Science.gov

Sample records for cadherin expression pattern

  1. Conserved alternative splicing and expression patterns of arthropod N-cadherin.

    PubMed

    Hsu, Shu-Ning; Yonekura, Shinichi; Ting, Chun-Yuan; Robertson, Hugh M; Iwai, Youichi; Uemura, Tadashi; Lee, Chi-Hon; Chiba, Akira

    2009-04-01

    Metazoan development requires complex mechanisms to generate cells with diverse function. Alternative splicing of pre-mRNA not only expands proteomic diversity but also provides a means to regulate tissue-specific molecular expression. The N-Cadherin gene in Drosophila contains three pairs of mutually-exclusive alternatively-spliced exons (MEs). However, no significant differences among the resulting protein isoforms have been successfully demonstrated in vivo. Furthermore, while the N-Cadherin gene products exhibit a complex spatiotemporal expression pattern within embryos, its underlying mechanisms and significance remain unknown. Here, we present results that suggest a critical role for alternative splicing in producing a crucial and reproducible complexity in the expression pattern of arthropod N-Cadherin. We demonstrate that the arthropod N-Cadherin gene has maintained the three sets of MEs for over 400 million years using in silico and in vivo approaches. Expression of isoforms derived from these MEs receives precise spatiotemporal control critical during development. Both Drosophila and Tribolium use ME-13a and ME-13b in "neural" and "mesodermal" splice variants, respectively. As proteins, either ME-13a- or ME-13b-containing isoform can cell-autonomously rescue the embryonic lethality caused by genetic loss of N-Cadherin. Ectopic muscle expression of either isoform beyond the time it normally ceases leads to paralysis and lethality. Together, our results offer an example of well-conserved alternative splicing increasing cellular diversity in metazoans. PMID:19343204

  2. Regulation of cadherin expression in nervous system development

    PubMed Central

    Paulson, Alicia F; Prasad, Maneeshi S; Thuringer, Amanda Henke; Manzerra, Pasquale

    2014-01-01

    This review addresses our current understanding of the regulatory mechanisms for classical cadherin expression during development of the vertebrate nervous system. The complexity of the spatial and temporal expression patterns is linked to morphogenic and functional roles in the developing nervous system. While the regulatory networks controlling cadherin expression are not well understood, it is likely that the multiple signaling pathways active in the development of particular domains also regulate the specific cadherins expressed at that time and location. With the growing understanding of the broader roles of cadherins in cell–cell adhesion and non-adhesion processes, it is important to understand both the upstream regulation of cadherin expression and the downstream effects of specific cadherins within their cellular context. PMID:24526207

  3. Expression pattern of cadherins in the naked mole rat (Heterocephalus glaber) suggests innate cortical diversification of the cerebrum.

    PubMed

    Matsunaga, Eiji; Nambu, Sanae; Iriki, Atsushi; Okanoya, Kazuo

    2011-06-15

    The cerebral cortex is an indispensable region for higher cognitive function that is remarkably diverse among mammalian species. Although previous research has shown that the cortical area map in the mammalian cerebral cortex is formed by innate and activity-dependent mechanisms, it remains unknown how these mechanisms contribute to the evolution and diversification of the functional cortical areas in various species. The naked mole rat (Heterocephalus glaber) is a subterranean, eusocial rodent. Physiological and anatomical studies have revealed that the visual system is regressed and the somatosensory system is enlarged. To examine whether species differences in cortical area development are caused by intrinsic factors or environmental factors, we performed comparative gene expression analysis of neonatal naked mole rat and mouse brains. The expression domain of cadherin-6, a somatosensory marker, was expanded caudally and shifted dorsally in the cortex, whereas the expression domain of cadherin-8, a visual marker, was reduced caudally in the neonatal naked mole rat cortex. The expression domain of cadherin-8 was also reduced in other visual areas, such as the lateral geniculate nucleus and superior colliculus. Immunohistochemical analysis of thalamocortical fibers further suggested that somatosensory input did not affect cortical gene expression in the neonatal naked mole rat brain. These results suggest that the development of the somatosensory system and the regression of the visual system in the naked mole rat cortex are due to intrinsic genetic mechanisms as well as sensory input-dependent mechanisms. Intrinsic genetic mechanisms thus appear to contribute to species diversity in cortical area formation.

  4. P-cadherin expression in feline mammary tissues.

    PubMed

    Figueira, Ana Catarina; Teodósio, Ana Sofia; Carvalheira, Júlio; Lacerda, Manuela; de Matos, Augusto; Gärtner, Fátima

    2012-01-01

    The search for molecular markers in the feline mammary gland, namely, the adhesion molecules belonging to the cadherin family, is useful in the understanding of the development of mammary carcinomas in felines and humans. To study P-cadherin expression in the feline mammary gland, 61 samples of normal (n = 4), hyperplastic (n = 12), and neoplastic (n = 45) feline mammary tissues were examined. In both normal and hyperplastic mammary tissues as well as in benign tumours, P-cadherin immunolabelling was restricted to myoepithelial cells. In malignant tumours, however, there was an aberrant epithelial P-cadherin immunoexpression in 64.1% (n = 25) of cases, with a membranous and/or cytoplasmic pattern of distribution. A statistically significant relationship was seen between epithelial P-cadherin expression and malignant mammary lesions (P = 0.0001). In malignant mammary tumours, there was likewise a statistically significant relationship between aberrant P-cadherin immunoexpression and histological grade (P = 0.0132). Aberrant epithelial P-cadherin expression seems to be related to malignancy in the feline mammary gland. To confirm the results of this investigation, further studies with larger samples and follow-up studies are warranted.

  5. Cadherins in cerebellar development: translation of embryonic patterning into mature functional compartmentalization.

    PubMed

    Redies, Christoph; Neudert, Franziska; Lin, Juntang

    2011-09-01

    Cadherins are cell adhesion molecules with multiple morphogenic functions in brain development, for example, in neuroblast migration and aggregation, axon navigation, neural circuit formation, and synaptogenesis. More than 100 members of the cadherin superfamily are expressed in the developing and mature brain. Most of the cadherins investigated, in particular classic cadherins and δ-protocadherins, are expressed in the cerebellum. For several cadherin subtypes, expression begins at early embryonic stages and persists until mature stages of cerebellar development. At intermediate stages, distinct Purkinje cell clusters exhibit unique rostrocaudal and mediolateral expression profiles for each cadherin. In the chicken, mouse, and other species, the Purkinje cell clusters are separated by intervening raphes of migrating granule cells. This pattern of Purkinje cell clusters/raphes is, at least in part, continuous with the parasagittal striping pattern that is apparent in the mature cerebellar cortex, for example, for zebrin II/aldolase C. Moreover, subregions of the deep cerebellar nuclei, vestibular nuclei and the olivary complex also express cadherins differentially. Neuroanatomical evidence suggests that the nuclear subregions and cortical domains that express the same cadherin subtype are connected to each other, to form neural subcircuits of the cerebellar system. Cadherins thus provide a molecular code that specifies not only embryonic structures but also functional cerebellar compartmentalization. By following the implementation of this code, it can be revealed how mature functional architecture emerges from embryonic patterning during cerebellar development. Dysfunction of some cadherins is associated with psychiatric diseases and developmental impairments and may also affect cerebellar function.

  6. Cadherin expression by embryonic divisions and derived gray matter structures in the telencephalon of the chicken.

    PubMed

    Redies, C; Medina, L; Puelles, L

    2001-09-24

    The expression of three cadherins (cadherin-6B, cadherin-7, and R-cadherin) was studied by immunohistochemistry in the telencephalon of chicken embryos at intermediate stages of development (11 and 15 days of incubation). Expression patterns were related to cytoarchitecture and to previously published data on functional connections and on the expression of gene regulatory proteins. Our results indicate that, like in other regions of the embryonic chicken brain, the expression of each cadherin is restricted to parts of embryonic divisions as well as to particular nuclei, areas or their subdivisions. The expression patterns are largely complementary with partial overlap. The regional expression of the cadherins respects the boundary between the pallium and the subpallium as well as between various pallial and subpallial subdivisions. Novel subdivisions were found in several telencephalic areas. For example, subjacent to the hyperstriatum, the neostriatum contains multiple islands of cells with a profile of cadherin expression that differs from the surrounding matrix ("island fields"). Moreover, the expression of each cadherin is apparently associated with parts of intratelencephalic neural circuits and of thalamopallial and basal ganglia pathways. These results support a role for cadherins in the aggregation and differentiation of gray matter structures within embryonic brain divisions. The cadherin immunostaining patterns are interpreted in the context of a recently proposed divisional scheme of the avian pallium that postulates medial, dorsal, lateral, and ventral divisions as complete radial histogenetic units (Puelles et al. [2000]).

  7. Synergistic action of nectins and cadherins generates the mosaic cellular pattern of the olfactory epithelium

    PubMed Central

    Katsunuma, Sayaka; Honda, Hisao; Shinoda, Tomoyasu; Ishimoto, Yukitaka; Miyata, Takaki; Kiyonari, Hiroshi; Abe, Takaya; Nibu, Ken-ichi; Takai, Yoshimi

    2016-01-01

    In the olfactory epithelium (OE), olfactory cells (OCs) and supporting cells (SCs), which express different cadherins, are arranged in a characteristic mosaic pattern in which OCs are enclosed by SCs. However, the mechanism underlying this cellular patterning is unclear. Here, we show that the cellular pattern of the OE is established by cellular rearrangements during development. In the OE, OCs express nectin-2 and N-cadherin, and SCs express nectin-2, nectin-3, E-cadherin, and N-cadherin. Heterophilic trans-interaction between nectin-2 on OCs and nectin-3 on SCs preferentially recruits cadherin via α-catenin to heterotypic junctions, and the differential distributions of cadherins between junctions promote cellular intercalations, resulting in the formation of the mosaic pattern. These observations are confirmed by model cell systems, and various cellular patterns are generated by the combinatorial expression of nectins and cadherins. Collectively, the synergistic action of nectins and cadherins generates mosaic pattern, which cannot be achieved by a single mechanism. PMID:26929452

  8. Differential Expression of protocadherin-19, protocadherin-17 and cadherin-6 in Adult Zebrafish Brain

    PubMed Central

    Liu, Qin; Bhattarai, Sunil; Wang, Nan; Sochacka-Marlowe, Alicja

    2015-01-01

    Cell adhesion molecule cadherins play important roles in both development and maintenance of adult structures. Most studies on cadherin expression have been carried out in developing organisms, but information on cadherin distribution in adult vertebrate brains is limited. In this study, we used in situ hybridization to examine mRNA expression of three cadherins, protocadherin-19, protocadherin-17 and cadherin-6 in adult zebrafish brain. Each cadherin exhibits a distinct expression pattern in the fish brain, with protocadherin-19 and protocadherin-17 showing much wider and stronger expression than that of cadherin-6. Both protocadherin-19 and protocadherin-17 expressing cells occur throughout the brain with strong expression in the ventromedial telencephalon, periventricular regions of the thalamus and anterior hypothalamus, stratum periventriculare of the optic tectum, dorsal tegmental nucleus, granular regions of the cerebellar body and valvula, and superficial layers of the facial and vagal lobes. Numerous sensory structures (e.g. auditory, gustatory, lateral line, olfactory and visual nuclei) and motor nuclei (e.g. oculomotor, trochlear, trigeminal motor, abducens and vagal motor nuclei) contain protocadherin-19 and/or protocadherin-17 expressing cell. Expression of these two protocadherins is similar in the ventromedial telencephalon, thalamus, hypothalamus, facial and vagal lobes, but substantially different in the dorsolateral telencephalon, intermediate layers of the optic tectum, and cerebellar valvula. In contrast to the two protocadherins, cadherin-6 expression is much weaker and limited in the adult fish brain. PMID:25612302

  9. Differential expression of protocadherin-19, protocadherin-17, and cadherin-6 in adult zebrafish brain.

    PubMed

    Liu, Qin; Bhattarai, Sunil; Wang, Nan; Sochacka-Marlowe, Alicja

    2015-06-15

    Cell adhesion molecule cadherins play important roles in both development and maintenance of adult structures. Most studies on cadherin expression have been carried out in developing organisms, but information on cadherin distribution in adult vertebrate brains is limited. In this study we used in situ hybridization to examine mRNA expression of three cadherins, protocadherin-19, protocadherin-17, and cadherin-6 in adult zebrafish brain. Each cadherin exhibits a distinct expression pattern in the fish brain, with protocadherin-19 and protocadherin-17 showing much wider and stronger expression than that of cadherin-6. Both protocadherin-19 and protocadherin-17-expressing cells occur throughout the brain, with strong expression in the ventromedial telencephalon, periventricular regions of the thalamus and anterior hypothalamus, stratum periventriculare of the optic tectum, dorsal tegmental nucleus, granular regions of the cerebellar body and valvula, and superficial layers of the facial and vagal lobes. Numerous sensory structures (e.g., auditory, gustatory, lateral line, olfactory, and visual nuclei) and motor nuclei (e.g., oculomotor, trochlear, trigeminal motor, abducens, and vagal motor nuclei) contain protocadherin-19 and/or protocadherin-17-expressing cell. Expression of these two protocadherins is similar in the ventromedial telencephalon, thalamus, hypothalamus, facial, and vagal lobes, but substantially different in the dorsolateral telencephalon, intermediate layers of the optic tectum, and cerebellar valvula. In contrast to the two protocadherins, cadherin-6 expression is much weaker and limited in the adult fish brain.

  10. Metformin represses cancer cells via alternate pathways in N-cadherin expressing vs. N-cadherin deficient cells.

    PubMed

    Ge, Rongbin; Wang, Zongwei; Wu, Shulin; Zhuo, Yangjia; Otsetov, Aleksandar G; Cai, Chao; Zhong, Weide; Wu, Chin-Lee; Olumi, Aria F

    2015-10-01

    Metformin has emerged as a potential anticancer agent. Here, we demonstrate that metformin plays an anti-tumor role via repressing N-cadherin, independent of AMPK, in wild-type N-cadherin cancer cells. Ectopic-expression of N-cadherin develops metformin-resistant cancer cells, while suppression of N-cadherin sensitizes cancer to metformin. Manipulation of AMPK expression does not alter sensitivity of cancer to metformin. We show that NF-kappaB is a downstream molecule of N-cadherin and metformin regulates NF-kappaB signaling via suppressing N-cadherin. Moreover, we also suggest that TWIST1 is an upstream molecule of N-cadherin/NF-kappaB signaling and manipulation of TWIST1 expression changes the sensitivity of cancer cells to metformin. In contrast to the cells that express N-cadherin, in N-cadherin deficient cells, metformin plays an anti-tumor role via activation of AMPK. Ectopic expression of N-cadherin makes cancer more resistant to metformin. Therefore, we suggest that metformin's anti-cancer therapeutic effect is mediated through different molecular mechanism in wild-type vs. deficient N-cadherin cancer cells. At last, we selected 49 out of 984 patients' samples with prostatic cancer after radical prostatectomy (selection criteria: Gleason score ≥ 7 and all patients taking metformin) and showed levels of N-cadherin, p65 and AMPK could predict post-surgical recurrence in prostate cancer after treatment of metformin.

  11. E-cadherin expression in transitional cell carcinomas.

    PubMed

    Székely, Eszter; Török, Virág; Székely, Tamás; Riesz, Péter; Romics, Imre

    2006-01-01

    The authors analyzed the expression of E-cadherin, one of the most important cell adhesion molecules, on histological slides of tumors of bladder cancer patients. The aim of the study was to see whether there is any association between E-cadherin expression and tumor grade, stage, age and gender of the patients, number of recurrences, or overall survival. The samples were examined in 51 primary bladder transitional cell carcinomas (TCC) of 50 patients, resected by transurethral resection (TUR) between January 1, 1996 and January 1, 1997. Immunoreactions were performed with monoclonal anti-human E-cadherin antibody. Forty of the fifty patients could be clinically followed. The analysis of the results on these forty patients was performed by contingency analysis and significance was assessed by chi2 test. No significant association between E-cadherin expression and tumor grade, stage, age or gender of the patients, the number of recurrences, or overall survival could be seen.

  12. Using cadherin expression to assess spontaneous differentiation of embryonic stem cells.

    PubMed

    Spencer, Helen; Keramari, Maria; Ward, Christopher M

    2011-01-01

    Embryonic stem cells (ESCs) are pluripotent cells derived from preimplantation embryos and can be maintained in an undifferentiated state over prolonged periods in vitro. In addition, ESCs can be induced to differentiate into cells representative of the three primary germ layers. As such, ESCs are a useful system for studying early developmental events in vitro and have the potential to provide a ubiquitous supply of somatic cells for use in regenerative medicine. However, significant differences in the expression pattern of various cell surface markers between murine and human ESCs, e.g. the SSEA series, necessitate the use of separate markers for determining the undifferentiated state of these cells. We have recently shown that an E- to N-cadherin switch occurs during spontaneous differentiation of both murine and human ESCs. Here we describe the use of E-cadherin and N-cadherin proteins and transcript expression for assessing the proportion of undifferentiated and spontaneously differentiated cells within ESC populations. In summary, loss of cell surface E-cadherin and/or gain of N-cadherin protein expression provides a useful nondestructive assay for the determination of the proportion of spontaneously differentiated cells within an ESC population. In addition, presence of N-cadherin transcripts in an ESC population is indicative of spontaneous differentiation of a proportion of the cells. PMID:21042986

  13. Expression of classical cadherins in the cerebellar anlage: quantitative and functional aspects.

    PubMed

    Gliem, Michael; Weisheit, Gunnar; Mertz, Kirsten D; Endl, Elmar; Oberdick, John; Schilling, Karl

    2006-12-01

    During central nervous system (CNS) development, cell migration precedes and is key to the integration of diverse sets of cells. Mechanistically, CNS histogenesis is realized through a balanced interplay of cell-cell and cell-matrix adhesion molecules. Here, we summarize experiments that probe the developmental expression and potential significance of a set of cadherins, including M-, N- and R-cadherin, for patterning of the cerebellar cortex. We established a transgenic marker that allows cerebellar granule cells to be followed from the neuroblast stage to their final, postmitotic settlement. In conjunction with flow cytometry, this allowed us to derive a quantitative view of cadherin expression in differentiating granule cells and relate it to the expression of the same cadherins in cerebellar inhibitory interneuronal precursors. In vitro reaggregation analysis supports a role for cadherins in cell sorting and migration within the nascent cerebellar cortex that may be rationalized within the context of the differential adhesion hypothesis (Foty, R.A. and Steinberg, M.S., 2005. The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255-263.).

  14. N-cadherin expression in palisade nerve endings of rat vellus hairs.

    PubMed

    Kaidoh, Toshiyuki; Inoué, Takao

    2008-02-01

    Palisade nerve endings (PNs) are mechanoreceptors around vellus hairs of mammals. Each lanceolate nerve ending (LN) of the PN is characterized by a sensory nerve ending symmetrically sandwiched by two processes of type II terminal Schwann cells (tSCIIs). However, the molecular mechanisms underlying the structural organization of the PN are poorly understood. Electron microscopy showed that adherens junctions appeared to adhere to the sensory nerve ending and tSCII processes, so we examined the location of the N-cadherin adhesion system in PNs of rat vellus hairs by using immunoelectron microscopy. N-cadherin localized near both ends of the cell boundary between sensory nerve ending and tSCII processes, which corresponded to the sites of adherens junctions. We further found cadherin-associated proteins, alpha- and beta-catenins, at the linings of adherens junctions. Three-dimensional reconstruction of immunoelectron microscopic serial thin sections showed four linear arrays of N-cadherin arranged longitudinally along the LN beneath the four longitudinal borders of two tSCII processes. In contrast, sensory nerve fibers just proximal to the LNs formed common unmyelinated nerve fibers, in which N-cadherin was located mainly at the mesaxon of type I terminal Schwann cells (tSCIs). These results suggest that the four linear arrays of N-cadherin-mediated junctions adhere the sensory nerve ending and tSCII processes side by side to form the characteristic structure of the LN, and the structural differences between the LNs and the proximal unmyelinated nerve fibers possibly are due to the difference in the pattern of N-cadherin expression between sensory nerve endings and tSCII or tSCI processes.

  15. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis.

    PubMed

    Hazan, R B; Phillips, G R; Qiao, R F; Norton, L; Aaronson, S A

    2000-02-21

    E- and N-cadherin are calcium-dependent cell adhesion molecules that mediate cell-cell adhesion and also modulate cell migration and tumor invasiveness. The loss of E-cadherin-mediated adhesion has been shown to play an important role in the transition of epithelial tumors from a benign to an invasive state. However, recent evidence indicates that another member of the cadherin family, N-cadherin, is expressed in highly invasive tumor cell lines that lacked E-cadherin expression. These findings have raised the possibility that N-cadherin contributes to the invasive phenotype. To determine whether N-cadherin promotes invasion and metastasis, we transfected a weakly metastatic and E-cadherin-expressing breast cancer cell line, MCF-7, with N-cadherin and analyzed the effects on cell migration, invasion, and metastasis. Transfected cells expressed both E- and N-cadherin and exhibited homotypic cell adhesion from both molecules. In vitro, N-cadherin-expressing cells migrated more efficiently, showed an increased invasion of Matrigel, and adhered more efficiently to monolayers of endothelial cells. All cells produced low levels of the matrix metalloproteinase MMP-9, which was dramatically upregulated by treatment with FGF-2 only in N-cadherin-expressing cells. Migration and invasion of Matrigel were also greatly enhanced by this treatment. When injected into the mammary fat pad of nude mice, N-cadherin-expressing cells, but not control MCF-7 cells, metastasized widely to the liver, pancreas, salivary gland, omentum, lung, lymph nodes, and lumbar spinal muscle. The expression of both E- and N-cadherin was maintained both in the primary tumors and metastatic lesions. These results demonstrate that N-cadherin promotes motility, invasion, and metastasis even in the presence of the normally suppressive E-cadherin. The increase in MMP-9 production by N-cadherin-expressing cells in response to a growth factor may endow them with a greater ability to penetrate matrix protein

  16. Formation of cadherin-expressing brain nuclei in diencephalic alar plate divisions.

    PubMed

    Yoon, M S; Puelles, L; Redies, C

    2000-11-01

    During the formation of brain nuclei, the vertebrate neural tube is partitioned into distinct embryonic divisions. In this study, the expression of three members of the cadherin family of adhesion molecules (cadherin-6B, cadherin-7, and R-cadherin) was mapped to study the differentiation of gray matter in the division so that diencephalic alar plate of chicken embryos from embryonic day 3 (E3) to E10. At early stages of development (E3-E4), each cadherin is expressed in restricted regions of the diencephalic wall of the neural tube. The borders of some of the expression domains coincide with divisional boundaries. As the mantle layer is formed and increases in thickness from E4 to E8, morphologically discernible aggregates of cells appear that express the three cadherins differentially. These aggregates represent the anlagen of specific diencephalic brain nuclei, e.g., the lateroanterior nucleus, the ventral geniculate nucleus, the nucleus rotundus, the perirotundic area, the principal precommissural nucleus, and the lateral spiriform nucleus. Most of the cadherin-expressing diencephalic nuclei studied in this work apparently derive from a single embryonic division and remain there. The divisional boundaries are replaced gradually by the borders of cadherin-expressing brain nuclei. The current results support the idea that cadherins confer differential adhesiveness to developing structures of gray matter in the diencephalic alar plate. Moreover, they suggest that each cadherin plays a role in the formation of specific brain nuclei within the diencephalic divisions.

  17. Formation of cadherin-expressing brain nuclei in diencephalic alar plate divisions.

    PubMed

    Yoon, M S; Puelles, L; Redies, C

    2000-06-12

    During the formation of brain nuclei, the vertebrate neural tube is partitioned into distinct embryonic divisions. In this study, the expression of three members of the cadherin family of adhesion molecules (cadherin-6B, cadherin-7, and R-cadherin) was mapped to study the differentiation of gray matter in the divisions of the diencephalic alar plate of chicken embryos from embryonic day 3 (E3) to E10. At early stages of development (E3-E4), each cadherin is expressed in restricted regions of the diencephalic wall of the neural tube. The borders of some of the expression domains coincide with divisional boundaries. As the mantle layer is formed and increases in thickness from E4 to E8, morphologically discernible aggregates of cells appear that express the three cadherins differentially. These aggregates represent the anlagen of specific diencephalic brain nuclei, e.g., the lateroanterior nucleus, the ventral geniculate nucleus, the nucleus rotundus, the perirotundic area, the principal precommissural nucleus, and the lateral spiriform nucleus. Most of the cadherin-expressing diencephalic nuclei studied in this work apparently derive from a single embryonic division and remain there. The divisional boundaries are replaced gradually by the borders of cadherin-expressing brain nuclei. The current results support the idea that cadherins confer differential adhesiveness to developing structures of gray matter in the diencephalic alar plate. Moreover, they suggest that each cadherin plays a role in the formation of specific brain nuclei within the diencephalic divisions.

  18. CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer

    PubMed Central

    Caldeira, José Roberto F; Prando, Érika C; Quevedo, Francisco C; Neto, Francisco A Moraes; Rainho, Cláudia A; Rogatto, Silvia R

    2006-01-01

    Background The E-cadherin gene (CDH1) maps, at chromosome 16q22.1, a region often associated with loss of heterozygosity (LOH) in human breast cancer. LOH at this site is thought to lead to loss of function of this tumor suppressor gene and was correlated with decreased disease-free survival, poor prognosis, and metastasis. Differential CpG island methylation in the promoter region of the CDH1 gene might be an alternative way for the loss of expression and function of E-cadherin, leading to loss of tissue integrity, an essential step in tumor progression. Methods The aim of our study was to assess, by Methylation-Specific Polymerase Chain Reaction (MSP), the methylation pattern of the CDH1 gene and its possible correlation with the expression of E-cadherin and other standard immunohistochemical parameters (Her-2, ER, PgR, p53, and K-67) in a series of 79 primary breast cancers (71 infiltrating ductal, 5 infiltrating lobular, 1 metaplastic, 1 apocrine, and 1 papillary carcinoma). Results CDH1 hypermethylation was observed in 72% of the cases including 52/71 ductal, 4/5 lobular carcinomas and 1 apocrine carcinoma. Reduced levels of E-cadherin protein were observed in 85% of our samples. Although not statistically significant, the levels of E-cadherin expression tended to diminish with the CDH1 promoter region methylation. In the group of 71 ductal cancinomas, most of the cases of showing CDH1 hypermethylation also presented reduced levels of expression of ER and PgR proteins, and a possible association was observed between CDH1 methylation and ER expression (p = 0.0301, Fisher's exact test). However, this finding was not considered significant after Bonferroni correction of p-value. Conclusion Our preliminary findings suggested that abnormal CDH1 methylation occurs in high frequencies in infiltrating breast cancers associated with a decrease in E-cadherin expression in a subgroup of cases characterized by loss of expression of other important genes to the mammary

  19. Expression of E-cadherin and vimentin in oral squamous cell carcinoma

    PubMed Central

    Zhou, Jingping; Tao, Detao; Xu, Qing; Gao, Zhenlin; Tang, Daofang

    2015-01-01

    The aim of the study is to determine the levels of E-cadherin, vimentin expression in tumor tissues from patients with oral squamous cell carcinoma (OSCC), and the relationship between the expression of E-cadherin, vimentin and epithelial-mesenchymal transition, in order to explore its values for predicting the invasion and metastasis of oral squamous cell carcinoma, short survival of patients in many types of cancer. E-cadherin and vimentin expression of 10 benign and 42 OSCC tumor tissues was examined by immunohistochemical staining. E-cadherin is positively expressed in normal oral mucosa epithelium, but vimentin expression is not found in normal oral mucosa epithelia; the E-cadherin and vimentin were expressed in 26 of 42 (61.9%) and 16 of 42 (38.1%), respectively. No statistically difference was found for E-cadherin and vimentin expression in patients with different age, gender and tumor location, E-cadherin and vimentin expression was significantly associated with lymph node metastasis and tissue location (P < 0.05); E-cadherin expression was also significantly associated with tumor stage (P < 0.05); there are significantly difference between infiltrative margin and central area in patients with oral squamous cell carcinoma for E-cadherin and vimentin positive expression (P < 0.05). E-cadherin and vimentin positive expression was associated with tumor metastasis of oral squamous cell carcinoma. Our study preliminarily confirmed that EMT phenomenon is existed during the development of oral squamous cell carcinoma. Co-evaluation of E-cadherin and vimentin might be a valuable tool for predicting OSCC patient outcome. PMID:26045832

  20. Pituitary tumor transforming gene PTTG2 induces psoriasis by regulating vimentin and E-cadherin expression.

    PubMed

    Liu, Xiao-Bing; Li, Feng; Li, Ya-Qin; Yang, Fan

    2015-01-01

    Psoriasis is a common and intractable skin disease affecting the physical and mental health of patients. This study focused on the roles of pituitary tumor transforming gene 2 (PTTG2) in psoriasis. Using real-time quantitative PCR and western blot, the expression patterns of PTTG2 were compared in psoriatic epidermis cells and normal cells, from both mRNA levels and protein levels. Knockdown of PTTG2 by siRNA was conducted in HaCaT cells to investigate the changes in cell viability and migration in vitro. Expression changes of vimentin and E-cadherin were also detected in the transfected cells. Results showed PTTG2 was significantly overexpressed in the psoriatic epidermis cells (P < 0.05). The cell viability and migration were inhibited by the knockdown of PTTG2. Besides, knockdown of PTTG2 resulted in down-regulation of vimentin and up-regulation of E-cadherin, with significant differences compared to the siRNA control group (P < 0.05). This study indicated the involvement of PTTG2 in mediating epidermis cell viability and migration and in pathogenesis of psoriasis. PTTG2 might be a potential therapeutic target for psoriasis through inducing epithelial-to-mesenchymal transition (EMT) via regulating the expression of vimentin and E-cadherin. PMID:26617803

  1. Cadherin transfection of Xenopus XTC cells downregulates expression of substrate adhesion molecules.

    PubMed

    Finnemann, S; Kühl, M; Otto, G; Wedlich, D

    1995-09-01

    Cadherins are discussed not in terms of their adhesive function but rather as morphoregulatory proteins. Changes in gene expression following cadherin transfection of cells in culture or by overexpression in embryos have, until now, not been reported. We established a protocol for stable transfection of Xenopus XTC cells and generated cells bearing high levels of membrane-integrated mouse uvomorulin (E-cadherin) or Xenopus XB-cadherin. These cell lines showed drastically impaired substrate adhesion on fibronectin and laminin. In immunoblot and radioimmunoprecipitation experiments, we found that fibronectin and alpha 3/beta 1 integrin are downregulated. The reduced amounts of proteins result from a decrease of the respective mRNAs as proven by RNase protection assays. Coprecipitations revealed that transfected cadherin molecules are complexed with alpha-catenin and beta-catenin at plasma membranes. However, the alpha-catenin present in the XB-cadherin complex differs immunologically from that found in the uvomorulin complex. When a truncated form of XB-cadherin lacking 38 of the most C-terminal amino acids was expressed in XTC cells, complex formation with endogenous catenins was abolished. In these transfectants, substrate adhesion was not affected. These results prove that complex formation of transfected cadherins in XTC cells with endogenous beta-catenin correlates with altered synthesis of certain substrate adhesion molecules.

  2. Expression of dominant negative cadherin in the adult mouse brain modifies rearing behavior.

    PubMed

    Edsbagge, Josefina; Zhu, Shunwei; Xiao, Min-Yi; Wigström, Holger; Mohammed, Abdul H; Semb, Henrik

    2004-03-01

    The cadherin superfamily of cell-cell adhesion molecules (CAM) are crucial regulators of morphogenesis and axonal guidance during development of the nervous system and have been suggested to play important roles in neural plasticity of the brain. To study the latter, we created a mouse model that expressed a dominant negative classical cadherin in the brain of adult mice. The mice were tested for spontaneous motor activity and exploratory behavior in the open field, anxiety in the plus-maze, and spatial learning and memory in the water-T maze. Mice expressing the dominant negative cadherin displayed reduced rearing behavior, but no change in motor activity, in the open field, indicating deficits in exploratory behavior. In the water maze, animals expressing the mutant cadherin showed normal escape latencies and were indistinguishable from control littermates. Similarly, LTP in hippocampal slices of cadherin mutant and control mice were indistinguishable. These findings demonstrate intact spatial learning in mice expressing a dominant negative cadherin but altered rearing behavior, suggesting the involvement of classical cadherins in mechanisms mediating rearing behavior.

  3. Pdx1 regulates pancreas tubulogenesis and E-cadherin expression.

    PubMed

    Marty-Santos, Leilani; Cleaver, Ondine

    2016-01-01

    Current efforts in developing treatments for diabetes focus on in vitro generation of functional β-cells for cell replacement therapies; however, these attempts have only been partly successful because factors involved in islet formation remain incompletely understood. The embryonic pancreas, which gives rise to β-cells, undergoes early epithelial rearrangements, including transient stratification of an initially monolayered epithelium, followed by microlumen formation and later resolution into branches. Within the epithelium, a multipotent progenitor cell (MPC) population is specified, giving rise to three important lineages: acinar, ductal and endocrine. Pdx1 is a transcription factor required for pancreas development and lineage specification; however, few Pdx1 targets that regulate pancreatogenesis have been identified. We find that pancreatic defects in Pdx1(-/-) embryos initiate at the time when the progenitor pool is specified and the epithelium should resolve into branches. Pdx1(-/-) microlumen diameters expand aberrantly, resulting in failure of epithelial tubulogenesis and ductal plexus formation. Pdx1(-/-) epithelial cell proliferation is decreased and the MPC pool is rapidly lost. We identify two conserved Pdx1 binding sites in the epithelial cadherin (E-cad, Cdh1) promoter, and show that Pdx1 directly binds and activates E-cad transcription. In addition, Pdx1 is required in vivo for maintenance of E-cad expression, actomyosin complex activity and cell shape. These findings demonstrate a novel link between regulators of epithelial architecture, specification of pancreatic cell fate and organogenesis.

  4. Epigenetic repression of E-cadherin expression by hepatitis B virus x antigen in liver cancer.

    PubMed

    Arzumanyan, A; Friedman, T; Kotei, E; Ng, I O L; Lian, Z; Feitelson, M A

    2012-02-01

    Loss of E-cadherin is associated with acquisition of metastatic capacity. Numerous studies suggest that histone deacetylation and/or hypermethylation of CpG islands in E-cadherin gene (CDH1) are major mechanisms responsible for E-cadherin silencing in different tumors and cancer cell lines. The hepatitis B virus (HBV)-encoded X antigen, HBx, contributes importantly to the development of hepatocellular carcinoma using multiple mechanisms. Experiments were designed to test if in addition to CDH1 hypermethylation HBx promotes epigenetic modulation of E-cadherin transcriptional activity through histone deacetylation and miR-373. The relationships between HBx, E-cadherin, mSin3A, Snail-1 and miR-373 were evaluated in HBx expressing (HepG2X) and control (HepG2CAT) cells by western blotting, immunoprecipitation (IP), chromatin IP as well as by immunohistochemical staining of liver and tumor tissue sections from HBV-infected patients. In HepG2X cells, decreased levels of E-cadherin and elevated levels of mSin3A and Snail-1 were detected. Reciprocal IP with anti-HBx and anti-mSin3A demonstrated mutual binding. Furthermore, HBx-mSin3A colocalization was detected by immunofluorescent staining. HBx downregulated E-cadherin expression by the recruitment of the mSin3A/histone deacetylase complex to the Snail-binding sites in human CDH1. Histone deacetylation inhibition by Trichostatin-A treatment restored E-cadherin expression. Mir-373, a positive regulator of E-cadherin expression, was downregulated by HBx in HepG2X cells and tissue sections from HBV-infected patients. Thus, histone deacetylation of CDH1 and downregulation of miR-373, together with the previously demonstrated hypermethylation of CDH1 by HBx, may be important for the understanding of HBV-related carcinogenesis.

  5. Expression of E-, P- and N-Cadherin and Its Clinical Significance in Cervical Squamous Cell Carcinoma and Precancerous Lesions

    PubMed Central

    Li, Baohua; Shi, Haiyan; Wang, Fenfen; Hong, Die; Lv, Weiguo; Xie, Xing; Cheng, Xiaodong

    2016-01-01

    Aberrant expression of classical cadherins has been observed in tumor invasion and metastasis, but its involvement in cervical carcinogenesis and cancer progression is not clear. We investigated E-, P- and N-cadherin expression and its significance in cervical squamous cell carcinoma (SCC) and cervical intraepithelial neoplasia (CIN). This retrospective study enrolled 508 patients admitted to Women's Hospital, School of Medicine, Zhejiang University with cervical lesions between January 2006 and December 2010. Immunochemical staining was performed in 98 samples of normal cervical epithelium (NC), 283 of CIN, and 127 of early-stage SCC. The association of cadherin staining with clinical characteristics and survival of the patients was evaluated by univariate and multivariate analysis. We found gradients of decreasing E-cadherin expression and increasing P-cadherin expression from NC through CIN to SCC. Aberrant E-cadherin and P-cadherin expression were significantly associated with clinical parameters indicating poor prognosis and shorter patient survival. Interestingly, we found very low levels of positive N-cadherin expression in CIN and SCC tissues that were not related to CIN or cancer. Pearson chi-square tests showed that E-cadherin expression in SCC was inversely correlated with P-cadherin expression (E-P switch), and was not correlated with N-cadherin expression. More important, patients with tissues exhibiting an E-P switch in expression had highly aggressive phenotypes and poorer prognosis than those without E-P switch expression. Our findings suggest that E-cadherin and P-cadherin, but not N-cadherin staining, might be useful in diagnosing CIN and for predicting prognosis in patients with early-stage SCC. PMID:27223886

  6. XPC inhibits NSCLC cell proliferation and migration by enhancing E-Cadherin expression

    PubMed Central

    Cui, Tiantian; Srivastava, Amit Kumar; Han, Chunhua; Yang, Linlin; Zhao, Ran; Zou, Ning; Qu, Meihua; Duan, Wenrui; Zhang, Xiaoli; Wang, Qi-En

    2015-01-01

    Xeroderma pigmentosum complementation group C (XPC) protein is an important DNA damage recognition factor in nucleotide excision repair. Deletion of XPC is associated with early stages of human lung carcinogenesis, and reduced XPC mRNA levels predict poor patient outcome for non-small cell lung cancer (NSCLC). However, the mechanisms linking loss of XPC expression and poor prognosis in lung cancer are still unclear. Here, we report evidence that XPC silencing drives proliferation and migration of NSCLC cells by down-regulating E-Cadherin. XPC knockdown enhanced proliferation and migration while decreasing E-Cadherin expression in NSCLC cells with an epithelial phenotype. Restoration of E-Cadherin in these cells suppressed XPC knockdown-induced cell growth both in vitro and in vivo. Mechanistic studies showed that the loss of XPC repressed E-Cadherin expression by activating the ERK pathway and upregulating Snail expression. Our findings indicate that XPC silencing-induced reduction of E-Cadherin expression contributes, at least in part, to the poor outcome of NSCLC patients with low XPC expression. PMID:25871391

  7. Clinicopathologic Correlations of E-cadherin and Prrx-1 Expression Loss in Hepatocellular Carcinoma

    PubMed Central

    Yi, Kijong; Kim, Hyunsung; Chung, Yumin; Ahn, Hyein; Sim, Jongmin; Wi, Young Chan; Pyo, Ju Yeon; Song, Young-Soo; Paik, Seung Sam; Oh, Young-Ha

    2016-01-01

    Background Developing predictive markers for hepatocellular carcinoma (HCC) is important, because many patients experience recurrence and metastasis. Epithelial to mesenchymal transition (EMT) is a developmental process that plays an important role during embryogenesis and also during cancer metastasis. Paired-related homeobox protein 1 (Prrx-1) is an EMT inducer that has recently been introduced, and its prognostic significance in HCC is largely unknown. Methods Tissue microarray was constructed using surgically resected primary HCCs from 244 cases. Immunohistochemical staining of E-cadherin and Prrx-1 was performed. The correlation between E-cadherin loss and Prrx-1 expression, as well as other clinicopathologic factors, was evaluated. Results E-cadherin expression was decreased in 96 cases (39.4%). Loss of E-cadherin correlated with a higher recurrence rate (p < .001) but was not correlated with patient’s survival. Thirty-two cases (13.3%) showed at least focal nuclear Prrx-1 immunoreactivity while all non-neoplastic livers (n = 22) were negative. Prrx-1 expression was not associated with E-cadherin loss, survival or recurrence rates, pathologic factors, or the Ki-67 labeling index. Twenty tumors that were positive for E-cadherin and Prrx-1 had significantly higher nuclear grades than the rest of the cohort (p = .037). In Cox proportional hazard models, E-cadherin loss and large vessel invasion were independent prognostic factors for shorter disease-free survival. Cirrhosis and high Ki-67 index (> 40%) were independent prognostic factors for shorter overall survival. Conclusions Prrx-1 was expressed in small portions of HCCs but not in normal livers. Additional studies with a large number of Prrx-1-positive cases are required to confirm the results of this study. PMID:27580127

  8. Transition of Immunohistochemical Expression of E-Cadherin and Vimentin from Premalignant to Malignant Lesions of Oral Cavity and Oropharynx

    PubMed Central

    Akhtar, Kafil; Ara, Anjum; Siddiqui, Shahid A; Sherwani, Rana K

    2016-01-01

    Objectives We sought to study the expression of epithelial-to-mesenchymal transition markers E-cadherin and vimentin in precancerous lesions of the oral cavity and oropharynx and to use the specific pattern of expression to predict invasiveness. Methods This cross-sectional study looked at 87 cases of oral and oropharyngeal lesions obtained between December 2012 and November 2014 in the Department of Pathology, Jawaharlal Nehru Medical College, Aligarh Muslim University, India. Fifty-three biopsies from the buccal mucosa, tongue, and pharynx and 34 resected oral specimens were evaluated for premalignant and malignant lesions using hematoxylin and eosin and immunohistochemical stains. Immunohistochemical expression of epithelial marker E-cadherin and mesenchymal marker vimentin was evaluated wherever possible. Slides were examined for staining pattern (cytoplasmic or membrane), proportion, and intensity of staining of tumor cells. Patients follow-up and therapy related changes were also studied. Results There were 64 premalignant and 23 malignant cases in our study with 65 (74.7%) cases seen in males and 22 (25.3%) cases seen in females. The majority of malignant cases, (n = 15; 64.2%) were seen in the fifth and sixth decades of life while most of the premalignant lesions (n = 36; 56.4%) were seen in the fourth and fifth decade. Amongst the 64 premalignant oral lesions, leukoplakia comprised of 14 cases (21.9%), of which three cases had associated mild to moderate dysplasia. The majority of premalignant lesions showed strong E-cadherin expression and decreased expression of vimentin with negative and weak expression in both dysplasias and carcinoma in situ (p = 0.013). E-cadherin expression was significantly reduced in invasive carcinomas compared to dysplasias and carcinoma in situ and the difference in immunoreactivity was statistically significant (p < 0.050). Vimentin expression increased as the tumor progressed from dysplasias to carcinoma in situ to invasive

  9. Mir-373 affects human lung cancer cells' growth and its E-cadherin expression.

    PubMed

    Wu, Weihua; He, Xiaoyan; Kong, Jing; Ye, Bin

    2012-01-01

    The aims of this study was to elucidate whether the expression of E-cadherin can be affected by the recombinant has-mir-373 eukaryotic expression plasmid vector through tests in vitro, and to analyze the relationship between the expression of E-cadherin and tumor growth. According to the has-mir-373 sequence in miRBase database, two template DNA sequences were designed. The has-mir-373 sequence and a control sequence were synthesized and cloned into pGenesil-1 eukaryotic expression plasmid vector. The recombinant plasmids were transfected into human lung cancer A549 cells by liposome-mediated method. The mir-373 expression in A549 cells was detected by using real-time quantitative polymerase chain reaction (real-time PCR). MTT (methyl thiazolyl tetrazolium) was used to analyze the growth of cancer cell cycle. RT-PCR and Western blotting were used to evaluate the levels of E-cadherin mRNA and protein expression, respectively. The expression of E-cadherin in cells was determined by immunocytochemistry. The mobility capability of transfected cells were evaluated by using wound healing assay in vitro. The fluorescent light was observed under fluorescent microscope. RT-PCR indicated that the mRNA of E-cadherin increased, and the Western blotting results also displayed that mir-373 promoted the expression of the E-cadherin protein. Compared with the control groups, MTT method and wound healing assay demonstrated that both the growth rate and migration of A549 cells transfected with the recombinant has-mir-373 eukaryotic expression plasmid was also decreased significantly (p < 0.001). The differences between the other two control groups were not significant (p > 0.05). The immunocytochemistry demonstrated a significant increase of E-cadherin protein levels in the cells transfected with mir-373, but not in the cells of the control group. Mir-373 could increase the expression levels of the E-cadherin and decrease the migration ability of human lung cancer A549 cells in

  10. Expression and potential correlation among Forkhead box protein M1, Caveolin-1 and E-cadherin in colorectal cancer

    PubMed Central

    Zhang, Jing; Zhang, Kundong; Zhou, Lisheng; Wu, Weidong; Jiang, Tao; Cao, Jun; Huang, Kejian; Qiu, Zhengjun; Huang, Chen

    2016-01-01

    The aim of the present study was to investigate the expression and functions of Forkhead box protein M1 (FoxM1), Caveolin-1 (Cav-1) and E-cadherin in colorectal cancer (CRC), and to determine the correlations among these proteins in CRC development and progression. The protein expression of FoxM1, Cav-1 and E-cadherin was identified using a human CRC and normal tissue microarray. A standard immunohistochemistry assay was performed employing anti-FoxM1, anti-Cav-1 and anti-E-cadherin antibodies. The clinicopathological significance of FoxM1, Cav-1 and E-cadherin in CRC was determined, and correlations were investigated between FoxM1 and Cav-1, FoxM1 and E-cadherin, Cav-1 and E-cadherin, respectively. The level of FoxM1, Cav-1 and E-Cadherin protein expression in CRC was found to be associated with pathological grade, tumor clinical stages and the presence of metastasis, respectively. Elevated expression of FoxM1 and Cav-1 was observed in the CRC tissues, and a significant correlation was found between the two proteins in CRC. However, it was also observed that FoxM1 was overexpressed while E-cadherin expression was low, indicating that there was a negative correlation between FoxM1 expression and E-cadherin expression. Moreover, there was also a negative correlation between Cav-1 and E-cadherin expression. Overall, the elevated expression of FoxM1 and Cav-1 in a human CRC microarray provided novel clinical evidence to elucidate the fact that they may play a critical role in the development and progression of CRC by negatively regulating E-cadherin expression. Furthermore, the positive correlation between FoxM1 and Cav-1 suggested that the proteins may constitute a novel signaling pathway in human CRC.

  11. Slug-upregulated miR-221 promotes breast cancer progression through suppressing E-cadherin expression

    PubMed Central

    Pan, Yi; Li, Jing; Zhang, Yaqin; Wang, Nan; Liang, Hongwei; Liu, Yuan; Zhang, Chen-Yu; Zen, Ke; Gu, Hongwei

    2016-01-01

    It is generally regarded that E-cadherin is downregulated during tumorigenesis via Snail/Slug-mediated E-cadherin transcriptional reduction. However, this transcriptional suppressive mechanism cannot explain the failure of producing E-cadherin protein in metastatic breast cancer cells after overexpressing E-cadherin mRNA. Here we reveal a novel mechanism that E-cadherin is post-transcriptionally regulated by Slug-promoted miR-221, which serves as an additional blocker for E-cadherin expression in metastatic tumor cells. Profiling the predicted E-cadherin-targeting miRNAs in breast cancer tissues and cells showed that miR-221 was abundantly expressed in breast tumor and metastatic MDA-MB-231 cells and its level was significantly higher in breast tumor or MDA-MB-231 cells than in distal non-tumor tissue and low-metastatic MCF-7 cells, respectively. MiR-221, which level inversely correlated with E-cadherin level in breast cancer cells, targeted E-cadherin mRNA open reading frame (ORF) and suppressed E-cadherin protein expression. Depleting or increasing miR-221 level in breast cancer cells induced or decreased E-cadherin protein level, leading to suppressing or promoting tumor cell progression, respectively. Moreover, miR-221 was specifically upregulated by Slug but not Snail. TGF-β treatment enhanced Slug activity and thus increased miR-221 level in MCF-7 cells. In summary, our results provide the first evidence that Slug-upregulated miR-221 promotes breast cancer progression via reducing E-cadherin expression. PMID:27174021

  12. Surface engineered magnetic nanoparticles for specific immunotargeting of cadherin expressing cells

    NASA Astrophysics Data System (ADS)

    Moros, Maria; Delhaes, Flavien; Puertas, Sara; Saez, Berta; de la Fuente, Jesús M.; Grazú, Valeria; Feracci, Helene

    2016-02-01

    In spite of historic advances in cancer biology and recent development of sophisticated chemotherapeutics, the outlook for patients with advanced cancer is still grim. In this sense nanoparticles (NPs), through their unique physical properties, enable the development of new approaches for cancer diagnosis and treatment. Thus far the most used active targeting scheme involves NPs functionalization with antibodies specific to molecules overexpressed on cancer cell’s surface. Therefore, such active targeting relies on differences in NPs uptake kinetics rates between tumor and healthy cells. Many cancers of epithelial origin are associated with the inappropriate expression of non-epithelial cadherins (e.g. N-, P-, -11) with concomitant loss of E-cadherin. Such phenomenon named cadherin switching favors tumor development and metastasis via interactions of tumor cells with stromal components. That is why we optimized the oriented functionalization of fluorescently labelled magnetic NPs with a novel antibody specific for the extracellular domain of cadherin-11. The obtained Ab-NPs exhibited high specificity when incubated with two cell lines used as models of tumor and healthy cells. Thus, cadherin switching offers a great opportunity for the development of active targeting strategies aimed to improve the early detection and treatment of cancer.

  13. Dehydropeptidase 1 promotes metastasis through regulation of E-cadherin expression in colon cancer

    PubMed Central

    Park, Sang Yoon; Lee, Seon-Jin; Cho, Hee Jun; Kim, Tae Woo; Kim, Jong-Tae; Kim, Jae Wha; Lee, Chul-Ho; Kim, Bo-Yeon; Yeom, Young Il; Lim, Jong-Seok; Lee, Younghee; Lee, Hee Gu

    2016-01-01

    Dehydropeptidase 1 (DPEP1) is a zinc-dependent metalloproteinase that is expressed aberrantly in several cancers. The role of DPEP1 in cancer remain controversial. In this study, we demonstrate that DPEP1 functions as a positive regulator for colon cancer cell metastasis. The expression of DPEP1 mRNA and proteins were upregulated in colon cancer tissues compared to normal mucosa. Gain-of-function and loss-of-function approaches were used to examine the malignant phenotype of DPEP1-expressing or DPEP1-depleted cells. DPEP1 expression caused a significant increase in colon cancer cell adhesion and invasion in vitro, and metastasis in vivo. In contrast, DPEP1 depletion induced opposite effects. Furthermore, cilastatin, a DPEP1 inhibitor, suppressed the invasion and metastasis of DPEP1-expressing cells. DPEP1 inhibited the leukotriene D4 signaling pathway and increased the expression of E-cadherin. We also show that DPEP1 mediates TGF-β-induced EMT. TGF-β transcriptionally repressed DPEP1 expression. TGF-β treatment decreased E-cadherin expression and promoted cell invasion in DPEP1-expressing colon cancer cell lines, whereas it did not affect these parameters in DPEP1-depleted cell lines. These results suggest that DPEP1 promotes cancer metastasis by regulating E-cadherin plasticity and that it might be a potential therapeutic target for preventing the progression of colon cancer. PMID:26824987

  14. E-cadherin expression is commonly downregulated by CpG island hypermethylation in esophageal carcinoma cells.

    PubMed

    Si, H X; Tsao, S W; Lam, K Y; Srivastava, G; Liu, Y; Wong, Y C; Shen, Z Y; Cheung, A L

    2001-11-01

    E-cadherin, a cell adhesion molecule, is regarded as an invasion-suppressor molecule and a prognostic marker in many types of human cancers. Downregulation of E-cadherin is common in esophageal carcinoma and is associated with an increase in invasive and metastatic potential. To study the mechanisms responsible for inactivation of this gene in esophageal squamous cell carcinoma (ESCC), we investigated the methylation status around the 5' promoter region of E-cadherin gene of six ESCC cell lines by methylation-specific polymerase chain reaction, and compared it with E-cadherin protein and mRNA expression. We also studied the methylation status of 20 ESCC clinical specimens. Methylation was noted in four of the six cell lines (one fully methylated and three partially methylated). The completely methylated cell line lacked E-cadherin protein expression and mRNA transcription. E-cadherin expression and transcription were reduced in a partially methylated cell line but preserved in the other partially methylated cell lines. Treatment of E-cadherin-negative carcinoma cells with the demethylating agent, 5-aza-2'-deoxycytidine, induced re-expression of the gene. A high frequency of methylation (16/20, 80%) was also noted in the 20 ESCC clinical samples. Our results indicate that 5' CpG island methylation is common in esophageal carcinoma and may play an important role in downregulation of E-cadherin.

  15. Inversion of layer-specific cadherin expression profiles and maintenance of cytoarchitectonic areas in the allocortex of the reeler mutant mouse.

    PubMed

    Stoya, Gudrun; Redies, Christoph; Schmid-Hertel, Nicole

    2014-09-01

    Cadherins are calcium-depending cell adhesion proteins that play critical roles in brain morphogenesis and wiring. They provide an adhesive code for the development of cortical layers, due to their homophilic interactions and their restricted spatiotemporal expression patterns. In the adult organism, cadherins are involved in the maintenance and plasticity of neuronal circuits that play a role in learning. A well-known model for studying corticogenesis is the reeler mouse model. Numerous investigations of neocortical development suggest that, in the reeler mutant mouse, the lack of the protein Reelin results in cell-type and region-dependent changes of the neocortical layers. To investigate in detail how layer formation and regionalization is perturbed in the phylogenetically older archicortex of the adult reeler mutant mouse, we studied the expression of 11 different cadherins (Cdh4, Cdh7, Cdh8, Cdh11, Pcdh1, Pcdh7, Pcdh8, Pcdh9, Pcdh10, Pcdh17, and Pcdh19) and of the transcription factors ER81 and Cux2 by in situ hybridization in the (peri-)archicortex. All cadherins studied show a layer-specific expression in the (peri-)archicortex of the wildtype brain. In the archicortex of the reeler mutant, the cadherin-expressing cell layers are dispersed in the radial dimension, whereas in the periarchicortex the superficial and deep layers are inverted, both in the adult and during development. Possibly, this inversion relates to the histoarchitectural division of the reeler entorhinal cortex into an external and an internal zone. The regionalized, gradient-like expression of the cadherins is preserved in the reeler mutant mouse.

  16. Immunohistochemical expression of E-cadherin and β-catenin in feline mammary tumours.

    PubMed

    Zappulli, V; De Cecco, S; Trez, D; Caliari, D; Aresu, L; Castagnaro, M

    2012-01-01

    E-cadherin and β-catenin have been studied in carcinogenesis and tumour progression and reduced membrane expression of these molecules in canine mammary tumours has been associated with a poor prognosis. The present study investigated immunohistochemically the expression of E-cadherin and β-catenin in 53 mammary tumours and 48 hyperplastic or dysplastic lesions from 57 queens. E-cadherin and β-catenin expression was membranous in all samples and there was a significant decrease in expression in malignant tumours and metastases. Cytoplasmic expression of both markers was inversely correlated to the membrane localization. β-catenin nuclear labelling was detected in one lymph node metastasis (60% positive cells) and in the basal/myoepithelial cells of 6/7 ductal tumours. No correlation with survival was found for either marker. These results confirm the role of these proteins in maintaining tissue architecture and in inhibiting cell invasiveness and potentially indicate the oncogenic potential of the Wnt/β-catenin transduction pathway in feline mammary tumours. In addition, specific independent expression of β-catenin in the nuclei of basal/myoepithelial cells might suggest that this molecule is involved in regulation of the mammary stem/pluripotent cell component. Further studies should include more cases of benign mammary neoplasia and further investigate β-catenin nuclear expression in ductal tumours. PMID:22520821

  17. Differential spatiotemporal expression of E- and P-cadherin during mouse tooth development.

    PubMed

    Palacios, J; Benito, N; Berraquero, R; Pizarro, A; Cano, A; Gamallo, C

    1995-08-01

    Changes in E- and P-cadherin (E- and P-CD) expression during embryonic mouse first molar development were analyzed by immunohistochemistry. During the induction and morphogenesis stages (bud, cap and early bell stages), E-CD was expressed in the cells of the invaginating epithelial tooth bud and in the cells of the outer enamel epithelium, stellate reticulum and stratum intermedium, suggesting a role for this molecule in the maintenance of enamel organ architecture. On the other hand, P-CD was strongly expressed in the inner enamel epithelium suggesting its participation in the processes of mesenchymal induction. during the cytodifferentiation stage (late bell stage), E-CD was expressed in polarizing preameloblasts, but cadherin expression was restricted to the basal and apical poles of differentiated secretory ameloblasts, where the zonula adherens type of cell-cell junctions is located. The present study demonstrates for the first time the spatiotemporal expression of cadherins during tooth development and suggests differential and specific roles for E-CD and P-CD during the morphogenesis and cytodifferentiation processes of this organ.

  18. Thrombomodulin reduces tumorigenic and metastatic potential of lung cancer cells by up-regulation of E-cadherin and down-regulation of N-cadherin expression.

    PubMed

    Zheng, Nana; Huo, Zihe; Zhang, Bin; Meng, Mei; Cao, Zhifei; Wang, Zhiwei; Zhou, Quansheng

    2016-08-01

    Thrombomodulin (TM) is an endothelial cell membrane protein and plays critical roles in anti-thrombosis, anti-inflammation, vascular endothelial protection, and is traditionally regarded as a "vascular protection god". In recent years, although TM has been reported to be down-regulated in a variety of malignant tumors including lung cancer, the role and mechanism of TM in lung cancer are enigmatic. In this study, we found that induction of TM overexpression by cholesterol-reducing drug atorvastatin significantly diminished the tumorigenic capability of the lung cancer cells. Moreover, we demonstrated that TM overexpression caused G0/G1 phase arrest and markedly reduced the colony forming capability of the cells. Furthermore, overexpression of TM inhibited cell migration and invasion. Consistently, depletion of TM promoted cell growth, reduced the cell population at the G0/G1 phase, and enhanced cell migratory ability. Mechanistic study revealed that TM up-regulated E-cadherin but down-regulated N-cadherin expression, resulting in reversal of epithelial-mesenchymal transition (EMT) in the lung cancer cells. Moreover, silencing TM expression led to decreased E-cadherin and increased N-cadherin. Taken together, our study suggests that TM functions as a tumor suppressive protein, providing a conceptual framework for inducing TM overexpression as a sensible strategy and approach for novel anti-lung cancer drug discovery. PMID:27223053

  19. Benign, malignant salivary gland tumors: comparison of immunohistochemical expression of e-cadherin.

    PubMed

    Prabhu, Sudeendra; Kaveri, H; Rekha, K

    2009-07-01

    The aim of the present study was to assess any variation in the immunohistochemical expression of E-cadherin in benign and malignant salivary gland tumors. A total of 60 cases of benign and malignant salivary gland tumors were evaluated immunohistochemically for E-cadherin expression. These included 10 cases of pleomorphic adenoma (PA), 2 cases of canalicular adenoma (CA), 2 cases of myoepithelioma (MY), 24 cases of adenoid cystic carcinoma (ACC), 12 cases of mucoepidermoid carcinoma (MEC), 9 cases of adenocarcinoma (AC) and 1 case of carcinoma ex pleomorphic adenoma (Ca Ex PA). 48 cases (80%) showed positive expression, in which benign tumors exhibited relatively increased reactivity (85.7%) as compared to the malignant tumors (78.3%). 10 PA, 2 MY, 20 ACC, 9 MEC, 6 AC and 1 Ca Ex PA expressed E-cadherin. Negative expression was evident in CA, ACC, MEC and AC. Statistically significant reduction in reactivity was evident in mucoepidermoid carcinoma and adenocarcinoma, when compared to pleomorphic adenoma.

  20. Level of expression of E-cadherin mRNA in colorectal cancer correlates with clinical outcome.

    PubMed Central

    Dorudi, S.; Hanby, A. M.; Poulsom, R.; Northover, J.; Hart, I. R.

    1995-01-01

    A series of colorectal carcinomas (n = 49) resected from patients with known clinical outcomes were analysed for E-cadherin expression using in situ hybridisation to measure mRNA. Patients surviving 5 years or longer (n = 31) exhibited significantly higher levels of E-cadherin mRNA than those surviving less than 5 years (n = 18, P = 0.003). These preliminary results from this small sample suggest that E-cadherin expression may be a useful prognostic marker in colorectal cancer patients. Images Figure 1 PMID:7880746

  1. The Characteristics and Prognostic Effect of E-Cadherin Expression in Colorectal Signet Ring Cell Carcinoma

    PubMed Central

    Wang, Renjie; Ma, Xiaoji; Li, Yaqi; He, Yiping; Huang, Dan; Cai, Sanjun; Peng, Junjie

    2016-01-01

    Purpose Signet ring cell carcinoma (SRCC) is rare. The aim of this study is to understand the clinicopathological features and identify the possible prognostic factors in colorectal SRCC. Methods Patients with SRCC who underwent primary lesion resection at Fudan University Shanghai Cancer Center from September 2008 to July 2014 were retrospectively analyzed. Patient’s gender, age, tumor location, depth of invasion, lymph node metastasis, synchronous distant metastasis, perineural invasion, lymphovascular invasion, and E-cadherin expression were studied with prognosis, and the correlation between E-cadherin expression and clinicopathological features were analyzed. All clinicopathological and molecular factors were put into multivariate analysis using Cox proportional hazards model for detecting independent prognostic factors. Results 59 patients accounting for 0.89% of total colorectal cancer patients met the criteria and were enrolled in the study. The median survival time is 28.9 months, and the 3-year survival rate is 62.7%. SRCC were seen more common in young male patients. Advanced stage was more common in SRCC, 58 (98.3%) patients had T3/T4 lesions, 52 (88.1%) patients had lymph node metastasis, and 14 (23.7%) patients had distant metastasis. Distant metastases were seen more common in peritoneal cavity. Distant metastasis (HR = 4.194, 95% CI: 1.297–13.567), lymphovascular invasion (HR = 2.888, 95% CI: 1.115–7.483), and E-cadherin expression (HR = 0.272, 95% CI: 0.096–0.768) were independent predictors for survival. Conclusions SRCC is a rare subtype of colorectal cancer with poor prognosis. Distant metastasis, lymphovascular invasion, and E-cadherin expression can predict prognosis of colorectal SRCCs independently. More precise therapy and more close surveillance are needed for these patients. PMID:27509205

  2. Hedgehog signaling regulates E-cadherin expression for the maintenance of the actin cytoskeleton and tight junctions.

    PubMed

    Xiao, Chang; Ogle, Sally A; Schumacher, Michael A; Schilling, Neal; Tokhunts, Robert A; Orr-Asman, Melissa A; Miller, Marian L; Robbins, David J; Hollande, Frederic; Zavros, Yana

    2010-12-01

    In the stomach, strictly regulated cell adherens junctions are crucial in determining epithelial cell differentiation. Sonic Hedgehog (Shh) regulates epithelial cell differentiation in the adult stomach. We sought to identify whether Shh plays a role in regulating adherens junction protein E-cadherin as a mechanism for epithelial cell differentiation. Mouse nontumorigenic gastric epithelial (IMGE-5) cells treated with Hedgehog signaling inhibitor cyclopamine and anti-Shh 5E1 antibody or transduced with short hairpin RNA against Skinny Hedgehog (IMGE-5(Ski)) were cultured. A mouse model expressing a parietal cell-specific deletion of Shh (HKCre/Shh(KO)) was used to identify further changes in adherens and tight junctions. Inhibition of Hedgehog signaling in IMGE-5 cells caused loss of E-cadherin expression accompanied by disruption of F-actin cortical expression and relocalization of zonula occludens-1 (ZO-1). Loss of E-cadherin was also associated with increased proliferation in IMGE-5(Ski) cells and increased expression of the mucous neck cell lineage marker MUC6. Compared with membrane-expressed E-cadherin and ZO-1 protein in controls, dissociation of E-cadherin/β-catenin and ZO-1/occludin protein complexes was observed in HKCre/Shh(KO) mice. In conclusion, we demonstrate that Hedgehog signaling regulates E-cadherin expression that is required for the maintenance of F-actin cortical expression and stability of tight junction protein ZO-1.

  3. Expression of cell adhesion molecule E-cadherin in Xenopus embryos begins at gastrulation and predominates in the ectoderm

    PubMed Central

    1989-01-01

    The expression of the Ca2+-dependent epithelial cell adhesion molecule E-cadherin (also known as uvomorulin and L-CAM) in the early stages of embryonic development of Xenopus laevis was examined. E-Cadherin was identified in the Xenopus A6 epithelial cell line by antibody cross- reactivity and several biochemical characteristics. Four independent mAbs were generated against purified Xenopus E-cadherin. All four mAbs recognized the same polypeptides in A6 cells, adult epithelial tissues, and embryos. These mAbs inhibited the formation of cell contacts between A6 cells and stained the basolateral plasma membranes of A6 cells, hepatocytes, and alveolar epithelial cells. The time of E- cadherin expression in early Xenopus embryos was determined by immunoblotting. Unlike its expression in early mouse embryos, E- cadherin was not present in the eggs or early blastula of Xenopus laevis. These findings indicate that a different Ca2+-dependent cell adhesion molecule, perhaps another member of the cadherin gene family, is responsible for the Ca2+-dependent adhesion between cleavage stage Xenopus blastomeres. Detectable accumulation of E-cadherin started just before gastrulation at stage 9 1/2 and increased rapidly up to the end of gastrulation at stage 15. In stage 15 embryos, specific immunofluorescence staining of E-cadherin was discernible only in ectoderm, but not in mesoderm and endoderm. The ectoderm at this stage consists of two cell layers. The outer cell layer of ectoderm was stained intensely, and staining was localized to the basolateral plasma membrane of these cells. Lower levels of staining were observed in the inner cell layer of ectoderm. The coincidence of E-cadherin expression with the process of gastrulation and its restriction to the ectoderm indicate that it may play a role in the morphogenetic movements of gastrulation and resulting segregation of embryonic germ layers. PMID:2472408

  4. Exon 11 skipping of E-cadherin RNA downregulates its expression in Head and Neck cancer cells

    PubMed Central

    Sharma, Sanjai; Liao, Wei; Zhou, Xiaofeng; Wong, David T.W.; Lichtenstein, Alan

    2011-01-01

    E-cadherin is an important tumor suppressor gene whose expression is lost when cells acquire a metastatic phenotype. We analyzed the role of E-cadherin mis-splicing as a mechanism of its downregulation by analyzing a mis-spliced E-cadherin transcript that lacks exon 11 of this gene. This results in a frame shift and a premature termination codon which targets this transcript for degradation. Tumor tissues including breast (20%, n=9)), prostate (30%, n=9) and Head and Neck (H&N) (75%, n=8) cancer, express the exon 11 skipped transcripts (versus non-malignant controls) and its levels inversely correlate with E-cadherin expression. This is a novel mechanism of E-cadherin downregulation by mis-splicing in tumor cells which is observed in highly prevalent human tumors. In the H&N cancer model, non-tumorigenic keratinocytes express exon 11 skipped splice product 2–6 fold lower than the H&N tumor cell lines. Mechanistic studies reveal that SFRS2 (SC35), a splicing factor as one of the regulators that increases mis-splicing and downregulates E-cadherin expression. Furthermore, this splicing factor was found to be over expressed in five out of seven H&N cell lines and primary H&N tumors. Also, methylation of E-cadherin gene acts as a regulator of this aberrant splicing process. In two H&N cell lines, wild type transcript expression increased 16–25 folds while the percentage of exon 11 skipped transcripts in both the cell lines decreased 5–30 folds when cells were treated with a hypomethylating agent, azacytidine. Our findings reveal that promoter methylation and an upregulated splicing factor (SFRS2) are involved in the E-cadherin mis-splicing in tumors. PMID:21764905

  5. Expression and Significance of Cadherins and Its Subtypes in Development and Progression of Oral Cancers: A Review

    PubMed Central

    Jain, Nitul; Bhatia, Gouri; Sikka, Neha; Garg, Balram; Walia, Esha

    2015-01-01

    Cadherins are a family of transmembranous glycoproteins responsible for calcium-dependent intercellular adhesion. Absence or loss of function of E-cadherin leads to the disappearance of epithelial characteristics of the cells and generates higher invasiveness for extracellular matrices. That is why cadherin expression is considered to be a decisive indicator for differentiation, aggressive behaviour, high proliferation, metastasis, poor prognosis and invasiveness of human carcinoma cells. In this review, the role of cadherin expression was focused on, both in development and carcinogenesis, paying particular attention to mechanisms involved in its down-regulation. The elements common to this process in both physiological and pathological situations was analysed, particularly in relation to one of the most common malignancy, oral squamous cell carcinoma. PMID:26155591

  6. Expression and Significance of Cadherins and Its Subtypes in Development and Progression of Oral Cancers: A Review.

    PubMed

    Rajwar, Yogesh Chand; Jain, Nitul; Bhatia, Gouri; Sikka, Neha; Garg, Balram; Walia, Esha

    2015-05-01

    Cadherins are a family of transmembranous glycoproteins responsible for calcium-dependent intercellular adhesion. Absence or loss of function of E-cadherin leads to the disappearance of epithelial characteristics of the cells and generates higher invasiveness for extracellular matrices. That is why cadherin expression is considered to be a decisive indicator for differentiation, aggressive behaviour, high proliferation, metastasis, poor prognosis and invasiveness of human carcinoma cells. In this review, the role of cadherin expression was focused on, both in development and carcinogenesis, paying particular attention to mechanisms involved in its down-regulation. The elements common to this process in both physiological and pathological situations was analysed, particularly in relation to one of the most common malignancy, oral squamous cell carcinoma.

  7. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53

    PubMed Central

    Alaee, Mahsa; Danesh, Ghazal; Pasdar, Manijeh

    2016-01-01

    Aberrant expression of cadherins and catenins plays pivotal roles in ovarian cancer development and progression. Plakoglobin (PG, γ-catenin) is a paralog of β-catenin with dual adhesive and signaling functions. While β-catenin has known oncogenic function, PG generally acts as a tumor/metastasis suppressor. We recently showed that PG interacted with p53 and that its growth/metastasis inhibitory function may be mediated by this interaction. Very little is known about the role of PG in ovarian cancer. Here, we investigated the in vitro tumor/metastasis suppressor effects of PG in ovarian cancer cell lines with mutant p53 expression and different cadherin profiles. We showed that the N-cadherin expressing and E-cadherin and PG deficient ES-2 cells were highly migratory and invasive, whereas OV-90 cells that express E-cadherin, PG and very little/no N-cadherin were not. Exogenous expression of PG or E-cadherin or N-cadherin knockdown in ES-2 cells (ES-2-E-cad, ES-2-PG and ES-2-shN-cad) significantly reduced their migration and invasion. Also, PG expression or N-cadherin knockdown significantly decreased ES-2 cells growth. Furthermore, PG interacted with both cadherins and with wild type and mutant p53 in normal ovarian and ES-2-PG cell lines, respectively. PMID:27144941

  8. Expression of FoxM1 and the EMT-associated protein E-cadherin in gastric cancer and its clinical significance

    PubMed Central

    Zhang, Jing; Chen, Xiao-Yu; Huang, Ke-Jian; Wu, Wei-Dong; Jiang, Tao; Cao, Jun; Zhou, Li-Sheng; Qiu, Zheng-Jun; Huang, Chen

    2016-01-01

    The aim of the present study was to investigate the expression of forkhead box M1 (FoxM1) and E-cadherin in tissues of gastric cancer in order to reveal any correlation between FoxM1, E-cadherin and clinicopathological parameters. The association between FoxM1 and E-cadherin in the development and progression of gastric cancer was also investigated. The expression of FoxM1 and E-cadherin in gastric cancer and adjacent normal tissue on tissue microarray was detected using immunohistochemistry. The clinicopathological significance of FoxM1 and E-cadherin in gastric cancer was explored, and the association between FoxM1 and E-cadherin was further examined using statistical techniques. In gastric cancer tissues, the expression of FoxM1 and E-cadherin was strongly positive, but it was weak in normal gastric mucosa. Overexpression of FoxM1 was evident in gastric cancer, and was associated with poor tumor differentiation (P<0.05), advanced tumor state (P<0.05) and lymph node (or distant) metastasis (P<0.05), whereas E-cadherin had the opposite effects. Furthermore, the correlation between FoxM1 and E-cadherin expression in gastric cancer tissue was negative. In conclusion, the high FoxM1 expression and low E-cadherin expression in gastric cancer tissue suggests that these proteins play a critical role in the development and progression of gastric cancer.

  9. N-cadherin mediated distribution of beta-catenin alters MAP kinase and BMP-2 signaling on chondrogenesis-related gene expression.

    PubMed

    Modarresi, Rozbeh; Lafond, Toulouse; Roman-Blas, Jorge A; Danielson, Keith G; Tuan, Rocky S; Seghatoleslami, M Reza

    2005-05-01

    We have examined the effect of calcium-dependent adhesion, mediated by N-cadherin, on cell signaling during chondrogenesis of multipotential embryonic mouse C3H10T1/2 cells. The activity of chondrogenic genes, type II collagen, aggrecan, and Sox9 were examined in monolayer (non-chondrogenic), and micromass (chondrogenic) cultures of parental C3H10T1/2 cells and altered C3H10T1/2 cell lines that express a dominant negative form of N-cadherin (delta390-T1/2) or overexpress normal N-cadherin (MNCD2-T1/2). Our findings show that missexpression or inhibition of N-cadherin in C3H10T1/2 cells results in temporal and spatial changes in expression of the chondrogenic genes Sox9, aggrecan, and collagen type II. We have also analyzed activity of the serum response factor (SRF), a nuclear target of MAP kinase signaling implicated in chondrogenesis. In semi-confluent monolayer cultures (minimum cell-cell contact) of C3H10T1/2, MNCD2-T1/2, or delta390-T1/2 cells, there was no significant change in the pattern of MAP kinase or bone morphogenetic protein-2 (BMP-2) regulation of SRF. However, in micromass cultures, the effect of MAP kinase and BMP-2 on SRF activity was proportional to the nuclear localization of beta-catenin, a Wnt stabilized cytoplasmic factor that can associate with lymphoid enhancer-binding factor (LEF) to serve as a transcription factor. Our findings suggest that the extent of adherens junction formation mediated by N-cadherin can modulate the potential Wnt-induced nuclear activity of beta-catenin. PMID:15723280

  10. Expression of p27Kip1 and E-cadherin in Head and Neck Squamous Cell Carcinoma of Indonesian Patients.

    PubMed

    E I, Auerkari; V, Joewono; D R, Handjari; A T, Sarwono; A W, Suhartono; K, Eto; M A, Ikeda

    2014-01-01

    Cancer cells exhibit characteristic damage of DNA and its expression. The expression of the tumor suppressors E-cadherin and p27(Kip1) has been tested on 57 head and neck squamous cell carcinomas (HNSCC) of Indonesian subjects. HNSCC tumor samples including both primary and (unrelated) nodal cases were obtained from the archives of Indonesian hospitals, in accordance with acknowledged ethical requirements. Only modest correlation was found between reduced expression of E-cadherin or p27(Kip1) with increased malignancy of primary and nodal growth. The observed strong correlation regardless of malignancy between the expressed levels of E-cadherin and p27(Kip1) suggests that also in combination these would not help to better predict the outcome of HNSCC.

  11. Syndecan-2 enhances E-cadherin shedding and fibroblast-like morphological changes by inducing MMP-7 expression in colon cancer cells.

    PubMed

    Jang, Bohee; Jung, Hyejung; Chung, Heesung; Moon, Byung-In; Oh, Eok-Soo

    2016-08-12

    E-cadherin plays a mechanical role in mediating cell-cell interactions and maintaining epithelial tissue integrity, and the loss of E-cadherin function has been implicated in cancer progression and metastasis. Syndecan-2, a cell-surface heparan sulfate proteoglycan, is upregulated during the development of colon cancer. Here, we assessed the functional relationship between E-cadherin and syndecan-2. We found that stable overexpression of syndecan-2 in a human colorectal adenocarcinoma cell line (HT29) enhanced the proteolytic shedding of E-cadherin to conditioned-media. Either knockdown of matrix metalloproteinase 7 (MMP-7) or inhibition of MMP-7 activity using GM6001 significantly reduced the extracellular shedding of E-cadherin, suggesting that syndecan-2 mediates E-cadherin shedding via MMP-7. Consistent with this notion, enhancement of MMP-7 expression by interleukin-1α treatment increased the shedding of E-cadherin. Conversely, the specific reduction of either syndecan-2 or MMP-7 reduced the shedding of E-cadherin. HT29 cells overexpressing syndecan-2 showed significantly lower cell-surface expression of E-cadherin, decreased cell-cell contact, a more fibroblastic cell morphology, and increased expression levels of ZEB-1. Taken together, these data suggest that syndecan-2 induces extracellular shedding of E-cadherin and supports the acquisition of a fibroblast-like morphology by regulating MMP-7 expression in a colon cancer cell line.

