we determined that P-cadherin specifically induces polarization and CCM through an increase in the strength and anisotropy of mechanical forces. We show that this mechanical regulation is mediated by the P-cadherin/β-PIX/Cdc42 axis; P-cadherin specifically activates Cdc42 through β-PIX, which is specifically recruited at cell–cell contacts upon CCM. This mechanism of cell polarization and migration is absent in cells expressing E- or R-cadherin. Thus, we identify a specific role of P-cadherin through β-PIX–mediated Cdc42 activation in the regulation of cell polarity and force anisotropy that drives CCM. PMID:26783302

  1. Glucocorticoids and histone deacetylase inhibitors cooperate to block the invasiveness of basal-like breast cancer cells through novel mechanisms

    PubMed Central

    Law, ME; Corsino, PE; Jahn, SC; Davis, BJ; Chen, S; Patel, B; Pham, K; Lu, J; Sheppard, B; Nørgaard, P; Hong, J; Higgins, P; Kim, J-S; Luesch, H; Law, BK

    2013-01-01

    Aggressive cancers often express E-cadherin in cytoplasmic vesicles rather than on the plasma membrane and this may contribute to the invasive phenotype of these tumors. Therapeutic strategies are not currently available that restore the anti-invasive function of E-cadherin in cancers. MDA-MB-231 cells are a frequently used model of invasive triple-negative breast cancer, and these cells express low levels of E-cadherin that is mislocalized to cytoplasmic vesicles. MDA-MB-231 cell lines stably expressing wild-type E-cadherin or E-cadherin fused to glutathione S-transferase or green fluorescent protein were used as experimental systems to probe the mechanisms responsible for cytoplasmic E-cadherin localization in invasive cancers. Although E-cadherin expression partly reduced cell invasion in vitro, E-cadherin was largely localized to the cytoplasm and did not block the invasiveness of the corresponding orthotopic xenograft tumors. Further studies indicated that the glucocorticoid dexamethasone and the highly potent class I histone deacetylase (HDAC) inhibitor largazole cooperated to induce E-cadherin localization to the plasma membrane in triple-negative breast cancers, and to suppress cellular invasion in vitro. Dexamethasone blocked the production of the cleaved form of the CDCP1 (that is, CUB domain-containing protein 1) protein (cCDCP1) previously implicated in the pro-invasive activities of CDCP1 by upregulating the serine protease inhibitor plasminogen activator inhibitor-1. E-cadherin preferentially associated with cCDCP1 compared with the full-length form. In contrast, largazole did not influence CDCP1 cleavage, but increased the association of E-cadherin with γ-catenin. This effect on E-cadherin/γ-catenin complexes was shared with the nonisoform selective HDAC inhibitors trichostatin A (TSA) and vorinostat (suberoylanilide hydroxamic acid, SAHA), although largazole upregulated endogenous E-cadherin levels more strongly than TSA. These results demonstrate that glucocorticoids and HDAC inhibitors, both of which are currently in clinical use, cooperate to suppress the invasiveness of breast cancer cells through novel, complementary mechanisms that converge on E-cadherin. PMID:22543582

  2. Classic cadherin expressions balance postnatal neuronal positioning and dendrite dynamics to elaborate the specific cytoarchitecture of the mouse cortical area.

    PubMed

    Egusa, Saki F; Inoue, Yukiko U; Asami, Junko; Terakawa, Youhei W; Hoshino, Mikio; Inoue, Takayoshi

    2016-04-01

    A unique feature of the mammalian cerebral cortex is in its tangential parcellation via anatomical and functional differences. However, the cellular and/or molecular machinery involved in cortical arealization remain largely unknown. Here we map expression profiles of classic cadherins in the postnatal mouse barrel field of the primary somatosensory area (S1BF) and generate a novel bacterial artificial chromosome transgenic (BAC-Tg) mouse line selectively illuminating nuclei of cadherin-6 (Cdh6)-expressing layer IV barrel neurons to confirm that tangential cellular assemblage of S1BF is established by postnatal day 5 (P5). When we electroporate the cadherins expressed in both barrel neurons and thalamo-cortical axon (TCA) terminals limited to the postnatal layer IV neurons, S1BF cytoarchitecture is disorganized with excess elongation of dendrites at P7. Upon delivery of dominant negative molecules for all classic cadherins, tangential cellular positioning and biased dendritic arborization of barrel neurons are significantly altered. These results underscore the value of classic cadherin-mediated sorting among neuronal cell bodies, dendrites and TCA terminals in postnatally elaborating the S1BF-specific tangential cytoarchitecture. Additionally, how the "protocortex" machinery affects classic cadherin expression profiles in the process of cortical arealization is examined and discussed. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  3. Pressure and inflammatory stimulation induced increase of cadherin-11 is mediated by PI3K/Akt pathway in synovial fibroblasts from temporomandibular joint.

    PubMed

    Wu, M; Xu, T; Zhou, Y; Lu, H; Gu, Z

    2013-10-01

    The goal of the study was to investigate the expression of cadherin-11 in synovial fibroblasts (SFs) under mechanical or inflammatory stimuli, and its potential relationship with PI3K/Akt signaling pathway. SFs separated from rat temporomandibular joint (TMJ) were treated with hydrostatic pressures (HP) of 30, 60, 90, and 120 kPa, as well as tumor necrosis factor-α (TNF-α) for 12, 24, 48, and 72 h. The location of cadherin-11 was observed by immunofluorescence microscopy, and its expression was detected by real-time PCR and Western blot. We also studied the activation of PI3K/Akt signaling pathway in SFs with HP or TNF-α stimulation. The results showed that increased expression of cadherin-11 could be found in the cell-cell contact site of SFs in response to HP and inflammatory stimulation. The mRNA and protein expression of cadherin-11 was positively correlated with the intensity of HP and the duration time of TNF-α treatment. Increased expression of vascular endothelial growth factor-D (VEGF-D) and activation of Akt were also found. Treatment with PI3K inhibitor LY294002 attenuated the pressure or inflammatory cytokine induction increases of cadherin-11, VEGF-D, and FGF-2 both in mRNA and protein levels. These findings suggest that cadherin-11 may play important roles in SFs following exposure to mechanical loading and inflammatory stimulation. In addition, PI3K/Akt pathway was associated with pressure or inflammation-induced cadherin-11 expression, which may involve in the pathogenesis of temporomandibular diseases. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Neighbor of Punc E 11: expression pattern of the new hepatic stem/progenitor cell marker during murine liver development.

    PubMed

    Schievenbusch, Stephanie; Sauer, Elisabeth; Curth, Harald-Morten; Schulte, Sigrid; Demir, Münevver; Toex, Ulrich; Goeser, Tobias; Nierhoff, Dirk

    2012-09-20

    We have previously identified Neighbor of Punc E 11 (Nope) as a specific cell surface marker of stem/progenitor cells in the murine fetal liver that is also expressed in hepatocellular carcinoma. Here, we focus on the differential expression pattern of Nope during murine fetal and postnatal liver development as well as in a normal and regenerating adult liver including oval cell activation. In the fetal liver, Nope shows a constantly high expression level and is a useful surface marker for the identification of Dlk, E-cadherin, and CD133-positive hepatoblasts by flow cytometry. Postnatally, Nope expression declines rapidly and remains barely detectable in the adult liver as shown by quantitative real-time reverse-transcriptase polymerase chain reaction and western blot analyses. Immunohistochemically, costainings for Nope- and epithelial-specific markers (E-cadherin), markers of early hepatoblasts (alpha-fetoprotein), and biliary marker proteins (CK19) demonstrate that Nope is initially expressed on bipotent hepatoblasts and persists thereafter on commited hepatocytic as well as cholangiocytic progenitor cells during late fetal liver development. Postnatally, Nope loses its circular expression pattern and is specifically directed to the sinusoidal membrane of early hepatocytes. While Nope is only weakly expressed on cholangiocytes in the normal adult liver, activated stem/progenitor (oval) cells clearly coexpress Nope together with the common markers A6, EpCAM, and CD24 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model. In conclusion, Nope should be most useful in future research to define the differentiation stage of hepatic-specified cells of various sources and is a promising candidate to identify and isolate hepatic stem cells from the adult liver.

  5. Expression of p27Kip1 and E-cadherin in Head and Neck Squamous Cell Carcinoma of Indonesian Patients.

    PubMed

    E I, Auerkari; V, Joewono; D R, Handjari; A T, Sarwono; A W, Suhartono; K, Eto; M A, Ikeda

    2014-01-01

    Cancer cells exhibit characteristic damage of DNA and its expression. The expression of the tumor suppressors E-cadherin and p27(Kip1) has been tested on 57 head and neck squamous cell carcinomas (HNSCC) of Indonesian subjects. HNSCC tumor samples including both primary and (unrelated) nodal cases were obtained from the archives of Indonesian hospitals, in accordance with acknowledged ethical requirements. Only modest correlation was found between reduced expression of E-cadherin or p27(Kip1) with increased malignancy of primary and nodal growth. The observed strong correlation regardless of malignancy between the expressed levels of E-cadherin and p27(Kip1) suggests that also in combination these would not help to better predict the outcome of HNSCC.

  6. E-cadherin and, in its absence, N-cadherin promotes Nanog expression in mouse embryonic stem cells via STAT3 phosphorylation.

    PubMed

    Hawkins, Kate; Mohamet, Lisa; Ritson, Sarah; Merry, Catherine L R; Ward, Christopher M

    2012-09-01

    We have recently shown that loss of E-cadherin in mouse embryonic stem cells (mESCs) results in significant alterations to both the transcriptome and hierarchy of pluripotency-associated signaling pathways. Here, we show that E-cadherin promotes kruppel-like factor 4 (Klf4) and Nanog transcript and protein expression in mESCs via STAT3 phosphorylation and that β-catenin, and its binding region in E-cadherin, is required for this function. To further investigate the role of E-cadherin in leukemia inhibitory factor (LIF)-dependent pluripotency, E-cadherin null (Ecad(-/-)) mESCs were cultured in LIF/bone morphogenetic protein supplemented medium. Under these conditions, Ecad(-/-) mESCs exhibited partial restoration of cell-cell contact and STAT3 phosphorylation and upregulated Klf4, Nanog, and N-cadherin transcripts and protein. Abrogation of N-cadherin using an inhibitory peptide caused loss of phospho STAT3, Klf4, and Nanog in these cells, demonstrating that N-cadherin supports LIF-dependent pluripotency in this context. We therefore identify a novel molecular mechanism linking E- and N-cadherin to the core circuitry of pluripotency in mESCs. This mechanism may explain the recently documented role of E-cadherin in efficient induced pluripotent stem cell reprogramming. Copyright © 2012 AlphaMed Press.

  7. [Expression and clinical significance of BCL6 corepressor-like 1 in non-small cell lung cancer].

    PubMed

    Zhao, Xu; Tuo, Hang; Si, Meili; Wang, Lei; Liang, Ping

    2015-12-01

    To detect the expression of BCL6 corepressor-like 1 (BCORL1) in tumor tissues of human non-small cell lung cancer (NSCLC) and determine the effect of BCORL1 on cell migration and invasion in A549 cells by knockdown of BCORL1. Sixty-eight pairs of NSCLC and nontumor tissues were collected and the expressions of BCORL1 and E-cadherin in them were detected using immunohistochemical staining. The expression of BCORL1 was knocked down by siRNA in A549 cells. Transwell(TM) assays were performed to test NSCLC cell migration and invasion in vitro. The expression of BCORL1 in NSCLC was significantly higher than that in paired noncancerous tissues, while E-cadherin was down-regulated in NSCLC as compared with nontumor tissues. Pearson correlation coefficient analysis suggested that BCORL1 was negatively correlated with E-cadherin expression in NSCLC tissues. Clinical association analysis suggested that the elevated expression of BCORL1 was evidently associated with the higher incidence of lymph node metastasis and more advanced TNM stage. When the expression of BCORL1 was down-regulated by a specific siRNA, E-cadherin was up-regulated, and BCORL1 knockdown obviously inhibited cell migration and invasion in A549 cells. BCORL1 is overexpressed in NSCLC tissues and it is negatively correlated with E-cadherin expression. Its high expression is correlated with poor prognostic features. BCORL1 knockdown up-regulates E-cadherin expression and subsequently inhibits cell migration and invasion of lung cancer cells.

  8. Novel strategies to enforce an epithelial phenotype in mesenchymal cells

    PubMed Central

    Dragoi, Ana-Maria; Swiss, Rachel; Gao, Beile; Agaisse, Hervé

    2014-01-01

    E-cadherin downregulation in cancer cells is associated with epithelial-to-mesenchymal transition (EMT) and metastatic prowess, but the underlying mechanisms are incompletely characterized. In this study, we probed E-cadherin expression at the plasma membrane as a functional assay to identify genes involved in E-cadherin downregulation. The assay was based on the E-cadherin-dependent invasion properties of the intracellular pathogen Listeria monocytogenes. On the basis of a functional readout, automated microscopy and computer-assisted image analysis were used to screen siRNAs targeting 7,000 human genes. The validity of the screen was supported by its definion of several known regulators of E-cadherin expression, including ZEB1, HDAC1 and MMP14. We identified three new regulators (FLASH, CASP7 and PCGF1), the silencing of which was sufficient to restore high levels of E-cadherin transcription. Additionally, we identified two new regulators (FBXL5 and CAV2), the silencing of which was sufficient to increase E-cadherin expression at a post-transcriptional level. FLASH silencing regulated the expression of E-cadherin and other ZEB1-dependent genes, through post-transcriptional regulation of ZEB1, but it also regulated the expression of numerous ZEB1-independent genes with functions predicted to contribute to a restoration of the epithelial phenotype. Finally, we also report the identification of siRNA duplexes that potently restored the epithelial phenotype by mimicking the activity of known and putative microRNAs. Our findings suggest new ways to enforce epithelial phenotypes as a general strategy to treat cancer by blocking invasive and metastatic phenotypes associated with EMT. PMID:24845104

  9. Desmoglein 3 regulates membrane trafficking of cadherins, an implication in cell-cell adhesion.

    PubMed

    Moftah, Hanan; Dias, Kasuni; Apu, Ehsanul Hoque; Liu, Li; Uttagomol, Jutamas; Bergmeier, Lesley; Kermorgant, Stephanie; Wan, Hong

    2017-05-04

    E-cadherin mediated cell-cell adhesion plays a critical role in epithelial cell polarization and morphogenesis. Our recent studies suggest that the desmosomal cadherin, desmoglein 3 (Dsg3) cross talks with E-cadherin and regulates its adhesive function in differentiating keratinocytes. However, the underlying mechanism remains not fully elucidated. Since E-cadherin trafficking has been recognized to be a central determinant in cell-cell adhesion and homeostasis we hypothesize that Dsg3 may play a role in regulating E-cadherin trafficking and hence the cell-cell adhesion. Here we investigated this hypothesis in cells with loss of Dsg3 function through RNAi mediated Dsg3 knockdown or the stable expression of the truncated mutant Dsg3ΔC. Our results showed that loss of Dsg3 resulted in compromised cell-cell adhesion and reduction of adherens junction and desmosome protein expression as well as the cortical F-actin formation. As a consequence, cells failed to polarize but instead displayed aberrant cell flattening. Furthermore, retardation of E-cadherin internalization and recycling was consistently observed in these cells during the process of calcium induced junction assembling. In contrast, enhanced cadherin endocytosis was detected in cells with overexpression of Dsg3 compared to control cells. Importantly, this altered cadherin trafficking was found to be coincided with the reduced expression and activity of Rab proteins, including Rab5, Rab7 and Rab11 which are known to be involved in E-cadherin trafficking. Taken together, our findings suggest that Dsg3 functions as a key in cell-cell adhesion through at least a mechanism of regulating E-cadherin membrane trafficking.

  10. E-cadherin regulators are differentially expressed in the epithelium and stroma of keratocystic odontogenic tumors.

    PubMed

    Porto, Lia Pontes Arruda; dos Santos, Jean Nunes; Ramalho, Luciana Maria Pedreira; Figueiredo, Andreia Leal; Carneiro Júnior, Bráulio; Gurgel, Clarissa Araújo; Paiva, Katiúcia Batista Silva; Xavier, Flávia Caló Aquino

    2016-04-01

    The epithelial-mesenchymal transition (EMT) is the process where cells lose their epithelial features and acquire properties of typical mesenchymal cells. The dissociation of tumor cells due to changes in cell-cell adhesion is one of the key principles of tumor invasion and EMT. Thus, the knowledge of the molecular features of EMT in keratocyst odontogenic tumor (KOT) can provide useful markers to aid in the diagnosis and prognosis and perhaps contribute to an alternative therapeutic approach as it shows an aggressive clinical behavior and high recurrence rates. This study aimed to evaluate the EMT in KOT by the immunoexpression of E-cadherin, N-cadherin, Snail, and Slug and comparing to radicular cysts and dental follicles. Thirty-two KOTs, 15 radicular cysts, and 08 dental follicles were used for immunohistochemistry, evaluating the extent, intensity, labeling pattern, cellular compartment in the epithelium and stroma, and the presence of inflammation. E-cadherin was preserved in most cases of keratocystic odontogenic tumor. N-cadherin was increased in the tumor epithelium, a result that was positively correlated with the heterogeneous and nuclear immunoexpression of Slug in the epithelium; Slug also correlated with high Snail immunoexpression. N-cadherin was positively correlated with Slug in the stroma of keratocystic odontogenic tumors. The high immunoexpression of Snail and nuclear Slug in keratocystic odontogenic tumors suggests these proteins as transcription factors without necessarily participating in 'cadherin switching'. However, the knowledge of their induction of the epithelial-mesenchymal transition in odontogenic tumors is still limited. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Neuroglian and DE-cadherin activate independent cytoskeleton assembly pathways in Drosophila S2 cells.

    PubMed

    Dubreuil, R R; Grushko, T

    1999-11-19

    The cytoskeletal proteins spectrin and ankyrin colocalize with sites of E-cadherin-mediated cell-cell adhesion in mammalian cells. Here we examined the effects of Drosophila DE-cadherin expression on spectrin and ankyrin in Drosophila S2 tissue culture cells. DE-cadherin caused a dramatic change in the cytoplasmic concentration and distribution of armadillo, the Drosophila homolog of beta catenin. However, DE-cadherin expression had no detectable effect on the quantity or subcellular distribution of ankyrin or spectrin. In reciprocal experiments, recruitment of ankyrin and alphabeta spectrin to the plasma membrane by another cell adhesion molecule, neuroglian, had no effect on the quantity or distribution of armadillo. The results indicate that DE-cadherin-catenin complexes and neuroglian-spectrin/ankyrin complexes form by nonintersecting pathways. Recruitment of spectrin does not appear to be a conserved feature of DE-cadherin function. Copyright 1999 Academic Press.

  12. Expression of the cell-surface heparan sulfate proteoglycan syndecan-2 in developing rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Syaidah, Rahimi; Fujiwara, Ken; Tsukada, Takehiro; Ramadhani, Dini; Jindatip, Depicha; Kikuchi, Motoshi; Yashiro, Takashi

    2013-09-01

    In the anterior pituitary gland, folliculo-stellate cells and five types of hormone-producing cells are surrounded by an extracellular matrix (ECM) essential for these cells to perform their respective roles. Syndecans-type I transmembrane cell-surface heparan sulfate proteoglycans act as major ECM coreceptors via their respective heparan sulfate chains and efficiently transduce intracellular signals through the convergent action of their transmembrane and cytoplasmic domains. The syndecans comprise four family members in vertebrates: syndecan-1, -2, -3 and -4. However, whether syndecans are produced in the pituitary gland or whether they have a role as a coreceptor is not known. We therefore used (1) reverse transcription plus the polymerase chain reaction to analyze the expression of syndecan genes and (2) immunohistochemical techniques to identify the cells that produce the syndecans in the anterior pituitary gland of adult rat. Syndecan-2 mRNA expression was clearly detected in the corticotropes of the anterior pituitary gland. Moreover, the expression of syndecan-2 in the developing pituitary gland had a distinct temporospatial pattern. To identify the cells expressing syndecan-2 in the developing pituitary gland, we used double-immunohistochemistry for syndecan-2 and the cell markers E-cadherin (immature cells) and Ki-67 (proliferating cells). Some E-cadherin- and Ki-67-immunopositive cells expressed syndecan-2. Therefore, syndecan-2 expression occurs in developmentally regulated patterns and syndecan-2 probably has different roles in adult and developing anterior pituitary glands.

  13. E-Cadherin and Gastric Cancer: Cause, Consequence, and Applications

    PubMed Central

    Liu, Xin

    2014-01-01

    E-cadherin (epithelial-cadherin), encoded by the CDH1 gene, is a transmembrane glycoprotein playing a crucial role in maintaining cell-cell adhesion. E-cadherin has been reported to be a tumor suppressor and to be down regulated in gastric cancer. Besides genetic mutations in CDH1 gene to induce hereditary diffuse gastric cancer (HDGC), epigenetic factors such as DNA hypermethylation also contribute to the reduction of E-cadherin in gastric carcinogenesis. In addition, expression of E-cadherin could be mediated by infectious agents such as H. pylori (Helicobacter pylori). As E-cadherin is vitally involved in signaling pathways modulating cell proliferation, survival, invasion, and migration, dysregulation of E-cadherin leads to dysfunction of gastric epithelial cells and contributes to gastric cancer development. Moreover, changes in its expression could reflect pathological conditions of gastric mucosa, making its role in gastric cancer complicated. In this review, we summarize the functions of E-cadherin and the signaling pathways it regulates. We aim to provide comprehensive perspectives in the molecular mechanism of E-cadherin and its involvement in gastric cancer initiation and progression. We also focus on its applications for early diagnosis, prognosis, and therapy in gastric cancer in order to open new avenues in this field. PMID:25184143

  14. Down regulation of E-Cadherin (ECAD) - a predictor for occult metastatic disease in sentinel node biopsy of early squamous cell carcinomas of the oral cavity and oropharynx.

    PubMed

    Huber, Gerhard F; Züllig, Lena; Soltermann, Alex; Roessle, Matthias; Graf, Nicole; Haerle, Stephan K; Studer, Gabriela; Jochum, Wolfram; Moch, Holger; Stoeckli, Sandro J

    2011-06-03

    Prognostic factors in predicting occult lymph node metastasis in patients with head and neck squamous-cell carcinoma (HNSCC) are necessary to improve the results of the sentinel lymph node procedure in this tumour type. The E-Cadherin glycoprotein is an intercellular adhesion molecule in epithelial cells, which plays an important role in establishing and maintaining intercellular connections. To determine the value of the molecular marker E-Cadherin in predicting regional metastatic disease. E-Cadherin expression in tumour tissue of 120 patients with HNSCC of the oral cavity and oropharynx were evaluated using the tissue microarray technique. 110 tumours were located in the oral cavity (91.7%; mostly tongue), 10 tumours in the oropharynx (8.3%). Intensity of E-Cadherin expression was quantified by the Intensity Reactivity Score (IRS). These results were correlated with the lymph node status of biopsied sentinel lymph nodes. Univariate and multivariate analysis was used to determine statistical significance. pT-stage, gender, tumour side and location did not correlate with lymph node metastasis. Differentiation grade (p = 0.018) and down regulation of E-Cadherin expression significantly correlate with positive lymph node status (p = 0.005) in univariate and multivariate analysis. These data suggest that loss of E-cadherin expression is associated with increased lymhogeneous metastasis of HNSCC. E-cadherin immunohistochemistry may be used as a predictor for lymph node metastasis in squamous cell carcinoma of the oral cavity and oropharynx. 2b.

  15. Integrin alpha 10, CD44, PTEN, cadherin-11 and lactoferrin expressions are potential biomarkers for selecting patients in need of central nervous system prophylaxis in diffuse large B-cell lymphoma.

    PubMed

    Lemma, Siria A; Kuusisto, Milla; Haapasaari, Kirsi-Maria; Sormunen, Raija; Lehtinen, Tuula; Klaavuniemi, Tuula; Eray, Mine; Jantunen, Esa; Soini, Ylermi; Vasala, Kaija; Böhm, Jan; Salokorpi, Niina; Koivunen, Petri; Karihtala, Peeter; Vuoristo, Jussi; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2017-08-01

    Central nervous system (CNS) relapse is a devastating complication that occurs in about 5% of diffuse large B-cell lymphoma (DLBCL) patients. Currently, there are no predictive biological markers. We wanted to study potential biomarkers of CNS tropism that play a role in adhesion, migration and/or in the regulation of inflammatory responses. The expression levels of ITGA10, CD44, PTEN, cadherin-11, CDH12, N-cadherin, P-cadherin, lactoferrin and E-cadherin were studied with IHC and IEM. GEP was performed to see whether found expressional changes are regulated at DNA/RNA level. IHC included 96 samples of primary CNS lymphoma (PCNSL), secondary CNS lymphoma (sCNSL) and systemic DLBCL (sDLBCL). IEM included two PCNSL, one sCNSL, one sDLBCL and one reactive lymph node samples. GEP was performed on two DLBCL samples, one with and one without CNS relapse. CNS disease was associated with enhanced expression of cytoplasmic and membranous ITGA10 and nuclear PTEN (P < 0.0005, P = 0.002, P = 0.024, respectively). sCNSL presented decreased membranous CD44 and nuclear and cytoplasmic cadherin-11 expressions (P = 0.001, P = 0.006, P = 0.048, respectively). In PCNSL lactoferrin expression was upregulated (P < 0.0005). IEM results were mainly supportive of the IHC results. In GEP CD44, cadherin-11, lactoferrin and E-cadherin were under-expressed in CNS disease. Our results are in line with previous studies, where gene expressions in extracellular matrix and adhesion-related pathways are altered in CNS lymphoma. This study gives new information on the DLBCL CNS tropism. If further verified, these markers might become useful in predicting CNS relapses. © The Author 2017. Published by Oxford University Press.

  16. SUMO-Specific Cysteine Protease 1 Promotes Epithelial Mesenchymal Transition of Prostate Cancer Cells via Regulating SMAD4 deSUMOylation.

    PubMed

    Zhang, Xiaoyan; Wang, Hao; Wang, Hua; Xiao, Fengjun; Seth, Prem; Xu, Weidong; Jia, Qinghua; Wu, Chutse; Yang, Yuefeng; Wang, Lisheng

    2017-04-12

    In advanced prostate cancer, small ubiquitin-like modifier (SUMO)-specific cysteine protease 1 (SENP1) is up-regulated. However, the role of SENP1 in regulating deSUMOylation of TGF-β/SMADs signaling is unknown. In this study, we developed a lentiviral vector, PLKO.1-shSENP1, to silence SENP1 in prostate cancer cells with high metastatic characteristics (PC3M). Likewise, we also created an adenovirus vector, Ad5/F11p-SENP1 to over-express SENP1 in prostate cancer cells with low metastatic potential (LNCaP). We showed that silencing of SENP1 promoted cellular apoptosis, and inhibited proliferation and migration of PC3M cells. Moreover, SENP1 silencing increased the SMAD4 expression at protein level, up-regulated E-cadherin and down-regulated Vimentin expression, indicating the inhibition of epithelial mesenchymal transition (EMT). Furthermore, SMAD4 interference abolished SENP1-mediated up-regulation of E-cadherin, suggesting that SENP1 regulated E-cadherin expression via SMAD4. SENP1 over-expression in LNCaP cells reduced SMAD4 protein, and promoted EMT via decreasing E-cadherin and increasing Vimentin. Moreover, down-regulation of SMAD4 and E-cadherin were blocked, after transfection with two SUMOylation sites mutated SMAD4, suggesting that SENP1 might reduce SMAD4 levels to regulate E-cadherin expression via deSUMOylation of SMAD4. In conclusion, SENP1 deSUMOylated SMAD4 to promote EMT via up-regulating E-cadherin in prostate cancer cells. Therefore, SENP1 is a potential target for treatment of advanced prostate cancer.

  17. Colorectal adenocarcinoma with mucinous component: relation of MMP-13, EGFR, and E-cadherin expressions to clinicopathological features and prognosis.

    PubMed

    Foda, Abd Al-Rahman Mohammad; El-Hawary, Amira Kamal; Aziz, Azza Abdel

    2015-06-01

    The aim of this study was to compare colorectal adenocarcinoma with mucinous component, ordinary adenocarcinoma (OA) and mucinous adenocarcinoma (MA) regarding clinicopathological parameters, survival, EGFR, MMP-13, and E-cadherin. We studied tumor tissue specimens from 28 patients with adenocarcinoma with mucinous component, 47 with OA, and 56 with MA, who underwent radical surgery from January 2007 to January 2012 at the Gastroenterology Centre, Mansoura University, Egypt. High density manual tissue microarrays were constructed and immunohistochemistry for EGFR, MMP-13, and E-cadherin was done. Colorectal adenocarcinoma with mucinous component (AWMC) was significantly associated with more perineural invasion, lower EGFR, and MMP-13 expressions than OA, with no difference in E-cadherin expression. Conversely, only microscopic abscess formation was significantly more with colorectal AWMC than MC with no difference in EGFR, MMP-13 and E-cadherin expression between both groups. Colorectal AWMC showed a better survival than MA with no difference with OA. In a univariate analysis, EGFR, MMP-13, and E-cadherin expressions did not show a significant impact on disease-free or overall survival in patients with colorectal AWMC. Colorectal AWMC remains a vague entity that resembles OA in some clinicopathological and molecular respects as well as MA. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  18. P120-Catenin Protects Endplate Chondrocytes From Intermittent Cyclic Mechanical Tension Induced Degeneration by Inhibiting the Expression of RhoA/ROCK-1 Signaling Pathway.

    PubMed

    Xu, Hong-Guang; Ma, Ming-Ming; Zheng, Quan; Shen, Xiang; Wang, Hong; Zhang, Shu-Feng; Xu, Jia-Jia; Wang, Chuan-Dong; Zhang, Xiao-Ling

    2016-08-15

    The changes of endplate chondrocytes induced by intermittent cyclic mechanical tension (ICMT) were observed by realtime reverse transcription-polymerase chain reaction, immunofluorescence, and Western blot analysis. To investigate the role of RhoA/ROCK-1 signaling pathway and E-cadherin/P120-catenin complex in endplate chondrocytes degeneration induced by ICMT. ICMT can induce the endplate chondrocyte degeneration. However, the relationship between P120-catenin or RhoA/ROCK-1 signaling pathway and endplate chondrocytes degeneration induced by ICMT is not clear. ICMT (strain at 0.5 Hz sinusoidal curve at 8% elongation) was applied to rat endplate chondrocytes for 6 days, 16 hours a day. The cell viability and apoptosis were examined by the LIVE/DEAD assay and flow cytometry. Histological staining was used to examine the lumbar disc tissue morphology and extracellular matrix. To regulate RhoA/ROCK-1 signaling pathway and the expression of E-cadherin and P120-catenin, RhoA/ROCK-1 pathway-specific inhibitors, E-cadherin, and p120-catenin plasmid were applied. Coimmunoprecipitation was employed to examine the interaction between E-cadherin and P120-catenin, P120-catenin, and RhoA. The related gene expression and protein location was examined by realtime reverse transcription-polymerase chain reaction, Western blot, and immunofluorescence. There was no change of viability verified by LIVE/DEAD assay and flow cytometry after ICMT loading. ICMT loading led to RhoA/ROCK-1 signaling activation and the loss of the chondrogenic phenotype of endplate chondrocytes. Inhibition of RhoA/ROCK-1 signaling pathway significantly ameliorated the degeneration induced by ICMT. The expression of P120-catenin and E-cadherin were inhibited by ICMT. ICMT reduced the interaction between P120-catenin and E-cadherin. Furthermore, over-expression of P120-catenin and E-cadherin can suppress the expression of chondrogenic gene, over-expression of P120-catenin can suppress the RhoA/ROCK-1 signaling pathway, but over-expression of E-cadherin cannot do it. P120-catenin protects endplate chondrocytes from ICMT Induced degeneration by inhibiting the expression of RhoA/ROCK-1 signaling pathway. N/A.

  19. ICI 182,780 induces P-cadherin overexpression in breast cancer cells through chromatin remodelling at the promoter level: a role for C/EBPbeta in CDH3 gene activation.

    PubMed

    Albergaria, André; Ribeiro, Ana Sofia; Pinho, Sandra; Milanezi, Fernanda; Carneiro, Vítor; Sousa, Bárbara; Sousa, Sónia; Oliveira, Carla; Machado, José Carlos; Seruca, Raquel; Paredes, Joana; Schmitt, Fernando

    2010-07-01

    CDH3/P-cadherin is a classical cadherin. Overexpression of which has been associated with proliferative lesions of high histological grade, decreased cell polarity and poor survival of patients with breast cancer. In vitro studies showed that it can be up-regulated by ICI 182,780, suggesting that the lack of ERalpha signalling is responsible for the aberrant P-cadherin overexpression and for its role in inducing breast cancer cell invasion and migration. However, the mechanism by which ER-signalling inhibition leads to P-cadherin expression is still unknown. The aim of this study was to explore the molecular mechanism linking the ERalpha-signalling and P-cadherin-regulated expression in breast cancer cell lines. This study showed that ICI 182,780 is able to increase CDH3 promoter activity, inducing high levels of the active chromatin mark H3 lysine 4 dimethylation. We also observed, for the first time, that the transcription factor C/EBPbeta is able to up-regulate CDH3 promoter activity in breast cancer cells. Moreover, we showed that the expression of P-cadherin and C/EBPbeta are highly associated in human breast carcinomas and linked with a worse prognosis of breast cancer patients. This study demonstrates the existence of an epigenetic regulation by which ICI 182,780 up-regulates P-cadherin expression in MCF-7/AZ breast cancer cells through chromatin remodelling at CDH3 promoter, bringing forward the growing evidence that ERalpha signalling-abrogation by anti-oestrogens is able to induce the expression of ERalpha-repressed genes which, in the appropriate cell biology context, may contribute to a breast cancer cell invasion phenotype.CDH3 GenBank accession no. NT_010498.

  20. Homeoprotein Six2 promotes breast cancer metastasis via transcriptional and epigenetic control of E-cadherin expression

    PubMed Central

    Wang, Chu-An; Drasin, David; Pham, Catherine; Jedlicka, Paul; Zaberezhnyy, Vadym; Guney, Michelle; Li, Howard; Nemenoff, Raphael; Costello, James C.; Tan, Aik-Choon; Ford, Heide L.

    2014-01-01

    Misexpression of developmental transcription factors occurs often in human cancers, where embryonic programs may be reinstated in a context that promotes or sustains malignant development. In this study, we report the involvement of the kidney development transcription factor Six2 in the metastatic progression of human breast cancer. We found that Six2 promoted breast cancer metastasis by a novel mechanism involving both transcriptional and epigenetic regulation of E-cadherin. Downregulation of E-cadherin by Six2 was necessary for its ability to increase soft agar growth and in vivo metastasis in an immune competent mouse model of breast cancer. Mechanistic investigations showed that Six2 represses E-cadherin expression by upregulating Zeb2, in part through a microRNA-mediated mechanism, and by stimulating promoter methylation of the E-cadherin gene (Cdh1). Clinically, SIX2 expression correlated inversely with CDH1 expression in human breast cancer specimens, corroborating the disease relevance of their interaction. Our findings establish Six2 as a regulator of metastasis in human breast cancers and demonstrate an epigenetic function for SIX family transcription factors in metastatic progression through the regulation of E-cadherin. PMID:25348955

  1. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin.

    PubMed

    Lecuit, Marc; Nelson, D Michael; Smith, Steve D; Khun, Huot; Huerre, Michel; Vacher-Lavenu, Marie-Cécile; Gordon, Jeffrey I; Cossart, Pascale

    2004-04-20

    Listeria monocytogenes produces severe fetoplacental infections in humans. How it targets and crosses the maternofetal barrier is unknown. We used immunohistochemistry to examine the location of L. monocytogenes in placental and amniotic tissue samples obtained from women with fetoplacental listeriosis. The results raised the possibility that L. monocytogenes crosses the maternofetal barrier through the villous syncytiotrophoblast, with secondary infection occurring via the amniotic epithelium. Because epidemiological studies indicate that the bacterial surface protein, internalin (InlA), may play a role in human fetoplacental listeriosis, we investigated the cellular patterns of expression of its host receptor, E-cadherin, at the maternofetal interface. E-cadherin was found on the basal and apical plasma membranes of syncytiotrophoblasts and in villous cytotrophoblasts. Established trophoblastic cell lines, primary trophoblast cultures, and placental villous explants were each exposed to isogenic InlA+ or InlA- strains of L. monocytogenes, and to L. innocua expressing or not InlA. Quantitative assays of cellular invasion demonstrated that bacterial entry into syncytiotrophoblasts occurs via the apical membrane in an InlA-E-cadherin dependent manner. In human placental villous explants, bacterial invasion of the syncytiotrophoblast barrier and underlying villous tissue and subsequent replication produces histopathological lesions that mimic those seen in placentas of women with listeriosis. Thus, the InlA-E-cadherin interaction that plays a key role in the crossing of the intestinal barrier in humans is also exploited by L. monocytogenes to target and cross the placental barrier. Such a ligand-receptor interaction allowing a pathogen to specifically cross the placental villous trophoblast barrier has not been reported previously.

  2. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: Role of internalin interaction with trophoblast E-cadherin

    PubMed Central

    Lecuit, Marc; Nelson, D. Michael; Smith, Steve D.; Khun, Huot; Huerre, Michel; Vacher-Lavenu, Marie-Cécile; Gordon, Jeffrey I.; Cossart, Pascale

    2004-01-01

    Listeria monocytogenes produces severe fetoplacental infections in humans. How it targets and crosses the maternofetal barrier is unknown. We used immunohistochemistry to examine the location of L. monocytogenes in placental and amniotic tissue samples obtained from women with fetoplacental listeriosis. The results raised the possibility that L. monocytogenes crosses the maternofetal barrier through the villous syncytiotrophoblast, with secondary infection occurring via the amniotic epithelium. Because epidemiological studies indicate that the bacterial surface protein, internalin (InlA), may play a role in human fetoplacental listeriosis, we investigated the cellular patterns of expression of its host receptor, E-cadherin, at the maternofetal interface. E-cadherin was found on the basal and apical plasma membranes of syncytiotrophoblasts and in villous cytotrophoblasts. Established trophoblastic cell lines, primary trophoblast cultures, and placental villous explants were each exposed to isogenic InlA+ or InlA- strains of L. monocytogenes, and to L. innocua expressing or not InlA. Quantitative assays of cellular invasion demonstrated that bacterial entry into syncytiotrophoblasts occurs via the apical membrane in an InlA–E-cadherin dependent manner. In human placental villous explants, bacterial invasion of the syncytiotrophoblast barrier and underlying villous tissue and subsequent replication produces histopathological lesions that mimic those seen in placentas of women with listeriosis. Thus, the InlA–E-cadherin interaction that plays a key role in the crossing of the intestinal barrier in humans is also exploited by L. monocytogenes to target and cross the placental barrier. Such a ligand–receptor interaction allowing a pathogen to specifically cross the placental villous trophoblast barrier has not been reported previously. PMID:15073336

  3. Desmoglein 3 regulates membrane trafficking of cadherins, an implication in cell-cell adhesion

    PubMed Central

    Moftah, Hanan; Dias, Kasuni; Apu, Ehsanul Hoque; Liu, Li; Uttagomol, Jutamas; Bergmeier, Lesley; Kermorgant, Stephanie; Wan, Hong

    2017-01-01

    ABSTRACT E-cadherin mediated cell-cell adhesion plays a critical role in epithelial cell polarization and morphogenesis. Our recent studies suggest that the desmosomal cadherin, desmoglein 3 (Dsg3) cross talks with E-cadherin and regulates its adhesive function in differentiating keratinocytes. However, the underlying mechanism remains not fully elucidated. Since E-cadherin trafficking has been recognized to be a central determinant in cell-cell adhesion and homeostasis we hypothesize that Dsg3 may play a role in regulating E-cadherin trafficking and hence the cell-cell adhesion. Here we investigated this hypothesis in cells with loss of Dsg3 function through RNAi mediated Dsg3 knockdown or the stable expression of the truncated mutant Dsg3ΔC. Our results showed that loss of Dsg3 resulted in compromised cell-cell adhesion and reduction of adherens junction and desmosome protein expression as well as the cortical F-actin formation. As a consequence, cells failed to polarize but instead displayed aberrant cell flattening. Furthermore, retardation of E-cadherin internalization and recycling was consistently observed in these cells during the process of calcium induced junction assembling. In contrast, enhanced cadherin endocytosis was detected in cells with overexpression of Dsg3 compared to control cells. Importantly, this altered cadherin trafficking was found to be coincided with the reduced expression and activity of Rab proteins, including Rab5, Rab7 and Rab11 which are known to be involved in E-cadherin trafficking. Taken together, our findings suggest that Dsg3 functions as a key in cell-cell adhesion through at least a mechanism of regulating E-cadherin membrane trafficking. PMID:27254775

  4. Suppression of E-cadherin function drives the early stages of Ras-induced squamous cell carcinoma through up-regulation of FAK and Src

    PubMed Central

    Alt-Holland, Addy; Sowalsky, Adam; Szwec-Levin, Yonit; Shamis, Yulia; Hatch, Harold; Feig, Larry A.; Garlick, Jonathan A.

    2011-01-01

    Advanced stages of epithelial carcinogenesis involve the loss of intercellular adhesion, but it remains unclear how proteins that regulate alterations in cell-cell and cell-matrix adhesion are deregulated to promote the early stages of cancer development. To address this, a three-dimensional human tissue model that mimics the incipient stages of Squamous Cell Carcinoma (SCC) was used to study how E-cadherin suppression promotes tumor progression in Ras-expressing human keratinocytes. We found that E-cadherin suppression triggered elevated mRNA and protein expression levels of Focal Adhesion Kinase (FAK), and increased FAK and Src activities above the level seen in Ras-expressing E-cadherin-competent keratinocytes. sh-RNA-mediated depletion of FAK and Src restored E-cadherin expression levels by increasing its stability in the membrane, and blocked tumor cell invasion in tissues. Surface transplantation of these tissues to mice resulted in reversion of the tumor phenotype to low-grade tumor islands in contrast to control tissues that manifested an aggressive, high-grade SCC. These findings suggest that the tumor-promoting effect of E-cadherin suppression, a common event in SCC development, is exacerbated by enhanced E-cadherin degradation induced by elevated FAK and Src activities. Furthermore, they imply that targeting FAK or Src in human epithelial cells with neoplastic potential may inhibit the early stages of SCC. PMID:21716326

  5. P-cadherin regulates human hair growth and cycling via canonical Wnt signaling and transforming growth factor-β2.

    PubMed

    Samuelov, Liat; Sprecher, Eli; Tsuruta, Daisuke; Bíró, Tamás; Kloepper, Jennifer E; Paus, Ralf

    2012-10-01

    P-cadherin is a key component of epithelial adherens junctions, and it is prominently expressed in the hair follicle (HF) matrix. Loss-of-function mutations in CDH3, which encodes P-cadherin, result in hypotrichosis with juvenile macular dystrophy (HJMD), an autosomal recessive disorder featuring sparse and short hair. Here, we attempted to recapitulate some aspects of HJMD in vitro by transfecting normal, organ-cultured human scalp HFs with lipofectamine and CDH3-specific or scrambled control siRNAs. As in HJMD patients, P-cadherin silencing inhibited hair shaft growth, prematurely induced HF regression (catagen), and inhibited hair matrix keratinocyte proliferation. In situ, membrane β-catenin expression and transcription of the β-catenin target gene, axin2, were significantly reduced, whereas glycogen synthase kinase 3 β (GSK3β) and phospho-β-catenin immunoreactivity were increased. These effects were partially reversed by inhibiting GSK3β. P-cadherin silencing reduced the expression of the anagen-promoting growth factor, IGF-1, whereas that of transforming growth factor β 2 (TGFβ2; catagen promoter) was enhanced. Neutralizing TGFβ antagonized the catagen-promoting effects of P-cadherin silencing. In summary, we introduce human HFs as an attractive preclinical model for studying the functions of P-cadherin in human epithelial biology and pathology. This model demonstrates that cadherins can be successfully knocked down in an intact human organ in vitro, and shows that P-cadherin is needed for anagen maintenance by regulating canonical Wnt signaling and suppressing TGFβ2.

  6. HIF-1α induces VE-cadherin expression and modulates vasculogenic mimicry in esophageal carcinoma cells

    PubMed Central

    Tang, Na-Na; Zhu, Hong; Zhang, Hong-Jie; Zhang, Wei-Feng; Jin, Hai-Lin; Wang, Lu; Wang, Pin; He, Gui-Jun; Hao, Bo; Shi, Rui-Hua

    2014-01-01

    AIM: To investigate whether hypoxia inducible factor (HIF)-1α modulates vasculogenic mimicry (VM) by upregulating VE-cadherin expression in esophageal squamous cell carcinoma (ESCC). METHODS: Esophageal squamous cancer cell lines Eca109 and TE13 were transfected with plasmids harboring small interfering RNAs targeting HIF-1α or VE-cadherin. The proliferation and invasion of esophageal carcinoma cells were detected by MTT and Transwell migration assays. The formation of tubular networks of cells was analyzed by 3D culture in vitro. BALB/c nude mice were used to observe xenograft tumor formation. The relationship between the expression of HIF-1α and VE-cadherin, ephrinA2 (EphA2) and laminin5γ2 (LN5γ2) was measured by Western blot and real-time polymerase chain reaction. RESULTS: Knockdown of HIF-1α inhibited cell proliferation (32.3% ± 6.1% for Eca109 cells and 38.6% ± 6.8% for TE13 cells, P < 0.05). Both Eca109 and TE13 cells formed typical tubular networks. The number of tubular networks markedly decreased when HIF-1α or VE-cadherin was knocked down. Expression of VE-cadherin, EphA2 and LN5γ2 was dramatically inhibited, but the expression of matrix metalloproteinase 2 had no obvious change in HIF-1α-silenced cells. Knockdown of VE-cadherin significantly decreased expression of both EphA2 and LN5γ2 (P < 0.05), while HIF-1α expression was unchanged. The time for xenograft tumor formation was 6 ± 1.2 d for Eca109 cells and Eca109 cells transfected with HIF-1α Neo control short hairpin RNA (shRNA) vector, and 8.4 ± 2.1 d for Eca109 cells transfected with an shRNA against HIF-1α. Knockdown of HIF-1α inhibited vasculogenic mimicry (VM) and tumorigenicity in vivo. CONCLUSION: HIF-1α may modulate VM in ESCC by regulating VE-cadherin expression, which affects VM formation through EphA2 and LN5γ2. PMID:25548487

  7. N-CADHERIN PRODOMAIN CLEAVAGE REGULATES SYNAPSE FORMATION IN VIVO

    PubMed Central

    Latefi, Nazlie S.; Pedraza, Liliana; Schohl, Anne; Li, Ziwei; Ruthazer, Edward S.

    2009-01-01

    Cadherins are initially synthesized bearing a prodomain that is thought to limit adhesion during early stages of biosynthesis. Functional cadherins lack this prodomain, raising the intriguing possibility that cells may utilize prodomain cleavage as a means to temporally or spatially regulate adhesion after delivery of cadherin to the cell surface. In support of this idea, immunostaining for the prodomain of zebrafish N-cadherin revealed enriched labeling at neuronal surfaces at the soma and along axonal processes. To determine whether post-translational cleavage of the prodomain affects synapse formation, we imaged Rohon-Beard cells in zebrafish embryos expressing GFP-tagged wild-type N-cadherin (NCAD-GFP) or a GFP-tagged N-cadherin mutant expressing an uncleavable prodomain (PRON-GFP) rendering it non-adhesive. NCAD-GFP accumulated at synaptic microdomains in a developmentally regulated manner, and its overexpression transiently accelerated synapse formation. PRON-GFP was much more diffusely distributed along the axon and its overexpression delayed synapse formation. Our results support the notion that N-cadherin serves to stabilize pre- to postsynaptic contacts early in synapse development and suggests that regulated cleavage of the N-cadherin prodomain may be a mechanism by which the kinetics of synaptogenesis are regulated. PMID:19365814

  8. Down regulation of E-Cadherin (ECAD) - a predictor for occult metastatic disease in sentinel node biopsy of early squamous cell carcinomas of the oral cavity and oropharynx

    PubMed Central

    2011-01-01

    Background Prognostic factors in predicting occult lymph node metastasis in patients with head and neck squamous-cell carcinoma (HNSCC) are necessary to improve the results of the sentinel lymph node procedure in this tumour type. The E-Cadherin glycoprotein is an intercellular adhesion molecule in epithelial cells, which plays an important role in establishing and maintaining intercellular connections. Objectives To determine the value of the molecular marker E-Cadherin in predicting regional metastatic disease. Methods E-Cadherin expression in tumour tissue of 120 patients with HNSCC of the oral cavity and oropharynx were evaluated using the tissue microarray technique. 110 tumours were located in the oral cavity (91.7%; mostly tongue), 10 tumours in the oropharynx (8.3%). Intensity of E-Cadherin expression was quantified by the Intensity Reactivity Score (IRS). These results were correlated with the lymph node status of biopsied sentinel lymph nodes. Univariate and multivariate analysis was used to determine statistical significance. Results pT-stage, gender, tumour side and location did not correlate with lymph node metastasis. Differentiation grade (p = 0.018) and down regulation of E-Cadherin expression significantly correlate with positive lymph node status (p = 0.005) in univariate and multivariate analysis. Conclusion These data suggest that loss of E-cadherin expression is associated with increased lymhogeneous metastasis of HNSCC. E-cadherin immunohistochemistry may be used as a predictor for lymph node metastasis in squamous cell carcinoma of the oral cavity and oropharynx. Level of evidence: 2b PMID:21639893

  9. An Organotypic Liver System for Tumor Progression

    DTIC Science & Technology

    2007-04-01

    involvement and growth dynamics – in progress Additional tasks accepted after Year 1: 9. determine whether breast cancer cell E -cadherin form...heterotypic interactions – completed 10. determine whether hepatocytes modulate cancer cell E -cadherin expression – completed Wells, Alan W81XWH-04...cancer cells that express E - cadherin form heterotypic binding to a monolayer of hepatocytes as determined by centrifugal assay for cell adhesion

  10. Inhibition of homophilic dimerization and disruption of cell adhesion by P-cadherin-specific small molecules from SPR-based assays.

    PubMed

    Senoo, Akinobu; Nagatoishi, Satoru; Moberg, Anna; Babol, Linnea Nygren; Mitani, Tomoya; Tashima, Takumi; Kudo, Shota; Tsumoto, Kouhei

    2018-05-09

    The inhibitor for the homophilic dimerization of P-cadherin was discovered by SPR-based screening using fragment compounds. Our SPR assays identified a specific P-cadherin binder, which was able to inhibit the cell adhesion of living CHO cells that expressed P-cadherin.

  11. SUMO-Specific Cysteine Protease 1 Promotes Epithelial Mesenchymal Transition of Prostate Cancer Cells via Regulating SMAD4 deSUMOylation

    PubMed Central

    Zhang, Xiaoyan; Wang, Hao; Wang, Hua; Xiao, Fengjun; Seth, Prem; Xu, Weidong; Jia, Qinghua; Wu, Chutse; Yang, Yuefeng; Wang, Lisheng

    2017-01-01

    In advanced prostate cancer, small ubiquitin-like modifier (SUMO)-specific cysteine protease 1 (SENP1) is up-regulated. However, the role of SENP1 in regulating deSUMOylation of TGF-β/SMADs signaling is unknown. In this study, we developed a lentiviral vector, PLKO.1-shSENP1, to silence SENP1 in prostate cancer cells with high metastatic characteristics (PC3M). Likewise, we also created an adenovirus vector, Ad5/F11p-SENP1 to over-express SENP1 in prostate cancer cells with low metastatic potential (LNCaP). We showed that silencing of SENP1 promoted cellular apoptosis, and inhibited proliferation and migration of PC3M cells. Moreover, SENP1 silencing increased the SMAD4 expression at protein level, up-regulated E-cadherin and down-regulated Vimentin expression, indicating the inhibition of epithelial mesenchymal transition (EMT). Furthermore, SMAD4 interference abolished SENP1-mediated up-regulation of E-cadherin, suggesting that SENP1 regulated E-cadherin expression via SMAD4. SENP1 over-expression in LNCaP cells reduced SMAD4 protein, and promoted EMT via decreasing E-cadherin and increasing Vimentin. Moreover, down-regulation of SMAD4 and E-cadherin were blocked, after transfection with two SUMOylation sites mutated SMAD4, suggesting that SENP1 might reduce SMAD4 levels to regulate E-cadherin expression via deSUMOylation of SMAD4. In conclusion, SENP1 deSUMOylated SMAD4 to promote EMT via up-regulating E-cadherin in prostate cancer cells. Therefore, SENP1 is a potential target for treatment of advanced prostate cancer. PMID:28417919

  12. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines.

    PubMed

    Witta, Samir E; Gemmill, Robert M; Hirsch, Fred R; Coldren, Christopher D; Hedman, Karla; Ravdel, Larisa; Helfrich, Barbara; Dziadziuszko, Rafal; Chan, Daniel C; Sugita, Michio; Chan, Zeng; Baron, Anna; Franklin, Wilbur; Drabkin, Harry A; Girard, Luc; Gazdar, Adi F; Minna, John D; Bunn, Paul A

    2006-01-15

    The epidermal growth factor receptor (EGFR) is overexpressed in the majority of non-small cell lung cancers (NSCLC). EGFR tyrosine kinase inhibitors, such as gefitinib and erlotinib, produce 9% to 27% response rates in NSCLC patients. E-Cadherin, a calcium-dependent adhesion molecule, plays an important role in NSCLC prognosis and progression, and interacts with EGFR. The zinc finger transcriptional repressor, ZEB1, inhibits E-cadherin expression by recruiting histone deacetylases (HDAC). We identified a significant correlation between sensitivity to gefitinib and expression of E-cadherin, and ZEB1, suggesting their predictive value for responsiveness to EGFR-tyrosine kinase inhibitors. E-Cadherin transfection into a gefitinib-resistant line increased its sensitivity to gefitinib. Pretreating resistant cell lines with the HDAC inhibitor, MS-275, induced E-cadherin along with EGFR and led to a growth-inhibitory and apoptotic effect of gefitinib similar to that in gefitinib-sensitive NSCLC cell lines including those harboring EGFR mutations. Thus, combined HDAC inhibitor and gefitinib treatment represents a novel pharmacologic strategy for overcoming resistance to EGFR inhibitors in patients with lung cancer.

  13. Thioredoxin 1 mediates TGF-β-induced epithelial-mesenchymal transition in salivary adenoid cystic carcinoma.

    PubMed

    Jiang, Yang; Feng, Xin; Zheng, Lei; Li, Sheng-Lin; Ge, Xi-Yuan; Zhang, Jian-Guo

    2015-09-22

    Epithelial-mesenchymal transition (EMT) plays an important role in the invasion and metastasis of salivary adenoid cystic carcinoma (SACC) which is characterized by wide local infiltration, perineural spread, a propensity to local recurrence and late distant metastasis. Our recent studies have disclosed that TGF-β is a crucial factor for EMT in metastatic SACC. In this study, we further uncovered small redox protein thioredoxin 1 (TXN) as a critical mediator of TGF-β induced EMT. Immunohistochemistry analysis revealed significantly higher expressions of TXN, thioredoxin reductase 1 (TXNRD1) and N-cadherin, and lower expression of E-cadherin in human metastatic SACC compared to non-metastatic SACC tissues. Consistently, cultured SACC cells with stable TXN overexpression had decreased E-cadherin and increased N-cadherin as well as Snail and Slug expressions. The enhanced migration and invasion potential of these cells was abrogated by Akt or TXNRD1 inhibitors. Expression of N-cadherin and Akt p-Akt decreased, whereas E-cadherin expression increased in a BBSKE (TXNRD1 inhibitor)-dose-dependent manner. In a xenograft mouse model, TXN overexpression facilitated the metastatic potential of SACC-83 cells to the lung. Our results indicate that TXN plays a key role in SACC invasion and metastasis through the modulation of TGF-β-Akt/GSK-3β on EMT. TXN could be a potential therapeutic target for SACC.

  14. Patterned cortical tension mediated by N-cadherin controls cell geometric order in the Drosophila eye

    PubMed Central

    Chan, Eunice HoYee; Chavadimane Shivakumar, Pruthvi; Clément, Raphaël; Laugier, Edith; Lenne, Pierre-François

    2017-01-01

    Adhesion molecules hold cells together but also couple cell membranes to a contractile actomyosin network, which limits the expansion of cell contacts. Despite their fundamental role in tissue morphogenesis and tissue homeostasis, how adhesion molecules control cell shapes and cell patterns in tissues remains unclear. Here we address this question in vivo using the Drosophila eye. We show that cone cell shapes depend little on adhesion bonds and mostly on contractile forces. However, N-cadherin has an indirect control on cell shape. At homotypic contacts, junctional N-cadherin bonds downregulate Myosin-II contractility. At heterotypic contacts with E-cadherin, unbound N-cadherin induces an asymmetric accumulation of Myosin-II, which leads to a highly contractile cell interface. Such differential regulation of contractility is essential for morphogenesis as loss of N-cadherin disrupts cell rearrangements. Our results establish a quantitative link between adhesion and contractility and reveal an unprecedented role of N-cadherin on cell shapes and cell arrangements. DOI: http://dx.doi.org/10.7554/eLife.22796.001 PMID:28537220

  15. The invasive phenotype of placenta accreta extravillous trophoblasts associates with loss of E-cadherin.

    PubMed

    Duzyj, C M; Buhimschi, I A; Motawea, H; Laky, C A; Cozzini, G; Zhao, G; Funai, E F; Buhimschi, C S

    2015-06-01

    Epithelial-to-mesenchymal transition (EMT) is a process of molecular and phenotypic epithelial cell alteration promoting invasiveness. Loss of E-cadherin (E-CAD), a transmembrane protein involved in cell adhesion, is a marker of EMT. Proteolysis into N- and C-terminus fragments by ADAM10 and presenilin-1 (PSEN-1) generates soluble (sE-CAD) and transcriptionally active forms. We studied the protein expression patterns of E-CAD in the serum and placenta of women with histologically-confirmed over-invasive placentation. The patterns of expression and levels of sE-CAD were analyzed by Western blot, immunoassay, and immunoprecipitation. Tissue immunostaining for E-CAD, cytokeratin-7 (epithelial marker), vimentin (mesenchymal marker), ADAM10, PSEN-1 and β-catenin expression were investigated in parallel. N-terminus cleaved 80 kDa sE-CAD fragments were present in serum of pregnant women with gestational age regulation of the circulatory levels. Women with advanced trophoblast invasion did not display circulatory levels of sE-CAD different from those of women with normal placentation. Histologically, extravillous trophoblasts (EVT) closer to the placental-myometrial interface demonstrated less E-CAD staining than those found deeper in the myometrium. These cells expressed both vimentin and cytokeratin, an additional feature of EMT. EVT of placentas with advanced invasion displayed intracellular E-CAD C-terminus immunoreactivity predominating over that of the extracellular N-terminus, a pattern consistent with preferential PSEN-1 processing. Local processing of E-CAD may be an important molecular mechanism controlling the invasive phenotype of accreta EVT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. NHERF Links the N-Cadherin/Catenin Complex to the Platelet-derived Growth Factor Receptor to Modulate the Actin Cytoskeleton and Regulate Cell Motility

    PubMed Central

    Theisen, Christopher S.; Wahl, James K.; Johnson, Keith R.

    2007-01-01

    Using phage display, we identified Na+/H+ exchanger regulatory factor (NHERF)-2 as a novel binding partner for the cadherin-associated protein, β-catenin. We showed that the second of two PSD-95/Dlg/ZO-1 (PDZ) domains of NHERF interacts with a PDZ-binding motif at the very carboxy terminus of β-catenin. N-cadherin expression has been shown to induce motility in a number of cell types. The first PDZ domain of NHERF is known to bind platelet-derived growth factor-receptor β (PDGF-Rβ), and the interaction of PDGF-Rβ with NHERF leads to enhanced cell spreading and motility. Here we show that β-catenin and N-cadherin are in a complex with NHERF and PDGF-Rβ at membrane ruffles in the highly invasive fibrosarcoma cell line HT1080. Using a stable short hairpin RNA system, we showed that HT1080 cells knocked down for either N-cadherin or NHERF had impaired ability to migrate into the wounded area in a scratch assay, similar to cells treated with a PDGF-R kinase inhibitor. Cells expressing a mutant NHERF that is unable to associate with β-catenin had increased stress fibers, reduced lamellipodia, and impaired cell migration. Using HeLa cells, which express little to no PDGF-R, we introduced PDGF-Rβ and showed that it coimmunoprecipitates with N-cadherin and that PDGF-dependent cell migration was reduced in these cells when we knocked-down expression of N-cadherin or NHERF. These studies implicate N-cadherin and β-catenin in cell migration via PDGF-R–mediated signaling through the scaffolding molecule NHERF. PMID:17229887

  17. E-cadherin and β-catenin adhesion proteins correlate positively with connexins in colorectal cancer

    PubMed Central

    KANCZUGA-KODA, LUIZA; WINCEWICZ, ANDRZEJ; FUDALA, ANDRZEJ; ABRYCKI, TOMASZ; FAMULSKI, WALDEMAR; BALTAZIAK, MAREK; SULKOWSKI, STANISLAW; KODA, MARIUSZ

    2014-01-01

    The majority of solid cancers present with qualitative and quantitative aberrations of adhesion proteins, including E-cadherin and β-catenin, and connexin (Cx) gap junction proteins, which is consistent with alterations in the expression and location of such proteins in neoplastic cells. Since there are no data on the correlation between adhesion proteins and Cxs in human colorectal cancer (CRC), the aim of the present study was to evaluate the expression and correlation between these proteins. Tissue specimens were obtained from 151 cases of surgically removed colorectal adenocarcinomas. The samples were examined by immunohistochemistry with the use of antibodies against E-cadherin, β-catenin and the three Cxs: Cx26, Cx32 and Cx43. The aberrant expression of the studied adhesion proteins (primarily cytoplasmic for E-cadherin and cytoplasmic and/or nuclear for β-catenin) was observed, whereas only a minority of cases revealed normal membranous distribution of the labeling. The present study is the first in the literature to reveal a correlation between the expression of E-cadherin and β-catenin and the examined Cxs in CRC in humans. The positive correlation between the Cxs, particularly Cx26 and Cx32, and the adhesive proteins occurred in patients without lymph node metastases and in the moderately differentiated tumors (G2). Such a dependency was not observed in the analysis of the correlation between Cx43 and E-cadherin. However, a positive correlation between these proteins was observed in patients with lymph nodes metastases. Additionally, a link between the expression of these adhesion proteins was observed. The present study indicates, for the first time, that the expression of adhesion proteins, E-cadherin and β-catenin, is closely associated with the expression of three studied Cxs in CRC, and that this correlation may improve an understanding of the carcinogenic process in this cancer. PMID:24932249

  18. In vitro approaches to evaluate placental drug transport by using differentiating JEG-3 human choriocarcinoma cells.

    PubMed

    Ikeda, Kenji; Utoguchi, Naoki; Tsutsui, Hidenobu; Yamaue, Satoko; Homemoto, Manami; Nakao, Erina; Hukunaga, Yumi; Yamasaki, Kyohei; Myotoku, Michiaki; Hirotani, Yoshihiko

    2011-02-01

    Human choriocarcinoma cells have been used as models for studying transcellular drug transport through placental trophoblasts. However, these models allow the transport of low-molecular-weight drugs through intercellular gap junctions. This study aimed at investigating the differentiation patterns of JEG-3 choriocarcinoma cells under different culture conditions and establishing the appropriate model of in vitro syncytiotrophoblast drug transport. Paracellular permeability was estimated by measuring the transepithelial electrical resistance (TEER) across JEG-3 cell layers. The mRNA expression levels of non-expressed in choriocarcinoma clone 1 (NECC1) and breast cancer resistance protein (BCRP), and those of E-cadherin (ECAD) and cadherin-11 (CDH11), which are adherens junction-associated proteins related to fusogenic ability of syncytiotrophoblasts differentiated from cytotrophoblasts, protein expression levels were considered as the differentiation signals. The highest TEER values were obtained in the JEG-3 cells cultured in the Dulbecco's modified Eagle's medium (DMEM)/Ham's F-12 (1:1) mixed medium (CS-C(®) ; Dainippon Sumitomo Pharma Co. Ltd., Osaka, Japan). By comparing the TEER values and the differentiation signals, the authors identified at least five JEG-3 cell-differentiation patterns. The differentiation pattern of JEG-3 cultured in CS-C resembled the syncytiotrophoblast-like differentiation signal characterizations in vivo. In conclusion, the syncytiotrophoblast-like models of differentiating JEG-3 cells cultured in CS-C might be appropriate for evaluating drug transport across the placental trophoblast. © 2010 The Authors. Basic & Clinical Pharmacology & Toxicology © 2010 Nordic Pharmacological Society.

  19. The metastasis-associated gene MTA3, a component of the Mi-2/NuRD transcriptional repression complex, predicts prognosis of gastroesophageal junction adenocarcinoma.

    PubMed

    Dong, Hongmei; Guo, Hong; Xie, Liangxi; Wang, Geng; Zhong, Xueyun; Khoury, Thaer; Tan, Dongfeng; Zhang, Hao

    2013-01-01

    Gastroesophageal junction (GEJ) adenocarcinoma carries a poor prognosis that is largely attributable to early and frequent metastasis. The acquisition of metastatic potential in cancer involves epithelial-to-mesenchymal transition (EMT). The metastasis-associated gene MTA3, a novel component of the Mi-2/NuRD transcriptional repression complex, was identified as master regulator of EMT through inhibition of Snail to increase E-cadherin expression in breast cancer. Here, we evaluated the expression pattern of the components of MTA3 pathway and the corresponding prognostic significance in GEJ adenocarcinoma. MTA3 expression was decreased at both protein and mRNA levels in tumor tissues compared to the non-tumorous and lowed MTA3 levels were noted in tumor cell lines with stronger metastatic potential. Immunohistochemical analysis of a cohort of 128 cases exhibited that patients with lower expression of MTA3 had poorer outcomes. Combined misexpression of MTA3, Snail and E-cadherin had stronger correlation with malignant properties. Collectively, results suggest that the MTA3-regulated EMT pathway is altered to favor EMT and, therefore, disease progression and that MTA3 expression was an independent prognostic factor in patients with GEJ adenocarcinoma.

  20. Characterization of the intronic portion of cadherin superfamily members, common cancer orchestrators

    PubMed Central

    Oliveira, Patrícia; Sanges, Remo; Huntsman, David; Stupka, Elia; Oliveira, Carla

    2012-01-01

    Cadherins are cell–cell adhesion proteins essential for the maintenance of tissue architecture and integrity, and their impairment is often associated with human cancer. Knowledge regarding regulatory mechanisms associated with cadherin misexpression in cancer is scarce. Specific features of the intronic-structure and intronic-based regulatory mechanisms in the cadherin superfamily are unidentified. This study aims at systematically characterizing the intronic portion of cadherin superfamily members and the identification of intronic regions constituting putative targets/triggers of regulation, using a bioinformatic approach and biological data mining. Our study demonstrates that the cadherin superfamily genes harbour specific characteristics in comparison to all non-cadherin genes, both from the genomic and transcriptional standpoints. Cadherin superfamily genes display higher average total intron number and significantly longer introns than other genes and across the entire vertebrate lineage. Moreover, in the human genome, we observed an uncommon high frequency of MIR (mammalian-wide interspersed repeats) and MaLR (mammalian-wide interspersed repeats, a subtype of LTR) regulatory-associated repetitive elements at 5′-located introns, concomitantly with increased de novo intronic transcription. Using this approach, we identified cadherin intronic-specific sites that may constitute novel targets/triggers of cadherin superfamily expression regulation. These findings pinpoint the need to identify mechanisms affecting particularly MIR and MaLR elements located in introns 2 and 3 of human cadherin genes, possibly important in the expression modulation of this superfamily in homeostasis and cancer. PMID:22317972

  1. O-mannosylation and N-glycosylation: two coordinated mechanisms regulating the tumour suppressor functions of E-cadherin in cancer

    PubMed Central

    Bartels, Markus F.; Miyoshi, Eiji; Pierce, Michael; Taniguchi, Naoyuki; Carneiro, Fátima; Seruca, Raquel; Reis, Celso A.; Strahl, Sabine; Pinho, Salomé S.

    2016-01-01

    Dysregulation of tumor suppressor protein E-cadherin is an early molecular event in cancer. O-mannosylation profile of E-cadherin is a newly-described post-translational modification crucial for its adhesive functions in homeostasis. However, the role of O-mannosyl glycans in E-cadherin-mediated cell adhesion in cancer and their interplay with N-glycans remains largely unknown. We herein demonstrated that human gastric carcinomas exhibiting a non-functional E-cadherin display a reduced expression of O-mannosyl glycans concomitantly with increased modification with branched complex N-glycans. Accordingly, overexpression of MGAT5-mediated branched N-glycans both in gastric cancer cells and transgenic mice models led to a significant decrease of O-mannosyl glycans attached to E-cadherin that was associated with impairment of its tumour suppressive functions. Importantly, overexpression of protein O-mannosyltransferase 2 (POMT2) induced a reduced expression of branched N-glycans which led to a protective effect of E-cadherin biological functions. Overall, our results reveal a newly identified mechanism of (dys)regulation of E-cadherin that occur through the interplay between O-mannosylation and N-glycosylation pathway. PMID:27533452

  2. E-cadherin expression in sporadic gastric cancer from Mexico: exon 8 and 9 deletions are infrequent events associated with poor survival.

    PubMed

    Gamboa-Dominguez, Armando; Dominguez-Fonseca, Claudia; Chavarri-Guerra, Yanin; Vargas, Roberto; Reyes-Gutierrez, Edgardo; Green, Dan; Quintanilla-Martinez, Leticia; Luber, Birgit; Busch, Raymonde; Becker, Karl-Friedrich; Becker, Ingrid; Höfler, Heinz; Fend, Falko

    2005-01-01

    Aberrant expression and mutation of E-cadherin is frequent in gastric carcinoma (GC) especially of the diffuse type. The frequency of CDH1 (gene encoding E-cadherin) mutation in populations with high incidence of diffuse GC and its prognostic significance is unknown. One hundred seventy-seven gastrectomies from Mexican mestizo patients with intestinal (53), mixed (55), or diffuse (69) GC were included. In addition, 101 endoscopic biopsies from patients with GC not subjected to surgery were analyzed. Immunohistochemistry against wild-type E-cadherin (clone 36) and against 2 mutation-specific antibodies (MSA) recognizing mutant CDH1 lacking exon-8 (del 8) or exon-9 (del 9) were performed. Staining was correlated with histotype, tumor node metastasis stage, and follow-up. Abnormal or absent E-cadherin expression (clone 36) was identified in 84% GC, predominantly in diffuse or mixed tumors (P = 0.004) in advanced stages (P = 0.003). No survival differences at 1 and 2 years were observed among patients showing normal, abnormal, or absent wild type E-cadherin expression. Overall reactivity with the MSA was observed in 10 (5.6%) patients who were treated with surgery. In 140 patients, dead from the disease or alive with the disease, the survival at 1 and 2 years was 37% versus 17% and 14% versus 0 for patients without and with del 8/9 positivity, respectively (log rank P = 0.01). Biopsies from patients with inoperable-GC (101) rendered 5 (4.95%) with del 8 or 9 immunoreactivity. Abnormal E-cadherin expression is frequent in GC. However, exon 8 or 9 deletions were observed in only 5.3% tumors in this series from Mexico, at a lower rate than previously published, but associated with a worse prognosis.

  3. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouchi, Zen, E-mail: zkouchi@toyaku.ac.jp; Fujiwara, Yuki; Yamaguchi, Hideki

    2011-05-20

    Highlights: {yields} We analyzed Phosphatidylinositol 5-phosphate kinase II{beta} (PIPKII{beta}) function in cancer. {yields} PIPKII{beta} is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. {yields} PIPKII{beta} suppresses cellular motility through E-cadherin induction in SW480 cells. {yields} Nuclear PIP{sub 2} but not plasma membrane-localized PIP{sub 2} mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1{alpha},25-dihydroxyvitamin D{sub 3} (1{alpha},25(OH){sub 2}D{sub 3}) has anti-cancer activity in several colon cancers. 1{alpha},25(OH){sub 2}D{sub 3} induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however,more » its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKII{beta}) but not PIPKII{alpha} is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLC{delta}1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P{sub 2}) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLC{delta}1 PHD inhibited 1{alpha},25(OH){sub 2}D{sub 3}-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P{sub 2} production mediates E-cadherin expression through PIPKII{beta} in a VDR-dependent manner. PIPKII{beta} is also involved in the suppression of the cell motility induced by 1{alpha},25(OH){sub 2}D{sub 3}. These results indicate that PIPKII{beta}-mediated PI(4,5)P{sub 2} signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.« less

  4. Self-organizing human cardiac microchambers mediated by geometric confinement

    NASA Astrophysics Data System (ADS)

    Ma, Zhen; Wang, Jason; Loskill, Peter; Huebsch, Nathaniel; Koo, Sangmo; Svedlund, Felicia L.; Marks, Natalie C.; Hua, Ethan W.; Grigoropoulos, Costas P.; Conklin, Bruce R.; Healy, Kevin E.

    2015-07-01

    Tissue morphogenesis and organ formation are the consequences of biochemical and biophysical cues that lead to cellular spatial patterning in development. To model such events in vitro, we use PEG-patterned substrates to geometrically confine human pluripotent stem cell colonies and spatially present mechanical stress. Modulation of the WNT/β-catenin pathway promotes spatial patterning via geometric confinement of the cell condensation process during epithelial-mesenchymal transition, forcing cells at the perimeter to express an OCT4+ annulus, which is coincident with a region of higher cell density and E-cadherin expression. The biochemical and biophysical cues synergistically induce self-organizing lineage specification and creation of a beating human cardiac microchamber confined by the pattern geometry. These highly defined human cardiac microchambers can be used to study aspects of embryonic spatial patterning, early cardiac development and drug-induced developmental toxicity.

  5. BCORL1 is an independent prognostic marker and contributes to cell migration and invasion in human hepatocellular carcinoma.

    PubMed

    Yin, Guozhi; Liu, Zhikui; Wang, Yufeng; Dou, Changwei; Li, Chao; Yang, Wei; Yao, Yingmin; Liu, Qingguang; Tu, Kangsheng

    2016-02-15

    The deregulation of E-cadherin has been considered as a leading cause of hepatocellular carcinoma (HCC) metastasis. BCL6 corepressor-like 1 (BCORL1) is a transcriptional corepressor and contributes to the repression of E-cadherin. However, the clinical significance of BCORL1 and its role in the metastasis of HCC remain unknown. Differentially expressed BCORL1 between HCC and matched tumor-adjacent tissues, HCC cell lines and normal hepatic cell line were detected by Western blot. The expression of BCORL1 was altered by siRNAs or lentivirus-mediated vectors. Transwell assays were performed to determine HCC cell invasion and migration. Increased expression of BCORL1 protein was detected in HCC specimens and cell lines. Clinical association analysis showed that BCORL1 protein was expressed at significant higher levels in HCC patients with multiple tumor nodes, venous infiltration and advanced TNM tumor stage. Survival analysis indicated that high expression of BCORL1 protein conferred shorter overall survival (OS) and recurrence-free survival (RFS) of HCC patients. Multivariate Cox regression analysis disclosed that BCORL1 expression was an independent prognostic marker for predicting survival of HCC patients. Our in vitro studies demonstrated that BCORL1 prominently promoted HCC cell migration and invasion. Otherwise, an inverse correlation between BCORL1 and E-cadherin expression was observed in HCC tissues. BCORL1 inversely regulated E-cadherin abundance and subsequently facilitated epithelial-mesenchymal transition (EMT) in HCC cells. Notably, the effect of BCORL1 knockdown on HCC cells was abrogated by E-cadherin silencing. BCORL1 may be a novel prognostic factor and promotes cell migration and invasion through E-cadherin repression-induced EMT in HCC.

  6. Expression of P-aPKC-iota, E-cadherin, and beta-catenin related to invasion and metastasis in hepatocellular carcinoma.

    PubMed

    Du, Guang-Sheng; Wang, Jian-Ming; Lu, Jin-Xi; Li, Qiang; Ma, Chao-Qun; Du, Ji-Tao; Zou, Sheng-Quan

    2009-06-01

    Atypical protein kinase C iota (aPKC-iota) and its associated intracellular molecules, E-cadherin and beta-catenin, are important for cell polarization in tumorigenesis and progression. Expression of aPKC-iota, P-aPKC-iota (activated aPKC-iota), E-cadherin, and beta-catenin in hepatocellular carcinoma (HCC) was measured, and correlation with clinicopathological characteristics of HCC was analyzed. Paraffin-embedded tumor tissue was obtained from patients with HCC after resection without preoperative radiotherapy or chemotherapy. Gene expression was detected by polymerase chain reaction (PCR), and protein expression was detected by immunohistochemistry and Western blot analysis. Expressions of aPKC-iota, P-aPKC-iota, E-cadherin, and beta-catenin were analyzed with relation to the clinicopathological data. The gene and protein expression of aPKC-iota are obviously higher in HCC tissues than that in peritumoral tissues and normal tissues by semiquantitative PCR and immunohistochemistry methods. Accumulation of aPKC-iota in HCC cytoplasm and nucleolus inhibited the later formation of belt-like adherens junctions (AJs) and/or tight junctions (TJs) in cell-cell contact. E-cadherin was reduced and accumulation of cytoplasm beta-catenin was increased in HCC. The expression of aPKC-iota was closely related to pathological differentiation, tumor size, invasion, and metastasis of HCC. Accumulation of cytoplasm aPKC-iota may reflect pathological differentiation, invasion, and metastasis potential of HCC. In this regard, our study on HCC revealed the potential usefulness of aPKC-iota, E-cadherin, and beta-catenin as a prognostic marker, closely related to pathological differentiation, invasion, metastasis, and prognosis of HCC.

  7. Establishment of cell-cell junctions depends on the oligomeric states of VE-cadherin

    PubMed Central

    Bibert, Stéphanie; Ayari, Hélène; Riveline, Daniel; Concord, Evelyne; Hermant, Bastien; Vernet, Thierry; Gulino-Debrac, Danièle

    2008-01-01

    Specifically expressed at intercellular adherens junctions of endothelial cells, VE-cadherin is a receptor that exhibits particular self-association properties. Indeed, in vitro studies demonstrated that the extracellular part of VE-cadherin elaborates Ca++-dependent hexameric structures. We hypothesized that this assembly could be at the basis of a new cadherin-mediated cell-cell adhesion mechanism. To verify this assumption, we first demonstrated that VE-cadherin can elaborate hexamers at the cell surface of confluent endothelial cells. Second, mutations were introduced within the extracellular part of VE-cadherin to destabilize the hexamer. Following an in vitro screening, three mutants were selected, among which, one is able to elaborate only dimers. The selected mutations were expressed as C-terminal Green Fluorescent Protein fusions in CHO cells. Despite their capacity to elaborate nascent cell-cell contacts, the mutants seem to be rapidly degraded and or internalized. Altogether, our results suggest that the formation of VE-cadherin hexamers protects this receptor and might allow the elaboration of mature endothelial cell-cell junctions. PMID:18343874

  8. Allosteric Regulation of E-Cadherin Adhesion*

    PubMed Central

    Shashikanth, Nitesh; Petrova, Yuliya I.; Park, Seongjin; Chekan, Jillian; Maiden, Stephanie; Spano, Martha; Ha, Taekjip; Gumbiner, Barry M.; Leckband, Deborah E.

