Sample records for cadmium iron manganese

  1. The ColRS signal transduction system responds to the excess of external zinc, iron, manganese, and cadmium

    PubMed Central

    2014-01-01

    Background The ColRS two-component system has been shown to contribute to the membrane functionality and stress tolerance of Pseudomonas putida as well as to the virulence of Pseudomonas aeruginosa and plant pathogenic Xanthomonas species. However, the conditions activating the ColRS pathway and the signal(s) sensed by ColS have remained unknown. Here we aimed to analyze the role of the ColRS system in metal tolerance of P. putida and to test whether ColS can respond to metal excess. Results We show that the ColRS system is necessary for P. putida to tolerate the excess of iron and zinc, and that it also contributes to manganese and cadmium tolerance. Excess of iron, zinc, manganese or cadmium activates ColRS signaling and as a result modifies the expression of ColR-regulated genes. Our data suggest that the genes in the ColR regulon are functionally redundant, as several loci have to be deleted to observe a significant decrease in metal tolerance. Site-directed mutagenesis of ColS revealed that excess of iron and, surprisingly, also zinc are sensed by a conserved ExxE motif in ColS’s periplasmic domain. While ColS is able to sense different metals, it still discriminates between the two oxidation states of iron, specifically responding to ferric and not ferrous iron. We propose a signal perception model involving a dimeric ColS, where each monomer donates one ExxE motif for metal binding. Conclusions Several transition metals are essential for living organisms in certain amounts, but toxic in excess. We show that ColRS is a sensor system which detects and responds to the excess of physiologically important metals such as zinc, iron and manganese. Thus, the ColRS system is an important factor for metal homeostasis and tolerance in P. putida. PMID:24946800

  2. Dynamics of manganese, cadmium, and lead in experimental power plant ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathis, B.J.; Cummings, T.F.; Gower, M.

    1977-06-01

    This study was designed to determine the effect of heated power plant cooling water on the compartmentalization of manganese, lead, and cadmium in experimental ponds. Caged channel catfish and green sunfish were kept in an experimental pond and a control pond. Periodically, whole fishes, gill, heart, kidney, liver, and musculature were analyzed for the three metals. Concentrations of the three metals in fishes were not affected by the temperature differential maintained during the study. There was no correlation in concentrations of cadmium and lead with age (weight and length) of fishes but manganese concentrations declined slightly with age. Aquatic organismsmore » such as snails, fingernail clams, leeches, tubificid annelids, and dragonfly nymphs exhibited concentrations of cadmium higher than sediments while snails and duckweed more closely reflected concentrations of manganese in sediments.« less

  3. Effect of dietary cadmium on iron metabolism in growing rats.

    PubMed

    Crowe, A; Morgan, E H

    1997-07-01

    Little is known regarding the interactions between iron and cadmium during postnatal development. This study examined the effect of altered levels of dietary iron and cadmium loading on the distribution of cadmium and iron in developing rats ages 15, 21, and 63 days. The uptake of iron, transferrin, and cadmium into various organs was also examined using 59Fe, [125I]transferrin, and 109Cd. Dietary cadmium loading reduced packed cell volume and plasma iron and nonheme iron levels in the liver and kidneys, evidence of the inducement of an iron deficient state. Dietary iron loading was able to reverse these effects, suggesting that they were the result of impaired intestinal absorption of iron. Cadmium loading resulted in cadmium concentrations in the liver and kidneys up to 20 microg/g in rats age 63 days, while cadmium levels in the brain reached only 0.16 microg/g, indicating that the blood-brain barrier restricts the entry of cadmium into the brain. Iron loading had little effect on cadmium levels in the organs and cadmium feeding did not lower tissue iron levels in iron loaded animals. These results suggest that cadmium inhibits iron absorption only at low to normal levels of dietary iron and that at high levels of intake iron and cadmium are largely absorbed by other, noncompetitive mechanisms. It was shown that 109Cd is removed from the plasma extremely quickly irrespective of iron status and deposits mainly in the liver. One of the most striking effects of cadmium loading on iron metabolism was increased uptake of [125I]transferrin by the heart, possibly by disrupting the process of receptor-mediated endocytosis and recycling of transferrin by heart muscle.

  4. Removal of Iron and Manganese in Groundwater using Natural Biosorbent

    NASA Astrophysics Data System (ADS)

    Baharudin, F.; Tadza, M. Y. Mohd; Imran, S. N. Mohd; Jani, J.

    2018-04-01

    This study was conducted to measure and compare the concentration of iron, manganese and hardness of the river and groundwater and to determine the effectiveness of iron and manganese removal by using natural biosorbent which is banana peels. The samples of river and groundwater were collected at riverbank filtration site at Jenderam Hilir, Dengkil. Based on the water quality investigation, the concentration of iron and manganese in the samples of groundwater have exceeded the drinking water quality standard which are 0.3 mg/L for iron and 0.1 mg/L for manganese. The removal process of the iron and manganese in the groundwater was done by using 2, 4 and 8 grams of banana peels activated carbon. It is found that with higher amount of activated banana peels, the removal of iron and manganese is more effective. The ranges of percentage of iron and manganese removal are between 82.25% to 90.84% and 98.79% to 99.43% respectively. From the result, banana peels activated carbon can be concluded as a one of the most effective low-cost adsorbent for groundwater treatment.

  5. Specific growth rate of sulfate reducing bacteria in the presence of manganese and cadmium.

    PubMed

    Medírcio, Sílvia N; Leão, Versiane A; Teixeira, Mônica C

    2007-05-08

    The development of technologies based on the use of sulfate-reducing bacteria (SRB) to treat sulfate contaminated wastewaters has produced a cost-effective route to precipitate metals. In this work the effects of cadmium and manganese in the SRB growth rates were assessed. It was observed that duplication time is 50h in the presence of cadmium and 6h in the presence of manganese, thus showing that the SRB growth rate was more affected by the presence of cadmium. A low sulfate reduction (maximum 25%) occurred which was sufficient for metal precipitation. The results are discussed considering their implications for metal precipitation in acid mining drainage.

  6. Tissue distribution of manganese in iron-sufficient or iron-deficient rats after stainless steel welding-fume exposure.

    PubMed

    Park, Jung-Duck; Kim, Ki-Young; Kim, Dong-Won; Choi, Seong-Jin; Choi, Byung-Sun; Chung, Yong Hyun; Han, Jeong Hee; Sung, Jae Hyuck; Kwon, Il Hoon; Mun, Je-Hyeok; Yu, Il Je

    2007-05-01

    Welders can be exposed to high levels of manganese through welding fumes. Although it has already been suggested that excessive manganese exposure causes neurotoxicity, called manganism, the pathway of manganese transport to the brain with welding-fume exposure remains unclear. Iron is an essential metal that maintains a homeostasis in the body. The divalent metal transporter 1 (DMT1) transports iron and other divalent metals, such as manganese, and the depletion of iron is known to upregulate DMT1 expression. Accordingly, this study investigated the tissue distribution of manganese in iron-sufficient and iron-deficient rats after welding-fume exposure. The feeding of an iron-deficient diet for 4 wk produced a depletion of body iron, such as decreased iron levels in the serum and tissues, and upregulated the DMT1 expression in the rat duodenum. The iron-sufficient and iron-deficient rats were then exposed to welding fumes generated from manual metal arc stainless steel at a concentration of 63.5 +/- 2.3 mg/m3 for 2 h per day over a 30-day period. Animals were sacrificed on days 1, 15, and 30. The level of body iron in the iron-deficient rats was restored to the control level after the welding-fume exposure. However, the tissue distributions of manganese after the welding-fume exposure showed similar patterns in both the iron-sufficient and iron-deficient groups. The concentration of manganese increased in the lungs and liver on days 15 and 30, and increased in the olfactory bulb on day 30. Slight and heterogeneous increases of manganese were observed in different brain regions. Consequently, these findings suggest that the presence of Fe in the inhaled welding fumes may not have a significant effect on the uptake of Mn into the brain. Thus, the condition of iron deficiency did not seem to have any apparent effect on the transport of Mn into the brain after the inhalation of welding fumes.

  7. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayaaltı, Zeliha, E-mail: kayaalti@ankara.edu.tr; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metalmore » trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  8. Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions.

    PubMed

    Yin, Yongyuan; Guo, Xuetao; Peng, Dan

    2018-08-01

    Maize straw modified by iron and manganese oxides was synthesized via a simple and environmentally friendly method. Three maize straw materials, the original maize straw, maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides, were detected by SEM, BET, XPS, XRD and FTIR. The results showed that maize straw was successfully modified and maize straw modified by iron and manganese oxides has a larger surface area than MS. According to the experimental data, the sorption trend could conform to the pseudo-second-order kinetic model well, and the sorption ability of tylosin on sorbents followed the order of original maize straw < maize straw modified by manganese oxides < maize straw modified by iron and manganese oxides. The study indicated that manganese oxides and iron-manganese oxides could significantly enhance the sorption capacity of original maize straw. The sorption isotherm data of tylosin on original maize straw fit a linear model well, while Freundlich models were more suitable for maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides. The pH, ionic strength and temperature can affect the sorption process. The sorption mechanisms of tylosin on iron and manganese oxides modified maize straw were attribute to the surface complexes, electrostatic interactions, H bonding and hydrophobic interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Matrix Infrared Spectra of Manganese and Iron Isocyanide Complexes.

    PubMed

    Chen, Xiuting; Li, Qingnuan; Andrews, Lester; Gong, Yu

    2017-11-22

    Mono and diisocyanide complexes of manganese and iron were prepared via the reactions of laser-ablated manganese and iron atoms with (CN) 2 in an argon matrix. Product identifications were performed based on the characteristic infrared absorptions from isotopically labeled (CN) 2 experiments as compared with computed values for both cyanides and isocyanides. Manganese atoms reacted with (CN) 2 to produce Mn(NC) 2 upon λ > 220 nm irradiation, during which MnNC was formed mainly as a result of the photoinduced decomposition of Mn(NC) 2 . Similar reaction products FeNC and Fe(NC) 2 were formed during the reactions of Fe and (CN) 2 . All the product molecules together with the unobserved cyanide isomers were predicted to have linear geometries at the B3LYP level of theory. The cyanide complexes of manganese and iron were computed to be more stable than the isocyanide isomers with energy differences between 0.4 and 4 kcal/mol at the CCSD(T) level. Although manganese and iron cyanide molecules are slightly more stable according to the theory, no absorption can be assigned to these isomers in the region above the isocyanides possibly due to their low infrared intensities.

  10. Immobilization of iron- and manganese-oxidizing bacteria with a biofilm-forming bacterium for the effective removal of iron and manganese from groundwater.

    PubMed

    Li, Chunyan; Wang, Shuting; Du, Xiaopeng; Cheng, Xiaosong; Fu, Meng; Hou, Ning; Li, Dapeng

    2016-11-01

    In this study, three bacteria with high Fe- and Mn-oxidizing capabilities were isolated from groundwater well sludge and identified as Acinetobacter sp., Bacillus megaterium and Sphingobacterium sp. The maximum removal ratios of Fe and Mn (99.75% and 96.69%) were obtained by an optimal combination of the bacteria at a temperature of 20.15°C, pH 7.09 and an inoculum size of 2.08%. Four lab-scale biofilters were tested in parallel for the removal of iron and manganese ions from groundwater. The results indicated that the Fe/Mn removal ratios of biofilter R4, which was inoculated with iron- and manganese-oxidizing bacteria and a biofilm-forming bacterium, were approximately 95% for each metal during continuous operation and were better than the other biofilters. This study demonstrated that the biofilm-forming bacterium could promote the immobilization of the iron- and manganese-oxidizing bacteria on the biofilters and enhance the removal efficiency of iron and manganese ions from groundwater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Iron and manganese oxide mineralization in the Pacific

    USGS Publications Warehouse

    Hein, J. R.; Koschinsky, A.; Halbach, P.; Manheim, F. T.; Bau, M.; Jung-Keuk, Kang; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. These processes are discussed.

  12. Removal of iron and manganese using biological roughing up flow filtration technology.

    PubMed

    Pacini, Virginia Alejandra; María Ingallinella, Ana; Sanguinetti, Graciela

    2005-11-01

    The removal of iron and manganese from groundwater using biological treatment methods is almost unknown in Latin America. Biological systems used in Europe are based on the process of double rapid biofiltration during which dissolved oxygen and pH need to be strictly controlled in order to limit abiotic iron oxidation. The performance of roughing filter technology in a biological treatment process for the removal of iron and manganese, without the use of chemical agents and under natural pH conditions was studied. Two pilot plants, using two different natural groundwaters, were operated with the following treatment line: aeration, up flow roughing filtration and final filtration (either slow or rapid). Iron and manganese removal efficiencies were found to be between 85% and 95%. The high solid retention capability of the roughing filter means that it is possible to remove iron and manganese simultaneously by biotic and abiotic mechanisms. This system combines simple, low-cost operation and maintenance with high iron and manganese removal efficiencies, thus constituting a technology which is particularly suited to small waterworks.

  13. Radio-manganese, -iron, -phosphorus uptake by water hyacinth and economic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colley, T.N.; Gonzalez, M.H.; Martin, D.F.

    To determine the effects of the deprivation of specific micronutrients on the water hyacinth (Eichhornia crassipes), the rate of uptake by the water hyacinth of iron and manganese in comparison with phosphorus was studied. Materials and methodology are described. Experimentation indicates that all three elements are actively absorbed by the root systems, but the rates of absorption differ markedly. The rate of absorption of manganese by roots is 13 and 21 times that for radio-iron and -phosphorous, and iron was taken up by the roots at nearly twice the rate of phosphorous. Manganese translocation appeared to be faster than phosphorusmore » translocation by an order of magnitude and 65 times faster than iron translocation. 9 references, 2 tables.« less

  14. Occurrence and Distribution of Iron, Manganese, and Selected Trace Elements in Ground Water in the Glacial Aquifer System of the Northern United States

    USGS Publications Warehouse

    Groschen, George E.; Arnold, Terri L.; Morrow, William S.; Warner, Kelly L.

    2009-01-01

    Dissolved trace elements, including iron and manganese, are often an important factor in use of ground water for drinking-water supplies in the glacial aquifer system of the United States. The glacial aquifer system underlies most of New England, extends through the Midwest, and underlies portions of the Pacific Northwest and Alaska. Concentrations of dissolved trace elements in ground water can vary over several orders of magnitude across local well networks as well as across regions of the United States. Characterization of this variability is a step toward a regional screening-level assessment of potential human-health implications. Ground-water sampling, from 1991 through 2003, of the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey determined trace element concentrations in water from 847 wells in the glacial aquifer system. Dissolved iron and manganese concentrations were analyzed in those well samples and in water from an additional 743 NAWQA land-use and major-aquifer survey wells. The samples are from monitoring and water-supply wells. Concentrations of antimony, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, selenium, strontium, thallium, uranium, and zinc vary as much within NAWQA study units (local scale; ranging in size from a few thousand to tens of thousands of square miles) as over the entire glacial aquifer system. Patterns of trace element concentrations in glacial aquifer system ground water were examined by using techniques suitable for a dataset with zero to 80 percent of analytical results reported as below detection. During the period of sampling, the analytical techniques changed, which generally improved the analytical sensitivity. Multiple reporting limits complicated the comparison of detections and concentrations. Regression on Order Statistics was used to model probability distributions and estimate the medians and other quantiles of the trace element

  15. Heavy metal pollution among autoworkers. II. Cadmium, chromium, copper, manganese, and nickel.

    PubMed Central

    Clausen, J; Rastogi, S C

    1977-01-01

    Garages and auto-repair workshops may be polluted with other heavy metals besides lead. Blood of autoworkers with high lead content was analysed for cadmium, chromium, copper manganese, nickel, ALAD activity and carboxyhaemoglobin level. Cadmium and copper levels in blood of autoworkers were comparable with those of the control subjects while chroimium and nickel levels were significantly higher (P less than 0-01 for both metals), and scattered raised values of manganese were found. There was no significant mutual correlation between levels of various heavy metals determined in whole blood. High copper levels were slightly related to decreasing ALAD activity (P less than 0-1). Nineteen per cent of autoworkers were found to have an abnormally blood level of carboxyhaemoglobin. The amount of particulate heavy metal in autoworkshop air was not related to biochemical abnormalities found in the autoworkers. Various sources of pollution of these heavy metals in autoworkshops are discussed. PMID:71915

  16. Absorption of Manganese and Iron in a Mouse Model of Hemochromatosis

    PubMed Central

    Kim, Jonghan; Buckett, Peter D.; Wessling-Resnick, Marianne

    2013-01-01

    Hereditary hemochromatosis, an iron overload disease associated with excessive intestinal iron absorption, is commonly caused by loss of HFE gene function. Both iron and manganese absorption are regulated by iron status, but the relationships between the transport pathways of these metals and how they are affected by HFE-associated hemochromatosis remain poorly understood. Loss of HFE function is known to alter the intestinal expression of DMT1 (divalent metal transporter-1) and Fpn (ferroportin), transporters that have been implicated in absorption of both iron and manganese. Although the influence of HFE deficiency on dietary iron absorption has been characterized, potential effects on manganese metabolism have yet to be explored. To investigate the role of HFE in manganese absorption, we characterized the uptake and distribution of the metal in Hfe −/− knockout mice after intravenous, intragastric, and intranasal administration of 54Mn. These values were compared to intravenous and intragastric administration of 59Fe. Intestinal absorption of 59Fe was increased and clearance of injected 59Fe was also increased in Hfe−/− mice compared to controls. Hfe −/− mice displayed greater intestinal absorption of 54Mn compared to wild-type Hfe+/+ control mice. After intravenous injection, the distribution of 59Fe to heart and liver was greater in Hfe −/− mice but no remarkable differences were observed for 54Mn. Although olfactory absorption of 54Mn into blood was unchanged in Hfe −/− mice, higher levels of intranasally-instilled 54Mn were associated with Hfe−/− brain compared to controls. These results show that manganese transport and metabolism can be modified by HFE deficiency. PMID:23705020

  17. Discrete Responses to Limitation for Iron and Manganese in Agrobacterium tumefaciens: Influence on Attachment and Biofilm Formation

    PubMed Central

    Hibbing, Michael E.; Xu, Jing; Natarajan, Ramya; Buechlein, Aaron M.

    2015-01-01

    ABSTRACT Transition metals such as iron and manganese are crucial trace nutrients for the growth of most bacteria, functioning as catalytic cofactors for many essential enzymes. Dedicated uptake and regulatory systems have evolved to ensure their acquisition for growth, while preventing toxicity. Transcriptomic analysis of the iron- and manganese-responsive regulons of Agrobacterium tumefaciens revealed that there are discrete regulatory networks that respond to changes in iron and manganese levels. Complementing earlier studies, the iron-responsive gene network is quite large and includes many aspects of iron-dependent metabolism and the iron-sparing response. In contrast, the manganese-responsive network is restricted to a limited number of genes, many of which can be linked to transport and utilization of the transition metal. Several of the target genes predicted to drive manganese uptake are required for growth under manganese-limited conditions, and an A. tumefaciens mutant with a manganese transport deficiency is attenuated for plant virulence. Iron and manganese limitation independently inhibit biofilm formation by A. tumefaciens, and several candidate genes that could impact biofilm formation were identified in each regulon. The biofilm-inhibitory effects of iron and manganese do not rely on recognized metal-responsive transcriptional regulators, suggesting alternate mechanisms influencing biofilm formation. However, under low-manganese conditions the dcpA operon is upregulated, encoding a system that controls levels of the cyclic di-GMP second messenger. Mutation of this regulatory pathway dampens the effect of manganese limitation. IMPORTANCE Responses to changes in transition metal levels, such as those of manganese and iron, are important for normal metabolism and growth in bacteria. Our study used global gene expression profiling to understand the response of the plant pathogen Agrobacterium tumefaciens to changes of transition metal availability

  18. [Factors affecting biological removal of iron and manganese in groundwater].

    PubMed

    Xue, Gang; He, Sheng-Bing; Wang, Xin-Ze

    2006-01-01

    Factors affecting biological process for removing iron and manganese in groundwater were analyzed. When DO and pH in groundwater after aeration were 7.0 - 7.5 mg/L and 6.8 - 7.0 respectively, not only can the activation of Mn2+ oxidizing bacteria be maintained, but also the demand of iron and manganese removal can be satisfied. A novel inoculating approach of grafting mature filter material into filter bed, which is easier to handle than selective culture media, was employed in this research. However, this approach was only suitable to the filter material of high-quality manganese sand with strong Mn2+ adsorption capacity. For the filter material of quartz sand with weak adsorption capacity, only culturing and domesticating Mn2+ oxidizing bacteria by selective culture media can be adopted as inoculation in filter bed. The optimal backwashing rate of biological filter bed filled with manganese sand and quartz sand should be kept at a relatively low level of 6 - 9 L/(m2 x s) and 7 -11 L/( m2 x s), respectively. Then the stability of microbial phase in filter bed was not disturbed, and iron and manganese removal efficiency recovered in less than 5h. Moreover, by using filter material with uniform particle size of 1.0 - 1.2 mm in filter bed, the filtration cycle reached as long as 35 - 38h.

  19. Geological reconnaissance of some Uruguayan iron and manganese deposits in 1962

    USGS Publications Warehouse

    Wallace, Roberts Manning

    1976-01-01

    Three mineralized areas lie in an area near the town of Minas de Corrales in the Departamento de Rivera; they are the Cerro Amelia, the Cerro de Papagayo, and the Cerro Iman. The Cerro Amelia is composed of small bands of iron-rich rock separated by an amphibolitic or mafic rock. Selective mining would be necessary to extract the 31,000 tons per meter of depth of iron-rich rock that ranges from 15 to 40 percent metallic iron. The Cerro de Papagayo district contains many small, rich deposits of ferruginous manganese ore. The ratio of Mn to Fe varies widely within each small deposit as well as from deposit to deposit. Some ferruginous manganese ore contains 50-55 percent manganese dioxide. Although there are many thousands of tons of ore in the district, small-scale mining operations are imperative. One deposit, the Cerro Avestuz manganese mine, was visited. The manganese ore body lies within contorted highly metamorphosed itabirite that contains both hard low grade and soft high grade ferruginous manganese ores estimated to average 40 percent Mn. About 38,000 tons of manganese ore is present in this deposit. The Cerro Iman is a large block of itabirite that contains about 40 percent Fe. The grade is variable and probably runs from less than 35 percent Fe to more than 50 percent Fe. No exploration has been done on this deposit. It is recommended that the Cerro de Iman area be geologically mapped in detail, and that a geological reconnaissance be made of the area that is between the Cuchilla de Corrales and the Cuchilla de Areycua/Cuchilla del Cerro Pelado area.

  20. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide

    USGS Publications Warehouse

    Balistrieri, L.S.; Chao, T.T.