  12. N-cadherin is Key to Expression of the Nucleus Pulposus Cell Phenotype under Selective Substrate Culture Conditions

    PubMed Central

    Hwang, Priscilla Y; Jing, Liufang; Chen, Jun; Lim, Foon-Lian; Tang, Ruhang; Choi, Hyowon; Cheung, Kenneth M; Risbud, Makarand V; Gersbach, Charles A; Guilak, Farshid; Leung, Victor Y; Setton, Lori A

    2016-01-01

    Nucleus pulposus (NP) cells of the intervertebral disc are essential for synthesizing extracellular matrix that contributes to disc health and mechanical function. NP cells have a unique morphology and molecular expression pattern derived from their notochordal origin, and reside in N-cadherin (CDH2) positive cell clusters in vivo. With disc degeneration, NP cells undergo morphologic and phenotypic changes including loss of CDH2 expression and ability to form cell clusters. Here, we investigate the role of CDH2 positive cell clusters in preserving healthy, biosynthetically active NP cells. Using a laminin-functionalized hydrogel system designed to mimic features of the native NP microenvironment, we demonstrate NP cell phenotype and morphology is preserved only when NP cells form CDH2 positive cell clusters. Knockdown (CRISPRi) or blocking CDH2 expression in vitro and in vivo results in loss of a healthy NP cell. Findings also reveal that degenerate human NP cells that are CDH2 negative can be promoted to re-express CDH2 and healthy, juvenile NP matrix synthesis patterns by promoting cell clustering for controlled microenvironment conditions. This work also identifies CDH2 interactions with β-catenin-regulated signaling as one mechanism by which CDH2-mediated cell interactions can control NP cell phenotype and biosynthesis towards maintenance of healthy intervertebral disc tissues. PMID:27292569

  13. A novel o-naphtoquinone inhibits N-cadherin expression and blocks melanoma cell invasion via AKT signaling.

    PubMed

    Montenegro, Raquel Carvalho; de Vasconcellos, Marne Carvalho; Barbosa, Gleyce Dos Santos; Burbano, Rommel M R; Souza, Luciana G S; Lemos, Telma L G; Costa-Lotufo, Letícia V; de Moraes, Manoel Odorico

    2013-10-01

    The down-regulation or loss of epithelial markers is often accompanied by the up-regulation of mesenchymal markers. E-cadherin generally suppresses invasiveness, whereas N-cadherin promotes invasion and metastasis in vitro. The aim of this work is to investigate the role of biflorin, a naphthoquinone with proven anticancer properties, on the expression of N-cadherin and AKT proteins in MDA-MB-435 invasive melanoma cancer cells after 12h of exposure to 1, 2.5 and 5 μM biflorin. Biflorin inhibited MDA-MB-435 invasion in a dose-dependent manner (p<0.01). Likewise, biflorin down-regulated N-cadherin and AKT-1 expression in a dose-dependent manner. Biflorin did not inhibit the adhesion of MDA-MB-435 cells to any tested substrates. Additionally, biflorin blocked the invasiveness of cells by down-regulating N-cadherin, most likely via AKT-1 signaling. As such, biflorin may be a novel anticancer agent and a new prototype for drug design. PMID:23912027

  14. Aberrant expression of E-cadherin and β-catenin proteins in placenta of bovine embryos derived from somatic cell nuclear transfer.

    PubMed

    Kohan-Ghadr, H R; Smith, L C; Arnold, D R; Murphy, B D; Lefebvre, R C

    2012-01-01

    Abnormal placental development is common in the bovine somatic cell nuclear transfer (SCNT)-derived fetus. In the present study, we characterised the expression of E-cadherin and β-catenin, structural proteins of adherens junctions, in SCNT gestations as a model for impaired placentation. Cotyledonary tissues were separated from pregnant uteri of SCNT (n = 6) and control pregnancies (n = 8) obtained by artificial insemination. Samples were analysed by western blot, quantitative RT-PCR (qRT-PCR) and immunohistochemistry. Bovine trophectoderm cell lines derived from SCNT and control embryos were analysed to compare with the in utero condition. Although no differences in E-cadherin or β-catenin mRNA abundance were observed in fetal tissues between the two groups, proteins encoded by these genes were markedly under-expressed in SCNT trophoblast cells. Immunohistochemistry revealed a different pattern of E-cadherin and total β-catenin localisation in SCNT placentas compared with controls. No difference was observed in subcellular localisation of dephosphorylated active-β-catenin protein in SCNT tissues compared with controls. However, qRT-PCR confirmed that the wingless (WNT)/β-catenin signalling pathway target genes CCND1, CLDN1 and MSX1 were downregulated in SCNT placentas. No differences were detected between two groups of bovine trophectoderm cell lines. Our results suggest that impaired expression of E-cadherin and β-catenin proteins, along with defective β-catenin signalling during embryo attachment, specifically during placentation, is a molecular mechanism explaining insufficient placentation in the bovine SCNT-derived fetus.

  15. Gene cloning and expression of cadherin in midgut of Helicoverpa armigera and its Cry1A binding region.

    PubMed

    Wang, Guirong; Wu, Kongming; Liang, Gemei; Guo, Yuyuan

    2005-08-01

    Cadherins belong to one of the families of animal glycoproteins responsible for calcium-dependent cell-cell adhesion. Recent literatures showed that the cadherin-like in midgut of several insects served as the receptor of Bt toxin Cry1A and the variation of cadherin-like is related to insect's resistance to Cry1A. The full-length cDNA encoding cadherin-like of Helicoverpa armigera is cloned by degenerate PCR and RACE techniques and the gene was designated as BtR-harm, which is 5581 bp in full-length, encoding 1730 amino acid residues (BtR-harm was deposited in GenBank and the accession number is AF519180). Its predicted molecular weight and isoelectric point were 195.39 kDa and 4.23, respectively. The inferred amino acid sequence includes a signal sequence, 11 cadherin repeats, a membrane-proximal region, a transmembrane region and a cytoplasmic region. Sequence analysis indicated that the deduced protein sequence was most similar to the cadherin-like from Heliothis virescens with 84.2% identity and highly similar to three other lepidopteran cadherin from Bombyx mori, Manduca sexta and Pectinophora gossypiella, with the sequence identities of 60.3.6%, 57.5% and 51.0%, respectively. The cDNA encoding cadherin gene was expressed successfully in E. coli and the recombinant proteins can bind with Cry1Ac. Truncation analysis and binding experiment of BtR-harm revealed that the Cry1A binding region was a contiguous 244-amino acid sequence, which located between amino acid 1217 and 1461. Semi-quantitative RT-PCR analysis showed that BtR-harm was highly expressed in midgut of H. armigera, very low expressed in foregut and hindgut and was not expressed in other tissues. After H. armigera producing resistance to Cry1Ac, the expression quantity of BtR-harm significantly decreased in midgut of H. armigera. It is the first confirmation that BtR-harm can function as receptor of Cry1Ac in H. armigera and the binding region was located on a contiguous 244 amino acid sequence

  16. Loss of N-Cadherin Expression in Tumor Transplants Produced From As+3- and Cd+2-Transformed Human Urothelial (UROtsa) Cell Lines

    PubMed Central

    Sandquist, Elizabeth J.; Somji, Seema; Dunlevy, Jane R.; Garrett, Scott H.; Zhou, Xu Dong; Slusser-Nore, Andrea

    2016-01-01

    Background Epithelial to mesenchymal transition is a process in which a cell experiences a loss of epithelial cell characteristics and acquires a more mesenchymal cell phenotype. In cancer, epithelial to mesenchymal transition has been proposed to play an important role during specific stages of tumor progression. The role epithelial to mesenchymal transition and mesenchymal to epithelial transition might play in toxicant-induced urothelial cancer is unknown. Methods Real-time PCR, Western blotting, immuno-histochemistry and immuno-fluorescence were used to determine the expression of E- and N-cadherin in the UROtsa parent, the As+3- and Cd+2-transformed cell lines, the spheroids isolated from these cell lines as well as the tumor heterotransplants that were produced by the injection of the transformed cells into immune compromised mice. Results This study showed that N-cadherin expression was increased in 6 As+3- and 7 Cd+2- transformed cell lines generated from human urothelial cells (UROtsa). The expression varied within each cell line, with 10% to 95% of the cells expressing N-cadherin. Tumors produced from these cell lines showed no expression of the N-cadherin protein. Spheroids which are made up of putative cancer initiating cells produced from these cell lines showed only background expression of N-cadherin mRNA, increased expression of aldehyde dehydrogenase 1 mRNA and produced tumors which did not express N-cadherin. There was no change in the expression of E-cadherin in the tumors, and the tumors formed by all the As+3 and Cd+2-transformed cell lines and cancer initiating cells stained intensely and uniformly for E-cadherin. Conclusions The finding that the cells expressing N-cadherin gave rise to tumors with no expression of N-cadherin is in agreement with the classical view of epithelial to mesenchymal transition. Epithelial to mesenchymal transition and N-cadherin are associated with dissemination and not with the ability to establish new tumor growth

  17. Epithelial and neural cadherin expression in the mammalian reproductive tract and gametes and their participation in fertilization-related events.

    PubMed

    Vazquez-Levin, Mónica Hebe; Marín-Briggiler, Clara Isabel; Caballero, Julieta Natalia; Veiga, María Florencia

    2015-05-01

    Mammalian fertilization involves a series of well-orchestrated cell-cell interaction steps between gametes, as well as among spermatozoa and somatic cells of both the male and female reproductive tracts. Cadherins are Ca(2+)-dependent glycoproteins that have been involved in cellular adhesion and signaling in somatic cells. Taking into account that Ca(2+) ions are required during fertilization, the involvement of these proteins in adhesion events during this process can be anticipated. This report presents an overview on two members of classical cadherins, Epithelial (E-) and Neural (N-) cadherin in reproductive biology. Its provides evidence of studies done by several research groups about the expression of E- and N-cadherin during spermatogenesis, oogenesis and folliculogenesis, and their involvement in gamete transport in the reproductive tracts. Moreover, it describes current knowledge of E- and N-cadherin presence in cells of the cumulus-oocyte complex and spermatozoa from several mammalian species, and shows gathered evidence on their participation in different steps of the fertilization process. A brief summary on general information of both proteins is also presented.

  18. Expression and function of the atypical cadherin FAT1 in chronic liver disease

    SciTech Connect

    Valletta, Daniela; Czech, Barbara; Thasler, Wolfgang E.; Mueller, Martina; Bosserhoff, Anja-Katrin; Hellerbrand, Claus

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer The expression of the atypical cadherin FAT1 is increased in chronic liver disease. Black-Right-Pointing-Pointer FAT1 expression goes up during the activation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Activated HSCs are the cellular source of enhanced FAT1 expression in diseased livers. Black-Right-Pointing-Pointer FAT1 enhanced NFkB activity and resistance to apoptosis in activated HSCs. Black-Right-Pointing-Pointer FAT1 is a new therapeutic target for prevention and treatment of hepatic fibrosis. -- Abstract: Hepatic fibrosis can be considered as wound healing process in response to hepatocellular injury. Activation of hepatic stellate cells (HSCs) is a key event of hepatic fibrosis since activated HSCs are the cellular source of enhanced extracellular matrix deposition, and reversion of liver fibrosis is accompanied by clearance of activated HSCs by apoptosis. The atypical cadherin FAT1 has been shown to regulate diverse biological functions as cell proliferation and planar cell polarity, and also to affect wound healing. Here, we found increased FAT1 expression in different murine models of chronic liver injury and in cirrhotic livers of patients with different liver disease. Also in hepatic tissue of patients with non-alcoholic steatohepatitis FAT1 expression was significantly enhanced and correlated with collagen alpha I(1) expression. Immunohistochemistry revealed no significant differences in staining intensity between hepatocytes in normal and cirrhotic liver tissue but myofibroblast like cells in fibrotic septa of cirrhotic livers showed a prominent immunosignal. Furthermore, FAT1 mRNA and protein expression markedly increased during in vitro activation of primary human and murine HSCs. Together, these data indicated activated HSCs as cellular source of enhanced FAT1 expression in diseased livers. To gain insight into the functional role of FAT1 in activated HSCs we suppressed FAT1 in these

  19. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells

    PubMed Central

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future. PMID:27362942

  20. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future.

  1. Cdc42-Interacting Protein 4 Represses E-Cadherin Expression by Promoting β-Catenin Translocation to the Nucleus in Murine Renal Tubular Epithelial Cells.

    PubMed

    Xu, Chuou; Zhou, Qiaodan; Liu, Lili; Liu, Ping; Pei, Guangchang; Zeng, Rui; Han, Min; Xu, Gang

    2015-08-14

    Renal fibrosis is an inevitable outcome of end-stage chronic kidney disease. During this process, epithelial cells lose E-cadherin expression. β-Catenin may act as a mediator by accumulation and translocation to the nucleus. Studies have suggested that CIP4, a Cdc42 effector protein, is associated with β-catenin. However, whether CIP4 contributes to E-cadherin loss in epithelial cells by regulating β-catenin translocation is unclear. In this study, we investigated the involvement of CIP4 in β-catenin translocation. Expression of CIP4 was upregulated in renal tissues of 5/6 nephrectomized rats and mainly distributed in renal tubular epithelia. In TGF-β1-treated NRK-52E cells, upregulation of CIP4 expression was accompanied by reduced expression of E-cadherin. CIP4 overexpression promoted the translocation of β-catenin to the nucleus, which was accompanied by reduced expression of E-cadherin even without TGF-β1 stimulation. In contrast, CIP4 depletion by using siRNA inhibited the translocation of β-catenin to the nucleus and reversed the decrease in expression of E-cadherin. The interaction between CIP4 and β-catenin was detected. We also show that β-catenin depletion could restore the expression of E-cadherin that was suppressed by CIP4 overexpression. In conclusion, these results suggest that CIP4 overexpression represses E-cadherin expression by promoting β-catenin translocation to the nucleus.

  2. MiR-429 reverses epithelial-mesenchymal transition by restoring E-cadherin expression in bladder cancer

    PubMed Central

    Wu, Chia-Lun; Ho, Jar-Yi; Chou, Sheng-Chieh; Yu, Dah-Shyong

    2016-01-01

    Epithelial-mesenchymal transition (EMT) accompanying loss of E-cadherin is important for invasiveness and metastasis of bladder cancer. MicroRNAs (miRs) had been associated with cancer progression and differentiation in several cancers. Our goal is to find out the specific miR which modulates EMT in bladder cancer. Real-time quantitative polymerase chain reaction was used to measure the miRs expression in urothelial cell carcinoma (UCC) cell lines. MiR or siRNA mimics was used to regulate miR and mRNA level respectively. Migration and scratch assays were used to determine the migratory ability. Zymography assay was used to confirm the metalloproteinase activity. Western blotting was used to elucidate the mechanism which regulated by specific miR. MiR-429 was highly expressed in low grade UCC cell lines. Exogenous mimic of miR-429 treatment dramatically inhibited the migratory ability of T24 cells. MiR-429 downstream target ZEB1 was decreased, E-cadherin was restored, and β-catenin was contrarily decreased by exogenous mimic of miR-429 treatment in T24 cells. Cell invasive ability was also inhibited by exogenous mimic of miR-429 treatment through inactivating the MMP-2 activity in T24 cells. E-cadherin protein expression level was inhibited by E-cadherin siRNA accompanied with increasing cell migratory ability when compared with control group in low grade TSGH8301 cells. MiR-429 decreased the cell migratory and invasive abilities through reducing ZEB1 and β-catenin, restoring the E-cadherin expression and inactivation of MMP-2 of UCC cells. MiR-429 might be used as a progression marker of bladder cancer. PMID:27058893

  3. Force via integrins but not E-cadherin decreases Oct3/4 expression in embryonic stem cells

    SciTech Connect

    Uda, Yuhei; Poh, Yeh-Chuin; Chowdhury, Farhan; Wu, Douglas C.; Tanaka, Tetsuya S.; Sato, Masaaki; Wang, Ning

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Force via integrins or cadherins induces similar cell stiffening responses. Black-Right-Pointing-Pointer Force via integrins but not cadherins induces cell spreading. Black-Right-Pointing-Pointer Force via integrins but not cadherins induces differentiation of embryonic stem cells. -- Abstract: Increasing evidence suggests that mechanical factors play a critical role in fate decisions of stem cells. Recently we have demonstrated that a local force applied via Arg-Gly-Asp (RGD) peptides coated magnetic beads to mouse embryonic stem (ES) cells increases cell spreading and cell stiffness and decreases Oct3/4 (Pou5f1) gene expression. However, it is not clear whether the effects of the applied stress on these functions of ES cells can be extended to natural extracellular matrix proteins or cell-cell adhesion molecules. Here we show that a local cyclic shear force applied via fibronectin or laminin to integrin receptors increased cell spreading and stiffness, downregulated Oct3/4 gene expression, and decreased cell proliferation rate. In contrast, the same cyclic force applied via cell-cell adhesion molecule E-cadherin (Cdh1) had no effects on cell spreading, Oct3/4 gene expression, and the self-renewal of mouse ES cells, but induced significant cell stiffening. Our findings demonstrate that biological responses of ES cells to force applied via integrins are different from those to force via E-cadherin, suggesting that mechanical forces might play different roles in different force transduction pathways to shape early embryogenesis.

  4. E-cadherin expression in macrophages dampens their inflammatory responsiveness in vitro, but does not modulate M2-regulated pathologies in vivo

    PubMed Central

    Van den Bossche, Jan; Laoui, Damya; Naessens, Thomas; Smits, Hermelijn H.; Hokke, Cornelis H.; Stijlemans, Benoît; Grooten, Johan; De Baetselier, Patrick; Van Ginderachter, Jo A.

    2015-01-01

    IL-4/IL-13-induced alternatively activated macrophages (M(IL-4/IL-13), AAMs or M2) are known to express E-cadherin, enabling them to engage in heterotypic cellular interactions and IL-4-driven macrophage fusion in vitro. Here we show that E-cadherin overexpression in Raw 264.7 macrophages inhibits their inflammatory response to LPS stimulation, as demonstrated by a reduced secretion of inflammatory mediators like interleukin (IL)-6, tumor necrosis factor (TNF) and nitric oxide (NO). To study the function of E-cadherin in M(IL-4/IL-13) macrophages in vivo, we generated macrophage-specific E-cadherin-deficient C57BL/6 mice. Using this new tool, we analyzed immunological parameters during two typical AAM-associated Th2-driven diseases and assessed Th2-associated granuloma formation. Although E-cadherin is strongly induced in AAMs during Taenia crassiceps helminth infections and allergic airway inflammation, its deletion in macrophages does not affect the course of both Th2 cytokine-driven diseases. Moreover, macrophage E-cadherin expression is largely redundant for granuloma formation around Schistosoma mansoni ova. Overall, we conclude that E-cadherin is a valuable AAM marker which suppresses the inflammatory response when overexpressed. Yet E-cadherin deletion in macrophages does not affect M(LPS+IFNγ) and M(IL-4) polarization in vitro, nor in vivo macrophage function, at least in the conditions tested. PMID:26226941

  5. AP-1 Transcription Factors c-FOS and c-JUN Mediate GnRH-Induced Cadherin-11 Expression and Trophoblast Cell Invasion.

    PubMed

    Peng, Bo; Zhu, Hua; Ma, Liyang; Wang, Yan-Ling; Klausen, Christian; Leung, Peter C K

    2015-06-01

    GnRH is expressed in first-trimester human placenta and increases cell invasion in extravillous cytotrophoblasts (EVTs). Invasive phenotypes have been reported to be regulated by transcription factor activator protein 1 (AP-1) and mesenchymal cadherin-11. The aim of our study was to investigate the roles of AP-1 components (c-FOS/c-JUN) and cadherin-11 in GnRH-induced cell invasion in human EVT cells. Phosphorylated c-FOS and phosphorylated c-JUN were detected in the cell column regions of human first-trimester placental villi by immunohistochemistry. GnRH treatment increased c-FOS, c-JUN, and cadherin-11 mRNA and protein levels in immortalized EVT (HTR-8/SVneo) cells. Moreover, GnRH treatment induced c-FOS and c-JUN protein phosphorylation and nuclear accumulation. Pretreatment with antide, a GnRH antagonist, attenuated GnRH-induced cadherin-11 expression. Importantly, basal and GnRH-induced cadherin-11 expression and cell invasion were reduced by small interfering RNA-mediated knockdown of c-FOS, c-JUN, and cadherin-11 in HTR-8/SVneo cells. Our results suggest that GnRH induces the expression and phosphorylation of the AP-1 transcription factors c-FOS and c-JUN in trophoblast cells, which contributes to GnRH-induced elevation of cadherin-11 expression and cell invasion. PMID:25794160

  6. Clinico-pathological correlation of E-cadherin expression at the invasive tumor front of Indian oral squamous cell carcinomas: An immunohistochemical study

    PubMed Central

    Mehendiratta, Monica; Solomon, Monica Charlotte; Boaz, Karen; Guddattu, Vasudeva; Mohindra, Aashima

    2014-01-01

    Background: Recent studies have indicated that although malignant cells at the invasive tumor front, bare morphological resemblance to the cells at central portion of the tumor, their molecular character differs significantly. E-cadherin is a cell-cell adhesion molecule that connects epithelial cells. This study attempts to correlate the E-cadherin expression at the invasive tumor front with tumor differentiation along with its clinico-pathological parameters. Materials and Methods: Immunohistochemical staining with E-cadherin was carried out on archival cases of primary oral squamous cell carcinomas (n = 30). The E-cadherin expression at the invasive tumor front was analyzed and was linked to clinico-pathological parameters including patient prognosis. Results: The downregulation of E-cadherin expression at the invasive tumor edge when compared with patient's prognosis yielded a significant correlation (P = 0.041) but its correlation with the degree of differentiation determined was not significant (P = 0.27). Also, its association with tumor size and lymph node status was negative. Conclusions: Loss of E-cadherin expression at the invasive tumor front is an important event in the progression of oral squamous cell carcinomas. Tumors with a loss of expression of E-cadherin are those which had a poor prognosis PMID:25328302

  7. Prognostic and Clinicopathological Significance of Downregulated E-Cadherin Expression in Patients with Non-Small Cell Lung Cancer (NSCLC): A Meta-Analysis

    PubMed Central

    Xian, Lei

    2014-01-01

    Background Many studies have investigated the prognostic role of E-cadherin in patients with NSCLC; however, the result still remains inconclusive. An up-to data system review and meta-analysis was necessary to give a comprehensive evaluation of prognostic role of E-cadherin in NSCLC. Methods Eligible studies were searched in Pubmed, Embase and Web of Science databases. The inclusion criteria were studies that assessed the relationship between E-cadherin expression detected by immunohistochemistry (IHC) and the prognosis or clinicopathological features in patients with NSCLC. Subgroup analysis according to race, percentage of reduced/negative E-cadherin expression, histological type, and sample size were also conducted. Odds ratio (OR) or hazard ratio (HR) with 95% confidence interval (CI) were calculated to examine the risk or hazard association. Results A total of 29 studies including 4010 patients were qualified for analysis. The analysis suggested that downregulated E-cadherin expression was significant associated with unfavorable overall survival (OS) and disease-free survival/progression-free survival (DFS/PFS) in patients with NSCLC. Subgroup analysis by race, percentage of reduced/negative E-cadherin expression, sample size also found the significant association in OS. When only the stage I NSCLC were considered, downregulated E-cadherin expression still had an unfavorable impact on OS. Additionally, downregulated E-cadherin expression was significantly associated with differentiation grade, lymphnode metastasis, vascular invasion, and TNM stage. Conclusion Downregulated E-cadherin expression detected by IHC seems to correlate with tumour progression and could serve as an important prognostic factor in patients with NSCLC. PMID:24978478

  8. Inhibition of p300 histone acetyltransferase activity in palate mesenchyme cells attenuates Wnt signaling via aberrant E-cadherin expression.

    PubMed

    Warner, Dennis R; Smith, Scott C; Smolenkova, Irina A; Pisano, M Michele; Greene, Robert M

    2016-03-01

    p300 is a multifunctional transcriptional coactivator that interacts with numerous transcription factors and exhibits protein/histone acetyltransferase activity. Loss of p300 function in humans and in mice leads to craniofacial defects. In this study, we demonstrated that inhibition of p300 histone acetyltransferase activity with the compound, C646, altered the expression of several genes, including Cdh1 (E-cadherin) in mouse maxillary mesenchyme cells, which are the cells that give rise to the secondary palate. The increased expression of plasma membrane-bound E-cadherin was associated with reduced cytosolic β-catenin, that led to attenuated signaling through the canonical Wnt pathway. Furthermore, C646 reduced both cell proliferation and the migratory ability of these cells. These results suggest that p300 histone acetyltransferase activity is critical for Wnt-dependent palate mesenchymal cell proliferation and migration, both processes that play a significant role in morphogenesis of the palate.

  9. Expression of e-cadherin, alpha-catenins and Beta-catenins in human gastric carcinomas - correlation with histology and tumor progression.

    PubMed

    Yasui, W; Kuniyasu, H; Akama, Y; Kitahara, K; Nagafuchi, A; Ishihara, S; Tsukita, S; Tahara, E

    1995-01-01

    The expression of cell-cell adhesion molecule, E-cadherin and its associated proteins, alpha- and beta-catenins in human gastric carcinomas was examined by Western blotting. All the seven gastric carcinoma cell lines expressed E-cadherin except KATOIII, which was derived from pleural effusion of a scirrhous type stomach cancer or Borrmann's type-4 carcinoma. The expression of alpha-catenin was not detected in HSC43 derived from scirrhous carcinoma, while HSC39 expressed abnormal beta-catenin caused by genetic alteration. In gastric carcinoma cases, the levels of E-cadherin and alpha-catenin were significantly lower in poorly differentiated adenocarcinomas and scirrhous carcinomas when compared to other types of gastric carcinomas. Deeply invasive carcinomas expressed E-cadherin and alpha-catenin at lower levels. However, the expression level of alpha-catenin was not necessarily consistent with that of E-cadherin. One of 10 gastric carcinomas examined showed complete deletion of alpha-catenin gene in Southern blotting. beta-catenin was expressed at lower level in poorly differentiated adenocarcinomas than in well-differentiated adenocarcinomas. These findings suggest that reduction in the expression of E-cadherin and its associated molecules, catenins, is involved in the development and infiltrative growth of scirrhous type gastric carcinomas. PMID:21597700

  10. Helicobacter spp. infection induces changes in epithelial proliferation and E-cadherin expression in the gastric mucosa of pigs.

    PubMed

    Bracarense, A P F R L; Yamasaki, L; Silva, E O; Oliveira, R L; Alfieri, A A

    2013-11-01

    Gastric disease is common in finishing pigs. Helicobacter spp. infection has been associated with gastritis, gastric ulcers and gastric neoplasia in man and animals. The aim of this study was to determine the effects of Helicobacter spp. infection on gastric morphology in pigs, with emphasis on glandular cell proliferation and E-cadherin expression. Samples of fundus and antrum from 67 finishing pigs were examined microscopically and by immunohistochemistry. The presence of Helicobacter spp. was confirmed by polymerase chain reaction (PCR). Mucosal changes were evaluated and epithelial proliferation was determined by evaluation of the morphometry of nucleolar organizer regions and counting proliferating cell nuclear antigen-positive cells and mitotic figures. Intercellular adhesion was evaluated by E-cadherin expression. In 47 (70%) pigs, Helicobacter spp. infection was confirmed by PCR. Histological findings associated with the infection included mononuclear cell infiltration of the lamina propria and glandular degeneration. There was a significant association between infection and epithelial proliferation in both regions as well as a decrease in the expression of E-cadherin in the antrum.

  11. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    SciTech Connect

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.; Parkos, Charles A.; Nusrat, Asma

    2010-07-02

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.

  12. Nucleation and growth of cadherin adhesions

    SciTech Connect

    Lambert, Mireille; Thoumine, Olivier; Brevier, Julien; Choquet, Daniel; Riveline, Daniel; Mege, Rene-Marc

    2007-11-15

    Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions.

  13. Expression of Tenascin C, EGFR, E-Cadherin, and TTF-1 in Medullary Thyroid Carcinoma and the Correlation with RET Mutation Status.

    PubMed

    Steiner, Florian; Hauser-Kronberger, Cornelia; Rendl, Gundula; Rodrigues, Margarida; Pirich, Christian

    2016-01-01

    Tenascin C expression correlates with tumor grade and indicates worse prognosis in several tumors. Epidermal growth factor receptor (EGFR) plays an important role in driving proliferation in many tumors. Loss of E-cadherin function is associated with tumor invasion and metastasis. Thyroid transcription factor-1 (TTF-1) is involved in rearranged during transfection (RET) transcription in Hirschsprung's disease. Tenascin C, EGFR, E-cadherin, TTF-1-expression, and their correlations with RET mutation status were investigated in 30 patients with medullary thyroid carcinoma (MTC) (n = 26) or C-cell hyperplasia (n = 4). Tenascin C was found in all, EGFR in 4/26, E-cadherin in 23/26, and TTF-1 in 25/26 MTC. Tenascin C correlated significantly with tumor proliferation (overall, r = 0.61, p < 0.005; RET-mutated, r = 0.81, p < 0.01). E-cadherin showed weak correlation, whereas EGFR and TTF-1 showed no significant correlation with tumor proliferation. EGFR, E-cadherin, and TTF-1 showed weak correlation with proliferation of RET-mutated tumors. Correlation between TTF-1 and tenascin C, E-cadherin, and EGFR was r = -0.10, 0.37, and 0.21, respectively. In conclusion, MTC express tenascin C, E-cadherin, and TTF-1. Tenascin C correlates significantly with tumor proliferation, especially in RET-mutated tumors. EGFR is low, and tumors expressing EGFR do not exhibit higher proliferation. TTF-1 does not correlate with RET mutation status and has a weak correlation with tenascin C, E-cadherin, and EGFR expression. PMID:27409604

  14. Expression of Tenascin C, EGFR, E-Cadherin, and TTF-1 in Medullary Thyroid Carcinoma and the Correlation with RET Mutation Status.

    PubMed

    Steiner, Florian; Hauser-Kronberger, Cornelia; Rendl, Gundula; Rodrigues, Margarida; Pirich, Christian

    2016-07-09

    Tenascin C expression correlates with tumor grade and indicates worse prognosis in several tumors. Epidermal growth factor receptor (EGFR) plays an important role in driving proliferation in many tumors. Loss of E-cadherin function is associated with tumor invasion and metastasis. Thyroid transcription factor-1 (TTF-1) is involved in rearranged during transfection (RET) transcription in Hirschsprung's disease. Tenascin C, EGFR, E-cadherin, TTF-1-expression, and their correlations with RET mutation status were investigated in 30 patients with medullary thyroid carcinoma (MTC) (n = 26) or C-cell hyperplasia (n = 4). Tenascin C was found in all, EGFR in 4/26, E-cadherin in 23/26, and TTF-1 in 25/26 MTC. Tenascin C correlated significantly with tumor proliferation (overall, r = 0.61, p < 0.005; RET-mutated, r = 0.81, p < 0.01). E-cadherin showed weak correlation, whereas EGFR and TTF-1 showed no significant correlation with tumor proliferation. EGFR, E-cadherin, and TTF-1 showed weak correlation with proliferation of RET-mutated tumors. Correlation between TTF-1 and tenascin C, E-cadherin, and EGFR was r = -0.10, 0.37, and 0.21, respectively. In conclusion, MTC express tenascin C, E-cadherin, and TTF-1. Tenascin C correlates significantly with tumor proliferation, especially in RET-mutated tumors. EGFR is low, and tumors expressing EGFR do not exhibit higher proliferation. TTF-1 does not correlate with RET mutation status and has a weak correlation with tenascin C, E-cadherin, and EGFR expression.

  15. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    PubMed

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  16. Celastrol inhibits TGF-β1-induced epithelial–mesenchymal transition by inhibiting Snail and regulating E-cadherin expression

    SciTech Connect

    Kang, Hyereen; Lee, Minjae; Jang, Sung-Wuk

    2013-08-09

    Highlights: •We investigated the effects of celastrol on TGF-β1-induced EMT in epithelial cells. •Celastrol regulates TGF-β1-induced morphological changes and E-cadherin expression. •Celastrol inhibits TGF-β1-induced Snail expression. •Celastrol strongly suppresses TGF-β1-induced invasion in MDCK and A549 cells. -- Abstract: The epithelial–mesenchymal transition (EMT) is a pivotal event in the invasive and metastatic potentials of cancer progression. Celastrol inhibits the proliferation of a variety of tumor cells including leukemia, glioma, prostate, and breast cancer; however, the possible role of celastrol in the EMT is unclear. We investigated the effect of celastrol on the EMT. Transforming growth factor-beta 1 (TGF-β1) induced EMT-like morphologic changes and upregulation of Snail expression. The downregulation of E-cadherin expression and upregulation of Snail in Madin–Darby Canine Kidney (MDCK) and A549 cell lines show that TGF-β1-mediated the EMT in epithelial cells; however, celastrol markedly inhibited TGF-β1-induced morphologic changes, Snail upregulation, and E-cadherin expression. Migration and invasion assays revealed that celastrol completely inhibited TGF-β1-mediated cellular migration in both cell lines. These findings indicate that celastrol downregulates Snail expression, thereby inhibiting TGF-β1-induced EMT in MDCK and A549 cells. Thus, our findings provide new evidence that celastrol suppresses lung cancer invasion and migration by inhibiting TGF-β1-induced EMT.

  17. Dog as model for down-expression of E-cadherin and beta-catenin in tubular epithelial cells in renal fibrosis.

    PubMed

    Aresu, Luca; Rastaldi, Maria Pia; Pregel, Paola; Valenza, Federico; Radaelli, Enrico; Scanziani, Eugenio; Castagnaro, Massimo

    2008-12-01

    Mechanism of renal fibrosis leading to end stage kidney remains still a challenge of interest in humans. The pathogenesis of chronic kidney disease is characterized by progressive loss of kidney function and fibrosis. The mechanism of epithelial-mesenchymal transition (EMT) has been predominantly studied in in vitro studies, and we previously demonstrated the EMT of tubular epithelial cells in dogs. In this study, we examined and quantified the modifications of cadherin-catenin complex by immunohistochemistry of E-cadherin and beta-catenin and the mesenchymal marker vimentin in 25 dogs with three different spontaneous inflammatory renal diseases. Results showed a significant down-expression of levels of E-cadherin and beta-catenin directly correlated with the tubular-interstitial damage (TID). In TID grades 2 and 3, E-cadherin expression was significantly reduced (p < 0.001). beta-catenin expression was overall similar to E-cadherin. The mesenchymal-associated protein, vimentin, was de novo identified in tubules within areas of inflammation. In this work, we identified the loss of cadherin or catenin expression as a progressive mechanism in tubulo-interstitial fibrosis, which allows dissociation of structural integrity of renal epithelia and loss of epithelial polarity. The dog might result more significant as model for new therapies.

  18. Clinicopathological significance of SIRT1 and p300/CBP expression in gastroesophageal junction (GEJ) cancer and the correlation with E-cadherin and MLH1.

    PubMed

    Zhang, Li-Hua; Huang, Qin; Fan, Xiang-Shan; Wu, Hong-Yan; Yang, Jun; Feng, An-Ning

    2013-10-01

    SIRT1 and p300/CBP, which are considered to be essential histone deacetylases and acetyltransferases, are also considered to be relative to tumorigenesis because they modulate the expression of several tumor suppressor genes. Therefore, this study investigated the expression of SIRT1 and p300/CBP in gastroesophageal junction (GEJ) cancer and their correlation with E-cadherin and MLH1 in order to explore the clinicopathological significance of SIRT1 and p300/CBP expression and their possible effects involving E-cadherin and MLH1 expression. Tissue microarray technique and immunohistochemical stains were applied to evaluate the SIRT1, p300/CBP, E-cadherin, and MLH1 expression in 176 GEJ cancer tissues and 32 normal GEJ region tissues. The results showed that the over-expression of SIRT1 was associated with a higher number of metastasis lymph nodes, more advanced staging, and shorter mean survival time. SIRT1 and p300/CBP were negatively and positively correlated with the expression of E-cadherin and MLH1, respectively, in the cancer cases. These results indicated a possible effect of SIRT1 and p300/CBP involved in regulating the expression of E-cadherin and MLH1, thus participating in the tumor progression of GEJ cancer.

  19. Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition.

    PubMed

    Li, Qisheng; Sodroski, Catherine; Lowey, Brianna; Schweitzer, Cameron J; Cha, Helen; Zhang, Fang; Liang, T Jake

    2016-07-01

    Hepatitis C virus (HCV) enters the host cell through interactions with a cascade of cellular factors. Although significant progress has been made in understanding HCV entry, the precise mechanisms by which HCV exploits the receptor complex and host machinery to enter the cell remain unclear. This intricate process of viral entry likely depends on additional yet-to-be-defined cellular molecules. Recently, by applying integrative functional genomics approaches, we identified and interrogated distinct sets of host dependencies in the complete HCV life cycle. Viral entry assays using HCV pseudoparticles (HCVpps) of various genotypes uncovered multiple previously unappreciated host factors, including E-cadherin, that mediate HCV entry. E-cadherin silencing significantly inhibited HCV infection in Huh7.5.1 cells, HepG2/miR122/CD81 cells, and primary human hepatocytes at a postbinding entry step. Knockdown of E-cadherin, however, had no effect on HCV RNA replication or internal ribosomal entry site (IRES)-mediated translation. In addition, an E-cadherin monoclonal antibody effectively blocked HCV entry and infection in hepatocytes. Mechanistic studies demonstrated that E-cadherin is closely associated with claudin-1 (CLDN1) and occludin (OCLN) on the cell membrane. Depletion of E-cadherin drastically diminished the cell-surface distribution of these two tight junction proteins in various hepatic cell lines, indicating that E-cadherin plays an important regulatory role in CLDN1/OCLN localization on the cell surface. Furthermore, loss of E-cadherin expression in hepatocytes is associated with HCV-induced epithelial-to-mesenchymal transition (EMT), providing an important link between HCV infection and liver cancer. Our data indicate that a dynamic interplay among E-cadherin, tight junctions, and EMT exists and mediates an important function in HCV entry.

  20. Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition.

    PubMed

    Li, Qisheng; Sodroski, Catherine; Lowey, Brianna; Schweitzer, Cameron J; Cha, Helen; Zhang, Fang; Liang, T Jake

    2016-07-01

    Hepatitis C virus (HCV) enters the host cell through interactions with a cascade of cellular factors. Although significant progress has been made in understanding HCV entry, the precise mechanisms by which HCV exploits the receptor complex and host machinery to enter the cell remain unclear. This intricate process of viral entry likely depends on additional yet-to-be-defined cellular molecules. Recently, by applying integrative functional genomics approaches, we identified and interrogated distinct sets of host dependencies in the complete HCV life cycle. Viral entry assays using HCV pseudoparticles (HCVpps) of various genotypes uncovered multiple previously unappreciated host factors, including E-cadherin, that mediate HCV entry. E-cadherin silencing significantly inhibited HCV infection in Huh7.5.1 cells, HepG2/miR122/CD81 cells, and primary human hepatocytes at a postbinding entry step. Knockdown of E-cadherin, however, had no effect on HCV RNA replication or internal ribosomal entry site (IRES)-mediated translation. In addition, an E-cadherin monoclonal antibody effectively blocked HCV entry and infection in hepatocytes. Mechanistic studies demonstrated that E-cadherin is closely associated with claudin-1 (CLDN1) and occludin (OCLN) on the cell membrane. Depletion of E-cadherin drastically diminished the cell-surface distribution of these two tight junction proteins in various hepatic cell lines, indicating that E-cadherin plays an important regulatory role in CLDN1/OCLN localization on the cell surface. Furthermore, loss of E-cadherin expression in hepatocytes is associated with HCV-induced epithelial-to-mesenchymal transition (EMT), providing an important link between HCV infection and liver cancer. Our data indicate that a dynamic interplay among E-cadherin, tight junctions, and EMT exists and mediates an important function in HCV entry. PMID:27298373

  1. The expressions of NEDD9 and E-cadherin correlate with metastasis and poor prognosis in triple-negative breast cancer patients

    PubMed Central

    Li, Peng; Sun, Tingting; Yuan, Qingzhong; Pan, Guozheng; Zhang, Jian; Sun, Diwen

    2016-01-01

    Background Neural precursor cell expressed, developmentally downregulated 9 (NEDD9), a member of Crk-associated substrate family, is involved in cancer cell adhesion, migration, invasion, and epithelial–mesenchymal transition. E-cadherin is a key event in the cellular invasion during the epithelial–mesenchymal transition mechanism. The aim of this study was to evaluate the association among NEDD9 expression, E-cadherin expression, and survival in triple-negative breast cancer (TNBC) patients. Methods NEDD9 and E-cadherin expressions were analyzed by immunohistochemistry in 106 TNBC patients and 120 non-TNBC patients. And the association of clinicopathological factors with survival was analyzed using Kaplan–Meier analysis and Cox regression in TNBC patients. Results The results revealed that the rate of increased expression of NEDD9 and reduced expression of E-cadherin was significantly higher in TNBC group than that in non-TNBC group (P<0.001, both). Comparison of features between TNBC and non-TNBC groups showed that histological type (P=0.026) and lymph node metastasis (P=0.001) were significantly different. Correlation analysis showed that positive NEDD9 expression and negative E-cadherin expression were significantly correlated with lymph node metastasis and tumor-node-metastasis stage (P<0.05). In addition, the enhanced NEDD9 expression was significantly associated with a reduced 5-year survival for TNBC patients (overall survival [OS]: P=0.013; disease-free survival [DFS]: P=0.021). Negative E-cadherin expression showed a significantly worse 5-year OS and DFS (OS: P=0.011; DFS: P=0.012). Multivariate analysis showed that lymph node metastasis (OS: P=0.006; DFS: P=0.004), tumor-node-metastasis stage (OS: P=0.012; DFS: P=0.001), NEDD9 (OS: P=0.046; DFS: P=0.022), and E-cadherin (OS: P=0.022; DFS: P=0.025) independently predicted a poor prognosis of OS and DFS. Moreover, patients with NEDD9-positive/E-cadherin-negative expression had a significantly worse

  2. Expression of E-Cadherin, Leukemia Inhibitory Factor and Progesterone Receptor in Mouse Blastocysts after Ovarian Stimulation

    PubMed Central

    Movaghar, Bahar; Askarian, Saeedeh

    2012-01-01

    Objective: The appropriate interaction between a blastocyst and the endometrium is essential for successful implantation. Numerous factors, including hormone receptors (progesterone receptor), cytokines [leukemia inhibitory factors (LIF)], and adherence molecules such as E-cadherin are involved in the cross-talk that occurs between the embryo and endometrium. Studies show that a lack of these genes impact endometrial receptivity. In this study, we compare the expression levels of E-cadherin, LIF, and progesterone receptor (PgR) genes in blastocysts that have been obtained from superovulated mice to those obtained from natural cycles. Materials and Methods: In this experimental study, for the experimental group, a total of 17 virgin female NMRI mice (6- 8 weeks old) were injected with 7.5 IU pregnant mare serum gonadotropin (PMSG). Their blastocysts (approximately n= 120) were flushed out after 3.5 days, following administration of human chorionic gonadotropin (hCG). The control group consisted of blastocysts from 62 female mice that were mated with male mice. The natural cycle blastocysts were flushed out from the female mice uteri 3.5 days after mating. The expression levels of E-cadherin, LIF, t PgR genes were examined by quantitative real-time reverse-transcriptase polymerase chain reaction (RT-PCR). Data were analyzed by the student’s t-test (one sample t-test). Results: Expression levels of all studied genes were significantly lower in the hormone-treated group compared to the natural cycle blastocysts (p<0.05). Conclusion: Although ovarian stimulation is utilized to obtain more oocytes in ART cycles, it seems that this could disadvantageous to implantation because of the decrease in expression levels of certain genes. Because of the important roles of E-cadherin, LIF, and progesterone receptor in the implantation process, we have shown lower expression levels of these genes in mouse blastocysts obtained from ovarian-stimulated mice than those derived from

  3. Ginsenoside Rg3 inhibition of vasculogenic mimicry in pancreatic cancer through downregulation of VE‑cadherin/EphA2/MMP9/MMP2 expression.

    PubMed

    Guo, Jing-Qiang; Zheng, Qing-Hui; Chen, Hui; Chen, Liang; Xu, Jin-Bo; Chen, Min-Yuan; Lu, Dian; Wang, Zhao-Hong; Tong, Hong-Fei; Lin, Shengzhang

    2014-09-01

    Ginsenoside Rg3 (Rg3), a trace tetracyclic triterpenoid saponin, is extracted from ginseng and shown to have anticancer activity against several types of cancers. This study explored the effect of Rg3 on pancreatic cancer vasculogenic mimicry. Altered vasculogenic mimicry formation was assessed using immunohistochemistry and PAS staining and associated with the expression of vascular endothelial-cadherin (VE-cadherin), epithelial cell kinase (EphA2), matrix metalloproteinase (MMP)-2 and MMP-9. The effect of Rg3 on the regulation of pancreatic cancer vasculogenic mimicry was evaluated in vitro and in vivo. The data showed vasculogenic mimicry in pancreatic cancer tissues. In addition, the expression of VE-cadherin, EphA2, MMP-2 and MMP-9 proteins associated with formation of pancreatic cancer vasculogenic mimicry. Rg3 treatment reduced the levels of vasculogenic mimicry in nude mouse xenografts in vitro and in vivo, while the expression of VE-cadherin, EphA2, MMP-2 and MMP-9 mRNA and proteins was downregulated by Rg3 treatment in vitro and in tumor xenografts. In conclusion, ginsenoside Rg3 effectively inhibited the formation of pancreatic cancer vasculogenic mimicry by downregulating the expression of VE-cadherin, EphA2, MMP9 and MMP2. Further studies are required to evaluate ginsenoside Rg3 as an agent to control pancreatic cancer.

  4. AHNAK is downregulated in melanoma, predicts poor outcome, and may be required for the expression of functional cadherin-1

    PubMed Central

    Feisst, Vaughan; Chen, Jennifer; Print, Cris; Dunbar, P. Rod

    2016-01-01

    The aim of this study was to further our understanding of the transformation process by identifying differentially expressed proteins in melanocytes compared with melanoma cell lines. Tandem mass spectrometry incorporating iTRAQ reagents was used as a screen to identify and comparatively quantify the expression of proteins in membrane-enriched samples isolated from primary human melanocytes or three melanoma cells lines. Real-time PCR was used to validate significant hits. Immunohistochemistry was used to validate the expression of proteins of interest in melanocytes in human skin and in melanoma-infiltrated lymph nodes. Publically available databases were examined to assess mRNA expression and correlation to patient outcome in a larger cohort of samples. Finally, preliminary functional studies were carried out using siRNAs to reduce the expression of a protein of interest in primary melanocytes and in a keratinocyte cell line. Two proteins, AHNAK and ANXA2, were significantly downregulated in the melanoma cell lines compared with melanocytes. Downregulation was confirmed in tumor cells in a subset of human melanoma-infiltrated human lymph nodes compared with melanocytes in human skin. Examination of Gene Expression Omnibus database data sets suggests that downregulation of AHNAK mRNA and mutation of the AHNAK gene are common in metastatic melanoma and correlates to a poor outcome. Knockdown of AHNAK in primary melanocytes and in a keratinocyte cell line led to a reduction in detectable cadherin-1. This is the first report that we are aware of which correlates a loss of AHNAK with melanoma and poor patient outcome. We hypothesize that AHNAK is required for the expression of functional cadherin-1. PMID:26672724

  5. Cadherins as regulators for the emergence of neural nets from embryonic divisions.

    PubMed

    Redies, Christoph; Treubert-Zimmermann, Ullrich; Luo, Jiankai

    2003-01-01

    Cadherins are a large family of cell adhesion molecules that are expressed in a spatially restricted fashion during vertebrate CNS development. Each cadherin shows a characteristic expression pattern that differs from that of other cadherins. Early in development, the cadherin expression domains relate to the neuromeric organization of the vertebrate CNS. Later, as functional structures (brain nuclei, cortical regions, fiber tracts and synapses) emerge, the expression patterns of each cadherin become restricted to subsets of these structures that form parts of specific neural nets. Cadherins thus represent a system of potentially adhesive cues that play a role in the emergence of neural nets from embryonic CNS divisions. We review descriptive and experimental evidence for such a role of cadherins in CNS development. It is argued that descriptive studies (i.e., the mapping of gene expression) and functional studies (i.e., experimental manipulation of gene expression) are equally important for generating specific and firm ideas on the function of genes in brain development.

  6. Tobacco plants expressing the Cry1AbMod toxin suppress tolerance to Cry1Ab toxin of Manduca sexta cadherin-silenced larvae.

    PubMed

    Porta, Helena; Jiménez, Gladys; Cordoba, Elizabeth; León, Patricia; Soberón, Mario; Bravo, Alejandra

    2011-07-01

    Cry toxins produced by Bacillus thuringiensis bacteria are insecticidal proteins used worldwide in the control of different insect pests. Alterations in toxin-receptor interaction represent the most common mechanism to induce resistance to Cry toxins in lepidopteran insects. Cry toxins bind with high affinity to the cadherin protein present in the midgut cells and this interaction facilitates the proteolytic removal of helix α-1 and pre-pore oligomer formation. Resistance to Cry toxins has been linked with mutations in the cadherin gene. One strategy effective to overcome larval resistance to Cry1A toxins is the production of Cry1AMod toxins that lack helix α-1. Cry1AMod are able to form oligomeric structures without binding to cadherin receptor and were shown to be toxic to cadherin-silenced Manduca sexta larvae and Pectinophora gossypiella strain with resistance linked to mutations in a cadherin gene. We developed Cry1AbMod tobacco transgenic plants to analyze if Cry1AMod toxins can be expressed in transgenic crops, do not affect plant development and are able to control insect pests. Our results show that production of the Cry1AbMod toxin in transgenic plants does not affect plant development, since these plants exhibited healthy growth, produced abundant seeds, and were virtually undistinguishable from control plants. Most importantly, Cry1AbMod protein produced in tobacco plants retains its functional toxic activity against susceptible and tolerant M. sexta larvae due to the silencing of cadherin receptor by RNAi. These results suggest that CryMod toxins could potentially be expressed in other transgenic crops to protect them against both toxin-susceptible and resistant lepidopteran larvae affected in cadherin gene. PMID:21621616

  7. E-cadherin and alpha-, beta-, and gamma-catenin protein expression is up-regulated in ovarian carcinoma cells in serous effusions.

    PubMed

    Davidson, B; Berner, A; Nesland, J M; Risberg, B; Berner, H S; Tropè, C G; Kristensen, G B; Bryne, M; Ann Florenes, V

    2000-12-01

    The aims of this study were firstly, to investigate the expression of E-cadherin complex proteins in ovarian carcinoma cells in serous effusions and in primary and metastatic lesions; and secondly to study the value of these four proteins and calretinin, a mesothelial marker, in the differential diagnosis of ovarian carcinoma cells from reactive mesothelial cells in effusions. Sixty-seven malignant effusions and 97 corresponding primary (n=36) and metastatic (n=61) lesions were immunohistochemically stained for E-cadherin and alpha-, beta-, and gamma-catenin. Staining extent and intensity were scored. Effusion specimens were additionally analysed for calretinin immunoreactivity. Membrane immunoreactivity for E-cadherin and alpha-, beta-, and gamma-catenin was detected on carcinoma cells in the majority of the effusions, but rarely on reactive mesothelial cells (p<0.001 for all markers). Calretinin immunoreactivity was confined to mesothelial cells (p<0.001). An association was seen between E-cadherin and alpha-catenin expression, in both effusions and solid tumours, and for beta-catenin in solid tumours (range p<0. 001 to p=0.014). Up-regulation of all four cadherin complex proteins was seen in carcinoma cells in effusions, when compared with corresponding primary tumours (range p<0.001 to p=0.028). As with effusions, metastatic lesions showed up-regulation of alpha-, beta-, and gamma-catenin when compared with primary carcinomas (p=0.002-0. 015). Carcinoma cells in effusions showed in addition elevated levels of E-cadherin when compared with metastatic lesions (p<0.001). Staining results in effusions showed no association with effusion site, tumour type or histological grade. Immunoblotting on 29 malignant effusions confirmed the presence of all four proteins in the majority of samples and co-precipitation of E-cadherin and beta-catenin was seen in ten specimens examined. E-cadherin complex proteins are widely expressed in ovarian carcinoma cells. Together with

  8. Evidence that cadherins play a role in the downregulation of integrin expression that occurs during keratinocyte terminal differentiation

    PubMed Central

    1994-01-01

    In epidermis the onset of terminal differentiation normally coincides with inhibition of integrin function and expression, thereby ensuring that differentiating cells are selectively expelled from the basal layer. However, when stratification of cultured human epidermal keratinocytes is prevented by reducing the calcium concentration of the medium to 0.1 mM, keratinocytes initiate terminal differentiation while still attached to the culture substrate. We have examined the mechanism by which differentiating keratinocytes adhere to extracellular matrix proteins in low calcium medium and the consequences of inducing stratification by raising the calcium ion concentration to 1.8 mM (Standard Medium). In low calcium medium keratinocytes co-expressed integrins and terminal differentiation markers such as involucrin and peanut lectin-binding glycoproteins: differentiating cells contained integrin mRNA, synthesized integrin proteins de novo and expressed functional mature integrins. There were no differences in integrin synthesis, maturation or break down in low calcium or standard medium, although the level of beta 1 integrins on the surface of proliferating cells was higher in standard medium. Within 6 h of transfer from low calcium to standard medium integrin mRNA was no longer detectable in terminally differentiating cells, integrins were being lost from the cell surface, and selective migration out of the basal layer had begun. Antibodies to P- and E-cadherin, which block calcium-induced stratification, prevented the selective loss of integrin mRNA and protein from terminally differentiating cells. This suggests that cadherins may play a role in the down-regulation of integrin expression that is associated with terminal differentiation. PMID:8106556

  9. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    SciTech Connect

    Kouchi, Zen; Fujiwara, Yuki; Yamaguchi, Hideki; Nakamura, Yoshikazu; Fukami, Kiyoko

    2011-05-20

    Highlights: {yields} We analyzed Phosphatidylinositol 5-phosphate kinase II{beta} (PIPKII{beta}) function in cancer. {yields} PIPKII{beta} is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. {yields} PIPKII{beta} suppresses cellular motility through E-cadherin induction in SW480 cells. {yields} Nuclear PIP{sub 2} but not plasma membrane-localized PIP{sub 2} mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1{alpha},25-dihydroxyvitamin D{sub 3} (1{alpha},25(OH){sub 2}D{sub 3}) has anti-cancer activity in several colon cancers. 1{alpha},25(OH){sub 2}D{sub 3} induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however, its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKII{beta}) but not PIPKII{alpha} is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLC{delta}1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P{sub 2}) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLC{delta}1 PHD inhibited 1{alpha},25(OH){sub 2}D{sub 3}-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P{sub 2} production mediates E-cadherin expression through PIPKII{beta} in a VDR-dependent manner. PIPKII{beta} is also involved in the suppression of the cell motility induced by 1{alpha},25(OH){sub 2}D{sub 3}. These results indicate that PIPKII{beta}-mediated PI(4,5)P{sub 2} signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.

  10. A sharp cadherin-6 gene expression boundary in the developing mouse cortical plate demarcates the future functional areal border.

    PubMed

    Terakawa, Youhei W; Inoue, Yukiko U; Asami, Junko; Hoshino, Mikio; Inoue, Takayoshi

    2013-10-01

    The mammalian cerebral cortex can be tangentially subdivided into tens of functional areas with distinct cyto-architectures and neural circuitries; however, it remains elusive how these areal borders are genetically elaborated during development. Here we establish original bacterial artificial chromosome transgenic mouse lines that specifically recapitulate cadherin-6 (Cdh6) mRNA expression profiles in the layer IV of the somatosensory cortex and by detailing their cortical development, we show that a sharp Cdh6 gene expression boundary is formed at a mediolateral coordinate along the cortical layer IV as early as the postnatal day 5 (P5). By further applying mouse genetics that allows rigid cell fate tracing with CreERT2 expression, it is demonstrated that the Cdh6 gene expression boundary set at around P4 eventually demarcates the areal border between the somatosensory barrel and limb field at P20. In the P6 cortical cell pellet culture system, neurons with Cdh6 expression preferentially form aggregates in a manner dependent on Ca(2+) and electroporation-based Cdh6 overexpression limited to the postnatal stages perturbs area-specific cell organization in the barrel field. These results suggest that Cdh6 expression in the nascent cortical plate may serve solidification of the protomap for cortical functional areas. PMID:22875867

  11. Dynamic expression patterns of the new protocadherin families CNRs and Pcdh-gamma during mouse odontogenesis: comparison with reelin expression.

    PubMed

    Heymann, R; Kallenbach, S; Alonso, S; Carroll, P; Mitsiadis, T A

    2001-08-01

    Protocadherins are transmembrane glycoproteins belonging to the cadherin superfamily of molecules, which are involved in many biological processes such as cell adhesion, cytoskeletal organization and morphogenesis. Protocadherins generally exhibit only moderate adhesive activity and are highly expressed in the nervous system. Here, we report on the expression pattern of two novel families of protocadherins (CNRs and Pcdh-gamma) during rodent teeth development. Furthermore, we compare their expression with that of reelin, which is the potential ligand of CNRs. Throughout odontogenesis, CNRs, Pcdh-gamma and reelin show dynamic spatiotemporal expression patterns, which relate to both morphogenesis and cell differentiation events.

  12. Reduced expression of E-cadherin and p120-catenin and elevated expression of PLC-γ1 and PIKE are associated with aggressiveness of oral squamous cell carcinoma.

    PubMed

    Jiang, Yi; Liao, Liyan; Shrestha, Chandrama; Ji, Shangli; Chen, Ying; Peng, Jian; Wang, Larry; Liao, Eryuan; Xie, Zhongjian

    2015-01-01

    Oral squamous cell carcinoma (OSCC) is one of the most lethal malignant tumors. The cadherin/catenin cell-cell adhesion complex plays a major role in cancer development and progression. p120-catenin (p120) is a cytoplasmic molecule closely associated with E-cadherin which activates phospholipase C-γ1 (PLC-γ1). Our previous studies indicate that activation of PLC-γ1 plays a critical role in epidermal growth factor (EGF)-induced migration and proliferation of squamous cell carcinoma (SCC) cells and phosphatidylinositol 3-kinase enhancer (PIKE) is highly expressed in SCC cells and mediates EGFR-dependent SCC cell proliferation. Our current study was to determine whether the expression of E-cadherin, p120, PLC-γ1, and PIKE, is associated with OSCC. To address this issue, we assessed levels and localization of E-cadherin, p120, PLC-γ1, and PIKE in specimen of 92 patients with OSCC by immunohistochemistry. The results showed that the expression of E-cadherin, and p120 negatively correlated with the tumor differentiation and the expression of PLC-γ1 and PIKE positively correlated with the tumor differentiation. The expression of PLC-γ1 and PIKE in OSCC stage T3 + T4 or in OSCC with lymph node metastasis was significantly higher than that in OSCC stage T1 + T2 or in OSCC without lymph node metastasis. The expression of p120 positively correlated with levels of E-cadherin but negatively correlated with levels of PLC-γ1 and PIKE in OSCC. These data indicate that increased expression of PLC-γ1 and PIKE and decreased expression of E-cadherin and p120 are associated with the aggressiveness of OSCC.

  13. CD133 expression correlates with membrane beta-catenin and E-cadherin loss from human hair follicle placodes during morphogenesis.

    PubMed

    Gay, Denise L; Yang, Chao-Chun; Plikus, Maksim V; Ito, Mayumi; Rivera, Charlotte; Treffeisen, Elsa; Doherty, Laura; Spata, Michelle; Millar, Sarah E; Cotsarelis, George

    2015-01-01

    Genetic studies suggest that the major events of human hair follicle development are similar to those in mice, but detailed analyses of this process are lacking. In mice, hair follicle placode "budding" is initiated by invagination of Wnt-induced epithelium into the underlying mesenchyme. Modification of adherens junctions (AJs) is clearly required for budding. Snail-mediated downregulation of AJ component E-cadherin is important for placode budding in mice. Beta-catenin, another AJ component, has been more difficult to study owing to its essential functions in Wnt signaling, a prerequisite for hair follicle placode induction. Here, we show that a subset of human invaginating hair placode cells expresses the stem cell marker CD133 during early morphogenesis. CD133 associates with membrane beta-catenin in early placodes, and its continued expression correlates with loss of beta-catenin and E-cadherin from the cell membrane at a time when E-cadherin transcriptional repressors Snail and Slug are not implicated. Stabilization of CD133 via anti-CD133 antibody treatment of human fetal scalp explants depresses beta-catenin and E-cadherin membrane localization. We discuss this unique correlation and suggest a hypothetical model whereby CD133 promotes morphogenesis in early hair follicle placodes through the localized removal of membrane beta-catenin proteins and subsequent AJ dissolution.

  14. CD133 expression correlates with membrane beta-catenin and e-cadherin loss from human hair follicle placodes during morphogenesis

    PubMed Central

    Gay, Denise; Yang, Chao-Chun; Plikus, Maksim; Ito, Mayumi; Rivera, Charlotte; Treffeisen, Elsa; Doherty, Laura; Spata, Michelle; Millar, Sarah E.; Cotsarelis, George

    2014-01-01

    Genetic studies suggest that the major events of human hair follicle development are similar to those in mice, but detailed analyses of this process are lacking. In mice, hair follicle placode ‘budding’ is initiated by invagination of Wnt-induced epithelium into the underlying mesenchyme. Modification of adherens junctions is clearly required for budding. Snail-mediated downregulation of adherens junction component E-cadherin is important for placode budding in mice. Beta-catenin, another adherens junction component, has been more difficult to study due to its essential functions in Wnt signaling, a prerequisite for hair follicle placode induction. Here, we show that a subset of human invaginating hair placode cells expresses the stem cell marker CD133 during early morphogenesis. CD133 associates with membrane beta-catenin in early placodes and its continued expression correlates with loss of beta-catenin and E-cadherin from the cell membrane at a time when E-cadherin transcriptional repressors Snail and Slug are not implicated. Stabilization of CD133 via anti-CD133 antibody treatment of human fetal scalp explants depresses beta-catenin and E-cadherin membrane localization. We discuss this unique correlation and suggest a hypothetical model whereby CD133 promotes morphogenesis in early hair follicle placodes through the localized removal of membrane beta-catenin proteins and subsequent adherens junction dissolution. PMID:25010141

  15. Nuclear Signaling from Cadherin Adhesion Complexes

    PubMed Central

    McCrea, Pierre D.; Maher, Meghan T.; Gottardi, Cara J.

    2015-01-01

    The arrival of multicellularity in evolution facilitated cell–cell signaling in conjunction with adhesion. As the ectodomains of cadherins interact with each other directly in trans (as well as in cis), spanning the plasma membrane and associating with multiple other entities, cadherins enable the transduction of “outside-in” or “inside-out” signals. We focus this review on signals that originate from the larger family of cadherins that are inwardly directed to the nucleus, and thus have roles in gene control or nuclear structure–function. The nature of cadherin complexes varies considerably depending on the type of cadherin and its context, and we will address some of these variables for classical cadherins versus other family members. Substantial but still fragmentary progress has been made in understanding the signaling mediators used by varied cadherin complexes to coordinate the state of cell–cell adhesion with gene expression. Evidence that cadherin intracellular binding partners also localize to the nucleus is a major point of interest. In some models, catenins show reduced binding to cadherin cytoplasmic tails favoring their engagement in gene control. When bound, cadherins may serve as stoichiometric competitors of nuclear signals. Cadherins also directly or indirectly affect numerous signaling pathways (e.g., Wnt, receptor tyrosine kinase, Hippo, NFκB, and JAK/STAT), enabling cell–cell contacts to touch upon multiple biological outcomes in embryonic development and tissue homeostasis. PMID:25733140

  16. Differential Localization of VE- and N-Cadherins in Human Endothelial Cells: VE-Cadherin Competes with N-Cadherin for Junctional Localization

    PubMed Central

    Navarro, Pilar; Ruco, Luigi; Dejana, Elisabetta

    1998-01-01

    The two major cadherins of endothelial cells are neural (N)-cadherin and vascular endothelial (VE)- cadherin. Despite similar level of protein expression only VE-cadherin is located at cell–cell contacts, whereas N-cadherin is distributed over the whole cell membrane. Cotransfection of VE-cadherin and N-cadherin in CHO cells resulted in the same distribution as that observed in endothelial cells indicating that the behavior of the two cadherins was not cell specific but related to their structural characteristics. Similar amounts of α- and β-catenins and plakoglobin were associated to VE- and N-cadherins, whereas p120 was higher in the VE-cadherin complex. The presence of VE-cadherin did not affect N-cadherin homotypic adhesive properties or its capacity to localize at junctions when cotransfectants were cocultured with cells transfected with N-cadherin only. To define the molecular domain responsible for the VE-cadherin–dominant activity we prepared a chimeric construct formed by VE-cadherin extracellular region linked to N-cadherin intracellular domain. The chimera lost the capacity to exclude N-cadherin from junctions indicating that the extracellular domain of VE-cadherin alone is not sufficient for the preferential localization of the molecule at the junctions. A truncated mutant of VE-cadherin retaining the full extracellular domain and a short cytoplasmic tail (Arg621–Pro702) lacking the catenin-binding region was able to exclude N-cadherin from junctions. This indicates that the Arg621–Pro702 sequence in the VE-cadherin cytoplasmic tail is required for N-cadherin exclusion from junctions. Competition between cadherins for their clustering at intercellular junctions in the same cell has never been described before. We speculate that, in the endothelium, VE- and N-cadherin play different roles; whereas VE-cadherin mostly promotes the homotypic interaction between endothelial cells, N-cadherin may be responsible for the anchorage of the endothelium

  17. Intestinal trefoil factor controls the expression of the adenomatous polyposis coli-catenin and the E-cadherin-catenin complexes in human colon carcinoma cells.

    PubMed

    Efstathiou, J A; Noda, M; Rowan, A; Dixon, C; Chinery, R; Jawhari, A; Hattori, T; Wright, N A; Bodmer, W F; Pignatelli, M

    1998-03-17

    Intestinal trefoil factor 3 (TFF3) is a member of the trefoil family of peptides, small molecules constitutively expressed in epithelial tissues, including the gastrointestinal tract. TFF3 has been shown to promote migration of intestinal epithelial cells in vitro and to enhance mucosal healing and epithelial restitution in vivo. In this study, we evaluated the effect of recombinant TFF3 (rTFF3) stimulation on the expression and cellular localization of the epithelial (E)-cadherin-catenin complex, a prime mediator of Ca2+ dependent cell-cell adhesion, and the adenomatous polyposis coli (APC)-catenin complex in HT29, HCT116, and SW480 colorectal carcinoma cell lines. Stimulation by rTFF3 (10(-9) M and 10(-8) M) for 20-24 hr led to cell detachment and to a reduction in intercellular adhesion in HT29 and HCT116 cells. In both cell lines, E-cadherin expression was down-regulated. The expression of APC, alpha-catenin and beta-catenin also was decreased in HT29 cells, with a translocation of APC into the nucleus. No change in either cell adhesion or in the expression of E-cadherin, the catenins, and APC was detected in SW480 cells. In addition, TFF3 induced DNA fragmentation and morphological changes characteristic of apoptosis in HT29. Tyrphostin, a competitive inhibitor of protein tyrosine kinases, inhibited the effects of TFF3. Our results indicate that by perturbing the complexes between E-cadherin, beta-catenin, and associated proteins, TFF3 may modulate epithelial cell adhesion, migration, and survival.

  18. Expression of E-cadherin and β-catenin in basaloid and conventional squamous cell carcinoma of the oral cavity: are potential prognostic markers?

    PubMed Central

    2014-01-01

    Background Basaloid squamous cell carcinoma presents with a preference for the head and neck region, and shows a distinct aggressive behavior, with frequent local recurrences, regional and distant metastasis. The alterations in the cadherin-catenin complex are fundamental requirements for the metastasis process, and this is the first study to evaluate the immunostaining of E-cadherin and β-catenin in oral basaloid squamous cell carcinoma. Methods Seventeen cases of this tumor located exclusively in the mouth were compared to 26 cases of poorly differentiated squamous cell carcinoma and 28 cases of well to moderately differentiated squamous cell carcinoma matched by stage and tumor site. The immunostaining of E-cadherin and β-catenin were evaluated in the three groups and compared to their clinicopathological features and prognosis. Results For groups poorly differentiated squamous cell carcinoma and basaloid squamous cell carcinoma, reduction or absence of E-cadherin staining was observed in more than 80.0% of carcinomas, and it was statistically significant compared to well to moderately differentiated squamous cell carcinoma (p = .019). A strong expression of β-catenin was observed in 26.9% and 20.8% of well to moderately differentiated squamous cell carcinoma and poorly differentiated squamous cell carcinoma, respectively, and in 41.2% of basaloid squamous cell carcinoma. The 5-year and 10-year overall and disease-free survival rates demonstrated no significant differences among all three groups. Conclusions The clinical and biological behavior of three groups of the oral cavity tumors evaluated are similar. E-cadherin and β-catenin immunostaining showed no prognostic value for basaloid and conventional squamous cell carcinomas. PMID:24893577

  19. Brain Metastases from Lung Cancer Show Increased Expression of DVL1, DVL3 and Beta-Catenin and Down-Regulation of E-Cadherin

    PubMed Central

    Kafka, Anja; Tomas, Davor; Beroš, Vili; Pećina, Hrvoje Ivan; Zeljko, Martina; Pećina-Šlaus, Nives

    2014-01-01

    The susceptibility of brain to secondary formation from lung cancer primaries is a well-known phenomenon. In contrast, the molecular basis for invasion and metastasis to the brain is largely unknown. In the present study, 31 brain metastases that originated from primary lung carcinomas were analyzed regarding over expression of Dishevelled-1 (DVL1), Dishevelled-3 (DVL3), E-cadherin (CDH1) and beta-catenin (CTNNB1). Protein expressions and localizations were analyzed by immunohistochemistry. Genetic alterations of E-cadherin were tested by polymerase chain reaction (PCR)/loss of heterozygosity (LOH). Heteroduplex was used to investigate mutations in beta-catenin. DVL1 and DVL3 showed over expression in brain metastasis in 87.1% and 90.3% of samples respectively. Nuclear staining was observed in 54.8% of cases for DVL1 and 53.3% for DVL3. The main effector of the Wnt signaling, beta-catenin, was up-regulated in 56%, and transferred to the nucleus in 36% of metastases. When DVL1 and DVL3 were up-regulated the number of cases with nuclear beta-catenin significantly increased (p = 0.0001). Down-regulation of E-cadherin was observed in 80% of samples. Genetic analysis showed 36% of samples with LOH of the CDH1. In comparison to other lung cancer pathologies, the diagnoses adenocarcinoma and small cell lung cancer (SCLC) were significantly associated to CDH1 LOH (p = 0.001). Microsatellite instability was detected in one metastasis from adenocarcinoma. Exon 3 of beta-catenin was not targeted. Altered expression of Dishevelled-1, Dishevelled-3, E-cadherin and beta-catenin were present in brain metastases which indicates that Wnt signaling is important and may contribute to better understanding of genetic profile conditioning lung cancer metastasis to the brain. PMID:24933634

  20. Brain metastases from lung cancer show increased expression of DVL1, DVL3 and beta-catenin and down-regulation of E-cadherin.

    PubMed

    Kafka, Anja; Tomas, Davor; Beroš, Vili; Pećina, Hrvoje Ivan; Zeljko, Martina; Pećina-Šlaus, Nives

    2014-06-13

    The susceptibility of brain to secondary formation from lung cancer primaries is a well-known phenomenon. In contrast, the molecular basis for invasion and metastasis to the brain is largely unknown. In the present study, 31 brain metastases that originated from primary lung carcinomas were analyzed regarding over expression of Dishevelled-1 (DVL1), Dishevelled-3 (DVL3), E-cadherin (CDH1) and beta-catenin (CTNNB1). Protein expressions and localizations were analyzed by immunohistochemistry. Genetic alterations of E-cadherin were tested by polymerase chain reaction (PCR)/loss of heterozygosity (LOH). Heteroduplex was used to investigate mutations in beta-catenin. DVL1 and DVL3 showed over expression in brain metastasis in 87.1% and 90.3% of samples respectively. Nuclear staining was observed in 54.8% of cases for DVL1 and 53.3% for DVL3. The main effector of the Wnt signaling, beta-catenin, was up-regulated in 56%, and transferred to the nucleus in 36% of metastases. When DVL1 and DVL3 were up-regulated the number of cases with nuclear beta-catenin significantly increased (p=0.0001). Down-regulation of E-cadherin was observed in 80% of samples. Genetic analysis showed 36% of samples with LOH of the CDH1. In comparison to other lung cancer pathologies, the diagnoses adenocarcinoma and small cell lung cancer (SCLC) were significantly associated to CDH1 LOH (p=0.001). Microsatellite instability was detected in one metastasis from adenocarcinoma. Exon 3 of beta-catenin was not targeted. Altered expression of Dishevelled-1, Dishevelled-3, E-cadherin and beta-catenin were present in brain metastases which indicates that Wnt signaling is important and may contribute to better understanding of genetic profile conditioning lung cancer metastasis to the brain.

  1. Deoxynivanelol and Fumonisin, Alone or in Combination, Induce Changes on Intestinal Junction Complexes and in E-Cadherin Expression

    PubMed Central

    Basso, Karina; Gomes, Fernando; Loureiro Bracarense, Ana Paula

    2013-01-01

    Fusariotoxins such as fumonisin B1 (FB1) and deoxynivalenol (DON) cause deleterious effects on the intestine of pigs. The aim of this study was to evaluate the effect of these mycotoxins, alone and in combination, on jejunal explants from piglets, using histological, immunohistochemical and ultrastructural assays. Five 24-day old pigs were used for sampling the explants. Forty-eight explants were sampled from each animal. Explants were incubated for 4 hours in culture medium and medium containing FB1 (100 µM), DON (10 µM) and both mycotoxins (100 µM FB1 plus 10 µM DON). Exposure to all treatments induced a significant decrease in the normal intestinal morphology and in the number of goblet cells, which were more severe in explants exposed to DON and both mycotoxins. A significant reduction in villus height occurred in groups treated with DON and with co-contamination. Expression of E-cadherin was significantly reduced in explants exposed to FB1 (40%), DON (93%) and FB1 plus DON (100%). The ultrastructural assay showed increased intercellular spaces and no junction complexes on enterocytes exposed to mycotoxins. The present data indicate that FB1 and DON induce changes in cell junction complexes that could contribute to increase paracellular permeability. The ex vivo model was adequate for assessing intestinal toxicity induced by exposure of isolated or associated concentrations of 100 µM of FB1 and 10 µM of DON. PMID:24287571

  2. N-cadherin is required for cytodifferentiation during zebrafish odontogenesis.

    PubMed

    Verstraeten, B; van Hengel, J; Sanders, E; Van Roy, F; Huysseune, A

    2013-04-01

    N-cadherin is a well-studied classic cadherin involved in multiple developmental processes and is also known to have a signaling function. Using the zebrafish (Danio rerio) as a model, we tested the hypothesis that tooth morphogenesis is accompanied by dynamic changes in N-cadherin distribution and that absence of N-cadherin disturbs tooth development. N-cadherin, encoded by the gene cdh2, is absent during the initiation and morphogenesis stages of both primary (first-generation) and replacement teeth, as demonstrated by immunohistochemistry. However, N-cadherin is up-regulated at the onset of differentiation of cells of the inner dental epithelium and the dental papilla, i.e., the ameloblasts and odontoblasts, respectively. In the inner dental epithelium, N-cadherin is co-expressed with E-cadherin, excluding the occurrence of cadherin switching such as observed during human tooth development. While early lethality of N-cadherin knockout mice prevents any functional study of N-cadherin in mouse odontogenesis, zebrafish parachute (pac) mutants, deficient for N-cadherin, survive beyond the age when primary teeth normally start to form. In these mutants, the first tooth forms, but its development stops at the early cytodifferentiation stage. N-cadherin deficiency also completely inhibits the development of the other first-generation teeth, possibly due to the absence of N-cadherin signaling once the first tooth has differentiated.