    2015-01-01

    Cadherins are transmembrane adhesion proteins that maintain intercellular cohesion in all tissues, and their rapid regulation is essential for organized tissue remodeling. Despite some evidence that cadherin adhesion might be allosterically regulated, testing of this has been hindered by the difficulty of quantifying altered E-cadherin binding affinity caused by perturbations outside the ectodomain binding site. Here, measured kinetics of cadherin-mediated intercellular adhesion demonstrated quantitatively that treatment with activating, anti-E-cadherin antibodies or the dephosphorylation of a cytoplasmic binding partner, p120ctn, increased the homophilic binding affinity of E-cadherin. Results obtained with Colo 205 cells, which express inactive E-cadherin and do not aggregate, demonstrated that four treatments, which induced Colo 205 aggregation and p120ctn dephosphorylation, triggered quantitatively similar increases in E-cadherin affinity. Several processes can alter cell aggregation, but these results directly demonstrated the allosteric regulation of cell surface E-cadherin by p120ctn dephosphorylation. PMID:26175155

  9. Regulation of glycogen synthase kinase-3 by thymosin beta-4 is associated with gastric cancer cell migration.

    PubMed

    Ryu, Yun-Kyoung; Lee, Yu-Sun; Lee, Geun-Hee; Song, Kyu-Sang; Kim, Yong-Sung; Moon, Eun-Yi

    2012-11-01

    Thymosin beta-4 (Tβ4), actin-sequestering protein, plays important roles in many cellular functions including cancer cell migrations. Glycogen synthase kinase (GSK) in Wnt signaling pathway is a key molecule to control intercellular interaction. Here, we investigated whether GSK-3 activity is regulated by Tβ4 and it is associated with Tβ4-mediated migration in gastric cancer cells. Various expression level of Tβ4 was observed in human gastric tumor tissues. Migration in gastric cancer cells, SNU638 and SNU668, was dependent on a relative expression level of Tβ4. Cell migration was higher in SNU668 with a higher expression level of Tβ4 than that in SNU638 with a lower Tβ4. Although the level of phosphorylated(p)-GSK-3α (inactive), β-catenin, E-cadherin and E-cadherin:β-catenin complex was relatively higher, p-GSK-3β (inactive) was lower in SNU638 compared to those in SNU668 cells. LiCl, GSK-3α/β inhibitor, reduced lung metastasis of B16F10 mouse melanoma cells and SNU668 cell migration. Small interference (si)RNA of GSK-3α increased SNU638 cell migration in accordance with the reduction of E-cadherin:β-catenin complex formation through a decrease in β-catenin and E-cadherin. Expression level of GSK-3α/β, β-catenin and E-cadherin in SNU668 and SNU638 was reversed by Tβ4-siRNA and by the treatment with acetylated-serine-aspartic acid-lysine-proline (SDKP) tetrapeptide of Tβ4, respectively. E-cadherin expression in SNU638 cells was decreased by β-catenin-siRNA. PD98059, MEK inhibitor, or U0126, ERK inhibitor, reduced SNU668 cell migration accompanying an increase in p-GSK-3α, β-catenin and E-cadherin. Taken together, data indicated that the expression of GSK-3α, β-catenin and E-cadherin could be negatively regulated by Tβ4-induced ERK phosphorylation. It suggests that Tβ4 could be a novel regulator to control Wnt signaling pathways. Copyright © 2012 UICC.

  10. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells

    PubMed Central

    Lobos-González, L; Aguilar, L; Diaz, J; Diaz, N; Urra, H; Torres, V; Silva, V; Fitzpatrick, C; Lladser, A; Hoek, K.S.; Leyton, L; Quest, AFG

    2013-01-01

    SUMMARY The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis, and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10(cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10(E-cad) cells reduces subcutaneous tumor formation, and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10(cav1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity and cell migration observed with B16F10(cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013

  11. IGF-1 induces the epithelial-mesenchymal transition via Stat5 in hepatocellular carcinoma.

    PubMed

    Zhao, Chuanzong; Wang, Qian; Wang, Ben; Sun, Qi; He, Zhaobin; Hong, Jianguo; Kuehn, Florian; Liu, Enyu; Zhang, Zongli

    2017-12-19

    It has been reported that the epithelial-mesenchymal transition (EMT) plays an important role in hepatocellular carcinoma (HCC). However, the relationship between the insulin-like growth factor-1 (IGF-1) and EMT of HCC was not fully elucidated. In the present work, we found that the expression of N-cadherin, Vimentin, Snail1, Snail2, and Twist1 was positively associated with IGF-1R expression, while E-cadherin expression was negatively associated with IGF-1 expression in human HCC samples. Furthermore, we observed that IGF-1 up-regulated the expression of N-cadherin, Vimentin, Snail1, Snail2 and Twist1, and down-regulated the expression of E-cadherin. In addition, Stat5 was induced in IGF-1-treated HepG2 and Hep3B cells, and Stat5 inhibition or siRNA significantly affected IGF-1-induced EMT in HepG2 and Hep3B cells. In conclusion, IGF-1 induces EMT of HCC via Stat5 signaling pathway. Thus, IGF-1/Stat5 can be recommended as a potential and novel therapeutic strategy for HCC patients.

  12. [Improvement and the mechanism of cardiac function by knockdown of ADAM10 in adriamycin-induced cardiomyopathy rats].

    PubMed

    Li, Xiaoou; Xie, Lili; He, Bing; Huang, Wei

    2018-01-01

    Objective To study the role of a disintegrin and metalloproteinase10 (ADAM10) in shedding neural cadherin (N-cadherin) and develop an approach to interfere the process of ventricular remodeling in adriamycin-induced cardiomyopathy (ACM) rats. Methods In a rat model of ACM, the effects of intraperitoneal injection of the lentiviral RNAi vector of ADAM10 on the morphology of cardiomyocytes and contractile function were observed by HE staining and color Doppler echocardiography. The expressions of N-cadherin and C-terminal fragment 1 (CTF1) were detected by Western blotting and immunohistochemistry. Results In the in vivo experiment, a large amount of fluorescence was seen in the isolated primary cardiomyocytes, which indicated that the transfection in the rat model was successful. In the treatment group, the morphology of cardiomyocytes and function of the heart were evidently improved, N-cadherin protein expression was remarkably up-regulated and CTF1 protein was obviously down-regulated compared with the model group. Conclusion Knock-down of ADAM10 increases N-cadherin expression and decreases CTF1 expression, thus improves cardiac function in the rat model of ACM.

  13. Differential Function of N-Cadherin and Cadherin-7 in the Control of Embryonic Cell Motility

    PubMed Central

    Dufour, Sylvie; Beauvais-Jouneau, Alice; Delouvée, Annie; Thiery, Jean Paul

    1999-01-01

    Similar amounts of N-cadherin and cadherin-7, the prototypes of type I and type II cadherin, induced cell-cell adhesion in murine sarcoma 180 transfectants, Ncad-1 and cad7-29, respectively. However, in the initial phase of aggregation, Ncad-1 cells aggregated more rapidly than cad7-29 cells. Isolated Ncad-1 and cad7-29 cells adhered and spread in a similar manner on fibronectin (FN), whereas aggregated cad7-29 cells were more motile and dispersed than aggregated Ncad-1 cells. cad7-29 cells established transient contacts with their neighbors which were stabilized if FN-cell interactions were perturbed. In contrast, Ncad-1 cells remained in close contact when they migrated on FN. Both β-catenin and cadherin were more rapidly downregulated in cad7-29 than in Ncad-1 cells treated with cycloheximide, suggesting a higher turnover rate for cadherin-7–mediated cell-cell contacts than for those mediated by N-cadherin. The extent of FN-dependent focal adhesion kinase phosphorylation was much lower if the cells had initiated N-cadherin–mediated rather than cadherin-7–mediated cell adhesion before plating. On grafting into the embryo, Ncad-1 cells did not migrate and remained at or close to the graft site, even after 48 h, whereas grafted cad7-29 cells dispersed efficiently into embryonic structures. Thus, the adhesive phenotype of cadherin-7–expressing cells is regulated by the nature of the extracellular matrix environment which also controls the migratory behavior of the cells. In addition, adhesions mediated by different cadherins differentially regulate FN-dependent signaling. The transient contacts specifically observed in cadherin- 7–expressing cells may also be important in the control of cell motility. PMID:10427101

  14. Keratinocytes negatively regulate the N-cadherin levels of melanoma cells via contact-mediated calcium regulation.

    PubMed

    Chung, Heesung; Jung, Hyejung; Jho, Eek-Hoon; Multhaupt, Hinke A B; Couchman, John R; Oh, Eok-Soo

    2018-06-14

    In human skin, melanocytes and their neighboring keratinocytes have a close functional interrelationship. Keratinocytes, which represent the prevalent cell type of human skin, regulate melanocytes through various mechanisms. Here, we use a keratinocyte and melanoma co-culture system to show for the first time that keratinocytes regulate the cell surface expression of N-cadherin through cell-cell contact. Compared to mono-cultured human melanoma A375 cells, which expressed high levels of N-cadherin, those co-cultured with the HaCaT human keratinocyte cell line showed reduced levels of N-cadherin. This reduction was most evident in areas of A375 cells that underwent cell-cell contact with the HaCaT cells, whereas HaCaT cell-derived extracellular matrix and conditioned medium both failed to reduce N-cadherin levels. The intracellular level of calcium in co-cultured A375 cells was lower than that in mono-cultured A375 cells, and treatment with a cell-permeant calcium chelator (BAPTA) reduced the N-cadherin level of mono-cultured A375 cells. Furthermore, co-culture with HaCaT cells reduced the expression levels of transient receptor potential cation channel (TRPC) 1, -3 and -6 in A375 cells, and siRNA-mediated multi-depletion of TRPC1, -3 and -6 reduced the N-cadherin level in these cells. Taken together, these data suggest that keratinocytes negatively regulate the N-cadherin levels of melanoma cells via cell-to-cell contact-mediated calcium regulation. Copyright © 2018. Published by Elsevier Inc.

  15. Angiogenin Expression during Early Human Placental Development; Association with Blood Vessel Formation

    PubMed Central

    Pavlov, Nadine; Guibourdenche, Jean; Degrelle, Séverine A.; Evain-Brion, Danièle

    2014-01-01

    The placenta is a transient organ essential for fetal development. During human placental development, chorionic villi grow in coordination with a large capillary network resulting from both vasculogenesis and angiogenesis. Angiogenin is one of the most potent inducers of neovascularisation in experimental models in vivo. We and others have previously mapped angiogenin expression in the human term placenta. Here, we explored angiogenin involvement in early human placental development. We studied, angiogenin expression by in situ hybridisation and/or by RT-PCR in tissues and primary cultured trophoblastic cells and angiogenin cellular distribution by coimmunolabelling with cell markers: CD31 (PECAM-1), vascular endothelial cadherin (VE-cadherin), vascular endothelial growth factor receptor-2 (VEGF-R2), Tie-2, von Willebrand factor, CD34, erythropoeitin receptor (Epo-R), alpha-smooth muscle actin, CD45, cytokeratin 7, and Ki-67. Extravillous and villous cytotrophoblasts, isolated and differentiated in vitro, expressed and secreted angiogenin. Angiogenin was detected in villous trophoblastic layers, and structured and nascent fetal vessels. In decidua, it was expressed by glandular epithelial cells, vascular cells and macrophages. The observed pattern of angiogenin expression is compatible with a role in blood vessel formation and in cross-talk between trophoblasts and endothelial cells. In view of angiogenin properties, we suggest that angiogenin may participate in placental vasculogenesis and organogenesis. PMID:25093183

  16. Nuclear translocation of β-catenin and decreased expression of epithelial cadherin in human papillomavirus-positive tonsillar cancer: an early event in human papillomavirus-related tumour progression?

    PubMed

    Stenner, Markus; Yosef, Basima; Huebbers, Christian U; Preuss, Simon F; Dienes, Hans-Peter; Speel, Ernst-Jan M; Odenthal, Margarete; Klussmann, Jens P

    2011-06-01

    High-risk human papillomaviruses (HPVs) constitute an important risk factor for tonsillar cancer. This study describes changes in cell adhesion molecules during metastasis of HPV-related and HPV-unrelated tonsillar carcinomas. We examined 48 primary tonsillar carcinoma samples (25 HPV-16 DNA-positive, 23 HPV-16 DNA-negative) and their respective lymph node metastases for their HPV status and for the expression of p16, epithelial cadherin (E-cadherin), β-catenin, and vimentin. A positive HPV-specific polymerase chain reaction finding correlated significantly with p16 overexpression in both primary tumours and their metastases (P<0.0001 for both). In HPV-unrelated carcinomas, the expression of E-cadherin was significantly lower in metastases than in primary tumours (P<0.001). In contrast, the expression of nuclear β-catenin was significantly higher in metastases than in primary tumours (P=0.016). In HPV-related carcinomas, nuclear localization of β-catenin expression was already apparent in primary tumours (P=0.030). The expression of vimentin significantly correlated with the grading of the primary tumour (P=0.021). Our data indicate that the down-regulation of E-cadherin and the up-regulation of nuclear β-catenin expression might be crucial steps during tumour progression of tonsillar carcinomas, being already present in primary tumours in HPV-driven carcinomas, but becoming apparent in HPV-unrelated tumours later in the process of metastasis. © 2011 Blackwell Publishing Limited.

  17. Involvement of microRNAs-MMPs-E-cadherin in the migration and invasion of gastric cancer cells infected with Helicobacter pylori.

    PubMed

    Yang, Yongmei; Li, Xiaohui; Du, Jie; Yin, Youcong; Li, Yuanjian

    2018-06-15

    It has been found that Helicobacter pylori (H. pylori)is not only the main cause of gastric cancer, but also closely related to its metastasis. E-cadherin cleavage induced by matrix metalloproteinases (MMPs) plays an important role in the tumor metastasis. In the present study, we investigated the role of microRNAs-MMPs-E-cadherin in migration and invasion of gastric cancer cells treated with H. pylori. The results showed that H. pylori induced migration and invasion of SGC-7901 cells with a down-regulation of E-cadherin expression, which were abolished by MMPs knock down, E-cadherin overexpression, mimics of miR128 and miR148a. MiR128/miR148a inhibitors restored MMP-3/MMP-7 expression, down-regulated E-cadherin level, and accelerated cellular migration and invasion. This study suggests that H. pylori induces migration and invasion of gastric cancer cells through reduction of E-cadherin function by activation of MMP-3, - 7. The present results also suggest that the activated MMPs/E-cadherin pathway is related with down-regulation of miR128/miR148a in the human gastric cancer cells infected with H. pylori. Copyright © 2018. Published by Elsevier Inc.

  18. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    PubMed Central

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  19. E-cadherin in contact inhibition and cancer.

    PubMed

    Mendonsa, Alisha M; Na, Tae-Young; Gumbiner, Barry M

    2018-05-21

    E-cadherin is a key component of the adherens junctions that are integral in cell adhesion and maintaining epithelial phenotype of cells. Homophilic E-cadherin binding between cells is important in mediating contact inhibition of proliferation when cells reach confluence. Loss of E-cadherin expression results in loss of contact inhibition and is associated with increased cell motility and advanced stages of cancer. In this review we discuss the role of E-cadherin and its downstream signaling in regulation of contact inhibition and the development and progression of cancer.

  20. Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT

    PubMed Central

    Rogers, Crystal D.; Saxena, Ankur

    2013-01-01

    The neural crest, an embryonic stem cell population, initially resides within the dorsal neural tube but subsequently undergoes an epithelial-to-mesenchymal transition (EMT) to commence migration. Although neural crest and cancer EMTs are morphologically similar, little is known regarding conservation of their underlying molecular mechanisms. We report that Sip1, which is involved in cancer EMT, plays a critical role in promoting the neural crest cell transition to a mesenchymal state. Sip1 transcripts are expressed in premigratory/migrating crest cells. After Sip1 loss, the neural crest specifier gene FoxD3 was abnormally retained in the dorsal neuroepithelium, whereas Sox10, which is normally required for emigration, was diminished. Subsequently, clumps of adherent neural crest cells remained adjacent to the neural tube and aberrantly expressed E-cadherin while lacking N-cadherin. These findings demonstrate two distinct phases of neural crest EMT, detachment and mesenchymalization, with the latter involving a novel requirement for Sip1 in regulation of cadherin expression during completion of neural crest EMT. PMID:24297751

  1. Cross-link regulation of precursor N-cadherin and FGFR1 by GDNF increases U251MG cell viability.

    PubMed

    Tang, Chuan-Xi; Gu, Yan-Xia; Liu, Xin-Feng; Tong, Shu-Yan; Ayanlaja, Abiola A; Gao, Yue; Ji, Guang-Quan; Xiong, Ye; Huang, Lin-Yan; Gao, Dian-Shuai

    2018-07-01

    Glial cell line-derived neurotrophic factor (GDNF) is considered to be involved in the development of glioma. However, uncovering the underlying mechanism of the proliferation of glioma cells is a challenging work in progress. We have identified the binding of the precursor of N-cadherin (proN-cadherin) and GDNF on the cell membrane in previous studies. In the present study, we observed increased U251 Malignant glioma (U251MG) cell viability by exogenous GDNF (50 ng/ml). We also confirmed that the high expression of the proN-cadherin was stimulated by exogenous GDNF. Concurrently, we affirmed that lower expression of proN-cadherin correlated with reduced glioma cell viability. Additionally, we observed glioma cell U251MG viability as the phosphorylation level of FGFR1 at Y653 and Y654 was increased after exogenous GDNF treatment, which led to increased interaction between proN-cadherin and FGFR1 (pY653+Y654). Our experiments presented a new mechanism adopted by GDNF supporting glioma development and indicated a possible therapeutic potential via the inhibition of proN-cadherin/FGFR1 interaction.

  2. Allosteric Regulation of E-Cadherin Adhesion.

    PubMed

    Shashikanth, Nitesh; Petrova, Yuliya I; Park, Seongjin; Chekan, Jillian; Maiden, Stephanie; Spano, Martha; Ha, Taekjip; Gumbiner, Barry M; Leckband, Deborah E

    2015-08-28

    Cadherins are transmembrane adhesion proteins that maintain intercellular cohesion in all tissues, and their rapid regulation is essential for organized tissue remodeling. Despite some evidence that cadherin adhesion might be allosterically regulated, testing of this has been hindered by the difficulty of quantifying altered E-cadherin binding affinity caused by perturbations outside the ectodomain binding site. Here, measured kinetics of cadherin-mediated intercellular adhesion demonstrated quantitatively that treatment with activating, anti-E-cadherin antibodies or the dephosphorylation of a cytoplasmic binding partner, p120(ctn), increased the homophilic binding affinity of E-cadherin. Results obtained with Colo 205 cells, which express inactive E-cadherin and do not aggregate, demonstrated that four treatments, which induced Colo 205 aggregation and p120(ctn) dephosphorylation, triggered quantitatively similar increases in E-cadherin affinity. Several processes can alter cell aggregation, but these results directly demonstrated the allosteric regulation of cell surface E-cadherin by p120(ctn) dephosphorylation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Slug silencing inhibited perineural invasion through regulation of EMMPRIN expression in human salivary adenoid cystic carcinoma.

    PubMed

    Wu, Baolei; Wei, Jianhua; Hu, Zhiqiang; Shan, Chun; Wang, Lei; Zhang, Chenping; Yang, Xi; Yang, Xinjie; Lei, Delin

    2016-02-01

    Salivary adenoid cystic carcinoma (SACC) is the most frequent salivary gland malignancy with a unique characteristic that has been named perineural invasion (PNI). EMMPRIN is a transmembrane glycoprotein that has been demonstrated to promote PNI in SACC. Slug, one of the most effective promoters of the epithelial-to-mesenchymal transition (EMT), has been found to be associated with PNI in SACC. The aim of the present study was to investigate the roles and relationships of Slug, EMMPRIN, and E-cadherin in the PNI process of SACC. The expression levels of Slug, EMMPRIN, and E-cadherin in 115 primary SACC cases were statistically analyzed by immunohistochemistry. Simultaneously, the SACC cell line SACC-83 was transfected with recombinant plasmids of silencing Slug (si-Slug) and/or silencing EMMPRIN (si-EMMPRIN). The functions of Slug and EMMPRIN in the EMT and PNI process were assessed by reverse transcription PCR (RT-PCR), western blotting, morphological observation, scratch test, migration assay, and in vitro perineural invasion assay. The immunohistochemical statistics revealed that the high expression of Slug and EMMPRIN and the low expression of E-cadherin were significantly associated with the PNI of SACC (P < 0.05). Slug expression was significantly associated with EMMPRIN expression (P < 0.05), and Slug expression and EMMPRIN expression were both significantly negatively associated with E-cadherin expression (P < 0.05). Slug and EMMPRIN silencing both significantly inhibited EMMPRIN expression but promoted E-cadherin expression in SACC-83 cells (P < 0.01). The series of in vitro assays revealed that silencing of Slug, EMMPRIN, or both induced cell morphology changes and inhibited tumor cell motility and PNI ability in SACC-83 cells (P < 0.01). These results suggested that Slug silencing could inhibit the EMT process by downregulating EMMPRIN and then upregulating E-cadherin in the PNI process of SACC. The present study indicated that Slug and EMMPRIN are potential biomarkers and therapeutic targets for the diagnosis and treatment of PNI in human SACC.

  4. N-cadherin is required for cytodifferentiation during zebrafish odontogenesis.

    PubMed

    Verstraeten, B; van Hengel, J; Sanders, E; Van Roy, F; Huysseune, A

    2013-04-01

    N-cadherin is a well-studied classic cadherin involved in multiple developmental processes and is also known to have a signaling function. Using the zebrafish (Danio rerio) as a model, we tested the hypothesis that tooth morphogenesis is accompanied by dynamic changes in N-cadherin distribution and that absence of N-cadherin disturbs tooth development. N-cadherin, encoded by the gene cdh2, is absent during the initiation and morphogenesis stages of both primary (first-generation) and replacement teeth, as demonstrated by immunohistochemistry. However, N-cadherin is up-regulated at the onset of differentiation of cells of the inner dental epithelium and the dental papilla, i.e., the ameloblasts and odontoblasts, respectively. In the inner dental epithelium, N-cadherin is co-expressed with E-cadherin, excluding the occurrence of cadherin switching such as observed during human tooth development. While early lethality of N-cadherin knockout mice prevents any functional study of N-cadherin in mouse odontogenesis, zebrafish parachute (pac) mutants, deficient for N-cadherin, survive beyond the age when primary teeth normally start to form. In these mutants, the first tooth forms, but its development stops at the early cytodifferentiation stage. N-cadherin deficiency also completely inhibits the development of the other first-generation teeth, possibly due to the absence of N-cadherin signaling once the first tooth has differentiated.

  5. Role of epithelial-mesenchymal transition involved molecules in the progression of cutaneous melanoma.

    PubMed

    Murtas, Daniela; Maxia, Cristina; Diana, Andrea; Pilloni, Luca; Corda, Claudia; Minerba, Luigi; Tomei, Sara; Piras, Franca; Ferreli, Caterina; Perra, Maria Teresa

    2017-12-01

    Epithelial-mesenchymal transition (EMT) has been suggested to have a driving role in the acquisition of a metastatic potential by melanoma cells. Important hallmarks of EMT include both E-cadherin downregulation and increased expression of N-cadherin. This switch in distinct classes of adhesion molecules leads melanoma cells to lose contact with adjacent keratinocytes and interact instead with stromal fibroblasts and endothelial cells, thus promoting dermal and vascular melanoma invasion. Consequently, tumor cells migrate to distant host tissues and establish metastases. A key regulator in the induction of EMT in melanoma is the Notch1 signaling pathway that, when activated, is prompt to upregulate N-cadherin expression. By means of this strategy, melanoma cells gain enhanced survival, proliferation and invasion properties, driving the tumor toward a more aggressive phenotype. On the basis of these statements, the present study aimed to investigate the possible association between N-cadherin and Notch1 presence in primary cutaneous melanomas and lymph node metastases. Our results from immunohistochemical analysis confirmed a positive correlation between N-cadherin and Notch1 presence in the same tumor samples. Moreover, this study highlighted that a concomitant high expression of N-cadherin and Notch1, both in primary lesions and in lymph node metastases, predicts an adverse clinical outcome in melanoma patients. Therefore, N-cadherin and Notch1 co-presence can be monitored as a predictive factor in early- and advanced-stage melanomas and open additional therapeutic targets for the restraint of melanoma metastasis.

  6. Concentration dependent survival and neural differentiation of murine embryonic stem cells cultured on polyethylene glycol dimethacrylate hydrogels possessing a continuous concentration gradient of n-cadherin derived peptide His-Ala-Val-Asp-Lle.

    PubMed

    Lim, Hyun Ju; Mosley, Matthew C; Kurosu, Yuki; Smith Callahan, Laura A

    2017-07-01

    N-cadherin cell-cell signaling plays a key role in the structure and function of the nervous system. However, few studies have incorporated bioactive signaling from n-cadherin into tissue engineering matrices. The present study uses a continuous gradient approach in polyethylene glycol dimethacrylate hydrogels to identify concentration dependent effects of n-cadherin peptide, His-Ala-Val-Asp-Lle (HAVDI), on murine embryonic stem cell survival and neural differentiation. The n-cadherin peptide was found to affect the expression of pluripotency marker, alkaline phosphatase, in murine embryonic stem cells cultured on n-cadherin peptide containing hydrogels in a concentration dependent manner. Increasing n-cadherin peptide concentrations in the hydrogels elicited a biphasic response in neurite extension length and mRNA expression of neural differentiation marker, neuron-specific class III β-tubulin, in murine embryonic stem cells cultured on the hydrogels. High concentrations of n-cadherin peptide in the hydrogels were found to increase the expression of apoptotic marker, caspase 3/7, in murine embryonic stem cells compared to that of murine embryonic stem cell cultures on hydrogels containing lower concentrations of n-cadherin peptide. Increasing the n-cadherin peptide concentration in the hydrogels facilitated greater survival of murine embryonic stem cells exposed to increasing oxidative stress caused by hydrogen peroxide exposure. The combinatorial approach presented in this work demonstrates concentration dependent effects of n-cadherin signaling on mouse embryonic stem cell behavior, underscoring the need for the greater use of systematic approaches in tissue engineering matrix design in order to understand and optimize bioactive signaling in the matrix for tissue formation. Single cell encapsulation is common in tissue engineering matrices. This eliminates cellular access to cell-cell signaling. N-cadherin, a cell-cell signaling molecule, plays a vital role in the development of neural tissues, but has not been well studied as a bioactive signaling element in neural tissue engineering matrices. The present study uses a systematic continuous gradient approach to identify concentration dependent effects of n-cadherin derived peptide, HAVDI, on the survival and neural differentiation of murine embryonic stem cells. This work underscores the need for greater use to combinatorial strategies to understand the effect complex bioactive signaling, such as n-cadherin, and the need to optimize the concentration of such bioactive signaling within tissue engineering matrices for maximal cellular response. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Differential expression of E-cadherin at the surface of rat beta-cells as a marker of functional heterogeneity.

    PubMed

    Bosco, Domenico; Rouiller, Dominique G; Halban, Philippe A

    2007-07-01

    The aim of this study was to assess whether the expression of E-cadherin at the surface of rat beta-cells is regulated by insulin secretagogues and correlates with insulin secretion. When cultured under standard conditions, virtually all beta-cells expressed E-cadherin observed by immunofluorescence, but heterogeneous staining was observed. Using fluorescence-activated cell sorting (FACS), two beta-cell sub-populations were sorted: one that was poorly labeled ('ECad-low') and another that was highly labeled ('ECad-high'). After 1-h stimulation with 16.7 mM glucose, insulin secretion (reverse hemolytic plaque assay) from individual ECad-high beta-cells was higher than that from ECad-low beta-cells. Ca2+-dependent beta-cell aggregation was increased at 16.7 mM glucose when compared with 2.8 mM glucose. E-cadherin at the surface of beta-cells was increased after 18 h at 11.1 and 22.2 mM glucose when compared with 2.8 mM glucose, with the greatest increase at 22.2 mM glucose + 0.5 mM isobutylmethylxanthine (IBMX). While no labeling was detected on freshly trypsinized cells, the proportion of stained cells increased in a time-dependent manner during culture for 1, 3, and 24 h. This recovery was faster when cells were incubated at 16.7 vs 2.8 mM glucose. Cycloheximide inhibited expression of E-cadherin at 2.8 mM glucose, but not at 16.7 mM, while depolymerization of actin by either cytochalasin B or latrunculin B increased surface E-cadherin at low glucose. In conclusion, these results show that expression of E-cadherin at the surface of islet beta-cells is controlled by secretagogues including glucose, correlates with insulin secretion, and can serve as a surface marker of beta-cell function.

  8. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Song-Ze, E-mail: dingsongze@hotmail.com; Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536; Yang, Yu-Xiu

    2013-05-15

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology.more » Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and transformation.« less

  9. Suppression of the epidermal growth factor receptor inhibits epithelial-mesenchymal transition in human pancreatic cancer PANC-1 cells.

    PubMed

    Chang, Zhi-Gang; Wei, Jun-Min; Qin, Chang-Fu; Hao, Kun; Tian, Xiao-Dong; Xie, Kun; Xie, Xue-Hai; Yang, Yin-Mo

    2012-05-01

    Aberrant expression of epidermal growth factor receptor (EGFR) has been detected in pancreatic cancer; however, the mechanisms of EGFR in inducing pancreatic cancer development have not been adequately elucidated. The objective of this study was to determine the role of EGFR in mediating epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. Pancreatic cancer cell line PANC-1 was transfected with small interfering RNA of EGFR by use of a lentiviral expression vector to establish an EGFR-knockdown cell line (si-PANC-1). PANC-1 cells transfected with lentiviral vector expressing negative control sequence were used as negative control (NC-PANC-1). Scratch assay and transwell study were used to analyze cell migration and invasion. Real-time PCR and Western blotting were used to detect the expression of EMT markers E-cadherin, N-cadherin, vimentin, and fibronectin and transcription factors snail, slug, twist1, and sip1 in PANC-1, NC-PANC-1, and si-PANC-1 cells. Immunofluorescent staining with these antibodies and confocal microscopy were used to observe their cellular location and morphologic changes. After RNA interference of EGFR, the migration and invasion ability of si-PANC-1 cells decreased significantly. The expression of epithelial phenotype marker E-cadherin increased and the expression of mesenchymal phenotype markers N-cadherin, vimentin, and fibronectin decreased, indicating reversion of EMT. We also observed intracellular translocation of E-cadherin. Expression of transcription factors snail and slug in si-PANC-1 cells decreased significantly. Suppression of EGFR expression can significantly inhibit EMT of pancreatic cancer PANC-1 cells. The mechanism may be related with the down-regulation of the expression of transcription factors snail and slug.

  10. Long non-coding RNA linc-cdh4-2 inhibits the migration and invasion of HCC cells by targeting R-cadherin pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yunzhen; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025; Wang, Gaoxiong

    Long non-coding RNAs (LncRNAs) have played very important roles in the malignancy behaviors of hepatocellular carcinoma (HCC). Linc-cdh4-2 (TCONS-00027978) is a novel LncRNA that has been identified in HCC tissues from our previous study. Overexpression of linc-cdh4-2 in HCC cell lines (SK-Hep-1 and Huh7) significantly decreases the migration and invasion abilities of these cells, while knockdown the expression of linc-cdh4-2 significantly increases the migration and invasion abilities. Interestingly, neither the over expression nor the knock down of linc-cdh4-2 could affect the viability and proliferation of HCC cells. Mechanistically, the linc-cdh4-2 could up-regulate the protein level of R-cadherin through direct bindingmore » that might improve the protein stability. Over expression of linc-cdh4-2 could significantly increase the protein levels of R-cadherin and decrease the protein levels of small GTPase RAC1, and vice-versa. Further knockdown R-cadherin in linc-cdh4-2 stably overexpressed cells, could significantly upregulate the protein levels of RAC1 and improve the cell migration and invasion abilities. Taken together, the novel linc-cdh4-2 may negatively regulate the motility of the HCC cells through targeting R-cadherin-RAC1 signaling pathway. - Highlights: • Linc-cdh4-2 negatively related with the invasion and metastasis ability of HCC cells. • Linc-cdh4-2 could up-regulate the protein level of R-cadherin through direct binding. • Knockdown of R-cadherin increases the migration and invasion abilities of HCC cell. • Knockdown of R-cadherin could significantly upregulate the protein levels of RAC1.« less

  11. VE-cadherin expression allows identification of a new class of hematopoietic stem cells within human embryonic liver.

    PubMed

    Oberlin, Estelle; Fleury, Maud; Clay, Denis; Petit-Cocault, Laurence; Candelier, Jean-Jacques; Mennesson, Benoît; Jaffredo, Thierry; Souyri, Michèle

    2010-11-25

    Edification of the human hematopoietic system during development is characterized by the production of waves of hematopoietic cells separated in time, formed in distinct embryonic sites (ie, yolk sac, truncal arteries including the aorta, and placenta). The embryonic liver is a major hematopoietic organ wherein hematopoietic stem cells (HSCs) expand, and the future, adult-type, hematopoietic cell hierarchy becomes established. We report herein the identification of a new, transient, and rare cell population in the human embryonic liver, which coexpresses VE-cadherin, an endothelial marker, CD45, a pan-hematopoietic marker, and CD34, a common endothelial and hematopoietic marker. This population displays an outstanding self-renewal, proliferation, and differentiation potential, as detected by in vitro and in vivo hematopoietic assays compared with its VE-cadherin negative counterpart. Based on VE-cadherin expression, our data demonstrate the existence of 2 phenotypically and functionally separable populations of multipotent HSCs in the human embryo, the VE-cadherin(+) one being more primitive than the VE-cadherin(-) one, and shed a new light on the hierarchical organization of the embryonic liver HSC compartment.

  12. Aberrant methylation accounts for cell adhesion-related gene silencing during 3-methylcholanthrene and diethylnitrosamine induced multistep rat lung carcinogenesis associated with overexpression of DNA methyltransferases 1 and 3a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Wenbin; Cui Zhihong; Ao Lin

    To evaluate the significance of alterations in cell adhesion-related genes methylation during lung multistep carcinogenesis induced by the genotoxic carcinogens 3-methylcholanthrene (MCA) and diethylnitrosamine (DEN), tissue samples microdissected from MCA/DEN-induced rat lung carcinogenesis model were subjected to methylation-specific PCR to evaluate the DNA methylation status of CADM1, TIMP3, E-cadherin and N-cadherin. Immunohistochemistry was used to determine protein expression of CADM1, TIMP3, N-cadherin and the DNA methyltransferases (DNMTs) 1, 3a and 3b. E-cadherin hypermethylation was not detected in any tissue. CADM1, TIMP3 and N-cadherin hypermethylation was correlated with the loss of their protein expression during the progression of pathologic lesions. Themore » prevalence of DNA methylation of at least one gene and the average number of methylated genes increased with the histological progression. DNMT1 and DNMT3a protein expression increased progressively during the stages of lung carcinogenesis, whereas DNMT3b overexpression was only found in several samples. Furthermore, DNMT1 protein expression levels were correlated with CADM1 methylation, and DNMT3a protein expression levels were correlated with CADM1, TIMP3 and N-cadherin methylation. The average number of methylated genes during carcinogenesis was significantly correlated with DNMT1 and DNMT3a protein expression levels. Moreover, mRNA expression of CADM1 significantly increased after treatment with DNMT inhibitor 5-aza-2'-deoxycytidine in CADM1-methylated primary tumor cell lines. Our findings suggest that an accumulation of hypermethylation accounts for cell adhesion-related gene silencing is associated with dynamic changes in the progression of MCA/DEN-induced rat lung carcinogenesis. We suggest that DNMT1 and DNMT3a protein overexpression may be responsible for this aberrant DNA methylation.« less

  13. ZEB1 overexpression associated with E-cadherin and microRNA-200 downregulation is characteristic of undifferentiated endometrial carcinoma.

    PubMed

    Romero-Pérez, Laura; López-García, M Ángeles; Díaz-Martín, Juan; Biscuola, Michele; Castilla, M Ángeles; Tafe, Laura J; Garg, Karuna; Oliva, Esther; Matias-Guiu, Xavier; Soslow, Robert A; Palacios, José

    2013-11-01

    Undifferentiated endometrial carcinomas are very aggressive high-grade endometrial carcinomas that are frequently under-recognized. This study aimed to analyze the molecular alterations underlying the development of these endometrial carcinomas, focusing on those related to dedifferentiation. We assessed a series of 120 tumors: 57 grade 1 and 2 endometrioid endometrial carcinomas, 15 grade 3 endometrioid endometrial carcinomas, 27 endometrial serous carcinomas, and 21 undifferentiated endometrial carcinomas. We found a high frequency of DNA mismatch repair deficiency (38%) and moderate rate of p53 overexpression (∼33%) in undifferentiated carcinomas. In contrast to the characteristic endometrioid phenotype, there was a dramatic downregulation of E-cadherin expression in the undifferentiated subtype. Quantitative methylation studies dismissed CDH1 promoter hypermethylation as the mechanism responsible for this change in gene expression, while immunohistochemistry revealed that the E-cadherin repressor ZEB1 was frequently overexpressed (62%) in undifferentiated endometrial carcinomas. This finding was accompanied by a sharp downregulation in the expression of the miR-200 family of microRNAs, well-known targets of ZEB1. Furthermore, there was enhanced expression of epithelial-to-mesenchymal transition markers in undifferentiated endometrial carcinomas, such as N-cadherin, cytoplasmic p120, and osteonectin. In addition, HMGA2, a regulator of epithelial-to-mesenchymal transition that is expressed in aggressive endometrial tumors, such as endometrial serous carcinomas and carcinosarcomas, was expressed in >20% of undifferentiated carcinomas. These results suggest that ZEB1 overexpression, associated with E-cadherin and miR-200s downregulation, and the expression of mesenchymal markers might enhance the metastatic potential of undifferentiated endometrial carcinomas, leading to a poor prognosis. In addition, our observations suggest that the immnohistochemical analysis of E-cadherin and ZEB1 can aid in the differential diagnosis of the more agressive undifferentiated endometrial carcinomas from grade 3 endometrioid carcinomas.

  14. Betacellulin induces Slug-mediated down-regulation of E-cadherin and cell migration in ovarian cancer cells

    PubMed Central

    Zhao, Jianfang; Klausen, Christian; Qiu, Xin; Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C.K.

    2016-01-01

    Epithelial ovarian cancer is the leading cause of death among gynaecological cancers. Previous studies have demonstrated that epidermal growth factor receptor (EGFR) ligands can induce ovarian cancer cell invasion by down-regulating E-cadherin. Betacellulin is a unique member of the EGF family. It is overexpressed in a variety of cancers and is associated with reduced survival. However, the biological functions and clinical significance of betacellulin in ovarian cancer remain unknown. In the current study, we tested the hypothesis that betacellulin induces ovarian cancer cell migration by suppressing E-cadherin expression. Treatment of SKOV3 and OVCAR5 ovarian cancer cell lines with betacellulin down-regulated E-cadherin, but not N-cadherin. In addition, betacellulin treatment increased the expression of Snail and Slug, and these effects were completely blocked by pre-treatment with EGFR inhibitor AG1478. Interestingly, only knockdown of Slug reversed the down-regulation of E-cadherin by betacellulin. Betacellulin treatment induced the activation of both the MEK-ERK and PI3K-Akt signaling pathways, and it also significantly increased ovarian cancer cell migration. Importantly, the effects of betacellulin on E-cadherin, Slug and cell migration were attenuated by pre-treatment with either U0126 or LY294002. Our results suggest that betacellulin induces ovarian cancer migration and Slug-dependent E-cadherin down-regulation via EGFR-mediated MEK-ERK and PI3K-Akt signaling. PMID:27129169

  15. Recruitment of β-Catenin to N-Cadherin Is Necessary for Smooth Muscle Contraction*

    PubMed Central

    Wang, Tao; Wang, Ruping; Cleary, Rachel A.; Gannon, Olivia J.; Tang, Dale D.

    2015-01-01

    β-Catenin is a key component that connects transmembrane cadherin with the actin cytoskeleton at the cell-cell interface. However, the role of the β-catenin/cadherin interaction in smooth muscle has not been well characterized. Here stimulation with acetylcholine promoted the recruitment of β-catenin to N-cadherin in smooth muscle cells/tissues. Knockdown of β-catenin by lentivirus-mediated shRNA attenuated smooth muscle contraction. Nevertheless, myosin light chain phosphorylation at Ser-19 and actin polymerization in response to contractile activation were not reduced by β-catenin knockdown. In addition, the expression of the β-catenin armadillo domain disrupted the recruitment of β-catenin to N-cadherin. Force development, but not myosin light chain phosphorylation and actin polymerization, was reduced by the expression of the β-catenin armadillo domain. Furthermore, actin polymerization and microtubules have been implicated in intracellular trafficking. In this study, the treatment with the inhibitor latrunculin A diminished the interaction of β-catenin with N-cadherin in smooth muscle. In contrast, the exposure of smooth muscle to the microtubule depolymerizer nocodazole did not affect the protein-protein interaction. Together, these findings suggest that smooth muscle contraction is mediated by the recruitment of β-catenin to N-cadherin, which may facilitate intercellular mechanotransduction. The association of β-catenin with N-cadherin is regulated by actin polymerization during contractile activation. PMID:25713069

  16. Prognostic value of E-cadherin, beta-catenin, CD44v6, and HER2/neu in metastatic cutaneous adenocarcinoma.

    PubMed

    Pozdnyakova, Olga; Hoang, Mai M P; Dresser, Karen A; Mahalingam, Meera

    2009-08-01

    Our recent experience with a patient developing cutaneous metastases within 3 months of diagnosis of esophageal adenocarcinoma suggests that altered expression of the cellular adhesion molecules, E-cadherin and CD44v6, may have had a role to play in the rapid onset of metastases. To corroborate these findings, we designed a cross-sectional study to investigate the expression of select molecules involved in the metastatic cascade. E-cadherin, beta-catenin, CD44v6, and HER2/neu immunohistochemical stains were performed on archival materials of metastatic adenocarcinoma to the skin from 27 patients and the available corresponding primary tumors in 10 patients. The primary sites included breast (n = 10; 37%), gastrointestinal tract (n = 10; 37%), ovary (n = 1; 4%), thyroid (n = 2; 7%), lung (n = 1; 4%), and unknown primary (n = 3; 11%). Expression of all markers was noted with the most significant increases observed in beta-catenin (26 of 27 cases; 96%), followed by CD44v6 (24 of 27 cases; 89%), E-cadherin (22 of 27 cases; 82%), and HER2/neu (11 of 27 cases; 41%). Contrasting expression of these molecules in the primary versus the metastatic tumors, enhanced expression of CD44v6 was observed in the cutaneous metastases relative to the primary in 6 of 10 (60%) cases. Of interest, 2 of these 6 cases (33%) also showed reduction in E-cadherin--a member of the cadherin family functioning as an invasion suppressor molecule. These findings reinforce the complexities of the metastatic cascade and imply that the variation in adhesive properties of tumor cells is, perhaps, a consequence of the difference in density of the molecules mediating this process.

  17. Anterior segment dysgenesis correlation with epithelial-mesenchymal transition in Smad4 knockout mice.

    PubMed

    Li, Jing; Qin, Yu; Zhao, Fang-Kun; Wu, Di; He, Xue-Fei; Liu, Jia; Zhao, Jiang-Yue; Zhang, Jin-Song

    2016-01-01

    To explore the molecular mechanisms in lens development and the pathogenesis of Peters anomaly in Smad4 defective mice. Le-Cre transgenic mouse line was employed to inactivate Smad4 in the surface ectoderm selectively. Pathological techniques were used to reveal the morphological changes of the anterior segment in Smad4 defective eye. Immunohistochemical staining was employed to observe the expression of E-cadherin, N-cadherin and α-SMA in anterior segment of Smad4 defective mice and control mice at embryonic (E) day 16.5. Real-time quantitative polymerase chain reaction (qPCR) was performed to detect the expression of Snail, Zeb1, Zeb2 and Twist2 in lens of Smad4 defective mice and control mice at E16.5. Statistical evaluations were performed using the unpaired Student's t-test (two-tailed) by SPSS 11.0 software. Conditional deletion of Smad4 on eye surface ectoderm resulted in corneal dysplasia, iridocorneal angle closure, corneolenticular adhesions and cataract resembling Peters anomaly. Loss of Smad4 function inhibited E-cadherin expression in the lens epithelium cells and corneal epithelium cells in Smad4 defective eye. Expression of N-cadherin was up-regulated in corneal epithelium and corneal stroma. Both E-cadherin and N-cadherin were down-regulated at the future trabecular meshwork region in mutant eye. The qPCR results showed that the expression of Twist2 was increased significantly in the mutant lens (P<0.01). Smad4 is essential to eye development and likely a candidate pathogenic gene to Peters anomaly by regulating epithelial-mesenchymal transition. Twist2 can be regulated by Smad4 and plays an essential role in lens development.

  18. Epithelio-mesenchymal transitional attributes in oral sub-mucous fibrosis.

    PubMed

    Das, Raunak Kumar; Anura, Anji; Pal, Mousumi; Bag, Swarnendu; Majumdar, Subhadipa; Barui, Ananya; Chakraborty, Chandan; Ray, Ajoy Kumar; Sengupta, Sanghamitra; Paul, Ranjan Rashmi; Chatterjee, Jyotirmoy

    2013-12-01

    Evaluating molecular attributes in association with its epithelial and sub-epithelial changes of oral sub-mucous fibrosis is meaningful in exploring the plausibility of an epithelio-mesenchymal transition (EMT) and malignant potentiality of this pathosis. In this study histopathological and histochemical attributes for basement membrane and connective tissue in biopsies of oral sub-mucous fibrosis (n = 55) and normal oral mucosa (n = 16) were assessed and expressions of p63, E-cadherin, β-catenin, N-cadherin and TWIST were analyzed immunohistochemically. The p63 and its isoforms (TA and ∆N), PARD3, E-cadherin and β-catenin were also assessed transcriptomically by q-PCR and EMT players like TWIST1, ZEB1, MMP9 and micro-RNA 205 were searched in gene expression microarrays. Oral epithelium demonstrating impairment in progressive maturation in oral sub-mucous fibrosis concomitantly experienced an increase in basement membrane thickness and collagen deposition along with alteration in target molecular expressions. In comparison to non-dysplastic conditions dysplastic stages exhibited significant increase in p63 and p63∆N expressions whereas, E-cadherin and β-catenin exhibited loss from the membrane with concurrent increase in cytoplasm. Further the N-cadherin and TWIST were gained remarkably along with the appearance of nuclear accumulation features of β-catenin. The microarray search had noticed the up-regulation of TWIST1, ZEB1 and MMP9 along with down regulation of micro-RNA 205. The simultaneous increase in basement membrane thickness and sub-epithelial collagen deposition were the plausible indicators for increased matrix stiffness with expected impact on oral epithelial functional homoeostasis. This was corroborated with the increase in expressions of epithelial master regulator p63 and its oncogenic isoform (∆N) along with membranous loss of E-cadherin (EMT hallmark) and its associate β-catein and gain of mesenchymal markers like N-cadherin and TWIST. These also became indicative for the induction of epithelial to mesenchymal transitional mechanism in oral sub-mucous fibrosis when connoted here with the relevant modulation in expressions of EMT regulators. © 2013.

  19. Loss of T-cadherin (CDH-13) regulates AKT signaling and desensitizes cells to apoptosis in melanoma.

    PubMed

    Bosserhoff, Anja K; Ellmann, Lisa; Quast, Annika S; Eberle, Juergen; Boyle, Glen M; Kuphal, Silke

    2014-08-01

    An understanding of signaling pathways is a basic requirement for the treatment of melanoma. Currently, kinases are at the center of melanoma therapies. According to our research, additional alternative molecules are equally important for development of melanoma. In this regard, cancer progression is, among other factors, driven by an altered adhesion via cadherins. For instance, the de-regulated expression of the adhesion molecule T-cadherin is found in various cancer types, including melanoma, and influences migration and invasion. T-cadherin is thought to affect cellular function largely through its signaling and not its adhesion properties because the molecule is anchored into the cell membrane by a glycosylphosphatidylinositol (GPI) moiety. However, detailed knowledge about the consequences of the loss of T-cadherin in melanoma is currently lacking. For this reason, we were interested in assessing which signaling pathways are initiated by T-cadherin. The tumor growth of subcutaneously injected T-cadherin-positive melanoma cells was diminished compared with T-cadherin-negative cells in nude mice. The difference in tumor volume was not due to decreased proliferation but rather due to increased apoptosis. After the expression of T-cadherin was induced, we detected V-AKT murine thymoma viral oncogene homolog (AKT) and FoxO3a hypophosphorylation accompanied by the downregulation of the antiapoptotic molecules BCL-2, BCL-x and Clusterin. Furthermore, we detected a diminished transcriptional activity of CREB and AP-1. We demonstrated that T-cadherin functions as a pro-apoptotic tumor suppressor that antagonizes AKT/CREB/AP-1/FoxO3a signaling, whereas NFκB, TCF/LEF and mTOR are not part of the T-cadherin signaling pathway. Notably, we found that the restoration of T-cadherin in melanoma cells causes sensitization to apoptosis induced by CD95/Fas antibody CH-11. © 2013 Wiley Periodicals, Inc.

  20. High expression of SALL4 and fascin, and loss of E-cadherin expression in undifferentiated/dedifferentiated carcinomas of the endometrium

    PubMed Central

    Onder, Semen; Taskin, Orhun Cig; Sen, Fatma; Topuz, Samet; Kucucuk, Seden; Sozen, Hamdullah; Ilhan, Ridvan; Tuzlali, Sitki; Yavuz, Ekrem

    2017-01-01

    Abstract Undifferentiated/dedifferentiated endometrial carcinomas (UCE/DCEs) of the endometrium are rare tumors with poor prognosis. There are few clinicopathologic studies with detailed immunohistochemical analysis regarding UCE/DCEs. We evaluated the diagnostic value of a selected tumor stem-cell marker and epithelial-mesenchymal transition (EMT) markers, in addition to previously studied markers in identifying UCE/DCEs from other types of high-grade endometrial carcinomas. Eleven cases of UCE/DCEs with complete clinical follow-up that were diagnosed between 2006 and 2015 were included in the study. For immunohistochemical comparison, 11 clinically matched cases for each type of other high-grade endometrial carcinomas (high-grade endometrioid (F3-EC), serous [SC], and clear cell carcinoma [CCC]) were used as a control group. An immunohistochemical analysis including fascin, SALL4, E-cadherin, and β-catenin, in addition to epithelial and neuroendocrine markers was performed in each case. The majority of UCE/DCEs displayed diffuse expression of fascin (81.9%) and loss of E-cadherin expression (54.5%). SALL4 expression was detected in 36.3% of the UCE/DCE cases. SALL4 expression was significantly more frequent in UCE/DCEs than all other high-grade carcinomas (P < 0.001). Loss of E-cadherin and fascin expression was significantly more frequent in UCE/DCEs than high-grade endometrioid and clear cell adenocarcinomas (P = 0.012, 0.014 and P = 0.01, 0.003, respectively). We suggest that loss of E-cadherin expression together with fascin and SALL4 immunopositivity in addition to morphologic features have an impact in differential diagnosis of UCE/DCEs from other high-grade endometrial carcinomas. PMID:28272224

  1. Differential membranous E-cadherin expression, cell proliferation and O-GlcNAcylation between primary and metastatic nodal lesion in colorectal cancer.

    PubMed

    Jang, Tae Jung

    2016-02-01

    O-GlcNAcylation is an O-linked β-N-acetylglucosamine (O-GlcNAc) moiety linked to the side chain hydroxyl of a serine or threonine residue. The E-cadherin/β-catenin system, an integral component of epithelial to mesenchymal transition (EMT)/mesenchymal to epithelial transition (MET), is affected through O-GlcNAcylation. The current study examined the status of EMT/MET in both the tumor center and invasive front of the primary colorectal carcinoma (CRC) and metastatic nodal lesions, which were compared to O-GlcNAcylation expression levels in those areas. In addition, the cliniopathological significance of O-GlcNAcylation was studied Immunohistochemical staining for E-cadherin, β-catenin, Snail, O-GlcNAc and Ki67 was performed in 40 primary CRC tissues, 40 nonneoplastic colons, and 17 nodal metastatic lesions. Western blot was also conducted in primary CRC tissue Membranous E-cadherin expression was lowest in the invasive front, but showed greater increases in metastatic nodal lesions. Moreover, its expression level was negatively correlated with that of nuclear β-catenin and Snail. The Ki67 labeling index (LI) was lowest in the invasive front, and increased in metastatic nodal lesions. Primary CRC showed higher expression of O-GlcNAcylation and O-GlcNAc-transferase (OGT) than nonneoplastic colons. O-GlcNAcylation expression decreased in metastatic nodal lesions compared to the invasive front and tumor center, and was inversely correlated with Ki67 LI. However, O-GlcNAcylation expression was only slightly changed between tumor center and invasive front. In addition, there was no correlation between its expression and the level of nuclear β-catenin, membranous E-cadherin and Snail. No significant relationship was observed between O-GlcNAcylation level and cliniopathological parameters. Differential membranous E-cadherin expression, cell proliferation and O-GlcNAcylation in metastatic nodal lesion compared to primary CRC may play role in establishing its lesions; however, these findings are not sufficient to show the role of O-GlcNAcylation in the EMT/MET of CRC. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Thrombomodulin reduces tumorigenic and metastatic potential of lung cancer cells by up-regulation of E-cadherin and down-regulation of N-cadherin expression.

    PubMed

    Zheng, Nana; Huo, Zihe; Zhang, Bin; Meng, Mei; Cao, Zhifei; Wang, Zhiwei; Zhou, Quansheng

    2016-08-05

    Thrombomodulin (TM) is an endothelial cell membrane protein and plays critical roles in anti-thrombosis, anti-inflammation, vascular endothelial protection, and is traditionally regarded as a "vascular protection god". In recent years, although TM has been reported to be down-regulated in a variety of malignant tumors including lung cancer, the role and mechanism of TM in lung cancer are enigmatic. In this study, we found that induction of TM overexpression by cholesterol-reducing drug atorvastatin significantly diminished the tumorigenic capability of the lung cancer cells. Moreover, we demonstrated that TM overexpression caused G0/G1 phase arrest and markedly reduced the colony forming capability of the cells. Furthermore, overexpression of TM inhibited cell migration and invasion. Consistently, depletion of TM promoted cell growth, reduced the cell population at the G0/G1 phase, and enhanced cell migratory ability. Mechanistic study revealed that TM up-regulated E-cadherin but down-regulated N-cadherin expression, resulting in reversal of epithelial-mesenchymal transition (EMT) in the lung cancer cells. Moreover, silencing TM expression led to decreased E-cadherin and increased N-cadherin. Taken together, our study suggests that TM functions as a tumor suppressive protein, providing a conceptual framework for inducing TM overexpression as a sensible strategy and approach for novel anti-lung cancer drug discovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Elevated Src family kinase activity stabilizes E-cadherin-based junctions and collective movement of head and neck squamous cell carcinomas

    PubMed Central

    Veracini, Laurence; Grall, Dominique; Schaub, Sébastien; Divonne, Stéphanie Beghelli-de la Forest; Etienne-Grimaldi, Marie-Christine; Milano, Gérard; Bozec, Alexandre; Babin, Emmanuel; Sudaka, Anne; Thariat, Juliette; Van Obberghen-Schilling, Ellen

    2015-01-01

    EGF receptor (EGFR) overexpression is thought to drive head and neck carcinogenesis however clinical responses to EGFR-targeting agents have been modest and alternate targets are actively sought to improve results. Src family kinases (SFKs), reported to act downstream of EGFR are among the alternative targets for which increased expression or activity in epithelial tumors is commonly associated to the dissolution of E-cadherin-based junctions and acquisition of a mesenchymal-like phenotype. Robust expression of total and activated Src was observed in advanced stage head and neck tumors (N=60) and in head and neck squamous cell carcinoma lines. In cultured cancer cells Src co-localized with E-cadherin in cell-cell junctions and its phosphorylation on Y419 was both constitutive and independent of EGFR activation. Selective inhibition of SFKs with SU6656 delocalized E-cadherin and disrupted cellular junctions without affecting E-cadherin expression and this effect was phenocopied by knockdown of Src or Yes. These findings reveal an EGFR-independent role for SFKs in the maintenance of intercellular junctions, which likely contributes to the cohesive invasion E-cadherin-positive cells in advanced tumors. Further, they highlight the need for a deeper comprehension of molecular pathways that drive collective cell invasion, in absence of mesenchymal transition, in order to combat tumor spread. PMID:25779657

  4. A single type of cadherin is involved in Bacillus thuringiensis toxicity in Plutella xylostella.

    PubMed

    Park, Y; Herrero, S; Kim, Y

    2015-12-01

    Cadherins have been described as one the main functional receptors for the toxins of the entomopathogenic bacterium, Bacillus thuringiensis (Bt). With the availability of the whole genome of Plutella xylostella, different types of cadherins have been annotated. In this study we focused on determining those members of the cadherin-related proteins that potentially play a role in the mode of action of Bt toxins. For this, we mined the genome of P. xylostella to identify these putative cadherins. The genome screening revealed 52 genes that were annotated as cadherin or cadherin-like genes. Further analysis revealed that six of these putative cadherins had three motifs common to all Bt-related cadherins: a signal peptide, cadherin repeats and a transmembrane domain. From the six selected cadherins, only P. xylostella cadherin 1 (PxCad1) was expressed in the larval midgut and only the silencing of this gene by RNA interference (double-stranded RNA feeding) reduce toxicity and binding to the midgut of the Cry1Ac type toxin from Bt. These results indicate that from the whole set of cadherin-related genes identified in P. xylostella, only PxCad1 is associated with the Cry1Ac mode of action. © 2015 The Royal Entomological Society.

  5. Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition.

    PubMed

    Li, Qisheng; Sodroski, Catherine; Lowey, Brianna; Schweitzer, Cameron J; Cha, Helen; Zhang, Fang; Liang, T Jake

    2016-07-05

    Hepatitis C virus (HCV) enters the host cell through interactions with a cascade of cellular factors. Although significant progress has been made in understanding HCV entry, the precise mechanisms by which HCV exploits the receptor complex and host machinery to enter the cell remain unclear. This intricate process of viral entry likely depends on additional yet-to-be-defined cellular molecules. Recently, by applying integrative functional genomics approaches, we identified and interrogated distinct sets of host dependencies in the complete HCV life cycle. Viral entry assays using HCV pseudoparticles (HCVpps) of various genotypes uncovered multiple previously unappreciated host factors, including E-cadherin, that mediate HCV entry. E-cadherin silencing significantly inhibited HCV infection in Huh7.5.1 cells, HepG2/miR122/CD81 cells, and primary human hepatocytes at a postbinding entry step. Knockdown of E-cadherin, however, had no effect on HCV RNA replication or internal ribosomal entry site (IRES)-mediated translation. In addition, an E-cadherin monoclonal antibody effectively blocked HCV entry and infection in hepatocytes. Mechanistic studies demonstrated that E-cadherin is closely associated with claudin-1 (CLDN1) and occludin (OCLN) on the cell membrane. Depletion of E-cadherin drastically diminished the cell-surface distribution of these two tight junction proteins in various hepatic cell lines, indicating that E-cadherin plays an important regulatory role in CLDN1/OCLN localization on the cell surface. Furthermore, loss of E-cadherin expression in hepatocytes is associated with HCV-induced epithelial-to-mesenchymal transition (EMT), providing an important link between HCV infection and liver cancer. Our data indicate that a dynamic interplay among E-cadherin, tight junctions, and EMT exists and mediates an important function in HCV entry.

  6. Mammary Tumors Initiated by Constitutive Cdk2 Activation Contain an Invasive Basal-like Component1

    PubMed Central

    Corsino, Patrick E; Davis, Bradley J; Nörgaard, Peter H; Teoh Parker, Nicole N; Law, Mary; Dunn, William; Law, Brian K

    2008-01-01

    The basal-like subtype of breast cancer is associated with invasiveness, high rates of postsurgical recurrence, and poor prognosis. Aside from inactivation of the BRCA1 tumor-suppressor gene, little is known concerning the mechanisms that cause basal breast cancer or the mechanisms responsible for its invasiveness. Here, we show that the heterogeneous mouse mammary tumor virus-cyclin D1-Cdk2 (MMTV-D1K2) transgenic mouse mammary tumors contain regions of spindle-shaped cells expressing both luminal and myoepithelial markers. Cell lines cultured from these tumors exhibit the same luminal/myoepithelial mixed-lineage phenotype that is associated with human basal-like breast cancer and express a number of myoepithelial markers including cytokeratin 14, P-cadherin, α smooth muscle actin, and nestin. The MMTV-D1K2 tumor-derived cell lines form highly invasive tumors when injected into mouse mammary glands. Invasion is associated with E-cadherin localization to the cytoplasm or loss of E-cadherin expression. Cytoplasmic E-cadherin correlates with lack of colony formation in vitro and β-catenin and p120ctn localization to the cytoplasm. The data suggest that the invasiveness of these cell lines results from a combination of factors including mislocalization of E-cadherin, β-catenin, and p120ctn to the cytoplasm. Nestin expression and E-cadherin mislocalization were also observed in human basal-like breast cancer cell lines, suggesting that these results are relevant to human tumors. Together, these results suggest that abnormal Cdk2 activation may contribute to the formation of basal-like breast cancers. PMID:18953433

  7. Ankyrin-G Inhibits Endocytosis of Cadherin Dimers.

    PubMed

    Cadwell, Chantel M; Jenkins, Paul M; Bennett, Vann; Kowalczyk, Andrew P

    2016-01-08

    Dynamic regulation of endothelial cell adhesion is central to vascular development and maintenance. Furthermore, altered endothelial adhesion is implicated in numerous diseases. Therefore, normal vascular patterning and maintenance require tight regulation of endothelial cell adhesion dynamics. However, the mechanisms that control junctional plasticity are not fully understood. Vascular endothelial cadherin (VE-cadherin) is an adhesive protein found in adherens junctions of endothelial cells. VE-cadherin mediates adhesion through trans interactions formed by its extracellular domain. Trans binding is followed by cis interactions that laterally cluster the cadherin in junctions. VE-cadherin is linked to the actin cytoskeleton through cytoplasmic interactions with β- and α-catenin, which serve to increase adhesive strength. Furthermore, p120-catenin binds to the cytoplasmic tail of cadherin and stabilizes it at the plasma membrane. Here we report that induced cis dimerization of VE-cadherin inhibits endocytosis independent of both p120 binding and trans interactions. However, we find that ankyrin-G, a protein that links membrane proteins to the spectrin-actin cytoskeleton, associates with VE-cadherin and inhibits its endocytosis. Ankyrin-G inhibits VE-cadherin endocytosis independent of p120 binding. We propose a model in which ankyrin-G associates with and inhibits the endocytosis of VE-cadherin cis dimers. Our findings support a novel mechanism for regulation of VE-cadherin endocytosis through ankyrin association with cadherin engaged in lateral interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Specificity of cell–cell adhesion by classical cadherins: Critical role for low-affinity dimerization through β-strand swapping

    PubMed Central

    Chen, Chien Peter; Posy, Shoshana; Ben-Shaul, Avinoam; Shapiro, Lawrence; Honig, Barry H.

    2005-01-01

    Cadherins constitute a family of cell-surface proteins that mediate intercellular adhesion through the association of protomers presented from juxtaposed cells. Differential cadherin expression leads to highly specific intercellular interactions in vivo. This cell–cell specificity is difficult to understand at the molecular level because individual cadherins within a given subfamily are highly similar to each other both in sequence and structure, and they dimerize with remarkably low binding affinities. Here, we provide a molecular model that accounts for these apparently contradictory observations. The model is based in part on the fact that cadherins bind to one another by “swapping” the N-terminal β-strands of their adhesive domains. An inherent feature of strand swapping (or, more generally, the domain swapping phenomenon) is that “closed” monomeric conformations act as competitive inhibitors of dimer formation, thus lowering affinities even when the dimer interface has the characteristics of high-affinity complexes. The model describes quantitatively how small affinity differences between low-affinity cadherin dimers are amplified by multiple cadherin interactions to establish large specificity effects at the cellular level. It is shown that cellular specificity would not be observed if cadherins bound with high affinities, thus emphasizing the crucial role of strand swapping in cell–cell adhesion. Numerical estimates demonstrate that the strength of cellular adhesion is extremely sensitive to the concentration of cadherins expressed at the cell surface. We suggest that the domain swapping mechanism is used by a variety of cell-adhesion proteins and that related mechanisms to control affinity and specificity are exploited in other systems. PMID:15937105

  9. Decreased Expression of EHD2 Promotes Tumor Metastasis and Indicates Poor Prognosis in Hepatocellular Carcinoma.

    PubMed

    Liu, Jinxia; Ni, Wenkai; Qu, Lishuai; Cui, Xiaopeng; Lin, Zhipeng; Liu, Qingqing; Zhou, Huiling; Ni, Runzhou

    2016-09-01

    Metastasis remains the most common cause of lethal outcomes in hepatocellular carcinoma (HCC) after curative resection. Understanding molecular mechanisms that regulate metastasis process is crucial for improving treatment of hepatocellular carcinoma. In this article, we examined whether Eps15 homology domain-containing 2 (EHD2) played a critical role in hepatocellular carcinoma metastasis and explored the possible mechanism. EHD2 and E-cadherin expression levels in hepatocellular carcinoma patients were examined using Western blotting and immunohistochemistry. The cell migration and invasion were evaluated by wound-healing assay and trans-well assay. Epithelial-mesenchymal transition was analyzed by immunofluorescence, and the vital markers were detected by Western blotting. The correlation of EHD2 and E-cadherin was confirmed by co-immunoprecipitation. EHD2 expression, along with the epithelial marker E-cadherin, was markedly reduced in tumor tissues than in adjacent noncancerous tissues. Moreover, EHD2 was positively correlated with E-cadherin, histological grade, tumor metastasis, and microvascular invasion. Kaplan-Meier survival analysis showed that hepatocellular carcinoma patients with decreased EHD2 expression had shorter overall survival times than those with higher EHD2 expression. Knockdown of EHD2 induced an increase in cell invasion and changes characteristic of epithelial-mesenchymal transition, while overexpression of EHD2 inhibited these processes. Molecular data indicated that EHD2 inhibited migration and invasion of hepatocellular carcinoma probably by interacting with E-cadherin and it might be an independent, significant risk factor for survival after curative resection.

  10. Downregulation of Bit1 expression promotes growth, anoikis resistance, and transformation of immortalized human bronchial epithelial cells via Erk activation-dependent suppression of E-cadherin.

    PubMed

    Yao, Xin; Gray, Selena; Pham, Tri; Delgardo, Mychael; Nguyen, An; Do, Stephen; Ireland, Shubha Kale; Chen, Renwei; Abdel-Mageed, Asim B; Biliran, Hector

    2018-01-01

    The mitochondrial Bit1 protein exerts tumor-suppressive function in NSCLC through induction of anoikis and inhibition of EMT. Having this dual tumor suppressive effect, its downregulation in the established human lung adenocarcinoma A549 cell line resulted in potentiation of tumorigenicity and metastasis in vivo. However, the exact role of Bit1 in regulating malignant growth and transformation of human lung epithelial cells, which are origin of most forms of human lung cancers, has not been examined. To this end, we have downregulated the endogenous Bit1 expression in the immortalized non-tumorigenic human bronchial epithelial BEAS-2B cells. Knockdown of Bit1 enhanced the growth and anoikis insensitivity of BEAS-2B cells. In line with their acquired anoikis resistance, the Bit1 knockdown BEAS-2B cells exhibited enhanced anchorage-independent growth in vitro but failed to form tumors in vivo. The loss of Bit1-induced transformed phenotypes was in part attributable to the repression of E-cadherin expression since forced exogenous E-cadherin expression attenuated the malignant phenotypes of the Bit1 knockdown cells. Importantly, we show that the loss of Bit1 expression in BEAS-2B cells resulted in increased Erk activation, which functions upstream to promote TLE1-mediated transcriptional repression of E-cadherin. These collective findings indicate that loss of Bit1 expression contributes to the acquisition of malignant phenotype of human lung epithelial cells via Erk activation-induced suppression of E-cadherin expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. E-Cadherin Acts as a Regulator of Transcripts Associated with a Wide Range of Cellular Processes in Mouse Embryonic Stem Cells

    PubMed Central

    Soncin, Francesca; Mohamet, Lisa; Ritson, Sarah; Hawkins, Kate; Bobola, Nicoletta; Zeef, Leo; Merry, Catherine L. R.; Ward, Christopher M.

    2011-01-01

    Background We have recently shown that expression of the cell adhesion molecule E-cadherin is required for LIF-dependent pluripotency of mouse embryonic stem (ES) cells. Methodology In this study, we have assessed global transcript expression in E-cadherin null (Ecad-/-) ES cells cultured in either the presence or absence of LIF and compared these to the parental cell line wtD3. Results We show that LIF has little effect on the transcript profile of Ecad-/- ES cells, with statistically significant transcript alterations observed only for Sp8 and Stat3. Comparison of Ecad-/- and wtD3 ES cells cultured in LIF demonstrated significant alterations in the transcript profile, with effects not only confined to cell adhesion and motility but also affecting, for example, primary metabolic processes, catabolism and genes associated with apoptosis. Ecad-/- ES cells share similar, although not identical, gene expression profiles to epiblast-derived pluripotent stem cells, suggesting that E-cadherin expression may inhibit inner cell mass to epiblast transition. We further show that Ecad-/- ES cells maintain a functional β-catenin pool that is able to induce β-catenin/TCF-mediated transactivation but, contrary to previous findings, do not display endogenous β-catenin/TCF-mediated transactivation. We conclude that loss of E-cadherin in mouse ES cells leads to significant transcript alterations independently of β-catenin/TCF transactivation. PMID:21779327

  12. E-cadherin acts as a regulator of transcripts associated with a wide range of cellular processes in mouse embryonic stem cells.

    PubMed

    Soncin, Francesca; Mohamet, Lisa; Ritson, Sarah; Hawkins, Kate; Bobola, Nicoletta; Zeef, Leo; Merry, Catherine L R; Ward, Christopher M

    2011-01-01

    We have recently shown that expression of the cell adhesion molecule E-cadherin is required for LIF-dependent pluripotency of mouse embryonic stem (ES) cells. In this study, we have assessed global transcript expression in E-cadherin null (Ecad-/-) ES cells cultured in either the presence or absence of LIF and compared these to the parental cell line wtD3. We show that LIF has little effect on the transcript profile of Ecad-/- ES cells, with statistically significant transcript alterations observed only for Sp8 and Stat3. Comparison of Ecad-/- and wtD3 ES cells cultured in LIF demonstrated significant alterations in the transcript profile, with effects not only confined to cell adhesion and motility but also affecting, for example, primary metabolic processes, catabolism and genes associated with apoptosis. Ecad-/- ES cells share similar, although not identical, gene expression profiles to epiblast-derived pluripotent stem cells, suggesting that E-cadherin expression may inhibit inner cell mass to epiblast transition. We further show that Ecad-/- ES cells maintain a functional β-catenin pool that is able to induce β-catenin/TCF-mediated transactivation but, contrary to previous findings, do not display endogenous β-catenin/TCF-mediated transactivation. We conclude that loss of E-cadherin in mouse ES cells leads to significant transcript alterations independently of β-catenin/TCF transactivation.

  13. Lamin A/C might be involved in the EMT signalling pathway.

    PubMed

    Zuo, Lingkun; Zhao, Huanying; Yang, Ronghui; Wang, Liyong; Ma, Hui; Xu, Xiaoxue; Zhou, Ping; Kong, Lu

    2018-07-15

    We have previously reported a heterogeneous expression pattern of the nuclear membrane protein lamin A/C in low- and high-Gleason score (GS) prostate cancer (PC) tissues, and we have now found that this change is not associated with LMNA mutations. This expression pattern appears to be similar to the process of epithelial to mesenchymal transition (EMT) or to that of mesenchymal to epithelial transition (MET). The role of lamin A/C in EMT or MET in PC remains unclear. Therefore, we first investigated the expression levels of and the associations between lamin A/C and several common EMT markers, such as E-cadherin, N-cadherin, β-catenin, snail, slug and vimentin in PC tissues with different GS values and in different cell lines with varying invasion abilities. Our results suggest that lamin A/C might constitute a type of epithelial marker that better signifies EMT and MET in PC tissue, since a decrease in lamin A/C expression in GS 4 + 5 cases is likely associated with the EMT process, while the re-expression of lamin A/C in GS 5 + 4 cases is likely linked with MET. The detailed GS better exhibited the changes in lamin A/C and the EMT markers examined. Lamin A/C overexpression or knockdown had an impact on EMT biomarkers in a cell model by direct regulation of β-catenin. Hence, we suggest that lamin A/C might serve as a reliable epithelial biomarker for the distinction of PC cell differentiation and might also be a fundamental factor in the occurrence of EMT or MET in PC. Copyright © 2018. Published by Elsevier B.V.

  14. In vivo biomarker expression patterns are preserved in 3D cultures of Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windus, Louisa C.E.; Kiss, Debra L.; Glover, Tristan

    2012-11-15

    Here we report that Prostate Cancer (PCa) cell-lines DU145, PC3, LNCaP and RWPE-1 grown in 3D matrices in contrast to conventional 2D monolayers, display distinct differences in cell morphology, proliferation and expression of important biomarker proteins associated with cancer progression. Consistent with in vivo growth rates, in 3D cultures, all PCa cell-lines were found to proliferate at significantly lower rates in comparison to their 2D counterparts. Moreover, when grown in a 3D matrix, metastatic PC3 cell-lines were found to mimic more precisely protein expression patterns of metastatic tumour formation as found in vivo. In comparison to the prostate epithelial cell-linemore » RWPE-1, metastatic PC3 cell-lines exhibited a down-regulation of E-cadherin and {alpha}6 integrin expression and an up-regulation of N-cadherin, Vimentin and {beta}1 integrin expression and re-expressed non-transcriptionally active AR. In comparison to the non-invasive LNCaP cell-lines, PC3 cells were found to have an up-regulation of chemokine receptor CXCR4, consistent with a metastatic phenotype. In 2D cultures, there was little distinction in protein expression between metastatic, non-invasive and epithelial cells. These results suggest that 3D cultures are more representative of in vivo morphology and may serve as a more biologically relevant model in the drug discovery pipeline. -- Highlights: Black-Right-Pointing-Pointer We developed and optimised 3D culturing techniques for Prostate Cancer cell-lines. Black-Right-Pointing-Pointer We investigated biomarker expression in 2D versus 3D culture techniques. Black-Right-Pointing-Pointer Metastatic PC3 cells re-expressed non-transcriptionally active androgen receptor. Black-Right-Pointing-Pointer Metastatic PCa cell lines retain in vivo-like antigenic profiles in 3D cultures.« less

  15. Surface engineered magnetic nanoparticles for specific immunotargeting of cadherin expressing cells

    NASA Astrophysics Data System (ADS)

    Moros, Maria; Delhaes, Flavien; Puertas, Sara; Saez, Berta; de la Fuente, Jesús M.; Grazú, Valeria; Feracci, Helene

    2016-02-01

    In spite of historic advances in cancer biology and recent development of sophisticated chemotherapeutics, the outlook for patients with advanced cancer is still grim. In this sense nanoparticles (NPs), through their unique physical properties, enable the development of new approaches for cancer diagnosis and treatment. Thus far the most used active targeting scheme involves NPs functionalization with antibodies specific to molecules overexpressed on cancer cell’s surface. Therefore, such active targeting relies on differences in NPs uptake kinetics rates between tumor and healthy cells. Many cancers of epithelial origin are associated with the inappropriate expression of non-epithelial cadherins (e.g. N-, P-, -11) with concomitant loss of E-cadherin. Such phenomenon named cadherin switching favors tumor development and metastasis via interactions of tumor cells with stromal components. That is why we optimized the oriented functionalization of fluorescently labelled magnetic NPs with a novel antibody specific for the extracellular domain of cadherin-11. The obtained Ab-NPs exhibited high specificity when incubated with two cell lines used as models of tumor and healthy cells. Thus, cadherin switching offers a great opportunity for the development of active targeting strategies aimed to improve the early detection and treatment of cancer.

  16. Cadherin Composition and Multicellular Aggregate Invasion In Organotypic Models of Epithelial Ovarian Cancer Intraperitoneal Metastasis

    PubMed Central

    Klymenko, Yuliya; Kim, Oleg; Loughran, Elizabeth; Yang, Jing; Lombard, Rachel; Alber, Mark; Stack, M. Sharon

    2017-01-01

    During epithelial ovarian cancer (EOC) progression, intraperitoneally disseminating tumor cells and multi-cellular aggregates (MCAs) present in ascites fluid adhere to the peritoneum and induce retraction of the peritoneal mesothelial monolayer prior to invasion of the collagen-rich sub-mesothelial matrix and proliferation into macro-metastases. Clinical studies have shown heterogeneity among EOC metastatic units with respect to cadherin expression profiles and invasive behavior, however the impact of distinct cadherin profiles on peritoneal anchoring of metastatic lesions remains poorly understood. In the current study, we demonstrate that metastasis-associated behaviors of ovarian cancer cells and MCAs are influenced by cellular cadherin composition. Our results show that mesenchymal N-cadherin expressing (Ncad+) cells and MCAs invade much more efficiently than E-cadherin expressing (Ecad+) cells. Ncad+ MCAs exhibit rapid lateral dispersal prior to penetration of three-dimensional collagen matrices. When seeded as individual cells, lateral migration and cell-cell junction formation precede matrix invasion. Neutralizing the Ncad extracellular domain with the monoclonal antibody GC-4 suppresses lateral dispersal and cell penetration of collagen gels. In contrast, use of a broad spectrum matrix metalloproteinase (MMP) inhibitor (GM6001) to block endogenous membrane type 1 matrix metalloproteinase (MT1-MMP) activity does not fully inhibit cell invasion. Using intact tissue explants, Ncad+ MCAs were also shown to efficiently rupture peritoneal mesothelial cells, exposing the sub-mesothelial collagen matrix. Acquisition of Ncad by E-cadherin expressing cells (Ecad+) increased mesothelial clearance activity, but was not sufficient to induce matrix invasion. Furthermore, co-culture of Ncad+ with Ecad+ cells did not promote a “leader-follower” mode of collective cell invasion, demonstrating that matrix remodeling and creation of invasive micro-tracks are not sufficient for cell penetration of collagen matrices in the absence of Ncad. Collectively, our data emphasize the role of Ncad in intraperitoneal seeding of EOC and provide the rationale for future studies targeting Ncad+ in pre-clinical models of EOC metastasis. PMID:28628116

  17. MicroRNA-93 Promotes Epithelial–Mesenchymal Transition of Endometrial Carcinoma Cells

    PubMed Central

    Sun, Kai-Xuan; Xiu, Yin-Ling; Liu, Bo-Liang; Feng, Miao-Xiao; Sang, Xiu-Bo; Zhao, Yang

    2016-01-01

    MicroRNA-93, derived from a paralog (miR-106b-25) of the miR-17-92 cluster, is involved in the tumorigenesis and progression of many cancers such as breast, colorectal, hepatocellular, lung, ovarian, and pancreatic cancer. However, the role of miR-93 in endometrial carcinoma and the potential molecular mechanisms involved remain unknown. Our results showed that miR-93 was overexpressed in endometrial carcinoma tissues than normal endometrial tissues. The endometrial carcinoma cell lines HEC-1B and Ishikawa were transfected with miR-93-5P, after which cell migration and invasion ability and the expression of relevant molecules were detected. MiR-93 overexpression promoted cell migration and invasion, and downregulated E-cadherin expression while increasing N-cadherin expression. Dual-luciferase reporter assay showed that miR-93 may directly bind to the 3′ untranslated region of forkhead box A1 (FOXA1); furthermore, miR-93 overexpression downregulated FOXA1 expression while miR-93 inhibitor transfection upregulated FOXA1 expression at both mRNA and protein level. In addition, transfection with the most effective FOXA1 small interfering RNA promoted both endometrial cancer cell migration and invasion, and downregulated E-cadherin expression while upregulating N-cadherin expression. Therefore, we suggest that miR-93 may promote the process of epithelial–mesenchymal transition in endometrial carcinoma cells by targeting FOXA1. PMID:27829043

  18. Decreased expression of MUC1 induces apoptosis and inhibits migration in pancreatic cancer PANC-1 cells via regulation of Slug pathway.

    PubMed

    Zhao, Ping; Meng, Meng; Xu, Bin; Dong, Aiping; Ni, Guangzhen; Lu, Lianfang

    2017-12-06

    MUC1, a membrane tethered mucin glycoprotein, is overexpressed in > 60% of human pancreatic cancers (PCs), and is associated with poor prognosis and enhanced metastasis. Here, we report the effect of silencing MUC1 expression on the growth, migration and invasive ability of pancreatic cancer cells, and explored its mechanisms. We observed that siRNA mediated suppression of the MUC1 expression significantly reduced invasive and migrative capability and induced apoptosis of the pancreatic cancer PANC-1 cells. We found that Slug was inhibited in the MUC1 siRNA transfected PANC-1 cells (MUC1 siRNA/PANC-1 cells). Expression of PUMA and E-cadherin was increased in the MUC1 siRNA/PANC-1 cells. PANC-1 cells overexpressing full long Slug gene (when transfected with Slug cDNA plasmid) significantly inhibited PUMA and E-cadherin expression in the MUC1 siRNA/PANC-1 cells. Silencing PUMA expression inhibited apoptosis in the MUC1 siRNA transfected PANC-1 cells (MUC1 siRNA/PANC-1 cells). Silencing E-cadherin expression restored the invasion and migration ability in the MUC1 siRNA/PANC-1 cells. We therefore concluded that silencing MUC1 expression inhibited migration and invasion, and induced apoptosis of PANC-1 cells via downregulation of Slug and upregulation of Slug dependent PUMA and E-cadherin expression. MUC1 could serve as a potential therapeutic target in pancreatic cancer.