    1990-01-01

    This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites

  1. Iron and manganese oxide mineralization in the Pacific

    USGS Publications Warehouse

    Hein, J.R.; Koschinsky, A.; Halbach, P.; Manheim, F.T.; Bau, M.; Kang, J.-K.; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. Iron and manganese deposits occur in five forms: nodules, crusts, cements, mounds and sediment-hosted stratabound layers. Seafloor oxides show a wide range of compositions from nearly pure iron to nearly pure manganese end members. Fe/Mn ratios vary from about 24 000 (up to 58% elemental Fe) for hydrothermal seamount ironstones to about 0.001 (up to 52% Mn) for hydrothermal stratabound manganese oxides from active volcanic arcs. Hydrogenetic Fe-Mn crusts that occur on most seamounts in the ocean basins have a mean Fe/Mn ratio of 0.7 for open-ocean seamount crusts and 1.2 for continental margin seamount crusts. Fe-Mn nodules of potential economic interest from the Clarion-Clipperton Zone have a mean Fe/Mn ratio of 0.3, whereas the mean ratio for nodules from elsewhere in the Pacific is about 0.7. Crusts are enriched in Co, Ni and Pt and nodules in Cu and Ni, and both have significant concentrations of Pb, Zn, Ba, Mo, V and other elements. In contrast, hydrothermal deposits commonly contain only minor trace metal contents, although there are many exceptions, for example, with Ni contents up to 0.66%, Cr to 1.2%, and Zn to 1.4%. Chondrite-normalized REE patterns generally show a positive Ce anomaly and abundant ΣREEs for hydrogenetic and mixed hydrogenetic-diagenetic deposits, whereas the Ce anomaly is negative for hydrothermal deposits and ΣREE contents are low. However, the Ce anomaly in crusts may vary from strongly positive in East Pacific crusts to slightly negative in West Pacific crusts, which may reflect

  2. Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries.

    PubMed

    Yabuuchi, Naoaki; Komaba, Shinichi

    2014-08-01

    Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed.

  3. Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries

    PubMed Central

    Yabuuchi, Naoaki; Komaba, Shinichi

    2014-01-01

    Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed. PMID:27877694

  4. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Saffarini, D.

    1994-01-01

    Dissimilatory iron and/or manganese reduction is known to occur in several organisms, including anaerobic sulfur-reducing organisms such as Geobacter metallireducens or Desulfuromonas acetoxidans, and facultative aerobes such as Shewanella putrefaciens. These bacteria couple both carbon oxidation and growth to the reduction of these metals, and inhibitor and competition experiments suggest that Mn(IV) and Fe(III) are efficient electron acceptors similar to nitrate in redox abilities and capable of out-competing electron acceptors of lower potential, such as sulfate (sulfate reduction) or CO2 (methanogenesis). Field studies of iron and/or manganese reduction suggest that organisms with such metabolic abilities play important roles in coupling the oxidation of organic carbon to metal reduction under anaerobic conditions. Because both iron and manganese oxides are solids or colloids, they tend to settle downward in aquatic environments, providing a physical mechanism for the movement of oxidizing potential into anoxic zones. The resulting biogeochemical metal cycles have a strong impact on many other elements including carbon, sulfur, phosphorous, and trace metals.

  5. Multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) onto natural bentonite clay.

    PubMed

    Alexander, Jock Asanja; Surajudeen, Abdulsalam; Aliyu, El-Nafaty Usman; Omeiza, Aroke Umar; Zaini, Muhammad Abbas Ahmad

    2017-10-01

    The present work was aimed at evaluating the multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) ions onto natural bentonite. The bentonite clay adsorbent was characterized for physical and chemical properties using X-ray diffraction, X-ray fluorescence, Brunauer-Emmett-Teller surface area and cation exchange capacity. The column performance was evaluated using adsorbent bed height of 5.0 cm, with varying influent concentrations (10 mg/L and 50 mg/L) and flow rates (1.4 mL/min and 2.4 mL/min). The result shows that the breakthrough time for all metal ions ranged from 50 to 480 minutes. The maximum adsorption capacity was obtained at initial concentration of 10 mg/L and flow rate of 1.4 mL/min, with 2.22 mg/g of lead(II), 1.71 mg/g of cadmium(II) and 0.37 mg/g of manganese(II). The order of metal ions removal by natural bentonite is lead(II) > cadmium(II) > manganese(II). The sorption performance and the dynamic behaviour of the column were predicted using Adams-Bohart, Thomas, and Yoon-Nelson models. The linear regression analysis demonstrated that the Thomas and Yoon-Nelson models fitted well with the column adsorption data for all metal ions. The natural bentonite was effective for the treatment of wastewater laden with multi-metals, and the process parameters obtained from this work can be used at the industrial scale.

  6. Cadmium, environmental exposure, and health outcomes

    PubMed Central

    Satarug, Soisungwan; Garrett, Scott H.; Sens, Mary Ann; Sens, Donald A.

    2018-01-01

    We provide an update of the issues surrounding health risk assessment of exposure to cadmium in food. Bioavailability of ingested cadmium has been confirmed in studies of persons with elevated dietary exposure, and the findings have been strengthened by the substantial amounts of cadmium accumulated in kidneys, eyes, and other tissues and organs of environmentally exposed individuals. We hypothesized that such accumulation results from the efficient absorption and systemic transport of cadmium, employing multiple transporters that are used for the body’s acquisition of calcium, iron, zinc, and manganese. Adverse effects of cadmium on kidney and bone have been observed in environmentally exposed populations at frequencies higher than those predicted from models of exposure. Population data raise concerns about the validity of the current safe intake level that uses the kidney as the sole target in assessing the health risk from ingested cadmium. The data also question the validity of incorporating the default 5% absorption rate in the threshold-type risk assessment model, known as the provisional tolerable weekly intake (PTWI), to derive a safe intake level for cadmium. PMID:21655733

  7. Alteration of serum concentrations of manganese, iron, ferritin, and transferrin receptor following exposure to welding fumes among career welders.

    PubMed

    Lu, Ling; Zhang, Long-Lian; Li, G Jane; Guo, Wenrui; Liang, Wannian; Zheng, Wei

    2005-03-01

    This study was performed to determine airborne manganese levels during welding practice and to establish the relationship between long-term, low-level exposure to manganese and altered serum concentrations of manganese, iron, and proteins associated with iron metabolism in career welders. Ninety-seven welders (average age of 36 years) who have engaged in electric arc weld in a vehicle manufacturer were recruited as the exposed group. Welders worked 7-8h per day with employment duration of 1-33 years. Control subjects consisted of 91 employees (average age of 35 years) in the same factory but not in the welding profession. Ambient manganese levels in welders' breathing zone were the highest inside the vehicle (1.5 +/- 0.7 mg/m3), and the lowest in the center of the workshop (0.2 +/- 0.05 mg/m3). Since the filter size was 0.8 microm, it is possible that these values may be likely an underestimation of the true manganese levels. Serum levels of manganese and iron in welders were about three-fold (p < 0.01) and 1.2-fold (p < 0.01), respectively, higher than those of controls. Serum concentrations of ferritin and transferrin were increased among welders, while serum transferrin receptor levels were significantly decreased in comparison to controls. Linear regression analyses revealed a lack of association between serum levels of manganese and iron. However, serum concentrations of iron and ferritin were positively associated with years of welder experience (p < 0.05). Moreover, serum transferrin receptor levels were inversely associated with serum manganese concentrations (p < 0.05). These findings suggest that exposure to welding fume among welders disturbs serum homeostasis of manganese, iron, and the proteins associated with iron metabolism. Serum manganese may serve as a reasonable biomarker for assessment of recent exposure to airborne manganese.

  8. Development of Sediment Quality Values for Puget Sound. Volume 1.

    DTIC Science & Technology

    1986-09-01

    62 cadmium CHROMIUM,63 chromium COPPER ,64 copper IRON ,65 iron LEAD ,66 lead MANGANES ,67 manganese NICKEL ,68 nickel SELENIUM,69 selenium SILVER ,70...BERYLLIU beryllium 67. CADMIUM cadmium 68. CHROMIUM chromium 69. COPPER copper 70. IRON iron 71. LEAD lead 72. MANGANES manganese 73. NICKEL nickel 74...they can also be strongly influenced by iron and manganese oxide and hydrous oxide surfaces (these phases can scavenge metals under oxidizing

  9. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake

    NASA Astrophysics Data System (ADS)

    Herndon, Elizabeth M.; Havig, Jeff R.; Singer, David M.; McCormick, Michael L.; Kump, Lee R.

    2018-06-01

    Manganese and iron are redox-sensitive elements that yield clues about biogeochemistry and redox conditions both in modern environments and in the geologic past. Here, we investigated Mn and Fe-bearing minerals preserved in basin sediments underlying Fayetteville Green Lake, a redox-stratified lake that serves as a geochemical analogue for Paleoproterozoic oceans. Synchrotron-source microprobe techniques (μXRF, μXANES, and μXRD) and bulk geochemical analyses were used to examine the microscale distribution and speciation of Mn, Fe, and S as a function of depth in the top 48 cm of anoxic lake sediments. Manganese was primarily associated with calcite grains as a manganese-rich carbonate that precipitated in the chemocline of the water column and settled through the euxinic basin to collect in lake sediments. Iron was preserved in framboidal iron sulfides that precipitated in euxinic bottom waters and underwent transformation to pyrite and marcasite in the sediments. Previous studies attribute the formation of manganese-rich carbonates to the diagenetic alteration of manganese oxides deposited in basins underlying oxygenated water. Our study challenges this paradigm by providing evidence that Mn-bearing carbonates form in the water column and accumulate in sediments below anoxic waters. Consequently, manganoan carbonates preserved in the rock record do not necessarily denote the presence of oxygenated bottom waters in ocean basins.

  10. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: arsenic, manganese, fluoride, iron, and uranium.

    PubMed

    Bacquart, Thomas; Frisbie, Seth; Mitchell, Erika; Grigg, Laurie; Cole, Christopher; Small, Colleen; Sarkar, Bibudhendra

    2015-06-01

    In South Asia, the technological and societal shift from drinking surface water to groundwater has resulted in a great reduction of acute diseases due to water borne pathogens. However, arsenic and other naturally occurring inorganic toxic substances present in groundwater in the region have been linked to a variety of chronic diseases, including cancers, heart disease, and neurological problems. Due to the highly specific symptoms of chronic arsenic poisoning, arsenic was the first inorganic toxic substance to be noticed at unsafe levels in the groundwater of West Bengal, India and Bangladesh. Subsequently, other inorganic toxic substances, including manganese, uranium, and fluoride have been found at unsafe levels in groundwater in South Asia. While numerous drinking water wells throughout Myanmar have been tested for arsenic, relatively little is known about the concentrations of other inorganic toxic substances in Myanmar groundwater. In this study, we analyzed samples from 18 drinking water wells (12 in Myingyan City and 6 in nearby Tha Pyay Thar Village) and 2 locations in the Ayeyarwaddy River for arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, fluoride, iron, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, uranium, vanadium, and zinc. Concentrations of arsenic, manganese, fluoride, iron, or uranium exceeded health-based reference values in most wells. In addition, any given well usually contained more than one toxic substance at unsafe concentrations. While water testing and well sharing could reduce health risks, none of the wells sampled provide water that is entirely safe with respect to inorganic toxic substances. It is imperative that users of these wells, and users of other wells that have not been tested for multiple inorganic toxic substances throughout the region, be informed of the need for drinking water testing and the health consequences of drinking water contaminated with inorganic toxic

  11. Removal of iron and manganese using granular activated carbon and zeolite in artificial barrier of riverbank filtration

    NASA Astrophysics Data System (ADS)

    Ismail, Abustan; Harmuni, Halim; Mohd, Remy Rozainy M. A. Z.

    2017-04-01

    Iron and Manganese was examined from riverbank filtration (RBF) and river water in Sungai Kerian, Lubok Buntar, Serdang Kedah. Water from the RBF was influenced by geochemical and hydro chemical processes in the aquifer that made concentrations of iron (Fe), and manganese (Mn) high, and exceeded the standard values set by the Malaysia Ministry of Health. Therefore, in order to overcome the problem, the artificial barrier was proposed to improve the performance of the RBF. In this study, the capability and performance of granular activated carbon, zeolite and sand were investigated in this research. The effects of dosage, shaking speed, pH and contact time on removal of iron and manganese were studied to determine the best performance. For the removal of iron using granular activated carbon (GAC) and zeolite, the optimum contact time was at 2 hours with 200rpm shaking speed with 5g and 10g at pH 5 with percentage removal of iron was 87.81% and 83.20% respectively. The removal of manganese and zeolite arose sharply in 75 minutes with 90.21% removal, with 100rpm shaking speed. The GAC gave the best performance with 99.39% removal of manganese. The highest removal of manganese was achieved when the adsorbent dosage increased to 10g with shaking speed of 200rpm.

  12. OPT3 Is a Phloem-Specific Iron Transporter That Is Essential for Systemic Iron Signaling and Redistribution of Iron and Cadmium in Arabidopsis.

    PubMed

    Zhai, Zhiyang; Gayomba, Sheena R; Jung, Ha-Il; Vimalakumari, Nanditha K; Piñeros, Miguel; Craft, Eric; Rutzke, Michael A; Danku, John; Lahner, Brett; Punshon, Tracy; Guerinot, Mary Lou; Salt, David E; Kochian, Leon V; Vatamaniuk, Olena K

    2014-05-01

    Iron is essential for both plant growth and human health and nutrition. Knowledge of the signaling mechanisms that communicate iron demand from shoots to roots to regulate iron uptake as well as the transport systems mediating iron partitioning into edible plant tissues is critical for the development of crop biofortification strategies. Here, we report that OPT3, previously classified as an oligopeptide transporter, is a plasma membrane transporter capable of transporting transition ions in vitro. Studies in Arabidopsis thaliana show that OPT3 loads iron into the phloem, facilitates iron recirculation from the xylem to the phloem, and regulates both shoot-to-root iron signaling and iron redistribution from mature to developing tissues. We also uncovered an aspect of crosstalk between iron homeostasis and cadmium partitioning that is mediated by OPT3. Together, these discoveries provide promising avenues for targeted strategies directed at increasing iron while decreasing cadmium density in the edible portions of crops and improving agricultural productivity in iron deficient soils. © 2014 American Society of Plant Biologists. All rights reserved.

  13. The influence of curcumin and manganese complex of curcumin on cadmium-induced oxidative damage and trace elements status in tissues of mice.

    PubMed

    Eybl, Vladislav; Kotyzová, Dana; Lesetický, Ladislav; Bludovská, Monika; Koutenský, Jaroslav

    2006-01-01

    Curcumin (diferuoyl methane) from turmeric is a well-known biologically active compound. It has been shown to ameliorate oxidative stress and it is considered to be a potent cancer chemopreventive agent. In our previous study the antioxidative effects of curcumin in cadmium exposed animals were demonstrated. Also manganese exerts protective effects in experimental cadmium intoxication. The present study examined the ability of the manganese complex of curcumin (Mn-curcumin) and curcumin to protect against oxidative damage and changes in trace element status in cadmium-intoxicated male mice. Curcumin or Mn-curcumin were administered at equimolar doses (0.14 mmol/kg b.w.) for 3 days, by gastric gavages, dispersed in methylcellulose. One hour after the last dose of antioxidants, cadmium chloride (33 micromol/kg) was administered subcutaneously. Both curcumin and Mn-curcumin prevented the increase of hepatic lipid peroxidation -- expressed as MDA level, induced by cadmium intoxication and attenuated the Cd-induced decrease of hepatic GSH level. No change in hepatic glutathione peroxidase or catalase activities was found in Cd-exposed mice. A decreased GSH-Px activity was measured in curcumin and Mn-curcumin alone treated mice. Neither curcumin nor Mn-curcumin treatment influenced cadmium distribution in the tissues and did not correct the changes in the balance of essential elements caused by Cd-treatment. The treatment with Mn-curcumin increased the Fe and Mn content in the kidneys of both control and Cd-treated mice and Fe and Cu content in the brain of control mice. In conclusion, regarding the antioxidative action, introducing manganese into the curcumin molecule does not potentiate the studied effects of curcumin. Copyright 2006 John Wiley & Sons, Ltd.

  14. Blood Metal Concentrations of Manganese, Lead, and Cadmium in Relation to Serum Ferritin Levels in Ohio Residents

    EPA Science Inventory

    The objectives of this study were to assess fcrritin-specific profiles of blood metal concentrations such as manganese, lead, and cadmium and to evaluate whether ferritin may affect the behavior of the blood metals in relation to menstruation, menopause, or sex in Ohio residents....

  15. Formation of Defected Cadmium Ferrite during Hydrothermal Storage of Cadmium-Iron Hydroxides

    NASA Astrophysics Data System (ADS)

    Wolski, W.; Wolska, E.; Kaczmarek, J.

    1994-05-01

    The storage of amorphous coprecipitated Cd(OH) 2 · 2Fe(OH) 3 gel in mother liquor at 150 ± 2°C for 20 hr leads to a crystalline species which, according to X-ray analysis, is composed of cadmium hydroxide nitrate, Cd 3(OH) 5NO 3, cadmium hydroxide, βCd(OH) 2, and a strongly ferrimagnetic spinel phase. The Curie point at 270-280°C was found by thermomagnetic analysis. At that temperature the decomposition of the spinel phase and of the accompanying nonmagnetic phases takes place. IR spectra indicate that during thermomagnetic recording the liberated cadmium oxide and iron oxide form antiferromagnetic cadmium ferrite, with frequencies somewhat displaced in comparison to CdFe 2O 4 annealed at 1000°C. The results indicate that the ferrimagnetic phase (having spinel structure, a unit-cell parameter a of about 8.37 ± 0.01 Å, and a Tc point differing by more than 300°C from that of pure maghemite, γFe 2O 3) is likely to be a defected solid solution of maghemite and cadmium ferrite, of the formula Cd 2+xFe 3+1- x [Fe 3+(5+ x)/3 □ (1- x)/3 ]O 4.

  16. The scavenging of silver by manganese and iron oxides in stream sediments collected from two drainage areas of Colorado

    USGS Publications Warehouse

    Chao, T.T.; Anderson, B.J.

    1974-01-01

    Stream sediments of two well-weathered and aerated drainage areas of Colorado containing anomalous amounts of silver were allowed to react by shaking with nitric acid of different concentrations (1-10M). Silver, manganese, and iron simultaneously dissolved were determined by atomic absorption. The relationship between silver dissolution and the dissolution of manganese and/or iron was evaluated by linear and multiple regression analyses. The highly significant correlation coefficient (r = 0.913) between silver and manganese dissolution suggests that manganese oxides are the major control on the scavenging of silver in these stream sediments, whereas iron oxides only play a secondary role in this regard. ?? 1974.

  17. Thermodynamic and kinetic studies of biosorption of iron and manganese from aqueous medium using rice husk ash

    NASA Astrophysics Data System (ADS)

    Adekola, F. A.; Hodonou, D. S. S.; Adegoke, H. I.

    2016-11-01

    The adsorption behavior of rice husk ash with respect to manganese and iron has been studied by batch methods to consider its application for water and waste water treatment. The optimum conditions of adsorption were determined by investigating the effect of initial metal ion concentration, contact time, adsorbent dose, pH value of aqueous solution and temperature. Adsorption equilibrium time was observed at 120 min. The adsorption efficiencies were found to be pH dependent. The equilibrium adsorption experimental data were found to fit the Langmuir, Freundlich and Temkin isotherms for iron, but fitted only Langmuir isotherm for manganese. The pseudo-second order kinetic model was found to describe the manganese and iron kinetics more effectively. The thermodynamic experiment revealed that the adsorption processes involving both metals were exothermic. The adsorbent was finally applied to typical raw water with initial manganese and iron concentrations of 3.38 mg/l for Fe and 6.28 mg/l, respectively, and the removal efficiency was 100 % for Mn and 70 % for Fe. The metal ions were desorbed from the adsorbent using 0.01 M HCl, it was found to quantitatively remove 67 and 86 % of Mn and Fe, respectively, within 2 h. The results revealed that manganese and iron are considerably adsorbed on the adsorbent and could be an economic method for the removal of these metals from aqueous solutions.

  18. Manganese, Iron, and sulfur cycling in Louisiana continental shelf sediments

    EPA Science Inventory

    Sulfate reduction is considered the primary pathway for organic carbon remineralization on the northern Gulf of Mexico Louisiana continental shelf (LCS) where bottom waters are seasonally hypoxic, yet limited information is available on the importance of iron and manganese cyclin...

  19. The relationship between body iron stores and blood and urine cadmium concentrations in US never-smoking, non-pregnant women aged 20-49 years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, Carolyn M., E-mail: 2crgallagher@optonline.net; Chen, John J.; Kovach, John S.

    Background: Cadmium is a ubiquitous environmental pollutant associated with increased risk of leading causes of mortality and morbidity in women, including breast cancer and osteoporosis. Iron deficiency increases absorption of dietary cadmium, rendering women, who tend to have lower iron stores than men, more susceptible to cadmium uptake. We used body iron, a measure that incorporates both serum ferritin and soluble transferrin receptor, as recommended by the World Health Organization, to evaluate the relationships between iron status and urine and blood cadmium. Methods: Serum ferritin, soluble transferrin receptor, urine and blood cadmium values in never-smoking, non-pregnant, non-lactating, non-menopausal women agedmore » 20-49 years (n=599) were obtained from the 2003-2008 National Health and Nutrition Examination Surveys. Body iron was calculated from serum ferritin and soluble transferrin receptor, and iron deficiency defined as body iron <0 mg/kg. Robust linear regression was used to evaluate the relationships between body iron and blood and urine cadmium, adjusted for age, race, poverty, body mass index, and parity. Results: Per incremental (mg/kg) increase in body iron, urine cadmium decreased by 0.003 {mu}g/g creatinine and blood cadmium decreased by 0.014 {mu}g/L. Iron deficiency was associated with 0.044 {mu}g/g creatinine greater urine cadmium (95% CI=0.020, 0.069) and 0.162 {mu}g/L greater blood cadmium (95% CI=0.132, 0.193). Conclusions: Iron deficiency is a risk factor for increased blood and urine cadmium among never-smoking, pre-menopausal, non-pregnant US women, independent of age, race, poverty, body mass index and parity. Expanding programs to detect and correct iron deficiency among non-pregnant women merits consideration as a potential means to reduce the risk of cadmium associated diseases. - Highlights: {yields} Body iron was calculated from serum ferritin and soluble transferrin receptor. {yields} Body iron was inversely associated

  20. Modified clinoptilolite in the removal of iron and manganese from water

    NASA Astrophysics Data System (ADS)

    Barloková, D.; Ilavský, J.

    2012-11-01

    It is necessary to treat water intended for drinking purposes in many cases to meet the requirements of the Regulation of the Government of the Slovak Republic No. 496/2010 on Drinking Water. There is a tendency to look for technology with new, more efficient and cost-effective materials and technologies. The goal of this study is to compare activated natural zeolite known as clinoptilolite (rich deposits of clinoptilolite were found in the region of East Slovakia Region in the 1980s) with the imported Greensand and Cullsorb materials in the removal of iron and manganese from water. The results obtained from experiments carried out at WTP Kúty prove that Klinopur-Mn is suitable for the removal of iron and manganese from water and is comparable with the imported materials.

  1. Ferromagnetic properties of manganese doped iron silicide

    NASA Astrophysics Data System (ADS)

    Ruiz-Reyes, Angel; Fonseca, Luis F.; Sabirianov, Renat

    We report the synthesis of high quality Iron silicide (FeSi) nanowires via Chemical Vapor Deposition (CVD). The materials exhibits excellent magnetic response at room temperature, especially when doped with manganese showing values of 2.0 X 10-04 emu for the FexMnySi nanowires. SEM and TEM characterization indicates that the synthesized nanowires have a diameter of approximately 80nm. MFM measurements present a clear description of the magnetic domains when the nanowires are doped with manganese. Electron Diffraction and XRD measurements confirms that the nanowires are single crystal forming a simple cubic structure with space group P213. First-principle calculations were performed on (111) FeSi surface using the Vienna ab initio simulation package (VASP). The exchange correlations were treated under the Ceperley-Alder (CA) local density approximation (LDA). The Brillouin Zone was sampled with 8x8x1 k-point grid. A total magnetic moment of about 10 μB was obtained for three different surface configuration in which the Iron atom nearest to the surface present the higher magnetization. To study the effect of Mn doping, Fe atom was replaced for a Mn. Stronger magnetization is presented when the Mn atom is close to the surface. The exchange coupling constant have been evaluated calculating the energy difference between the ferromagnetic and anti-ferromagnetic configurations.