  3. Gene expression of WNTs, β-catenin and E-cadherin during the periimplantation period of pregnancy in pigs--involvement of steroid hormones.

    PubMed

    Kiewisz, Jolanta; Kaczmarek, Monika M; Andronowska, Aneta; Blitek, Agnieszka; Ziecik, Adam J

    2011-09-01

    WNTs (wingless-type MMTV integration site family, member) are morphogenes considered as important factors taking part in uterus developmental processes and implantation. β-catenin is a downstream effector of WNTs action within the cell as well as, through E-cadherin, affecting epithelial organization and function. This study was conducted to investigate WNT4, WNT5A, WNT7A, β-catenin (CTNNB1) and E-cadherin (CDH1) gene expression and protein localization in the endometrium during the periimplantation period. Furthermore, the effect of 17β-estradiol (E(2)) and progesterone (P(4)) on WNTs, CTNNB1 and CDH1 gene expression in the porcine endometrium in vitro was examined. WNT4 protein was localized in the luminal and glandular epithelium as well as in the basal lamina of the uterine mucosa. WNT5A protein was detected only in the luminal epithelium. WNT7A, β-catenin and E-cadherin protein were identified both in the luminal and glandular epithelial cells, however, WNT7A protein immunoreactivity varied during respective days of estrous cycle and/or pregnancy. Despite unchanged expression of WNT4 mRNA in the endometrium of cyclic and early pregnant pigs, the negative influence of E(2) on WNT4 gene during in vitro experiment was observed. WNT4 and CDH1 gene expression was negatively correlated with blood plasma E(2) and P(4) level in uterine luminal flushings (ULFs) on Day 12 of pregnancy. Expression of WNT5A gene was up-regulated in the endometrium on Day 9 of pregnancy when compared to the respective day of the estrous cycle. A significant decrease of WNT7A gene expression and increase of CDH1 mRNA amount was detected on Day 12 of pregnancy. Overall, the results show the spatial localization of WNT4, WNT5A, WNT7A, β-catenin and E-cadherin proteins in porcine endometrium during periimplantation period of pregnancy and indicate significant changes of WNT5A, WNT7A and CDH1 gene expression before implantation in the pig.

  4. Deciphering Seed Sequence Based Off-Target Effects in a Large-Scale RNAi Reporter Screen for E-Cadherin Expression

    PubMed Central

    Adams, Robert; Nicke, Barbara; Pohlenz, Hans-Dieter; Sohler, Florian

    2015-01-01

    Functional RNAi based screening is affected by large numbers of false positive and negative hits due to prevalent sequence based off-target effects. We performed a druggable genome targeting siRNA screen intended to identify novel regulators of E-cadherin (CDH1) expression, a known key player in epithelial mesenchymal transition (EMT). Analysis of primary screening results indicated a large number of false-positive hits. To address these crucial difficulties we developed an analysis method, SENSORS, which, similar to published methods, is a seed enrichment strategy for analyzing siRNA off-targets in RNAi screens. Using our approach, we were able to demonstrate that accounting for seed based off-target effects stratifies primary screening results and enables the discovery of additional screening hits. While traditional hit detection methods are prone to false positive results which are undetected, we were able to identify false positive hits robustly. Transcription factor MYBL1 was identified as a putative novel target required for CDH1 expression and verified experimentally. No siRNA pool targeting MYBL1 was present in the used siRNA library. Instead, MYBL1 was identified as a putative CDH1 regulating target solely based on the SENSORS off-target score, i.e. as a gene that is a cause for off-target effects down regulating E-cadherin expression. PMID:26361354

  5. The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression.

    PubMed

    de Bruin, Ruben G; van der Veer, Eric P; Prins, Jurriën; Lee, Dae Hyun; Dane, Martijn J C; Zhang, Huayu; Roeten, Marko K; Bijkerk, Roel; de Boer, Hetty C; Rabelink, Ton J; van Zonneveld, Anton Jan; van Gils, Janine M

    2016-02-24

    Proper regulation of endothelial cell-cell contacts is essential for physiological functioning of the endothelium. Interendothelial junctions are actively involved in the control of vascular leakage, leukocyte diapedesis, and the initiation and progression of angiogenesis. We found that the RNA-binding protein quaking is highly expressed by endothelial cells, and that its expression was augmented by prolonged culture under laminar flow and the transcription factor KLF2 binding to the promoter. Moreover, we demonstrated that quaking directly binds to the mRNA of VE-cadherin and β-catenin and can induce mRNA translation mediated by the 3'UTR of these genes. Reduced quaking levels attenuated VE-cadherin and β-catenin expression and endothelial barrier function in vitro and resulted in increased bradykinin-induced vascular leakage in vivo. Taken together, we report that quaking is essential in maintaining endothelial barrier function. Our results provide novel insight into the importance of post-transcriptional regulation in controlling vascular integrity.

  6. PKCζ Promotes Breast Cancer Invasion by Regulating Expression of E-cadherin and Zonula Occludens-1 (ZO-1) via NFκB-p65

    PubMed Central

    Paul, Arindam; Danley, Marsha; Saha, Biswarup; Tawfik, Ossama; Paul, Soumen

    2015-01-01

    Atypical Protein Kinase C zeta (PKCζ) forms Partitioning-defective (PAR) polarity complex for apico-basal distribution of membrane proteins essential to maintain normal cellular junctional complexes and tissue homeostasis. Consistently, tumor suppressive role of PKCζ has been established for multiple human cancers. However, recent studies also indicate pro-oncogenic function of PKCζ without firm understanding of detailed molecular mechanism. Here we report a possible mechanism of oncogenic PKCζ signaling in the context of breast cancer. We observed that depletion of PKCζ promotes epithelial morphology in mesenchymal-like MDA-MB-231 cells. The induction of epithelial morphology is associated with significant upregulation of adherens junction (AJ) protein E-cadherin and tight junction (TJ) protein Zonula Occludens-1 (ZO-1). Functionally, depletion of PKCζ significantly inhibits invasion and metastatic progression. Consistently, we observed higher expression and activation of PKCζ signaling in invasive and metastatic breast cancers compared to non-invasive diseases. Mechanistically, an oncogenic PKCζ– NFκB-p65 signaling node might be involved to suppress E-cadherin and ZO-1 expression and ectopic expression of a constitutively active form of NFκB-p65 (S536E-NFκB-p65) significantly rescues invasive potential of PKCζ-depleted breast cancer cells. Thus, our study discovered a PKCζ - NFκB-p65 signaling pathway might be involved to alter cellular junctional dynamics for breast cancer invasive progression. PMID:26218882

  7. The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression

    PubMed Central

    de Bruin, Ruben G.; van der Veer, Eric P.; Prins, Jurriën; Lee, Dae Hyun; Dane, Martijn J. C.; Zhang, Huayu; Roeten, Marko K.; Bijkerk, Roel; de Boer, Hetty C.; Rabelink, Ton J.; van Zonneveld, Anton Jan; van Gils, Janine M.

    2016-01-01

    Proper regulation of endothelial cell-cell contacts is essential for physiological functioning of the endothelium. Interendothelial junctions are actively involved in the control of vascular leakage, leukocyte diapedesis, and the initiation and progression of angiogenesis. We found that the RNA-binding protein quaking is highly expressed by endothelial cells, and that its expression was augmented by prolonged culture under laminar flow and the transcription factor KLF2 binding to the promoter. Moreover, we demonstrated that quaking directly binds to the mRNA of VE-cadherin and β-catenin and can induce mRNA translation mediated by the 3′UTR of these genes. Reduced quaking levels attenuated VE-cadherin and β-catenin expression and endothelial barrier function in vitro and resulted in increased bradykinin-induced vascular leakage in vivo. Taken together, we report that quaking is essential in maintaining endothelial barrier function. Our results provide novel insight into the importance of post-transcriptional regulation in controlling vascular integrity. PMID:26905650

  8. Inappropriate cadherin switching in the mouse epiblast compromises proper signaling between the epiblast and the extraembryonic ectoderm during gastrulation

    PubMed Central

    Basilicata, M. Felicia; Frank, Marcus; Solter, Davor; Brabletz, Thomas; Stemmler, Marc P.

    2016-01-01

    Cadherin switching from E-cadherin (E-cad) to N-cadherin (N-cad) is a key step of the epithelial-mesenchymal transition (EMT) processes that occurs during gastrulation and cancer progression. We investigate whether cadherins actively participate in progression of EMT by crosstalk to signaling pathways. We apply ectopic cadherin switching before the onset of mouse gastrulation. Mutants with an induced E-cad to N-cad switch (Ncadki) die around E8.5. Severe morphological changes including a small epiblast, a rounded shape, an enlarged extra-embryonic compartment and lack of the amnion, combined with a massive cell detachment from the ectodermal layer are detected. In contrast to epiblast-specific E-cad depletion, gastrulation is initiated in Ncadki embryos, but patterning of the germ-layers is abnormal. An overall reduction in BMP signaling, expansion of Nodal and Eomes domains, combined with reduced Wnt3a expression at the primitive streak is observed. Our results show that in addition to cadherin-dependent adhesion, proper embryonic development requires E-cad mediated signaling function to facilitate a feedback loop that stabilizes Bmp4 and Bmp2 expression in the extraembryonic ectoderm and sustained downstream activity in the epiblast. Moreover, for proper morphogenesis a fine-tuned spatio-temporal control of cadherin switching is required during EMT at gastrulation to avoid premature cell detachment and migration. PMID:27217206

  9. Ankyrin-G Inhibits Endocytosis of Cadherin Dimers.

    PubMed

    Cadwell, Chantel M; Jenkins, Paul M; Bennett, Vann; Kowalczyk, Andrew P

    2016-01-01

    Dynamic regulation of endothelial cell adhesion is central to vascular development and maintenance. Furthermore, altered endothelial adhesion is implicated in numerous diseases. Therefore, normal vascular patterning and maintenance require tight regulation of endothelial cell adhesion dynamics. However, the mechanisms that control junctional plasticity are not fully understood. Vascular endothelial cadherin (VE-cadherin) is an adhesive protein found in adherens junctions of endothelial cells. VE-cadherin mediates adhesion through trans interactions formed by its extracellular domain. Trans binding is followed by cis interactions that laterally cluster the cadherin in junctions. VE-cadherin is linked to the actin cytoskeleton through cytoplasmic interactions with β- and α-catenin, which serve to increase adhesive strength. Furthermore, p120-catenin binds to the cytoplasmic tail of cadherin and stabilizes it at the plasma membrane. Here we report that induced cis dimerization of VE-cadherin inhibits endocytosis independent of both p120 binding and trans interactions. However, we find that ankyrin-G, a protein that links membrane proteins to the spectrin-actin cytoskeleton, associates with VE-cadherin and inhibits its endocytosis. Ankyrin-G inhibits VE-cadherin endocytosis independent of p120 binding. We propose a model in which ankyrin-G associates with and inhibits the endocytosis of VE-cadherin cis dimers. Our findings support a novel mechanism for regulation of VE-cadherin endocytosis through ankyrin association with cadherin engaged in lateral interactions.

  10. Collagen type I may influence the expression of E-cadherin and beta-catenin in carcinoma ex-pleomorphic adenoma.

    PubMed

    Araújo, Vera C; Demasi, Ana Paula Dias; Furuse, Cristiane; Altemani, Albina; Alves, Venâncio A; Freitas, Leandro L; Araújo, Ney S

    2009-07-01

    Carcinoma ex-pleomorphic adenoma (CXPA) is an aggressive salivary gland malignancy, usually derived from a long-standing or a recurrent benign tumor, the pleomorphic adenoma (PA). In the context of dynamic reciprocity, changes in the composition and structure of extracellular matrix proteins and cell surface receptors have been frequently associated with dysfunctional adhesion and invasive behavior of tumor cells. It is not fully understood if these changes are involved in the conversion of PA to CXPA. In this study, different progression stages of CXPA were investigated regarding the expression of the major extracellular matrix proteins, collagen type I, and of E-cadherin and beta-catenin, the components of adherens junctions. By immunohistochemical analysis, we have demonstrated that direct contact of tumor cells with fibrillar type I collagen, particularly near the invasive front and in invasive areas prevailing small nests of CXPA cells, could be associated with reduced expression of the E-cadherin and beta-catenin adhesion molecules and with invasive behavior of epithelial, but not of CXPA with myoepithelial component. Our results also suggested that this association could depend on the organization of collagen molecules, being prevented by high-order polymeric structures. These findings could implicate the local microenvironment in the transition from the premalignant PA to invasive CXPA.

  11. Cadherin2 (N-cadherin) plays an essential role in zebrafish cardiovascular development

    PubMed Central

    Bagatto, Brian; Francl, Jessie; Liu, Bei; Liu, Qin

    2006-01-01

    Background Cadherins are cell surface adhesion molecules that play important roles in development of vertebrate tissues and organs. We studied cadherin2 expression in developing zebrafish heart using in situ hybridization and immunocytochemical methods, and we found that cadherin2 was strongly expressed by the myocardium of the embryonic zebrafish. To gain insight into cadherin2 role in the formation and function of the heart, we analyzed cardiac differentiation and performance in a cadherin2 mutant, glass onion (glo). Results We found that the cadherin2 mutant had enlarged pericardial cavity, disorganized atrium and ventricle, and reduced expression of a ventricular specific marker vmhc. Individual myocardiocytes in the glo mutant embryos became round shaped and loosely aggregated. In vivo measurements of cardiac performance revealed that the mutant heart had significantly reduced heart rate, stroke volume and cardiac output compared to control embryos. Formation of the embryonic vascular system in the glo mutants was also affected. Conclusion Our results suggest that cadherin2 plays an essential role in zebrafish cardiovascular development. Although the exact mechanisms remain unknown as to the formation of the enlarged pericardium and reduced peripheral blood flow, it is clear that myocardiocyte differentiation and physiological cardiovascular performance is impaired when cadherin2 function is disrupted. PMID:16719917

  12. NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2.

    PubMed

    Chua, H L; Bhat-Nakshatri, P; Clare, S E; Morimiya, A; Badve, S; Nakshatri, H

    2007-02-01

    The transcription factor nuclear factor kappa B (NF-kappaB) is constitutively active in both cancer cells and stromal cells of breast cancer; however, the precise role of activated NF-kappaB in cancer progression is not known. Using parental MCF10A cells and a variant that expresses the myoepithelial marker p63 stably overexpressing the constitutively active p65 subunit of NF-kappaB (MCF10A/p65), we show that NF-kappaB suppresses the expression of epithelial specific genes E-cadherin and desmoplakin and induces the expression of the mesenchymal specific gene vimentin. P65 also suppressed the expression of p63 and the putative breast epithelial progenitor marker cytokeratin 5/6. MCF10A/p65 cells were phenotypically similar to cells undergoing epithelial to mesenchymal transition (EMT). MCF10A/p65 cells failed to form characteristic acini in three-dimensional Matrigel. Analysis of parental and MCF10A/p65 cells for genes previously shown to be involved in EMT revealed elevated expression of ZEB-1 and ZEB-2 in MCF10A/p65 cells compared to parental cells. In transient transfection assays, p65 increased ZEB-1 promoter activity. Furthermore, MCF10A cells overexpressing ZEB-1 showed reduced E-cadherin and p63 expression and displayed an EMT phenotype. The siRNA against ZEB-1 or ZEB-2 reduced the number of viable MCF10A/p65 but not parental cells, suggesting the dependence of MCF10A/p65 cells to ZEB-1 and ZEB-2 for cell cycle progression or survival. MCF10A cells chronically exposed to tumor necrosis factor alpha (TNFalpha), a potent NF-kappaB inducer, also exhibited the EMT-like phenotype and ZEB-1/ZEB-2 induction, both of which were reversed following TNFalpha withdrawal.

  13. Application of APTES-Anti-E-cadherin film for early cancer monitoring.

    PubMed

    Ben Ismail, Manel; Carreiras, Franck; Agniel, Rémy; Mili, Donia; Sboui, Dejla; Zanina, Nahla; Othmane, Ali

    2016-10-01

    Cancer staging is a way to classify cancer according to the extent of the disease in the body. The stage is usually determined by several factors such as the location of the primary tumor, the tumor size, the degree of spread in the surrounding tissues, etc. The study of E-cadherin (EC) expression on cancerous cells of patients has revealed variations in the molecular expression patterns of primary tumors and metastatic tumors. The detection of these cells requires a long procedure involving conventional techniques, thus, the requirement for development of new rapid devices that permit direct and highly sensitive detection stimulates the sensing field progress. Here, we explore if E-cadherin could be used as a biomarker to bind and detect epithelial cancer cells. Hence, the sensitive and specific detection of E-cadherin expressed on epithelial cells is approached by immobilizing anti-E-cadherin antibody (AEC) onto aminosilanized indium-tin oxide (ITO) surface. The immunosensing surfaces have been characterized by electrochemical measurements, wettability and confocal microscopy and their performance has been assessed in the presence of cancer cell lines. Under optimal conditions, the resulting immunosensor displayed a selective detection of E-cadherin expressing cells, which could be detected either by fluorescence or electrochemical techniques. The developed immunosensing surface could provide a simple tool that can be applied to cancer staging. PMID:27423102

  14. E-cadherin is required for cranial neural crest migration in Xenopus laevis.

    PubMed

    Huang, Chaolie; Kratzer, Marie-Claire; Wedlich, Doris; Kashef, Jubin

    2016-03-15

    The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo.

  15. E-cadherin is required for cranial neural crest migration in Xenopus laevis.

    PubMed

    Huang, Chaolie; Kratzer, Marie-Claire; Wedlich, Doris; Kashef, Jubin

    2016-03-15

    The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo

  16. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer.

    PubMed

    Carvalho, S; Catarino, T A; Dias, A M; Kato, M; Almeida, A; Hessling, B; Figueiredo, J; Gärtner, F; Sanches, J M; Ruppert, T; Miyoshi, E; Pierce, M; Carneiro, F; Kolarich, D; Seruca, R; Yamaguchi, Y; Taniguchi, N; Reis, C A; Pinho, S S

    2016-03-31

    E-cadherin is a central molecule in the process of gastric carcinogenesis and its posttranslational modifications by N-glycosylation have been described to induce a deleterious effect on cell adhesion associated with tumor cell invasion. However, the role that site-specific glycosylation of E-cadherin has in its defective function in gastric cancer cells needs to be determined. Using transgenic mice models and human clinical samples, we demonstrated that N-acetylglucosaminyltransferase V (GnT-V)-mediated glycosylation causes an abnormal pattern of E-cadherin expression in the gastric mucosa. In vitro models further indicated that, among the four potential N-glycosylation sites of E-cadherin, Asn-554 is the key site that is selectively modified with β1,6 GlcNAc-branched N-glycans catalyzed by GnT-V. This aberrant glycan modification on this specific asparagine site of E-cadherin was demonstrated to affect its critical functions in gastric cancer cells by affecting E-cadherin cellular localization, cis-dimer formation, molecular assembly and stability of the adherens junctions and cell-cell aggregation, which was further observed in human gastric carcinomas. Interestingly, manipulating this site-specific glycosylation, by preventing Asn-554 from receiving the deleterious branched structures, either by a mutation or by silencing GnT-V, resulted in a protective effect on E-cadherin, precluding its functional dysregulation and contributing to tumor suppression.

  17. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer.

    PubMed

    Carvalho, S; Catarino, T A; Dias, A M; Kato, M; Almeida, A; Hessling, B; Figueiredo, J; Gärtner, F; Sanches, J M; Ruppert, T; Miyoshi, E; Pierce, M; Carneiro, F; Kolarich, D; Seruca, R; Yamaguchi, Y; Taniguchi, N; Reis, C A; Pinho, S S

    2016-03-31

    E-cadherin is a central molecule in the process of gastric carcinogenesis and its posttranslational modifications by N-glycosylation have been described to induce a deleterious effect on cell adhesion associated with tumor cell invasion. However, the role that site-specific glycosylation of E-cadherin has in its defective function in gastric cancer cells needs to be determined. Using transgenic mice models and human clinical samples, we demonstrated that N-acetylglucosaminyltransferase V (GnT-V)-mediated glycosylation causes an abnormal pattern of E-cadherin expression in the gastric mucosa. In vitro models further indicated that, among the four potential N-glycosylation sites of E-cadherin, Asn-554 is the key site that is selectively modified with β1,6 GlcNAc-branched N-glycans catalyzed by GnT-V. This aberrant glycan modification on this specific asparagine site of E-cadherin was demonstrated to affect its critical functions in gastric cancer cells by affecting E-cadherin cellular localization, cis-dimer formation, molecular assembly and stability of the adherens junctions and cell-cell aggregation, which was further observed in human gastric carcinomas. Interestingly, manipulating this site-specific glycosylation, by preventing Asn-554 from receiving the deleterious branched structures, either by a mutation or by silencing GnT-V, resulted in a protective effect on E-cadherin, precluding its functional dysregulation and contributing to tumor suppression. PMID:26189796

  18. Role of E-cadherin, alpha-, beta-, and gamma-catenins, and p120 (cell adhesion molecules) in prolactinoma behavior.

    PubMed

    Qian, Zhi Rong; Li, Chiun Chei; Yamasaki, Hiroyuki; Mizusawa, Noriko; Yoshimoto, Katsuhiko; Yamada, Shozo; Tashiro, Takashi; Horiguchi, Hidehisa; Wakatsuki, Shingo; Hirokawa, Mitsuyoshi; Sano, Toshiaki

    2002-12-01

    E-cadherin/catenin complex regulates cellular adhesion and motility and is believed to function as an invasion suppressor system. In a number of cancers, abnormal and reduced expression of E-cadherin/catenin complex is associated with tumor invasion and metastasis. Prolactinomas show frequent invasion on the surrounding structures, despite their histologically benign nature. Furthermore, gender-based differences in endocrine and surgical findings are found in patients with prolactinoma. To understand biological factors governing prolactinoma behavior, this study analyzed the expression of E-cadherin; alpha-, beta-, and gamma-catenins; p120; and cell proliferation marker MIB-1 labeling index in 13 invasive tumors (9 in men, 4 in women), 26 noninvasive tumors (4 in men, 22 in women), and 8 normal anterior pituitaries by immunohistochemistry. Immunostaining of E-cadherin; alpha-, beta-, and gamma-catenins; and p120 showed a membranous pattern of reactivity and generally stronger in normal pituitaries than in prolactinomas. Expression of E-cadherin and beta-catenin was significantly lower in invasive than in noninvasive prolactinomas (P <.002 and P <.005, respectively), and reduced expression of E-cadherin and beta-catenin was more frequent in invasive than in noninvasive prolactinomas (P <.001 and P <.05, respectively); in contrast, gamma-catenin expression showed higher in invasive than in noninvasive prolactinomas (P <.05). Expression of E-cadherin was significantly lower in macroprolactinomas than in microprolactinomas (P <.01), and decreased expression of E-cadherin and beta-catenin predicted high MIB-1 expression (P <.05). Moreover, the expression of E-cadherin and beta-catenin was significantly lower in macroprolactinomas in men than in those in women (P <.01 and P <.02, respectively). No statistical correlations were observed between expression of alpha-catenin, p120, and clinicopathologic features. In conclusion, the reduction of E-cadherin and beta

  19. Bromodichloromethane induces cell proliferation in different tissues of male F344 rats by suppression of E-cadherin expression via hypermethylation or transcriptional activation of c-myc and cyclin D1.

    PubMed

    Liao, Jing; Li, Xiao-Feng; Zhou, Shun-Chang; Luo, Yan; Liu, Ai-Lin; Lu, Wen-Qing

    2013-11-25

    The aim of this study was to investigate the mechanism of bromodichloromethane (BDCM) - induced cell proliferation in different tissues of male F344 rats. Rats were administered at doses of 0 and 100mg/kg/day BDCM dissolved in corn oil by gavage for 5 days/week for 1, 4, 8 and 12 weeks. Then the colon, kidney and liver were collected. No histologic lesions were observed in the colon of rats exposed to BDCM, while there were mild nephrotoxicity and marginal hepatotoxicity related to BDCM treatment. Moreover, BDCM enhanced cell proliferation in the colon and kidney but not in the liver. In colons, hypermethylation in E-cadherin promoter might be associated with inhibition of mRNA and protein expression after 12 weeks of BDCM exposure. In kidneys, BDCM decreased E-cadherin mRNA expression, accompanying with transcriptional activation of c-myc and cyclin D1. However, suppression of E-cadherin mRNA and protein expression occurred in the absence of significant changes in DNA methylation. Therefore, suppression of E-cadherin expression via hypermethylation or transcriptional activation of c-myc and cyclin D1 may be involved in BDCM-induced cell proliferation in different tissues of male F344 rats.

  20. Possible roles of LI-Cadherin in the formation and maintenance of the intestinal epithelial barrier

    PubMed Central

    Baumgartner, Werner

    2013-01-01

    LI-cadherin belongs to the so called 7D-cadherins, exceptional members of the cadherin superfamily which are characterized by seven extracellular cadherin repeats and a small cytosolic domain. Under physiological conditions LI-cadherin is expressed in the intestine and colon in human and mouse and in the rat also in hepatocytes. LI-cadherin was shown to act as a functional Ca2+-dependent adhesion molecule, linking neighboring cells and a lot of biophysical and biochemical parameters were determined in the last time. It is also known that dysregulated LI-cadherin expression can be found in a variety of diseases. Although there are several hypothesis and theoretical models concerning the function of LI-cadherin, the physiological role of LI-cadherin is still enigmatic. PMID:24665380

  1. Osteogenic differentiation of mesenchymal stem cells from dental bud: Role of integrins and cadherins.

    PubMed

    Di Benedetto, Adriana; Brunetti, Giacomina; Posa, Francesca; Ballini, Andrea; Grassi, Felice Roberto; Colaianni, Graziana; Colucci, Silvia; Rossi, Enzo; Cavalcanti-Adam, Elisabetta A; Lo Muzio, Lorenzo; Grano, Maria; Mori, Giorgio

    2015-11-01

    Several studies have reported the beneficial effects of mesenchymal stem cells (MSCs) in tissue repair and regeneration. New sources of stem cells in adult organisms are continuously emerging; dental tissues have been identified as a source of postnatal MSCs. Dental bud is the immature precursor of the tooth, is easy to access and we show in this study that it can yield a high number of cells with ≥95% expression of mesenchymal stemness makers and osteogenic capacity. Thus, these cells can be defined as Dental Bud Stem Cells (DBSCs) representing a promising source for bone regeneration of stomatognathic as well as other systems. Cell interactions with the extracellular matrix (ECM) and neighboring cells are critical for tissue morphogenesis and architecture; such interactions are mediated by integrins and cadherins respectively. We characterized DBSCs for the expression of these adhesion receptors and examined their pattern during osteogenic differentiation. Our data indicate that N-cadherin and cadherin-11 were expressed in undifferentiated DBSCs and their expression underwent changes during the osteogenic process (decreasing and increasing respectively), while expression of E-cadherin and P-cadherin was very low in DBSCs and did not change during the differentiation steps. Such expression pattern reflected the mesenchymal origin of DBSCs and confirmed their osteoblast-like features. On the other hand, osteogenic stimulation induced the upregulation of single subunits, αV, β3, α5, and the formation of integrin receptors α5β1 and αVβ3. DBSCs differentiation toward osteoblastic lineage was enhanced when cells were grown on fibronectin (FN), vitronectin (VTN), and osteopontin (OPN), ECM glycoproteins which contain an integrin-binding sequence, the RGD motif. In addition we established that integrin αVβ3 plays a crucial role during the commitment of MSCs to osteoblast lineage, whereas integrin α5β1 seems to be dispensable. These data suggest that

  2. Cadherins and catenins in dendrite and synapse morphogenesis

    PubMed Central

    Seong, Eunju; Yuan, Li; Arikkath, Jyothi

    2015-01-01

    Neurons are highly polarized specialized cells. Neuronal integrity and functional roles are critically dependent on dendritic architecture and synaptic structure, function and plasticity. The cadherins are glycosylated transmembrane proteins that form cell adhesion complexes in various tissues. They are associated with a group of cytosolic proteins, the catenins. While the functional roles of the complex have been extensively investigates in non-neuronal cells, it is becoming increasingly clear that components of the complex have critical roles in regulating dendritic and synaptic architecture, function and plasticity in neurons. Consistent with these functional roles, aberrations in components of the complex have been implicated in a variety of neurodevelopmental disorders. In this review, we discuss the roles of the classical cadherins and catenins in various aspects of dendrite and synapse architecture and function and their relevance to human neurological disorders. Cadherins are glycosylated transmembrane proteins that were initially identified as Ca2+-dependent cell adhesion molecules. They are present on plasma membrane of a variety of cell types from primitive metazoans to humans. In the past several years, it has become clear that in addition to providing mechanical adhesion between cells, cadherins play integral roles in tissue morphogenesis and homeostasis. The cadherin family is composed of more than 100 members and classified into several subfamilies, including classical cadherins and protocadherins. Several of these cadherin family members have been implicated in various aspects of neuronal development and function.1-3 The classical cadherins are associated with a group of cytosolic proteins, collectively called the catenins. While the functional roles of the cadherin-catenin cell adhesion complex have been extensively investigated in epithelial cells, it is now clear that components of the complex are well expressed in central neurons at different

  3. Expression of Tight Junction Proteins and Cadherin 17 in the Small Intestine of Young Goats Offered a Reduced N and/or Ca Diet.

    PubMed

    Elfers, Kristin; Marr, Isabell; Wilkens, Mirja R; Breves, Gerhard; Langeheine, Marion; Brehm, Ralph; Muscher-Banse, Alexandra S

    2016-01-01

    Diets fed to ruminants should contain nitrogen (N) as low as possible to reduce feed costs and environmental pollution. Though possessing effective N-recycling mechanisms to maintain the N supply for rumen microbial protein synthesis and hence protein supply for the host, an N reduction caused substantial changes in calcium (Ca) and phosphate homeostasis in young goats including decreased intestinal transepithelial Ca absorption as reported for monogastric species. In contrast to the transcellular component of transepithelial Ca transport, the paracellular route has not been investigated in young goats. Therefore, the aim of the present study was to characterise the effects of dietary N and/or Ca reduction on paracellular transport mechanisms in young goats. Electrophysiological properties of intestinal epithelia were investigated by Ussing chamber experiments. The expression of tight junction (TJ) and adherens junction (AJ) proteins in intestinal epithelia were examined on mRNA level by qPCR and on protein level by western blot analysis. Dietary N reduction led to a segment specific increase in tissue conductances in the proximal jejunum which might be linked to concomitantly decreased expression of cadherin 17 mRNA. Expression of occludin (OCLN) and zonula occludens protein 1 was increased in mid jejunal epithelia of N reduced fed goats on mRNA and partly on protein level. Reduced dietary Ca supply resulted in a segment specific increase in claudin 2 and claudin 12 expression and decreased the expression of OCLN which might have been mediated at least in part by calcitriol. These data show that dietary N as well as Ca reduction affected expression of TJ and AJ proteins in a segment specific manner in young goats and may thus be involved in modulation of paracellular Ca permeability.

  4. Expression of Tight Junction Proteins and Cadherin 17 in the Small Intestine of Young Goats Offered a Reduced N and/or Ca Diet

    PubMed Central

    Wilkens, Mirja R.; Breves, Gerhard; Langeheine, Marion; Brehm, Ralph; Muscher-Banse, Alexandra S.

    2016-01-01

    Diets fed to ruminants should contain nitrogen (N) as low as possible to reduce feed costs and environmental pollution. Though possessing effective N-recycling mechanisms to maintain the N supply for rumen microbial protein synthesis and hence protein supply for the host, an N reduction caused substantial changes in calcium (Ca) and phosphate homeostasis in young goats including decreased intestinal transepithelial Ca absorption as reported for monogastric species. In contrast to the transcellular component of transepithelial Ca transport, the paracellular route has not been investigated in young goats. Therefore, the aim of the present study was to characterise the effects of dietary N and/or Ca reduction on paracellular transport mechanisms in young goats. Electrophysiological properties of intestinal epithelia were investigated by Ussing chamber experiments. The expression of tight junction (TJ) and adherens junction (AJ) proteins in intestinal epithelia were examined on mRNA level by qPCR and on protein level by western blot analysis. Dietary N reduction led to a segment specific increase in tissue conductances in the proximal jejunum which might be linked to concomitantly decreased expression of cadherin 17 mRNA. Expression of occludin (OCLN) and zonula occludens protein 1 was increased in mid jejunal epithelia of N reduced fed goats on mRNA and partly on protein level. Reduced dietary Ca supply resulted in a segment specific increase in claudin 2 and claudin 12 expression and decreased the expression of OCLN which might have been mediated at least in part by calcitriol. These data show that dietary N as well as Ca reduction affected expression of TJ and AJ proteins in a segment specific manner in young goats and may thus be involved in modulation of paracellular Ca permeability. PMID:27120348

  5. The Hedgehog Inhibitor Cyclopamine Reduces β-Catenin-Tcf Transcriptional Activity, Induces E-Cadherin Expression, and Reduces Invasion in Colorectal Cancer Cells

    PubMed Central

    Qualtrough, David; Rees, Phil; Speight, Beverley; Williams, Ann C.; Paraskeva, Christos

    2015-01-01

    Colorectal cancer is a major global health problem resulting in over 600,000 deaths world-wide every year with the majority of these due to metastatic disease. Wnt signalling, and more specifically β-catenin-related transcription, has been shown to drive both tumorigenesis and the metastatic process in colorectal neoplasia, yet its complex interactions with other key signalling pathways, such as hedgehog, remain to be elucidated. We have previously shown that the Hedgehog (HH) signalling pathway is active in cells from colorectal tumours, and that inhibition of the pathway with cyclopamine induces apoptosis. We now show that cyclopamine treatment reduces β-catenin related transcription in colorectal cancer cell lines, and that this effect can be reversed by addition of Sonic Hedgehog protein. We also show that cyclopamine concomitantly induces expression of the tumour suppressor and prognostic indicator E-cadherin. Consistent with a role for HH in regulating the invasive potential we show that cyclopamine reduces the expression of transcription factors (Slug, Snail and Twist) associated with the epithelial-mesenchymal transition and reduces the invasiveness of colorectal cancer cells in vitro. Taken together, these data show that pharmacological inhibition of the hedgehog pathway has therapeutic potential in the treatment of colorectal cancer. PMID:26393651

  6. Zeb1 Regulates E-cadherin and Epcam (Epithelial Cell Adhesion Molecule) Expression to Control Cell Behavior in Early Zebrafish Development*

    PubMed Central

    Vannier, Corinne; Mock, Kerstin; Brabletz, Thomas; Driever, Wolfgang

    2013-01-01

    The ZEB1 transcription factor is best known as an inducer of epithelial-mesenchymal transitions (EMT) in cancer metastasis, acting through transcriptional repression of CDH1 (encoding E-cadherin) and the EMT-suppressing microRNA-200s (miR-200s). Here we analyze roles of the ZEB1 zebrafish orthologs, Zeb1a and Zeb1b, and of miR-200s in control of cell adhesion and morphogenesis during gastrulation and segmentation stages. Loss and gain of function analyses revealed that Zeb1 represses cdh1 expression to fine-tune adhesiveness of migrating deep blastodermal cells. Furthermore, Zeb1 acts as a repressor of epcam in the deep cells of the blastoderm and may contribute to control of epithelial integrity of enveloping layer cells, the outermost cells of the blastoderm. We found a similar ZEB1-dependent repression of EPCAM expression in human pancreatic and breast cancer cell lines, mediated through direct binding of ZEB1 to the EPCAM promoter. Thus, Zeb1 proteins employ several evolutionary conserved mechanisms to regulate cell-cell adhesion during development and cancer. PMID:23667256

  7. The Heliothis virescens cadherin protein expressed in Drosophila S2 cells functions as a receptor for Bacillus thuringiensis Cry1A but not Cry1Fa toxins.

    PubMed

    Jurat-Fuentes, Juan Luis; Adang, Michael J

    2006-08-15

    Genetic knockout of the BtR4 gene encoding the Heliothis virescens cadherin-like protein (HevCaLP) is linked to resistance against Cry1Ac toxin from Bacillus thuringiensis. However, the functional Cry1Ac receptor role of this protein has not been established. We previously proposed HevCaLP as a shared binding site for B. thuringiensis (Bt) Cry1A and Cry1Fa toxins in the midgut epithelium of H. virescens larvae. Considering that Cry1Ac and Cry1Fa are coexpressed in second-generation transgenic cotton for enhanced control of Heliothine and Spodoptera species, our model suggests the possibility of evolution of cross resistance via alteration of HevCaLP. To test whether HevCaLP is a Cry1Ac and Cry1Fa receptor, HevCaLP was transiently expressed on the surface of Drosophila melanogaster Schneider 2 (S2) cells. Expressed HevCaLP bound [(125)I]Cry1A toxins under native (dot blot) and denaturing (ligand blot) conditions. Affinity pull-down assays demonstrated that Cry1Fa does not bind to HevCaLP expressed in S2 cells or in solubilized brush border membrane proteins. Using a fluorescence-based approach, we tested the ability of expressed HevCaLP to mediate toxicity of Cry1A and Cry1Fa toxins. Cry1A toxins killed S2 cells expressing HevCaLP, whereas Cry1Fa toxin did not. Our results demonstrate that HevCaLP is a functional Cry1A but not Cry1Fa receptor. PMID:16893170

  8. In vivo biomarker expression patterns are preserved in 3D cultures of Prostate Cancer

    SciTech Connect

    Windus, Louisa C.E.; Kiss, Debra L.; Glover, Tristan; Avery, Vicky M.

    2012-11-15

    Here we report that Prostate Cancer (PCa) cell-lines DU145, PC3, LNCaP and RWPE-1 grown in 3D matrices in contrast to conventional 2D monolayers, display distinct differences in cell morphology, proliferation and expression of important biomarker proteins associated with cancer progression. Consistent with in vivo growth rates, in 3D cultures, all PCa cell-lines were found to proliferate at significantly lower rates in comparison to their 2D counterparts. Moreover, when grown in a 3D matrix, metastatic PC3 cell-lines were found to mimic more precisely protein expression patterns of metastatic tumour formation as found in vivo. In comparison to the prostate epithelial cell-line RWPE-1, metastatic PC3 cell-lines exhibited a down-regulation of E-cadherin and {alpha}6 integrin expression and an up-regulation of N-cadherin, Vimentin and {beta}1 integrin expression and re-expressed non-transcriptionally active AR. In comparison to the non-invasive LNCaP cell-lines, PC3 cells were found to have an up-regulation of chemokine receptor CXCR4, consistent with a metastatic phenotype. In 2D cultures, there was little distinction in protein expression between metastatic, non-invasive and epithelial cells. These results suggest that 3D cultures are more representative of in vivo morphology and may serve as a more biologically relevant model in the drug discovery pipeline. -- Highlights: Black-Right-Pointing-Pointer We developed and optimised 3D culturing techniques for Prostate Cancer cell-lines. Black-Right-Pointing-Pointer We investigated biomarker expression in 2D versus 3D culture techniques. Black-Right-Pointing-Pointer Metastatic PC3 cells re-expressed non-transcriptionally active androgen receptor. Black-Right-Pointing-Pointer Metastatic PCa cell lines retain in vivo-like antigenic profiles in 3D cultures.

  9. E-cadherin enhances neuregulin signaling and promotes Schwann cell myelination.

    PubMed

    Basak, Sayantani; Desai, Darshan J; Rho, Esther H; Ramos, Roselle; Maurel, Patrice; Kim, Haesun A

    2015-09-01

    In myelinating Schwann cells, E-cadherin is a component of the adherens junctions that stabilize the architecture of the noncompact myelin region. In other cell types, E-cadherin has been considered as a signaling receptor that modulates intracellular signal transduction and cellular responses. To determine whether E-cadherin plays a regulatory role during Schwann cell myelination, we investigated the effects of E-cadherin deletion and over-expression in Schwann cells. In vivo, Schwann cell-specific E-cadherin ablation results in an early myelination delay. In Schwann cell-dorsal root ganglia neuron co-cultures, E-cadherin deletion attenuates myelin formation and shortens the myelin segment length. When over-expressed in Schwann cells, E-cadherin improves myelination on Nrg1 type III(+/-) neurons and induces myelination on normally non-myelinated axons of sympathetic neurons. The pro-myelinating effect of E-cadherin is associated with an enhanced Nrg1-erbB receptor signaling, including activation of the downstream Akt and Rac. Accordingly, in the absence of E-cadherin, Nrg1-signaling is diminished in Schwann cells. Our data also show that E-cadherin expression in Schwann cell is induced by axonal Nrg1 type III, indicating a reciprocal interaction between E-cadherin and the Nrg1 signaling. Altogether, our data suggest a regulatory function of E-cadherin that modulates Nrg1 signaling and promotes Schwann cell myelin formation.

  10. Gene Expression Patterns in Ovarian Carcinomas

    PubMed Central

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  11. Aedes cadherin mediates the in vivo toxicity of the Cry11Aa toxin to Aedes aegypti.

    PubMed

    Lee, Su-Bum; Chen, Jianwu; Aimanova, Karlygash G; Gill, Sarjeet S

    2015-06-01

    Cadherin plays an important role in the toxicity of Bacillus thuringiensis Cry proteins. We previously cloned a full-length cadherin from Aedes aegypti larvae and reported this protein binds Cry11Aa toxin from B. thuringiensis subsp. israelensis with high affinity, ≈16.7nM. Based on these results, we investigated if Aedes cadherin is involved in the in vivo toxicity of Cry11Aa toxin to Ae. aegypti. We established a mosquito cell line stably expressing the full-length Aedes cadherin and transgenic mosquitoes with silenced Aedes cadherin expression. Cells expressing the Aedes cadherin showed increased sensitivity to Cry11Aa toxin. Cry11Aa toxin at 400nM killed approximately 37% of the cells in 3h. Otherwise, transgenic mosquitoes with silenced Aedes cadherin expression showed increased tolerance to Cry11Aa toxin. Furthermore, cells expressing Aedes cadherin triggered Cry11Aa oligomerization. These results show the Aedes cadherin plays a pivotal role in Cry11Aa toxicity to Ae. aegypti larvae by mediating Cry11Aa oligomerization. However, since high toxicity was not obtained in cadherin-expressing cells, an additional receptor may be needed for manifestation of full toxicity. Moreover, cells expressing Aedes cadherin were sensitive to Cry4Aa and Cry11Ba, but not Cry4Ba. However transgenic mosquitoes with silenced Aedes cadherin expression showed no tolerance to Cry4Aa, Cry4Ba, and Cry11Ba toxins. These results suggest that while Aedes cadherin may mediate Cry4Aa and Cry11Ba toxicity, this cadherin but is not the main receptor of Cry4Aa, Cry4Ba and Cry11Ba toxin in Ae. aegypti.

  12. Endogenously synthesized n-3 fatty acids in fat-1 transgenic mice prevent melanoma progression by increasing E-cadherin expression and inhibiting β-catenin signaling.

    PubMed

    Yin, Xuan; Yu, Xiong-Wei; Zhu, Pan; Zhang, Yuan-Ming; Zhang, Xiao-Hong; Wang, Feng; Zhang, Jin-Jie; Yan, Wang; Xi, Yang; Wan, Jian-Bo; Kang, Jing-Xuan; Zou, Zu-Quan; Bu, Shi-Zhong

    2016-10-01

    Malignant melanoma is the most lethal form of skin cancer. Although preclinical studies have shown that n-3 polyunsaturated fatty acids (PUFAs) are beneficial for prevention of melanoma, the molecular mechanisms underlying the protective effects of n‑3 PUFAs on melanoma remain largely unknown. In the present study, endogenously increased levels of n-3 PUFAs in the tumor tissues of omega‑3 fatty acid desaturase (fat‑1) transgenic mice was associated with a reduction in the growth rate of melanoma xenografts. This reduction in tumor growth in fat‑1 mice compared with wild‑type controls may have been associated, in part, to the: i) Increased expression of E‑cadherin and the reduced expression of its transcriptional repressors, the zinc finger E‑box binding homeobox 1 and snail family transcriptional repressor 1; ii) significant repression of the epidermal growth factor receptor/Akt/β‑catenin signaling pathway; and iii) formation of significant levels of n‑3 PUFA‑derived lipid mediators, particularly resolvin D2 and E1, maresin 1 and 15‑hydroxyeicosapentaenoic acid. In addition, vitamin E administration counteracted n‑3 PUFA‑induced lipid peroxidation and enhanced the antitumor effect of n‑3 PUFAs, which suggests that the protective role of n‑3 PUFAs against melanoma is not mediated by n‑3 PUFAs‑induced lipid peroxidation. These results highlight a potential role of n‑3 PUFAs supplementation for the chemoprevention of melanoma in high‑risk individuals, and as a putative adjuvant agent in the treatment of malignant melanoma.

  13. Endogenously synthesized n-3 fatty acids in fat-1 transgenic mice prevent melanoma progression by increasing E-cadherin expression and inhibiting β-catenin signaling.

    PubMed

    Yin, Xuan; Yu, Xiong-Wei; Zhu, Pan; Zhang, Yuan-Ming; Zhang, Xiao-Hong; Wang, Feng; Zhang, Jin-Jie; Yan, Wang; Xi, Yang; Wan, Jian-Bo; Kang, Jing-Xuan; Zou, Zu-Quan; Bu, Shi-Zhong

    2016-10-01

    Malignant melanoma is the most lethal form of skin cancer. Although preclinical studies have shown that n-3 polyunsaturated fatty acids (PUFAs) are beneficial for prevention of melanoma, the molecular mechanisms underlying the protective effects of n‑3 PUFAs on melanoma remain largely unknown. In the present study, endogenously increased levels of n-3 PUFAs in the tumor tissues of omega‑3 fatty acid desaturase (fat‑1) transgenic mice was associated with a reduction in the growth rate of melanoma xenografts. This reduction in tumor growth in fat‑1 mice compared with wild‑type controls may have been associated, in part, to the: i) Increased expression of E‑cadherin and the reduced expression of its transcriptional repressors, the zinc finger E‑box binding homeobox 1 and snail family transcriptional repressor 1; ii) significant repression of the epidermal growth factor receptor/Akt/β‑catenin signaling pathway; and iii) formation of significant levels of n‑3 PUFA‑derived lipid mediators, particularly resolvin D2 and E1, maresin 1 and 15‑hydroxyeicosapentaenoic acid. In addition, vitamin E administration counteracted n‑3 PUFA‑induced lipid peroxidation and enhanced the antitumor effect of n‑3 PUFAs, which suggests that the protective role of n‑3 PUFAs against melanoma is not mediated by n‑3 PUFAs‑induced lipid peroxidation. These results highlight a potential role of n‑3 PUFAs supplementation for the chemoprevention of melanoma in high‑risk individuals, and as a putative adjuvant agent in the treatment of malignant melanoma. PMID:27573698

  14. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  15. Diffuse Type Gastric and Lobular Breast Carcinoma in a Familial Gastric Cancer Patient with an E-Cadherin Germline Mutation

    PubMed Central

    Keller, Gisela; Vogelsang, Holger; Becker, Ingrid; Hutter, Jörg; Ott, Katja; Candidus, Sonja; Grundei, Tobias; Becker, Karl-Friedrich; Mueller, James; Siewert, Jörg R.; Höfler, Heinz

    1999-01-01

    E-Cadherin alterations have been reported frequently in sporadic diffuse type gastric and lobular breast carcinomas. Germline mutations of this gene have been identified recently in several gastric cancer families. We analyzed seven patients with a family history of the disease who had diffuse type gastric cancer diagnosed before the age of 45 for germline mutations in CDH1, the gene encoding the E-cadherin protein. We identified a frameshift mutation in exon 3 in one patient with a strong family history of gastric cancer. The same germline mutation was found in the patient’s mother, who had metachronous development of lobular breast and diffuse type gastric carcinomas. Immunohistochemistry for E-cadherin protein expression revealed an abnormal staining pattern in both of these tumors, suggesting complete inactivation of the cell adhesion molecule. Thus, our finding suggests that besides diffuse type gastric cancer, lobular breast carcinomas may be associated with germline CDH1 mutations. PMID:10433926

  16. Prelinguistic Pitch Patterns Expressing "Communication" and "Apprehension"

    ERIC Educational Resources Information Center

    Papaeliou, Christina F.; Trevarthen, Colwyn

    2006-01-01

    This study examined whether pitch patterns of prelinguistic vocalizations could discriminate between social vocalizations, uttered apparently with the intention to communicate, and "private" speech, related to solitary activities as an expression of "thinking". Four healthy ten month old English-speaking infants (2 boys and 2 girls) were…

  17. Connections between cadherin-catenin proteins, spindle misorientation, and cancer

    PubMed Central

    Shahbazi, Marta N; Perez-Moreno, Mirna

    2015-01-01

    Cadherin-catenin mediated adhesion is an important determinant of tissue architecture in multicellular organisms. Cancer progression and maintenance is frequently associated with loss of their expression or functional activity, which not only leads to decreased cell-cell adhesion, but also to enhanced tumor cell proliferation and loss of differentiated characteristics. This review is focused on the emerging implications of cadherin-catenin proteins in the regulation of polarized divisions through their connections with the centrosomes, cytoskeleton, tissue tension and signaling pathways; and illustrates how alterations in cadherin-catenin levels or functional activity may render cells susceptible to transformation through the loss of their proliferation-differentiation balance. PMID:26451345

  18. The classic cadherins in synaptic specificity

    PubMed Central

    Basu, Raunak; Taylor, Matthew R; Williams, Megan E

    2015-01-01

    During brain development, billions of neurons organize into highly specific circuits. To form specific circuits, neurons must build the appropriate types of synapses with appropriate types of synaptic partners while avoiding incorrect partners in a dense cellular environment. Defining the cellular and molecular rules that govern specific circuit formation has significant scientific and clinical relevance because fine scale connectivity defects are thought to underlie many cognitive and psychiatric disorders. Organizing specific neural circuits is an enormously complicated developmental process that requires the concerted action of many molecules, neural activity, and temporal events. This review focuses on one class of molecules postulated to play an important role in target selection and specific synapse formation: the classic cadherins. Cadherins have a well-established role in epithelial cell adhesion, and although it has long been appreciated that most cadherins are expressed in the brain, their role in synaptic specificity is just beginning to be unraveled. Here, we review past and present studies implicating cadherins as active participants in the formation, function, and dysfunction of specific neural circuits and pose some of the major remaining questions. PMID:25837840

  19. Fus Expression Patterns in Developing Tooth

    PubMed Central

    Kim, Eun-Jung; Lee, Jong-Min; Jung, Han-Sung

    2013-01-01

    Recently, the RNA/DNA-binding protein FUS, Fused in sarcoma, was shown to play a role in growth, differentiation, and morphogenesis in vertebrates. Because little is known about Fus, we investigated its expression pattern in murine tooth development. In situ hybridization of mouse mandibles at specific developmental stages was performed with a DIG-labeled RNA probe. During early tooth development, Fus was detected in the dental epithelium and dental mesenchyme at 11 days postcoitum (dpc) and 12 dpc. From 14 dpc, Fus was strongly expressed in the dental papilla and the cervical loop of the dental epithelium. At postnatal day 4 (PN4), Fus expression was observed in the odontoblasts, ameloblasts, the proliferation zone of the pulp, and the cervical loop. At PN14, the expression pattern of Fus was found to be maintained in the odontoblasts and the proliferation zone of the pulp. Furthermore, Fus expression was especially strong in the Hertwig’s epithelial root sheath (HERS). Therefore, this study suggests that Fus may play a role in the HERS during root development. PMID:25949136

  20. Sequence variation and differential splicing of the midgut cadherin gene in Trichoplusia ni.

    PubMed

    Zhang, Xin; Kain, Wendy; Wang, Ping

    2013-08-01

    The insect midgut cadherin serves as an important receptor for the Cry toxins from Bacillus thuringiensis (Bt). Variation of the cadherin in insect populations provides a genetic potential for development of cadherin-based Bt resistance in insect populations. Sequence analysis of the cadherin from the cabbage looper, Trichoplusia ni, together with cadherins from 18 other lepidopterans showed a similar phylogenetic relationship of the cadherins to the phylogeny of Lepidoptera. The midgut cadherin in three laboratory populations of T. ni exhibited high variability, although the resistance to Bt toxin Cry1Ac in the T. ni strain is not genetically associated with cadherin gene mutations. A total of 142 single nucleotide polymorphisms (SNPs) were identified in the cadherin cDNAs from the T. ni strains, including 20 missense mutations. In addition, insertion and deletion polymorphisms (indels) were also identified in the cadherin alleles in T. ni. More interestingly, the results from this study reveal that differential splicing of mRNA also occurs in the cadherin gene expression. Therefore, variation of the midgut cadherin in insects may not only be caused by cadherin gene mutations, but could also result from alternative splicing of its mRNA regulated by factors acting in trans. Analysis of cadherin gene alleles in F2, F3 and F4 progenies from the cross between the Cry1Ac resistant and the susceptible strain after consecutive selections with Cry1Ac for three generations showed that selection with Cry1Ac did not result in an increase of frequencies of the cadherin alleles originated from the resistant strain. PMID:23743444

  1. Cadherin controls nectin recruitment into adherens junctions by remodeling the actin cytoskeleton

    PubMed Central

    Troyanovsky, Regina B.; Indra, Indrajyoti; Chen, Chi-Shuo; Hong, Soonjin; Troyanovsky, Sergey M.

    2015-01-01

    ABSTRACT The mechanism that coordinates activities of different adhesion receptors is poorly understood. We investigated this mechanism by focusing on the nectin-2 and E-cadherin adherens junction receptors. We found that, cadherin was not required for the basic process of nectin junction formation because nectin-2 formed junctions in cadherin-deficient A431D cells. Formation of nectin-2 junctions in these cells, however, became regulated by cadherin as soon as E-cadherin was re-expressed. E-cadherin recruited nectin-2 into adherens junctions, where both proteins formed distinct but tightly associated clusters. Live-cell imaging showed that the appearance of E-cadherin clusters often preceded that of nectin-2 clusters at sites of junction assembly. Inactivation of E-cadherin clustering by different strategies concomitantly suppressed the formation of nectin clusters. Furthermore, cadherin significantly increased the stability of nectin clusters, thereby making them resistant to the BC-12 antibody, which targets the nectin-2 adhesion interface. By testing different E-cadherin–α-catenin chimeras, we showed that the recruitment of nectin into chimera junctions is mediated by the actin-binding domain of α-catenin. Our data suggests that E-cadherin regulates assembly of nectin junctions through α-catenin-induced remodeling of the actin cytoskeleton around the cadherin clusters. PMID:25395582

  2. Therapeutic intervention of silymarin on the migration of non-small cell lung cancer cells is associated with the axis of multiple molecular targets including class 1 HDACs, ZEB1 expression, and restoration of miR-203 and E-cadherin expression

    PubMed Central

    Singh, Tripti; Prasad, Ram; Katiyar, Santosh K

    2016-01-01

    Lung cancer and its metastasis is the leading cause of cancer-related mortality world-wide. Non-small cell lung cancer (NSCLC) accounts for about 90% of total lung cancer cases. Despite advancements in therapeutic approaches, only limited improvement has been achieved. Therefore, alternative strategies are required for the management of lung cancer. Here we report the chemotherapeutic effect of silymarin, a phytochemical from milk thistle plant (Silybum marianum L. Gaertn.), on NSCLC cell migration using metastatic human NSCLC cell lines (A549, H1299 and H460) together with the molecular targets underlying these effects. Using an in vitro cell migration assay, we found that treatment of human NSCLC cells (A549, H1299 and H460) with silymarin (0, 5, 10 and 20 µg/mL) for 24 h resulted in concentration-dependent inhibition of cell migration, which was associated with the inhibition of histone deacetylase (HDAC) activity and reduced levels of class 1 HDAC proteins (HDAC1, HDAC2, HDAC3 and HDAC8) and concomitant increases in the levels of histone acetyltransferase activity (HAT). Known HDAC inhibitors (sodium butyrate and trichostatin A) exhibited similar patterns of therapeutic effects on the lung cancer cells. Treatment of A549 and H460 cells with silymarin reduced the expression of the transcription factor ZEB1 and restored expression of E-cadherin. The siRNA knockdown of ZEB1 also reduced the expression of HDAC proteins and enhanced re-expression of the levels of E-cadherin in NSCLC cells. MicroRNA-203 (miR-203) acts as a tumor suppressor, regulates tumor cell invasion and is repressed by ZEB1 in cancer cells. Silymarin treatment restored the levels of miR-203 in NSCLC cells. These findings indicate that silymarin can effectively inhibit lung cancer cell migration and provide a coherent model of its mechanism of action suggesting that silymarin may be an important therapeutic option for the prevention or treatment of lung cancer metastasis when administered either

  3. Quantification of mutant E-cadherin using bioimaging analysis of in situ fluorescence microscopy. A new approach to CDH1 missense variants

    PubMed Central

    Sanches, João Miguel; Figueiredo, Joana; Fonseca, Martina; Durães, Cecília; Melo, Soraia; Esménio, Sofia; Seruca, Raquel

    2015-01-01

    Missense mutations result in full-length proteins containing an amino acid substitution that can be neutral or deleterious, interfering with the normal conformation, localization, and function of a protein. A striking example is the presence of CDH1 (E-cadherin gene) germline missense variants in hereditary diffuse gastric cancer (HDGC), which represent a clinical burden for genetic counseling and surveillance of mutation carriers and their families. CDH1 missense variants can compromise not only the function of E-cadherin but also its expression pattern. Here, we propose a novel method to characterize E-cadherin signature in order to identify cases with E-cadherin deregulation and functional impairment. The strategy includes a bioimaging pipeline to quantify the expression level and characterize the distribution of the protein from in situ immunofluorescence images. The algorithm computes 1D (dimension intensity) radial and internuclear fluorescence profiles to generate expression outlines and 2D virtual cells representing a typical cell within the populations analyzed. Using this new approach, we verify that cells expressing mutant forms of E-cadherin display fluorescence profiles distinct from those of the wild-type cells. Mutant proteins showed a significantly decrease of fluorescence intensity at the membrane and often abnormal expression peaks in the cytoplasm, reflecting the underlying molecular mechanism of trafficking deregulation. Our results suggest employing this methodology as a complementary approach to evaluate the pathogenicity of E-cadherin missense variants. Moreover, it can be applied to a wide range of proteins and, more importantly, to diseases characterized by aberrant protein expression or trafficking deregulation. PMID:25388006

  4. A novel amphioxus cadherin that localizes to epithelial adherens junctions has an unusual domain organization with implications for chordate phylogeny.

    PubMed

    Oda, Hiroki; Wada, Hiroshi; Tagawa, Kunifumi; Akiyama-Oda, Yasuko; Satoh, Nori; Humphreys, Tom; Zhang, Shicui; Tsukita, Shoichiro

    2002-01-01

    Although data are available from only vertebrates, urochordates, and three nonchordate animals, there are definite differences in the structures of classic cadherins between vertebrates plus urochordates and nonchordates. In this study we examined structural diversity of classic cadherins among bilaterian animals by obtaining new data from an amphioxus (Cephalochordata, Chordata), an acorn worm (Hemichordata), a sea star (Echinodermata), and an oyster (Mollusca). The structures of newly identified nonchordate cadherins are grouped together with those of the known sea urchin and Drosophila cadherins, whereas the structure of an amphioxus (Branchiostoma belcheri) cadherin, designated BbC, is differently categorized from those of other known chordate cadherins. BbC is identified as a cadherin by its cytoplasmic domain whose sequence is highly related to the cytoplasmic sequences of all known classic cadherins, but it lacks all of the five repeats constituting the extracellular homophilic-binding domain of other chordate cadherins. The ectodomains of BbC match the ectodomains found in nonchordate cadherins but not present in other chordate cadherins. We show that the BbC functions as a cell-cell adhesion molecule when expressed in Drosophila S2 cells and localizes to adherens junctions in the ectodermal epithelia in amphioxus embryos. We argue that BbC is the amphioxus homologue of the classic cadherins involved in the formation of epithelial adherens junctions. The structural relationships of the cadherin molecules allow us to propose a possibility that cephalochordates might be basal to the sister-groups vertebrates and urochordates. PMID:12492143

  5. A novel amphioxus cadherin that localizes to epithelial adherens junctions has an unusual domain organization with implications for chordate phylogeny.

    PubMed

    Oda, Hiroki; Wada, Hiroshi; Tagawa, Kunifumi; Akiyama-Oda, Yasuko; Satoh, Nori; Humphreys, Tom; Zhang, Shicui; Tsukita, Shoichiro

    2002-01-01

    Although data are available from only vertebrates, urochordates, and three nonchordate animals, there are definite differences in the structures of classic cadherins between vertebrates plus urochordates and nonchordates. In this study we examined structural diversity of classic cadherins among bilaterian animals by obtaining new data from an amphioxus (Cephalochordata, Chordata), an acorn worm (Hemichordata), a sea star (Echinodermata), and an oyster (Mollusca). The structures of newly identified nonchordate cadherins are grouped together with those of the known sea urchin and Drosophila cadherins, whereas the structure of an amphioxus (Branchiostoma belcheri) cadherin, designated BbC, is differently categorized from those of other known chordate cadherins. BbC is identified as a cadherin by its cytoplasmic domain whose sequence is highly related to the cytoplasmic sequences of all known classic cadherins, but it lacks all of the five repeats constituting the extracellular homophilic-binding domain of other chordate cadherins. The ectodomains of BbC match the ectodomains found in nonchordate cadherins but not present in other chordate cadherins. We show that the BbC functions as a cell-cell adhesion molecule when expressed in Drosophila S2 cells and localizes to adherens junctions in the ectodermal epithelia in amphioxus embryos. We argue that BbC is the amphioxus homologue of the classic cadherins involved in the formation of epithelial adherens junctions. The structural relationships of the cadherin molecules allow us to propose a possibility that cephalochordates might be basal to the sister-groups vertebrates and urochordates.

  6. N-cadherin-catenin complexes form prior to cleavage of the proregion and transport to the plasma membrane.

    PubMed

    Wahl, James K; Kim, Young J; Cullen, Janet M; Johnson, Keith R; Wheelock, Margaret J

    2003-05-01

    Cadherins are calcium-dependent glycoproteins that function as cell-cell adhesion molecules and are linked to the actin cytoskeleton via catenins. Newly synthesized cadherins contain a prosequence that must be proteolytically removed to generate a functional adhesion molecule. The goal of this study was to examine the proteolytic processing of N-cadherin and the assembly of the cadherin-catenin complex in cells that express endogenous N-cadherin. A monoclonal antibody specific for the proregion of human N-cadherin was generated and used to examine N-cadherin processing. Our data show that newly synthesized proN-cadherin is phosphorylated and proteolytically processed prior to transport to the plasma membrane. In addition, we show that beta-catenin and plakoglobin associate only with phosphorylated proN-cadherin, whereas p120(ctn) can associate with both phosphorylated and non-phosphorylated proN-cadherin. Immunoprecipitations using anti-proN-cadherin showed that cadherin-catenin complexes are assembled prior to localization at the plasma membrane. These data suggest that a core N-cadherin-catenin complex assembles in the endoplasmic reticulum or Golgi compartment and is transported to the plasma membrane where linkage to the actin cytoskeleton can be established.

  7. The role of the cell adhesion molecules (integrins/cadherins) in prostate cancer.

    PubMed

    Drivalos, Alexandros; Papatsoris, Athanasios G; Chrisofos, Michael; Efstathiou, Eleni; Dimopoulos, Meletios A

    2011-01-01

    During prostate carcinogenesis the cellular adhesion molecules, i.e.; integrins and cadherins mediate aberrant interactions between glandular epithelial cells and the extracellular matrix. Several integrin α subunits are downregulated, while β subunits are up-regulated. The expression of several cadherins and catenins has specific prognostic value. There is an association between the expression of the E-cadherin/catenin complex and high grade prostate cancer. Clinical trials evaluating the efficacy of integrin antagonists are ongoing with promising results. In this article we update the role of integrins and cadherins in prostate carcinogenesis and evaluate the therapeutic potential of their manipulation.

  8. miR-27a-3p suppresses tumor metastasis and VM by down-regulating VE-cadherin expression and inhibiting EMT: an essential role for Twist-1 in HCC

    PubMed Central

    Zhao, Nan; Sun, Huizhi; Sun, Baocun; Zhu, Dongwang; Zhao, Xiulan; Wang, Yong; Gu, Qiang; Dong, Xueyi; Liu, Fang; Zhang, Yanhui; Li, Xiao

    2016-01-01

    Twist-1 and miRNAs have been reported to be associated with tumor metastasis and angiogenesis. However, the relationship between Twist-1 and miRNAs and the function of miRNAs remain largely undefined. We aimed to reveal the Twist-1-related miRNA expression profile and to determine whether Twist-1 functions in tumor metastasis and vasculogenic mimicry (VM) by regulating miRNA expression in hepatocellular carcinoma (HCC). Results showed that the expression of miR-27a-3p was consistently down-regulated in HCC cell lines and tissue samples displaying high expression of Twist-1. Both loss- and gain-of-function assays revealed suppressive effects of miR-27a-3p. Low miR-27a-3p expression was significantly associated with early metastasis in HCC. Subsequent investigations revealed that miR-27a-3p mediated the inhibition of epithelial–mesenchymal transition (EMT). Additional experiments showed that VE-cadherin is a direct target of miR-27a-3p and further demonstrated the critical role of miR-27a-3p in suppressing tumor metastasis and VM. Conclusions: Twist-1 up-regulation in HepG2 cells resulted in the differential expression of 18 miRNAs. Among them, miR-27a-3p deregulation contributed to VM and metastasis. The miR-27a-3p-mediated down-regulation of VE-cadherin and inhibition of EMT may be essential for Twist-1 to induce tumor metastasis and VM. Our findings highlight the importance of miR-27a-3p and suggest a promising new strategy for anti-HCC therapy. PMID:26980408

  9. Proteomics analysis of E-cadherin knockdown in epithelial breast cancer cells.

    PubMed

    Vergara, Daniele; Simeone, Pasquale; Latorre, Dominga; Cascione, Francesca; Leporatti, Stefano; Trerotola, Marco; Giudetti, Anna Maria; Capobianco, Loredana; Lunetti, Paola; Rizzello, Antonia; Rinaldi, Rosaria; Alberti, Saverio; Maffia, Michele

    2015-05-20

    E-cadherin is the core protein of the epithelial adherens junction. Through its cytoplasmic domain, E-cadherin interacts with several signaling proteins; among them, α- and β-catenins mediate the link of E-cadherin to the actin cytoskeleton. Loss of E-cadherin expression is a crucial step of epithelial-mesenchymal transition (EMT) and is involved in cancer invasion and metastatization. In human tumors, down-regulation of E-cadherin is frequently associated with poor prognosis. Despite the critical role of E-cadherin in cancer progression, little is known about proteome alterations linked with its down-regulation. To address this point, we investigated proteomics, biophysical and functional changes of epithelial breast cancer cell lines upon shRNA-mediated stable knockdown of E-cadherin expression (shEcad). shEcad cells showed a distinct proteomic signature including altered expression of enzymes and proteins involved in cytoskeletal dynamic and migration. Moreover, these results suggest that, besides their role in mechanical adhesion, loss of E-cadherin expression may contribute to cancer progression by modifying a complex network of pathways that tightly regulate fundamental processes as oxidative stress, immune evasion and cell metabolism. Altogether, these results extend our knowledge on the cellular modifications associated with E-cadherin down-regulation in breast cancer cells.

  10. Quantification of topological features in cell meshes to explore E-cadherin dysfunction

    PubMed Central

    Mestre, Tânia; Figueiredo, Joana; Ribeiro, Ana Sofia; Paredes, Joana; Seruca, Raquel; Sanches, João Miguel

    2016-01-01

    In cancer, defective E-cadherin leads to cell detachment, migration and metastization. Further, alterations mediated by E-cadherin dysfunction affect cell topology and tissue organization. Herein, we propose a novel quantitative approach, based on microscopy images, to analyse abnormal cellular distribution patterns. We generated undirected graphs composed by sets of triangles which accurately reproduce cell positioning and structural organization within each image. Network analysis was developed by exploring triangle geometric features, namely area, edges length and formed angles, as well as their variance, when compared with the respective equilateral triangles. We generated synthetic networks, mimicking the diversity of cell-cell interaction patterns, and evaluated the applicability of the selected metrics to study topological features. Cells expressing wild-type E-cadherin and cancer-related mutants were used to validate our strategy. Specifically, A634V, R749W and P799R cancer-causing mutants present more disorganized spatial distribution when compared with wild-type cells. Moreover, P799R exhibited higher length and angle distortions and abnormal cytoskeletal organization, suggesting the formation of very dynamic and plastic cellular interactions. Hence, topological analysis of cell network diagrams is an effective tool to quantify changes in cell-cell interactions and, importantly, it can be applied to a myriad of processes, namely tissue morphogenesis and cancer. PMID:27151223

  11. N-cadherin deficiency impairs pericyte recruitment, and not endothelial differentiation or sprouting, in embryonic stem cell-derived angiogenesis

    SciTech Connect

    Tillet, Emmanuelle . E-mail: emmanuelle.tillet@cea.fr; Vittet, Daniel; Feraud, Olivier; Moore, Robert; Kemler, Rolf; Huber, Philippe

    2005-11-01

    Endothelial cells express two classical cadherins, VE-cadherin and N-cadherin. VE-cadherin is absolutely required for vascular morphogenesis, but N-cadherin is thought to participate in vessel stabilization by interacting with periendothelial cells during vessel formation. However, recent data suggest a more critical role for N-cadherin in endothelium that would regulate angiogenesis, in part by controlling VE-cadherin expression. In this study, we have assessed N-cadherin function in vascular development using an in vitro model derived from embryonic stem (ES) cell differentiation. We show that pluripotent ES cells genetically null for N-cadherin can differentiate normally into endothelial cells. In addition, sprouting angiogenesis was unaltered, suggesting that N-cadherin is not essential for the early events of angiogenesis. However, the lack of N-cadherin led to an impairment in pericyte covering of endothelial outgrowths. We conclude that N-cadherin is necessary neither for vasculogenesis nor proliferation and migration of endothelial cells but is required for the subsequent maturation of endothelial sprouts by interacting with pericytes.

  12. Methylation pattern of CDH1 promoter and its association with CDH1 gene expression in cytological cervical specimens

    PubMed Central

    Holubeková, Veronika; Mendelová, Andrea; Grendár, Marián; Meršaková, Sandra; Kapustová, Ivana; Jašek, Karin; Vaňochová, Andrea; Danko, Jan; Lasabová, Zora

    2016-01-01

    Cervical cancer is the fourth leading cause of cancer mortality in females worldwide. Infection with high-risk human papillomavirus (HPV) is essential but insufficient to cause cervical cancer, and the clearance of HPV infection is mediated by the immune system. The deficit of molecules responsible for adhesion may play a role in the development of cervical cancer. E-cadherin is encoded by the cadherin 1 (CDH1) gene, and is involved in cell adhesion by forming adherens junctions. The aim of present study was to investigate the methylation pattern of the CDH1 promoter and to identify the association between CDH1 promoter hypermethylation, CDH1 gene expression and HPV infection in cervical specimens obtained from 93 patients with low-grade squamous intraepithelial lesions (SILs), high-grade SILs or squamous cell carcinomas, and from 47 patients with normal cervical cytology (HPV-negative). The methylation pattern of the CDH1 promoter was investigated by methylation-specific polymerase chain reaction and quantitative pyrosequencing. CDH1 gene expression was measured by relative quantification. CDH1 methylation was significantly higher in both types of lesions and in cervical cancer than in normal samples, and CDH1 gene expression was significantly reduced during SIL progression (P=0.0162). However, the influence of HPV infection or HPV E6 expression on the methylation pattern of the CDH1 gene or its gene expression levels could not be confirmed. The present results support that the methylation of the CDH1 gene is age-related in patients with cervical lesions (P=0.01085), and therefore, older patients could be more susceptible to cancer than younger patients. The important methylation of the CDH1 promoter occurred near the transcription factor binding sites on nucleotides −13 and +103, which are close to the translational start codon. These results suggest that methylation at these sites may be an important event in the transcriptional regulation of E-cadherin, and

  13. Expression of pattern recognition receptors in cholesteatoma.

    PubMed

    Lee, Ho Yun; Park, Moon Suh; Byun, Jae Yong; Kim, Young Il; Yeo, Seung Geun

    2014-02-01

    Although many immunologic mechanisms have been investigated in studies of the pathogenesis of cholesteatoma, the role of pattern recognition receptors (PRRs) has not been fully determined. Therefore, we assessed innate immune responses in patients with cholesteatoma. We prospectively evaluated 21 patients with acquired cholesteatoma between August 2010 and July 2012. Cholesteatoma specimens were obtained during surgery, and skin from the external meatus of each patient was used as a control. RNA was extracted from these tissue samples, followed by real-time PCR to quantitatively assess the relative expression of toll-like receptors (TLRs), NOD-like receptors (NLRs), retinoic acid-inducible gene (RIG)-I, NO synthase (NOS) and cytokines. The levels of TLR-2, -3, -4, -6, -7, and -10, NOD-2, and IL-1 and -8 mRNAs were significantly higher in the cholesteatoma than in the skin specimens (p < .05). The expression levels of TLR-2 and -3, RIG-I, IL-6, and TNF-α mRNAs were significantly higher in cholesteatomas from women than from men. The levels of TLR-8, NOD-2, IL-12, and TNF-α mRNAs were significantly higher in recurrent than in initial cholesteatoma specimens (p < .05). Hearing level did not correlate with the levels of expression of mRNAs encoding TLRs, NLRs, NOS, RIG-I and related cytokines (p > .05). In conclusion, alterations in innate immunity triggered by PRRs are important in the pathophysiology of cholesteatoma. Gender differences and frequency of surgery may affect the expression of PRRs in cholesteatomas.

  14. α-Mangostin suppresses lipopolysaccharide-induced invasion by inhibiting matrix metalloproteinase-2/9 and increasing E-cadherin expression through extracellular signal-regulated kinase signaling in pancreatic cancer cells

    PubMed Central

    YUAN, JIANGTAO; WU, YAOLU; LU, GUIFANG

    2013-01-01

    Invasion and metastasis are major factors in the poor prognosis of pancreatic cancer, which remains one of the most aggressive and lethal diseases worldwide. α-mangostin, a major xanthone compound identified in the pericarp of mangosteen (Garcinia mangostana, Linn; GML), possesses unique biological activities, including antioxidant, antitumor and anti-inflammatory effects. Whether α-mangostin is able to inhibit the invasive ability of pancreatic cancer cells has not been elucidated. In the present study, α-mangostin was shown to inhibit the invasive ability of the pancreatic cancer cell lines MIAPaCa-2 and BxPC-3. The results showed that α-mangostin inhibited the growth of the pancreatic cancer cells in a dose- and time-dependent manner. At concentrations of <5 μM, α-mangostin had no significant effects on cytotoxicity, but significantly inhibited the invasion and migration of pancreatic cancer cells and the expression of matrix metalloproteinase (MMP)-2 and MMP-9, while increasing the expression of E-cadherin. The present data also showed that α-mangostin exerted an inhibitory effect on the phosphorylation of extracellular-signal-regulated kinase (ERK). Furthermore, the reduction of ERK phosphorylation by small interfering RNA (siRNA) potentiated the effect of α-mangostin. Taken together, the data suggest that α-mangostin inhibited the invasion and metastasis of pancreatic cancer cells by reducing MMP-2 and MMP-9 expression, increasing E-cadherin expression and suppressing the ERK signaling pathway. The present study suggests that α-mangostin may be a promising agent against pancreatic cancer. PMID:23833675

  15. N-cadherin coordinates AMP kinase-mediated lung vascular repair.

    PubMed

    Jian, Ming-Yuan; Liu, Yanping; Li, Qian; Wolkowicz, Paul; Alexeyev, Mikhail; Zmijewski, Jaroslaw; Creighton, Judy

    2016-01-01

    Injury to the pulmonary circulation compromises endothelial barrier function and increases lung edema. Resolution of lung damage involves restoring barrier integrity, a process requiring reestablishment of endothelial cell-cell adhesions. However, mechanisms underlying repair in lung endothelium are poorly understood. In pulmonary microvascular endothelium, AMP kinase α1 (AMPKα1) stimulation enhances recovery of the endothelial barrier after LPS-induced vascular damage. AMPKα1 colocalizes to a discrete membrane compartment with the adhesion protein neuronal cadherin (N-cadherin). This study sought to determine N-cadherin's role in the repair process. Short-hairpin RNA against full-length N-cadherin or a C-terminally truncated N-cadherin, designed to disrupt the cadherin's interactions with intracellular proteins, were expressed in lung endothelium. Disruption of N-cadherin's intracellular domain caused translocation of AMPK away from the membrane and attenuated AMPK-mediated restoration of barrier function in LPS-treated endothelium. AMPK activity measurements indicated that lower basal AMPK activity in cells expressing the truncated N-cadherin compared with controls. Moreover, the AMPK stimulator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) failed to increase AMPK activity in cells expressing the modified N-cadherin, indicating uncoupling of a functional association between AMPK and the cadherin. Isolated lung studies confirmed a physiologic role for this pathway in vivo. AMPK activation reversed LPS-induced increase in permeability, whereas N-cadherin inhibition hindered AMPK-mediated repair. Thus N-cadherin coordinates the vascular protective actions of AMPK through a functional link with the kinase. This study provides insight into intrinsic repair mechanisms in the lung and supports AMPK stimulation as a modality for treating vascular disease.