  19. Advanced glycation end products of bovine serum albumin-induced endothelial-to-mesenchymal transition in cultured human and monkey endothelial cells via protein kinase B signaling cascades.

    PubMed

    Ma, Jianli; Liu, Ting; Dong, Xiaoguang

    2010-12-09

    Advanced glycation end products of BSA (AGE-BSA) participate in the pathogenesis of diabetic vascular disease. However, the role of AGE-BSA in diabetic retinopathy, especially in retinal neovascularization, remains incomplete. This study aimed to determine the contributions of AGE-BSA in the endothelial-to-mesenchymal transition (EnMT) of cultured human and monkey endothelial cell lines and the mechanism that may be related with the transition. Monkey choroid-retinal endothelial cells (RF/6A) and human umbilical vein endothelial cells (HUVEC) were cultured in Dulbecco's modified Eagle's Medium (DMEM) and Ham's F12 medium containing 200 mg/l AGE-BSA. The expression of VE-cadherin, β-catenin, vimentin, N-cadherin, and protein kinase B (AKT2) was observed by immunocytochemistry and flow cytometry. Cell motility was determined by migration assays; the endothelial function of the formatting tube was measured by tube formation assays, while the change in the polarity was measured using resistance instruments. The characteristics of EnMT included loss of endothelial markers of VE-cadherin and β-catenin, which were replaced by mesenchymal markers of vimentin and N-cadherin, enhanced migration and tube formation, and diminished polarity. AGE-BSA contributed to upregulation of the protein expression of VE-cadherin and β-catenin and downregulation of protein expression of vimentin and N-cadherin, leading to enhanced migration and tube formation and diminished polarity. During this process, expression of AKT2 was upregulated. AGE-BSA can induce EnMT of cultured human and monkey endothelial cells. The signal pathway involving AKT2 may play a role in this process.

  20. Estrogen Deficiency Promotes Cerebral Aneurysm Rupture by Upregulation of Th17 Cells and Interleukin-17A Which Downregulates E-Cadherin.

    PubMed

    Hoh, Brian L; Rojas, Kelley; Lin, Li; Fazal, Hanain Z; Hourani, Siham; Nowicki, Kamil W; Schneider, Matheus B; Hosaka, Koji

    2018-04-13

    Estrogen deficiency is associated with the development of cerebral aneurysms; however, the mechanism remains unknown. We explored the pathway of cerebral aneurysm development by investigating the potential link between estrogen deficiency and inflammatory factors. First, we established the role of interleukin-17 (IL-17)A. We performed a cytokine screen demonstrating that IL-17A is significantly expressed in mouse and human aneurysms ( P =0.03). Likewise, IL-17A inhibition was shown to prevent aneurysm formation by 42% ( P =0.02) and rupture by 34% ( P <0.05). Second, we found that estrogen deficiency upregulates T helper 17 cells and IL-17A and promotes aneurysm rupture. Estrogen-deficient mice had more ruptures than control mice (47% versus 7%; P =0.04). Estradiol supplementation or IL-17A inhibition decreased the number of ruptures in estrogen-deficient mice (estradiol 6% versus 37%; P =0.04; IL-17A inhibition 18% versus 47%; P =0.018). Third, we found that IL-17A-blockade protects against aneurysm formation and rupture by increased E-cadherin expression. IL-17-inhibited mice had increased E-cadherin expression ( P =0.003). E-cadherin inhibition reversed the protective effect of IL-17A inhibition and increased the rate of aneurysm formation (65% versus 28%; P =0.04) and rupture (12% versus 0%; P =0.22). However, E-cadherin inhibition alone does not significantly increase aneurysm formation in normal mice or in estrogen-deficient mice. In cell migration assays, E-cadherin inhibition promoted macrophage infiltration across endothelial cells ( P <0.05), which may be the mechanism for the estrogen deficiency/IL-17/E-cadherin aneurysm pathway. Our data suggest that estrogen deficiency promotes cerebral aneurysm rupture by upregulating IL-17A, which downregulates E-cadherin, encouraging macrophage infiltration in the aneurysm vessel wall. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  1. Seven-pass transmembrane cadherins: roles and emerging mechanisms in axonal and dendritic patterning.

    PubMed

    Berger-Müller, Sandra; Suzuki, Takashi

    2011-12-01

    The Flamingo/Celsr seven-transmembrane cadherins represent a conserved subgroup of the cadherin superfamily involved in multiple aspects of development. In the developing nervous system, Fmi/Celsr control axonal blueprint and dendritic morphogenesis from invertebrates to mammals. As expected from their molecular structure, seven-transmembrane cadherins can induce cell-cell homophilic interactions but also intracellular signaling. Fmi/Celsr is known to regulate planar cell polarity (PCP) through interactions with PCP proteins. In the nervous system, Fmi/Celsr can function in collaboration with or independently of other PCP genes. Here, we focus on recent studies which show that seven-transmembrane cadherins use distinct molecular mechanisms to achieve diverse functions in the development of the nervous system.

  2. Expression of Inappropriate Cadherins in Human Breast Carcinomas

    DTIC Science & Technology

    2000-10-01

    fibroblast growth factor receptor ADHERINS constitute a family of transmembrane Hamaguchi et al., 1993). In addition, p120ct", originally...1994. expression is associated with poor prognosis in patients with prostate cancer. Alternative splicing in fibroblast growth factor receptor 2 is... fibroblast growth factor receptor signaling. This year we report that the extracellular domain of N-cadherin is responsible for this

  3. Caenorhabditis elegans flamingo cadherin fmi-1 regulates GABAergic neuronal development.

    PubMed

    Najarro, Elvis Huarcaya; Wong, Lianna; Zhen, Mei; Carpio, Edgar Pinedo; Goncharov, Alexandr; Garriga, Gian; Lundquist, Erik A; Jin, Yishi; Ackley, Brian D

    2012-03-21

    In a genetic screen for regulators of synaptic morphology, we identified the single Caenorhabditis elegans flamingo-like cadherin fmi-1. The fmi-1 mutants exhibit defective axon pathfinding, reduced synapse number, aberrant synapse size and morphology, as well as an abnormal accumulation of synaptic vesicles at nonsynaptic regions. Although FMI-1 is primarily expressed in the nervous system, it is not expressed in the ventral D-type (VD) GABAergic motorneurons, which are defective in fmi-1 mutants. The axon and synaptic defects of VD neurons could be rescued when fmi-1 was expressed exclusively in non-VD neighboring neurons, suggesting a cell nonautonomous action of FMI-1. FMI-1 protein that lacked its intracellular domain still retained its ability to rescue the vesicle accumulation defects of GABAergic motorneurons, indicating that the extracellular domain was sufficient for this function of FMI-1 in GABAergic neuromuscular junction development. Mutations in cdh-4, a Fat-like cadherin, cause similar defects in GABAergic motorneurons. The cdh-4 is expressed by the VD neurons and seems to function in the same genetic pathway as fmi-1 to regulate GABAergic neuron development. Thus, fmi-1 and cdh-4 cadherins might act together to regulate synapse development and axon pathfinding.

  4. Numb controls E-cadherin endocytosis through p120 catenin with aPKC

    PubMed Central

    Sato, Kazuhide; Watanabe, Takashi; Wang, Shujie; Kakeno, Mai; Matsuzawa, Kenji; Matsui, Toshinori; Yokoi, Keiko; Murase, Kiyoko; Sugiyama, Ikuko; Ozawa, Masayuki; Kaibuchi, Kozo

    2011-01-01

    Cadherin trafficking controls tissue morphogenesis and cell polarity. The endocytic adaptor Numb participates in apicobasal polarity by acting on intercellular adhesions in epithelial cells. However, it remains largely unknown how Numb controls cadherin-based adhesion. Here, we found that Numb directly interacted with p120 catenin (p120), which is known to interact with E-cadherin and prevent its internalization. Numb accumulated at intercellular adhesion sites and the apical membrane in epithelial cells. Depletion of Numb impaired E-cadherin internalization, whereas depletion of p120 accelerated internalization. Expression of the Numb-binding fragment of p120 inhibited E-cadherin internalization in a dominant-negative fashion, indicating that Numb interacts with the E-cadherin/p120 complex and promotes E-cadherin endocytosis. Impairment of Numb induced mislocalization of E-cadherin from the lateral membrane to the apical membrane. Atypical protein kinase C (aPKC), a member of the PAR complex, phosphorylated Numb and inhibited its association with p120 and α-adaptin. Depletion or inhibition of aPKC accelerated E-cadherin internalization. Wild-type Numb restored E-cadherin internalization in the Numb-depleted cells, whereas a phosphomimetic mutant or a mutant with defective α-adaptin-binding ability did not restore the internalization. Thus, we propose that aPKC phosphorylates Numb to prevent its binding to p120 and α-adaptin, thereby attenuating E-cadherin endocytosis to maintain apicobasal polarity. PMID:21775625

  5. Metabotropic glutamate receptor 5 mediates phosphorylation of vascular endothelial cadherin and nuclear localization of β-catenin in response to homocysteine.

    PubMed

    Beard, Richard S; Reynolds, Jason J; Bearden, Shawn E

    2012-01-01

    Elevated plasma homocysteine (Hcy) is an independent risk factor for vascular disease and stroke in part by causing generalized endothelial dysfunction. A receptor that is sensitive to Hcy and its intracellular signaling systems has not been identified. β-catenin is a pleiotropic regulator of transcription and cell function. Using a brain microvascular endothelial cell line (bEnd.3), we tested the hypothesis that Hcy causes receptor-dependent nuclear translocation of β-catenin. Hcy increased phosphorylation of Y731 on vascular endothelial cadherin (VE-cadherin), a site involved in coupling β-catenin to VE-cadherin. This was blocked by inhibition of either metabotropic glutamate receptor 5 (mGluR5) or ionotropic glutamate receptor (NMDAr) and by shRNA knockdown of mGluR5. Expression of these receptors was confirmed by flow cytometry, immunohistochemistry, and western blotting. Directed pharmacology with specific agonists elucidated a signaling cascade where Hcy activates mGluR5 which activates NMDAr with subsequent PKC activation and uncoupling of the VE-cadherin/β-catenin complex. Moreover, Hcy caused a shift in localization of β-catenin from membrane-bound VE-cadherin to the cell nucleus, where it bound DNA, including a regulatory region of the gene for claudin-5, leading to reduced expression of claudin-5. Nuclear localization, DNA binding of β-catenin, and reduced claudin-5 expression were blocked by inhibition of mGluR5. Knockdown of mGluR5 expression with shRNA also rescued claudin-5 expression from the effects of Hcy treatment. These data uniquely identify mGluR5 as a master switch that drives β-catenin nuclear localization in vascular endothelium and regulates cell-cell coupling in response to elevated Hcy levels. These studies dissect a pharmacological opportunity for developing new therapeutic strategies in HHcy. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Association of extracellular cleavage of E-cadherin mediated by MMP-7 with HGF-induced in vitro invasion in human stomach cancer cells.

    PubMed

    Lee, K H; Choi, E Y; Hyun, M S; Jang, B I; Kim, T N; Kim, S W; Song, S K; Kim, J H; Kim, J-R

    2007-01-01

    Proteolytic shedding of the ectodomain of a variety of transmembrane proteins, including cell-to-cell adhesion molecules, has been observed in solid cancers. We have investigated whether extracellular cleavage of E-cadherin mediated by matrix metalloproteinase-7 (MMP-7) is involved in hepatocyte growth factor (HGF) induced in vitro invasion in stomach cancer cells. The effects of HGF on the expression of E-cadherin/beta-catenin and MMP-7 at both the protein and mRNA levels were assessed in stomach cancer cells, NUGC-3 and MKN-28, and in cells in which the expression of MMP-7 was downregulated by transfection with a MMP-7 short hairpin RNA plasmid. Treatment with HGF increased the extracellular cleavage of E-cadherin and the release of MMP-7 and reduced the level of E-cadherin in a dose- and time-dependent manner. HGF treatment repressed the phosphorylation of beta-catenin in a Triton-soluble fraction, but enhanced this phosphorylation in a Triton-insoluble fraction. The association of E-cadherin with beta-catenin was decreased by HGF treatment in the Triton-soluble fraction. In addition, treatment of MMP-7 short hairpin RNA transfected NUGC-3 cells with HGF resulted in no extracellular cleavage of E-cadherin and also decreased the in vitro cell invasion. These results suggest that incubation with HGF mediated the release of MMP-7, resulting in extracellular cleavage of E-cadherin from stomach cancer cells. This might be a key mechanism in HGF-induced in vitro invasion and metastasis. Copyright 2007 S. Karger AG, Basel.

  7. N-CADHERIN MEDIATES NITRIC OXIDE-INDUCED NEUROGENESIS IN YOUNG AND RETIRED BREEDER NEUROSPHERES

    PubMed Central

    CHEN, J.; ZACHAREK, A.; LI, Y.; LI, A.; WANG, L.; KATAKOWSKI, M.; ROBERTS, C.; LU, M.; CHOPP, M.

    2009-01-01

    Neurogenesis may contribute to functional recovery after neural injury. Nitric oxide donors such as DETA-NONOate promote functional recovery after stroke. However, the mechanisms underlying functional improvement have not been ascertained. We therefore investigated the effects of DETA-NONOate on neural progenitor/stem cell neurospheres derived from the subventricular zone from young and retired breeder rat brain. Subventricular zone cells were dissociated from normal young adult male Wistar rats (2–3 months old) and retired breeder rats (14 months old), treated with or without DETA-NONOate. Subventricular zone neurosphere formation, proliferation, telomerase activity, and Neurogenin 1 mRNA expression were significantly decreased and glial fibrillary acidic protein expression was significantly increased in subventricular zone neurospheres from retired breeder rats compared with young rats. Treatment of neurospheres with DETA-NONOate significantly decreased neurosphere formation and telomerase activity, and promoted neuronal differentiation and neurite outgrowth concomitantly with increased N-cadherin and β-catenin mRNA expression in both young and old neurospheres. DETA-NONOate selectively increased Neurogenin 1 and decreased glial fibrillary acidic protein mRNA expression in retired breeder neurospheres. N-cadherin significantly increased Neurogenin 1 mRNA expression in young and old neurospheres. Anti-N-cadherin reversed DETA-NONOate-induced neurosphere adhesion, neuronal differentiation, neurite outgrowth, and β-catenin mRNA expression. Our data indicate that age has a potent effect on the characteristics of subventricular zone neurospheres; neurospheres from young rats show significantly higher formation, proliferation and telomerase activity than older neurospheres. In contrast, older neurospheres exhibit significantly increased glial differentiation than young neurospheres. DETA-NONOate promotes neuronal differentiation and neurite outgrowth in both young and older neurospheres. The molecular mechanisms associated with the DETA-NONOate modulation of neurospheres from young and older animals as well age dependent effects of neurospheres appear to be controlled by N-cadherin and β-catenin gene expression, which subsequently regulates the neuronal differentiating factor Neurogenin expression in both young and old neural progenitor cells. PMID:16580782

  8. Therapeutic potential of Dickkopf-1 in wild-type BRAF papillary thyroid cancer via regulation of β-catenin/E-cadherin signaling.

    PubMed

    Cho, Sun Wook; Kim, Young A; Sun, Hyun Jin; Ahn, Hwa Young; Lee, Eun Kyung; Yi, Ka Hee; Oh, Byung-Chul; Park, Do Joon; Cho, Bo Youn; Park, Young Joo

    2014-09-01

    Aberrant activation of the Wnt/β-catenin pathway is a common pathogenesis of various human cancers. We investigated the role of the Wnt inhibitor, Dkk-1, in papillary thyroid cancer (PTC). Immunohistochemical β-catenin staining was performed in tissue microarray containing 148 PTCs and five normal thyroid tissues. In vivo effects of Dkk-1 were explored using ectopic tumors with BHP10-3SC cells. In 27 PTC patients, 60% of patients showed β-catenin up-regulation and Dkk-1 down-regulation in tumor vs normal tissues. Tissue microarray analysis showed that 14 of 148 PTC samples exhibited cytoplasmic-dominant β-catenin expression compared to membranous-dominant expression in normal tissues. Aberrant β-catenin expression was significantly correlated with higher rates of the loss of membranous E-cadherin expression and poor disease-free survival than that in the normal membranous expression group over a median follow-up period of 14 years. Implantation of Dkk-1-overexpressing BHP10-3SC cells revealed delayed tumor growth, resulting from the rescue of membranous β-catenin and E-cadherin expressions. Furthermore, tissue microarray analysis demonstrated that BRAF(WT) patients had higher rates of aberrant expressions of β-catenin and E-cadherin than BRAF(V600E) patients. Indeed, the inhibitory effects of Dkk-1 on cell survival were more sensitive in BRAF(WT) (BHP10-3SC and TPC-1) than in BRAF(V600E) (SNU-790 and BCPAP) cells. Overexpression of BRAF(V600E) in normal thyroid epithelial (H tori) cells also reduced the effects of Dkk-1 on cell survival. A subset of PTC patients showed aberrant expression of β-catenin/E-cadherin signaling and poor disease-free survival. Dkk-1 might have a therapeutic role, particularly in BRAF(WT) patients.

  9. Potential involvement of kinesin-1 in the regulation of subcellular localization of Girdin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, Aya; Enomoto, Atsushi, E-mail: enomoto@iar.nagoya-u.ac.jp; Kato, Takuya

    Girdin is an actin-binding protein that has multiple functions in postnatal neural development and cancer progression. We previously showed that Girdin is a regulator of migration for neuroblasts born from neural stem cells in the subventricular zone (SVZ) and the dentate gyrus of the hippocampus in the postnatal brain. Despite a growing list of Girdin-interacting proteins, the mechanism of Girdin-mediated migration has not been fully elucidated. Girdin interacts with Disrupted-In-Schizophrenia 1 and partitioning-defective 3, both of which have been shown to interact with the kinesin microtubule motor proteins. Based on this, we have identified that Girdin also interacts with kinesin-1,more » a member of neuronal kinesin proteins. Although a direct interaction of Girdin and kinesin-1 has not been determined, it is of interest to find that Girdin loss-of-function mutant mice with the mutation of a basic amino acid residue-rich region (Basic mut mice) exhibit limited interaction with kinesin-1. Furthermore, expression of a kinesin-1 mutant with motor defects, leads to Girdin mislocalization. Finally, consistent with previous studies on the role of kinesin proteins in trafficking a cell–cell adhesion molecule N-cadherin, Basic mut mice showed an aberrant expression pattern of N-cadherin in migrating SVZ neuroblasts. These findings suggest a potential role of Girdin/kinesin-1 interaction in the regulation of neuroblast migration in the postnatal brain. - Highlights: • Girdin is a regulator of migration for neuroblasts in the postnatal brain. • Girdin interacts with kinesin-1, a member of neuronal kinesin proteins. • Girdin mutant mice showed an aberrant expression of N-cadherin in neuroblasts.« less

  10. Expression pattern of adhesion molecules in junctional epithelium differs from that in other gingival epithelia.

    PubMed

    Hatakeyama, S; Yaegashi, T; Oikawa, Y; Fujiwara, H; Mikami, T; Takeda, Y; Satoh, M

    2006-08-01

    The gingival epithelium is the physiologically important interface between the bacterially colonized gingival sulcus and periodontal soft and mineralized connective tissues, requiring protection from exposure to bacteria and their products. However, of the three epithelia comprising the gingival epithelium, the junctional epithelium has much wider intercellular spaces than the sulcular epithelium and oral gingival epithelium. Hence, the aim of the present study was to characterize the cell adhesion structure in the junctional epithelium compared with the other two epithelia. Gingival epithelia excised at therapeutic flap surgery from patients with periodontitis were examined for expression of adhesion molecules by immunofluorescence. In the oral gingival epithelium and sulcular epithelium, but not in the junctional epithelium, desmoglein 1 and 2 in cell-cell contact sites were more abundant in the upper than the suprabasal layers. E-cadherin, the main transmembranous molecule of adherens junctions, was present in spinous layers of the oral gingival epithelium and sulcular epithelium, but was scarce in the junctional epithelium. In contrast, desmoglein 3 and P-cadherin were present in all layers of the junctional epithelium as well as the oral gingival epithelium and sulcular epithelium. Connexin 43 was clearly localized to spinous layers of the oral gingival epithelium, sulcular epithelium and parts of the junctional epithelium. Claudin-1 and occludin were expressed in the cell membranes of a few superficial layers of the oral gingival epithelium. These findings indicated that the junctional epithelium contains only a few desmosomes, composed of only desmoglein 3; adherens junctions are probably absent because of defective E-cadherin. Thus, the anchoring junctions connecting junctional epithelium cells are lax, causing widened intercellular spaces. In contrast, the oral gingival epithelium, which has a few tight junctions, functions as a barrier.

  11. [Effect of genetics, epigenetics and variations in the transcriptional expression of cadherin-E in breast cancer susceptibility].

    PubMed

    Aristizábal-Pachón, Andrés Felipe; Takahashi, Catarina Satie

    2016-12-01

    Cadherin-E (CDH1) is an important regulator of epithelial-mesenchymal transition, invasion and metastasis in many carcinomas. However, germinal epimutations and mutations effect in breast cancer susceptibility is not clear. To evaluate rs334558 polymorphism, promoter methylation status and CDH1 expression profile in breast cancer patients. We collected peripheral blood samples from 102 breast cancer patients and 102 healthy subjects. The identification of rs334558 polymorphism was performed using PCR-RFLP, while methylation-specific PCR (MSP) and methylation-sensitive high-resolution melting (MS-HRM) were used to explore CDH1 methylation status; finally, CDH1 transcriptional expression profile was evaluated using RT-qPCR. We found no association between rs334558 polymorphism and breast cancer. Aberrant promoter methylation profile was found in breast cancer patients and it was related with early cancer stages. CDH1 down-regulation was significantly associated with metastasis and promoter methylation. CDH1 alterations were associated with invasion and metastasis in breast cancer. Our results offer further evidence of CDH1 relevance in breast cancer development and progression.

  12. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    PubMed

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  13. Stable knockdown of Kif5b in MDCK cells leads to epithelial–mesenchymal transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Ju, E-mail: juzi.cui@gmail.com; Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR; Jin, Guoxiang

    2015-07-17

    Polarization of epithelial cells requires vectorial sorting and transport of polarity proteins to apical or basolateral domains. Kif5b is the mouse homologue of the human ubiquitous Kinesin Heavy Chain (uKHC). To investigate the function of Kif5b in epithelial cells, we examined the phenotypes of Kif5b-deficient MDCK cells. Stable knockdown of Kif5b in MDCK cells resulted in reduced cell proliferation rate, profound changes in cell morphology, loss of epithelial cell marker, and gain of mesenchymal marker, as well as increased cell migration, invasion, and tumorigenesis abilities. E-cadherin and NMMIIA could interact with Kif5b in polarized MDCK cells, and their expression levelsmore » were decreased in Kif5b-deficient MDCK cells. Overexpression of E-cadherin and NMMIIA in Kif5b depleted MDCK cells could decrease mesenchymal marker expression and cell migration ability. These results indicate that stable knockdown of Kif5b in MDCK cells can lead to epithelial–mesenchymal transition, which is mediated by defective E-cadherin and NMMIIA expression. - Highlights: • Knockdown of Kif5b in MDCK cells resulted in reduced cell proliferation rate. • Kif5b deficient MDCK cells underwent epithelial–mesenchymal transition. • E-cadherin and NMMIIA could interact with Kif5b in polarized MDCK cells. • Decreased E-cadherin and NMMIIA levels mediate EMT in Kif5b deficient MDCK cells. • Overexpression of E-cadherin and NMMIIA reverse the effects of Kif5b knockdown.« less

  14. Analysis of Homologs of Cry-toxin Receptor-Related Proteins in the Midgut of a Non-Bt Target, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae)

    PubMed Central

    Shao, Ensi; Lin, Li; Liu, Sijun; Zhang, Jiao; Chen, Xuelin; Sha, Li; Huang, Zhipeng; Huang, Biwang; Guan, Xiong

    2018-01-01

    Abstract The brown planthopper (BPH) Nilaparvata lugens is one of the most destructive insect pests in the rice fields of Asia. Like other hemipteran insects, BPH is not susceptible to Cry toxins of Bacillus thuringiensis (Bt) or transgenic rice carrying Bt cry genes. Lack of Cry receptors in the midgut is one of the main reasons that BPH is not susceptible to the Cry toxins. The main Cry-binding proteins (CBPs) of the susceptible insects are cadherin, aminopeptidase N (APN), and alkaline phosphatase (ALP). In this study, we analyzed and validated de novo assembled transcripts from transcriptome sequencing data of BPH to identify and characterize homologs of cadherin, APN, and ALP. We then compared the cadherin-, APN-, and ALP-like proteins of BPH to previously reported CBPs to identify their homologs in BPH. The sequence analysis revealed that at least one cadherin, one APN, and two ALPs of BPH contained homologous functional domains identified from the Cry-binding cadherin, APN, and ALP, respectively. Quantitative real-time polymerase chain reaction used to verify the expression level of each putative Cry receptor homolog in the BPH midgut indicated that the CBPs homologous APN and ALP were expressed at high or medium-high levels while the cadherin was expressed at a low level. These results suggest that homologs of CBPs exist in the midgut of BPH. However, differences in key motifs of CBPs, which are functional in interacting with Cry toxins, may be responsible for insusceptibility of BPH to Cry toxins. PMID:29415259

  15. WAVE2 regulates epithelial morphology and cadherin isoform switching through regulation of Twist and Abl.

    PubMed

    Bryce, Nicole S; Reynolds, Albert B; Koleske, Anthony J; Weaver, Alissa M

    2013-01-01

    Epithelial morphogenesis is a dynamic process that involves coordination of signaling and actin cytoskeletal rearrangements. We analyzed the contribution of the branched actin regulator WAVE2 in the development of 3-dimensional (3D) epithelial structures. WAVE2-knockdown (WAVE2-KD) cells formed large multi-lobular acini that continued to proliferate at an abnormally late stage compared to control acini. Immunostaining of the cell-cell junctions of WAVE2-KD acini revealed weak and heterogeneous E-cadherin staining despite little change in actin filament localization to the same junctions. Analysis of cadherin expression demonstrated a decrease in E-cadherin and an increase in N-cadherin protein and mRNA abundance in total cell lysates. In addition, WAVE2-KD cells exhibited an increase in the mRNA levels of the epithelial-mesenchymal transition (EMT)-associated transcription factor Twist1. KD of Twist1 expression in WAVE2-KD cells reversed the cadherin switching and completely rescued the aberrant 3D morphological phenotype. Activity of the WAVE2 complex binding partner Abl kinase was also increased in WAVE2-KD cells, as assessed by tyrosine phosphorylation of the Abl substrate CrkL. Inhibition of Abl with STI571 rescued the multi-lobular WAVE2-KD 3D phenotype whereas overexpression of Abl kinase phenocopied the WAVE2-KD phenotype. The WAVE2 complex regulates breast epithelial morphology by a complex mechanism involving repression of Twist1 expression and Abl kinase activity. These data reveal a critical role for WAVE2 complex in regulation of cellular signaling and epithelial morphogenesis.

  16. Hypoxia induced E-cadherin involving regulators of Hippo pathway due to HIF-1α stabilization/nuclear translocation in bone metastasis from breast carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maroni, Paola; Matteucci, Emanuela; Drago, Lorenzo

    The present study deals with the molecular mechanisms involved in the regulation of E-cadherin expression under hypoxia, because the adjustment of the amount of E-cadherin due to physical stimuli of the microenvironment might influence the colonization of metastasis to skeleton. We analyzed the effect of 1% oxygen tension, that is similar to that encountered in the bone marrow by metastatic cells spreading from breast carcinoma. The purpose was to evaluate the hypoxia-orchestrated control of E-cadherin transactivation via hypoxia inducible factor-1 (HIF-1) and peroxisome proliferator activated receptor-γ (PPARγ), and the involvement of Hippo pathway members, as regulators of transcription factors. Tomore » give a translational significance to the study, we took into consideration human pair-matched ductal breast carcinoma and bone metastasis: E-cadherin and Wwox were expressed in bone metastasis but not in breast carcinoma, while HIF-1α and TAZ seemed localized principally in nuclei of metastasis and were found in all cell compartments of breast carcinoma. A close examination of the regulatory mechanisms underlying E-cadherin expression in bone metastasis was done in 1833 clone derived from MDA-MB231 cells. Hypoxia induced E-cadherin only in 1833 clone, but not in parental cells, through HIF-1 and PPARγ activities, while Wwox decreased. Since Wwox was highly expressed in bone metastasis, the effect of ectopic Wwox was evaluated, and we showed E-cadherin transactivation and enhanced invasiveness in WWOX transfected 1833 cells. Also, hypoxia was additive with ectopic Wwox remarkably enhancing HIF-1α nuclear shuttle and accumulation due to the lengthening of the half-life of HIF-1α protein; under this experimental condition HIF-1α appeared as a slower migrated band compared with control, in agreement with the phosphorylation state. The in vitro data strongly supported the almost exclusive presence of HIF-1α in nuclei of human-bone metastasis. Thus, we identified Wwox as a novel molecule in the HIF-1α-HDM2 regulatory loop, necessary for the dynamic regulation of the HIF-1α amount, and we suggested that the reduction of endogenous Wwox free pool under hypoxia might also be due to the interaction with HDM2, sequestering the E3 ubiquitin ligase. We highlighted the importance of nuclear HIF-1α in the biology of metastasis for the mesenchymal-epithelial transition: this phenotype was regulated by Wwox plus hypoxia through E-cadherin target gene, playing a pivotal role in bone metastasis colonization. - Highlights: • E-cadherin accumulates in hypoxic bone metastasis opposite to primary carcinoma. • HIF-1 and PPARγ cooperate in inducing E-cadherin under hypoxia in metastatic cells. • Wwox regulates HIF-1α phosphorylation and nuclear translocation. • Hypoxia plus Wwox prevent HIF-1α degradation via HDM2 forming a regulatory loop.« less

  17. New Fluorescent Reporter Systems for Evaluation of the Expression of E- and N-Cadherins.

    PubMed

    Burmistrova, O A; Nikulin, S V; Zakharova, G S; Fomicheva, K A; Alekseev, B Ya; Shkurnikov, M Yu

    2018-05-24

    During metastatic growth, cells of solid tumors undergo phenotypical changes related to epithelial-mesenchymal transition. Epithelial-mesenchymal transition is regarded as a potential target for prospective antitumor drugs. Fluorescent reporter systems for evaluation of the expression of markers of epithelial and mesenchymal status (E- and N-cadherins) were created. The described approaches can be used for creation of analogous reporter systems.

  18. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuexia; Li, Xiaohui; Liu, Gang

    2015-01-30

    Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo.more » We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression.« less

  19. Matrilysin (Matrix Metalloproteinase-7) Mediates E-Cadherin Ectodomain Shedding in Injured Lung Epithelium

    PubMed Central

    McGuire, John K.; Li, Qinglang; Parks, William C.

    2003-01-01

    Matrilysin (matrix metalloproteinase-7) is highly expressed in lungs of patients with pulmonary fibrosis and other conditions associated with airway and alveolar injury. Although matrilysin is required for closure of epithelial wounds ex vivo, the mechanism of its action in repair is unknown. We demonstrate that matrilysin mediates shedding of E-cadherin ectodomain from injured lung epithelium both in vitro and in vivo. In alveolar-like epithelial cells, transfection of activated matrilysin resulted in shedding of E-cadherin and accelerated cell migration. In vivo, matrilysin co-localized with E-cadherin at the basolateral surfaces of migrating tracheal epithelium, and the reorganization of cell-cell junctions seen in wild-type injured tissue was absent in matrilysin-null samples. E-cadherin ectodomain was shed into the bronchoalveolar lavage fluid of bleomycin-injured wild-type mice, but was not shed in matrilysin-null mice. These findings identify E-cadherin as a novel substrate for matrilysin and indicate that shedding of E-cadherin ectodomain is required for epithelial repair. PMID:12759241

  20. The effect of adriamycin exposure on the notochord of mouse embryos.

    PubMed

    Hajduk, Piotr; May, Alison; Puri, Prem; Murphy, Paula

    2012-04-01

    The notochord has important structural and signaling properties during vertebrate development with key roles in patterning surrounding tissues, including the foregut. The adriamycin mouse model is an established model of foregut anomalies where exposure of embryos in utero to the drug adriamycin leads to malformations including oesophageal atresia and tracheoesophageal fistula. In addition to foregut abnormalities, treatment also causes branching, displacement, and hypertrophy of the notochord. Here, we explore the hypothesis that the notochord may be a primary target of disruption leading to abnormal patterning of the foregut by examining notochord position and structure in early embryos following adriamycin exposure. Treated (n = 46) and control (n = 30) embryos were examined during the crucial period when the notochord normally delaminates away from the foregut endoderm (6-28 somite pairs). Transverse sections were derived from the anterior foregut and analyzed by confocal microscopy following immunodetection of extracellular matrix markers E-cadherin and Laminin. In adriamycin-treated embryos across all stages, the notochord was abnormally displaced ventrally with prolonged attachment to the foregut endoderm. While E-cadherin was normally detected in the foregut endoderm with no expression in the notochord of control embryos, treated embryos up to 24 somites showed ectopic notochordal expression indicating a change in characteristics of the tissue; specifically an increase in intracellular adhesiveness, which may be instrumental in structural changes, affecting mechanical and signaling properties. This is consistent with disruption of the notochord leading to altered signaling to the foregut causing abnormal patterning and congenital foregut malformations. © 2012 Wiley Periodicals, Inc.

  1. Zebrafish E-cadherin: expression during early embryogenesis and regulation during brain development.

    PubMed

    Babb, S G; Barnett, J; Doedens, A L; Cobb, N; Liu, Q; Sorkin, B C; Yelick, P C; Raymond, P A; Marrs, J A

    2001-06-01

    Zebrafish E-cadherin (cdh1) cell adhesion molecule cDNAs were cloned. We investigated spatial and temporal expression of cdh1 during early embryogenesis. Expression was observed in blastomeres, the anterior mesoderm during gastrulation, and developing epithelial structures. In the developing nervous system, cdh1 was detected at the pharyngula stage (24 hpf) in the midbrain-hindbrain boundary (MHB). Developmental regulation of MHB formation involves wnt1 and pax2.1. wnt1 expression preceded cdh1 expression during MHB formation, and cdh1 expression in the MHB was dependent on normal development of this structure. Copyright 2001 Wiley-Liss, Inc.

  2. Cadherin juxtamembrane region derived peptides inhibit TGFβ1 induced gene expression

    PubMed Central

    Stavropoulos, Ilias; Golla, Kalyan; Moran, Niamh; Martin, Finian; Shields, Denis C

    2014-01-01

    Bioactive peptides in the juxtamembrane regions of proteins are involved in many signaling events. The juxtamembrane regions of cadherins were examined for the identification of bioactive regions. Several peptides spanning the cytoplasmic juxtamembrane regions of E- and N-cadherin were synthesized and assessed for the ability to influence TGFβ responses in epithelial cells at the gene expression and protein levels. Peptides from regions closer to the membrane appeared more potent inhibitors of TGFβ signaling, blocking Smad3 phosphorylation. Thus inhibiting nuclear translocation of phosphorylated Smad complexes and subsequent transcriptional activation of TGFβ signal propagating genes. The peptides demonstrated a peptide-specific potential to inhibit other TGFβ superfamily members, such as BMP4. PMID:25108297

  3. Abrogation of E-cadherin-mediated cell-cell contact in mouse embryonic stem cells results in reversible LIF-independent self-renewal.

    PubMed

    Soncin, Francesca; Mohamet, Lisa; Eckardt, Dominik; Ritson, Sarah; Eastham, Angela M; Bobola, Nicoletta; Russell, Angela; Davies, Steve; Kemler, Rolf; Merry, Catherine L R; Ward, Christopher M

    2009-09-01

    We have previously demonstrated that differentiation of embryonic stem (ES) cells is associated with downregulation of cell surface E-cadherin. In this study, we assessed the function of E-cadherin in mouse ES cell pluripotency and differentiation. We show that inhibition of E-cadherin-mediated cell-cell contact in ES cells using gene knockout (Ecad(-/-)), RNA interference (EcadRNAi), or a transhomodimerization-inhibiting peptide (CHAVC) results in cellular proliferation and maintenance of an undifferentiated phenotype in fetal bovine serum-supplemented medium in the absence of leukemia inhibitory factor (LIF). Re-expression of E-cadherin in Ecad(-/-), EcadRNAi, and CHAVC-treated ES cells restores cellular dependence to LIF supplementation. Although reversal of the LIF-independent phenotype in Ecad(-/-) ES cells is dependent on the beta-catenin binding domain of E-cadherin, we show that beta-catenin null (betacat(-/-)) ES cells also remain undifferentiated in the absence of LIF. This suggests that LIF-independent self-renewal of Ecad(-/-) ES cells is unlikely to be via beta-catenin signaling. Exposure of Ecad(-/-), EcadRNAi, and CHAVC-treated ES cells to the activin receptor-like kinase inhibitor SB431542 led to differentiation of the cells, which could be prevented by re-expression of E-cadherin. To confirm the role of transforming growth factor beta family signaling in the self-renewal of Ecad(-/-) ES cells, we show that these cells maintain an undifferentiated phenotype when cultured in serum-free medium supplemented with Activin A and Nodal, with fibroblast growth factor 2 required for cellular proliferation. We conclude that transhomodimerization of E-cadherin protein is required for LIF-dependent ES cell self-renewal and that multiple self-renewal signaling networks subsist in ES cells, with activity dependent upon the cellular context.

  4. Valproic acid inhibits epithelial‑mesenchymal transition in renal cell carcinoma by decreasing SMAD4 expression.

    PubMed

    Mao, Shaowei; Lu, Guoliang; Lan, Xiaopeng; Yuan, Chuanwei; Jiang, Wei; Chen, Yougen; Jin, Xunbo; Xia, Qinghua

    2017-11-01

    Renal cell carcinoma (RCC) is the most common malignancy in urogenital neoplasms worldwide. According to previous studies, valproic acid (VPA), an anticonvulsant drug, can suppress tumor metastasis and decrease the expression level of Mothers against decapentaplegic homolog 4 (SMAD4) and therefore may inhibit epithelial‑mesenchymal transition (EMT), which is responsible for cancer metastasis. However, the association between VPA, EMT and SMAD4 in RCC metastasis remains obscure. In the present study, it was demonstrated that in the RCC cell lines 786‑O and Caki‑1 treated with VPA, the neural (N)‑cadherin, vimentin and SMAD4 protein and mRNA levels were decreased, accompanied with an increase in expression of epithelial (E)‑cadherin. Silencing SMAD4 expression decreased the expression of EMT markers, including N‑cadherin and simultaneously upregulated E‑cadherin in RCC cell lines. SMAD4 overexpression counteracted the VPA‑mediated EMT‑inhibitory effect (P<0.05). The present study demonstrates that VPA inhibited EMT in RCC cells via altering SMAD4 expression. In addition, immunohistochemical staining demonstrated that transforming growth factor‑β (TGF‑β) and low expression of SMAD4 was associated with a lower Fuhrman grade and low expression of transcription intermediary factor 1‑γ was associated with a higher tumor Fuhrman grade (P<0.05), Therefore, based on the regulatory effect of SMAD4 on EMT‑associated transcription factors, SMAD4 which can form a SMAD3/SMAD4 complex induced by TGF‑β, could be a potential anticancer drug target inhibiting tumor invasion and metastasis in RCC.

  5. Pericyte-derived sphingosine 1-phosphate induces the expression of adhesion proteins and modulates the retinal endothelial cell barrier.

    PubMed

    McGuire, Paul G; Rangasamy, Sampathkumar; Maestas, Joann; Das, Arup

    2011-12-01

    The mechanisms that regulate the physical interaction of pericytes and endothelial cells and the effects of these interactions on interendothelial cell junctions are not well understood. We determined the extent to which vascular pericytes could regulate pericyte-endothelial adhesion and the consequences that this disruption might have on the function of the endothelial barrier. Human retinal microvascular endothelial cells were cocultured with pericytes, and the effect on the monolayer resistance of endothelial cells and expression of the cell junction molecules N-cadherin and VE-cadherin were measured. The molecules responsible for the effect of pericytes or pericyte-conditioned media on the endothelial resistance and cell junction molecules were further analyzed. Our results indicate that pericytes increase the barrier properties of endothelial cell monolayers. This barrier function is maintained through the secretion of pericyte-derived sphingosine 1-phosphate. Sphingosine 1-phosphate aids in maintenance of microvascular stability by upregulating the expression of N-cadherin and VE-cadherin, and downregulating the expression of angiopoietin 2. Under normal circumstances, the retinal vascular pericytes maintain pericyte-endothelial contacts and vascular barrier function through the secretion of sphingosine 1-phosphate. Alteration of pericyte-derived sphingosine 1-phosphate production may be an important mechanism in the development of diseases characterized by vascular dysfunction and increased permeability.

  6. [Regulative effects of hydrogen-rich medium on monocytic adhesion and vascular endothelial permeability].

    PubMed

    Wang, Wei-na; Xie, Ke-liang; Chen, Hong-guang; Han, Huan-zhi; Wang, Guo-lin; Yu, Yong-hao

    2013-11-19

    To explore the regulative effects of hydrogen-rich medium on lipopolysaccharide (LPS)-induced monocytes adhesion to human umbilical vein endothelial cells (HUVEC) and vascular endothelial permeability in vitro. Endothelial cells were seeded in 6-well plates and randomly divided into 4 groups (n = 42 each):control (A), hydrogen-rich medium (B), LPS (C) and LPS+hydrogen-rich medium (D). Cells were cultured in plain culture medium in groups A and C or in hydrogen-saturated culture medium in groups B and D.LPS 1 µg/ml was added into groups C and D.When forming a monolayer, monocytes were added into each group after 6, 12 and 24 h respectively. After a 90-minute co-culturing, adhesion status was detected by Wright-Giemsa stain.Supernatants were collected to detect the concentrations of vascular cell adhesion molecule-1 (VCAM-1) and E-selectin by enzyme-linked immunosorbent assay (ELISA). The expression of VE-cadherin was measured by Western blot. Cells were stained with immunofluorescence to show the distribution of VE-cadherin after a 24-hour incubation. Compared with group A, the adhesion of monocytes to endothelial cells increased (P < 0.05) in group C, the levels of E-selectin and VCAM-1 became elevated (P < 0.05) while the expression of VE-cadherin decreased significantly (P < 0.05). Compared with group C, adhesion decreased in group D (P < 0.05), the levels of E-selectin and VCAM-1 decreased (P < 0.05) while there was an increased expression of VE-cadherin (P < 0.05). Three timepoints showed the same tendency. The results of 24 h fluorescence indicated that, compared with group A, VE-cadherin was incomplete in cell-cell connections in group C.However it was complete and well-distributed in group D versus group C. Hydrogen-rich medium may reduce the LPS-induced release of adhesion molecules, lessen monocytic adhesion to HUVEC and regulate the expression of VE-cadherin to protect vascular permeability.

  7. A randomized clinical trial of the effects of supplemental calcium and vitamin D3 on the APC/β-catenin pathway in the normal mucosa of colorectal adenoma patients.

    PubMed

    Ahearn, Thomas U; Shaukat, Aasma; Flanders, W Dana; Rutherford, Robin E; Bostick, Roberd M

    2012-10-01

    APC/β-catenin pathway perturbation is a common early event in colorectal carcinogenesis and is affected by calcium and vitamin D in basic science studies. To assess the effects of calcium and vitamin D on adenomatous polyposis coli (APC), β-catenin, and E-cadherin expression in the normal appearing colorectal mucosa of sporadic colorectal adenoma patients, we conducted a randomized, double-blinded, placebo-controlled 2 × 2 factorial clinical trial. Pathology-confirmed colorectal adenoma cases were treated with 2 g/day elemental calcium and/or 800 IU/day vitamin D(3) versus placebo over 6 months (N = 92; 23/group). Overall APC, β-catenin, and E-cadherin expression and distributions in colon crypts in normal-appearing rectal mucosa biopsies were detected by standardized automated immunohistochemistry and quantified by image analysis. In the vitamin D(3)-supplemented group relative to placebo, the proportion of APC in the upper 40% of crypts (Φh APC) increased 21% (P = 0.01), β-catenin decreased 12% (P = 0.18), E-cadherin increased 72% (P = 0.03), and the Φh APC/β-catenin ratio (APC/β-catenin score) increased 31% (P = 0.02). In the calcium-supplemented group Φh APC increased 10% (P = 0.12), β-catenin decreased 15% (P = 0.08), and the APC/β-catenin score increased 41% (P = 0.01). In the calcium/vitamin D(3)-supplemented group, β-catenin decreased 11% (P = 0.20), E-cadherin increased 51% (P = 0.08), and the APC/β-catenin score increased 16% (P = 0.26). These results support (i) that calcium and vitamin D modify APC, β-catenin, and E-cadherin expression in humans in directions hypothesized to reduce risk for colorectal neoplasms, (ii) calcium and vitamin D as potential chemopreventive agents against colorectal neoplasms, and (iii) the potential of APC, β-catenin, and E-cadherin expression as modifiable, preneoplastic risk biomarkers for colorectal neoplasms.

  8. Connections between cadherin-catenin proteins, spindle misorientation, and cancer

    PubMed Central

    Shahbazi, Marta N; Perez-Moreno, Mirna

    2015-01-01

    Cadherin-catenin mediated adhesion is an important determinant of tissue architecture in multicellular organisms. Cancer progression and maintenance is frequently associated with loss of their expression or functional activity, which not only leads to decreased cell-cell adhesion, but also to enhanced tumor cell proliferation and loss of differentiated characteristics. This review is focused on the emerging implications of cadherin-catenin proteins in the regulation of polarized divisions through their connections with the centrosomes, cytoskeleton, tissue tension and signaling pathways; and illustrates how alterations in cadherin-catenin levels or functional activity may render cells susceptible to transformation through the loss of their proliferation-differentiation balance. PMID:26451345

  9. PDGF controls contact inhibition of locomotion by regulating N-cadherin during neural crest migration.

    PubMed

    Bahm, Isabel; Barriga, Elias H; Frolov, Antonina; Theveneau, Eric; Frankel, Paul; Mayor, Roberto

    2017-07-01

    A fundamental property of neural crest (NC) migration is contact inhibition of locomotion (CIL), a process by which cells change their direction of migration upon cell contact. CIL has been proven to be essential for NC migration in amphibians and zebrafish by controlling cell polarity in a cell contact-dependent manner. Cell contact during CIL requires the participation of the cell adhesion molecule N-cadherin, which starts to be expressed by NC cells as a consequence of the switch between E- and N-cadherins during epithelial-to-mesenchymal transition (EMT). However, the mechanism that controls the upregulation of N-cadherin remains unknown. Here, we show that platelet-derived growth factor receptor alpha (PDGFRα) and its ligand platelet-derived growth factor A (PDGF-A) are co-expressed in migrating cranial NC. Inhibition of PDGF-A/PDGFRα blocks NC migration by inhibiting N-cadherin and, consequently, impairing CIL. Moreover, we identify phosphatidylinositol-3-kinase (PI3K)/AKT as a downstream effector of the PDGFRα cellular response during CIL. Our results lead us to propose PDGF-A/PDGFRα signalling as a tissue-autonomous regulator of CIL by controlling N-cadherin upregulation during EMT. Finally, we show that once NC cells have undergone EMT, the same PDGF-A/PDGFRα works as an NC chemoattractant, guiding their directional migration. © 2017. Published by The Company of Biologists Ltd.

  10. Measurement of the filtration coefficient (Kfc) in the lung of Gallus domesticus and the effects of increased microvascular permeability.

    PubMed

    Weidner, W Jeffrey; Waddell, David S; Furlow, J David

    2006-08-01

    The filtration coefficient (Kfc) is a sensitive measure of microvascular hydraulic conductivity and has been reported for the alveolar lungs of many mammalian species, but not for the parabronchial avian lung. This study reports the Kfc in the isolated lungs of normal chickens and in the lungs of chickens given the edemogenic agents oleic acid (OA) or dimethyl amiloride (DMA). The control Kfc =0.04+/-0.01 ml min(-1) kPa(-1) g(-1). This parameter increased significantly following the administration of both OA (0.12+/-0.02 ml min(-1) kPa(-1) g(-1)) and DMA (0.07+/-0.01 ml min kPa(-1) g(-1)). As endothelial cadherins are thought to play a role in the dynamic response to acute lung injury, we utilized Western blot analysis to assess lung cadherin content and Northern blot analysis to assess pulmonary vascular endothelial (VE) cadherin expression following drug administration. Lung cadherin content decreases markedly following DMA, but not OA administration. VE cadherin expression increases as a result of DMA treatment, but is unchanged following OA. Our results suggest that the permeability characteristics of the avian lung are more closely consistent with those of the mammalian rather than the reptilian lung, and, that cadherins may play a significant role in the response to acute increases in avian pulmonary microvascular permeability.

  11. Cadherin-2 Is Required Cell Autonomously for Collective Migration of Facial Branchiomotor Neurons.

    PubMed

    Rebman, Jane K; Kirchoff, Kathryn E; Walsh, Gregory S

    2016-01-01

    Collective migration depends on cell-cell interactions between neighbors that contribute to their overall directionality, yet the mechanisms that control the coordinated migration of neurons remains to be elucidated. During hindbrain development, facial branchiomotor neurons (FBMNs) undergo a stereotypic tangential caudal migration from their place of birth in rhombomere (r)4 to their final location in r6/7. FBMNs engage in collective cell migration that depends on neuron-to-neuron interactions to facilitate caudal directionality. Here, we demonstrate that Cadherin-2-mediated neuron-to-neuron adhesion is necessary for directional and collective migration of FBMNs. We generated stable transgenic zebrafish expressing dominant-negative Cadherin-2 (Cdh2ΔEC) driven by the islet1 promoter. Cell-autonomous inactivation of Cadherin-2 function led to non-directional migration of FBMNs and a defect in caudal tangential migration. Additionally, mosaic analysis revealed that Cdh2ΔEC-expressing FBMNs are not influenced to migrate caudally by neighboring wild-type FBMNs due to a defect in collective cell migration. Taken together, our data suggest that Cadherin-2 plays an essential cell-autonomous role in mediating the collective migration of FBMNs.

  12. Novel metastatic models of esophageal adenocarcinoma derived from FLO-1 cells highlight the importance of E-cadherin in cancer metastasis.

    PubMed

    Liu, David S; Hoefnagel, Sanne J M; Fisher, Oliver M; Krishnadath, Kausilia K; Montgomery, Karen G; Busuttil, Rita A; Colebatch, Andrew J; Read, Matthew; Duong, Cuong P; Phillips, Wayne A; Clemons, Nicholas J

    2016-12-13

    There is currently a paucity of preclinical models available to study the metastatic process in esophageal cancer. Here we report FLO-1, and its isogenic derivative FLO-1LM, as two spontaneously metastatic cell line models of human esophageal adenocarcinoma. We show that FLO-1 has undergone epithelial-mesenchymal transition and metastasizes following subcutaneous injection in mice. FLO-1LM, derived from a FLO-1 liver metastasis, has markedly enhanced proliferative, clonogenic, anti-apoptotic, invasive, immune-tolerant and metastatic potential. Genome-wide RNAseq profiling revealed a significant enrichment of metastasis-related pathways in FLO-1LM cells. Moreover, CDH1, which encodes the adhesion molecule E-cadherin, was the most significantly downregulated gene in FLO-1LM compared to FLO-1. Consistent with this, repression of E-cadherin expression in FLO-1 cells resulted in increased metastatic activity. Importantly, reduced E-cadherin expression is commonly reported in esophageal adenocarcinoma and independently predicts poor patient survival. Collectively, these findings highlight the biological importance of E-cadherin activity in the pathogenesis of metastatic esophageal adenocarcinoma and validate the utility of FLO-1 parental and FLO-1LM cells as preclinical models of metastasis in this disease.

  13. Protective effects of hydrogen-rich medium on lipopolysaccharide-induced monocytic adhesion and vascular endothelial permeability through regulation of vascular endothelial cadherin.

    PubMed

    Yu, Y; Wang, W N; Han, H Z; Xie, K L; Wang, G L; Yu, Y H

    2015-06-11

    We observed the effect of hydrogen-rich medium on lipopolysaccharide (LPS)-induced human umbilical vein endothelial cells (HUVECs), hyaline leukocyte conglutination, and permeability of the endothelium. Endotheliocytes were inoculated on 6-well plates and randomly divided into 4 groups: control, H2, LPS, LPS+H2, H2, and LPS+H2 in saturated hydrogen-rich medium. We applied Wright's stain-ing to observe conglutination of hyaline leukocytes and HUVECs, flow cytometry to determine the content of vascular cell adhesion protein 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), enzyme-linked immunosorbent assay to measure the E-selectin concentration in the cell liquor, the transendothelial electrical resistance (TEER) to test the permeability of endothelial cells, and Western blot and immunofluorescence to test the expression and distribution of vascular endothelial (VE)-cadherin. Compared with control cells, there was an increase in endothelium-hyaline leukocyte conglutination, a reduction in VCAM-1, ICAM-1, and E-selectin, and the TEER value increased obviously. Compared with LPS, there was an obvious reduction in the conglutination of LPS+H2 cells, a reduction in VCAM-1, ICAM-1, and E-selectin levels, and a reduction in the TEER-resistance value, while the expression of VE-cadherin increased. Fluorescence results showed that, compared with control cells, the VE-cadherin in LPS cells was in-complete at the cell joints. Compared with LPS cells, the VE-cadherin in LPS+H2 cells was even and complete at the cell joints. Liquid rich in hydrogen could reduce LPS-induced production of adhesion molecules and endothelium-hyaline leukocyte conglutination, and influence the expression and distribution of VE-cadherin to regulate the permeability of the endothelium.

  14. SALL4 as an Epithelial-Mesenchymal Transition and Drug Resistance Inducer through the Regulation of c-Myc in Endometrial Cancer

    PubMed Central

    Yang, Xiaoming; Fang, Chi; Xu, Huali; Xi, Xiaowei

    2015-01-01

    SALL4 plays important roles in the development and progression of many cancers. However, the role and molecular mechanism of SALL4 in endometrial cancer remain elusive. In the present research, we have demonstrated that the expression of SALL4 was upregulated in endometrial cancer and correlated positively with tumor stage, metastases and poor survival of patients. The overexpression of SALL4 promoted the invasiveness in endometrial cancer cells, as indicated by the upregulation of mesenchymal cell marker N-cadherin and downregulation of the epithelial marker E-cadherin, and invasion assays in vitro. Additionally, there was also an increase in drug resistance in these cell models due to the upregulation of ATP-binding cassette multidrug transporter ABCB1 expression. Moreover, we also found that ABCB1 was critical for SALL4-induced drug resistance. In contrast, SALL4 knockdown restored drug sensitivity, reversed EMT, diminished cell metastasis and suppressed the downregulation of E-cadherin and the upregulation of N-cadherin and ABCB1. Furthermore, we showed that SALL4 upregulated c-Myc expression and c-Myc was a direct target for SALL4 by ChIP assay, depletion of c-Myc with siRNA abolished the SALL4-induced downregulation of E-cadherin, upregulation of N-cadherin and ABCB1, suggesting that c-Myc was a downstream target for SALL4 and required for SALL4-induced EMT, invasion and drugs resistance in endometrial cancer cells. These results indicated that SALL4 could induce EMT and resistance to antineoplastic drugs through the regulation of c-Myc. SALL4 and c-Myc may be novel therapeutic targets for endometrial cancer. PMID:26407074

  15. WAVE2 Regulates Epithelial Morphology and Cadherin Isoform Switching through Regulation of Twist and Abl

    PubMed Central

    Bryce, Nicole S.; Reynolds, Albert B.; Koleske, Anthony J.; Weaver, Alissa M.

    2013-01-01

    Background Epithelial morphogenesis is a dynamic process that involves coordination of signaling and actin cytoskeletal rearrangements. Principal Findings We analyzed the contribution of the branched actin regulator WAVE2 in the development of 3-dimensional (3D) epithelial structures. WAVE2-knockdown (WAVE2-KD) cells formed large multi-lobular acini that continued to proliferate at an abnormally late stage compared to control acini. Immunostaining of the cell-cell junctions of WAVE2-KD acini revealed weak and heterogeneous E-cadherin staining despite little change in actin filament localization to the same junctions. Analysis of cadherin expression demonstrated a decrease in E-cadherin and an increase in N-cadherin protein and mRNA abundance in total cell lysates. In addition, WAVE2-KD cells exhibited an increase in the mRNA levels of the epithelial-mesenchymal transition (EMT)-associated transcription factor Twist1. KD of Twist1 expression in WAVE2-KD cells reversed the cadherin switching and completely rescued the aberrant 3D morphological phenotype. Activity of the WAVE2 complex binding partner Abl kinase was also increased in WAVE2-KD cells, as assessed by tyrosine phosphorylation of the Abl substrate CrkL. Inhibition of Abl with STI571 rescued the multi-lobular WAVE2-KD 3D phenotype whereas overexpression of Abl kinase phenocopied the WAVE2-KD phenotype. Conclusions The WAVE2 complex regulates breast epithelial morphology by a complex mechanism involving repression of Twist1 expression and Abl kinase activity. These data reveal a critical role for WAVE2 complex in regulation of cellular signaling and epithelial morphogenesis. PMID:23691243

  16. Angiogenin distribution in human term placenta, and expression by cultured trophoblastic cells

    PubMed Central

    Pavlov, Nadine; Hatzi, Elissavet; Bassaglia, Yann; Frendo, Jean-Louis; Evain-Brion, Danièle; Badet, Josette

    2003-01-01

    Human angiogenin is a 14-kDa secreted protein with angiogenic and ribonucleolytic activities. Angiogenin is associated with tumour development but is also present in normal biological fluids and tissues. To further address the physiological role of angiogenin, we studied its expression in situ and in vitro, using the human term placenta as a model of physiological angiogenesis. Angiogenin was immunodetected by light and transmission electron microscopy, and its cellular distribution was established by double immunolabelling with cell markers including von Willebrand factor, platelet/endothelial cell adhesion molecule-1 (PECAM-1), CD34, Tie-2, vascular endothelial cadherin (VE-cadherin), vascular endothelial growth factor receptor-2 (VEGF-R2), erythropoeitin receptor (Epo-R), alpha-smooth muscle actin, CD45, cytokeratin 7, and Ki-67. Angiogenin immunoreactivity was detected in villous and extravillous trophoblasts, the trophoblast basement membrane, the endothelial basal lamina, foetal blood vessels, foetal and maternal red blood cells, and amnionic cells. Its expression was confirmed by in situ hybridisation with a digoxygenin-labelled cDNA probe and reverse transcriptase-polymerase chain reaction amplification. Villous cytotrophoblasts, isolated and differentiated in vitro into a functional syncytiotrophoblast, expressed and secreted angiogenin. Given its known biological activities in vitro and its observed pattern of expression, these data suggest that, in human placenta, angiogenin has a role not only in angiogenesis but also in vascular and tissue homeostasis, maternal immune tolerance of the foetus, and host defences. PMID:15166501

  17. Cadherin-23 Mediates Heterotypic Cell-Cell Adhesion between Breast Cancer Epithelial Cells and Fibroblasts

    PubMed Central

    Apostolopoulou, Maria; Ligon, Lee

    2012-01-01

    In the early stages of breast cancer metastasis, epithelial cells penetrate the basement membrane and invade the surrounding stroma, where they encounter fibroblasts. Paracrine signaling between fibroblasts and epithelial tumor cells contributes to the metastatic cascade, but little is known about the role of adhesive contacts between these two cell types in metastasis. Here we show that MCF-7 breast cancer epithelial cells and normal breast fibroblasts form heterotypic adhesions when grown together in co-culture, as evidenced by adhesion assays. PCR and immunoblotting show that both cell types express multiple members of the cadherin superfamily, including the atypical cadherin, cadherin-23, when grown in isolation and in co-culture. Immunocytochemistry experiments show that cadherin-23 localizes to homotypic adhesions between MCF-7 cells and also to heterotypic adhesions between the epithelial cells and fibroblasts, and antibody inhibition and RNAi experiments show that cadherin-23 plays a role in mediating these adhesive interactions. Finally, we show that cadherin-23 is upregulated in breast cancer tissue samples, and we hypothesize that heterotypic adhesions mediated by this atypical cadherin may play a role in the early stages of metastasis. PMID:22413011

  18. Precursor N-cadherin mediates glial cell line-derived neurotrophic factor-promoted human malignant glioma

    PubMed Central

    Zhu, Shuang; Zhang, Baole; Qin, Yuxia; Yao, Ruiqin; Zhou, Hao; Gao, Dian Shuai

    2017-01-01

    As the most prevalent primary brain tumor, gliomas are highly metastatic, invasive and are characteristic of high levels of glial cell-line derived neurotrophic factor (GDNF). GDNF is an important factor for invasive glioma cell growth; however, the underlying mechanism involved is unclear. In this study, we affirm a significantly higher expression of the precursor of N-cadherin (proN-cadherin) in most gliomas compared with normal brain tissues. Our findings reveal that GDNF interacts with the extracellular domain of proN-cadherin, which suggests that proN-cadherin mediates GDNF-induced glioma cell migration and invasion. We hypothesize that proN-cadherin might cause homotypic adhesion loss within neighboring cells and at the same time promote heterotypic adhesion within the extracellular matrix (ECM) through a certain mechanism. This study also demonstrates that the interaction between GDNF and proN-cadherin activates specific intracellular signaling pathways; furthermore, GDNF promoted the secretion of matrix metalloproteinase-9 (MMP-9), which degrades the ECM via proN-cadherin. To reach the future goal of developing novel therapies of glioma, this study, reveals a unique mechanism of glioma cell migration and invasion. PMID:28212546

  19. Precursor N-cadherin mediates glial cell line-derived neurotrophic factor-promoted human malignant glioma.

    PubMed

    Xiong, Ye; Liu, Liyun; Zhu, Shuang; Zhang, Baole; Qin, Yuxia; Yao, Ruiqin; Zhou, Hao; Gao, Dian Shuai

    2017-04-11

    As the most prevalent primary brain tumor, gliomas are highly metastatic, invasive and are characteristic of high levels of glial cell-line derived neurotrophic factor (GDNF). GDNF is an important factor for invasive glioma cell growth; however, the underlying mechanism involved is unclear. In this study, we affirm a significantly higher expression of the precursor of N-cadherin (proN-cadherin) in most gliomas compared with normal brain tissues. Our findings reveal that GDNF interacts with the extracellular domain of proN-cadherin, which suggests that proN-cadherin mediates GDNF-induced glioma cell migration and invasion. We hypothesize that proN-cadherin might cause homotypic adhesion loss within neighboring cells and at the same time promote heterotypic adhesion within the extracellular matrix (ECM) through a certain mechanism. This study also demonstrates that the interaction between GDNF and proN-cadherin activates specific intracellular signaling pathways; furthermore, GDNF promoted the secretion of matrix metalloproteinase-9 (MMP-9), which degrades the ECM via proN-cadherin. To reach the future goal of developing novel therapies of glioma, this study, reveals a unique mechanism of glioma cell migration and invasion.

  20. The effect of Pokemon on bladder cancer epithelial-mesenchymal transition.

    PubMed

    Guo, Changcheng; Zhu, Kai; Sun, Wei; Yang, Bin; Gu, Wenyu; Luo, Jun; Peng, Bo; Zheng, Junhua

    2014-01-24

    This study aimed at detecting Pokemon expression in bladder cancer cell and investigating the relationship between Pokemon and epithelial-mesenchymal transition. Furthermore, we investigated the functions of Pokemon in the carcinogenesis and development of bladder cancer. This study was also designed to observe the inhibitory effects of siRNA expression vector on Pokemon in bladder cancer cell. The siRNA expression vectors which were constructed to express a short hairpin RNA against Pokemon were transfected to the bladder cancer cells T24 with a liposome. Levels of Pokemon, E-cadherin and β-catenin mRNA and protein were examined by real-time quantitative-fluorescent PCR and Western blot analysis, respectively. The effects of Pokemon silencing on epithelial-mesenchymal transition of T24 cells were evaluated with wound-healing assay. Pokemon was strongly inhibited by siRNA treatment, especially siRNA3 treatment group, as it was reflected by Western blot and real-time PCR. The gene and protein of E-cadherin expression level showed increased markedly after Pokemon was inhibited by RNA interference. While there were no differences in the levels of gene and protein of β-catenin among five groups. The bladder cancer cell after Pokemon siRNA interference showed a significantly reduced wound-closing efficiency at 6, 12 and 24h. Our findings suggest Pokemon may inhibit the expression of E-cadherin. The low expression of E-cadherin lead to increasing the phenotype and apical-base polarity of epithelial cells. These changes of cells may result in the recurrence and progression of bladder cancer at last. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Dragon (Repulsive Guidance Molecule RGMb) Inhibits E-cadherin Expression and Induces Apoptosis in Renal Tubular Epithelial Cells*

    PubMed Central

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y.; Xia, Yin

    2013-01-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45–66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo. PMID:24052264

  2. Suppression of tumorigenicity by plakoglobin: an augmenting effect of N-cadherin.

    PubMed

    Simcha, I; Geiger, B; Yehuda-Levenberg, S; Salomon, D; Ben-Ze'ev, A

    1996-04-01

    Plakoglobin is a major component of the submembranal plaque of adherens junctions and desmosomes in mammalian cells. It is closely related to the Drosophila segment polarity gene armadillo which has a role in the transduction of transmembrane signals that regulate cell fate. Like its close homologue beta-catenin, plakoglobin can associate with the product of the tumor suppressor gene APC that is linked to human colon cancer. We have studied the effect of plakoglobin overexpression, and the cooperation between plakoglobin and N-cadherin, on the morphology and tumorigenic ability of cells either lacking, or expressing cadherin and alpha- and beta-catenin. Overexpression of plakoglobin in SV40-transformed 3T3 (SVT2) cells suppressed the tumorigenicity of the cells in syngeneic mice. Transfection with N-cadherin conferred an epithelial phenotype on the cell culture, but had no significant effect on the tumorigenicity of the cells. Cotransfection of plakoglobin and N-cadherin into SVT2 cells, however, was considerably more effective in tumor suppression than plakoglobin overexpression alone. Finally, transfection of plakoglobin into a human renal carcinoma cell line that expresses neither cadherins nor plakoglobin, or alpha-and beta-catenin, resulted in a dose-dependent suppression of tumor formation by these cells in nude mice. Plakoglobin, in these cells, did not exhibit junctional localization and was diffusely distributed in the cytoplasm, with a significant amount of the protein also localized in the nucleus. The results suggest that plakoglobin can efficiently suppress the tumorigenicity of cells in the presence of, or independently of the cadherin-catenin complex.

  3. Magnolol Inhibits Human Glioblastoma Cell Migration by Regulating N-Cadherin.

    PubMed

    Cheng, Yu-Chen; Tsao, Min-Jen; Chiu, Chen-Yang; Kan, Po-Chieh; Chen, Ying

    2018-06-01

    Glioblastoma is a primary malignant brain tumor with a poor prognosis. An effective treatment for glioblastoma is needed. Magnolol is a natural compound from Magnolia officinalis suggested to have antiproliferative activity. The aim of this research was to investigate the anticancer effects of magnolol in glioma, with an emphasis on migration and the underlying mechanism. Magnolol decreased the expression of focal adhesion-related proteins and inhibited LN229 and U87MG glioma cell migration. The levels of phosphorylated myosin light chain (p-MLC), phosphorylated myosin light chain kinase and myosin phosphatase target subunit 1 were reduced in response to magnolol treatment. In addition, immunostaining and membrane fractionation showed that the distribution of N-cadherin at the glioma cell membrane was decreased by magnolol. In an orthotropic xenograft animal model, magnolol treatment not only inhibited tumor progression but also reduced p-MLC and N-cadherin protein expression. In conclusion, magnolol reduces cell migration, potentially through regulating focal adhesions and N-cadherin in glioma cells. Magnolol is a potential candidate for glioma treatment.

  4. N-cadherin locks left-right asymmetry by ending the leftward movement of Hensen's node cells.

    PubMed

    Mendes, Raquel V; Martins, Gabriel G; Cristovão, Ana M; Saúde, Leonor

    2014-08-11

    The stereotypic left-right (LR) asymmetric distribution of internal organs is due to an asymmetric molecular cascade in the lateral plate mesoderm (LPM) that is originated at the embryonic node. In chicken embryos, molecular asymmetries at Hensen's node are created by leftward cell movements that occur transiently. What terminates these movements, and, moreover, what is the impact of prolonging them on the LR asymmetry cascade? We show that leftward movements last longer when N-cadherin function is blocked and cease prematurely when N-cadherin is overexpressed on the right side of the node. The prolonged leftward movements lead to loss of asymmetric expression of fgf8 and nodal at the node region. This originates an abnormal expression of the asymmetric genes cer1 and snai1 in the LPM, resulting in mispositioned hearts. We conclude that N-cadherin stops the leftward cell movements and that this termination is an essential step in the establishment of LR asymmetry. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Surface Expression of Precursor N-cadherin Promotes Tumor Cell Invasion12

    PubMed Central

    Maret, Deborah; Gruzglin, Eugenia; Sadr, Mohamad Seyed; Siu, Vincent; Shan, Weisong; Koch, Alexander W; Seidah, Nabil G; Del Maestro, Rolando F; Colman, David R

    2010-01-01

    The expression of N-cadherin (NCAD) has been shown to correlate with increased tumor cell motility and metastasis. However, NCAD-mediated adhesion is a robust phenomenon and therefore seems to be inconsistent with the “release” from intercellular adhesion required for invasion. We show that in the most invasive melanoma and brain tumor cells, altered posttranslational processing results in abundant nonadhesive precursor N-cadherin (proNCAD) at the cell surface, although total NCAD levels remain constant. We demonstrate that aberrantly processed proNCAD promotes cell migration and invasion in vitro. Furthermore, in human tumor specimens, we find high levels of proNCAD as well, supporting an overall conclusion that proNCAD and mature NCAD coexist on these tumor cell surfaces and that it is the ratio between these functionally antagonistic moieties that directly correlates with invasion potential. Our work provides insight into what may be a widespread mechanism for invasion and metastasis and challenges the current dogma of the functional roles played by classic cadherins in tumor progression. PMID:21170270

  6. Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA

    NASA Astrophysics Data System (ADS)

    Schmidt, Thomas P.; Perna, Anna M.; Fugmann, Tim; Böhm, Manja; Jan Hiss; Haller, Sarah; Götz, Camilla; Tegtmeyer, Nicole; Hoy, Benjamin; Rau, Tilman T.; Neri, Dario; Backert, Steffen; Schneider, Gisbert; Wessler, Silja

    2016-03-01

    The cell adhesion protein and tumour suppressor E-cadherin exhibits important functions in the prevention of gastric cancer. As a class-I carcinogen, Helicobacter pylori (H. pylori) has developed a unique strategy to interfere with E-cadherin functions. In previous studies, we have demonstrated that H. pylori secretes the protease high temperature requirement A (HtrA) which cleaves off the E-cadherin ectodomain (NTF) on epithelial cells. This opens cell-to-cell junctions, allowing bacterial transmigration across the polarised epithelium. Here, we investigated the molecular mechanism of the HtrA-E-cadherin interaction and identified E-cadherin cleavage sites for HtrA. Mass-spectrometry-based proteomics and Edman degradation revealed three signature motifs containing the [VITA]-[VITA]-x-x-D-[DN] sequence pattern, which were preferentially cleaved by HtrA. Based on these sites, we developed a substrate-derived peptide inhibitor that selectively bound and inhibited HtrA, thereby blocking transmigration of H. pylori. The discovery of HtrA-targeted signature sites might further explain why we detected a stable 90 kDa NTF fragment during H. pylori infection, but also additional E-cadherin fragments ranging from 105 kDa to 48 kDa in in vitro cleavage experiments. In conclusion, HtrA targets E-cadherin signature sites that are accessible in in vitro reactions, but might be partially masked on epithelial cells through functional homophilic E-cadherin interactions.

  7. Nestin suppression attenuates invasive potential of endometrial cancer cells by downregulating TGF-β signaling pathway.

    PubMed

    Bokhari, Amber A; Baker, Tabari M; Dorjbal, Batsukh; Waheed, Sana; Zahn, Christopher M; Hamilton, Chad A; Maxwell, G Larry; Syed, Viqar

    2016-10-25

    Nestin, an intermediate filament protein and a stem cell marker is expressed in several tumors. Until recently, little was known about the expression levels and the role of Nestin in endometrial cancer. Compared to the immortalized endometrial epithelial cell line EM-E6/E7-TERT, endometrial cancer cell lines express high to moderate levels of Nestin. Furthermore, endometrial tumors and tumor cell lines have a cancer stem-like cell subpopulation expressing CD133. Among the cancer lines, AN3CA and KLE cells exhibited both a significantly higher number of CD133+ cells and expressed Nestin at higher levels than Ishikawa cells. Knockdown of Nestin in AN3CA and KLE increased cells in G0/G1 phase of the cell cycle, whereas overexpression in Ishikawa decreased cells in G0/G1 phase and increased cells in S-phase. Nestin knockdown cells showed increased p21, p27, and PNCA levels and decreased expression of cyclin-D1 and D3. In contrast, Nestin overexpression revealed an inverse expression pattern of cell cycle regulatory proteins. Nestin knockdown inhibited cancer cell growth and invasive potential by downregulating TGF-β signaling components, MMP-2, MMP-9, vimentin, SNAIL, SLUG, Twist, N-cadherin, and upregulating the epithelial cell marker E-cadherin whereas the opposite was observed with Nestin overexpressing Ishikawa cells. Nestin knockdown also inhibited, while overexpression promoted invadopodia formation and pFAK expression. Knockdown of Nestin significantly reduced tumor volume in vivo. Finally, progesterone inhibited Nestin expression in endometrial cancer cells. These results suggest that Nestin can be a therapeutic target for cancer treatment.

  8. Nestin suppression attenuates invasive potential of endometrial cancer cells by downregulating TGF-β signaling pathway

    PubMed Central

    Bokhari, Amber A.; Baker, Tabari M.; Dorjbal, Batsukh; Waheed, Sana; Zahn, Christopher M.; Hamilton, Chad A.; Maxwell, G. Larry; Syed, Viqar

    2016-01-01

    Nestin, an intermediate filament protein and a stem cell marker is expressed in several tumors. Until recently, little was known about the expression levels and the role of Nestin in endometrial cancer. Compared to the immortalized endometrial epithelial cell line EM-E6/E7-TERT, endometrial cancer cell lines express high to moderate levels of Nestin. Furthermore, endometrial tumors and tumor cell lines have a cancer stem-like cell subpopulation expressing CD133. Among the cancer lines, AN3CA and KLE cells exhibited both a significantly higher number of CD133+ cells and expressed Nestin at higher levels than Ishikawa cells. Knockdown of Nestin in AN3CA and KLE increased cells in G0/G1 phase of the cell cycle, whereas overexpression in Ishikawa decreased cells in G0/G1 phase and increased cells in S-phase. Nestin knockdown cells showed increased p21, p27, and PNCA levels and decreased expression of cyclin-D1 and D3. In contrast, Nestin overexpression revealed an inverse expression pattern of cell cycle regulatory proteins. Nestin knockdown inhibited cancer cell growth and invasive potential by downregulating TGF-β signaling components, MMP-2, MMP-9, vimentin, SNAIL, SLUG, Twist, N-cadherin, and upregulating the epithelial cell marker E-cadherin whereas the opposite was observed with Nestin overexpressing Ishikawa cells. Nestin knockdown also inhibited, while overexpression promoted invadopodia formation and pFAK expression. Knockdown of Nestin significantly reduced tumor volume in vivo. Finally, progesterone inhibited Nestin expression in endometrial cancer cells. These results suggest that Nestin can be a therapeutic target for cancer treatment. PMID:27626172

  9. Comparative study of angiostatic and anti-invasive gene expressions as prognostic factors in gastric cancer.

    PubMed

    Lee, J H; Koh, J T; Shin, B A; Ahn, K Y; Roh, J H; Kim, Y J; Kim, K K

    2001-02-01

    Genes involving angiogenesis and metastasis play an important role in the progression and infiltration of cancer. We examined the expressions of various angiostatic and potential invasion/metastasis suppressor genes through RT-PCR analyses in 32 gastric cancer specimens with or without distant metastasis. The expressions of the invasion/metastasis suppressor, nm23 and E-cadherin increased much more in the cancer tissue (CT) and metastatic lymph node (MLN) than in the extraneoplastic mucosa (EM) and non-metastatic lymph node (NLN), respectively. The expressions of the angiostatic factor, angiopoietin 2 and thrombospondin 2 increased in the CT and MLN as compared with the EM and NLN, respectively. The newly cloned angiostatic factor, brain-specific angiogenesis inhibitor 1 (BAI1) decreased much more in the CT and MLN than the EM and NLN, respectively. However, BAI1 increased in the CT compared with the EM among the patients with poor prognosis and distant metastasis, such as liver or peritoneum. The expressions of the invasive factor, matrix metalloproteinase-2 and its suppressor, tissue inhibitor metalloproteinase-2 (TIMP-2) increased in the CM as compared with the EM, but the increased expression pattern of these genes in the CT became blunted among the patients with good prognosis. Our results indicate that BAI1 and TIMP-2 expressions in the extraneoplastic mucosa and non-metastatic lymph nodes were not suppressed in the patients with good prognosis, but increased expressions of angiopoietin 2, thrombospondin 2, TIMP-2, nm23 and E-cadherin in the tumor tissue did not lead to a long survival after operation. It is suggested that the extent of BAI1 and TIMP-2 expression in the gastric mucosa may be an important prognostic factor for predicting survival in gastric cancer.

  10. PRMT7 induces epithelial-to-mesenchymal transition and promotes metastasis in breast cancer.

    PubMed

    Yao, Ruosi; Jiang, Hao; Ma, Yuhui; Wang, Liping; Wang, Lin; Du, Juan; Hou, Pingfu; Gao, Yanyan; Zhao, Li; Wang, Guannan; Zhang, Yu; Liu, Dong-Xu; Huang, Baiqu; Lu, Jun

    2014-10-01

    Epithelial-to-mesenchymal transition (EMT) enables metastasis. E-cadherin loss is a hallmark of EMT, but there remains an incomplete understanding of the epigenetics of this process. The protein arginine methyltransferase PRMT7 functions in various physiologic processes, including mRNA splicing, DNA repair, and neural differentiation, but its possible roles in cancer and metastasis have not been explored. In this report, we show that PRMT7 is expressed at higher levels in breast carcinoma cells and that elevated PRMT7 mediates EMT and metastasis. PRMT7 could inhibit the expression of E-cadherin by binding to its proximal promoter in a manner associated with altered histone methylation, specifically with elevated H4R3me2s and reduced H3K4me3, H3Ac, and H4Ac, which occurred at the E-cadherin promoter upon EMT induction. Moreover, PRMT7 interacted with YY1 and HDAC3 and was essential to link these proteins to the E-cadherin promoter. Silencing PRMT7 restored E-cadherin expression by repressing H4R3me2s and by increasing H3K4me3 and H4Ac, attenuating cell migration and invasion in MDA-MB-231 breast cancer cells. Overall, our results define PRMT7 as an inducer of breast cancer metastasis and present the opportunity for applying PRMT7-targeted therapeutics to treat highly invasive breast cancers. ©2014 American Association for Cancer Research.

  11. Targeted p120-catenin ablation disrupts dental enamel development.

    PubMed

    Bartlett, John D; Dobeck, Justine M; Tye, Coralee E; Perez-Moreno, Mirna; Stokes, Nicole; Reynolds, Albert B; Fuchs, Elaine; Skobe, Ziedonis

    2010-09-16

    Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix proteins, and the ameloblasts start moving in rows that slide by one another. This movement is necessary to form the characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to mediate attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse enamel organ had a striking effect. Secretory stage ameloblasts detached from surrounding tissues, lost polarity, flattened, and ameloblast E- and N-cadherin expression became undetectable by immunostaining. The enamel itself was poorly mineralized and appeared to be composed of a thin layer of merged spheres that abraded from the tooth. Significantly, p120 mosaic mouse teeth were capable of forming normal enamel demonstrating that the enamel defects were not a secondary effect of p120 ablation. Surprisingly, blood-filled sinusoids developed in random locations around the developing teeth. This has not been observed in other p120-ablated tissues and may be due to altered p120-mediated cell signaling. These data reveal a critical role for p120 in tooth and dental enamel development and are consistent with p120 directing the attachment and detachment of the secretory stage ameloblasts as they move in rows.