  2. Elements of the iron and manganese cycles in Lake Baikal

    USGS Publications Warehouse

    Granina, L.Z.; Callender, E.

    2007-01-01

    Using data obtained in recent years, we considered the external mass balance and characteristics of internal iron and manganese cycles in Lake Baikal (biological uptake, remineralization, sedimentary and diffusive fluxes, accumulation in sediments, time of renewal, etc.). Some previous results and common concepts were critically reevaluated. ?? Pleiades Publishing, Ltd. 2007.

  3. Removal of Iron and Manganese from Natural Groundwater by Continuous Reactor Using Activated and Natural Mordenite Mineral Adsorption

    NASA Astrophysics Data System (ADS)

    Zevi, Y.; Dewita, S.; Aghasa, A.; Dwinandha, D.

    2018-01-01

    Mordenite minerals derived from Sukabumi natural green stone founded in Indonesia was tested in order to remove iron and manganese from natural groundwater. This research used two types of adsorbents which were consisted of physically activated and natural mordenite. Physical activation of the mordenite was carried out by heating at 400-600°C for two hours. Batch system experiments was also conducted as a preliminary experiment. Batch system proved that both activated and natural mordenite minerals were capable of reducing iron and manganese concentration from natural groundwater. Then, continuous experiment was conducted using down-flow system with 45 ml/minute of constant flow rate. The iron & manganese removal efficiency using continuous reactor for physically activated and natural mordenite were 1.38-1.99%/minute & 0.8-1.49%/minute and 2.26%/minute & 1.37-2.26%/minute respectively. In addition, the regeneration treatment using NH4Cl solution managed to improve the removal efficiency of iron & manganese to 1.98%/minute & 1.77-1.90%/minute and 2.25%/minute & 2.02-2.21%/minute on physically activated mordenite and natural mordenite respectively. Subsequently, the activation of the new mordenite was carried out by immersing mordenite in NH4Cl solution. This chemical activation showed 2.42-2.75%/minute & 0.96 - 2.67 %/minute and 2.66 - 2.78 %/minute & 1.34 - 2.32 %/minute of iron & manganese removal efficiency per detention time for chemically activated and natural mordenite respectively.

  4. Cadmium partition in river sediments from an area affected by mining activities.

    PubMed

    Vasile, Georgiana D; Vlădescu, Luminiţa

    2010-08-01

    In this paper, the cadmium distribution in Certej River sediments in an area seriously affected by intense mining activities has been studied. The main objective of this study was the evaluation of partition of this metal into different operational defined fractions by sequential extractions. Community Bureau of Reference (BCR) sequential extraction was used to isolate different fractions. The sediment quality was assessed both upstream and downstream the pollution input points, along the Certej River, in order to reveal a possible accumulation of cadmium in sediments and the seasonal changes in cadmium concentrations in BCR sediment phases. Our results reveal that most of the cadmium content is divided between both the soluble and iron and manganese hydrated oxide fractions. Based on total cadmium concentrations in sediments, the enrichment factors were estimated using aluminum as normalizing element and the regression curve Cd/Al corresponding to the geochemical background of the studied area.

  5. Solid Solution, Mass Transport, and Crystal Growth Studies of Cadmium Iron Selenide.

    NASA Astrophysics Data System (ADS)

    Huang, Xuejun

    Cadmium iron selenide, a semimagnetic semiconductor, has been investigated. Solid solubilities of iron in CdSe were determined at temperatures between 650^ circC and 1100^circC, using the X-ray diffraction Debye-Scherrer powder technique. The solubility limits of Fe in CdSe increase with the temperatures to reach a maximum of about 19.5 mole % FeSe_ {1.24} at 925^circ C, and then decrease with further increasing temperature. Solidification phenomena of the Cd-Fe-Se solid solutions were observed employing optical microscopy, which reveals a typical divorced, eutectic type, nonequilibrium solidification. The combination of the X-ray diffraction and the microscopic investigations yielded a pseudo-binary, eutectic type phase diagram of the Cd-Fe-Se system. Partial pressures of the major vapor species in the Cd-Fe-Se physical and the Cd-Fe-Se-Iodine chemical vapor transport systems were calculated. The partial pressure of gaseous iron species of the PVT system may be neglected compared to those of Cd and Se_2^ecies. This suggests that cadmium iron selenide crystals cannot be grown by the PVT method. For the PVT experiments, using the as-synthesized (CdSe)_ {0.90}(FeSe_{1.24})_{0.10 } source materials, crystals with compositions of 6-8 mole % FeSe_{1.24} were grown at a source temperature of 1000^ circC and a DeltaT of 12^circC. These result are contradictory to the thermodynamic predictions, and were further investigated employing specially purified source materials. Iron contents in the crystals grown in these experiments are close to zero. The transport of iron in the initial mass transport experiments may be due to the chemical impurities (most likely the metal chlorides) in the as-synthesized source materials. Mass transport experiments of the Cd-Fe-Se-Iodine CVT system were performed as a function of source temperatures, the degrees of undercooling (DeltaT), and initial iodine pressures. Promising parameters for the growth of cadmium iron selenide single crystals

  6. Production of bare argon, manganese, iron and nickel nuclei in the Dresden EBIT

    NASA Astrophysics Data System (ADS)

    Kentsch, U.; Zschornack, G.; Großmann, F.; Ovsyannikov, V. P.; Ullmann, F.; Fritzsche, S.; Surzhykov, A.

    2002-02-01

    The production of highly charged argon, manganese, iron and nickel ions in a room-temperature electron beam ion trap (EBIT), the Dresden EBIT, has been investigated by means of energy dispersive X-ray spectroscopy of the direct excitation (DE) and radiative recombination (RR) processes. To derive the charge state distributions of the ions in the trap, direct excitation and radiative recombination cross-sections were calculated at electron energies of 8 and 14.4 keV. Based on these theoretical cross-sections and the measured X-ray spectra, the ion densities and the absolute number of ions, which are trapped in the electron beam, are determined for argon, manganese, iron and nickel. Emphasis has been paid to the highly charged ions, including the helium-like and hydrogen-like ions and bare nuclei. In the case of iron we also determined the contributions from lower ionization stages from DE transition lines. It is shown, that in the Dresden EBIT elements at least up to nickel can be fully ionized. Beside energy dispersive spectroscopy it is shown for iron by wavelength dispersive X-ray spectroscopy that with a comparably high gas pressure in the order of 10 -8 mbar carbon-, boron-, beryllium-, lithium- and helium-like iron ions can be produced.

  7. Maternal Exposure to Cadmium and Manganese Impairs Reproduction and Progeny Fitness in the Sea Urchin Paracentrotus lividus

    PubMed Central

    Migliaccio, Oriana; Castellano, Immacolata; Cirino, Paola; Romano, Giovanna; Palumbo, Anna

    2015-01-01

    Metal contamination represents one of the major sources of pollution in marine environments. In this study we investigated the short-term effects of ecologically relevant cadmium and manganese concentrations (10-6 and 3.6 x 10-5 M, respectively) on females of the sea urchin Paracentrotus lividus and their progeny, reared in the absence or presence of the metal. Cadmium is a well-known heavy metal, whereas manganese represents a potential emerging contaminant, resulting from an increased production of manganese-containing compounds. The effects of these agents were examined on both P. lividus adults and their offspring following reproductive state, morphology of embryos, nitric oxide (NO) production and differential gene expression. Here, we demonstrated that both metals differentially impaired the fertilization processes of the treated female sea urchins, causing modifications in the reproductive state and also affecting NO production in the ovaries. A detailed analysis of the progeny showed a high percentage of abnormal embryos, associated to an increase in the endogenous NO levels and variations in the transcriptional expression of several genes involved in stress response, skeletogenesis, detoxification, multi drug efflux processes and NO production. Moreover, we found significant differences in the progeny from females exposed to metals and reared in metal-containing sea water compared to embryos reared in non-contaminated sea water. Overall, these results greatly expanded previous studies on the toxic effects of metals on P. lividus and provided new insights into the molecular events induced in the progeny of sea urchins exposed to metals. PMID:26125595

  8. Mineral resource of the month: manganese

    USGS Publications Warehouse

    Corathers, Lisa A.

    2012-01-01

    Manganese is a silver-colored metal resembling iron and often found in conjunction with iron. The earliest-known human use of manganese compounds was in the Stone Age, when early humans used manganese dioxide as pigments in cave paintings. In ancient Rome and Egypt, people started using it to color or remove the color from glass - a practice that continued to modern times. Today, manganese is predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production. Steel and cast iron together provide the largest market for manganese (historically 85 to 90 percent), but it is also alloyed with nonferrous metals such as aluminum and copper. Its importance to steel cannot be overstated, as almost all types of steel contain manganese and could not exist without it.

  9. Crystal growth, fabrication and evaluation of cadmium manganese telluride gamma ray detectors

    NASA Astrophysics Data System (ADS)

    Burger, Arnold; Chattopadhyay, Kaushik; Chen, Henry; Olivier Ndap, Jean; Ma, Xiaoyan; Trivedi, Sudhir; Kutcher, Susan W.; Chen, Rujin; Rosemeier, Robert D.

    1999-03-01

    Cadmium manganese telluride (Cd 1- xMn xTe) is a diluted magnetic semiconductor material which forms the basis for many important devices such as IR detectors, solar cells, magnetic field sensors, optical isolators, and visible and near IR lasers. High resistivity (>10 10 Ω cm) and high μ τ (>10 -6 cm 2/V) material, which are the two prerequisites in the fabrication of radiation detectors, has recently been demonstrated at Brimrose Corp. This paper presents the crystal growth of intentionally vanadium doped crystals, the surface preparation and contacting procedure, as well as the best detector performance obtained so far. Dark current characteristics, and low temperature photoluminescence results are also presented and discussed.

  10. Spectroscopic Studies of the Iron and Manganese Reconstituted Tyrosyl Radical in Bacillus Cereus Ribonucleotide Reductase R2 Protein

    PubMed Central

    Tomter, Ane B.; Zoppellaro, Giorgio; Bell, Caleb B.; Barra, Anne-Laure; Andersen, Niels H.; Solomon, Edward I.; Andersson, K. Kristoffer

    2012-01-01

    Ribonucleotide reductase (RNR) catalyzes the rate limiting step in DNA synthesis where ribonucleotides are reduced to the corresponding deoxyribonucleotides. Class Ib RNRs consist of two homodimeric subunits: R1E, which houses the active site; and R2F, which contains a metallo cofactor and a tyrosyl radical that initiates the ribonucleotide reduction reaction. We studied the R2F subunit of B. cereus reconstituted with iron or alternatively with manganese ions, then subsequently reacted with molecular oxygen to generate two tyrosyl-radicals. The two similar X-band EPR spectra did not change significantly over 4 to 50 K. From the 285 GHz EPR spectrum of the iron form, a g 1-value of 2.0090 for the tyrosyl radical was extracted. This g 1-value is similar to that observed in class Ia E. coli R2 and class Ib R2Fs with iron-oxygen cluster, suggesting the absence of hydrogen bond to the phenoxyl group. This was confirmed by resonance Raman spectroscopy, where the stretching vibration associated to the radical (C-O, ν7a = 1500 cm−1) was found to be insensitive to deuterium-oxide exchange. Additionally, the 18O-sensitive Fe-O-Fe symmetric stretching (483 cm−1) of the metallo-cofactor was also insensitive to deuterium-oxide exchange indicating no hydrogen bonding to the di-iron-oxygen cluster, and thus, different from mouse R2 with a hydrogen bonded cluster. The HF-EPR spectrum of the manganese reconstituted RNR R2F gave a g 1-value of ∼2.0094. The tyrosyl radical microwave power saturation behavior of the iron-oxygen cluster form was as observed in class Ia R2, with diamagnetic di-ferric cluster ground state, while the properties of the manganese reconstituted form indicated a magnetic ground state of the manganese-cluster. The recent activity measurements (Crona et al., (2011) J Biol Chem 286: 33053–33060) indicates that both the manganese and iron reconstituted RNR R2F could be functional. The manganese form might be very important, as it has 8 times higher

  11. Maternal Cadmium, Iron and Zinc Levels, DNA Methylation and Birth Weight

    EPA Science Inventory

    BACKGROUND:Cadmium (Cd) is a ubiquitous and environmentally persistent toxic metal that has been implicated in neurotoxicity, carcinogenesis and obesity and essential metals including zinc (Zn) and iron (Fe) may alter these outcomes. However mechanisms underlying these relationsh...

  12. Content of total iron, copper and manganese in liver of animals during hypokinesia, muscle activity and process of recovery

    NASA Technical Reports Server (NTRS)

    Potapovich, G. M.; Taneyeva, G. V.; Uteshev, A. B.

    1980-01-01

    It is shown that the content of total iron, copper and manganese in the liver of animals is altered depending on the intensity and duration of their swimming. Hypodynamia for 7 days does not alter the concentration of iron, but sufficiently increases the content of copper and manganese. The barometric factor effectively influences the maintenance of constancy in the content of microelements accumulated in the liver after intensive muscle activity.

  13. Integrated pyrolucite fluidized bed-membrane hybrid process for improved iron and manganese control in drinking water.

    PubMed

    Dashtban Kenari, Seyedeh Laleh; Barbeau, Benoit

    2017-04-15

    Newly developed ceramic membrane technologies offer numerous advantages over the conventional polymeric membranes. This work proposes a new configuration, an integrated pyrolucite fluidized bed (PFB)-ceramic MF/UF hybrid process, for improved iron and manganese control in drinking water. A pilot-scale study was undertaken to evaluate the performance of this process with respect to iron and manganese control as well as membrane fouling. In addition, the fouling of commercially available ceramic membranes in conventional preoxidation-MF/UF process was compared with the hybrid process configuration. In this regard, a series of experiments were conducted under different influent water quality and operating conditions. Fouling mechanisms and reversibility were analyzed using blocking law and resistance-in-series models. The results evidenced that the flux rate and the concentration of calcium and humic acids in the feed water have a substantial impact on the filtration behavior of both membranes. The model for constant flux compressible cake formation well described the rise in transmembrane pressure. The compressibility of the filter cake substantially increased in the presence of 2 mg/L humic acids. The presence of calcium ions caused significant aggregation of manganese dioxide and humic acid which severely impacted the extent of membrane fouling. The PFB pretreatment properly alleviated membrane fouling by removing more than 75% and 95% of iron and manganese, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Abu Zenima synthetic zeolite for removing iron and manganese from Assiut governorate groundwater, Egypt

    NASA Astrophysics Data System (ADS)

    Farrag, Abd El Hay Ali; Abdel Moghny, Th.; Mohamed, Atef Mohamed Gad; Saleem, Saleem Sayed; Fathy, Mahmoud

    2017-10-01

    Groundwater in Upper Egypt especially in Assiut Governorate is considered the second source of fresh water and used for drinking, agriculture, domestic and industrial purposes. Unfortunately, it is characterized by high concentrations of iron and manganese ions. The study aimed at synthesizing zeolite-4A from kaolinite for removing the excess iron and manganese ions from Assiut Governorate groundwater wells. Therefor, the kaolinite was hydrothermally treated through the metakaolinization and zeolitization processes to produce crystalline zeolite-4A. The chemical composition of crystalline zeolite-4A and its morphology were then characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Then the column experiments were conducted to study the performance of crystalline salt-4A as ion exchange and investigate their operating parameters and regeneration conditions. Thomas and Yoon-Nelson models were applied to predict adsorption capacity and the time required for 50 % breakthrough curves. The effects of initial concentrations of 600 and 1000 mg L-1 for Fe2+ and Mn2+, feed flow rate of 10-30 ml/min, and height range of 0.4-1.5 cm on the breakthrough behavior of the adsorption system were determined. The obtained results indicated that the synthesized zeolite-A4 can remove iron and manganese ions from groundwater to the permissible limit according to the standards drinking water law.

  15. Development of low-cost technology for the removal of iron and manganese from ground water in siwa oasis.

    PubMed

    El-Naggar, Hesham M

    2010-01-01

    Ground water is the only water resource for Siwa Oasis. It is obtained from natural freshwater wells and springs fed by the Nubian aquifer. Water samples collected from Siwa Oasis had relatively higher iron (Fe) and manganese (Mn) than the permissible limits specified in WHO Guidelines and Egyptian Standards for drinking water quality. Aeration followed by sand filtration is the most commonly used method for the removal of iron from ground water. The study aimed at development of low-cost technology for the removal of iron and manganese from ground water in Siwa Oasis. The study was carried out on Laboratory-scale columns experiments sand filters with variable depths of 15, 30, 45, 60, 75, 90 cm and three graded types of sand were studied. The graded sand (E.S. =0.205 mm, U.C. =3.366, depth of sand = 60 cm and filtration rate = 1.44 m3/m2/hr) was the best type of filter media. Iron and manganese concentrations measured in ground water with aeration only, decreased with an average removal percentage of 16%, 13% respectively. Iron and manganese concentrations after filtration with aeration came down to 0.1123, 0.05 mg/L respectively in all cases from an initial concentration of 1.14, 0.34 mg/L respectively. Advantages of such treatment unit included simplicity, low cost design, and no need for chemical addition. In addition, the only maintenance required was periodic washing of the sand filter or replacement of the sand in order to maintain reasonable flow rate through the system.

  16. Effect of olfactory manganese exposure on anxiety-related behavior in a mouse model of iron overload hemochromatosis

    PubMed Central

    Ye, Qi; Kim, Jonghan

    2015-01-01

    Manganese in excess promotes unstable emotional behavior. Our previous study showed that olfactory manganese uptake into the brain is altered in Hfe−/− mice, a model of iron overload hemochromatosis, suggesting that Hfe deficiency could modify the neurotoxicity of airborne manganese. We determined anxiety-related behavior and monoaminergic protein expression after repeated intranasal instillation of MnCl2 to Hfe−/− mice. Compared with manganese-instilled wild-type mice, Hfe−/− mice showed decreased manganese accumulation in the cerebellum. Hfe−/− mice also exhibited increased anxiety with decreased exploratory activity and elevated dopamine D1 receptor and norepinephrine transporter in the striatum. Moreover, Hfe deficiency attenuated manganese-associated impulsivity and modified the effect of manganese on the expression of tyrosine hydroxylase, vesicular monoamine transporter and serotonin transporter. Together, our data indicate that loss of HFE function alters manganese-associated emotional behavior and further suggest that HFE could be a potential molecular target to alleviate affective disorders induced by manganese inhalation. PMID:26189056

  17. Inductively coupled plasma atomic fluorescence spectrometric determination of cadmium, copper, iron, lead, manganese and zinc

    USGS Publications Warehouse

    Sanzolone, R.F.

    1986-01-01

    An inductively coupled plasma atomic fluorescence spectrometric method is described for the determination of six elements in a variety of geological materials. Sixteen reference materials are analysed by this technique to demonstrate its use in geochemical exploration. Samples are decomposed with nitric, hydrofluoric and hydrochloric acids, and the residue dissolved in hydrochloric acid and diluted to volume. The elements are determined in two groups based on compatibility of instrument operating conditions and consideration of crustal abundance levels. Cadmium, Cu, Pb and Zn are determined as a group in the 50-ml sample solution under one set of instrument conditions with the use of scatter correction. Limitations of the scatter correction technique used with the fluorescence instrument are discussed. Iron and Mn are determined together using another set of instrumental conditions on a 1-50 dilution of the sample solution without the use of scatter correction. The ranges of concentration (??g g-1) of these elements in the sample that can be determined are: Cd, 0.3-500; Cu, 0.4-500; Fe, 85-250 000; Mn, 45-100 000; Pb, 5-10 000; and Zn, 0.4-300. The precision of the method is usually less than 5% relative standard deviation (RSD) over a wide concentration range and acceptable accuracy is shown by the agreement between values obtained and those recommended for the reference materials.

  18. Iron and manganese removal: Recent advances in modelling treatment efficiency by rapid sand filtration.

    PubMed

    Vries, D; Bertelkamp, C; Schoonenberg Kegel, F; Hofs, B; Dusseldorp, J; Bruins, J H; de Vet, W; van den Akker, B

    2017-02-01

    A model has been developed that takes into account the main characteristics of (submerged) rapid filtration: the water quality parameters of the influent water, notably pH, iron(II) and manganese(II) concentrations, homogeneous oxidation in the supernatant layer, surface sorption and heterogeneous oxidation kinetics in the filter, and filter media adsorption characteristics. Simplifying assumptions are made to enable validation in practice, while maintaining the main mechanisms involved in iron(II) and manganese(II) removal. Adsorption isotherm data collected from different Dutch treatment sites show that Fe(II)/Mn(II) adsorption may vary substantially between them, but generally increases with higher pH. The model is sensitive to (experimentally) determined adsorption parameters and the heterogeneous oxidation rate. Model results coincide with experimental values when the heterogeneous rate constants are calibrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The oxidation state of iron and manganese in polymetallic nodules from the Central Indian Ocean Basin

    NASA Astrophysics Data System (ADS)

    Ganwani, Girish; Meena, Samay Singh; Ram, Sahi; Bijlani, N.; Bhatia, Beena; Tripathi, R. P.

    2018-05-01

    The study of oxidation states of iron (Fe) and manganese (Mn) in polymetallic nodules were carried out by means of X-ray photoelectron spectroscopic techniques. The polymetallic nodules were collected from different locations of the Central Indian Ocean Basin (CIOB). The Mn/Fe ratio allowed the differentiation of these nodules from their origin: "hydrogeneous" or "hydrothermal". The binding energies of Mn 2p3/2 (ranging from 641.5 to 642.4 ev), Fe 2p3/2 (ranging from 711.0 to 711.8 ev) and O 1s (ranging from 530.2 to 530.9 ev) from XPS reveal that most of manganese is in Mn4+ and iron is in Fe3+ state.