  16. N-cadherin prodomain processing regulates synaptogenesis.

    PubMed

    Reinés, Analía; Bernier, Louis-Philippe; McAdam, Robyn; Belkaid, Wiam; Shan, Weisong; Koch, Alexander W; Séguéla, Philippe; Colman, David R; Dhaunchak, Ajit S

    2012-05-01

    Classical cadherins, which are adhesion molecules functioning at the CNS synapse, are synthesized as adhesively inactive precursor proteins in the endoplasmic reticulum (ER). Signal sequence and prodomain cleavage in the ER and Golgi apparatus, respectively, activates their adhesive properties. Here, we provide the first evidence for sorting of nonadhesive precursor N-cadherin (ProN) to the neuronal surface, where it coexists with adhesively competent mature N-cadherin (N-cad), generating a spectrum of adhesive strengths. In cultured hippocampal neurons, a high ProN/N-cad ratio downregulates synapse formation. Neurons expressing genetically engineered uncleavable ProN make markedly fewer synapses. The synapse number can be rescued to normality by depleting surface ProN levels through prodomain cleavage by an exogenous protease. Finally, prodomain processing is developmentally regulated in the rat hippocampus. We conclude that it is the ProN/N-cad ratio and not mature N-cad alone that is critical for regulation of adhesion during synaptogenesis.

  17. E-Cadherin-Dependent Stimulation of Traction Force at Focal Adhesions via the Src and PI3K Signaling Pathways

    PubMed Central

    Jasaitis, Audrius; Estevez, Maruxa; Heysch, Julie; Ladoux, Benoit; Dufour, Sylvie

    2012-01-01

    The interplay between cadherin- and integrin-dependent signals controls cell behavior, but the precise mechanisms that regulate the strength of adhesion to the extracellular matrix remains poorly understood. We deposited cells expressing a defined repertoire of cadherins and integrins on fibronectin (FN)-coated polyacrylamide gels (FN-PAG) and on FN-coated pillars used as a micro-force sensor array (μFSA), and analyzed the functional relationship between these adhesion receptors to determine how it regulates cell traction force. We found that cadherin-mediated adhesion stimulated cell spreading on FN-PAG, and this was modulated by the substrate stiffness. We compared S180 cells with cells stably expressing different cadherins on μFSA and found that traction forces were stronger in cells expressing cadherins than in parental cells. E-cadherin-mediated contact and mechanical coupling between cells are required for this increase in cell-FN traction force, which was not observed in isolated cells, and required Src and PI3K activities. Traction forces were stronger in cells expressing type I cadherins than in cells expressing type II cadherins, which correlates with our previous observation of a higher intercellular adhesion strength developed by type I compared with type II cadherins. Our results reveal one of the mechanisms whereby molecular cross talk between cadherins and integrins upregulates traction forces at cell-FN adhesion sites, and thus provide additional insight into the molecular control of cell behavior. PMID:22853894

  18. Cell-cell contacts mediated by E-cadherin (uvomorulin) restrict invasive behavior of L-cells

    PubMed Central

    1991-01-01

    L-cells were cotransfected with plasmids coding for mouse E-cadherin (uvomorulin) and the neophosphotransferase gene, and stable transfectants expressing E-cadherin at the cell surface were selected and cloned. Control transfection was done with the neophosphotransferase gene alone. The invasive migration of transfected and untransfected L-cells into three-dimensional collagen gels was then analyzed. L-cells not expressing E-cadherin migrated efficiently into the gels, whereas invasion of the E-cadherin-expressing L-cells was restricted in a cell density dependent manner. At sparse density, when the cells exhibited little cell-cell contacts, no difference was observed between the level of invasion of the cadherin-expressing cells and the control cells. However, with increasing cell density, decreasing amounts of the cadherin-expressing cells but increasing amounts of the control cells migrated into the gels. At confluent density hardly any cadherin-expressing cells were able to migrate into the gels. The inhibition of the invasion of the cadherin-expressing cells could be reverted if confluent cells were cultured in the presence of monoclonal antibodies against E-cadherin. Since the expression of E-cadherin did not influence the invasive mobility of single cells, these results indicate that E-cadherin-mediated cell-cell contacts inhibited invasive cellular migration. Time-lapse videoscopy and studies of cell migration from a monolayer into a cell-free area demonstrated that the restricted invasion could be explained by contact inhibition of cell movement of the cadherin-expressing cells. PMID:1649199

  19. Gene expression pattern in canine mammary osteosarcoma.

    PubMed

    Pawłowski, K M; Majewska, A; Szyszko, K; Dolka, I; Motyl, T; Król, M

    2011-01-01

    Canine mammary sarcomas are usually very aggressive and easily metastasize. Unfortunately the biology of this type of tumor is not well known because they are a very rare type of tumors. The aim of this study was to find differences in gene expression patterns in canine mammary osteosarcomas (malignant) versus osteomas (benign) using DNA microarrays. Our microarray experiment showed that 11 genes were up-regulated in osteosarcoma in comparison to osteoma whereas 36 genes were down-regulated. Among the up-regulated genes were: PDK1, EXT1, and EIF4H which are involved in AKT/PI3K and GLI/Hedgehog pathways. These genes play an important role in cell biology (cancer cell proliferation) and may be essential in osteosarcoma formation and development. Analyzing the down-regulated genes, the most interesting seemed to be HSPB8 and SEPP1. HSPB8 is a small heat shock protein that plays an important role in cell cycle regulation, apoptosis, and breast carcinogenesis. Also SEPP1 may play a role in carcinogenesis, as its down-regulation may induce oxidative stress possibly resulting in carcinogenesis. The preliminary results of the present study indicate that the up-regulation of three genes EXT1, EIF4H, and PDK1 may play an essential role in osteosarcoma formation, development and proliferation. In our opinion the cross-talk between GLI/Hedgehog and PI3K/AKT pathways may be a key factor to increase tumor proliferation and malignancy. PMID:21528706

  20. P120-Catenin Regulates Early Trafficking Stages of the N-Cadherin Precursor Complex

    PubMed Central

    Wehrendt, Diana P.; Carmona, Fernando; González Wusener, Ana E.; González, Ángela; Martínez, Juan M. Lázaro; Arregui, Carlos O.

    2016-01-01

    It is well established that binding of p120 catenin to the cytoplasmic domain of surface cadherin prevents cadherin endocytosis and degradation, contributing to cell-cell adhesion. In the present work we show that p120 catenin bound to the N-cadherin precursor, contributes to its anterograde movement from the endoplasmic reticulum (ER) to the Golgi complex. In HeLa cells, depletion of p120 expression, or blocking its binding to N-cadherin, increased the accumulation of the precursor in the ER, while it decreased the localization of mature N-cadherin at intercellular junctions. Reconstitution experiments in p120-deficient SW48 cells with all three major isoforms of p120 (1, 3 and 4) had similar capacity to promote the processing of the N-cadherin precursor to the mature form, and its localization at cell-cell junctions. P120 catenin and protein tyrosine phosphatase PTP1B facilitated the recruitment of the N-ethylmaleimide sensitive factor (NSF), an ATPase involved in vesicular trafficking, to the N-cadherin precursor complex. Dominant negative NSF E329Q impaired N-cadherin trafficking, maturation and localization at cell-cell junctions. Our results uncover a new role for p120 catenin bound to the N-cadherin precursor ensuring its trafficking through the biosynthetic pathway towards the cell surface. PMID:27254316

  1. E-cadherin dis-engagement activates the Rap1 GTPase

    PubMed Central

    Asuri, Sirisha; Yan, Jingliang; Paranavitana, Nivanka C.; Quilliam, Lawrence A.

    2008-01-01

    E-cadherin based adherens junctions are finely regulated by multiple cellular signaling events. Here we show that the Ras-related Rap1 GTPase is enriched in regions of nascent cell-cell contacts and strengthens E-cadherin junctions: constitutively active Rap1 expressing MDCK cells exhibit increased junctional contact and resisted calcium depletion-induced cell-cell junction disruption. E-cadherin disengagement activated Rap1 and this correlated with E-cadherin association with the Rap GEFs, C3G and PDZ-GEF I. PDZ-GEF I associated with E-cadherin and β-catenin whereas C3G interaction with E-cadherin did not involve β-catenin. Knockdown of PDZ-GEF I in MDCK cells decreased Rap1 activity following E-cadherin junction disruption. We hereby show that Rap1 plays a role in the maintenance and repair of E-cadherin junctions and is activated via an “outside-in” signaling pathway initiated by E-cadherin and mediated at least in part by PDZ-GEF I. PMID:18767072

  2. Relating movement recurrence and expressive timing patterns in music performances.

    PubMed

    Teixeira, Euler C F; Yehia, Hani C; Loureiro, Mauricio A

    2015-09-01

    In this study the movement patterns of ten expert musicians are quantitatively related to expressive timing patterns and the music structure during performances. The hypothesis is that ancillary gestures recurrently employed are closely related to expressive intentions, and that the expressive content imposed in key musical passages is thus reflected in the patterns of gestural recurrence. A movement and an audio analysis of 30 clarinet performances of a Brahms' excerpt are compared. Results show direct correlations between the recurrence pattern of clarinetists' ancillary movements and expressive bar duration manipulations employed by them, associated with melodic phrasing and harmonic transitions. PMID:26428815

  3. Relating movement recurrence and expressive timing patterns in music performances.

    PubMed

    Teixeira, Euler C F; Yehia, Hani C; Loureiro, Mauricio A

    2015-09-01

    In this study the movement patterns of ten expert musicians are quantitatively related to expressive timing patterns and the music structure during performances. The hypothesis is that ancillary gestures recurrently employed are closely related to expressive intentions, and that the expressive content imposed in key musical passages is thus reflected in the patterns of gestural recurrence. A movement and an audio analysis of 30 clarinet performances of a Brahms' excerpt are compared. Results show direct correlations between the recurrence pattern of clarinetists' ancillary movements and expressive bar duration manipulations employed by them, associated with melodic phrasing and harmonic transitions.

  4. Deletion of the cytoplasmic domain of N-cadherin reduces, but does not eliminate, traction force-transmission.

    PubMed

    Lee, Eliot; Ewald, Makena L; Sedarous, Mary; Kim, Timothy; Weyers, Brent W; Truong, Rose Hong; Yamada, Soichiro

    2016-09-30

    Collective migration of epithelial cells is an integral part of embryonic development, wound healing, tissue renewal and carcinoma invasion. While previous studies have focused on cell-extracellular matrix adhesion as a site of migration-driving, traction force-transmission, cadherin mediated cell-cell adhesion is also capable of force-transmission. Using a soft elastomer coated with purified N-cadherin as a substrate and a Hepatocyte Growth Factor-treated, transformed MDCK epithelial cell line as a model system, we quantified traction transmitted by N-cadherin-mediated contacts. On a substrate coated with purified extracellular domain of N-cadherin, cell surface N-cadherin proteins arranged into puncta. N-cadherin mutants (either the cytoplasmic deletion or actin-binding domain chimera), however, failed to assemble into puncta, suggesting the assembly of focal adhesion like puncta requires the cytoplasmic domain of N-cadherin. Furthermore, the cytoplasmic domain deleted N-cadherin expressing cells exerted lower traction stress than the full-length or the actin binding domain chimeric N-cadherin. Our data demonstrate that N-cadherin junctions exert significant traction stress that requires the cytoplasmic domain of N-cadherin, but the loss of the cytoplasmic domain does not completely eliminate traction force transmission.

  5. Surface mechanics mediate pattern formation in the developing retina.

    PubMed

    Hayashi, Takashi; Carthew, Richard W

    2004-10-01

    Pattern formation of biological structures involves organizing different types of cells into a spatial configuration. In this study, we investigate the physical basis of biological patterning of the Drosophila retina in vivo. We demonstrate that E- and N-cadherins mediate apical adhesion between retina epithelial cells. Differential expression of N-cadherin within a sub-group of retinal cells (cone cells) causes them to form an overall shape that minimizes their surface contact with surrounding cells. The cells within this group, in both normal and experimentally manipulated conditions, pack together in the same way as soap bubbles do. The shaping of the cone cell group and packing of its components precisely imitate the physical tendency for surfaces to be minimized. Thus, simple patterned expression of N-cadherin results in a complex spatial pattern of cells owing to cellular surface mechanics. PMID:15470418

  6. N-Cadherin Sustains Motility and Polarity of Future Cortical Interneurons during Tangential Migration

    PubMed Central

    Luccardini, Camilla; Hennekinne, Laetitia; Viou, Lucie; Yanagida, Mitsutoshi; Murakami, Fujio; Kessaris, Nicoletta; Ma, Xufei; Adelstein, Robert S.; Mège, René-Marc

    2013-01-01

    In the developing brain, cortical GABAergic interneurons migrate long distances from the medial ganglionic eminence (MGE) in which they are generated, to the cortex in which they settle. MGE cells express the cell adhesion molecule N-cadherin, a homophilic cell–cell adhesion molecule that regulates numerous steps of brain development, from neuroepithelium morphogenesis to synapse formation. N-cadherin is also expressed in embryonic territories crossed by MGE cells during their migration. In this study, we demonstrate that N-cadherin is a key player in the long-distance migration of future cortical interneurons. Using N-cadherin-coated substrate, we show that N-cadherin-dependent adhesion promotes the migration of mouse MGE cells in vitro. Conversely, mouse MGE cells electroporated with a construct interfering with cadherin function show reduced cell motility, leading process instability, and impaired polarization associated with abnormal myosin IIB dynamics. In vivo, the capability of electroporated MGE cells to invade the developing cortical plate is altered. Using genetic ablation of N-cadherin in mouse embryos, we show that N-cadherin-depleted MGEs are severely disorganized. MGE cells hardly exit the disorganized proliferative area. N-cadherin ablation at the postmitotic stage, which does not affect MGE morphogenesis, alters MGE cell motility and directionality. The tangential migration to the cortex of N-cadherin ablated MGE cells is delayed, and their radial migration within the cortical plate is perturbed. Altogether, these results identify N-cadherin as a pivotal adhesion substrate that activates cell motility in future cortical interneurons and maintains cell polarity over their long-distance migration to the developing cortex. PMID:24227724

  7. Tension Monitoring during Epithelial-to-Mesenchymal Transition Links the Switch of Phenotype to Expression of Moesin and Cadherins in NMuMG Cells

    PubMed Central

    Schneider, David; Baronsky, Thilo; Pietuch, Anna; Rother, Jan; Oelkers, Marieelen; Fichtner, Dagmar; Wedlich, Doris; Janshoff, Andreas

    2013-01-01

    Structural alterations during epithelial-to-mesenchymal transition (EMT) pose a substantial challenge to the mechanical response of cells and are supposed to be key parameters for an increased malignancy during metastasis. Herein, we report that during EMT, apical tension of the epithelial cell line NMuMG is controlled by cell-cell contacts and the architecture of the underlying actin structures reflecting the mechanistic interplay between cellular structure and mechanics. Using force spectroscopy we find that tension in NMuMG cells slightly increases 24 h after EMT induction, whereas upon reaching the final mesenchymal-like state characterized by a complete loss of intercellular junctions and a concerted down-regulation of the adherens junction protein E-cadherin, the overall tension becomes similar to that of solitary adherent cells and fibroblasts. Interestingly, the contribution of the actin cytoskeleton on apical tension increases significantly upon EMT induction, most likely due to the formation of stable and highly contractile stress fibers which dominate the elastic properties of the cells after the transition. The structural alterations lead to the formation of single, highly motile cells rendering apical tension a good indicator for the cellular state during phenotype switching. In summary, our study paves the way towards a more profound understanding of cellular mechanics governing fundamental morphological programs such as the EMT. PMID:24339870

  8. Global analysis of patterns of gene expression during Drosophila embryogenesis

    PubMed Central

    Tomancak, Pavel; Berman, Benjamin P; Beaton, Amy; Weiszmann, Richard; Kwan, Elaine; Hartenstein, Volker; Celniker, Susan E; Rubin, Gerald M

    2007-01-01

    Background Cell and tissue specific gene expression is a defining feature of embryonic development in multi-cellular organisms. However, the range of gene expression patterns, the extent of the correlation of expression with function, and the classes of genes whose spatial expression are tightly regulated have been unclear due to the lack of an unbiased, genome-wide survey of gene expression patterns. Results We determined and documented embryonic expression patterns for 6,003 (44%) of the 13,659 protein-coding genes identified in the Drosophila melanogaster genome with over 70,000 images and controlled vocabulary annotations. Individual expression patterns are extraordinarily diverse, but by supplementing qualitative in situ hybridization data with quantitative microarray time-course data using a hybrid clustering strategy, we identify groups of genes with similar expression. Of 4,496 genes with detectable expression in the embryo, 2,549 (57%) fall into 10 clusters representing broad expression patterns. The remaining 1,947 (43%) genes fall into 29 clusters representing restricted expression, 20% patterned as early as blastoderm, with the majority restricted to differentiated cell types, such as epithelia, nervous system, or muscle. We investigate the relationship between expression clusters and known molecular and cellular-physiological functions. Conclusion Nearly 60% of the genes with detectable expression exhibit broad patterns reflecting quantitative rather than qualitative differences between tissues. The other 40% show tissue-restricted expression; the expression patterns of over 1,500 of these genes are documented here for the first time. Within each of these categories, we identified clusters of genes associated with particular cellular and developmental functions. PMID:17645804

  9. P-cadherin promotes collective cell migration via a Cdc42-mediated increase in mechanical forces

    PubMed Central

    Plutoni, Cédric; Bazellieres, Elsa; Le Borgne-Rochet, Maïlys; Comunale, Franck; Brugues, Agusti; Séveno, Martial; Planchon, Damien; Thuault, Sylvie; Morin, Nathalie; Bodin, Stéphane; Trepat, Xavier

    2016-01-01

    Collective cell migration (CCM) is essential for organism development, wound healing, and metastatic transition, the primary cause of cancer-related death, and it involves cell–cell adhesion molecules of the cadherin family. Increased P-cadherin expression levels are correlated with tumor aggressiveness in carcinoma and aggressive sarcoma; however, how P-cadherin promotes tumor malignancy remains unknown. Here, using integrated cell biology and biophysical approaches, we determined that P-cadherin specifically induces polarization and CCM through an increase in the strength and anisotropy of mechanical forces. We show that this mechanical regulation is mediated by the P-cadherin/β-PIX/Cdc42 axis; P-cadherin specifically activates Cdc42 through β-PIX, which is specifically recruited at cell–cell contacts upon CCM. This mechanism of cell polarization and migration is absent in cells expressing E- or R-cadherin. Thus, we identify a specific role of P-cadherin through β-PIX–mediated Cdc42 activation in the regulation of cell polarity and force anisotropy that drives CCM. PMID:26783302

  10. Analysis of C-cadherin Regulation during Tissue Morphogenesis with an Activating Antibody

    PubMed Central

    Zhong, Yun; Brieher, William M.; Gumbiner, Barry M.

    1999-01-01

    The regulation of cadherin-mediated adhesion at the cell surface underlies several morphogenetic processes. To investigate the role of cadherin regulation in morphogenesis and to begin to analyze the molecular mechanisms of cadherin regulation, we have screened for monoclonal antibodies (mAbs) that allow us to manipulate the adhesive state of the cadherin molecule. Xenopus C-cadherin is regulated during convergent extension movements of gastrulation. Treatment of animal pole tissue explants (animal caps) with the mesoderm-inducing factor activin induces tissue elongation and decreases the strength of C-cadherin–mediated adhesion between blastomeres (Brieher, W.M., and B.M. Gumbiner. 1994. J. Cell Biol. 126:519–527). We have generated a mAb to C-cadherin, AA5, that restores strong adhesion to activin-treated blastomeres. This C-cadherin activating antibody strongly inhibits the elongation of animal caps in response to activin without affecting mesodermal gene expression. Thus, the activin-induced decrease in C-cadherin adhesive activity appears to be required for animal cap elongation. Regulation of C-cadherin and its activation by mAb AA5 involve changes in the state of C-cadherin that encompass more than changes in its homophilic binding site. Although mAb AA5 elicited a small enhancement in the functional activity of the soluble C-cadherin ectodomain (CEC1-5), it was not able to restore cell adhesion activity to mutant C-cadherin lacking its cytoplasmic tail. Furthermore, activin treatment regulates the adhesion of Xenopus blastomeres to surfaces coated with two other anti–C-cadherin mAbs, even though these antibodies probably do not mediate adhesion through a normal homophilic binding mechanism. Moreover, mAb AA5 restores strong adhesion to these antibodies. mAb AA5 only activates adhesion of blastomeres to immobilized CEC1-5 when it binds to C-cadherin on the cell surface. It does not work when added to CEC1-5 on the substrate. Together these findings

  11. Rab35 regulates cadherin-mediated adherens junction formation and myoblast fusion

    PubMed Central

    Charrasse, Sophie; Comunale, Franck; De Rossi, Sylvain; Echard, Arnaud; Gauthier-Rouvière, Cécile

    2013-01-01

    Cadherins are homophilic cell–cell adhesion molecules implicated in many fundamental processes, such as morphogenesis, cell growth, and differentiation. They accumulate at cell–cell contact sites and assemble into large macromolecular complexes named adherens junctions (AJs). Cadherin targeting and function are regulated by various cellular processes, many players of which remain to be uncovered. Here we identify the small GTPase Rab35 as a new regulator of cadherin trafficking and stabilization at cell–cell contacts in C2C12 myoblasts and HeLa cells. We find that Rab35 accumulates at cell–cell contacts in a cadherin-dependent manner. Knockdown of Rab35 or expression of a dominant-negative form of Rab35 impaired N- and M-cadherin recruitment to cell–cell contacts, their stabilization at the plasma membrane, and association with p120 catenin and led to their accumulation in transferrin-, clathrin-, and AP-2–positive intracellular vesicles. We also find that Rab35 function is required for PIP5KIγ accumulation at cell–cell contacts and phosphatidyl inositol 4,5-bisphosphate production, which is involved in cadherin stabilization at contact sites. Finally, we show that Rab35 regulates myoblast fusion, a major cellular process under the control of cadherin-dependent signaling. Taken together, these results reveal that Rab35 regulates cadherin-dependent AJ formation and myoblast fusion. PMID:23197472

  12. VE-cadherin interacts with cell polarity protein Pals1 to regulate vascular lumen formation.

    PubMed

    Brinkmann, Benjamin F; Steinbacher, Tim; Hartmann, Christian; Kummer, Daniel; Pajonczyk, Denise; Mirzapourshafiyi, Fatemeh; Nakayama, Masanori; Weide, Thomas; Gerke, Volker; Ebnet, Klaus

    2016-09-15

    Blood vessel tubulogenesis requires the formation of stable cell-to-cell contacts and the establishment of apicobasal polarity of vascular endothelial cells. Cell polarity is regulated by highly conserved cell polarity protein complexes such as the Par3-aPKC-Par6 complex and the CRB3-Pals1-PATJ complex, which are expressed by many different cell types and regulate various aspects of cell polarity. Here we describe a functional interaction of VE-cadherin with the cell polarity protein Pals1. Pals1 directly interacts with VE-cadherin through a membrane-proximal motif in the cytoplasmic domain of VE-cadherin. VE-cadherin clusters Pals1 at cell-cell junctions. Mutating the Pals1-binding motif in VE-cadherin abrogates the ability of VE-cadherin to regulate apicobasal polarity and vascular lumen formation. In a similar way, deletion of the Par3-binding motif at the C-terminus of VE-cadherin impairs apicobasal polarity and vascular lumen formation. Our findings indicate that the biological activity of VE-cadherin in regulating endothelial polarity and vascular lumen formation is mediated through its interaction with the two cell polarity proteins Pals1 and Par3.

  13. Variation in Gene Expression Patterns in Human Gastric Cancers

    PubMed Central

    Chen, Xin; Leung, Suet Y.; Yuen, Siu T.; Chu, Kent-Man; Ji, Jiafu; Li, Rui; Chan, Annie S.Y.; Law, Simon; Troyanskaya, Olga G.; Wong, John; So, Samuel; Botstein, David; Brown, Patrick O.

    2003-01-01

    Gastric cancer is the world's second most common cause of cancer death. We analyzed gene expression patterns in 90 primary gastric cancers, 14 metastatic gastric cancers, and 22 nonneoplastic gastric tissues, using cDNA microarrays representing ∼30,300 genes. Gastric cancers were distinguished from nonneoplastic gastric tissues by characteristic differences in their gene expression patterns. We found a diversity of gene expression patterns in gastric cancer, reflecting variation in intrinsic properties of tumor and normal cells and variation in the cellular composition of these complex tissues. We identified several genes whose expression levels were significantly correlated with patient survival. The variations in gene expression patterns among cancers in different patients suggest differences in pathogenetic pathways and potential therapeutic strategies. PMID:12925757

  14. N-cadherin haploinsufficiency affects cardiac gap junctions and arrhythmic susceptibility

    PubMed Central

    Li, Jifen; Levin, Mark D; Xiong, Yanming; Petrenko, Nataliya; Patel, Vickas V.; Radice, Glenn L.

    2008-01-01

    Cardiac-specific deletion of the murine gene (Cdh2) encoding the cell adhesion molecule, N-cadherin, results in disassembly of the intercalated disc (ICD) structure and sudden arrhythmic death. Connexin 43 (Cx43)-containing gap junctions are significantly reduced in the heart after depleting N-cadherin, therefore we hypothesized that animals expressing half the normal levels of N-cadherin would exhibit an intermediate phenotype. We examined the effect of N-cadherin haploinsufficiency on Cx43 expression and susceptibility to induced arrhythmias in mice either wild-type or heterozygous for the Cx43 (Gja1)-null allele. An increase in hypophosphorylated Cx43 accompanied by a modest decrease in total Cx43 protein levels was observed in the N-cadherin heterozygous mice. Consistent with these findings N-cadherin heterozygotes exhibited increased susceptibility to ventricular arrhythmias compared to wild-type mice. Quantitative immunofluorescence microscopy revealed a reduction in size of large Cx43-containing plaques in the N-cadherin heterozygous animals compared to wild-type. Gap junctions were further decreased in number and size in the N-cad/Cx43 compound heterozygous mice with increased arrhythmic susceptibility compared to the single mutants. The scaffold protein, ZO-1, was reduced at the ICD in N-cadherin heterozygous cardiomyocytes providing a possible explanation for the reduction in Cx43 plaque size. These data provide further support for the intimate relationship between N-cadherin and Cx43 in the heart, and suggest that germline mutations in the human N-cadherin (Cdh2) gene may predispose patients to increased risk of cardiac arrhythmias. PMID:18201716

  15. Structure and Binding Mechanism of Vascular Endothelial Cadherin: A Divergent Classical Cadherin

    SciTech Connect

    J Brasch; O Harrison; G Ahlsen; S Carnally; R Henderson; B Honig; L Shapiro

    2011-12-31

    Vascular endothelial cadherin (VE-cadherin), a divergent member of the type II classical cadherin family of cell adhesion proteins, mediates homophilic adhesion in the vascular endothelium. Previous investigations with a bacterially produced protein suggested that VE-cadherin forms cell surface trimers that bind between apposed cells to form hexamers. Here we report studies of mammalian-produced VE-cadherin ectodomains suggesting that, like other classical cadherins, VE-cadherin forms adhesive trans dimers between monomers located on opposing cell surfaces. Trimerization of the bacterially produced protein appears to be an artifact that arises from a lack of glycosylation. We also present the 2.1-{angstrom}-resolution crystal structure of the VE-cadherin EC1-2 adhesive region, which reveals homodimerization via the strand-swap mechanism common to classical cadherins. In common with type II cadherins, strand-swap binding involves two tryptophan anchor residues, but the adhesive interface resembles type I cadherins in that VE-cadherin does not form a large nonswapped hydrophobic surface. Thus, VE-cadherin is an outlier among classical cadherins, with characteristics of both type I and type II subfamilies.

  16. Expression patterns of placental microRNAs

    PubMed Central

    Mouillet, Jean-Francois; Chu, Tianjiao; Sadovsky, Yoel

    2016-01-01

    Among different types of small RNA molecules, distinct types of microRNAs (miRNAs) are expressed in many cell types, where they modulate RNA stability and translation, thus controlling virtually every aspect of tissue development, proliferation, differentiation, and function. Aberrant miRNA expression has been linked to discrete pathological processes. As the placenta plays a pivotal role in governing fetal development, it is not surprising that the placenta expresses numerous types of miRNAs. Whereas many of these miRNAs are ubiquitously expressed, certain miRNA species are largely unique to the placenta. Research in the field of placental miRNAs is in its early phase, with most studies centering on cataloging placental miRNA species or examining differences in placental miRNA expression between placentas from normal pregnancies and those from pregnancies complicated by pathologies that are associated with placental dysfunction. Recent research endeavors ventured to assess the function of miRNAs in cultured placental trophoblasts, using in vitro conditions that model relevant pathophysiological processes. The impact of miRNA-mediated repression on the trophoblast transcriptome, particularly in response to genetic and environmental perturbations, remains largely unknown. Further in depth studies are required to unravel the functional significance of miRNAs in molding placental robustness, which must constantly adapt to altered maternal physiological status in order to sustain optimal support to the developing embryo. In this review we summarize the current information about placental miRNAs expression, and the lingering challenges in this field. PMID:21425434

  17. Patterns of activity expressed by juvenile horseshoe crabs.

    PubMed

    Dubofsky, E A; Simpson, S D; Chabot, Christopher C; Watson, Winsor H

    2013-09-01

    Adult American horseshoe crabs, Limulus polyphemus, possess endogenous circadian and circatidal clocks controlling visual sensitivity and locomotion, respectively. The goal of this study was to determine the types of activity rhythms expressed by juvenile horseshoe crabs (n = 24) when exposed to a 14:10 light/dark cycle (LD) for 10 days, followed by 10 days of constant darkness (DD). Horseshoe crab activity was recorded with a digital time-lapse video system that used an infrared-sensitive camera so animals could be monitored at night. In LD, 15 animals expressed daily patterns of activity, 6 displayed a circatidal pattern, and the remaining 3 were arrhythmic. Of the 15 animals with daily patterns of locomotion, 7 had a significant preference (P < 0.05) for diurnal activity and 3 for nocturnal activity; the remainder did not express a significant preference for day or night activity. In DD, 13 horseshoe crabs expressed circatidal rhythms and 8 maintained a pattern of about 24 h. Although these results suggest the presence of a circadian clock influencing circatidal patterns of locomotion, these apparent circadian rhythms may actually represent the expression of just one of the two bouts of activity driven by the putative circalunidian clocks that control their tidal rhythms. Overall, these results indicate that, like adults, juvenile horseshoe crabs express both daily and tidal patterns of activity and that at least one, and maybe both, of these patterns is driven by endogenous clocks. PMID:24088795

  18. Patterns of activity expressed by juvenile horseshoe crabs.

    PubMed

    Dubofsky, E A; Simpson, S D; Chabot, Christopher C; Watson, Winsor H

    2013-09-01

    Adult American horseshoe crabs, Limulus polyphemus, possess endogenous circadian and circatidal clocks controlling visual sensitivity and locomotion, respectively. The goal of this study was to determine the types of activity rhythms expressed by juvenile horseshoe crabs (n = 24) when exposed to a 14:10 light/dark cycle (LD) for 10 days, followed by 10 days of constant darkness (DD). Horseshoe crab activity was recorded with a digital time-lapse video system that used an infrared-sensitive camera so animals could be monitored at night. In LD, 15 animals expressed daily patterns of activity, 6 displayed a circatidal pattern, and the remaining 3 were arrhythmic. Of the 15 animals with daily patterns of locomotion, 7 had a significant preference (P < 0.05) for diurnal activity and 3 for nocturnal activity; the remainder did not express a significant preference for day or night activity. In DD, 13 horseshoe crabs expressed circatidal rhythms and 8 maintained a pattern of about 24 h. Although these results suggest the presence of a circadian clock influencing circatidal patterns of locomotion, these apparent circadian rhythms may actually represent the expression of just one of the two bouts of activity driven by the putative circalunidian clocks that control their tidal rhythms. Overall, these results indicate that, like adults, juvenile horseshoe crabs express both daily and tidal patterns of activity and that at least one, and maybe both, of these patterns is driven by endogenous clocks.

  19. Liver-intestine cadherin induction by epidermal growth factor receptor is associated with intestinal differentiation of gastric cancer.

    PubMed

    Sakamoto, Naoya; Oue, Naohide; Sentani, Kazuhiro; Anami, Katsuhiro; Uraoka, Naohiro; Naito, Yutaka; Oo, Htoo Zarni; Hinoi, Takao; Ohdan, Hideki; Yanagihara, Kazuyoshi; Aoyagi, Kazuhiko; Sasaki, Hiroki; Yasui, Wataru

    2012-09-01

    Gastric cancer (GC) is one of the most common malignancies worldwide. The epidermal growth factor receptor (EGFR) molecule is very important in GC progression. To examine the correlation between EGFR and GC-related genes, we analyzed gene expression profiles of HT-29 cells treated with EGFR ligands and identified six genes upregulated by epidermal growth factor (EGF) and transforming growth factor (TGF)-α treatment. Among these, we focused on cadherin 17 (CDH17) encoding liver-intestine cadherin (LI-cadherin). Expression of LI-cadherin was induced by both EGF and TGF-α, as detected by quantitative RT-PCR and Western blot analysis. A luciferase assay showed that LI-cadherin promoter activity was enhanced by EGF or TGF-α in both HT-29 cells and MKN-74 GC cells. Immunohistochemical analysis of 152 GC cases showed that out of 58 LI-cadherin-positive cases, 24 (41%) cases were also positive for EGFR, whereas out of 94 LI-cadherin-negative cases, only 9 (10%) cases were positive for EGFR (P < 0.0001). Double-immunofluorescence staining revealed that EGFR and LI-cadherin were coexpressed. Significant correlation was found between LI-cadherin expression and advanced T grade and N grade. Both EGFR and LI-cadherin expression were more frequently found in GC cases with an intestinal mucin phenotype than in cases with a gastric mucin phenotype. These results indicate that, in addition to the known intestinal transcription factor caudal type homeobox 2, EGFR activation induces LI-cadherin expression and participates in intestinal differentiation of GC.

  20. CUGBP1 and HuR regulate E-cadherin translation by altering recruitment of E-cadherin mRNA to processing bodies and modulate epithelial barrier function.

    PubMed

    Yu, Ting-Xi; Gu, Bei-Lin; Yan, Jun-Kai; Zhu, Jie; Yan, Wei-Hui; Chen, Jie; Qian, Lin-Xi; Cai, Wei

    2016-01-01

    The effectiveness and stability of epithelial barrier depend on apical junctional complexes, which consist of tight junctions (TJs) and adherens junctions (AJs). E-cadherin is the primary component of AJs, and it is essential for maintenance of cell-to-cell interactions and regulates the epithelial barrier. However, the exact mechanism underlying E-cadherin expression, particularly at the posttranscriptional level, remains largely unknown. RNA-binding proteins CUG-binding protein 1 (CUGBP1) and HU antigen R (HuR) are highly expressed in the intestinal epithelial tissues and modulate the stability and translation of target mRNAs. Here, we present evidence that CUGBP1 and HuR interact directly with the 3'-untranslated region of E-cadherin mRNA and regulate E-cadherin translation. CUGBP1 overexpression in Caco-2 cells inhibited E-cadherin translation by increasing the recruitment of E-cadherin mRNA to processing bodies (PBs), thus resulting in an increase in paracellular permeability. Overexpression of HuR exhibited an opposite effect on E-cadherin expression by preventing the translocation of E-cadherin mRNA to PBs and therefore prevented CUGBP1-induced repression of E-cadherin expression. Elevation of HuR also abolished the CUGBP1-induced epithelial barrier dysfunction. These findings indicate that CUGBP1 and HuR negate each other's effects in regulating E-cadherin translation by altering the recruitment of E-cadherin mRNA to PBs and play an important role in the regulation of intestinal barrier integrity under various pathophysiological conditions.

  1. Anti-apoptosis effects of vascular endothelial cadherin in experimental corneal neovascularization

    PubMed Central

    Liu, Gao-Qin; Wu, Hong-Ya; Xu, Jing; Wang, Meng-Jiao; Lu, Pei-Rong; Zhang, Xue-Guang

    2015-01-01

    AIM To explore the effects and mechanism of vascular endothelial cadherin (VE-cadherin) on experimental corneal neovascularization (CRNV). METHODS Mouse corneas were burned with sodium hydroxide to build a CRNV model. The burned corneas were locally administrated with anti-mouse VE-cadherin neutralizing antibody. Annexin V and cluster of differentiation 31 (CD31) double staining was used to measure vascular endothelial cell apoptosis with the use of flow cytometry (FCM). The protein expression of NADPH oxidase 2 (Nox2), caspase-3, and protein kinase C (PKC) in the burned corneas were examined by Western blot. Human retinal endothelial cell (HREC) proliferation was detected using a Cell Counting Kit 8 (CCK-8) assay in vitro. RESULTS The amount of CRNV peaked two weeks after the alkali burn. FCM confirmed that VE-cadherin neutralizing antibody treatment increased CD31 positive cell apoptosis. Western blot revealed that the intracorneal protein expression of Nox2 and caspase-3 were up-regulated, while PKC was down-regulated in the VE-cadherin neutralizing antibody administrated group. CCK-8 assay showed that VE-cadherin neutralizing antibody markedly inhibited HREC proliferation. CONCLUSION VE-cadherin exhibited an anti-apoptosis effect through enhanced PKC signaling and an enhanced cell proliferation pathway. PMID:26682152

  2. Recruitment of β-catenin to N-cadherin is necessary for smooth muscle contraction.

    PubMed

    Wang, Tao; Wang, Ruping; Cleary, Rachel A; Gannon, Olivia J; Tang, Dale D

    2015-04-01

    β-Catenin is a key component that connects transmembrane cadherin with the actin cytoskeleton at the cell-cell interface. However, the role of the β-catenin/cadherin interaction in smooth muscle has not been well characterized. Here stimulation with acetylcholine promoted the recruitment of β-catenin to N-cadherin in smooth muscle cells/tissues. Knockdown of β-catenin by lentivirus-mediated shRNA attenuated smooth muscle contraction. Nevertheless, myosin light chain phosphorylation at Ser-19 and actin polymerization in response to contractile activation were not reduced by β-catenin knockdown. In addition, the expression of the β-catenin armadillo domain disrupted the recruitment of β-catenin to N-cadherin. Force development, but not myosin light chain phosphorylation and actin polymerization, was reduced by the expression of the β-catenin armadillo domain. Furthermore, actin polymerization and microtubules have been implicated in intracellular trafficking. In this study, the treatment with the inhibitor latrunculin A diminished the interaction of β-catenin with N-cadherin in smooth muscle. In contrast, the exposure of smooth muscle to the microtubule depolymerizer nocodazole did not affect the protein-protein interaction. Together, these findings suggest that smooth muscle contraction is mediated by the recruitment of β-catenin to N-cadherin, which may facilitate intercellular mechanotransduction. The association of β-catenin with N-cadherin is regulated by actin polymerization during contractile activation.

  3. MT5-MMP, ADAM-10, and N-Cadherin Act in Concert To Facilitate Synapse Reorganization after Traumatic Brain Injury

    PubMed Central

    Warren, Kelly M.; Reeves, Thomas M.

    2012-01-01

    Abstract Matrix metalloproteinases (MMPs) influence synaptic recovery following traumatic brain injury (TBI). Membrane type 5-matrix metalloproteinase (MT5-MMP) and a distintegrin and metalloproteinase-10 (ADAM-10) are membrane-bound MMPs that cleave N-cadherin, a protein critical to synapse stabilization. This study examined protein and mRNA expression of MT5-MMP, ADAM-10, and N-cadherin after TBI, contrasting adaptive and maladaptive synaptogenesis. The effect of MMP inhibition on MT5-MMP, ADAM-10, and N-cadherin was assessed during maladaptive plasticity and correlated with synaptic function. Rats were subjected to adaptive unilateral entorhinal cortical lesion (UEC) or maladaptive fluid percussion TBI+bilateral entorhinal cortical lesion (TBI+BEC). Hippocampal MT5-MMP and ADAM-10 protein was significantly elevated 2 and 7 days post-injury. At 15 days after UEC, each MMP returned to control level, while TBI+BEC ADAM-10 remained elevated. At 2 and 7 days, N-cadherin protein was below control. By the 15-day synapse stabilization phase, UEC N-cadherin rose above control, a shift not seen for TBI+BEC. At 7 days, increased TBI+BEC ADAM-10 transcript correlated with protein elevation. UEC ADAM-10 mRNA did not change, and no differences in MT5-MMP or N-cadherin mRNA were detected. Confocal imaging showed MT5-MMP, ADAM-10, and N-cadherin localization within reactive astrocytes. MMP inhibition attenuated ADAM-10 protein 15 days after TBI+BEC and increased N-cadherin. This inhibition partially restored long-term potentiation induction, but did not affect paired-pulse facilitation. Our results confirm time- and injury-dependent expression of MT5-MMP, ADAM-10, and N-cadherin during reactive synaptogenesis. Persistent ADAM-10 expression was correlated with attenuated N-cadherin level and reduced functional recovery. MMP inhibition shifted ADAM-10 and N-cadherin toward adaptive expression and improved synaptic function. PMID:22489706

  4. Post hoc pattern matching: assigning significance to statistically defined expression patterns in single channel microarray data

    PubMed Central

    Hulshizer, Randall; Blalock, Eric M

    2007-01-01

    Background Researchers using RNA expression microarrays in experimental designs with more than two treatment groups often identify statistically significant genes with ANOVA approaches. However, the ANOVA test does not discriminate which of the multiple treatment groups differ from one another. Thus, post hoc tests, such as linear contrasts, template correlations, and pairwise comparisons are used. Linear contrasts and template correlations work extremely well, especially when the researcher has a priori information pointing to a particular pattern/template among the different treatment groups. Further, all pairwise comparisons can be used to identify particular, treatment group-dependent patterns of gene expression. However, these approaches are biased by the researcher's assumptions, and some treatment-based patterns may fail to be detected using these approaches. Finally, different patterns may have different probabilities of occurring by chance, importantly influencing researchers' conclusions about a pattern and its constituent genes. Results We developed a four step, post hoc pattern matching (PPM) algorithm to automate single channel gene expression pattern identification/significance. First, 1-Way Analysis of Variance (ANOVA), coupled with post hoc 'all pairwise' comparisons are calculated for all genes. Second, for each ANOVA-significant gene, all pairwise contrast results are encoded to create unique pattern ID numbers. The # genes found in each pattern in the data is identified as that pattern's 'actual' frequency. Third, using Monte Carlo simulations, those patterns' frequencies are estimated in random data ('random' gene pattern frequency). Fourth, a Z-score for overrepresentation of the pattern is calculated ('actual' against 'random' gene pattern frequencies). We wrote a Visual Basic program (StatiGen) that automates PPM procedure, constructs an Excel workbook with standardized graphs of overrepresented patterns, and lists of the genes comprising

  5. Expression patterns of FGF receptors in the developing mammalian cochlea

    PubMed Central

    Hayashi, Toshinori; Ray, Catherine A.; Younkins, Christa; Bermingham-McDonogh, Olivia

    2010-01-01

    Many studies have shown the importance of the fibroblast growth factor (FGF) family of factors in the development of the mammalian cochlea. There are four fibroblast growth factor receptors (FGFR1-4) and all four are expressed in the cochlea during development. While there are examples in the literature of expression patterns of some of the receptors at specific stages of cochlear development there has been no systematic study. We have assembled a full analysis of the patterns of receptor expression during cochlear development for all four Fgfrs using in situ hybridization. We have analyzed the expression patterns from E13.5 through post-natal ages. We find that Fgfr1, 2 and 3 are expressed in the epithelium of the cochlear duct and Fgfr4 is limited in its expression to the mesenchyme surrounding the duct. We compare the receptor expression pattern to markers of the sensory domain (p27kip1) and the early hair cells (math1). PMID:20131355

  6. Adult mouse brain gene expression patterns bear an embryologic imprint.

    PubMed

    Zapala, Matthew A; Hovatta, Iiris; Ellison, Julie A; Wodicka, Lisa; Del Rio, Jo A; Tennant, Richard; Tynan, Wendy; Broide, Ron S; Helton, Rob; Stoveken, Barbara S; Winrow, Christopher; Lockhart, Daniel J; Reilly, John F; Young, Warren G; Bloom, Floyd E; Lockhart, David J; Barlow, Carrolee

    2005-07-19

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional "imprint" consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior-posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org).

  7. PI3K/AKT pathway regulates E-cadherin and Desmoglein 2 in aggressive prostate cancer

    PubMed Central

    Barber, Alison G; Castillo-Martin, Mireia; Bonal, Dennis M; Jia, Angela J; Rybicki, Benjamin A; Christiano, Angela M; Cordon-Cardo, Carlos

    2015-01-01

    Reduced expression of both classical and desmosomal cadherins has been associated with different types of carcinomas, including prostate cancer. This study aims to provide a comprehensive view of the role and regulation of cell–cell adhesion in prostate cancer aggressiveness by examining the functional implications of both E-cadherin and Desmoglein 2 (DSG2). E-cadherin expression was first examined using immunofluorescence in 50 normal prostate tissues and in a cohort of 414 prostate cancer patients. Correlation and survival analyses were performed to assess its clinical significance. In primary prostate cancer patients, reduced expression of both E-cadherin and DSG2 is significantly associated with an earlier biochemical recurrence. Transgenic DU145 E-cadherin knockdown and constitutively active AKT overexpression lines were generated. Functional implications of such genetic alterations were analyzed in vitro and in vivo, the latter by using tumorigenesis as well as extravasation and metastatic tumor formation assays. We observed that loss of E-cadherin leads to impaired primary and metastatic tumor formation in vivo, suggesting a tumor promoter role for E-cadherin in addition to its known role as a tumor suppressor. Activation of AKT leads to a significant reduction in E-cadherin expression and nuclear localization of Snail, suggesting a role for the PI3K/AKT signaling pathway in the transient repression of E-cadherin. This reduced expression may be regulated by separate mechanisms as neither the loss of E-cadherin nor activation of AKT significantly affected DSG2 expression. In conclusion, these findings illustrate the critical role of cell–cell adhesion in the progression to aggressive prostate cancer, through regulation by the PI3K pathway. PMID:26033689

  8. Mosaic cellular patterning in the nose: Adhesion molecules give their two scents.

    PubMed

    Beaudoin, Gerard M J

    2016-02-29

    The sense of smell is mediated by the olfactory epithelium, which is composed of a mosaic pattern of olfactory sensory cells surrounded by supporting cells. In this issue, Katsunuma et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201509020) show that the differential expression of nectins and cadherins establishes this pattern. PMID:26929448

  9. Defining the E-cadherin repressor interactome in epithelial-mesenchymal transition: the PMC42 model as a case study.

    PubMed

    Hugo, Honor J; Kokkinos, Maria I; Blick, Tony; Ackland, M Leigh; Thompson, Erik W; Newgreen, Donald F

    2011-01-01

    Epithelial-mesenchymal transition (EMT) is a feature of migratory cellular processes in all stages of life, including embryonic development and wound healing. Importantly, EMT features cluster with disease states such as chronic fibrosis and cancer. The dissolution of the E-cadherin-mediated adherens junction (AJ) is a key preliminary step in EMT and may occur early or late in the growing epithelial tumour. This is a first step for tumour cells towards stromal invasion, intravasation, extravasation and distant metastasis. The AJ may be inactivated in EMT by directed E-cadherin cleavage; however, it is increasingly evident that the majority of AJ changes are transcriptional and mediated by an expanding group of transcription factors acting directly or indirectly to repress E-cadherin expression. A review of the current literature has revealed that these factors may regulate each other in a hierarchical pattern where Snail1 (formerly Snail) and Snail2 (formerly Slug) are initially induced, leading to the activation of Zeb family members, TCF3, TCF4, Twist, Goosecoid and FOXC2. Within this general pathway, many inter-regulatory relationships have been defined which may be important in maintaining the EMT phenotype. This may be important given the short half-life of Snail1 protein. We have investigated these inter-regulatory relationships in the mesenchymal breast carcinoma cell line PMC42 (also known as PMC42ET) and its epithelial derivative, PMC42LA. This review also discusses several newly described regulators of E-cadherin repressors including oestrogen receptor-α and new discoveries in hypoxia- and growth factor-induced EMT. Finally, we evaluated how these findings may influence approaches to current cancer treatment.

  10. Interaction of alpha-actinin with the cadherin/catenin cell-cell adhesion complex via alpha-catenin

    PubMed Central

    1995-01-01

    Cadherins are Ca(2+)-dependent, cell surface glycoproteins involved in cell-cell adhesion. Extracellularly, transmembrane cadherins such as E- , P-, and N-cadherin self-associate, while intracellularly they interact indirectly with the actin-based cytoskeleton. Several intracellular proteins termed catenins, including alpha-catenin, beta- catenin, and plakoglobin, are tightly associated with these cadherins and serve to link them to the cytoskeleton. Here, we present evidence that in fibroblasts alpha-actinin, but not vinculin, colocalizes extensively with the N-cadherin/catenin complex. This is in contrast to epithelial cells where both cytoskeletal proteins colocalize extensively with E-cadherin and catenins. We further show that alpha- actinin, but not vinculin, coimmunoprecipitates specifically with alpha- and beta-catenin from N- and E-cadherin-expressing cells, but only if alpha-catenin is present. Moreover, we show that alpha-actinin coimmunoprecipitates with the N-cadherin/catenin complex in an actin- independent manner. We therefore propose that cadherin/catenin complexes are linked to the actin cytoskeleton via a direct association between alpha-actinin and alpha-catenin. PMID:7790378

  11. Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model

    PubMed Central

    Maiden, Stephanie L.; Petrova, Yuliya I.; Gumbiner, Barry M.

    2016-01-01

    Tight regulation of cadherin-mediated intercellular adhesions is critical to both tissue morphogenesis during development and tissue homeostasis in adults. Cell surface expression of the cadherin-catenin complex is often directly correlated with the level of adhesion, however, examples exist where cadherin appears to be inactive and cells are completely non-adhesive. The state of p120-catenin phosphorylation has been implicated in regulating the adhesive activity of E-cadherin but the mechanism is currently unclear. We have found that destabilization of the microtubule cytoskeleton, independent of microtubule plus-end dynamics, dephosphorylates p120-catenin and activates E-cadherin adhesion in Colo 205 cells. Through chemical screening, we have also identified several kinases as potential regulators of E-cadherin adhesive activity. Analysis of several p120-catenin phosphomutants suggests that gross dephosphorylation of p120-catenin rather than that of specific amino acids may trigger E-cadherin adhesion. Uncoupling p120-catenin binding to E-cadherin at the membrane causes constitutive adhesion in Colo 205 cells, further supporting an inhibitory role of phosphorylated p120-catenin on E-cadherin activity. PMID:26845024

  12. From cell membrane to the nucleus: an emerging role of E-cadherin in gene transcriptional regulation

    PubMed Central

    Du, Wenjun; Liu, Xi; Fan, Guiling; Zhao, Xingsheng; Sun, Yanying; Wang, Tianzhen; Zhao, Ran; Wang, Guangyu; Zhao, Ci; Zhu, Yuanyuan; Ye, Fei; Jin, Xiaoming; Zhang, Fengmin; Zhong, Zhaohua; Li, Xiaobo

    2014-01-01

    E-cadherin is a well-known mediator of cell–cell adherens junctions. However, many other functions of E-cadherin have been reported. Collectively, the available data suggest that E-cadherin may also act as a gene transcriptional regulator. Here, evidence supporting this claim is reviewed, and possible mechanisms of action are discussed. E-cadherin has been shown to modulate the activity of several notable cell signalling pathways, and given that most of these pathways in turn regulate gene expression, we proposed that E-cadherin may regulate gene transcription by affecting these pathways. Additionally, E-cadherin has been shown to accumulate in the nucleus where documentation of an E-cadherin fragment bound to DNA suggests that E-cadherin may directly regulate gene transcription. In summary, from the cell membrane to the nucleus, a role for E-cadherin in gene transcription may be emerging. Studies specifically focused on this potential role would allow for a more thorough understanding of this transmembrane glycoprotein in mediating intra- and intercellular activities. PMID:25164084

  13. The re-expression of the epigenetically silenced e-cadherin gene by a polyamine analogue lysine-specific demethylase-1 (LSD1) inhibitor in human acute myeloid leukemia cell lines

    PubMed Central

    Murray-Stewart, Tracy; Woster, Patrick M.; Casero, Robert A.

    2013-01-01

    Aberrant epigenetic silencing of tumor suppressor genes is a common feature observed during the transformation process of many cancers, including those of hematologic origin. Histone modifications, including acetylation, phosphorylation, and methylation, collaborate with DNA CpG island methylation to regulate gene expression. The dynamic process of histone methylation is the latest of these epigenetic modifications to be described, and the identification and characterization of LSD1 as a demethylase of lysine 4 of histone H3 (H3K4) has confirmed that both the enzyme and the modified histone play important roles as regulators of gene expression. LSD1 activity contributes to the suppression of gene expression by demethylating promoter-region mono- and dimethyl- H3K4 histone marks that are associated with active gene expression. As most posttranslational modifications are reversible, the enzymes involved in the modification of histones have become targets for chemotherapeutic intervention. In this study, we examined the effects of the polyamine analogue LSD1 inhibitor 2d (1,15-bis{N5-[3,3-(diphenyl)propyl]-N1-biguanido}-4,12-diazapentadecane) in human acute myeloid leukemia (AML) cell lines. In each line studied, 2d evoked cytotoxicity and inhibited LSD1 activity, as evidenced by increases in the global levels of mono- and di-methylated H3K4 proteins. Global increases in other chromatin modifications were also observed following exposure to 2d, suggesting a broad response to this compound with respect to chromatin regulation. On a gene-specific level, treatment with 2d resulted in the reexpression of e-cadherin, a tumor suppressor gene frequently silenced by epigenetic modification in AML. Quantitative chromatin immunoprecipitation analysis of the ecadherin promoter further confirmed that this re-expression was concurrent with changes in both active and repressive histone marks that were consistent with LSD1 inhibition. As hematologic malignancies have demonstrated

  14. TLE1 promotes EMT in A549 lung cancer cells through suppression of E-cadherin

    PubMed Central

    Yao, Xin; Ireland, Shubha Kale; Pham, Tri; Temple, Brandi; Chen, Renwei; Raj, Madhwa HG; Biliran, Hector

    2014-01-01

    The Groucho transcriptional corepressor TLE1 protein has recently been shown to be a putative lung specific oncogene, but its underlying oncogenic activity in lung cancer has not been fully elucidated. In this report, we investigated whether TLE1 regulates lung cancer aggressiveness using the human lung adenocarcinoma cell line A549 as a model system. Through a combination of genetic approaches, we found that TLE1 potentiates Epithelial-to-Mesenchymal Transition (EMT) in A549 cells in part through suppression of the tumor suppressor gene E-cadherin. Exogenous expression of TLE1 in A549 cells resulted in heightened EMT phenotypes (enhanced fibroblastoid morphology and increased cell migratory potential) and in molecular alterations characteristic of EMT (downregulation of the epithelial marker E-cadherin and upregulation of the mesenchymal marker Vimentin). Conversely, downregulation of endogenous TLE1 expression in these cells resulted in reversal of basal EMT characterized by a cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Mechanistic studies showed that TLE1 suppresses E-cadherin expression at the transcriptional level in part by recruiting Histone Deacetylase (HDAC) activity to the E-cadherin promoter. Consistently, the HDAC inhibitor TSA partially reversed the TLE1-induced E-cadherin downregulation and cell migration, suggesting a role for HDACs in TLE1-mediated transcriptional repression of E-cadherin and EMT function. These findings uncover a novel role of TLE1 in regulating EMT in A549 cells through its repressive effect on E-cadherin and provide a mechanism for TLE1 oncogenic activity in lung cancer. PMID:25446087

  15. Arabidopsis gene expression patterns are altered during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, Anna-Lisa; Popp, Michael P.; Gurley, William B.; Guy, Charles; Norwood, Kelly L.; Ferl, Robert J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments results in differential gene expression. A 5-day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β-Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on gene expression patterns initially by using the Adh/GUS transgene to address specifically the possibility that spaceflight induces a hypoxic stress response (Paul, A.L., Daugherty, C.J., Bihn, E.A., Chapman, D.K., Norwood, K.L., Ferl, R.J., 2001. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis, Plant Physiol. 126, 613-621). As a follow-on to the reporter gene analysis, we report here the evaluation of genome-wide patterns of native gene expression within Arabidopsis shoots utilizing the Agilent DNA array of 21,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes was further characterized with quantitative Real-Time RT PCR (ABI - Taqman®). Comparison of the patterns of expression for arrays probed with RNA isolated from plants exposed to spaceflight compared to RNA isolated from ground control plants revealed 182 genes that were differentially expressed in response to the spaceflight mission by more than 4-fold, and of those only 50 genes were expressed at levels chosen to support a conservative change call. None of the genes that are hallmarks of hypoxic stress were induced to this level. However, genes related to heat shock were dramatically induced - but in a pattern and under growth conditions that are not easily explained by elevated temperatures. These gene expression data are discussed in light of current models for plant responses to the spaceflight environment and with regard to potential future spaceflight experiment

  16. Differential expression pattern of UBX family genes in Caenorhabditis elegans

    SciTech Connect

    Yamauchi, Seiji; Sasagawa, Yohei; Ogura, Teru . E-mail: ogura@gpo.kumamoto-u.ac.jp; Yamanaka, Kunitoshi . E-mail: yamanaka@gpo.kumamoto-u.ac.jp

    2007-06-29

    UBX (ubiquitin regulatory X)-containing proteins belong to an evolutionary conserved protein family and determine the specificity of p97/VCP/Cdc48p function by binding as its adaptors. Caenorhabditis elegans was found to possess six UBX-containing proteins, named UBXN-1 to -6. However, no general or specific function of them has been revealed. During the course of understanding not only their function but also specified function of p97, we investigated spatial and temporal expression patterns of six ubxn genes in this study. Transcript analyses showed that the expression pattern of each ubxn gene was different throughout worm's development and may show potential developmental dynamics in their function, especially ubxn-5 was expressed specifically in the spermatogenic germline, suggesting a crucial role in spermatogenesis. In addition, as ubxn-4 expression was induced by ER stress, it would function as an ERAD factor in C. elegans. In vivo expression analysis by using GFP translational fusion constructs revealed that six ubxn genes show distinct expression patterns. These results altogether demonstrate that the expression of all six ubxn genes of C. elegans is differently regulated.

  17. G-protein coupled receptor expression patterns delineate medulloblastoma subgroups

    PubMed Central

    2013-01-01

    Background Medulloblastoma is the most common malignant brain tumor in children. Genetic profiling has identified four principle tumor subgroups; each subgroup is characterized by different initiating mutations, genetic and clinical profiles, and prognoses. The two most well-defined subgroups are caused by overactive signaling in the WNT and SHH mitogenic pathways; less is understood about Groups 3 and 4 medulloblastoma. Identification of tumor subgroup using molecular classification is set to become an important component of medulloblastoma diagnosis and staging, and will likely guide therapeutic options. However, thus far, few druggable targets have emerged. G-protein coupled receptors (GPCRs) possess characteristics that make them ideal targets for molecular imaging and therapeutics; drugs targeting GPCRs account for 30-40% of all current pharmaceuticals. While expression patterns of many proteins in human medulloblastoma subgroups have been discerned, the expression pattern of GPCRs in medulloblastoma has not been investigated. We hypothesized that analysis of GPCR expression would identify clear subsets of medulloblastoma and suggest distinct GPCRs that might serve as molecular targets for both imaging and therapy. Results Our study found that medulloblastoma tumors fall into distinct clusters based solely on GPCR expression patterns. Normal cerebellum clustered separately from the tumor samples. Further, two of the tumor clusters correspond with high fidelity to the WNT and SHH subgroups of medulloblastoma. Distinct over-expressed GPCRs emerge; for example, LGR5 and GPR64 are significantly and uniquely over-expressed in the WNT subgroup of tumors, while PTGER4 is over-expressed in the SHH subgroup. Uniquely under-expressed GPCRs were also observed. Our key findings were independently validated using a large international dataset. Conclusions Our results identify GPCRs with potential to act as imaging and therapeutic targets. Elucidating tumorigenic pathways

  18. Protein zero is necessary for E-cadherin-mediated adherens junction formation in Schwann cells.

    PubMed

    Menichella, D M; Arroyo, E J; Awatramani, R; Xu, T; Baron, P; Vallat, J M; Balsamo, J; Lilien, J; Scarlato, G; Kamholz, J; Scherer, S S; Shy, M E

    2001-12-01

    Protein Zero (P0), the major structural protein in the peripheral nervous system (PNS) myelin, acts as a homotypic adhesion molecule and is thought to mediate compaction of adjacent wraps of myelin membrane. E-Cadherin, a calcium-dependent adhesion molecule, is also expressed in myelinating Schwann cells in the PNS and is involved in forming adherens junctions between adjacent loops of membrane at the paranode. To determine the relationship, if any, between P0-mediated and cadherin-mediated adhesion during myelination, we investigated the expression of E-cadherin and its binding partner, beta-catenin, in sciatic nerve of mice lacking P0 (P0(-/-)). We find that in P0(-/-) peripheral myelin neither E-cadherin nor beta-catenin are localized to paranodes, but are instead found in small puncta throughout the Schwann cell. In addition, only occasional, often rudimentary, adherens junctions are formed. Analysis of E-cadherin and beta-catenin expression during nerve development demonstrates that E-cadherin and beta-catenin are localized to the paranodal region after the onset of myelin compaction. Interestingly, axoglial junction formation is normal in P0(-/-) nerve. Taken together, these data demonstrate that P0 is necessary for the formation of adherens junctions but not axoglial junctions in myelinating Schwann cells. PMID:11749037

  19. Disruption of an Evolutionarily Novel Synaptic Expression Pattern in Autism

    PubMed Central

    Jiang, Xi; Hu, Haiyang; Guijarro, Patricia; Mitchell, Amanda; Ely, John J.; Sherwood, Chet C.; Hof, Patrick R.; Qiu, Zilong; Pääbo, Svante; Akbarian, Schahram; Khaitovich, Philipp

    2016-01-01

    Cognitive defects in autism spectrum disorder (ASD) include socialization and communication: key behavioral capacities that separate humans from other species. Here, we analyze gene expression in the prefrontal cortex of 63 autism patients and control individuals, as well as 62 chimpanzees and macaques, from natal to adult age. We show that among all aberrant expression changes seen in ASD brains, a single aberrant expression pattern overrepresented in genes involved synaptic-related pathways is enriched in nucleotide variants linked to autism. Furthermore, only this pattern contains an excess of developmental expression features unique to humans, thus resulting in the disruption of human-specific developmental programs in autism. Several members of the early growth response (EGR) transcription factor family can be implicated in regulation of this aberrant developmental change. Our study draws a connection between the genetic risk architecture of autism and molecular features of cortical development unique to humans. PMID:27685936

  20. Characterization of GPR101 transcript structure and expression patterns.

    PubMed

    Trivellin, Giampaolo; Bjelobaba, Ivana; Daly, Adrian F; Larco, Darwin O; Palmeira, Leonor; Faucz, Fabio R; Thiry, Albert; Leal, Letícia F; Rostomyan, Liliya; Quezado, Martha; Schernthaner-Reiter, Marie Helene; Janjic, Marija M; Villa, Chiara; Wu, T John; Stojilkovic, Stanko S; Beckers, Albert; Feldman, Benjamin; Stratakis, Constantine A

    2016-08-01

    We recently showed that Xq26.3 microduplications cause X-linked acrogigantism (X-LAG). X-LAG patients mainly present with growth hormone and prolactin-secreting adenomas and share a minimal duplicated region containing at least four genes. GPR101 was the only gene highly expressed in their pituitary lesions, but little is known about its expression patterns. In this work, GPR101 transcripts were characterized in human tissues by 5'-Rapid Amplification of cDNA Ends (RACE) and RNAseq, while the putative promoter was bioinformatically predicted. We investigated GPR101 mRNA and protein expression by RT-quantitative PCR (qPCR), whole-mount in situ hybridization, and immunostaining, in human, rhesus monkey, rat and zebrafish. We identified four GPR101 isoforms characterized by different 5'-untranslated regions (UTRs) and a common 6.1kb long 3'UTR. GPR101 expression was very low or absent in almost all adult human tissues examined, except for specific brain regions. Strong GPR101 staining was observed in human fetal pituitary and during adolescence, whereas very weak/absent expression was detected during childhood and adult life. In contrast to humans, adult monkey and rat pituitaries expressed GPR101, but in different cell types. Gpr101 is expressed in the brain and pituitary during rat and zebrafish development; in rat pituitary, Gpr101 is expressed only after birth and shows sexual dimorphism. This study shows that different GPR101 transcripts exist and that the brain is the major site of GPR101 expression across different species, although divergent species- and temporal-specific expression patterns are evident. These findings suggest an important role for GPR101 in brain and pituitary development and likely reflect the very different growth, development and maturation patterns among species. PMID:27282544

  1. The Metalloprotease Meprinβ Processes E-Cadherin and Weakens Intercellular Adhesion

    PubMed Central

    Huguenin, Maya; Müller, Eliane J.; Trachsel-Rösmann, Sandra; Oneda, Beatrice; Ambort, Daniel; Sterchi, Erwin E.; Lottaz, Daniel

    2008-01-01

    Background Meprin (EC 3.4.24.18), an astacin-like metalloprotease, is expressed in the epithelium of the intestine and kidney tubules and has been related to cancer, but the mechanistic links are unknown. Methodology/Principal Findings We used MDCK and Caco-2 cells stably transfected with meprinα and or meprinβ to establish models of renal and intestinal epithelial cells expressing this protease at physiological levels. In both models E-cadherin was cleaved, producing a cell-associated 97-kDa E-cadherin fragment, which was enhanced upon activation of the meprin zymogen and reduced in the presence of a meprin inhibitor. The cleavage site was localized in the extracellular domain adjacent to the plasma membrane. In vitro assays with purified components showed that the 97-kDa fragment was specifically generated by meprinβ, but not by ADAM-10 or MMP-7. Concomitantly with E-cadherin cleavage and degradation of the E-cadherin cytoplasmic tail, the plaque proteins β-catenin and plakoglobin were processed by an intracellular protease, whereas α-catenin, which does not bind directly to E-cadherin, remained intact. Using confocal microscopy, we observed a partial colocalization of meprinβ and E-cadherin at lateral membranes of incompletely polarized cells at preconfluent or early confluent stages. Meprinβ-expressing cells displayed a reduced strength of cell-cell contacts and a significantly lower tendency to form multicellular aggregates. Conclusions/Significance By identifying E-cadherin as a substrate for meprinβ in a cellular context, this study reveals a novel biological role of this protease in epithelial cells. Our results suggest a crucial role for meprinβ in the control of adhesiveness via cleavage of E-cadherin with potential implications in a wide range of biological processes including epithelial barrier function and cancer progression. PMID:18478055

  2. Molecular Mechanics of Tip-Link Cadherins

    NASA Astrophysics Data System (ADS)

    Sotomayor, Marcos; Weihofen, Wilhelm A.; Gaudet, Rachelle; Corey, David P.

    2011-11-01

    The hair-cell tip link, a fine filament directly conveying force to mechanosensitive transduction channels, is likely composed of two proteins, protocadherin-15 and cadherin-23, whose mutation causes deafness. However, their complete molecular structure, elasticity, and deafness-related structural defects remain largely unknown. We present crystal structures of extracellular (EC) tip-link cadherin repeats involved in hereditary deafness and tip link formation. In addition, we show that the deafness mutation D101G, in the linker region between the repeats EC1 and EC2 of cadherin-23, causes a slight bend between repeats and decreases Ca2+ affinity. Molecular dynamics simulations suggest that tip-link cadherin repeats are stiff and that either removing Ca2+ or mutating Ca2+-binding residues reduces rigidity and unfolding strength. The structures and simulations also suggest mechanisms underlying inherited deafness and how cadherin-23 may bind with protocadherin-15 to form the tip link.

  3. MEPD: medaka expression pattern database, genes and more

    PubMed Central

    Alonso-Barba, Juan I.; Rahman, Raza-Ur; Wittbrodt, Joachim; Mateo, Juan L.

    2016-01-01

    The Medaka Expression Pattern Database (MEPD; http://mepd.cos.uni-heidelberg.de/) is designed as a repository of medaka expression data for the scientific community. In this update we present two main improvements. First, we have changed the previous clone-centric view for in situ data to a gene-centric view. This is possible because now we have linked all the data present in MEPD to the medaka gene annotation in ENSEMBL. In addition, we have also connected the medaka genes in MEPD to their corresponding orthologous gene in zebrafish, again using the ENSEMBL database. Based on this, we provide a link to the Zebrafish Model Organism Database (ZFIN) to allow researches to compare expression data between these two fish model organisms. As a second major improvement, we have modified the design of the database to enable it to host regulatory elements, promoters or enhancers, expression patterns in addition to gene expression. The combination of gene expression, by traditional in situ, and regulatory element expression, typically by fluorescence reporter gene, within the same platform assures consistency in terms of annotation. In our opinion, this will allow researchers to uncover new insights between the expression domain of genes and their regulatory landscape. PMID:26450962

  4. MEPD: medaka expression pattern database, genes and more.

    PubMed

    Alonso-Barba, Juan I; Rahman, Raza-Ur; Wittbrodt, Joachim; Mateo, Juan L

    2016-01-01

    The Medaka Expression Pattern Database (MEPD; http://mepd.cos.uni-heidelberg.de/) is designed as a repository of medaka expression data for the scientific community. In this update we present two main improvements. First, we have changed the previous clone-centric view for in situ data to a gene-centric view. This is possible because now we have linked all the data present in MEPD to the medaka gene annotation in ENSEMBL. In addition, we have also connected the medaka genes in MEPD to their corresponding orthologous gene in zebrafish, again using the ENSEMBL database. Based on this, we provide a link to the Zebrafish Model Organism Database (ZFIN) to allow researches to compare expression data between these two fish model organisms. As a second major improvement, we have modified the design of the database to enable it to host regulatory elements, promoters or enhancers, expression patterns in addition to gene expression. The combination of gene expression, by traditional in situ, and regulatory element expression, typically by fluorescence reporter gene, within the same platform assures consistency in terms of annotation. In our opinion, this will allow researchers to uncover new insights between the expression domain of genes and their regulatory landscape. PMID:26450962

  5. A regulatory network controls nephrocan expression and midgut patterning

    PubMed Central

    Hou, Juan; Wei, Wei; Saund, Ranajeet S.; Xiang, Ping; Cunningham, Thomas J.; Yi, Yuyin; Alder, Olivia; Lu, Daphne Y. D.; Savory, Joanne G. A.; Krentz, Nicole A. J.; Montpetit, Rachel; Cullum, Rebecca; Hofs, Nicole; Lohnes, David; Humphries, R. Keith; Yamanaka, Yojiro; Duester, Gregg; Saijoh, Yukio; Hoodless, Pamela A.

    2014-01-01

    Although many regulatory networks involved in defining definitive endoderm have been identified, the mechanisms through which these networks interact to pattern the endoderm are less well understood. To explore the mechanisms involved in midgut patterning, we dissected the transcriptional regulatory elements of nephrocan (Nepn), the earliest known midgut specific gene in mice. We observed that Nepn expression is dramatically reduced in Sox17−/− and Raldh2−/− embryos compared with wild-type embryos. We further show that Nepn is directly regulated by Sox17 and the retinoic acid (RA) receptor via two enhancer elements located upstream of the gene. Moreover, Nepn expression is modulated by Activin signaling, with high levels inhibiting and low levels enhancing RA-dependent expression. In Foxh1−/− embryos in which Nodal signaling is reduced, the Nepn expression domain is expanded into the anterior gut region, confirming that Nodal signaling can modulate its expression in vivo. Together, Sox17 is required for Nepn expression in the definitive endoderm, while RA signaling restricts expression to the midgut region. A balance of Nodal/Activin signaling regulates the anterior boundary of the midgut expression domain. PMID:25209250

  6. Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1)

    SciTech Connect

    Berx, G.; Staes, K.; Hengel, J. van

    1995-03-20

    E-cadherin is a Ca{sup 2+}-dependent epithelial cell-cell adhesion molecule. Downregulation of E-cadherin expression often correlates with strong invasive potential and poor prognosis of human carcinomas. By using recombinant {lambda} phage, cosmid, and P1 phage clones, we isolated the full-length human E-cadherin gene (CDH1). The gene spans a region of approximately 100 kb, and its location on chromosome 16q22.1 was confirmed by FISH analysis. Detailed restriction mapping and partial sequence analysis of the gene allowed us to identify 16 exons and a 65-kb-long intron 2. The intron-exon boundaries are highly conserved in comparison with other {open_quotes}classical cadherins.{close_quotes} In intron 1 we identified a high-density CpG island that may be implicated in transcription regulation during embryogenesis and malignancy. 52 refs., 2 figs., 2 tabs.

  7. E-cadherin interactome complexity and robustness resolved by quantitative proteomics

    PubMed Central

    Guo, Zhenhuan; Neilson, Lisa J; Zhong, Hang; Murray, Paul S; Rao, Megha Vaman; Zanivan, Sara; Zaidel-Bar, Ronen

    2016-01-01

    E-cadherin-mediated cell-cell adhesion and signaling plays an essential role in development and maintenance of healthy epithelial tissues. Adhesiveness is conferred by cadherin extracellular domains, and is regulated by an assembly of adaptors and enzymes associated with the cytoplasmic tail. Here, we employed proximity biotinylation and quantitative proteomics to isolate and identify 612 proteins in the vicinity of E-cadherin’s cytoplasmic tail. We used a structure-informed database of protein-protein interactions to construct the most comprehensive E-cadherin interactome to date, containing 89 known E-cadhesome components and 346 novel proteins. Moreover, through cloning and expression of GFP-tagged fusion proteins we localized 26 of the novel proteins to adherens junctions. Finally, employing calcium depletion and myosin inhibition we show the E-cadherin interactome to be remarkably robust to perturbation and essentially independent of cell-cell junctions or actomyosin contractility. PMID:25468996

  8. Basic residue at position 14 is not required for fast assembly and disassembly kinetics in neural cadherin.

    PubMed

    Vunnam, Nagamani; Hammer, Nathan I; Pedigo, Susan

    2015-01-27

    In spite of their structural similarities, epithelial (E-) and neural (N-) cadherin are expressed at different types of synapses and differ significantly in their dimerization kinetics. Recent studies proposed a transient intermediate in E-cadherin as the key requirement for rapid disassembly kinetics of the adhesive dimer. This E-cadherin intermediate comprises four intermolecular ionic and H-bonding interactions between adhesive partners. These interactions are not preserved in N-cadherin except for a basic residue at the 14th position, which could stabilize the intermediate through either H-bonding or ionic interactions with the partner protomer. To investigate the origin of the rapid dimerization kinetics of N-cadherin in the presence of calcium, studies reported here systematically test the role of ionic and H-bonding interactions in dimerization kinetics using R14S, R14A, and R14E mutants of N-cadherin. Analytical size-exclusion chromatographic and bead aggregation studies showed two primary results. First, N-cadherin/R14S and N-cadherin/R14A mutants showed fast assembly and disassembly kinetics in the calcium-saturated state similar to that of wild-type N-cadherin. These results indicate that the fast disassembly of the calcium-saturated dimer of N-cadherin does not require a basic residue at the 14th position. Second, the dimerization kinetics of N-cadherin/R14E were slow in the calcium-saturated state, indicating that negative charge destabilizes the intermediate state. Taken together, these results indicate that the basic residue at the 14th position does not promote rapid dimerization kinetics but that an acidic amino acid in that position significantly impairs dimerization kinetics.