  12. Direct Ca2+-dependent Heterophilic Interaction between Desmosomal Cadherins, Desmoglein and Desmocollin, Contributes to Cell–Cell Adhesion

    PubMed Central

    Chitaev, Nikolai A.; Troyanovsky, Sergey M.

    1997-01-01

    Human fibrosarcoma cells, HT-1080, feature extensive adherens junctions, lack mature desmosomes, and express a single known desmosomal protein, Desmoglein 2 (Dsg2). Transfection of these cells with bovine Desmocollin 1a (Dsc1a) caused dramatic changes in the subcellular distribution of endogenous Dsg2. Both cadherins clustered in the areas of the adherens junctions, whereas only a minor portion of Dsg2 was seen in these areas in the parental cells. Deletion mapping showed that intact extracellular cadherin-like repeats of Dsc1a (Arg1-Thr170) are required for the translocation of Dsg2. Deletion of the intracellular C-domain that mediates the interaction of Dsc1a with plakoglobin, or the CSI region that is involved in the binding to desmoplakin, had no effect. Coimmunoprecipitation experiments of cell lysates stably expressing Dsc1a with anti-Dsc or -Dsg antibodies demonstrate that the desmosomal cadherins, Dsg2 and Dsc1a, are involved in a direct Ca2+-dependent interaction. This conclusion was further supported by the results of solid phase binding experiments. These showed that the Dsc1a fragment containing cadherin-like repeats 1 and 2 binds directly to the extracellular portion of Dsg in a Ca2+-dependent manner. The contribution of the Dsg/ Dsc interaction to cell–cell adhesion was tested by coculturing HT-1080 cells expressing Dsc1a with HT-1080 cells lacking Dsc but expressing myc-tagged plakoglobin (MPg). In the latter cells, MPg and the endogenous Dsg form stable complexes. The observed specific coimmunoprecipitation of MPg by anti-Dsc antibodies in coculture indicates that an intercellular interaction between Dsc1 and Dsg is involved in cell–cell adhesion. PMID:9214392

  13. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome.

    PubMed

    Tothill, Richard W; Tinker, Anna V; George, Joshy; Brown, Robert; Fox, Stephen B; Lade, Stephen; Johnson, Daryl S; Trivett, Melanie K; Etemadmoghadam, Dariush; Locandro, Bianca; Traficante, Nadia; Fereday, Sian; Hung, Jillian A; Chiew, Yoke-Eng; Haviv, Izhak; Gertig, Dorota; DeFazio, Anna; Bowtell, David D L

    2008-08-15

    The study aim to identify novel molecular subtypes of ovarian cancer by gene expression profiling with linkage to clinical and pathologic features. Microarray gene expression profiling was done on 285 serous and endometrioid tumors of the ovary, peritoneum, and fallopian tube. K-means clustering was applied to identify robust molecular subtypes. Statistical analysis identified differentially expressed genes, pathways, and gene ontologies. Laser capture microdissection, pathology review, and immunohistochemistry validated the array-based findings. Patient survival within k-means groups was evaluated using Cox proportional hazards models. Class prediction validated k-means groups in an independent dataset. A semisupervised survival analysis of the array data was used to compare against unsupervised clustering results. Optimal clustering of array data identified six molecular subtypes. Two subtypes represented predominantly serous low malignant potential and low-grade endometrioid subtypes, respectively. The remaining four subtypes represented higher grade and advanced stage cancers of serous and endometrioid morphology. A novel subtype of high-grade serous cancers reflected a mesenchymal cell type, characterized by overexpression of N-cadherin and P-cadherin and low expression of differentiation markers, including CA125 and MUC1. A poor prognosis subtype was defined by a reactive stroma gene expression signature, correlating with extensive desmoplasia in such samples. A similar poor prognosis signature could be found using a semisupervised analysis. Each subtype displayed distinct levels and patterns of immune cell infiltration. Class prediction identified similar subtypes in an independent ovarian dataset with similar prognostic trends. Gene expression profiling identified molecular subtypes of ovarian cancer of biological and clinical importance.

  14. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.).

    PubMed

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-03-01

    The Gram-positive bacterium Bacillus thuringiensis (Bt) produces Cry toxins that have been used to control important agricultural pests. Evolution of resistance in target pests threatens the effectiveness of these toxins when used either in sprayed biopesticides or in Bt transgenic crops. Although alterations of the midgut cadherin-like receptor can lead to Bt Cry toxin resistance in many insects, whether the cadherin gene is involved in Cry1Ac resistance of Plutella xylostella (L.) remains unclear. Here, we present experimental evidence that resistance to Cry1Ac or Bt var. kurstaki (Btk) in P. xylostella is not due to alterations of the cadherin gene. The bona fide P. xylostella cadherin cDNA sequence was cloned and analyzed, and comparisons of the cadherin cDNA sequence among susceptible and resistant P. xylostella strains confirmed that Cry1Ac resistance was independent of mutations in this gene. In addition, real-time quantitative PCR (qPCR) indicated that cadherin transcript levels did not significantly differ among susceptible and resistant P. xylostella strains. RNA interference (RNAi)-mediated suppression of cadherin gene expression did not affect larval susceptibility to Cry1Ac toxin. Furthermore, genetic linkage assays using four cadherin gDNA allelic biomarkers confirmed that the cadherin gene is not linked to resistance against Cry1Ac in P. xylostella. Taken together, our findings demonstrate that Cry1Ac resistance of P. xylostella is independent of the cadherin gene. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Fascin Overexpression Promotes Cholangiocarcinoma RBE Cell Proliferation, Migration, and Invasion.

    PubMed

    Zhao, Haiying; Yang, Fuquan; Zhao, Wenyan; Zhang, Chunjv; Liu, Jingang

    2016-04-01

    Fascin is overexpressed in various tumor tissues and is closely related to tumor metastasis and invasion. However, the role of fascin in cholangiocarcinoma RBE cells has not been clearly reported. This study aimed to establish a cholangiocarcinoma cell line with stable and high expression of fascin to observe the effect of fascin on cell proliferation, migration, and invasion. A fascin overexpression vector, pcDNA3.1-Fascin, was constructed and transfected into the human cholangiocarcinoma RBE cell line. The results of real-time polymerase chain reaction, Western blot, and immunofluorescence indicated that fascin was steadily and highly expressed in RBE cells. The results of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and colony formation assay indicated that upregulated fascin expression could enhance cholangiocarcinoma cell proliferation. The results of wound healing assay and transwell assay indicated that fascin could promote cholangiocarcinoma cell migration and invasion, and a further study found that the nuclear factor-κB signaling pathway was activated after upregulation of fascin, whereas E-cadherin expression in these cells was significantly decreased. Additionally, E-cadherin expression was significantly increased after inhibiting nuclear factor-κB activity using inhibitor or small interfering RNA, and E-cadherin expression was decreased by fascin overexpression after nuclear factor-κB inhibition, suggesting that nuclear factor-κB signaling pathway was not involved in the regulation of E-cadherin by fascin. In summary, the results of this study demonstrated that fascin effectively promoted cholangiocarcinoma RBE cell proliferation, migration, and invasion. This study provides evidence for fascin as a potential target in the treatment of cholangiocarcinoma. © The Author(s) 2015.

  16. EMT blockage strategies: Targeting Akt dependent mechanisms for breast cancer metastatic behaviour modulation.

    PubMed

    Rafael, D; Doktorovová, S; Florindo, H F; Gener, P; Abasolo, I; Schwartz, S; Videira, M A

    2015-01-01

    Epithelial Mesenchymal Transition (EMT) is an event where epithelial cells acquire mesenchymal-like phenotype. EMT can occur as a physiological phenomenon during tissue development and wound healing, but most importantly, EMT can confer highly invasive properties to epithelial carcinoma cells. The impairment of E-cadherin expression, an essential cell-cell adhesion protein, together with an increase in the expression of mesenchymal markers, such as N-cadherin, vimentin, and fibronectin, characterize the EMT process and are usually correlated with tumor migration, and metastization. A wide range of micro-environmental and intracellular factors regulate tumor development and progression. The dynamic cross-talk between the adhesion-related proteins such as E-cadherin and the EMT-related transcription factors, with special focus on TWIST, will be discussed here, with the aim of finding a suitable biological pathway to be used as potential target for cancer therapy. Emerging concepts such as the role of the PI3K/AKT/TWIST pathway in the regulation of the E-cadherin expression will be highlighted, since it seems to be consistently involved in cells EMT. The well-known efficacy of the RNA interference as a tool to silence the expression of specific proteins has come into focus as a strategy to control different tumor sub-populations. Despite the oligonucleotides enormous sensitivity and low in vivo stability, new (nano)technological solutions are expected to enable RNAi clinical application in cancer therapy.

  17. Pericyte Derived Sphinogosine 1-Phosphate Induces the Expression of Adhesion Proteins and Modulates the Retinal Endothelial Cell Barrier

    PubMed Central

    McGuire, P.G.; Rangasamy, S.; Maestas, J.; Das, A.

    2011-01-01

    Objective The mechanisms that regulate the physical interaction of pericytes and endothelial cells and the effects of these interactions on interendothelial cell junctions are not well understood. We determined the extent to which vascular pericytes could regulate pericyte-endothelial adhesion and the consequences that this disruption might have on the function of the endothelial barrier. Methods and Results Human retinal microvascular endothelial cells were co-cultured with pericytes, and the effect on the monolayer resistance of endothelial cells and expression of the cell junction molecules N-cadherin and VE-cadherin were measured. The molecules responsible for the effect of pericytes or pericyte conditioned media on the endothelial resistance and cell junction molecules were further analyzed. Our results indicate that pericytes increase the barrier properties of endothelial cell monolayers. This barrier function is maintained through the secretion of pericyte-derived sphingosine 1-phosphate (S1P). S1P aids in maintenance of microvascular stability by up-regulating the expression of N-cadherin and VE-cadherin, and down-regulating the expression of angiopoietin 2. Conclusion Under normal circumstances, the retinal vascular pericytes maintain pericyte-endothelial contacts and vascular barrier function through the secretion of S1P. Alteration of pericyte-derived S1P production may be an important mechanism in the development of diseases characterized by vascular dysfunction and increased permeability. PMID:21940944

  18. Detection of circulating tumor cells harboring a unique ALK rearrangement in ALK-positive non-small-cell lung cancer.

    PubMed

    Pailler, Emma; Adam, Julien; Barthélémy, Amélie; Oulhen, Marianne; Auger, Nathalie; Valent, Alexander; Borget, Isabelle; Planchard, David; Taylor, Melissa; André, Fabrice; Soria, Jean Charles; Vielh, Philippe; Besse, Benjamin; Farace, Françoise

    2013-06-20

    The diagnostic test for ALK rearrangement in non-small-cell lung cancer (NSCLC) for crizotinib treatment is currently done on tumor biopsies or fine-needle aspirations. We evaluated whether ALK rearrangement diagnosis could be performed by using circulating tumor cells (CTCs). The presence of an ALK rearrangement was examined in CTCs of 18 ALK-positive and 14 ALK-negative patients by using a filtration enrichment technique and filter-adapted fluorescent in situ hybridization (FA-FISH), a FISH method optimized for filters. ALK-rearrangement patterns were determined in CTCs and compared with those present in tumor biopsies. ALK-rearranged CTCs and tumor specimens were characterized for epithelial (cytokeratins, E-cadherin) and mesenchymal (vimentin, N-cadherin) marker expression. ALK-rearranged CTCs were monitored in five patients treated with crizotinib. All ALK-positive patients had four or more ALK-rearranged CTCs per 1 mL of blood (median, nine CTCs per 1 mL; range, four to 34 CTCs per 1 mL). No or only one ALK-rearranged CTC (median, one per 1 mL; range, zero to one per 1 mL) was detected in ALK-negative patients. ALK-rearranged CTCs harbored a unique (3'5') split pattern, and heterogeneous patterns (3'5', only 3') of splits were present in tumors. ALK-rearranged CTCs expressed a mesenchymal phenotype contrasting with heterogeneous epithelial and mesenchymal marker expressions in tumors. Variations in ALK-rearranged CTC levels were detected in patients being treated with crizotinib. ALK rearrangement can be detected in CTCs of patients with ALK-positive NSCLC by using a filtration technique and FA-FISH, enabling both diagnostic testing and monitoring of crizotinib treatment. Our results suggest that CTCs harboring a unique ALK rearrangement and mesenchymal phenotype may arise from clonal selection of tumor cells that have acquired the potential to drive metastatic progression of ALK-positive NSCLC.

  19. Disturbance of DNA methylation patterns in the early phase of hepatocarcinogenesis induced by a choline-deficient L-amino acid-defined diet in rats.

    PubMed

    Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Sokuza, Yui; Mori, Chiharu; Nishikawa, Tomoki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2007-09-01

    The authors investigated the DNA methylation patterns of the E-cadherin, Connexin 26 (Cx26), Rassf1a and c-fos genes in the early phase of rat hepatocarcinogenesis induced by a choline-deficient L-amino acid-defined (CDAA) diet. Six-week-old F344 male rats were continuously fed with the CDAA diet, and three animals were then killed at each of 4 and 8 days and 3 weeks. Genomic DNA was extracted from livers for assessment of methylation status in the 5' upstream regions of E-cadherin, Cx26, Rassf1a and c-fos genes by bisulfite sequencing, compared with normal livers. The livers of rats fed the CDAA diet for 4 and 8 days and 3 weeks were methylated in E-cadherin, Cx26 and Rassf1a genes, while normal livers were all unmethylated. In contrast, normal livers were highly methylated in c-fos gene. Although the livers at 4 days were weakly methylated, those at 8 days and 3 weeks were markedly unmethylated. Methylation patterns of CpG sites in E-cadherin, Cx26 and Rassf1a were sparse and the methylation was not associated with gene repression. These results indicate that gene-specific DNA methylation patterns were found in livers of rats after short-term feeding of the CDAA diet, suggesting gene-specific hypermethylation might be involved in the early phase of rat hepatocarcinogenesis induced by the CDAA diet.

  20. Down-regulation of E-cadherin and catenins in human pituitary growth hormone-producing adenomas.

    PubMed

    Sano, Toshiaki; Rong, Qian Zhi; Kagawa, Noriko; Yamada, Shozo

    2004-01-01

    Growth hormone (GH)-producing pituitary adenomas can be ultrastructurally divided into two major types: densely granulated and sparsely granulated. The latter type of adenoma characteristically exhibits globular accumulations of cytokeratin filaments known as fibrous bodies, which are immunohistochemically identifiable as juxtanuclear dot-like immunoreactivity. We hypothesize that the formation of fibrous body might be related to dysfunction of adhesion molecules, because of the functional relationship between intermediate filaments and the cadherin-catenin complex and frequent observation of loss of cohesiveness of the adenoma cells. Our recent immunohistochemical study showed that expression of E-cadherin and its undercoat proteins, alpha-, beta- and gamma-catenin, in GH cell adenomas with prominent fibrous bodies was significantly reduced compared with GH cell adenomas without fibrous bodies and the normal adenohypophysial cells. Although no mutation of exon 3 of the beta-catenin gene was found in any GH cell adenomas with fibrous bodies, methylation-specific polymerase chain reaction analysis revealed that the E-cadherin promoter region was methylated in 37.5% of these adenomas, two of which displayed total methylation, but not in GH cell adenomas without fibrous bodies. We conclude that the decreased expression of the E-cadherin-catenin complex and methylation of the E-cadherin gene promoter region are events associated with the formation of fibrous bodies in GH cell adenomas. It remains to be clarified to explain the mechanism by which down-regulation of adhesion molecules is involved in the abnormal assembly of intermediate filaments.

  1. Nickel-induced Epithelial-Mesenchymal Transition by Reactive Oxygen Species Generation and E-cadherin Promoter Hypermethylation*

    PubMed Central

    Wu, Chih-Hsien; Tang, Sheau-Chung; Wang, Po-Hui; Lee, Huei; Ko, Jiunn-Liang

    2012-01-01

    Epithelial-mesenchymal transition (EMT) is considered a critical event in the pathogenesis of lung fibrosis and tumor metastasis. During EMT, the expression of differentiation markers switches from cell-cell junction proteins such as E-cadherin to mesenchymal markers such as fibronectin. Although nickel-containing compounds have been shown to be associated with lung carcinogenesis, the role of nickel in the EMT process in bronchial epithelial cells is not clear. The aim of this study was to examine whether nickel contributes to EMT in human bronchial epithelial cells. We also attempted to clarify the mechanisms involved in NiCl2-induced EMT. Our results showed that NiCl2 induced EMT phenotype marker alterations such as up-regulation of fibronectin and down-regulation of E-cadherin. In addition, the potent antioxidant N-acetylcysteine blocked EMT and expression of HIF-1α induced by NiCl2, whereas the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine restored the down-regulation of E-cadherin induced by NiCl2. Promoter hypermethylation of E-cadherin, determined by quantitative real time methyl-specific PCR and bisulfate sequencing, was also induced by NiCl2. These results shed new light on the contribution of NiCl2 to carcinogenesis. Specifically, NiCl2 induces down-regulation of E-cadherin by reactive oxygen species generation and promoter hypermethylation. This study demonstrates for the first time that nickel induces EMT in bronchial epithelial cells. PMID:22648416

  2. A Regulatory Network Involving β-Catenin, e-Cadherin, PI3k/Akt, and Slug Balances Self-Renewal and Differentiation of Human Pluripotent Stem Cells In Response to Wnt Signaling.

    PubMed

    Huang, Tyng-Shyan; Li, Li; Moalim-Nour, Lilian; Jia, Deyong; Bai, Jian; Yao, Zemin; Bennett, Steffany A L; Figeys, Daniel; Wang, Lisheng

    2015-05-01

    The mechanisms underlying disparate roles of the canonical Wnt signaling pathway in maintaining self-renewal or inducing differentiation and lineage specification in embryonic stem cells (ESCs) are not clear. In this study, we provide the first demonstration that self-renewal versus differentiation of human ESCs (hESCs) in response to Wnt signaling is predominantly determined by a two-layer regulatory circuit involving β-catenin, E-cadherin, PI3K/Akt, and Slug in a time-dependent manner. Short-term upregulation of β-catenin does not lead to the activation of T-cell factor (TCF)-eGFP Wnt reporter in hESCs. Instead, it enhances E-cadherin expression on the cell membrane, thereby enhancing hESC self-renewal through E-cadherin-associated PI3K/Akt signaling. Conversely, long-term Wnt activation or loss of E-cadherin intracellular β-catenin binding domain induces TCF-eGFP activity and promotes hESC differentiation through β-catenin-induced upregulation of Slug. Enhanced expression of Slug leads to a further reduction of E-cadherin that serves as a β-catenin "sink" sequestering free cytoplasmic β-catenin. The formation of such a framework reinforces hESCs to switch from a state of temporal self-renewal associated with short-term Wnt/β-catenin activation to definitive differentiation. Stem Cells 2015;33:1419-1433. © 2015 AlphaMed Press.

  3. Detachment-induced E-cadherin expression promotes 3D tumor spheroid formation but inhibits tumor formation and metastasis of lung cancer cells.

    PubMed

    Powan, Phattrakorn; Luanpitpong, Sudjit; He, Xiaoqing; Rojanasakul, Yon; Chanvorachote, Pithi

    2017-11-01

    The epithelial-to-mesenchymal transition is proposed to be a key mechanism responsible for metastasis-related deaths. Similarly, cancer stem cells (CSCs) have been proposed to be a key driver of tumor metastasis. However, the link between the two events and their control mechanisms is unclear. We used a three-dimensional (3D) tumor spheroid assay and other CSC-indicating assays to investigate the role of E-cadherin in CSC regulation and its association to epithelial-to-mesenchymal transition in lung cancer cells. Ectopic overexpression and knockdown of E-cadherin were found to promote and retard, respectively, the formation of tumor spheroids in vitro but had opposite effects on tumor formation and metastasis in vivo in a xenograft mouse model. We explored the discrepancy between the in vitro and in vivo results and demonstrated, for the first time, that E-cadherin is required as a component of a major survival pathway under detachment conditions. Downregulation of E-cadherin increased the stemness of lung cancer cells but had an adverse effect on their survival, particularly on non-CSCs. Such downregulation also promoted anoikis resistance and invasiveness of lung cancer cells. These results suggest that anoikis assay could be used as an alternative method for in vitro assessment of CSCs that involves dysregulated adhesion proteins. Our data also suggest that agents that restore E-cadherin expression may be used as therapeutic agents for metastatic cancers. Copyright © 2017 the American Physiological Society.

  4. A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation.

    PubMed

    Watanabe, Ryou; Hayashi, Ryuhei; Kimura, Yu; Tanaka, Yuji; Kageyama, Tomofumi; Hara, Susumu; Tabata, Yasuhiko; Nishida, Kohji

    2011-09-01

    We examined the feasibility of using gelatin hydrogels as carrier sheets for the transplantation of cultivated corneal endothelial cells. The mechanical properties, transparency, and permeability of gelatin hydrogel sheets were compared with those of atelocollagen sheets. Immunohistochemistry (ZO-1, Na(+)/K(+)-ATPase, and N-cadherin), hematoxylin and eosin staining, and scanning electron microscopy were performed to assess the integrity of corneal endothelial cells that were cultured on gelatin hydrogel sheets. The gelatin hydrogel sheets displayed greater transparency, elastic modulus, and albumin permeability compared to those of atelocollagen sheets. The corneal endothelial cells on gelatin hydrogel sheets showed normal expression levels of ZO-1, Na(+)/K(+)-ATPase, and N-cadherin. Hematoxylin and eosin staining revealed the formation of a continuous monolayer of cells attached to the gelatin hydrogel sheet. Scanning electron microscopy observations showed that the corneal endothelial cells were arranged in a regular, mosaic, and polygonal pattern with normal cilia. These results indicate that the gelatin hydrogel sheet is a promising material to transport corneal endothelial cells during transplantation.

  5. Cadherin-17 is required to maintain pronephric duct integrity during zebrafish development.

    PubMed

    Horsfield, Julia; Ramachandran, Anassuya; Reuter, Katja; LaVallie, Edward; Collins-Racie, Lisa; Crosier, Kathryn; Crosier, Philip

    2002-07-01

    We have isolated a zebrafish cadherin that is orthologous to human LI-cadherin (CDH17). Zebrafish cdh17 is expressed exclusively in the pronephric ducts during embryogenesis, and in the mesonephros during larval development and adulthood. Like its mammalian ortholog, cdh17 is also expressed in liver and intestine in adult zebrafish. We show that cdh17-positive mesodermal cells do not contribute to the hematopoietic system. Consistent with a cell adhesion role for Cdh17, depletion of Cdh17 function using antisense morpholino oligonucleotides compromised cell cohesion during pronephric duct formation. Our results indicate that Cdh17 is necessary for maintaining the integrity of the pronephric ducts during zebrafish embryogenesis. This finding contrasts with the role of mammalian CDH17, which does not appear to be involved in nephric development.

  6. Alterations induced by E-cadherin and beta-catenin antibodies during the development of Bufo arenarum (Anura-Bufonidae).

    PubMed

    Izaguirre, M F; Adur, J F; Soler, A P; Casco, V H

    2001-10-01

    E(epithelial)-cadherin is a member of a calcium-dependent family of cell surface glycoproteins involved in cell-cell adhesion and morphogenesis. Catenins are a large family of proteins that connect the cadherins to the cytoskeleton. They are important for cadherin function and for transducing signals involved in specification of cell fate during embryogenesis. The best characterized catenins include alpha-, beta-, gamma-, and p120-catenin. Using specific antibodies, we studied the expression and distribution of E-cadherin, and alpha- and beta-catenin in developmental stages of Bufo arenarum toad. The three proteins were found co-localized in stages 19 to 41 of development. Surprisingly, E-cadherin was the only of these three proteins found earlier than stage 19. To test whether E-cadherin and beta-catenin have a functional role in Bufo arenarum embryogenesis, stage 17 whole embryos were incubated with anti-E-cadherin and beta-catenin antibodies. Both anti-E-cadherin and anti-beta-catenin antibodies induced severe morphological alterations. However, while alterations produced by the anti-beta-catenin antibody, showed some variability from the most severe (neural tube and notochord duplication) to a simple delay in development, the alterations with anti-E-cadherin were homogeneous. These observations suggest a critical role for E-cadherin and beta-catenin in the early embryonic development of the Bufo arenarum toad. Our results are consistent with the developmental role of these proteins in other species. One of the most surprising findings was the blockage with the anti-beta-catenin antibodies on later embryo stages, and we hypothesize that the partial axes duplication could be mediated by the notochord induction.

  7. Thermo-chemotherapy Induced miR-218 upregulation inhibits the invasion of gastric cancer via targeting Gli2 and E-cadherin.

    PubMed

    Ruan, Qiang; Fang, Zhi-Yuan; Cui, Shu-Zhong; Zhang, Xiang-Liang; Wu, Yin-Bing; Tang, Hong-Sheng; Tu, Yi-Nuo; Ding, Yan

    2015-08-01

    Thermo-chemotherapy has been proven to reduce the invasion capability of cancer cells. However, the molecular mechanism underlying this anti-invasion effect is still unclear. In this study, the role of thermo-chemotherapy in the inhibition of tumor invasion was studied. The results demonstrated that expression of miR-218 was downregulated in gastric cancer tissues, which had a positive correlation with tumor invasion and metastasis. In vitro thermo-chemotherapy increased miR-218 expression in SGC7901 cells and inhibited both proliferation and invasion of cancer cells. Gli2 was identified as a downstream target of miR-218, and its expression was negatively regulated by miR-218. The thermo-chemotherapy induced miR-218 upregulation was also accompanied by increasing of E-cadherin expression. In conclusion, the present study indicates that thermo-chemotherapy can effectively decrease the invasion capability of cancer cells and increase cell-cell adhesion. miR-218 and its downstream target Gli2, as well as E-cadherin, participate in the anti-invasion process.

  8. Correlation between E-cadherin-regulated cell adhesion and human osteosarcoma MG-63 cell anoikis.

    PubMed

    Lin, Ding-Sheng; Cai, Le-Yi; Ding, Jian; Gao, Wei-Yang

    2014-01-01

    The aim of this study was to investigate the relationship between cell adhesion and anoikis evasion among human osteosarcoma cells (MG-63), and to further study the molecular mechanisms. Human osteosarcoma cells (MG-63) were assessed for apoptosis, and caspase-3, E-cadherin and β-catenin expression in EDTA and control non-EDTA groups. MG-63 cells were predominantly aggregated when in suspension, and the suspended cells were more dispersed in the EDTA group. Following culture in suspension for 24 h, 48 h, or 72 h, the rates of apoptosis were 34.88%±3.64%, 59.3%±7.22% and 78.5%±5.21% in the experimental group and 7.34%±2.13%, 14.7%±3.69%, and 21.4%±3.60% in the control group, respectively. Caspase-3 expression progressively increased and E-cadherin and β-catenin were decreased in the experimental group, whereas there was no change in the control group. MG-63 cells could avoid anoikis through cell adhesion, and E-cadherin might play a role in this process.

  9. Perturbed desmosomal cadherin expression in grainy head-like 1-null mice.

    PubMed

    Wilanowski, Tomasz; Caddy, Jacinta; Ting, Stephen B; Hislop, Nikki R; Cerruti, Loretta; Auden, Alana; Zhao, Lin-Lin; Asquith, Stephen; Ellis, Sarah; Sinclair, Rodney; Cunningham, John M; Jane, Stephen M

    2008-03-19

    In Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial delay in coat growth, and older mice exhibit hair loss as a result of poor anchoring of the hair shaft in the follicle. The mice also develop palmoplantar keratoderma, analogous to humans with DSG1 mutations. Sequence analysis, DNA binding, and chromatin immunoprecipitation experiments demonstrate that the human and mouse Dsg1 promoters are direct targets of GRHL1. Ultrastructural analysis reveals reduced numbers of abnormal desmosomes in the interfollicular epidermis. These findings establish GRHL1 as an important regulator of the Dsg1 genes in the context of hair anchorage and epidermal differentiation, and suggest that cadherin family genes are key targets of the grainy head-like genes across 700 million years of evolution.

  10. Perturbed desmosomal cadherin expression in grainy head-like 1-null mice

    PubMed Central

    Wilanowski, Tomasz; Caddy, Jacinta; Ting, Stephen B; Hislop, Nikki R; Cerruti, Loretta; Auden, Alana; Zhao, Lin-Lin; Asquith, Stephen; Ellis, Sarah; Sinclair, Rodney; Cunningham, John M; Jane, Stephen M

    2008-01-01

    In Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial delay in coat growth, and older mice exhibit hair loss as a result of poor anchoring of the hair shaft in the follicle. The mice also develop palmoplantar keratoderma, analogous to humans with DSG1 mutations. Sequence analysis, DNA binding, and chromatin immunoprecipitation experiments demonstrate that the human and mouse Dsg1 promoters are direct targets of GRHL1. Ultrastructural analysis reveals reduced numbers of abnormal desmosomes in the interfollicular epidermis. These findings establish GRHL1 as an important regulator of the Dsg1 genes in the context of hair anchorage and epidermal differentiation, and suggest that cadherin family genes are key targets of the grainy head-like genes across 700 million years of evolution. PMID:18288204

  11. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo

    PubMed Central

    Broermann, Andre; Winderlich, Mark; Block, Helena; Frye, Maike; Rossaint, Jan; Zarbock, Alexander; Cagna, Giuseppe; Linnepe, Ruth; Schulte, Dörte; Nottebaum, Astrid Fee

    2011-01-01

    We have recently shown that vascular endothelial protein tyrosine phosphatase (VE-PTP), an endothelial membrane protein, associates with VE-cadherin and is required for optimal VE-cadherin function and endothelial cell contact integrity. The dissociation of VE-PTP from VE-cadherin is triggered by vascular endothelial growth factor (VEGF) and by the binding of leukocytes to endothelial cells in vitro, suggesting that this dissociation is a prerequisite for the destabilization of endothelial cell contacts. Here, we show that VE-cadherin/VE-PTP dissociation also occurs in vivo in response to LPS stimulation of the lung or systemic VEGF stimulation. To show that this dissociation is indeed necessary in vivo for leukocyte extravasation and VEGF-induced vascular permeability, we generated knock-in mice expressing the fusion proteins VE-cadherin-FK 506 binding protein and VE-PTP-FRB* under the control of the endogenous VE-cadherin promoter, thus replacing endogenous VE-cadherin. The additional domains in both fusion proteins allow the heterodimeric complex to be stabilized by a chemical compound (rapalog). We found that intravenous application of the rapalog strongly inhibited VEGF-induced (skin) and LPS-induced (lung) vascular permeability and inhibited neutrophil extravasation in the IL-1β inflamed cremaster and the LPS-inflamed lung. We conclude that the dissociation of VE-PTP from VE-cadherin is indeed required in vivo for the opening of endothelial cell contacts during induction of vascular permeability and leukocyte extravasation. PMID:22025303

  12. Curcumin reverses irinotecan resistance in colon cancer cell by regulation of epithelial-mesenchymal transition.

    PubMed

    Zhang, Chunhong; Xu, Yangjie; Wang, Haowen; Li, Gang; Yan, Han; Fei, Zhenghua; Xu, Yunsheng; Li, Wenfeng

    2018-04-01

    The objective of this study was to investigate the effect and the mechanism by which curcumin reverses irinotecan-induced chemotherapy resistance in colon cancer. Construction of irinotecan-resistant colon cancer model LoVo/CPT-11R cells was performed by increasing drug concentration. The Cell Counting Kit-8 assay was used to detect inhibition of proliferation; cell morphology was observed by an optical microscope. Quantitative RT-PCR and western blotting were performed to detect molecular marker expressions during epithelial-mesenchymal transition (EMT); drug-resistant cells were treated with curcumin at different concentrations and Cell Counting Kit-8 was reperformed to detect cell proliferation after treatments. Drug-resistant cells were then divided into four groups: control group, irinotecan group, curcumin group, and irinotecan+curcumin group; quantitative RT-PCR and western blotting were performed to detect molecular marker expressions during epithelial-mesenchymal transition. Flow cytometry was used to detect cell apoptosis after grouping, and apoptosis-related protein was detected by western blotting. LoVo/CPT-11R cells could survive in culture medium containing irinotecan at 60 μg/ml and the drug-resistance index was 5.69; the drug-resistant cells had a larger volume than normal cells and were poorly connected to each other. E-cadherin expression was downregulated, whereas vimentin and N-cadherin expressions were upregulated. After curcumin treatment, drug-resistant cell proliferation was significantly inhibited; in the curcumin+irinotecan treatment group, E-cadherin expression was upregulated, whereas vimentin and N-cadherin expressions were downregulated. Curcumin could significantly increase cell apoptosis. EMT is involved in the development of irinotecan resistance and curcumin can reverse this drug resistance through reversion of the EMT process.

  13. Cadherin composition and multicellular aggregate invasion in organotypic models of epithelial ovarian cancer intraperitoneal metastasis.

    PubMed

    Klymenko, Y; Kim, O; Loughran, E; Yang, J; Lombard, R; Alber, M; Stack, M S

    2017-10-19

    During epithelial ovarian cancer (EOC) progression, intraperitoneally disseminating tumor cells and multicellular aggregates (MCAs) present in ascites fluid adhere to the peritoneum and induce retraction of the peritoneal mesothelial monolayer prior to invasion of the collagen-rich submesothelial matrix and proliferation into macro-metastases. Clinical studies have shown heterogeneity among EOC metastatic units with respect to cadherin expression profiles and invasive behavior; however, the impact of distinct cadherin profiles on peritoneal anchoring of metastatic lesions remains poorly understood. In the current study, we demonstrate that metastasis-associated behaviors of ovarian cancer cells and MCAs are influenced by cellular cadherin composition. Our results show that mesenchymal N-cadherin-expressing (Ncad+) cells and MCAs invade much more efficiently than E-cadherin-expressing (Ecad+) cells. Ncad+ MCAs exhibit rapid lateral dispersal prior to penetration of three-dimensional collagen matrices. When seeded as individual cells, lateral migration and cell-cell junction formation precede matrix invasion. Neutralizing the Ncad extracellular domain with the monoclonal antibody GC-4 suppresses lateral dispersal and cell penetration of collagen gels. In contrast, use of a broad-spectrum matrix metalloproteinase (MMP) inhibitor (GM6001) to block endogenous membrane type 1 matrix metalloproteinase (MT1-MMP) activity does not fully inhibit cell invasion. Using intact tissue explants, Ncad+ MCAs were also shown to efficiently rupture peritoneal mesothelial cells, exposing the submesothelial collagen matrix. Acquisition of Ncad by Ecad+ cells increased mesothelial clearance activity but was not sufficient to induce matrix invasion. Furthermore, co-culture of Ncad+ with Ecad+ cells did not promote a 'leader-follower' mode of collective cell invasion, demonstrating that matrix remodeling and creation of invasive micro-tracks are not sufficient for cell penetration of collagen matrices in the absence of Ncad. Collectively, our data emphasize the role of Ncad in intraperitoneal seeding of EOC and provide the rationale for future studies targeting Ncad in preclinical models of EOC metastasis.

  14. Epithelial-type and neural-type cadherin expression in malignant noncarcinomatous neoplasms with epithelioid features that involve the soft tissues.

    PubMed

    Laskin, William B; Miettinen, Markku

    2002-04-01

    Transmembrane adhesion molecules, epithelial-type cadherin (ECAD) and neural-type cadherin (NCAD), help in regulating transformations between epithelial and mesenchymal cells in the developing embryo and in maintaining the epithelioid phenotype. Consequently, the presence of epithelioid cells in certain malignant noncarcinomatous neoplasms raises speculation that the expression of ECAD and NCAD in these neoplasms may have diagnostic significance. To investigate the utility of ECAD and NCAD immunoexpression in distinguishing malignant (noncarcinomatous) neoplasms with epithelioid features that involve the soft tissues. Membranous immunoreactivity of anti-ECAD and anti-NCAD was evaluated on archived cases selected from the files of the Armed Forces Institute of Pathology. Epithelial-type cadherin was found in biphasic synovial sarcoma (35 of 35 cases), malignant melanoma (13/21), monophasic fibrous synovial sarcoma (13/26), clear cell sarcoma (4/9), poorly differentiated synovial sarcoma (3/13), diffuse mesothelioma (4/20), malignant epithelioid peripheral nerve sheath tumor (1/6), and epithelioid sarcoma (5/62). Neural-type cadherin was observed in chordoma (11/11), biphasic synovial sarcoma (30/35), diffuse mesothelioma (14/20), malignant melanoma (14/25), epithelioid sarcoma (24/63), epithelioid angiosarcoma (1/4), poorly differentiated synovial sarcoma (2/13), clear cell sarcoma (1/10), and monophasic fibrous synovial sarcoma (1/26). Eighteen cases of primary cutaneous squamous cell carcinomas all tested positive for ECAD, whereas NCAD was focally observed in 5 cases. No expression of either molecule was observed in cases of epithelioid hemangioendothelioma (n = 9), alveolar soft part sarcoma (n = 8), and extraskeletal myxoid chondrosarcoma (n = 7). Epithelial-type and neural-type cadherins are found in a variety of noncarcinomatous neoplasms with epithelioid features that involve the soft tissues and can be utilized, in association with other immunomarkers, in distinguishing chordoma (100% NCAD) from extraskeletal myxoid chondrosarcoma and conventional chondrosarcoma of bone (0% NCAD), squamous cell carcinoma (100% ECAD) from epithelioid sarcoma (8% ECAD), and biphasic synovial sarcoma (100% ECAD) from diffuse mesothelioma (20% ECAD).

  15. MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells.

    PubMed

    Ponnusamy, M P; Lakshmanan, I; Jain, M; Das, S; Chakraborty, S; Dey, P; Batra, S K

    2010-10-21

    The acquisition of invasiveness in ovarian cancer (OC) is accompanied by the process of epithelial-to-mesenchymal transition (EMT). The MUC4 mucin is overexpressed in ovarian tumors and has a role in the invasiveness of OC cells. The present study was aimed at evaluating the potential involvement of MUC4 in the metastasis of OC cells by inducing EMT. Ectopic overexpression of MUC4 in OC cells (SKOV3-MUC4) resulted in morphological alterations along with a decreased expression of epithelial markers (E-cadherin and cytokeratin (CK)-18) and an increased expression of mesenchymal markers (N-cadherin and vimentin) compared with the control cells (SKOV3-vector). Also, pro-EMT transcription factors TWIST1, TWIST2 and SNAIL showed an upregulation in SKOV3-MUC4 cells. We further investigated the pathways upstream of N-cadherin, such as focal adhesion kinase (FAK), MKK7, JNK1/2 and c-Jun, which were also activated in the SKOV3-MUC4 cells compared with SKOV3-vector cells. Inhibition of phospho-FAK (pFAK) and pJNK1/2 decreased N-cadherin expression in the MUC4-overexpressing cells, which further led to a significant decrease in cellular motility. Knockdown of N-cadherin decreased the activation of extracellular signal-regulated kinase-1/2 (ERK1/2), AKT and matrix metalloproteinase 9 (MMP9), and inhibited the motility in the SKOV3-MUC4 cells. Upon in vivo tumorigenesis and metastasis analysis, the SKOV3-MUC4 cells produced significantly larger tumors and demonstrated a higher incidence of metastasis to distance organs (peritoneal wall, colon, intestine, stomach, lymph nodes, liver and diaphragm). Taken together, our study reveals a novel role for MUC4 in inducing EMT through the upregulation of N-cadherin and promoting metastasis of OC cells.

  16. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.

    2010-07-02

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors ormore » siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.« less

  17. Nuclear translocation of Acinetobacter baumannii transposase induces DNA methylation of CpG regions in the promoters of E-cadherin gene.

    PubMed

    Moon, Dong Chan; Choi, Chul Hee; Lee, Su Man; Lee, Jung Hwa; Kim, Seung Il; Kim, Dong Sun; Lee, Je Chul

    2012-01-01

    Nuclear targeting of bacterial proteins has emerged as a pathogenic mechanism whereby bacterial proteins induce host cell pathology. In this study, we examined nuclear targeting of Acinetobacter baumannii transposase (Tnp) and subsequent epigenetic changes in host cells. Tnp of A. baumannii ATCC 17978 possesses nuclear localization signals (NLSs), (225)RKRKRK(230). Transient expression of A. baumannii Tnp fused with green fluorescent protein (GFP) resulted in the nuclear localization of these proteins in COS-7 cells, whereas the truncated Tnp without NLSs fused with GFP were exclusively localized in the cytoplasm. A. baumannii Tnp was found in outer membrane vesicles, which delivered this protein to the nucleus of host cells. Nuclear expression of A. baumannii Tnp fused with GFP in A549 cells induced DNA methylation of CpG regions in the promoters of E-cadherin (CDH1) gene, whereas the cytoplasmic localization of the truncated Tnp without NLSs fused with GFP did not induce DNA methylation. DNA methylation in the promoters of E-cadherin gene induced by nuclear targeting of A. baumannii Tnp resulted in down-regulation of gene expression. In conclusion, our data show that nuclear traffic of A. baumannii Tnp induces DNA methylation of CpG regions in the promoters of E-cadherin gene, which subsequently down-regulates gene expression. This study provides a new insight into the epigenetic control of host genes by bacterial proteins.

  18. Targeted p120-Catenin Ablation Disrupts Dental Enamel Development

    PubMed Central

    Bartlett, John D.; Dobeck, Justine M.; Tye, Coralee E.; Perez-Moreno, Mirna; Stokes, Nicole; Reynolds, Albert B.; Fuchs, Elaine; Skobe, Ziedonis

    2010-01-01

    Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix proteins, and the ameloblasts start moving in rows that slide by one another. This movement is necessary to form the characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to mediate attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse enamel organ had a striking effect. Secretory stage ameloblasts detached from surrounding tissues, lost polarity, flattened, and ameloblast E- and N-cadherin expression became undetectable by immunostaining. The enamel itself was poorly mineralized and appeared to be composed of a thin layer of merged spheres that abraded from the tooth. Significantly, p120 mosaic mouse teeth were capable of forming normal enamel demonstrating that the enamel defects were not a secondary effect of p120 ablation. Surprisingly, blood-filled sinusoids developed in random locations around the developing teeth. This has not been observed in other p120-ablated tissues and may be due to altered p120-mediated cell signaling. These data reveal a critical role for p120 in tooth and dental enamel development and are consistent with p120 directing the attachment and detachment of the secretory stage ameloblasts as they move in rows. PMID:20862276

  19. Development of Urinary Bladder Pre-Neoplasia by Schistosoma haematobium Eggs and Chemical Carcinogen in Mice

    PubMed Central

    Chala, Bayissa; Choi, Min-Ho; Moon, Kyung Chul; Kim, Hyung Suk; Kwak, Cheol; Hong, Sung-Tae

    2017-01-01

    Schistosoma haematobium is a biocarcinogen of human urinary bladder (UB). The present study investigated developing UB cancer mouse model by injecting S. haematobium eggs into the bladder wall and introduction of chemical carcinogens. Histopathological findings showed mild hyperplasia to epithelial vacuolar change, and high grade dysplasia. Squamous metaplasia was observed in the S. haematobium eggs+NDMA group at week 12 but not in other groups. Immunohistochemistry revealed significantly high expression of Ki-67 in urothelial epithelial cells of the S. haematobium eggs+BBN group at week 20. The qRT-PCR showed high expression of p53 gene in S. haematobium eggs group at week 4 and S. haematobium eggs+BBN group at week 20. E-cadherin and vimentin showed contrasting expression in S. haematobium eggs+BBN group. Such inverse expression of E-cadherin and vimentin may indicate epithelial mesenchymal transition in the UB tissue. In conclusion, S. haematobium eggs and nitrosamines may transform UB cells into squamous metaplasia and dysplasia in correlation with increased expression of Ki-67. Marked decrease in E-cadherin and increase in p53 and vimentin expressions may support the transformation. The present study introduces a promising modified animal model for UB cancer study using S. haematobium eggs. PMID:28285503

  20. The status of intercellular junctions in established lens epithelial cell lines

    PubMed Central

    Dave, Alpana; Craig, Jamie E.

    2012-01-01

    Purpose Cataract is the major cause of vision-related disability worldwide. Mutations in the crystallin genes are the most common known cause of inherited congenital cataract. Mutations in the genes associated with intercellular contacts, such as Nance-Horan Syndrome (NHS) and Ephrin type A receptor-2 (EPHA2), are other recognized causes of congenital cataract. The EPHA2 gene has been also associated with age-related cataract, suggesting that intercellular junctions are important in not only lens development, but also in maintaining lens transparency. The purpose of this study was to analyze the expression and localization of the key cell junction and cytoskeletal proteins, and of NHS and EPHA2, in established lens epithelial cell lines to determine their suitability as model epithelial systems for the functional investigation of genes involved in intercellular contacts and implicated in cataract. Methods The expression and subcellular localization of occludin and zona occludens protein-1 (ZO-1), which are associated with tight junctions; E-cadherin, which is associated with adherence junctions; and the cytoskeletal actin were analyzed in monolayers of a human lens epithelial cell line (SRA 01/04) and a mouse lens epithelial cell line (αTN4). In addition, the expression and subcellular localization of the NHS and EPHA2 proteins were analyzed in these cell lines. Protein or mRNA expression was respectively determined by western blotting or reverse transcription-polymerase chain reaction (RT–PCR), and localization was determined by immunofluorescence labeling. Results Human SRA 01/04 and mouse αTN4 lens epithelial cells expressed either the proteins of interest or their encoding mRNA. Occludin, ZO-1, and NHS proteins localized to the cellular periphery, whereas E-cadherin, actin, and EPHA2 localized in the cytoplasm in these cell lines. Conclusions The human SRA 01/04 and mouse αTN4 lens epithelial cells express the key junctional proteins. The localization patterns of these proteins suggest that these cell lines form tight junctions but do not form E-cadherin-based adherence junctions. These data further indicate that the regulatory role of NHS in actin remodeling, suggested in another study, is cell type dependent. In conclusion, the SRA 01/04 and αTN4 lens epithelial cell lines model some characteristics of an epithelium. PMID:23288986

  1. The status of intercellular junctions in established lens epithelial cell lines.

    PubMed

    Dave, Alpana; Craig, Jamie E; Sharma, Shiwani

    2012-01-01

    Cataract is the major cause of vision-related disability worldwide. Mutations in the crystallin genes are the most common known cause of inherited congenital cataract. Mutations in the genes associated with intercellular contacts, such as Nance-Horan Syndrome (NHS) and Ephrin type A receptor-2 (EPHA2), are other recognized causes of congenital cataract. The EPHA2 gene has been also associated with age-related cataract, suggesting that intercellular junctions are important in not only lens development, but also in maintaining lens transparency. The purpose of this study was to analyze the expression and localization of the key cell junction and cytoskeletal proteins, and of NHS and EPHA2, in established lens epithelial cell lines to determine their suitability as model epithelial systems for the functional investigation of genes involved in intercellular contacts and implicated in cataract. The expression and subcellular localization of occludin and zona occludens protein-1 (ZO-1), which are associated with tight junctions; E-cadherin, which is associated with adherence junctions; and the cytoskeletal actin were analyzed in monolayers of a human lens epithelial cell line (SRA 01/04) and a mouse lens epithelial cell line (αTN4). In addition, the expression and subcellular localization of the NHS and EPHA2 proteins were analyzed in these cell lines. Protein or mRNA expression was respectively determined by western blotting or reverse transcription-polymerase chain reaction (RT-PCR), and localization was determined by immunofluorescence labeling. Human SRA 01/04 and mouse αTN4 lens epithelial cells expressed either the proteins of interest or their encoding mRNA. Occludin, ZO-1, and NHS proteins localized to the cellular periphery, whereas E-cadherin, actin, and EPHA2 localized in the cytoplasm in these cell lines. The human SRA 01/04 and mouse αTN4 lens epithelial cells express the key junctional proteins. The localization patterns of these proteins suggest that these cell lines form tight junctions but do not form E-cadherin-based adherence junctions. These data further indicate that the regulatory role of NHS in actin remodeling, suggested in another study, is cell type dependent. In conclusion, the SRA 01/04 and αTN4 lens epithelial cell lines model some characteristics of an epithelium.

  2. Induction of E-cadherin in lung cancer and interaction with growth suppression by histone deacetylase inhibition.

    PubMed

    Kakihana, Masatoshi; Ohira, Tatsuo; Chan, Daniel; Webster, Robin B; Kato, Harubumi; Drabkin, Harry A; Gemmill, Robert M

    2009-12-01

    Loss of E-cadherin confers a poor prognosis in lung cancer patients and is associated with in vitro resistance to endothelial growth factor receptor inhibitors. Zinc finger E box-binding homeobox (ZEB)-1, the predominant transcriptional suppressor of E-cadherin in lung tumor lines, recruits histone deacetylases (HDACs) as co-repressors. NSCLC cell lines were treated with HDAC inhibitors and analyzed for E-cadherin induction, growth inhibition and apoptosis. National Cancer Institute-H157 cells expressing ectopic E-cadherin were tested for tumorigenicity in murine xenografts. We found that treatment with MS-275, compared to vorinostat (SAHA), valproic acid or trichostatin A, was most effective in E-cadherin up-regulation and persistence in non-small cell lung cancers. As with other tumor types and HDAC inhibitors, MS-275 inhibited growth and induced apoptosis. Importantly, blocking E-cadherin induction by short hairpin RNA resulted in less inhibition by MS-275, implicating the epithelial to mesenchymal phenotype process as a contributing factor. In contrast to H460 and H661, H157 cells were resistant to E-cadherin up-regulation by HDAC inhibitors. However, E-cadherin was restored, in a synergistic manner, by combined knockdown of ZEB-1 and ZEB-2. In addition, H157 cells stably transfected with E-cadherin were markedly attenuated in their tumor forming ability. Lastly, combining MS-275 with the microtubule stabilizing agent, paclitaxel, or 17-(allylamino)-17-demethoxygeldanamycin, a heat shock protein 90 inhibitor, resulted in synergistic growth inhibition. Since MS-275 has no reported activity against HDAC6, which regulates both microtubule and heat shock protein 90 functions, other mechanisms of synergy are anticipated. These results support the role of ZEB proteins and HDAC inhibitors in the pathogenesis and treatment of lung cancer.

  3. Regulation of Motility, Invasion and Metastatic Potential of Squamous Cell Carcinoma by 1,25D3

    PubMed Central

    Ma, Yingyu; Yu, Wei-Dong; Su, Bing; Seshadri, Mukund; Luo, Wei; Trump, Donald L.; Johnson, Candace S.

    2012-01-01

    BACKGROUND 1,25D3, the active metabolite of vitamin D, has been shown to exhibit broad spectrum anti-tumor activity in xenograft animal models. However, its activity against metastatic disease has not been extensively investigated. METHODS Squamous cell carcinoma (SCC) or 1,25D3-resistant variant SCC-DR cells were treated with 1,25D3. Actin organization was examined by immunofluorescence assay. Cell migration was assessed by “wound” healing and chemotactic migration assay. Cell invasion was assessed by Matrigel-based invasion assay and in situ zymography. MMP-2 and MMP-9 expression and secretion was examined by immunoblot analysis and ELISA, respectively. E-cadherin expression was assessed by flow cytometry, immunoblot analysis and immunohistochemistry. Knockdown of E-cadherin was achieved by siRNA. Experimental metastasis mouse model was done by intravenous injection of tumor cells. Lung tumor development was assessed by magnetic resonance imaging, gross observation and histology. RESULTS SCC cellular morphology and actin organization were altered by 10 nM of 1,25D3. 1,25D3 inhibited SCC cell motility and invasion, which was associated with reduced expression and secretion of MMP-2 and MMP-9. 1,25D3 promoted the expression of E-cadherin. These findings were not observed in SCC-DR cells. Knock down of E-cadherin rescued 1,25D3-inhibited cell migration. Intravenous injection of SCC or SCC-DR cells resulted in the establishment of extensive pulmonary lesions in saline-treated C3H mice. Treatment with 1,25D3 resulted in a marked reduction in the formation of lung tumor colonies in animals injected with SCC but not SCC-DR cells. CONCLUSIONS 1,25D3 suppresses SCC cell motility, invasion and metastasis, partially through the promotion of E-cadherin-mediated cell-cell adhesion. PMID:22833444

  4. [Inhibitory effect of imrecoxib combined with lobaplatin on tumor growth and lymph node metastasis of human lung cancer xenografts in nude mice].

    PubMed

    Wang, D C; Wang, L C; Wang, L J; Chen, G; Zhao, Y X; Zhao, Z F; Li, Y H

    2016-05-23

    To evaluate the inhibitory effect of imrecoxib combined with lobaplatin on tumor growth and lymph node metastasis of human lung adenocarcinoma xenografts in nude mice, and to explore its possible mechanisms. Human lung cancer A549 cells were injected into Bal B/c nude mice subcutaneously. Twenty-eight healthy male nude mice were randomly divided into 4 groups: the control group, imrecoxib group, lobaplatin group and imrecoxib combined with lobaplatin group. Each group was treated with appropriate drugs and the tumor size was measured every five days. The expression of ezrin and E-cadherin protein was detected by immunohistochemistry and flow cytometry. Ezrin and E-cadherin mRNA were detected by real-time PCR. The tumor inhibition rates of imrecoxib group, lobaplatin group and combination group were 36.7%, 54.6% and 69.2%, respectively. The tumor volumes of imrecoxib group [(905.33±113.31) mm(3)] and combination group [(507.74±77.50) mm(3)] were significantly lower than that of the control group (1355.33±189.04) mm(3) (P<0.05), and the tumor weights were significantly reduced [(1.13±0.14) g, (0.63±0.10) g respectively] vs. (1.69±0.24) g (P<0.05). The expressions of ezrin protein and mRNA in the imrecoxib group and combined treatment group were significantly lower than that of the control group (136.53±35.52, 74.72±19.48 vs. 175.62±21.16 for protein expression level; 0.54±0.03, 0.36±0.03 vs. 1.02±0.02 for mRNA expression level, respectively, P<0.05 for both), while the expression of E-cadherin protein and mRNA in the imrecoxib group and combined treatment group was significantly higher than that of the control group (253.78±38.87, 308.94±24.67 vs. 213.66±30.31 for protein expression level; 2.19±0.02, 3.02±0.02 vs. 1.05±0.03 for mRNA expression level, respectively, P<0.05 for both). There was a significant negative correlation between ezrin protein and E-cadherin protein (r=-0.737, P<0.01), as well as between ezrin mRNA and E-cadherin mRNA (r=-0.977, P<0.01). Administration of imrecoxib combined with lobaphatin has inhibitory effects on the growth of non-small cell lung cancer xenografts and lymph node metastasis via down-regulated ezrin and upregulated E-cadherin. Imrecoxib and lobaplatin have a synergistic antitumor effect.

  5. miR-885-5p upregulation promotes colorectal cancer cell proliferation and migration by targeting suppressor of cytokine signaling.

    PubMed

    Su, Meng; Qin, Baoli; Liu, Fang; Chen, Yuze; Zhang, Rui

    2018-07-01

    The aim of the present study was to investigate the role of microRNA (miR)-885-5p in colorectal cancer cell proliferation and migration, and to determine the possible underlying molecular mechanisms. The expression of miR-885-5p in colorectal cancer tissue and cells was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression levels of three suppressor of cytokine signaling (SOCS) factors were detected by RT-qPCR and western blotting. The effects of miR-885-5p on tumor cell proliferation and migration were studied using MTT and Transwell assays, respectively. Additionally, the expression levels of epithelial-mesenchymal transition (EMT)-related proteins (N-cadherin, E-cadherin, vimentin and Snail) were detected by RT-qPCR and western blot analysis. Furthermore, the target of miR-885-5p was predicted and confirmed using a luciferase reporter assay. miR-885-5p was demonstrated to be upregulated and SOCS was downregulated in colorectal cancer tissue, and cells. miR-885-5p suppression significantly inhibited tumor cell proliferation and migration, promoted E-cadherin expression, and inhibited the expression levels of N-cadherin, vimentin and Snail. Further studies showed that SOCS5, SOCS6 and SOCS7 were direct targets of miR-885-5p. The results suggest that miR-885-5p suppression inhibited cell proliferation and migration, and the EMT process by targeting SOCS5, SOCS6 and SOCS7 genes in colorectal cancer. miR-885-5p and SOCS may be used for the diagnosis and treatment of colorectal cancer.

  6. CMTM3 (CKLF-Like Marvel Transmembrane Domain 3) Mediates Angiogenesis by Regulating Cell Surface Availability of VE-Cadherin in Endothelial Adherens Junctions.

    PubMed

    Chrifi, Ihsan; Louzao-Martinez, Laura; Brandt, Maarten; van Dijk, Christian G M; Burgisser, Petra; Zhu, Changbin; Kros, Johan M; Duncker, Dirk J; Cheng, Caroline

    2017-06-01

    Decrease in VE-cadherin adherens junctions reduces vascular stability, whereas disruption of adherens junctions is a requirement for neovessel sprouting during angiogenesis. Endocytosis plays a key role in regulating junctional strength by altering bioavailability of cell surface proteins, including VE-cadherin. Identification of new mediators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we assessed the function of CMTM3 (CKLF-like MARVEL transmembrane domain 3), which we have previously identified as highly expressed in Flk1 + endothelial progenitor cells during embryonic development. Using a 3-dimensional coculture of human umbilical vein endothelial cells-GFP (green fluorescent protein) and pericytes-RFP (red fluorescent protein), we demonstrated that siRNA-mediated CMTM3 silencing in human umbilical vein endothelial cells impairs angiogenesis. In vivo CMTM3 inhibition by morpholino injection in developing zebrafish larvae confirmed that CMTM3 expression is required for vascular sprouting. CMTM3 knockdown in human umbilical vein endothelial cells does not affect proliferation or migration. Intracellular staining demonstrated that CMTM3 colocalizes with early endosome markers EEA1 (early endosome marker 1) and Clathrin + vesicles and with cytosolic VE-cadherin in human umbilical vein endothelial cells. Adenovirus-mediated CMTM3 overexpression enhances endothelial endocytosis, shown by an increase in Clathrin + , EEA1 + , Rab11 + , Rab5 + , and Rab7 + vesicles. CMTM3 overexpression enhances, whereas CMTM3 knockdown decreases internalization of cell surface VE-cadherin in vitro. CMTM3 promotes loss of endothelial barrier function in thrombin-induced responses, shown by transendothelial electric resistance measurements in vitro. In this study, we have identified a new regulatory function for CMTM3 in angiogenesis. CMTM3 is involved in VE-cadherin turnover and is a regulator of the cell surface pool of VE-cadherin. Therefore, CMTM3 mediates cell-cell adhesion at adherens junctions and contributes to the control of vascular sprouting. © 2017 American Heart Association, Inc.

  7. p63 expression defines a lethal subset of muscle-invasive bladder cancers.

    PubMed

    Choi, Woonyoung; Shah, Jay B; Tran, Mai; Svatek, Robert; Marquis, Lauren; Lee, I-Ling; Yu, Dasom; Adam, Liana; Wen, Sijin; Shen, Yu; Dinney, Colin; McConkey, David J; Siefker-Radtke, Arlene

    2012-01-01

    p63 is a member of the p53 family that has been implicated in maintenance of epithelial stem cell compartments. Previous studies demonstrated that p63 is downregulated in muscle-invasive bladder cancers, but the relationship between p63 expression and survival is not clear. We used real-time PCR to characterize p63 expression and several genes implicated in epithelial-to-mesenchymal transition (EMT) in human bladder cancer cell lines (n = 15) and primary tumors (n = 101). We correlated tumor marker expression with stage, disease-specific (DSS), and overall survival (OS). Expression of E-cadherin and p63 correlated directly with one another and inversely with expression of the mesenchymal markers Zeb-1, Zeb-2, and vimentin. Non-muscle-invasive (Ta and T1) bladder cancers uniformly expressed high levels of E-cadherin and p63 and low levels of the mesenchymal markers. Interestingly, a subset of muscle-invasive (T2-T4) tumors maintained high levels of E-cadherin and p63 expression. As expected, there was a strongly significant correlation between EMT marker expression and muscle invasion (p<0.0001). However, OS was shorter in patients with muscle-invasive tumors that retained p63 (p = 0.007). Our data confirm that molecular markers of EMT are elevated in muscle-invasive bladder cancers, but interestingly, retention of the "epithelial" marker p63 in muscle-invasive tumors is associated with a worse outcome.

  8. Adenomyoepithelioma of the breast with associated atypical lobular hyperplasia: a previously unrecognized association with management implications.

    PubMed

    Zhang, Shuang; Huo, Lei; Arribas, Elsa; Middleton, Lavinia P

    2015-02-01

    Adenomyoepitheliomas of breast are rare tumors. We report for the first time a case of an adenomyoepithelioma of the breast with associated lobular neoplasia. A 53-year-old woman had an annual screening mammogram, which identified areas of asymmetry in her left breast at 4-5-o'clock position. Resection of the masses revealed a well-circumscribed, gray-white, firm discrete nodule (0.8 × 0.4 × 0.3 cm). The tumor was composed of both adenomyoepithelial cell hyperplasia and focal atypical lobular hyperplasia. The 2 cell populations had some overlapping histologic features. Immunohistochemical analysis demonstrated a biphasic proliferation with approximately equal parts of luminal epithelial cells with clear and rounded appearance and myoepithelial cells. The myoepithelial component of the proliferation expressed myosin, p63, CK5/6, S-100, and dimly expressed E-cadherin. The epithelial component of the proliferation strongly expressed E-cadherin. In the areas of atypical lobular hyperplasia, there was distinct loss E-cadherin expression. Awareness of this association is highly important to provide these patients adequate follow-up and treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Hyaluronan and Layilin Mediate Loss of Airway Epithelial Barrier Function Induced by Cigarette Smoke by Decreasing E-cadherin*

    PubMed Central

    Forteza, Rosanna Malbran; Casalino-Matsuda, S. Marina; Falcon, Nieves S.; Valencia Gattas, Monica; Monzon, Maria E.

    2012-01-01

    Cigarette smoke (CigS) exposure is associated with increased bronchial epithelial permeability and impaired barrier function. Primary cultures of normal human bronchial epithelial cells exposed to CigS exhibit decreased E-cadherin expression and reduced transepithelial electrical resistance. These effects were mediated by hyaluronan (HA) because inhibition of its synthesis with 4-methylumbelliferone prevented these effects, and exposure to HA fragments of <70 kDa mimicked these effects. We show that the HA receptor layilin is expressed apically in human airway epithelium and that cells infected with lentivirus expressing layilin siRNAs were protected against increased permeability triggered by both CigS and HA. We identified RhoA/Rho-associated protein kinase (ROCK) as the signaling effectors downstream layilin. We conclude that HA fragments generated by CigS bind to layilin and signal through Rho/ROCK to inhibit the E-cadherin gene and protein expression, leading to a loss of epithelial cell-cell contact. These studies suggest that HA functions as a master switch protecting or disrupting the epithelial barrier in its high versus low molecular weight form and that its depolymerization is a first and necessary step triggering the inflammatory response to CigS. PMID:23048036

  10. Loss of intercellular adhesion leads to differential accumulation of hypericin in bladder cancer

    NASA Astrophysics Data System (ADS)

    Lucky, S. Sasidharan; Bhuvaneswari, Ramaswamy; Chin, William W. L.; Lau, Weber K. O.; Olivo, Malini C. D.

    2009-06-01

    Photodynamic diagnosis (PDD) exploits the photoactive nature of certain compounds, namely photosensitizers, in order to enhance the visual demarcation between normal and neoplastic tissue. Hypericin is one such potent photosensitizer that preferentially accumulate in neoplastic tissue, and fluoresce in the visible spectrum when illuminated with light of an appropriate wavelength. In our study, we investigated the role of E-cadherin in the selective permeation of hypericin in bladder cancer tissues. Clinical studies were done on a series of 43 histologically graded bladder cancer biopsy specimens, obtained from 28 patients who received intravesical instillations with 8μM hypericin solution for at least 2 hours. Immunohistochemical staining was used to assess the expression of E-cadherin, in the cryosectioned tissues. Hypericin uptake was examined by fluorescence microscopy. Immunohistochemical staining showed a clear expression of E-cadherin along the urothelial lining of the normal and pre-malignant tissues. Partial expression of these cell adhesion molecules were still observed in malignant tissues, however there was a loss of expression to variable extends along the urothelium. Thus, loss of intercellular adhesion can be associated with enhanced hypericin permeation through paracellular diffusion.

  11. Suppression of the Epidermal Growth Factor-like Domain 7 and Inhibition of Migration and Epithelial-Mesenchymal Transition in Human Pancreatic Cancer PANC-1 Cells.

    PubMed

    Wang, Yun-Liang; Dong, Feng-Lin; Yang, Jian; Li, Zhi; Zhi, Qiao-Ming; Zhao, Xin; Yang, Yong; Li, De-Chun; Shen, Xiao-Chun; Zhou, Jin

    2015-01-01

    Epidermal growth factor-like domain multiple 7 (EGFL7), a secreted protein specifically expressed by endothelial cells during embryogenesis, recently was identified as a critical gene in tumor metastasis. Epithelial-mesenchymal transition (EMT) was found to be closely related with tumor progression. Accordingly, it is important to investigate the migration and EMT change after knock-down of EGFL7 gene expression in human pancreatic cancer cells. EGFL7 expression was firstly testified in 4 pancreatic cancer cell lines by real-time polymerase chain reaction (Real-time PCR) and western blot, and the highest expression of EGFL7 was found in PANC-1 cell line. Then, PANC-1 cells transfected with small interference RNA (siRNA) of EGFL7 using plasmid vector were named si-PANC-1, while transfected with negative control plasmid vector were called NC-PANC-1. Transwell assay was used to analyze the migration of PANC-1 cells. Real-time PCR and western blotting were used to detect the expression change of EGFL7 gene, EMT markers like E-Cadherin, N-Cadherin, Vimentin, Fibronectin and transcription factors like snail, slug in PANC-1, NC- PANC-1, and si-PANC-1 cells, respectively. After successful plasmid transfection, EGFL7 gene were dramatically knock-down by RNA interference in si-PANC-1 group. Meanwhile, migration ability decreased significantly, compared with PANC-1 and NC-PANC-1 group. Meanwhile, the expression of epithelial phenotype marker E-Cadherin increased and that of mesenchymal phenotype markers N-Cadherin, Vimentin, Fibronectin dramatically decreased in si-PANC-1 group, indicating a reversion of EMT. Also, transcription factors snail and slug decreased significantly after RNA interference. Current study suggested that highly-expressed EGFL7 promotes migration of PANC-1 cells and acts through transcription factors snail and slug to induce EMT, and further study is needed to confirm this issue.

  12. SET8 promotes epithelial–mesenchymal transition and confers TWIST dual transcriptional activities

    PubMed Central

    Yang, Fen; Sun, Luyang; Li, Qian; Han, Xiao; Lei, Liandi; Zhang, Hua; Shang, Yongfeng

    2012-01-01

    SET8 is implicated in transcriptional regulation, heterochromatin formation, genomic stability, cell-cycle progression, and development. As such, it is predicted that SET8 might be involved in the development and progression of tumour. However, whether and how SET8 might be implicated in tumourigenesis is currently unknown. Here, we report that SET8 is physically associated with TWIST, a master regulator of epithelial–mesenchymal transition (EMT). We demonstrated that SET8 and TWIST are functionally interdependent in promoting EMT and enhancing the invasive potential of breast cancer cells in vitro and in vivo. We showed that SET8 acts as a dual epigenetic modifier on the promoters of the TWIST target genes E-cadherin and N-cadherin via its H4K20 monomethylation activity. Significantly, in breast carcinoma samples, SET8 expression is positively correlated with metastasis and the expression of TWIST and N-cadherin and negatively correlated with E-cadherin. Together, our experiments revealed a novel role for SET8 in tumour invasion and metastasis and provide a molecular mechanism underlying TWIST-promoted EMT, suggesting SET8 as a potential target for intervention of the metastasis of breast cancer. PMID:21983900

  13. Expression of E-cadherin and β-catenin in basaloid and conventional squamous cell carcinoma of the oral cavity: are potential prognostic markers?

    PubMed Central

    2014-01-01

    Background Basaloid squamous cell carcinoma presents with a preference for the head and neck region, and shows a distinct aggressive behavior, with frequent local recurrences, regional and distant metastasis. The alterations in the cadherin-catenin complex are fundamental requirements for the metastasis process, and this is the first study to evaluate the immunostaining of E-cadherin and β-catenin in oral basaloid squamous cell carcinoma. Methods Seventeen cases of this tumor located exclusively in the mouth were compared to 26 cases of poorly differentiated squamous cell carcinoma and 28 cases of well to moderately differentiated squamous cell carcinoma matched by stage and tumor site. The immunostaining of E-cadherin and β-catenin were evaluated in the three groups and compared to their clinicopathological features and prognosis. Results For groups poorly differentiated squamous cell carcinoma and basaloid squamous cell carcinoma, reduction or absence of E-cadherin staining was observed in more than 80.0% of carcinomas, and it was statistically significant compared to well to moderately differentiated squamous cell carcinoma (p = .019). A strong expression of β-catenin was observed in 26.9% and 20.8% of well to moderately differentiated squamous cell carcinoma and poorly differentiated squamous cell carcinoma, respectively, and in 41.2% of basaloid squamous cell carcinoma. The 5-year and 10-year overall and disease-free survival rates demonstrated no significant differences among all three groups. Conclusions The clinical and biological behavior of three groups of the oral cavity tumors evaluated are similar. E-cadherin and β-catenin immunostaining showed no prognostic value for basaloid and conventional squamous cell carcinomas. PMID:24893577

  14. Epithelial-mesenchymal transition and nuclear β-catenin induced by conditional intestinal disruption of Cdh1 with Apc is E-cadherin EC1 domain dependent

    PubMed Central

    Carter, Emma J.; Barnes, David; Hoppe, Hans-Jürgen; Hughes, Jennifer; Cobbold, Stephen; Harper, James; Morreau, Hans; Surakhy, Mirvat; Hassan, A. Bassim

    2016-01-01

    Two important protein-protein interactions establish E-cadherin (Cdh1) in the adhesion complex; homophilic binding via the extra-cellular (EC1) domain and cytoplasmic tail binding to β-catenin. Here, we evaluate whether E-cadherin binding can inhibit β-catenin when there is loss of Adenomatous polyposis coli (APC) from the β-catenin destruction complex. Combined conditional loss of Cdh1 and Apc were generated in the intestine, intestinal adenoma and adenoma organoids. Combined intestinal disruption (Cdh1fl/flApcfl/flVil-CreERT2) resulted in lethality, breakdown of the intestinal barrier, increased Wnt target gene expression and increased nuclear β-catenin localization, suggesting that E-cadherin inhibits β-catenin. Combination with an intestinal stem cell Cre (Lgr5CreERT2) resulted in ApcΔ/Δ recombination and adenoma, but intact Cdh1fl/fl alleles. Cultured ApcΔ/ΔCdh1fl/fl adenoma cells infected with adenovirus-Cre induced Cdh1fl/fl recombination (Cdh1Δ/Δ), disruption of organoid morphology, nuclear β-catenin localization, and cells with an epithelial-mesenchymal phenotype. Complementation with adenovirus expressing wild-type Cdh1 (Cdh1-WT) rescued adhesion and β-catenin membrane localization, yet an EC1 specific double mutant defective in homophilic adhesion (Cdh1-MutW2A, S78W) did not. These data suggest that E-cadherin inhibits β-catenin in the context of disruption of the APC-destruction complex, and that this function is also EC1 domain dependent. Both binding functions of E-cadherin may be required for its tumour suppressor activity. PMID:27566565

  15. Select Rab GTPases Regulate the Pulmonary Endothelium via Endosomal Trafficking of Vascular Endothelial-Cadherin.

    PubMed

    Chichger, Havovi; Braza, Julie; Duong, Huetran; Boni, Geraldine; Harrington, Elizabeth O

    2016-06-01

    Pulmonary edema occurs in settings of acute lung injury, in diseases, such as pneumonia, and in acute respiratory distress syndrome. The lung interendothelial junctions are maintained in part by vascular endothelial (VE)-cadherin, an adherens junction protein, and its surface expression is regulated by endocytic trafficking. The Rab family of small GTPases are regulators of endocytic trafficking. The key trafficking pathways are regulated by Rab4, -7, and -9. Rab4 regulates the recycling of endosomes to the cell surface through a rapid-shuttle process, whereas Rab7 and -9 regulate trafficking to the late endosome/lysosome for degradation or from the trans-Golgi network to the late endosome, respectively. We recently demonstrated a role for the endosomal adaptor protein, p18, in regulation of the pulmonary endothelium through enhanced recycling of VE-cadherin to adherens junction. Thus, we hypothesized that Rab4, -7, and -9 regulate pulmonary endothelial barrier function through modulating trafficking of VE-cadherin-positive endosomes. We used Rab mutants with varying activities and associations to the endosome to study endothelial barrier function in vitro and in vivo. Our study demonstrates a key role for Rab4 activation and Rab9 inhibition in regulation of vascular permeability through enhanced VE-cadherin expression at the interendothelial junction. We further showed that endothelial barrier function mediated through Rab4 is dependent on extracellular signal-regulated kinase phosphorylation and activity. Thus, we demonstrate that Rab4 and -9 regulate VE-cadherin levels at the cell surface to modulate the pulmonary endothelium through extracellular signal-regulated kinase-dependent and -independent pathways, respectively. We propose that regulating select Rab GTPases represents novel therapeutic strategies for patients suffering with acute respiratory distress syndrome.

  16. Expression of E-cadherin and β-catenin in basaloid and conventional squamous cell carcinoma of the oral cavity: are potential prognostic markers?

    PubMed

    Hanemann, João Adolfo Costa; Oliveira, Denise Tostes; Nonogaki, Suely; Nishimoto, Inês Nobuko; de Carli, Marina Lara; Landman, Gilles; Kowalski, Luiz Paulo

    2014-06-03

    Basaloid squamous cell carcinoma presents with a preference for the head and neck region, and shows a distinct aggressive behavior, with frequent local recurrences, regional and distant metastasis. The alterations in the cadherin-catenin complex are fundamental requirements for the metastasis process, and this is the first study to evaluate the immunostaining of E-cadherin and β-catenin in oral basaloid squamous cell carcinoma. Seventeen cases of this tumor located exclusively in the mouth were compared to 26 cases of poorly differentiated squamous cell carcinoma and 28 cases of well to moderately differentiated squamous cell carcinoma matched by stage and tumor site. The immunostaining of E-cadherin and β-catenin were evaluated in the three groups and compared to their clinicopathological features and prognosis. For groups poorly differentiated squamous cell carcinoma and basaloid squamous cell carcinoma, reduction or absence of E-cadherin staining was observed in more than 80.0% of carcinomas, and it was statistically significant compared to well to moderately differentiated squamous cell carcinoma (p = .019). A strong expression of β-catenin was observed in 26.9% and 20.8% of well to moderately differentiated squamous cell carcinoma and poorly differentiated squamous cell carcinoma, respectively, and in 41.2% of basaloid squamous cell carcinoma. The 5-year and 10-year overall and disease-free survival rates demonstrated no significant differences among all three groups. The clinical and biological behavior of three groups of the oral cavity tumors evaluated are similar. E-cadherin and β-catenin immunostaining showed no prognostic value for basaloid and conventional squamous cell carcinomas.

  17. YB-1 overexpression promotes a TGF-β1-induced epithelial–mesenchymal transition via Akt activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Bin; Lee, Eun Byul; Cui, Jun

    2015-03-06

    The Y-box binding protein-1 (YB-1) is a transcription/translation regulatory protein, and the expression thereof is associated with cancer aggressiveness. In the present study, we explored the regulatory effects of YB-1 during the transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma cells. Downregulation of YB-1 increased E-cadherin promoter activity, and upregulation of YB-1 decreased promoter activity, suggesting that the YB-1 level may be correlated with the EMT. TGF-β1 induced YB-1 expression, and TGF-β1 translocated cytosolic YB-1 into the nucleus. YB-1 overexpression promoted TGF-β1-induced downregulation of epithelial markers, upregulation of mesenchymal markers, and cell migration. Moreover, YB-1 overexpression enhanced themore » expression of E-cadherin transcriptional repressors via TGF-β1-induced Akt activation. Our findings afford new insights into the role played by YB-1 in the TGF-β1 signaling pathway. - Highlights: • YB-1 regulates E-cadherin expression in A549 cells. • TGF-β1 induces upregulating and nuclear localization of YB-1. • YB-1 overexpression accelerates TGF-β1-induced EMT and cell migration. • YB-1 regulates Snail and Slug expression via Akt activation.« less

  18. Epithelial-mesenchymal transition (EMT) induced by TNF-α requires AKT/GSK-3β-mediated stabilization of snail in colorectal cancer.

    PubMed

    Wang, Hao; Wang, Hong-Sheng; Zhou, Bin-Hua; Li, Cui-Lin; Zhang, Fan; Wang, Xian-Feng; Zhang, Ge; Bu, Xian-Zhang; Cai, Shao-Hui; Du, Jun

    2013-01-01

    Chronic inflammation-promoted metastasis has been considered as a major challenge in cancer therapy. Pro-inflammatory cytokine TNFα can induce cancer invasion and metastasis associated with epithelial-mesenchymal transition (EMT). However, the underlying mechanisms are not entirely clear. In this study, we showed that TNFα induces EMT in human HCT116 cells and thereby promotes colorectal cancer (CRC) invasion and metastasis. TNFα-induced EMT was characterized by acquiring mesenchymal spindle-like morphology and increasing the expression of N-cadherin and fibronectin with a concomitant decrease of E-cadherin and Zona occludin-1(ZO-1). TNFα treatment also increased the expression of transcription factor Snail, but not Slug, ZEB1 and Twist. Overexpression of Snail induced a switch from E-cadherin to N-cadherin expression in HCT116 cells, which is a characteristic of EMT. Conversely, knockdown of Snail significantly attenuated TNFα-induced EMT in HCT116 cells, suggesting that Snail plays a crucial role in TNFα-induced EMT. Interestingly, exposure to TNFα rapidly increased Snail protein expression and Snail nuclear localization but not mRNA level upregulation. Finally, we demonstrated that TNFα elevated Snail stability by activating AKT pathway and subsequently repressing GSK-3β activity and decreasing the association of Snail with GSK-3β. Knockdown of GSK-3β further verified our finding. Taken together, these results revealed that AKT/GSK-3β-mediated stabilization of Snail is required for TNFα-induced EMT in CRC cells. Our study provides a better understanding of inflammation-induced CRC metastasis.

  19. Progesterone Inhibits Leptin-Induced Invasiveness of BeWo Cells.

    PubMed

    Jo, Yun Sung; Lee, Gui Se Ra; Nam, Sun Young; Kim, Sa Jin

    2015-01-01

    This study investigated the roles of progesterone and leptin in placenta invasion, which is closely related to pregnancy prognosis. We examined the effects of leptin and progesterone on the invasion of BeWo cells, a human trophoblastic cell line, and the effect of concurrent treatment. Cells were treated with leptin (0, 5, 50, or 500 ng/mL) or progesterone (0, 2, 20, or 200 µM) and cultured in an invasion assay. Cells treated with 500 ng/mL leptin were also treated with progesterone (0, 2, 20, or 200 µM) in the invasion assay for 48 h. The number of cells that invaded the lower surface was counted in five randomly chosen fields using a light microscope with a 200× objective. The mRNA expression levels of MMP-9, TIMP1, TIMP2, and E-cadherin were detected by semi-quantitative PCR. Invasion of BeWo cells was promoted by leptin and influenced by both leptin concentration and treatment duration. Invasion was most effective at 500 ng/mL leptin and 48 h culture. Leptin-induced invasiveness was suppressed by progesterone in a dose-dependent manner. Leptin significantly decreased the expression levels of TIMP1 and E-cadherin, whereas progesterone significantly decreased expression of MMP-9 and significantly increased levels of TIMP1, TIMP2, and E-cadherin. Leptin promotes invasion of BeWo cells, and progesterone suppresses leptin-induced invasion by regulating the expressions of MMP-9, TIMP1, TIMP2, and E-cadherin. The balance between leptin and progesterone may play an important role in human placenta formation during early pregnancy.