  20. Assessment of metals in down feathers of female common eiders and their eggs from the Aleutians: arsenic, cadmium, chromium, lead, manganese, mercury, and selenium

    PubMed Central

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Snigaroff, Daniel; Snigaroff, Ronald; Stamm, Timothy; Volz, Conrad

    2014-01-01

    Concentrations of arsenic, cadmium, chromium, lead, manganese, mercury and selenium were examined in the down feathers and eggs of female common eiders (Somateria mollissima) from Amchitka and Kiska Islands in the Aleutian Chain of Alaska to determine whether there were (1) differences between levels in feathers and eggs, (2) differences between the two islands, (3) positive correlations between metal levels in females and their eggs, and (4) whether there was more variation within or among clutches. Mean levels in eggs (dry weight) were as follows: arsenic (769 ppb, ng/g), cadmium (1.49 ppb), chromium (414 ppb), lead (306 ppb), manganese (1,470 ppb), mercury (431 ppb) and selenium (1,730 ppb). Levels of arsenic were higher in eggs, while chromium, lead, manganese, and mercury were higher in feathers; there were no differences for selenium. There were no significant interisland differences in female feather levels, except for manganese (eider feathers from Amchitka were four times higher than feathers from Kiska). Levels of manganese in eggs were also higher from Amchitka than Kiska, and eider eggs from Kiska had significantly higher levels of arsenic, but lower levels of selenium. There were no significant correlations between the levels of any metals in down feathers of females and in their eggs. The levels of mercury in eggs were below ecological benchmark levels, and were below human health risk levels. However, Aleuts can seasonally consume several meals of bird eggs a week, suggesting cause for concern for sensitive (pregnant) women. PMID:17934788

  1. Women with Fibromyalgia Have Lower Levels of Calcium, Magnesium, Iron and Manganese in Hair Mineral Analysis

    PubMed Central

    Kim, Young-Sang; Kim, Kwang-Min; Lee, Duck-Joo; Kim, Bom-Taeck; Park, Sat-Byul; Cho, Doo-Yeoun; Suh, Chang-Hee; Kim, Hyoun-Ah; Park, Rae-Woong

    2011-01-01

    Little is known about hair mineral status in fibromyalgia patients. This study evaluated the characteristics of hair minerals in female patients with fibromyalgia compared with a healthy reference group. Forty-four female patients diagnosed with fibromyalgia according to the American College of Rheumatology criteria were enrolled as the case group. Ageand body mass index-matched data were obtained from 122 control subjects enrolled during visit for a regular health check-up. Hair minerals were analyzed and compared between the two groups. The mean age was 43.7 yr. General characteristics were not different between the two groups. Fibromyalgia patients showed a significantly lower level of calcium (775 µg/g vs 1,093 µg/g), magnesium (52 µg/g vs 72 µg/g), iron (5.9 µg/g vs 7.1 µg/g), copper (28.3 µg/g vs 40.2 µg/g) and manganese (140 ng/g vs 190 ng/g). Calcium, magnesium, iron, and manganese were loaded in the same factor using factor analysis; the mean of this factor was significantly lower in fibromyalgia group in multivariate analysis with adjustment for potential confounders. In conclusion, the concentrations of calcium, magnesium, iron, and manganese in the hair of female patients with fibromyalgia are lower than of controls, even after adjustment of potential confounders. PMID:22022174

  2. The photochemistry of manganese and the origin of banded iron formations

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Holland, H. D.

    1992-01-01

    The origin of the deposition of superior-type Precambrian banded iron formations (BIFs) is investigated in experiments where the effect of UV radiation on dissolved manganese was studied to determine if the commonly accepted photochemical model for BIF formation is consistent with the distribution of Mn in BIFs. Solutions containing 0.56 M NaCl and about 180 microM MnCl2, with or without 3 to 200 microM FeCl2 were irradiated with filtered and unfiltered UV light for up to 8 hrs; the solutions were deaerated and buffered to a pH of 7, and the experiments were conducted under oxygen-free atmosphere. Data on the rate of manganese photooxidation confirmed that a photochemical model for the origin of oxide facies BIFs is consistent with field observations.

  3. Low-temperature nitridation of manganese and iron oxides using NaNH2 molten salt.

    PubMed

    Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro

    2013-10-21

    Manganese and iron nitrides are important functional materials, but their synthesis processes from oxides often require high temperatures. Herein, we show a novel meta-synthesis method for manganese and iron nitrides by low-temperature nitridation of their oxides using NaNH2 molten salt as the nitrogen source in an autoclave at 240 °C. With this method, nitridation of micrometer-sized oxide particles kept their initial morphologies, but the size of the primary particles decreased. The thermodynamic driving force is considered to be the conversion of oxides to sodium hydroxide, and the kinetic of nitridation is improved by the decrease of particle size and the low melting point of NaNH2. This technique as developed here has the advantages of low reaction temperature, reduced consumption of ammonia, employing nonspecialized equipment, and providing facile control of the reactions for producing nitrides from oxides.

  4. Magnetic particles extracted from manganese nodules: Suggested origin from stony and iron meteorites

    USGS Publications Warehouse

    Finkelman, R.B.

    1970-01-01

    On the basis of x-ray diffraction and electron microprobe data, spherical and ellipsoidal particles extracted from manganese nodules were divided into three groups. Group I particles are believed to be derived from iron meteorites, and Group II particles from stony meteorites. Group III particles are believed to be volcanic in origin.

  5. Manganese recycling in the United States in 1998

    USGS Publications Warehouse

    Jones, Thomas S.

    2001-01-01

    This report describes the flow and processing of manganese within the U.S. economy in 1998 with emphasis on the extent to which manganese is recycled. Manganese was used mostly as an alloying agent in alloys in which it was a minor component. Manganese was recycled mostly within scrap of iron and steel. A small amount was recycled within aluminum used beverage cans. Very little manganese was recycled from materials being recovered specifically for their manganese content. For the United States in 1998, 218,000 metric tons of manganese was estimated to have been recycled from old scrap, of which 96% was from iron and steel scrap. Efficiency of recycling was estimated as 53% and recycling rate as 37%. Metallurgical loss of manganese was estimated to be about 1.7 times that recycled. This loss was mostly into slags from iron and steel production, from which recovery of manganese has yet to be shown economically feasible.

  6. Effect of Iron Impurity on the Phase Composition, Structure and Properties of Magnesium Alloys Containing Manganese and Aluminum

    NASA Astrophysics Data System (ADS)

    Volkova, E. F.

    2017-07-01

    Results of a study of the interaction between iron impurity and manganese and aluminum alloying elements during formation of phase composition in alloys of the Mg - Mn, Mg - Al, Mg - Al - Mn, and Mg - Al - Zn - Mn systems are presented. It is proved that this interaction results in introduction of Fe into the intermetallic phase. The phase compositions of model magnesium alloys and commercial alloys MA2-1 and MA5 are studied. It is shown that both manganese and aluminum may bind the iron impurity into phases. Composite Fe-containing intermetallic phases of different compositions influence differently the corrosion resistance of magnesium alloys.

  7. Biomonitoring of arsenic, cadmium, lead, manganese and mercury in urine and hair of children living near mining and industrial areas.

    PubMed

    Molina-Villalba, Isabel; Lacasaña, Marina; Rodríguez-Barranco, Miguel; Hernández, Antonio F; Gonzalez-Alzaga, Beatriz; Aguilar-Garduño, Clemente; Gil, Fernando

    2015-04-01

    Huelva (South West Spain) and its surrounding municipalities represent one of the most polluted estuaries in the world owing to the discharge of mining and industrial related pollutants in their proximity. A biomonitoring study was conducted to assess exposure to arsenic and some trace metals (cadmium, mercury, manganese and lead) in urine and scalp hair from a representative sample of children aged 6-9 years (n=261). This is the only study simultaneously analyzing those five metal elements in children urine and hair. The potential contribution of gender, water consumption, residence area and body mass index on urinary and hair metal concentrations was also studied. Urine levels of cadmium and total mercury in a proportion (25-50%) of our children population living near industrial/mining areas might have an impact on health, likely due to environmental exposure to metal pollution. The only significant correlation between urine and hair levels was found for mercury. Children living near agriculture areas showed increased levels of cadmium and manganese (in urine) and arsenic (in hair). In contrast, decreased urine Hg concentrations were observed in children living near mining areas. Girls exhibited significantly higher trace metal concentrations in hair than boys. The greatest urine arsenic concentrations were found in children drinking well/spring water. Although human hair can be a useful tool for biomonitoring temporal changes in metal concentrations, levels are not correlated with those found in urine except for total mercury, thus providing additional information. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design.

    PubMed

    Ge, Hongyu; Chen, Xiangyang; Yang, Xinzheng

    2017-07-03

    Density functional theory study of the hydrogenation of carbon dioxide to methanol catalyzed by iron, cobalt, and manganese cyclopentadienone complexes reveals a self-promoted mechanism, which features a methanol- or water-molecule-assisted proton transfer for the cleavage of H 2 . The total free energy barrier of the formation of methanol from CO 2 and H 2 catalyzed by Knölker's iron cyclopentadienone complex, [2,5-(SiMe 3 ) 2 -3,4-(CH 2 ) 4 (η 5 -C 4 COH)]Fe(CO) 2 H, is 26.0 kcal mol -1 in the methanol solvent. We also evaluated the catalytic activities of 8 other experimentally reported iron cyclopentadienone complexes and 37 iron, cobalt, and manganese cyclopentadienone complexes proposed in this study. In general, iron and manganese complexes have relatively higher catalytic activities. Among all calculated complexes, [2,5-(SiMe 3 ) 2 -3,4-CH 3 CHSCH 2 (η 5 -C 4 COH)]Fe(CO) 2 H (1 Fe-Casey-S-CH3 ) is the most active one with a total free energy barrier of 25.1 kcal mol -1 in the methanol solvent. Such a low barrier indicates that 1 Fe-Casey-S-CH3 is a very promising low-cost and high efficiency catalyst for the conversion of CO 2 and H 2 to methanol under mild conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Theoretical technique for predicting the cumulative impact of iron and manganese oxidation in streams receiving discharge from coal mines

    USGS Publications Warehouse

    Bobay, Keith E.

    1986-01-01

    Two U.S. Geological Survey computer programs are modified and linked to predict the cumulative impact of iron and manganese oxidation in coal-mine discharge water on the dissolved chemical quality of a receiving stream. The coupled programs calculate the changes in dissolved iron, dissolved manganese, and dissolved oxygen concentrations; alkalinity; and, pH of surface water downstream from the point of discharge. First, the one-dimensional, stead-state stream, water quality program uses a dissolved oxygen model to calculate the changes in concentration of elements as a function of the chemical reaction rates and time-of-travel. Second, a program (PHREEQE) combining pH, reduction-oxidation potential, and equilibrium equations uses an aqueous-ion association model to determine the saturation indices and to calculate pH; it then mixes the discharge with a receiving stream. The kinetic processes of the first program dominate the system, whereas the equilibrium thermodynamics of the second define the limits of the reactions. A comprehensive test of the technique was not possible because a complete set of data was unavailable. However, the cumulative impact of representative discharges from several coal mines on stream quality in a small watershed in southwestern Indiana was simulated to illustrate the operation of the technique and to determine its sensitivity to changes in physical, chemical, and kinetic parameters. Mine discharges averaged 2 cu ft/sec, with a pH of 6.0, and concentrations of 7.0 mg/L dissolved iron, 4.0 mg/L dissolved manganese, and 8.08 mg/L dissolved oxygen. The receiving stream discharge was 2 cu ft/sec, with a pH of 7.0, and concentrations of 0.1 mg/L dissolved iron, 0.1 mg/L dissolved manganese, and 8.70 mg/L dissolved oxygen. Results of the simulations indicated the following cumulative impact on the receiving stream from five discharges as compared with the effect from one discharge: 0.30 unit decrease in pH, 1.82 mg/L increase in dissolved

  10. The concentration of manganese, iron and strontium in bone of red fox Vulpes vulpes (L. 1758).

    PubMed

    Budis, Halina; Kalisinska, Elzbieta; Lanocha, Natalia; Kosik-Bogacka, Danuta I

    2013-12-01

    The aims of the study were to determine manganese (Mn), iron (Fe) and strontium (Sr) concentrations in fox bone samples from north-western Poland and to examine the relationships between the bone Mn, Fe and Sr concentrations and the sex and age of the foxes. In the studied samples of fox cartilage, cartilage with adjacent compact bone, compact bone and spongy bone, the concentrations of the analysed metals had the following descending order: Fe > Sr > Mn. The only exception was in compact bone, in which the concentrations were arranged in the order Sr > Fe > Mn. Manganese concentrations were significantly higher in cartilage, compact bone and cartilage with compact bone than in spongy bone. Iron concentrations were higher in cartilage and spongy bone compared with compact bone. Strontium concentrations were greater in compact bone than in cartilage and spongy bone. The manganese, iron and strontium concentrations in the same type of bone material in many cases correlated with each other, with the strongest correlation (r > 0.70) between Mn and Fe in almost all types of samples. In addition, concentrations of the same metals in different bone materials were closely correlated for Mn and Fe in cartilage and cartilage with adjacent compact bone, and for Sr in compact bone and cartilage with compact bone. In the fox from NW Poland, there were no statistically significant differences in Mn, Fe and Sr in any of the types of bone material between the sexes and immature and adult foxes.

  11. Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study.

    PubMed

    Cotruvo, Joseph A; Stubbe, Joanne

    2012-10-01

    How cells ensure correct metallation of a given protein and whether a degree of promiscuity in metal binding has evolved are largely unanswered questions. In a classic case, iron- and manganese-dependent superoxide dismutases (SODs) catalyze the disproportionation of superoxide using highly similar protein scaffolds and nearly identical active sites. However, most of these enzymes are active with only one metal, although both metals can bind in vitro and in vivo. Iron(ii) and manganese(ii) bind weakly to most proteins and possess similar coordination preferences. Their distinct redox properties suggest that they are unlikely to be interchangeable in biological systems except when they function in Lewis acid catalytic roles, yet recent work suggests this is not always the case. This review summarizes the diversity of ways in which iron and manganese are substituted in similar or identical protein frameworks. As models, we discuss (1) enzymes, such as epimerases, thought to use Fe(II) as a Lewis acid under normal growth conditions but which switch to Mn(II) under oxidative stress; (2) extradiol dioxygenases, which have been found to use both Fe(II) and Mn(II), the redox role of which in catalysis remains to be elucidated; (3) SODs, which use redox chemistry and are generally metal-specific; and (4) the class I ribonucleotide reductases (RNRs), which have evolved unique biosynthetic pathways to control metallation. The primary focus is the class Ib RNRs, which can catalyze formation of a stable radical on a tyrosine residue in their β2 subunits using either a di-iron or a recently characterized dimanganese cofactor. The physiological roles of enzymes that can switch between iron and manganese cofactors are discussed, as are insights obtained from the studies of many groups regarding iron and manganese homeostasis and the divergent and convergent strategies organisms use for control of protein metallation. We propose that, in many of the systems discussed

  12. Arsenic transformation and adsorption by iron hydroxide/manganese dioxide doped straw activated carbon

    NASA Astrophysics Data System (ADS)

    Xiong, Ying; Tong, Qiang; Shan, Weijun; Xing, Zhiqiang; Wang, Yuejiao; Wen, Siqi; Lou, Zhenning

    2017-09-01

    Iron hydroxide/manganese dioxide doped straw activated carbon was synthesized for As(III) adsorption. The Fe-Mn-SAc adsorbent has two advantages, on the one hand, the straw active carbon has a large surface area (1360.99 m2 g-1) for FeOOH and MnO2 deposition, on the other hand, the manganese dioxide has oxidative property as a redox potential of (MnO2 + H+)/Mn2+, which could convert As(III) into As(V). Combined with the arsenic species after reacting with Fe-Mn-SAc, the As(III) transformation and adsorption mechanism was discussed. H2AsO4-oxidized from As(III) reacts with the Fe-Mn-SAc by electrostatic interaction, and unoxidized As(III) as H3AsO3 reacts with SAc and/or iron oxide surface by chelation effect. The adsorption was well-described by Langmuir isotherms model, and the adsorption capacity of As(III) was 75.82 mg g-1 at pH 3. Therefore, considering the straw as waste biomass material, the biosorbent (Fe-Mn-SAc) is promising to be exploited for applications in the treatment of industrial wastewaters containing a certain ratio of arsenic and germanium.

  13. A low-cost iron-cadmium redox flow battery for large-scale energy storage

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Jiang, H. R.

    2016-10-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies that offer a potential solution to the intermittency of renewable sources such as wind and solar. The prerequisite for widespread utilization of RFBs is low capital cost. In this work, an iron-cadmium redox flow battery (Fe/Cd RFB) with a premixed iron and cadmium solution is developed and tested. It is demonstrated that the coulombic efficiency and energy efficiency of the Fe/Cd RFB reach 98.7% and 80.2% at 120 mA cm-2, respectively. The Fe/Cd RFB exhibits stable efficiencies with capacity retention of 99.87% per cycle during the cycle test. Moreover, the Fe/Cd RFB is estimated to have a low capital cost of 108 kWh-1 for 8-h energy storage. Intrinsically low-cost active materials, high cell performance and excellent capacity retention equip the Fe/Cd RFB to be a promising solution for large-scale energy storage systems.

  14. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.

    PubMed

    Ribeiro, Thales P; Fernandes, Christiane; Melo, Karen V; Ferreira, Sarah S; Lessa, Josane A; Franco, Roberto W A; Schenk, Gerhard; Pereira, Marcos D; Horn, Adolfo

    2015-03-01

    Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 μmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Voltammetric determination of arsenic in high iron and manganese groundwaters.

    PubMed

    Gibbon-Walsh, Kristoff; Salaün, Pascal; Uroic, M Kalle; Feldmann, Joerg; McArthur, John M; van den Berg, Constant M G

    2011-09-15

    Determination of the speciation of arsenic in groundwaters, using cathodic stripping voltammetry (CSV), is severely hampered by high levels of iron and manganese. Experiments showed that the interference is eliminated by addition of EDTA, making it possible to determine the arsenic speciation on-site by CSV. This work presents the CSV method to determine As(III) in high-iron or -manganese groundwaters in the field with only minor sample treatment. The method was field-tested in West-Bengal (India) on a series of groundwater samples. Total arsenic was subsequently determined after acidification to pH 1 by anodic stripping voltammetry (ASV). Comparative measurements by ICP-MS as reference method for total As, and by HPLC for its speciation, were used to corroborate the field data in stored samples. Most of the arsenic (78±0.02%) was found to occur as inorganic As(III) in the freshly collected waters, in accordance with previous studies. The data shows that the modified on-site CSV method for As(III) is a good measure of water contamination with As. The EDTA was also found to be effective in stabilising the arsenic speciation for longterm sample storage at room temperature. Without sample preservation, in water exposed to air and sunlight, the As(III) was found to become oxidised to As(V), and Fe(II) oxidised to Fe(III), removing the As(V) by adsorption on precipitating Fe(III)-hydroxides within a few hours. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Oxidant Selection for the Treatment of Manganese (II), Iron (II), and Arsenic (III) in Groundwaters

    EPA Science Inventory

    In order to comply with the United States Environmental Protection Agency’s (U.S. EPA’s) arsenic standard and the manganese and iron secondary maximum contaminant levels (MCLs) in water (10µg/L, 50µg/L, and 300µg/L, respectively), many Midwestern water utilities must add a strong...

  17. Spectrophotometr1c determination of cadmium with 2-(5-chloro-2-pyridylazo)-5-dimethylaminophenol.

    PubMed

    Villarreal, M; Porta, L; Marchevsky, E; Olsina, R

    1986-05-01

    The reaction between cadmium and 2-(5-chloro-2-pyridylazo)-5-dimethylaminophenol (5-Cl DMPAP) in aqueous alcohol media at pH 8.8-10.7 results in an intense violet colour which is stable for at least 8 hr. The composition is 2:1 reagent:metal and the formation constant (5.29 +/- 0.01) x 10(18). Beer's law is obeyed up to 1.34 ppm of cadmium at 550 nm. The optimal concentration range (Ringbom) is between 0.16 and 0.72 ppm. The apparent molar absorptivity at 550 nm is (1.20 +/- 0.01) x 10(5) l.mole(-1). cm(-1), making the sensitivity one of the highest known. The interference due to copper(III), iron(III), cobalt(II), nickel(II), gold(III), zinc(II) and manganese(II) can be suppressed.

  18. Investigation of the effects of cadmium by micro analytical methods on Lycopersicon esculentum Mill. roots.

    PubMed

    Colak, G; Baykul, M C; Gürler, R; Catak, E; Caner, N

    2014-09-01

    The interactions between cadmium stress and plant nutritional elements have been investigated on complete plant or at the level of organs. This study was undertaken to contribute to the exploration of the physiological basis of cadmium phytotoxicity. We examined the changes in the nutritional element compositions of the root epidermal cells of the seedlings of Lycopersicon esculentum Mill. at the initial growth stages that is known as the most sensitive stage to the stress. Effects of cadmium stress on the seedlings of Lycopersicon esculentum Mill. were examined by EDX (Energy Dispersive X-Ray Microanalysis) assay performed with using low vacuum (∼ 24 Pascal) Scanning Electron Microscopy. In the analysis performed at the level of root epidermal cells, some of the macro- and micronutrient contents of the cells (carbon, oxygen, nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, copper, and zinc levels) were found to change when the applying toxic concentrations of cadmium. There was no change in the manganese and sodium content of the epidermal cells. It was concluded that the changes in nutritional element composition of the cells can be considered as an effective parameter in explaining the physiological mechanisms of cadmium-induced growth inhibition.

  19. Recovery of manganese from manganese oxide ores in the EDTA solution

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Wang, Shuai; Cao, Zhan-fang; Zhong, Hong

    2018-04-01

    A new process has been experimentally and theoretically established for the recovery of manganese from manganese oxide ores, mainly including the reductive leaching of manganese by ethylenediaminetetraacetic acid (EDTA), EDTA recovery, and manganese electrolysis. The experimental conditions for this process were investigated. Moderate leaching environment by EDTA with the pH in the range of 5-6 is of benefit to leach manganese from some manganese oxide ores with high-content impurities, such as iron and aluminum. Most of EDTA can be recovered by acidification. A small amount of the residual EDTA in the electrolyte can prevent the generation of anode mud. In addition, trimanganese tetroxide (Mn3O4) can be obtained by the roasting of the EDTA-Mn crystallized product.

  20. Distribution and genetic diversity of the microorganisms in the biofilter for the simultaneous removal of arsenic, iron and manganese from simulated groundwater.

    PubMed

    Yang, Liu; Li, Xiangkun; Chu, Zhaorui; Ren, Yuhui; Zhang, Jie

    2014-03-01

    A biofilter was developed in this study, which showed an excellent performance with the simultaneous removal of AsIII from 150 to 10mg L(-1) during biological iron and manganese oxidation. The distribution and genetic diversity of the microorganisms along the depth of the biofilter have been investigated using DGGE. Results suggested that Iron oxidizing bacteria (IOB, such as Gallionella, Leptothrix), Manganese oxidizing bacteria (MnOB, such as Leptothrix, Pseudomonas, Hyphomicrobium, Arthrobacter) and AsIII-oxidizing bacteria (AsOB, such as Alcaligenes, Pseudomonas) are dominant in the biofilter. The spatial distribution of IOB, MnOB and AsOB at different depths of the biofilter determined the removal zone of FeII, MnII and AsIII, which site at the depths of 20, 60 and 60cm, respectively, and the corresponding removal efficiencies were 86%, 84% and 87%, respectively. This process shows great potential to the treatment of groundwater contaminated with iron, manganese and arsenic due to its stable performance and significant cost-savings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1.

    PubMed Central

    Myers, C R; Nealson, K H

    1990-01-01

    An oxidant pulse technique, with lactate as the electron donor, was used to study respiration-linked proton translocation in the manganese- and iron-reducing bacterium Shewanella putrefaciens MR-1. Cells grown anaerobically with fumarate or nitrate as the electron acceptor translocated protons in response to manganese (IV), fumarate, or oxygen. Cells grown anaerobically with fumarate also translocated protons in response to iron(III) and thiosulfate, whereas those grown with nitrate did not. Aerobically grown cells translocated protons only in response to oxygen. Proton translocation with all electron acceptors was abolished in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone (20 microM) and was partially to completely inhibited by the electron transport inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide (50 microM). PMID:2172208

  2. Assimilation of zinc, cadmium, lead, copper, and iron by the spider Dysdera crocata, a predator of woodlice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkin, S.P.; Martin, M.H.

    1985-02-01

    In this paper, an experiment is described on the assimilation of zinc, cadmium, lead, copper and iron by Dysdera crocata collected from a site in central Bristol. The spiders were fed on woodlice from their own site, and on woodlice from a site contaminated by a smelting works which contained much higher levels of zinc, cadmium and lead than the spiders would have been used to in their normal diet.