  9. Involvement of the MEK/ERK pathway in EGF-induced E-cadherin down-regulation.

    PubMed

    Tashiro, Etsu; Henmi, Shizuka; Odake, Hiroyuki; Ino, Seitaro; Imoto, Masaya

    2016-09-01

    E-cadherin is a major component of the epithelial adherens junction. However, the regulatory mechanism of E-cadherin expression is still poorly understood. In this study, we found that EGF decreased E-cadherin expression at both mRNA and protein levels in colorectal carcinoma LoVo cells. Since E-cadherin down-regulation is a well-known hallmark of the EMT (Epithelial-Mesenchymal Transition), we investigated whether EGF induced E-cadherin down-regulation during the EMT. EGF was unable to affect the expression of mesenchymal markers (such as N-cadherin, vimentin or fibronectin) or EMT-regulating transcription factors (such as SNAIL, SLUG, ZEB1, ZEB2 or TWIST), suggesting that EGF induced E-cadherin down-regulation via an EMT-independent mechanism. On the other hand, the MEK inhibitor U0126 was found to suppress EGF-induced E-cadherin down-regulation at the transcriptional level, suggesting that the MEK/ERK pathway is involved in EGF-induced E-cadherin down-regulation. Moreover, we also found that EGF disrupted cell-cell contact, stimulated cells to form an elongated shape with filamentous protrusions, and induced cell migration in LoVo cells. These effects were suppressed by U0126. Therefore, EGF is suggested to induce E-cadherin down-regulation at the transcriptional level through the MEK/ERK pathway, which might result in, at least in part, the induction of cellular morphological changes and cell migration in LoVo cells.

  10. α-Catenin and Vinculin Cooperate to Promote High E-cadherin-based Adhesion Strength*

    PubMed Central

    Thomas, William A.; Boscher, Cécile; Chu, Yeh-Shiu; Cuvelier, Damien; Martinez-Rico, Clara; Seddiki, Rima; Heysch, Julie; Ladoux, Benoit; Thiery, Jean Paul; Mege, René-Marc; Dufour, Sylvie

    2013-01-01

    Maintaining cell cohesiveness within tissues requires that intercellular adhesions develop sufficient strength to support traction forces applied by myosin motors and by neighboring cells. Cadherins are transmembrane receptors that mediate intercellular adhesion. The cadherin cytoplasmic domain recruits several partners, including catenins and vinculin, at sites of cell-cell adhesion. Our study used force measurements to address the role of αE-catenin and vinculin in the regulation of the strength of E-cadherin-based adhesion. αE-catenin-deficient cells display only weak aggregation and fail to strengthen intercellular adhesion over time, a process rescued by the expression of αE-catenin or chimeric E-cadherin·αE-catenins, including a chimera lacking the αE-catenin dimerization domain. Interestingly, an αE-catenin mutant lacking the modulation and actin-binding domains restores cadherin-dependent cell-cell contacts but cannot strengthen intercellular adhesion. The expression of αE-catenin mutated in its vinculin-binding site is defective in its ability to rescue cadherin-based adhesion strength in cells lacking αE-catenin. Vinculin depletion or the overexpression of the αE-catenin modulation domain strongly decreases E-cadherin-mediated adhesion strength. This supports the notion that both molecules are required for intercellular contact maturation. Furthermore, stretching of cell doublets increases vinculin recruitment and α18 anti-αE-catenin conformational epitope immunostaining at cell-cell contacts. Taken together, our results indicate that αE-catenin and vinculin cooperatively support intercellular adhesion strengthening, probably via a mechanoresponsive link between the E-cadherin·β-catenin complexes and the underlying actin cytoskeleton. PMID:23266828

  11. On Expression Patterns and Developmental Origin of Human Brain Regions

    PubMed Central

    Kirsch, Lior; Chechik, Gal

    2016-01-01

    Anatomical substructures of the human brain have characteristic cell-types, connectivity and local circuitry, which are reflected in area-specific transcriptome signatures, but the principles governing area-specific transcription and their relation to brain development are still being studied. In adult rodents, areal transcriptome patterns agree with the embryonic origin of brain regions, but the processes and genes that preserve an embryonic signature in regional expression profiles were not quantified. Furthermore, it is not clear how embryonic-origin signatures of adult-brain expression interplay with changes in expression patterns during development. Here we first quantify which genes have regional expression-patterns related to the developmental origin of brain regions, using genome-wide mRNA expression from post-mortem adult human brains. We find that almost all human genes (92%) exhibit an expression pattern that agrees with developmental brain-region ontology, but that this agreement changes at multiple phases during development. Agreement is particularly strong in neuron-specific genes, but also in genes that are not spatially correlated with neuron-specific or glia-specific markers. Surprisingly, agreement is also stronger in early-evolved genes. We further find that pairs of similar genes having high agreement to developmental region ontology tend to be more strongly correlated or anti-correlated, and that the strength of spatial correlation changes more strongly in gene pairs with stronger embryonic signatures. These results suggest that transcription regulation of most genes in the adult human brain is spatially tuned in a way that changes through life, but in agreement with development-determined brain regions. PMID:27564987

  12. Evolving expression patterns of the homeotic gene Scr in insects.

    PubMed

    Passalacqua, Karla D; Hrycaj, Steven; Mahfooz, Najmus; Popadic, Aleksandar

    2010-01-01

    While the mRNA expression patterns of homeotic genes have been examined in numerous arthropod species, data on their protein accumulation is extremely limited. To address this gap, we analyzed the protein expression pattern of the hox gene Sex combs reduced (Scr) in six hemimetabolous insects from four divergent orders (Thysanura, Orthoptera, Dictyoptera and Hemiptera). Our comparative analysis reveals that the original domain of SCR expression was likely confined to the head and then subsequently moved into the prothorax (T1) in winged insect lineages. The data also show a trend toward the posteriorization of the anterior boundary of SCR expression in the head, which starts in the mandibles (Thysanura) and then gradually shifts to the maxillary (Orthoptera) and labial segments (Dictyoptera and Hemiptera), respectively. In Thermobia (firebrat) and Oncopeltus (milkweed bug) we also identify instances where SCR protein is not detected in regions where mRNA is expressed. This finding suggests the presence of a post-transcriptional regulatory mechanism of Scr in these species. Finally, we show that SCR expression in insect T1 legs is highly variable and exhibits divergent patterning even among related species. In addition, signal in the prothoracic legs of more basal insect lineages cannot be associated with any T1 specific features, indicating that the acquisition of SCR in this region preceded any apparent gain of function. Overall, our results show that Scr expression has diverged considerably among hemimetabolous lineages and establish a framework for subsequent analyses to determine its role in the evolution of the insect head and prothorax. PMID:20336613

  13. Evolving expression patterns of the homeotic gene Scr in insects.

    PubMed

    Passalacqua, Karla D; Hrycaj, Steven; Mahfooz, Najmus; Popadic, Aleksandar

    2010-01-01

    While the mRNA expression patterns of homeotic genes have been examined in numerous arthropod species, data on their protein accumulation is extremely limited. To address this gap, we analyzed the protein expression pattern of the hox gene Sex combs reduced (Scr) in six hemimetabolous insects from four divergent orders (Thysanura, Orthoptera, Dictyoptera and Hemiptera). Our comparative analysis reveals that the original domain of SCR expression was likely confined to the head and then subsequently moved into the prothorax (T1) in winged insect lineages. The data also show a trend toward the posteriorization of the anterior boundary of SCR expression in the head, which starts in the mandibles (Thysanura) and then gradually shifts to the maxillary (Orthoptera) and labial segments (Dictyoptera and Hemiptera), respectively. In Thermobia (firebrat) and Oncopeltus (milkweed bug) we also identify instances where SCR protein is not detected in regions where mRNA is expressed. This finding suggests the presence of a post-transcriptional regulatory mechanism of Scr in these species. Finally, we show that SCR expression in insect T1 legs is highly variable and exhibits divergent patterning even among related species. In addition, signal in the prothoracic legs of more basal insect lineages cannot be associated with any T1 specific features, indicating that the acquisition of SCR in this region preceded any apparent gain of function. Overall, our results show that Scr expression has diverged considerably among hemimetabolous lineages and establish a framework for subsequent analyses to determine its role in the evolution of the insect head and prothorax.

  14. Cadherin 23-like polypeptide in hair bundle mechanoreceptors of sea anemones.

    PubMed

    Watson, Glen M; Pham, Lankhanh; Graugnard, Erin M; Mire, Patricia

    2008-09-01

    We investigated hair bundle mechanoreceptors in sea anemones for a homolog of cadherin 23. A candidate sequence was identified from the database for Nematostella vectensis that has a shared lineage with vertebrate cadherin 23s. This cadherin 23-like protein comprises 6,074 residues. It is an integral protein that features three transmembrane alpha-helices and a large extracellular loop with 44 contiguous, cadherin (CAD) domains. In the second half of the polypeptide, the CAD domains occur in a quadruple repeat pattern. Members of the same repeat group (i.e., CAD 18, 22, 26, and so on) share nearly identical amino acid sequences. An affinity-purified antibody was generated to a peptide from the C-terminus of the cadherin 23-like polypeptide. The peptide is expected to lie on the exoplasmic side of the plasma membrane. In LM, the immunolabel produced punctate fluorescence in hair bundles. In TEM, immunogold particles were observed medially and distally on stereocilia of hair bundles. Dilute solutions of the antibody disrupted vibration sensitivity in anemones. We conclude that the cadherin 23-like polypeptide likely contributes to the mechanotransduction apparatus of hair bundle mechanoreceptors of anemones. PMID:18654787

  15. VESPUCCI: Exploring Patterns of Gene Expression in Grapevine

    PubMed Central

    Moretto, Marco; Sonego, Paolo; Pilati, Stefania; Malacarne, Giulia; Costantini, Laura; Grzeskowiak, Lukasz; Bagagli, Giorgia; Grando, Maria Stella; Moser, Claudio; Engelen, Kristof

    2016-01-01

    Large-scale transcriptional studies aim to decipher the dynamic cellular responses to a stimulus, like different environmental conditions. In the era of high-throughput omics biology, the most used technologies for these purposes are microarray and RNA-Seq, whose data are usually required to be deposited in public repositories upon publication. Such repositories have the enormous potential to provide a comprehensive view of how different experimental conditions lead to expression changes, by comparing gene expression across all possible measured conditions. Unfortunately, this task is greatly impaired by differences among experimental platforms that make direct comparisons difficult. In this paper, we present the Vitis Expression Studies Platform Using COLOMBOS Compendia Instances (VESPUCCI), a gene expression compendium for grapevine which was built by adapting an approach originally developed for bacteria, and show how it can be used to investigate complex gene expression patterns. We integrated nearly all publicly available microarray and RNA-Seq expression data: 1608 gene expression samples from 10 different technological platforms. Each sample has been manually annotated using a controlled vocabulary developed ad hoc to ensure both human readability and computational tractability. Expression data in the compendium can be visually explored using several tools provided by the web interface or can be programmatically accessed using the REST interface. VESPUCCI is freely accessible at http://vespucci.colombos.fmach.it. PMID:27242836

  16. VESPUCCI: Exploring Patterns of Gene Expression in Grapevine.

    PubMed

    Moretto, Marco; Sonego, Paolo; Pilati, Stefania; Malacarne, Giulia; Costantini, Laura; Grzeskowiak, Lukasz; Bagagli, Giorgia; Grando, Maria Stella; Moser, Claudio; Engelen, Kristof

    2016-01-01

    Large-scale transcriptional studies aim to decipher the dynamic cellular responses to a stimulus, like different environmental conditions. In the era of high-throughput omics biology, the most used technologies for these purposes are microarray and RNA-Seq, whose data are usually required to be deposited in public repositories upon publication. Such repositories have the enormous potential to provide a comprehensive view of how different experimental conditions lead to expression changes, by comparing gene expression across all possible measured conditions. Unfortunately, this task is greatly impaired by differences among experimental platforms that make direct comparisons difficult. In this paper, we present the Vitis Expression Studies Platform Using COLOMBOS Compendia Instances (VESPUCCI), a gene expression compendium for grapevine which was built by adapting an approach originally developed for bacteria, and show how it can be used to investigate complex gene expression patterns. We integrated nearly all publicly available microarray and RNA-Seq expression data: 1608 gene expression samples from 10 different technological platforms. Each sample has been manually annotated using a controlled vocabulary developed ad hoc to ensure both human readability and computational tractability. Expression data in the compendium can be visually explored using several tools provided by the web interface or can be programmatically accessed using the REST interface. VESPUCCI is freely accessible at http://vespucci.colombos.fmach.it.

  17. MiRNA expression patterns predict survival in glioblastoma

    PubMed Central

    2011-01-01

    Background In order to define new prognostic subgroups in patients with glioblastoma a miRNA screen (> 1000 miRNAs) from paraffin tissues followed by a bio-mathematical analysis was performed. Methods 35 glioblastoma patients treated between 7/2005 - 8/2008 at a single institution with surgery and postoperative radio(chemo)therapy were included in this retrospective analysis. For microarray analysis the febit biochip "Geniom® Biochip MPEA homo-sapiens" was used. Total RNA was isolated from FFPE tissue sections and 1100 different miRNAs were analyzed. Results It was possible to define a distinct miRNA expression pattern allowing for a separation of distinct prognostic subgroups. The defined miRNA pattern was significantly associated with early death versus long-term survival (split at 450 days) (p = 0.01). The pattern and the prognostic power were both independent of the MGMT status. Conclusions At present, this is the first dataset defining a prognostic role of miRNA expression patterns in patients with glioblastoma. Having defined such a pattern, a prospective validation of this observation is required. PMID:22074483

  18. Transcriptional regulation of E-cadherin and oncoprotein E7 by valproic acid in HPV positive cell lines

    PubMed Central

    Faghihloo, Ebrahim; Akbari, Abolfazl; Adjaminezhad-Fard, Fatemeh; Mokhtari-Azad, Talat

    2016-01-01

    Objective(s): Valproic acid (VPA) has proven to be as one of the most promising useful drug with anticancer properties. In this study, we investigate the VPA effects on E-cadherin expression in HeLa, TC1, MKN45, and HCT116 cell lines. This study assesses the effects of VPA on human papillomavirus E7 expression in HPV positive cell lines. Materials and Methods: Cell lines were treated by 2 mmol/l VPA and expression of E-cadherin and E7 was analyzed by quantitative real-time PCR. Student’s t test and ANOVA were used to determine changes in expression levels. Results: The results revealed that mean of E-cadherin expression is increased by VPA 1.8 times in HCT116 and MKN45 cell lines, also the mean of E-cadherin mRNA levels is up-regulated 2.9 times in HeLa and TC1 cell lines. So, E-cadherin augmentation induced by VPA in HeLa and TC-1, HPV positive cell lines, is higher than HPV negative cell lines MKN45 and HCT116. The mean of HPV E7 expression is decreased by VPA, 4.6 times in in HeLa and TC-1 cell lines. Conclusion: This study demonstrates that re-expression of E-cadherin by VPA in HPV positive cell lines is more than HPV negative cell lines. Whereas, HPV E7 reduces the expression of E-cadherin, reduction of HPV E7 expression by VPA is related to more augmentation of E-cadherin in HPV positive cell lines. So, this study demonstrates that VPA has more anticancer properties in HPV positive cell lines, and could potentially be a promising candidate for cervical cancer treatment. PMID:27482340

  19. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.).

    PubMed

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-03-01

    The Gram-positive bacterium Bacillus thuringiensis (Bt) produces Cry toxins that have been used to control important agricultural pests. Evolution of resistance in target pests threatens the effectiveness of these toxins when used either in sprayed biopesticides or in Bt transgenic crops. Although alterations of the midgut cadherin-like receptor can lead to Bt Cry toxin resistance in many insects, whether the cadherin gene is involved in Cry1Ac resistance of Plutella xylostella (L.) remains unclear. Here, we present experimental evidence that resistance to Cry1Ac or Bt var. kurstaki (Btk) in P. xylostella is not due to alterations of the cadherin gene. The bona fide P. xylostella cadherin cDNA sequence was cloned and analyzed, and comparisons of the cadherin cDNA sequence among susceptible and resistant P. xylostella strains confirmed that Cry1Ac resistance was independent of mutations in this gene. In addition, real-time quantitative PCR (qPCR) indicated that cadherin transcript levels did not significantly differ among susceptible and resistant P. xylostella strains. RNA interference (RNAi)-mediated suppression of cadherin gene expression did not affect larval susceptibility to Cry1Ac toxin. Furthermore, genetic linkage assays using four cadherin gDNA allelic biomarkers confirmed that the cadherin gene is not linked to resistance against Cry1Ac in P. xylostella. Taken together, our findings demonstrate that Cry1Ac resistance of P. xylostella is independent of the cadherin gene. PMID:25595643

  20. Cadherin-11 regulates both mesenchymal stem cell differentiation into smooth muscle cells and the development of contractile function in vivo

    PubMed Central

    Alimperti, Stella; You, Hui; George, Teresa; Agarwal, Sandeep K.; Andreadis, Stelios T.

    2014-01-01

    ABSTRACT Although soluble factors, such as transforming growth factor β1 (TGF-β1), induce mesenchymal stem cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage, the role of adherens junctions in this process is not well understood. In this study, we found that cadherin-11 but not cadherin-2 was necessary for MSC differentiation into SMCs. Cadherin-11 regulated the expression of TGF-β1 and affected SMC differentiation through a pathway that was dependent on TGF-β receptor II (TGFβRII) but independent of SMAD2 or SMAD3. In addition, cadherin-11 activated the expression of serum response factor (SRF) and SMC proteins through the Rho-associated protein kinase (ROCK) pathway. Engagement of cadherin-11 increased its own expression through SRF, indicative of the presence of an autoregulatory feedback loop that committed MSCs to the SMC fate. Notably, SMC-containing tissues (such as aorta and bladder) from cadherin-11-null (Cdh11−/−) mice showed significantly reduced levels of SMC proteins and exhibited diminished contractility compared with controls. This is the first report implicating cadherin-11 in SMC differentiation and contractile function in vitro as well as in vivo. PMID:24741067

  1. N-cadherin regulates primary motor axons growth and branching during zebrafish embryonic development

    PubMed Central

    Brusés, Juan L

    2013-01-01

    N-cadherin is a classical type I cadherin that contributes to the formation of neural circuits by regulating growth cone migration and the formation of synaptic contacts. This study analyzed the role of N-cadherin in primary motor axons growth during development of the zebrafish (Danio rerio) embryo. After exiting the spinal cord, primary motor axons migrate ventrally through a common pathway and form the first neuromuscular junction with the muscle pioneer cells located at the horizontal myoseptum, which serves as a choice point for cell-type specific pathway selection. Analysis of N-cadherin mutants (cdh2hi3644Tg) and embryos injected with N-cadherin antisense morpholinos showed primary motor axons extending aberrant axonal branches at the choice point in ~40% of the somitic hemisegments, and an ~150% increase in the number of branches per axon length within the ventral myotome. Analysis of individual axons trajectories showed that the caudal (CaP) and rostral (RoP) motor neurons axons formed aberrant branches at the choice point which abnormally extended in the rostrocaudal axis and ventrally to the horizontal myoseptum. Expression of a dominant-interfering N-cadherin cytoplasmic domain in primary motor neurons caused some axons to abnormally stall at the horizontal myoseptum and to impair their migration into the ventral myotome. However, in N-cadherin depleted embryos the majority of primary motor axons innervated their appropriate myotomal territories indicating that N-cadherin regulates motor axon growth and branching without severely affecting the mechanisms that control axonal target selection. PMID:21452216

  2. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells.

    PubMed

    Lobos-González, Lorena; Aguilar, Lorena; Diaz, Jorge; Diaz, Natalia; Urra, Hery; Torres, Vicente A; Silva, Veronica; Fitzpatrick, Christopher; Lladser, Alvaro; Hoek, Keith S; Leyton, Lisette; Quest, Andrew F G

    2013-07-01

    The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here, we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10 (cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10 (E-cad) cells reduces subcutaneous tumor formation and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10 (cav-1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity, and cell migration observed with B16F10 (cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells.

  3. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells

    PubMed Central

    Lobos-González, L; Aguilar, L; Diaz, J; Diaz, N; Urra, H; Torres, V; Silva, V; Fitzpatrick, C; Lladser, A; Hoek, K.S.; Leyton, L; Quest, AFG

    2013-01-01

    SUMMARY The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis, and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10(cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10(E-cad) cells reduces subcutaneous tumor formation, and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10(cav1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity and cell migration observed with B16F10(cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013

  4. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells.

    PubMed

    Lobos-González, Lorena; Aguilar, Lorena; Diaz, Jorge; Diaz, Natalia; Urra, Hery; Torres, Vicente A; Silva, Veronica; Fitzpatrick, Christopher; Lladser, Alvaro; Hoek, Keith S; Leyton, Lisette; Quest, Andrew F G

    2013-07-01

    The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here, we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10 (cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10 (E-cad) cells reduces subcutaneous tumor formation and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10 (cav-1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity, and cell migration observed with B16F10 (cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013

  5. Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics.

    PubMed

    Le, T L; Yap, A S; Stow, J L

    1999-07-12

    E-Cadherin plays critical roles in many aspects of cell adhesion, epithelial development, and the establishment and maintenance of epithelial polarity. The fate of E-cadherin once it is delivered to the basolateral cell surface, and the mechanisms which govern its participation in adherens junctions, are not well understood. Using surface biotinylation and recycling assays, we observed that some of the cell surface E-cadherin is actively internalized and is then recycled back to the plasma membrane. The pool of E-cadherin undergoing endocytosis and recycling was markedly increased in cells without stable cell-cell contacts, i.e., in preconfluent cells and after cell contacts were disrupted by depletion of extracellular Ca2+, suggesting that endocytic trafficking of E-cadherin is regulated by cell-cell contact. The reformation of cell junctions after replacement of Ca2+ was then found to be inhibited when recycling of endocytosed E-cadherin was disrupted by bafilomycin treatment. The endocytosis and recycling of E-cadherin and of the transferrin receptor were similarly inhibited by potassium depletion and by bafilomycin treatment, and both proteins were accumulated in intracellular compartments by an 18 degrees C temperature block, suggesting that endocytosis may occur via a clathrin-mediated pathway. We conclude that a pool of surface E-cadherin is constantly trafficked through an endocytic, recycling pathway and that this may provide a mechanism for regulating the availability of E-cadherin for junction formation in development, tissue remodeling, and tumorigenesis.

  6. Comparison of melanoblast expression patterns identifies distinct classes of genes

    PubMed Central

    Loftus, Stacie K.; Baxter, Laura L.; Buac, Kristina; Watkins-Chow, Dawn E.; Larson, Denise M.; Pavan, William J.

    2010-01-01

    Summary A full understanding of transcriptional regulation requires integration of information obtained from multiple experimental datasets. These include datasets annotating gene expression within the context of an entire organism under normal and genetically perturbed conditions. Here we describe an expression dataset annotating pigment cell-expressed genes of the developing melanocyte and RPE lineages. Expression images are annotated and available at http://research.nhgri.nih.gov/manuscripts/Loftus/March2009/. Data is also summarized in a standardized manner using a universal melanoblast scoring scale that accounts for the embryonic location of cells and regional cell density. This approach allowed us to classify 14 pigment genes into 4 groupings classified by cell lineage expression, temporal-spatial context, and differential alteration in response to altered MITF and SOX10 status. Significant differences in regional populations were also observed across inbred strain backgrounds highlighting the value of this approach to identify modifier allele influences on melanoblast number and distributions. This analysis revealed novel features of in vivo expression patterns that are not measurable by in vitro-based assays, providing data that in combination with genomic analyses will allow modeling of pigment cell gene expression in development and disease. PMID:19493314

  7. Three Functions of Cadherins in Cell Adhesion

    PubMed Central

    Maître, Jean-Léon; Heisenberg, Carl-Philipp

    2013-01-01

    Cadherins are transmembrane proteins that mediate cell–cell adhesion in animals. By regulating contact formation and stability, cadherins play a crucial role in tissue morphogenesis and homeostasis. Here, we review the three major functions of cadherins in cell–cell contact formation and stability. Two of those functions lead to a decrease in interfacial tension at the forming cell–cell contact, thereby promoting contact expansion — first, by providing adhesion tension that lowers interfacial tension at the cell–cell contact, and second, by signaling to the actomyosin cytoskeleton in order to reduce cortex tension and thus interfacial tension at the contact. The third function of cadherins in cell–cell contact formation is to stabilize the contact by resisting mechanical forces that pull on the contact. PMID:23885883

  8. Acoustic patterns of infant vocalizations expressing emotions and communicative functions.

    PubMed

    Papaeliou, C; Minadakis, G; Cavouras, D

    2002-04-01

    The present study aimed at identifying the acoustic pattern of vocalizations, produced by 7- to 11-month-old infants, that were interpreted by their mothers as expressing emotions or communicative functions. Participants were 6 healthy, first-born English infants, 3 boys and 3 girls, and their mothers. The acoustic analysis of the vocalizations was performed using a pattern recognition (PR) software system. A PR system not only calculates signal features, it also automatically detects patterns in the arrangement of such features. The following results were obtained: (a) the PR system distinguished vocalizations interpreted as emotions from vocalizations interpreted as communicative functions with an overall accuracy of 87.34%; (b) the classification accuracy of the PR system for vocalizations that convey emotions was 85.4% and for vocalizations that convey communicative functions was 89.5%; and (c) compared to vocalizations that express emotions, vocalizations that express communicative functions were shorter, displayed lower fundamental frequency values, and had greater overall intensity. These findings suggest that in the second half of the first year, infants possess a vocal repertoire that contributes to regulating cooperative interaction with their mothers, which is considered one of the major prerequisites for language acquisition.

  9. Configurable pattern-based evolutionary biclustering of gene expression data

    PubMed Central

    2013-01-01

    Background Biclustering algorithms for microarray data aim at discovering functionally related gene sets under different subsets of experimental conditions. Due to the problem complexity and the characteristics of microarray datasets, heuristic searches are usually used instead of exhaustive algorithms. Also, the comparison among different techniques is still a challenge. The obtained results vary in relevant features such as the number of genes or conditions, which makes it difficult to carry out a fair comparison. Moreover, existing approaches do not allow the user to specify any preferences on these properties. Results Here, we present the first biclustering algorithm in which it is possible to particularize several biclusters features in terms of different objectives. This can be done by tuning the specified features in the algorithm or also by incorporating new objectives into the search. Furthermore, our approach bases the bicluster evaluation in the use of expression patterns, being able to recognize both shifting and scaling patterns either simultaneously or not. Evolutionary computation has been chosen as the search strategy, naming thus our proposal Evo-Bexpa (Evolutionary Biclustering based in Expression Patterns). Conclusions We have conducted experiments on both synthetic and real datasets demonstrating Evo-Bexpa abilities to obtain meaningful biclusters. Synthetic experiments have been designed in order to compare Evo-Bexpa performance with other approaches when looking for perfect patterns. Experiments with four different real datasets also confirm the proper performing of our algorithm, whose results have been biologically validated through Gene Ontology. PMID:23433178

  10. Duplicate gene enrichment and expression pattern diversification in multicellularity

    PubMed Central

    Padawer, Timothy; Leighty, Ralph E.; Wang, Degeng

    2012-01-01

    The enrichment of duplicate genes, and therefore paralogs (proteins coded by duplicate genes), in multicellular versus unicellular organisms enhances genomic functional innovation. This study quantitatively examined relationships among paralog enrichment, expression pattern diversification and multicellularity, aiming to better understand genomic basis of multicellularity. Paralog abundance in specific cells was compared with those in unicellular proteomes and the whole proteomes of multicellular organisms. The budding yeast, Saccharomyces cerevisiae and the nematode, Caenorhabditis elegans, for which the gene sets expressed in specific cells are available, were used as uni and multicellular models, respectively. Paralog count (K) distributions [P(k)] follow a power-law relationship [P(k) ∝ k−α] in the whole proteomes of both species and in specific C. elegans cells. The value of the constant α can be used as a gauge of paralog abundance; the higher the value, the lower the paralog abundance. The α-value is indeed lower in the whole proteome of C. elegans (1.74) than in S. cerevisiae (2.34), quantifying the enrichment of paralogs in multicellular species. We also found that the power-law relationship applies to the proteomes of specific C. elegans cells. Strikingly, values of α in specific cells are higher and comparable to that in S. cerevisiae. Thus, paralog abundance in specific cells is lower and comparable to that in unicellular species. Furthermore, how much the expression level of a gene fluctuates across different C. elegans cells correlates positively with its paralog count, which is further confirmed by human gene-expression patterns across different tissues. Taken together, these results quantitatively and mechanistically establish enrichment of paralogs with diversifying expression patterns as genomic and evolutionary basis of multicellularity. PMID:22645319

  11. Variable patterns of expression of luciferase in transgenic tobacco leaves.

    PubMed

    Barnes, W M

    1990-12-01

    A carboxyl-terminally modified firefly luciferase, encoded as a gene fusion to the neomycin phosphotransferase gene (which confers kanamycin resistance), was found to be enzymatically active for both enzymes when expressed in bacteria and in transgenic plants. A military-type starlight vision system was used to conveniently analyze the pattern of gene expression in transgenic tobacco plant leaves. Transgenic tobacco plants which expressed luciferase uniformly in all areas of the leaf, and assays for luciferin, demonstrated that luciferin rapidly penetrates all regions of a tobacco leaf in at least two dimensions. Depending on the test gene structure or, presumably, on the transferred DNA (T-DNA) insertional context, other transgenic plants were obtained that expressed luciferase with a wide range of nonuniform patterns from nominally the same cauliflower mosaic virus 35S promoter. For instance, the veins can be dark, while only the interveinal regions of the leaf lamina glow, or only the small capillary veins glow, or only the major veins glow. Local and/or systemic induction in response to wounding was also demonstrated. PMID:2251262

  12. Expression Pattern of Axin2 During Chicken Development

    PubMed Central

    Eckei, Gesa; Böing, Marion; Brand-Saberi, Beate; Morosan-Puopolo, Gabriela

    2016-01-01

    Canonical Wnt-signalling is well understood and has been extensively described in many developmental processes. The regulation of this signalling pathway is of outstanding relevance for proper development of the vertebrate and invertebrate embryo. Axin2 provides a negative-feedback-loop in the canonical Wnt-pathway, being a target gene and a negative regulator. Here we provide a detailed analysis of the expression pattern in the development of the chicken embryo. By performing in-situ hybridization on chicken embryos from stage HH 04+ to HH 32 we detected a temporally and spatially restricted dynamic expression of Axin2. In particular, data about the expression of Axin2 mRNA in early embryogenesis, somites, neural tube, limbs, kidney and eyes was obtained. PMID:27680024

  13. Gene expression patterns in glucose-stimulated podocytes

    SciTech Connect

    Han, Seung Hyeok; Yang, Sanghwa; Jung, Dong Sub; Li, Jin Ji; Kim, Jin Ju; Kwak, Seung Jae; Kim, Dong Ki; Moon, Sung Jin; Lee, Jung Eun; Han, Dae-Suk; Kang, Shin-Wook

    2008-06-06

    To explore the mechanisms of podocyte injury under diabetic conditions, we performed an expression profile in glucose-stimulated podocytes. Differential gene expression profiles between conditionally immortalized mouse podocytes cultured in medium containing 5.6 and 30 mM glucose were measured with oligonucleotide microarrays. Of the genes identified, heme oxygenase-1, vascular endothelial growth factor-A, and thrombospondin-1 showed a consistently increased pattern, whereas angiotensin-converting enzyme-2 and peroxisomal proliferator activator receptor-{gamma} were down-regulated. These results were validated using real-time PCR and western blotting in podocytes, and with immunohistochemistry on renal tissues from streptozotocin-induced diabetic rats. Not only is this the first report of gene expression profiling of podocyte injury under diabetic conditions, but the identified genes are promising targets for future diabetes research.

  14. Suppression of E-cadherin Mediates Gallotannin Induced Apoptosis in Hep G2 Hepatocelluar Carcinoma Cells

    PubMed Central

    Han, Hee Jeong; Kwon, Hee Young; Sohn, Eun Jung; Ko, Hyunsuk; Kim, Bogeun; Jung, Kwon; Lew, Jae Hwan; Kim, Sung-Hoon

    2014-01-01

    Though gallotannin was known to have anti-oxidant and antitumor activity, the underlying antitumor mechanism of gallotannin still remains unclear. Thus, in the present study, antitumor mechanism of gallotannin was elucidated in hepatocellular carcinoma cells. Gallotannin significantly exerted cytotoxicity against Hep G2 and Chang hepatocellular carcinoma cells with the accumulation of the sub-G1 population and increase of terminal deoxynucleotidyltransferasedUTP nick end labeling (TUNEL) positive cells as an apoptotic feature. Also, gallotannin attenuated the expression of pro-caspase9, pro-caspase3, Bcl2 and integrin β1 and cleaved poly(ADP)-ribose polymerase (PARP) in Hep G2 and Chang cancer cells. Furthermore, gallotannin suppressed cell repair motility by wound healing assay and also inhibited cell adhesion in Hep G2 cells. Of note, gallotannin attenuated the expression of epithelial cadherin (E-cadherin) to form cell-cell adhesion from the early stage, and also beta-catenin at late phase in Hep G2 cells. Consistently, Immunofluorescence assay showed that E-cadherin or β-catenin expression was suppressed in a time dependent manner by gallotannin. Furthermore, silencing of E-cadherin by siRNA transfection method enhanced PAPR cleavage, caspase 3 activation and sub G1 population and attenuated the cell adhesion induced by gallotannin in Hep G2 cells. Overall, our findings demonstrate that the disruption of cell adhesion junction by suppression of E-cadherin mediates gallotannin enhanced apoptosis in Hep G2 liver cancer cells. PMID:24795530

  15. A role for N-cadherin in mesodermal morphogenesis during gastrulation.

    PubMed

    Warga, Rachel M; Kane, Donald A

    2007-10-15

    Cell adhesion molecules mediate numerous developmental processes necessary for the segregation and organization of tissues. Here we show that the zebrafish biber (bib) mutant encodes a dominant allele at the N-cadherin locus. When knocked down with antisense oligonucleotides, bib mutants phenocopy parachute (pac) null alleles, demonstrating that bib is a gain-of-function mutation. The mutant phenotype disrupts normal cell-cell contacts throughout the mesoderm as well as the ectoderm. During gastrulation stages, cells of the mesodermal germ layer converge slowly; during segmentation stages, the borders between paraxial and axial tissues are irregular and somite borders do not form; later, myotomes are fused. During neurulation, the neural tube is disorganized. Although weaker, all traits present in bib mutants were found in pac mutants. When the distribution of N-cadherin mRNA was analyzed to distinguish mesodermal from neuroectodermal expression, we found that N-cadherin is strongly expressed in the yolk cell and hypoblast in the early gastrula, just preceding the appearance of the bib mesodermal defects. Only later is N-cadherin expressed in the anlage of the CNS, where it is found as a radial gradient in the forming neural plate. Hence, besides a well-established role in neural and somite morphogenesis, N-cadherin is essential for morphogenesis of the mesodermal germ layer during gastrulation.

  16. Betacellulin induces Slug-mediated down-regulation of E-cadherin and cell migration in ovarian cancer cells

    PubMed Central

    Zhao, Jianfang; Klausen, Christian; Qiu, Xin; Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C.K.

    2016-01-01

    Epithelial ovarian cancer is the leading cause of death among gynaecological cancers. Previous studies have demonstrated that epidermal growth factor receptor (EGFR) ligands can induce ovarian cancer cell invasion by down-regulating E-cadherin. Betacellulin is a unique member of the EGF family. It is overexpressed in a variety of cancers and is associated with reduced survival. However, the biological functions and clinical significance of betacellulin in ovarian cancer remain unknown. In the current study, we tested the hypothesis that betacellulin induces ovarian cancer cell migration by suppressing E-cadherin expression. Treatment of SKOV3 and OVCAR5 ovarian cancer cell lines with betacellulin down-regulated E-cadherin, but not N-cadherin. In addition, betacellulin treatment increased the expression of Snail and Slug, and these effects were completely blocked by pre-treatment with EGFR inhibitor AG1478. Interestingly, only knockdown of Slug reversed the down-regulation of E-cadherin by betacellulin. Betacellulin treatment induced the activation of both the MEK-ERK and PI3K-Akt signaling pathways, and it also significantly increased ovarian cancer cell migration. Importantly, the effects of betacellulin on E-cadherin, Slug and cell migration were attenuated by pre-treatment with either U0126 or LY294002. Our results suggest that betacellulin induces ovarian cancer migration and Slug-dependent E-cadherin down-regulation via EGFR-mediated MEK-ERK and PI3K-Akt signaling. PMID:27129169

  17. Expression pattern of the Hedgehog signaling pathway in pituitary adenomas.

    PubMed

    Yavropoulou, Maria P; Maladaki, Anna; Topouridou, Konstantina; Kotoula, Vasiliki; Poulios, Chris; Daskalaki, Emily; Foroglou, Nikolaos; Karkavelas, George; Yovos, John G

    2016-01-12

    Several studies have demonstrated the role of Wnt and Notch signaling in the pathogenesis of pituitary adenomas, but data are scarce regarding the role of Hedgehog signaling. In this study we investigated the differential expression of gene targets of the Hedgehog signaling pathway. Formalin-fixed, paraffin-embedded specimens from adult patients who underwent transphenoidal resection and normal human pituitary tissues that were obtained from autopsies were used. Clinical information and data from pre-operative MRI scan (extracellular tumor extension, tumor size, displacement of the optic chiasm) were retrieved from the Hospital's database. We used a customized RT(2) Profiler PCR Array, to investigate the expression of genes related to Notch and Hedgehog signaling pathways (PTCH1, PTCH2, GLI1, GLI3, NOTCH3, JAG1, HES1, and HIP). A total of 52 pituitary adenomas (32 non-functioning adenomas, 15 somatotropinomas and 5 prolactinomas) were used in the final analysis. In non-functioning pituitary adenomas there was a significant decrease (approximately 75%) in expression of all Hedgehog related genes that were tested, while Notch3 and Jagged-1 expression was found significantly increased, compared with normal pituitary tissue controls. In contrast, somatotropinomas demonstrated a significant increase in expression of all Hedgehog related genes and a decrease in the expression of Notch3 and Jagged-1. There was no significant difference in the expression of Hedgehog and Notch related genes between prolactinomas and healthy pituitary tissues. Hedgehog signalling appears to be activated in somatotropinomas but not in non-functioning pituitary adenomas in contrast to the expression pattern of Notch signalling pathway. PMID:26620835

  18. Differential remodeling of cadherins and intermediate cytoskeletal filaments influence microenvironment of solid and ascitic sarcoma.

    PubMed

    Chaklader, Malay; Pan, Ankita; Law, Aditya; Chattopadhayay, Sukalpa; Chatterjee, Ritam; Law, Sujata

    2013-10-01

    Different forms of sarcoma (solid or ascitic) often pose a critical medical situation for pediatric or adolescent group of patients. To date, predisposed genetic anomalies and related changes in protein expression are thought to be responsible for sarcoma development. However, in spite of genetic abnormality, role of tumor microenvironment is also indispensable for the evolving neoplasm. In our present study, we characterized the deferentially remodeled microenvironment in solid and ascitic tumors by sequential immunohistochemistry and flowcytometric analysis of E-cdaherin, N-cadherin, vimentin, and cytokeratin along with angiogenesis and metastasis. In addition, we considered flowcytometric apoptosis and CD133 positive cancer stem cell analysis. Comparative hemogram was also considered as a part. Our investigation revealed that both types of tumor promoted neovascularization over time with sign of local inflammation. Invasion of neighboring skeletal muscle by solid sarcoma was more frequent than its ascitic counterpart. In contrary, rapid and earlier cadherin switching (E-cadherin to N-cadherin) in ascitic sarcoma made them more aggressive than that of solid sarcoma and helped to early metastasize distant tissue like liver through the hematogenous route. Differential cadherin switching and infidelity of cytokeratin expression in Vimentin positive sarcoma also influenced the behavior of ascitic CD133+ cancer initiating cell pool with respect to CD133+ cells housed in solid sarcoma. Therefore our study concludes that differential cadherin switching program and infidelity of intermediate filaments in part, sharply discriminate the severity and metastatic potentiality of either type of sarcoma accompanying with CD133+ cellular repertoire. Besides, tumor phenotype-based dichotomous cadherin switching program could be exploited as a future drug target to manage decompensated malignant ascitic and solid sarcoma.

  19. Function and expression pattern of nonsyndromic deafness genes

    PubMed Central

    Hilgert, Nele; Smith, Richard J.H.; Van Camp, Guy

    2010-01-01

    Hearing loss is the most common sensory disorder, present in 1 of every 500 newborns. To date, 46 genes have been identified that cause nonsyndromic hearing loss, making it an extremely heterogeneous trait. This review provides a comprehensive overview of the inner ear function and expression pattern of these genes. In general, they are involved in hair bundle morphogenesis, form constituents of the extracellular matrix, play a role in cochlear ion homeostasis or serve as transcription factors. During the past few years, our knowledge of genes involved in hair bundle morphogenesis has increased substantially. We give an up-to-date overview of both the nonsyndromic and Usher syndrome genes involved in this process, highlighting proteins that interact to form macromolecular complexes. For every gene, we also summarize its expression pattern and impact on hearing at the functional level. Gene-specific cochlear expression is summarized in a unique table by structure/cell type and is illustrated on a cochlear cross-section, which is available online via the Hereditary Hearing Loss Homepage. This review should provide auditory scientists the most relevant information for all identified nonsyndromic deafness genes. PMID:19601806

  20. Activity and Distribution of Paxillin, Focal Adhesion Kinase, and Cadherin Indicate Cooperative Roles during Zebrafish Morphogenesis

    PubMed Central

    Crawford, Bryan D.; Henry, Clarissa A.; Clason, Todd A.; Becker, Amanda L.; Hille, Merrill B.

    2003-01-01

    We investigated the focal adhesion proteins paxillin and Fak, and the cell-cell adhesion protein cadherin in developing zebrafish (Danio rerio) embryos. Cadherins are expressed in presomitic mesoderm where they delineate cells. The initiation of somite formation coincides with an increase in the phosphorylation of Fak, and the accumulation of Fak, phosphorylated Fak, paxillin, and fibronectin at nascent somite boundaries. In the notochord, cadherins are expressed on cells during intercalation, and phosphorylated Fak accumulates in circumferential rings where the notochord cells contact laminin in the perichordal sheath. Subsequently, changes in the orientations of collagen fibers in the sheath suggest that Fak-mediated adhesion allows longitudinal expansion of the notochord, but not lateral expansion, resulting in notochord elongation. Novel observations showed that focal adhesion kinase and paxillin concentrate at sites of cell-cell adhesion in the epithelial enveloping layer and may associate with actin cytoskeleton at epithelial junctions containing cadherins. Fak is phosphorylated at these epithelial junctions but is not phosphorylated on Tyr397, implicating a noncanonical mechanism of regulation. These data suggest that Fak and paxillin may function in the integration of cadherin-based and integrin-based cell adhesion during the morphogenesis of the early zebrafish embryo. PMID:12925747

  1. Plasminogen Activator Inhibitor-1 Controls Vascular Integrity by Regulating VE-Cadherin Trafficking

    PubMed Central

    Daniel, Anna E.; Timmerman, Ilse; Kovacevic, Igor; Hordijk, Peter L.; Adriaanse, Luc; Paatero, Ilkka; Belting, Heinz-Georg; van Buul, Jaap D.

    2015-01-01

    Background Plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor, is expressed and secreted by endothelial cells. Patients with PAI-1 deficiency show a mild to moderate bleeding diathesis, which has been exclusively ascribed to the function of PAI-1 in down-regulating fibrinolysis. We tested the hypothesis that PAI-1 function plays a direct role in controlling vascular integrity and permeability by keeping endothelial cell-cell junctions intact. Methodology/Principal Findings We utilized PAI-039, a specific small molecule inhibitor of PAI-1, to investigate the role of PAI-1 in protecting endothelial integrity. In vivo inhibition of PAI-1 resulted in vascular leakage from intersegmental vessels and in the hindbrain of zebrafish embryos. In addition PAI-1 inhibition in human umbilical vein endothelial cell (HUVEC) monolayers leads to a marked decrease of transendothelial resistance and disrupted endothelial junctions. The total level of the endothelial junction regulator VE-cadherin was reduced, whereas surface VE-cadherin expression was unaltered. Moreover, PAI-1 inhibition reduced the shedding of VE-cadherin. Finally, we detected an accumulation of VE-cadherin at the Golgi apparatus. Conclusions/Significance Our findings indicate that PAI-1 function is important for the maintenance of endothelial monolayer and vascular integrity by controlling VE-cadherin trafficking to and from the plasma membrane. Our data further suggest that therapies using PAI-1 antagonists like PAI-039 ought to be used with caution to avoid disruption of the vessel wall. PMID:26714278

  2. Characterization of E-cadherin-dependent and -independent events in a new model of c-Fos-mediated epithelial-mesenchymal transition

    SciTech Connect

    Mejlvang, Jakob; Kriajevska, Marina; Berditchevski, Fedor; Bronstein, Igor; Lukanidin, Eugene M.; Pringle, J. Howard; Mellon, J. Kilian; Tulchinsky, Eugene M. . E-mail: et32@le.ac.uk

    2007-01-15

    Fos proteins have been implicated in control of tumorigenesis-related genetic programs including invasion, angiogenesis, cell proliferation and apoptosis. In this study, we demonstrate that c-Fos is able to induce mesenchymal transition in murine tumorigenic epithelial cell lines. Expression of c-Fos in MT1TC1 cells led to prominent alterations in cell morphology, increased expression of mesenchymal markers, vimentin and S100A4, DNA methylation-dependent down-regulation of E-cadherin and abrogation of cell-cell adhesion. In addition, c-Fos induced a strong {beta}-catenin-independent proliferative response in MT1TC1 cells and stimulated cell motility, invasion and adhesion to different extracellular matrix proteins. To explore whether loss of E-cadherin plays a role in c-Fos-mediated mesenchymal transition, we expressed wild-type E-cadherin and two different E-cadherin mutants in MT1TC1/c-fos cells. Expression of wild-type E-cadherin restored epithelioid morphology and enhanced cellular levels of catenins. However, exogenous E-cadherin did not influence expression of c-Fos-dependent genes, only partly suppressed growth of MT1TC1/c-fos cells and produced no effect on c-Fos-stimulated cell motility and invasion in matrigel. On the other hand, re-expression of E-cadherin specifically negated c-Fos-induced adhesion to collagen type I, but not to laminin or fibronectin. Of interest, mutant E-cadherin which lacks the ability to form functional adhesive complexes had an opposite, potentiating effect on cell adhesion to collagen I. These data suggest that cell adhesion to collagen I is regulated by the functional state of E-cadherin. Overall, our data demonstrate that, with the exception of adhesion to collagen I, c-Fos is dominant over E-cadherin in relation to the aspects of mesenchymal transition assayed in this study.

  3. Correlation Between E-cadherin Immunoexpression and Efficacy of First Line Platinum-Based Chemotherapy in Advanced High Grade Serous Ovarian Cancer.

    PubMed

    Miše, Branka Petrić; Telesmanić, Vesna Dobrić; Tomić, Snježana; Šundov, Dinka; Čapkun, Vesna; Vrdoljak, Eduard

    2015-04-01

    To analyze correlation between immunoexpression of E-cadherin and efficacy of first line platinum-based chemotherapy in patients with advanced-stage high-grade serous ovarian carcinoma. The expression of E-cadherin was analyzed immunohistochemically in formalin-fixed, paraffin-embedded samples from 98 patients with advanced-stage high-grade serous ovarian cancer and related to clinical features (stage according to the International Federation of Gynecology and Obstetrics (FIGO) and residual tumors after initial cytoreductive surgery), response to platinum-based chemotherapy (according to Response Evaluation Criteria in Solid tumors (RECIST 1.1 criteria)), platinum sensitivity (according to platinum free interval (PFI) as platinum-refractory, platinum-resistant and platinum-sensitive) and patients progression free survival (PFS) and overall survival (OS). E-cadherin immunostaining was positive in 74 and negative in 24 serous ovarian carcinomas. E-cadherin immunoreactivity was not associated with FIGO stage, residual tumor after initial cytoreductive surgery and number of chemotherapy cycles. Positive E-cadherin expression predict significantly better response to first line platinum-based chemotherapy (p < 0.001) and platinum sensitivity (p < 0.001). Moreover, positive E-cadherin expression predict significantly longer PFS (p < 0.001) and OS (p < 0.001). The multivariate analysis for OS showed that positive E-cadherin expression is predictor to platinum sensitivity (p < 0.001) and longer OS (p = 0.01). Positive E-cadherin expression seems to be a predictor of better response to first line platinum-based chemotherapy, platinum sensitivity and favorable clinical outcome in patients with advanced-stage serous ovarian cancer. Negative E-cadherin expression was shown to be significant, independent predictor of poorer PFS and OS. E-cadherin as a marker has predictive and prognostic value.

  4. The Motor Protein Myosin-X Transports VE-Cadherin along Filopodia To Allow the Formation of Early Endothelial Cell-Cell Contacts▿ †

    PubMed Central

    Almagro, Sébastien; Durmort, Claire; Chervin-Pétinot, Adeline; Heyraud, Stephanie; Dubois, Mathilde; Lambert, Olivier; Maillefaud, Camille; Hewat, Elizabeth; Schaal, Jean Patrick; Huber, Philippe; Gulino-Debrac, Danielle

    2010-01-01

    Vascular endothelium (VE), the monolayer of endothelial cells that lines the vascular tree, undergoes damage at the basis of some vascular diseases. Its integrity is maintained by VE-cadherin, an adhesive receptor localized at cell-cell junctions. Here, we show that VE-cadherin is also located at the tip and along filopodia in sparse or subconfluent endothelial cells. We observed that VE-cadherin navigates along intrafilopodial actin filaments. We found that the actin motor protein myosin-X is colocalized and moves synchronously with filopodial VE-cadherin. Immunoprecipitation and pulldown assays confirmed that myosin-X is directly associated with the VE-cadherin complex. Furthermore, expression of a dominant-negative mutant of myosin-X revealed that myosin-X is required for VE-cadherin export to cell edges and filopodia. These features indicate that myosin-X establishes a link between the actin cytoskeleton and VE-cadherin, thereby allowing VE-cadherin transportation along intrafilopodial actin cables. In conclusion, we propose that VE-cadherin trafficking along filopodia using myosin-X motor protein is a prerequisite for cell-cell junction formation. This mechanism may have functional consequences for endothelium repair in pathological settings. PMID:20123970

  5. Expression pattern of Sox2 during mouse tooth development.

    PubMed

    Zhang, Li; Yuan, Guohua; Liu, Huan; Lin, Heng; Wan, Chunyan; Chen, Zhi

    2012-01-01

    The transcription factor Sox2 plays important roles in maintaining the pluripotency of embryonic stem cells and adult progenitors. However, whether Sox2 is involved in odontogenesis has not been reported. In this study, we examined the expression pattern of Sox2 during mouse incisor and molar development using real-time PCR, in situ hybridization and immunohistochemistry. Sox2 mRNA was expressed in the dental epithelium and mesenchyme while Sox2 protein was mainly detected in the epithelium from embryonic day (E) 11.5 to postnatal (PN) day 20. In the case of incisor, Sox2 mRNA and protein were expressed in most of dental epithelial cells from E11.5 to E14.5, and they were both highly expressed in the labial cervical loop area from E16.5 to PN20. During molar development, we observed an asymmetrical distribution of Sox2 protein in the epithelium from E13.5 to E16.5, with stronger signals in the lingual side. From E18.5 to PN2, Sox2 was expressed within the cervical loop area, and the stellate intermediate layer. From PN6 to PN14, Sox2 expression was confined mainly to the apical end of hertwig's epithelium root sheath (HERS) cells. Sox2 was also detected within the perivascular region of the dental pulp at PN14 and PN20. Our results suggested that: (1) Sox2 was involved in mouse odontogenesis, and (2) it might participate in maintaining the pluripotency of the epithelial stem cells of labial cervical loop in mouse incisor development and the epithelium progenitors during molar development, (3) Sox2 might be regulated at post-transcription level during mouse odontogenesis.

  6. Connexins, E-cadherin, Claudin-7 and β-catenin transiently form junctional nexuses during the post-natal mammary gland development.

    PubMed

    Dianati, Elham; Poiraud, Jérémy; Weber-Ouellette, Anne; Plante, Isabelle

    2016-08-01

    Gap junctions are intercellular channels made of connexins (Cxs) that allow direct communication between adjacent cells. Modulation of Cxs has been associated with abnormal development and function of the mammary gland and breast cancer. However, the mechanisms underlying their expression during normal mammary gland are not yet known. Cxs interact with components of tight and adherens junctions. Thus, we hypothesized that the expression levels of Cxs vary during mammary gland development and are regulated through stage-dependent interactions with members of the tight and adherens junctions. Our specific objectives were to: 1) determine the expression of Cxs and tight and adherens junction proteins throughout development and 2) characterize Cxs interactions with components of tight and adherens junctions. Murine mammary glands were sampled at various developmental stages (pre-pubescent to post-weaning). RT-qPCR and western-blot analyses demonstrated differential expression patterns for all gap (Cx43, Cx32, Cx26, Cx30), tight (Claudin-1, -3, -4, -7) and adherens (β-catenin, E- and P-cadherins) junctions throughout development. Interestingly, co-immunoprecipitation demonstrated interactions between these different types of junctions. Cx30 interacted with Cx26 just at the late pregnancy stage. While Cx43 showed a persistent interaction with β-catenin from virginity to post-weaning, its interactions with E-cadherin and Claudin-7 were transient. Cx32 interacted with Cx26, E-cadherin and β-catenin during lactation. Immunofluorescence results confirmed the existence of a junctional nexus that remodeled during mammary gland development. Together, our results confirm that the expression levels of Cxs vary concomitantly and that Cxs form junctional nexuses with tight and adherens junctions, suggesting the existence of common regulatory pathways.

  7. Induction of E-cadherin+ human amniotic fluid cell differentiation into oocyte-like cells via culture in medium supplemented with follicular fluid.

    PubMed

    Liu, Te; Huang, Yongyi; Bu, Yanzhen; Zhao, Yanhui; Zou, Gang; Liu, Zhixue

    2014-07-01

    Pluripotent human amniotic fluid cells (HuAFCs) can differentiate into various types of somatic cell in vitro. However, their differentiation into oocyte-like cells has never been described to the best of our knowledge. In the present study, differentiation of E-cadherin+ and E-cadherin- HuAFC sub-populations into oocyte-like cells was induced via culture in medium containing bovine follicular fluid and β-mercaptoethanol. The E-cadherin+ HuAFCs expressed DAZL highly. Post-induction, cells with an oocyte-like phenotype were found among the E-cadherin+ HuAFCs, expressing markers specific to germ cells and oocytes (VASA, ZP3 and GDF9) and meiosis (DMC1 and SCP3). When specific small interfering RNA (siRNA) was used to suppress E-cadherin in the E-cadherin+ HuAFCs, the levels of DAZL expression were reduced. Post-induction, the morphology of the siRNA‑E‑cadherin HuAFCs was poorer and the expression levels of germ cell-specific markers were lower compared with those of the siRNA-mock HuAFCs. Therefore, E-cadherin+ HuAFCs could be more easily induced to differentiate into oocyte-like cells by bovine follicular fluid and β-mercaptoethanol. In addition, the E-cadherin+ HuAFCs exhibited potential characteristics of DAZL protein expression, and thus it was conjectured that bovine follicular fluid acts on DAZL protein and promotes E-cadherin+ HuAFC differentiation into oocyte-like cells.

  8. Induction of E-cadherin+ human amniotic fluid cell differentiation into oocyte-like cells via culture in medium supplemented with follicular fluid.

    PubMed

    Liu, Te; Huang, Yongyi; Bu, Yanzhen; Zhao, Yanhui; Zou, Gang; Liu, Zhixue

    2014-07-01

    Pluripotent human amniotic fluid cells (HuAFCs) can differentiate into various types of somatic cell in vitro. However, their differentiation into oocyte-like cells has never been described to the best of our knowledge. In the present study, differentiation of E-cadherin+ and E-cadherin- HuAFC sub-populations into oocyte-like cells was induced via culture in medium containing bovine follicular fluid and β-mercaptoethanol. The E-cadherin+ HuAFCs expressed DAZL highly. Post-induction, cells with an oocyte-like phenotype were found among the E-cadherin+ HuAFCs, expressing markers specific to germ cells and oocytes (VASA, ZP3 and GDF9) and meiosis (DMC1 and SCP3). When specific small interfering RNA (siRNA) was used to suppress E-cadherin in the E-cadherin+ HuAFCs, the levels of DAZL expression were reduced. Post-induction, the morphology of the siRNA‑E‑cadherin HuAFCs was poorer and the expression levels of germ cell-specific markers were lower compared with those of the siRNA-mock HuAFCs. Therefore, E-cadherin+ HuAFCs could be more easily induced to differentiate into oocyte-like cells by bovine follicular fluid and β-mercaptoethanol. In addition, the E-cadherin+ HuAFCs exhibited potential characteristics of DAZL protein expression, and thus it was conjectured that bovine follicular fluid acts on DAZL protein and promotes E-cadherin+ HuAFC differentiation into oocyte-like cells. PMID:24788191

  9. Reconstruction of gene co-expression network from microarray data using local expression patterns

    PubMed Central

    2014-01-01

    Background Biological networks connect genes, gene products to one another. A network of co-regulated genes may form gene clusters that can encode proteins and take part in common biological processes. A gene co-expression network describes inter-relationships among genes. Existing techniques generally depend on proximity measures based on global similarity to draw the relationship between genes. It has been observed that expression profiles are sharing local similarity rather than global similarity. We propose an expression pattern based method called GeCON to extract Gene CO-expression Network from microarray data. Pair-wise supports are computed for each pair of genes based on changing tendencies and regulation patterns of the gene expression. Gene pairs showing negative or positive co-regulation under a given number of conditions are used to construct such gene co-expression network. We construct co-expression network with signed edges to reflect up- and down-regulation between pairs of genes. Most existing techniques do not emphasize computational efficiency. We exploit a fast correlogram matrix based technique for capturing the support of each gene pair to construct the network. Results We apply GeCON to both real and synthetic gene expression data. We compare our results using the DREAM (Dialogue for Reverse Engineering Assessments and Methods) Challenge data with three well known algorithms, viz., ARACNE, CLR and MRNET. Our method outperforms other algorithms based on in silico regulatory network reconstruction. Experimental results show that GeCON can extract functionally enriched network modules from real expression data. Conclusions In view of the results over several in-silico and real expression datasets, the proposed GeCON shows satisfactory performance in predicting co-expression network in a computationally inexpensive way. We further establish that a simple expression pattern matching is helpful in finding biologically relevant gene network. In

  10. ADAM13 cleavage of cadherin-11 promotes CNC migration independently of the homophilic binding site

    PubMed Central

    Kashef, Jubin; Alfandari, Dominique

    2015-01-01

    The cranial neural crest (CNC) is a highly motile population of cells that is responsible for forming the face and jaw in all vertebrates and perturbing their migration can lead to craniofacial birth defects. Cell motility requires a dynamic modification of cell–cell and cell-matrix adhesion. In the CNC, cleavage of the cell adhesion molecule cadherin-11 by ADAM13 is essential for cell migration. This cleavage generates a shed extracellular fragment of cadherin-11 (EC1-3) that possesses pro-migratory activity via an unknown mechanism. Cadherin-11 plays an important role in modulating contact inhibition of locomotion (CIL) in the CNC to regulate directional cell migration. Here, we show that while the integral cadherin-11 requires the homophilic binding site to promote CNC migration in vivo, the EC1-3 fragment does not. In addition, we show that increased ADAM13 activity or expression of the EC1-3 fragment increases CNC invasiveness in vitro and blocks the repulsive CIL response in colliding cells. This activity requires the presence of an intact homophilic binding site on the EC1-3 suggesting that the cleavage fragment may function as a competitive inhibitor of cadherin-11 adhesion in CIL but not to promote cell migration in vivo. PMID:26206614

  11. ADAM13 cleavage of cadherin-11 promotes CNC migration independently of the homophilic binding site.

    PubMed

    Abbruzzese, Genevieve; Becker, Sarah F; Kashef, Jubin; Alfandari, Dominique

    2016-07-15

    The cranial neural crest (CNC) is a highly motile population of cells that is responsible for forming the face and jaw in all vertebrates and perturbing their migration can lead to craniofacial birth defects. Cell motility requires a dynamic modification of cell-cell and cell-matrix adhesion. In the CNC, cleavage of the cell adhesion molecule cadherin-11 by ADAM13 is essential for cell migration. This cleavage generates a shed extracellular fragment of cadherin-11 (EC1-3) that possesses pro-migratory activity via an unknown mechanism. Cadherin-11 plays an important role in modulating contact inhibition of locomotion (CIL) in the CNC to regulate directional cell migration. Here, we show that while the integral cadherin-11 requires the homophilic binding site to promote CNC migration in vivo, the EC1-3 fragment does not. In addition, we show that increased ADAM13 activity or expression of the EC1-3 fragment increases CNC invasiveness in vitro and blocks the repulsive CIL response in colliding cells. This activity requires the presence of an intact homophilic binding site on the EC1-3 suggesting that the cleavage fragment may function as a competitive inhibitor of cadherin-11 adhesion in CIL but not to promote cell migration in vivo.

  12. P-cadherin regulates human hair growth and cycling via canonical Wnt signaling and transforming growth factor-β2.

    PubMed

    Samuelov, Liat; Sprecher, Eli; Tsuruta, Daisuke; Bíró, Tamás; Kloepper, Jennifer E; Paus, Ralf

    2012-10-01

    P-cadherin is a key component of epithelial adherens junctions, and it is prominently expressed in the hair follicle (HF) matrix. Loss-of-function mutations in CDH3, which encodes P-cadherin, result in hypotrichosis with juvenile macular dystrophy (HJMD), an autosomal recessive disorder featuring sparse and short hair. Here, we attempted to recapitulate some aspects of HJMD in vitro by transfecting normal, organ-cultured human scalp HFs with lipofectamine and CDH3-specific or scrambled control siRNAs. As in HJMD patients, P-cadherin silencing inhibited hair shaft growth, prematurely induced HF regression (catagen), and inhibited hair matrix keratinocyte proliferation. In situ, membrane β-catenin expression and transcription of the β-catenin target gene, axin2, were significantly reduced, whereas glycogen synthase kinase 3 β (GSK3β) and phospho-β-catenin immunoreactivity were increased. These effects were partially reversed by inhibiting GSK3β. P-cadherin silencing reduced the expression of the anagen-promoting growth factor, IGF-1, whereas that of transforming growth factor β 2 (TGFβ2; catagen promoter) was enhanced. Neutralizing TGFβ antagonized the catagen-promoting effects of P-cadherin silencing. In summary, we introduce human HFs as an attractive preclinical model for studying the functions of P-cadherin in human epithelial biology and pathology. This model demonstrates that cadherins can be successfully knocked down in an intact human organ in vitro, and shows that P-cadherin is needed for anagen maintenance by regulating canonical Wnt signaling and suppressing TGFβ2.

  13. Expression Patterns of Extracellular Matrix Proteins during Posterior Commissure Development

    PubMed Central

    Stanic, Karen; Saldivia, Natalia; Förstera, Benjamín; Torrejón, Marcela; Montecinos, Hernán; Caprile, Teresa

    2016-01-01

    Extracellular matrix (ECM) molecules are pivotal for central nervous system (CNS) development, facilitating cell migration, axonal growth, myelination, dendritic spine formation, and synaptic plasticity, among other processes. During axon guidance, the ECM not only acts as a permissive or non-permissive substrate for navigating axons, but also modulates the effects of classical guidance cues, such as netrin or Eph/ephrin family members. Despite being highly important, little is known about the expression of ECM molecules during CNS development. Therefore, this study assessed the molecular expression patterns of tenascin, HNK-1, laminin, fibronectin, perlecan, decorin, and osteopontin along chick embryo prosomere 1 during posterior commissure development. The posterior commissure is the first transversal axonal tract of the embryonic vertebrate brain. Located in the dorso-caudal portion of prosomere 1, posterior commissure axons primarily arise from the neurons of basal pretectal nuclei that run dorsally to the roof plate midline, where some turn toward the ipsilateral side. Expressional analysis of ECM molecules in this area these revealed to be highly arranged, and molecule interactions with axon fascicles suggested involvement in processes other than structural support. In particular, tenascin and the HNK-1 epitope extended in ventro-dorsal columns and enclosed axons during navigation to the roof plate. Laminin and osteopontin were expressed in the midline, very close to axons that at this point must decide between extending to the contralateral side or turning to the ipsilateral side. Finally, fibronectin, decorin, and perlecan appeared unrelated to axonal pathfinding in this region and were instead restricted to the external limiting membrane. In summary, the present report provides evidence for an intricate expression of different extracellular molecules that may cooperate in guiding posterior commissure axons. PMID:27733818

  14. Facial patterning and infant emotional expression: happiness, surprise, and fear.

    PubMed

    Hiatt, S W; Campos, J J; Emde, R N

    1979-12-01

    Although recent studies have convincingly demonstrated that emotional expressions can be judged reliably from actor-posed facial displays, there exists little evidence that facial expressions in lifelike settings are similar to actor-posed displays, are reliable across situations designed to elicit the same emotion, or provide sufficient information to mediate consistent emotion judgments by raters. The present study therefore investigated these issues as they related to the emotions of happiness, surprise, and fear. 27 infants between 10 and 12 months of age (when emotion masking is not likely to confound results) were tested in 2 situations designed to elicit hapiness (peek-a-boo game and a collapsing toy), 2 to elicit surprise (a toy-switch and a vanishing-object task), and 2 to elicit fear (the visual cliff and the approach of a stranger. Dependent variables included changes in 28 facial response components taken from previous work using actor poses, as well as judgments of the presence of 6 discrete emotions. In addition, instrumental behaviors were used to verify with other than facial expression responses whether the predicted emotion was elicited. In contrast to previous conclusions on the subject, we found that judges were able to make all facial expression judgments reliably, even in the absence of contextual information. Support was also obtained for at least some degree of specificity of facial component response patterns, especially for happiness and surprise. Emotion judgments by raters were found to be a function of the presence of discrete facial components predicted to be linked to those emotions. Finally, almost all situations elicited blends, rather than discrete emotions. PMID:535426

  15. Regulation of E-cadherin: does hypoxia initiate the metastatic cascade?

    PubMed Central

    Beavon, I R

    1999-01-01

    The ability of tumours to metastasis is regarded as one of the hallmarks of malignancy. The process through which tumours evolve to achieve this has been termed the metastatic cascade. This cascade has been the subject of much investigation over many years. One of the vital events identified by these investigations is the reduction of adhesion between tumour cells facilitating invasion of the surrounding tissues and vascular channels, ultimately leading to the development of a distant metastasis. E-cadherin and its associated catenin complex have been identified as key molecules in cell adhesion. This review looks at the structure and interaction of the E-cadherin-catenin complex and the factors that appear to regulate E-cadherin expression and thus cell adhesion. From the data gathered, it has become possible to propose the hypothesis that the development of tumour hypoxia is the initiating factor that sets the tumour on the road to metastasis. PMID:10694937

  16. Girdin-mediated interactions between cadherin and the actin cytoskeleton are required for epithelial morphogenesis in Drosophila.

    PubMed

    Houssin, Elise; Tepass, Ulrich; Laprise, Patrick

    2015-05-15

    E-cadherin-mediated cell-cell adhesion is fundamental for epithelial tissue morphogenesis, physiology and repair. E-cadherin is a core transmembrane constituent of the zonula adherens (ZA), a belt-like adherens junction located at the apicolateral border in epithelial cells. The anchorage of ZA components to cortical actin filaments strengthens cell-cell cohesion and allows for junction contractility, which shapes epithelial tissues during development. Here, we report that the cytoskeletal adaptor protein Girdin physically and functionally interacts with components of the cadherin-catenin complex during Drosophila embryogenesis. Fly Girdin is broadly expressed throughout embryonic development and enriched at the ZA in epithelial tissues. Girdin associates with the cytoskeleton and co-precipitates with the cadherin-catenin complex protein α-Catenin (α-Cat). Girdin mutations strongly enhance adhesion defects associated with reduced DE-cadherin (DE-Cad) expression. Moreover, the fraction of DE-Cad molecules associated with the cytoskeleton decreases in the absence of Girdin, thereby identifying Girdin as a positive regulator of adherens junction function. Girdin mutant embryos display isolated epithelial cell cysts and rupture of the ventral midline, consistent with defects in cell-cell cohesion. In addition, loss of Girdin impairs the collective migration of epithelial cells, resulting in dorsal closure defects. We propose that Girdin stabilizes epithelial cell adhesion and promotes morphogenesis by regulating the linkage of the cadherin-catenin complex to the cytoskeleton.

  17. Molecular mechanisms involved in TFF3 peptide-mediated modulation of the E-cadherin/catenin cell adhesion complex.

    PubMed

    Meyer zum Büschenfelde, Dirk; Hoschützky, Heinz; Tauber, Rudolf; Huber, Otmar

    2004-05-01

    TFF3 is a member of the TFF-domain peptide family which is constitutively expressed in mucous epithelial tissues where it acts as a motogenic factor and plays an important role during epithelial restitution after wounding and during inflammation. In contrast to these beneficial functions, TFFs were also reported to be involved in cell scattering and tumor invasion. These changes in epithelial cell morphology and motility are associated with a modulation of cell contacts. In this respect, we here investigated the E-cadherin/catenin cell adhesion complex in FLAG-hTFF3-transfected HT29/B6 and MDCK cells. In hTFF3-transfected cells the amount of E-cadherin is reduced with a concomitant reduction of alpha- and beta-catenin levels. On one hand, E-cadherin expression is lowered at the transcriptional level as shown by multiplex RT-PCR analysis. This decrease does not depend on differences in the promoter methylation status as shown by methylation-specific PCR. On the other hand, pulse-chase experiments showed a reduction in the E-cadherin half-life in hTFF3-transfected cells reflecting increased E-cadherin degradation. In summary, hTFF3 induces transcriptional and posttranslational processes resulting in a modulation of E-cadherin-mediated cell-cell contacts that may play an important role in the paradoxical benefical and pathogenic function of TFF peptides.

  18. An Engineered N-Cadherin Substrate for Differentiation, Survival, and Selection of Pluripotent Stem Cell-Derived Neural Progenitors

    PubMed Central

    Haque, Amranul; Akter, Farhima; Hossain, Sharif; Kutsuzawa, Koichi; Nag, Kakon; Kobatake, Eiry; Akaike, Toshihiro

    2015-01-01

    For stem cell-based treatment of neurodegenerative diseases a better understanding of key developmental signaling pathways and robust techniques for producing neurons with highest homogeneity are required. In this study, we demonstrate a method using N-cadherin-based biomimetic substrate to promote the differentiation of mouse embryonic stem cell (ESC)- and induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) without exogenous neuro-inductive signals. We showed that substrate-dependent activation of N-cadherin reduces Rho/ROCK activation and β-catenin expression, leading to the stimulation of neurite outgrowth and conversion into cells expressing neural/glial markers. Besides, plating dissociated cells on N-cadherin substrate can significantly increase the differentiation yield via suppression of dissociation-induced Rho/ROCK-mediated apoptosis. Because undifferentiated ESCs and iPSCs have low affinity to N-cadherin, plating dissociated cells on N-cadherin-coated substrate increase the homogeneity of differentiation by purging ESCs and iPSCs (~30%) from a mixture of undifferentiated cells with NPCs. Using this label-free cell selection approach we enriched differentiated NPCs plated as monolayer without ROCK inhibitor. Therefore, N-cadherin biomimetic substrate provide a powerful tool for basic study of cell—material interaction in a spatially defined and substrate-dependent manner. Collectively, our approach is efficient, robust and cost effective to produce large quantities of differentiated cells with highest homogeneity and applicable to use with other types of cells. PMID:26244942

  19. p120-Catenin is essential for N-cadherin-mediated formation of proper junctional structure, thereby establishing cell polarity in epithelial cells.

    PubMed

    Ozaki, Chisa; Yoshioka, Masato; Tominaga, Sachiko; Osaka, Yoshinori; Obata, Shuichi; Suzuki, Shintaro T

    2010-01-01

    The role of p120-catenin in the function of classical cadherins is still enigmatic despite various studies. To elucidate its role, we examined the effect of p120-catenin on the N-cadherin-mediated localization of junctional proteins in epithelial cells in this study. Cadherin-deficient MIA PaCa-2 epithelial cells did not show linear localization of tight junction proteins ZO-1 and occludin. When N-cadherin was expressed in these cells, however, the resultant transfectant cells revealed strong cell adhesion activity and linear localization of ZO-1, occludin, and N-cadherin in the lateral membrane. When the p120-catenin-binding site of N-cadherin was disrupted, the linear localization of ZO-1 and occludin disappeared, and the mutant N-cadherin became localized more diffusely in the transfectant, although the cell adhesion activity did not change much. Knockdown of p120-catenin also resulted in the very weak localization of ZO-1 and occludin. A similar effect of p120-catenin on the localization of junctional proteins was obtained under more dynamic conditions in a wound healing assay. Moreover, p120-catenin was essential for the regulation of centrosome orientation in this healing assay. Taken together, the present data indicate that p120-catenin is essential for N-cadherin-mediated formation of proper junctional structures and thereby the establishment of the cell polarity. Similar results were obtained when E-cadherin mutants comparable to those of N-cadherin were used, suggesting that p120-catenin plays the same role in the function of other classical cadherins.

  20. Smoking induces epithelial-to-mesenchymal transition in non-small cell lung cancer through HDAC-mediated downregulation of E-cadherin.

    PubMed

    Nagathihalli, Nagaraj S; Massion, Pierre P; Gonzalez, Adriana L; Lu, Pengcheng; Datta, Pran K

    2012-11-01

    Epidemiological studies have shown that most cases of lung cancers (85%-90%) are directly attributable to tobacco smoking. Although association between cigarette smoking and lung cancer is well documented, surprisingly little is known about the molecular mechanisms of how smoking is involved in epithelial-to-mesenchymal transition (EMT) through epigenetic changes. Here, we show that lung cancer patients with a smoking history have low E-cadherin levels and loss of E-cadherin is a poor prognostic factor in smokers. Moreover, the downregulation of E-cadherin correlates with the number of pack years. In an attempt to determine the role of long-term cigarette smoking on EMT, we observed that treatment of lung cell lines with cigarette smoke condensate (CSC) induces EMT through downregulation of epithelial markers, including E-cadherin and upregulation of mesenchymal markers. CSC decreases E-cadherin expression at the transcriptional level through upregulation of LEF1 and Slug, and knockdown of these two proteins increases E-cadherin expression. Importantly, chromatin immunoprecipitation assays suggest that LEF-1 and Slug binding to E-cadherin promoter is important for CSC-mediated downregulation of E-cadherin. The histone deacetylase (HDAC) inhibitor MS-275 reverses CSC-induced EMT, migration, and invasion through the restoration of E-cadherin expression. These results suggest that recruitment of HDACs by transcriptional repressors LEF-1 and Slug is responsible for E-cadherin suppression and EMT in cigarette smokers and provide a potential drug target toward the treatment of lung cancer.