  20. Urtica dioica extract suppresses miR-21 and metastasis-related genes in breast cancer.

    PubMed

    Mansoori, Behzad; Mohammadi, Ali; Hashemzadeh, Shahriar; Shirjang, Solmaz; Baradaran, Ali; Asadi, Milad; Doustvandi, Mohammad Amin; Baradaran, Behzad

    2017-09-01

    Breast cancer has a high prevalence among women worldwide. Tumor invasion and metastasis still remains an open issue that causes most of the therapeutic failures and remains the prime cause of patient mortality. Hence, there is an unmet need to develop the most effective therapeutic approach with the lowest side effects and highest cytotoxicity that will effectively arrest or eradicate metastasis. An MTT assay and scratch test were used to assess the cytotoxicity and migration effects of Urtica dioica on the breast cancer cells. The QRT-PCR was used to study the expression levels of miR-21, MMP1, MMP9, MMP13, CXCR4, vimentin, and E-cadherin. The results of gene expression in tumoral groups confirmed the overexpression of miR-21, MMP1, MMP9, MMP13, vimentin, and CXCR4, and the lower expression of E-cadherin compared to control groups (P<0.05). Moreover, the results of the MTT assay show that Urtica dioica significantly inhibited breast cancer cell proliferation. Moreover, findings from the scratch assay exhibited the inhibitory effects of Urtica dioica on the migration of breast cancer cell lines. Urtica dioica extract could inhibit cancer cell migration by regulating miR-21, MMP1, MMP9, MMP13, vimentin, CXCR4, and E-Cadherin. Moreover, our findings demonstrated that the extract could decrease miR-21 expression, which substantially lessens the overexpressed MMP1, MMP9, MMP13, vimentin, and CXCR4 and increases E-cadherin in the tumoral group. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. [The factors involved in invasive ability of endometrial carcinoma cells].

    PubMed

    Mori, Y; Mizuuchi, H; Sato, K; Okamura, N; Kudo, R

    1994-06-01

    The in vitro invasive ability, the expression of cell adhesion molecule E-cadherin, activity of matrix metalloproteinase (MMP) and K-ras point mutation were investigated in eight human endometrial carcinoma cell lines. 1) In vitro invasive abilities of endometrial carcinoma cell lines depend on the degree of cell differentiation and the origin of cell lines. A poorly-differentiated carcinoma cell line (NUE-1) and a cell line derived from metastatic lymph node (SNG-M) were more invasive than moderately-(HEC-1A, HEC-1BE) and well-differentiated (HEC-6, Ishikawa) cell lines. 2) Immunohistochemically, less or non-invasive cell lines expressed E-cadherin strongly, whereas a highly invasive cell line (NUE-1) expressed E-cadherin weakly. 3) When cultured on Matrigel-coated dishes, the tumor cells derived from moderately- and well-differentiated carcinoma aggregated with each other and did not invade Matrigel in the invasion assay. The aggregated cells expressed E-cadherin more strongly when cultured on Matrigel. 4) 72-kD gelatinase (MMP-2) was secreted in serum-free conditioned medium of all cell lines. In an invasive cell line (NUE-1,SNG-M), the activity of MMP-2 was stronger than in other cell lines. And the activity of 92-kDa gelatinase (MMP-9) was detected in most invasive cell line (NUE-1). 5) Point mutation of K-ras codon 12 was detected in four of eight (50%) cell lines by the PCR-RFLP method. The changes in the DNA sequence were identified, but K-ras point mutation was not correlated with in vitro invasiveness of the tumor cells.

  2. A hypothetical mechanism of intraepidermal neurite formation in NC/Nga mice with atopic dermatitis.

    PubMed

    Tominaga, Mitsutoshi; Ozawa, Sumiko; Ogawa, Hideoki; Takamori, Kenji

    2007-06-01

    Pruritus is a symptom in atopic dermatitis (AD). Previous studies have reported that increased intraepidermal neurites are observed in AD, suggesting that the neuritogenesis is related to itching in the skin. This study was conducted to reveal the mechanism of intraepidermal neurite formation in AD. In this study, we used conventional (Conv) NC/Nga mice with AD. NC/Nga mice maintained in specific pathogen-free (SPF) condition were used as a control with no AD. Distribution of intraepidermal neurites and expression patterns of growth factors (NGF and amphiregulin (AR)) and cell-cell junctional molecules (E-cadherin, zona occludens 1 (ZO-1) and desmoglein 3 (Dsg3)) were examined in the skins by immunohistochemistry or quantitative RT-PCR. Furthermore, detection of gelatinase activity was performed with in situ zymography. The same experiments were conducted in ICR mice for comparison with NC/Nga mice. Neurite density and expression levels of growth factors and gelatinase were remarkably increased in the epidermis of Conv-NC/Nga mice compared with those of SPF-NC/Nga mice. Decreased expression of E-cadherin and ZO-1 and misexpression of Dsg3 were also observed in the atopic skins. In comparison with ICR mice, increases of neurite density and gelatinase activity were found in the skins of SPF-NC/Nga mice but expression levels of growth factors and cell-cell junctional molecules were unchanged. Increases of growth factors and gelatinase activity may be related to neurite outgrowth in the epidermis of atopic NC/Nga mice. Additionally, abnormal expressions of cell-cell junctional molecules in the epidermis may provide intercellular spaces for the neurite formation.

  3. Epithelial-mesenchymal status influences how cells deposit fibrillin microfibrils.

    PubMed

    Baldwin, Andrew K; Cain, Stuart A; Lennon, Rachel; Godwin, Alan; Merry, Catherine L R; Kielty, Cay M

    2014-01-01

    Here, we show that epithelial-mesenchymal status influences how cells deposit extracellular matrix. Retinal pigmented epithelial (RPE) cells that expressed high levels of E-cadherin and had cell-cell junctions rich in zona occludens (ZO)-1, β-catenin and heparan sulfate, required syndecan-4 but not fibronectin or protein kinase C α (PKCα) to assemble extracellular matrix (fibrillin microfibrils and perlecan). In contrast, RPE cells that strongly expressed mesenchymal smooth muscle α-actin but little ZO-1 or E-cadherin, required fibronectin (like fibroblasts) and PKCα, but not syndecan-4. Integrins α5β1 and/or α8β1 and actomyosin tension were common requirements for microfibril deposition, as was heparan sulfate biosynthesis. TGFβ, which stimulates epithelial-mesenchymal transition, altered gene expression and overcame the dependency on syndecan-4 for microfibril deposition in epithelial RPE cells, whereas blocking cadherin interactions disrupted microfibril deposition. Renal podocytes had a transitional phenotype with pericellular β-catenin but little ZO-1; they required syndecan-4 and fibronectin for efficient microfibril deposition. Thus, epithelial-mesenchymal status modulates microfibril deposition.

  4. Epithelial-mesenchymal transition (EMT) is not sufficient for spontaneous murine breast cancer metastasis.

    PubMed

    Lou, Yuanmei; Preobrazhenska, Olena; auf dem Keller, Ulrich; Sutcliffe, Margaret; Barclay, Lorena; McDonald, Paul C; Roskelley, Calvin; Overall, Christopher M; Dedhar, Shoukat

    2008-10-01

    Epithelial-mesenchymal transition (EMT) has been linked to metastatic propensity. The 4T1 tumor is a clinically relevant model of spontaneous breast cancer metastasis. Here we characterize 4T1-derived cell lines for EMT, in vitro invasiveness and in vivo metastatic ability. Contrary to expectations, 67NR cells, which form primary tumors but fail to metastasize, express vimentin and N-cadherin, but not E-cadherin. 4T1 cells express E-cadherin and ZO-1, but are migratory, invasive, and metastasize to multiple sites. 66cl4 cells form lung metastases and display a mixed phenotype, but are not as migratory or invasive as 67NR cells. These findings demonstrate that the metastatic ability of breast cancer cells does not strictly correlate with genotypic and phenotypic properties of EMT per se, and suggest that other processes may govern metastatic capability. Gene expression analysis of primary tumors did not identify differences in EMT markers, but did reveal candidate genes that may influence metastatic ability. Copyright (c) 2008 Wiley-Liss, Inc.

  5. Occludin confers adhesiveness when expressed in fibroblasts.

    PubMed

    Van Itallie, C M; Anderson, J M

    1997-05-01

    Occludin is an integral membrane protein specifically associated with tight junctions. Previous studies suggest it is likely to function in forming the intercellular seal. In the present study, we expressed occludin under an inducible promotor in occludin-null fibroblasts to determine whether this protein confers intercellular adhesion. When human occludin is stably expressed in NRK and Rat-1 fibroblasts, which lack endogenous occludin and tight junctions but do have well developed ZO-1-containing adherens-like junctions, occludin colocalizes with ZO-1 to points of cell-cell contact. In contrast, L-cell fibroblasts which lack cadherin-based adherens junctions, target neither ZO-1 nor occludin to sites of cell contact. Occludin-induced adhesion was next quantified using a suspended cell assay. In NRK and Rat-1 cells, occludin expression induces adhesion in the absence of calcium, thus independent of cadherin-cadherin contacts. In contrast, L-cells are nonadhesive in this assay and show no increase in adhesion after induction of occludin expression. Binding of an antibody to the first of the putative extracellular loops of occludin confirmed that this sequence was exposed on the cell surface, and synthetic peptides containing the amino acid sequence of this loop inhibit adhesion induced by occludin expression. These results suggest that the extracellular surface of occludin is directly involved in cell-cell adhesion and the ability to confer adhesiveness correlates with the ability to colocalize with its cytoplasmic binding protein, ZO-1.

  6. Smad4 and epithelial-mesenchymal transition proteins in colorectal carcinoma: an immunohistochemical study.

    PubMed

    Ioannou, M; Kouvaras, E; Papamichali, R; Samara, M; Chiotoglou, I; Koukoulis, G

    2018-06-01

    Epithelial-mesenchymal transition (EMT) plays an important role in cancer metastasis. During EMT, tumor cells acquire the capacity to migrate and invade the stroma. Activation of the transforming growth factor-b (TGF-b) signaling pathway is of major importance for the initiation of EMT. Smad4, an essential protein of this pathway, is known to complex with multiple transcription factors (e.g. Snail-1, Slug, Twist-1), in various types of cancer, promoting the repression or activation of target genes. The role of Smad4 in colorectal cancer (CRC) is not straightforward so far. In the present study forty eight resected CRC tumor specimens were immunohistochemically examined in order to assess the expression of Smad4 and its association with E-cadherin, Snail-1, Slug, Twist-1 protein expression and with various pathological parameters. Smad4 was found to be positively correlated with Snail-1, Slug and Twist-1 expression (p < 0.001). On the other hand it was negatively correlated with the expression of E-cadherin (p < 0.001). Furthermore, lymphatic invasion could be clearly associated with Smad4 expression, a finding complying with the metastatic ability of EMT cells. In conclusion, Smad4 could be considered as a central component of EMT transition in human colorectal cancer that combines with transcriptional factors to reduce E-cadherin and alter the expression of the epithelial phenotype.

  7. A Regulatory Network Involving β‐Catenin, e‐Cadherin, PI3k/Akt, and Slug Balances Self‐Renewal and Differentiation of Human Pluripotent Stem Cells In Response to Wnt Signaling

    PubMed Central

    Huang, Tyng‐Shyan; Li, Li; Moalim‐Nour, Lilian; Jia, Deyong; Bai, Jian; Yao, Zemin; Bennett, Steffany A. L.; Figeys, Daniel

    2015-01-01

    Abstract The mechanisms underlying disparate roles of the canonical Wnt signaling pathway in maintaining self‐renewal or inducing differentiation and lineage specification in embryonic stem cells (ESCs) are not clear. In this study, we provide the first demonstration that self‐renewal versus differentiation of human ESCs (hESCs) in response to Wnt signaling is predominantly determined by a two‐layer regulatory circuit involving β‐catenin, E‐cadherin, PI3K/Akt, and Slug in a time‐dependent manner. Short‐term upregulation of β‐catenin does not lead to the activation of T‐cell factor (TCF)‐eGFP Wnt reporter in hESCs. Instead, it enhances E‐cadherin expression on the cell membrane, thereby enhancing hESC self‐renewal through E‐cadherin‐associated PI3K/Akt signaling. Conversely, long‐term Wnt activation or loss of E‐cadherin intracellular β‐catenin binding domain induces TCF‐eGFP activity and promotes hESC differentiation through β‐catenin‐induced upregulation of Slug. Enhanced expression of Slug leads to a further reduction of E‐cadherin that serves as a β‐catenin “sink” sequestering free cytoplasmic β‐catenin. The formation of such a framework reinforces hESCs to switch from a state of temporal self‐renewal associated with short‐term Wnt/β‐catenin activation to definitive differentiation. Stem Cells 2015;33:1419–1433 PMID:25538040

  8. E-cadherin genetic variants predict survival outcome in breast cancer patients.

    PubMed

    Memni, Hager; Macherki, Yosra; Klayech, Zahra; Ben-Haj-Ayed, Ahlem; Farhat, Karim; Remadi, Yassmine; Gabbouj, Sallouha; Mahfoudh, Wijden; Bouzid, Nadia; Bouaouina, Noureddine; Chouchane, Lotfi; Zakhama, Abdelfattah; Hassen, Elham

    2016-11-16

    E-cadherin is a major component of adherens junctions that regulates cell shape and maintains tissue integrity. A complete loss or any decrease in cell surface expression of E-cadherin will interfere with the cell-to-cell junctions' strength and leads to cell detachment and escape from the primary tumor site. In this prospective study, three functional single nucleotide polymorphisms (-347G/GA, rs5030625; -160C/A, rs16260; +54C/T, rs1801026), were found to modulate E-cadherin expression. 577 DNA samples from breast cancer (BC) cases were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). We detected no significant correlations between each polymorphism and the clinical parameters of the patients whereas the GACC haplotype was significantly associated with low SBR grading. Overall survival analysis showed that both -347G/G and +54C/C wild (wt) genotypes had a significantly worse effect compared to the other genotypes (non-wt). Moreover, carrying simultaneously both the -347 and +54 wt genotypes confers a significantly higher risk of death. However, with metastatic recurrence, the death-rate was null in patients carrying the non-wt genotypes, and attained 37% in those carrying the wt genotype. A multivariate analysis showed that these two polymorphisms are independent prognostic factors for overall survival in BC patients. Our results support the fact that E-cadherin genetic variants control disease severity and progression and could be a marker of disease outcome. These findings could be useful in selecting patients that should be monitored differently.

  9. Evidence for Post-Translational Processing of Vascular Endothelial (VE)-Cadherin in Brain Tumors: Towards a Candidate Biomarker

    PubMed Central

    Vilgrain, Isabelle; Sidibé, Adama; Polena, Helena; Cand, Francine; Mannic, Tiphaine; Arboleas, Mélanie; Boccard, Sandra; Baudet, Antoine; Gulino-Debrac, Danielle; Bouillet, Laurence; Quesada, Jean-Louis; Mendoza, Christophe; Lebas, Jean-François; Pelletier, Laurent; Berger, François

    2013-01-01

    Vessel abnormalities are among the most important features in malignant glioma. Vascular endothelial (VE)-cadherin is of major importance for vascular integrity. Upon cytokine challenge, VE-cadherin structural modifications have been described including tyrosine phosphorylation and cleavage. The goal of this study was to examine whether these events occurred in human glioma vessels. We demonstrated that VE-cadherin is highly expressed in human glioma tissue and tyrosine phosphorylated at site Y685, a site previously found phosphorylated upon VEGF challenge, via Src activation. In vitro experiments showed that VEGF-induced VE-cadherin phosphorylation, preceded the cleavage of its extracellular adhesive domain (sVE, 90 kDa). Interestingly, metalloproteases (MMPs) secreted by glioma cell lines were responsible for sVE release. Because VEGF and MMPs are important components of tumor microenvironment, we hypothesized that VE-cadherin proteolysis might occur in human brain tumors. Analysis of glioma patient sera prior treatment confirmed the presence of sVE in bloodstream. Furthermore, sVE levels studied in a cohort of 53 glioma patients were significantly predictive of the overall survival at three years (HR 0.13 [0.04; 0.40] p≤0.001), irrespective to histopathological grade of tumors. Altogether, these results suggest that VE-cadherin structural modifications should be examined as candidate biomarkers of tumor vessel abnormalities, with promising applications in oncology. PMID:24358106

  10. Leptospira interrogans Binds to Cadherins

    PubMed Central

    Evangelista, Karen; Franco, Ricardo; Schwab, Andrew; Coburn, Jenifer

    2014-01-01

    Leptospirosis, caused by pathogenic species of Leptospira, is the most widespread zoonosis and has emerged as a major public health problem worldwide. The adhesion of pathogenic Leptospira to host cells, and to extracellular matrix (ECM) components, is likely to be necessary for the ability of leptospires to penetrate, disseminate and persist in mammalian host tissues. Previous work demonstrated that pathogenic L. interrogans binds to host cells more efficiently than to ECM. Using two independent screening methods, mass spectrometry and protein arrays, members of the cadherin family were identified as potential L. interrogans receptors on mammalian host surfaces. We focused our investigation on vascular endothelial (VE)-cadherin, which is widely expressed on endothelia and is primarily responsible for endothelial cell-cell adhesion. Monolayers of EA.hy926 and HMEC-1 endothelial cells produce VE-cadherin, bind L. interrogans in vitro, and are disrupted upon incubation with the bacteria, which may reflect the endothelial damage seen in vivo. Dose-dependent and saturable binding of L. interrogans to the purified VE-cadherin receptor was demonstrated and pretreatment of purified receptor or endothelial cells with function-blocking antibody against VE-cadherin significantly inhibited bacterial attachment. The contribution of VE-cadherin to leptospiral adherence to host endothelial cell surfaces is biologically significant because VE-cadherin plays an important role in maintaining the barrier properties of the vasculature. Attachment of L. interrogans to the vasculature via VE-cadherin may result in vascular damage, facilitating the escape of the pathogen from the bloodstream into different tissues during disseminated infection, and may contribute to the hemorrhagic manifestations of leptospirosis. This work is first to describe a mammalian cell surface protein as a receptor for L. interrogans. PMID:24498454

  11. Effects of CD44 and E-cadherin overexpression on the proliferation, adhesion and invasion of ovarian cancer cells.

    PubMed

    Mao, Meiya; Zheng, Xiaojiao; Jin, Bohong; Zhang, Fubin; Zhu, Linyan; Cui, Lining

    2017-12-01

    CD44 is a prognostic indicator of shorter survival time in ovarian cancer. E-cadherin fragmentation promotes the progression of ovarian cancer. However, the effects of CD44 and E-cadherin overexpression on ovarian cancer cells have remained elusive. The present study aimed to investigate the effects of overexpression of CD44 and E-cadherin on cell proliferation, adhesion and invasion of SKOV-3 and OVCAR-3 ovarian cancer cells. Overexpression of CD44 and E-cadherin was achieved by transfecting SKOV-3 and OVCAR-3 cells with viruses carrying the CD44 or E-cadherin gene, respectively. Expression of CD44 and E-cadherin was detected by western blot analysis. The proliferation of SKOV-3 and OVCAR-3 cells was measured by a Cell Counting Kit-8 at 0, 24 and 48 h after viral transfection. The adhesion ability of SKOV-3 and OVCAR-3 cells to the endothelial layer was detected. A Transwell invasion assay was utilized to assess the invasion ability of the cells. Overexpression of CD44 and E-cadherin in SKOV-3 and OVCAR-3 cells was confirmed by western blot. Compared with the blank or negative control groups, the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells exhibited an increased cell proliferation rate at 24 and 48 h, whereas overexpression of E-cadherin did not alter the proliferation of these cells. Furthermore, compared with the blank and negative control groups, the cell adhesion and invasion ability in the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells was markedly higher. There were no significant differences in adhesion ability between the E-cadherin overexpression group and the blank/negative control group. Of note, overexpression of E-cadherin decreased the invasive ability of SKOV-3 and OVCAR-3 cells. In conclusion, Overexpression of CD44 increased the proliferation, adhesion and invasion of ovarian cancer cells, while overexpression of E-cadherin decreased the invasion of ovarian cancer cells.

  12. Connexins and Cadherin Crosstalk in the Pathogenesis of Prostate Cancer

    DTIC Science & Technology

    2015-09-01

    the plaque as double membrane vesicles, by endocytosis and targeted to the lysosome for degradation. Alternatively, undocked connexons may be...endocytosed by clathrin mediated or non-clathrin mediated endocytosis (Figure 2) [13-16]. Tasks of Aim 1: 1. Prepare recombinant retroviruses that...results were described in 2014 report. 7) Determine if N-cadherin induces endocytosis of gap junctions in connexin-expressing LNCaP (ATCC) and

  13. O-GlcNAcylation affects β-catenin and E-cadherin expression, cell motility and tumorigenicity of colorectal cancer.

    PubMed

    Harosh-Davidovich, Shani Ben; Khalaila, Isam

    2018-03-01

    O-GlcNAcylation, the addition of β-N-acetylglucosamine (O-GlcNAc) moiety to Ser/Thr residues, is a sensor of the cell metabolic state. Cancer diseases such as colon, lung and breast cancer, possess deregulated O-GlcNAcylation. Studies during the last decade revealed that O-GlcNAcylation is implicated in cancer tumorigenesis and proliferation. The Wnt/β-catenin signaling pathway and cadherin-mediated adhesion are also implicated in epithelial-mesenchymal transition (EMT), a key cellular process in invasion and cancer metastasis. Often, deregulation of the Wnt pathway is caused by altered phosphorylation of its components. Specifically, phosphorylation of Ser or Thr residues of β-catenin affects its location and interaction with E-cadherin, thus facilitating cell-cell adhesion. Consistent with previous studies, the current study indicates that β-catenin is O-GlcNAcylated. To test the effect of O-GlcNAcylation on cell motility and how O-GlcNAcylation might affect β-catenin and E-cadherin functions, the enzyme machinery of O-GlcNAcylation was modulated either with chemical inhibitors or by gene silencing. When O-GlcNAcase (OGA) was inhibited, a global elevation of protein O-GlcNAcylation and increase in the expression of E-cadherin and β-catenin were noted. Concomitantly with enhanced O-GlcNAcylation, β-catenin transcriptional activity were elevated. Additionally, fibroblast cell motility was enhanced. Stable silenced cell lines with adenoviral OGA or adenoviral O-GlcNAc transferase (OGT) were established. Consistent with the results obtained by OGA chemical inhibition by TMG, OGT-silencing led to a significant reduction in β-catenin level. In vivo, murine orthotropic colorectal cancer model indicates that elevated O-GlcNAcylation leads to increased mortality rate, tumor and metastasis development. However, reduction in O-GlcNAcylation promoted survival that could be attributed to attenuated tumor and metastasis development. The results described herein provide circumstantial clues that O-GlcNAcylation deregulates β-catenin and E-cadherin expression and activity in fibroblast cell lines and this might influence EMT and cell motility, which may further influence tumor development and metastasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Effects of supplemental calcium and vitamin D on the APC/β-catenin pathway in the normal colorectal mucosa of colorectal adenoma patients.

    PubMed

    Liu, Siyu; Barry, Elizabeth L; Baron, John A; Rutherford, Robin E; Seabrook, March E; Bostick, Roberd M

    2017-02-01

    APC/β-catenin pathway malfunction is a common and early event in colorectal carcinogenesis. To assess calcium and vitamin D effects on the APC/β-catenin pathway in the normal-appearing colorectal mucosa of sporadic colorectal adenoma patients, nested within a larger randomized, double-blind, placebo-controlled, partial 2 × 2 factorial chemoprevention clinical trial of supplemental calcium (1200 mg daily) and vitamin D (1000 IU daily), alone and in combination versus placebo, we assessed APC, β-catenin, and E-cadherin expression in colon crypts in normal-appearing rectal mucosa biopsies from 104 participants at baseline and 1-yr follow up using standardized, automated immunohistochemistry and quantitative image analysis. For vitamin D versus no vitamin D, the ratio of APC expression to β-catenin expression in the upper 40% (differentiation zone) of crypts (APC/β-catenin score) increased by 28% (P = 0.02), for calcium versus no calcium it increased by 1% (P = 0.88), and for vitamin D + calcium versus calcium by 35% (P = 0.01). Total E-cadherin expression increased by 7% (P = 0.35) for vitamin D versus no vitamin D, 8% (P = 0.31) for calcium versus no calcium, and 12% (P = 0.21) for vitamin D + calcium versus calcium. These results support (i) that vitamin D, alone or in combination with calcium, may modify APC, β-catenin, and E-cadherin expression in humans in directions hypothesized to reduce risk for colorectal neoplasms; (ii) vitamin D as a potential chemopreventive agent against colorectal neoplasms; and (iii) the potential of APC, β-catenin, and E-cadherin expression as treatable, pre-neoplastic risk biomarkers for colorectal neoplasms. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Photoperiod-Dependent Effects of 4-tert-Octylphenol on Adherens and Gap Junction Proteins in Bank Vole Seminiferous Tubules

    PubMed Central

    Kuras, Paulina; Lydka-Zarzycka, Marta; Bilinska, Barbara

    2013-01-01

    In the present study we evaluated in vivo and in vitro effects of 4-tert-octylphenol (OP) on the expression and distribution of adherens and gap junction proteins, N-cadherin, β-catenin, and connexin 43 (Cx43), in testes of seasonally breeding rodents, bank voles. We found that in bank vole testes expression and distribution of N-cadherin, β-catenin, and Cx43 were photoperiod dependent. Long-term treatment with OP (200 mg/kg b.w.) resulted in the reduction of junction proteins expressions (P < 0.05, P < 0.01) and their delocalization in the testes of males kept in long photoperiod, whereas in short-day animals slight increase of Cx43 (P < 0.05), N-cadherin, and β-catenin (statistically nonsignificant) levels was observed. Effects of OP appeared to be independent of FSH and were maintained during in vitro organ culture, indicating that OP acts directly on adherens and gap junction proteins in the testes. An experiment performed using an antiestrogen ICI 182,780 demonstrated that the biological effects of OP on β-catenin and Cx43 involve an estrogen receptor-mediated response. Taken together, in bank vole organization of adherens and gap junctions and their susceptibility to OP are related to the length of photoperiod. Alterations in cadherin/catenin and Cx43-based junction may partially result from activation of estrogen receptor α and/or β signaling pathway. PMID:23737770

  16. β-Adducin siRNA disruption of the spectrin-based cytoskeleton in differentiating keratinocytes prevented by calcium acting through calmodulin/epidermal growth factor receptor/cadherin pathway.

    PubMed

    Wu, Jianghong; Masci, Paul P; Chen, Chenfeng; Chen, Jiezhong; Lavin, Martin F; Zhao, Kong-Nan

    2015-01-01

    Here, we report that siRNA transfection of β-adducin significantly disrupted the spectrin-based cytoskeleton and cytoskeletal arrangements of both β-adducin and PKCδ by substantially inhibiting the expression of β-adducin, spectrin and PKCδ proteins in differentiating keratinocytes. However, extracellular Ca2+ treatment blocked the inhibitory effects of the β-adducin siRNA. Ca2+ also prevented the significant down-regulation of two differentiation markers involucrin and K1/10 and the distinct up-regulation of proliferation marker K14 in β-adducin siRNA transfected keratinocytes. In addition, β-adducin knockdown resulted in a substantial reduction of epidermal growth factor receptor (EGFR), cadherin and β-catenin and enhanced phosphorylation of EGFR on tyrosine 1173 and Ca2+ prevented these changes. Furthermore, Ca2+ blocked the inhibitory effects of β-adducin siRNA on the expression of calmodulin, phosphorylated-calmodulin (P-CaM((Tyr138))) and myristoylated alanine-rich C-kinase substrate (MARCKS) in keratinocytes. Co-immunoprecipitation studies further revealed that calmodulin, not MARCKS, strongly interacted with EGFR, cadherin and β-catenin. Our data suggest that Ca2+ plays an important role in regulating the expression and function of β-adducin to sustain normal organization of the spectrin-based cytoskeleton and the differentiation properties in keratinocytes through the calmodulin/EGFR/cadherin signaling pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. [Knock-down of ZEB1 inhibits the proliferation, invasion and migration of gastric cancer cells].

    PubMed

    Chen, Dengyu; Chu, Yifan; Zheng, Qingwei; Xu, Zhiben; Zhou, Ping; Li, Sheng

    2017-08-01

    Objective To down-regulate the expression of zinc-finger E-box binding homeobox 1 (ZEB1) gene by shRNA, and investigate its effect on invasion, migration and proliferation, as well as the related gene expressions of lncRNA HOTAIR and E-cadherin in human gastric cancer BGC823 cells. Methods RNA interfering (RNAi) was used to knock down ZEB1 in gastric cancer BGC823 cells. The recombinant plasmid shZEB1 was constructed and transfected into the gastric cancer BGC823 cells by Lipofectamine TM 2000, and the stably transfected cells were isolated by G418 selection and limited dilution. The expression of ZEB1 mRNA and protein was detected by real-time quantitative PCR and Western blot analysis. Cell proliferation was determined by MTT assay, and the invasion and migration abilities of BGC823 cells were monitored by Transwell TM invasion assay and wound healing assay, respectively. The expressions of lncRNA HOTAIR and E-cadherin mRNA were detected by real-time quantitative PCR. Results After ZEB1 expression was successfully down-regulated in BGC823 cells by siRNA, the proliferation, invasion and migration rates in shZEB1 transfection group were significantly lower than those in control group; meanwhile, the expression of lncRNA HOTAIR was reduced and E-cadherin expression was enhanced. Conclusion Knock-down of ZEB1 expression by RNA interference can decease lncRNA HOTAIR expression and restrain cell proliferation, invasion and migration in gastric cancer BGC823 cells.

  18. N-cadherin prodomain processing regulates synaptogenesis.

    PubMed

    Reinés, Analía; Bernier, Louis-Philippe; McAdam, Robyn; Belkaid, Wiam; Shan, Weisong; Koch, Alexander W; Séguéla, Philippe; Colman, David R; Dhaunchak, Ajit S

    2012-05-02

    Classical cadherins, which are adhesion molecules functioning at the CNS synapse, are synthesized as adhesively inactive precursor proteins in the endoplasmic reticulum (ER). Signal sequence and prodomain cleavage in the ER and Golgi apparatus, respectively, activates their adhesive properties. Here, we provide the first evidence for sorting of nonadhesive precursor N-cadherin (ProN) to the neuronal surface, where it coexists with adhesively competent mature N-cadherin (N-cad), generating a spectrum of adhesive strengths. In cultured hippocampal neurons, a high ProN/N-cad ratio downregulates synapse formation. Neurons expressing genetically engineered uncleavable ProN make markedly fewer synapses. The synapse number can be rescued to normality by depleting surface ProN levels through prodomain cleavage by an exogenous protease. Finally, prodomain processing is developmentally regulated in the rat hippocampus. We conclude that it is the ProN/N-cad ratio and not mature N-cad alone that is critical for regulation of adhesion during synaptogenesis.

  19. The armadillo repeat region targets ARVCF to cadherin-based cellular junctions.

    PubMed

    Kaufmann, U; Zuppinger, C; Waibler, Z; Rudiger, M; Urbich, C; Martin, B; Jockusch, B M; Eppenberger, H; Starzinski-Powitz, A

    2000-11-01

    The cytoplasmic domain of the transmembrane protein M-cadherin is involved in anchoring cytoskeletal elements to the plasma membrane at cell-cell contact sites. Several members of the armadillo repeat protein family mediate this linkage. We show here that ARVCF, a member of the p120 (ctn) subfamily, is a ligand for the cytoplasmic domain of M-cadherin, and characterize the regions involved in this interaction in detail. Complex formation in an in vivo environment was demonstrated in (1) yeast two-hybrid screens, using a cDNA library from differentiating skeletal muscle and part of the cytoplasmic M-cadherin tail as a bait, and (2) mammalian cells, using a novel experimental system, the MOM recruitment assay. Immunoprecipitation and in vitro binding assays confirmed this interaction. Ectopically expressed EGFP-ARVCF-C11, an N-terminal truncated fragment, targets to junctional structures in epithelial MCF7 cells and cardiomyocytes, where it colocalizes with the respective cadherins, beta-catenin and p120 (ctn). Hence, the N terminus of ARVCF is not required for junctional localization. In contrast, deletion of the four N-terminal armadillo repeats abolishes this ability in cardiomyocytes. Detailed mutational analysis revealed the armadillo repeat region of ARVCF as sufficient and necessary for interaction with the 55 membrane-proximal amino acids of the M-cadherin tail.

  20. ADAM13 cleavage of cadherin-11 promotes CNC migration independently of the homophilic binding site.

    PubMed

    Abbruzzese, Genevieve; Becker, Sarah F; Kashef, Jubin; Alfandari, Dominique

    2016-07-15

    The cranial neural crest (CNC) is a highly motile population of cells that is responsible for forming the face and jaw in all vertebrates and perturbing their migration can lead to craniofacial birth defects. Cell motility requires a dynamic modification of cell-cell and cell-matrix adhesion. In the CNC, cleavage of the cell adhesion molecule cadherin-11 by ADAM13 is essential for cell migration. This cleavage generates a shed extracellular fragment of cadherin-11 (EC1-3) that possesses pro-migratory activity via an unknown mechanism. Cadherin-11 plays an important role in modulating contact inhibition of locomotion (CIL) in the CNC to regulate directional cell migration. Here, we show that while the integral cadherin-11 requires the homophilic binding site to promote CNC migration in vivo, the EC1-3 fragment does not. In addition, we show that increased ADAM13 activity or expression of the EC1-3 fragment increases CNC invasiveness in vitro and blocks the repulsive CIL response in colliding cells. This activity requires the presence of an intact homophilic binding site on the EC1-3 suggesting that the cleavage fragment may function as a competitive inhibitor of cadherin-11 adhesion in CIL but not to promote cell migration in vivo. Copyright © 2015. Published by Elsevier Inc.

  1. ADAM13 cleavage of cadherin-11 promotes CNC migration independently of the homophilic binding site

    PubMed Central

    Kashef, Jubin; Alfandari, Dominique

    2015-01-01

    The cranial neural crest (CNC) is a highly motile population of cells that is responsible for forming the face and jaw in all vertebrates and perturbing their migration can lead to craniofacial birth defects. Cell motility requires a dynamic modification of cell–cell and cell-matrix adhesion. In the CNC, cleavage of the cell adhesion molecule cadherin-11 by ADAM13 is essential for cell migration. This cleavage generates a shed extracellular fragment of cadherin-11 (EC1-3) that possesses pro-migratory activity via an unknown mechanism. Cadherin-11 plays an important role in modulating contact inhibition of locomotion (CIL) in the CNC to regulate directional cell migration. Here, we show that while the integral cadherin-11 requires the homophilic binding site to promote CNC migration in vivo, the EC1-3 fragment does not. In addition, we show that increased ADAM13 activity or expression of the EC1-3 fragment increases CNC invasiveness in vitro and blocks the repulsive CIL response in colliding cells. This activity requires the presence of an intact homophilic binding site on the EC1-3 suggesting that the cleavage fragment may function as a competitive inhibitor of cadherin-11 adhesion in CIL but not to promote cell migration in vivo. PMID:26206614

  2. Thiazolidinedione, a peroxisome proliferator-activated receptor-gamma ligand, modulates the E-cadherin/beta-catenin system in a human pancreatic cancer cell line, BxPC-3.

    PubMed

    Ohta, Tetsuo; Elnemr, Ayman; Yamamoto, Miyuki; Ninomiya, Itasu; Fushida, Sachio; Nishimura, Gen-Ichi; Fujimura, Takashi; Kitagawa, Hirohisa; Kayahara, Masato; Shimizu, Koichi; Yi, Shuangqin; Miwa, Koichi

    2002-07-01

    Activation of peroxisome proliferator-activated receptor (PPAR)-gamma induces terminal differentiation and growth inhibition associated with G1 cell cycle arrest in some cancer cells. The multifunctional molecule beta-catenin performs important roles in intercellular adhesion and signal transduction. However, no report has focused on actions of PPAR-gamma in regulating the E-cadherin/beta-catenin system. We examined whether thiazolidinedione (TZD), a potent PPAR-gamma ligand, could modulate the E-cadherin/beta-catenin system in a human pancreatic cancer cell line, BxPC-3, that has been found to express PPAR-gamma. According to Western blotting, TZD markedly increased differentiation markers including E-cadherin and carcinoembryonic antigen, while beta-catenin did not change significantly. In untreated cells, fluorescence immunostaining demonstrated beta-catenin predominantly in the cytoplasm and/or nucleus; in TZD-treated cells, beta-catenin localization had dramatically shifted to the plasma membrane, in association with increased E-cadherin at this site. Thus, a PPAR-gamma ligand appears to participate not only in induction of differentiation in pancreatic cancer cells, but also in the regulation of the E-cadherin/beta-catenin system. Such ligands may prove clinically useful as cytostatic anticancer agents.

  3. Central Topography of Cranial Motor Nuclei Controlled by Differential Cadherin Expression

    PubMed Central

    Astick, Marc; Tubby, Kristina; Mubarak, Waleed M.; Guthrie, Sarah; Price, Stephen R.

    2014-01-01

    Summary Neuronal nuclei are prominent, evolutionarily conserved features of vertebrate central nervous system (CNS) organization [1]. Nuclei are clusters of soma of functionally related neurons and are located in highly stereotyped positions. Establishment of this CNS topography is critical to neural circuit assembly. However, little is known of either the cellular or molecular mechanisms that drive nucleus formation during development, a process termed nucleogenesis [2–5]. Brainstem motor neurons, which contribute axons to distinct cranial nerves and whose functions are essential to vertebrate survival, are organized exclusively as nuclei. Cranial motor nuclei are composed of two main classes, termed branchiomotor/visceromotor and somatomotor [6]. Each of these classes innervates evolutionarily distinct structures, for example, the branchial arches and eyes, respectively. Additionally, each class is generated by distinct progenitor cell populations and is defined by differential transcription factor expression [7, 8]; for example, Hb9 distinguishes somatomotor from branchiomotor neurons. We characterized the time course of cranial motornucleogenesis, finding that despite differences in cellular origin, segregation of branchiomotor and somatomotor nuclei occurs actively, passing through a phase of each being intermingled. We also found that differential expression of cadherin cell adhesion family members uniquely defines each motor nucleus. We show that cadherin expression is critical to nucleogenesis as its perturbation degrades nucleus topography predictably. PMID:25308074

  4. Potential of Targeting PDE1C/2A for Suppressing Metastatic Ovarian Cancers

    DTIC Science & Technology

    2015-09-01

    HGSOC), are marked by profound chromosomal aberrations (gene amplification and loss) rather than recurrent somatic mutations [2-4...forced expression resulted in the induction of vimentin and disappearance of E-cadherin in these cells (Figure 1e). Moreover, these cells became...dramatic increase in the abundance of E-cadherin and disappearance of vimentin in both lines (Figure 5b). In addition, mesenchymal morphology of OVCAR5

  5. Cooperativity of E-cadherin and Smad4 loss to promote diffuse-type gastric adenocarcinoma and metastasis.

    PubMed

    Park, Jun Won; Jang, Seok Hoon; Park, Dong Min; Lim, Na Jung; Deng, Chuxia; Kim, Dae Yong; Green, Jeffrey E; Kim, Hark Kyun

    2014-08-01

    Loss of E-cadherin (CDH1), Smad4, and p53 has been shown to play an integral role in gastric, intestinal, and breast cancer formation. Compound conditional knockout mice for Smad4, p53, and E-cadherin were generated to define and compare the roles of these genes in gastric, intestinal, and breast cancer development by crossing with Pdx-1-Cre, Villin-Cre, and MMTV-Cre transgenic mice. Interestingly, gastric adenocarcinoma was significantly more frequent in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice than in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(+/+) mice, demonstrating that Cdh1 heterozygosity accelerates the development and progression of gastric adenocarcinoma, in combination with loss of Smad4 and p53. Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice developed gastric adenocarcinomas without E-cadherin expression. However, intestinal and mammary adenocarcinomas with the same genetic background retained E-cadherin expression and were phenotypically similar to mice with both wild-type Cdh1 alleles. Lung metastases were identified in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice, but not in the other genotypes. Nuclear β-catenin accumulation was identified at the invasive tumor front of gastric adenocarcinomas arising in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice. This phenotype was less prominent in mice with intact E-cadherin or Smad4, indicating that the inhibition of β-catenin signaling by E-cadherin or Smad4 downregulates signaling pathways involved in metastases in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice. Knockdown of β-catenin significantly inhibited the migratory activity of Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) cell lines. Thus, loss of E-cadherin and Smad4 cooperates with p53 loss to promote the development and metastatic progression of gastric adenocarcinomas, with similarities to human gastric adenocarcinoma. This study demonstrates that inhibition of β-catenin is a converging node for the antimetastatic signaling pathways driven by E-cadherin and Smad4 in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice, providing novel insights into mechanisms for gastric cancer metastasis. ©2014 American Association for Cancer Research.

  6. A novel corepressor, BCoR-L1, represses transcription through an interaction with CtBP.

    PubMed

    Pagan, Julia K; Arnold, Jeremy; Hanchard, Kim J; Kumar, Raman; Bruno, Tiziana; Jones, Mathew J K; Richard, Derek J; Forrest, Alistair; Spurdle, Amanda; Verdin, Eric; Crossley, Merlin; Fanciulli, Maurizio; Chenevix-Trench, Georgia; Young, David B; Khanna, Kum Kum

    2007-05-18

    Corepressors play a crucial role in negative gene regulation and are defective in several diseases. BCoR is a corepressor for the BCL6 repressor protein. Here we describe and functionally characterize BCoR-L1, a homolog of BCoR. When tethered to a heterologous promoter, BCoR-L1 is capable of strong repression. Like other corepressors, BCoR-L1 associates with histone deacetylase (HDAC) activity. Specifically, BCoR-L1 coprecipitates with the Class II HDACs, HDAC4, HDAC5, and HDAC7, suggesting that they are involved in its role as a transcriptional repressor. BCoR-L1 also interacts with the CtBP corepressor through a CtBP-interacting motif in its amino terminus. Abrogation of the CtBP binding site within BCoR-L1 partially relieves BCoR-L1-mediated transcriptional repression. Furthermore, BCoR-L1 is located on the E-cadherin promoter, a known CtBP-regulated promoter, and represses the E-cadherin promoter activity in a reporter assay. The inhibition of BCoR-L1 expression by RNA-mediated interference results in derepression of E-cadherin in cells that do not normally express E-cadherin, indicating that BCoR-L1 contributes to the repression of an authentic endogenous CtBP target.

  7. FAK is required for tension-dependent organization of collective cell movements in Xenopus mesendoderm

    PubMed Central

    Bjerke, Maureen A.; Dzamba, Bette; Wang, Chong; DeSimone, Douglas W.

    2014-01-01

    Collective cell movements are integral to biological processes such as embryonic development and wound healing and also have a prominent role in some metastatic cancers. In migrating Xenopus mesendoderm, traction forces are generated by cells through integrin-based adhesions and tension transmitted across cadherin adhesions. This is accompanied by assembly of a mechanoresponsive cadherin adhesion complex containing keratin intermediate filaments and the catenin-family member plakoglobin. We demonstrate that focal adhesion kinase (FAK), a major component of integrin adhesion complexes, is required for normal morphogenesis at gastrulation, closure of the anterior neural tube, axial elongation and somitogenesis. Depletion of zygotically expressed FAK results in disruption of mesendoderm tissue polarity similar to that observed when expression of keratin or plakoglobin is inhibited. Both individual and collective migrations of mesendoderm cells from FAK depleted embryos are slowed, cell protrusions are disordered, and cell spreading and traction forces are decreased. Additionally, keratin filaments fail to organize at the rear of cells in the tissue and association of plakoglobin with cadherin is diminished. These findings suggest that FAK is required for the tension-dependent assembly of the cadherin adhesion complex that guides collective mesendoderm migration, perhaps by modulating the dynamic balance of substrate traction forces and cell cohesion needed to establish cell polarity. PMID:25127991

  8. [Expression and mechanism of Twist2 in glioma].

    PubMed

    Wang, L Z; Wang, W J; Xiong, Y F; Xu, S; Wang, S S; Tu, Y; Wang, Z Y; Yan, X L; Mei, J H; Wang, C L

    2017-12-08

    Objective: To investigate the significance of Twist2 in glioma and whether it is involved in the malignant transformation of glioma by epithelial-mesenchymal transition (EMT). Methods: Using immunohistochemical method detected the expression level of Twist2 in 60 cases of gliomas (including WHO grades Ⅱ, Ⅲ and Ⅳ, each for 20 cases) and 20 cases of non-tumor brain tissues. Real-time fluorescence quantitative PCR and Western blot were used to detect the expression level of Twist2 mRNA and protein in 61 cases of fresh glioma tissue (WHO grade Ⅱ 16 cases, Ⅲ 21 cases, Ⅳ 24 cases) and 12 cases of adjacent tissues, and the expression levels of E-cadherin, N-cadherin and vimentin were also investigated in fresh glioma tissue. Results: Immunohistochemistry results showed that the percentages of Twist2 expression in glioma was 90%(54/60) compared with 30%(6/20) in non-tumor brain tissues( P <0.01). The percentages of Twist2 expression were 75% (15/20), 95% (19/20), and 100% (20/20) in the WHO gradesⅡ, Ⅲ and Ⅳ gliomas, respectively. WHO grades Ⅳ and Ⅲ were significantly higher than that of WHO grade Ⅱ ( P <0.01). There was no significant difference between WHO grade Ⅳand WHO Ⅲ glioma ( P >0.05). Real-time fluorescence quantitative PCR and Western blot showed that the expression level of Twist 2 in gliomas was significantly higher than that in para-cancerous tissues ( P <0.01), and those in WHO grades Ⅳ and Ⅲ gliomas were significantly higher than that in WHO grade Ⅱ glioma ( P <0.01). There was no significant difference between WHO grade Ⅳand grade Ⅲ glioma ( P >0.05). Detection of key protein expression in EMT by Western blot displayed that the expression of E-cadherin was negatively associated with Twist2 in glioma ( r =-0.972, P <0.01). The expression of N-cadherin and vimentin was positively associated with Twist2 in glioma( r =0.971, P <0.01; r =0.968, P <0.01). Conclusions: The expression of Twist2 in human glioma is positively correlated with the malignant grade of glioma, which may be involved in the malignant progression of glioma by EMT.

  9. Influence of intra-tumoral heterogeneity on the evaluation of BCL2, E-cadherin, EGFR, EMMPRIN, and Ki-67 expression in tissue microarrays from breast cancer.

    PubMed

    Tramm, Trine; Kyndi, Marianne; Sørensen, Flemming B; Overgaard, Jens; Alsner, Jan

    2018-01-01

    The influence of intra-tumoral heterogeneity on the evaluation of immunohistochemical (IHC) biomarker expression may affect the analytical validity of new biomarkers substantially and hence compromise the clinical utility. The aim of this study was to examine the influence of intra-tumoral heterogeneity as well as inter-observer variability on the evaluation of various IHC markers with potential prognostic impact in breast cancer (BCL2, E-cadherin, EGFR, EMMPRIN and Ki-67). From each of 27 breast cancer patients, two tumor-containing paraffin blocks were chosen. Intra-tumoral heterogeneity was evaluated (1) within a single tumor-containing paraffin block ('intra-block agreement') by comparing information from a central, a peripheral tissue microarray (TMA) core and a whole slide section (WS), (2) between two different tumor-containing blocks from the same primary tumor ('inter-block agreement') by comparing information from TMA cores (central/peripheral) and WS. IHC markers on WS and TMA cores were evaluated by two observers independently, and agreements were estimated by Kappa statistics. For BCL2, E-cadherin and EGFR, an almost perfect intra- and inter-block agreement was found. EMMPRIN and Ki-67 showed a more heterogeneous expression with moderate to substantial intra-block agreements. For both stainings, there was a moderate inter-block agreement that improved slightly for EMMPRIN, when using WS instead of TMA cores. Inter-observer agreements were found to be almost perfect for BCL2, E-cadherin and EGFR (WS: κ > 0.82, TMAs: κ > 0.90), substantial for EMMPRIN (κ > 0.63), but only fair to moderate for Ki-67 (WS: κ = 0.54, TMAs: κ = 0.33). BCL2, E-cadherin and EGFR were found to be homogeneously expressed, whereas EMMPRIN and Ki-67 showed a more pronounced degree of intra-tumoral heterogeneity. The results emphasize the importance of securing the analytical validity of new biomarkers by examining the intra-tumoral heterogeneity of immunohistochemical stainings applied to TMA cores individually in each type of cancer.

  10. Cadherin-11 regulates protrusive activity in Xenopus cranial neural crest cells upstream of Trio and the small GTPases.

    PubMed

    Kashef, Jubin; Köhler, Almut; Kuriyama, Sei; Alfandari, Dominique; Mayor, Roberto; Wedlich, Doris

    2009-06-15

    Xenopus Cadherin-11 (Xcad-11) is expressed when cranial neural crest cells (CNC) acquire motility. However, its function in stimulating cell migration is poorly understood. Here, we demonstrate that Xcad-11 initiates filopodia and lamellipodia formation, which is essential for CNC to populate pharyngeal pouches. We identified the cytoplasmic tail of Xcad-11 as both necessary and sufficient for proper CNC migration as long as it was linked to the plasma membrane. Our results showing that guanine nucleotide exchange factor (GEF)-Trio binds to Xcad-11 and can functionally substitute for it like constitutively active forms of RhoA, Rac, and cdc42 unravel a novel cadherin function.

  11. Saccharomyces boulardii CNCM I-745 Restores intestinal Barrier Integrity by Regulation of E-cadherin Recycling.

    PubMed

    Terciolo, Chloé; Dobric, Aurélie; Ouaissi, Mehdi; Siret, Carole; Breuzard, Gilles; Silvy, Françoise; Marchiori, Bastien; Germain, Sébastien; Bonier, Renaté; Hama, Adel; Owens, Roisin; Lombardo, Dominique; Rigot, Véronique; André, Frédéric

    2017-08-01

    Alteration in intestinal permeability is the main factor underlying the pathogenesis of many diseases affecting the gut, such as inflammatory bowel disease [IBD]. Characterization of molecules targeting the restoration of intestinal barrier integrity is therefore vital for the development of alternative therapies. The yeast Saccharomyces boulardii CNCM I-745 [Sb], used to prevent and treat antibiotic-associated infectious and functional diarrhea, may have a beneficial effect in the treatment of IBD. We analyzed the impact of Sb supernatant on tissue integrity and components of adherens junctions using cultured explants of colon from both IBD and healthy patients. To evaluate the pathways by which Sb regulates the expression of E-cadherin at the cell surface, we developed in vitro assays using human colonic cell lines, including cell aggregation, a calcium switch assay, real-time measurement of transepithelial electrical resistance [TEER] and pulse-chase experiments. We showed that Sb supernatant treatment of colonic explants protects the epithelial morphology and maintains E-cadherin expression at the cell surface. In vitro experiments revealed that Sb supernatant enhances E-cadherin delivery to the cell surface by re-routing endocytosed E-cadherin back to the plasma membrane. This process, involving Rab11A-dependent recycling endosome, leads to restoration of enterocyte adherens junctions, in addition to the overall restoration and strengthening of intestinal barrier function. These findings open new possibilities of discovering novel options for prevention and therapy of diseases that affect intestinal permeability. Copyright © 2017 European Crohn's and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  12. Loss of prostasin (PRSS8) in human bladder transitional cell carcinoma cell lines is associated with epithelial-mesenchymal transition (EMT).

    PubMed

    Chen, Li-Mei; Verity, Nicole J; Chai, Karl X

    2009-10-22

    The glycosylphosphatidylinositol (GPI)-anchored epithelial extracellular membrane serine protease prostasin (PRSS8) is expressed abundantly in normal epithelia and essential for terminal epithelial differentiation, but down-regulated in human prostate, breast, and gastric cancers and invasive cancer cell lines. Prostasin is involved in the extracellular proteolytic modulation of the epidermal growth factor receptor (EGFR) and is an invasion suppressor. The aim of this study was to evaluate prostasin expression states in the transitional cell carcinomas (TCC) of the human bladder and in human TCC cell lines. Normal human bladder tissues and TCC on a bladder cancer tissue microarray (TMA) were evaluated for prostasin expression by means of immunohistochemistry. A panel of 16 urothelial and TCC cell lines were evaluated for prostasin and E-cadherin expression by western blot and quantitative PCR, and for prostasin gene promoter region CpG methylation by methylation-specific PCR (MSP). Prostasin is expressed in the normal human urothelium and in a normal human urothelial cell line, but is significantly down-regulated in high-grade TCC and lost in 9 (of 15) TCC cell lines. Loss of prostasin expression in the TCC cell lines correlated with loss of or reduced E-cadherin expression, loss of epithelial morphology, and promoter DNA hypermethylation. Prostasin expression could be reactivated by demethylation or inhibition of histone deacetylase. Re-expression of prostasin or a serine protease-inactive variant resulted in transcriptional up-regulation of E-cadherin. Loss of prostasin expression in bladder transitional cell carcinomas is associated with epithelial-mesenchymal transition (EMT), and may have functional implications in tumor invasion and resistance to chemotherapy.

  13. Mechanism of c-Met and EGFR tyrosine kinase inhibitor resistance through epithelial mesenchymal transition in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastogi, Ichwaku; Rajanna, Supriya; Webb, Andrew

    According to currently available estimates from Cancer Research UK, 14.1 million new lung cancer cases were diagnosed and a staggering 8.2 million people worldwide died from lung cancer in 2012. EGFR and c-Met are two tyrosine kinase receptors most commonly overexpressed or mutated in Non-small Cell Lung Cancer (NSCLC) resulting in increased proliferation and survival of lung cancer cells. Tyrosine kinase inhibitors (TKIs), such as erlotinib, approved by the FDA as first/second line therapy for NSCLC patients have limited clinical efficacy due to acquired resistance. In this manuscript, we investigate and discuss the role of epithelial mesenchymal transition (EMT) inmore » the development of resistance against EGFR and c-Met TKIs in NSCLC. Our findings show that Zeb-1, a transcriptional repressor of E-Cadherin, is upregulated in TKI-resistant cells causing EMT. We observed that TKI-resistant cells have increased gene and protein expression of EMT related proteins such as Vimentin, N-Cadherin, β-Catenin and Zeb-1, while expression of E-Cadherin, an important cell adhesion molecule, was suppressed. We also confirmed that TKI-resistant cells display mesenchymal cell type morphology, and have upregulation of β-Catenin which may regulate expression of Zeb-1, a transcriptional repressor of E-Cadherin in TKI-resistant NSCLC cells. Finally, we show that down-regulating Zeb-1 by inducing miR-200a or β-Catenin siRNA can increase drug sensitivity of TKI-resistant cells. - Highlights: • Resistance to TKIs in NSCLC cells is mediated via modulation in EMT related proteins. • EMT may induce c-Met mediated TKI resistance, similar to EGFR TKI resistance. • Role of β-catenin and cadherins in TKI resistance was validated by FACS and qPCR. • Knockdown of β-catenin or Zeb-1 can increase TKI sensitivity in TKI-resistant cells. • Targeting key EMT related proteins may overcome TKI resistance in NSCLC.« less

  14. Murinization of Internalin Extends Its Receptor Repertoire, Altering Listeria monocytogenes Cell Tropism and Host Responses

    PubMed Central

    Tsai, Yu-Huan; Disson, Olivier; Bierne, Hélène; Lecuit, Marc

    2013-01-01

    Listeria monocytogenes (Lm) is an invasive foodborne pathogen that leads to severe central nervous system and maternal-fetal infections. Lm ability to actively cross the intestinal barrier is one of its key pathogenic properties. Lm crosses the intestinal epithelium upon the interaction of its surface protein internalin (InlA) with its host receptor E-cadherin (Ecad). InlA-Ecad interaction is species-specific, does not occur in wild-type mice, but does in transgenic mice expressing human Ecad and knock-in mice expressing humanized mouse Ecad. To study listeriosis in wild-type mice, InlA has been “murinized” to interact with mouse Ecad. Here, we demonstrate that, unexpectedly, murinized InlA (InlAm) mediates not only Ecad-dependent internalization, but also N-cadherin-dependent internalization. Consequently, InlAm-expressing Lm targets not only goblet cells expressing luminally-accessible Ecad, as does Lm in humanized mice, but also targets villous M cells, which express luminally-accessible N-cadherin. This aberrant Lm portal of entry results in enhanced innate immune responses and intestinal barrier damage, both of which are not observed in wild-type Lm-infected humanized mice. Murinization of InlA therefore not only extends the host range of Lm, but also broadens its receptor repertoire, providing Lm with artifactual pathogenic properties. These results challenge the relevance of using InlAm-expressing Lm to study human listeriosis and in vivo host responses to this human pathogen. PMID:23737746

  15. Murinization of internalin extends its receptor repertoire, altering Listeria monocytogenes cell tropism and host responses.

    PubMed

    Tsai, Yu-Huan; Disson, Olivier; Bierne, Hélène; Lecuit, Marc

    2013-01-01

    Listeria monocytogenes (Lm) is an invasive foodborne pathogen that leads to severe central nervous system and maternal-fetal infections. Lm ability to actively cross the intestinal barrier is one of its key pathogenic properties. Lm crosses the intestinal epithelium upon the interaction of its surface protein internalin (InlA) with its host receptor E-cadherin (Ecad). InlA-Ecad interaction is species-specific, does not occur in wild-type mice, but does in transgenic mice expressing human Ecad and knock-in mice expressing humanized mouse Ecad. To study listeriosis in wild-type mice, InlA has been "murinized" to interact with mouse Ecad. Here, we demonstrate that, unexpectedly, murinized InlA (InlA(m)) mediates not only Ecad-dependent internalization, but also N-cadherin-dependent internalization. Consequently, InlA(m)-expressing Lm targets not only goblet cells expressing luminally-accessible Ecad, as does Lm in humanized mice, but also targets villous M cells, which express luminally-accessible N-cadherin. This aberrant Lm portal of entry results in enhanced innate immune responses and intestinal barrier damage, both of which are not observed in wild-type Lm-infected humanized mice. Murinization of InlA therefore not only extends the host range of Lm, but also broadens its receptor repertoire, providing Lm with artifactual pathogenic properties. These results challenge the relevance of using InlA(m)-expressing Lm to study human listeriosis and in vivo host responses to this human pathogen.

  16. Vitamin D regulates tyrosine hydroxylase expression: N-cadherin a possible mediator.

    PubMed

    Cui, X; Pertile, R; Liu, P; Eyles, D W

    2015-09-24

    Vitamin D is a neuroactive steroid. Its genomic actions are mediated via the active form of vitamin D, 1,25(OH)2D3, binding to the vitamin D receptor (VDR). The VDR emerges in the rat mesencephalon at embryonic day 12, representing the peak period of dopaminergic cell birth. Our prior studies reveal that developmental vitamin D (DVD)-deficiency alters the ontogeny of dopaminergic neurons in the developing mesencephalon. There is also consistent evidence from others that 1,25(OH)2D3 promotes the survival of dopaminergic neurons in models of dopaminergic toxicity. In both developmental and toxicological studies it has been proposed that 1,25(OH)2D3 may modulate the differentiation and maturation of dopaminergic neurons; however, to date there is lack of direct evidence. The aim of the current study is to investigate this both in vitro using a human SH-SY5Y cell line transfected with rodent VDR and in vivo using a DVD-deficient model. Here we show that in VDR-expressing SH-SY5Y cells, 1,25(OH)2D3 significantly increased production of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. This effect was dose- and time-dependent, but was not due to an increase in TH-positive cell number, nor was it due to the production of trophic survival factors for dopamine neurons such as glial-derived neurotrophic factor (GDNF). In accordance with 1,25(OH)2D3's anti-proliferative actions in the brain, 1,25(OH)2D3 reduced the percentage of dividing cells from approximately 15-10%. Given the recently reported role of N-cadherin in the direct differentiation of dopaminergic neurons, we examined here whether it may be elevated by 1,25(OH)2D3. We confirmed this in vitro and more importantly, we showed DVD-deficiency decreases N-cadherin expression in the embryonic mesencephalon. In summary, in our in vitro model we have shown 1,25(OH)2D3 increases TH expression, decreases proliferation and elevates N-cadherin, a potential factor that mediates these processes. Accordingly all of these findings are reversed in the developing brain in our DVD-deficiency model. Remarkably our findings in the DVD-deficiency model phenocopy those found in a recent model where N-cadherin was regionally ablated from the mesencephalon. This study has, for the first time, shown that vitamin D directly modulates TH expression and strongly suggests N-cadherin may be a plausible mediator of this process both in vitro and in vivo. Our findings may help to explain epidemiological data linking DVD deficiency with schizophrenia. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  17. Modulating prime molecular expressions and in vitro wound healing rate in keratinocyte (HaCaT) population under characteristic honey dilutions.

    PubMed

    Chaudhary, Amrita; Bag, Swarnendu; Mandal, Mousumi; Krishna Karri, Sri Phani; Barui, Ananya; Rajput, Monika; Banerjee, Provas; Sheet, Debdoot; Chatterjee, Jyotirmoy

    2015-05-26

    In traditional medicines honey is known for healing efficacy and vividly used as "Anupan" in Ayurvedic medicines appreciating roles in dilutions. Validating efficacy of physico-chemically characterized honey in dilutions, studies on in vitro wound healing and attainment of cellular confluence epithelial cells including expressions of cardinal genes is crucial. To evaluate effects of characterized honey in varied dilutions on cellular viability, in vitro wound healing and modulation of prime epithelial gene expressions. Six Indian honey-samples from different sources were physico-chemically characterized and optimal one was explored in dilutions (v/v%) through in vitro studies on human epithelial (HaCaT) cells for viability, wound healing and expressions of genes p63, E-cadherin, β-catenin, GnT-III and GnT-V. Studied honey samples (i.e. A-F) depicted range of pH (2-4), water (12.48-23.95), electrical conductivity (2.57-14.34), carbohydrate (68.73-98.65), protein (.316-5.36) and antioxidant potential. Though sample A and F showed physico-chemical proximity, but overall bio-impact of the earlier was better, thus studied in 8-.1% (v/v) dilution range. Four dilutions (.01, .04, .1, .25 v/v%) augmented cellular viability but in vitro wound healing was fastest (p<.05) under .1%. Such efficacy was further documented for p63 up-regulation by immunocytochemistry and mRNA studies. The E-cadherin and β-catenin mRNA-expressions were also up-regulated and their proteins were predominantly cytoplasmic. E-cadherin up-regulation was corroborative with down-regulation and up-regulation of GnT-III and GnT-V respectively. Present study illustrated efficacy of particular honey dilution (.1%) with characteristic free radical scavenging activity in facilitating cell proliferation and attainment of confluence towards faster wound healing and modulation of cardinal epithelial genes (viz. p63, E-cadherin, β-catenin, Gnt-III and V). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Revising the embryonic origin of thyroid C cells in mice and humans

    PubMed Central

    Johansson, Ellen; Andersson, Louise; Örnros, Jessica; Carlsson, Therese; Ingeson-Carlsson, Camilla; Liang, Shawn; Dahlberg, Jakob; Jansson, Svante; Parrillo, Luca; Zoppoli, Pietro; Barila, Guillermo O.; Altschuler, Daniel L.; Padula, Daniela; Lickert, Heiko; Fagman, Henrik; Nilsson, Mikael

    2015-01-01

    Current understanding infers a neural crest origin of thyroid C cells, the major source of calcitonin in mammals and ancestors to neuroendocrine thyroid tumors. The concept is primarily based on investigations in quail–chick chimeras involving fate mapping of neural crest cells to the ultimobranchial glands that regulate Ca2+ homeostasis in birds, reptiles, amphibians and fishes, but whether mammalian C cell development involves a homologous ontogenetic trajectory has not been experimentally verified. With lineage tracing, we now provide direct evidence that Sox17+ anterior endoderm is the only source of differentiated C cells and their progenitors in mice. Like many gut endoderm derivatives, embryonic C cells were found to coexpress pioneer factors forkhead box (Fox) a1 and Foxa2 before neuroendocrine differentiation takes place. In the ultimobranchial body epithelium emerging from pharyngeal pouch endoderm in early organogenesis, differential Foxa1/Foxa2 expression distinguished two spatially separated pools of C cell precursors with different growth properties. A similar expression pattern was recapitulated in medullary thyroid carcinoma cells in vivo, consistent with a growth-promoting role of Foxa1. In contrast to embryonic precursor cells, C cell-derived tumor cells invading the stromal compartment downregulated Foxa2, foregoing epithelial-to-mesenchymal transition designated by loss of E-cadherin; both Foxa2 and E-cadherin were re-expressed at metastatic sites. These findings revise mammalian C cell ontogeny, expand the neuroendocrine repertoire of endoderm and redefine the boundaries of neural crest diversification. The data further underpin distinct functions of Foxa1 and Foxa2 in both embryonic and tumor development. PMID:26395490

  19. Multiparametric in situ mRNA hybridization analysis to predict disease recurrence in patients with colon carcinoma.

    PubMed Central

    Kitadai, Y.; Ellis, L. M.; Tucker, S. L.; Greene, G. F.; Bucana, C. D.; Cleary, K. R.; Takahashi, Y.; Tahara, E.; Fidler, I. J.

    1996-01-01

    We examined the expression level of several genes that regulate different steps of metastasis in formalin-fixed, paraffin-embedded archival specimens of primary human colon carcinomas from patients with at least 5 years of follow-up. The expression of epidermal growth factor receptor, basic fibroblast growth factor, type IV collagenase, E-cadherin, and multidrug resistance (mdr-1) was examined by a colorimetric in situ mRNA hybridization technique concentrating on reactivity at the periphery of the neoplasms. The in situ hybridization technique revealed inter- and intratumor heterogeneity for expression of the metastasis-related genes. The expression of basic fibroblast growth factor, collagenase type IV, epidermal growth factor receptor, and mdr-1 mRNA was higher in Dukes's stage D than in Dukes' stage B tumors. Among the 22 Dukes' stage B neoplasms, 5 specimens exhibited a high expression level of epidermal growth factor receptor, basic fibroblast growth factor, and collagenase type IV. Clinical outcome data (5-year follow-up) revealed that all 5 patients with Dukes' stage B tumors developed distant metastasis (recurrent disease), whereas the other 17 patients with Dukes' stage B tumors expressing low levels of the metastasis-related genes were disease-free. Multivariate analysis identified high levels of expression of collagenase type IV and low levels of expression of E-cadherin as independent factors significantly associated with metastasis or recurrent disease. More specifically, metastatic or recurrent disease was associated with a high ratio (> 1.35) of expression of collagenase type IV to E-cadherin (specificity of 95%). Collectively, the data show that multiparametric in situ hybridization analysis for several metastasis-related genes may predict the metastatic potential, and hence the clinical outcome, of individual lymph-node-negative human colon cancers. Images Figure 1 Figure 2 PMID:8909244

  20. ITRAQ-based quantitative proteomic analysis of Cynops orientalis limb regeneration.

    PubMed

    Tang, Jie; Yu, Yuan; Zheng, Hanxue; Yin, Lu; Sun, Mei; Wang, Wenjun; Cui, Jihong; Liu, Wenguang; Xie, Xin; Chen, Fulin

    2017-09-22

    Salamanders regenerate their limbs after amputation. However, the molecular mechanism of this unique regeneration remains unclear. In this study, isobaric tags for relative and absolute quantification (iTRAQ) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS) was employed to quantitatively identify differentially expressed proteins in regenerating limbs 3, 7, 14, 30 and 42 days post amputation (dpa). Of 2636 proteins detected in total, 253 proteins were differentially expressed during different regeneration stages. Among these proteins, Asporin, Cadherin-13, Keratin, Collagen alpha-1(XI) and Titin were down-regulated. CAPG, Coronin-1A, AnnexinA1, Cathepsin B were up-regulated compared with the control. The identified proteins were further analyzed to obtain information about their expression patterns and functions in limb regeneration. Functional analysis indicated that the differentially expressed proteins were associated with wound healing, immune response, cellular process, metabolism and binding. This work indicated that significant proteome alternations occurred during salamander limb regeneration. The results may provide fundamental knowledge to understand the mechanism of limb regeneration.

  1. The prognostic role of the epithelial-mesenchymal transition markers E-cadherin and Slug in laryngeal squamous cell carcinoma.

    PubMed

    Cappellesso, Rocco; Marioni, Gino; Crescenzi, Marika; Giacomelli, Luciano; Guzzardo, Vincenza; Mussato, Alessio; Staffieri, Alberto; Martini, Alessandro; Blandamura, Stella; Fassina, Ambrogio

    2015-10-01

    Laryngeal squamous cell carcinoma (LSCC) prognosis is definitely related to lymph node metastasis. Epithelial-mesenchymal transition (EMT) allows neoplastic cells to gain the plasticity and motility required for tumour progression and metastasis. The aim of this study was to investigate the role of EMT in the prognosis of LSCC. Immunohistochemical analysis of E-cadherin, N-cadherin, Snail, Slug, ZEB1, and ZEB2 was performed in 37 consecutive LSCC cases. Low E-cadherin levels and high Slug levels correlated with both disease recurrence (P = 0.02 and P =0.01, respectively) and shorter disease-free survival (DFS) (P = 0.04 and P = 0.02, respectively). Relative expression levels of CDH1, SNAI2, miR-1 and the miR-200 family were also evaluated. CDH1, miR-200a and miR-200c down-regulation and SNAI2 overexpression were significantly associated with disease recurrence (P = 0.03, P = 0.02, P = 0.04, and P = 0.04, respectively). EMT increases tumour recurrence risk and shortens DFS in LSCC. E-cadherin and Slug immunohistochemical analysis could be useful for identifying patients requiring more aggressive treatment after surgery. © 2015 John Wiley & Sons Ltd.

  2. E-Cadherin/β-Catenin Complex: A Target for Anticancer and Antimetastasis Plants/Plant-derived Compounds.

    PubMed

    Tafrihi, Majid; Nakhaei Sistani, Roohollah

    2017-07-01

    Plants reputed to have cancer-inhibiting potential and putative active components derived from those plants have emerged as an exciting new field in cancer study. Some of these compounds have cancer-inhibiting potential in different clinical staging levels, especially metastasis. A few of them which stabilize cell-cell adhesions are controversial topics. This review article introduces some effective herbal compounds that target E-cadherin/β-catenin protein complex. In this article, at first, we briefly review the structure and function of E-cadherin and β-catenin proteins, Wnt signaling pathway, and its target genes. Then, effective compounds of the Teucrium persicum, Teucrium polium, Allium sativum (garlic), Glycine max (soy), and Brassica oleracea (broccoli) plants, which influence stability and cellular localization of E-cadherin/β-catenin complex, were studied. Based on literature review, there are some compounds in these plants, including genistein of soy, sulforaphane of broccoli, organosulfur compounds of garlic, and the total extract of Teucrium genus that change the expression of variety of Wnt target genes such as MMPs, E-cadherin, p21, p53, c-myc, and cyclin D1. So they may induce cell-cycle arrest, apoptosis and/or inhibition of Epithelial-Mesenchymal Transition (EMT) and metastasis.

  3. Cortactin scaffolds Arp2/3 and WAVE2 at the epithelial zonula adherens.

    PubMed

    Han, Siew Ping; Gambin, Yann; Gomez, Guillermo A; Verma, Suzie; Giles, Nichole; Michael, Magdalene; Wu, Selwin K; Guo, Zhong; Johnston, Wayne; Sierecki, Emma; Parton, Robert G; Alexandrov, Kirill; Yap, Alpha S

    2014-03-14

    Cadherin junctions arise from the integrated action of cell adhesion, signaling, and the cytoskeleton. At the zonula adherens (ZA), a WAVE2-Arp2/3 actin nucleation apparatus is necessary for junctional tension and integrity. But how this is coordinated with cadherin adhesion is not known. We now identify cortactin as a key scaffold for actin regulation at the ZA, which localizes to the ZA through influences from both E-cadherin and N-WASP. Using cell-free protein expression and fluorescent single molecule coincidence assays, we demonstrate that cortactin binds directly to the cadherin cytoplasmic tail. However, its concentration with cadherin at the apical ZA also requires N-WASP. Cortactin is known to bind Arp2/3 directly (Weed, S. A., Karginov, A. V., Schafer, D. A., Weaver, A. M., Kinley, A. W., Cooper, J. A., and Parsons, J. T. (2000) J. Cell Biol. 151, 29-40). We further show that cortactin can directly bind WAVE2, as well as Arp2/3, and both these interactions are necessary for actin assembly at the ZA. We propose that cortactin serves as a platform that integrates regulators of junctional actin assembly at the ZA.

  4. Cortactin Scaffolds Arp2/3 and WAVE2 at the Epithelial Zonula Adherens*♦

    PubMed Central

    Han, Siew Ping; Gambin, Yann; Gomez, Guillermo A.; Verma, Suzie; Giles, Nichole; Michael, Magdalene; Wu, Selwin K.; Guo, Zhong; Johnston, Wayne; Sierecki, Emma; Parton, Robert G.; Alexandrov, Kirill; Yap, Alpha S.

    2014-01-01

    Cadherin junctions arise from the integrated action of cell adhesion, signaling, and the cytoskeleton. At the zonula adherens (ZA), a WAVE2-Arp2/3 actin nucleation apparatus is necessary for junctional tension and integrity. But how this is coordinated with cadherin adhesion is not known. We now identify cortactin as a key scaffold for actin regulation at the ZA, which localizes to the ZA through influences from both E-cadherin and N-WASP. Using cell-free protein expression and fluorescent single molecule coincidence assays, we demonstrate that cortactin binds directly to the cadherin cytoplasmic tail. However, its concentration with cadherin at the apical ZA also requires N-WASP. Cortactin is known to bind Arp2/3 directly (Weed, S. A., Karginov, A. V., Schafer, D. A., Weaver, A. M., Kinley, A. W., Cooper, J. A., and Parsons, J. T. (2000) J. Cell Biol. 151, 29–40). We further show that cortactin can directly bind WAVE2, as well as Arp2/3, and both these interactions are necessary for actin assembly at the ZA. We propose that cortactin serves as a platform that integrates regulators of junctional actin assembly at the ZA. PMID:24469447

  5. Cadherin-11 regulates protrusive activity in Xenopus cranial neural crest cells upstream of Trio and the small GTPases

    PubMed Central

    Kashef, Jubin; Köhler, Almut; Kuriyama, Sei; Alfandari, Dominique; Mayor, Roberto; Wedlich, Doris

    2009-01-01

    Xenopus Cadherin-11 (Xcad-11) is expressed when cranial neural crest cells (CNC) acquire motility. However, its function in stimulating cell migration is poorly understood. Here, we demonstrate that Xcad-11 initiates filopodia and lamellipodia formation, which is essential for CNC to populate pharyngeal pouches. We identified the cytoplasmic tail of Xcad-11 as both necessary and sufficient for proper CNC migration as long as it was linked to the plasma membrane. Our results showing that guanine nucleotide exchange factor (GEF)-Trio binds to Xcad-11 and can functionally substitute for it like constitutively active forms of RhoA, Rac, and cdc42 unravel a novel cadherin function. PMID:19528317

  6. Adenocarcinoma of urinary bladder: A report of two patients.

    PubMed

    Kumari, Nitu; Vasudeva, Pawan; Kumar, Anup; Agrawal, Usha

    2015-01-01

    Adenocarcinoma of the bladder is a rare tumor. Primary and metastatic adenocarcinomas of urinary bladder are morphologically similar, but histogenetically different. We present two cases, a signet ring cell adenocarcinoma with follow-up and another of glandular adenocarcinoma of urinary bladder. Pathological evaluation and immunohistochemical panel of eight markers (E-cadherin, CK20, CK7, CDX2, estrogen receptor (ER), gross cystic disease fluid protein 15 (GCDFP15), 34bE12, and prostate specific antigen (PSA) provides a diagnostic confirmation of primary adenocarcinoma with the positive expression of E-cadherin and CK20 in case 1 and metastatic adenocarcinoma of prostate with profile of E-cadherin+, CK20-, GCDFP15+, 34bE12+, and PSA+ in case 2.

  7. Synthetic Lethal Screens Identify Vulnerabilities in GPCR Signaling and Cytoskeletal Organization in E-Cadherin-Deficient Cells.

    PubMed

    Telford, Bryony J; Chen, Augustine; Beetham, Henry; Frick, James; Brew, Tom P; Gould, Cathryn M; Single, Andrew; Godwin, Tanis; Simpson, Kaylene J; Guilford, Parry

    2015-05-01

    The CDH1 gene, which encodes the cell-to-cell adhesion protein E-cadherin, is frequently mutated in lobular breast cancer (LBC) and diffuse gastric cancer (DGC). However, because E-cadherin is a tumor suppressor protein and lost from the cancer cell, it is not a conventional drug target. To overcome this, we have taken a synthetic lethal approach to determine whether the loss of E-cadherin creates druggable vulnerabilities. We first conducted a genome-wide siRNA screen of isogenic MCF10A cells with and without CDH1 expression. Gene ontology analysis demonstrated that G-protein-coupled receptor (GPCR) signaling proteins were highly enriched among the synthetic lethal candidates. Diverse families of cytoskeletal proteins were also frequently represented. These broad classes of E-cadherin synthetic lethal hits were validated using both lentiviral-mediated shRNA knockdown and specific antagonists, including the JAK inhibitor LY2784544, Pertussis toxin, and the aurora kinase inhibitors alisertib and danusertib. Next, we conducted a 4,057 known drug screen and time course studies on the CDH1 isogenic MCF10A cell lines and identified additional drug classes with linkages to GPCR signaling and cytoskeletal function that showed evidence of E-cadherin synthetic lethality. These included multiple histone deacetylase inhibitors, including vorinostat and entinostat, PI3K inhibitors, and the tyrosine kinase inhibitors crizotinib and saracatinib. Together, these results demonstrate that E-cadherin loss creates druggable vulnerabilities that have the potential to improve the management of both sporadic and familial LBC and DGC. ©2015 American Association for Cancer Research.

  8. Epstein-Barr virus associated modulation of Wnt pathway is not dependent on latent membrane protein-1.

    PubMed

    Webb, Natasha; Connolly, Geoff; Tellam, Judy; Yap, Alpha S; Khanna, Rajiv

    2008-09-22

    Previous studies have indicated that Epstein-Barr virus (EBV) can modulate the Wnt pathway in virus-infected cells and this effect is mediated by EBV-encoded oncogene latent membrane protein 1 (LMP1). Here we have reassessed the role of LMP1 in regulating the expression of various mediators of the canonical Wnt cascade. Contradicting the previous finding, we found that the levels of E-cadherin, beta-catenin, Glycogen Synthase Kinase 3ss (GSK3beta), axin and alpha-catenin were not affected by the expression of LMP1 sequences from normal B cells or nasopharyngeal carcinoma. Moreover, we also show that LMP1 expression had no detectable effect on the E-cadherin and beta-catenin interaction and did not induce transcriptional activation of beta-catenin. Taken together these studies demonstrate that EBV-mediated activation of Wnt pathway is not dependent on the expression of LMP1.

  9. New functions for alpha-catenins in health and disease: from cancer to heart regeneration.

    PubMed

    Vite, Alexia; Li, Jifen; Radice, Glenn L

    2015-06-01

    Strong cell-cell adhesion mediated by adherens junctions is dependent on anchoring the transmembrane cadherin molecule to the underlying actin cytoskeleton. To do this, the cadherin cytoplasmic domain interacts with catenin proteins, which include α-catenin that binds directly to filamentous actin. Originally thought to be a static structure, the connection between the cadherin/catenin adhesion complex and the actin cytoskeleton is now considered to be dynamic and responsive to both intercellular and intracellular signals. Alpha-catenins are mechanosensing proteins that undergo conformational change in response to cytoskeletal tension thus modifying the linkage between the cadherin and the actin cytoskeleton. There are three α-catenin isoforms expressed in mouse and human: αE-catenin (CTNNA1), αN-catenin (CTNNA2) and αT-catenin (CTNNA3). This review summarizes recent progress in understanding the in vivo function(s) of α-catenins in tissue morphogenesis, homeostasis and disease. The role of α-catenin in the regulation of cellular proliferation will be discussed in the context of cancer and regeneration.

  10. Prognostic relevance of epithelial-mesenchymal transition and proliferation in surgically treated primary parotid gland cancer.

    PubMed

    Busch, Alina; Bauer, Larissa; Wardelmann, Eva; Rudack, Claudia; Grünewald, Inga; Stenner, Markus

    2017-05-01

    Cancer of the major salivary glands comprises a morphologically diverse group of rare tumours of largely unknown cause. Epithelial-mesenchymal transition (EMT) has been shown to play a significant prognostic role in various human cancers. The aim was to assess the expression of EMT markers in different histological subtypes of parotid gland cancer (PGC) and analyse their prognostic value. We examined 94 PGC samples (13 histological subtypes) for the expression of MIB-1, epithelial cadherin (E-cadherin), β-catenin, vimentin and cytokeratin 8/18 (CK8/18) by means of immunohistochemistry. The experimental findings were correlated with clinicopathological and survival parameters. We detected all analysed EMT and proliferation markers in specifically different constellations within the examined histological subtypes of PGC. We found high epithelial marker expressions (CK8/18, E-cadherin, membranous β-catenin) only in a distinct variety of carcinomas. A high proliferation rate (high MIB-1 expression) as well as a combination of high CK8/18 and low vimentin expression was associated with a significantly worse survival. Our findings indicate that activation of the EMT pathway is a relevant explanation for tumour progression in individual histological subtypes of malignant parotid gland lesions, but by far not in all. Evidence of EMT activation in PGC cannot be seen as an isolated prognostic factor. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Valproic acid (VPA) inhibits the epithelial-mesenchymal transition in prostate carcinoma via the dual suppression of SMAD4.