  3. Influences On The Oceanic Biogeochemical Cycling Of The Hybrid-Type Metals: Cobalt, Iron, And Manganese

    DTIC Science & Technology

    2012-02-01

    have been possible. We also thank Scot Birdwhistell in the Woods Hole Oceanographic Institution (WHOI) inductively coupled plasma mass spectrometry...Cobalt, Iron, and Manganese MIT/WHOI Joint Program in Oceanography/ Applied Ocean Science and Engineering Massachusetts Institute of Technology Woods Hole...by Abigail Emery Noble Massachusetts Institute of Technology Cambridge, Massachusetts 02139 and Woods Hole Oceanographic Institution Woods Hole

  4. Cadmium, copper, iron, and zinc concentrations in kidneys of grey wolves, Canis lupus, from Alaska, Idaho, Montana (USA) and the Northwest Territories (Canada).

    PubMed

    Hoffmann, S R; Blunck, S A; Petersen, K N; Jones, E M; Koval, J C; Misek, R; Frick, J A; Cluff, H D; Sime, C A; McNay, M; Beckman, K B; Atkinson, M W; Drew, M; Collinge, M D; Bangs, E E; Harper, R G

    2010-11-01

    Cadmium, copper, iron, and zinc levels were measured in the kidneys of 115 grey wolves (Canis lupus) from Idaho, Montana and Alaska (United States), and from the Northwest Territories (Canada). No significant differences in the levels of iron or copper were observed between locations, but wolf kidneys from more northern locations had significantly higher cadmium levels (Alaska > Northwest Territories > Montana ≈ Idaho), and wolves from Alaska showed significantly higher zinc than other locations. Additionally, female wolves in Alaska had higher iron levels than males, and adult wolves in Montana had higher copper levels than subadults.

  5. Grains of Nonferrous and Noble Metals in Iron-Manganese Formations and Igneous Rocks of Submarine Elevations of the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Kolesnik, O. N.; Astakhova, N. V.

    2018-01-01

    Iron-manganese formations and igneous rocks of submarine elevations in the Sea of Japan contain overlapping mineral phases (grains) with quite identical morphology, localization, and chemical composition. Most of the grains conform to oxides, intermetallic compounds, native elements, sulfides, and sulfates in terms of the set of nonferrous, noble, and certain other metals (Cu, Zn, Sn, Pb, Ni, Mo, Ag, Pd, and Pt). The main conclusion that postvolcanic hydrothermal fluids are the key sources of metals is based upon a comparison of the data of electron microprobe analysis of iron-manganese formations and igneous rocks dredged at the same submarine elevations in the Sea of Japan.

  6. The present status of biological effects of toxic metals in the environment: lead, cadmium, and manganese.

    PubMed

    Shukla, G S; Singhal, R L

    1984-08-01

    The number of reports concerning the chemical toxicology of metals which are released in the environment by natural as well as anthropogenic sources, have been increasing constantly. Lead, cadmium, and manganese have found a variety of uses in industry, craft, and agriculture owing to their physical and chemical properties. The environmental burden of heavy metals has been rising substantially by smelter emission in air and waste sewage in water. Further, organic compounds of lead and manganese used as antiknock substances in gasoline are emitted into the atmosphere by automobile exhaustion. Such environmental contamination of air, water, soil, and food is a serious threat to all living kinds. Although these metals are known to produce their toxic effects on a variety of body systems, much emphasis has been placed on their effects on the nervous system owing to apparent association of relatively low or "subclinical" levels of metallic exposure with behavioral and psychological disorders. Clinical and animal data on environmental exposure show that while lead and manganese are most toxic to the nervous system, cadmium exerts profound adverse effects on kidney and the male reproductive system. It appears that the consequences of exposure to lead in adults are less severe than the types of exposure associated with hyperactivity in neonates. Except for a few reports, hyperactivity has indeed been observed in animals exposed to either of these three metals. Experimental work has also shown that these metals produce behavioral changes by altering the metabolism of brain neurotransmitters, especially catecholamines. Recently, it is hypothesized that these metals exert their toxic effect by damaging biological defences which exist in the body to serve as protective mechanisms against exogenous toxins. A voluminous publication list with diverse opinions on the biological effects of metals is available and there is an urgent need to compile assessment of the existing

  7. A mechanistic study and computational prediction of iron, cobalt and manganese cyclopentadienone complexes for hydrogenation of carbon dioxide.

    PubMed

    Ge, Hongyu; Chen, Xiangyang; Yang, Xinzheng

    2016-10-13

    A series of cobalt and manganese cyclopentadienone complexes are proposed and examined computationally as promising catalysts for hydrogenation of CO 2 to formic acid with total free energies as low as 20.0 kcal mol -1 in aqueous solution. Density functional theory study of the newly designed cobalt and manganese complexes and experimentally reported iron cyclopentadienone complexes reveals a stepwise hydride transfer mechanism with a water or a methanol molecule assisted proton transfer for the cleavage of H 2 as the rate-determining step.

  8. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria

    PubMed Central

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-01-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 106 acetate-utilizing manganese-reducing cells cm−3 in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments. PMID:22572639

  9. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.

    PubMed

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-11-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.

  10. Bacterial Disproportionation of Elemental Sulfur Coupled to Chemical Reduction of Iron or Manganese

    PubMed Central

    Thamdrup, Bo; Finster, Kai; Hansen, Jens Würgler; Bak, Friedhelm

    1993-01-01

    A new chemolithotrophic bacterial metabolism was discovered in anaerobic marine enrichment cultures. Cultures in defined medium with elemental sulfur (S0) and amorphous ferric hydroxide (FeOOH) as sole substrates showed intense formation of sulfate. Furthermore, precipitation of ferrous sulfide and pyrite was observed. The transformations were accompanied by growth of slightly curved, rod-shaped bacteria. The quantification of the products revealed that S0 was microbially disproportionated to sulfate and sulfide, as follows: 4S0 + 4H2O → SO42- + 3H2S + 2H+. Subsequent chemical reactions between the formed sulfide and the added FeOOH led to the observed precipitation of iron sulfides. Sulfate and iron sulfides were also produced when FeOOH was replaced by FeCO3. Further enrichment with manganese oxide, MnO2, instead of FeOOH yielded stable cultures which formed sulfate during concomitant reduction of MnO2 to Mn2+. Growth of small rod-shaped bacteria was observed. When incubated without MnO2, the culture did not grow but produced small amounts of SO42- and H2S at a ratio of 1:3, indicating again a disproportionation of S0. The observed microbial disproportionation of S0 only proceeds significantly in the presence of sulfide-scavenging agents such as iron and manganese compounds. The population density of bacteria capable of S0 disproportionation in the presence of FeOOH or MnO2 was high, > 104 cm-3 in coastal sediments. The metabolism offers an explanation for recent observations of anaerobic sulfide oxidation to sulfate in anoxic sediments. PMID:16348835

  11. Mobilisation processes responsible for iron and manganese contamination of groundwater in Central Adriatic Italy.

    PubMed

    Palmucci, William; Rusi, Sergio; Di Curzio, Diego

    2016-06-01

    Iron and manganese are two of the most common contaminants that exceed the threshold imposed by international and national legislation. When these contamination occurs in groundwater, the use of the water resource is forbidden for any purposes. Several studies investigated these two metals in groundwater, but research focused in the Central Adriatic area are still lacking. Thus, the objective of this study is to identify the origin of Fe and Mn contamination in groundwater and the hydrogeochemical processes that can enrich aquifers with these metals. This work is based on hydrogeochemical and multivariate statistical analysis of analytical results undertaken on soils and groundwater. Fe and Mn contamination are widespread in the alluvial aquifers, and their distribution is regulated by local conditions (i.e. long residence time, presence of peat or organic-rich fine sediments or anthropic pollution) that control redox processes in the aquifers and favour the mobilisation of these two metals in groundwater. The concentration of iron and manganese identified within soil indicates that the latter are a concrete source of the two metals. Anthropic impact on Fe and Mn contamination of groundwater is not related to agricultural activities, but on the contrary, the contribution of hydrocarbons (e.g. spills) is evident.

  12. Expanding the menu for carnivorous plants: uptake of potassium, iron and manganese by carnivorous pitcher plants.

    PubMed

    Adlassnig, Wolfram; Steinhauser, Georg; Peroutka, Marianne; Musilek, Andreas; Sterba, Johannes H; Lichtscheidl, Irene K; Bichler, Max

    2009-12-01

    Carnivorous plants use animals as fertiliser substitutes which allow them to survive on nutrient deficient soils. Most research concentrated on the uptake of the prey's nitrogen and phosphorus; only little is known on the utilisation of other elements. We studied the uptake of three essential nutrients, potassium, iron and manganese, in three species of carnivorous pitcher plants (Cephalotus follicularis LaBilladiere, Sarracenia purpureaL., Heliamphora nutans Bentham). Using relatively short-lived and gamma-emitting radiotracers, we significantly improved the sensitivity compared to conventional protocols and gained the following results. We demonstrated the uptake of trace elements like iron and manganese. In addition, we found direct evidence for the uptake of potassium into the pitcher tissue. Potassium and manganese were absorbed to virtually 100% if offered in physiological concentrations or below in Cephalotus. Analysis of pitcher fluid collected in the natural habitat showed that uptake was performed here as efficiently as in the laboratory. The absorption of nutrients is an active process depending on living glandular cells in the pitcher epidermis and can be inhibited by azide. Unphysiologically high amounts of nutrients were taken up for a short time, but after a few hours the absorbing cells were damaged, and uptake stopped. Absorption rates of pitcher leaves from plants under controlled conditions varied highly, indicating that each trap is functionally independent. The comparison of minerals in typical prey with the plants' tissues showed that a complete coverage of the plants' needs by prey capture is improbable.

  13. Removal of Arsenic, Iron, Manganese, and Ammonia in Drinking Water: Nagaoka International Corporation CHEMILES NCL Series Water Treatment System

    EPA Science Inventory

    The Nagaoka International Corporation CHEMILES NCL Series system was tested to verify its performance for the reduction of multiple contaminants including: arsenic, ammonia, iron, and manganese. The objectives of this verification, as operated under the conditions at the test si...

  14. A green analytical method using ultrasound in sample preparation for the flow injection determination of iron, manganese, and zinc in soluble solid samples by flame atomic absorption spectrometry.

    PubMed

    Yebra, M Carmen

    2012-01-01

    A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5-30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2-4.6%) and a sample throughput of ca. 25 samples h(-1) were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4-25.61 μg g(-1) for iron, 5.74-18.30 μg g(-1) for manganese, and 33.27-57.90 μg g(-1) for zinc in soluble solid food samples and 3.75-9.90 μg g(-1) for iron, 0.47-5.05 μg g(-1) for manganese, and 1.55-15.12 μg g(-1) for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors.

  15. Synthesis and Characterization of Mixed Iron-Manganese Oxide Nanoparticles and Their Application for Efficient Nickel Ion Removal from Aqueous Samples

    PubMed Central

    Serra, Antonio; Monteduro, Anna Grazia; Padmanabhan, Sanosh Kunjalukkal; Licciulli, Antonio; Bonfrate, Valentina; Salvatore, Luca; Calcagnile, Lucio

    2017-01-01

    Mixed iron-manganese oxide nanoparticles, synthesized by a simple procedure, were used to remove nickel ion from aqueous solutions. Nanostructures, prepared by using different weight percents of manganese, were characterized by transmission electron microscopy, selected area diffraction, X-ray diffraction, Raman spectroscopy, and vibrating sample magnetometry. Adsorption/desorption isotherm curves demonstrated that manganese inclusions enhance the specific surface area three times and the pores volume ten times. This feature was crucial to decontaminate both aqueous samples and food extracts from nickel ion. Efficient removal of Ni2+ was highlighted by the well-known dimethylglyoxime test and by ICP-MS analysis and the possibility of regenerating the nanostructure was obtained by a washing treatment in disodium ethylenediaminetetraacetate solution. PMID:28804670

  16. [Determination of trace lead and iron in nickel chloride and manganese sulfate by flame atomic absorption spectrometry after coprecipitation with yttrium phosphate].

    PubMed

    Su, Yao-Dong; Zhu, Wen-Ying; Ma, Hong-Mei; Chen, Long-Wu

    2006-09-01

    Using yttrium phosphate as the coprecipitation collector for the separation and preconcentration of trace lead and iron in nickel chloride and manganese sulfate, flame atomic absorption spectrometric (FAAS) determination was described in the present paper. Coprecipitation parameters including the pH of the solution, and the amounts of YCl3 and H3 PO4 were discussed. It was found that lead and iron in nickel chloride could be coprecipitated quantitatively in the range of pH 3.0-4.0, and so could be lead in manganese sulfate. The detection limits (3sigma) of lead and iron in 20 mL solution were 1.63 x 10(-2) mg x L(-1) and 4.58 x 10(-2) mg x L(-1) respectively. In NiCl2 solution the standard addition recoveries for lead and iron were 100.91% and 99.73% respectively, and in MnSO4 solution the standard addition recoveries were 99.45% and 98.98% respectively. The method has eliminated the interference of matrix, and the result is satisfied.

  17. MODIFYING IRON REMOVAL PROCESSES TO INCREASE ARSENIC REMOVAL

    EPA Science Inventory

    Iron and manganese are naturally occurring substances that are normally found in insoluble forms in many ground waters in the US. Similar to iron and manganese, arsenic also occurs widely in the earth's crust and is a natural contaminant of many ground waters. Iron and manganese ...

  18. Iron deficiency is associated with increased levels of blood cadmium in the Korean general population: Analysis of 2008-2009 Korean National Health and Nutrition Examination Survey data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Byung-Kook; Kim, Yangho, E-mail: yanghokm@nuri.net

    Introduction: We present data from the Korean National Health and Nutrition Examination Survey 2008-2009 on the distribution of blood cadmium levels and their association with iron deficiency in a representative sample of the adult Korean population. Methods: Serum ferritin was categorized into three levels: low (serum ferritin <15.0 {mu}g/L), low normal (15.0-30.0 {mu}g/L for women and 15.0-50.0 for men), and normal ({>=}30.0 {mu}g/L for women and {>=}50.0 for men), and its association with blood cadmium level was assessed after adjustment for various demographic and lifestyle factors. Results: Geometric means of blood cadmium in the low serum ferritin group in women,more » men, and all participants were significantly higher than in the normal group. Additionally, multiple regression analysis after adjusting for various covariates showed that blood cadmium was significantly higher in the low-ferritin group in women, men, and all participants compared with the normal group. We also found an association between serum ferritin and blood cadmium among never-smoking participants. Discussion: We found, similar to other recent population-based studies, an association between iron deficiency and increased blood cadmium in men and women, independent of smoking status. The results of the present study show that iron deficiency is associated with increased levels of blood cadmium in the general population.« less

  19. Evaluation of air sparging and vadose zone aeration for remediation of iron and manganese-impacted groundwater at a closed municipal landfill.

    PubMed

    Pleasant, Saraya; O'Donnell, Amanda; Powell, Jon; Jain, Pradeep; Townsend, Timothy

    2014-07-01

    High concentrations of iron (Fe(II)) and manganese (Mn(II)) reductively dissolved from soil minerals have been detected in groundwater monitoring wells near many municipal solid waste landfills. Air sparging and vadose zone aeration (VZA) were evaluated as remedial approaches at a closed, unlined municipal solid waste landfill in Florida, USA. The goal of aeration was to oxidize Fe and Mn to their respective immobile forms. VZA and shallow air sparging using a partially submerged well screen were employed with limited success (Phase 1); decreases in dissolved iron were observed in three of nine monitoring wells during shallow air sparging and in two of 17 wells at VZA locations. During Phase 2, where deeper air sparging was employed, dissolved iron levels decreased in a significantly greater number of monitoring wells surrounding injection points, however no radial pattern was observed. Additionally, in wells affected positively by air sparging (mean total iron (FeTOT) <4.2mg/L, after commencement of air sparging), rising manganese concentrations were observed, indicating that the redox potential of the groundwater moved from an iron-reducing to a manganese-reducing environment. The mean FeTOT concentration observed in affected monitoring wells throughout the study was 1.40 mg/L compared to a background of 15.38 mg/L, while the mean Mn concentration was 0.60 mg/L compared to a background level of 0.27 mg/L. Reference wells located beyond the influence of air sparging areas showed little variation in FeTOT and Mn, indicating the observed effects were the result of air injection activities at study locations and not a natural phenomenon. Air sparging was found effective in intercepting plumes of dissolved Fe surrounding municipal landfills, but the effect on dissolved Mn was contrary to the desired outcome of decreased Mn groundwater concentrations. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Installation Restoration Program. Phase I: Records Search Goodfellow Air Force Base, Texas.

    DTIC Science & Technology

    1985-03-01

    CHDRO - ARSENIC SARIUM, CADMIUM MIUM. COPPER. IRON, DIS- DIS- DIS- DIS- DIS- DIS- SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED TIME (UOIL (UCIL (UGIL (UG/L... cadmium , chromium, copper, iron, lead, manganese, mercury, nickel, silver, and zinc. The recommended parameters include those compounds known or...8217. ... . . -. * -:,-..’... .... ’.... ...’. .’..".-... ... -......- . ..............-............... . ..... .. APPENDIX A (Continued, Page 2 of 7) Cadmium A metal used in batteries and other industrial

  1. Intestinal absorption of dietary cadmium in women depends on body iron stores and fiber intake.

    PubMed Central

    Berglund, M; Akesson, A; Nermell, B; Vahter, M

    1994-01-01

    Measurements of intake and uptake of cadmium in relation to diet composition were carried out in 57 nonsmoking women, 20-50 years of age. A vegetarian/high-fiber diet and a mixed-diet group were constructed based on results from a food frequency questionnaire. Duplicate diets and the corresponding feces were collected during 4 consecutive days in parallel with dietary recording of type and amount of food ingested for determination of the dietary intake of cadmium and various nutrients. Blood and 24-hr urine samples were collected for determination of cadmium, hemoglobin, ferritin, and zinc. There were no differences in the intake of nutrients between the mixed-diet and the high-fiber diet groups, except for a significantly higher intake of fiber (p < 0.001) and cadmium (p < 0.002) in the high-fiber group. Fecal cadmium corresponded to 98% in the mixed-diet group and 100% in the high-fiber diet group. No differences in blood cadmium (BCd) or urinary cadmium (UCd) between groups could be detected. There was a tendency toward higher BCd and UCd concentrations with increasing fiber intake; however, the concentrations were not statistically significant at the 5% level, indicating an inhibitory effect of fiber on the gastrointestinal absorption of cadmium. Sixty-seven percent of the women had serum ferritin < 30 micrograms/l, indicating reduced body iron stores, which were highly associated with higher BCd (irrespective of fiber intake). BCd was mainly correlated with UCd, serum ferritin, age, anf fibre intake. UCd and serum ferritin explained almost 60% of the variation in BCd.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. Figure 2. Figure 3. A Figure 3. B Figure 4. Figure 5. PMID:7713018

  2. Hawaiian submarine manganese-iron oxide crusts - A dating tool?

    USGS Publications Warehouse

    Moore, J.G.; Clague, D.A.

    2004-01-01

    Black manganese-iron oxide crusts form on most exposed rock on the ocean floor. Such crusts are well developed on the steep lava slopes of the Hawaiian Ridge and have been sampled during dredging and submersible dives. The crusts also occur on fragments detached from bedrock by mass wasting, on submerged coral reefs, and on poorly lithified sedimentary rocks. The thickness of the crusts was measured on samples collected since 1965 on the Hawaiian Ridge from 140 dive or dredge localities. Fifty-nine (42%) of the sites were collected in 2001 by remotely operated vehicles (ROVs). The thinner crusts on many samples apparently result from post-depositional breakage, landsliding, and intermittent burial of outcrops by sediment. The maximum crust thickness was selected from each dredge or dive site to best represent crusts on the original rock surface at that site. The measurements show an irregular progressive thickening of the crusts toward the northwest-i.e., progressive thickening toward the older volcanic features with increasing distance from the Hawaiian hotspot. Comparison of the maximum crust thickness with radiometric ages of related subaerial features supports previous studies that indicate a crust-growth rate of about 2.5 mm/m.y. The thickness information not only allows a comparison of the relative exposure ages of two or more features offshore from different volcanoes, but also provides specific age estimates of volcanic and landslide deposits. The data indicate that some of the landslide blocks within the south Kona landslide are the oldest exposed rock on Mauna Loa, Kilauea, or Loihi volcanoes. Crusts on the floors of submarine canyons off Kohala and East Molokai volcanoes indicate that these canyons are no longer serving as channelways for downslope, sediment-laden currents. Mahukona volcano was approximately synchronous with Hilo Ridge, both being younger than Hana Ridge. The Nuuanu landslide is considerably older than the Wailau landslide. The Waianae

  3. Distribution of iron, copper and manganese in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Moffett, James

    2014-05-01

    The distribution of iron, copper and manganese was studied on a zonal transect of the Arabian Sea during the SW monsoon in 2007. The distribution of metals in the eastern and western ends of the transect are completely different, with concentrations of Fe and Mn higher in the east, but copper much higher in the west. Redox cycling in the east, and enhanced ventilation in the west contributes to these processes. It seems likely that blooms of Phaeocystis sp. contribute to the pronounced surface depletion and oxicline regeneration we observe, particularly for copper. The results are very different than similar surveys in the Peru upwelling, indicating controls by very different processes. These results have important implications for carbon and nitrogen cycling, particularly for processes mediated by key Cu and Fe metalloenzymes.

  4. Manganese

    USGS Publications Warehouse

    Cannon, William F.; Kimball, Bryn E.; Corathers, Lisa A.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Manganese is an essential element for modern industrial societies. Its principal use is in steelmaking, where it serves as a purifying agent in iron-ore refining and as an alloy that converts iron into steel. Although the amount of manganese consumed to make a ton of steel is small, ranging from 6 to 9 kilograms, it is an irreplaceable component in the production of this fundamental material. The United States has been totally reliant on imports of manganese for many decades and will continue to be so for at least the near future. There are no domestic reserves, and although some large low-grade resources are known, they are far inferior to manganese ores readily available on the international market. World reserves of manganese are about 630 million metric tons, and annual global consumption is about 16 million metric tons. Current reserves are adequate to meet global demand for several decades. Global resources in traditional land-based deposits, including both reserves and rocks sufficiently enriched in manganese to be ores in the future, are much larger, at about 17 billion metric tons. Manganese resources in seabed deposits of ferromanganese nodules and crusts are larger than those on land and have not been fully quantified. No production from seabed deposits has yet been done, but current research and development activities are substantial and may bring parts of these seabed resources into production in the future. The advent of economically successful seabed mining could substantially alter the current scenario of manganese supply by providing a large new source of manganese in addition to traditional land-based deposits.From a purely geologic perspective, there is no global shortage of proven ores and potential new ores that could be developed from the vast tonnage of identified resources. Reserves and resources are very unevenly distributed, however. The Kalahari manganese district in South Africa contains 70 percent of the world’s identified resources

  5. A Green Analytical Method Using Ultrasound in Sample Preparation for the Flow Injection Determination of Iron, Manganese, and Zinc in Soluble Solid Samples by Flame Atomic Absorption Spectrometry

    PubMed Central

    Yebra, M. Carmen

    2012-01-01

    A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5–30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2–4.6%) and a sample throughput of ca. 25 samples h–1 were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4–25.61 μg g−1 for iron, 5.74–18.30 μg g−1 for manganese, and 33.27–57.90 μg g−1 for zinc in soluble solid food samples and 3.75–9.90 μg g−1 for iron, 0.47–5.05 μg g−1 for manganese, and 1.55–15.12 μg g−1 for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors. PMID:22567553

  6. The Escherichia coli Small Protein MntS and Exporter MntP Optimize the Intracellular Concentration of Manganese

    PubMed Central

    Martin, Julia E.; Waters, Lauren S.; Storz, Gisela; Imlay, James A.