  1. Expression patterns reveal niche diversification in a marine microbial assemblage

    PubMed Central

    Gifford, Scott M; Sharma, Shalabh; Booth, Melissa; Moran, Mary Ann

    2013-01-01

    Resolving the ecological niches of coexisting marine microbial taxa is challenging due to the high species richness of microbial communities and the apparent functional redundancy in bacterial genomes and metagenomes. Here, we generated over 11 million Illumina reads of protein-encoding transcripts collected from well-mixed southeastern US coastal waters to characterize gene expression patterns distinguishing the ecological roles of hundreds of microbial taxa sharing the same environment. The taxa with highest in situ growth rates (based on relative abundance of ribosomal protein transcripts) were typically not the greatest contributors to community transcription, suggesting strong top-down ecological control, and their diverse transcriptomes indicated roles as metabolic generalists. The taxa with low in situ growth rates typically had low diversity transcriptomes dominated by specialized metabolisms. By identifying protein-encoding genes with atypically high expression for their level of conservation, unique functional roles of community members emerged related to substrate use (such as complex carbohydrates, fatty acids, methanesulfonate, taurine, tartrate, ectoine), alternative energy-conservation strategies (proteorhodopsin, AAnP, V-type pyrophosphatases, sulfur oxidation, hydrogen oxidation) and mechanisms for negotiating a heterogeneous environment (flagellar motility, gliding motility, adhesion strategies). On average, the heterotrophic bacterioplankton dedicated 7% of their transcriptomes to obtaining energy by non-heterotrophic means. This deep sequencing of a coastal bacterioplankton transcriptome provides the most highly resolved view of bacterioplankton niche dimensions yet available, uncovering a spectrum of unrecognized ecological strategies. PMID:22931830

  2. Spatial and temporal gene expression patterns occur during corm development.

    PubMed

    de Castro, L A; Carneiro, M; Neshich, D de C; de Paiva, G R

    1992-12-01

    We investigated gene expression patterns that occur during taro corm development. Two-dimensional gel electrophoresis identified several different prevalent proteins that accumulate during corm development. Microsequencing studies indicated that some of these proteins are related to taste-modifying proteins, such as curculin and miraculin, and proteins found in other storage organs, such as sporamin and the Kunitz trypsin inhibitor. A curculin-encoding cDNA clone, designated as TC1, was identified that corresponds to a highly prevalent 1-kb corm mRNA. The TC1 mRNA accumulates during corm development, is more prevalent in corm apical than basal regions, and is either absent, or present at low concentrations, in other vegetative organs such as the leaf and root. In situ hybridization experiments showed that the TC1 mRNA is highly concentrated in corm storage parenchyma cells and is absent, or present in reduced concentrations, in other corm cells and tissues. Our results show that corm development is associated with the differentiation of specialized cells and tissues, and that these differentiation events are coupled with the temporal and spatial expression of corm-specific genes. PMID:1467653

  3. Expression patterns reveal niche diversification in a marine microbial assemblage.

    PubMed

    Gifford, Scott M; Sharma, Shalabh; Booth, Melissa; Moran, Mary Ann

    2013-02-01

    Resolving the ecological niches of coexisting marine microbial taxa is challenging due to the high species richness of microbial communities and the apparent functional redundancy in bacterial genomes and metagenomes. Here, we generated over 11 million Illumina reads of protein-encoding transcripts collected from well-mixed southeastern US coastal waters to characterize gene expression patterns distinguishing the ecological roles of hundreds of microbial taxa sharing the same environment. The taxa with highest in situ growth rates (based on relative abundance of ribosomal protein transcripts) were typically not the greatest contributors to community transcription, suggesting strong top-down ecological control, and their diverse transcriptomes indicated roles as metabolic generalists. The taxa with low in situ growth rates typically had low diversity transcriptomes dominated by specialized metabolisms. By identifying protein-encoding genes with atypically high expression for their level of conservation, unique functional roles of community members emerged related to substrate use (such as complex carbohydrates, fatty acids, methanesulfonate, taurine, tartrate, ectoine), alternative energy-conservation strategies (proteorhodopsin, AAnP, V-type pyrophosphatases, sulfur oxidation, hydrogen oxidation) and mechanisms for negotiating a heterogeneous environment (flagellar motility, gliding motility, adhesion strategies). On average, the heterotrophic bacterioplankton dedicated 7% of their transcriptomes to obtaining energy by non-heterotrophic means. This deep sequencing of a coastal bacterioplankton transcriptome provides the most highly resolved view of bacterioplankton niche dimensions yet available, uncovering a spectrum of unrecognized ecological strategies.

  4. Expression analysis of five zebrafish RXFP3 homologues reveals evolutionary conservation of gene expression pattern.

    PubMed

    Donizetti, Aldo; Fiengo, Marcella; Iazzetti, Giovanni; del Gaudio, Rosanna; Di Giaimo, Rossella; Pariante, Paolo; Minucci, Sergio; Aniello, Francesco

    2015-01-01

    Relaxin peptides exert different functions in reproduction and neuroendocrine processes via interaction with two evolutionarily unrelated groups of receptors: RXFP1 and RXFP2 on one hand, RXFP3 and RXFP4 on the other hand. Evolution of receptor genes after splitting of tetrapods and teleost lineage led to a different retention rate between mammals and fish, with the latter having more gene copies compared to the former. In order to improve our knowledge on the evolution of the relaxin ligands/receptors system and have insights on their function in early stages of life, in the present paper we analyzed the expression pattern of five zebrafish RXFP3 homologue genes during embryonic development. In our analysis, we show that only two of the five genes are expressed during embryogenesis and that their transcripts are present in all the developmental stages. Spatial localization analysis of these transcripts revealed that the gene expression is restricted in specific territories starting from early pharyngula stage. Both genes are expressed in the brain but in different cell clusters and in extra-neural territories, one gene in the interrenal gland and the other in the pancreas. These two genes share expression territories with the homologue mammalian counterpart, highlighting a general conservation of gene expression regulatory processes and their putative function during evolution that are established early in vertebrate embryogenesis.

  5. Ph+/VE-cadherin+ identifies a stem cell like population of acute lymphoblastic leukemia sustained by bone marrow niche cells.

    PubMed

    Wang, Lin; O'Leary, Heather; Fortney, James; Gibson, Laura F

    2007-11-01

    Although leukemic stem cells (LSCs) show a symbiotic relationship with bone marrow microenvironmental niches, the mechanism by which the marrow microenvironment contributes to self-renewal and proliferation of LSCs remains elusive. In the present study, we identified a unique subpopulation of Philadelphia chromosome-positive (Ph(+)) acute lymphoblastic leukemia (ALL) cells coexpressing markers of endothelial cells (including VE-cadherin, PECAM-1, and Flk-1) and committed B-lineage progenitors. After long-term coculture with bone marrow stromal cells, tumor cells formed hematopoietic colonies and cords, expressed early stem- cell markers, and showed endothelial sprouting. Gene expression profiles of LSCs were altered in the presence of stromal cell contact. Stromal cell contact promoted leukemic cell VE-cadherin expression, stabilized beta-catenin, and up-regulated Bcr-abl fusion gene expression. Our study indicates that these specific tumor cells are uniquely positioned to respond to microenvironment-derived self-renewing and proliferative cues. Ph(+)/VE-cadherin(+) tumor subpopulation circumvents the requirement of exogenous Wnt signaling for self-renewal through stromal cell support of leukemic cell VE-cadherin expression and up-regulated Bcr-abl tyrosine kinase activity. These data suggest that strategies targeting signals in the marrow microenvironment that amplify the Bcr-abl/VE-cadherin/beta-catenin axis may have utility in sensitizing drug-resistant leukemic stem cells. PMID:17638851

  6. Armc8 regulates the invasive ability of hepatocellular carcinoma through E-cadherin/catenin complex.

    PubMed

    Zhao, Yang; Peng, Songlin; Jia, Changjun; Xu, Feng; Xu, Yongqing; Dai, Chaoliu

    2016-08-01

    Armc8 (armadillo-repeat-containing protein 8) was proved to promote disruption of E-cadherin complex through regulating α-catenin degradation. In this study, we investigated Armc8 expression in hepatocellular carcinoma using immunohistochemistry (IHC). The positive rate of Armc8 expression in hepatocellular carcinoma was 53.9 % and higher than that in normal hepatic tissues (9.2 %) (p < 0.05). Clinicopathological analysis shows that Armc8 expression in hepatocellular carcinoma was significantly associated with larger tumor size (≥5 cm), multiple tumor numbers, higher pathological grade (media and poor), advanced TNM stages (II/III), and advanced BCLC stages (B/C). Western blot study also detected higher Armc8 expression in hepatocellular carcinoma cells including HepG2, HCC97L, and SMMC-7721 than in human hepatic cell Bel-7402. We further use specific small interfering RNAs (siRNAs) to knock down Armc8 expression in HepG2 cells and found that knockdown of Armc8 expression significantly inhibited the invasive ability of HepG2 cells. Downregulation of Armc8 expression significantly upregulated α-catenin, β-catenin, and E-cadherin expression in HepG2 cells. Immunofluorescent study shows that knockdown of Armc8 expression restored E-cadherin expression in membrane of HepG2 cells. These results indicate that Armc8 may be a potential cancer marker in hepatocellular carcinoma and may regulate cancer invasion through E-cadherin/catenin complex. PMID:26944057

  7. p120 Catenin-Mediated Stabilization of E-Cadherin Is Essential for Primitive Endoderm Specification.

    PubMed

    Pieters, Tim; Goossens, Steven; Haenebalcke, Lieven; Andries, Vanessa; Stryjewska, Agata; De Rycke, Riet; Lemeire, Kelly; Hochepied, Tino; Huylebroeck, Danny; Berx, Geert; Stemmler, Marc P; Wirth, Dagmar; Haigh, Jody J; van Hengel, Jolanda; van Roy, Frans

    2016-08-01

    E-cadherin-mediated cell-cell adhesion is critical for naive pluripotency of cultured mouse embryonic stem cells (mESCs). E-cadherin-depleted mESC fail to downregulate their pluripotency program and are unable to initiate lineage commitment. To further explore the roles of cell adhesion molecules during mESC differentiation, we focused on p120 catenin (p120ctn). Although one key function of p120ctn is to stabilize and regulate cadherin-mediated cell-cell adhesion, it has many additional functions, including regulation of transcription and Rho GTPase activity. Here, we investigated the role of mouse p120ctn in early embryogenesis, mESC pluripotency and early fate determination. In contrast to the E-cadherin-null phenotype, p120ctn-null mESCs remained pluripotent, but their in vitro differentiation was incomplete. In particular, they failed to form cystic embryoid bodies and showed defects in primitive endoderm formation. To pinpoint the underlying mechanism, we undertook a structure-function approach. Rescue of p120ctn-null mESCs with different p120ctn wild-type and mutant expression constructs revealed that the long N-terminal domain of p120ctn and its regulatory domain for RhoA were dispensable, whereas its armadillo domain and interaction with E-cadherin were crucial for primitive endoderm formation. We conclude that p120ctn is not only an adaptor and regulator of E-cadherin, but is also indispensable for proper lineage commitment. PMID:27556156

  8. p120 Catenin-Mediated Stabilization of E-Cadherin Is Essential for Primitive Endoderm Specification

    PubMed Central

    Haenebalcke, Lieven; Stryjewska, Agata; De Rycke, Riet; Lemeire, Kelly; Huylebroeck, Danny; Stemmler, Marc P.; Wirth, Dagmar; Haigh, Jody J.; van Hengel, Jolanda; van Roy, Frans

    2016-01-01

    E-cadherin-mediated cell-cell adhesion is critical for naive pluripotency of cultured mouse embryonic stem cells (mESCs). E-cadherin-depleted mESC fail to downregulate their pluripotency program and are unable to initiate lineage commitment. To further explore the roles of cell adhesion molecules during mESC differentiation, we focused on p120 catenin (p120ctn). Although one key function of p120ctn is to stabilize and regulate cadherin-mediated cell-cell adhesion, it has many additional functions, including regulation of transcription and Rho GTPase activity. Here, we investigated the role of mouse p120ctn in early embryogenesis, mESC pluripotency and early fate determination. In contrast to the E-cadherin-null phenotype, p120ctn-null mESCs remained pluripotent, but their in vitro differentiation was incomplete. In particular, they failed to form cystic embryoid bodies and showed defects in primitive endoderm formation. To pinpoint the underlying mechanism, we undertook a structure-function approach. Rescue of p120ctn-null mESCs with different p120ctn wild-type and mutant expression constructs revealed that the long N-terminal domain of p120ctn and its regulatory domain for RhoA were dispensable, whereas its armadillo domain and interaction with E-cadherin were crucial for primitive endoderm formation. We conclude that p120ctn is not only an adaptor and regulator of E-cadherin, but is also indispensable for proper lineage commitment. PMID:27556156

  9. The E4 protein; structure, function and patterns of expression

    SciTech Connect

    Doorbar, John

    2013-10-15

    }E4, these kinases regulate one of the E1{sup ∧}E4 proteins main functions, the association with the cellular keratin network, and eventually also its cleavage by the protease calpain which allows assembly into amyloid-like fibres and reorganisation of the keratin network. Although the E4 proteins of different HPV types appear divergent at the level of their primary amino acid sequence, they share a recognisable modular organisation and pattern of expression, which may underlie conserved functions and regulation. Assembly into higher-order multimers and suppression of cell proliferation are common to all E4 proteins examined. Although not yet formally demonstrated, a role in virus release and transmission remains a likely function for E4. - Highlights: • E4 gene products have a modular structure, and are expressed from the E1{sup ∧}E4 spliced mRNA. • E4 proteins are modified during epithelial differentiation by phosphorylation and proteolysis. • The E4 proteins contribute to genome amplification-efficiency and virus synthesis. • E4 proteins are abundantly expressed and may facilitate efficient virus release and transmission. • High-risk E4 proteins are deposited as amyloid fibres and can be used as infection biomarkers.

  10. ERβ1 inhibits the migration and invasion of breast cancer cells through upregulation of E-cadherin in a Id1-dependent manner

    SciTech Connect

    Zhou, Yan; Ming, Jia; Xu, Yan; Zhang, Yi; Jiang, Jun

    2015-02-06

    Highlights: • Expression of ERβ1 was positively correlated with E-cadherin in breast cancer cell. • ERβ1 upregulates E-cadherin expression in breast cancer cell lines. • ERβ1 upregulates E-cadherin expression in a Id1-dependent manner. - Abstract: ERβ1 is a member of the nuclear receptor superfamily of ligand-regulated transcription factors. It plays an important role in regulating the progression of breast cancer. However, the mechanisms of ERβ1 in tumorigenesis, metastasis and prognosis are still not fully clear. In this study, we showed that the expression of ERβ1 was positively correlated with E-cadherin expression in breast cancer cell lines. In addition, we found that ERβ1 upregulates E-cadherin expression in breast cancer cell lines. Furthermore, we also found that ERβ1 inhibits the migration and invasion of breast cancer cells and upregulated E-cadherin expression in a Id1-dependent manner. Taken together, our study provides further understanding of the molecular mechanism of ERβ1 in tumor metastasis and suggests the feasibility of developing novel therapeutic approaches to target Id1 to inhibit breast cancer metastasis.

  11. Rheumatoid arthritis with deficiency pattern in traditional chinese medicine shows correlation with cold and hot patterns in gene expression profiles.

    PubMed

    Wang, Minzhi; Chen, Gao; Lu, Cheng; Xiao, Cheng; Li, Li; Niu, Xuyan; He, Xiaojuan; Jiang, Miao; Lu, Aiping

    2013-01-01

    In our precious study, the correlation between cold and hot patterns in traditional Chinese medicine (TCM) and gene expression profiles in rheumatoid arthritis (RA) has been explored. Based on TCM theory, deficiency pattern is another key pattern diagnosis among RA patients, which leads to a specific treatment principle in clinical management. Therefore, a further analysis was performed aiming at exploring the characteristic gene expression profile of deficiency pattern and its correlation with cold and hot patterns in RA patients by bioinformatics analysis approach based on gene expression profiles data detected with microarray technology. The TCM deficiency pattern-related genes network comprises 7 significantly, highly connected regions which are mainly involved in protein transcription processes, protein ubiquitination, toll-like receptor activated NF- κ B regulated gene transcription and apoptosis, RNA clipping, NF- κ B signal, nucleotide metabolism-related apoptosis, and immune response processes. Toll-like receptor activated NF- κ B regulated gene transcription and apoptosis pathways are potential specific pathways related to TCM deficiency patterns in RA patients; TCM deficiency pattern is probably related to immune response. Network analysis can be used as a powerful tool for detecting the characteristic mechanism related to specific TCM pattern and the correlations between different patterns. PMID:24174973

  12. The effects of adriamycin on E-cadherin mediated cell-cell adhesion and apoptosis during early kidney development.

    PubMed

    Yay, A; Ozdamar, S; Balcioglu, E; Baran, M; Akkus, D; Sonmez, M F

    2015-07-01

    Adriamycin (ADR) is strongly teratogenic. We investigated the effects of ADR on apoptosis and the intensity of E-cadherin expression in developing kidneys. An experimental group of rats was given 2 mg/kg/day ADR on days 6-9 of gestation and a control group was given saline on the same schedule. Embryos were decapitated on days 13, 15, 17 and 19 of gestation, and processed and embedded in paraffin for routine light microscopy. Kidney specimens were stained with hematoxylin and eosin or periodic acid-Schiff, or immunostained for E-cadherin. Apoptosis was assessed using the TUNEL method. Weight loss and developmental deficiency were determined in embryos of the experimental group. ADR damaged or destroyed tubule epithelial cells, which caused apparent dilatation of the tubule lumen. Also, the brush borders of proximal tubules were damaged and glomerular spaces were dilated. ADR caused apoptosis of kidney tissue by days 15, 17 and 19 of development and E-cadherin expression was up-regulated during kidney development compared to controls. We found that ADR can cause apoptosis and increased E-cadherin expression in the developing rat kidney. E-cadherin expression and apoptosis may contribute to the development of ADR nephrotoxicity.

  13. Anatomic patterning in the expression of vestibulosympathetic reflexes

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; Yates, B. J.; McAllen, R. M.

    2000-01-01

    To investigate the possibility that expression of vestibulosympathetic reflexes (VSR) is related to a nerve's anatomic location rather than its target organ, we compared VSR recorded from the same type of postganglionic fiber [muscle vasoconstrictor (MVC)] located at three different rostrocaudal levels: hindlimb, forelimb, and face. Experiments were performed on chloralose-anesthetized cats, and vestibular afferents were stimulated electrically. Single MVC unit activity was extracted by spike shape analysis of few-fiber recordings, and unit discrimination was confirmed by autocorrelation. Poststimulus time histogram analysis revealed that about half of the neurons were initially inhibited by vestibular stimulation (type 1 response), whereas the other MVC fibers were initially strongly excited (type 2 response). MVC units with types 1 and 2 responses were present in the same nerve fascicle. Barosensitivity was equivalent in the two groups, but fibers showing type 1 responses fired significantly faster than those giving type 2 responses (0.29 +/- 0.04 vs. 0.20 +/- 0.02 Hz). Nerve fibers with type 1 responses were most common in the hindlimb (21 of 29 units) and least common in the face (2 of 11 units), the difference in relative proportion being significant (P < 0.05, chi(2) test). These results support the hypothesis that VSR are anatomically patterned.

  14. Protein expression patterns of the yeast mating response.

    PubMed

    Yuan, Haiyu; Zhang, Rongfei; Shao, Bin; Wang, Xuan; Ouyang, Qi; Hao, Nan; Luo, Chunxiong

    2016-06-13

    Microfluidics, in combination with time-lapse microscopy, is a transformative technology that significantly enhances our ability to monitor and probe biological processes in living cells. However, high-throughput microfluidic devices mostly require sophisticated preparatory and setup work and are thus hard to adopt by non-experts. In this work, we designed an easy-to-use microfluidic chip, which enables tracking of 48 GFP-tagged yeast strains, with each strain under two different stimulus conditions, in a single experiment. We used this technology to investigate the dynamic pattern of protein expression during the yeast mating differentiation response. High doses of pheromone induce cell cycle arrest and the shmoo morphology, whereas low doses of pheromone lead to elongation and chemotrophic growth. By systematically analyzing the protein dynamics of 156 pheromone-regulated genes, we identified groups of genes that are preferentially induced in response to low-dose pheromone (elongation during growth) or high-dose pheromone (shmoo formation and cell cycle arrest). The protein dynamics of these genes may provide insights into the mechanisms underlying the differentiation switch induced by different doses of pheromone. PMID:27177258

  15. Kidney development in cadherin-6 mutants: delayed mesenchyme-to-epithelial conversion and loss of nephrons.

    PubMed

    Mah, S P; Saueressig, H; Goulding, M; Kintner, C; Dressler, G R

    2000-07-01

    During nephrogenesis, dynamic changes in the expression of cell adhesion molecules are evident as epithelial structures differentiate from the induced mesenchyme. The cadherins are thought to play an important role in the metanephric mesenchyme, when cells aggregate to form the renal vesicle, a polarized epithelial structure which eventually fuses with the ureteric bud to generate a continuous nascent nephron. We have generated and analyzed mice with a targeted mutation in the gene encoding cadherin-6 (Cad-6), a type II cadherin expressed during early stages of nephrogenesis. These mice are viable and fertile, and they complete both early and late aspects of nephrogenesis. However, upon closer examination in vitro and in vivo, a fraction of the induced metanephric mesenchyme in Cad-6 mutant kidneys fails to form a fully polarized epithelium on schedule. Moreover, a significant number of the renal vesicles in Cad-6 mutant kidneys apparently fail to fuse to the ureteric bud. These alterations in epithelialization and fusion apparently lead to a loss of nephrons in the adult. These studies support the idea that cadherins play an essential role in the formation of epithelial structures and underscore the importance of timing in orchestrating the morphogenesis of complex epithelial tissues.

  16. Cadherin-9 Regulates Synapse-Specific Differentiation in the Developing Hippocampus

    PubMed Central

    Williams, Megan E.; Wilke, Scott A.; Daggett, Anthony; Davis, Elizabeth; Otto, Stefanie; Ravi, Deepak; Ripley, Beth; Bushong, Eric A.; Ellisman, Mark H.; Klein, Gerd; Ghosh, Anirvan

    2012-01-01

    SUMMARY Our understanding of mechanisms that regulate the differentiation of specific classes of synapses is limited. Here, we investigate the formation of synapses between hippocampal dentate gyrus (DG) neurons and their target CA3 neurons and find that DG neurons preferentially form synapses with CA3 rather than DG or CA1 neurons in culture, suggesting that specific interactions between DG and CA3 neurons drive synapse formation. Cadherin-9 is expressed selectively in DG and CA3 neurons, and downregulation of cadherin-9 in CA3 neurons leads to a selective decrease in the number and size of DG synapses onto CA3 neurons. In addition, loss of cadherin-9 from DG or CA3 neurons in vivo leads to striking defects in the formation and differentiation of the DG-CA3 mossy fiber synapse. These observations indicate that cadherin-9 bidirectionally regulates DG-CA3 synapse development and highlight the critical role of differentially expressed molecular cues in establishing specific connections in the mammalian brain. PMID:21867881

  17. Cadherin-2 Is Required Cell Autonomously for Collective Migration of Facial Branchiomotor Neurons

    PubMed Central

    Rebman, Jane K.; Kirchoff, Kathryn E.

    2016-01-01

    Collective migration depends on cell-cell interactions between neighbors that contribute to their overall directionality, yet the mechanisms that control the coordinated migration of neurons remains to be elucidated. During hindbrain development, facial branchiomotor neurons (FBMNs) undergo a stereotypic tangential caudal migration from their place of birth in rhombomere (r)4 to their final location in r6/7. FBMNs engage in collective cell migration that depends on neuron-to-neuron interactions to facilitate caudal directionality. Here, we demonstrate that Cadherin-2-mediated neuron-to-neuron adhesion is necessary for directional and collective migration of FBMNs. We generated stable transgenic zebrafish expressing dominant-negative Cadherin-2 (Cdh2ΔEC) driven by the islet1 promoter. Cell-autonomous inactivation of Cadherin-2 function led to non-directional migration of FBMNs and a defect in caudal tangential migration. Additionally, mosaic analysis revealed that Cdh2ΔEC-expressing FBMNs are not influenced to migrate caudally by neighboring wild-type FBMNs due to a defect in collective cell migration. Taken together, our data suggest that Cadherin-2 plays an essential cell-autonomous role in mediating the collective migration of FBMNs. PMID:27716840

  18. Kidney development in cadherin-6 mutants: delayed mesenchyme-to-epithelial conversion and loss of nephrons.

    PubMed

    Mah, S P; Saueressig, H; Goulding, M; Kintner, C; Dressler, G R

    2000-07-01

    During nephrogenesis, dynamic changes in the expression of cell adhesion molecules are evident as epithelial structures differentiate from the induced mesenchyme. The cadherins are thought to play an important role in the metanephric mesenchyme, when cells aggregate to form the renal vesicle, a polarized epithelial structure which eventually fuses with the ureteric bud to generate a continuous nascent nephron. We have generated and analyzed mice with a targeted mutation in the gene encoding cadherin-6 (Cad-6), a type II cadherin expressed during early stages of nephrogenesis. These mice are viable and fertile, and they complete both early and late aspects of nephrogenesis. However, upon closer examination in vitro and in vivo, a fraction of the induced metanephric mesenchyme in Cad-6 mutant kidneys fails to form a fully polarized epithelium on schedule. Moreover, a significant number of the renal vesicles in Cad-6 mutant kidneys apparently fail to fuse to the ureteric bud. These alterations in epithelialization and fusion apparently lead to a loss of nephrons in the adult. These studies support the idea that cadherins play an essential role in the formation of epithelial structures and underscore the importance of timing in orchestrating the morphogenesis of complex epithelial tissues. PMID:10864459

  19. Pancreatic Cancer Cell Glycosylation Regulates Cell Adhesion and Invasion through the Modulation of α2β1 Integrin and E-Cadherin Function

    PubMed Central

    Bassagañas, Sònia; Carvalho, Sandra; Dias, Ana M.; Pérez-Garay, Marta; Ortiz, M. Rosa; Figueras, Joan; Reis, Celso A.; Pinho, Salomé S.; Peracaula, Rosa

    2014-01-01

    In our previous studies we have described that ST3Gal III transfected pancreatic adenocarcinoma Capan-1 and MDAPanc-28 cells show increased membrane expression levels of sialyl-Lewis x (SLex) along with a concomitant decrease in α2,6-sialic acid compared to control cells. Here we have addressed the role of this glycosylation pattern in the functional properties of two glycoproteins involved in the processes of cancer cell invasion and migration, α2β1 integrin, the main receptor for type 1 collagen, and E-cadherin, responsible for cell-cell contacts and whose deregulation determines cell invasive capabilities. Our results demonstrate that ST3Gal III transfectants showed reduced cell-cell aggregation and increased invasive capacities. ST3Gal III transfected Capan-1 cells exhibited higher SLex and lower α2,6-sialic acid content on the glycans of their α2β1 integrin molecules. As a consequence, higher phosphorylation of focal adhesion kinase tyrosine 397, which is recognized as one of the first steps of integrin-derived signaling pathways, was observed in these cells upon adhesion to type 1 collagen. This molecular mechanism underlies the increased migration through collagen of these cells. In addition, the pancreatic adenocarcinoma cell lines as well as human pancreatic tumor tissues showed colocalization of SLex and E-cadherin, which was higher in the ST3Gal III transfectants. In conclusion, changes in the sialylation pattern of α2β1 integrin and E-cadherin appear to influence the functional role of these two glycoproteins supporting the role of these glycans as an underlying mechanism regulating pancreatic cancer cell adhesion and invasion. PMID:24878505

  20. Involvement of Members of the Cadherin Superfamily in Cancer

    PubMed Central

    Berx, Geert; van Roy, Frans

    2009-01-01

    We review the role of cadherins and cadherin-related proteins in human cancer. Cellular and animal models for human cancer are also dealt with whenever appropriate. E-cadherin is the prototype of the large cadherin superfamily and is renowned for its potent malignancy suppressing activity. Different mechanisms for inactivating E-cadherin/CDH1 have been identified in human cancers: inherited and somatic mutations, aberrant protein processing, increased promoter methylation, and induction of transcriptional repressors such as Snail and ZEB family members. The latter induce epithelial mesenchymal transition, which is also associated with induction of “mesenchymal” cadherins, a hallmark of tumor progression. VE-cadherin/CDH5 plays a role in tumor-associated angiogenesis. The atypical T-cadherin/CDH13 is often silenced in cancer cells but up-regulated in tumor vasculature. The review also covers the status of protocadherins and several other cadherin-related molecules in human cancer. Perspectives for emerging cadherin-related anticancer therapies are given. PMID:20457567

  1. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain

    PubMed Central

    Chou, Shen-Ju; Wang, Chindi; Sintupisut, Nardnisa; Niou, Zhen-Xian; Lin, Chih-Hsu; Li, Ker-Chau; Yeang, Chen-Hsiang

    2016-01-01

    Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns. Second, standard tools of expression analysis such as matrix factorization can capture those patterns but do not explicitly incorporate spatial dependency. To overcome those limitations, we proposed a computational method to detect recurrent patterns in the spatial-temporal gene expression data of developing mouse brains. We demonstrated that regional distinction in brain development could be revealed by localized gene expression patterns. The patterns expressed in the forebrain, medullary and pontomedullary, and basal ganglia are enriched with genes involved in forebrain development, locomotory behavior, and dopamine metabolism respectively. In addition, the timing of global gene expression patterns reflects the general trends of molecular events in mouse brain development. Furthermore, we validated functional implications of the inferred patterns by showing genes sharing similar spatial-temporal expression patterns with Lhx2 exhibited differential expression in the embryonic forebrains of Lhx2 mutant mice. These analysis outcomes confirm the utility of recurrent expression patterns in studying brain development. PMID:26786896

  2. FRK inhibits migration and invasion of human glioma cells by promoting N-cadherin/β-catenin complex formation.

    PubMed

    Shi, Qiong; Song, Xu; Wang, Jun; Gu, Jia; Zhang, Weijian; Hu, Jinxia; Zhou, Xiuping; Yu, Rutong

    2015-01-01

    Fyn-related kinase (FRK), a member of Src-related tyrosine kinases, is recently reported to function as a potent tumor suppressor in several cancer types. Our previous study has also shown that FRK over-expression inhibited the migration and invasion of glioma cells. However, the mechanism of FRK effect on glioma cell migration and invasion, a feature of human malignant gliomas, is still not clear. In this study, we found that FRK over-expression increased the protein level of N-cadherin, but not E-cadherin. Meanwhile, FRK over-expression promoted β-catenin translocation to the plasma membrane, where it formed complex with N-cadherin, while decreased β-catenin level in the nuclear fraction. In addition, down-regulation of N-cadherin by siRNA promoted the migration and invasion of glioma U251 and U87 cells and abolished the inhibitory effect of FRK on glioma cell migration and invasion. In summary, these results indicate that FRK inhibits migration and invasion of human glioma cells by promoting N-cadherin/β-catenin complex formation.

  3. Acute and chronic cadmium exposure promotes E-cadherin degradation in MCF7 breast cancer cells.

    PubMed

    Ponce, Esmeralda; Louie, Maggie C; Sevigny, Mary B

    2015-10-01

    Cadmium is an environmental carcinogen that usually enters the body at minute concentrations through diet or cigarette smoke and bioaccumulates in soft tissues. In past studies, cadmium has been shown to contribute to the development of more aggressive cancer phenotypes including increased cell migration and invasion. This study aims to determine if cadmium exposure-both acute and chronic-contributes to breast cancer progression by interfering with the normal functional relationship between E-cadherin and β-catenin. An MCF7 breast cancer cell line (MCF7-Cd) chronically exposed to 10(-7)  M CdCl2 was previously developed and used as a model system to study chronic exposures, whereas parental MCF7 cells exposed to 10(-6)  M CdCl2 for short periods of time were used to study acute exposures. Cadmium exposure of MCF7 cells led to the degradation of the E-cadherin protein via the ubiquitination pathway. This resulted in fewer E-cadherin/β-catenin complexes and the relocation of active β-catenin to the nucleus, where it interacted with transcription factor TCF-4 to modulate gene expression. Interestingly, only cells chronically exposed to cadmium showed a significant decrease in the localization of β-catenin to the plasma membrane and an increased distance between cells. Our data suggest that cadmium exposure promotes breast cancer progression by (1) down-regulating E-cadherin, thus decreasing the number of E-cadherin/β-catenin adhesion complexes, and (2) enhancing the nuclear translocation of β-catenin to increase expression of cancer-promoting proteins (i.e., c-Jun and cyclin D1).

  4. Variability in the cadherin gene in an Ostrinia nubilalis strain selected for Cry1Ab resistance.

    PubMed

    Bel, Yolanda; Siqueira, Herbert A A; Siegfried, Blair D; Ferré, Juan; Escriche, Baltasar

    2009-03-01

    Transgenic corn expressing Cry1Ab (a Bacillus thuringiensis toxin) is highly effective in the control of Ostrinia nubilalis. For its toxic action, Cry1Ab has to bind to specific insect midgut proteins. To date, in three Lepidoptera species resistance to a Cry1A toxin has been conferred by mutations in cadherin, a protein of the Lepidoptera midgut membrane. The implication of cadherin in the resistance of an Ostrinia nubilalis colony (Europe-R) selected with Bacillus thuringiensis Cry1Ab protoxin was investigated. Several major mutations in the cadherin (cdh) gene were found, which introduced premature termination codons and/or large deletions (ranging from 1383 to 1701bp). The contribution of these major mutations to the resistance was analyzed in resistant individuals that survived exposure to a high concentration of Cry1Ab protoxin. The results indicated that the presence of major mutations was drastically reduced in individuals that survived exposure. Previous inheritance experiments with the Europe-R strain indicated the involvement of more than one genetic locus and reduced amounts of the cadherin receptor. The results of the present work support a polygenic inheritance of resistance in the Europe-R strain, in which mutations in the cdh gene would contribute to resistance by means of an additive effect. PMID:19114103

  5. N-cadherin negatively regulates collective Drosophila glial migration through actin cytoskeleton remodeling.

    PubMed

    Kumar, Arun; Gupta, Tripti; Berzsenyi, Sara; Giangrande, Angela

    2015-03-01

    Cell migration is an essential and highly regulated process. During development, glia cells and neurons migrate over long distances - in most cases collectively - to reach their final destination and build the sophisticated architecture of the nervous system, the most complex tissue of the body. Collective migration is highly stereotyped and efficient, defects in the process leading to severe human diseases that include mental retardation. This dynamic process entails extensive cell communication and coordination, hence, the real challenge is to analyze it in the entire organism and at cellular resolution. We here investigate the impact of the N-cadherin adhesion molecule on collective glial migration, by using the Drosophila developing wing and cell-type specific manipulation of gene expression. We show that N-cadherin timely accumulates in glial cells and that its levels affect migration efficiency. N-cadherin works as a molecular brake in a dosage-dependent manner, by negatively controlling actin nucleation and cytoskeleton remodeling through α/β catenins. This is the first in vivo evidence for N-cadherin negatively and cell autonomously controlling collective migration.

  6. The Role of E-Cadherin in Maintaining the Barrier Function of Corneal Epithelium after Treatment with Cultured Autologous Oral Mucosa Epithelial Cell Sheet Grafts for Limbal Stem Deficiency

    PubMed Central

    Hoft, Richard H.; Wood, Andrew; Oliva, Joan; Niihara, Hope; Makalinao, Andrew; Thropay, Jacquelyn; Pan, Derek; Tiger, Kumar; Garcia, Julio; Laporte, Amanda; French, Samuel W.; Niihara, Yutaka

    2016-01-01

    The role of E-cadherin in epithelial barrier function of cultured autologous oral mucosa epithelial cell sheet (CAOMECS) grafts was examined. CAOMECS were cultured on a temperature-responsive surface and grafted onto rabbit corneas with Limbal Stem Cell Deficiency (LSCD). E-cadherin levels were significantly higher in CAOMECS compared to normal and LSCD epithelium. Beta-catenin colocalized with E-cadherin in CAOMECS cell membranes while phosphorylated beta-catenin was significantly increased. ZO-1, occludin, and Cnx43 were also strongly expressed in CAOMECS. E-cadherin and beta-catenin localization at the cell membrane was reduced in LSCD corneas, while CAOMECS-grafted corneas showed a restoration of E-cadherin and beta-catenin expression. LSCD corneas did not show continuous staining for ZO-1 or for Cnx43, while CAOMECS-grafted corneas showed a positive expression of ZO-1 and Cnx43. Cascade Blue® hydrazide did not pass through CAOMECS. Because E-cadherin interactions are calcium-dependent, EGTA was used to chelate calcium and disrupt cell adhesion. EGTA-treated CAOMECS completely detached from cell culture surface, and E-cadherin levels were significantly decreased. In conclusion, E cadherin high expression contributed to CAOMECS tight and gap junction protein recruitment at the cell membrane, thus promoting cellular adhesion and a functional barrier to protect the ocular surface. PMID:27777792

  7. The postnatal accumulation of junctional E-cadherin is inversely correlated with the capacity for supporting cells to convert directly into sensory hair cells in mammalian balance organs.

    PubMed

    Collado, Maria Sol; Thiede, Benjamin R; Baker, Wendy; Askew, Charles; Igbani, Lisa M; Corwin, Jeffrey T

    2011-08-17

    Mammals experience permanent impairments from hair cell (HC) losses, but birds and other non-mammals quickly recover hearing and balance senses after supporting cells (SCs) give rise to replacement HCs. Avian HC epithelia express little or no E-cadherin, and differences in the thickness of F-actin belts at SC junctions strongly correlate with different species' capacities for HC replacement, so we investigated junctional cadherins in human and murine ears. We found strong E-cadherin expression at SC-SC junctions that increases more than sixfold postnatally in mice. When we cultured utricles from young mice with γ-secretase inhibitors (GSIs), striolar SCs completely internalized their E-cadherin, without affecting N-cadherin. Hes and Hey expression also decreased and the SCs began to express Atoh1. After 48 h, those SCs expressed myosins VI and VIIA, and by 72 h, they developed hair bundles. However, some scattered striolar SCs retained E-cadherin and the SC phenotype. In extrastriolar regions, the vast majority of SCs also retained E-cadherin and failed to convert into HCs even after long GSI treatments. Microscopic measurements revealed that the junctions between extrastriolar SCs were more developed than those between striolar SCs. In GSI-treated utricles as old as P12, differentiated striolar SCs converted into HCs, but such responses declined with age and ceased by P16. Thus, temporal and spatial differences in postnatal SC-to-HC phenotype conversion capacity are linked to the structural attributes of E-cadherin containing SC junctions in mammals, which differ substantially from their counterparts in non-mammalian vertebrates that readily recover from hearing and balance deficits through hair cell regeneration.

  8. The Postnatal Accumulation of Junctional E-cadherin Is Inversely Correlated with the Capacity for Supporting Cells to Convert Directly into Sensory Hair Cells in Mammalian Balance Organs

    PubMed Central

    Collado, Maria Sol; Thiede, Benjamin R.; Baker, Wendy; Askew, Charles; Igbani, Lisa M.; Corwin, Jeffrey T.

    2011-01-01

    Mammals experience permanent impairments from hair cell (HC) losses, but birds and other non-mammals quickly recover hearing and balance senses after supporting cells (SCs) give rise to replacement HCs. Avian HC epithelia express little or no E-cadherin, and differences in the thickness of F-actin belts at SC junctions strongly correlate with different species’ capacities for HC replacement, so we investigated junctional cadherins in human and murine ears. We found strong E-cadherin expression at SC-SC junctions that increases >6-fold postnatally in mice. When we cultured utricles from young mice with γ-secretase inhibitors (GSIs), striolar SCs completely internalized their E-cadherin, without affecting N-cadherin. Hes and Hey expression also decreased and the SCs began to express Atoh1. After 48 h, those SCs expressed myosins VI and VIIA, and by 72 h they developed hair bundles. However, some scattered striolar SCs retained E-cadherin and the SC phenotype. In extrastriolar regions the vast majority of SCs also retained E-cadherin and failed to convert into HCs even after long GSI treatments. Microscopic measurements revealed that the junctions between extrastriolar SCs were more developed than those between striolar SCs. In GSI-treated utricles as old as P12, differentiated striolar SCs converted into HCs, but such responses declined with age and ceased by P16. Thus, temporal and spatial differences in postnatal SC-to-HC phenotype conversion capacity are linked to the structural attributes of E-cadherin containing SC junctions in mammals, which differ substantially from their counterparts in non-mammalian vertebrates that readily recover from hearing and balance deficits through hair cell regeneration. PMID:21849546

  9. Restoring E-cadherin-mediated cell-cell adhesion increases PTEN protein level and stability in human breast carcinoma cells

    SciTech Connect

    Li Zengxia; Wang Liying; Zhang Wen; Fu Yi; Zhao Hongbo; Hu Yali; Prins, Bram Peter; Zha Xiliang

    2007-11-09

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a well-characterized tumor suppressor that negatively regulates cell growth and survival. Despite the critical role of PTEN in cell signaling, the mechanisms of its regulation are still under investigation. We reported here that PTEN expression could be controlled by overexpression or knock-down of E-cadherin in several mammary carcinoma cell lines. Furthermore, we showed that the accumulation of PTEN protein in E-cadherin overexpressing cells was due to increased PTEN protein stability rather than the regulation of its transcription. The proteasome-dependent PTEN degradation pathway was impaired after restoring E-cadherin expression. Moreover, maintenance of E-cadherin mediated cell-cell adhesion was necessary for its regulating PTEN. Altogether, our results suggested that E-cadherin mediated cell-cell adhesion was essential for preventing the proteasome degradation of PTEN, which might explain how breast carcinoma cells which lost cell-cell contact proliferate rapidly and are prone to metastasis.

  10. Interaction of E-cadherin and PTEN regulates morphogenesis and growth arrest in human mammary epithelial cells

    SciTech Connect

    Fournier, Marcia V.; Fata, Jimmie E.; Martin, Katherine J.; Yaswen, Paul; Bissell, Mina J.

    2009-06-03

    PTEN is a dual function phosphatase with tumor suppressor function compromised in a wide spectrum of cancers. Because tissue polarity and architecture are crucial modulators of normal and malignant behavior, we postulated that PTEN may play a role in maintenance of tissue integrity. We used two non-malignant human mammary epithelial cell lines (HMECs) that form polarized, growth-arrested structures (acini) when cultured in 3-dimensional laminin-rich extracellular matrix gels (3D lrECM). As acini begin to form, PTEN accumulates in both the cytoplasm, and at cell-cell contacts where it colocalizes with E-cadherin/{beta}-catenin complex. Reduction of PTEN levels by shRNA in lrECM prevents formation of organized breast acini and disrupts growth arrest. Importantly, disruption of acinar polarity and cell-cell contact by E-cadherin function-blocking antibodies reduces endogenous PTEN protein levels and inhibits its accumulation at cell-cell contacts. Conversely, in SKBR3 breast cancer cells lacking endogenous E-cadherin expression, exogenous introduction of E-cadherin gene causes induction of PTEN expression and its accumulation at sites of cell interactions. These studies provide evidence that E-cadherin regulates both the PTEN protein levels and its recruitment to cell-cell junctions in 3D lrECM indicating a dynamic reciprocity between architectural integrity and the levels and localization of PTEN. This interaction thus appears to be a critical integrator of proliferative and morphogenetic signaling in breast epithelial cells.

  11. VE-cadherin is a critical molecule for trophoblast-endothelial cell interaction in decidual spiral arteries

    SciTech Connect

    Bulla, Roberta; Villa, Antonello; Bossi, Fleur; Cassetti, Arianna; Radillo, Oriano; Spessotto, Paola; De Seta, Francesco; Guaschino, Secondo; Tedesco, Francesco . E-mail: tedesco@univ.trieste.it

    2005-02-01

    Fetal cytotrophoblasts colonize the decidual spiral arteries during pregnancy and partially replace the endothelium by an as yet unknown mechanism. To clarify this issue, we cocultured trophoblast cells (TCs) and decidual endothelial cells (DECs) isolated from first trimester placentae and found by electron microscopic analysis that TCs adhered to DECs and migrated through the interendothelial junctions within 24 h. Since extravillous TCs were shown by FACS analysis to express vascular-endothelial (VE)-cadherin and platelet endothelial cell adhesion molecule-1 (PECAM)-1, we investigated the role of these junctional molecules in TC adhesion to DECs and transendothelial migration of cytotrophoblasts. Both VE-cadherin and PECAM-1 were present at the contact sites between TCs and DECs in decidual sections. TC adhesion and migration were markedly inhibited by mAbs to VE-cadherin and marginally by mAb to PECAM-1. Increased expression of VE-cadherin was observed at the contact areas between TCs and DECs, whereas PECAM-1 was found to be redistributed from intercellular junctions. The induction of apoptosis of DECs by TCs, as the mechanism responsible for their replacement, was ruled out by the negative staining with TUNEL of DECs cocultured with TCs and the absence of DNA fragmentation. In conclusion, VE-cadherin is involved in transendothelial migration of TCs, and replacement of DECs by TCs is not the result of apoptosis.

  12. The inhibition of cell proliferation using silencing of N-cadherin gene by siRNA process in human melanoma cell lines.

    PubMed

    Ciołczyk-Wierzbicka, D; Gil, D; Laidler, P

    2012-01-01

    Malignant melanoma is a disease with high mortality rate caused by rapid metastasis. Cell motility is physically and biochemically restricted by cadherin-mediated cell interactions and signalling pathways, and alterations in cadherin expression strongly correlate with E to N-cadherin switch as well as the metastasis and progression of tumours. Contrary to E-cadherin, N-cadherin plays an important role in stimulating processes of cell division, migration, differentiation and death. In this study we investigated the role of N-cadherin in proliferation and AKT, ERK, beta-catenin signalling pathway in human melanoma cells: WM793(VGP), WM115(VGP) from the primary tumor site, as well as Lu1205(lung) and WM266-4(skin) from metastatic sites. N-cadherin, pAKT(S473), β-catenin, pERK1/2(T202/Y204), cyclin D1, cyclin D3, cyclin-dependent kinases CDK4, CDK6, and p15, p16, p21, p27 inhibitors expression was determined by western blot analysis. The study on proliferation of cells was performed with the use of BrdU incorporation and crystal violet staining assays. Knock-out of N-cadherin gene expression by siRNA process reduced the expression of: pAKT(S473), pERK1/2(T202/Y204), betacatenin, cyclin D1, cyclin D3, cyclin-dependent kinases CDK4, CDK6 while increasing expression of cell cycle inhibitors p21 and p27, and significantly decreased cell proliferation (50-70%). The collected data indicate that N-cadherin mediates the effect of cell cycle in G1 phase by AKT, β-catenin, and ERK signalling pathway. These results suggest that increased expression of N-cadherin significantly contributes to the increased invasive potential of melanoma cells. Silencing of N-cadherin arrests cell growth at G1 phase and inhibits the entry into S-phase which is of great importance as to its possible future use in cancer treatment. PMID:22300088

  13. Cadherin 6 promotes neural crest cell detachment via F-actin regulation and influences active Rho distribution during epithelial-to-mesenchymal transition

    PubMed Central

    Clay, Matthew R.; Halloran, Mary C.

    2014-01-01

    The epithelial-to-mesenchymal transition (EMT) is a complex change in cell phenotype that is important for cell migration, morphogenesis and carcinoma metastasis. Loss of epithelial cell adhesion and tight regulation of cadherin adhesion proteins are crucial for EMT. Cells undergoing EMT often display cadherin switching, where they downregulate one cadherin and induce expression of another. However, the functions of the upregulated cadherins and their effects on cell motility are poorly understood. Neural crest cells (NCCs), which undergo EMT during development, lose N-cadherin and upregulate Cadherin 6 (Cdh6) prior to EMT. Cdh6 has been suggested to suppress EMT via cell adhesion, but also to promote EMT by mediating pro-EMT signals. Here, we determine novel roles for Cdh6 in generating cell motility during EMT. We use live imaging of NCC behavior in vivo to show that Cdh6 promotes detachment of apical NCC tails, an important early step of EMT. Furthermore, we show that Cdh6 affects spatiotemporal dynamics of F-actin and active Rho GTPase, and that Cdh6 is required for accumulation of F-actin in apical NCC tails during detachment. Moreover, Cdh6 knockdown alters the subcellular distribution of active Rho, which is known to promote localized actomyosin contraction that is crucial for apical NCC detachment. Together, these data suggest that Cdh6 is an important determinant of where subcellular actomyosin forces are generated during EMT. Our results also identify mechanisms by which an upregulated cadherin can generate cell motility during EMT. PMID:24917505

  14. Coupled Positive and Negative Feedbacks Produce Diverse Gene Expression Patterns in Colonies

    PubMed Central

    Mitarai, Namiko; Jensen, Mogens Høgh

    2015-01-01

    ABSTRACT Formation of patterns is a common feature in the development of multicellular organism as well as of microbial communities. To investigate the formation of gene expression patterns in colonies, we build a mathematical model of two-dimensional colony growth, where cells carry a coupled positive-and-negative-feedback circuit. We demonstrate that the model can produce sectored, target (concentric), uniform, and scattered expression patterns of regulators, depending on gene expression dynamics and nutrient diffusion. We reconstructed the same regulatory structure in Escherichia coli cells and found gene expression patterns on the surface of colonies similar to the ones produced by the computer simulations. By comparing computer simulations and experimental results, we observed that very simple rules of gene expression can yield a spectrum of well-defined patterns in a growing colony. Our results suggest that variations of the protein content among cells lead to a high level of heterogeneity in colonies. Importance Formation of patterns is a common feature in the development of microbial communities. In this work, we show that a simple genetic circuit composed of a positive-feedback loop and a negative-feedback loop can produce diverse expression patterns in colonies. We obtained similar sets of gene expression patterns in the simulations and in the experiments. Because the combination of positive feedback and negative feedback is common in intracellular molecular networks, our results suggest that the protein content of cells is highly diversified in colonies. PMID:25852158

  15. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components

    PubMed Central

    Kim, Nam-Gyun; Koh, Eunjin; Chen, Xiao; Gumbiner, Barry M.

    2011-01-01

    Contact inhibition of cell growth is essential for embryonic development and maintenance of tissue architecture in adult organisms, and the growth of tumors is characterized by a loss of contact inhibition of proliferation. The recently identified Hippo signaling pathway has been implicated in contact inhibition of proliferation as well as organ size control. The modulation of the phosphorylation and nuclear localization of Yes-associated protein (YAP) by the highly conserved kinase cascade of the Hippo signaling pathway has been intensively studied. However, cell-surface receptors regulating the Hippo signaling pathway in mammals are not well understood. In this study, we show that Hippo signaling pathway components are required for E-cadherin–dependent contact inhibition of proliferation. Knockdown of the Hippo signaling components or overexpression of YAP inhibits the decrease in cell proliferation caused by E-cadherin homophilic binding at the cell surface, independent of other cell–cell interactions. We also demonstrate that the E-cadherin/catenin complex functions as an upstream regulator of the Hippo signaling pathway in mammalian cells. Expression of E-cadherin in MDA-MB-231 cells restores the density-dependent regulation of YAP nuclear exclusion. Knockdown of β-catenin in densely cultured MCF10A cells, which mainly depletes E-cadherin–bound β-catenin, induces a decrease in the phosphorylation of S127 residue of YAP and its nuclear accumulation. Moreover, E-cadherin homophilic binding independent of other cell interactions is sufficient to control the subcellular localization of YAP. Therefore, Our results indicate that, in addition to its role in cell–cell adhesion, E-cadherin-mediated cell–cell contact directly regulates the Hippo signaling pathway to control cell proliferation. PMID:21730131

  16. Network Security via Biometric Recognition of Patterns of Gene Expression

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C.

    2016-01-01

    Molecular biology provides the ability to implement forms of information and network security completely outside the bounds of legacy security protocols and algorithms. This paper addresses an approach which instantiates the power of gene expression for security. Molecular biology provides a rich source of gene expression and regulation mechanisms, which can be adopted to use in the information and electronic communication domains. Conventional security protocols are becoming increasingly vulnerable due to more intensive, highly capable attacks on the underlying mathematics of cryptography. Security protocols are being undermined by social engineering and substandard implementations by IT organizations. Molecular biology can provide countermeasures to these weak points with the current security approaches. Future advances in instruments for analyzing assays will also enable this protocol to advance from one of cryptographic algorithms to an integrated system of cryptographic algorithms and real-time expression and assay of gene expression products.

  17. Patterns of miRNA expression in Arctic charr development.

    PubMed

    Kapralova, Kalina H; Franzdóttir, Sigrídur Rut; Jónsson, Hákon; Snorrason, Sigurður S; Jónsson, Zophonías O

    2014-01-01

    Micro-RNAs (miRNAs) are now recognized as a major class of developmental regulators. Sequences of many miRNAs are highly conserved, yet they often exhibit temporal and spatial heterogeneity in expression among species and have been proposed as an important reservoir for adaptive evolution and divergence. With this in mind we studied miRNA expression during embryonic development of offspring from two contrasting morphs of the highly polymorphic salmonid Arctic charr (Salvelinus alpinus), a small benthic morph from Lake Thingvallavatn (SB) and an aquaculture stock (AC). These morphs differ extensively in morphology and adult body size. We established offspring groups of the two morphs and sampled at several time points during development. Four time points (3 embryonic and one just before first feeding) were selected for high-throughput small-RNA sequencing. We identified a total of 326 conserved and 427 novel miRNA candidates in Arctic charr, of which 51 conserved and 6 novel miRNA candidates were differentially expressed among developmental stages. Furthermore, 53 known and 19 novel miRNAs showed significantly different levels of expression in the two contrasting morphs. Hierarchical clustering of the 53 conserved miRNAs revealed that the expression differences are confined to the embryonic stages, where miRNAs such as sal-miR-130, 30, 451, 133, 26 and 199a were highly expressed in AC, whereas sal-miR-146, 183, 206 and 196a were highly expressed in SB embryos. The majority of these miRNAs have previously been found to be involved in key developmental processes in other species such as development of brain and sensory epithelia, skeletogenesis and myogenesis. Four of the novel miRNA candidates were only detected in either AC or SB. miRNA candidates identified in this study will be combined with available mRNA expression data to identify potential targets and involvement in developmental regulation. PMID:25170615

  18. Patterns of MiRNA Expression in Arctic Charr Development

    PubMed Central

    Kapralova, Kalina H.; Franzdóttir, Sigrídur Rut; Jónsson, Hákon; Snorrason, Sigurður S.; Jónsson, Zophonías O.

    2014-01-01

    Micro-RNAs (miRNAs) are now recognized as a major class of developmental regulators. Sequences of many miRNAs are highly conserved, yet they often exhibit temporal and spatial heterogeneity in expression among species and have been proposed as an important reservoir for adaptive evolution and divergence. With this in mind we studied miRNA expression during embryonic development of offspring from two contrasting morphs of the highly polymorphic salmonid Arctic charr (Salvelinus alpinus), a small benthic morph from Lake Thingvallavatn (SB) and an aquaculture stock (AC). These morphs differ extensively in morphology and adult body size. We established offspring groups of the two morphs and sampled at several time points during development. Four time points (3 embryonic and one just before first feeding) were selected for high-throughput small-RNA sequencing. We identified a total of 326 conserved and 427 novel miRNA candidates in Arctic charr, of which 51 conserved and 6 novel miRNA candidates were differentially expressed among developmental stages. Furthermore, 53 known and 19 novel miRNAs showed significantly different levels of expression in the two contrasting morphs. Hierarchical clustering of the 53 conserved miRNAs revealed that the expression differences are confined to the embryonic stages, where miRNAs such as sal-miR-130, 30, 451, 133, 26 and 199a were highly expressed in AC, whereas sal-miR-146, 183, 206 and 196a were highly expressed in SB embryos. The majority of these miRNAs have previously been found to be involved in key developmental processes in other species such as development of brain and sensory epithelia, skeletogenesis and myogenesis. Four of the novel miRNA candidates were only detected in either AC or SB. miRNA candidates identified in this study will be combined with available mRNA expression data to identify potential targets and involvement in developmental regulation. PMID:25170615

  19. Cortical interneurons migrating on a pure substrate of N-cadherin exhibit fast synchronous centrosomal and nuclear movements and reduced ciliogenesis

    PubMed Central

    Luccardini, Camilla; Leclech, Claire; Viou, Lucie; Rio, Jean-Paul; Métin, Christine

    2015-01-01

    The embryonic development of the cortex involves a phase of long distance migration of interneurons born in the basal telencephalon. Interneurons first migrate tangentially and then reorient their trajectories radially to enter the developing cortex. We have shown that migrating interneurons can assemble a primary cilium, which maintains the centrosome to the plasma membrane and processes signals to control interneuron trajectory (Baudoin et al., 2012). In the developing cortex, N-cadherin is expressed by migrating interneurons and by cells in their migratory pathway. N-cadherin promotes the motility and maintains the polarity of tangentially migrating interneurons (Luccardini et al., 2013). Because N-cadherin is an important factor that regulates the migration of medial ganglionic eminence (MGE) cells in vivo, we further characterized the motility and polarity of MGE cells on a substrate that only comprises this protein. MGE cells migrating on a N-cadherin substrate were seven times faster than on a laminin substrate and two times faster than on a substrate of cortical cells. A primary cilium was much less frequently observed on MGE cells migrating on N-cadherin than on laminin. Nevertheless, the mature centriole (MC) frequently docked to the plasma membrane in MGE cells migrating on N-cadherin, suggesting that plasma membrane docking is a basic feature of the centrosome in migrating MGE cells. On the N-cadherin substrate, centrosomal and nuclear movements were remarkably synchronous and the centrosome remained near the nucleus. Interestingly, MGE cells with cadherin invalidation presented centrosomal movements no longer coordinated with nuclear movements. In summary, MGE cells migrating on a pure substrate of N-cadherin show fast, coordinated nuclear and centrosomal movements, and rarely present a primary cilium. PMID:26283922

  20. Patterned electrical activity modulates sodium channel expression in sensory neurons.

    PubMed

    Klein, Joshua P; Tendi, Elisabetta A; Dib-Hajj, Sulayman D; Fields, R Douglas; Waxman, Stephen G

    2003-10-15

    Peripheral nerve injury induces changes in the level of gene expression for sodium channels Nav1.3, Nav1.8, and Nav1.9 within dorsal root ganglion (DRG) neurons, which may contribute to the development of hyperexcitability, ectopic neuronal discharge, and neuropathic pain. The mechanism of this change in sodium channel expression is unclear. Decreased availability of neurotrophic factors following axotomy contributes to these changes in gene transcription, but the question of whether changes in intrinsic neuronal activity levels alone can trigger changes in the expression of these sodium channels has not been addressed. We examined the effect of electrical stimulation on the expression of Nav1.3, Nav1.8, and Nav1.9 by using cultured embryonic mouse sensory neurons under conditions in which nerve growth factor (NGF) was not limiting. Expression of Nav1.3 was not significantly changed following stimulation. In contrast, we observed activity-dependent down-regulation of Nav1.8 and Nav1.9 mRNA and protein levels after stimulation, as demonstrated by quantitative polymerase chain reaction and immunocytochemistry. These results show that a change in neuronal activity can alter the expression of sodium channel genes in a subtype-specific manner, via a mechanism independent of NGF withdrawal. PMID:14515348

  1. Structural Determinants of Cadherin-23 Function in Hearing and Deafness

    SciTech Connect

    Sotomayor, Marcos; Weihofen, Wilhelm A.; Gaudet, Rachelle; Corey, David P.

    2010-06-21

    The hair-cell tip link, a fine filament directly conveying force to mechanosensitive transduction channels, is composed of two proteins, protocadherin-15 and cadherin-23, whose mutation causes deafness. However, their molecular structure, elasticity, and deafness-related structural defects are unknown. We present crystal structures of the first and second extracellular cadherin repeats of cadherin-23. Overall, structures show typical cadherin folds, but reveal an elongated N terminus that precludes classical cadherin interactions and contributes to an N-terminal Ca{sup 2+}-binding site. The deafness mutation D101G, in the linker region between the repeats, causes a slight bend between repeats and decreases Ca{sup 2+} affinity. Molecular dynamics simulations suggest that cadherin-23 repeats are stiff and that either removing Ca{sup 2+} or mutating Ca{sup 2+}-binding residues reduces rigidity and unfolding strength. The structures define an uncharacterized cadherin family and, with simulations, suggest mechanisms underlying inherited deafness and how cadherin-23 may bind with itself and with protocadherin-15 to form the tip link.

  2. Human speech- and reading-related genes display partially overlapping expression patterns in the marmoset brain.

    PubMed

    Kato, Masaki; Okanoya, Kazuo; Koike, Taku; Sasaki, Erika; Okano, Hideyuki; Watanabe, Shigeru; Iriki, Atsushi

    2014-06-01

    Language is a characteristic feature of human communication. Several familial language impairments have been identified, and candidate genes for language impairments already isolated. Studies comparing expression patterns of these genes in human brain are necessary to further understanding of these genes. However, it is difficult to examine gene expression in human brain. In this study, we used a non-human primate (common marmoset; Callithrix jacchus) as a biological model of the human brain to investigate expression patterns of human speech- and reading-related genes. Expression patterns of speech disorder- (FoxP2, FoxP1, CNTNAP2, and CMIP) and dyslexia- (ROBO1, DCDC2, and KIAA0319) related genes were analyzed. We found the genes displayed overlapping expression patterns in the ocular, auditory, and motor systems. Our results enhance understanding of the molecular mechanisms underlying language impairments.

  3. Systemic and cell type-specific gene expression patterns in scleroderma skin

    PubMed Central

    Whitfield, Michael L.; Finlay, Deborah R.; Murray, John Isaac; Troyanskaya, Olga G.; Chi, Jen-Tsan; Pergamenschikov, Alexander; McCalmont, Timothy H.; Brown, Patrick O.; Botstein, David; Connolly, M. Kari

    2003-01-01

    We used DNA microarrays representing >12,000 human genes to characterize gene expression patterns in skin biopsies from individuals with a diagnosis of systemic sclerosis with diffuse scleroderma. We found consistent differences in the patterns of gene expression between skin biopsies from individuals with scleroderma and those from normal, unaffected individuals. The biopsies from affected individuals showed nearly indistinguishable patterns of gene expression in clinically affected and clinically unaffected tissue, even though these were clearly distinguishable from the patterns found in similar tissue from unaffected individuals. Genes characteristically expressed in endothelial cells, B lymphocytes, and fibroblasts showed differential expression between scleroderma and normal biopsies. Analysis of lymphocyte populations in scleroderma skin biopsies by immunohistochemistry suggest the B lymphocyte signature observed on our arrays is from CD20+ B cells. These results provide evidence that scleroderma has systemic manifestations that affect multiple cell types and suggests genes that could be used as potential markers for the disease. PMID:14530402

  4. Relevance of some serum biomarkers (E cadherin, GAGs & MDA in patients with diffuse large B-cell lymphoma.

    PubMed

    Eissa, Laila A; Esmaeel, Maha I

    2008-01-01

    This study aimed to estimate the pretreatment serum levels of SVE-Cadherin, glycosaminoglycams (GAGs) and malondialdehyde (MDA) in order to evaluate their prognostic significance and their role in monitoring tumor response and overall-survival in Non Hodgkin lymphoma (DLCL) patients. Also the work aimed to investigate the relationship between levels of these biochemical markers with LDH level, ESR and tumor stage. For this purpose pretreatment serum levels of these biochemical markers were evaluated in 40 newly diagnosed patients with non-Hodgkin lymphoma (Diffuse large cell type) and studied in relation to expression in healthy control. Our results revealed that serum levels of SVE-Cadherin, GAGs and MDA increased significantly (P<0.05) in NHL patients (DLCL) as compared to control, no significant relation between these parameters and ESR, LDH. However, higher level of SVE-Cadherin was found in stage II, III of the disease as compared to stage IV disease but with no statistical significance. Regarding response to therapy, only MDA showed a significant relation with response of the patient to treatment. Concerning overall survival there is no statistical significance was found between these parameters & OS in NHL patients. Elevated levels of SVE-Cadherin, GAGs and MDA in NHL patients indicate that they may have a role in the pathogenesis of the disease. High level of MDA may be used as a predictor for tumor response to systemic chemotherapy. Low level of SVE-Cadherin in stage IV participates in the invasiveness and metastasis of the disease.

  5. Loss of functional E-cadherin renders cells more resistant to the apoptotic agent taxol in vitro

    SciTech Connect

    Ferreira, Paulo; Oliveira, Maria Jose; Beraldi, Eliana; Mateus, Ana Rita; Nakajima, Takashi; Gleave, Martin; Yokota, Jun; Carneiro, Fatima; Huntsman, David; Seruca, Raquel; Suriano, Gianpaolo . E-mail: gsuriano@ipatimup.pt

    2005-10-15

    Experimental evidence supports a role for E-cadherin in suppressing invasion, metastasis, and proliferation. Germline mutations of the E-cadherin represent the genetic cause of hereditary diffuse gastric cancer (HDGC). In this type of tumor, isolated cancer cells permeate the basal membrane and paradoxically survive in the gastric wall in the absence of contact with neighbor epithelial cells or with the extracellular matrix. This suggests that upon E-cadherin deregulation, cells acquired resistance to apoptosis. To test this hypothesis, CHO cells stably expressing either wild-type E-cadherin or the HDGC-related germline mutations T340A and V832M were seeded either on a thin layer of collagen type I or on plastic and then subjected to the apoptotic agent taxol. We found that in vitro functional E-cadherin renders cells more sensitive to the effect of taxol. Our results also indicate that this effect is associated to decreased level of the anti-apoptotic bcl-2 protein.

  6. α-catenin, vinculin, and F-actin in strengthening E-cadherin cell–cell adhesions and mechanosensing

    PubMed Central

    Dufour, Sylvie; Mège, René-Marc; Thiery, Jean Paul

    2013-01-01

    Classical cadherins play a crucial role in establishing intercellular adhesion, regulating cortical tension, and maintaining mechanical coupling between cells. The mechanosensitive regulation of intercellular adhesion strengthening depends on the recruitment of adhesion complexes at adhesion sites and their anchoring to the actin cytoskeleton. Thus, the molecular mechanisms coupling cadherin-associated complexes to the actin cytoskeleton are actively being studied, with a particular focus on α-catenin and vinculin. We have recently addressed the role of these proteins by analyzing the consequences of their depletion and the expression of α-catenin mutants in the formation and strengthening of cadherin-mediated adhesions. We have used the dual pipette assay to measure the forces required to separate cell doublets formed in suspension. In this commentary, we briefly summarize the current knowledge on the role of α-catenin and vinculin in cadherin-actin cytoskeletal interactions. These data shed light on the tension-dependent contribution of α-catenin and vinculin in a mechanoresponsive complex that promotes the connection between cadherin and the actin cytoskeleton and their requirement in the development of adhesion strengthening. PMID:23739176

  7. E-cadherin downregulation at the infiltrating tumour front is associated with histological grade and stage in colorectal carcinoma of Malaysians.

    PubMed

    Dass, Serena Diane; Cheah, Phaik-Leng; Ong, Diana Bee-Lan; Teoh, Kean-Hooi; Looi, Lai-Meng

    2015-04-01

    Loss of E-cadherin, a 120 kDA transmembrane glycoprotein responsible for cell-cell adhesion, is one of the hallmarks of epithelial-mesenchymal-transition (EMT). E-cadherin expression was immunohistochemically studied in 94 histopathologically re-confirmed colorectal carcinomas (CRC) using a monoclonal antibody to E-cadherin (Dako: Clone NCH-38) on a Ventana Benchmark XT automated system. Each case was assessed for E-cadherin immunopositivity at two separate locations viz the tumour centre (TC) as well as the infiltrating front (IF). Expression was semiquantitated for proportion of immunopositive malignant cells as 0 (negative), 1 (1-25% staining), 2 (26-50% staining), 3 (51-75% staining) and 4 (>75% staining) and staining intensity: 0 (negative), 1 (weak), 2 (moderate) and 3 (strong). The final histoscore of E-cadherin immunopositivity was arbitrarily computed as proportion of immunopositivity multiplied by staining intensity of the malignant cells. E-cadherin histoscores were significantly lower at the IF (4.5±2.5) compared with TC (10.7±2.4). Furthermore, the histoscores were significantly reduced at the IF of 49 TNM III+IV tumours (3.6±2.5) compared with 45 II+III CRC (5.4±2.2). Reduction of E-cadherin expression was also noted in the 23 high grade (TC=8.6±3.2; IF=2.6±2.3) compared with 71 low grade tumours (TC=11.4±1.5; IF=5.1±2.3). E-cadherin is downregulated at the infiltrating front of CRC, possibly marking for EMT at this location. The downregulation is further enhanced amongst late stage and high grade tumours compared with earlier stage and low grade tumours; findings which are similar to that noted in CRC of other populations.

  8. EZH2 promotes cell migration and invasion but not alters cell proliferation by suppressing E-cadherin, partly through association with MALAT-1 in pancreatic cancer

    PubMed Central

    Han, Ting; Jiao, Feng; Hu, Hai; Yuan, Cuncun; Wang, Lei; Jin, Zi-Liang; Song, Wei-feng; Wang, Li-Wei

    2016-01-01

    Enhancer of zeste homolog 2 (EZH2) is an essential component of the polycomb repressive complex 2 (PRC2), which is required for epigenetic silencing of target genes, including those affecting cancer progression. Its role in pancreatic cancer remains to be clarified; therefore, we investigated the effects of aberrantly expressed EZH2 on pancreatic cancer. We found that EZH2 expression is up-regulated in pancreatic cancer tissues and positively correlated with lymph node metastasis and advanced clinical stage in pancreatic cancer patients. EZH2 knockdown in pancreatic cancer cell lines inhibited cell migration and invasion, but did not alter cell proliferation. Silencing of EZH2 also increased E-cadherin expression in vitro, and E-cadherin expression was inversely correlated with EZH2 expression in pancreatic cancer tissue samples. Patients with high EZH2 and low E-cadherin expression had the worst prognosis. RIP and ChIP assays suggest that EZH2 is recruited to the E-cadherin promoter by the long non-coding RNA, MALAT-1 (metastasis associated in lung adenocarcinoma transcript 1), where it represses E-cadherin expression. Our results show that EZH2-based therapies may be an option for the treatment of pancreatic cancer. PMID:26848980

  9. EZH2 promotes cell migration and invasion but not alters cell proliferation by suppressing E-cadherin, partly through association with MALAT-1 in pancreatic cancer.

    PubMed

    Han, Ting; Jiao, Feng; Hu, Hai; Yuan, Cuncun; Wang, Lei; Jin, Zi-Liang; Song, Wei-Feng; Wang, Li-Wei

    2016-03-01

    Enhancer of zeste homolog 2 (EZH2) is an essential component of the polycomb repressive complex 2 (PRC2), which is required for epigenetic silencing of target genes, including those affecting cancer progression. Its role in pancreatic cancer remains to be clarified; therefore, we investigated the effects of aberrantly expressed EZH2 on pancreatic cancer. We found that EZH2 expression is up-regulated in pancreatic cancer tissues and positively correlated with lymph node metastasis and advanced clinical stage in pancreatic cancer patients. EZH2 knockdown in pancreatic cancer cell lines inhibited cell migration and invasion, but did not alter cell proliferation. Silencing of EZH2 also increased E-cadherin expression in vitro, and E-cadherin expression was inversely correlated with EZH2 expression in pancreatic cancer tissue samples. Patients with high EZH2 and low E-cadherin expression had the worst prognosis. RIP and ChIP assays suggest that EZH2 is recruited to the E-cadherin promoter by the long non-coding RNA, MALAT-1 (metastasis associated in lung adenocarcinoma transcript 1), where it represses E-cadherin expression. Our results show that EZH2-based therapies may be an option for the treatment of pancreatic cancer.

  10. 3D expression patterns of cell cycle genes in the developing chick wing and comparison with expression patterns of genes implicated in digit specification.

    PubMed

    Welten, Monique; Pavlovska, Gordana; Chen, Yu; Teruoka, Yuko; Fisher, Malcolm; Bangs, Fiona; Towers, Matthew; Tickle, Cheryll

    2011-05-01

    Sonic hedgehog (Shh) signalling controls integrated specification of digit pattern and growth in the chick wing but downstream gene networks remain to be unravelled. We analysed 3D expression patterns of genes encoding cell cycle regulators using Optical Projection Tomography. Hierarchical clustering of spatial matrices of gene expression revealed a dorsal layer of the wing bud, in which almost all genes were expressed, and that genes encoding positive cell cycle regulators had similar expression patterns while those of N-myc and CyclinD2 were distinct but closely related. We compared these patterns computationally with those of genes implicated in digit specification and Ptch1, 50 genes in total. Nineteen genes have similar posterior expression to Ptch1, including Hoxd13, Sall1, Hoxd11, and Bmp2, all likely Gli targets in mouse limb, and cell cycle genes, N-myc, CyclinD2. We suggest that these genes contribute to a network integrating digit specification and growth in response to Shh.

  11. [Phylogenetic analysis and expression patterns of tropomyosin in amphioxus].

    PubMed

    Li, Xin-Yi; Lin, Yu-Shuang; Zhang, Hong-Wei

    2012-08-01

    In amphioxus, we found a mesoderm related gene, tropomyosin, which encodes a protein comprising 284 amino acid residues, sharing high identities with other known Tropomyosin proteins both in vertebrates and invertebrates. Phylogenetically, amphioxus Tropomyosin fell outside the invertebrate clade and was at the base of the vertebrate protein family clade, indicating that it may represent an independent branch. From the early neurula to the larva stage, whole-mount in situ hybridization and histological sections found transcripts of amphioxus tropomyosin gene. Weak tropomyosin expression was first detected in the wall of the archenteron at about 10 hours-post-fertilization neurula stage, while intense expression was revealed in the differentiating presumptive notochord and the muscle. Transcripts of tropomyosin were then expressed in the formed notochord and somites. Gene expression seemed to continue in these developing organs throughout the neurular stages and remained till 72-hours, during the early larval stages. In situ study still showed tropomyosin was also expressed in the neural tube, hepatic diverticulum, notochord and the spaces between myotomes in adult amphioxus. Our results indicated that tropomyosin may play an important role in both embryonic development and adult life.

  12. Microspatial gene expression patterns in the Amazon River Plume.

    PubMed

    Satinsky, Brandon M; Crump, Byron C; Smith, Christa B; Sharma, Shalabh; Zielinski, Brian L; Doherty, Mary; Meng, Jun; Sun, Shulei; Medeiros, Patricia M; Paul, John H; Coles, Victoria J; Yager, Patricia L; Moran, Mary Ann

    2014-07-29

    We investigated expression of genes mediating elemental cycling at the microspatial scale in the ocean's largest river plume using, to our knowledge, the first fully quantitative inventory of genes and transcripts. The bacterial and archaeal communities associated with a phytoplankton bloom in Amazon River Plume waters at the outer continental shelf in June 2010 harbored ∼ 1.0 × 10(13) genes and 4.7 × 10(11) transcripts per liter that mapped to several thousand microbial genomes. Genomes from free-living cells were more abundant than those from particle-associated cells, and they generated more transcripts per liter for carbon fixation, heterotrophy, nitrogen and phosphorus uptake, and iron acquisition, although they had lower expression ratios (transcripts ⋅ gene(-1)) overall. Genomes from particle-associated cells contributed more transcripts for sulfur cycling, aromatic compound degradation, and the synthesis of biologically essential vitamins, with an overall twofold up-regulation of expression compared with free-living cells. Quantitatively, gene regulation differences were more important than genome abundance differences in explaining why microenvironment transcriptomes differed. Taxa contributing genomes to both free-living and particle-associated communities had up to 65% of their expressed genes regulated differently between the two, quantifying the extent of transcriptional plasticity in marine microbes in situ. In response to patchiness in carbon, nutrients, and light at the micrometer scale, Amazon Plume microbes regulated the expression of genes relevant to biogeochemical processes at the ecosystem scale.

  13. The legacy of diploid progenitors in allopolyploid gene expression patterns

    PubMed Central

    Buggs, Richard J. A.; Wendel, Jonathan F.; Doyle, Jeffrey J.; Soltis, Douglas E.; Soltis, Pamela S.; Coate, Jeremy E.

    2014-01-01

    Allopolyploidization (hybridization and whole-genome duplication) is a common phenomenon in plant evolution with immediate saltational effects on genome structure and gene expression. New technologies have allowed rapid progress over the past decade in our understanding of the consequences of allopolyploidy. A major question, raised by early pioneer of this field Leslie Gottlieb, concerned the extent to which gene expression differences among duplicate genes present in an allopolyploid are a legacy of expression differences that were already present in the progenitor diploid species. Addressing this question necessitates phylogenetically well-understood natural study systems, appropriate technology, availability of genomic resources and a suitable analytical framework, including a sufficiently detailed and generally accepted terminology. Here, we review these requirements and illustrate their application to a natural study system that Gottlieb worked on and recommended for this purpose: recent allopolyploids of Tragopogon (Asteraceae). We reanalyse recent data from this system within the conceptual framework of parental legacies on duplicate gene expression in allopolyploids. On a broader level, we highlight the intellectual connection between Gottlieb's phrasing of this issue and the more contemporary framework of cis- versus trans-regulation of duplicate gene expression in allopolyploid plants. PMID:24958927

  14. Network Security via Biometric Recognition of Patterns of Gene Expression

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C.

    2016-01-01

    Molecular biology provides the ability to implement forms of information and network security completely outside the bounds of legacy security protocols and algorithms. This paper addresses an approach which instantiates the power of gene expression for security. Molecular biology provides a rich source of gene expression and regulation mechanisms, which can be adopted to use in the information and electronic communication domains. Conventional security protocols are becoming increasingly vulnerable due to more intensive, highly capable attacks on the underlying mathematics of cryptography. Security protocols are being undermined by social engineering and substandard implementations by IT (Information Technology) organizations. Molecular biology can provide countermeasures to these weak points with the current security approaches. Future advances in instruments for analyzing assays will also enable this protocol to advance from one of cryptographic algorithms to an integrated system of cryptographic algorithms and real-time assays of gene expression products.