    PubMed

    Lan, Xiaopeng; Lu, Guoliang; Yuan, Chuanwei; Mao, Shaowei; Jiang, Wei; Chen, Yougen; Jin, Xunbo; Xia, Qinghua

    2016-01-01

    The epithelial-mesenchymal transition (EMT) plays an important role in cancer metastasis. Previous studies have reported that valproic acid (VPA) suppresses prostate carcinoma (PCa) cell metastasis and down-regulates SMAD4 protein levels, which is the key molecule in TGF-β-induced EMT. However, the correlation between VPA and the EMT in PCa remains uncertain. Markers of the EMT in PCa cells and xenografts were molecularly assessed after VPA treatment. The expression and mono-ubiquitination of SMAD4 were also analyzed. After transfection with plasmids that express SMAD4 or short hairpin RNA for SMAD4 down-regulation, markers of EMT were examined to confirm whether VPA inhibits the EMT of PCa cells through the suppression of SMAD4. VPA induced the increase in E-cadherin (p < 0.05), and the decrease in N-cadherin (p < 0.05) and Vimentin (p < 0.05), in PCa cells and xenografts. SMAD4 mRNA and protein levels were repressed by VPA (p < 0.05), whereas the level of mono-ubiquitinated SMAD4 was increased (p < 0.05). SMAD4 knockdown significantly increased E-cadherin expression in PC3 cells, but SMAD4 over-expression abolished the VPA-mediated EMT-inhibitory effect. VPA inhibits the EMT in PCa cells via the inhibition of SMAD4 expression and the mono-ubiquitination of SMAD4. VPA could serve as a promising agent in PCa treatment, with new strategies based on its diverse effects on posttranscriptional regulation.

  12. Emodin Inhibits the Epithelial to Mesenchymal Transition of Epithelial Ovarian Cancer Cells via ILK/GSK-3β/Slug Signaling Pathway

    PubMed Central

    Lu, Jingjing; Xu, Ying; Wei, Xuan; Zhao, Zhe; Xue, Jing

    2016-01-01

    Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy. Despite the anticancer capabilities of emodin observed in many cancers, including EOC, the underlying molecular mechanism remains to be elucidated. A crucial link has been discovered between the acquisition of metastatic traits and the epithelial-mesenchymal transition (EMT). The present study aimed to determine whether emodin could inhibit the EMT of EOC cells and explore the underlying mechanism. The CCK-8 assay and transwell assay showed that emodin effectively repressed the abilities of proliferation, invasion, and migration in A2780 and SK-OV-3 cells. The Western blot showed that emodin upregulated epithelial markers (E-cadherin and Claudin) while it downregulated mesenchymal markers (N-cadherin and Vimentin) and transcription factor (Slug) in a dose-dependent fashion. After transfection of siRNA-Slug, both Slug and N-cadherin were downregulated in EOC cells while E-cadherin was upregulated, which was intensified by emodin. Besides, emodin decreased the expression of ILK, p-GSK-3β, β-catenin, and Slug. Transfection of siRNA-ILK also achieved the same effects, which was further strengthened by following emodin treatment. Nevertheless, SB216763, an inhibitor of GSK-3β, could reverse the effects of emodin except for ILK expression. These findings suggest that emodin inhibited the EMT of EOC cells via ILK/GSK-3β/Slug signaling pathway. PMID:28097141

  13. Emodin Inhibits the Epithelial to Mesenchymal Transition of Epithelial Ovarian Cancer Cells via ILK/GSK-3β/Slug Signaling Pathway.

    PubMed

    Lu, Jingjing; Xu, Ying; Wei, Xuan; Zhao, Zhe; Xue, Jing; Liu, Peishu

    2016-01-01

    Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy. Despite the anticancer capabilities of emodin observed in many cancers, including EOC, the underlying molecular mechanism remains to be elucidated. A crucial link has been discovered between the acquisition of metastatic traits and the epithelial-mesenchymal transition (EMT). The present study aimed to determine whether emodin could inhibit the EMT of EOC cells and explore the underlying mechanism. The CCK-8 assay and transwell assay showed that emodin effectively repressed the abilities of proliferation, invasion, and migration in A2780 and SK-OV-3 cells. The Western blot showed that emodin upregulated epithelial markers (E-cadherin and Claudin) while it downregulated mesenchymal markers (N-cadherin and Vimentin) and transcription factor (Slug) in a dose-dependent fashion. After transfection of siRNA-Slug, both Slug and N-cadherin were downregulated in EOC cells while E-cadherin was upregulated, which was intensified by emodin. Besides, emodin decreased the expression of ILK, p-GSK-3 β , β -catenin, and Slug. Transfection of siRNA-ILK also achieved the same effects, which was further strengthened by following emodin treatment. Nevertheless, SB216763, an inhibitor of GSK-3 β , could reverse the effects of emodin except for ILK expression. These findings suggest that emodin inhibited the EMT of EOC cells via ILK/GSK-3 β /Slug signaling pathway.

  14. Relationship among mismatch repair deficiency, CDX2 loss, p53 and E-cadherin in colon carcinoma and suitability of using a double panel of mismatch repair proteins by immunohistochemistry.

    PubMed

    Sayar, Ilyas; Akbas, Emin Murat; Isik, Arda; Gokce, Aysun; Peker, Kemal; Demirtas, Levent; Gürbüzel, Mehmet

    2015-09-01

    Biomarkers such as mismatch repair proteins, CDX2, p53, and E-cadherin are blamed for colon cancers, but the relationships of these biomarkers with each other and with pathological risk factors in colon carcinoma are still not clear. The aim of this study was to evaluate the association of these biomarkers with each other by using immunohistochemical staining and to compare their expression with pathological risk factors for colonic adenocarcinoma. We also aimed to study the usability of a double panel of mismatch repair proteins. One hundred and eleven cases with colonic adenocarcinoma were examined. There was a statistically significant relationship between tumor histological differentiation and perineural invasion, vascular invasion, mismatch repair deficiency, p53, CDX2, and E-cadherin (p < 0.05). PMS2 and MSH6 loss covered 100% of cases with mismatch repair deficiency. Mismatch repair deficiency was correlated with CDX2 loss and E-cadherin expression (p < 0.05). It was also observed that cases with PMS2 loss covered all the cases with CDX2 loss. In conclusion, this double panel may be used instead of a quadruple panel for detecting mismatch repair deficiency. Association of CDX2 and PMS2 in the present study is necessary to conduct further genetic and pathological studies focusing on these two markers together.

  15. Effect of Bisphenol A on invasion ability of human trophoblastic cell line BeWo.

    PubMed

    Wang, Zi-Yi; Lu, Jing; Zhang, Yuan-Zhen; Zhang, Ming; Liu, Teng; Qu, Xin-Lan

    2015-01-01

    Bisphenol A (BPA) is a kind of environmental endocrine disruptors (EEDs) that interfere embryo implantation. Trophoblast invasion plays a crucial role during embryo implantation. In this study, the effects of BPA on invasion ability of human trophoblastic cell line BeWo and its possible mechanism were investigated. BeWo cells were exposed to BPA and co-cultured with human endometrial cells to mimic embryo implantation in transwell model. The proliferation and invasion capability of BeWo cells were detected. The expression of E-cadherin, DNMT1, MMP-2, MMP-9, TIMP-1 and TIMP-2 were also analyzed. The results showed that the invasion capability of BeWo was reduced after daily exposure to BPA. BPA had biphasic effect on E-cadherin expression level in BeWo cells and expression level of DNMT1 was decreased when treated with BPA. Moreover, BPA treatment also changed the balance of MMPs/TIMPs in BeWo cells by down-regulating MMP-2, MMP-9 and up-regulating TIMP-1, TIMP-2 with increasing BPA concentration. Taken together, these results showed that BPA treatment could reduce the invasion ability of BeWo cells and alter the expression level of E-cadherin, DNMT1, TIMP-1, TIMP-2, MMP-2, and MMP-9. Our study would help us to understand the possible mechanism of BPA effect on invasion ability of human trophoblastic cell line BeWo.

  16. Beta-catenin phosphorylated at serine 45 is spatially uncoupled from beta-catenin phosphorylated in the GSK3 domain: implications for signaling.

    PubMed

    Maher, Meghan T; Mo, Rigen; Flozak, Annette S; Peled, Ofra N; Gottardi, Cara J

    2010-04-16

    C. elegans and Drosophila generate distinct signaling and adhesive forms of beta-catenin at the level of gene expression. Whether vertebrates, which rely on a single beta-catenin gene, generate unique adhesive and signaling forms at the level of protein modification remains unresolved. We show that beta-catenin unphosphorylated at serine 37 (S37) and threonine 41 (T41), commonly referred to as transcriptionally Active beta-Catenin (ABC), is a minor nuclear-enriched monomeric form of beta-catenin in SW480 cells, which express low levels of E-cadherin. Despite earlier indications, the superior signaling activity of ABC is not due to reduced cadherin binding, as ABC is readily incorporated into cadherin contacts in E-cadherin-restored cells. Beta-catenin phosphorylated at serine 45 (S45) or threonine 41 (T41) (T41/S45) or along the GSK3 regulatory cassette S33, S37 or T41 (S33/37/T41), however, is largely unable to associate with cadherins. Beta-catenin phosphorylated at T41/S45 and unphosphorylated at S37 and T41 is predominantly nuclear, while beta-catenin phosphorylated at S33/37/T41 is mostly cytoplasmic, suggesting that beta-catenin hypophosphorylated at S37 and T41 may be more active in transcription due to its enhanced nuclear accumulation. Evidence that phosphorylation at T41/S45 can be spatially separated from phosphorylations at S33/37/T41 suggests that these phosphorylations may not always be coupled, raising the possibility that phosphorylation at S45 serves a distinct nuclear function.

  17. Redox sensor CtBP mediates hypoxia-induced tumor cell migration

    PubMed Central

    Zhang, Qinghong; Wang, Su-Yan; Nottke, Amanda C.; Rocheleau, Jonathan V.; Piston, David W.; Goodman, Richard H.

    2006-01-01

    The rapid growth and poor vascularization of solid tumors expose cancer cells to hypoxia, which promotes the metastatic phenotype by reducing intercellular adhesion and increasing cell motility and invasiveness. In this study, we found that hypoxia increased free NADH levels in cancer cells, promoting CtBP recruitment to the E-cadherin promoter. This effect was blocked by pyruvate, which prevents the NADH increase. Furthermore, hypoxia repressed E-cadherin gene expression and increased tumor cell migration, effects that were blocked by CtBP knockdown. We propose that CtBP senses levels of free NADH to control expression of cell adhesion genes, thereby promoting tumor cell migration under hypoxic stress. PMID:16740659

  18. Endothelial and Epithelial Cell Transition to a Mesenchymal Phenotype Was Delineated by Nestin Expression.

    PubMed

    Chabot, Andréanne; Hertig, Vanessa; Boscher, Elena; Nguyen, Quang Trinh; Boivin, Benoît; Chebli, Jasmine; Bissonnette, Lyse; Villeneuve, Louis; Brochiero, Emmanuelle; Dupuis, Jocelyn; Calderone, Angelino

    2016-07-01

    Endothelial and epithelial cell transition to a mesenchymal phenotype was identified as cellular paradigms implicated in the appearance of fibroblasts and development of reactive fibrosis in interstitial lung disease. The intermediate filament protein nestin was highly expressed in fibrotic tissue, detected in fibroblasts and participated in proliferation and migration. The present study tested the hypothesis that the transition of endothelial and epithelial cells to a mesenchymal phenotype was delineated by nestin expression. Three weeks following hypobaric hypoxia, adult male Sprague-Dawley rats characterized by alveolar and perivascular lung fibrosis were associated with increased nestin protein and mRNA levels and marked appearance of nestin/collagen type I((+))-fibroblasts. In the perivascular region of hypobaric hypoxic rats, displaced CD31((+))-endothelial cells were detected, exhibited a mesenchymal phenotype and co-expressed nestin. Likewise, epithelial cells in the lungs of hypobaric hypoxic rats transitioned to a mesenchymal phenotype distinguished by the co-expression of E-cadherin and collagen. Following the removal of FBS from primary passage rat alveolar epithelial cells, TGF-β1 was detected in the media and a subpopulation acquired a mesenchymal phenotype characterized by E-cadherin downregulation and concomitant induction of collagen and nestin. Bone morphogenic protein-7 treatment of alveolar epithelial cells prevented E-cadherin downregulation, suppressed collagen induction but partially inhibited nestin expression. These data support the premise that the transition of endothelial and epithelial cells to a mesenchymal cell may have contributed in part to the appearance nestin/collagen type I((+))-fibroblasts and the reactive fibrotic response in the lungs of hypobaric hypoxic rats. © 2015 Wiley Periodicals, Inc.

  19. DNA methylation by DNMT1 and DNMT3b methyltransferases is driven by the MUC1-C oncoprotein in human carcinoma cells.

    PubMed

    Rajabi, H; Tagde, A; Alam, M; Bouillez, A; Pitroda, S; Suzuki, Y; Kufe, D

    2016-12-15

    Aberrant expression of the DNA methyltransferases (DNMTs) and disruption of DNA methylation patterns are associated with carcinogenesis and cancer cell survival. The oncogenic MUC1-C protein is aberrantly overexpressed in diverse carcinomas; however, there is no known link between MUC1-C and DNA methylation. Our results demonstrate that MUC1-C induces the expression of DNMT1 and DNMT3b, but not DNMT3a, in breast and other carcinoma cell types. We show that MUC1-C occupies the DNMT1 and DNMT3b promoters in complexes with NF-κB p65 and drives DNMT1 and DNMT3b transcription. In this way, MUC1-C controls global DNA methylation as determined by analysis of LINE-1 repeat elements. The results further demonstrate that targeting MUC1-C downregulates DNA methylation of the CDH1 tumor suppressor gene in association with induction of E-cadherin expression. These findings provide compelling evidence that MUC1-C is of functional importance to induction of DNMT1 and DNMT3b and, in turn, changes in DNA methylation patterns in cancer cells.

  20. Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice.

    PubMed

    Derksen, Patrick W B; Braumuller, Tanya M; van der Burg, Eline; Hornsveld, Marten; Mesman, Elly; Wesseling, Jelle; Krimpenfort, Paul; Jonkers, Jos

    2011-05-01

    Breast cancer is the most common malignancy in women of the Western world. Even though a large percentage of breast cancer patients show pathological complete remission after standard treatment regimes, approximately 30-40% are non-responsive and ultimately develop metastatic disease. To generate a good preclinical model of invasive breast cancer, we have taken a tissue-specific approach to somatically inactivate p53 and E-cadherin, the cardinal cell-cell adhesion receptor that is strongly associated with tumor invasiveness. In breast cancer, E-cadherin is found mutated or otherwise functionally silenced in invasive lobular carcinoma (ILC), which accounts for 10-15% of all breast cancers. We show that mammary-specific stochastic inactivation of conditional E-cadherin and p53 results in impaired mammary gland function during pregnancy through the induction of anoikis resistance of mammary epithelium, resulting in loss of epithelial organization and a dysfunctional mammary gland. Moreover, combined inactivation of E-cadherin and p53 induced lactation-independent development of invasive and metastatic mammary carcinomas, which showed strong resemblance to human pleomorphic ILC. Dissemination patterns of mouse ILC mimic the human malignancy, showing metastasis to the gastrointestinal tract, peritoneum, lung, lymph nodes and bone. Our results confirm that loss of E-cadherin contributes to both mammary tumor initiation and metastasis, and establish a preclinical mouse model of human ILC that can be used for the development of novel intervention strategies to treat invasive breast cancer.

  1. Roles of cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1.

    PubMed

    Shinohara, M; Kodama, A; Matozaki, T; Fukuhara, A; Tachibana, K; Nakanishi, H; Takai, Y

    2001-06-01

    Gab-1 is a multiple docking protein that is tyrosine phosphorylated by receptor tyrosine kinases such as c-Met, hepatocyte growth factor/scatter factor receptor, and epidermal growth factor receptor. We have now demonstrated that cell-cell adhesion also induces marked tyrosine phosphorylation of Gab-1 and that disruption of cell-cell adhesion results in its dephosphorylation. An anti-E-cadherin antibody decreased cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas the expression of E-cadherin specifically induced tyrosine phosphorylation of Gab-1. A relatively selective inhibitor of Src family kinases reduced cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas expression of a dominant-negative mutant of Csk increased it. Disruption of cell-cell adhesion, which reduced tyrosine phosphorylation of Gab-1, also reduced the activation of mitogen-activated protein kinase and Akt in response to cell-cell adhesion. These results indicate that E-cadherin-mediated cell-cell adhesion induces tyrosine phosphorylation by a Src family kinase of Gab-1, thereby regulating the activation of Ras/MAP kinase and phosphatidylinositol 3-kinase/Akt cascades.

  2. Ca2+-dependent localization of integrin-linked kinase to cell junctions in differentiating keratinocytes.

    PubMed

    Vespa, Alisa; Darmon, Alison J; Turner, Christopher E; D'Souza, Sudhir J A; Dagnino, Lina

    2003-03-28

    Integrin complexes are necessary for proper proliferation and differentiation of epidermal keratinocytes. Differentiation of these cells is accompanied by down-regulation of integrins and focal adhesions as well as formation of intercellular adherens junctions through E-cadherin homodimerization. A central component of integrin adhesion complexes is integrin-linked kinase (ILK), which can induce loss of E-cadherin expression and epithelial-mesenchymal transformation when ectopically expressed in intestinal and mammary epithelia. In cultured primary mouse keratinocytes, we find that ILK protein levels are independent of integrin expression and signaling, since they remain constant during Ca(2+)-induced differentiation. In contrast, keratinocyte differentiation is accompanied by marked reduction in kinase activity in ILK immunoprecipitates and altered ILK subcellular distribution. Specifically, ILK distributes in close apposition to actin fibers along intercellular junctions in differentiated but not in undifferentiated keratinocytes. ILK localization to cell-cell borders occurs independently of integrin signaling and requires Ca(2+) as well as an intact actin cytoskeleton. Further, and in contrast to what is observed in other epithelial cells, ILK overexpression in differentiated keratinocytes does not promote E-cadherin down-regulation and epithelial-mesenchymal transition. Thus, novel tissue-specific mechanisms control the formation of ILK complexes associated with cell-cell junctions in differentiating murine epidermal keratinocytes.

  3. Tobacco smoke induces epithelial barrier dysfunction via receptor EphA2 signaling.

    PubMed

    Nasreen, Najmunnisa; Khodayari, Nazli; Sriram, Peruvemba S; Patel, Jawaharlal; Mohammed, Kamal A

    2014-06-15

    Erythropoietin-producing human hepatocellular carcinoma (Eph) receptors are the largest family of receptor tyrosine kinases (RTKs) that mediate various cellular and developmental processes. The degrees of expression of these key molecules control the cell-cell interactions. Although the role of Eph receptors and their ligand Ephrins is well studied in developmental processes, their function in tobacco smoke (TS)-induced epithelial barrier dysfunction is unknown. We hypothesized that TS may induce permeability in bronchial airway epithelial cell (BAEpC) monolayer by modulating receptor EphA2 expression, actin cytoskeleton, adherens junction, and focal adhesion proteins. Here we report that in BAEpCs, acute TS exposure significantly upregulated EphA2 and EphrinA1 expression, disrupted the actin filaments, decreased E-cadherin expression, and increased protein permeability, whereas the focal adhesion protein paxillin was unaffected. Silencing the receptor EphA2 expression with silencing interference RNA (siRNA) significantly attenuated TS-induced hyperpermeability in BAEpCs. In addition, when BAEpC monolayer was transfected with EphA2-expressing plasmid and treated with recombinant EphrinA1, the transepithelial electrical resistance decreased significantly. Furthermore, TS downregulated E-cadherin expression and induced hyperpermeability across BAEpC monolayer in a Erk1/Erk2, p38, and JNK MAPK-dependent manner. TS induced hyperpermeability in BAEpC monolayer by targeting cell-cell adhesions, and interestingly cell-matrix adhesions were unaffected. The present data suggest that TS causes significant damage to the BAEpCs via induction of EphA2 and downregulation of E-cadherin. Induction of EphA2 in the BAEpCs exposed to TS may be an important signaling event in the pathogenesis of TS-induced epithelial injury.

  4. Pirfenidone may revert the epithelial-to-mesenchymal transition in human lung adenocarcinoma.

    PubMed

    Kurimoto, Ryota; Ebata, Takahiro; Iwasawa, Shunichiro; Ishiwata, Tsukasa; Tada, Yuji; Tatsumi, Koichiro; Takiguchi, Yuichi

    2017-07-01

    The epithelial-to-mesenchymal transition (EMT) in cancer is associated with invasion, metastasis and chemoresistance. Recent studies have revealed the increased expression of programmed death-ligand 1 (PD-L1) in cells undergoing EMT. The underlying mechanism of EMT involves transforming growth factor-β (TGF-β) and fibroblast growth factor-2 (FGF-2). Pirfenidone and the known EMT-suppressor nintedanib suppress pulmonary fibrosis partially through suppression of TGF-β. The present study aimed to determine whether pirfenidone has the potential to induce EMT-reversion, using nintedanib as a reference. The human lung adenocarcinoma cell lines A-549, HCC-827, and PC-9 were treated with TGF-β and FGF-2 to induce EMT. The EMT-induced cells were further treated with pirfenidone or nintedanib. Phenotypic alterations associated with EMT were assessed by examining the following: i) The expression levels of E-cadherin, vimentin, fibronectin and slug, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and fluorescent immunohistochemistry; ii) cell motility via wound-healing assays; and iii) the expression of PD-L1 using RT-qPCR. The combination of TGF-β and FGF-2 successfully induced EMT in all three cell lines, characterized by a significant reduction in E-cadherin expression in the A-549 and HCC-827 cells, increased expression levels of vimentin, fibronectin, slug and PD-L1, and increased cell motility in all three cell lines. Pirfenidone and nintedanib reverted all of these phenotypes, with the exception of unaltered E-cadherin expression in all three cell lines, and inconsistent expression of vimentin in the HCC-827 and PC-9 cells. Thus, pirfenidone and nintedanib have the ability to induce EMT-reversion in human lung adenocarcinoma.

  5. Macrophage migration inhibitory factor induces epithelial to mesenchymal transition, enhances tumor aggressiveness and predicts clinical outcome in resected pancreatic ductal adenocarcinoma.

    PubMed

    Funamizu, Naotake; Hu, Chaoxin; Lacy, Curtis; Schetter, Aaron; Zhang, Geng; He, Peijun; Gaedcke, Jochen; Ghadimi, Michael B; Ried, Thomas; Yfantis, Harris G; Lee, Dong H; Subleski, Jeffrey; Chan, Tim; Weiss, Jonathan M; Back, Timothy C; Yanaga, Katsuhiko; Hanna, Nader; Alexander, H Richard; Maitra, Anirban; Hussain, S Perwez

    2013-02-15

    MIF is a proinflammatory cytokine and is implicated in cancer. A higher MIF level is found in many human cancer and cancer-prone inflammatory diseases, including chronic pancreatitis and pancreatic cancer. We tested the hypothesis that MIF contributes to pancreatic cancer aggressiveness and predicts disease outcome in resected cases. Consistent with our hypothesis we found that an elevated MIF mRNA expression in tumors was significantly associated with poor outcome in resected cases. Multivariate Cox-regression analysis further showed that MIF is independently associated with patients' survival (HR = 2.26, 95% CI = 1.17-4.37, p = 0.015). Mechanistic analyses revealed that MIF overexpression decreased E-cadherin and increased vimentin mRNA and protein levels in pancreatic cancer cell lines, consistent with the features of epithelial-to-mesenchymal transition (EMT). Furthermore, MIF-overexpression significantly increased ZEB1/2 and decreased miR-200b expression, while shRNA-mediated inhibition of MIF increased E-cadherin and miR-200b expression, and reduced the expression of ZEB1/2 in Panc1 cells. Re-expression of miR-200b in MIF overexpressing cells restored the epithelial characteristics, as indicated by an increase in E-cadherin and decrease in ZEB1/2 and vimentin expression. A reduced sensitivity to the chemotherapeutic drug, gemcitabine, occurred in MIF-overexpressing cells. Indicative of an increased malignant potential, MIF over-expressing cells showed significant increase in their invasion ability in vitro, and tumor growth and metastasis in an orthotopic xenograft mouse model. These results support a role of MIF in disease aggressiveness, indicating its potential usefulness as a candidate target for designing improved treatment in pancreatic cancer. Copyright © 2012 UICC.

  6. Regulation of Estrogen Receptor Transcription in Breast Carcinoma.

    DTIC Science & Technology

    1998-10-01

    E-cadherin 40 and HSP27 41. It is certainly plausible to hypothesize a role for ERF-1 in the coordinate regulation of a set of genes in hormonally...responsive carcinomas. This conjecture is supported by the fact that breast carcinoma cell lines that express E-cadherin and HSP27 are also ERF- 1...regulatory promoter elements of the hsp27 gene in human breast cancer cells. Biochem. Biophys. Res. Com. 222, 155-163 (1996). 42. Imagawa, M., Chiu, R. & Karin

  7. Toll like receptor 4: A novel signaling pathway during renal fibrogenesis

    PubMed Central

    Campbell, Matthew T.; Hile, Karen L; Zhang, Hongji; Asanuma, Hiroshi; Vanderbrink, Brian A.; Rink, Richard R.; Meldrum, Kirstan K.

    2010-01-01

    Background The toll like receptor (TLR) family serves an important regulatory role in the innate immune system, and recent evidence has implicated TLR signaling in the pro-inflammatory response of a variety of endogenous and exogenous stimuli within the kidney. The role of TLR signaling in fibrotic renal injury; however, remains unknown. Materials and Methods C3H/HeJ TLR4 hyporesponsive mice (TLR4Lps-d) or WT controls (C3H/Heou/J) underwent either sham operation or 1 week of unilateral ureteral obstruction (UUO). The kidneys were harvested and tissues were analyzed for TLR4 expression (Western Blot; RTPCR), E-cadherin and α-SMA expression (Western Blot), fibroblast accumulation (fibroblast specific protein (FSP-1+) staining), renal fibrosis (collagen I RTPCR, total collagen assay, Masson's trichrome staining), cytokine gene expression (tumor necrosis factor-α (TNF-α) and transforming growth factor-beta1 (TGF-β1) RTPCR), and pSMAD2 and integrin α1 expression (Western Blot). Results Mice with intact TLR4 signaling demonstrate a significant increase in TLR4 expression, α-SMA expression, fibroblast accumulation, collagen deposition, and interstitial fibrosis, and a significant decrease in E-cadherin expression in response to UUO. TLR4 deficient mice; however, exhibit a significant reduction in obstruction-induced α-SMA expression, fibroblast accumulation, and renal fibrosis, with preservation of E-cadherin expression. TLR4's influence on fibroblast accumulation and renal fibrosis occurred independent of any alterations in TNF-α,TGF-β1, or pSMAD2 expression, but did involve alterations integrin α1 expression. Conclusion TLR4 appears to be a significant mediator of fibrotic renal injury. While TLR4 signaling is recognized as a critical component of the innate immune response, this is the first study to demonstrate a novel role for TLR4 in renal fibroblast accumulation and tubulointerstitial fibrosis. PMID:20089260

  8. Identification of Cadherin 11 as a Mediator of Dermal Fibrosis and Possible Role in Systemic Sclerosis

    PubMed Central

    Wu, Minghua; Pedroza, Mesias; Lafyatis, Robert; George, Anuh-Teresa; Mayes, Maureen D.; Assassi, Shervin; Tan, Filemon K.; Brenner, Michael B.; Agarwal, Sandeep K.

    2014-01-01

    Objective Systemic sclerosis (SSc) is a chronic autoimmune disease clinically manifesting as progressive fibrosis of the skin and internal organs. Recent microarray studies demonstrated that cadherin 11 (Cad-11) expression is increased in the affected skin of patients with SSc. The purpose of this study was to examine our hypothesis that Cad-11 is a mediator of dermal fibrosis. Methods Biopsy samples of skin from SSc patients and healthy control subjects were used for real-time quantitative polymerase chain reaction analysis to assess Cad-11 expression and for immunohistochemistry to determine the expression pattern of Cad-11. To determine whether Cad-11 is a mediator of dermal fibrosis, Cad-11–deficient mice and anti–Cad-11 monoclonal antibodies (mAb) were used in the bleomycin-induced dermal fibrosis model. In vitro studies with dermal fibroblasts and bone marrow–derived macrophages were used to determine the mechanisms by which Cad-11 contributes to the development of tissue fibrosis. Results Levels of messenger RNA for Cad-11 were increased in skin biopsy samples from patients with SSc and correlated with the modified Rodnan skin thickness scores. Cad-11 expression was localized to dermal fibroblasts and macrophages in SSc skin. Cad-11–knockout mice injected with bleomycin had markedly attenuated dermal fibrosis, as quantified by measurements of skin thickness, collagen levels, myofibroblast accumulation, and profibrotic gene expression, in lesional skin as compared to the skin of wild-type mice. In addition, anti–Cad-11 mAb decreased fibrosis at various time points in the bleomycin-induced dermal fibrosis model. In vitro studies demonstrated that Cad-11 regulated the production of transforming growth factor β (TGFβ) by macrophages and the migration of fibroblasts. Conclusion These data demonstrate that Cad-11 is a mediator of dermal fibrosis and TGFβ production and suggest that Cad-11 may be a therapeutic target in SSc. PMID:24757152

  9. By inhibiting snail signaling and miR-23a-3p, osthole suppresses the EMT-mediated metastatic ability in prostate cancer

    PubMed Central

    Wen, Yu-Ching; Lee, Wei-Jiunn; Tan, Peng; Yang, Shun-Fa; Hsiao, Michael; Lee, Liang-Ming; Chien, Ming-Hsien

    2015-01-01

    Here we showed that Osthole, 7-methoxy-8-(3-methyl-2-butenyl) coumarin, a bioactive coumarin derivative extracted from medicinal plants, inhibited migration, invasion, epithelial to mesenchymal transition (EMT) in androgen-independent prostate cancer (AIPC) cells in vitro and metastasis of AIPC in vivo. In patients, high Snail levels were correlated with a higher histological Gleason sum and poor survival rates. Osthole inhibited the TGF-β/Akt/MAPK pathways, reduced Snail-DNA-binding activity and induced E-cadherin. We found that osthole decreased miR-23a-3p. Ectopic miR-23a-3p suppressed E-cadherin 3′ untranslated region reporter activity and E-cadherin expression, and relieved the motility suppression caused by osthole treatment. PMID:26110567

  10. By inhibiting snail signaling and miR-23a-3p, osthole suppresses the EMT-mediated metastatic ability in prostate cancer.

    PubMed

    Wen, Yu-Ching; Lee, Wei-Jiunn; Tan, Peng; Yang, Shun-Fa; Hsiao, Michael; Lee, Liang-Ming; Chien, Ming-Hsien

    2015-08-28

    Here we showed that Osthole, 7-methoxy-8-(3-methyl-2-butenyl) coumarin, a bioactive coumarin derivative extracted from medicinal plants, inhibited migration, invasion, epithelial to mesenchymal transition (EMT) in androgen-independent prostate cancer (AIPC) cells in vitro and metastasis of AIPC in vivo. In patients, high Snail levels were correlated with a higher histological Gleason sum and poor survival rates. Osthole inhibited the TGF-β/Akt/MAPK pathways, reduced Snail-DNA-binding activity and induced E-cadherin. We found that osthole decreased miR-23a-3p. Ectopic miR-23a-3p suppressed E-cadherin 3' untranslated region reporter activity and E-cadherin expression, and relieved the motility suppression caused by osthole treatment.

  11. Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor.

    PubMed

    Ingram, M; Techy, G B; Saroufeem, R; Yazan, O; Narayan, K S; Goodwin, T J; Spaulding, G F

    1997-06-01

    Growth patterns of a number of human tumor cell lines that from three-dimensional structures of various architectures when cultured without carrier beads in a NASA rotary cell culture system are described and illustrated. The culture system, which was designed to mimic microgravity, maintained cells in suspension under very low-shear stress throughout culture. Spheroid (particulate) production occurred within a few hours after culture was started, and spheroids increased in size by cell division and fusion of small spheroids, usually stabilizing at a spheroid diameter of about 0.5 mm. Architecture of spheroids varied with cell type. Cellular interactions that occurred in spheroids resulted in conformation and shape changes of cells, and some cell lines produced complex, epithelial-like architectures. Expression of the cell adhesion molecules, CD44 and E cadherin, was upregulated in the three-dimensional constructs. Coculture of fibroblast spheroids with PC3 prostate cancer cells induced tenascin expression by the fibroblasts underlying the adherent prostate epithelial cells. Invasion of the fibroblast spheroids by the malignant epithelium was also demonstrated.

  12. Comparative histological and immunohistochemical study of ameloblastomas and ameloblastic carcinomas

    PubMed Central

    Mosqueda-Taylor, Adalberto; Carlos-Bregni, Román; Pires, Fabio-Ramoa; Delgado-Azañero, Wilson; Neves-Silva, Rodrigo; Aldape-Barrios, Beatriz; Paes-de Almeida, Oslei

    2017-01-01

    Background This study aimed to compare the histological and immunohistochemical characteristics of ameloblastomas (AM) and ameloblastic carcinomas (AC). Material and Methods Fifteen cases of AM and 9 AC were submitted to hematoxilin and eosin (H&E) and immunohistochemical analysis with the following antibodies: cytokeratins 5,7,8,14 and 19, Ki-67, p53, p63 and the cellular adhesion molecules CD138 (Syndecan-1), E-cadherin and β-catenin. The mean score of the expression of Ki-67 and p53 labelling index (LIs) were compared between the groups using the t test. A value of p<0.05 was considered to be statistically significant. Results All cases were positive for CKs 5, 14 and 19, but negative for CKs 7 and 8. CKs 5 and 19 were positive mainly in the central regions of the ameloblastic islands, while the expression in AC was variable in intensity and localization. CK14 was also variably expressed in both AM and AC. Ki-67 (P=.001) and p53 (P=.004) immunoexpression was higher in AC. All cases were positive for p63, but values were higher in AC. CD138 was mainly expressed in peripheral cells of AM, with a weak positivity in the central areas, while it was positive in most areas of ACs, except in less differentiated regions, where expression was decreased or lost. E-cadherin and β-catenin were weakly positive in both AM and AC. Conclusions These results shows that Ki-67, p53 and p63 expression was higher in AC as compared to AM, suggesting that these markers can be useful when considering diagnosis of malignancy, and perhaps could play a role in malignant transformation of AM. Pattern of expression of CKs 5 and 19 in AC were different to those found in AM, suggesting genetic alterations of these proteins in malignant cells. It was confirmed that CK19 is a good marker for benign odontogenic tumors, such as AM, but it is variably expressed in malignant cases. Key words:Ameloblastoma, ameloblastic carcinoma, immunohistochemistry, odontogenic tumors. PMID:28390135

  13. Skeletal muscle repair in a mouse model of nemaline myopathy

    PubMed Central

    Sanoudou, Despina; Corbett, Mark A.; Han, Mei; Ghoddusi, Majid; Nguyen, Mai-Anh T.; Vlahovich, Nicole; Hardeman, Edna C.; Beggs, Alan H.

    2012-01-01

    Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is a variably severe neuromuscular disorder for which no effective treatment is available. Although a number of genes have been identified in which mutations can cause NM, the pathogenetic mechanisms leading to the phenotypes are poorly understood. To address this question, we examined gene expression patterns in an NM mouse model carrying the human Met9Arg mutation of alpha-tropomyosin slow (Tpm3). We assessed five different skeletal muscles from affected mice, which are representative of muscles with differing fiber-type compositions, different physiological specializations and variable degrees of pathology. Although these same muscles in non-affected mice showed marked variation in patterns of gene expression, with diaphragm being the most dissimilar, the presence of the mutant protein in nemaline muscles resulted in a more similar pattern of gene expression among the muscles. This result suggests a common process or mechanism operating in nemaline muscles independent of the variable degrees of pathology. Transcriptional and protein expression data indicate the presence of a repair process and possibly delayed maturation in nemaline muscles. Markers indicative of satellite cell number, activated satellite cells and immature fibers including M-Cadherin, MyoD, desmin, Pax7 and Myf6 were elevated by western-blot analysis or immunohistochemistry. Evidence suggesting elevated focal repair was observed in nemaline muscle in electron micrographs. This analysis reveals that NM is characterized by a novel repair feature operating in multiple different muscles. PMID:16877500

  14. Skeletal muscle repair in a mouse model of nemaline myopathy.

    PubMed

    Sanoudou, Despina; Corbett, Mark A; Han, Mei; Ghoddusi, Majid; Nguyen, Mai-Anh T; Vlahovich, Nicole; Hardeman, Edna C; Beggs, Alan H

    2006-09-01

    Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is a variably severe neuromuscular disorder for which no effective treatment is available. Although a number of genes have been identified in which mutations can cause NM, the pathogenetic mechanisms leading to the phenotypes are poorly understood. To address this question, we examined gene expression patterns in an NM mouse model carrying the human Met9Arg mutation of alpha-tropomyosin slow (Tpm3). We assessed five different skeletal muscles from affected mice, which are representative of muscles with differing fiber-type compositions, different physiological specializations and variable degrees of pathology. Although these same muscles in non-affected mice showed marked variation in patterns of gene expression, with diaphragm being the most dissimilar, the presence of the mutant protein in nemaline muscles resulted in a more similar pattern of gene expression among the muscles. This result suggests a common process or mechanism operating in nemaline muscles independent of the variable degrees of pathology. Transcriptional and protein expression data indicate the presence of a repair process and possibly delayed maturation in nemaline muscles. Markers indicative of satellite cell number, activated satellite cells and immature fibers including M-Cadherin, MyoD, desmin, Pax7 and Myf6 were elevated by western-blot analysis or immunohistochemistry. Evidence suggesting elevated focal repair was observed in nemaline muscle in electron micrographs. This analysis reveals that NM is characterized by a novel repair feature operating in multiple different muscles.

  15. Establishment of cholangiocarcinoma cell lines from patients in the endemic area of liver fluke infection in Thailand.

    PubMed

    Saensa-Ard, Sunitta; Leuangwattanawanit, Saman; Senggunprai, Laddawan; Namwat, Nisana; Kongpetch, Sarinya; Chamgramol, Yaovalux; Loilome, Watcharin; Khansaard, Walaiporn; Jusakul, Apinya; Prawan, Auemduan; Pairojkul, Chawalit; Khantikeo, Narong; Yongvanit, Puangrat; Kukongviriyapan, Veerapol

    2017-11-01

    Cholangiocarcinoma is a rare type of cancer which is an increasingly discernible health threat. The disease is usually very difficult in diagnosis and various treatment modalities are typically not effective. Cholangiocarcinoma is a complex and very heterogeneous malignancy characterized by tumor location, different risk factors, molecular profiling, and prognosis. Cancer cell lines represent an important tool for investigation in various aspects of tumor biology and molecular therapeutics. We established two cell lines, KKU-452 and KKU-023, which were derived from patients residing in the endemic area of liver fluke infection in Thailand. Both of tumor tissues have gross pathology of perihilar and intrahepatic mass-forming cholangiocarcinoma. Two cell lines were characterized for their biological, molecular and genetic properties. KKU-452 and KKU-023 cells are both adherent cells with epithelium morphology, but have some differences in their growth pattern (a doubling time of 17.9 vs 34.8 h, respectively) and the expression of epithelial bile duct markers, CK7 and CK19. Cytogenetic analysis of KKU-452 and KKU-023 cells revealed their highly complex karyotypes; hypertriploid and hypotetraploid, respectively, with multiple chromosomal aberrations. Both cell lines showed mutations in p53 but not in KRAS. KKU-452 showed a very rapid migration and invasion properties in concert with low expression of E-cadherin and high expression of N-cadherin, whereas KKU-023 showed opposite characters. KKU-023, but not KKU-452, showed in vivo tumorigenicity in xenografted nude mice. Those two established cholangiocarcinoma cell lines with unique characters may be valuable for better understanding the process of carcinogenesis and developing new therapeutics for the patients.

  16. Metastasis suppressor proteins in cutaneous squamous cell carcinoma.

    PubMed

    Bozdogan, Onder; Vargel, Ibrahim; Cavusoglu, Tarik; Karabulut, Ayse A; Karahan, Gurbet; Sayar, Nilufer; Atasoy, Pınar; Yulug, Isik G

    2016-07-01

    Cutaneous squamous cell carcinomas (cSCCs) are common human carcinomas. Despite having metastasizing capacities, they usually show less aggressive progression compared to squamous cell carcinoma (SCC) of other organs. Metastasis suppressor proteins (MSPs) are a group of proteins that control and slow-down the metastatic process. In this study, we established the importance of seven well-defined MSPs including NDRG1, NM23-H1, RhoGDI2, E-cadherin, CD82/KAI1, MKK4, and AKAP12 in cSCCs. Protein expression levels of the selected MSPs were detected in 32 cSCCs, 6 in situ SCCs, and two skin cell lines (HaCaT, A-431) by immunohistochemistry. The results were evaluated semi-quantitatively using the HSCORE system. In addition, mRNA expression levels were detected by qRT-PCR in the cell lines. The HSCOREs of NM23-H1 were similar in cSCCs and normal skin tissues, while RGHOGDI2, E-cadherin and AKAP12 were significantly downregulated in cSCCs compared to normal skin. The levels of MKK4, NDRG1 and CD82 were partially conserved in cSCCs. In stage I SCCs, nuclear staining of NM23-H1 (NM23-H1nuc) was significantly lower than in stage II/III SCCs. Only nuclear staining of MKK4 (MKK4nuc) showed significantly higher scores in in situ carcinomas compared to invasive SCCs. In conclusion, similar to other human tumors, we have demonstrated complex differential expression patterns for the MSPs in in-situ and invasive cSCCs. This complex MSP signature warrants further biological and experimental pathway research. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Combined overexpression of cadherin 6, cadherin 11 and cluster of differentiation 44 is associated with lymph node metastasis and poor prognosis in oral squamous cell carcinoma.

    PubMed

    Ma, Chao; Zhao, Ji-Zhi; Lin, Run-Tai; Zhou, Lian; Chen, Yong-Ning; Yu, Li-Jiang; Shi, Tian-Yin; Wang, Mu; Liu, Man-Man; Liu, Yao-Ran; Zhang, Tao

    2018-06-01

    Oral squamous cell carcinoma (OSCC) is a highly invasive lesion that frequently metastasizes to the cervical lymph nodes and is associated with a poor prognosis. Several adhesion factors, including cadherin 6 (CDH6), cadherin 11 (CDH11) and cluster of differentiation 44 (CD44), have been reported to be involved in the invasion and metastasis of multiple types of cancer. Therefore, the aim of the present study was to determine the expression of CDH6, CDH11 and CD44 in tumor tissues from patients with OSCC, and whether this was associated with the metastasis and survival of OSCC. The mRNA expression of the human tumor metastasis-related cytokines was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in OSCC tumors with or without lymph node metastasis (n=10/group). The expression of CDH6, CDH11 and CD44 in 101 OSCC and 10 normal oral mucosa samples was examined by immunohistochemical staining. The association between overall and disease-specific survival times of patients with OSCC and the expression of these three proteins was evaluated using Kaplan-Meier curves and the log-rank test. RT-qPCR results indicated that the mRNA expression of CDH6, CDH11 and CD44 was increased in OSCC patients with lymph node metastasis (2.93-, 2.01- and 1.92-fold; P<0.05). Overexpression of CDH6, CDH11 and CD44 was observed in 31/35 (89%), 25/35 (71%) and 31/35 (89%) patients, respectively. The number of OSCC patients with lymph node metastasis exhibiting CDH6, CDH11 and CD44 overexpression was significantly higher than the number of patients without lymph node metastasis exhibiting overexpression of these proteins (P=0.017, P=0.038 and P=0.007, respectively). OSCC patients with high co-expression of CDH6, CDH11 and CD44 exhibited lower disease-specific survival times (P=0.047; χ 2 =3.933) when compared with OSCC patients with low co-expression of these adhesion factors. CDH6, CDH11 and CD44 serve important roles in OSCC metastasis and the combined use of these factors as biomarkers may improve the accuracy of the prediction of cancer metastases and prognosis.

  18. PRC2/EED-EZH2 Complex Is Up-Regulated in Breast Cancer Lymph Node Metastasis Compared to Primary Tumor and Correlates with Tumor Proliferation In Situ

    PubMed Central

    Yu, Hongxiang; Simons, Diana L.; Segall, Ilana; Carcamo-Cavazos, Valeria; Schwartz, Erich J.; Yan, Ning; Zuckerman, Neta S.; Dirbas, Frederick M.; Johnson, Denise L.; Holmes, Susan P.; Lee, Peter P.

    2012-01-01

    Background Lymph node metastasis is a key event in the progression of breast cancer. Therefore it is important to understand the underlying mechanisms which facilitate regional lymph node metastatic progression. Methodology/Principal Findings We performed gene expression profiling of purified tumor cells from human breast tumor and lymph node metastasis. By microarray network analysis, we found an increased expression of polycomb repression complex 2 (PRC2) core subunits EED and EZH2 in lymph node metastatic tumor cells over primary tumor cells which were validated through real-time PCR. Additionally, immunohistochemical (IHC) staining and quantitative image analysis of whole tissue sections showed a significant increase of EZH2 expressing tumor cells in lymph nodes over paired primary breast tumors, which strongly correlated with tumor cell proliferation in situ. We further explored the mechanisms of PRC2 gene up-regulation in metastatic tumor cells and found up-regulation of E2F genes, MYC targets and down-regulation of tumor suppressor gene E-cadherin targets in lymph node metastasis through GSEA analyses. Using IHC, the expression of potential EZH2 target, E-cadherin was examined in paired primary/lymph node samples and was found to be significantly decreased in lymph node metastases over paired primary tumors. Conclusions/Significance This study identified an over expression of the epigenetic silencing complex PRC2/EED-EZH2 in breast cancer lymph node metastasis as compared to primary tumor and its positive association with tumor cell proliferation in situ. Concurrently, PRC2 target protein E-cadherin was significant decreased in lymph node metastases, suggesting PRC2 promotes epithelial mesenchymal transition (EMT) in lymph node metastatic process through repression of E-cadherin. These results indicate that epigenetic regulation mediated by PRC2 proteins may provide additional advantage for the outgrowth of metastatic tumor cells in lymph nodes. This opens up epigenetic drug development possibilities for the treatment and prevention of lymph node metastasis in breast cancer. PMID:23251464

  19. E-cadherin interactions regulate beta-cell proliferation in islet-like structures.

    PubMed

    Carvell, Melanie J; Marsh, Phil J; Persaud, Shanta J; Jones, Peter M

    2007-01-01

    Islet function is dependent on cells within the islet interacting with each other. E-cadherin (ECAD) mediates Ca(2+)-dependent homophilic cell adhesion between b-cells within islets and has been identified as a tumour suppressor. We generated clones of the MIN6 beta-cell line that stably over- (S) and under-express (alphaS) ECAD. Modified expression of ECAD was confirmed by quantitative RT-PCR, immunoblotting and immunocytochemistry. Preproinsulin mRNA, insulin content and basal rates of insulin secretion were higher in S cells compared to aS and control (V) cells. However, stimulated insulin secretory responses were unaffected by ECAD expression levels. ECAD expression did affect proliferation, with enhanced ECAD expression being associated with reduced proliferation and vice versa. Formation of islet-like structures was associated with a significant reduction in proliferation of V and S cells but not alphaS cells. These data suggest that ECAD expression levels do not modulate insulin secretory function but are consistent with a role for ECAD in the regulation of beta-cell proliferation. Copyright (c) 2007 S. Karger AG, Basel.

  20. Matrix Metalloproteinase Stromelysin-1 Triggers a Cascade of Molecular Alterations that leads to stable epithelial-to-Mesenchymal Conversion and a Premalignant Phenotype in Mammary Epithelial Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lochter, A.; Galosy, S.; Muschler, J.

    1997-08-11

    Matrix metalloproteinases (MMPs) regulate ductal morphogenesis, apoptosis, and neoplastic progression in mammary epithelial cells. To elucidate the direct effects of MMPs on mammary epithelium, we generated functionally normal cells expressing an inducible autoactivating stromelysin-1 (SL-1) transgene. Induction of SL-1 expression resulted in cleavage of E-cadherin, and triggered progressive phenotypic conversion characterized by disappearance of E-cadherin and catenins from cell-cell contacts, downregulation of cytokeratins, upregulation of vimentin, induction of keratinocyte growth factor expression and activation, and upregulation of endogenous MMPs. Cells expressing SL-1 were unable to undergo lactogenic differentiation and became invasive. Once initiated, this phenotypic conversion was essentially stable, andmore » progressed even in the absence of continued SL-1 expression. These observations demonstrate that inappropriate expression of SL-1 initiates a cascade of events that may represent a coordinated program leading to loss of the differentiated epithelial phenotype and gain of some characteristics of tumor cells. Our data provide novel insights into how MMPs function in development and neoplastic conversion.« less

  1. Analysis of Snail1 function and regulation by Twist1 in palatal fusion.

    PubMed

    Yu, Wenli; Zhang, Yanping; Ruest, L Bruno; Svoboda, Kathy K H

    2013-01-01

    Palatal fusion is a tightly controlled process which comprises multiple cellular events, including cell movement and differentiation. Midline epithelial seam (MES) degradation is essential to palatal fusion. In this study, we analyzed the function of Snail1 during the degradation of the MES. We also analyzed the mechanism regulating the expression of the Snail1 gene in palatal shelves. Palatal explants treated with Snail1 siRNA did not degrade the MES and E-cadherin was not repressed leading to failure of palatal fusion. Transforming growth factor beta 3 (Tgfβ3) regulated Snail1 mRNA, as Snail1 expression decreased in response to Tgfβ3 neutralizing antibody and a PI-3 kinase (PI3K) inhibitor. Twist1, in collaboration with E2A factors, regulated the expression of Snail1. Twist1/E47 dimers bond to the Snail1 promoter to activate expression. Without E47, Twist1 repressed Snail1 expression. These results support the hypothesis that Tgfβ3 may signal through Twist1 and then Snail1 to downregulate E-cadherin expression during palatal fusion.

  2. Biphasic influence of Miz1 on neural crest development by regulating cell survival and apical adhesion complex formation in the developing neural tube

    PubMed Central

    Kerosuo, Laura; Bronner, Marianne E.

    2014-01-01

    Myc interacting zinc finger protein-1 (Miz1) is a transcription factor known to regulate cell cycle– and cell adhesion–related genes in cancer. Here we show that Miz1 also plays a critical role in neural crest development. In the chick, Miz1 is expressed throughout the neural plate and closing neural tube. Its morpholino-mediated knockdown affects neural crest precursor survival, leading to reduction of neural plate border and neural crest specifier genes Msx-1, Pax7, FoxD3, and Sox10. Of interest, Miz1 loss also causes marked reduction of adhesion molecules (N-cadherin, cadherin6B, and α1-catenin) with a concomitant increase of E-cadherin in the neural folds, likely leading to delayed and decreased neural crest emigration. Conversely, Miz1 overexpression results in up-regulation of cadherin6B and FoxD3 expression in the neural folds/neural tube, leading to premature neural crest emigration and increased number of migratory crest cells. Although Miz1 loss effects cell survival and proliferation throughout the neural plate, the neural progenitor marker Sox2 was unaffected, suggesting a neural crest–selective effect. The results suggest that Miz1 is important not only for survival of neural crest precursors, but also for maintenance of integrity of the neural folds and tube, via correct formation of the apical adhesion complex therein. PMID:24307680

  3. E-cadherin Mediates the Preventive Effect of Vitamin D3 in Colitis-associated Carcinogenesis.

    PubMed

    Xin, Yu; He, Longmei; Luan, Zijian; Lv, Hong; Yang, Hong; Zhou, Ying; Zhao, Xinhua; Zhou, Weixun; Yu, Songlin; Tan, Bei; Wang, Hongying; Qian, Jiaming

    2017-09-01

    Vitamin D3 is beneficial in ameliorating or preventing inflammation and carcinogenesis. Here, we evaluated if vitamin D3 has a preventive effect on colitis-associated carcinogenesis. Administration of azoxymethane (AOM), followed with dextran sulfate sodium (DSS), was used to simulate colitis-associated colon cancer in mice. The supplement of vitamin D3 at different dosages (15, 30, 60 IU·g·w), started before AOM or immediately after DSS treatment (post 60), was sustained to the end of the experiment. Dietary vitamin D3 significantly reduced the number of tumors and tumor burden in a dose-dependent manner. Of note, vitamin D3 in high doses showed significant preventive effects on carcinogenesis regardless of administration before or after AOM-DSS treatment. Cell proliferation decreased in vitamin D3 groups compared with the control group after inhibition of expression of β-catenin and its downstream target gene cyclin D1 in the colon. In vitro, vitamin D3 reduced the transcriptional activity and nuclear level of β-catenin, and it also increased E-cadherin expression and its binding affinity for β-catenin. Moreover, repression of E-cadherin was rescued by supplemental vitamin D3 in mouse colons. Taken together, our results indicate that vitamin D3 effectively suppressed colonic carcinogenesis in the AOM-DSS mouse model. Our findings further suggest that upregulation of E-cadherin contributes to the preventive effect of vitamin D3 on β-catenin activity.

  4. Circadian locomotor output cycles kaput affects the proliferation and migration of breast cancer cells by regulating the expression of E-cadherin via IQ motif containing GTPase activating protein 1.

    PubMed

    Li, Xiaoxue; Wang, Siyang; Yang, Shuhong; Ying, Junjie; Yu, Hang; Yang, Chunlei; Liu, Yanyou; Wang, Yuhui; Cheng, Shuting; Xiao, Jing; Guo, Huiling; Jiang, Zhou; Wang, Zhengrong

    2018-05-01

    The circadian rhythm regulates numerous physiological activities, including sleep and wakefulness, behavior, immunity and metabolism. Previous studies have demonstrated that circadian rhythm disorder is associated with the occurrence of tumors. Responsible for regulating a number of functions, the Circadian locomotor output cycles kaput ( Clock ) gene is one of the core regulatory genes of circadian rhythm. The Clock gene has also been implicated in the occurrence and development of tumors in previously studies. The present study evaluated the role of the Clock gene in the proliferation and migration of mouse breast cancer 4T1 cells, and investigated its possible regulatory pathways and mechanisms. It was reported that downregulation of Clock facilitated the proliferation and migration of breast cancer cells. Further investigation revealed the involvement of IQ motif containing GTPase activating protein 1 (IQGAP1) protein expression in the Clock regulatory pathway, further influencing the expression of E-cadherin, a known proprietor of tumor cell migration and invasion. To the best of our knowledge, the present study is the first to report that Clock , acting through the regulation of the scaffolding protein IQGAP1, regulates the downstream expression of E-cadherin, thereby affecting tumor cell structure and motility. These results confirmed the role of Clock in breast cancer tumor etiology and provide insight regarding the molecular avenues of its regulatory nature, which may translate beyond breast cancer into other known functions of the gene.

  5. Choroid plexus epithelial cells express the adhesion protein P-cadherin at cell-cell contacts and syntaxin-4 in the luminal membrane domain.

    PubMed

    Christensen, Inga Baasch; Mogensen, Esben Nees; Damkier, Helle Hasager; Praetorius, Jeppe

    2018-05-01

    The choroid plexus epithelial cells (CPECs) belong to a small group of polarized cells, where the Na + -K + -ATPase is expressed in the luminal membrane. The basic polarity of the cells is, therefore, still debated. We investigated the subcellular distribution of an array of proteins known to play fundamental roles either in establishing and maintaining basic cell polarity or in the polarized delivery and recycling of plasma membrane proteins. Immunofluorescence histochemical analysis was applied to determine the subcellular localization of apical and basolateral membrane determinants. Mass spectrometry analysis of CPECs isolated by fluorescence-activated cell sorting was applied to determine the expression of specific forms of the proteins. CPECs mainly express the cell-adhesive P-cadherin, which is localized to the lateral membranes. Proteins belonging to the Crumbs and partitioning defective (Par) protein complexes were all localized to the luminal membrane domain. Par-1 and the Scribble complex were localized to the basolateral membrane domain. Lethal(2) giant larvae homolog 2 (Lgl2) labeling was preferentially observed in the luminal membrane domain. Phosphatidylinositol 3,4,5-trisphosphate (PIP 3 ) was immunolocalized to the basolateral membrane domain, while phosphatidylinositol 4,5-bisphosphate (PIP 2 ) staining was most prominent in the luminal membrane domain along with the PIP 3 phosphatase, Pten. The apical target-SNARE syntaxin-3 and the basolateral target-SNARE syntaxin-4 were both localized to the apical membrane domain in CPECs, which lack cellular expression of the clathrin adaptor protein AP-1B for basolateral protein recycling. In conclusion, the CPECs are conventionally polarized, but express P-cadherin at cell-cell contacts, and Lgl2 and syntaxin-4 in the luminal plasma membrane domain.

  6. Combination therapy of exendin-4 and allogenic adipose-derived mesenchymal stem cell preserved renal function in a chronic kidney disease and sepsis syndrome setting in rats

    PubMed Central

    Chen, Chih-Hung; Cheng, Ben-Chung; Chen, Kuan-Hung; Shao, Pei-Lin; Sung, Pei-Hsun; Chiang, Hsin-Ju; Yang, Chih-Chao; Lin, Kun-Chen; Sun, Cheuk-Kwan; Sheu, Jiunn-Jye; Chang, Hsueh-Wen; Lee, Mel S.; Yip, Hon-Kan

    2017-01-01

    Combined therapy with exendin-4 (Ex4) and allogenic adipose-derived mesenchymal stem cells (ADMSC) was tested against either therapy alone for protecting kidney function against chronic kidney disease (CKD) complicated by sepsis syndrome (SS) [i.e., by intraperitoneal injection of cecal-derived bacteria (1.0 × 104) cells/milliliter/total 5.0 cc].Adult-male-Sprague Dawley rats (n=36) were equally divided into group 1 (sham-control), group 2 (CKD), group 3 (CKD-SS), group 4 (CKD-SS-Ex4), group 5 (CKD-SS-ADMSC) and group 6 (CKD-SS-Ex4-ADMSC). At day 42 after CKD induction SS was induced. Thirty-minutes after SS induction, ADMSCs (2.0 ×106 cells) were intravenously administered to groups 5 and 6. Ex4 (10 μg/kg) was intraperitoneally administered groups 4 and 6 at 30 min and days 1 to 5 after SS induction. Animals were euthanized at day 47 after CKD induction. Kidney-injury score, collagen-deposition area, and creatinine/BUN levels were lowest in group 1, highest in group 3 and significantly higher in group 2 than in groups 4 to 6 in a progressively increasing manner (all P<0.0001). Protein expressions of inflammatory (MMP-9/TNF-α/NF-κB/IL-1ß/ICAM-1), oxidative-stress (NOX-1/NOX-2/oxidized protein), apoptotic (mitochondrial-Bax/cleaved-caspase-3/cleaved-PARP) and fibrotic/DNA-damaged (Smad3/TGF-ß/γ-H2AX) biomarkers showed an identical pattern, whereas anti-fibrotic (BMP-2/Smad1/5), anti-apoptotic/endothelial-integrity (Bcl-2/eNOS) and podocyte-integrity (ZO-1/p-cadherin) biomarkers exhibited an opposite pattern of kidney-injury score among the six groups (all P>0.0001). Cellular expressions of inflammatory (CD14/CD68) and glomerulus/tubular-injury (WT-1/KIM-1) biomarkers displayed an identical pattern, whereas glomerulus/podocyte-component (dystroglycan/nephrin/ZO-1/fibronectin/p-cadherin) biomarkers showed an opposite kidney-injury score among the six groups (all P<0.0001). In conclusion, Ex4-ADMSC therapy effectively preserved renal function in the CKD-SS setting. PMID:29245956

  7. Relationships between immunophenotype, Ki-67 index, microvascular density, Ep-CAM/P-cadherin, and MMP-2 expression in early-stage invasive ductal breast cancer.

    PubMed

    Niemiec, Joanna A; Adamczyk, Agnieszka; Małecki, Krzysztof; Majchrzyk, Kaja; Ryś, Janusz

    2012-12-01

    There is still a lack of complete consensus on immunohistochemical surrogate markers for luminal A (LA) and luminal B (LB), HER2, and basal-like subtypes of breast carcinomas and their correlation with cancer cell adhesion and invasion-promoting factors. Therefore, early-stage invasive ductal breast cancer patients (N=209) were recruited to the study and divided into 4 subtypes, on the basis of the expression of the estrogen/progesterone receptor and HER2 (LA: 74.4% of cases; LB: 7.8%; HER2: 5.6%; and triple-negative phenotype: 12.2%). Regardless of the above-mentioned classification, we divided all carcinomas into 2 groups: carcinomas expressing at least 1 basal marker [cytokeratine (CK)5/6, CK5, vimentin, epidermal growth factor receptor, or aberrant CK8/18 expression-membranous or in <10% of cells] versus carcinomas negative for basal markers. Then we studied the relationships between the above subtypes (2 classifications) and (i) the expression of adhesion molecules (Ep-CAM, P-cadherin), (ii) matrix metalloproteinases (MMP)-2, (iii) the proliferation index (MIB-1 LI), and (iv) the microvascular density. We confirmed that triple-negative phenotypes are characterized by basal marker expression, a high tumor grade, and high MIB-1 LI. In this subtype, we found MMP-2 expression in stromal leukocytes less frequently. Both LA carcinomas and carcinomas negative for basal markers were more often negative for epithelial cell adhesion molecule (Ep-CAM) and P-cadherin. Moreover, we noted a higher mean value of microvascular density in CK5/6 and Ep-CAM-immunopositive tumors, carcinomas with aberrant CK8/18 expression, and carcinomas with no or strong expression of MMP-2 in stromal fibroblast-like cells. These results might suggest that mechanisms of stroma remodeling and carcinogenesis (Ep-CAM is the suggested marker of breast progenitors) may differ between breast cancer subtypes.

  8. 27-hydroxycholesterol induces the transition of MCF7 cells into a mesenchymal phenotype.

    PubMed

    Torres, Cristian G; Ramírez, María E; Cruz, Pamela; Epuñan, María J; Valladares, Luis E; Sierralta, Walter D

    2011-08-01

    A decrease in the expression of E-cadherin and β-catenin, paralleling the loss of adherens junction complex, was observed in MCF7 cells exposed for longer than 48 h to 2 µM 27-hydroxycholesterol (27OHC), indicating an epithelial-mesenchymal transition (EMT). Upon removal of 27OHC from the culture medium, the cells released by the exposure of 72 h to the oxysterol grew as loosely packed cell groups. In these cells, accumulation of E-cadherin and β-catenin in the cytoplasm and the prolonged expression of epidermal growth factor receptor 2 (EGFR2/neu) in the plasma membrane were observed, suggesting that the acquired phenotype was related to the expression of this tyrosine kinase-growth factor receptor. The results presented here are discussed on the basis of the claimed relationship between 27OHC, hypercholesterolemia, macrophage infiltration and therapy-resistant ERα+ breast cancer incidence.

  9. Arctigenin Inhibits Lung Metastasis of Colorectal Cancer by Regulating Cell Viability and Metastatic Phenotypes.

    PubMed

    Han, Yo-Han; Kee, Ji-Ye; Kim, Dae-Seung; Mun, Jeong-Geon; Jeong, Mi-Young; Park, Sang-Hyun; Choi, Byung-Min; Park, Sung-Joo; Kim, Hyun-Jung; Um, Jae-Young; Hong, Seung-Heon

    2016-08-27

    Arctigenin (ARC) has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC). In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT) through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, β-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2) and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis.

  10. Adhesion molecules affected by treatment of lung cancer cells with epidermal growth factor.

    PubMed

    Fonseca, Fernando L A; Azzalis, Ligia A; Feder, David; Nogoceke, Everson; Junqueira, Virginia B C; Valenti, Vitor E; de Abreu, Luiz Carlos

    2011-10-01

    Lung cancer is one of the leading causes of death in the world. Some tumor events are attributed to an important group of molecules (cadherins and integrins). We evaluated the interactions of cell adhesion molecules in cell lines from lung cancer. Two lung cancer cell lines were nonmetastatic (H358 and H441) and two were metastatic (H1299 and H292). All cell lines were treated with epidermal growth factor (EGF), and Western blot analysis was performed to assess the interactions between these proteins. The bronchoalveolar cells H358 showed the three analyzed proteins: E-cadherin, β-catenin, and p120 catenin. The adenocarcinoma cells H441 did not present p120 catenin, and carcinoma cells did not show E-cadherin (H1299) or p120 catenin (H292). FAK (pTyr925) was dephosphorylated in adenocarcinoma cells H441, absent in carcinoma cells H1299, and upregulated in the other carcinoma cells H292. p130Cas showed no difference when the cell lines were treated with EGF for 30 min; it was absent in the metastatic carcinoma cells H1299. Paxillin was dephosphorylated in adenocarcinoma cells H441 and also absent in other metastatic carcinoma cells H292. Vinculin showed the same results, and talin was downregulated in adenocarcinoma cells H441 when the cells were treated with EGF. Rap1 was downregulated and PYK2 was upregulated in the same cell line. Our data help to comprehend the mechanism involved in cell migration to the blood and metastasis generation. In conclusion, the expression patterns of cell-cell adhesion were not affected by EGF treatment but it affected cell-extracellular matrix adhesion.

  11. Identification of biomarkers associated with partial epithelial to mesenchymal transition in the secretome of slug over-expressing hepatocellular carcinoma cells.

    PubMed

    Karaosmanoğlu, Oğuzhan; Banerjee, Sreeparna; Sivas, Hülya

    2018-06-01

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. Complete epithelial to mesenchymal transition (EMT) has long been considered as a crucial step for metastasis initiation. It has, however, become apparent that many carcinoma cells can metastasize without complete loss of epithelial traits or with incomplete gain of mesenchymal traits, i.e., partial EMT. Here, we aimed to determine the similarities and differences between complete and partial EMT through over-expression of the EMT-associated transcription factor Slug in different HCC-derived cell lines. Slug over-expressing HCC-derived HepG2 and Huh7 cells were assessed for their EMT, chemo-resistance and stemness features using Western blotting, qRT-PCR, neutral red uptake, doxorubicin accumulation and scratch wound healing assays. We also collected conditioned media from Slug over-expressing HCC cells and analyzed its exosomal protein content for the presence of chemo-resistance and partial EMT markers using MALDI-TOF/TOF and ELISA assays, respectively. We found that Slug over-expression resulted in the induction of both complete and partial EMT in the different HCC-derived cell lines tested. Complete EMT was characterized by downregulation of E-cadherin and upregulation of ZEB2. Partial EMT was characterized by upregulation of E-cadherin and downregulation of vimentin and ZEB2. Interestingly, we found that Slug induced chemo-resistance through downregulation of the ATP binding cassette (ABC) transporter ABCB1 and upregulation of the ABC transporter ABCG2, as well as through expression of CD133, a stemness marker that exhibited a similar expression pattern in cells with either a complete or a partial EMT phenotype. In addition, we found that Slug-mediated partial EMT was associated with enhanced exosomal secretion of post-translationally modified fibronectin 1 (FN1), collagen type II alpha 1 (COL2A1) and native fibrinogen gamma chain (FGG). From our data we conclude that the exosomal proteins identified may be considered as potential non-invasive biomarkers for chemo-resistance and partial EMT in HCC.

  12. BAG3 regulates epithelial-mesenchymal transition and angiogenesis in human hepatocellular carcinoma.

    PubMed

    Xiao, Heng; Cheng, Shaobing; Tong, Rongliang; Lv, Zheng; Ding, Chaofeng; Du, Chengli; Xie, Haiyang; Zhou, Lin; Wu, Jian; Zheng, Shusen

    2014-03-01

    Bcl2-associated athanogene 3 (BAG3) protein is a co-chaperone of heat-shock protein (Hsp) 70 and may regulate major physiological and pathophysiological processes. However, few reports have examined the role of BAG3 in human hepatocellular carcinoma (HCC). In this study, we show that BAG3 regulates epithelial-mesenchymal transition (EMT) and angiogenesis in HCC. BAG3 was overexpressed in HCC tissues and cell lines. BAG3 knockdown resulted in reduction in migration and invasion of HCC cells, which was linked to reversion of EMT by increasing E-cadherin expression and decreasing N-cadherin, vimentin and slug expression, as well as suppressing matrix metalloproteinase 2 (MMP-2) expression. In a xenograft tumorigenicity model, BAG3 knockdown effectively inhibited tumor growth and metastasis through reduction in CD34 and VEGF expression and reversal of the EMT pathway. In conclusion, BAG3 is associated with the invasiveness and angiogenesis in HCC, and the BAG3 gene may be a novel therapeutic approach against HCC.

  13. Organizing the Cellular and Molecular Heterogeneity in High Grade Serous Ovarian Cancer by Mass Cytometry

    DTIC Science & Technology

    2015-10-01

    expressed and the intensity by IHC and CyTOF (E-cadherin, vimentin, CD45, pAKT, FAP and p53). The examples show Figure 1: IHC of E-cadherin and...into CyTOF panels. Markers CD45, FAP and CD31 from the tumor antibody panel allow us to enumerate tumor, immune and stroma/angiogenic compartments...compartment as CD45-/CD31-/ FAP -, the immune compartment as CD45+/CD31-/ FAP . Data analysis of tumor compartment As with our pilot experiments from years 1 and

  14. CD63 tetraspanin is a negative driver of epithelial-to-mesenchymal transition in human melanoma cells.

    PubMed

    Lupia, Antonella; Peppicelli, Silvia; Witort, Ewa; Bianchini, Francesca; Carloni, Vinicio; Pimpinelli, Nicola; Urso, Carmelo; Borgognoni, Lorenzo; Capaccioli, Sergio; Calorini, Lido; Lulli, Matteo

    2014-12-01

    The CD63 tetraspanin is highly expressed in the early stages of melanoma and decreases in advanced lesions, suggesting it as a possible suppressor of tumor progression. We employed loss- and gain-of-gene-function approaches to investigate the role of CD63 in melanoma progression and acquisition of the epithelial-to-mesenchymal transition (EMT) program. We used two human melanoma cell lines derived from primary tumors and one primary human melanoma cell line isolated from a cutaneous metastasis, differing by levels of CD63 expression. CD63-silenced melanoma cells showed enhanced motility and invasiveness with downregulation of E-cadherin and upregulation of N-cadherin and Snail. In parallel experiments, transient and stable ectopic expression of CD63 resulted in a robust reduction of cell motility, invasiveness, and protease activities, which was proportional to the increase in CD63 protein level. Transfected cells overexpressing the highest level of CD63 when transplanted into immunodeficient mice showed a reduced incidence and rate of tumor growth. Moreover, these cells showed a reduction of N-cadherin, Vimentin, Zeb1, and a-SMA, and a significant resistance to undergo an EMT program both in basal condition and in the following stimulation with TGFβ. Thus, our results establish a previously unreported mechanistic link between the tetraspanin CD63 and EMT abrogation in melanoma.

  15. Zonula Occludens-1, Occludin and E-cadherin Expression and Organization in Salivary Glands with Sjögren’s Syndrome

    PubMed Central

    Mellas, Rachel E.; Leigh, Noel J.; Nelson, Joel W.; McCall, Andrew D.

    2015-01-01

    Sjögren’s syndrome (SS) is a chronic inflammatory autoimmune disorder that causes secretory dysfunction of the salivary glands leading to dry mouth. Previous studies reported that tight junction (TJ) proteins are down-regulated and lose polarity in human minor salivary glands with SS, suggesting that TJ structure is compromised in SS patients. In this paper, we utilized the NOD/ShiLtJ mouse with the main goal of evaluating this model for future TJ research. We found that the organization of apical proteins in areas proximal and distal to lymphocytic infiltration remained intact in mouse and human salivary glands with SS. These areas looked comparable to control glands (i.e., with no lymphocytic infiltration). TJ staining was absent in areas of lymphocytic infiltration coinciding with the loss of salivary epithelium. Gene expression studies show that most TJs are not significantly altered in 20-week-old NOD/ShiLtJ mice as compared with age-matched C57BL/6 controls. Protein expression studies revealed that the TJ proteins, zonula occludens-1 (ZO-1), occludin, claudin-12, as well as E-cadherin, do not significantly change in NOD/ShiLtJ mice. Our results suggest that ZO-1, occludin and E-cadherin are not altered in areas without lymphocytic infiltration. However, future studies will be necessary to test the functional aspect of these results. PMID:25248927

  16. Zonula occludens-1, occludin and E-cadherin expression and organization in salivary glands with Sjögren's syndrome.

    PubMed

    Mellas, Rachel E; Leigh, Noel J; Nelson, Joel W; McCall, Andrew D; Baker, Olga J

    2015-01-01

    Sjögren's syndrome (SS) is a chronic inflammatory autoimmune disorder that causes secretory dysfunction of the salivary glands leading to dry mouth. Previous studies reported that tight junction (TJ) proteins are down-regulated and lose polarity in human minor salivary glands with SS, suggesting that TJ structure is compromised in SS patients. In this paper, we utilized the NOD/ShiLtJ mouse with the main goal of evaluating this model for future TJ research. We found that the organization of apical proteins in areas proximal and distal to lymphocytic infiltration remained intact in mouse and human salivary glands with SS. These areas looked comparable to control glands (i.e., with no lymphocytic infiltration). TJ staining was absent in areas of lymphocytic infiltration coinciding with the loss of salivary epithelium. Gene expression studies show that most TJs are not significantly altered in 20-week-old NOD/ShiLtJ mice as compared with age-matched C57BL/6 controls. Protein expression studies revealed that the TJ proteins, zonula occludens-1 (ZO-1), occludin, claudin-12, as well as E-cadherin, do not significantly change in NOD/ShiLtJ mice. Our results suggest that ZO-1, occludin and E-cadherin are not altered in areas without lymphocytic infiltration. However, future studies will be necessary to test the functional aspect of these results. © The Author(s) 2014.

  17. Role of kinase-independent and -dependent functions of FAK in endothelial cell survival and barrier function during embryonic development.

    PubMed

    Zhao, Xiaofeng; Peng, Xu; Sun, Shaogang; Park, Ann Y J; Guan, Jun-Lin

    2010-06-14

    Focal adhesion kinase (FAK) is essential for vascular development as endothelial cell (EC)-specific knockout of FAK (conditional FAK knockout [CFKO] mice) leads to embryonic lethality. In this study, we report the differential kinase-independent and -dependent functions of FAK in vascular development by creating and analyzing an EC-specific FAK kinase-defective (KD) mutant knockin (conditional FAK knockin [CFKI]) mouse model. CFKI embryos showed apparently normal development through embryonic day (E) 13.5, whereas the majority of CFKO embryos died at the same stage. Expression of KD FAK reversed increased EC apoptosis observed with FAK deletion in embryos and in vitro through suppression of up-regulated p21. However, vessel dilation and defective angiogenesis of CFKO embryos were not rescued in CFKI embryos. ECs without FAK or expressing KD FAK showed increased permeability, abnormal distribution of vascular endothelial cadherin (VE-cadherin), and reduced VE-cadherin Y658 phosphorylation. Together, our data suggest that kinase-independent functions of FAK can support EC survival in vascular development through E13.5 but are insufficient for maintaining EC function to allow for completion of embryogenesis.

  18. Hand1 overexpression inhibits medulloblastoma metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asuthkar, Swapna; Guda, Maheedhara R.; Martin, Sarah E.

    2016-08-19

    Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of β-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Amongmore » the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, β-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis. - Highlights: • Hand1 expression is downregulated in Medulloblastoma. • Hand1 over expression reduce the expression of signaling from WNT, SHH and Group 3 medulloblastoma subgroups. • Hand1 overexpression reduced metastatic abilities by reducing the expression of β-catenin and N-cadherin.« less

  19. N-cadherin in adult rat cardiomyocytes in culture. II. Spatio-temporal appearance of proteins involved in cell-cell contact and communication. Formation of two distinct N-cadherin/catenin complexes.

    PubMed

    Hertig, C M; Butz, S; Koch, S; Eppenberger-Eberhardt, M; Kemler, R; Eppenberger, H M

    1996-01-01

    The spatio-temporal appearance and distribution of proteins forming the intercalated disc were investigated in adult rat cardiomyocytes (ARC). The 'redifferentiation model' of ARC involves extensive remodelling of the plasma membrane and of the myofibrillar apparatus. It represents a valuable system to elucidate the formation of cell-cell contact between cardiomyocytes and to assess the mechanisms by which different proteins involved in the cell-cell adhesion process are sorted in a precise manner to the sites of function. Appearance of N-cadherin, the catenins and connexin43 within newly formed adherens and gap junctions was studied. Here first evidence is provided for a formation of two distinct and separable N-cadherin/catenin complexes in cardiomyocytes. Both complexes are composed of N-cadherin and alpha-catenin which bind to either beta-catenin or plakoglobin in a mutually exclusive manner. The two N-cadherin/catenin complexes are assumed to be functionally involved in the formation of cell-cell contacts in ARC; however, the differential appearance and localization of the two types of complexes may also point to a specific role during ARC differentiation. The newly synthesized beta-catenin containing complex is more abundant during the first stages in culture after ARC isolation, while the newly synthesized plakoglobin containing complex progressively accumulates during the morphological changes of ARC. ARC formed a tissue-like pattern in culture whereby the new cell-cell contacts could be dissolved through Ca2+ depletion. Presence of cAMP and replenishment of Ca2+ content in the culture medium not only allowed reformation of cell-cell contacts but also affected the relative protein ratio between the two N-cadherin/catenin complexes, increasing the relative amount of newly synthesized beta-catenin over plakoglobin at a particular stage of ARC differentiation. The clustered N-cadherin/catenin complexes at the plasma membrane appear to be a prerequisite for the following gap junction formation; a temporal sequence of the appearance of adherens junction proteins and of gap junctions forming connexin-43 is suggested.

  20. Silencing of BAG3 inhibits the epithelial-mesenchymal transition in human cervical cancer.

    PubMed

    Song, Fei; Wang, Geng; Ma, Zhifang; Ma, Yuebing; Wang, Yingying

    2017-11-10

    Bcl2-associated athanogene 3 (BAG3) has been reported to be involved in aggressive progression of many tumors. In the present study, we examined the expression of BAG3 in human cervical cancer (CC) tissues and investigated the role of BAG3 in SiHa and HeLa cell growth, migration, and invasion. Here, we found that most of CC tissues highly expressed the protein and mRNA of BAG3, while their expression was obviously lower in paired normal tissues (all p<0.001). BAG3 expression was associated with FIGO stage and metastasis (all p<0.05). In-vitro analysis demonstrated that BAG3 siRNAs inhibited SiHa and HeLa cell growth, invasion and migration. Mechanically, BAG3 siRNAs inhibited the expression of EMT-regulating markers, involving MMP2, Slug and N-cadherin, and increased the expression of E-cadherin. In a xenograft nude model, BAG3 siRNAs inhibited tumor growth and the expression of EMT biomarkers. In conclusion, BAG3 is involved in the EMT process, including cell growth, invasion and migration in the development of CC. Thus, BAG3 target might be recommended as a novel therapeutic approach.

  1. Silencing of BAG3 inhibits the epithelial-mesenchymal transition in human cervical cancer

    PubMed Central

    Song, Fei; Wang, Geng; Ma, Zhifang; Ma, Yuebing; Wang, Yingying

    2017-01-01

    Bcl2-associated athanogene 3 (BAG3) has been reported to be involved in aggressive progression of many tumors. In the present study, we examined the expression of BAG3 in human cervical cancer (CC) tissues and investigated the role of BAG3 in SiHa and HeLa cell growth, migration, and invasion. Here, we found that most of CC tissues highly expressed the protein and mRNA of BAG3, while their expression was obviously lower in paired normal tissues (all p<0.001). BAG3 expression was associated with FIGO stage and metastasis (all p<0.05). In-vitro analysis demonstrated that BAG3 siRNAs inhibited SiHa and HeLa cell growth, invasion and migration. Mechanically, BAG3 siRNAs inhibited the expression of EMT-regulating markers, involving MMP2, Slug and N-cadherin, and increased the expression of E-cadherin. In a xenograft nude model, BAG3 siRNAs inhibited tumor growth and the expression of EMT biomarkers. In conclusion, BAG3 is involved in the EMT process, including cell growth, invasion and migration in the development of CC. Thus, BAG3 target might be recommended as a novel therapeutic approach. PMID:29221135

  2. PhotoMorphs™: A Novel Light-Activated Reagent for Controlling Gene Expression in Zebrafish

    PubMed Central

    Tomasini, Amber J.; Schuler, Aaron D.; Zebala, John A.; Mayer, Alan N.