    2015-01-01

    Escherichia coli does not routinely import manganese, but it will do so when iron is unavailable, so that manganese can substitute for iron as an enzyme cofactor. When intracellular manganese levels are low, the cell induces the MntH manganese importer plus MntS, a small protein of unknown function; when manganese levels are high, the cell induces the MntP manganese exporter and reduces expression of MntH and MntS. The role of MntS has not been clear. Previous work showed that forced MntS synthesis under manganese-rich conditions caused bacteriostasis. Here we find that when manganese is scarce, MntS helps manganese to activate a variety of enzymes. Its overproduction under manganese-rich conditions caused manganese to accumulate to very high levels inside the cell; simultaneously, iron levels dropped precipitously, apparently because manganese-bound Fur blocked the production of iron importers. Under these conditions, heme synthesis stopped, ultimately depleting cytochrome oxidase activity and causing the failure of aerobic metabolism. Protoporphyrin IX accumulated, indicating that the combination of excess manganese and iron deficiency had stalled ferrochelatase. The same chain of events occurred when mutants lacking MntP, the manganese exporter, were exposed to manganese. Genetic analysis suggested the possibility that MntS exerts this effect by inhibiting MntP. We discuss a model wherein during transitions between low- and high-manganese environments E. coli uses MntP to compensate for MntH overactivity, and MntS to compensate for MntP overactivity. PMID:25774656

  7. Iron plaque decreases cadmium accumulation in Oryza sativa L. and serves as a source of iron.

    PubMed

    Sebastian, A; Prasad, M N V

    2016-11-01

    Cadmium (Cd) contamination occurs in paddy soils; hence it is necessary to reduce Cd content of rice. Application and mode of action of ferrous sulphate in minimizing Cd in rice was monitored in the present study. Pot culture with Indian rice variety Swarna (MTU 7029) was maintained in Cd-spiked soil containing ferrous sulphates, which is expected to reduce Cd accumulation in rice. Responses in rhizosphere pH, root surface, metal accumulation in plant and molecular physiological processes were monitored. Iron plaque was induced on root surfaces after FeSO4 application and the amount of Fe in plaque reduced with increases in Cd in the soil. Rhizosphere pH decreased during plaque formation and became more acidic due to secretion of organic acids from the roots under Cd treatment. Moreover, iron chelate reductase activity increased with Cd treatment, but in the absence of Cd, activity of this enzyme increased in plaque-induced plants. Cd treatment caused expression of OsYSL18, whereas OsYSL15 was expressed only in roots without iron plaque. Fe content of plants increased during plaque formation, which protected plants from Cd-induced Fe deficiency and metal toxicity. This was corroborated with increased biomass, chlorophyll content and quantum efficiency of photo-synthesis among plaque-induced plants. We conclude that ferrous sulphate-induced iron plaque prevents Cd accumulation and Fe deficiency in rice. Iron released from plaque via organic acid mediated dissolution during Cd stress. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. A manganese-rich environment supports superoxide dismutase activity in a Lyme disease pathogen, Borrelia burgdorferi.

    PubMed

    Aguirre, J Dafhne; Clark, Hillary M; McIlvin, Matthew; Vazquez, Christine; Palmere, Shaina L; Grab, Dennis J; Seshu, J; Hart, P John; Saito, Mak; Culotta, Valeria C

    2013-03-22

    The Lyme disease pathogen Borrelia burgdorferi represents a novel organism in which to study metalloprotein biology in that this spirochete has uniquely evolved with no requirement for iron. Not only is iron low, but we show here that B. burgdorferi has the capacity to accumulate remarkably high levels of manganese. This high manganese is necessary to activate the SodA superoxide dismutase (SOD) essential for virulence. Using a metalloproteomic approach, we demonstrate that a bulk of B. burgdorferi SodA directly associates with manganese, and a smaller pool of inactive enzyme accumulates as apoprotein. Other metalloproteins may have similarly adapted to using manganese as co-factor, including the BB0366 aminopeptidase. Whereas B. burgdorferi SodA has evolved in a manganese-rich, iron-poor environment, the opposite is true for Mn-SODs of organisms such as Escherichia coli and bakers' yeast. These Mn-SODs still capture manganese in an iron-rich cell, and we tested whether the same is true for Borrelia SodA. When expressed in the iron-rich mitochondria of Saccharomyces cerevisiae, B. burgdorferi SodA was inactive. Activity was only possible when cells accumulated extremely high levels of manganese that exceeded cellular iron. Moreover, there was no evidence for iron inactivation of the SOD. B. burgdorferi SodA shows strong overall homology with other members of the Mn-SOD family, but computer-assisted modeling revealed some unusual features of the hydrogen bonding network near the enzyme's active site. The unique properties of B. burgdorferi SodA may represent adaptation to expression in the manganese-rich and iron-poor environment of the spirochete.

  9. Enhancement of arsenite removal using manganese oxide coupled with iron (III) trimesic

    NASA Astrophysics Data System (ADS)

    Phanthasri, Jakkapop; Khamdahsag, Pummarin; Jutaporn, Panitan; Sorachoti, Kwannapat; Wantala, Kitirote; Tanboonchuy, Visanu

    2018-01-01

    A simultaneous removal of As(III) was investigated on a mixture of manganese oxide based octahedral molecular sieves (K-OMS2) and iron-benzenetricarboxylate (Fe-BTC). As(III) removal was stimulated by an oxidation cooperated with adsorption process. K-OMS2 and Fe-BTC were separately synthesized and characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). K-OMS2 showed characters of pure cryptomelane phase, nanorod structure, and a mixed-valent manganese framework with the coexistence of Mn(IV) and Mn(III). As(III) was successfully oxidized to As(V) by K-OMS2 in a temperature range of 303-333 K. An intermediate adsorption of As(V) was carried out with Fe-BTC in the same batch. A maximum adsorption capacity, described by Langmuir isotherm model, was observed at 76.34 mg/g. With an As(III) initial concentration of 5 mg/L, when K-OMS2 and Fe-BTC were simultaneously introduced into the solution, the As(III) removal process was completed within 60 min. Thus, it shortened the process time compared to the case where K-OMS2 was added first, followed by the addition of Fe-BTC.

  10. Comparison of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers in bald eagle (Haliaeetus leucocephalus), and comparison with common eider (Somateria mollissima), glaucous-winged gull (Larus glaucescens), pigeon guillemot (Cepphus columba), and tufted puffin (Fratercula cirrhata) from the Aleutian Chain of Alaska

    PubMed Central

    Burger, Joanna; Gochfeld, Michael

    2014-01-01

    There is an abundance of field data for levels of metals from a range of places, but relatively few from the North Pacific Ocean and Bering Sea. In this paper we examine the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers from common eiders (Somateria mollissima), glaucous-winged gulls (Larus glaucescens), pigeon guillemots (Cepphus columba), tufted puffins (Fratercula cirrhata) and bald eagles (Haliaeetus leucocephalus) from the Aleutian Chain of Alaska. Our primary objective was to test the hypothesis that there are no trophic levels relationships for arsenic, cadmium, chromium, lead, manganese, mercury and selenium among these five species of birds breeding in the marine environment of the Aleutians. There were significant interspecific differences in all metal levels. As predicted bald eagles had the highest levels of arsenic, chromium, lead, and manganese, but puffins had the highest levels of selenium, and pigeon guillemot had higher levels of mercury than eagles (although the differences were not significant). Common eiders, at the lowest trophic level had the lowest levels of some metals (chromium, mercury and selenium). However, eiders had higher levels than all other species (except eagles) for arsenic, cadmium, lead, and manganese. Levels of lead were higher in breast than in wing feathers of bald eagles. Except for lead, there were no significant differences in metal levels in feathers of bald eagles nesting on Adak and Amchitka Island; lead was higher on Adak than Amchitka. Eagle chicks tended to have lower levels of manganese than older eagles. PMID:18521716

  11. Cast B2-phase iron-aluminum alloys with improved fluidity

    DOEpatents

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  12. Iron, Manganese and Copper Release from Synthetic Hydroxyapatite

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Hossner, L. R.; Ming, Douglas W.

    1999-01-01

    Kinetic stir-flow dissolution experiments were performed on iron- (Fe-SHA), manganese- (Mn-SHA), and copper- (Cu-SHA) containing synthetic hydroxyapatites. Solution treatments consisted of de-ionized water, citric acid and DTPA. Initially, Mn concentrations were higher than Cu concentrations and Fe concentrations were the lowest in all treatments. At later times Mn and Cu concentrations dropped in the DTPA treatment while Fe rose to the concentration similar to Mn and Cu. At all times, metal release concentrations in the water and citric acid treatments followed the trend of Mn>Cu>Fe. Rietveld analysis of x-ray diffraction data and ^31P NMR indicated that the metals substituted for Ca in the SHA structure. However, EPR data suggested that a metal (hydr)oxide phase existed either on the SHA surface or between the SHA crystallites. The metal concentration trend of Mn>Cu>Fe suggested that the initial solution metal concentrations are dependent on the dissolution of (hydr)oxides from SHA surfaces or between SHA crystallites. Similar metal concentrations at later times in the DTPA experiments suggests that metal concentrations were controlled by the release of Mn, Cu, or Fe from the SHA structure.

  13. Demonstration and Validation of a Regenerated Cellulose Dialysis Membrane Diffusion Sampler for Monitoring Groundwater Quality and Remediation Progress at DoD Sites

    DTIC Science & Technology

    2007-02-01

    years if kept refrigerated in its preservative solution of ethanol, sodium benzoate , and ethylene diamine tetra-acetic acid (EDTA). Alternatively... sodium bicarbonate solution, EDTA, and sodium azide solution to remove residual gylcerol, sulfide, cadmium, chromium, copper, iron, nickel, zinc, and lead...Magnesium Cadmium Nickel Potassium Chromium Selenium Sodium Copper Vanadium Aluminum Iron Zinc Arsenic Lead Antimony Manganese Anions (1-3 days

  14. Mineral of the month: manganese

    USGS Publications Warehouse

    Corathers, Lisa A.

    2005-01-01

    Manganese is one of the most important ferrous metals and one of the few for which the United States is totally dependent on imports. It is a black, brittle element predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production, which together provide the largest market for manganese (about 83 percent). It is also used as an alloy with nonferrous metals such as aluminum and copper. Nonmetallurgical applications of manganese include battery cathodes, soft ferrite magnets used in electronics, micronutrients found in fertilizers and animal feed, water treatment chemicals, and a colorant for bricks and ceramics.

  15. Coprecipitation mechanisms and products in manganese oxidation in the presence of cadmium

    USGS Publications Warehouse

    Hem, J.D.; Lind, Carol J.

    1991-01-01

    Manganese oxidation products were precipitated in an aerated open-aqueous system where a continuous influx of mixed Mn2+ and Cd2+ solution was supplied and pH was maintained with an automated pH-stat adding dilute NaOH. X-ray diffraction and electron diffraction identified the solids produced as mixtures of Cd2Mn34+O8, Mn2+2Mn4+3O8, MnO2 (ramsdellite), and CdCO3. Mean oxidation numbers of the total precipitated Mn as great as 3.6 were reached during titrations. During subsequent aging in solution, oxidation numbers between 3.8 and 3.9 were reached in some precipitates in less than 40 days. Conditional oxidation rate constants calculated from a crystal-growth equation applied to titration data showed the overall precipitation rate, without considering manganese oxidation state in the precipitate, was increased by a factor of ~4 to ~7 when the mole ratio (Cd/Mn + Cd) of cadmium in the feed solution was 0.40 compared with rate constants for hausmannite (Mn2+Mn23+O4 precipitation under similar conditions but without accessory metals. Kinetic experiments were made to test effects of various Cd/Mn + Cd mole ratios and rates of addition of the feed solution, different temperatures from 5.0 to 35??C, and pH from 8.0 to 9.0. Oxidation rates were slower when the Cd mole ratio was less than 0.40. The rate increased by a factor of ~10 when pH was raised one-half unit. The effect of temperature on the rate constants was also substantial, but the meaning of this is uncertain because the rate of formation of Mn4+ oxide in the absence of Cd or other accessory metals was too slow to be measurable in titration experiments. The increased rate of Mn4+ oxide formation in the presence of Cd2+ can be ascribed to the formation of a labile adsorbed intermediate, CdMn2O4 Int, an analog of hausmannite, formed on precipitate surfaces at the beginning of the oxidation process. The increased lability of this structure, resulting from coordination-chemical behavior of Cd2+ during the titration

  16. Morphophysiological characteristic analysis demonstrated the potential of sweet sorghum (Sorghum bicolor (L.) Moench) in the phytoremediation of cadmium-contaminated soils.

    PubMed

    Jia, Weitao; Lv, Sulian; Feng, Juanjuan; Li, Jihong; Li, Yinxin; Li, Shizhong

    2016-09-01

    Cadmium (Cd) contamination is a worldwide environmental problem, and remediation of Cd pollution is of great significance for food production as well as human health. Here, the responses of sweet sorghum cv. 'M-81E' to cadmium stress were studied for its potential as an energy plant in restoring soils contaminated by cadmium. In hydroponic experiments, the biomass of 'M-81E' showed no obvious change under 10 μM cadmium treatment. Cadmium concentration was the highest in roots of seedlings as well as mature plants, but in agricultural practice, the valuable and harvested parts of sweet sorghum are shoots, so promoting the translocation of cadmium to shoots is of great importance in order to improve its phytoremediation capacity. Further histochemical assays with dithizone staining revealed that cadmium was mainly concentrated in the stele of roots and scattered in intercellular space of caulicles. Moreover, the correlation analysis showed that Cd had a negative relationship with iron (Fe), zinc (Zn), and manganese (Mn) in caulicles and leaves and a positive relationship with Fe in roots. These results implied that cadmium might compete with Fe, Zn, and Mn for the transport binding sites and further prevent their translocation to shoots. In addition, transmission electron microscopic observations showed that under 100 μM cadmium treatment, the structure of chloroplast was impaired and the cell wall of vascular bundle cells in leaves and xylem and phloem cells in roots turned thicker compared to control. In summary, morphophysiological characteristic analysis demonstrated sweet sorghum can absorb cadmium and the growth is not negatively affected by mild level cadmium stress; thus, it is a promising material for the phytoremediation of cadmium-contaminated soils considering its economic benefit. This study also points out potential strategies to improve the phytoremediation capacity of sweet sorghum through genetic modification of transporters and cell wall

  17. Manganese(II), iron(II), cobalt(II), and copper(II) complexes of an extended inherently chiral tris-bipyridyl cage.

    PubMed

    Perkins, David F; Lindoy, Leonard F; McAuley, Alexander; Meehan, George V; Turner, Peter

    2006-01-17

    Manganese(II), iron(II), cobalt(II), and copper(II) derivatives of two inherently chiral, Tris(bipyridyl) cages (L and L') of type [ML]-(PF(6))(2)(solvent)(n) and [FeL'](ClO(4))(2) are reported, where L is the hexa-tertiary butyl-substituted derivative of L'. These products were obtained by using the free cage and metal template procedures; the latter involved the reductive amination of the respective Tris-dialdehyde precursor complexes of iron(II), cobalt(II), or nickel(II). Electrochemical, EPR, and NMR studies have been used to probe the nature of the individual complexes. X-ray structures of the manganese(II), iron(II), and copper(II) complexes of L and the iron(II) complex of L' are presented; these are compared with the previously reported structures of the corresponding nickel(II) complex and metal-free cage (L). In each complex the metal cation occupies the cage's central cavity and is coordinated to six nitrogens from the three bipyridyl groups. The cations [MnL](2+) and [FeL](2+) are isostructural but both exhibit a different arrangement of the bound cage to that observed in the corresponding nickel(II) and copper(II) complexes. The latter have an exo-exo arrangement of the bridgehead nitrogen lone pairs, with the metal inducing a triple helical twist that extends approximately 22 A along the axial length of each complex. In contrast, [MnL](2+) and [FeL](2+) have their terminal nitrogen lone pairs directed endo, causing a significant change in the configuration of the bound ligand. In [FeL'](2+), the cage has both bridgehead nitrogen lone pairs orientated exo. Semiempirical calculations indicate that the observed endo-endo and exo-exo arrangements are of comparable energy.

  18. Biogeochemistry of the coupled manganese-iron-sulfur cycles of intertidal surface sediments

    NASA Astrophysics Data System (ADS)

    Bosselmann, K.; Boettcher, M. E.; Billerbeck, M.; Walpersdorf, E.; Debeer, D.; Brumsack, H.-J.; Huettel, M.; Joergensen, B. B.

    2003-04-01

    The biogeochemistry of the coupled iron-manganese-sulfur-carbon cycles was studied in temperate intertidal surface sediments of the German Wadden Sea (North Sea). Coastal sampling sites include sand, mixed and mud flats with different organic matter and metal contents and permeability reflecting different hydrodynamic regimes. The field study focusses on the influence of temperature, organic matter load, and sediment types on the dynamics of biogeochemical reactions on different time scales (season, day-night, tidal cycles). One of the main interests was related to the cycling of metals (Mn, Fe) in relation to the activity of sulfate-reducing bacteria. Pore water profiles were investigated by sediment sectioning and high resolution gel sampling techniques. Microbial sulfate reduction rates were measured using radiolabeled sulfate with the whole core incubation technique and the spatial distribution of bacterial activity was visualised by using "2D-photoemulsion-monitoring technique". The biogeochemical sulfur cycle was additionally characterised by the stable isotope ratios (S,O) of different sulfur species (e.g., SO_4, AVS, pyrite). Element transfers (metals, nutrients) across the sediment-water interface were additionally quantified by the application of benthic flux chambers. Microbial sulfate reduction was generally highest in the suboxic zone of the surface sediments indicating its potential importance for the mobilization of iron and manganese. In organic matter poor permeable sediments tidal effects additionally influence the spatial and temporal distribution of dissolved redox-sensitive metals. In organic matter-rich silty and muddy sediments, temperature controlled the microbial sulfate reduction rates. Depth-integrated sulfate reduction rates in sandy sediments were much lower and controlled by both temperature and organic matter. Formation of anoxic sediment surfaces due to local enhanced organic matter load (so-called "black spots") may create windows

  19. The Impact of Potassium Manganate (VII) on the Effectiveness of Coagulation in the Removal of Iron and Manganese from Groundwater with an Increased Content of Organic Substances

    NASA Astrophysics Data System (ADS)

    Krupińska, Izabela

    2017-12-01

    The article presents the results of studies concerning the impact of the method of Fe(II) ion oxidisation (dissolved oxygen and potassium manganate (VII)) on the effectiveness of coagulation in the removal of iron and manganese from groundwater with an increased content of organic substances. The efficiencies of two coagulants were compared: aluminium sulphate (VI) and polyaluminium chloride (Flokor 1.2A). Among the used methods of iron (II) oxidisation, the best effects have been achieved by potassium manganate (VII) because one of the oxidation products was manganese oxide (IV) precipitating from water. Better results in purifying the water were obtained with the use of a prehydrolysed coagulant Flokor 1.2 A than aluminium sulphate (VI).

  20. High manganese concentrations in rocks at Gale crater, Mars

    USGS Publications Warehouse

    Lanza, Nina L.; Fischer, Woodward W.; Wiens, Roger C.; Grotzinger, John P.; Ollila, Ann M.; Anderson, Ryan B.; Clark, Benton C.; Gellert, Ralf; Mangold, Nicolas; Maurice, Sylvestre; Le Mouélic, Stéphane; Nachon, Marion; Schmidt, Mariek E.; Berger, Jeffrey; Clegg, Samuel M.; Forni, Olivier; Hardgrove, Craig; Melikechi, Noureddine; Newsom, Horton E.; Sautter, Violaine

    2014-01-01

    The surface of Mars has long been considered a relatively oxidizing environment, an idea supported by the abundance of ferric iron phases observed there. However, compared to iron, manganese is sensitive only to high redox potential oxidants, and when concentrated in rocks, it provides a more specific redox indicator of aqueous environments. Observations from the ChemCam instrument on the Curiosity rover indicate abundances of manganese in and on some rock targets that are 1–2 orders of magnitude higher than previously observed on Mars, suggesting the presence of an as-yet unidentified manganese-rich phase. These results show that the Martian surface has at some point in time hosted much more highly oxidizing conditions than has previously been recognized.

  1. Removal of iron and manganese by artificial destratification in a tropical climate (Upper Layang Reservoir, Malaysia).

    PubMed

    Ismail, R; Kassim, M A; Inman, M; Baharim, N H; Azman, S

    2002-01-01

    Environmental monitoring was carried out at Upper Layang Reservoir situated in Masai, Johor, Malaysia. The study shows that thermal stratification and natural mixing of the water column do exist in the reservoir and the level of stratification varies at different times of the year. Artificial destratification via diffused air aeration techniques was employed at the reservoir for two months. The results show that thermal stratification was eliminated after a week of continuous aeration. The concentrations of iron and to a lesser extent manganese in the water column was also reduced during the aeration period.

  2. Transcriptional and biochemical effects of cadmium and manganese on the defense system of Octopus vulgaris paralarvae.

    PubMed

    Nicosia, Aldo; Salamone, Monica; Mazzola, Salvatore; Cuttitta, Angela

    2015-01-01

    Due to anthropogenic activities the relative concentrations of cadmium and manganese have increased in the marine environment. Cephalopods are able to accumulate such metals and, as inhabitant of coastal waters, Octopus vulgaris is continuously exposed to anthropogenic activities. Since no study is available on the effects of heavy metals at molecular level in developing octopuses, herein we exposed 1-day-old paralarvae for 24 h to 10, 100, and 1000 μg/L of CdCl2 or MnCl2. Cd exerted a concentration-dependent inhibition of survival and a reduction in growth rate was shown while Mn exposure did not affect the survival rate even at the highest concentrations. Gene expression profiles of hsp70, sod, cat, and gst genes were analyzed by quantitative real-time PCR and defined patterns of transcription were observed. Moreover posttranscriptional analyses were also performed suggesting the impairment of metabolic functions, under strong oxidative conditions (as occurred in paralarvae exposed to Cd) or the complete detoxification events (as occurred in paralarvae exposed to Mn).