  15. Nonagonal cadherins: A new protein family found within the Stramenopiles.

    PubMed

    Fletcher, Kyle I G; van West, Pieter; Gachon, Claire M M

    2016-11-15

    Cadherins, a group of molecules typically associated with planar cell polarity and Wnt signalling, have been little reported outside of the animal kingdom. Here, we identify a new family of cadherins in the Stramenopiles, termed Nonagonal after their 9 transmembrane passes, which contrast to the one or seven passes found in other known cadherin families. Manual curation and experimental validation reveal two subclasses of nonagonal cadherins, depending on the number of uninterrupted extracellular cadherin (EC) modules presented. Firstly, shorter mono-exonic, unimodular, protein models, with 3 to 12 EC domains occur as duplicate paralogs in the saprotrophic Labyrinthulomycetes Aurantiochytrium limanicum and Schizochytrium aggregatum, the gastrointestinal Blastocystis hominis (Blastocystae) and as a single copy gene in the autotrophic Pelagophyte Aureococcus anophagefferens. Larger, single copy, multi-exonal, tri-modular protein models, with up to 72 EC domain in total, are found in the Oomycete genera Albugo, Phytophthora, Pythium and Eurychasma. No homolog was found in the closely related autotrophic Phaeophyceae (brown algae) or Bacillariophyceae (diatoms), nor in several genera of plant and animal pathogenic oomycetes (Aphanomyces, Saprolegnia and Hyaloperonospora). This potential absence was further investigated by synteny analysis of the genome regions flanking the cadherin gene models, which are found to be highly variable. Novel to this new cadherin family is the presence of intercalated laminin and putative carbohydrate binding in tri-modular oomycete cadherins and at the N-terminus of thraustochytrid proteins. As we were unable to detect any homologs of proteins involved in signalling pathways where other cadherin families are involved, we present a conceptual hypothesis on the function of nonagonal cadherin based around the presence of putative carbohydrate binding domains. PMID:27498181

  16. Binary Gene Expression Patterning of the Molt Cycle: The Case of Chitin Metabolism

    PubMed Central

    Abehsera, Shai; Glazer, Lilah; Tynyakov, Jenny; Plaschkes, Inbar; Chalifa-Caspi, Vered; Khalaila, Isam; Aflalo, Eliahu D.; Sagi, Amir

    2015-01-01

    In crustaceans, like all arthropods, growth is accompanied by a molting cycle. This cycle comprises major physiological events in which mineralized chitinous structures are built and degraded. These events are in turn governed by genes whose patterns of expression are presumably linked to the molting cycle. To study these genes we performed next generation sequencing and constructed a molt-related transcriptomic library from two exoskeletal-forming tissues of the crayfish Cherax quadricarinatus, namely the gastrolith and the mandible cuticle-forming epithelium. To simplify the study of such a complex process as molting, a novel approach, binary patterning of gene expression, was employed. This approach revealed that key genes involved in the synthesis and breakdown of chitin exhibit a molt-related pattern in the gastrolith-forming epithelium. On the other hand, the same genes in the mandible cuticle-forming epithelium showed a molt-independent pattern of expression. Genes related to the metabolism of glucosamine-6-phosphate, a chitin precursor synthesized from simple sugars, showed a molt-related pattern of expression in both tissues. The binary patterning approach unfolds typical patterns of gene expression during the molt cycle of a crustacean. The use of such a simplifying integrative tool for assessing gene patterning seems appropriate for the study of complex biological processes. PMID:25919476

  17. Temporal patterns of gene expression during calyx of held development.

    PubMed

    Kolson, Douglas R; Wan, Jun; Wu, Jonathan; Dehoff, Marlin; Brandebura, Ashley N; Qian, Jiang; Mathers, Peter H; Spirou, George A

    2016-02-01

    Relating changes in gene expression to discrete developmental events remains an elusive challenge in neuroscience, in part because most neural territories are comprised of multiple cell types that mature over extended periods of time. The medial nucleus of the trapezoid body (MNTB) is an attractive vertebrate model system that contains a nearly homogeneous population of neurons, which are innervated by large glutamatergic nerve terminals called calyces of Held (CH). Key steps in maturation of CHs and MNTB neurons, including CH growth and competition, occur very quickly for most cells between postnatal days (P)2 and P6. Therefore, we characterized genome-wide changes in this system, with dense temporal sampling during the first postnatal week. We identified 541 genes whose expression changed significantly between P0-6 and clustered them into eight groups based on temporal expression profiles. Candidate genes from each of the eight profile groups were validated in separate samples by qPCR. Our tissue sample permitted comparison of known glial and neuronal transcripts and revealed that monotonically increasing or decreasing expression profiles tended to be associated with glia and neurons, respectively. Gene ontology revealed enrichment of genes involved in axon pathfinding, cell differentiation, cell adhesion and extracellular matrix. The latter category included elements of perineuronal nets, a prominent feature of MNTB neurons that is morphologically distinct by P6, when CH growth and competition are resolved onto nearly all MNTB neurons. These results provide a genetic framework for investigation of general mechanisms responsible for nerve terminal growth and maturation.

  18. Macrophage polarization alters the expression and sulfation pattern of glycosaminoglycans.

    PubMed

    Martinez, Pierre; Denys, Agnès; Delos, Maxime; Sikora, Anne-Sophie; Carpentier, Mathieu; Julien, Sylvain; Pestel, Joël; Allain, Fabrice

    2015-05-01

    Macrophages are major cells of inflammatory process and take part in a large number of physiological and pathological processes. According to tissue environment, they can polarize into pro-inflammatory (M1) or alternative (M2) cells. Although many evidences have hinted to a potential role of cell-surface glycosaminoglycans (GAGs) in the functions of macrophages, the effect of M1 or M2 polarization on the biosynthesis of these polysaccharides has not been investigated so far. GAGs are composed of repeat sulfated disaccharide units. Heparan (HS) and chondroitin/dermatan sulfates (CS/DS) are the major GAGs expressed at the cell membrane. They are involved in numerous biological processes, which rely on their ability to selectively interact with a large panel of proteins. More than 20 genes encoding sulfotransferases have been implicated in HS and CS/DS biosynthesis, and the functional repertoire of HS and CS/DS has been related to the expression of these isoenzymes. In this study, we analyzed the expression of sulfotransferases as a response to macrophage polarization. We found that M1 and M2 activation drastically modified the profiles of expression of numerous HS and CS/DS sulfotransferases. This was accompanied by the expression of GAGs with distinct structural features. We then demonstrated that GAGs of M2 macrophages were efficient to present fibroblast growth factor-2 in an assay of tumor cell proliferation, thus indicating that changes in GAG structure may contribute to the functions of polarized macrophages. Altogether, our findings suggest a regulatory mechanism in which fine modifications in GAG biosynthesis may participate to the plasticity of macrophage functions.

  19. EMAGE: a spatial database of gene expression patterns during mouse embryo development

    PubMed Central

    Christiansen, Jeffrey H.; Yang, Yiya; Venkataraman, Shanmugasundaram; Richardson, Lorna; Stevenson, Peter; Burton, Nicholas; Baldock, Richard A.; Davidson, Duncan R.

    2006-01-01

    EMAGE () is a freely available, curated database of gene expression patterns generated by in situ techniques in the developing mouse embryo. It is unique in that it contains standardized spatial representations of the sites of gene expression for each gene, denoted against a set of virtual reference embryo models. As such, the data can be interrogated in a novel and abstract manner by using space to define a query. Accompanying the spatial representations of gene expression patterns are text descriptions of the sites of expression, which also allows searching of the data by more conventional text-based methods. PMID:16381949

  20. Spatio-Temporal Expression Pattern of Frizzled Receptors after Contusive Spinal Cord Injury in Adult Rats

    PubMed Central

    Arenas, Ernest; Rodriguez, Francisco Javier

    2012-01-01

    Background Wnt proteins are a large family of molecules that are critically involved in multiple central nervous system (CNS) developmental processes. Experimental evidences suggest a role for this family of proteins in many CNS disorders, including spinal cord injury (SCI), which is a major neuropathology owing to its high prevalence and chronic sensorimotor functional sequelae. Interestingly, most Wnt proteins and their inhibitors are expressed in the uninjured spinal cord, and their temporal expression patterns are dramatically altered after injury. However, little is known regarding the expression of their better-known receptors, the Frizzled family, after SCI. Thus, the aim of the present study was to evaluate the expression of Frizzled receptors in the damaged spinal cord. Findings Based on the evidence that Wnts are expressed in the spinal cord and are transcriptionally regulated by SCI in adulthood, we analysed the spatio-temporal mRNA and protein expression patterns of Frizzled receptors after contusive SCI using quantitative RT-PCR and single and double immunohistochemistry, respectively. Our results show that almost all of the 10 known Frizzled receptors were expressed in specific spatial patterns in the uninjured spinal cords. Moreover, the Frizzled mRNAs and proteins were expressed after SCI, although their expression patterns were altered during the temporal progression of SCI. Finally, analysis of cellular Frizzled 5 expression pattern by double immunohistochemistry showed that, in the uninjured spinal cord, this receptor was expressed in neurons, oligodendrocytes, astrocytes, microglia and NG2+ glial precursors. After injury, Frizzled 5 was not only still expressed in oligodendrocytes, astrocytes and NG2+ glial precursors but also in axons at all evaluated time points. Moreover, Frizzled 5 was expressed in reactive microglia/macrophages from 3 to 14 days post-injury. Conclusions Our data suggest the involvement of Frizzled receptors in physiological

  1. Spatiotemporal patterns of Musashi1 expression during inner ear development.

    PubMed

    Sakaguchi, Hirofumi; Yaoi, Takeshi; Suzuki, Toshihiro; Okano, Hideyuki; Hisa, Yasuo; Fushiki, Shinji

    2004-04-29

    Musashi1 (Msi 1) is an RNA binding protein associated with asymmetric cell divisions in neural progenitor cells. To investigate the involvement of Msi1 in the inner ear development, we studied the expression of Msi1 in mouse inner ears with RT-PCR and immunohistochemistry. Immunohistochemistry revealed that Msi1 was expressed in all otocyst cells at embryonic day (E) 10 and 12. Msi1 immunoreactivity became lost in hair cells after E14 in vestibule and after E16 in cochlea, whereas it persisted in supporting cells until adulthood. The subcellular localization of Msi1 changed from "cytoplasmic predominance" to "nuclear predominance" during the first 2 weeks after birth. The present data suggested that Msi may play a role in inner ear development. PMID:15076722

  2. Mutated epithelial cadherin is associated with increased tumorigenicity and loss of adhesion and of responsiveness to the motogenic trefoil factor 2 in colon carcinoma cells.

    PubMed

    Efstathiou, J A; Liu, D; Wheeler, J M; Kim, H C; Beck, N E; Ilyas, M; Karayiannakis, A J; Mortensen, N J; Kmiot, W; Playford, R J; Pignatelli, M; Bodmer, W F

    1999-03-01

    Epithelial (E)-cadherin and its associated cytoplasmic proteins (alpha-, beta-, and gamma-catenins) are important mediators of epithelial cell-cell adhesion and intracellular signaling. Much evidence exists suggesting a tumor/invasion suppressor role for E-cadherin, and loss of expression, as well as mutations, has been described in a number of epithelial cancers. To investigate whether E-cadherin gene (CDH1) mutations occur in colorectal cancer, we screened 49 human colon carcinoma cell lines from 43 patients by single-strand conformation polymorphism (SSCP) analysis and direct sequencing. In addition to silent changes, polymorphisms, and intronic variants in a number of the cell lines, we detected frameshift single-base deletions in repeat regions of exon 3 (codons 120 and 126) causing premature truncations at codon 216 in four replication-error-positive (RER+) cell lines (LS174T, HCT116, GP2d, and GP5d) derived from 3 patients. In LS174T such a mutation inevitably contributes to its lack of E-cadherin protein expression and function. Transfection of full-length E-cadherin cDNA into LS174T cells enhanced intercellular adhesion, induced differentiation, retarded proliferation, inhibited tumorigenicity, and restored responsiveness to the migratory effects induced by the motogenic trefoil factor 2 (human spasmolytic polypeptide). These results indicate that, although inactivating E-cadherin mutations occur relatively infrequently in colorectal cancer cell lines overall (3/43 = 7%), they are more common in cells with an RER+ phenotype (3/10 = 30%) and may contribute to the dysfunction of the E-cadherin-catenin-mediated adhesion/signaling system commonly seen in these tumors. These results also indicate that normal E-cadherin-mediated cell adhesion can restore the ability of colonic tumor cells to respond to trefoil factor 2.

  3. Conservation and evolutionary modifications of neuroblast expression patterns in insects.

    PubMed

    Biffar, Lucia; Stollewerk, Angelika

    2014-04-01

    One of the major questions in evolutionary developmental neurobiology is how neuronal networks have been adapted to different morphologies and behaviour during evolution. Analyses of neurogenesis in representatives of all arthropod species have revealed evolutionary modifications of various developmental mechanisms. Among others, variations can be seen in mechanisms that are associated with changes in neural progenitor identity, which in turn determines the neuronal subtype of their progeny. Comparative analyses of the molecular processes that underlie the generation of neuronal identity might therefore uncover the steps of evolutionary changes that eventually resulted in modifications in neuronal networks. Here we address this question in the flour beetle Tribolium castaneum by analyzing and comparing the development and expression profile of neural stem cells (neuroblasts) to the published neuroblast map of the fruit fly Drosophila melanogaster. We show that substantial changes in the identity of neuroblasts have occurred during insect evolution. In almost all neuroblasts the relative positions in the ventral hemi-neuromeres are conserved; however, in over half of the neuroblasts the time of formation as well as the gene expression profile has changed. The neuroblast map presented here can be used for future comparative studies on individual neuroblast lineages in D. melanogaster and T. castaneum and additional markers and information on lineages can be added. Our data suggest that evolutionary changes in the expression profile of individual neuroblasts might have contributed to the evolution of neural diversity and subsequently to changes in neuronal networks in arthropod.

  4. Characterization and Comparison of Intercellular Adherent Junctions Expressed by Human Corneal Endothelial Cells in Vivo and in Vitro

    PubMed Central

    Ying-Ting, Zhu; Hayashida, Yasutaka; Kheirkhah, Ahmad; He, Hua; Sue-Yue, Chen; Tseng, Scheffer C. G.

    2008-01-01

    Purpose Human corneal endothelial cell (HCEC) proliferation is controlled by their cell junctions, of which the mechanism remains unknown. We sought to characterize adherent junction components of in vivo HCECs, and compare their gene expression and their proliferative potential to those of in vitro counterparts. Methods Stripped human Descemet’s membranes were digested with collagenase A, and the resultant HCEC aggregates were cultured for 7, 14, and 21 days in supplemented hormonal epithelial medium (SHEM). Growth of HCEC monolayers was monitored by BrdU labeling performed 24 h before termination. Both in vivo and in vitro HCECs were subjected to immunostaining to FITC-phalloidin and antibodies to different junction components and BrdU. Their mRNA expressions were determined by RT-PCR. Results In vivo HCECs expressed transcripts of N-, VE-, E-, and P-cadherins, α-, β-, γ-, and p120-catenins, and p190. In vitro HCEC counterparts also expressed all these mRNAs except P-cadherin. In vivo HCECs displayed continuous circular F-actin, N-cadherin, β- and p120-catenins, and p190, discontinuous circular VE-cadherin bands at/close to cell junctions, and E-cadherin in the cytoplasm. Such an in vivo pattern was gradually achieved by in vitro HCECs at day 21 and was correlated with a progressive decline of BrdU labeling. Conclusions Both in vivo and in vitro HCECs displayed distinct protein cytolocalization of N-, VE-, and E-cadherins, β- and p120-catenins, and p190. Progressive maturation of adherent junctions was associated with a decline of the proliferative potential. This information allows us to devise new strategies to engineer in vitro HCECs by targeting these components. PMID:18502989

  5. Regulation of Gene Expression Patterns in Mosquito Reproduction.

    PubMed

    Roy, Sourav; Saha, Tusar T; Johnson, Lisa; Zhao, Bo; Ha, Jisu; White, Kevin P; Girke, Thomas; Zou, Zhen; Raikhel, Alexander S

    2015-08-01

    In multicellular organisms, development, growth and reproduction require coordinated expression of numerous functional and regulatory genes. Insects, in addition to being the most speciose animal group with enormous biological and economical significance, represent outstanding model organisms for studying regulation of synchronized gene expression due to their rapid development and reproduction. Disease-transmitting female mosquitoes have adapted uniquely for ingestion and utilization of the huge blood meal required for swift reproductive events to complete egg development within a 72-h period. We investigated the network of regulatory factors mediating sequential gene expression in the fat body, a multifunctional organ analogous to the vertebrate liver and adipose tissue, of the female Aedes aegypti mosquito. Transcriptomic and bioinformatics analyses revealed that ~7500 transcripts are differentially expressed in four sequential waves during the 72-h reproductive period. A combination of RNA-interference gene-silencing and in-vitro organ culture identified the major regulators for each of these waves. Amino acids (AAs) regulate the first wave of gene activation between 3 h and 12 h post-blood meal (PBM). During the second wave, between 12 h and 36 h, most genes are highly upregulated by a synergistic action of AAs, 20-hydroxyecdysone (20E) and the Ecdysone-Receptor (EcR). Between 36 h and 48 h, the third wave of gene activation-regulated mainly by HR3-occurs. Juvenile Hormone (JH) and its receptor Methoprene-Tolerant (Met) are major regulators for the final wave between 48 h and 72 h. Each of these key regulators also has repressive effects on one or more gene sets. Our study provides a better understanding of the complexity of the regulatory mechanisms related to temporal coordination of gene expression during reproduction. We have detected the novel function of 20E/EcR responsible for transcriptional repression. This study also reveals the previously

  6. Regulation of Gene Expression Patterns in Mosquito Reproduction.

    PubMed

    Roy, Sourav; Saha, Tusar T; Johnson, Lisa; Zhao, Bo; Ha, Jisu; White, Kevin P; Girke, Thomas; Zou, Zhen; Raikhel, Alexander S

    2015-08-01

    In multicellular organisms, development, growth and reproduction require coordinated expression of numerous functional and regulatory genes. Insects, in addition to being the most speciose animal group with enormous biological and economical significance, represent outstanding model organisms for studying regulation of synchronized gene expression due to their rapid development and reproduction. Disease-transmitting female mosquitoes have adapted uniquely for ingestion and utilization of the huge blood meal required for swift reproductive events to complete egg development within a 72-h period. We investigated the network of regulatory factors mediating sequential gene expression in the fat body, a multifunctional organ analogous to the vertebrate liver and adipose tissue, of the female Aedes aegypti mosquito. Transcriptomic and bioinformatics analyses revealed that ~7500 transcripts are differentially expressed in four sequential waves during the 72-h reproductive period. A combination of RNA-interference gene-silencing and in-vitro organ culture identified the major regulators for each of these waves. Amino acids (AAs) regulate the first wave of gene activation between 3 h and 12 h post-blood meal (PBM). During the second wave, between 12 h and 36 h, most genes are highly upregulated by a synergistic action of AAs, 20-hydroxyecdysone (20E) and the Ecdysone-Receptor (EcR). Between 36 h and 48 h, the third wave of gene activation-regulated mainly by HR3-occurs. Juvenile Hormone (JH) and its receptor Methoprene-Tolerant (Met) are major regulators for the final wave between 48 h and 72 h. Each of these key regulators also has repressive effects on one or more gene sets. Our study provides a better understanding of the complexity of the regulatory mechanisms related to temporal coordination of gene expression during reproduction. We have detected the novel function of 20E/EcR responsible for transcriptional repression. This study also reveals the previously

  7. Distinct Expression Pattern of a Deafness Gene, KIAA1199, in a Primate Cochlea.

    PubMed

    Hosoya, Makoto; Fujioka, Masato; Okano, Hideyuki; Ogawa, Kaoru

    2016-01-01

    Deafness is one of the most common types of congenital impairments, and at least half of the cases are caused by hereditary mutations. Mutations of the gene KIAA1199 are associated with progressive hearing loss. Its expression is abundant in human cochlea, but interestingly the spatial expression patterns are different between mouse and rat cochleae; the pattern in humans has not been fully investigated. We performed immunohistochemical analysis of a nonhuman primate, common marmoset (Callithrix jacchus), cochlea with a KIAA1199-specific antibody. In the common marmoset cochlea, KIAA1199 protein expression was more widespread than in rodents, with all epithelial cells, including hair cells, expressing KIAA1199. Our results suggest that the primate pattern of KIAA1199 expression is wider in comparison with rodents and may play an essential role in the maintenance of cochlear epithelial cells. PMID:27403418

  8. Distinct Expression Pattern of a Deafness Gene, KIAA1199, in a Primate Cochlea

    PubMed Central

    Hosoya, Makoto; Okano, Hideyuki; Ogawa, Kaoru

    2016-01-01

    Deafness is one of the most common types of congenital impairments, and at least half of the cases are caused by hereditary mutations. Mutations of the gene KIAA1199 are associated with progressive hearing loss. Its expression is abundant in human cochlea, but interestingly the spatial expression patterns are different between mouse and rat cochleae; the pattern in humans has not been fully investigated. We performed immunohistochemical analysis of a nonhuman primate, common marmoset (Callithrix jacchus), cochlea with a KIAA1199-specific antibody. In the common marmoset cochlea, KIAA1199 protein expression was more widespread than in rodents, with all epithelial cells, including hair cells, expressing KIAA1199. Our results suggest that the primate pattern of KIAA1199 expression is wider in comparison with rodents and may play an essential role in the maintenance of cochlear epithelial cells. PMID:27403418

  9. Integrative analysis of lung development-cancer expression associations reveals the roles of signatures with inverse expression patterns.

    PubMed

    Zhang, Chunlong; Li, Chunquan; Xu, Yanjun; Feng, Li; Shang, Desi; Yang, Xinmiao; Han, Junwei; Sun, Zeguo; Li, Yixue; Li, Xia

    2015-05-01

    Recent studies have focused on exploring the associations between organ development and malignant tumors; however, the clinical relevance of the development signatures was inadequately addressed in lung cancer. In this study, we explored the associations between lung development and lung cancer progression by analyzing a total of two development and seven cancer datasets. We identified representative expression patterns (continuously up- and down-regulated) from development and cancer profiles, and inverse pattern associations were observed at both the gene and functional levels. Furthermore, we dissected the biological processes dominating the associations, and found that proliferation and immunity were respectively involved in the two inverse development-cancer expression patterns. Through sub-pathway analysis of the signatures with inverse expression patterns, we finally identified a 13-gene risk signature from the cell cycle sub-pathway, and evaluated its predictive performance for lung cancer patient clinical outcome using independent cohorts. Our findings indicated that the integrative analysis of development and cancer expression patterns provided a framework for identifying effective molecular signatures for clinical utility.

  10. Aberrant Methylation of the E-Cadherin Gene Promoter Region in the Endometrium of Women With Uterine Fibroids.

    PubMed

    Li, Yan; Ran, Ran; Guan, Yingxia; Zhu, Xiaoxiong; Kang, Shan

    2016-08-01

    A uterine fibroid is a leiomyoma that originates from the smooth muscle layer of the uterus. A variety of endometrial abnormalities are associated with uterine fibroids. This study aims to investigate the methylation status of the E-cadherin gene (CDH1) promoter region in the endometrium of patients with uterine fibroids. The methylation of CDH1 was studied using methylation-specific polymerase chain reaction in the endometrial tissue of 102 patients with uterine fibroids and 50 control patients. The E-cadherin expression was examined by flow cytometry. The methylation rate of CDH1 promoter region was 33.3% in the endometrium of patients with uterine fibroids and 8% in the endometrium of women without fibroids. The frequency of CDH1 promoter methylation in the endometrium of patients with fibroids was significantly higher than that in the endometrium of women without fibroids (P = .001). Furthermore, the E-cadherin expression level in methylation-positive tissues was significantly lower than that in methylation-negative tissues (P = .017). These results suggest that epigenetic aberration of CDH1 may occur in the endometrium of patients with fibroids, which may be associated with E-cadherin protein expression in endometrial tissue. PMID:26880767

  11. Aberrant Methylation of the E-Cadherin Gene Promoter Region in the Endometrium of Women With Uterine Fibroids.

    PubMed

    Li, Yan; Ran, Ran; Guan, Yingxia; Zhu, Xiaoxiong; Kang, Shan

    2016-08-01

    A uterine fibroid is a leiomyoma that originates from the smooth muscle layer of the uterus. A variety of endometrial abnormalities are associated with uterine fibroids. This study aims to investigate the methylation status of the E-cadherin gene (CDH1) promoter region in the endometrium of patients with uterine fibroids. The methylation of CDH1 was studied using methylation-specific polymerase chain reaction in the endometrial tissue of 102 patients with uterine fibroids and 50 control patients. The E-cadherin expression was examined by flow cytometry. The methylation rate of CDH1 promoter region was 33.3% in the endometrium of patients with uterine fibroids and 8% in the endometrium of women without fibroids. The frequency of CDH1 promoter methylation in the endometrium of patients with fibroids was significantly higher than that in the endometrium of women without fibroids (P = .001). Furthermore, the E-cadherin expression level in methylation-positive tissues was significantly lower than that in methylation-negative tissues (P = .017). These results suggest that epigenetic aberration of CDH1 may occur in the endometrium of patients with fibroids, which may be associated with E-cadherin protein expression in endometrial tissue.

  12. Patterns of gene expression in the sheep heart during the perinatal period revealed by transcriptomic modeling

    PubMed Central

    Rabaglino, M. Belen; Antolic, Andrew; Wood, Charles E.; Keller-Wood, Maureen

    2015-01-01

    Septa from sheep hearts at 130 days gestation, term, and 14-day-old lambs were used to model the changes in gene expression patterns during the perinatal period using Agilent 15k ovine microarrays. We used Bioconductor for R to model five major patterns of coexpressed genes. Gene ontology and transcription factor analyses using Webgestalt modeled the biological significances and transcription factors of the gene expression patterns. Modeling indicated a decreased expression of genes associated with anatomical development and differentiation during this period, whereas those associated with increased protein synthesis and growth associated with maturation of the endoplasmic reticulum rose to term but did not further increase from the near term expression. Expression of genes associated with cell responsiveness, for example, immune responses, decreased at term but expression returned by postnatal day 14. Changes in genes related to metabolism showed differential substrate-associated patterns: those related to carbohydrate metabolism rose to term and remained stable thereafter, whereas those associated with fatty acid oxidation facility rose throughout the period. The timing of many of these maturational processes was earlier in relation to birth than in the rodent. The importance of the transcription factors, estrogen-related receptors, and v-myc avian myelocytomatosis viral oncogene homolog was also highlighted in the pattern of gene expression during development of the perinatal sheep heart. PMID:26126790

  13. Patterns of gene expression in the sheep heart during the perinatal period revealed by transcriptomic modeling.

    PubMed

    Richards, Elaine M; Rabaglino, M Belen; Antolic, Andrew; Wood, Charles E; Keller-Wood, Maureen

    2015-09-01

    Septa from sheep hearts at 130 days gestation, term, and 14-day-old lambs were used to model the changes in gene expression patterns during the perinatal period using Agilent 15k ovine microarrays. We used Bioconductor for R to model five major patterns of coexpressed genes. Gene ontology and transcription factor analyses using Webgestalt modeled the biological significances and transcription factors of the gene expression patterns. Modeling indicated a decreased expression of genes associated with anatomical development and differentiation during this period, whereas those associated with increased protein synthesis and growth associated with maturation of the endoplasmic reticulum rose to term but did not further increase from the near term expression. Expression of genes associated with cell responsiveness, for example, immune responses, decreased at term but expression returned by postnatal day 14. Changes in genes related to metabolism showed differential substrate-associated patterns: those related to carbohydrate metabolism rose to term and remained stable thereafter, whereas those associated with fatty acid oxidation facility rose throughout the period. The timing of many of these maturational processes was earlier in relation to birth than in the rodent. The importance of the transcription factors, estrogen-related receptors, and v-myc avian myelocytomatosis viral oncogene homolog was also highlighted in the pattern of gene expression during development of the perinatal sheep heart.

  14. BEST: a novel computational approach for comparing gene expression patterns from early stages of Drosophila melanogaster development.

    PubMed

    Kumar, Sudhir; Jayaraman, Karthik; Panchanathan, Sethuraman; Gurunathan, Rajalakshmi; Marti-Subirana, Ana; Newfeld, Stuart J

    2002-12-01

    Embryonic gene expression patterns are an indispensable part of modern developmental biology. Currently, investigators must visually inspect numerous images containing embryonic expression patterns to identify spatially similar patterns for inferring potential genetic interactions. The lack of a computational approach to identify pattern similarities is an impediment to advancement in developmental biology research because of the rapidly increasing amount of available embryonic gene expression data. Therefore, we have developed computational approaches to automate the comparison of gene expression patterns contained in images of early stage Drosophila melanogaster embryos (prior to the beginning of germ-band elongation); similarities and differences in gene expression patterns in these early stages have extensive developmental effects. Here we describe a basic expression search tool (BEST) to retrieve best matching expression patterns for a given query expression pattern and a computational device for gene interaction inference using gene expression pattern images and information on the associated genotypes and probes. Analysis of a prototype collection of Drosophila gene expression pattern images is presented to demonstrate the utility of these methods in identifying biologically meaningful matches and inferring gene interactions by direct image content analysis. In particular, the use of BEST searches for gene expression patterns is akin to that of BLAST searches for finding similar sequences. These computational developmental biology methodologies are likely to make the great wealth of embryonic gene expression pattern data easily accessible and to accelerate the discovery of developmental networks.

  15. AMBRA1 and SQSTM1 expression pattern in prostate cancer.

    PubMed

    Falasca, Laura; Torino, Francesco; Marconi, Matteo; Costantini, Manuela; Pompeo, Vincenzo; Sentinelli, Steno; De Salvo, Laura; Patrizio, Mario; Padula, Cristiano; Gallucci, Michele; Piacentini, Mauro; Malorni, Walter

    2015-12-01

    Prostate cancer is among the most commonly diagnosed male diseases and a leading cause of cancer mortality in men. There is emerging evidence that autophagy plays an important role in malignant cell survival and offers protection from the anti-cancer drugs in prostate cancer cells. AMBRA1 and the autophagic protein sequestosome-1 (SQSTM1; p62) expression were evaluated by immunohistochemistry and western blot on tissue samples from both benign and malignant prostatic lesions. The data reported in this pilot study demonstrated an increased expression of AMBRA1 and SQSTM1, which were also associated with an accumulation of LC3II in prostate cancer but not in benign lesion. In the present study we found that: (i) at variance with benign lesion, prostate cancer cells underwent SQSTM1 accumulation, i.e., clearly displayed a defective autophagic process but, also, (ii) prostate cancer accumulated AMBRA1 and (iii) this increase positively correlated with the Gleason score. These results underscore a possible implication of autophagy in prostate cancer phenotype and of AMBRA1 as possible cancer progression biomarker in this malignancy.

  16. The Anoikis Effector Bit1 Inhibits EMT through Attenuation of TLE1-Mediated Repression of E-Cadherin in Lung Cancer Cells

    PubMed Central

    Yao, Xin; Pham, Tri; Temple, Brandi; Gray, Selena; Cannon, Cornita; Chen, Renwei; Abdel-Mageed, Asim B.; Biliran, Hector

    2016-01-01

    The mitochondrial Bcl-2 inhibitor of transcription 1 (Bit1) protein is part of an anoikis-regulating pathway that is selectively dependent on integrins. We previously demonstrated that the caspase-independent apoptotic effector Bit1 exerts tumor suppressive function in lung cancer in part by inhibiting anoikis resistance and anchorage-independent growth in vitro and tumorigenicity in vivo. Herein we show a novel function of Bit1 as an inhibitor cell migration and epithelial–mesenchymal transition (EMT) in the human lung adenocarcinoma A549 cell line. Suppression of endogenous Bit1 expression via siRNA and shRNA strategies promoted mesenchymal phenotypes, including enhanced fibroblastoid morphology and cell migratory potential with concomitant downregulation of the epithelial marker E-cadherin expression. Conversely, ectopic Bit1 expression in A549 cells promoted epithelial transition characterized by cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Specific downregulation of E-cadherin in Bit1-transfected cells was sufficient to block Bit1-mediated inhibition of cell motility while forced expression of E-cadherin alone attenuated the enhanced migration of Bit1 knockdown cells, indicating that E-cadherin is a downstream target of Bit1 in regulating cell motility. Furthermore, quantitative real-time PCR and reporter analyses revealed that Bit1 upregulates E-cadherin expression at the transcriptional level through the transcriptional regulator Amino-terminal Enhancer of Split (AES) protein. Importantly, the Bit1/AES pathway induction of E-cadherin expression involves inhibition of the TLE1-mediated repression of E-cadherin, by decreasing TLE1 corepressor occupancy at the E-cadherin promoter as revealed by chromatin immunoprecipitation assays. Consistent with its EMT inhibitory function, exogenous Bit1 expression significantly suppressed the formation of lung metastases of A549 cells in an in vivo experimental

  17. Nursing frequency alters circadian patterns of mammary gene expression in lactating mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Milking frequency impacts lactation in dairy cattle and in rodent models of lactation. The role of circadian gene expression in this process is unknown. The hypothesis tested was that changing nursing frequency alters the circadian patterns of mammary gene expression. Mid-lactation CD1 mice were stu...

  18. Non-Recessive Bt Toxin Resistance Conferred by an Intracellular Cadherin Mutation in Field-Selected Populations of Cotton Bollworm

    PubMed Central

    Zhang, Haonan; Wu, Shuwen; Yang, Yihua; Tabashnik, Bruce E.; Wu, Yidong

    2012-01-01

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin-binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Here we report a novel allele from cotton bollworm with a deletion in the intracellular domain of cadherin that is genetically linked with non-recessive resistance to Cry1Ac. We discovered this allele in each of three field-selected populations we screened from northern China where Bt cotton producing Cry1Ac has been grown intensively. We expressed four types of cadherin alleles in heterologous cell cultures: susceptible, resistant with the intracellular domain mutation, and two complementary chimeric alleles with and without the mutation. Cells transfected with each of the four cadherin alleles bound Cry1Ac and were killed by Cry1Ac. However, relative to cells transfected with either the susceptible allele or the chimeric allele lacking the intracellular domain mutation, cells transfected with the resistant allele or the chimeric allele containing the intracellular domain mutation were less susceptible to Cry1Ac. These results suggest that the intracellular domain of cadherin is involved in post-binding events that affect toxicity of Cry1Ac. This evidence is consistent with the vital role of the intracellular region of cadherin proposed by the cell signaling model of the mode of action of Bt toxins. Considered together with previously reported data, the results suggest that both pore formation and cell signaling pathways contribute to the efficacy of Bt toxins. PMID:23285292

  19. Cadherin-dependent mechanotransduction depends on ligand identity but not affinity

    PubMed Central

    Tabdili, Hamid; Langer, Matthew; Shi, Quanming; Poh, Yeh-Chuin; Wang, Ning; Leckband, Deborah

    2012-01-01

    Summary This study investigates the relationship between classical cadherin binding affinities and mechanotransduction through cadherin-mediated adhesions. The mechanical properties of cadherin-dependent intercellular junctions are generally attributed to differences in the binding affinities of classical cadherin subtypes that contribute to cohesive energies between cells. However, cell mechanics and mechanotransduction may also regulate intercellular contacts. We used micropipette measurements to quantify the two-dimensional affinities of cadherins at the cell surface, and two complementary mechanical measurements to assess ligand-dependent mechanotransduction through cadherin adhesions. At the cell surface, the classical cadherins investigated in this study form both homophilic and heterophilic bonds with two-dimensional affinities that differ by less than threefold. In contrast, mechanotransduction through cadherin adhesions is strongly ligand dependent such that homophilic, but not heterophilic ligation mediates mechanotransduction, independent of the cadherin binding affinity. These findings suggest that ligand-selective mechanotransduction may supersede differences in cadherin binding affinities in regulating intercellular contacts. PMID:22718345

  20. Modeling of gene expression pattern alteration by p,p′-DDE and dieldrin in largemouth bass

    USGS Publications Warehouse

    Garcia-Reyero, Natalia; Barber, David; Gross, Timothy; Denslow, Nancy

    2006-01-01

    In this study, largemouth bass (LMB) were subchronically exposed to p,p′-DDE or dieldrin in their diet to evaluate the effect of exposure on expression of genes involved in reproduction and steroid homeostasis. Using real-time PCR, we detected a different gene expression pattern for each OCP, suggesting that they each affect LMB in a different way. We also detected a different expression pattern among sexes, suggesting that sexes are affected differently by OCPs perhaps reflecting the different adaptive responses of each sex to dysregulation caused by OCP exposure.

  1. Stochastic gene expression: Density of defects frozen into permanent Turing patterns

    NASA Astrophysics Data System (ADS)

    Dziarmaga, Jacek

    2001-01-01

    We estimate density of defects frozen into a biological Turing pattern which was turned on at a finite rate. Self-locking of gene expression in individual cells, which makes the Turing transition discontinuous, stabilizes the pattern together with its defects. Defects frozen into the pattern are a permanent record of the transition-they give an animal its own characteristic lifelong ``fingerprints'' or, as for vital organ formation, they can be fatal. Density of defects scales like the fourth root of the transition rate. This dependence is so weak that there is not enough time during morphogenesis to get rid of defects simply by slowing down the rate. A defect-free pattern can be obtained by spatially inhomogeneous activation of the genes. If the supercritical density of activator spreads slower than certain threshold velocity, then the Turing pattern is expressed without any defects.

  2. EPB41L5 functions to post-transcriptionally regulate cadherin and integrin during epithelial–mesenchymal transition

    PubMed Central

    Hirano, Mariko; Hashimoto, Shigeru; Yonemura, Shigenobu; Sabe, Hisataka; Aizawa, Shinichi

    2008-01-01

    EPB41L5 belongs to the band 4.1 superfamily. We investigate here the involvement of EPB41L5 in epithelial–mesenchymal transition (EMT) during mouse gastrulation. EPB41L5 expression is induced during TGFβ-stimulated EMT, whereas silencing of EPB41L5 by siRNA inhibits this transition. In EPB41L5 mutants, cell–cell adhesion is enhanced, and EMT is greatly impaired during gastrulation. Moreover, cell attachment, spreading, and mobility are greatly reduced by EPB41L5 deficiency. Gene transcription regulation during EMT occurs normally at the mRNA level; EPB41L5 siRNA does not affect either the decrease in E-cadherin or the increase in integrin expression. However, at the protein level, the decrease in E-cadherin and increase in integrin are inhibited in both EPB41L5 siRNA-treated NMuMG cells and mutant mesoderm. We find that EPB41L5 binds p120ctn through its N-terminal FERM domain, inhibiting p120ctn–E-cadherin binding. EPB41L5 overexpression causes E-cadherin relocalization into Rab5-positive vesicles in epithelial cells. At the same time, EPB41L5 binds to paxillin through its C terminus, enhancing integrin/paxillin association, thereby stimulating focal adhesion formation. PMID:18794329

  3. EPB41L5 functions to post-transcriptionally regulate cadherin and integrin during epithelial-mesenchymal transition.

    PubMed

    Hirano, Mariko; Hashimoto, Shigeru; Yonemura, Shigenobu; Sabe, Hisataka; Aizawa, Shinichi

    2008-09-22

    EPB41L5 belongs to the band 4.1 superfamily. We investigate here the involvement of EPB41L5 in epithelial-mesenchymal transition (EMT) during mouse gastrulation. EPB41L5 expression is induced during TGFbeta-stimulated EMT, whereas silencing of EPB41L5 by siRNA inhibits this transition. In EPB41L5 mutants, cell-cell adhesion is enhanced, and EMT is greatly impaired during gastrulation. Moreover, cell attachment, spreading, and mobility are greatly reduced by EPB41L5 deficiency. Gene transcription regulation during EMT occurs normally at the mRNA level; EPB41L5 siRNA does not affect either the decrease in E-cadherin or the increase in integrin expression. However, at the protein level, the decrease in E-cadherin and increase in integrin are inhibited in both EPB41L5 siRNA-treated NMuMG cells and mutant mesoderm. We find that EPB41L5 binds p120ctn through its N-terminal FERM domain, inhibiting p120ctn-E-cadherin binding. EPB41L5 overexpression causes E-cadherin relocalization into Rab5-positive vesicles in epithelial cells. At the same time, EPB41L5 binds to paxillin through its C terminus, enhancing integrin/paxillin association, thereby stimulating focal adhesion formation. PMID:18794329

  4. Interaction with Suv39H1 is Critical for Snail-mediated E-cadherin Repression in Breast Cancer

    PubMed Central

    Dong, Chenfang; Wu, Yadi; Wang, Yifan; Wang, Chi; Kang, Tiebang; Rychahou, Piotr G.; Chi, Young-In; Evers, B. Mark; Zhou, Binhua P.

    2013-01-01

    Expression of E-cadherin, a hallmark of epithelial-mesenchymal transition (EMT), is often lost due to promoter DNA methylation in basal-like breast cancer (BLBC), which contributes to the metastatic advantage of this disease; however, the underlying mechanism remains unclear. Here we identified that Snail interacted with Suv39H1, a major methyltransferase responsible for H3K9me3 that intimately links to DNA methylation. We demonstrated that the SNAG domain of Snail and the SET domain of Suv39H1 were required for their mutual interactions. We found that H3K9me3 and DNA methylation on the E-cadherin promoter were higher in BLBC cell lines. We showed that Snail interacted with Suv39H1 and recruited it to the E-cadherin promoter for transcriptional repression. Knockdown of Suv39H1 restored E-cadherin expression by blocking H3K9me3 and DNA methylation and resulted in the inhibition of cell migration, invasion and metastasis of BLBC. Our study not only reveals a critical mechanism underlying the epigenetic regulation of EMT, but also paves a way for the development of new treatment strategies against this disease. PMID:22562246

  5. Diversity of Reporter Expression Patterns in Transgenic Mouse Lines Targeting Corticotropin-Releasing Hormone-Expressing Neurons.

    PubMed

    Chen, Yuncai; Molet, Jenny; Gunn, Benjamin G; Ressler, Kerry; Baram, Tallie Z

    2015-12-01

    Transgenic mice, including lines targeting corticotropin-releasing factor (CRF or CRH), have been extensively employed to study stress neurobiology. These powerful tools are poised to revolutionize our understanding of the localization and connectivity of CRH-expressing neurons, and the crucial roles of CRH in normal and pathological conditions. Accurate interpretation of studies using cell type-specific transgenic mice vitally depends on congruence between expression of the endogenous peptide and reporter. If reporter expression does not faithfully reproduce native gene expression, then effects of manipulating unintentionally targeted cells may be misattributed. Here, we studied CRH and reporter expression patterns in 3 adult transgenic mice: Crh-IRES-Cre;Ai14 (tdTomato mouse), Crfp3.0CreGFP, and Crh-GFP BAC. We employed the CRH antiserum generated by Vale after validating its specificity using CRH-null mice. We focused the analyses on stress-salient regions, including hypothalamus, amygdala, bed nucleus of the stria terminalis, and hippocampus. Expression patterns of endogenous CRH were consistent among wild-type and transgenic mice. In tdTomato mice, most CRH-expressing neurons coexpressed the reporter, yet the reporter identified a few non-CRH-expressing pyramidal-like cells in hippocampal CA1 and CA3. In Crfp3.0CreGFP mice, coexpression of CRH and the reporter was found in central amygdala and, less commonly, in other evaluated regions. In Crh-GFP BAC mice, the large majority of neurons expressed either CRH or reporter, with little overlap. These data highlight significant diversity in concordant expression of reporter and endogenous CRH among 3 available transgenic mice. These findings should be instrumental in interpreting important scientific findings emerging from the use of these potent neurobiological tools. PMID:26402844

  6. Gene Expression Patterns Associated With Histopathology in Toxic Liver Fibrosis.

    PubMed

    Ippolito, Danielle L; AbdulHameed, Mohamed Diwan M; Tawa, Gregory J; Baer, Christine E; Permenter, Matthew G; McDyre, Bonna C; Dennis, William E; Boyle, Molly H; Hobbs, Cheryl A; Streicker, Michael A; Snowden, Bobbi S; Lewis, John A; Wallqvist, Anders; Stallings, Jonathan D

    2016-01-01

    Toxic industrial chemicals induce liver injury, which is difficult to diagnose without invasive procedures. Identifying indicators of end organ injury can complement exposure-based assays and improve predictive power. A multiplexed approach was used to experimentally evaluate a panel of 67 genes predicted to be associated with the fibrosis pathology by computationally mining DrugMatrix, a publicly available repository of gene microarray data. Five-day oral gavage studies in male Sprague Dawley rats dosed with varying concentrations of 3 fibrogenic compounds (allyl alcohol, carbon tetrachloride, and 4,4'-methylenedianiline) and 2 nonfibrogenic compounds (bromobenzene and dexamethasone) were conducted. Fibrosis was definitively diagnosed by histopathology. The 67-plex gene panel accurately diagnosed fibrosis in both microarray and multiplexed-gene expression assays. Necrosis and inflammatory infiltration were comorbid with fibrosis. ANOVA with contrasts identified that 51 of the 67 predicted genes were significantly associated with the fibrosis phenotype, with 24 of these specific to fibrosis alone. The protein product of the gene most strongly correlated with the fibrosis phenotype PCOLCE (Procollagen C-Endopeptidase Enhancer) was dose-dependently elevated in plasma from animals administered fibrogenic chemicals (P < .05). Semiquantitative global mass spectrometry analysis of the plasma identified an additional 5 protein products of the gene panel which increased after fibrogenic toxicant administration: fibronectin, ceruloplasmin, vitronectin, insulin-like growth factor binding protein, and α2-macroglobulin. These results support the data mining approach for identifying gene and/or protein panels for assessing liver injury and may suggest bridging biomarkers for molecular mediators linked to histopathology.

  7. Myocardial connexin-43 and N-Cadherin decrease during vanadium inhalation.

    PubMed

    Fortoul, Teresa I; Soto-Mota, Adrian; Rojas-Lemus, Marcela; Rodriguez-Lara, Vianey; Gonzalez-Villalva, Adriana; Montaño, Luis F; Paez, Araceli; Colin-Barenque, Laura; López-Valdez, Nelly; Cano-Gutiérrez, Gumaro; Bizarro-Nevares, Patricia; Ustarroz-Cano, Martha

    2016-04-01

    Particulate matter air pollution has considerably increased during the last decades; vanadium is a transition element adhered to this particulate matter, and the combustion of fossil fuels is the main source in the atmosphere. It has been reported that air pollution and specifically vanadium exposure increases the probability of suffering arrhythmias; however the biological mechanism of such a relationship remains unknown. It has been established that a diminished presence of N-Cadherin alters the Connexin-43 arrangement, and the consequent altered presence of these proteins predisposes to ventricular heart rate problems. We analyzed myocardial histology and the expression of N-Cadherin and Connexin-43 by immunohistochemistry in mouse that inhaled vanadium. Our results showed a significant and progressive reduction in both N-Cadherin and Connexin-43, as well as the presence of meganucleus; myofibrils disruption, and clumping in the exposed groups were also observed. Our findings add more information about a possible explanation for the arrythmogenic effect observed in dwellers of cities with high particulate matter atmospheric pollution. PMID:26568576

  8. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines

    PubMed Central

    Chazeau, Anaël; Garcia, Mikael; Czöndör, Katalin; Perrais, David; Tessier, Béatrice; Giannone, Grégory; Thoumine, Olivier

    2015-01-01

    The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin–coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain. PMID:25568337

  9. Letter to the Editor: Human Pluripotent Stem Cells Release Oncogenic Soluble E-Cadherin.

    PubMed

    Rosner, Margit; Hengstschläger, Markus

    2016-09-01

    Since their discovery, human pluripotent stem cells (hPSCs) including embryonic and induced pluripotent stem cells hold great promise in disease modeling and regenerative medicine. Despite intensive research and remarkable progress, it is becoming increasingly acknowledged that their yet incomplete, biological characterisation represents one of the major drawbacks to their successful translation into the clinics. The expression of the transmembrane protein E-cadherin in hPSCs is well defined to be pivotal to the maintenance of the pluripotent state by mediating intercellular adhesion and intracellular signaling. Next to these canonical functions, were here report for the first time that hPSCs are subject to matrix metalloproteinase-dependent E-cadherin ectodomain shedding. This generates a ∼80-kD, soluble E-cadherin fragment which is released into the extracellular space, and which is well described to exert paracrine signaling activity and classified as being oncogenic. Collectively, this finding does not only improve our knowledge on the signaling crosstalk between hPSCs and their cellular environment and the type and nature of the paracrine signals produced by these cells, but also has clear implications for the development of efficient and safe stem cell-based therapies. Stem Cells 2016;34:2443-2446. PMID:27399873

  10. Cdon promotes neural crest migration by regulating N-cadherin localization.

    PubMed

    Powell, Davalyn R; Williams, Jason S; Hernandez-Lagunas, Laura; Salcedo, Ernesto; O'Brien, Jenean H; Artinger, Kristin Bruk

    2015-11-15

    Neural crest cells (NCCs) are essential embryonic progenitor cells that are unique to vertebrates and form a remarkably complex and coordinated system of highly motile cells. Migration of NCCs occurs along specific pathways within the embryo in response to both environmental cues and cell-cell interactions within the neural crest population. Here, we demonstrate a novel role for the putative Sonic hedgehog (Shh) receptor and cell adhesion regulator, cdon, in zebrafish neural crest migration. cdon is expressed in developing premigratory NCCs but is downregulated once the cells become migratory. Knockdown of cdon results in aberrant migration of trunk NCCs: crestin positive cells can emigrate out of the neural tube but stall shortly after the initiation of migration. Live cell imaging analysis demonstrates reduced directedness of migration, increased velocity and mispositioned cell protrusions. In addition, transplantation analysis suggests that cdon is required cell-autonomously for directed NCC migration in the trunk. Interestingly, N-cadherin is mislocalized following cdon knockdown suggesting that the role of cdon in NCCs is to regulate N-cadherin localization. Our results reveal a novel role for cdon in zebrafish neural crest migration, and suggest a mechanism by which Cdon is required to localize N-cadherin to the cell membrane in migratory NCCs for directed migration.

  11. Cdon promotes neural crest migration by regulating N-cadherin localization.

    PubMed

    Powell, Davalyn R; Williams, Jason S; Hernandez-Lagunas, Laura; Salcedo, Ernesto; O'Brien, Jenean H; Artinger, Kristin Bruk

    2015-11-15

    Neural crest cells (NCCs) are essential embryonic progenitor cells that are unique to vertebrates and form a remarkably complex and coordinated system of highly motile cells. Migration of NCCs occurs along specific pathways within the embryo in response to both environmental cues and cell-cell interactions within the neural crest population. Here, we demonstrate a novel role for the putative Sonic hedgehog (Shh) receptor and cell adhesion regulator, cdon, in zebrafish neural crest migration. cdon is expressed in developing premigratory NCCs but is downregulated once the cells become migratory. Knockdown of cdon results in aberrant migration of trunk NCCs: crestin positive cells can emigrate out of the neural tube but stall shortly after the initiation of migration. Live cell imaging analysis demonstrates reduced directedness of migration, increased velocity and mispositioned cell protrusions. In addition, transplantation analysis suggests that cdon is required cell-autonomously for directed NCC migration in the trunk. Interestingly, N-cadherin is mislocalized following cdon knockdown suggesting that the role of cdon in NCCs is to regulate N-cadherin localization. Our results reveal a novel role for cdon in zebrafish neural crest migration, and suggest a mechanism by which Cdon is required to localize N-cadherin to the cell membrane in migratory NCCs for directed migration. PMID:26256768

  12. Single-cell transcriptome analysis reveals coordinated ectopic gene expression patterns in medullary thymic epithelial cells

    PubMed Central

    Brennecke, Philip; Reyes, Alejandro; Pinto, Sheena; Rattay, Kristin; Nguyen, Michelle; Küchler, Rita; Huber, Wolfgang; Kyewski, Bruno; Steinmetz, Lars M.

    2015-01-01

    Expression of tissue-restricted self-antigens (TRAs) in medullary thymic epithelial cells (mTECs) is essential for self-tolerance induction and prevents autoimmunity, with each TRA being expressed in only a few mTECs. How this process is regulated in single mTECs and coordinated at the population level, such that the varied single-cell patterns add up to faithfully represent TRAs, is poorly understood. Here we used single-cell RNA-sequencing and provide evidence for numerous recurring TRA co-expression patterns, each present in only a subset of mTECs. Co-expressed genes clustered in the genome and showed enhanced chromatin accessibility. Our findings characterize TRA expression in mTECs as a coordinated process, which might involve local re-modeling of chromatin and thus ensures a comprehensive representation of the immunological self. PMID:26237553

  13. Structural and functional diversity of cadherin at the adherens junction

    PubMed Central

    2011-01-01

    Adhesion between cells is essential to the evolution of multicellularity. Indeed, morphogenesis in animals requires firm but flexible intercellular adhesions that are mediated by subcellular structures like the adherens junction (AJ). A key component of AJs is classical cadherins, a group of transmembrane proteins that maintain dynamic cell–cell associations in many animal species. An evolutionary reconstruction of cadherin structure and function provides a comprehensive framework with which to appreciate the diversity of morphogenetic mechanisms in animals. PMID:21708975

  14. T-cadherin Is Essential for Adiponectin-mediated Revascularization*

    PubMed Central

    Parker-Duffen, Jennifer L.; Nakamura, Kazuto; Silver, Marcy; Kikuchi, Ryosuke; Tigges, Ulrich; Yoshida, Sumiko; Denzel, Martin S.; Ranscht, Barbara; Walsh, Kenneth

    2013-01-01

    Adipose tissue secretes protein factors that have systemic actions on cardiovascular tissues. Previous studies have shown that ablation of the adipocyte-secreted protein adiponectin leads to endothelial dysfunction, whereas its overexpression promotes wound healing. However, the receptor(s) mediating the protective effects of adiponectin on the vasculature is not known. Here we examined the role of membrane protein T-cadherin, which localizes adiponectin to the vascular endothelium, in the revascularization response to chronic ischemia. T-cadherin-deficient mice were analyzed in a model of hind limb ischemia where blood flow is surgically disrupted in one limb and recovery is monitored over 28 days by laser Doppler perfusion imaging. In this model, T-cadherin-deficient mice phenocopy adiponectin-deficient mice such that both strains display an impaired blood flow recovery compared with wild-type controls. Delivery of exogenous adiponectin rescued the impaired revascularization phenotype in adiponectin-deficient mice but not in T-cadherin-deficient mice. In cultured endothelial cells, T-cadherin deficiency by siRNA knockdown prevented the ability of adiponectin to promote cellular migration and proliferation. These data highlight a previously unrecognized role for T-cadherin in limb revascularization and show that it is essential for mediating the vascular actions of adiponectin. PMID:23824191

  15. Vangl2 Regulates E-Cadherin in Epithelial Cells

    PubMed Central

    Nagaoka, Tadahiro; Inutsuka, Ayumu; Begum, Khadiza; hafiz, Khandakar musabbir bin; Kishi, Masashi

    2014-01-01

    E-cadherin belongs to the classic cadherin subfamily of calcium-dependent cell adhesion molecules and is crucial for the formation and function of epithelial adherens junctions. In this study, we demonstrate that Vangl2, a vertebrate regulator of planar cell polarity (PCP), controls E-cadherin in epithelial cells. E-cadherin co-immunoprecipitates with Vangl2 from embryonic kidney extracts, and this association is also observed in transfected fibroblasts. Vangl2 enhances the internalization of E-cadherin when overexpressed. Conversely, the quantitative ratio of E-cadherin exposed to the cell surface is increased in cultured renal epithelial cells derived from Vangl2Lpt/+ mutant mice. Interestingly, Vangl2 is also internalized through protein traffic involving Rab5- and Dynamin-dependent endocytosis. Taken together with recent reports regarding the transport of Frizzled3, MMP14 and nephrin, these results suggest that one of the molecular functions of Vangl2 is to enhance the internalization of specific plasma membrane proteins with broad selectivity. This function may be involved in the control of intercellular PCP signalling or in the PCP-related rearrangement of cell adhesions. PMID:25373475

  16. Abl promotes cadherin-dependent adhesion and signaling in myoblasts.

    PubMed

    Lu, Min; Krauss, Robert S

    2010-07-15

    Cell-cell contact promotes myogenic differentiation but the mechanisms that regulate this phenomenon are not well understood. Cdo (also known as Cdon), an Ig superfamily member, functions as a component of cell surface complexes to promote myogenic differentiation through activation of p38alpha/beta MAP kinase. We recently showed that N-cadherin ligation activated p38alpha/beta in a Cdo-dependent manner, whereas N-cadherin ligation-dependent activation of ERK MAP kinase was not affected by loss of Cdo. The non-receptor tyrosine kinase Abl associates with Cdo during myoblast differentiation and is necessary for full activition of p38alpha/beta during this process. The Abl SH3 domain binds to a PxxP motif in the Cdo intracellular domain, and both these motifs are required for their promyogenic activity. Here we show that Abl is necessary for p38alpha/beta activation initiated by N-cadherin ligation, but in contrast to Cdo, Abl is also required for N-cadherin-dependent ERK activation. Moreover, Abl is required for efficient cadherin-mediated myoblast aggregation via modulation of RhoA-ROCK signaling. Therefore, Abl regulates N-cadherin-mediated p38alpha/beta activation by multiple mechanisms, more generally through regulation of cell-cell adhesion and specifically as a component of Cdo-containing complexes. The role of Cdo as a multifunctional coreceptor with roles in several pathways is also discussed.

  17. Computational gene expression profiling under salt stress reveals patterns of co-expression

    PubMed Central

    Sanchita; Sharma, Ashok

    2016-01-01

    Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes. PMID:26981411

  18. Elevated Src family kinase activity stabilizes E-cadherin-based junctions and collective movement of head and neck squamous cell carcinomas

    PubMed Central

    Veracini, Laurence; Grall, Dominique; Schaub, Sébastien; Divonne, Stéphanie Beghelli-de la Forest; Etienne-Grimaldi, Marie-Christine; Milano, Gérard; Bozec, Alexandre; Babin, Emmanuel; Sudaka, Anne; Thariat, Juliette; Van Obberghen-Schilling, Ellen

    2015-01-01

    EGF receptor (EGFR) overexpression is thought to drive head and neck carcinogenesis however clinical responses to EGFR-targeting agents have been modest and alternate targets are actively sought to improve results. Src family kinases (SFKs), reported to act downstream of EGFR are among the alternative targets for which increased expression or activity in epithelial tumors is commonly associated to the dissolution of E-cadherin-based junctions and acquisition of a mesenchymal-like phenotype. Robust expression of total and activated Src was observed in advanced stage head and neck tumors (N=60) and in head and neck squamous cell carcinoma lines. In cultured cancer cells Src co-localized with E-cadherin in cell-cell junctions and its phosphorylation on Y419 was both constitutive and independent of EGFR activation. Selective inhibition of SFKs with SU6656 delocalized E-cadherin and disrupted cellular junctions without affecting E-cadherin expression and this effect was phenocopied by knockdown of Src or Yes. These findings reveal an EGFR-independent role for SFKs in the maintenance of intercellular junctions, which likely contributes to the cohesive invasion E-cadherin-positive cells in advanced tumors. Further, they highlight the need for a deeper comprehension of molecular pathways that drive collective cell invasion, in absence of mesenchymal transition, in order to combat tumor spread. PMID:25779657

  19. Inhibition of E-cadherin/catenin complex formation by O-linked N-acetylglucosamine transferase is partially independent of its catalytic activity.

    PubMed

    Liu, Haiyan; Gu, Yuchao; Qi, Jieqiong; Han, Cuifang; Zhang, Xinling; Bi, Chuanlin; Yu, Wengong

    2016-02-01

    p120-catenin (p120) contains a large central armadillo repeat domain, via which it binds to E‑cadherin to stabilize the latter, thereby regulating cell‑to‑cell adhesion. A previous study by our group demonstrated that O‑linked N‑acetylglucosamine (O‑GlcNAc) is involved in the regulation of the interaction between p120 and E‑cadherin. As O‑GlcNAc transferase (OGT) is able to directly bind to the majority of its target proteins, the present study hypothesized that OGT may additionally regulate the formation of the E‑cadherin/catenin complex independent of its catalytic activity. To verify this hypothesis, a catalytically inactive OGT mutant was expressed in H1299 cells, and its effects on the formation of the E‑cadherin/catenin complex were assessed. A cytoskeleton‑binding protein extraction assay confirmed that OGT inhibited the formation of the E‑cadherin/catenin complex independent of its catalytic activity. In addition, co‑immunoprecipitation and pull‑down assays were used to evaluate the interaction between OGT and p120. Immunoblotting indicated that OGT was able to directly bind to p120. To determine the domain of p120 involved in binding to OGT, a series of deletion mutants of p120 were constructed and subjected to protein binding assays by pull‑down assays. Immunoblotting showed that OGT bound to the regulatory and armadillo domains of p120, which might interfere with the interaction between p120 and E‑cadherin. Finally, OGT, p120 and E‑cadherin cytoplasmic domains (ECD) were recombinantly expressed in BL21 (DE3) recombinant E. coli cells, and a glutathione S‑transferase (GST) pull‑down assay was performed to assess the interactions among the purified recombinant proteins. Immunoblotting indicated that maltose‑binding protein (MBP)‑OGT inhibited the binding of His‑p120 to GST‑ECD in a dose‑dependent manner. All of these results suggested that OGT inhibited the formation of the E‑cadherin/catenin complex

  20. Exploring myriapod segmentation: the expression patterns of even-skipped, engrailed, and wingless in a centipede.

    PubMed

    Hughes, Cynthia L; Kaufman, Thomas C

    2002-07-01

    Segment formation is critical to arthropod development, yet there is still relatively little known about this process in most arthropods. Here, we present the expression patterns of the genes even-skipped (eve), engrailed, and wingless in a centipede, Lithobius atkinsoni. Despite some differences when compared with the patterns in insects and crustaceans, the expression of these genes in the centipede suggests that their basic roles are conserved across the mandibulate arthropods. For example, unlike the seven pair-rule stripes of eve expression in the Drosophila embryonic germband, the centipede eve gene is expressed strongly in the posterior of the embryo, and in only a few stripes between newly formed segments. Nonetheless, this pattern likely reflects a conserved role for eve in the process of segment formation, within the different context of a short-germband mode of embryonic development. In the centipede, the genes wingless and engrailed are expressed in stripes along the middle and posterior of each segment, respectively, similar to their expression in Drosophila. The adjacent expression of the engrailed and wingless stripes suggests that the regulatory relationship between the two genes may be conserved in the centipede, and thus this pathway may be a fundamental mechanism of segmental development in most arthropods.

  1. Lactase gene promoter fragments mediate differential spatial and temporal expression patterns in transgenic mice.

    PubMed

    Wang, Zhi; Maravelias, Charalambos; Sibley, Eric

    2006-04-01

    Lactase gene expression is spatiotemporally regulated during mammalian gut development. We hypothesize that distinct DNA control regions specify appropriate spatial and temporal patterning of lactase gene expression. In order to define regions of the lactase promoter involved in mediating intestine-specific and spatiotemporal restricted expression, transgenic mice harboring 100 bp, 1.3- and 2.0- kb fragments of the 5' flanking region of the rat lactase gene cloned upstream of a luciferase reporter were characterized. The 100-bp lactase promoter-reporter transgenic mouse line expressed maximal luciferase activity in the intestine with a posterior shift in spatial restriction and ectopic expression in the stomach and lung. The temporal pattern of expression mediated by the 1.3-kb promoter?reporter transgene increases with postnatal maturation in contrast with the postnatal decline mediated by the 2.0-kb promoter-reporter transgene and the endogenous lactase gene. The differential transgene expression patterns mediated by the lactase promoter fragments suggests that intestine-specific spatial and temporal control elements reside in distinct regions of the DNA sequences upstream of the lactase gene transcription start-site.

  2. Inference of the Xenopus tropicalis embryonic regulatory network and spatial gene expression patterns

    PubMed Central

    2014-01-01

    Background During embryogenesis, signaling molecules produced by one cell population direct gene regulatory changes in neighboring cells and influence their developmental fates and spatial organization. One of the earliest events in the development of the vertebrate embryo is the establishment of three germ layers, consisting of the ectoderm, mesoderm and endoderm. Attempts to measure gene expression in vivo in different germ layers and cell types are typically complicated by the heterogeneity of cell types within biological samples (i.e., embryos), as the responses of individual cell types are intermingled into an aggregate observation of heterogeneous cell types. Here, we propose a novel method to elucidate gene regulatory circuits from these aggregate measurements in embryos of the frog Xenopus tropicalis using gene network inference algorithms and then test the ability of the inferred networks to predict spatial gene expression patterns. Results We use two inference models with different underlying assumptions that incorporate existing network information, an ODE model for steady-state data and a Markov model for time series data, and contrast the performance of the two models. We apply our method to both control and knockdown embryos at multiple time points to reconstruct the core mesoderm and endoderm regulatory circuits. Those inferred networks are then used in combination with known dorsal-ventral spatial expression patterns of a subset of genes to predict spatial expression patterns for other genes. Both models are able to predict spatial expression patterns for some of the core mesoderm and endoderm genes, but interestingly of different gene subsets, suggesting that neither model is sufficient to recapitulate all of the spatial patterns, yet they are complementary for the patterns that they do capture. Conclusion The presented methodology of gene network inference combined with spatial pattern prediction provides an additional layer of validation to

  3. Geometric Morphometrics on Gene Expression Patterns Within Phenotypes: A Case Example on Limb Development

    PubMed Central

    Martínez-Abadías, Neus; Mateu, Roger; Niksic, Martina; Russo, Lucia; Sharpe, James

    2016-01-01

    How the genotype translates into the phenotype through development is critical to fully understand the evolution of phenotypes. We propose a novel approach to directly assess how changes in gene expression patterns are associated with changes in morphology using the limb as a case example. Our method combines molecular biology techniques, such as whole-mount in situ hybridization, with image and shape analysis, extending the use of Geometric Morphometrics to the analysis of nonanatomical shapes, such as gene expression domains. Elliptical Fourier and Procrustes-based semilandmark analyses were used to analyze the variation and covariation patterns of the limb bud shape with the expression patterns of two relevant genes for limb morphogenesis, Hoxa11 and Hoxa13. We devised a multiple thresholding method to semiautomatically segment gene domains at several expression levels in large samples of limb buds from C57Bl6 mouse embryos between 10 and 12 postfertilization days. Besides providing an accurate phenotyping tool to quantify the spatiotemporal dynamics of gene expression patterns within developing structures, our morphometric analyses revealed high, non-random, and gene-specific variation undergoing canalization during limb development. Our results demonstrate that Hoxa11 and Hoxa13, despite being paralogs with analogous functions in limb patterning, show clearly distinct dynamic patterns, both in shape and size, and are associated differently with the limb bud shape. The correspondence between our results and already well-established molecular processes underlying limb development confirms that this morphometric approach is a powerful tool to extract features of development regulating morphogenesis. Such multilevel analyses are promising in systems where not so much molecular information is available and will advance our understanding of the genotype–phenotype map. In systematics, this knowledge will increase our ability to infer how evolution modified a common

  4. Poly(ADP-ribose) glycohydrolase and poly(ADP-ribose)-interacting protein Hrp38 regulate pattern formation during Drosophila eye development.

    PubMed

    Ji, Yingbiao; Jarnik, Michael; Tulin, Alexei V

    2013-09-10

    Drosophila Hrp38, a homolog of human hnRNP A1, has been shown to regulate splicing, but its function can be modified by poly(ADP-ribosyl)ation. Notwithstanding such findings, our understanding of the roles of poly(ADP-ribosyl)ated Hrp38 on development is limited. Here, we have demonstrated that Hrp38 is essential for fly eye development based on a rough-eye phenotype with disorganized ommatidia observed in adult escapers of the hrp38 mutant. We also observed that poly(ADP-ribose) glycohydrolase (Parg) loss-of-function, which caused increased Hrp38 poly(ADP-ribosyl)ation, also resulted in the rough-eye phenotype with disrupted ommatidial lattice and reduced number of photoreceptor cells. In addition, ectopic expression of DE-cadherin, which is required for retinal morphogenesis, fully rescued the rough-eye phenotype of the hrp38 mutant. Similarly, Parg mutant eye clones had decreased expression level of DE-cadherin with orientation defects, which is reminiscent of DE-cadherin mutant eye phenotype. Therefore, our results suggest that Hrp38 poly(ADP-ribosyl)ation controls eye pattern formation via regulation of DE-cadherin expression, a finding which has implications for understanding the pathogenic mechanisms of Hrp38-related Fragile X syndrome and PARP1-related retinal degeneration diseases.

  5. Nucleolar protein 4-like has a complex expression pattern in zebrafish embryos.

    PubMed

    Borah, Supriya; Barrodia, Praveen; Swain, Rajeeb K

    2016-01-01

    The nucleolar protein 4-like (NOL4L) gene is present on chromosome 20 (20q11.21) in humans. Parts of this gene have been shown to fuse with RUNX1 and PAX5 in acute myeloid leukemia and acute lymphoblastic leukemia, respectively. The normal function of NOL4L in humans and other organisms is not well understood. The expression patterns and functions of NOL4L homologs during vertebrate development have not been reported. We sought to address these questions by studying the expression pattern of zebrafish nol4l during embryogenesis. Our data show that Znol4l mRNA is expressed in multiple organs in zebrafish embryos. The sites of expression include parts of the brain, spinal cord, pronephros, hematopoietic cells and gut. PMID:26934290

  6. Differential Expression Patterns and Developmental Roles of Duplicated Scinderin-Like Genes in Zebrafish

    PubMed Central

    Jia, Sujuan; Nakaya, Naoki; Piatigorsky, Joram

    2011-01-01

    Scinderin, the closest homologue of the actin-severing protein, gelsolin, has two similar paralogs (Scinla and Scinlb) in zebrafish. Scinla is abundant in the adult cornea; Scinlb comprises considerably less corneal protein. Here we show that scinla is expressed in the nose, lens, brain, cornea and annular ligament of the iridocorneal angle; by contrast, scinlb is expressed in the hatching gland, floor plate, notochord, otic vesicle, brain, pharynx, cartilage, swim bladder and cornea. Activity of scinla and scinlb promoter fragments driving the EGFP reporter gene in transgenic zebrafish resembled scinla or scinlb expression. Previously, we showed that reduction of scinla by injection of antisense morpholino oligonucleotides ventralized embryos; here specific reduction of scinlb expression led to subtle brain abnormalities associated with increased cell death, decreased shhb expression in the floor plate, and slightly reduced eye distance. Thus, scinla and scinlb have different expression patterns and developmental roles during zebrafish development. PMID:19681161

  7. Mechanotransduction of shear stress occurs through changes in VE-cadherin and PECAM-1 tension: implications for cell migration.

    PubMed

    Conway, Daniel E; Schwartz, Martin A

    2015-01-01

    Recent work has shown that cadherins at cell-cell junctions bear tensile forces. Using novel FRET-based tension sensors, we showed first that in response to shear stress, endothelial cells rapidly reduce mechanical tension on vascular endothelial (VE)-cadherin. Second, we observed a simultaneous increase in tension on platelet endothelial cell adhesion molecule (PECAM)-1, induced by an interaction with vimentin. In this commentary, we discuss how our results fit with existing data on cadherins as important mediators of mechanotransduction, in particular, in cell migration where mechanical tension across cadherins may communicate the direction of movement. The ability of PECAM-1 to bear mechanical tension may also be important in other PECAM-1 functions, such as leukocyte transmigration through the endothelium. Additionally, our observation that vimentin expression was required for PECAM-1 tension and mechanotransduction of fluid flow suggests that intermediate filaments are capable of transmitting tension. Overall, our results argue against models where an external force is passively transferred across the cytoskeleton, and instead suggest that cells actively respond to extracellular forces by modulating tension across junctional proteins.

  8. Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede.

    PubMed

    Hughes, Cynthia L; Kaufman, Thomas C

    2002-03-01

    The diversity of the arthropod body plan has long been a fascinating subject of study. A flurry of recent research has analyzed Hox gene expression in various arthropod groups, with hopes of gaining insight into the mechanisms that underlie their evolution. The Hox genes have been analyzed in insects, crustaceans and chelicerates. However, the expression patterns of the Hox genes have not yet been comprehensively analyzed in a myriapod. We present the expression patterns of the ten Hox genes in a centipede, Lithobius atkinsoni, and compare our results to those from studies in other arthropods. We have three major findings. First, we find that Hox gene expression is remarkably dynamic across the arthropods. The expression patterns of the Hox genes in the centipede are in many cases intermediate between those of the chelicerates and those of the insects and crustaceans, consistent with the proposed intermediate phylogenetic position of the Myriapoda. Second, we found two 'extra' Hox genes in the centipede compared with those in Drosophila. Based on its pattern of expression, Hox3 appears to have a typical Hox-like role in the centipede, suggesting that the novel functions of the Hox3 homologs zen and bicoid were adopted somewhere in the crustacean-insect clade. In the centipede, the expression of the gene fushi tarazu suggests that it has both a Hox-like role (as in the mite), as well as a role in segmentation (as in insects). This suggests that this dramatic change in function was achieved via a multifunctional intermediate, a condition maintained in the centipede. Last, we found that Hox expression correlates with tagmatic boundaries, consistent with the theory that changes in Hox genes had a major role in evolution of the arthropod body plan.

  9. Hox and ParaHox gene expression in early body plan patterning of polyplacophoran mollusks

    PubMed Central

    Fritsch, Martin; Wollesen, Tim

    2016-01-01

    ABSTRACT Molecular developmental studies of various bilaterians have shown that the identity of the anteroposterior body axis is controlled by Hox and ParaHox genes. Detailed Hox and ParaHox gene expression data are available for conchiferan mollusks, such as gastropods (snails and slugs) and cephalopods (squids and octopuses), whereas information on the putative conchiferan sister group, Aculifera, is still scarce (but see Fritsch et al., 2015 on Hox gene expression in the polyplacophoran Acanthochitona crinita). In contrast to gastropods and cephalopods, the Hox genes in polyplacophorans are expressed in an anteroposterior sequence similar to the condition in annelids and other bilaterians. Here, we present the expression patterns of the Hox genes Lox5, Lox4, and Lox2, together with the ParaHox gene caudal (Cdx) in the polyplacophoran A. crinita. To localize Hox and ParaHox gene transcription products, we also investigated the expression patterns of the genes FMRF and Elav, and the development of the nervous system. Similar to the other Hox genes, all three Acr‐Lox genes are expressed in an anteroposterior sequence. Transcripts of Acr‐Cdx are seemingly present in the forming hindgut at the posterior end. The expression patterns of both the central class Acr‐Lox genes and the Acr‐Cdx gene are strikingly similar to those in annelids and nemerteans. In Polyplacophora, the expression patterns of the Hox and ParaHox genes seem to be evolutionarily highly conserved, while in conchiferan mollusks these genes are co‐opted into novel functions that might have led to evolutionary novelties, at least in gastropods and cephalopods. PMID:27098677

  10. Expression pattern of the coparyl diphosphate synthase gene in developing rice anthers.

    PubMed

    Fukuda, Ari; Nemoto, Keisuke; Chono, Makiko; Yamaguchi, Shinjiro; Nakajima, Masatoshi; Yamagishi, Junko; Maekawa, Masahiko; Yamaguchi, Isomaro

    2004-08-01

    Rice anthers contain high concentrations of gibberellins A(4) and A(7). To understand their physiological roles, we examined the site of their biosynthesis by analyzing the expression pattern of a gene (OsCPS) encoding coparyl diphosphate synthase in developing rice flowers. Expression was apparent in the anthers 1-2 days before flowering, and CPS mRNA accumulated in the maturing pollen.