    2009-01-01

    Manipulating gene expression in zebrafish is critical for exploiting the full potential of this vertebrate model organism. Morpholino oligos are the most commonly employed antisense technology for knocking down gene expression. However, morpholinos suffer from a lack of control over the timing and location of knockdown. In this report, we describe a novel light-activatable knockdown reagent called PhotoMorph™. PhotoMorphs can be generated from existing morpholinos by hybridization with a complementary caging strand containing a photocleavable linkage. The caging strand neutralizes the morpholino activity until irradiation of the PhotoMorph with UV light releases the morpholino. We generated PhotoMorphs to target genes encoding enhanced green fluorescent protein (EGFP), No tail, and E-cadherin to illustrate the utility of this approach. Temporal control of gene expression with PhotoMorphs permitted us to circumvent the early lethal phenotype of E-cadherin knockdown. A splice-blocking PhotoMorph directed to the rheb gene showed light-dependent gene knockdown up to 72 hpf. PhotoMorphs thus offer a new class of laboratory reagents suitable for the spatiotemporal control of gene expression in the zebrafish. PMID:19644983

  3. Rac-WAVE-mediated actin reorganization is required for organization and maintenance of cell-cell adhesion.

    PubMed

    Yamazaki, Daisuke; Oikawa, Tsukasa; Takenawa, Tadaomi

    2007-01-01

    During cadherin-dependent cell-cell adhesion, the actin cytoskeleton undergoes dynamic reorganization in epithelial cells. Rho-family small GTPases, which regulate actin dynamics, play pivotal roles in cadherin-dependent cell-cell adhesion; however, the precise molecular mechanisms that underlie cell-cell adhesion formation remain unclear. Here we show that Wiskott-Aldrich syndrome protein family verprolin-homologous protein (WAVE)-mediated reorganization of actin, downstream of Rac plays an important role in normal development of cadherin-dependent cell-cell adhesions in MDCK cells. Rac-induced development of cadherin-dependent adhesions required WAVE2-dependent actin reorganization. The process of cell-cell adhesion is divided into three steps: formation of new cell-cell contacts, stabilization of these new contacts and junction maturation. WAVE1 and WAVE2 were expressed in MDCK cells. The functions of WAVE1 and WAVE2 were redundant in this system but WAVE2 appeared to play a more significant role. During the first step, WAVE2-dependent lamellipodial protrusions facilitated formation of cell-cell contacts. During the second step, WAVE2 recruited actin filaments to new cell-cell contacts and stabilized newly formed cadherin clusters. During the third step, WAVE2-dependent actin reorganization was required for organization and maintenance of mature cell-cell adhesions. Thus, Rac-WAVE-dependent actin reorganization is not only involved in formation of cell-cell adhesions but is also required for their maintenance.

  4. Application of CD56, P63 and CK19 immunohistochemistry in the diagnosis of papillary carcinoma of the thyroid

    PubMed Central

    El Demellawy, Dina; Nasr, Ahmed; Alowami, Salem

    2008-01-01

    Papillary carcinoma of the thyroid (PTC) is the commonest thyroid cancer. In the recent decades an obvious increase in the incidence of PTC has occurred. The pathological diagnosis of PTC is usually an easy diagnosis in the majority of cases. However since the introduction of follicular variant of PTC and the wide threshold range in interpretation of the clearly set pathological criteria for diagnosis of PTC, between pathologists including experts, the diagnosis in some cases became quite difficult. Unfortunately some cases are unjustifiably over-called as follicular variant of PTC as a result of the wide inter observable variability between pathologists, including thyroid pathologists. Ancillary studies such as immmunohistochemistry may be helpful, but till now there is no 100% consistent marker(s), that distinct between PTC and other follicular thyroid lesions and tumors. We assessed expression of antibodies against CD56, CK19, P63 and E-Cadherin in PTC and other follicular thyroid lesions and neoplasms. A total of 175 cases were studied. The neoplastic cases included 75 carcinomas (72 papillary, 2 follicular, 1 Hurthle cell) and 35 adenomas (32 follicular and 3 Hurthle cell). The non-neoplastic thyroids included 65 cases, (25 nodular hyperplasia, 5 thyrotoxic hyperplasia (Grave's disease), 19 lymphocytic thyroiditis and 6 Hashimoto's thyroiditis). All cases were evaluated by immunohistochemistry for the expression of the above mentioned markers. The markers' patterns and intensities of staining were scored. Positive expression of the markers equal or >10% of the follicular epithelium within the tumor or lesional cells was considered positive. An expression of <10% was considered to be negative. Our results showed CD56 positive in all the lesions and tumors except for PTC in all cases (100%). CD56 was negative in all PTC cases (100%). CK 19 showed positive expression in PTC accounting for 85% of cases and in 26% of non PTC lesions/tumors. P63 showed selective focal positivity in PTC cases, in contrast to other non PTC lesions/tumors. P63 expression was in 70% of cases of PTC and was consistently absent in all the non PTC cases. E-Cadherin showed consistent non discriminatory expression in all cases included in the study. We concluded that a panel consisted of CD56, CK19 and P63 is of value in distinction of PTC from other thyroid follicular lesion. P63 is a specific but less sensitive marker for PTC than CK19. CD56 is more specific and sensitive marker than CK19, however it is a negative rather than a positive marker for PTC. E-Cadherin is of no value in the diagnosis of thyroid follicular lesions/tumors. We recommend application of a panel composed of CK19, P63 and CD56 by a group of expert thyroid pathologists on a large series of follicular malignant thyroid neoplasms of uncertain malignant. PMID:18254952

  5. The ICAM-1 expression level determines the susceptibility of human endothelial cells to simulated microgravity.

    PubMed

    Buravkova, Ludmila B; Rudimov, Eugene G; Andreeva, Elena R; Grigoriev, Anatoly I

    2018-03-01

    Microgravity is a principal risk factor hampering human cardiovascular regulation during space flights. Endothelial dysfunction associated with the impaired integrity and uniformity of the monolayer represents a potential trigger for vascular damage. We characterized the expression profile of the multi-step cascade of adhesion molecules (ICAM-1, VCAM-1, E-selectin, VE-cadherin) in umbilical cord endothelial cells (ECs) after 24 h of exposure to simulated microgravity (SMG), pro-inflammatory cytokine TNF-α, and the combination of the two. Random Positioning Machine (RPM)-mediated SMG was used to mimic microgravity effects. SMG stimulated the expression of E-selectin, which is known to be involved in slowing leukocyte rolling. Primary ECs displayed heterogeneity with respect to the proportion of ICAM-1-positive cells. ECs were divided into two groups: pre-activated ECs displaying high proportion of ICAM-1 + -cells (ECs-1) (greater than 50%) and non-activated ECs with low proportion of ICAM-1 + -cells (ECs-2) (less than 25%). Only non-activated ECs-2 responded to SMG by elevating gene transcription and increasing ICAM-1 and VE-cadherin expression. This effect was enhanced after cumulative SMG-TNF-α exposure. ECs-1 displayed an unexpected decrease in number of E-selectin- and ICAM-1-positive ECs and pronounced up-regulation of VCAM1 upon activation of inflammation, which was partially abolished by SMG. Thus, non-activated ECs-2 are quite resistant to the impacts of microgravity and even exhibited an elevation of the VE-cadherin gene and protein expression, thus improving the integrity of the endothelial monolayer. Pre-activation of ECs with inflammatory stimuli may disturb the EC adhesion profile, attenuating its barrier function. These alterations may be among the mechanisms underlying cardiovascular dysregulation in real microgravity conditions. © 2017 Wiley Periodicals, Inc.

  6. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition

    PubMed Central

    Roy, Lopamudra Das; Sahraei, Mahnaz; Subramani, Durai B.; Besmer, Dahlia; Nath, Sritama; Tinder, Teresa L.; Bajaj, Ekta; Shanmugam, Kandavel; Lee, Yong Yook; Hwang, Sun IL; Gendler, Sandra J.; Mukherjee, Pinku

    2010-01-01

    Increased motility and invasiveness of pancreatic cancer cells are associated with epithelial to mesenchymal transition (EMT). Snai1 and Slug are zinc-finger transcription factors that trigger this process by repressing E-cadherin and enhancing vimentin and N-Cadherin protein expression. However, the mechanisms that regulate this activation in pancreatic tumors remain elusive. MUC1, a transmembrane mucin glycoprotein, is associated with the most invasive forms of pancreatic adenocarcinomas (PDA). In this study, we show that over expression of MUC1 in pancreatic cancer cells triggers the molecular process of EMT which translates to increased invasiveness and metastasis. EMT was significantly reduced when Muc1 was genetically deleted in a mouse model of PDA or when all seven tyrosines in the cytoplasmic tail of MUC1 were mutated to phenylalanine (mutated MUC1 CT). Using proteomics, RT-PCR, and Western blotting, we revealed a significant increase in vimentin, Slug and Snail expression with repression of E-Cadherin in MUC1-expressing cells compared to cells expressing the mutated MUC1 CT. In the cells that carried the mutated MUC1 CT, MUC1 failed to co-immunoprecipitate with β-catenin and translocate to the nucleus thereby blocking transcription of the genes associated with EMT and metastasis. Thus, functional tyrosines are critical in stimulating the interactions between MUC1 and β-catenin and their nuclear translocation to initiate the process of EMT. This study signifies the oncogenic role of MUC1 CT and is the first to identify a direct role of the MUC1 in initiating EMT during pancreatic cancer. The data may have implications in future design of MUC1-targeted therapies for pancreatic cancer. PMID:21102519

  7. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition.

    PubMed

    Roy, L D; Sahraei, M; Subramani, D B; Besmer, D; Nath, S; Tinder, T L; Bajaj, E; Shanmugam, K; Lee, Y Y; Hwang, S I L; Gendler, S J; Mukherjee, P

    2011-03-24

    Increased motility and invasiveness of pancreatic cancer cells are associated with epithelial to mesenchymal transition (EMT). Snai1 and Slug are zinc-finger transcription factors that trigger this process by repressing E-cadherin and enhancing vimentin and N-cadherin protein expression. However, the mechanisms that regulate this activation in pancreatic tumors remain elusive. MUC1, a transmembrane mucin glycoprotein, is associated with the most invasive forms of pancreatic ductal adenocarcinomas (PDA). In this study, we show that over expression of MUC1 in pancreatic cancer cells triggers the molecular process of EMT, which translates to increased invasiveness and metastasis. EMT was significantly reduced when MUC1 was genetically deleted in a mouse model of PDA or when all seven tyrosines in the cytoplasmic tail of MUC1 were mutated to phenylalanine (mutated MUC1 CT). Using proteomics, RT-PCR and western blotting, we revealed a significant increase in vimentin, Slug and Snail expression with repression of E-Cadherin in MUC1-expressing cells compared with cells expressing the mutated MUC1 CT. In the cells that carried the mutated MUC1 CT, MUC1 failed to co-immunoprecipitate with β-catenin and translocate to the nucleus, thereby blocking transcription of the genes associated with EMT and metastasis. Thus, functional tyrosines are critical in stimulating the interactions between MUC1 and β-catenin and their nuclear translocation to initiate the process of EMT. This study signifies the oncogenic role of MUC1 CT and is the first to identify a direct role of the MUC1 in initiating EMT during pancreatic cancer. The data may have implications in future design of MUC1-targeted therapies for pancreatic cancer.

  8. Biological characterization of bovine mammary epithelial cell lines immortalized by HPV16 E6/E7 and SV40T.

    PubMed

    Zhan, Kang; Lin, Miao; Zhao, Qian-Ming; Zhan, Jin-Shun; Zhao, Guo-Qi

    2016-10-01

    Primary bovine mammary epithelial cells are not ideal models for long-term studies, because primary cells undergo a limited number of proliferations in vitro and enter into a growth-arrest stage called cell replicative senescence; we therefore must establish the immortalized bovine mammary epithelial cells (BMECs) in vitro. More importantly, the mechanisms of the relationship between immortalized and apoptotic cell remain unknown in BMECs. We therefore sought to elucidate the mechanisms of which immortalized cells escape the pathway of apoptotic signal. These cells were successfully immortalized without any signs of senescence. The maximum number of BMEC and E6E7 immortalized cells were reached after 6 d of culture. At this point, there were significantly more E6E7 immortalized cells than primary BMECs (P < 0.01). The population-doubling times of the E6E7 and SV40T immortalized cells were lowest at 48 and 72 h. We failed to detect the expression of the epithelial cell marker E-cadherin in BMECs; however, immortalized cells had low expression of E-cadherin. The expression of β-catenin was markedly expressed in immortalized cells than in BMECs (P < 0.01). Caspase-3, caspase-9, and poly ADP-ribose polymerase (PARP) were detected; however, the cleavage of caspase-3 and PARP was not observed. Our data demonstrate that the expressions of caspase-9, caspase-3, and PARP are not sufficient for the apoptosis of immortalized cells and suggest that E-cadherin and β-catenin might be an important indicator of the development of cancer.

  9. {beta}-Catenin regulates airway smooth muscle contraction.

    PubMed

    Jansen, Sepp R; Van Ziel, Anna M; Baarsma, Hoeke A; Gosens, Reinoud

    2010-08-01

    beta-Catenin is an 88-kDa member of the armadillo family of proteins that is associated with the cadherin-catenin complex in the plasma membrane. This complex interacts dynamically with the actin cytoskeleton to stabilize adherens junctions, which play a central role in force transmission by smooth muscle cells. Therefore, in the present study, we hypothesized a role for beta-catenin in the regulation of smooth muscle force production. beta-Catenin colocalized with smooth muscle alpha-actin (sm-alpha-actin) and N-cadherin in plasma membrane fractions and coimmunoprecipitated with sm-alpha-actin and N-cadherin in lysates of bovine tracheal smooth muscle (BTSM) strips. Moreover, immunocytochemistry of cultured BTSM cells revealed clear and specific colocalization of sm-alpha-actin and beta-catenin at the sites of cell-cell contact. Treatment of BTSM strips with the pharmacological beta-catenin/T cell factor-4 (TCF4) inhibitor PKF115-584 (100 nM) reduced beta-catenin expression in BTSM whole tissue lysates and in plasma membrane fractions and reduced maximal KCl- and methacholine-induced force production. These changes in force production were not accompanied by changes in the expression of sm-alpha-actin or sm-myosin heavy chain (MHC). Likewise, small interfering RNA (siRNA) knockdown of beta-catenin in BTSM strips reduced beta-catenin expression and attenuated maximal KCl- and methacholine-induced contractions without affecting sm-alpha-actin or sm-MHC expression. Conversely, pharmacological (SB-216763, LiCl) or insulin-induced inhibition of glycogen synthase kinase-3 (GSK-3) enhanced the expression of beta-catenin and augmented maximal KCl- and methacholine-induced contractions. We conclude that beta-catenin is a plasma membrane-associated protein in airway smooth muscle that regulates active tension development, presumably by stabilizing cell-cell contacts and thereby supporting force transmission between neighboring cells.

  10. Small interfering RNA targeting ILK inhibits metastasis in human tongue cancer cells through repression of epithelial-to-mesenchymal transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Yu; Laboratory of Forensic Medicine and Biomedical Information, Chongqing Medical University, Chongqing; Qi, Jin

    2013-08-01

    Integrin-linked kinase (ILK) is a multifunctional serine/threonine kinase. Accumulating evidences suggest that ILK are involved in cell–matrix interactions, cell proliferation, invasion, migration, angiogenesis and Epithelial–mesenchymal transition (EMT). However, the underlying mechanisms remain largely unknown. EMT has been postulated as a prerequisite for metastasis. The reports have demonstrated that EMT was implicated in metastasis of oral squamous cell carcinomas. Therefore, here we further postulate that ILK might participate in EMT of tongue cancer. We showed that ILK siRNA inhibited EMT with low N-cadherin, Vimentin, Snail, Slug and Twist as well as high E-cadherin expression in vivo and in vitro. We foundmore » that knockdown of ILK inhibited cell proliferation, migration and invasion as well as changed cell morphology. We also demonstrated that ILK siRNA inhibited phosphorylation of downstream signaling targets Akt and GSK3β as well as reduced expression of MMP2 and MMP9. Furthermore, we found that the tongue tumor with high metastasis capability showed higher ILK, Vimentin, Snail, Slug and Twist as well as lower E-cadherin expression in clinical specimens. Finally, ILK siRNA led to the suppression for tumorigenesis and metastasis in vivo. Our findings suggest that ILK could be a novel diagnostic and therapeutic target for tongue cancer. Highlights: • ILK siRNA influences cell morphology, cell cycle, migration and invasion. • ILK siRNA affects the expression of proteins associated with EMT. • ILK expression is related to EMT in clinical human tongue tumors. • ILK siRNA inhibits metastasis of the tongue cancer cells through suppressing EMT.« less

  11. Characterizing PCDH19 in human induced pluripotent stem cells (iPSCs) and iPSC-derived developing neurons: emerging role of a protein involved in controlling polarity during neurogenesis

    PubMed Central

    Compagnucci, Claudia; Petrini, Stefania; Higuraschi, Norimichi; Trivisano, Marina; Specchio, Nicola; Hirose, Shinichi; Bertini, Enrico; Terracciano, Alessandra

    2015-01-01

    PCDH19 (Protocadherin 19), a member of the cadherin superfamily, is involved in the pathogenic mechanism of an X-linked model of neurological disease. The biological function of PCHD19 in human neurons and during neurogenesis is currently unknown. Therefore, we decided to use the model of the induced pluripotent stem cells (iPSCs) to characterize the location and timing of expression of PCDH19 during cortical neuronal differentiation. Our data show that PCDH19 is expressed in pluripotent cells before differentiation in a homogeneous pattern, despite its localization is often limited to one pole of the cell. During neuronal differentiation, positional information on the progenitor cells assumes an important role in acquiring polarization. The proper control of the cell orientation ensures a fine balancing between symmetric (giving rise to two progenitor sister cells) versus asymmetric (giving rise to one progenitor cell and one newborn neuron) division. This process results in the polar organization of the neural tube with a lumen indicating the basal part of the polarized neuronal progenitor cell; in the iPSC model the cells are organized in the ‘neural rosette’ and interestingly, PCDH19 is located at the center of the rosette, with other well-known markers of the lumen (N-cadherin and ZO-1). These data suggest that PCDH19 has a role in instructing the apico-basal polarity of the progenitor cells, thus regulating the development of a properly organized human brain. PMID:26450854

  12. Regulation of Metastatic Breast Cancer Dormancy

    DTIC Science & Technology

    2015-09-01

    individual cell motility to disseminate and eventually extravasate into common metastatic niches such as the brain, bone and liver. Once attaining the...Engineer tagged MCF7 cells with shRNA against E-cadherin and engineer tagged MDA-MB-361 and MDA- MB-231 cells to express or prevent expression of E

  13. Three-dimensional biomimetic vascular model reveals a RhoA, Rac1, and N-cadherin balance in mural cell-endothelial cell-regulated barrier function.

    PubMed

    Alimperti, Stella; Mirabella, Teodelinda; Bajaj, Varnica; Polacheck, William; Pirone, Dana M; Duffield, Jeremy; Eyckmans, Jeroen; Assoian, Richard K; Chen, Christopher S

    2017-08-15

    The integrity of the endothelial barrier between circulating blood and tissue is important for blood vessel function and, ultimately, for organ homeostasis. Here, we developed a vessel-on-a-chip with perfused endothelialized channels lined with human bone marrow stromal cells, which adopt a mural cell-like phenotype that recapitulates barrier function of the vasculature. In this model, barrier function is compromised upon exposure to inflammatory factors such as LPS, thrombin, and TNFα, as has been observed in vivo. Interestingly, we observed a rapid physical withdrawal of mural cells from the endothelium that was accompanied by an inhibition of endogenous Rac1 activity and increase in RhoA activity in the mural cells themselves upon inflammation. Using a system to chemically induce activity in exogenously expressed Rac1 or RhoA within minutes of stimulation, we demonstrated RhoA activation induced loss of mural cell coverage on the endothelium and reduced endothelial barrier function, and this effect was abrogated when Rac1 was simultaneously activated. We further showed that N -cadherin expression in mural cells plays a key role in barrier function, as CRISPR-mediated knockout of N -cadherin in the mural cells led to loss of barrier function, and overexpression of N -cadherin in CHO cells promoted barrier function. In summary, this bicellular model demonstrates the continuous and rapid modulation of adhesive interactions between endothelial and mural cells and its impact on vascular barrier function and highlights an in vitro platform to study the biology of perivascular-endothelial interactions.

  14. [HIF-2α/Notch3 pathway mediates CoCl2-induced migration and invasion in human breast cancer MCF-7 cells].

    PubMed

    Wang, Jian-Guo; Yuan, Lei

    2016-12-25

    The aim of this study is to investigate the effects of hypoxia inducible factor-2α (HIF-2α) and Notch3 on CoCl 2 -induced migration and invasion of human breast cancer cell line MCF-7. MCF-7 cells were exposed to normoxia (21% O 2 ) or chemical hypoxia (21% O 2 plus CoCl 2 ). Short hairpin RNA (shRNA) was used to knock down HIF-2α and Notch3 in MCF-7 cells. The mRNA expression levels of HIF-2α, Notch3 and Hey1 were measured by RT-PCR. Western blot was performed to determine the protein expression levels of HIF-2α, Notch3, Hey1, Snail and E-cadherin. CoCl 2 treatment resulted in higher protein expression levels of HIF-2α, Notch3, Hey1, Snail (P < 0.05) and lower levels of E-cadherin (P < 0.05), and promoted migration and invasion of MCF-7 cells (P < 0.05). shRNA-HIF-2α suppressed CoCl 2 -induced mRNA expression of Notch3 and Hey1. Notch3 knockdown down-regulated Snail and up-regulated E-cadherin at protein level under simulated hypoxia (P < 0.05), and inhibited CoCl 2 -induced migration and invasion of MCF-7 cells (P < 0.05). In conclusion, our data provide evidence that HIF-2α may promote the migration and invasion of MCF-7 cells under chemical hypoxic conditions by potentiating Notch3 pathway.

  15. An SPR based immunoassay for the sensitive detection of the soluble epithelial marker E-cadherin.

    PubMed

    Vergara, Daniele; Bianco, Monica; Pagano, Rosanna; Priore, Paola; Lunetti, Paola; Guerra, Flora; Bettini, Simona; Carallo, Sonia; Zizzari, Alessandra; Pitotti, Elena; Giotta, Livia; Capobianco, Loredana; Bucci, Cecilia; Valli, Ludovico; Maffia, Michele; Arima, Valentina; Gaballo, Antonio

    2018-06-11

    Protein biomarkers are important diagnostic tools for cancer and several other diseases. To be validated in a clinical context, a biomarker should satisfy some requirements including the ability to provide reliable information on a pathological state by measuring its expression levels. In parallel, the development of an approach capable of detecting biomarkers with high sensitivity and specificity would be ideally suited for clinical applications. Here, we performed an immune-based label free assay using Surface Plasmon Resonance (SPR)-based detection of the soluble form of E-cadherin, a cell-cell contact protein that is involved in the maintaining of tissue integrity. With this approach, we obtained a specific and quantitative detection of E-cadherin from a few hundred μl of serum of breast cancer patients by obtaining a 10-fold enhancement in the detection limit over a traditional colorimetric ELISA. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Dioxin Receptor Expression Inhibits Basal and Transforming Growth Factor β-induced Epithelial-to-mesenchymal Transition*

    PubMed Central

    Rico-Leo, Eva M.; Alvarez-Barrientos, Alberto; Fernandez-Salguero, Pedro M.

    2013-01-01

    Recent studies have emphasized the role of the dioxin receptor (AhR) in maintaining cell morphology, adhesion, and migration. These novel AhR functions depend on the cell phenotype, and although AhR expression maintains mesenchymal fibroblasts migration, it inhibits keratinocytes motility. These observations prompted us to investigate whether AhR modulates the epithelial-to-mesenchymal transition (EMT). For this, we have used primary AhR+/+ and AhR−/− keratinocytes and NMuMG cells engineered to knock down AhR levels (sh-AhR) or to express a constitutively active receptor (CA-AhR). Both AhR−/− keratinocytes and sh-AhR NMuMG cells had increased migration, reduced levels of epithelial markers E-cadherin and β-catenin, and increased expression of mesenchymal markers Snail, Slug/Snai2, vimentin, fibronectin, and α-smooth muscle actin. Consistently, AhR+/+ and CA-AhR NMuMG cells had reduced migration and enhanced expression of epithelial markers. AhR activation by the agonist FICZ (6-formylindolo[3,2-b]carbazole) inhibited NMuMG migration, whereas the antagonist α-naphthoflavone induced migration as did AhR knockdown. Exogenous TGFβ exacerbated the promigratory mesenchymal phenotype in both AhR-expressing and AhR-depleted cells, although the effects on the latter were more pronounced. Rescuing AhR expression in sh-AhR cells reduced Snail and Slug/Snai2 levels and cell migration and restored E-cadherin levels. Interference of AhR in human HaCaT cells further supported its role in EMT. Interestingly, co-immunoprecipitation and immunofluorescence assays showed that AhR associates in common protein complexes with E-cadherin and β-catenin, suggesting the implication of AhR in cell-cell adhesion. Thus, basal or TGFβ-induced AhR down-modulation could be relevant in the acquisition of a motile EMT phenotype in both normal and transformed epithelial cells. PMID:23382382

  17. Expression of EphA2 and Ephrin A-1 in carcinoma of the urinary bladder.

    PubMed

    Abraham, Shaji; Knapp, Deborah W; Cheng, Liang; Snyder, Paul W; Mittal, Suresh K; Bangari, Dinesh S; Kinch, Michael; Wu, Lan; Dhariwal, Jay; Mohammed, Sulma I

    2006-01-15

    The EphA2 receptor tyrosine kinase is believed to play a role in tumor growth and metastasis. The clinical significance of the expression of EphA2 was observed in breast, prostate, colon, skin, cervical, ovarian, and lung cancers. The purpose of this work was to determine the expression of EphA2 and its ligand, Ephrin A-1, and E-cadherin in carcinoma of the urinary bladder, and determine EphA2 as a new target for therapy in bladder cancer. EphA2 mRNA and protein expression was investigated by reverse transcription-PCR and Western blot, respectively, in bladder cancer cell lines. In addition, the expression of EphA2, Ephrin A-1, and E-cadherin in tissues from patients with different stages of urinary bladder cancer was determined by immunohistochemistry. Furthermore, the ability of Ephrin A-1 to inhibit growth of bladder cancer cells was also investigated using an adenoviral delivery system. Western blot analysis showed high EphA2 expression in TCCSUP, T24, and UMUC-3 cell lines. In tissues, the staining intensity of EphA2 was less in normal urothelium but increased greatly in advancing stages of urothelial carcinoma (P < 0.05). Similarly, the staining intensity of Ephrin A-1 was low in normal tissues and high in cancerous tissues, but it was similar across the various stages of urothelial carcinoma (T(a)-T(4)). E-cadherin immunoreactivity decreased in urothelial cancer. Association of EphA2 and Ephrin A-1 expression was found to be significant between T(a) stage and T(1)-T(2) (P < 0.04) and T(a) and T(3)-T(4) stages (P < 0.0001). Adenovirus delivery of Ephrin A-1 inhibited proliferation of TCCSUP cells. EphA2 may serve as a novel target for bladder cancer therapy.

  18. [Effect of Golgi α-mannosidase 2 (GM2) gene knockdown on adhesion abilities of human gastric carcinoma cell line BGC-823 and its mechanism].

    PubMed

    Zeng, Bo; Zeng, Zhen; Liu, Chang; Yang, Yaying

    2017-06-01

    Objective To investigate the effect of Golgi α-mannosidase II (GM2) gene knockdown on adhesion abilities of BGC-823 human gastric carcinoma cells. Methods Three plasmid vectors expressing GM2 shRNAs and a negative control plasmid vector were designed, constructed and then transfected into BGC-823 cells by Lipofectamine TM 2000. After transfection, the mRNA and protein levels of GM2 in BGC-823 cells were detected by real-time quantitative PCR (qRT-PCR) and Western blotting to evaluate the transfection efficacy. The best plasmid for GM2 gene knockdown was selected and stably transfected into BGC-823 cells. Adhesion abilities of BGC-823 cells after GM2 gene silencing were observed by cell-cell, cell-matrix and cell-endothelial cell adhesion assays. At the same time, the expressions of E-cadherin, P-selectin, CD44v6 and intercellular adhesion molecule-1 (ICAM-1) proteins were detected by Western blotting after GM2 gene knockdown. Results The expression of GM2 was effectively knockdown in GM2-shRNA-2-transfected BGC-823 cells. Compared with the blank control group and the negative control group, the intercellular adhesion ability of the GM2-shRNA-2-transfected cells increased significantly, while their cell-matrix and cell-endothelium adhesion abilities markedly decreased. In GM2-shRNA-2 transfection group, E-cadherin expression was significantly elevated and the P-selectin expression was significantly reduced, while the expression levels of CD44v6 and ICAM-1 were not obviously changed. Conclusion After GM2 gene knockdown, the intercellular adhesion ability of gastric carcinoma BGC-823 cells is enhanced, while the adhesion abilities with the extracellular matrix and endothelial cells are weakened. The changes might be related to the up-regulated expression of E-cadherin and the down-regulation of P-selectin.

  19. MicroRNA-9 up-regulates E-cadherin through inhibition of NF-κB1-Snail1 pathway in melanoma.

    PubMed

    Liu, Shujing; Kumar, Suresh M; Lu, Hezhe; Liu, Aihua; Yang, Ruifeng; Pushparajan, Anitha; Guo, Wei; Xu, Xiaowei

    2012-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate gene expression. Hsa-miR-9 has been shown to have opposite functions in different tumour types; however, the underlying mechanism is unclear. Here we show that hsa-miR-9 is down-regulated in metastatic melanomas compared to primary melanomas. Overexpression of miR-9 in melanoma cells resulted in significantly decreased cell proliferation and migratory capacity with decreased F-actin polymerization and down-regulation of multiple GTPases involved in cytoskeleton remodelling. miR-9 overexpression induced significant down-regulation of Snail1 with a concomitant increase in E-cadherin expression. In contrast, knockdown of miR-9 increased Snail1 expression as well as melanoma cell proliferation and migration capacity. Mechanistically, miR-9 expression down-regulated NF-κB1 in melanoma and the effect was abolished by mutations in the putative miR-9 binding sites within the 3'-untranslated region (UTR) of NF-κB1. Anti-miR-9 miRNA inhibitor also increased the expression of NF-κB1. The effects of miR-9 on Snail1 expression and melanoma cell proliferation and migration were rescued by overexpression of NF-κB1 in these cells. Furthermore, miR-9 overexpression resulted in significantly decreased melanoma growth and metastasis in vivo. In summary, miR-9 inhibits melanoma proliferation and metastasis through down-regulation of the NF-κB1-Snail1 pathway. This study finds a new mechanism that miR-9 utilizes to decrease E-cadherin expression and inhibit melanoma progression. The results suggest that function of microRNAs is context and tumour type-specific. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. African Americans with pancreatic ductal adenocarcinoma exhibit gender differences in Kaiso expression

    PubMed Central

    Mukherjee, Angana; Jones, Jacqueline; Karanam, Balasubramanyam; Davis, Melissa; Jaynes, Jesse; Reams, R. Renee; Dean-Colomb, Windy; Yates, Clayton

    2016-01-01

    Kaiso, a bi-modal transcription factor, regulates gene expression, and is elevated in breast, prostate, and colon cancers. Depletion of Kaiso in other cancer types leads to a reduction in markers for the epithelial–mesenchymal transition (EMT) (Jones et al., 2014), however its clinical implications in pancreatic ductal adenocarcinoma (PDCA) have not been widely explored. PDCA is rarely detected at an early stage but is characterized by rapid progression and invasiveness. We now report the significance of the subcellular localization of Kaiso in PDCAs from African Americans. Kaiso expression is higher in the cytoplasm of invasive and metastatic pancreatic cancers. In males, cytoplasmic expression of Kaiso correlates with cancer grade and lymph node positivity. In male and female patients, cytoplasmic Kaiso expression correlates with invasiveness. Also, nuclear expression of Kaiso increases with increased invasiveness and lymph node positivity. Further, analysis of the largest PDCA dataset available on ONCOMINE shows that as Kaiso increases, there is an overall increase in Zeb1, which is the inverse for E-cadherin. Hence, these findings suggest a role for Kaiso in the progression of PDCAs, involving the EMT markers, E-cadherin and Zeb1. PMID:27424525

  1. Molecular mechanism of Poria cocos combined with oxaliplatin on the inhibition of epithelial-mesenchymal transition in gastric cancer cells.

    PubMed

    Wang, Na; Liu, Dengxiang; Guo, Jun; Sun, Yawei; Guo, Ting; Zhu, Xiaoyan

    2018-06-01

    Natural product Poria cocos possesses antitumor effect. This study will explore the molecular mechanism of Poria cocos combined with chemotherapy in the inhibition of gastric cancer cell EMT process. The experiment was divided into blank control group, Poria cocos group, oxaliplatin group and Poria cocos combined with oxaliplatin group. Scratch and Transwell assay were used to detect cell migration and invasion respectively. RT-qPCR and Western Blot analyses were used to detect mRNA and protein expression of the epithelial-mesenchymal transition (EMT) related factors including Snail, Twist, Vimentin, E-cadherin and N-cadherin respectively. Morphologic assessment was performed with HPIAS-1000 automated image analysis system. The migration and invasion abilities of gastric cancer cells in the Poria cocos combined with oxaliplatin group were significantly decreased (P < 0.01). The mRNA and protein expression of Snail, Twist, Vimentin and N-cadherin were significantly decreased while the mRNA and protein expression of E-cadherin were significantly increased (P < 0.01) compared with blank control group. Nude mice model of gastric cancer was successfully established. Poria cocos combined with oxaliplatin could significantly inhibit gastric tumor progression. The expression of EMT related factors were consistent with in vitro study. Morphologic assessment showed that the nucleus area, perimeter, mean diameter, volume, long diameter and shape factor in the Poria cocos combined with oxaliplatin group were significantly different compared with the blank control group (P < 0.01) but not significantly different compared with the normal control. Poria cocos combined with oxaliplatin could significantly inhibit the migration and invasion of gastric cancer cells. Through both in vitro and in vivo studies, it is confirmed that Poria cocos combined with oxaliplatin could significantly inhibit the EMT process of gastric cancer. Poria cocos combined with oxaliplatin could significantly affect the morphology changes of gastric cancer cells. These findings may provide a theoretical guidance for the clinical treatment of gastric cancer. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. HIV Impairs Lung Epithelial Integrity and Enters the Epithelium to Promote Chronic Lung Inflammation.

    PubMed

    Brune, Kieran A; Ferreira, Fernanda; Mandke, Pooja; Chau, Eric; Aggarwal, Neil R; D'Alessio, Franco R; Lambert, Allison A; Kirk, Gregory; Blankson, Joel; Drummond, M Bradley; Tsibris, Athe M; Sidhaye, Venkataramana K

    2016-01-01

    Several clinical studies show that individuals with HIV are at an increased risk for worsened lung function and for the development of COPD, although the mechanism underlying this increased susceptibility is poorly understood. The airway epithelium, situated at the interface between the external environment and the lung parenchyma, acts as a physical and immunological barrier that secretes mucins and cytokines in response to noxious stimuli which can contribute to the pathobiology of chronic obstructive pulmonary disease (COPD). We sought to determine the effects of HIV on the lung epithelium. We grew primary normal human bronchial epithelial (NHBE) cells and primary lung epithelial cells isolated from bronchial brushings of patients to confluence and allowed them to differentiate at an air- liquid interface (ALI) to assess the effects of HIV on the lung epithelium. We assessed changes in monolayer permeability as well as the expression of E-cadherin and inflammatory modulators to determine the effect of HIV on the lung epithelium. We measured E-cadherin protein abundance in patients with HIV compared to normal controls. Cell associated HIV RNA and DNA were quantified and the p24 viral antigen was measured in culture supernatant. Surprisingly, X4, not R5, tropic virus decreased expression of E-cadherin and increased monolayer permeability. While there was some transcriptional regulation of E-cadherin, there was significant increase in lysosome-mediated protein degradation in cells exposed to X4 tropic HIV. Interaction with CXCR4 and viral fusion with the epithelial cell were required to induce the epithelial changes. X4 tropic virus was able to enter the airway epithelial cells but not replicate in these cells, while R5 tropic viruses did not enter the epithelial cells. Significantly, X4 tropic HIV induced the expression of intercellular adhesion molecule-1 (ICAM-1) and activated extracellular signal-regulated kinase (ERK). We demonstrate that HIV can enter airway epithelial cells and alter their function by impairing cell-cell adhesion and increasing the expression of inflammatory mediators. These observed changes may contribute local inflammation, which can lead to lung function decline and increased susceptibility to COPD in HIV patients.

  3. E-Cadherin Antagonizes Transforming Growth Factor β1 Gene Induction in Hepatic Stellate Cells by Inhibiting RhoA–Dependent Smad3 Phosphorylation

    PubMed Central

    Cho, Il Je; Kim, Young Woo; Han, Chang Yeob; Kim, Eun Hyun; Anderson, Richard A.; Lee, Young Sok; Lee, Chang Ho; Hwang, Se Jin; Kim, Sang Geon

    2011-01-01

    Cadherins mediate cell-cell adhesion and catenin (ctn)-related signaling pathways. Liver fibrosis is accompanied by the loss of E-cadherin (ECAD), which promotes the process of epithelial-mesenchymal transition. Currently, no information is available about the inhibitory role of ECAD in hepatic stellate cell activation. Because of ECAD’s potential for inhibiting the induction of transforming growth factor β1 (TGFβ1), we investigated whether ECAD overexpression prevents TGFβ1 gene induction; we also examined what the molecular basis could be. Forced expression of ECAD decreased α-smooth muscle actin and vimentin levels and caused decreases in the constitutive and inducible expression of the TGFβ1 gene and its downstream genes. ECAD overexpression decreased Smad3 phosphorylation, weakly decreased Smad2 phosphorylation, and thus inhibited Smad reporter activity induced by either treatment with TGFβ1 or Smad3 overexpression. Overexpression of a dominant negative mutant of ras homolog gene family A (RhoA) diminished the ability of TGFβ1 to elicit its own gene induction. Consistently, transfection with a constitutively active mutant of RhoA reversed the inhibition of TGFβ1-inducible or Smad3-inducible reporter activity by ECAD. Studies using the mutant constructs of ECAD revealed that the p120-ctn binding domain of ECAD was responsible for TGFβ1 repression. Consistently, ECAD was capable of binding p120-ctn, which recruited RhoA; this prevented TGFβ1 from increasing RhoA-mediated Smad3 phosphorylation. In the liver samples of patients with mild or severe fibrosis, ECAD expression reciprocally correlated with the severity of fibrosis. Conclusion Our results demonstrate that ECAD inhibits Smad3/2 phosphorylation by recruiting RhoA to p120-ctn at the p120-ctn binding domain, whereas the loss of ECAD due to cadherin switching promotes the up-regulation of TGFβ1 and its target genes, and facilitates liver fibrosis. PMID:20890948

  4. E-cadherin antagonizes transforming growth factor β1 gene induction in hepatic stellate cells by inhibiting RhoA-dependent Smad3 phosphorylation.

    PubMed

    Cho, Il Je; Kim, Young Woo; Han, Chang Yeob; Kim, Eun Hyun; Anderson, Richard A; Lee, Young Sok; Lee, Chang Ho; Hwang, Se Jin; Kim, Sang Geon

    2010-12-01

    Cadherins mediate cell-cell adhesion and catenin (ctn)-related signaling pathways. Liver fibrosis is accompanied by the loss of E-cadherin (ECAD), which promotes the process of epithelial-mesenchymal transition. Currently, no information is available about the inhibitory role of ECAD in hepatic stellate cell activation. Because of ECAD's potential for inhibiting the induction of transforming growth factor β1 (TGFβ1), we investigated whether ECAD overexpression prevents TGFβ1 gene induction; we also examined what the molecular basis could be. Forced expression of ECAD decreased α-smooth muscle actin and vimentin levels and caused decreases in the constitutive and inducible expression of the TGFβ1 gene and its downstream genes. ECAD overexpression decreased Smad3 phosphorylation, weakly decreased Smad2 phosphorylation, and thus inhibited Smad reporter activity induced by either treatment with TGFβ1 or Smad3 overexpression. Overexpression of a dominant negative mutant of ras homolog gene family A (RhoA) diminished the ability of TGFβ1 to elicit its own gene induction. Consistently, transfection with a constitutively active mutant of RhoA reversed the inhibition of TGFβ1-inducible or Smad3-inducible reporter activity by ECAD. Studies using the mutant constructs of ECAD revealed that the p120-ctn binding domain of ECAD was responsible for TGFβ1 repression. Consistently, ECAD was capable of binding p120-ctn, which recruited RhoA; this prevented TGFβ1 from increasing RhoA-mediated Smad3 phosphorylation. In the liver samples of patients with mild or severe fibrosis, ECAD expression reciprocally correlated with the severity of fibrosis. Our results demonstrate that ECAD inhibits Smad3/2 phosphorylation by recruiting RhoA to p120-ctn at the p120-ctn binding domain, whereas the loss of ECAD due to cadherin switching promotes the up-regulation of TGFβ1 and its target genes, and facilitates liver fibrosis. Copyright © 2010 American Association for the Study of Liver Diseases.

  5. Gene silencing of beta-catenin in melanoma cells retards their growth but promotes the formation of pulmonary metastasis in mice.

    PubMed

    Takahashi, Yuki; Nishikawa, Makiya; Suehara, Tetsuya; Takiguchi, Naomi; Takakura, Yoshinobu

    2008-11-15

    Altered expression of beta-catenin, a key component of the Wnt signaling pathway, is involved in a variety of cancers because increased levels of beta-catenin protein are frequently associated with enhanced cellular proliferation. Although our previous study demonstrated that gene silencing of beta-catenin in melanoma B16-BL6 cells by plasmid DNA (pDNA) expressing short-hairpin RNA targeting the gene (pshbeta-catenin) markedly suppressed their growth in vivo, gene silencing of beta-catenin could promote tumor metastasis by the rearranging cell adhesion complex. In this study, we investigated how silencing of beta-catenin affects metastatic aspects of melanoma cells. Transfection of B16-BL6 cells with pshbeta-catenin significantly reduced the amount of cadherin protein, a cell adhesion molecule binding to beta-catenin, with little change in its mRNA level. Cadherin-derived fragments were detected in culture media of B16-BL6 cells transfected with pshbeta-catenin, suggesting that cadherin is shed from the cell surface when the expression of beta-catenin is reduced. The mobility of B16-BL6 cells transfected with pshbeta-catenin was greater than that of cells transfected with any of the control pDNAs. B16-BL6 cells stably transfected with pshbeta-catenin (B16/pshbeta-catenin) formed less or an equal number of tumor nodules in the lung than cells stably transfected with other plasmids when injected into mice via the tail vein. However, when subcutaneously inoculated, B16/pshbeta-catenin cells formed more nodules in the lung than the other stably transfected cells. These results raise concerns about the gene silencing of beta-catenin for inhibiting tumor growth, because it promotes tumor metastasis by reducing the amount of cadherin in tumor cells. (c) 2008 Wiley-Liss, Inc.

  6. Epithelial-mesenchymal transition in breast epithelial cells treated with cadmium and the role of Snail.

    PubMed

    Wei, Zhengxi; Shan, Zhongguo; Shaikh, Zahir A

    2018-04-01

    Epidemiological and experimental studies have implicated cadmium (Cd) with breast cancer. In breast epithelial MCF10A and MDA-MB-231 cells, Cd has been shown to promote cell growth. The present study examined whether Cd also promotes epithelial-mesenchymal transition (EMT), a hallmark of cancer progression. Human breast epithelial cells consisting of non-cancerous MCF10A, non-metastatic HCC 1937 and HCC 38, and metastatic MDA-MB-231 were treated with 1 or 3 μM Cd for 4 weeks. The MCF10A epithelial cells switched to a more mesenchymal-like morphology, which was accompanied by a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal markers N-cadherin and vimentin. In both non-metastatic HCC 1937 and HCC 38 cells, treatment with Cd decreased the epithelial marker claudin-1. In addition, E-cadherin also decreased in the HCC 1937 cells. Even the mesenchymal-like MDA-MB-231 cells exhibited an increase in the mesenchymal marker vimentin. These changes indicated that prolonged treatment with Cd resulted in EMT in both normal and cancer-derived breast epithelial cells. Furthermore, both the MCF10A and MDA-MB-231 cells labeled with Zcad, a dual sensor for tracking EMT, demonstrated a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal marker ZEB-1. Treatment of cells with Cd significantly increased the level of Snail, a transcription factor involved in the regulation of EMT. However, the Cd-induced Snail expression was completely abolished by actinomycin D. Luciferase reporter assay indicated that the expression of Snail was regulated by Cd at the promotor level. Snail was essential for Cd-induced promotion of EMT in the MDA-MB-231 cells, as knockdown of Snail expression blocked Cd-induced cell migration. Together, these results indicate that Cd promotes EMT in breast epithelial cells and does so by modulating the transcription of Snail. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Molecular Analysis of Non-Small Cell Lung Cancer (NSCLC) Identifies Subsets with Different Sensitivity to Insulin like Growth Factor I Receptor (IGF-IR) Inhibition

    PubMed Central

    Gualberto, Antonio; Dolled-Filhart, Marisa; Gustavson, Mark; Christiansen, Jason; Wang, Yu-Fen; Hixon, Mary L.; Reynolds, Jennifer; McDonald, Sandra; Ang, Agnes; Rimm, David L.; Langer, Corey J.; Blakely, Johnetta; Garland, Linda; Paz-Ares, Luis G.; Karp, Daniel D.; Lee, Adrian V.

    2010-01-01

    Purpose Identify molecular determinants of sensitivity of NSCLC to anti-insulin like growth factor receptor (IGF-IR) therapy. Experimental Design 216 tumor samples were investigated. 165 consisted of retrospective analyses of banked tissue and an additional 51 were from patients enrolled in a phase 2 study of figitumumab (F), a monoclonal antibody against the IGF-IR, in stage IIIb/IV NSCLC. Biomarkers assessed included IGF-IR, EGFR, IGF-2, IGF-2R, IRS-1, IRS-2, vimentin and E-cadherin. Sub-cellular localization of IRS-1 and phosphorylation levels of MAPK and Akt1 were also analyzed. Results IGF-IR was differentially expressed across histological subtypes (P=0.04), with highest levels observed in squamous cell tumors. Elevated IGF-IR expression was also observed in a small number of squamous cell tumors responding to chemotherapy combined with F (p=0.008). Since no other biomarker/response interaction was observed using classical histological sub-typing, a molecular approach was undertaken to segment NSCLC into mechanism-based subpopulations. Principal component analysis and unsupervised Bayesian clustering identified 3 NSCLC subsets that resembled the steps of the epithelial-to-mesenchymal transition: E-cadherin high/IRS-1 low (Epithelial-like), E-cadherin intermediate/IRS-1 high (Transitional) and E-cadherin low/IRS-1 low (Mesenchymal-like). Several markers of the IGF-IR pathway were over-expressed in the Transitional subset. Furthermore, a higher response rate to the combination of chemotherapy and F was observed in Transitional tumors (71%) compared to those in the Mesenchymal-like subset (32%, p=0.03). Only one Epithelial-like tumor was identified in the phase 2 study, suggesting that advanced NSCLC has undergone significant de-differentiation at diagnosis. Conclusion NSCLC comprises molecular subsets with differential sensitivity to IGF-IR inhibition. PMID:20670944

  8. Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells

    PubMed Central

    Ortega, Fabian E.; Rengarajan, Michelle; Chavez, Natalie; Radhakrishnan, Prathima; Gloerich, Martijn; Bianchini, Julie; Siemers, Kathleen; Luckett, William S.; Lauer, Peter; Nelson, W. James; Theriot, Julie A.

    2017-01-01

    The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen Listeria monocytogenes during an in vivo infection. Listeria monocytogenes binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells. Here we demonstrate that depleting αE-catenin, which indirectly links E-cadherin to F-actin, did not decrease L. monocytogenes invasion of epithelial cells in tissue culture. Instead, invasion increased due to increased bacterial adhesion to epithelial monolayers with compromised cell–cell junctions. Furthermore, expression of a mutant E-cadherin lacking the intracellular domain was sufficient for efficient L. monocytogenes invasion of epithelial cells. Importantly, direct biotin-mediated binding of bacteria to surface lipids in the plasma membrane of host epithelial cells was sufficient for uptake. Our results indicate that the only requirement for L. monocytogenes invasion of epithelial cells is adhesion to the host cell surface, and that E-cadherin–mediated coupling of the bacterium to F-actin is not required. PMID:28877987

  9. Variants in members of the cadherin-catenin complex, CDH1 and CTNND1, cause blepharocheilodontic syndrome.

    PubMed

    Kievit, Anneke; Tessadori, Federico; Douben, Hannie; Jordens, Ingrid; Maurice, Madelon; Hoogeboom, Jeannette; Hennekam, Raoul; Nampoothiri, Sheela; Kayserili, Hülya; Castori, Marco; Whiteford, Margo; Motter, Connie; Melver, Catherine; Cunningham, Michael; Hing, Anne; Kokitsu-Nakata, Nancy M; Vendramini-Pittoli, Siulan; Richieri-Costa, Antonio; Baas, Annette F; Breugem, Corstiaan C; Duran, Karen; Massink, Maarten; Derksen, Patrick W B; van IJcken, Wilfred F J; van Unen, Leontine; Santos-Simarro, Fernando; Lapunzina, Pablo; Gil-da Silva Lopes, Vera L; Lustosa-Mendes, Elaine; Krall, Max; Slavotinek, Anne; Martinez-Glez, Victor; Bakkers, Jeroen; van Gassen, Koen L I; de Klein, Annelies; van den Boogaard, Marie-José H; van Haaften, Gijs

    2018-02-01

    Blepharocheilodontic syndrome (BCDS) consists of lagophthalmia, ectropion of the lower eyelids, distichiasis, euryblepharon, cleft lip/palate and dental anomalies and has autosomal dominant inheritance with variable expression. We identified heterozygous variants in two genes of the cadherin-catenin complex, CDH1, encoding E-cadherin, and CTNND1, encoding p120 catenin delta1 in 15 of 17 BCDS index patients, as was recently described in a different publication. CDH1 plays an essential role in epithelial cell adherence; CTNND1 binds to CDH1 and controls the stability of the complex. Functional experiments in zebrafish and human cells showed that the CDH1 variants impair the cell adhesion function of the cadherin-catenin complex in a dominant-negative manner. Variants in CDH1 have been linked to familial hereditary diffuse gastric cancer and invasive lobular breast cancer; however, no cases of gastric or breast cancer have been reported in our BCDS cases. Functional experiments reported here indicated the BCDS variants comprise a distinct class of CDH1 variants. Altogether, we identified the genetic cause of BCDS enabling DNA diagnostics and counseling, in addition we describe a novel class of dominant negative CDH1 variants.

  10. Beta-catenin interacts with low-molecular-weight protein tyrosine phosphatase leading to cadherin-mediated cell-cell adhesion increase.

    PubMed

    Taddei, Maria Letizia; Chiarugi, Paola; Cirri, Paolo; Buricchi, Francesca; Fiaschi, Tania; Giannoni, Elisa; Talini, Doriana; Cozzi, Giacomo; Formigli, Lucia; Raugei, Giovanni; Ramponi, Giampietro

    2002-11-15

    Beta-catenin plays a dual role as a major constituent of cadherin-based adherens junctions and also as a transcriptional coactivator. In normal ephitelial cells, at adherens junction level, beta-catenin links cadherins to the actin cytoskeleton. The structure of adherens junctions is dynamically regulated by tyrosine phosphorylation. In particular, cell-cell adhesion can be negatively regulated through the tyrosine phosphorylation of beta-catenin. Furthermore, the loss of beta-catenin-cadherin association has been correlated with the transition from a benign tumor to an invasive, metastatic cancer. Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) is a ubiquitous PTP implicated in the regulation of mitosis and cytoskeleton rearrangement. Here we demonstrate that the amount of free cytoplasmic beta-catenin is decreased in NIH3T3, which overexpresses active LMW-PTP, and this results in a stronger association between cadherin complexes and the actin-based cytoskeleton with respect to control cells. Confocal microscopy analysis shows that beta-catenin colocalizes with LMW-PTP at the plasma membrane. Furthermore, we provide evidence that beta-catenin is able to associate with LMW-PTP both in vitro and in vivo. Moreover, overexpression of active LMW-PTP strongly potentiates cadherin-mediated cell-cell adhesion, whereas a dominant-negative form of LMW-PTP induces the opposite phenotype, both in NIH3T3 and in MCF-7 carcinoma cells. On the basis of these results, we propose that the stability of cell-cell contacts at the adherens junction level is positively influenced by LMW-PTP expression, mainly because of the beta-catenin and LMW-PTP interaction at the plasma membrane level with consequent dephosphorylation.

  11. Epithelial-to-mesenchymal transition in penile squamous cell carcinoma.

    PubMed

    Masferrer, Emili; Ferrándiz-Pulido, Carla; Masferrer-Niubò, Magalí; Rodríguez-Rodríguez, Alfredo; Gil, Inmaculada; Pont, Antoni; Servitje, Octavi; García de Herreros, Antonio; Lloveras, Belen; García-Patos, Vicenç; Pujol, Ramon M; Toll, Agustí; Hernández-Muñoz, Inmaculada

    2015-02-01

    Epithelial-to-mesenchymal transition is a phenomenon in epithelial tumors that involves loss of intercellular adhesion, mesenchymal phenotype acquisition and enhanced migratory potential. While the epithelial-to-mesenchymal transition process has been extensively linked to metastatic progression of squamous cell carcinoma, studies of the role of epithelial-to-mesenchymal transition in squamous cell carcinoma containing high risk human papillomaviruses are scarce. Moreover, to our knowledge epithelial-to-mesenchymal transition involvement in human penile squamous cell carcinoma, which can arise through transforming HPV infections or independently of HPV, has not been investigated. We evaluated the presence of epithelial-to-mesenchymal transition markers and their relationship to HPV in penile squamous cell carcinoma. We assessed the expression of E-cadherin, vimentin and the epithelial-to-mesenchymal transition related transcription factors Twist, Zeb1 and Snail by immunohistochemical staining in 64 penile squamous cell carcinoma cases. HPV was detected by polymerase chain reaction amplification. Simultaneous loss of membranous E-cadherin expression and vimentin over expression were noted in 43.5% of penile squamous cell carcinoma cases. HPV was significantly associated with loss of membranous E-cadherin but not with epithelial-to-mesenchymal transition. Recurrence and mortality rates were significantly higher in cases showing epithelial-to-mesenchymal transition. Our findings indicate that in penile squamous cell carcinoma epithelial-to-mesenchymal transition is associated with poor prognosis but not with the presence of HPV. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Resveratrol and curcumin as protective agents in an experimental rat model of intestinal ischemia and reperfusion.

    PubMed

    Cucolas, Cristina; Daneasa, Alexandra Ioana; Olteanu, Diana; Decea, Nicoleta; Moldovan, Remus; Tabaran, Flaviu; Filip, Gabriela Adriana

    2016-05-30

    The aim of this study was to evaluate the protective effects of resveratrol and curcumin in an experimental rat model of intestinal ischemia-reperfusion (I/R). Forty-eight adult Wistar rats were used: 12 animals undergoing the sham surgery and 36 animals undergoing laparotomy, with 15 min of mesentric artery clamping. The animals from the latter group (n = 12) were pretreated, for 1 week, with vehicle (CTR), resveratrol (RES), and curcumin (CUR). After 1 h and 6 h of reperfusion, respectively, cyclooxigenase (COX)-2, mucin-1, E-cadherin, nuclear factor (NK)-κB expressions, and tumor necrosis factor related apoptosis-inducing ligand (TRAIL) were assessed in the small intestine. Oxidative stress markers were determined in tissue homogenate and serum, and histopathological analysis was performed. Pretreatment with RES decreased the expression of COX-2 and NF-κB at both intervals and increased E-cadherin (p < 0.05) and mucin-1 production after 1 h. CUR had a beneficial effect on COX-2, NF-κB, and E-cadherin expressions, both after 1 h and after 6 h (p < 0.0001). The two compounds increased TRAIL levels and had a protective effect on oxidative stress and histopathological lesions, both after 1 h and after 6 h. Our results suggested that RES and CUR had beneficial effects in intestinal I/R and may represent a promising option for complementary treatment of this pathological condition.

  13. Low oxygen tension enhances endothelial fate of human pluripotent stem cells.

    PubMed

    Kusuma, Sravanti; Peijnenburg, Elizabeth; Patel, Parth; Gerecht, Sharon

    2014-04-01

    A critical regulator of the developing or regenerating vasculature is low oxygen tension. Precise elucidation of the role of low oxygen environments on endothelial commitment from human pluripotent stem cells necessitates controlled in vitro differentiation environments. We used a feeder-free, 2-dimensional differentiation system in which we could monitor accurately dissolved oxygen levels during human pluripotent stem cell differentiation toward early vascular cells (EVCs). We found that oxygen uptake rate of differentiating human pluripotent stem cells is lower in 5% O2 compared with atmospheric conditions. EVCs differentiated in 5% O2 had an increased vascular endothelial cadherin expression with clusters of vascular endothelial cadherin+ cells surrounded by platelet-derived growth factor β+ cells. When we assessed the temporal effects of low oxygen differentiation environments, we determined that low oxygen environments during the early stages of EVC differentiation enhance endothelial lineage commitment. EVCs differentiated in 5% O2 exhibited an increased expression of vascular endothelial cadherin and CD31 along with their localization to the membrane, enhanced lectin binding and acetylated low-density lipoprotein uptake, rapid cord-like structure formation, and increased expression of arterial endothelial cell markers. Inhibition of reactive oxygen species generation during the early stages of differentiation abrogated the endothelial inductive effects of the low oxygen environments. Low oxygen tension during early stages of EVC derivation induces endothelial commitment and maturation through the accumulation of reactive oxygen species, highlighting the importance of regulating oxygen tensions during human pluripotent stem cell-vascular differentiation.

  14. The histone deacetylase inhibitor butyrate inhibits melanoma cell invasion of Matrigel.

    PubMed

    Kuwajima, Akiko; Iwashita, Jun; Murata, Jun; Abe, Tatsuya

    2007-01-01

    Histone deacetylase (HDAC) inhibitors have anticancer effects. Their effects on expression of cell adhesion molecules might be related to their effects on tumor cell invasion. Murine B16-BL6 cells were treated with the HDAC inhibitors, butyrate or trichostatin A. Melanoma cell invasion of the artificial basement membrane, Matrigel, was examined by Transwell chamber assay. Butyrate as well as trichostatin A inhibited the cell growth mainly by arresting the cell cycle. The cell invasion of Matrigel was inhibited by butyrate and trichostatin A. The butyrate treatment increased the cell-cell aggregation, although neither E-cadherin nor N-cadherin mRNA were up-regulated. Both mRNA expression and protein levels of the immunoglobulin superfamily cell adhesion molecules, Mel-CAM and L1-CAM, were increased in the butyrate-treated cells. The HDAC inhibitor butyrate blocked the B16-BL6 melanoma cell invasion of Matrigel, although it increased the expression of Mel-CAM and L1-CAM which are important to the metastatic potential.

  15. Connective tissue growth factor enhances the migration of gastric cancer through downregulation of E-cadherin via the NF-κB pathway.

    PubMed

    Mao, Zhengfa; Ma, Xiaoyan; Rong, Yefei; Cui, Lei; Wang, Xuqing; Wu, Wenchuan; Zhang, Jianxin; Jin, Dayong

    2011-01-01

    Local invasion and distant metastasis are difficult problems for surgical intervention and treatment in gastric cancer. Connective tissue growth factor (CTGF/CCN2) was considered to have an important role in this process. In this study, we demonstrated that expression of CTGF was significantly upregulated in clinical tissue samples of gastric carcinoma (GC) samples. Forced expression of CTGF in AGS GC cells promoted their migration in culture and significantly increased tumor metastasis in nude mice, whereas RNA interference-mediated knockdown of CTGF in GC cells significantly inhibited cell migration in vitro. We disclose that CTGF downregulated the expression of E-cadherin through activation of the nuclear factor-κappa B (NF-κB) pathway. The effects of CTGF in GC cells were abolished by dominant negative IκappaB. Collectively, these data reported here demonstrate CTGF could modulate the NF-κappaB pathway and perhaps be a promising therapeutic target for gastric cancer invasion and metastasis. © 2010 Japanese Cancer Association.

  16. Adaxial cell migration in the zebrafish embryo is an active cell autonomous property that requires the Prdm1a transcription factor.

    PubMed

    Ono, Yosuke; Yu, Weimiao; Jackson, Harriet E; Parkin, Caroline A; Ingham, Philip W

    2015-01-01

    Adaxial cells, the progenitors of slow-twitch muscle fibres in zebrafish, exhibit a stereotypic migratory behaviour during somitogenesis. Although this process is known to be disrupted in various mutants, its precise nature has remained unclear. Here, using in vivo imaging and chimera analysis, we show that adaxial cell migration is a cell autonomous process, during which cells become polarised and extend filopodia at their leading edge. Loss of function of the Prdm1a transcription factor disrupts the polarisation and migration of adaxial cells, reflecting a role that is independent of its repression of sox6 expression. Expression of the M- and N-cadherins, previously implicated in driving adaxial cell migration, is largely unaffected by loss of Prdm1a function, suggesting that differential cadherin expression is not sufficient for adaxial cell migration. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  17. γ-amino butyric acid (GABA) level as an overall survival risk factor in breast cancer.

    PubMed

    Brzozowska, Anna; Burdan, Franciszek; Duma, Dariusz; Solski, Janusz; Mazurkiewicz, Maria

    2017-09-21

    The γ-amino butyric acid (GABA) plays important role in the proliferation and migration of cancer cells. The aim of the study was to evaluate the level of GABA in breast cancer, in relation to clinical and epidemiological data. The study was conducted on 89 patients with breast cancer in stage I-II. GABA level was assessed using spectrofluorometric method in tumour homogenates. Immunoexpression of E-cadherin was evaluated histologically on paraffin fixed specimens. Overall and disease-free survival was assessed for a 15-year interval period. Median overall survival was significantly longer (127.2 months) in patients with a high level of GABA (>89.3 μg/1), compared with a group with a low level of the amino acid (106.4 months). Disease-free survival was insignificantly different - 99 and 109 months, respectively. A significantly longer overall survival (131.2 months) was seen among patients with a high level of GABA and positive E-cadherin immunoexpression, compared with a group characterized by a low level of GABA and lack of E-cadherin immunorectivity (98.1 months). The co-existence of negative immunoexpression of E-cadherin and low GABA concentration resulted in a six-fold increase in the risk of death (HR=6.03). GABA has a significant prognostic value in breast cancer. Co-existence of a low level of GABA and loss of E-cadherin immune-expression seems to be a new, independent, and negative prognostic marker of the neoplasm.

  18. A Sharp Cadherin-6 Gene Expression Boundary in the Developing Mouse Cortical Plate Demarcates the Future Functional Areal Border

    PubMed Central

    Terakawa, Youhei W.; Inoue, Yukiko U.; Asami, Junko; Hoshino, Mikio; Inoue, Takayoshi

    2013-01-01

    The mammalian cerebral cortex can be tangentially subdivided into tens of functional areas with distinct cyto-architectures and neural circuitries; however, it remains elusive how these areal borders are genetically elaborated during development. Here we establish original bacterial artificial chromosome transgenic mouse lines that specifically recapitulate cadherin-6 (Cdh6) mRNA expression profiles in the layer IV of the somatosensory cortex and by detailing their cortical development, we show that a sharp Cdh6 gene expression boundary is formed at a mediolateral coordinate along the cortical layer IV as early as the postnatal day 5 (P5). By further applying mouse genetics that allows rigid cell fate tracing with CreERT2 expression, it is demonstrated that the Cdh6 gene expression boundary set at around P4 eventually demarcates the areal border between the somatosensory barrel and limb field at P20. In the P6 cortical cell pellet culture system, neurons with Cdh6 expression preferentially form aggregates in a manner dependent on Ca2+ and electroporation-based Cdh6 overexpression limited to the postnatal stages perturbs area-specific cell organization in the barrel field. These results suggest that Cdh6 expression in the nascent cortical plate may serve solidification of the protomap for cortical functional areas. PMID:22875867

  19. [The use of immunohistochemistry in the differential diagnosis of thyroid gland tumors with follicular growth pattern].

    PubMed

    Laco, J; Ryska, A

    2006-07-01

    The aim of the study was to evaluate the expression of galectin-3 (gal3), cytokeratin 19 (CK19), neural cell adhesion molecule (NCAM), and E-cadherin (Ecad) in thyroid gland tumors with follicular growth pattern with particular focus on their use in differential diagnosis. A series of 139 cases - 87 follicular adenomas (FAs), 26 follicular carcinomas (FCs), and 26 cases of the follicular variant of papillary carcinoma (FVPC) was studied. Expression of gal3 was found in 29/87 (33%) of FAs, in 13/26 (50%) of FCs, and in 24/26 (92%) of FVPCs. Expression of CK19 was found in 11/87 (13%) of FAs, in 4/26 (15%) of FCs, and in 17/26 (65%) of FVPCs. Expression of NCAM was found in 60/87 (69%) of FAs, in 20/26 (77%) of FCs, and in 7/26 (27%) FVPCs. Expression of Ecad was found in 81/87 (93%) of FAs, in 22/26 (85%) of FCs, and in 17/26 (65%) of FVPCs. The sensitivity and specificity of gal3 for malignancy were 0.70 and 0.85, of CK19 0.48 and 0.98, of NCAM 0.28 and 0.47, and of Ecad 0.48 and 0.20, respectively. A significant difference (p < 0.05) in expression of all studied markers between FVPC versus FA and FC was found, in contrast to FA and FC. Therefore, the use of gal3 and CK19 in differential diagnosis of FVPC versus FA and FC can be recommended.

  20. Foxn1 Transcription Factor Regulates Wound Healing of Skin through Promoting Epithelial-Mesenchymal Transition

    PubMed Central

    Gawronska-Kozak, Barbara; Grabowska, Anna; Kur-Piotrowska, Anna; Kopcewicz, Marta

    2016-01-01

    Transcription factors are key molecules that finely tune gene expression in response to injury. We focused on the role of a transcription factor, Foxn1, whose expression is limited to the skin and thymus epithelium. Our previous studies showed that Foxn1 inactivity in nude mice creates a pro-regenerative environment during skin wound healing. To explore the mechanistic role of Foxn1 in the skin wound healing process, we analyzed post-injured skin tissues from Foxn1::Egfp transgenic and C57BL/6 mice with Western Blotting, qRT-PCR, immunofluorescence and flow cytometric assays. Foxn1 expression in non-injured skin localized to the epidermis and hair follicles. Post-injured skin tissues showed an intense Foxn1-eGFP signal at the wound margin and in leading epithelial tongue, where it co-localized with keratin 16, a marker of activated keratinocytes. This data support the concept that suprabasal keratinocytes, expressing Foxn1, are key cells in the process of re-epithelialization. The occurrence of an epithelial-mesenchymal transition (EMT) was confirmed by high levels of Snail1 and Mmp-9 expression as well as through co-localization of vimentin/E-cadherin-positive cells in dermis tissue at four days post-wounding. Involvement of Foxn1 in the EMT process was verified by co-localization of Foxn1-eGFP cells with Snail1 in histological sections. Flow cytometric analysis showed the increase of double positive E-cadherin/N-cadherin cells within Foxn1-eGFP population of post-wounded skin cells isolates, which corroborated histological and gene expression analyses. Together, our findings indicate that Foxn1 acts as regulator of the skin wound healing process through engagement in re-epithelization and possible involvement in scar formation due to Foxn1 activity during the EMT process. PMID:26938103

  1. Static compression down-regulates N-cadherin expression and facilitates loss of cell phenotype of nucleus pulposus cells in a disc perfusion culture.

    PubMed

    Zhou, Haibo; Shi, Jianmin; Zhang, Chao; Li, Pei

    2018-02-28

    Mechanical compression often induces degenerative changes of disc nucleus pulposus (NP) tissue. It has been indicated that N-cadherin (N-CDH)-mediated signaling helps to preserve the NP cell phenotype. However, N-CDH expression and the resulting NP-specific phenotype alteration under the static compression and dynamic compression remain unclear. To study the effects of static compression and dynamic compression on N-CDH expression and NP-specific phenotype in an in vitro disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days and subjected to static or dynamic compression (0.4 MPa for 2 h once per day). The noncompressed discs were used as controls. Compared with the dynamic compression, static compression significantly down-regulated the expression of N-CDH and NP-specific markers (laminin, brachyury, and keratin 19); decreased the Alcian Blue staining intensity, glycosaminoglycan and hydroxyproline contents; and declined the matrix macromolecule (aggrecan and collagen II) expression. Compared with the dynamic compression, static compression causes N-CDH down-regulation, loss of NP-specific phenotype, and the resulting decrease in NP matrix synthesis. © 2018 The Author(s).

  2. Evidence for epithelial-mesenchymal transition in cancer stem-like cells derived from carcinoma cell lines of the cervix uteri.

    PubMed

    Lin, Jiaying; Liu, Xishi; Ding, Ding

    2015-01-01

    The cancer stem cell (CSC) paradigm is one possible way to understand the genesis of cancer, and cervical cancer in particular. We quantified and enriched ALDH1(+) cells within cervical cancer cell lines and subsequently characterized their phenotypical and functional properties like invasion capacity and epithelial-mesenchymal transition (EMT). ALDH1 expression in spheroid-derived cells (SDC) and the parental monolayer-derived cell (MDC) line was compared by flow-cytometry. Invasion capability was evaluated by Matrigel assay and expression of EMT-related genes Twist 1, Twist 2, Snail 1, Snail 2, Vimentin and E-cadherin by real-time PCR. ALDH1 expression was significantly higher in SDC. ALDH1(+) cells showed increased colony-formation. SDC expressed lower levels of E-cadherin and elevated levels of Twist 1, Twist 2, Snail 1, Snail 2 and Vimentin compared to MDC. Cervical cancer cell lines harbor potential CSC, characterized by ALDH1 expression as well as properties like invasiveness, colony-forming ability, and EMT. CSC can be enriched by anchorage-independent culture techniques, which may be important for the investigation of their contribution to therapy resistance, tumor recurrence and metastasis.

  3. Dimethoxy Curcumin Induces Apoptosis by Suppressing Survivin and Inhibits Invasion by Enhancing E-Cadherin in Colon Cancer Cells.

    PubMed

    Chen, Dong; Dai, Fang; Chen, Zhehang; Wang, Saisai; Cheng, Xiaobin; Sheng, Qinsong; Lin, Jianjiang; Chen, Wenbin

    2016-09-11

    BACKGROUND Dimethoxy curcumin (DMC) is a kind of lipophilic analog of curcumin with great improvement in chemical and metabolic stability. DMC has been studied in breast and renal cancer, but no research in colon cancer has been found yet. MATERIAL AND METHODS Two colon cancer cells (HT-29 and SW480) and one normal human colon mucosal epithelial cell (NCM460) were used in this study. We studied the effect of DMC on the proliferation in vitro and in vivo. Transwell migration assay was used to estimate the inhibition of DMC on invasion. Moreover, the expressions of PARP, caspase-3, survivin and E-cadherin were detected to uncover the related signaling pathways by western blotting assay both in vitro and in vivo. RESULTS DMC significantly inhibited the growth of colon cancer cells in dose-dependent manner; IC50 for DMC was calculated to be 43.4, 28.2 and 454.8µM on HT-29, SW480 and NCM460. DMC significantly increased the apoptosis in both HT-29 (p=0.0051) and SW480 (p=0.0013) cells in vitro, and significantly suppressed the growth of both cell lines in vivo. Moreover, DMC reduced the number of migrated cells in both HT-29 (p=0.007) and SW480 (p=0.004) cells. By western blotting analysis, the cleavage of pro-caspases-3 and PARP were clearly induced by DMC to their active form, while the expression of survivin was reduced and E-cadherin was enhanced in both cells in vitro and in vivo. CONCLUSIONS DMC may exert an effective anti-tumor effect in colon cancer cells by down-regulating survivin and upregulating E-cadherin.

  4. High Glucose-Induced Reactive Oxygen Species Stimulates Human Mesenchymal Stem Cell Migration Through Snail and EZH2-Dependent E-Cadherin Repression.

    PubMed

    Oh, Ji Young; Choi, Gee Euhn; Lee, Hyun Jik; Jung, Young Hyun; Ko, So Hee; Chae, Chang Woo; Kim, Jun Sung; Kim, Seo Yihl; Lim, Jae Ryong; Lee, Chang-Kyu; Han, Ho Jae

    2018-01-01

    Glucose plays an important role in stem cell fate determination and behaviors. However, it is still not known how glucose contributes to the precise molecular mechanisms responsible for stem cell migration. Thus, we investigate the effect of glucose on the regulation of the human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSC) migration, and analyze the mechanism accompanied by this effect. Western blot analysis, wound healing migration assays, immunoprecipitation, and chromatin immunoprecipitation assay were performed to investigate the effect of high glucose on hUCB-MSC migration. Additionally, hUCB-MSC transplantation was performed in the mouse excisional wound splinting model. High concentration glucose (25 mM) elicits hUCB-MSC migration compared to normal glucose and high glucose-pretreated hUCB-MSC transplantation into the wound sites in mice also accelerates skin wound repair. We therefore elucidated the detailed mechanisms how high glucose induces hUCB-MSC migration. We showed that high glucose regulates E-cadherin repression through increased Snail and EZH2 expressions. And, we found high glucose-induced reactive oxygen species (ROS) promotes two signaling; JNK which regulates γ-secretase leading to the cleavage of Notch proteins and PI3K/Akt signaling which enhances GSK-3β phosphorylation. High glucose-mediated JNK/Notch pathway regulates the expression of EZH2, and PI3K/Akt/GSK-3β pathway stimulates Snail stabilization, respectively. High glucose enhances the formation of EZH2/Snail/HDAC1 complex in the nucleus, which in turn causes E-cadherin repression. This study reveals that high glucose-induced ROS stimulates the migration of hUCB-MSC through E-cadherin repression via Snail and EZH2 signaling pathways. © 2018 The Author(s). Published by S. Karger AG, Basel.

  5. A Potential Role for Angiopoietin 2 in the Regulation of the Blood–Retinal Barrier in Diabetic Retinopathy

    PubMed Central

    Rangasamy, Sampathkumar; Srinivasan, Ramprasad; Maestas, Joann; Das, Arup

    2011-01-01

    Purpose. Although VEGF has been identified as an important mediator of the blood–retinal barrier alteration in diabetic retinopathy, the hypothesis for this study was that that other molecules, including the angiopoietins (Ang-1 and -2), may play a role. The expression of angiopoietins was analyzed in an animal model of diabetic retinopathy, and the role of Ang-2 in the regulation of diabetes-induced alterations of vascular permeability was characterized. Methods. Diabetes was induced in rats, and human retinal endothelial cells (HRECs) were grown in media with 5.5 or 30.5 mM glucose. Levels of Ang-1 and -2 mRNA and protein were analyzed. Fluorescence-based assays were used to assess the effect of Ang-2 on vascular permeability in vivo and in vitro. The effect of Ang-2 on VE-cadherin function was assessed by measuring the extent of tyrosine phosphorylation. Results. Ang-2 mRNA and protein increased in the retinal tissues after 8 weeks of diabetes and in high-glucose–treated cells. Intravitreal injection of Ang-2 in rats produced a significant increase in retinal vascular permeability. Ang-2 increased HREC monolayer permeability that was associated with a decrease in VE-cadherin and a change in monolayer morphology. High glucose and Ang-2 produced a significant increase in VE-cadherin phosphorylation. Conclusions. Ang-2 is upregulated in the retina in an animal model of diabetes, and hyperglycemia induces the expression of Ang-2 in isolated retinal endothelial cells. Increased Ang-2 alters VE-cadherin function, leading to increased vascular permeability. Thus, Ang-2 may play an important role in increased vasopermeability in diabetic retinopathy. PMID:21310918

  6. A potential role for angiopoietin 2 in the regulation of the blood-retinal barrier in diabetic retinopathy.

    PubMed

    Rangasamy, Sampathkumar; Srinivasan, Ramprasad; Maestas, Joann; McGuire, Paul G; Das, Arup

    2011-06-01

    Although VEGF has been identified as an important mediator of the blood-retinal barrier alteration in diabetic retinopathy, the hypothesis for this study was that that other molecules, including the angiopoietins (Ang-1 and -2), may play a role. The expression of angiopoietins was analyzed in an animal model of diabetic retinopathy, and the role of Ang-2 in the regulation of diabetes-induced alterations of vascular permeability was characterized. Diabetes was induced in rats, and human retinal endothelial cells (HRECs) were grown in media with 5.5 or 30.5 mM glucose. Levels of Ang-1 and -2 mRNA and protein were analyzed. Fluorescence-based assays were used to assess the effect of Ang-2 on vascular permeability in vivo and in vitro. The effect of Ang-2 on VE-cadherin function was assessed by measuring the extent of tyrosine phosphorylation. Ang-2 mRNA and protein increased in the retinal tissues after 8 weeks of diabetes and in high-glucose-treated cells. Intravitreal injection of Ang-2 in rats produced a significant increase in retinal vascular permeability. Ang-2 increased HREC monolayer permeability that was associated with a decrease in VE-cadherin and a change in monolayer morphology. High glucose and Ang-2 produced a significant increase in VE-cadherin phosphorylation. CONCLUSIONS; Ang-2 is upregulated in the retina in an animal model of diabetes, and hyperglycemia induces the expression of Ang-2 in isolated retinal endothelial cells. Increased Ang-2 alters VE-cadherin function, leading to increased vascular permeability. Thus, Ang-2 may play an important role in increased vasopermeability in diabetic retinopathy.

  7. JNK-associated scattered growth of YD-10B oral squamous carcinoma cells while maintaining the epithelial phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gayoung; Kim, Hyun-Man

    Cell scattering of epithelial carcinoma cancer cells is one of the critical event in tumorigenesis. Cells losing epithelial cohesion detach from aggregated epithelial cell masses and may migrate to fatal organs through metastasis. The present study investigated the molecular mechanism by which squamous cell carcinoma cells grow scattered at the early phase of transformation while maintaining the epithelial phenotype. We studied YD-10B cells, which are established from human oral squamous cell carcinoma, because the cells grow scattered without the development of E-cadherin junctions (ECJs) under routine culture conditions despite the high expression of functional E-cadherin. The functionality of their E-cadherinmore » was demonstrated in that YD-10B cells developed ECJs, transiently or persistently, when they were cultured on substrates coated with a low amount of fibronectin or to confluence. The phosphorylation of JNK was up-regulated in YD-10B cells compared with that in human normal oral keratinocyte cells or human squamous cell carcinoma cells, which grew aggregated along with well-organized ECJs. The suppression of JNK activity induced the aggregated growth of YD-10B cells concomitant with the development of ECJs. These results indicate for the first time that inherently up-regulated JNK activity induces the scattered growth of the oral squamous cell carcinoma cells through down-regulating the development of ECJ despite the expression of functional E-cadherin, a hallmark of the epithelial phenotype. - Highlights: • JNK dissociates YD-10B oral squamous cell carcinoma cells. • JNK suppresses the development of E-cadherin junctions of oral carcinoma cells. • Suppression of JNK activity reverses the scattered growth of oral carcinoma cells.« less

  8. H19 promotes endometrial cancer progression by modulating epithelial-mesenchymal transition

    PubMed Central

    Zhao, Le; Li, Zhen; Chen, Wei; Zhai, Wen; Pan, Jingjing; Pang, Huan; Li, Xu

    2017-01-01

    Endometrial cancer is one of the most common types of gynecological malignancy worldwide. Novel biomarkers and therapeutic targets are imperative for improving patients' survival. Previous studies have suggested the long non-coding RNA H19 as a potential cancer biomarker. To investigate the role of H19 in endometrial cancer, the present study examined the expression pattern of H19 in endometrial cancer tissues by quantitative polymerase chain reaction, and characterized its function in the endometrial cancer cell line via knocking down its expression with small interfering RNAs. It was found that H19 level was significantly higher in tumor tissues than in paratumoral tissues. Knockdown of H19 did not affect the growth rate of HEC-1-B endometrial cancer cells, but significantly suppressed in vitro migration and invasion of HEC-1-B cells. Furthermore, H19 downregulation decreased Snail level and increased E-cadherin expression without affecting vimentin level, indicating partial reversion of epithelial-mesenchymal transition (EMT). The present findings suggested that H19 contributed to the aggressiveness of endometrial cancer by modulating EMT process. PMID:28123568

  9. [Pseudolaric acid B induces G2/M arrest and inhibits invasion and migration in HepG2 hepatoma cells].