  3. Transcriptional and Biochemical Effects of Cadmium and Manganese on the Defense System of Octopus vulgaris Paralarvae

    PubMed Central

    Salamone, Monica; Mazzola, Salvatore; Cuttitta, Angela

    2015-01-01

    Due to anthropogenic activities the relative concentrations of cadmium and manganese have increased in the marine environment. Cephalopods are able to accumulate such metals and, as inhabitant of coastal waters, Octopus vulgaris is continuously exposed to anthropogenic activities. Since no study is available on the effects of heavy metals at molecular level in developing octopuses, herein we exposed 1-day-old paralarvae for 24 h to 10, 100, and 1000 μg/L of CdCl2 or MnCl2. Cd exerted a concentration-dependent inhibition of survival and a reduction in growth rate was shown while Mn exposure did not affect the survival rate even at the highest concentrations. Gene expression profiles of hsp70, sod, cat, and gst genes were analyzed by quantitative real-time PCR and defined patterns of transcription were observed. Moreover posttranscriptional analyses were also performed suggesting the impairment of metabolic functions, under strong oxidative conditions (as occurred in paralarvae exposed to Cd) or the complete detoxification events (as occurred in paralarvae exposed to Mn). PMID:25705660

  4. Metals, Oxidative Stress and Neurodegeneration: A focus on Iron, Manganese and Mercury

    PubMed Central

    Farina, Marcelo; Avila, Daiana Silva; da Rocha, João Batista Teixeira

    2013-01-01

    Essential metals are crucial for the maintenance of cell homeostasis. Among the 23 elements that have known physiological functions in humans, 12 are metals, including iron (Fe) and manganese (Mn). Nevertheless, excessive exposure to these metals may lead to pathological conditions, including neurodegeneration. Similarly, exposure to metals that do not have known biological functions, such as mercury (Hg), also present great health concerns. This reviews focuses on the neurodegenerative mechanisms and effects of Fe, Mn and Hg. Oxidative stress (OS), particularly in mitochondria, is a common feature of Fe, Mn and Hg toxicity. However, the primary molecular targets triggering OS are distinct. Free cationic iron is a potent pro-oxidant and can initiate a set of reactions that form extremely reactive products, such as OH•. Mn can oxidize dopamine (DA), generating reactive species and also affect mitochondrial function, leading to accumulation of metabolites and culminating with OS. Cationic Hg forms have strong affinity for nucleophiles, such as –SH and –SeH. Therefore, they target critical thiol- and selenol-molecules with antioxidant properties. Finally, we address the main sources of exposure to these metals, their transport mechanisms into the brain, and therapeutic modalities to mitigate their neurotoxic effects. PMID:23266600

  5. Evaluation of trace elements in selected foods and dietary intake by young children in Thailand.

    PubMed

    Nookabkaew, S; Rangkadilok, N; Akib, C A; Tuntiwigit, N; Saehun, J; Satayavivad, J

    2013-01-01

    Elemental concentrations in rice, animal products, eggs, vegetables, fruits, infant formulas and drinking water were determined in 667 food samples randomly collected from local markets, big supermarkets and grocery stores in Bangkok, Thailand, during the period October 2005-August 2008. Samples were digested with nitric acid and analysed by inductively coupled plasma-mass spectrometry. Arsenic and cadmium levels in most foods were below the maximum levels as set by international organisations. Filtered and bottled drinking water, rice, vegetables and banana contained low concentrations of arsenic, cadmium and lead. Non-polished rice had higher magnesium, calcium, manganese, iron and selenium concentrations than polished rice. Banana was a major source for manganese and selenium. Pig kidney and liver contained high levels of arsenic and cadmium. Manganese, cadmium, lead and aluminium concentrations in soybean milk could also be of concern. With respect to food safety for children, the amounts of arsenic and cadmium ingested with poultry, pig liver or rice corresponded to high weekly or monthly intake.

  6. Microbial community response reveals underlying mechanism of industrial-scale manganese sand biofilters used for the simultaneous removal of iron, manganese and ammonia from groundwater.

    PubMed

    Zhang, Yu; Sun, Rui; Zhou, Aijuan; Zhang, Jiaguang; Luan, Yunbo; Jia, Jianna; Yue, Xiuping; Zhang, Jie

    2018-01-08

    Most studies have employed aeration-biofiltration process for the simultaneous removal of iron, manganese and ammonia in groundwater. However, what's inside the "black box", i.e., the potential contribution of functional microorganisms behavior and interactions have seldom been investigated. Moreover, little attention has been paid to the correlations between environmental variables and functional microorganisms. In this study, the performance of industrial-scale biofilters for the contaminated groundwater treatment was studied. The effluent were all far below the permitted concentration level in the current drinking water standard. Pyrosequencing illustrated that shifts in microbial community structure were observed in the microbial samples from different depths of filter. Microbial networks showed that the microbial community structure in the middle- and deep-layer samples was similar, in which a wide range of manganese-oxidizing bacteria was identified. By contrast, canonical correlation analysis showed that the bacteria capable of ammonia-oxidizing and nitrification was enriched in the upper-layer, i.e., Propionibacterium, Nitrosomonas, Nitrosomonas and Candidatus Nitrotoga. The stable biofilm on the biofilter media, created by certain microorganisms from the groundwater microflora, played a crucial role in the simultaneous removal of the three pollutants.

  7. Chemical analyses of stream sediment in the Tar Creek basin of the Picher mining area, northeast Oklahoma

    USGS Publications Warehouse

    Parkhurst, David L.; Doughten, Michael; Hearn,, Paul P.

    1988-01-01

    Chemical analyses are presented for 47 sediment samples from the Tar Creek drainage in the Picher mining area of northeast Oklahoma. The samples were taken in December 1983, June 1984, and June 1985. All of the samples were taken downstream from mine-water discharge points of abandoned lead and zinc mines. The 34 samples taken in December 1983 and June 1984 were analyzed semiquantitatively by emission spectrography for 64 elements and quantitatively for cadmium, copper, iron, manganese, nickel, lead, sulfur, zinc, and organic carbon. The 13 samples taken in June 1985 were analyzed quantitatively for aluminum, cadmium, cobalt, chromium, copper, iron, manganese, molybdenum, nickel, phosphorus, lead, sulfur, silicon, titanium, vanadium, zinc, and organic carbon.

  8. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides.

    PubMed

    Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C

    2003-07-28

    A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate.

  9. Isolation of iron bacteria from terrestrial and aquatic environments

    NASA Astrophysics Data System (ADS)

    Schmidt, Bertram; Szewzyk, Ulrich

    2010-05-01

    Bacteria, which are capable of iron oxidation or at least iron deposition are widely distributed in environments where zones of dissolved ferrous iron and oxygen gradients are overlapping [1]. They take part in the biological cycling of iron and influence other cycles of elements for example carbon [2]. Manganese can be used for similar metabolic purposes as iron, because it can be biologically oxidized by chemolithotrophs or can be reduced by respirating bacteria as well [3, 4]. Bacterial activity is responsible for the accumulation of ferric iron compounds in their surroundings. The formation of bog ore is a well known example for a soil horizon, with an extreme enrichment of biogenic ferric iron [5]. We focused on the isolation of neutrophilic iron bacteria and bacteria capable of manganese oxidation. We used samples from Tierra del Fuego (Argentina) the National Park "Unteres Odertal" (Germany) and Berlin ground water wells. Microscopic examination of the samples revealed a considerable diversity of iron encrusted structures of bacterial origin. Most of these morphologic types are already well known. The taxonomic classification of many of these organisms is based on morphologic features and is not reliable compared to recent methods of molecular biology. That is mainly due to the fact, that most of these bacteria are hardly culturable or do not show their characteristic morphologic features under culture conditions. We established a collection of more than 300 iron depositing strains. Phylogenetic analyses showed that we have many yet uncultured strains in pure culture. We obtained many isolates which form distinct branches within long known iron bacteria groups like the Sphaerotilus-Leptothrix cluster. But some of the strains belong to groups, which have not yet been associated with iron oxidation activity. The strains deposit high amounts of oxidized iron and manganese compounds under laboratory conditions. However it is unclear if these precipitations are

  10. Biodegradation of pharmaceuticals and endocrine disruptors with oxygen, nitrate, manganese (IV), iron (III) and sulfate as electron acceptors

    NASA Astrophysics Data System (ADS)

    Schmidt, Natalie; Page, Declan; Tiehm, Andreas

    2017-08-01

    Biodegradation of pharmaceuticals and endocrine disrupting compounds was examined in long term batch experiments for a period of two and a half years to obtain more insight into the effects of redox conditions. A mix including lipid lowering agents (e.g. clofibric acid, gemfibrozil), analgesics (e.g. diclofenac, naproxen), beta blockers (e.g. atenolol, propranolol), X-ray contrast media (e.g. diatrizoic acid, iomeprol) as well as the antiepileptic carbamazepine and endocrine disruptors (e.g. bisphenol A, 17α-ethinylestradiol) was analyzed in batch tests in the presence of oxygen, nitrate, manganese (IV), iron (III), and sulfate. Out of the 23 selected substances, 14 showed a degradation of > 50% of their initial concentrations under aerobic conditions. The beta blockers propranolol and atenolol and the analgesics pentoxifylline and naproxen showed a removal of > 50% under anaerobic conditions. In particular naproxen proved to be degradable with oxygen and under most anaerobic conditions, i.e. with manganese (IV), iron (III), or sulfate. The natural estrogens estriol, estrone and 17β-estradiol showed complete biodegradation under aerobic and nitrate-reducing conditions, with a temporary increase of estrone during transformation of estriol and 17β-estradiol. Transformation of 17β-estradiol under Fe(III)-reducing conditions resulted in an increase of estriol as well. Concentrations of clofibric acid, carbamazepine, iopamidol and diatrizoic acid, known for their recalcitrance in the environment, remained unchanged.

  11. Using iron fertilizer to control Cd accumulation in rice plants: a new promising technology.

    PubMed

    Shao, GuoSheng; Chen, MingXue; Wang, DanYing; Xu, ChunMei; Mou, RenXiang; Cao, ZhaoYun; Zhang, XiuFu

    2008-03-01

    Effects of two kinds of iron fertilizer, FeSO4 and EDTA.Na2Fe were studied on cadmium accumulation in rice plants with two rice genotypes, Zhongzao 22 and Zhongjiazao 02, with soil culture systems. The results showed that application of iron fertilizers could hardly make adverse effects on plant growth and rice grain yield. Soil application of EDTA.Na2Fe significantly reduced the Cd accumulation in rice roots, shoots and rice grain. Cd concentration in white rice of both rice genotypes in the treatment of soil application of EDTA.Na2Fe was much lower than 0.2 mg/kg, the maximal Cd permission concentration in cereal crop foods in State standard. However, soil application of FeSO4 or foliar application of FeSO4 or EDTA.Na2Fe resulted in the significant increase of Cd accumulation in rice plants including rice grain compared with the control. The results also showed iron fertilizers increased the concentration of iron, copper and manganese element in rice grain and also affected zinc concentration in plants. It may be a new promising way to regulate Cd accumulation in rice grain in rice production through soil application of EDTA.Na2Fe fertilizers to maintain higher content of available iron and ferrous iron in soils.

  12. A theoretical and experimental study of calcium, iron, zinc, cadmium, and sodium ions absorption by aspartame.

    PubMed

    Mahnam, Karim; Raisi, Fatame

    2017-03-01

    Aspartame (L-Aspartyl-L-phenylalanine methyl ester) is a sweet dipeptide used in some foods and beverages. Experimental studies show that aspartame causes osteoporosis and some illnesses, which are similar to those of copper and calcium deficiency. This raises the issue that aspartame in food may interact with cations and excrete them from the body. This study aimed to study aspartame interaction with calcium, zinc, iron, sodium, and cadmium ions via molecular dynamics simulation (MD) and spectroscopy. Following a 480-ns molecular dynamics simulation, it became clear that the aspartame is able to sequester Fe 2+ , Ca 2+ , Cd 2+ , and Zn 2+ ions for a long time. Complexation led to increasing UV-Vis absorption spectra and emission spectra of the complexes. This study suggests a potential risk of cationic absorption of aspartame. This study suggests that purification of cadmium-polluted water by aspartame needs a more general risk assessment.

  13. [Vitamin and mineral supplements in the diet of military personnel: effect on the balance of iron, copper and manganese, immune reactivity and physical work-capacity].

    PubMed

    Zaĭtseva, I P; Nosolodin, V V; Zaĭtsev, O N; Gladkikh, I P; Koznienko, I V; Beliakov, R A; Arshinov, N P

    2012-03-01

    Conducted with the participation of 50 students of military educational study the effect of various vitamin and mineral complexes for the provision by the body naturally iron, copper and manganese on the immune and physical status. Found that diets enriched BMV was accompanied by a significant delay in the micro-elements, mainly iron, which indicates a deficiency of these bioelements in chickens Santo during the summer. Under the influence of vitamin-mineral complexes significantly increased rates of natural and specific immunity. As the delay increases significantly increased iron medical indicators of immunological reaction efficiency and physical performance.

  14. Remediation of lead and cadmium from simulated groundwater in loess region in northwestern China using permeable reactive barrier filled with environmentally friendly mixed adsorbents.

    PubMed

    Fan, Chunhui; Gao, Yalin; Zhang, Yingchao; Dong, Wanqing; Lai, Miao

    2018-01-01

    Permeable reactive barrier (PRB) is potentially effective for groundwater remediation, especially using environmentally friendly mixed fillers in representative areas, such as semi-arid loess region in northwestern China. The mixed materials, including corn straw (agricultural wastes), fly ash (industrial wastes), zeolite synthesized from fly ash (reutilized products), and iron-manganese nodule derived from loess (materials with regional characteristics) in northwestern China, were chosen as PRB media to reduce the contents of lead and cadmium in simulated groundwater. A series of lab-scale column experiments were investigated, and the response surface methodology (RSM) was used to optimize the working process; Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) were applied to further reveal the reaction mechanism. It shows that the purification efficiencies are more acceptable when the concentrations of lead and cadmium are approximately 7 and 0.7 mg/L, respectively, at 25 °C in weakly acidic solution, and functional groups of -OH and C=C play an important role for contaminants removal. The mixed adsorbents used are effective to remove lead and cadmium in groundwater. This is the first report on the removal of lead and cadmium from groundwater in loess region in northwestern China using PRB filled with environmentally friendly mixed adsorbents.

  15. Ion-Selective Deposition of Manganese Sulphate Solution from Trenggalek Manganese Ore by Active Carbon and Sodium Hydroxide

    NASA Astrophysics Data System (ADS)

    Andriyah, L.; Sulistiyono, E.

    2017-02-01

    One of the step in manganese dioxide manufacturing process for battery industry is a purification process of lithium manganese sulphate solution. The elimination of impurities such as iron removal is important in hydrometallurgical processes. Therefore, this paper present the purification results of manganese sulphate solution by removing impurities using a selective deposition method, namely activated carbon adsorption and NaOH. The experimental results showed that the optimum condition of adsorption process occurs on the addition of 5 g adsorbent and the addition of 10 ml NaOH 1 N, processing time of 30 minutes and the best is the activated carbon adsorption of Japan. Because the absolute requirement of the cathode material of lithium ion manganese are free of titanium then of local wood charcoal is good enough in terms of eliminating ions Ti is equal to 70.88%.

  16. The precipitation of aluminum, iron and manganese at the junction of Deer Creek with the Snake River in Summit County, Colorado

    USGS Publications Warehouse

    Theobald, P.K.; Lakin, H.W.; Hawkins, D.B.

    1963-01-01

    The oxidation of disseminated pyrite in relatively acid schists and gneisses of the Snake River drainage basin provides abundant iron sulfate and sulfuric acid to ground and surface water. This acid water dissolves large quantities of many elements, particularly aluminum and surprisingly large quantities of elements, such as magnesium and zinc, not expected to be abundant in the drainage basin. The adjoining drainage to the west, Deer Creek, is underlain by basic rocks, from which the water inherits a high pH. Despite the presence of base- and precious- metal veins in the drainage basin of Deer Creek, it carries less metal than the Snake River. The principal precipitate on the bed of the Snake River is hydrated iron oxide with small quantities of the other metals. In Deer Creek manganese oxide is precipitated with iron oxide and large quantities of other metals are carried down with this precipitate. Below the junction of these streams the pH stabilizes at a near-neutral value. Iron is removed from the Snake River water at the junction, and aluminum is precipitated for some distance downstream. The aluminum precipitate carries down other metals in concentrations slightly less than that in the manganese precipitate on Deer Creek. The natural processes observed in this junction if carried to a larger scale could provide the mechanism described by Ansheles (1927) for the formation of bauxite. In the environment described, geochemical exploration by either water or stream sediment techniques is difficult because of (1) the extreme pH differential between the streams above their junction and (2) the difference in the precipitates formed on the streambeds. ?? 1963.

  17. Bioturbation and Manganese Cycling in Hemipelagic Sediments

    NASA Astrophysics Data System (ADS)

    Aller, R. C.

    1990-06-01

    The activities of infaunal macrobenthos have major influences on the types, rates and distributions of diagenetic reactions involving manganese in relatively carbon-rich deep-sea and nearshore sediments. In some non-sulphidic hemipelagic deposits of the eastern equatorial Pacific (Panama Basin) biogenic reworking drives internal cycles of manganese, which can apparently account for up to ca. 100% of organic carbon oxidation and reduction of O2 supplied (diffusively) to the sea floor. Heterotrophic (carbon-based) manganese reduction is stimulated by simultaneous mixing of reactive organic matter and manganese oxide into suboxic-anoxic deposits. In sulphidic sediments, biogenic reworking must also enhance a lithotrophic pathway (sulphur-based) pathway of manganese reduction by promoting contact of manganese oxides and iron sulphides. Particle reworking dramatically alters the balance between aerobic and anaerobic decomposition pathways, promoting the utilization of O2 in the reoxidaton of reduced metabolites rather than direct oxidation of carbon. Irrigated burrows create microenvironments, which increase manganese reduction-oxidation and deplete Mn2+ from deeper pore waters. This may increase net Mn2+ production rates by removal of metabolites and potential co-precipitants with Mn2+. The occurrence and geometry of manganese oxide encrusted biogenic structures imply specific adaptations of infauna to manganese based microbial activity in hemipelagic sediments like the Panama Basin.

  18. Manganese: it turns iron into steel (and does so much more)

    USGS Publications Warehouse

    Cannon, William F.

    2014-01-01

    Manganese is a common ferrous metal with atomic weight of 25 and the chemical symbol Mn. It constitutes roughly 0.1 percent of the Earth’s crust, making it the 12th most abundant element. Its early uses were limited largely to pigments and oxidants in chemical processes and experiments, but the significance of manganese to human societies exploded with the development of modern steelmaking technology in the 1860s. U.S consumption of manganese is about 500,000 metric tons each year, predominantly by the steel industry. Because manganese is essential and irreplaceable in steelmaking and its global mining industry is dominated by just a few nations, it is considered one of the most critical mineral commodities for the United States.

  19. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing.

    PubMed

    Chou, Da-Tren; Wells, Derrick; Hong, Daeho; Lee, Boeun; Kuhn, Howard; Kumta, Prashant N

    2013-11-01

    The present work provides an assessment of 3-D printed iron-manganese biodegradable scaffolds as a bone scaffold material. Iron-based alloys have been investigated due to their high strength and ability to slowly corrode. Current fabrications of Fe-based materials generate raw material which must be machined into their desired form. By using inkjet 3-D printing, a technique which generates complex, customizable parts from powders mechanically milled Fe-30Mn (wt.%) powder was directly processed into scaffolds. The 3-D printed parts maintained an open porosity of 36.3% and formed a mixed phase alloy of martensitic ε and austenitic γ phases. Electrochemical corrosion tests showed the 3-D printed Fe-Mn to desirably corrode significantly more rapidly than pure iron. The scaffolds exhibited similar tensile mechanical properties to natural bone, which may reduce the risk of stress shielding. Cell viability testing of MC3T3-E1 pre-osteoblast cells seeded directly onto the Fe-Mn scaffolds using the live/dead assay and with cells cultured in the presence of the scaffolds' degradation products demonstrated good in vitro cytocompatibility compared to tissue culture plastic. Cell infiltration into the open pores of the 3-D printed scaffolds was also observed. Based on this preliminary study, we believe that 3-D printed Fe-Mn alloy is a promising material for craniofacial biomaterial applications, and represents an opportunity for other biodegradable metals to be fabricated using this unique method. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Effects of sulfur, zinc, iron, copper, manganese, and boron applications on sunflower yield and plant nutrient concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilton, B.R.; Zubriski, J.C.

    1985-01-01

    Sulfur, zinc, iron, copper, manganese, and boron application did not affect the seed yield or oil percentage of sunflower (Helianthus annuus L.) on both dryland and irrigated soils in North Dakota in 1981. Field averages indicated significant Zn, Mn, and B uptake by sunflower at the 12-leaf stage as a result of fertilization with these elements. Increased Zn uptake was also observed in the uppermost mature leaf at anthesis from zinc fertilization. Although sunflower yield from boron fertilization was not significantly different from the check, a trend was observed in which boron fertilization seemed to decrease sunflower yield. Sunflower yieldsmore » from the boron treatment were the lowest out of seven treatments in three out of four fields. Also, sunflower yield from the boron treatment was significantly lower than both iron and sulfur treatments when all fields were combined.« less

  1. Biodegradation of pharmaceuticals and endocrine disruptors with oxygen, nitrate, manganese (IV), iron (III) and sulfate as electron acceptors.

    PubMed

    Schmidt, Natalie; Page, Declan; Tiehm, Andreas

    2017-08-01

    Biodegradation of pharmaceuticals and endocrine disrupting compounds was examined in long term batch experiments for a period of two and a half years to obtain more insight into the effects of redox conditions. A mix including lipid lowering agents (e.g. clofibric acid, gemfibrozil), analgesics (e.g. diclofenac, naproxen), beta blockers (e.g. atenolol, propranolol), X-ray contrast media (e.g. diatrizoic acid, iomeprol) as well as the antiepileptic carbamazepine and endocrine disruptors (e.g. bisphenol A, 17α-ethinylestradiol) was analyzed in batch tests in the presence of oxygen, nitrate, manganese (IV), iron (III), and sulfate. Out of the 23 selected substances, 14 showed a degradation of >50% of their initial concentrations under aerobic conditions. The beta blockers propranolol and atenolol and the analgesics pentoxifylline and naproxen showed a removal of >50% under anaerobic conditions. In particular naproxen proved to be degradable with oxygen and under most anaerobic conditions, i.e. with manganese (IV), iron (III), or sulfate. The natural estrogens estriol, estrone and 17β-estradiol showed complete biodegradation under aerobic and nitrate-reducing conditions, with a temporary increase of estrone during transformation of estriol and 17β-estradiol. Transformation of 17β-estradiol under Fe(III)-reducing conditions resulted in an increase of estriol as well. Concentrations of clofibric acid, carbamazepine, iopamidol and diatrizoic acid, known for their recalcitrance in the environment, remained unchanged. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Possible roles of manganese redox chemistry in the sulfur cycle

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.

    1985-01-01

    Sulfate reducing bacteria (SRB) are very potent MnO2 reducers by virtue of their sulfide production: H2S reacts rapidly with MnO2 to yield Mn(2), elemental sulfur, and water. In manganese rich zones, Mn cycles rapidly if sulfate is present to drive the reduction and the MnO2 precipitates and sinks into anaerobic zones. The production of sulfide (by organisms requiring organic carbon compounds) to reduce manganese oxides might act to couple the carbon and sulfur cycles in water bodies in which the two cycles are physically separated. Iron has been proposed for this provision of reducing power by (Jorgensen, 1983), but since MnS is soluble and FeS is very insoluble in water, it is equally likely that manganese rather than iron provides the electrons to the more oxidized surface layers.

  3. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wentao; Du, Bojing; Liu, Di

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerancemore » in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.« less

  4. Manganese-induced cadmium stress tolerance in rice seedlings: Coordinated action of antioxidant defense, glyoxalase system and nutrient homeostasis.