  11. Chromosomal patterns of gene expression from microarray data: methodology, validation and clinical relevance in gliomas

    PubMed Central

    Turkheimer, Federico E; Roncaroli, Federico; Hennuy, Benoit; Herens, Christian; Nguyen, Minh; Martin, Didier; Evrard, Annick; Bours, Vincent; Boniver, Jacques; Deprez, Manuel

    2006-01-01

    Background Expression microarrays represent a powerful technique for the simultaneous investigation of thousands of genes. The evidence that genes are not randomly distributed in the genome and that their coordinated expression depends on their position on chromosomes has highlighted the need for mathematical approaches to exploit this dependency for the analysis of expression data-sets. Results We have devised a novel mathematical technique (CHROMOWAVE) based on the Haar wavelet transform and applied it to a dataset obtained with the Affymetrix® HG-U133_Plus_2 array in 27 gliomas. CHROMOWAVE generated multi-chromosomal pattern featuring low expression in chromosomes 1p, 4, 9q, 13, 18, and 19q. This pattern was not only statistically robust but also clinically relevant as it was predictive of favourable outcome. This finding was replicated on a data-set independently acquired by another laboratory. FISH analysis indicated that monosomy 1p and 19q was a frequent feature of tumours displaying the CHROMOWAVE pattern but that allelic loss on chromosomes 4, 9q, 13 and 18 was much less common. Conclusion The ability to detect expression changes of spatially related genes and to map their position on chromosomes makes CHROMOWAVE a valuable screening method for the identification and display of regional gene expression changes of clinical relevance. In this study, FISH data showed that monosomy was frequently associated with diffuse low gene expression on chromosome 1p and 19q but not on chromosomes 4, 9q, 13 and 18. Comparative genomic hybridisation, allelic polymorphism analysis and methylation studies are in progress in order to identify the various mechanisms involved in this multi-chromosomal expression pattern. PMID:17140431

  12. Hox and ParaHox gene expression in early body plan patterning of polyplacophoran mollusks.

    PubMed

    Fritsch, Martin; Wollesen, Tim; Wanninger, Andreas

    2016-03-01

    Molecular developmental studies of various bilaterians have shown that the identity of the anteroposterior body axis is controlled by Hox and ParaHox genes. Detailed Hox and ParaHox gene expression data are available for conchiferan mollusks, such as gastropods (snails and slugs) and cephalopods (squids and octopuses), whereas information on the putative conchiferan sister group, Aculifera, is still scarce (but see Fritsch et al., 2015 on Hox gene expression in the polyplacophoran Acanthochitona crinita). In contrast to gastropods and cephalopods, the Hox genes in polyplacophorans are expressed in an anteroposterior sequence similar to the condition in annelids and other bilaterians. Here, we present the expression patterns of the Hox genes Lox5, Lox4, and Lox2, together with the ParaHox gene caudal (Cdx) in the polyplacophoran A. crinita. To localize Hox and ParaHox gene transcription products, we also investigated the expression patterns of the genes FMRF and Elav, and the development of the nervous system. Similar to the other Hox genes, all three Acr-Lox genes are expressed in an anteroposterior sequence. Transcripts of Acr-Cdx are seemingly present in the forming hindgut at the posterior end. The expression patterns of both the central class Acr-Lox genes and the Acr-Cdx gene are strikingly similar to those in annelids and nemerteans. In Polyplacophora, the expression patterns of the Hox and ParaHox genes seem to be evolutionarily highly conserved, while in conchiferan mollusks these genes are co-opted into novel functions that might have led to evolutionary novelties, at least in gastropods and cephalopods. PMID:27098677

  13. Cadherin-11 endocytosis through binding to clathrin promotes cadherin-11-mediated migration in prostate cancer cells.

    PubMed

    Satcher, Robert L; Pan, Tianhong; Bilen, Mehmet A; Li, Xiaoxia; Lee, Yu-Chen; Ortiz, Angelica; Kowalczyk, Andrew P; Yu-Lee, Li-Yuan; Lin, Sue-Hwa

    2015-12-15

    Cadherin-11 (Cad11) cell adhesion molecule plays a role in prostate cancer cell migration. Because disassembly of adhesion complexes through endocytosis of adhesion proteins has been shown to play a role in cell migration, we examined whether Cad11 endocytosis plays a role in Cad11-mediated migration. The mechanism by which Cad11 is internalized is unknown. Using a GST pulldown assay, we found that clathrin binds to the Cad11 cytoplasmic domain but not to that of E-cadherin. Using deletion analysis, we identified a unique sequence motif, VFEEE, in the Cad11 membrane proximal region (amino acid residues 11-15) that binds to clathrin. Endocytosis assays using K(+)-depletion buffer showed that Cad11 internalization is clathrin dependent. Proximity ligation assays showed that Cad11 colocalizes with clathrin, and immunofluorescence assays showed that Cad11 localizes in vesicles that stain for the early endosomal marker Rab5. Deletion of the VFEEE sequence from the Cad11 cytoplasmic domain (Cad11-cla-Δ5) leads to inhibition of Cad11 internalization and reduces Cad11-mediated cell migration in C4-2B and PC3-mm2 prostate cancer cells. These observations suggest that clathrin-mediated internalization of Cad11 regulates surface trafficking of Cad11 and that dynamic turnover of Cad11 regulates the migratory function of Cad11 in prostate cancer cells.

  14. Systematic expression analysis of Hox genes at adulthood reveals novel patterns in the central nervous system.

    PubMed

    Hutlet, Bertrand; Theys, Nicolas; Coste, Cécile; Ahn, Marie-Thérèse; Doshishti-Agolli, Konstantin; Lizen, Benoît; Gofflot, Françoise

    2016-04-01

    Hox proteins are key regulators of animal development, providing positional identity and patterning information to cells along the rostrocaudal axis of the embryo. Although their embryonic expression and function are well characterized, their presence and biological importance in adulthood remains poorly investigated. We provide here the first detailed quantitative and neuroanatomical characterization of the expression of the 39 Hox genes in the adult mouse brain. Using RT-qPCR we determined the expression of 24 Hox genes mainly in the brainstem of the adult brain, with low expression of a few genes in the cerebellum and the forebrain. Using in situ hybridization (ISH) we have demonstrated that expression of Hox genes is maintained in territories derived from the early segmental Hox expression domains in the hindbrain. Indeed, we show that expression of genes belonging to paralogy groups PG2-8 is maintained in the hindbrain derivatives at adulthood. The spatial colinearity, which characterizes the early embryonic expression of Hox genes, is still observed in sequential antero-posterior boundaries of expression. Moreover, the main mossy and climbing fibres precerebellar nuclei express PG2-8 Hox genes according to their migration origins. Second, ISH confirms the presence of Hox gene transcripts in territories where they are not detected during development, suggesting neo-expression in these territories in adulthood. Within the forebrain, we have mapped Hoxb1, Hoxb3, Hoxb4, Hoxd3 and Hoxa5 expression in restricted areas of the sensory cerebral cortices as well as in specific thalamic relay nuclei. Our data thus suggest a requirement of Hox genes beyond their role of patterning genes, providing a new dimension to their functional relevance in the central nervous system.

  15. An efficient promoter trap for detection of patterned gene expression and subsequent functional analysis in Drosophila.

    PubMed

    Larsen, Camilla; Franch-Marro, Xavier; Hartenstein, Volker; Alexandre, Cyrille; Vincent, Jean-Paul

    2006-11-21

    Transposable elements have been used in Drosophila to detect gene expression, inactivate gene function, and induce ectopic expression or overexpression. We have combined all of these features in a single construct. A promoterless GAL4 cDNA is expressed when the construct inserts within a transcriptional unit, and GAL4 activates a GFP-encoding gene present in the same transposon. In a primary screen, patterned gene expression is detected as GFP fluorescence in the live progeny of dysgenic males. Many animals expressing GFP in distinct patterns can be recovered with relatively little effort. As expected, many insertions cause loss of function. After insertion at a genomic location, specific parts of the transposon can be excised by FLP recombinase, thus allowing it to induce conditional misexpression of the tagged gene. Therefore, both gain- and loss-of-function studies can be carried out with a single insertion in a gene identified by virtue of its expression pattern. Using this promoter trap approach, we have identified a group of cells that innervate the calyx of the mushroom body and could thus define a previously unrecognized memory circuit. PMID:17093046

  16. Shh and Pax6 have unconventional expression patterns in embryonic morphogenesis in Sepia officinalis (Cephalopoda).

    PubMed

    Navet, Sandra; Andouche, Aude; Baratte, Sébastien; Bonnaud, Laure

    2009-10-01

    Cephalopods show a very complex nervous system, particularly derived when compared to other molluscs. In vertebrates, the setting up of the nervous system depends on genes such as Shh and Pax6. In this paper we assess Shh and Pax6 expression patterns during Sepia officinalis development by whole-mount in situ hybridization. In vertebrates, Shh has been shown to indirectly inhibit Pax6. This seems to be the case in cephalopods as the expression patterns of these genes do not overlap during S. officinalis development. Pax6 is expressed in the optic region and brain and Shh in gut structures, as already seen in vertebrates and Drosophila. Thus, both genes show expression in analogous structures in vertebrates. Surprisingly, they also exhibit unconventional expressions such as in gills for Pax6 and ganglia borders for Shh. They are also expressed in many cephalopods' derived characters among molluscs as in arm suckers for Pax6 and beak producing tissues, nuchal organ and neural cord of the arms for Shh. This new data supports the fact that molecular control patterns have evolved with the appearance of morphological novelties in cephalopods as shown in this new model, S. officinalis.

  17. Characterization, cDNA cloning and expression pattern of relaxin gene during embryogenesis of Danio rerio.

    PubMed

    Fiengo, Marcella; Donizetti, Aldo; del Gaudio, Rosanna; Minucci, Sergio; Aniello, Francesco

    2012-06-01

    We report the identification, the cDNA cloning, the temporal and spatial expression pattern analysis of the rln gene in the zebrafish Danio rerio. The deduced Rln B and A domains show different evolutionary conservation. Rln B domain shows higher similarity when compared to zebrafish and human RLN3 B domain than human RLN1 and RLN2 B domain. Differently, the zebrafish Rln A domain shows relatively low amino acid sequence similarity when compared with the same sequences. The rln gene is transcribed both during embryogenesis and in adult organism, where higher transcript level has been particularly evidenced in the brain. Moreover, we provide the first description of rln spatial expression pattern during embryonic development. In particular, we show restricted transcript localization starting at the pharyngula stage in olfactory placode, branchial arch region, and in a cell cluster near to otic vesicle. In larval stage, new transcription territories have been detected in both neural and non-neural regions. In particular, in the brain, rln expression has been revealed in telencephalic region around anterior commissure, in the preoptic area, and in restricted rombencephalic cell clusters. Expression of rln gene in extra-neural territories has been detected in the pancreatic and thyroid gland regions. Danio rerio rln expression pattern analysis reveals shared features with the mammalian RLN gene, particularly in the brain, where it might have a role in the neurophysiological processes. In addition, expression in the thyroid and pancreas region suggests a function as a paracrine and endocrine hormone.

  18. EXPRESSION PATTERNS OF ESTROGEN RECEPTORS IN THE CENTRAL AUDITORY SYSTEM CHANGE IN PREPUBERTAL AND AGED MICE

    PubMed Central

    Charitidi, K.; Frisina, R. D.; Vasilyeva, O. N.; Zhu, X.; Canlon, B.

    2011-01-01

    Estrogens are important in the development, maintenance and physiology of the CNS. Several studies have shown their effects on the processing of hearing in both males and females, and these effects, in part, are thought to result from regulation of the transcription of genes via their classical estrogen receptor (ER) pathway. In order to understand the spatiotemporal changes that occur with age, we have studied the expression of ERs in the central auditory pathway in prepubertal and aged CBA mice with immunohistochemistry. In prepubertal mice a clear dichotomy was noted between the expression of ERα and ERβ. ERβ-positive neurons were found in the metencephalon whereas the majority of ERα was found in mesencephalon, diencephalon or the telencephalon. In the aged animals a different pattern of ER expression was found in terms of location and overall intensity. These age-induced changes in the expression pattern were generally not uniform, suggesting that region-specific mechanisms regulate the ERs’ age-related expression. Neither the prepubertal nor the aged animals showed sex differences in any auditory structure. Our results demonstrate different age-dependent spatial and temporal changes in the pattern of expression of ERα and ERβ, suggesting that each ER type may be involved in distinct roles across the central auditory pathway in different periods of maturation. PMID:20736049

  19. Developmental Stage Annotation of Drosophila Gene Expression Pattern Images via an Entire Solution Path for LDA.

    PubMed

    Ye, Jieping; Chen, Jianhui; Janardan, Ravi; Kumar, Sudhir

    2008-03-01

    Gene expression in a developing embryo occurs in particular cells (spatial patterns) in a time-specific manner (temporal patterns), which leads to the differentiation of cell fates. Images of a Drosophila melanogaster embryo at a given developmental stage, showing a particular gene expression pattern revealed by a gene-specific probe, can be compared for spatial overlaps. The comparison is fundamentally important to formulating and testing gene interaction hypotheses. Expression pattern comparison is most biologically meaningful when images from a similar time point (developmental stage) are compared. In this paper, we present LdaPath, a novel formulation of Linear Discriminant Analysis (LDA) for automatic developmental stage range classification. It employs multivariate linear regression with the L(1)-norm penalty controlled by a regularization parameter for feature extraction and visualization. LdaPath computes an entire solution path for all values of regularization parameter with essentially the same computational cost as fitting one LDA model. Thus, it facilitates efficient model selection. It is based on the equivalence relationship between LDA and the least squares method for multi-class classifications. This equivalence relationship is established under a mild condition, which we show empirically to hold for many high-dimensional datasets, such as expression pattern images. Our experiments on a collection of 2705 expression pattern images show the effectiveness of the proposed algorithm. Results also show that the LDA model resulting from LdaPath is sparse, and irrelevant features may be removed. Thus, LdaPath provides a general framework for simultaneous feature selection and feature extraction.

  20. Developmental Stage Annotation of Drosophila Gene Expression Pattern Images via an Entire Solution Path for LDA

    PubMed Central

    YE, Jieping; Chen, Jianhui; Janardan, Ravi; Kumar, Sudhir

    2008-01-01

    Gene expression in a developing embryo occurs in particular cells (spatial patterns) in a time-specific manner (temporal patterns), which leads to the differentiation of cell fates. Images of a Drosophila melanogaster embryo at a given developmental stage, showing a particular gene expression pattern revealed by a gene-specific probe, can be compared for spatial overlaps. The comparison is fundamentally important to formulating and testing gene interaction hypotheses. Expression pattern comparison is most biologically meaningful when images from a similar time point (developmental stage) are compared. In this paper, we present LdaPath, a novel formulation of Linear Discriminant Analysis (LDA) for automatic developmental stage range classification. It employs multivariate linear regression with the L1-norm penalty controlled by a regularization parameter for feature extraction and visualization. LdaPath computes an entire solution path for all values of regularization parameter with essentially the same computational cost as fitting one LDA model. Thus, it facilitates efficient model selection. It is based on the equivalence relationship between LDA and the least squares method for multi-class classifications. This equivalence relationship is established under a mild condition, which we show empirically to hold for many high-dimensional datasets, such as expression pattern images. Our experiments on a collection of 2705 expression pattern images show the effectiveness of the proposed algorithm. Results also show that the LDA model resulting from LdaPath is sparse, and irrelevant features may be removed. Thus, LdaPath provides a general framework for simultaneous feature selection and feature extraction. PMID:18769656

  1. Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer.

    PubMed

    Chen, Chun-Chieh; Sureshbabul, Munisamy; Chen, Huei-Wen; Lin, Yu-Shuang; Lee, Jen-Yi; Hong, Qi-Sheng; Yang, Ya-Chien; Yu, Sung-Liang

    2013-01-01

    Colorectal cancer (CRC) is a serious public health problem that results due to changes of diet and various environmental stress factors in the world. Curcumin is a traditional medicine used for treatment of a wide variety of tumors. However, antimetastasis mechanism of curcumin on CRC has not yet been completely investigated. Here, we explored the underlying molecular mechanisms of curcumin on metastasis of CRC cells in vitro and in vivo. Curcumin significantly inhibits cell migration, invasion, and colony formation in vitro and reduces tumor growth and liver metastasis in vivo. We found that curcumin suppresses Sp-1 transcriptional activity and Sp-1 regulated genes including ADEM10, calmodulin, EPHB2, HDAC4, and SEPP1 in CRC cells. Curcumin inhibits focal adhesion kinase (FAK) phosphorylation and enhances the expressions of several extracellular matrix components which play a critical role in invasion and metastasis. Curcumin reduces CD24 expression in a dose-dependent manner in CRC cells. Moreover, E-cadherin expression is upregulated by curcumin and serves as an inhibitor of EMT. These results suggest that curcumin executes its antimetastasis function through downregulation of Sp-1, FAK, and CD24 and by promoting E-cadherin expression in CRC cells. PMID:23970932

  2. Regulatory Divergence between Parental Alleles Determines Gene Expression Patterns in Hybrids

    PubMed Central

    Combes, Marie-Christine; Hueber, Yann; Dereeper, Alexis; Rialle, Stéphanie; Herrera, Juan-Carlos; Lashermes, Philippe

    2015-01-01

    Both hybridization and allopolyploidization generate novel phenotypes by conciliating divergent genomes and regulatory networks in the same cellular context. To understand the rewiring of gene expression in hybrids, the total expression of 21,025 genes and the allele-specific expression of over 11,000 genes were quantified in interspecific hybrids and their parental species, Coffea canephora and Coffea eugenioides using RNA-seq technology. Between parental species, cis- and trans-regulatory divergences affected around 32% and 35% of analyzed genes, respectively, with nearly 17% of them showing both. The relative importance of trans-regulatory divergences between both species could be related to their low genetic divergence and perennial habit. In hybrids, among divergently expressed genes between parental species and hybrids, 77% was expressed like one parent (expression level dominance), including 65% like C. eugenioides. Gene expression was shown to result from the expression of both alleles affected by intertwined parental trans-regulatory factors. A strong impact of C. eugenioides trans-regulatory factors on the upregulation of C. canephora alleles was revealed. The gene expression patterns appeared determined by complex combinations of cis- and trans-regulatory divergences. In particular, the observed biased expression level dominance seemed to be derived from the asymmetric effects of trans-regulatory parental factors on regulation of alleles. More generally, this study illustrates the effects of divergent trans-regulatory parental factors on the gene expression pattern in hybrids. The characteristics of the transcriptional response to hybridization appear to be determined by the compatibility of gene regulatory networks and therefore depend on genetic divergences between the parental species and their evolutionary history. PMID:25819221

  3. Molecular characterization and different expression patterns of the FABP gene family during goat skeletal muscle development.

    PubMed

    Wang, Linjie; Li, Li; Jiang, Jing; Wang, Yan; Zhong, Tao; Chen, Yu; Wang, Yong; Zhang, Hongping

    2015-01-01

    The FABP (adipocyte fatty acid-binding protein) genes play an important role in intracellular fatty acid transport and considered to be candidate genes for fatness traits in domestic animal. In this study, we cloned the cDNA sequences of goat FABP family genes and their expression patterns were detected by semi-quantitative RT-PCR and quantitative real time RT-PCR. Expression analysis showed that goat FABP1 gene was predominantly expressed in liver, kidney and large intestine. While FABP4 was widely expressed in many tissues with a high expression level was observed in the fat, skeletal muscle, stomach and lung. Notably, FABP2 gene was expressed specifically in small intestine. Moreover, goat FABP3 was expressed at 60 day with the highest level, then significantly (p < 0.01) decreased at the 90 day. No significant expression differences were observed in longissimus dorsi muscles among 3 day, 30 day and 60 day. Goat FABP4 was expressed at 3 day with the lowest level, then significantly (p < 0.01) increased to a peak at the 60 day. In addition, a significant relationship between FABP3 mRNA expression levels and intramuscular fat (IMF) content was observed. These results suggest that the FABP3 and FABP4 may be important genes for meat quality and provides useful information for further studies on their roles in skeletal muscle IMF deposit.

  4. Meta-analysis of genome-wide expression patterns associated with behavioral maturation in honey bees

    PubMed Central

    Adams, Heather A; Southey, Bruce R; Robinson, Gene E; Rodriguez-Zas, Sandra L

    2008-01-01

    Background The information from multiple microarray experiments can be integrated in an objective manner via meta-analysis. However, multiple meta-analysis approaches are available and their relative strengths have not been directly compared using experimental data in the context of different gene expression scenarios and studies with different degrees of relationship. This study investigates the complementary advantages of meta-analysis approaches to integrate information across studies, and further mine the transcriptome for genes that are associated with complex processes such as behavioral maturation in honey bees. Behavioral maturation and division of labor in honey bees are related to changes in the expression of hundreds of genes in the brain. The information from various microarray studies comparing the expression of genes at different maturation stages in honey bee brains was integrated using complementary meta-analysis approaches. Results Comparison of lists of genes with significant differential expression across studies failed to identify genes with consistent patterns of expression that were below the selected significance threshold, or identified genes with significant yet inconsistent patterns. The meta-analytical framework supported the identification of genes with consistent overall expression patterns and eliminated genes that exhibited contradictory expression patterns across studies. Sample-level meta-analysis of normalized gene-expression can detect more differentially expressed genes than the study-level meta-analysis of estimates for genes that were well described by similar model parameter estimates across studies and had small variation across studies. Furthermore, study-level meta-analysis was well suited for genes that exhibit consistent patterns across studies, genes that had substantial variation across studies, and genes that did not conform to the assumptions of the sample-level meta-analysis. Meta-analyses confirmed previously

  5. Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant genomes typically contain several hundred defensin-like (DEFL) genes that encode short proteins resembling defensins, which are antimicrobial polypeptides. Little is known about the expression patterns of DEFL genes because most were recently discovered and many are not well represented on sta...

  6. GENE EXPRESSION PATTERNS OF CD-1 DAY-8 EMBRYO CULTURES EXPOSED TO BROMOCHLORO ACETIC ACID

    EPA Science Inventory

    Gene expression patterns of CD-1 day-8 embryo cultures exposed to bromochloro acetic acid

    Edward D. Karoly?*, Judith E. Schmid* and E. Sidney Hunter III*
    ?Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and *Reproductiv...

  7. DEVELOPMENT OF A 950-GENE DNA ARRAY FOR EXAMINING GENE EXPRESSION PATTERNS IN MOUSE TESTIS

    EPA Science Inventory

    Development of a 950-gene DNA array for examining gene expression patterns in mouse testis.

    Rockett JC, Christopher Luft J, Brian Garges J, Krawetz SA, Hughes MR, Hee Kirn K, Oudes AJ, Dix DJ.

    Reproductive Toxicology Division, National Health and Environmental Effec...

  8. Patterns of evolution of genes disrupted in expression in Drosophila species hybrids.

    PubMed

    Noor, Mohamed A F

    2005-04-01

    Divergence between species in regulatory pathways may contribute to hybrid incompatibilities such as sterility. Consistent with this idea, genes involved in male fertility often evolve faster than most other genes both in amino acid sequence and in expression. Previously, we identified a panel of male-specific genes under-expressed in sterile male hybrids of Drosophila simulans and D. mauritiana relative to pure species, and we showed that this under-expression is associated with infertility. In a preliminary effort to assess the generalities in the patterns of evolution of these genes, I examined patterns of mRNA expression in three of these genes in sterile F 1 hybrid males of D. pseudoobscura and D. persimilis . F 1 hybrid males bearing D. persimilis X chromosomes under-expressed all these genes relative to the parental species, while hybrids bearing D. pseudoobscura X chromosomes under-expressed two of these three genes. Interestingly, the third gene, CG5762 , has undergone extensive amino acid evolution within the D. pseudoobscura species group, possibly driven by positive natural selection. We conclude that some of the same genes exhibit disruptions in expression within each of the two species groups, which could suggest commonalities in the regulatory architecture of sterility in these groups. Alternative explanations are also considered.

  9. Expression patterns of five polymorphic membrane proteins during the Chlamydia abortus developmental cycle

    PubMed Central

    Wheelhouse, Nick; Sait, Michelle; Wilson, Kim; Aitchison, Kevin; McLean, Kevin; Smith, David G.E.; Longbottom, David

    2012-01-01

    It has been suggested that polymorphic membrane proteins (Pmps) belonging to the Type V autotransporter protein family play an important role in the pathogenesis of Chlamydia abortus (C. abortus; formerly Chlamydophila abortus) infection. In a previous study we demonstrated the expression of all the pmps at the transcriptional level. The purpose of this study was to measure the number of Pmp positive inclusions throughout the C. abortus developmental cycle to investigate heterogeneity in expression patterns. McCoy cells were infected with C. abortus and analysed for Pmp expression over a 72 h period by fluorescent immunocytochemistry. Pmp18D could be detected at all analysed time points, and could only be accurately quantified from 36 hpi while Pmp10G positive inclusions could be visualised from 36 hpi. Expression of Pmps 13G, 16G and 17G could only be visualised later in the cycle and within less than half of visualised inclusions. These results indicate that while expression of specific Pmps is constitutive (Pmp18D), the pattern of expression of other Pmps is more variable. This suggests that different members of the Pmp family may play different roles within the developmental cycle of the organism, with some (Pmps10G and 18D) having roles throughout the cycle, while the heterogeneity of expression of others may aid in antigenic variation. PMID:22776512

  10. Noncanonical role of Hox14 revealed by its expression patterns in lamprey and shark.

    PubMed

    Kuraku, Shigehiro; Takio, Yoko; Tamura, Koji; Aono, Hideaki; Meyer, Axel; Kuratani, Shigeru

    2008-05-01

    Hox genes are arranged in uninterrupted clusters in vertebrate genomes, and the nested patterns of their expression define spatial identities in multiple embryonic tissues. The ancestral Hox cluster of vertebrates has long been thought to consist of, maximally, 13 Hox genes. However, recently, Hox14 genes were discovered in three chordate lineages, the coelacanth, cartilaginous fishes, and amphioxus, but their expression patterns have not yet been analyzed. We isolated Hox14 cDNAs from the Japanese lamprey and cloudy catshark. These genes were not expressed in the central nervous systems, somites, or fin buds/folds but were expressed in a restricted cell population surrounding the hindgut. The lack of Hox14 expression in most of the embryonic axial elements, where nested Hox expressions define spatial identities, suggests a decoupling of Hox14 genes' regulation from the ancestral regulatory mechanism. The relaxation of preexisting constraint for collinear expression may have permitted the secondary losses of this Hox member in the tetrapod and teleost lineages. PMID:18448683

  11. Noncanonical role of Hox14 revealed by its expression patterns in lamprey and shark

    PubMed Central

    Kuraku, Shigehiro; Takio, Yoko; Tamura, Koji; Aono, Hideaki; Meyer, Axel; Kuratani, Shigeru

    2008-01-01

    Hox genes are arranged in uninterrupted clusters in vertebrate genomes, and the nested patterns of their expression define spatial identities in multiple embryonic tissues. The ancestral Hox cluster of vertebrates has long been thought to consist of, maximally, 13 Hox genes. However, recently, Hox14 genes were discovered in three chordate lineages, the coelacanth, cartilaginous fishes, and amphioxus, but their expression patterns have not yet been analyzed. We isolated Hox14 cDNAs from the Japanese lamprey and cloudy catshark. These genes were not expressed in the central nervous systems, somites, or fin buds/folds but were expressed in a restricted cell population surrounding the hindgut. The lack of Hox14 expression in most of the embryonic axial elements, where nested Hox expressions define spatial identities, suggests a decoupling of Hox14 genes' regulation from the ancestral regulatory mechanism. The relaxation of preexisting constraint for collinear expression may have permitted the secondary losses of this Hox member in the tetrapod and teleost lineages. PMID:18448683

  12. Expression Pattern of Fatty Acid Binding Proteins in Celiac Disease Enteropathy

    PubMed Central

    Bottasso Arias, Natalia M.; García, Marina; Bondar, Constanza; Guzman, Luciana; Redondo, Agustina; Chopita, Nestor; Córsico, Betina; Chirdo, Fernando G.

    2015-01-01

    Celiac disease (CD) is an immune-mediated enteropathy that develops in genetically susceptible individuals following exposure to dietary gluten. Severe changes at the intestinal mucosa observed in untreated CD patients are linked to changes in the level and in the pattern of expression of different genes. Fully differentiated epithelial cells express two isoforms of fatty acid binding proteins (FABPs): intestinal and liver, IFABP and LFABP, respectively. These proteins bind and transport long chain fatty acids and also have other important biological roles in signaling pathways, particularly those related to PPARγ and inflammatory processes. Herein, we analyze the serum levels of IFABP and characterize the expression of both FABPs at protein and mRNA level in small intestinal mucosa in severe enteropathy and normal tissue. As a result, we observed higher levels of circulating IFABP in untreated CD patients compared with controls and patients on gluten-free diet. In duodenal mucosa a differential FABPs expression pattern was observed with a reduction in mRNA levels compared to controls explained by the epithelium loss in severe enteropathy. In conclusion, we report changes in FABPs' expression pattern in severe enteropathy. Consequently, there might be alterations in lipid metabolism and the inflammatory process in the small intestinal mucosa. PMID:26346822

  13. Antagonism Pattern Detection between MicroRNA and Target Expression in Ewing’s Sarcoma

    PubMed Central

    Martignetti, Loredana; Laud-Duval, Karine; Tirode, Franck; Pierron, Gaelle; Reynaud, Stéphanie; Barillot, Emmanuel; Delattre, Olivier; Zinovyev, Andrei

    2012-01-01

    MicroRNAs (miRNAs) have emerged as fundamental regulators that silence gene expression at the post-transcriptional and translational levels. The identification of their targets is a major challenge to elucidate the regulated biological processes. The overall effect of miRNA is reflected on target mRNA expression, suggesting the design of new investigative methods based on high-throughput experimental data such as miRNA and transcriptome profiles. We propose a novel statistical measure of non-linear dependence between miRNA and mRNA expression, in order to infer miRNA-target interactions. This approach, which we name antagonism pattern detection, is based on the statistical recognition of a triangular-shaped pattern in miRNA-target expression profiles. This pattern is observed in miRNA-target expression measurements since their simultaneously elevated expression is statistically under-represented in the case of miRNA silencing effect. The proposed method enables miRNA target prediction to strongly rely on cellular context and physiological conditions reflected by expression data. The procedure has been assessed on synthetic datasets and tested on a set of real positive controls. Then it has been applied to analyze expression data from Ewing’s sarcoma patients. The antagonism relationship is evaluated as a good indicator of real miRNA-target biological interaction. The predicted targets are consistently enriched for miRNA binding site motifs in their 3′UTR. Moreover, we reveal sets of predicted targets for each miRNA sharing important biological function. The procedure allows us to infer crucial miRNA regulators and their potential targets in Ewing’s sarcoma disease. It can be considered as a valid statistical approach to discover new insights in the miRNA regulatory mechanisms. PMID:22848594

  14. Expression Patterns of CREBs in Oocyte Growth and Maturation of Fish

    PubMed Central

    Wang, De-Shou; Sudhakumari, Cheni-Chery; Kobayashi, Tohru; Nagahama, Yoshitaka

    2015-01-01

    In fish, oocyte meiotic maturation is regulated by 17α, 20β-dihydroxy-progesterone through cAMP. To study the role of cAMP response element binding protein (CREB) in meiotic maturation, we cloned and characterized the expression pattern of CREBs from two fish models, the Nile tilapia and catfish. In the Nile tilapia three different CREBs were identified where in CREB1 was found in many tissues including gonads with abundant expression in testis. CREB2, few amino acids shorter than CREB1, was expressed in several tissues with abundant expression in ovary. In addition, a 3’UTR variant form, CREB3 was exclusively found in ovary. During natural 14-day ovarian cycle of the Nile tilapia, CREB1 expression was stable throughout vitellogenesis with a sharp decrease on the day of spawning. In contrast, CREB2 remain unchanged throughout the ovarian cycle, however elevated in 11-day full-grown immature ovarian follicle and after hCG-induction. Interestingly, CREB3 expression was induced three folds on the day of spawning as well as during hCG-induced oocyte maturation. Based on the synergistic expression pattern, CREB1 is likely to control oocyte growth, whereas CREB 2 and 3 contribute to oocyte maturation in tilapia and the latter seems to be critical. In catfish, a single form of CREB showed a maximum expression during spawning phase and hCG-induced maturation both in vivo and in vitro augmented CREB expression. These results suggest that spatial and temporal expression of CREBs seems to be important for final oocyte maturation and may also regulate oocyte growth in fish. PMID:26700177

  15. Expression Patterns of CREBs in Oocyte Growth and Maturation of Fish.

    PubMed

    Senthilkumaran, Balasubramanian; Sreenivasulu, Gunti; Wang, De-Shou; Sudhakumari, Cheni-Chery; Kobayashi, Tohru; Nagahama, Yoshitaka

    2015-01-01

    In fish, oocyte meiotic maturation is regulated by 17α, 20β-dihydroxy-progesterone through cAMP. To study the role of cAMP response element binding protein (CREB) in meiotic maturation, we cloned and characterized the expression pattern of CREBs from two fish models, the Nile tilapia and catfish. In the Nile tilapia three different CREBs were identified where in CREB1 was found in many tissues including gonads with abundant expression in testis. CREB2, few amino acids shorter than CREB1, was expressed in several tissues with abundant expression in ovary. In addition, a 3'UTR variant form, CREB3 was exclusively found in ovary. During natural 14-day ovarian cycle of the Nile tilapia, CREB1 expression was stable throughout vitellogenesis with a sharp decrease on the day of spawning. In contrast, CREB2 remain unchanged throughout the ovarian cycle, however elevated in 11-day full-grown immature ovarian follicle and after hCG-induction. Interestingly, CREB3 expression was induced three folds on the day of spawning as well as during hCG-induced oocyte maturation. Based on the synergistic expression pattern, CREB1 is likely to control oocyte growth, whereas CREB 2 and 3 contribute to oocyte maturation in tilapia and the latter seems to be critical. In catfish, a single form of CREB showed a maximum expression during spawning phase and hCG-induced maturation both in vivo and in vitro augmented CREB expression. These results suggest that spatial and temporal expression of CREBs seems to be important for final oocyte maturation and may also regulate oocyte growth in fish. PMID:26700177

  16. Expression pattern of INNER NO OUTER homologue in Nymphaea (water lily family, Nymphaeaceae).

    PubMed

    Yamada, Toshihiro; Ito, Motomi; Kato, Masahiro

    2003-10-01

    Two homologues of INNER NO OUTER ( INO) in Nymphaea alba and N. colorata (Nymphaeaceae) were isolated and the expression pattern of the N. alba INO homologue NaINO was examined by in situ hybridization. The INO homologues obtained have a portion similar to INO in the predicted amino acid sequences between the conserved zinc finger-like and YABBY domains. In an in situ hybridization analysis, NaINO is expressed in the outer epidermis of the outer integument, inner integument, and the tip of the nucellus. The pattern observed in the outer integument is very similar to that of Arabidopsis thaliana, while the expression in the inner integument and nucellus is not observed in A. thaliana.

  17. Temporal and spatial patterning of transgene expression by near-infrared irradiation

    PubMed Central

    Gomez, Leyre; Lopez, Daniel; Arruebo, Manuel; Wilson, Christopher G; Franceschi, Renny T.; Voellmy, Richard; Santamaria, Jesus; Vilaboa, Nuria

    2014-01-01

    We investigated whether near-infrared (NIR) light could be employed for patterning transgene expression in plasmonic cell constructs. Hollow gold nanoparticles with a plasmon surface band absorption peaking at ~750 nm, a wavelength within the so called “tissue optical window”, were used as fillers in fibrin-based hydrogels. These composites, which efficiently transduce NIR photon energy into heat, were loaded with genetically-modified cells that harbor a heat-activated and ligand-dependent gene switch for regulating transgene expression. NIR laser irradiation in the presence of ligand triggered 3-dimensional patterns of transgene expression faithfully matching the illuminated areas of plasmonic cell constructs. This noninvasive technology was proven useful for remotely controlling in vivo the spatiotemporal bioavailability of transgenic vascular endothelial growth factor. The combination of spatial control by means of NIR irradiation along with safe and timed transgene induction presents a high application potential for engineering tissues in regenerative medicine scenarios. PMID:24957294

  18. Raldh3 gene expression pattern in the developing chicken inner ear.

    PubMed

    Sánchez-Guardado, Luis Oscar; Ferran, José Luis; Mijares, José; Puelles, Luis; Rodríguez-Gallardo, Lucía; Hidalgo-Sánchez, Matías

    2009-05-01

    Retinoic acid (RA), an active metabolite of vitamin A, is a diffusible molecule that regulates the expression of several families of genes, playing a key role in specification processes during chordate development. With the aim of defining its possible role in the developing chick inner ear, we obtained in this work a detailed spatiotemporal distribution of the enzymes involved in its synthesis, the retinaldehyde dehydrogenases (RALH1-4). Our results showed that, in contrast to the mouse inner ear, Raldh3 expression was the only Raldh gene detected in the developing chick inner ear, where it appears as early as stage 18. During inner ear morphogenesis, Raldh3 expression was predominantly observed in the endolymphatic system. The Raldh3 expression pattern delimited totally or partially the Bmp4-positive presumptive territories of vestibular sensory epithelia by stage 24 and the basilar papilla at stage 34, suggesting a possible involvement of RA in their specification. In addition, several vestibular sensory areas showed some Raldh3-expressing cells close to the Raldh3-positive domain. These results suggest that the RA signaling pathway may play a role in the initial patterning of the otic epithelium and cell differentiation therein, providing local positional information. Having in mind this Raldh3 expression pattern, we discuss the regulatory interactions among the RA, bone morphogenetic protein, and fibroblast growth factor signaling pathways in the specification of otic sensory elements. Our investigation may underpin further experimental studies aimed at understanding the possible role of signaling pathways in patterning of the developing chick inner ear.

  19. β-Catenin Expression Pattern in Stage I and II Ovarian Carcinomas

    PubMed Central

    Gamallo, Carlos; Palacios, José; Moreno, Gema; Calvo de Mora, Jorge; Suárez, Asunción; Armas, Alvaro

    1999-01-01

    The immunohistochemical expression pattern of β-catenin has been correlated with β-catenin gene mutations, clinicopathological features, and disease outcome in 69 stage I and II ovarian carcinomas. β-Catenin expression was localized in the nuclei, in addition to the cytoplasm and membrane, in 11 tumors (16%): nine endometrioid carcinomas with widespread nuclear expression and two serous carcinomas with focal nuclear expression. The remaining 58 carcinomas (84%) only had membranous β-catenin expression. All but one of the endometrioid carcinomas with nuclear β-catenin expression had considerable squamous metaplasia, and five of these cases had large areas of endometrioid tumor of low malignant potential. In addition, β-catenin nuclear expression was observed in atypical epithelial cells in endometriotic glands adjacent to an endometrioid carcinoma. Sequencing was performed on 25 tumors and corresponding normal tissue: all 13 endometrioid tumors as well as 12 carcinomas of other histological types (four serous, two clear cell, two mucinous, and two mixed). There were oncogenic mutations in the phosphorylation sequence for GSK-3β in exon 3 of the β-catenin gene in seven endometrioid carcinomas with β-catenin nuclear expression. Three mutations affected codon 32 (D32G, D32Y, and D32Y), one affected codon 33 (S33C), two affected codon 37 (S37C and S37F), and one affected codon 41 (T41A). No mutations were observed in the other 18 carcinomas analyzed, comprising two endometrioid and two serous carcinomas with β-catenin nuclear expression, and 14 carcinomas of different histological types with only membranous expression. In the univariate and multivariate survival analyses, β-catenin nuclear expression was selected as an indicator of good prognosis, because no patient whose tumor expressed β-catenin in the nuclei showed relapses or died, in contrast to the 19 relapses and deaths among patients with tumors that only had β-catenin membranous expression

  20. Resolving the molecular mechanism of cadherin catch bond formation

    SciTech Connect

    Manibog, Kristine; Li, Hui; Rakshit, Sabyasachi; Sivasankar, Sanjeevi

    2014-06-02

    Classical cadherin Ca(2+)-dependent cell-cell adhesion proteins play key roles in embryogenesis and in maintaining tissue integrity. Cadherins mediate robust adhesion by binding in multiple conformations. One of these adhesive states, called an X-dimer, forms catch bonds that strengthen and become longer lived in the presence of mechanical force. Here we use single-molecule force-clamp spectroscopy with an atomic force microscope along with molecular dynamics and steered molecular dynamics simulations to resolve the molecular mechanisms underlying catch bond formation and the role of Ca(2+) ions in this process. Our data suggest that tensile force bends the cadherin extracellular region such that they form long-lived, force-induced hydrogen bonds that lock X-dimers into tighter contact. When Ca(2+) concentration is decreased, fewer de novo hydrogen bonds are formed and catch bond formation is eliminated

  1. Claudin gene expression patterns do not associate with interspecific differences in paracellular nutrient absorption.

    PubMed

    Price, Edwin R; Rott, Katherine H; Caviedes-Vidal, Enrique; Karasov, William H

    2016-01-01

    Bats exhibit higher paracellular absorption of glucose-sized molecules than non-flying mammals, a phenomenon that may be driven by higher permeability of the intestinal tight junctions. The various claudins, occludin, and other proteins making up the tight junctions are thought to determine their permeability properties. Here we show that absorption of the paracellular probe l-arabinose is higher in a bat (Eptesicus fuscus) than in a vole (Microtus pennsylvanicus) or a hedgehog (Atelerix albiventris). Furthermore, histological measurements demonstrated that hedgehogs have many more enterocytes in their intestines, suggesting that bats cannot have higher absorption of arabinose simply by having more tight junctions. We therefore investigated the mRNA levels of several claudins and occludin, because these proteins may affect permeability of tight junctions to macronutrients. To assess the expression levels of claudins per tight junction, we normalized the mRNA levels of the claudins to the constitutively expressed tight junction protein ZO-1, and combined these with measurements previously made in a bat and a rodent to determine if there were among-species differences. Although expression ratios of several genes varied among species, there was not a consistent difference between bats and non-flyers in the expression ratio of any particular gene. Protein expression patterns may differ from mRNA expression patterns, and might better explain differences among species in arabinose absorption. PMID:26393434

  2. T gene isoform expression pattern is significantly different between chordomas and notochords.

    PubMed

    Wang, Ke; Hu, Qingtao; Wang, Liang; Chen, Wei; Tian, Kaibing; Cao, Chunwei; Wu, Zhen; Jia, Guijun; Zhang, Liwei; Zeng, Changqing; Zhang, Junting

    2015-11-13

    The T gene plays a key role in chordoma pathology. To investigate the role of T gene isoforms in chordoma, 22 skull base chordomas, three chordoma cell lines and 9 infant notochords, which were used as normal controls, were collected. We first conducted droplet digital PCR to quantify the absolute expression levels of the long and short isoforms of the T gene (T-long and T-short, respectively) and revealed that T-long was dominantly expressed in all chordomas and chordoma cell lines, but not in the notochords. The T-long/T-short ratio was significantly different between the chordomas and the notochords. Next, we validated the isoform expression pattern at protein expression level using Western blot in 9 chordomas. Furthermore, the T gene single nucleotide polymorphism site rs2305089, which is the only marker reported to be associated with chordomas, was sequenced in all of the chordoma samples. Association between rs2305089 and T-long/T-short ratio was not significant, indicating it was not involved in T gene alternative splicing. In conclusion, two T gene isoforms were investigated in skull base chordomas and chordoma cell lines, and the longer isoform was dominantly expressed. The distinct expression patterns of these T gene isoforms may contribute to the pathogenesis of skull base chordomas. However, further studies on the function of these isoforms are needed. PMID:26435504

  3. Expression pattern of Piwi-like genes in adult Myzostoma cirriferum (Annelida).

    PubMed

    Weigert, Anne; Helm, Conrad; Hausen, Harald; Zakrzewski, Anne-C; Bleidorn, Christoph

    2013-09-01

    Piwi-like genes are a subgroup of Argonaute genes which participate as gene regulators by gene silencing. In most bilaterians, such as mouse, human, insects, and zebrafish, their expression is mostly limited to gonadal stem cells. But there are some striking exceptions to this pattern; flatworms and acoels also express Piwi-like genes in somatic stem cells, due to their unique replacement system. Annelid species like Capitella teleta and Platynereis dumerilii express these genes in cells of the posterior growth zone as well as in gonadal stem cells. To investigate the expression pattern of Piwi-like genes in another annelid, we established in situ hybridization for adult Myzostoma cirriferum. Piwi-like gene transcripts recovered in an mRNA-seq library of pooled adult stages of M. cirriferum were expanded using RACE PCR, cloned and sequenced. ML analysis confirmed the identity of both transcripts as part of the Piwi1-like or Piwi2-like subfamily of Argonaute proteins. The results of in situ hybridization studies show that the expression of both Piwi-like genes, Mc-Piwi1 and Mc-Piwi2, is clearly located only in gonadal stem cells, and as such we did not find any evidence for the existence of a posterior growth zone nor expression in somatic stem cells.

  4. Claudin gene expression patterns do not associate with interspecific differences in paracellular nutrient absorption.

    PubMed

    Price, Edwin R; Rott, Katherine H; Caviedes-Vidal, Enrique; Karasov, William H

    2016-01-01

    Bats exhibit higher paracellular absorption of glucose-sized molecules than non-flying mammals, a phenomenon that may be driven by higher permeability of the intestinal tight junctions. The various claudins, occludin, and other proteins making up the tight junctions are thought to determine their permeability properties. Here we show that absorption of the paracellular probe l-arabinose is higher in a bat (Eptesicus fuscus) than in a vole (Microtus pennsylvanicus) or a hedgehog (Atelerix albiventris). Furthermore, histological measurements demonstrated that hedgehogs have many more enterocytes in their intestines, suggesting that bats cannot have higher absorption of arabinose simply by having more tight junctions. We therefore investigated the mRNA levels of several claudins and occludin, because these proteins may affect permeability of tight junctions to macronutrients. To assess the expression levels of claudins per tight junction, we normalized the mRNA levels of the claudins to the constitutively expressed tight junction protein ZO-1, and combined these with measurements previously made in a bat and a rodent to determine if there were among-species differences. Although expression ratios of several genes varied among species, there was not a consistent difference between bats and non-flyers in the expression ratio of any particular gene. Protein expression patterns may differ from mRNA expression patterns, and might better explain differences among species in arabinose absorption.

  5. Expression patterns of Wnt genes in the venom claws of centipedes.

    PubMed

    Hayden, Luke; Arthur, Wallace

    2013-01-01

    The venom claws of centipedes, also known as forcipules, represent an evolutionary novelty that must have arisen in the centipede stem species, as they are not found in any other myriapods. The developmental-genetic changes that are involved in the origin of novelties are of considerable interest. It has previously been shown that centipede forcipules have a unique Hox code. However, this is a combinatorial code: no single Hox gene has a forcipule-specific expression. Here, we focus on Wnt genes. Two genes of this family show forcipule-specific expression in the "model centipede" Strigamia maritima: Wnt7 and Wnt11. For Wnt7, this forcipular expression zone seems to be a new one, which has arisen in evolution subsequently to other expression zones of the same gene. However, for Wnt11, the forcipule-specific expression probably arose by reduction of a more general pattern that originally included most or all of the limbs of an ancestral myriapod. Thus the developmental-genetic basis of the evolutionary change that turned the first pair of walking legs into venom claws is complex, involving different types of change in expression pattern. This sort of complexity is likely to be the case regarding evolutionary changes in morphology in general. Whether the origins of those features that can be considered as novelties are different in terms of their developmental-genetic basis from more routine evolutionary changes remains an open question. PMID:24074281

  6. Analysis of changes in the expression pattern of claudins using salivary acinar cells in primary culture.

    PubMed

    Fujita-Yoshigaki, Junko

    2011-01-01

    Primary saliva is produced from blood plasma in the acini of salivary glands and is modified by ion adsorption and secretion as the saliva passes through the ducts. In rodents, acinar cells of salivary glands express claudin-3 but not claudin-4, whereas duct cells express both claudins-3 and -4. The distinct claudin expression patterns may reflect differences in the permeability of tight junctions between acinar and duct cells. To analyze the role of claudins in salivary glands, we established a system for the primary culture of parotid acinar cells, where the expression patterns of claudins are remarkably changed. Real-time RT-PCR and immunoblot analyses reveal that the expression levels of claudins-4 and -6 increased, whereas claudins-3 and -10 decreased. We found that the signal to induce those changes is triggered during cell isolation and is mediated by Src and p38 MAP kinase. Here, we introduce the methods used to determine the signal pathway that induces the change in claudin expression.

  7. Spatiotemporal patterns of expression of IGSF4 in developing mouse nervous system.

    PubMed

    Ohta, Yoshimi; Itoh, Kyoko; Yaoi, Takeshi; Tando, So; Fukui, Kenji; Fushiki, Shinji

    2005-04-21

    IGSF4 is a novel immunoglobulin (Ig)-like intercellular adhesion molecule. Since IGSF4 has been characterized by several independent research groups, this molecule is called by three names, TSLC1, SgIGSF and SynCAM. In the experiments to study global changes of gene expression in fetal murine brains after prenatal exposure to low-doses of X-rays, we have found IGSF4 as one of down-regulated genes after X-irradiation. In order to elucidate the expression of spatiotemporal expression of IGSF4 in the developing brain, we have produced polyclonal antibody against IGSF4 and studied the expression of IGSF4 with immunohistochemistry and Western blot analysis. At embryonic day (E) 12.5, IGSF4-immunoreactivity (IR) was observed diffusely in the telencephalic wall, whereas it became rather confined to the subplate, the cortical plate and the subventricular zone as the development proceeded. Noteworthy was a distinct radial pattern found in the cortical plate of E16.5. IGSF4-IR gradually decreased after birth and disappeared in adulthood. In the cerebellum, IGSF4 was expressed in the molecular layer at postnatal day (P) 0 through P14. By Western blot analysis, IGSF4 remained at low levels throughout embryonic stage, whereas it increased after birth. These spatiotemporal patterns of the expression suggest that IGSF4 plays crucial roles in the development of both telencephalon and cerebellum. PMID:15862624

  8. Distinct patterns of ALDH1A1 expression predict metastasis and poor outcome of colorectal carcinoma

    PubMed Central

    Xu, Sen-Lin; Zeng, Dong-Zu; Dong, Wei-Guo; Ding, Yan-Qing; Rao, Jun; Duan, Jiang-Jie; Liu, Qing; Yang, Jing; Zhan, Na; Liu, Ying; Hu, Qi-Ping; Zhang, Xia; Cui, You-Hong; Kung, Hsiang-Fu; Yu, Shi-Cang; Bian, Xiu-Wu

    2014-01-01

    Purpose: Aldehyde dehydrogenase 1A1 (ALDH1A1) has been proposed as a candidate biomarker for colorectal carcinoma (CRC). However, the heterogeneity of its expression makes it difficult to predict the outcome of CRC. The aim of this study was to evaluate the diagnostic and prognostic value of this molecule in CRC. Methods and Results: In this study, we examined ALDH1A1 expression by immunohistochemistry including 406 cases of primary CRC with corresponding adjacent mucosa, with confirmation of real-time PCR and Western blotting. We found that the expression patterns of ALDH1A1 were heterogeneous in the CRC and corresponding adjacent tissues. We defined the ratio of ALDH1A1 level in adjacent mucosa to that in tumor tissues as RA/C and found that the capabilities of tumor invasion and metastasis in the tumors with RA/C < 1 were significantly higher than those with RA/C ≥ 1. Follow-up data showed the worse prognoses in the CRC patients with RA/C < 1. For understanding the underlying mechanism, the localization of β-catenin was detected in the CRC tissues with different patterns of ALDH1A1 expression from 221 patients and β-catenin was found preferentially expressed in cell nuclei of the tumors with RA/C < 1 and ALDH1A1high expression of HT29 cell line, indicating that nuclear translocation of β-catenin might contribute to the increased potentials of invasion and metastasis. Conclusion: Our results indicate that RA/C is a novel biomarker to reflect the distinct expression patterns of ALDH1A1 for predicting metastasis and prognosis of CRC. PMID:25031716

  9. Unique expression patterns of cell fate molecules delineate sequential stages of dentate gyrus development.

    PubMed

    Pleasure, S J; Collins, A E; Lowenstein, D H

    2000-08-15

    The dentate gyrus of the hippocampus is uniquely organized with a displaced proliferative zone that continues to generate dentate granule cells throughout life. We have analyzed the expression of Notch receptors, Notch ligands, and basic helix-loop-helix (bHLH) genes during dentate gyrus development to determine whether the need to maintain a pool of undifferentiated precursors is reflected in the patterns of expression of these genes. Many of these genes are expressed diffusely throughout the cortical neuroepithelium at embryonic days 16 and 17 in the rat, just preceding the migration of newly born granule cells and dentate precursor cells into the dentate anlage. However, at this time, Mash1, Math3, and Id3 expression are all concentrated in the area that specifically gives rise to granule cells and dentate precursor cells. Two days later, at the time of migration of the first granule cells and dentate precursor cells, cells expressing Mash1 are seen in the migratory route from the subventricular zone to the developing dentate gyrus. Newly born granule cells expressing NeuroD are also present in this migratory pathway. In the first postnatal week, precursor cells expressing Mash1 reside in the dentate hilus, and by the third postnatal week they have largely taken up their final position in the subgranular zone along the hilar side of the dentate granule cell layer. After terminal differentiation, granule cells born in the hilus or the subgranular zone begin to express NeuroD followed by NeuroD2. This study establishes that the expression patterns of bHLH mRNAs evolve during the formation of the dentate gyrus, and the precursor cells resident in the mature dentate gyrus share features with precursor cells found in development. Thus, many of the same mechanisms that are known to regulate cell fate and precursor pool size in other brain regions are likely to be operative in the dentate gyrus at all stages of development.

  10. Porcine skeletal muscle differentially expressed gene ATP5B: molecular characterization, expression patterns, and association analysis with meat quality traits.

    PubMed

    Xu, Haixia; Xu, Yongjie; Liang, Xiaojuan; Wang, Yanbo; Jin, Fangfang; Liu, Dengying; Ma, Yun; Yuan, Hongyu; Song, Xinqiang; Zeng, Wenxian

    2013-04-01

    The 2-DE/MS-based proteomics approach was used to investigate the differences of porcine skeletal muscle, and ATP5B was identified as one differential expression protein. In the present study, ATP5B gene was further cloned by RT-PCR, the sequence was analyzed using the bioinformatics method, and the mRNA expression was detected by qRT-PCR. Sequence analysis showed that the porcine ATP5B gene contains an ORF encoding 528-amino-acid residues with 49 and 166 nucleotides in the 5' and 3' UTRs, respectively. The mRNA of ATP5B was widely expressed in all 14 tissues tested, but especially highly expressed in parorchis and fat. The expression pattern of ATP5B was similar in Large White and Meishan breeds, showing that the expression was upregulated by 3 days after birth and downregulated during postnatal development of skeletal muscle. Comparing the two breeds, the mRNA abundance of ATP5B in Large White was more highly expressed than in Meishan at all developmental stages (P < 0.05). Moreover, a synonymous mutation, G75A in exon 8, was identified and association analysis with the traits of meat quality showed that it was significantly associated with the RLF, FMP, IFR, IMF, and IMW (P < 0.05). These results suggested that ATP5B probably plays a key role in porcine skeletal muscle development and may provide further insight into the molecular mechanisms responsible for breed-specific differences in meat quality.

  11. The pattern of gene expression in human CD34+ stem/progenitor cells

    PubMed Central

    Zhou, Guolin; Chen, Jianjun; Lee, Sanggyu; Clark, Terry; Rowley, Janet D.; Wang, San Ming

    2001-01-01

    We have analyzed the pattern of gene expression in human primary CD34+ stem/progenitor cells. We identified 42,399 unique serial analysis of gene expression (SAGE) tags among 106,021 SAGE tags collected from 2.5 × 106 CD34+ cells purified from bone marrow. Of these unique SAGE tags, 21,546 matched known expressed sequences, including 3,687 known genes, and 20,854 were novel without a match. The SAGE tags that matched known sequences tended to be at higher levels, whereas the novel SAGE tags tended to be at lower levels. By using the generation of longer sequences from SAGE tags for gene identification (GLGI) method, we identified the correct gene for 385 of 440 high-copy SAGE tags that matched multiple genes and we generated 198 novel 3′ expressed sequence tags from 138 high-copy novel SAGE tags. We observed that many different SAGE tags were derived from the same genes, reflecting the high heterogeneity of the 3′ untranslated region in the expressed genes. We compared the quantitative relationship for genes known to be important in hematopoiesis. The qualitative identification and quantitative measure for each known gene, expressed sequence tag, and novel SAGE tag provide a base for studying normal gene expression in hematopoietic stem/progenitor cells and for studying abnormal gene expression in hematopoietic diseases. PMID:11717454

  12. Multispecies Analysis of Expression Pattern Diversification in the Recently Expanded Insect Ly6 Gene Family

    PubMed Central

    Tanaka, Kohtaro; Hazbun, Alexis; Hijazi, Assia; Vreede, Barbara; Sucena, Élio

    2015-01-01

    Gene families often consist of members with diverse expression domains reflecting their functions in a wide variety of tissues. However, how the expression of individual members, and thus their tissue-specific functions, diversified during the course of gene family expansion is not well understood. In this study, we approached this question through the analysis of the duplication history and transcriptional evolution of a rapidly expanding subfamily of insect Ly6 genes. We analyzed different insect genomes and identified seven Ly6 genes that have originated from a single ancestor through sequential duplication within the higher Diptera. We then determined how the original embryonic expression pattern of the founding gene diversified by characterizing its tissue-specific expression in the beetle Tribolium castaneum, the butterfly Bicyclus anynana, and the mosquito Anopheles stephensi and those of its duplicates in three higher dipteran species, representing various stages of the duplication history (Megaselia abdita, Ceratitis capitata, and Drosophila melanogaster). Our results revealed that frequent neofunctionalization episodes contributed to the increased expression breadth of this subfamily and that these events occurred after duplication and speciation events at comparable frequencies. In addition, at each duplication node, we consistently found asymmetric expression divergence. One paralog inherited most of the tissue-specificities of the founder gene, whereas the other paralog evolved drastically reduced expression domains. Our approach attests to the power of combining a well-established duplication history with a comprehensive coverage of representative species in acquiring unequivocal information about the dynamics of gene expression evolution in gene families. PMID:25743545

  13. Constitutive patterns of gene expression regulated by RNA-binding proteins

    PubMed Central

    2014-01-01

    Background RNA-binding proteins regulate a number of cellular processes, including synthesis, folding, translocation, assembly and clearance of RNAs. Recent studies have reported that an unexpectedly large number of proteins are able to interact with RNA, but the partners of many RNA-binding proteins are still uncharacterized. Results We combined prediction of ribonucleoprotein interactions, based on catRAPID calculations, with analysis of protein and RNA expression profiles from human tissues. We found strong interaction propensities for both positively and negatively correlated expression patterns. Our integration of in silico and ex vivo data unraveled two major types of protein–RNA interactions, with positively correlated patterns related to cell cycle control and negatively correlated patterns related to survival, growth and differentiation. To facilitate the investigation of protein–RNA interactions and expression networks, we developed the catRAPID express web server. Conclusions Our analysis sheds light on the role of RNA-binding proteins in regulating proliferation and differentiation processes, and we provide a data exploration tool to aid future experimental studies. PMID:24401680

  14. A Synthesis Method of Gene Networks Having Cyclic Expression Pattern Sequences by Network Learning

    NASA Astrophysics Data System (ADS)

    Mori, Yoshihiro; Kuroe, Yasuaki

    Recently, synthesis of gene networks having desired functions has become of interest to many researchers because it is a complementary approach to understanding gene networks, and it could be the first step in controlling living cells. There exist several periodic phenomena in cells, e.g. circadian rhythm. These phenomena are considered to be generated by gene networks. We have already proposed synthesis method of gene networks based on gene expression. The method is applicable to synthesizing gene networks possessing the desired cyclic expression pattern sequences. It ensures that realized expression pattern sequences are periodic, however, it does not ensure that their corresponding solution trajectories are periodic, which might bring that their oscillations are not persistent. In this paper, in order to resolve the problem we propose a synthesis method of gene networks possessing the desired cyclic expression pattern sequences together with their corresponding solution trajectories being periodic. In the proposed method the persistent oscillations of the solution trajectories are realized by specifying passing points of them.

  15. Wing venation and Distal-less expression in Heliconius butterfly wing pattern development.

    PubMed

    Reed, Robert D; Gilbert, Lawrence E

    2004-12-01

    Here we show that major color pattern elements of Heliconius butterfly wings develop independently of wing venation. We recovered a hybrid Heliconius displaying a mutant phenotype with a severe vein deficiency. Although this butterfly lacked most of its wing veins, the large, melanic banding patterns typical of the genus were conserved across the entire wing. The only obvious correlation between vein reduction and pigment patterns was a loss of vein-associated melanin stripes near the distal margin of the wings. We examined the expression of the eyespot-associated transcription factor Distal-less in a banded and a spotted species of Heliconius and found no obvious relationship between protein expression and the band or spot patterns typical of the genus. Together, our results suggest that the melanic bands and spots in Heliconius are unlikely to be derived from an eyespot determination system. We propose that major elements of Heliconius wing pattern formation are based primarily on a complex, whole-wing proximodistal axis system.

  16. Robust patterning of gene expression based on internal coordinate system of cells.

    PubMed

    Ogawa, Ken-ichiro; Miyake, Yoshihiro

    2015-06-01

    Cell-to-cell communication in multicellular organisms is established through the transmission of various kinds of chemical substances such as proteins. It is well known that gene expression triggered by a chemical substance in individuals has stable spatial patterns despite the individual differences in concentration patterns of the chemical substance. This fact reveals an important property of multicellular organisms called "robustness", which allows the organisms to generate their forms while maintaining proportion. Robustness has been conventionally accounted for by the stability of solutions of dynamical equations that represent a specific interaction network of chemical substances. However, any biological system is composed of autonomous elements. In general, an autonomous element does not merely accept information on the chemical substance from the environment; instead, it accepts the information based on its own criteria for reaction. Therefore, this phenomenon needs to be considered from the viewpoint of cells. Such a viewpoint is expected to allow the consideration of the autonomy of cells in multicellular organisms. This study aims to explain theoretically the robust patterning of gene expression from the viewpoint of cells. For this purpose, we introduced a new operator for transforming a state variable of a chemical substance from an external coordinate system to an internal coordinate system of each cell, which describes the observation of the chemical substance by cells. We then applied this operator to the simplest reaction-diffusion model of the chemical substance to investigate observation effects by cells. Our mathematical analysis of this extended model indicates that the robust patterning of gene expression against individual differences in concentration pattern of the chemical substance can be explained from the viewpoint of cells if there is a regulation field that compensates for the difference between cells seen in the observation results

  17. Analysis of cytoskeleton dynamics and cell migration in drosophila ovaries using GFP-actin and E-cadherin-GFP fusion molecules

    NASA Astrophysics Data System (ADS)

    Verkhusha, Vladyslav V.; Tsukita, Shoichiro; Oda, Hiroki

    1999-06-01

    Coordination of cell migration and adhesion is essential for movement of tissues during morphogenesis. During Drosophila oogenesis so called border cells (BCs) break from an anterior epithelium of egg chamber, acquire a mesenchymal-like morphology, and migrate posteriorly between nurse cells to oocyte. The confocal microscopic observation of BCs has revealed well-developed forepart lamellipodium stained with Drosophila E-cadherin (DE-cadherin), PS2 integrin, cytoplasmic myosin and F-actin. To investigate mechanism of BC migration in vivo we have constructed a DE-cadherin-GFP and a GFP-actin fusion proteins and induced their expression BCs utilizing the UAS/GAL4 system. The DE-cadherin-GFP signal as well as immunostaining of PS2 integrin visualized a track of migrating BCs providing an evidence that adhesive molecules are pulled out and left behind on the surface of nurse cells. Our data suggest that two distinct adhesive systems, DE-cadherins and PS2 integrins simultaneously mediate the migration of BCs. Release of adhesive contacts in the tail region is a rate- limited event in BC migration. The spatial-temporal sequence of actin-based events visualized by the GFP-actin suggest a treadmilling model for actin behavior in BC lamellipodium. BC migration can be considered as simultaneous reiterating processes of lamellipodium extension and adhesive attachment, cytoskeletal contraction, and rear detachment.

  18. Methylation patterns of immunoglobulin genes in lymphoid cells: correlation of expression and differentiation with undermethylation.

    PubMed

    Storb, U; Arp, B

    1983-11-01

    Different states of eukaryotic gene expression are often correlated with different levels of methylation of DNA sequences containing structural genes and their flanking regions. To assess the potential role of DNA methylation in the expression of immunoglobulin genes, which require complex rearrangements prior to expression, methylation patterns were examined in cell lines representing different stages of lymphocyte maturation. Methylation of the second cytosine in the sequence 5' C-C-G-G 3' was determined by using Hpa II/Msp I endonuclease digestion. Four CH genes (C mu, C delta, C gamma 2b, and C alpha), C kappa, V kappa, C lambda, and V lambda genes were analyzed. The results lead to the following conclusions: (i) transcribed immunoglobulin genes are undermethylated; (ii) the C gene allelic to an expressed C gene is always also undermethylated; and (iii) all immunoglobulin loci tend to become increasingly undermethylated as B cells mature.

  19. The bovine desmocollin family: a new gene and expression patterns reflecting epithelial cell proliferation and differentiation

    PubMed Central

    1994-01-01

    We have discovered a third bovine desmocollin gene, DSC3, and studied expression of all three desmocollin genes, DSC1, 2, and 3, by Northern blotting, RT-PCR and in situ hybridization. DSC1 is strongly expressed in epidermis and tongue papillae, showing a "skin"-type pattern resembling that previously described for keratins 1 and 10. Expression is absent from the epidermal basal layer but appears in the immediate suprabasal layers and continues uniformly to the lower granular layer. In tongue epithelium, expression is suprabasal and strictly localized to papillae, being absent from interpapillary regions. In other epithelial low level DSC1 expression is detectable only by RT-PCR. The distribution of Dsc1 glycoproteins, detected by an isoform-specific monoclonal antibody, closely reflects mRNA distribution in epidermis and tongue. DSC2 is ubiquitously expressed in epithelia and cardiac muscle. In stratified epithelia, expression appears immediately suprabasal, continuing weakly to the lower granular layer in epidermis and to just above half epithelial thickness in interpapillary tongue, oesophageal, and rumenal epithelia. DSC3 expression is restricted to the basal and immediately suprabasal layers in stratified epithelia. In deep rete ridges DSC expression strikingly resembles the distribution of stem, transit-amplifying, and terminally differentiating cells described by others. DSC3 expression is strongly basal, DSC2 is strong in 5-10 suprabasal layers, and then weakens to be superseded by strong DSC1. These results suggest that desmocollin isoform expression has important functional consequences in epithelial proliferation, stratification, and differentiation. The data also provide a standard for nomenclature of the desmocollins. PMID:8034749

  20. Sequence and expression pattern of pax-6 are highly conserved between zebrafish and mice.

    PubMed

    Püschel, A W; Gruss, P; Westerfield, M

    1992-03-01

    Despite obvious differences in the patterns of early embryonic development, vertebrates share a number of developmental mechanisms and control genes, suggesting that they use similar genetic programs at some stages of development. To examine this idea, we isolated and characterized one such gene, pax-6, a member of the pax gene family, from the zebrafish Brachydanio rerio and determined the evolutionary conservation in the structure and expression of this gene by comparison to its homolog in mice. We found two alternatively spliced forms of the zebrafish pax-6 message. Sequence and expression pattern of the zebrafish pax-6 gene are remarkably similar to its murine homolog. pax-6 expression begins during early neurulation. A stripe of cells in the neuroectoderm, including the prospective diencephalon and a part of the telencephalon, expresses pax-6 as well as the hindbrain and the ventral spinal cord extending from the level of the first rhombomere to the posterior end of the CNS. During later development more limited regions of the brain including the eye, the olfactory bulb and the pituitary gland express pax-6. Cells at the midbrain-hindbrain junction express eng genes and are separated from the neighboring pax-6 regions by several cells that express neither gene, indicating a complex subdivision of this region. pax-6 expression appears during processes when cell-to-cell signalling is thought to be important, for example during induction of the eye and regionalization of the spinal cord and brain, suggesting that it may be one component mediating the response to inductive interactions.

  1. Early expressed genes showing a dichotomous developing pattern in the lancelet embryo.

    PubMed

    Yasui, K; Saiga, H; Wang, Y; Zhang, P J; Semba, I

    2001-04-01

    Lancelets (amphioxus), although showing the most similar anatomical features to vertebrates, never develop a vertebrate-like head but rather several structures specific to this animal. The lancelet anatomical specificity seems to be traceable to early developmental stages, such as the vertebrate dorsal and anterior-posterior determinations. The BMP and Wnt proteins play important roles in establishing the early basis of the dorsal structures and the head in vertebrates. The early behavior of BMP and Wnt may be also related to the specific body structures of lancelets. The expression patterns of a dpp-related gene, Bbbmp2/4, and two wnt-related genes, Bbwnt7 and Bbwnt8, have been studied in comparison with those of brachyury and Hnf-3beta class genes. The temporal expression patterns of these genes are similar to those of vertebrates; Bbbmp2/4 and Bbwnt8 are first expressed in the invaginating primitive gut and the equatorial region, respectively, at the initial gastrula stage. However, spatial expression pattern of Bbbmp2/4 differs significantly from the vertebrate cognates. It is expressed in the mid-dorsal inner layer of gastrulae and widely in the anterior region, in which vertebrates block BMP signaling. The present study suggests that the lancelet embryo may have two distinct developmental domains from the gastrula stage, the domains of which coincide later with the lateral diverticular and the somitocoelomic regions. The embryonic origin of the anterior-specific structures in lancelets corresponds to the anterior domain where Bbbmp2/4 is continuously expressed.

  2. Patterning Expression of Regenerative Growth Factors Using High Intensity Focused Ultrasound

    PubMed Central

    Wilson, Christopher G.; Martín-Saavedra, Francisco M.; Padilla, Frédéric; Fabiilli, Mario L.; Zhang, Man; Baez, Alexander M.; Bonkowski, Christopher J.; Kripfgans, Oliver D.; Voellmy, Richard; Vilaboa, Nuria; Fowlkes, J. Brian

    2014-01-01

    Temporal and spatial control of growth factor gradients is critical for tissue patterning and differentiation. Reinitiation of this developmental program is also required for regeneration of tissues during wound healing and tissue regeneration. Devising methods for reconstituting growth factor gradients remains a central challenge in regenerative medicine. In the current study we develop a novel gene therapy approach for temporal and spatial control of two important growth factors in bone regeneration, vascular endothelial growth factor, and bone morphogenetic protein 2, which involves application of high intensity focused ultrasound to cells engineered with a heat-activated- and ligand-inducible gene switch. Induction of transgene expression was tightly localized within cell-scaffold constructs to subvolumes of ∼30 mm3, and the amplitude and projected area of transgene expression was tuned by the intensity and duration of ultrasound exposure. Conditions for ultrasound-activated transgene expression resulted in minimal cytotoxicity and scaffold damage. Localized regions of growth factor expression also established gradients in signaling activity, suggesting that patterns of growth factor expression generated by this method will have utility in basic and applied studies on tissue development and regeneration. PMID:24460731

  3. Specific patterns of changes in wheat gene expression after treatment with three antifungal compounds.

    PubMed

    Pasquer, Frédérique; Isidore, Edwige; Zarn, Jürg; Keller, Beat

    2005-03-01

    The two fungicides azoxystrobin and fenpropimorph are used against powdery mildew and rust diseases in wheat (Triticum aestivumL). Azoxystrobin, a strobilurin, inhibits fungal mitochondrial respiration and fenpropimorph, a morpholin, represses biosynthesis of ergosterol, the major sterol of fungal membranes. Although the fungitoxic activity of these compounds is well understood, their effects on plant metabolism remain unclear. In contrast to the fungicides which directly affect pathogen metabolism, benzo(1,2,3) thiadiazole-7-carbothioic acid S-methylester (BTH) induces resistance against wheat pathogens by the activation of systemic acquired resistance in the host plant. In this study, we monitored gene expression in spring wheat after treatment with each of these agrochemicals in a greenhouse trial using a microarray containing 600 barley cDNA clones. Defence-related genes were strongly induced after treatment with BTH, confirming the activation of a similar set of genes as in dicot plants following salicylic acid treatment. A similar gene expression pattern was observed after treatment with fenpropimorph and some defence-related genes were induced by azoxystrobin, demonstrating that these fungicides also activate a defence reaction. However, less intense responses were triggered than with BTH. The same experiments performed under field conditions gave dramatically different results. No gene showed differential expression after treatment and defence genes were already expressed at a high level before application of the agrochemicals. These differences in the expression patterns between the two environments demonstrate the importance of plant growth conditions for testing the impact of agrochemicals on plant metabolism.

  4. Clustered cadherin genes: a sequence-ready contig for the desmosomal cadherin locus on human chromosome 18.

    PubMed

    Hunt, D M; Sahota, V K; Taylor, K; Simrak, D; Hornigold, N; Arnemann, J; Wolfe, J; Buxton, R S

    1999-12-15

    We describe the assembly of a cosmid and PAC contig of approximately 700 kb on human chromosome 18q12 spanning the DSC and DSG genes coding for the desmocollins and desmogleins. These are members of the cadherin superfamily of calcium-dependent cell adhesion proteins present in the desmosome type of cell junction found especially in epithelial cells. They provide the strong cell-cell adhesion generated by this type of cell junction for which expression of both a desmocollin and a desmoglein is required. In the autoimmune skin diseases pemphigus foliaceous and pemphigus vulgaris (PV), where the autoantigens are, respectively, encoded by the DSG1 and DSG3 genes, severe areas of acantholysis (cell separation), potentially life-threatening in the case of PV, are evident. Dominant mutations in the DSG1 gene causing striate palmoplantar keratoderma result in hyperkeratosis of the skin on the parts of the body where pressure and abrasion are greatest, viz., on the palms and soles. These genes are also candidate tumor suppressor genes in squamous cell carcinomas and other epithelial cancers. We have screened two chromosome 18-specific cosmid libraries by hybridization with previously isolated YAC clones and DSC and DSG cDNAs, and a whole genome PAC library, both by hybridization with the YACs and by screening by PCR using cDNA sequences and YAC end sequence. The contigs were extended by further PCR screens using STSs generated by vectorette walking from the ends of the cosmids and PACs, together with sequence from PAC ends. Despite screening of two libraries, the cosmid contig still had four gaps. The PAC contig filled these gaps and in fact covered the whole locus. The positions of 45 STSs covering the whole of this region are presented. The desmocollin and desmoglein genes, which are about 30-35 kb in size, are quite well separated at approximately 20-30 kb apart and are arranged in two clusters, one DSC cluster and one DSG cluster, which are transcribed outward from the

  5. Expression of Nav1.8 sodium channels perturbs the firing patterns of cerebellar Purkinje cells.

    PubMed

    Renganathan, M; Gelderblom, M; Black, J A; Waxman, S G

    2003-01-10

    The sensory neuron specific sodium channel Na(v)1.8/SNS exhibits depolarized voltage-dependence of inactivation, slow inactivation and rapid repriming, which differentiate it from other voltage-gated sodium channels. Na(v)1.8 is normally selectively expressed at high levels in sensory ganglion neurons, but not within the CNS. However, expression of Na(v)1.8 mRNA and protein are upregulated within cerebellar Purkinje cells in animal models of multiple sclerosis (MS), and in human MS. To examine the effect of expression of Na(v)1.8 on the activity pattern of Purkinje cells, we biolistically introduced Na(v)1.8 cDNA into these cells in vitro. We report here that Na(v)1.8 can be functionally expressed at physiological levels (similar to the levels in DRG neurons where Na(v)1.8 is normally expressed) within Purkinje cells, and that its expression alters the activity of these neurons in three ways: first, by increasing the amplitude and duration of action potentials; second, by decreasing the proportion of action potentials that are conglomerate and the number of spikes per conglomerate action potential; and third, by contributing to the production of sustained, pacemaker-like impulse trains in response to depolarization. These results provide support for the hypothesis that the expression of Na(v)1.8 channels within Purkinje cells, which occurs in MS, may perturb their function. PMID:12493611

  6. Differentiating disease subtypes by using pathway patterns constructed from gene expressions and protein networks.

    PubMed

    Hung, Fei-Hung; Chiu, Hung-Wen

    2015-01-01

    Gene expression profiles differ in different diseases. Even if diseases are at the same stage, such diseases exhibit different gene expressions, not to mention the different subtypes at a single lesion site. Distinguishing different disease subtypes at a single lesion site is difficult. In early cases, subtypes were initially distinguished by doctors. Subsequently, further differences were found through pathological experiments. For example, a brain tumor can be classified according to its origin, its cell-type origin, or the tumor site. Because of the advancements in bioinformatics and the techniques for accumulating gene expressions, researchers can use gene expression data to classify disease subtypes. Because the operation of a biopathway is closely related to the disease mechanism, the application of gene expression profiles for clustering disease subtypes is insufficient. In this study, we collected gene expression data of healthy and four myelodysplastic syndrome subtypes and applied a method that integrated protein-protein interaction and gene expression data to identify di