    PubMed

    Li, Shuai; Guo, Lianyi

    2018-01-01

    Objective To investigate the mechanisms of pseudolaric acid B (PAB) blocks cell cycle and inhibits invasion and migration in human hepatoma HepG2 cells. Methods The proliferation effect of PAB on HepG2 cells was evaluated by MTT assay. The effect of PAB on the cell cycle of HepG2 cells was analyzed by flow cytometry. Immunofluorescence cytochemical staining was applied to observe the effect of PAB on the α-tubulin polymerization and expression in HepG2 cells. Transwell TM chamber invasion assay and wound healing assay were performed to detect the influence of PAB on the migration and invasion ability of HepG2 cells. Western blotting was used to determine the expressions of α-tubulin, E-cadherin and MMP-9 in HepG2 cells after treated with PAB. Results PAB inhibited the proliferation of HepG2 cells in a dose-dependent manner and blocked the cell cycle in G2/M phase. PAB significantly changed the polymerization and decreased the expression of α-tubulin. The capacities of invasion and migration of HepG2 cells treated by PAB were significantly depressed. The protein levels of α-tubulin and MMP-9 decreased while the E-cadherin protein level increased. Conclusion PAB can inhibits the proliferation of HepG2 cells by down-regulating the expression of α-tubulin and influencing its polymerization, arresting HepG2 cells in G2/M phase. Meanwhile, PAB also can inhibit the invasion and migration of HepG2 cells by lowering cytoskeleton α-tubulin and MMP-9, and increasing E-cadherin.

  10. Urothelial Dysfunction and Chronic Inflammation are Associated With Increased Bladder Sensation in Patients With Chronic Renal Insufficiency.

    PubMed

    Cheng, Sheng-Fu; Jiang, Yuan-Hong; Kuo, Hann-Chorng

    2018-01-01

    Chronic kidney disease (CKD) or end-stage renal disease (ESRD) patients usually have lower urinary tract symptoms, such as frequency and urgency. Additionally, they frequently suffer from urinary tract infections. This study investigated dysfunction and chronic inflammation of the bladder urothelium in ESRD/CKD patients. This study enrolled 27 patients with CKD (n=13) or ESRD (n=14) for urodynamic studies and bladder biopsies. Patients presented with detrusor underactivity (DU; n=8) or bladder oversensitivity (BO; n=19). Bladder biopsies were performed in these patients and in 20 controls. The bladder mucosa was examined for E-cadherin and zonula occludens-1 (ZO-1) expression, activated mast cell count (through tryptase staining), and urothelial apoptosis (through terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling [TUNEL]). The urodynamic parameters were also compared with variables regarding urothelial dysfunction. The bladder mucosa samples of ESRD and CKD patients revealed significantly higher mast cell counts, more urothelial apoptosis, and lower levels of ZO-1 expression than the control samples. E-cadherin expression was significantly reduced in ESRD/CKD patients with DU, but not in ESRD/CKD patients with BO. Increased mast cell and apoptotic cell counts were also associated with ESRD/CKD with BO. Less expression of ZO-1 and E-cadherin was significantly associated with increased bladder sensation and a small bladder capacity. Bladder urothelial dysfunction and chronic inflammation were present to a noteworthy extent in patients with ESRD or CKD. Increased inflammation and defective barrier function were more notable in ESRD/CKD bladders with BO than in those with DU. The clinical characteristics of these patients may involve urothelial pathophysiology.

  11. Piperine treatment suppresses Helicobacter pylori toxin entry in to gastric epithelium and minimizes β-catenin mediated oncogenesis and IL-8 secretion in vitro

    PubMed Central

    Tharmalingam, Nagendran; Park, Min; Lee, Min Ho; Woo, Hyun Jun; Kim, Hyun Woo; Yang, Ji Yeong; Rhee, Ki-Jong; Kim, Jong-Bae

    2016-01-01

    Helicobacter pylori related gastric cancer initiation has been studied widely. The objective of our present study was to evaluate the effect of a single compound piperine on H. pylori infection and its anti-inflammatory and anti-cancer effects in vitro. Cytotoxicity was tested by Ez-cytox cell viability assay kit. Effects of piperine on H. pylori toxin gene expression and IL-8 expression in mammalian cells during infection were assessed by RT-PCR. Effects of piperine on toxin entry into host cells, E-cadherin cleavage by H. pylori, and the changes in H. pylori mediated β-catenin expression and IL-8 secretion were determined by immunoblotting. Piperine treatment restrained the entry of CagA and VacA into AGS cells. Piperine administration in H. pylori infection reduced E-cadherin cleavage in stomach epithelium. In addition, H. pylori induced β-catenin up-regulation was reduced. Piperine administration impaired IL-8 secretion in H. pylori-infected gastric epithelial cells. As we reported previously piperine restrained H. pylori motility. The possible reason behind the H. pylori inhibition mechanism of piperine could be the dwindled motility, which weakened H. pylori adhesion to gastric epithelial cells. The reduced adhesion decreased the toxin entry thereby secreting less amount of IL-8. In addition, piperine treatment suppressed H. pylori protease led to reduction of E-cadherin cleavage and β-catenin expression resulting in diminished β-catenin translocation into the nucleus thus decreasing the risk of oncogenesis. To our knowledge, this is the preliminary report of piperine mediated H. pylori infection control on gastric epithelial cells in-vitro. PMID:27158376

  12. Opposite Roles of Furin and PC5A in N-Cadherin Processing12

    PubMed Central

    Maret, Deborah; Sadr, Mohamad Seyed; Sadr, Emad Seyed; Colman, David R; Del Maestro, Rolando F; Seidah, Nabil G

    2012-01-01

    We recently demonstrated that lack of Furin-processing of the N-cadherin precursor (proNCAD) in highly invasive melanoma and brain tumor cells results in the cell-surface expression of a nonadhesive protein favoring cell migration and invasion in vitro. Quantitative polymerase chain reaction analysis of malignant human brain tumor cells revealed that of all proprotein convertases (PCs) only the levels of Furin and PC5A are modulated, being inversely (Furin) or directly (PC5A) correlated with brain tumor invasive capacity. Intriguingly, the N-terminal sequence following the Furin-activated NCAD site (RQKR↓DW161, mouse nomenclature) reveals a second putative PC-processing site (RIRSDR↓DK189) located in the first extracellular domain. Cleavage at this site would abolish the adhesive functions of NCAD because of the loss of the critical Trp161. This was confirmed upon analysis of the fate of the endogenous prosegment of proNCAD in human malignant glioma cells expressing high levels of Furin and low levels of PC5A (U343) or high levels of PC5A and negligible Furin levels (U251). Cellular analyses revealed that Furin is the best activating convertase releasing an ∼17-kDa prosegment, whereas PC5A is the major inactivating enzyme resulting in the secretion of an ∼20-kDa product. Like expression of proNCAD at the cell surface, cleavage of the NCAD molecule at RIRSDR↓DK189 renders the U251 cancer cells less adhesive to one another and more migratory. Our work modifies the present view on posttranslational processing and surface expression of classic cadherins and clarifies how NCAD possesses a range of adhesive potentials and plays a critical role in tumor progression. PMID:23097623

  13. Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells.

    PubMed

    Alper, O; De Santis, M L; Stromberg, K; Hacker, N F; Cho-Chung, Y S; Salomon, D S

    2000-11-15

    Over-expression of epidermal growth factor receptor (EGFR) in ovarian cancer has been well documented. Human NIH:OVCAR-8 ovarian carcinoma cells were transfected with an expression vector containing the anti-sense orientation of truncated human EGFR cDNA. EGFR anti-sense over-expression resulted in decreased EGFR protein and mRNA expression, cell proliferation and tumor formation in nude mice. In accordance with the reduced levels of EGFR in EGFR anti-sense-expressing cells, tyrosine phosphorylation of EGFR was decreased compared to untransfected parental cells treated with EGF. In EGFR anti-sense-transfected cells, expression of erbB-3, but not erbB-2, was increased. In addition, basal and heregulin-beta 1-stimulated tyrosine phosphorylation of erbB-3 was higher in EGFR anti-sense vector-transfected cells. A morphological alteration in EGFR anti-sense gene-expressing cells was correlated with a decrease in the expression of E-cadherin, alpha-catenin and, to a lesser extent, beta-catenin. Changes in the expression of these proteins were associated with a reduction in complex formation among E-cadherin, beta-catenin and alpha-catenin and between beta-catenin and EGFR in EGFR anti-sense-expressing cells compared to sense-transfected control cells. These results demonstrate that EGFR expression in ovarian carcinoma cells regulates expression of cell adhesion proteins that may enhance cell growth and invasiveness. Copyright 2000 Wiley-Liss, Inc.

  14. Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Catriona, E-mail: catriona.kelly@qub.ac.uk; Flatt, Peter R.; McClenaghan, Neville H.

    2010-08-20

    Research highlights: {yields} TGP52 cells display enhanced functionality in pseudoislet form. {yields} Somatostatin content was reduced, but secretion increased in high glucose conditions. {yields} Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mMmore » glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.« less

  15. Polypyrimidine tract-binding protein 1-mediated down-regulation of ATG10 facilitates metastasis of colorectal cancer cells.

    PubMed

    Jo, Yoon Kyung; Roh, Seon Ae; Lee, Heejin; Park, Na Yeon; Choi, Eun Sun; Oh, Ju-Hee; Park, So Jung; Shin, Ji Hyun; Suh, Young-Ah; Lee, Eun Kyung; Cho, Dong-Hyung; Kim, Jin Cheon

    2017-01-28

    Autophagy plays complex roles in tumor initiation and development, and the expression of autophagy-related genes (ATGs) is differentially regulated in various cancer cells, depending on their environment. In this study, we analyzed the expressional relationship between polypyrimidine tract-binding protein 1 (PTBP1) and ATG10 in metastatic colorectal cancer. PTBP1 is associated with tumor metastasis in primary colorectal tumors and colorectal cancer liver metastasis (CLM) tissues. In addition, PTPB1 directly interacts with mRNA of ATG10, and regulates ATG10 expression level in colorectal cancer cells. Ectopic expression of PTBP1 decreased ATG10 expression, whereas down-regulation of PTBP1 increased ATG10 level. In contrast to PTBP1, expression of ATG10 was decreased in CLM tissues. Knock down of ATG10 promoted cell migration and invasion of colorectal cancer cells. Moreover, depletion of ATG10 modulated epithelial-mesenchymal transition-associated proteins in colorectal cancer cells: N-cadherin, TCF-8/ZEB1, and CD44 were up-regulated, whereas E-cadherin was down-regulated. Taken together, our findings suggest that expression of ATG10 negatively regulated by PTBP1 is associated with metastasis of colorectal cancer cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future.

  17. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells

    PubMed Central

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future. PMID:27362942

  18. Protocadherin PAPC is expressed in the CNC and can compensate for the loss of PCNS.

    PubMed

    Schneider, Martina; Huang, Chaolie; Becker, Sarah F S; Gradl, Dietmar; Wedlich, Doris

    2014-02-01

    Protocadherins represent the biggest subgroup within the cadherin superfamily of transmembrane glycoproteins. In contrast to classical type I cadherins, protocadherins in general exhibit only moderate adhesive activity. During embryogenesis, they are involved in cell signaling and regulate diverse morphogenetic processes, including morphogenetic movements during gastrulation and neural crest migration. The two protocadherins paraxial protocadherin (PAPC) and axial protocadherin (AXPC) are indispensable for proper gastrulation movements in Xenopus and zebrafish. The closest relative PCNS instead, is required for neural crest and somite formation. Here, we show that cranial neural crest (CNC) cells in addition to PCNS express PAPC, but not AXPC. Overexpression of PAPC resulted in comparable migration defects as knockdown of PCNS. Moreover, reconstitution experiments revealed that PAPC is able to replace PCNS in CNC cells, indicating that both protocadherins can regulate CNC migration. Copyright © 2013 Wiley Periodicals, Inc.

  19. Hakai overexpression effectively induces tumour progression and metastasis in vivo.

    PubMed

    Castosa, Raquel; Martinez-Iglesias, Olaia; Roca-Lema, Daniel; Casas-Pais, Alba; Díaz-Díaz, Andrea; Iglesias, Pilar; Santamarina, Isabel; Graña, Begoña; Calvo, Lourdes; Valladares-Ayerbes, Manuel; Concha, Ángel; Figueroa, Angélica

    2018-02-22

    At early stages of carcinoma progression, epithelial cells undergo a program named epithelial-to-mesenchymal transition characterized by the loss of the major component of the adherens junctions, E-cadherin, which in consequence causes the disruption of cell-cell contacts. Hakai is an E3 ubiquitin-ligase that binds to E-cadherin in a phosphorylated-dependent manner and induces its degradation; thus modulating cell adhesions. Here, we show that Hakai expression is gradually increased in adenoma and in different TNM stages (I-IV) from colon adenocarcinomas compared to human colon healthy tissues. Moreover, we confirm that Hakai overexpression in epithelial cells drives transformation in cells, a mesenchymal and invasive phenotype, accompanied by the downregulation of E-cadherin and the upregulation of N-cadherin, and an increased proliferation and an oncogenic potential. More importantly, for the first time, we have studied the role of Hakai during cancer progression in vivo. We show that Hakai-transformed MDCK cells dramatically induce tumour growth and local invasion in nude mice and tumour cells exhibit a mesenchymal phenotype. Furthermore, we have detected the presence of micrometastasis in the lung mice, further confirming Hakai role during tumour metastasis in vivo. These results lead to the consideration of Hakai as a potential new therapeutic target to block tumour development and metastasis.

  20. Homophilic and heterophilic polycystin 1 interactions regulate E-cadherin recruitment and junction assembly in MDCK cells

    PubMed Central

    Streets, Andrew J.; Wagner, Bart E.; Harris, Peter C.; Ward, Christopher J.; Ong, Albert C. M.

    2009-01-01

    Summary Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited human renal disease and is caused by mutations in two genes, PKD1 (85%) and PKD2 (15%). Cyst epithelial cells are characterised by a complex cellular phenotype including changes in proliferation, apoptosis, basement membrane composition and apicobasal polarity. Since polycystin 1 (PC1), the PKD1 protein, has been located in the basolateral membrane of kidney epithelial cells, we hypothesised that it might have a key role in mediating or stabilising cell-cell interactions. In non-ciliated L929 cells, stable or transient surface expression of the PC1 extracellular domain was sufficient to confer an adhesive phenotype and stimulate junction formation. In MDCK cells, we found that PC1 was recruited to the lateral membranes coincident with E-cadherin within 30 minutes after a `calcium switch'. Recruitment of both proteins was significantly delayed when cells were treated with a PC1 blocking antibody raised to the PKD domains. Finally, PC1 and E-cadherin could be coimmunoprecipitated together from MDCK cells. We conclude that PC1 has a key role in initiating junction formation via initial homophilic interactions and facilitates junction assembly and the establishment of apicobasal polarity by E-cadherin recruitment. PMID:19351715

  1. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines

    PubMed Central

    Chazeau, Anaël; Garcia, Mikael; Czöndör, Katalin; Perrais, David; Tessier, Béatrice; Giannone, Grégory; Thoumine, Olivier

    2015-01-01

    The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin–coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain. PMID:25568337

  2. Proliferating fibroblasts and HeLa cells co-cultured in vitro reciprocally influence growth patterns, protein expression, chromatin features and cell survival.

    PubMed

    Delinasios, John G; Angeli, Flora; Koumakis, George; Kumar, Shant; Kang, Wen-Hui; Sica, Gigliola; Iacopino, Fortunata; Lama, Gina; Lamprecht, Sergio; Sigal-Batikoff, Ina; Tsangaris, George T; Farfarelos, Christos D; Farfarelos, Maria C; Vairaktaris, Eleftherios; Vassiliou, Stavros; Delinasios, George J

    2015-04-01

    to identify biological interactions between proliferating fibroblasts and HeLa cells in vitro. Fibroblasts were isolated from both normal and tumour human tissues. Coverslip co-cultures of HeLa and fibroblasts in various ratios with medium replacement every 48 h were studied using fixed cell staining with dyes such as Giemsa and silver staining, with immunochemistry for Ki-67 and E-cadherin, with dihydrofolate reductase (DHFR) enzyme reaction, as well as live cell staining for non-specific esterases and lipids. Other techniques included carmine cell labeling, autoradiography and apoptosis assessment. Under conditions of feeding and cell: cell ratios allowing parallel growth of human fibroblasts and HeLa cells, co-cultured for up to 20 days, a series of phenomena occur consecutively: profound affinity between the two cell types and exchange of small molecules; encircling of the HeLa colonies by the fibroblasts and enhanced growth of both cell types at their contact areas; expression of carbonic anhydrase in both cell types and high expression of non-specific esterases and cytoplasmic argyrophilia in the surrounding fibroblasts; intense production and secretion of lipid droplets by the surrounding fibroblasts; development of a complex net of argyrophilic projections of the fibroblasts; E-cadherin expression in the HeLa cells; from the 10th day onwards, an increasing detachment of batches of HeLa cells at the peripheries of colonies and appearance of areas with many multi-nucleated and apoptotic HeLa cells, and small HeLa fragments; from the 17th day, appearance of fibroblasts blocked at the G2-M phase. Co-cultures at approximately 17-20 days display a cell-cell fight with foci of (a) sparse growth of both cell types, (b) overgrowth of the fibroblasts and (c) regrowth of HeLa in small colonies. These results indicate that during their interaction with HeLa cells in vitro, proliferating fibroblasts can be activated against HeLa. This type of activation is not observed if fibroblast proliferation is blocked by contact inhibition of growth at confluency, or by omitting replacement of the nutrient medium. The present observations show that: (a) interaction between proliferating fibroblasts and HeLa cells in vitro drastically influences each other's protein expression, growth pattern, chromatin features and survival; (b) these functions depend on the fibroblast/HeLa ratio, cell topology (cell-cell contact and the architectural pattern developed during co-culture) and frequent medium change, as prerequisites for fibroblast proliferation; (c) this co-culture model is useful in the study of the complex processes within the tumour microenvironment, as well as the in vitro reproduction and display of several phenomena conventionally seen in tumour cytological sections, such as desmoplasia, apoptosis, nuclear abnormalities; and (d) overgrown fibroblasts adhering to the boundaries of HeLa colonies produce and secrete lipid droplets. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Arsenite induces endothelial cell permeability increase through a reactive oxygen species-vascular endothelial growth factor pathway.

    PubMed

    Bao, Lingzhi; Shi, Honglian

    2010-11-15

    As a potent environmental oxidative stressor, arsenic exposure has been reported to exacerbate cardiovascular diseases and increase vascular endothelial cell monolayer permeability. However, the underlying mechanism of this effect is not well understood. In this paper, we test our hypothesis that reactive oxygen species (ROS)-induced vascular endothelial growth factor (VEGF) expression may play an important role in an arsenic-caused increase of endothelial cell monolayer permeability. The mouse brain vascular endothelial cell bEnd3 monolayer was exposed to arsenite for 1, 3, and 6 days. The monolayer permeability, VEGF protein release, and ROS generation were determined. In addition, VE-cadherin and zonula occludens-1 (ZO-1), two membrane structure proteins, were immunostained to elucidate the effects of arsenite on the cell-cell junction. The roles of ROS and VEGF in arsenite-induced permeability was determined by inhibiting ROS with antioxidants and immuno-depleting VEGF with a VEGF antibody. We observed that arsenite increased bEnd3 monolayer permeability, elevated the production of cellular ROS, and increased VEGF release. VE-cadherin and ZO-1 disruptions were also found in cells treated with arsenite. Furthermore, both antioxidant (N-acetyl cysteine and tempol) and the VEGF antibody treatments significantly lowered the arsenite-induced permeability of the bEnd3 monolayer as well as VEGF expression. VE-cadherin and ZO-1 disruptions were also diminished by N-acetyl cysteine and the VEGF antibody. Our data suggest that the increase in VEGF expression caused by ROS may play an important role in the arsenite-induced increase in endothelial cell permeability.

  4. MALAT1 predicts poor survival in osteosarcoma patients and promotes cell metastasis through associating with EZH2

    PubMed Central

    Huo, Yanqing; Li, Qingbo; Wang, Xiqian; Jiao, Xiejia; Zheng, Jiachun; Li, Zhiqiang; Pan, Xiaohan

    2017-01-01

    Osteosarcoma is the most common type of bone cancer, especially in children and young adults. Recently, long noncoding RNAs (lncRNAs) have emerged as new prognostic markers and gene regulators in several cancers, including osteosarcoma. In this study, we investigated the contributions of the lncRNA MALAT1 in osteosarcoma with a specific focus on its transcriptional regulation and its interaction with EZH2. Our results showed that MALAT1 was significantly increased in osteosarcoma specimens and cell lines. ROC curve analysis showed that MALAT1 had a higher area under the curve than alkaline phosphatase, and Kaplan-Meier survival analysis indicated that patients with high serum levels of MALAT1 showed reduced survival rate. Knockdown of MALAT1 decreased osteosarcoma cell invasion and promoted E-cadherin expression. Mechanistic investigations showed that MALAT1 was transcriptionally activated by TGF-β. Additionally, EZH2 is highly expressed and associated with the 3’ end region of lncRNA MALAT1 in osteosarcoma, and this association finally suppressed the expression of E-cadherin. Subsequently, our gain and loss function assay showed that MALAT1 overexpression promoted cell metastasis and decreased E-cadherin level, however, this effect was partially reversed by EZH2 knockdown. In conclusion, our work illuminates that lncRNA MALAT1 is a potential diagnostic and prognostic factor in osteosarcoma and further demonstrates how MALAT1 confers an oncogenic function. Thus, lncRNA MALAT1 may serve as a promising prognostic and therapeutic target for osteosarcoma patients. PMID:28388584

  5. Epithelial-mesenchymal transition, a novel target of sulforaphane via COX-2/MMP2, 9/Snail, ZEB1 and miR-200c/ZEB1 pathways in human bladder cancer cells.

    PubMed

    Shan, Yujuan; Zhang, Lanwei; Bao, Yongping; Li, Baolong; He, Canxia; Gao, Mingming; Feng, Xue; Xu, Weili; Zhang, Xiaohong; Wang, Shuran

    2013-06-01

    Metastasis and recurrence of bladder cancer are the main reasons for its poor prognosis and high mortality rates. Because of its biological activity and high metabolic accumulation in urine, sulforaphane, a phytochemical exclusively occurring in cruciferous vegetables, has a powerful and specific potential for preventing bladder cancer. In this paper, sulforaphane is shown to significantly suppress a variety of biochemical pathways including the attachment, invasion, migration and chemotaxis motion in malignant transitional bladder cancer T24 cells. Transfection with cyclooxygenase-2 (COX-2) overexpression plasmid largely abolished inhibition of MMP2/9 expression as well as cell invasive capability by sulforaphane. Moreover, sulforaphane inhibited the epithelial-to-mesenchymal transition (EMT) process which underlies tumor cell invasion and migration mediated by E-cadherin induction through reducing transcriptional repressors, such as ZEB1 and Snail. Under conditions of over-expression of COX-2 and/or MMP2/9, sulforaphane was still able to induce E-cadherin or reduce Snail/ZEB1 expression, suggesting that additional pathways might be involved. Further studies indicated that miR-200c played a role in the regulation of E-cadherin via the ZEB1 repressor but not by the Snail repressor. In conclusion, the EMT and two recognized signaling pathways (COX-2/MMP2,9/ ZEB1, Snail and miR-200c/ZEB1) are all targets for sulforaphane. This study indicated that sulforaphane may possess therapeutic potential in preventing recurrence of human bladder cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition.

    PubMed

    Rivero, O; Selten, M M; Sich, S; Popp, S; Bacmeister, L; Amendola, E; Negwer, M; Schubert, D; Proft, F; Kiser, D; Schmitt, A G; Gross, C; Kolk, S M; Strekalova, T; van den Hove, D; Resink, T J; Nadif Kasri, N; Lesch, K P

    2015-10-13

    Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo)phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13(-/-) mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13(-/-) mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism.

  7. Gene expression analysis of pancreatic cell lines reveals genes overexpressed in pancreatic cancer.

    PubMed

    Alldinger, Ingo; Dittert, Dag; Peiper, Matthias; Fusco, Alberto; Chiappetta, Gennaro; Staub, Eike; Lohr, Matthias; Jesnowski, Ralf; Baretton, Gustavo; Ockert, Detlef; Saeger, Hans-Detlev; Grützmann, Robert; Pilarsky, Christian

    2005-01-01

    Pancreatic cancer is one of the leading causes of cancer-related death. Using DNA gene expression analysis based on a custom made Affymetrix cancer array, we investigated the expression pattern of both primary and established pancreatic carcinoma cell lines. We analyzed the gene expression of 5 established pancreatic cancer cell lines (AsPC-1, BxPC-3, Capan-1, Capan-2 and HPAF II) and 5 primary isolates, 1 of them derived from benign pancreatic duct cells. Out of 1,540 genes which were expressed in at least 3 experiments, we found 122 genes upregulated and 18 downregulated in tumor cell lines compared to benign cells with a fold change >3. Several of the upregulated genes (like Prefoldin 5, ADAM9 and E-cadherin) have been associated with pancreatic cancer before. The other differentially regulated genes, however, play a so far unknown role in the course of human pancreatic carcinoma. By means of immunohistochemistry we could show that thymosin beta-10 (TMSB10), upregulated in tumor cell lines, is expressed in human pancreatic carcinoma, but not in non-neoplastic pancreatic tissue, suggesting a role for TMSB10 in the carcinogenesis of pancreatic carcinoma. Using gene expression profiling of pancreatic cell lines we were able to identify genes differentially expressed in pancreatic adenocarcinoma, which might contribute to pancreatic cancer development. Copyright 2005 S. Karger AG, Basel.

  8. Corneal endothelial autocrine trophic factor VIP in a mechanism-based strategy to enhance human donor cornea preservation for transplantation.

    PubMed

    Koh, Shay-Whey Margaret

    2012-02-01

    Vasoactive intestinal peptide (VIP) and ciliary neurotrophic factor (CNTF) are identified as autocrines of human corneal endothelial (CE) cells working in concert to maintain the differentiated state and promote the survival of the corneal endothelium. From VIP gene knockdown study, endogenous VIP is shown to maintain the level of the differentiation marker, the adhesion molecule N-cadherin, CE cell size, shape, and retention, in situ in the human donor corneoscleral explants. Exogenous VIP protects the corneal endothelium against the killing effect of oxidative stress, in part by upholding ATP levels in CE cells dying of oxidative stress-induced injury, allowing them to die of an apoptotic death instead of an acute necrotic one. The switch from the acute necrosis to the programmed cell death (apoptosis) may have allowed the injured CE cell to be rescued by the VIP-upregulated pathways, including those of Bcl-2 and N-cadherin, and resulted in long-term CE cell survival. The endogenous VIP in CE cells is upregulated by CNTF, which is released by CE cells surviving the oxidative stress. The CNTF receptor (CNTFRα) is expressed in CE cells in human donor corneoscleral explant and gradually becomes lost during corneal storage. VIP treatment (10(-8) M, 37 °C, 30 min) prior to storage of freshly dissected human donor corneoscleral explants increases their CE cell CNTFRα level and responsiveness to CNTF in upregulating the gap junctional protein connexin-43 expression. VIP treatment of both fresh and preserved corneoscleral explants reduces CE damage in the corneoscleral explants and in the corneal buttons trephined from them. CE cell loss is a critical risk factor in corneal graft failure at any time in the life of the graft, which can be as late as 5-10 years after an initially successful transplant. A new procedure, Descemet's stripping automated endothelial keratoplasty (DSAEK), which is superior to the traditional full thickness transplantation in many aspects, nevertheless subjects the corneal endothelium to extensive mechanical forces, resulting in even more pronounced CE cell loss than the traditional technique. Whereas it is known that cells transduce mechanical stress through N-cadherin, stimulation of the N-cadherin pathway increases the anti-apoptotic protein Bcl-2 expression. Since N-cadherin and Bcl-2 in the corneal endothelium are both upregulated by VIP, we aim to strengthen the CE sheet by VIP treatments of the corneoscleral explants for full thickness traditional corneal transplantation and pre-cut corneas for DSAEK. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. GPER activates Notch signaling in breast cancer cells and cancer-associated fibroblasts (CAFs).

    PubMed

    Pupo, Marco; Pisano, Assunta; Abonante, Sergio; Maggiolini, Marcello; Musti, Anna Maria

    2014-01-01

    The G protein-coupled receptor GPR30/GPER has been shown to mediate rapid effects of 17β-estradiol (E2) in diverse types of cancer cells. Here, we provide evidence for a novel crosstalk between GPER and the Notch signaling pathway in breast cancer cells and cancer-associated fibroblasts (CAFs). We show that E2 and the GPER selective ligand G-1 induce both the γ-secretase-dependent activation of Notch-1 and the expression of the Notch target gene Hes-1. These inductions are prevented by knocking down GPER or by using a dominant-negative mutant of the Notch transcriptional co-activator Master-mind like-1 (DN-MAML-1), hence suggesting the involvement of GPER in the Notch-dependent transcription. By performing chromatin-immunoprecipitation experiments and luciferase assays, we also demonstrate that E2 and G-1 induce the recruitment of the intracellular domain of Notch-1 (N1ICD) to the Hes-1 promoter and the transactivation of a Hes-1-reporter gene, respectively. Functionally, the E2 and G-1-induced migration of breast cancer cells and CAFs is abolished in presence of the γ-secretase inhibitor GSI or DN-MAML-1, which both inhibit the Notch signaling pathway. In addition, we demonstrate that E2 and G-1 prevent the expression of VE-Cadherin, while both compounds induce the expression of Snail, a Notch target gene acting as a repressor of cadherins expression. Notably, both GSI and DN-MAML-1 abolish the up-regulation of Snail-1 by E2 and G-1, whereas the use of GSI rescues VE-Cadherin expression. Taken together, our results prove the involvement of the Notch signaling pathway in mediating the effects of estrogenic GPER signaling in breast cancer cells and CAFs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effect of intermittent shear stress on corneal epithelial cells using an in vitro flow culture model.

    PubMed

    Hampel, Ulrike; Garreis, Fabian; Burgemeister, Fabian; Eßel, Nicole; Paulsen, Friedrich

    2018-04-27

    The aim of this study was to establish and to evaluate an in vitro model for culturing human telomerase-immortalized corneal epithelial (hTCEpi) cells under adjustable medium flow mimicking the movements of the tear film on the ocular surface. Using an IBIDI pump system, cells were cultured under unidirectional, continuous or oscillating, discontinuous medium flow. Cell surface and cytoskeletal architecture were investigated by scanning electron microscopy and immunofluorescence. Gene expression of e-cadherin, occludin, tight junction protein (TJP), desmoplakin, desmocollin and mucins was investigated by real-time PCR. Protein expression of desmoplakin, TJP, occludin and e-cadherin was analyzed by western blot and localization was detected by immunofluorescence. Rose bengal staining was used to assess mucin (MUC) barrier integrity. MUC1, -4 and -16 proteins were localized by immunofluorescence. Medium flow-induced shear stress dramatically changed cellular morphology of hTCEpi. Cells subjected to discontinuous shear stress displayed the typical flattened, polygonal cell shape of the superficial layer of stratified squamous epithelia. Cell surfaces showed less bulging under shear stress and less extracellular gaps. The mRNA expression of E-cadherin, occludin and TJP were increased under oscillatory medium flow. Desmoplakin and occludin protein were upregulated under oscillatory shear stress. Stress fiber formation was not aligned to flow direction. MUC1, -4, and -16 protein were localized under all culture conditions, a regulation on mRNA expression was not detectable. Rose Bengal uptake was diminished under unidirectional conditions. Our findings suggest that shear stress as it occurs at the ocular surface during blinking exerts marked effects on corneal epithelial cells, such as changes in cellular morphology and expression of cell junctions. The described model may be useful for in vitro investigations of ocular surface epithelia as it represents a much more physiologic reproduction of the in vivo situation than the commonly applied static culture conditions. Copyright © 2018. Published by Elsevier Inc.

  11. Impaired cytoskeletal arrangements and failure of ventral body wall closure in chick embryos treated with rock inhibitor (Y-27632).

    PubMed

    Duess, Johannes W; Puri, Prem; Thompson, Jennifer

    2016-01-01

    Rho-associated kinase (ROCK) signaling regulates numerous fundamental developmental processes during embryogenesis, primarily by controlling actin-cytoskeleton assembly and cell contractility. ROCK knockout mice exhibit a ventral body wall defect (VBWD) phenotype due to disorganization of actin filaments at the umbilical ring. However, the exact molecular mechanisms leading to VBWD still remain unclear. Improper somitogenesis has been hypothesized to contribute to failure of VBW closure. We designed this study to investigate the hypothesis that administration of ROCK inhibitor (Y-27632) disrupts cytoskeletal arrangements in morphology during early chick embryogenesis, which may contribute to the development of VBWD. At 60 h incubation, chick embryos were explanted into shell-less culture and treated with 50 µL of vehicle for controls (n = 33) or 50 µL of 500 µM of Y-27632 for the experimental group (Y-27, n = 56). At 8 h post-treatment, RT-PCR was performed to evaluate mRNA levels of N-cadherin, E-cadherin and connexin43. Immunofluorescence confocal microscopy was performed to analyze the expression and distribution of actin, vinculin and microtubules in the neural tube and somites. A further cohort of embryos was treated in ovo by dropping 50 µL of vehicle or 50 µL of different concentrations of Y-27632 onto the embryo and allowing development to 12 and 14 days for further assessment. Gene expression levels of N-cadherin, E-cadherin and connexin43 were significantly decreased in treated embryos compared with controls (p < 0.05). Thickened actin filament bundles were recorded in the neural tube of Y-27 embryos. In somites, cells were dissociated with reduced actin distribution in affected embryos. Clumping of vinculin expression was found in the neural tube and somites, whereas reduced expression of microtubules was observed in Y-27 embryos compared with controls. At 12 and 14 days of development, affected embryos presented with an enlarged umbilical ring and herniation of abdominal contents through the defect. ROCK inhibition alters cytoskeletal arrangement during early chick embryogenesis, which may contribute to failure of anterior body wall closure causing VBWD at later stages of development.

  12. [Markers of stromal invasion during background and precancerous changes of the glandular epithelium and in adenocarcinoma of the cervix uteri].

    PubMed

    Danilova, N V; Andreeva, Iu Iu; Zavalishina, L É; Mal'kov, P G

    2012-01-01

    It is very difficult to identify stromal invasion when the glandular epithelium of the cervix uteri is involved. It is necessary to draw a clear distinction between its glandular structures and adenocarcinoma in situ, involving the preexisting crypts and invasive glands. An attempt was made to assess the possibilities of using as markers of invasion the following stromal proteins and adhesion molecules: CD44, E-cadherin, beta-catenin, tenascin, and laminin. Fifty-three cases of benign glandular changes, 66 cases of dysplasias and adenocarcinomas in situ, and 47 cases of invasive adenocarcinoma were examined. An immunohistochemical study was performed according to the standard protocol using the antibodies to CD44, laminin, tenascin, E-cadherin, and beta-catenin and a semiquantitative assessment of results was made. CD44 was found to be redistributed from the cells to the tumor stroma. CD44 was not detected in the stroma surrounding the intact glands, so were benign epithelial changes. In the tumor environment, there was, on the contrary, a reaction with CD44 in 74.5% of invasive adenocarcinomas cases (p < 0.05). The expression of tenascin in the invasive adenocarcinomas and around the foci of early stromal invasion significantly exceeded that in the stroma around the intact glands and dysplastic changes (p < 0.05). All the study groups showed a membrane reaction with E-cadherin and beta-catenin, which probably suggested that changes were absent in the Wnt signaling pathway. In 70.2% of invasive adenocarcinomas, laminin demonstrated a significant cytoplasmic expression in 5-30% of the tumor cells predominantly located along the tumor invasion area or in the deepest tumor complexes (p > 0.05). CD44 and tenascin are of great diagnostic value in examining invasive and microinvasive adenocarcinomas of the cervix uteri. E-cadherin and beta-catenin are of no diagnostic value in the study groups of pathological processes. Laminin is a potential marker of stromal invasion; however, its expression calls for further investigation.

  13. Hypoxia-induced expression of VE-cadherin and filamin B in glioma cell cultures and pseudopalisade structures.

    PubMed

    Nissou, Marie-France; El Atifi, Michèle; Guttin, Audrey; Godfraind, Catherine; Salon, Caroline; Garcion, Emmanuel; van der Sanden, Boudewijn; Issartel, Jean-Paul; Berger, François; Wion, Didier

    2013-06-01

    Most of our knowledge regarding glioma cell biology comes from cell culture experiments. For many years the standards for glioma cell culture were the use of cell lines cultured in the presence of serum and 20 % O2. However, in vivo, normoxia in many brain areas is in close to 3 % O2. Hence, in cell culture, the experimental value referred as the norm is hyperoxic compared to any brain physiological value. Likewise, cells in vivo are not usually exposed to serum, and low-passaged glioma neurosphere cultures maintained in serum-free medium is emerging as a new standard. A consequence of changing the experimental normoxic standard from 20 % O2 to the more brain physiological value of 3 % O2, is that a 3 % O2 normoxic reference point enabled a more rigorous characterization of the level of regulation of genes by hypoxia. Among the glioma hypoxia-regulated genes characterized using this approach we found VE-cadherin that is required for blood vessel formation, and filamin B a gene involved in endothelial cell motility. Both VE-cadherin and filamin B were found expressed in pseudopalisades, a glioblastoma pathognomonic structure made of hypoxic migrating cancer cells. These results provide additional clues on the role played by hypoxia in the acquisition of endothelial traits by glioma cells and on the functional links existing between pseudopalisades, hypoxia, and tumor progression.

  14. Salt-induced epithelial-to-mesenchymal transition in Dahl salt-sensitive rats is dependent on elevated blood pressure.

    PubMed

    Wang, Y; Mu, J J; Liu, F Q; Ren, K Y; Xiao, H Y; Yang, Z; Yuan, Z Y

    2014-02-01

    Dietary salt intake has been linked to hypertension and cardiovascular disease. Accumulating evidence has indicated that salt-sensitive individuals on high salt intake are more likely to develop renal fibrosis. Epithelial-to-mesenchymal transition (EMT) participates in the development and progression of renal fibrosis in humans and animals. The objective of this study was to investigate the impact of a high-salt diet on EMT in Dahl salt-sensitive (SS) rats. Twenty-four male SS and consomic SS-13(BN) rats were randomized to a normal diet or a high-salt diet. After 4 weeks, systolic blood pressure (SBP) and albuminuria were analyzed, and renal fibrosis was histopathologically evaluated. Tubular EMT was evaluated using immunohistochemistry and real-time PCR with E-cadherin and alpha smooth muscle actin (α-SMA). After 4 weeks, SBP and albuminuria were significantly increased in the SS high-salt group compared with the normal diet group. Dietary salt intake induced renal fibrosis and tubular EMT as identified by reduced expression of E-cadherin and enhanced expression of α-SMA in SS rats. Both blood pressure and renal interstitial fibrosis were negatively correlated with E-cadherin but positively correlated with α-SMA. Salt intake induced tubular EMT and renal injury in SS rats, and this relationship might depend on the increase in blood pressure.

  15. Low Phosphorylated AKT Expression in Laryngeal Cancer: Indications for a Higher Metastatic Risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nijkamp, Monique M.; Span, Paul N.; Stegeman, Hanneke

    2013-10-01

    Purpose: To validate the association of phosphorylated (p)AKT with lymph node metastasis in an independent, homogeneous cohort of patients with larynx cancer. Methods and Materials: Seventy-eight patients with laryngeal cancer were included. Epidermal growth factor receptor, pAKT, vimentin, E-cadherin, hypoxia, and blood vessels were visualized in biopsy material using immunohistochemistry. Positive tumor areas and spatial relationships between markers were assessed by automated image analysis. In 6 laryngeal cancer cell lines, E-cadherin and vimentin messenger RNA was quantified by real-time polymerase chain reaction and by immunohistochemistry before and after treatment with the pAKT inhibitor MK-2206. Results: A significant correlation was foundmore » between low pAKT in the primary tumor and positive lymph node status (P=.0005). Tumors with lymph node metastases had an approximately 10-fold lower median pAKT value compared with tumors without lymph node metastases, albeit with large intertumor variations, validating our previous results. After inhibition of pAKT in laryngeal cancer cells with MK-2206, up-regulation of vimentin and a downregulation of E-cadherin occurred, consistent with epithelial–mesenchymal transition. Conclusion: Low pAKT expression in larynx tumors is associated with lymph node metastases. Further, inhibition of pAKT in laryngeal cancer induces epithelial–mesenchymal transition, predisposing for an increased metastatic risk.« less

  16. The formation of ordered nanoclusters controls cadherin anchoring to actin and cell–cell contact fluidity

    PubMed Central

    Strale, Pierre-Olivier; Duchesne, Laurence; Peyret, Grégoire; Montel, Lorraine; Nguyen, Thao; Png, Evelyn; Tampé, Robert; Troyanovsky, Sergey; Hénon, Sylvie; Ladoux, Benoit

    2015-01-01

    Oligomerization of cadherins could provide the stability to ensure tissue cohesion. Cadherins mediate cell–cell adhesion by forming trans-interactions. They form cis-interactions whose role could be essential to stabilize intercellular junctions by shifting cadherin clusters from a fluid to an ordered phase. However, no evidence has been provided so far for cadherin oligomerization in cellulo and for its impact on cell–cell contact stability. Visualizing single cadherins within cell membrane at a nanometric resolution, we show that E-cadherins arrange in ordered clusters, providing the first demonstration of the existence of oligomeric cadherins at cell–cell contacts. Studying the consequences of the disruption of the cis-interface, we show that it is not essential for adherens junction formation. Its disruption, however, increased the mobility of junctional E-cadherin. This destabilization strongly affected E-cadherin anchoring to actin and cell–cell rearrangement during collective cell migration, indicating that the formation of oligomeric clusters controls the anchoring of cadherin to actin and cell–cell contact fluidity. PMID:26195669

  17. Cytoplasmic and nuclear localization of cadherin in honey bee (Apis mellifera L.) gonads.

    PubMed

    Florecki, Mônica M; Hartfelder, Klaus

    2011-01-01

    Cadherins are crucial molecules mediating cell-cell interactions between somatic and germline cells in insect and mammalian male and female gonads. We analysed the presence and localization of cadherins in ovaries of honeybee queens and in testes of drones. Transcripts representing two classical cadherins, E-cadherin (shotgun) and N-cadherin, as well as three protocadherins (Starry night, Fat and Fat-like) were detected in gonads of both sexes. Pan-cadherin antibodies, which most probably detect a honeybee N-cadherin, were used in immunolocalization analyses. In the germarium of ovarioles, cadherin-IR (cadherin immunoreactivity) was evidenced as homogeneously distributed in the cytoplasm and as nuclear foci, in both germline and somatic cells. It was also detected in polyfusomes and ring canals. In testiolar tubules, cadherin-IR showed a cytoplasmic and nuclear distributon alike in ovaries. The unexpected nuclear localization and cytoplasmic distribution in ovaries and testes were corroborated by immunogold electron microscopy, which revealed cadherin aggregates associated with electron-dense nuclear structures. With respect to cadherin localization, the honeybee differs from Drosophila, the model for gametogenesis in insects, raising the question as to how differences among solitary and social species may be built into and generated from the general architecture of polytrophic meroistic ovaries. It also indicates the possibility of divergent roles for cadherin in the functional architecture of insect gonads, in general, especially in taxa with high reproductive output.

  18. Osthole inhibits the tumorigenesis of hepatocellular carcinoma cells.

    PubMed

    Lin, Zhi-Kun; Liu, Jia; Jiang, Guo-Qiang; Tan, Guang; Gong, Peng; Luo, Hai-Feng; Li, Hui-Min; Du, Jian; Ning, Zhen; Xin, Yi; Wang, Zhong-Yu

    2017-03-01

    Hepatocellular carcinoma (HCC) accounts for approximately 90% of all cases of primary liver cancer, and the majority of patients with HCC are deprived of effective curative methods. Osthole is a Chinese herbal medicine which has been reported to possess various pharmacological functions, including hepatocellular protection. In the present study, we investigated the anticancer activity of osthole using HCC cell lines. We found that osthole inhibited HCC cell proliferation, induced cell cycle arrest, triggered DNA damage and suppressed migration in HCC cell lines. Furthermore, we demonstrated that osthole not only contributed to cell cycle G2/M phase arrest via downregulation of Cdc2 and cyclin B1 levels, but also induced DNA damage via an increase in ERCC1 expression. In addition, osthole inhibited the migration of HCC cell lines by significantly downregulating MMP-2 and MMP-9 levels. Finally, we demonstrated that osthole inhibited epithelial-mesenchymal transition (EMT) via increasing the expression of epithelial biomarkers E-cadherin and β-catenin, and significantly decreasing mesenchymal N-cadherin and vimentin protein expression. These results suggest that osthole may have potential chemotherapeutic activity against HCC.

  19. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats.

    PubMed

    Tsai, Jen-Pi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2017-01-01

    Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects.

  20. Arctigenin represses TGF-β-induced epithelial mesenchymal transition in human lung cancer cells.

    PubMed

    Xu, Yanrui; Lou, Zhiyuan; Lee, Seong-Ho

    2017-11-18

    Arctigenin (ARC) is a lignan that is abundant in Asteraceae plants, which show anti-inflammatory and anti-cancer activities. The current study investigated whether ARC affects cancer progression and metastasis, focusing on EMT using invasive human non-small cell lung cancer (NSCLC) cells. No toxicity was observed in the cells treated with different doses of ARC (12-100 μM). The treatment of ARC repressed TGF-β-stimulated changes of metastatic morphology and cell invasion and migration. ARC inhibited TGF-β-induced phosphorylation and transcriptional activity of smad2/3, and expression of snail. ARC also decreased expression of N-cadherin and increased expression of E-cadherin in dose-dependent and time-dependent manners. These changes were accompanied by decreased amount of phospho-smad2/3 in nucleus and nuclear translocation of smad2/3. Moreover, ARC repressed TGF-β-induced phosphorylation of ERK and transcriptional activity of β-catenin. Our data demonstrate anti-metastatic activity of ARC in lung cancer model. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. MUC1 and colorectal cancer pathophysiology considerations.

    PubMed

    Niv, Yaron

    2008-04-14

    Several lines of evidence point towards a biological role of mucin and particularly MUC1 in colorectal cancer. A positive correlation was described between mucin secretion, proliferation, invasiveness, metastasis and bad prognosis. But, the role of MUC1 in cancer progression is still controversial and somewhat confusing. While Mukherjee and colleagues developed MUC1-specific immune therapy in a CRC model, Lillehoj and co-investigators showed recently that MUC1 inhibits cell proliferation by a beta-catenin-dependent mechanism. In carcinoma cells the polarization of MUC1 is lost and the protein is over expressed at high levels over the entire cell surface. A competitive interaction between MUC1 and E-cadherin, through beta-catenin binding, disrupts E-cadherin-mediated cell-cell interactions at sites of MUC1 expression. In addition, the complex of MUC1-beta-catenin enters the nucleus and activates T-cell factor/leukocyte enhancing factor 1 transcription factors and activates gene expression. This mechanism may be similar to that just described for DCC and UNC5H, which induced apoptosis when not engaged with their ligand netrin, but mediate signals for proliferation, differentiation or migration when ligand bound.

  2. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats

    PubMed Central

    Tsai, Jen-Pi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2017-01-01

    Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects. PMID:28824301

  3. ZEB1 expression is a potential indicator of invasive endometriosis.

    PubMed

    Furuya, Masataka; Masuda, Hirotaka; Hara, Kanako; Uchida, Hiroshi; Sato, Kenji; Sato, Suguru; Asada, Hironori; Maruyama, Tetsuo; Yoshimura, Yasunori; Katabuchi, Hidetaka; Tanaka, Mamoru; Saya, Hideyuki

    2017-09-01

    Although endometriosis is a benign disease, it shares some features with cancers, such as invasiveness and the potential to metastasize. This study sought to investigate the epithelial-mesenchymal transition status in human endometriotic lesions. Thirteen endometriosis patients and 10 control women without endometriosis undergoing surgery for benign indications were recruited. We examined the expression of E-cadherin, vimentin, and epithelial-mesenchymal transition-induced transcriptional factors, such as Snail and ZEB1, by immunohistochemistry. We evaluated the expression of each marker in epithelial cells of both endometriotic lesions (ovarian endometrioma, deep infiltrating endometriosis, adenomyosis) and normal endometria. The correlation between ZEB1 expression and serum level of CA125 was also investigated. Immunohistochemical analysis revealed that although E-cadherin, vimentin, and Snail were expressed in epithelia of normal endometria and endometriotic lesions, ZEB1 expression was only expressed in epithelia of endometriotic lesions. Additionally, ZEB1 was most frequently observed in epithelial cells of invasive endometriosis. The endometriosis patients with high serum CA125 level were more likely to have ZEB1-positive lesions. This is the first observation of ZEB1 expression in epithelial cells of benign disease. The preferential expression of ZEB1 in epithelial cells of endometriotic lesions suggests that these cells may have, at least in part, a higher level of mesenchymal features possibly via ZEB1-driven epithelial-mesenchymal transition than normal endometria and that ZEB1 can be a potential indicator of invasiveness or severity of endometriosis. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  4. Tetraspanin TM4SF5 mediates loss of contact inhibition through epithelial-mesenchymal transition in human hepatocarcinoma

    PubMed Central

    Lee, Sin-Ae; Lee, Sung-Yul; Cho, Ik-Hyun; Oh, Min-A; Kang, Eun-Sil; Kim, Yong-Bae; Seo, Woo Duck; Choi, Suyong; Nam, Ju-Ock; Tamamori-Adachi, Mimi; Kitajima, Shigetaka; Ye, Sang-Kyu; Kim, Semi; Hwang, Yoon-Jin; Kim, In-San; Park, Ki Hun; Lee, Jung Weon

    2008-01-01

    The growth of normal cells is arrested when they come in contact with each other, a process known as contact inhibition. Contact inhibition is lost during tumorigenesis, resulting in uncontrolled cell growth. Here, we investigated the role of the tetraspanin transmembrane 4 superfamily member 5 (TM4SF5) in contact inhibition and tumorigenesis. We found that TM4SF5 was overexpressed in human hepatocarcinoma tissue. TM4SF5 expression in clinical samples and in human hepatocellular carcinoma cell lines correlated with enhanced p27Kip1 expression and cytosolic stabilization as well as morphological elongation mediated by RhoA inactivation. These TM4SF5-mediated effects resulted in epithelial-mesenchymal transition (EMT) via loss of E-cadherin expression. The consequence of this was aberrant cell growth, as assessed by S-phase transition in confluent conditions, anchorage-independent growth, and tumor formation in nude mice. The TM4SF5-mediated effects were abolished by suppressing the expression of either TM4SF5 or cytosolic p27Kip1, as well as by reconstituting the expression of E-cadherin. Our observations have revealed a role for TM4SF5 in causing uncontrolled growth of human hepatocarcinoma cells through EMT. PMID:18357344

  5. Adherens junction turnover: regulating adhesion through cadherin endocytosis, degradation, and recycling

    PubMed Central

    Nanes, Benjamin A.; Kowalczyk, Andrew P.

    2014-01-01

    Adherens junctions are important mediators of intercellular adhesion, but they are not static structures. They are regularly formed, broken, and rearranged in a variety of situations, requiring changes in the amount of cadherins, the main adhesion molecule in adherens junctions, present at the cell surface. Thus, endocytosis, degradation, and recycling of cadherins are crucial for dynamic regulation of adherens junctions and control of intercellular adhesion. In this chapter, we review the involvement of cadherin endocytosis in development and disease. We discuss the various endocytic pathways available to cadherins, the adaptors involved, and the sorting of internalized cadherin for recycling or lysosomal degradation. In addition, we review the regulatory pathways controlling cadherin endocytosis and degradation, including regulation of cadherin endocytosis by catenins, cadherin ubiquitination, and growth factor receptor signaling pathways. Lastly, we discuss the proteolytic cleavage of cadherins at the plasma membrane. PMID:22674073

  6. Induction of Cell Scattering by Expression of β1 Integrins in β1-Deficient Epithelial Cells Requires Activation of Members of the Rho Family of Gtpases and Downregulation of Cadherin and Catenin Function

    PubMed Central

    Gimond, Clotilde; van der Flier, Arjan; van Delft, Sanne; Brakebusch, Cord; Kuikman, Ingrid; Collard, John G.; Fässler, Reinhard; Sonnenberg, Arnoud

    1999-01-01

    Adhesion receptors, which connect cells to each other and to the surrounding extracellular matrix (ECM), play a crucial role in the control of tissue structure and of morphogenesis. In this work, we have studied how intercellular adhesion molecules and β1 integrins influence each other using two different β1-null cell lines, epithelial GE11 and fibroblast-like GD25 cells. Expression of β1A or the cytoplasmic splice variant β1D, induced the disruption of intercellular adherens junctions and cell scattering in both GE11 and GD25 cells. In GE11 cells, the morphological change correlated with the redistribution of zonula occluden (ZO)-1 from tight junctions to adherens junctions at high cell confluency. In addition, the expression of β1 integrins caused a dramatic reorganization of the actin cytoskeleton and of focal contacts. Interaction of β1 integrins with their respective ligands was required for a complete morphological transition towards the spindle-shaped fibroblast-like phenotype. The expression of an interleukin-2 receptor (IL2R)-β1A chimera and its incorporation into focal adhesions also induced the disruption of cadherin-based adhesions and the reorganization of ECM–cell contacts, but failed to promote cell migration on fibronectin, in contrast to full-length β1A. This indicates that the disruption of cell–cell adhesion is not simply the consequence of the stimulated cell migration. Expression of β1 integrins in GE11 cells resulted in a decrease in cadherin and α-catenin protein levels accompanied by their redistribution from the cytoskeleton-associated fraction to the detergent-soluble fraction. Regulation of α-catenin protein levels by β1 integrins is likely to play a role in the morphological transition, since overexpression of α-catenin in GE11 cells before β1 prevented the disruption of intercellular adhesions and cell scattering. In addition, using biochemical activity assays for Rho-like GTPases, we show that the expression of β1A, β1D, or IL2R-β1A in GE11 or GD25 cells triggers activation of both RhoA and Rac1, but not of Cdc42. Moreover, dominant negative Rac1 (N17Rac1) inhibited the disruption of cell–cell adhesions when expressed before β1. However, all three GTPases might be involved in the morphological transition, since expression of either N19RhoA, N17Rac1, or N17Cdc42 reversed cell scattering and partially restored cadherin-based adhesions in GE11-β1A cells. Our results indicate that β1 integrins regulate the polarity and motility of epithelial cells by the induction of intracellular molecular events involving a downregulation of α-catenin function and the activation of the Rho-like G proteins Rac1 and RhoA. PMID:10601344

  7. Nuclear Organization in the Spinal Cord Depends on Motor Neuron Lamination Orchestrated by Catenin and Afadin Function.

    PubMed

    Dewitz, Carola; Pimpinella, Sofia; Hackel, Patrick; Akalin, Altuna; Jessell, Thomas M; Zampieri, Niccolò

    2018-02-13

    Motor neurons in the spinal cord are found grouped in nuclear structures termed pools, whose position is precisely orchestrated during development. Despite the emerging role of pool organization in the assembly of spinal circuits, little is known about the morphogenetic programs underlying the patterning of motor neuron subtypes. We applied three-dimensional analysis of motor neuron position to reveal the roles and contributions of cell adhesive function by inactivating N-cadherin, catenin, and afadin signaling. Our findings reveal that nuclear organization of motor neurons is dependent on inside-out positioning, orchestrated by N-cadherin, catenin, and afadin activities, controlling cell body layering on the medio-lateral axis. In addition to this lamination-like program, motor neurons undergo a secondary, independent phase of organization. This process results in segregation of motor neurons along the dorso-ventral axis of the spinal cord, does not require N-cadherin or afadin activity, and can proceed even when medio-lateral positioning is perturbed. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Expression and function of the atypical cadherin FAT1 in chronic liver disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valletta, Daniela; Czech, Barbara; Thasler, Wolfgang E.

    Highlights: Black-Right-Pointing-Pointer The expression of the atypical cadherin FAT1 is increased in chronic liver disease. Black-Right-Pointing-Pointer FAT1 expression goes up during the activation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Activated HSCs are the cellular source of enhanced FAT1 expression in diseased livers. Black-Right-Pointing-Pointer FAT1 enhanced NFkB activity and resistance to apoptosis in activated HSCs. Black-Right-Pointing-Pointer FAT1 is a new therapeutic target for prevention and treatment of hepatic fibrosis. -- Abstract: Hepatic fibrosis can be considered as wound healing process in response to hepatocellular injury. Activation of hepatic stellate cells (HSCs) is a key event of hepatic fibrosis since activated HSCsmore » are the cellular source of enhanced extracellular matrix deposition, and reversion of liver fibrosis is accompanied by clearance of activated HSCs by apoptosis. The atypical cadherin FAT1 has been shown to regulate diverse biological functions as cell proliferation and planar cell polarity, and also to affect wound healing. Here, we found increased FAT1 expression in different murine models of chronic liver injury and in cirrhotic livers of patients with different liver disease. Also in hepatic tissue of patients with non-alcoholic steatohepatitis FAT1 expression was significantly enhanced and correlated with collagen alpha I(1) expression. Immunohistochemistry revealed no significant differences in staining intensity between hepatocytes in normal and cirrhotic liver tissue but myofibroblast like cells in fibrotic septa of cirrhotic livers showed a prominent immunosignal. Furthermore, FAT1 mRNA and protein expression markedly increased during in vitro activation of primary human and murine HSCs. Together, these data indicated activated HSCs as cellular source of enhanced FAT1 expression in diseased livers. To gain insight into the functional role of FAT1 in activated HSCs we suppressed FAT1 in these cells by siRNA. We newly found that FAT1 suppression in activated HSCs caused a downregulation of NF{kappa}B activity. This transcription factor is critical for apoptosis resistance of HSCs, and consequently, we detected a higher apoptosis rate in FAT1 suppressed HSCs compared to control cells. Our findings suggest FAT1 as new therapeutic target for the prevention and treatment of hepatic fibrosis in chronic liver disease.« less

  9. Rubus idaeus L. reverses epithelial-to-mesenchymal transition and suppresses cell invasion and protease activities by targeting ERK1/2 and FAK pathways in human lung cancer cells.

    PubMed

    Hsieh, Yih-Shou; Chu, Shu-Chen; Hsu, Li-Sung; Chen, Kuo-Shuen; Lai, Ming-Tsung; Yeh, Chia-Heng; Chen, Pei-Ni

    2013-12-01

    Epithelial to mesenchymal transition (EMT) has been considered essential for cancer metastasis, a multistep complicated process including local invasion, intravasation, extravasation, and proliferation at distant sites. Herein we provided molecular evidence associated with the antimetastatic effect of Rubus idaeus L. extracts (RIE) by showing a nearly complete inhibition on the invasion (p<0.001) of highly metastatic A549 cells via reduced activities of matrix metalloproteinase-2 (MMP-2) and urokinasetype plasminogen activator (u-PA). We performed Western blot to find that RIE could induce up-regulation of epithelial marker such as E-cadherin and α-catenin and inhibit the mesenchymal markers such as N-cadherin, fibronectin, snail-1, and vimentin. Selective snail-1 inhibition by snail-1-specific-siRNA also showed increased E-cadherin expression in A549 cells suggesting a possible involvement of snail-1 inhibition in RIE-caused increase in E-cadherin level. RIE also inhibited p-FAK, p-paxillin and AP-1 by Western blot analysis, indicating the anti-EMT effect of RIE in human lung carcinoma. Importantly, an in vivo BALB/c nude mice xenograft model showed that RIE treatment reduced tumor growth by oral gavage, and RIE represent promising candidates for future phytochemical-based mechanistic pathway-targeted cancer prevention strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. A Single Point Mutation Resulting in Cadherin Mislocalization Underpins Resistance against Bacillus thuringiensis Toxin in Cotton Bollworm*

    PubMed Central

    Xiao, Yutao; Dai, Qing; Hu, Ruqin; Pacheco, Sabino; Yang, Yongbo; Liang, Gemei; Soberón, Mario

    2017-01-01

    Transgenic plants that produce Bacillus thuringiensis (Bt) crystalline (Cry) toxins are cultivated worldwide to control insect pests. Resistance to B. thuringiensis toxins threatens this technology, and although different resistance mechanisms have been identified, some have not been completely elucidated. To gain new insights into these mechanisms, we performed multiple back-crossing from a 3000-fold Cry1Ac-resistant BtR strain from cotton bollworm (Helicoverpa armigera), isolating a 516-fold Cry1Ac-resistant strain (96CAD). Cry1Ac resistance in 96CAD was tightly linked to a mutant cadherin allele (mHaCad) that contained 35 amino acid substitutions compared with HaCad from a susceptible strain (96S). We observed significantly reduced levels of the mHaCad protein on the surface of the midgut epithelium in 96CAD as compared with 96S. Expression of both cadherin alleles from 96CAD and 96S in insect cells and immunofluorescence localization in insect midgut tissue sections showed that the HaCAD protein from 96S localizes on the cell membrane, whereas the mutant 96CAD-mHaCad was retained in the endoplasmic reticulum (ER). Mapping of the mutations identified a D172G substitution mainly responsible for cadherin mislocalization. Our finding of a mutation affecting membrane receptor trafficking represents an unusual and previously unrecognized B. thuringiensis resistance mechanism. PMID:28082675

  11. Deregulation of E-cadherin, β-catenin, APC and Caveolin-1 expression occurs in canine prostate cancer and metastatic processes.

    PubMed

    Kobayashi, Priscila E; Fonseca-Alves, Carlos E; Rivera-Calderón, Luis G; Carvalho, Márcio; Kuasne, Hellen; Rogatto, Silvia R; Laufer-Amorim, Renée

    2018-06-01

    Prostate cancer is a heterogeneous disease with high levels of clinical and gene heterogeneity, consequently offering several targets for therapy. Dogs with naturally occurring prostate cancer are useful models for molecular investigations and studying new treatment efficacy. Three genes and proteins associated with the WNT pathway (β-catenin, APC and E-cadherin) and Caveolin-1 (CAV-1) were evaluated in canine pre-neoplastic proliferative inflammatory atrophy (PIA), prostate cancer and metastatic disease. The APC gene methylation status was also investigated. As in human prostate cancer, cytoplasmic and nuclear β-catenin, which are fundamental for activating the canonical WNT pathway, were found in canine prostate cancer and metastasis. Membranous E-cadherin was also lost in these lesions, allowing cellular migration to the stroma and nuclear localization of β-catenin. In contrast to human prostate tumours, no APC downregulation or hypermethylation was found in canine prostate cancer. The CAV-1 gene and protein overexpression were found in canine prostate cancer, and as in humans, the highest levels were found in Gleason scores ≥8. In conclusion, as with human prostate cancer, β-catenin and E-cadherin in the WNT pathway, as well as Caveolin-1, are molecular drivers in canine prostate cancer. These findings provide additional evidence that dogs are useful models for studying new therapeutic targets in prostate cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Tongxinluo ameliorates renal structure and function by regulating miR-21-induced epithelial-to-mesenchymal transition in diabetic nephropathy.

    PubMed

    Wang, Jin-yang; Gao, Yan-bin; Zhang, Na; Zou, Da-wei; Xu, Li-ping; Zhu, Zhi-yao; Li, Jiao-yang; Zhou, Sheng-nan; Cui, Fang-qiang; Zeng, Xiang-jun; Geng, Jian-guo; Yang, Jin-kui

    2014-03-01

    Diabetic nephropathy (DN) is one of the most important diabetic microangiopathies. The epithelial-to-mesenchymal transition (EMT) plays an important role in DN. The physiological role of microRNA-21 (miR-21) was closely linked to EMT. However, it remained elusive whether tongxinluo (TXL) ameliorated renal structure and function by regulating miR-21-induced EMT in DN. This study aimed to determine the effect of TXL on miR-21-induced renal tubular EMT and to explore the relationship between miR-21 and TGF-β1/smads signals. Real-time RT-PCR, cell transfection, in situ hybridization (ISH), and laser confocal microscopy were used, respectively. Here, we revealed that TXL dose dependently lowered miR-21 expression in tissue, serum, and cells. Overexpression of miR-21 can enhance α-smooth muscle actin (SMA) expression and decrease E-cadherin expression by upregulating smad3/p-smad3 expression and downregulating smad7 expression. Interestingly, TXL also increased E-cadherin expression and decreased α-SMA expression by regulating miR-21 expression. More importantly, TXL decreased collagen IV, fibronectin, glomerular basement membrane, glomerular area, and the albumin/creatinine ratio, whereas it increased the creatinine clearance ratio. The results demonstrated that TXL ameliorated renal structure and function by regulating miR-21-induced EMT, which was one of the mechanisms to protect against DN, and that miR-21 may be one of the therapeutic targets for TXL in DN.

  13. Whole exome sequencing with genomic triangulation implicates CDH2-encoded N-cadherin as a novel pathogenic substrate for arrhythmogenic cardiomyopathy.

    PubMed

    Turkowski, Kari L; Tester, David J; Bos, J Martijn; Haugaa, Kristina H; Ackerman, Michael J

    2017-03-01

    Arrhythmogenic cardiomyopathy (ACM) is a heritable disease characterized by fibrofatty replacement of cardiomyocytes, has a prevalence of approximately 1 in 5000 individuals, and accounts for approximately 20% of sudden cardiac death in the young (≤35 years). ACM is most often inherited as an autosomal dominant trait with incomplete penetrance and variable expression. While mutations in several genes that encode key desmosomal proteins underlie about half of all ACM, the remainder is elusive genetically. Here, whole exome sequencing (WES) was performed with genomic triangulation in an effort to identify a novel explanation for a phenotype-positive, genotype-negative multi-generational pedigree with a presumed autosomal dominant, maternal inheritance of ACM. WES and genomic triangulation was performed on a symptomatic 14-year-old female proband, her affected mother and affected sister, and her unaffected father to elucidate a novel ACM-susceptibility gene for this pedigree. Following variant filtering using Ingenuity® Variant Analysis, gene priority ranking was performed on the candidate genes using ToppGene and Endeavour. The phylogenetic and physiochemical properties of candidate mutations were assessed further by 6 in silico prediction tools. Species alignment and amino acid conservation analysis was performed using the Uniprot Consortium. Tissue expression data was abstracted from Expression Atlas. Following WES and genomic triangulation, CDH2 emerged as a novel, autosomal dominant, ACM-susceptibility gene. The CDH2-encoded N-cadherin is a cell-cell adhesion protein predominately expressed in the heart. Cardiac dysfunction has been demonstrated in prior CDH2 knockout and over-expression animal studies. Further in silico mutation prediction, species conservation, and protein expression analysis supported the ultra-rare (minor allele frequency <0.005%) p.Asp407Asn-CDH2 variant as a likely pathogenic variant. Herein, it is demonstrated that genetic mutations in CDH2-encoded N-cadherin may represent a novel pathogenetic basis for ACM in humans. The prevalence of CDH2-mediated ACM in heretofore genetically elusive ACM remains to be determined. © 2017 Wiley Periodicals, Inc.

  14. EXPRESSION OF E-CADHERIN AND WNT PATHWAY PROTEINS BETACATENIN, APC, TCF-4 AND SURVIVIN IN GASTRIC ADENOCARCINOMA: CLINICAL AND PATHOLOGICAL IMPLICATION.

    PubMed

    Lins, Rodrigo Rego; Oshima, Celina Tizuko Fujiyama; Oliveira, Levindo Alves de; Silva, Marcelo Souza; Mader, Ana Maria Amaral Antonio; Waisberg, Jaques

    2016-01-01

    Gastric cancer is the fifth most frequent cancer and the third most common cause of cancer-related deaths worldwide.It has been reported that Wnt/ betacatenin pathway is activated in 30-50% of these tumors. However,the deregulation of this pathway has not been fully elucidated. To determine the expression of E-cadherin, betacatenin, APC, TCF-4 and survivin proteins in gastric adenocarcinoma tissues and correlate with clinical and pathological parameters. Seventy-one patients with gastric adenocarcinoma undergoing gastrectomy were enrolled. The expression of E-cadherin, betacatenin, APC, TCF-4 and survivin proteins was detected by immunohistochemistryand related to the clinical and pathological parameters. The expression rates of E-cadherin in the membrane was 3%; betacatenin in the cytoplasm and nucleus were 23,4% and 3,1% respectively; APC in the cytoplasm was 94,6%; TCF-4 in the nucleus was 19,4%; and survivin in the nucleus 93,9%. The expression rate of E-cadherin was correlated with older patients (p=0,007), while betacatenin with tumors <5 cm (p=0,041) and APC with proximal tumors (p=0,047). Moreover, the expression of TCF-4 was significantly higher in the diffuse type (p=0,017) and T4 tumors (p=0,002). The Wnt/betacatenin is not involved in gastric carcinogenesis. However, the high frequency of survivin allows to suggest that other signaling pathways must be involved in the transformation of gastric tissue. O câncer gástrico encontra-se entre as principais neoplasias malignas do mundo sendo o quinto mais incidente e o terceiro em relação ao índice de mortalidade. Acredita-se que a via Wnt/betacatenina esteja ativada em 30-50% desses tumores, porém a desregulação dela ainda não está completamente esclarecida. Avaliar a imunoexpressão das proteínas E-caderina, betacatenina, APC, TCF-4 e survivina em tecidos de adenocarcinoma gástrico e correlacioná-las com as variáveis clínicas dos doentes e anatomopatológicas do tumor. Foram coletados os dados clínicos e anatomopatológicos dos prontuários de 71 doentes com adenocarcinoma gástrico submetidos à gastrectomia. O material obtido na operação foi submetido à análise imunoistoquímica e a frequência da expressão de cada proteína pôde ser analisada de acordo com a sua localização na célula e relacionada com as variáveis clinicopatológicas. A graduação percentualda expressão e da localização das proteínas foi a seguinte: E-caderina em 3% na membrana; betacatenina em 23,4% no citoplasma e 3,1% no núcleo; APC em 94,6% no citoplasma; TCF-4 em19,4% no núcleo; e survivina em 93,9% no núcleo. Houve relação entre expressão da proteína E-caderina com a idade mais avançada (p=0,007); betacatenina com tumores <5 cm de diâmetro (p=0,041);APC com tumores proximais (p=0,047); e TCF-4 com tipo difuso da classificação de Lauren (p=0,017) e com o grau de penetração tumoral (p=0,002). A via Wnt/betacatenina não está envolvida na carcinogênese gástrica. Porém, a frequência elevada de survivina permite sugerir que outras vias sinalizadoras devam estar envolvidas na transformação do tecido gástrico.

  15. Protective Effects of Hydrogen-Rich Saline Against Lipopolysaccharide-Induced Alveolar Epithelial-to-Mesenchymal Transition and Pulmonary Fibrosis.

    PubMed

    Dong, Wen-Wen; Zhang, Yun-Qian; Zhu, Xiao-Yan; Mao, Yan-Fei; Sun, Xue-Jun; Liu, Yu-Jian; Jiang, Lai

    2017-05-19

    BACKGROUND Fibrotic change is one of the important reasons for the poor prognosis of patients with acute respiratory distress syndrome (ARDS). The present study investigated the effects of hydrogen-rich saline, a selective hydroxyl radical scavenger, on lipopolysaccharide (LPS)-induced pulmonary fibrosis. MATERIAL AND METHODS Male ICR mice were divided randomly into 5 groups: Control, LPS-treated plus vehicle treatment, and LPS-treated plus hydrogen-rich saline (2.5, 5, or 10 ml/kg) treatment. Twenty-eight days later, fibrosis was assessed by determination of collagen deposition, hydroxyproline, and type I collagen levels. Development of epithelial-to-mesenchymal transition (EMT) was identified by examining protein expressions of E-cadherin and α-smooth muscle actin (α-SMA). Transforming growth factor (TGF)-β1 content, total antioxidant capacity (T-AOC), malondialdehyde (MDA) content, catalase (CAT), and superoxide dismutase (SOD) activity were determined. RESULTS Mice exhibited increases in collagen deposition, hydroxyproline, type I collagen contents, and TGF-β1 production in lung tissues after LPS treatment. LPS-induced lung fibrosis was associated with increased expression of α-SMA, as well as decreased expression of E-cadherin. In addition, LPS treatment increased MDA levels but decreased T-AOC, CAT, and SOD activities in lung tissues, indicating that LPS induced pulmonary oxidative stress. Hydrogen-rich saline treatment at doses of 2.5, 5, or 10 ml/kg significantly attenuated LPS-induced pulmonary fibrosis. LPS-induced loss of E-cadherin in lung tissues was largely reversed, whereas the acquisition of α-SMA was dramatically decreased by hydrogen-rich saline treatment. In addition, hydrogen-rich saline treatment significantly attenuated LPS-induced oxidative stress. CONCLUSIONS Hydrogen-rich saline may protect against LPS-induced EMT and pulmonary fibrosis through suppressing oxidative stress.

  16. Immunohistochemical and genetic profiles of endometrioid endometrial carcinoma arising from atrophic endometrium.

    PubMed

    Geels, Yvette P; van der Putten, Louis J M; van Tilborg, Angela A G; Lurkin, Irene; Zwarthoff, Ellen C; Pijnenborg, Johanna M A; van den Berg-van Erp, Saskia H; Snijders, Marc P L M; Bulten, Johan; Visscher, Daniel W; Dowdy, Sean C; Massuger, Leon F A G

    2015-05-01

    Endometrial carcinomas are divided into type I endometrioid endometrial carcinomas (EECs), thought to arise from hyperplastic endometrium, and type II nonendometrioid endometrial carcinomas, thought to arise from atrophic endometrium. However, a minority (20%) of EECs have atrophic background endometrium, which was shown to be a marker of a worse prognosis. This study compares the immunohistochemical and genetic profiles of this possible third type to that of the known two types. 43 patients with grade 1 EEC and hyperplastic background endometrium (type I), 43 patients with grade 1 EEC and atrophic background endometrium (type III) and 21 patients with serous carcinoma (type II) were included (n=107). Tissue microarrays of tumor samples were immunohistochemically stained for PTEN, L1CAM, ER, PR, p53, MLH1, PMS2, β-catenin, E-cadherin and MIB1. The BRAF, KRAS, and PIK3CA genes were analyzed for mutations. A significantly higher expression of ER and PR, and a lower expression of L1CAM, p53 and MLH1 were found in type I and III compared to type II carcinomas. Expression of E-cadherin was significantly reduced in type III compared to type I carcinomas. Mutation analysis showed significantly less mutations of KRAS in type III compared to type I and II carcinomas (p<0.01). There appear to be slight immunohistochemical and genetic differences between EECs with hyperplastic and atrophic background endometrium. Carcinogenesis of EEC in atrophic endometrium seems to be characterized by loss of E-cadherin and a lack of KRAS mutations. As expected, endometrioid and serous carcinomas were immunohistochemically different. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Premature Osteoblast Clustering by Enamel Matrix Proteins Induces Osteoblast Differentiation through Up-Regulation of Connexin 43 and N-Cadherin

    PubMed Central

    Miron, Richard J.; Hedbom, Erik; Ruggiero, Sabrina; Bosshardt, Dieter D.; Zhang, Yufeng; Mauth, Corinna; Gemperli, Anja C.; Iizuka, Tateyuki; Buser, Daniel; Sculean, Anton

    2011-01-01

    In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43) and N-cadherin (N-cad) as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes. Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts. These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone formation in vivo. PMID:21858092

  18. Expression of Cry1Ac toxin-binding region in Plutella xyllostella cadherin-like receptor and studying their interaction mode by molecular docking and site-directed mutagenesis.

    PubMed

    Hu, Xiaodan; Zhang, Xiao; Zhong, Jianfeng; Liu, Yuan; Zhang, Cunzheng; Xie, Yajing; Lin, Manman; Xu, Chongxin; Lu, Lina; Zhu, Qing; Liu, Xianjin

    2018-05-01

    Cadherin-like protein has been identified as the primary Bacillus thuringiensis (Bt) Cry toxin receptor in Lepidoptera pests and plays a key role in Cry toxin insecticidal. In this study, we successfully expressed the putative Cry1Ac toxin-binding region (CR7-CR11) of Plutella xylostella cadherin-like in Escherichia coli BL21 (DE3). The expressed CR7-CR11 fragment showed binding ability to Cry1Ac toxin under denaturing (Ligand blot) and non-denaturing (ELISA) conditions. The three-dimensional structure of CR7-CR11 was constructed by homology modeling. Molecular docking results of CR7-CR11 and Cry1Ac showed that domain II and domain III of Cry1Ac were taking part in binding to CR7-CR11, while CR7-CR8 was the region of CR7-CR11 in interacting with Cry1Ac. The interaction of toxin-receptor complex was found to arise from hydrogen bond and hydrophobic interaction. Through the computer-aided alanine mutation scanning, amino acid residues of Cry1Ac (Met341, Asn442 and Ser486) and CR7-CR11 (Asp32, Arg101 and Arg127) were predicted as the hot spot residues involved in the interaction of the toxin-receptor complex. At last, we verified the importance role of these key amino acid residues by binding assay. These results will lay a foundation for further elucidating the insecticidal mechanism of Cry toxin and enhancing Cry toxin insecticidal activity by molecular modification. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Emodin suppresses TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells through Notch signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Rundi; Chen, Ruilin; Cao, Yu

    Pulmonary fibrosis is characterized by the destruction of lung tissue architecture and the formation of fibrous foci, currently has no satisfactory treatment. Emodin is a component of Chinese herb that has been reported to be medicament on pancreatic fibrosis and liver fibrosis. However, its role in pulmonary fibrosis has not been established yet. In the present study, we investigated the hypothesis that Emodin plays an inhibitory role in TGF-β1 induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cell, and Emodin exerts its effect through the Notch signaling pathway. Emodin inhibits the proliferation of Rat alveolar type II epithelial cells RLE-6TN inmore » a concentration-dependent manner; reduces the expression of Collagen I, α-SMA and Vimentin, promotes the expression of E-cadherin. Moreover, Emodin could regulate the expression patterns of the Notch signaling pathway-related factors and reduce the Notch-1 nucleus translocation. Knockdown of Notch-1 enhances the inhibitory effect of Emodin on TGF-β1-induced EMT in RLE-6TN cells. In conclusion, the data of the present study suggests that Emodin suppresses TGF-β1-induced EMT in alveolar epithelial cells through Notch signaling pathway and shows the potential to be effective in the treatment of pulmonary fibrosis. - Highlights: • Emodin inhibits TGF-β1-induced EMT in alveolar epithelial cells. • Emodin regulates the expression patterns of the Notch signaling pathway-related factors. • Emodin inhibits TGF-β1-induced Notch-1 nucleus translocation and activation.« less

  20. μ2-Dependent endocytosis of N-cadherin is regulated by β-catenin to facilitate neurite outgrowth.

    PubMed

    Chen, Yi-Ting; Tai, Chin-Yin

    2017-05-01

    Circuit formation in the brain requires neurite outgrowth throughout development to establish synaptic contacts with target cells. Active endocytosis of several adhesion molecules facilitates the dynamic exchange of these molecules at the surface and promotes neurite outgrowth in developing neurons. The endocytosis of N-cadherin, a calcium-dependent adhesion molecule, has been implicated in the regulation of neurite outgrowth, but the mechanism remains unclear. Here, we identified that a fraction of N-cadherin internalizes through clathrin-mediated endocytosis (CME). Two tyrosine-based motifs in the cytoplasmic domain of N-cadherin recognized by the μ2 subunit of the AP-2 adaptor complex are responsible for CME of N-cadherin. Moreover, β-catenin, a core component of the N-cadherin adhesion complex, inhibits N-cadherin endocytosis by masking the 2 tyrosine-based motifs. Removal of β-catenin facilitates μ2 binding to N-cadherin, thereby increasing clathrin-mediated N-cadherin endocytosis and neurite outgrowth without affecting the steady-state level of surface N-cadherin. These results identify and characterize the mechanism controlling N-cadherin endocytosis through β-catenin-regulated μ2 binding to modulate neurite outgrowth. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Top