    PubMed

    Rahman, Anisur; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    The accumulation of cadmium (Cd) alters different physiological and biochemical attributes that affect plant growth and yield. In our study, we investigated the regulatory role of supplemental manganese (Mn) on hydroponically grown rice (Oryza sativa L. cv. BRRI dhan29) seedlings under Cd-stress conditions. Exposure of 14-d-old seedlings to 0.3mM CdCl 2 for three days caused growth inhibition, chlorosis, nutrient imbalance, and higher Cd accumulation. Higher Cd uptake caused oxidative stress through lipid peroxidation, loss of plasma membrane integrity, and overproduction of reactive oxygen species (ROS) and methylglyoxal (MG). The exogenous application of 0.3mM MnSO 4 to Cd-treated seedlings partly recovered Cd-induced water loss, chlorosis, growth inhibition, and nutrient imbalance by reducing Cd uptake and its further translocation to the upper part of the plant. Supplemental Mn also reduced Cd-induced oxidative damage and lipid peroxidation by improved antioxidant defense and glyoxalase systems through enhancing ROS and MG detoxification, respectively. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  5. Effect of PVC and iron materials on Mn(II) deposition in drinking water distribution systems.

    PubMed

    Cerrato, José M; Reyes, Lourdes P; Alvarado, Carmen N; Dietrich, Andrea M

    2006-08-01

    Polyvinyl chloride (PVC) and iron pipe materials differentially impacted manganese deposition within a drinking water distribution system that experiences black water problems because it receives soluble manganese from a surface water reservoir that undergoes biogeochemical cycling of manganese. The water quality study was conducted in a section of the distribution system of Tegucigalpa, Honduras and evaluated the influence of iron and PVC pipe materials on the concentrations of soluble and particulate iron and manganese, and determined the composition of scales formed on PVC and iron pipes. As expected, total Fe concentrations were highest in water from iron pipes. Water samples obtained from PVC pipes showed higher total Mn concentrations and more black color than that obtained from iron pipes. Scanning electron microscopy demonstrated that manganese was incorporated into the iron tubercles and thus not readily dislodged from the pipes by water flow. The PVC pipes contained a thin surface scale consisting of white and brown layers of different chemical composition; the brown layer was in contact with the water and contained 6% manganese by weight. Mn composed a greater percentage by weight of the PVC scale than the iron pipe scale; the PVC scale was easily dislodged by flowing water. This research demonstrates that interactions between water and the infrastructure used for its supply affect the quality of the final drinking water.

  6. Novel MntR-Independent Mechanism of Manganese Homeostasis in Escherichia coli by the Ribosome-Associated Protein HflX

    PubMed Central

    Kaur, Gursharan; Sengupta, Sandeepan; Kumar, Vineet; Kumari, Aruna; Ghosh, Aditi; Parrack, Pradeep

    2014-01-01

    Manganese is a micronutrient required for activities of several important enzymes under conditions of oxidative stress and iron starvation. In Escherichia coli, the manganese homeostasis network primarily constitutes a manganese importer (MntH) and an exporter (MntP), which are regulated by the MntR dual regulator. In this study, we find that deletion of E. coli hflX, which encodes a ribosome-associated GTPase with unknown function, renders extreme manganese sensitivity characterized by arrested cell growth, filamentation, lower rate of replication, and DNA damage. We demonstrate that perturbation by manganese induces unprecedented influx of manganese in ΔhflX cells compared to that in the wild-type E. coli strain. Interestingly, our study indicates that the imbalance in manganese homeostasis in the ΔhflX strain is independent of the MntR regulon. Moreover, the influx of manganese leads to a simultaneous influx of zinc and inhibition of iron import in ΔhflX cells. In order to review a possible link of HflX with the λ phage life cycle, we performed a lysis-lysogeny assay to show that the Mn-perturbed ΔhflX strain reduces the frequency of lysogenization of the phage. This observation raises the possibility that the induced zinc influx in the manganese-perturbed ΔhflX strain stimulates the activity of the zinc-metalloprotease HflB, the key determinant of the lysis-lysogeny switch. Finally, we propose that manganese-mediated autophosphorylation of HflX plays a central role in manganese, zinc, and iron homeostasis in E. coli cells. PMID:24794564

  7. Water-soluble Manganese and Iron Mesotetrakis(carboxyl)porphyrin: DNA Binding, Oxidative Cleavage, and Cytotoxic Activities.

    PubMed

    Shi, Lei; Jiang, Yi-Yu; Jiang, Tao; Yin, Wei; Yang, Jian-Ping; Cao, Man-Li; Fang, Yu-Qi; Liu, Hai-Yang

    2017-06-29

    Two new water-soluble metal carboxyl porphyrins, manganese (III) meso -tetrakis (carboxyl) porphyrin and iron (III) meso -tetrakis (carboxyl) porphyrin, were synthesized and characterized. Their interactions with ct-DNA were investigated by UV-Vis titration, fluorescence spectra, viscosity measurement and CD spectra. The results showed they can strongly bind to ct-DNA via outside binding mode. Electrophoresis experiments revealed that both complexes can cleave pBR322 DNA efficiently in the presence of hydrogen peroxide, albeit 2-Mn exhibited a little higher efficiency. The inhibitor tests suggest the oxidative DNA cleavage by these two complexes may involve hydroxyl radical active intermediates. Notably, 2-Mn exhibited considerable photocytotoxicity against Hep G2 cell via triggering a significant generation of ROS and causing disruption of MMP after irradiation.

  8. Biosorption of Cadmium and Manganese Using Free Cells of Klebsiella sp. Isolated from Waste Water

    PubMed Central

    Hou, Yunnan; Cheng, Keke; Li, Zehua; Ma, Xiaohui; Wei, Yahong; Zhang, Lei; Wang, Yao

    2015-01-01

    In the present study, we evaluated a bacterium that was isolated from waste water for its ability to take up cadmium and manganese. The strain, identified both biochemically and by its 16S rRNA gene sequence as Klebsiella, was named Yangling I2 and was found to be highly resistant to heavy metals. Surface characterization of the bacterium via SEM revealed gross morphological changes, with cells appearing as biconcave discs after metal exposure rather than their typical rod shape. The effects of pH, temperature, heavy metal concentration, agitation and biomass concentration on the uptake of Cd(II) and Mn(II) was measured using atomic absorption spectrophotometry. The results showed that the biosorption was most affected by pH and incubation temperature, being maximized at pH 5.0 and 30°C, with absorption capacities of 170.4 and 114.1 mg/g for Cd(II) and Mn(II), respectively. Two models were investigated to compare the cells’ capacity for the biosorption of Cd and Mn, and the Langmuir model based on fuzzy linear regression was found to be close to the observed absorption curves and yield binding constants of 0.98 and 0.86 for Cd and Mn, respectively. This strain of Klebsiella has approximately ten times the absorption capacity reported for other strains and is promising for the removal of heavy metals from waste water. PMID:26505890

  9. Iron, cadmium, and chromium in seagrass (Thalassia testudinum) from a coastal nature reserve in karstic Yucatán.

    PubMed

    Avelar, Mayra; Bonilla-Heredia, Blanca; Merino-Ibarra, Martín; Herrera-Silveira, Jorge A; Ramirez, Javier; Rosas, Humberto; Valdespino, Job; Carricart-Ganivet, Juan P; Martínez, Ana

    2013-09-01

    The management of protected areas in karstic regions is a challenge because flooded cave systems form there and provide underground hydrological conducts that may link different zones. As a consequence, affectations to the protected areas can possibly occur as a consequence of human activities in remote areas and may therefore pass undetected. Thus, the monitoring of possible contaminants in these regions is becoming imperative. In this work, we analyze the concentration of essential (iron) and non-essential metals (cadmium and chromium) in the seagrass Thalassia testudinum that grows in Yalahau Lagoon, located in a near-to-pristine protected area of the Yucatán Peninsula, close to the rapidly developing touristic belt of the Mexican Caribbean. Salinity and silicate patterns show that Yalahau is an evaporation lagoon, where groundwater discharge is important. High iron (> 400 μg/g), cadmium (>4 μg/g), and chromium (≈ 1 μg/g) concentrations were found in the area of highest groundwater input of the lagoon. High levels (5.1 μg/g) were also found near the town dump. In the rest of the sampling sites, metal concentrations remained near to background levels as estimated from other works. Temporal changes of concentrations in the seagrass tissues show also a local input and an input from the groundwater that could provoke an environmental problem in the Yalahau Lagoon in the near future.

  10. Heavy metal contaminants in tissues of the garfish, Belone belone L., 1761, and the bluefish, Pomatomus saltatrix L., 1766, from Turkey waters.

    PubMed

    Türkmen, Aysun; Tepe, Yalçin; Türkmen, Mustafa; Mutlu, Ekrem

    2009-01-01

    Levels of contaminants in fish are of particular interest because of the potential risk to humans who consume them. Fish samples were collected through the coastal waters of Turkey and the contents of cadmium, cobalt, chrome, copper, iron, manganese, nickel, zinc and lead in the liver and muscle tissues were determined. Among the metals analyzed, copper, zinc and iron were the most abundant in the different tissues while cadmium and lead were the least abundant both in Belone belone and Pomatomus saltatrix. Metal concentrations in muscles of fish species were found 0.01-0.38 mg kg(-1) for cadmium, 0.01-0.53 mg kg(-1) for cobalt, 0.05-1.87 mg kg(-1) for chromium, 0.21-5.89 mg kg(-1) for copper, 9.99-43.3 mg kg(-1) for iron, 0.14-1.33 mg kg(-1) for manganese, 0.06-4.70 mg kg(-1) for nickel, 0.09-0.81 mg kg(-1) for lead, 3.85-15.9 mg kg(-1) for zinc, respectively. Regional changes in metal concentration were observed in the tissues of both species, but these variations may not influence consumption advisories.

  11. Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn-MnO2 and Zn-C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid

    NASA Astrophysics Data System (ADS)

    Sobianowska-Turek, A.; Szczepaniak, W.; Maciejewski, P.; Gawlik-Kobylińska, M.

    2016-09-01

    The article discusses the current situation of the spent batteries and portable accumulators management. It reviews recycling technologies of the spent batteries and portable accumulators which are used in the manufacturing installations in the world. Also, it presents the authors' research results on the reductive acidic leaching of waste material of the zinc-carbon batteries (Zn-C) and zinc-manganese batteries (alkaline Zn-MnO2) delivered by a company dealing with mechanical treatment of this type of waste stream. The research data proved that the reductive acidic leaching (H2SO4 + C2H2O4) of the battery's black mass allows to recover 85.0% of zinc and 100% of manganese. Moreover, it was found that after the reductive acidic leaching it is possible to recover nearly 100% of manganese, iron, cadmium, and chromium, 98.0% of cobalt, 95.5% of zinc, and 85.0% of copper and nickel from the solution with carbonate method. On the basis of the results, it is possible to assume that the carbonate method can be used for the preparation of manganese-zinc ferrite.

  12. Correlations between lead, cadmium, copper, zinc, and iron concentrations in frozen tuna fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galindo, L.; Hardisson, A.; Montelongo, F.G.

    1986-04-01

    The presence of metallic pollutants in marine ecosystems has promoted wide research plans in order to evaluate pollution levels in marine organisms. However, little is known concerning environmental and physiological processes that regulate the concentration of trace metals in marine organisms. Even though the toxicity of lead and cadmium is well established, copper, zinc and iron are considered as essential elements for mammals. Little is known about heavy metals, other than mercury, concentrations in fresh and frozen tuna fish. Fifty samples obtained at the entrance of a canning factory in Santa Cruz de Tenerife (Canary Islands), were analyzed by atomicmore » absorption spectrophotometry. Results were treated by applying the Statistical Package for the Social Sciences compiled and linked in the software of a Digital VAX/VMS 11/780 computer.« less

  13. Chemiluminescent photon yields measured in the flame photometric detector on chromatographic peaks containing sulfur, phosphorus, manganese, ruthenium, iron or selenium

    NASA Astrophysics Data System (ADS)

    Aue, Walter A.; Singh, Hameraj

    2001-05-01

    Photon yields — the number of photons generated per analyte atom — are of obvious analytical and mechanistic importance in flame chemiluminescence. However, such numbers are unavailable for spectral detectors in gas chromatography (as well as for most conventional spectroscopic systems). In this study, photon yields have been determined for the chemiluminescence of several elements in the flame photometric detector (FPD). The number of photons generated per atom of FPD-active element was 2×10 -3 for sulfur (emitter S 2*, test compound thianaphthene), 3×10 -3 for phosphorus [HPO*, tris(pentafluorophenyl)phosphine], 8×10 -3 for manganese (Mn*, methylcyclopentadienyl manganese tricarbonyl), 3×10 -3 for ruthenium (emitter unknown, ruthenocene), 4×10 -5 for iron (Fe*, ferrocene) and 2×10 -4 for selenium (Se 2*, dimethylbenzselenazole). Total flows, maximum thermocouple temperatures, and visible flame volumes have also been estimated for each element under signal/noise-optimized conditions in order to provide a database for kinetic calculations.

  14. Manganese oxide shuttling in pre-GOE oceans - evidence from molybdenum and iron isotopes

    NASA Astrophysics Data System (ADS)

    Kurzweil, Florian; Wille, Martin; Gantert, Niklas; Beukes, Nicolas J.; Schoenberg, Ronny

    2016-10-01

    The local occurrence of oxygen-rich shallow marine water environments has been suggested to significantly predate atmospheric oxygenation, which occurred during the Great Oxidation Event (GOE) ca. 2.4 billion years ago. However, the potential influence of such 'oxygen oases' on the mobility, distribution and isotopic composition of redox sensitive elements remains poorly understood. Here, we provide new molybdenum and iron isotopic data from shallow marine carbonate and silicate iron formations of the Koegas Subgroup, South Africa, that confirm local ocean redox stratification prior to the GOE. Mn concentrations correlate negatively with both δ98 Mo and δ56 Fe values, which highlights the substantial role of particulate manganese for the cycling of Mo and Fe in the Paleoproterozoic oceans. Based on these trends we propose that pore water molybdate was recharged (1) by the diffusional transport of seawater molybdate with high δ98 Mo and (2) by the re-liberation of adsorbed molybdate with low δ98 Mo during Mn oxide dissolution within the sediment. The relative contribution of isotopically light Mo is highest close to a Mn chemocline, where the flux of Mn oxides is largest, causing the negative correlation of Mn concentrations and δ98 Mo values in the Koegas sediments. The negative correlation between δ56 Fe values and Mn concentrations is likely related to Fe isotope fractionation during Fe(II) oxidation by Mn oxides, resulting in lower δ56 Fe values in the uppermost water column close to a Mn chemocline. We argue that the preservation of these signals within Paleoproterozoic sediments implies the existence of vertically extended chemoclines with a smoother gradient, probably as a result of low atmospheric oxygen concentrations. Furthermore, we suggest that abiotic oxidation of Fe(II) by a Mn oxide particle shuttle might have promoted the deposition of the Koegas iron formations.

  15. Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency.

    PubMed

    Bjørklund, Geir; Aaseth, Jan; Skalny, Anatoly V; Suliburska, Joanna; Skalnaya, Margarita G; Nikonorov, Alexandr A; Tinkov, Alexey A

    2017-05-01

    Iron (Fe) deficiency is considered as the most common nutritional deficiency. Iron deficiency is usually associated with low Fe intake, blood loss, diseases, poor absorption, gastrointestinal parasites, or increased physiological demands as in pregnancy. Nutritional Fe deficiency is usually treated with Fe tablets, sometimes with Fe-containing multimineral tablets. Trace element interactions may have a significant impact on Fe status. Existing data demonstrate a tight interaction between manganese (Mn) and Fe, especially in Fe-deficient state. The influence of Mn on Fe homeostasis may be mediated through its influence on Fe absorption, circulating transporters like transferrin, and regulatory proteins. The existing data demonstrate that the influence of zinc (Zn) on Fe status may be related to their competition for metal transporters. Moreover, Zn may be involved in regulation of hepcidin production. At the same time, human data on the interplay between Fe and Zn especially in terms of Fe-deficiency and supplementation are contradictory, demonstrating both positive and negative influence of Zn on Fe status. Numerous data also demonstrate the possibility of competition between Fe and chromium (Cr) for transferrin binding. At the same time, human data on the interaction between these metals are contradictory. Therefore, while managing hypoferremia and Fe-deficiency anemia, it is recommended to assess the level of other trace elements in parallel with indices of Fe homeostasis. It is supposed that simultaneous correction of trace element status in Fe deficiency may help to decrease possible antagonistic or increase synergistic interactions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils.

    PubMed

    Yang, Yongjie; Chen, Jiangmin; Huang, Qina; Tang, Shaoqing; Wang, Jianlong; Hu, Peisong; Shao, Guosheng

    2018-02-01

    Cadmium (Cd) accumulation in rice is strongly controlled by liming, but information on the use of liming to control Cd accumulation in rice grown in slightly acidic soils is inconsistent. Here, pot experiments were carried out to investigate the mechanisms of liming on Cd accumulation in two rice varieties focusing on two aspects: available/exchangeable Cd content in soils that were highly responsive to liming, and Cd uptake and transport capacity in the roots of rice in terms of Cd accumulation-relative gene expression. The results showed that soil availability and exchangeable iron, manganese, zinc and Cd contents decreased with increased liming, and that genes related to Cd uptake (OsNramp5 and OsIRT1) were sharply up-regulated in the roots of the two rice varieties. Thus, iron, manganese, zinc and Cd contents in rice plants increased under low liming applications but decreased in response to high liming applications. However, yield and rice quantities were only slightly affected. These results indicated that Cd accumulation in rice grown in slightly acidic soils presents a contradictory dynamic equilibrium between Cd uptake capacity by roots and soil Cd immobilisation in response to liming. The enhanced Cd uptake capacity under low liming dosages increases risks to human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Manganese deposition in drinking water distribution systems.

    PubMed

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Redox dynamics of manganese as a mitochondrial life-death switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Matthew Ryan; Fernandes, Jolyn; Go, Young-Mi

    Sten Orrenius, M.D., Ph.D., pioneered many areas of cellular and molecular toxicology and made seminal contributions to our knowledge of oxidative stress and glutathione (GSH) metabolism, organellar functions and Ca{sup +2}-dependent mechanisms of cell death, and mechanisms of apoptosis. On the occasion of his 80{sup th} birthday, we summarize current knowledge on redox biology of manganese (Mn) and its role in mechanisms of cell death. Mn is found in all organisms and has critical roles in cell survival and death mechanisms by regulating Mn-containing enzymes such as manganese superoxide dismutase (SOD2) or affecting expression and activity of caspases. Occupational exposuresmore » to Mn cause “manganism”, a Parkinson's disease-like condition of neurotoxicity, and experimental studies show that Mn exposure leads to accumulation of Mn in the brain, especially in mitochondria, and neuronal cell death occurs with features of an apoptotic mechanism. Interesting questions are why a ubiquitous metal that is essential for mitochondrial function would accumulate to excessive levels, cause increased H{sub 2}O{sub 2} production and lead to cell death. Is this due to the interactions of Mn with other essential metals, such as iron, or with toxic metals, such as cadmium? Why is the Mn loading in the human brain so variable, and why is there such a narrow window between dietary adequacy and toxicity? Are non-neuronal tissues similarly vulnerable to insufficiency and excess, yet not characterized? We conclude that Mn is an important component of the redox interface between an organism and its environment and warrants detailed studies to understand the role of Mn as a mitochondrial life-death switch. - Highlights: • Either insufficient or excess manganese activates mitochondria-mediated cell death. • The optimal healthy Mn exposure window is very narrow. • Mitochondrial H{sub 2}O{sub 2} production depends on Mn across physiologic to toxicologic range. • Integrative

  19. Material and detector properties of cadmium manganese telluride (Cd 1-xMn xTe) crystals grown by the modified floating-zone method

    DOE PAGES

    Hossain, A.; Gu, G. D.; Bolotnikov, A. E.; ...

    2014-12-24

    We demonstrated the material- and radiation-detection properties of cadmium manganese telluride (Cd 1-xMn xTe; x=0.06), a wide-band-gap semiconductor crystal grown by the modified floating-zone method. We investigated the presence of various bulk defects, such as Te inclusions, twins, and dislocations of several as-grown indium-doped Cd 1-xMn xTe crystals using different techniques, viz., IR transmission microscopy, and chemical etching. We then fabricated four planar detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Thus, our experimental results show that CMT crystals grown by the modified floating zone method apparently are freemore » from Te inclusions. However, we still need to optimize our growth parameters to attain high-resistivity, large-volume single-crystal CdMnTe.« less

  20. Sorption of Ferric Iron from Ferrioxamine B to Synthetic and Biogenic Layer Type Manganese Oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, O.; John, B.; Sposito, G.

    2006-12-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effects of predominantly Mn(IV) oxides, we studied the sorption reaction of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(III, IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over at pH 8. After 72 hours equilibration time, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the EXAFS spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to into the mineral structure at multiple sites with no evidence of DFOB complexation, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron in marine and terrestrial environments.

  1. Levels and predictors of airborne and internal exposure to manganese and iron among welders.

    PubMed

    Pesch, Beate; Weiss, Tobias; Kendzia, Benjamin; Henry, Jana; Lehnert, Martin; Lotz, Anne; Heinze, Evelyn; Käfferlein, Heiko Udo; Van Gelder, Rainer; Berges, Markus; Hahn, Jens-Uwe; Mattenklott, Markus; Punkenburg, Ewald; Hartwig, Andrea; Brüning, Thomas

    2012-01-01

    We investigated airborne and internal exposure to manganese (Mn) and iron (Fe) among welders. Personal sampling of welding fumes was carried out in 241 welders during a shift. Metals were determined by inductively coupled plasma mass spectrometry. Mn in blood (MnB) was analyzed by graphite furnace atom absorption spectrometry. Determinants of exposure levels were estimated with multiple regression models. Respirable Mn was measured with a median of 62 (inter-quartile range (IQR) 8.4-320) μg/m(3) and correlated with Fe (r=0.92, 95% CI 0.90-0.94). Inhalable Mn was measured with similar concentrations (IQR 10-340 μg/m(3)). About 70% of the variance of Mn and Fe could be explained, mainly by the welding process. Ventilation decreased exposure to Fe and Mn significantly. Median concentrations of MnB and serum ferritin (SF) were 10.30 μg/l (IQR 8.33-13.15 μg/l) and 131 μg/l (IQR 76-240 μg/l), respectively. Few welders were presented with low iron stores, and MnB and SF were not correlated (r=0.07, 95% CI -0.05 to 0.20). Regression models revealed a significant association of the parent metal with MnB and SF, but a low fraction of variance was explained by exposure-related factors. Mn is mainly respirable in welding fumes. Airborne Mn and Fe influenced MnB and SF, respectively, in welders. This indicates an effect on the biological regulation of both metals. Mn and Fe were strongly correlated, whereas MnB and SF were not, likely due to higher iron stores among welders.

  2. Biological monitoring of heavy metal contaminations using owls.

    PubMed

    Kim, Jungsoo; Oh, Jong-Min

    2012-03-01

    Iron, manganese, copper, lead and cadmium were measured in the livers, muscles, kidneys and bones of Eurasian Eagle Owls (Bubo bubo), Brown Hawk Owls (Nixos scutulata) and Collared Scops Owls (Otus lempiji) from Korea. Iron concentrations by tissue within species did not differ, but there were significant differences among tissues across all species. Manganese and copper concentrations in muscles, kidneys and bones, but not livers, differed among species and also differed among tissues in the three owl species. We suggest that manganese and copper concentrations from this study were far below the level associated with their toxicity. Lead concentrations significantly differed among all species for livers and bones, and among tissues for each species. Cadmium concentrations were significantly different among species for all tissues and among tissues in Eurasian Eagle Owls and Collared Scops Owls. For most samples, lead concentrations in livers and bones, and cadmium in livers and kidneys, were within the background levels for wild birds. For some Eurasian Eagle Owls and Collared Scops Owls, lead concentrations were at an acute exposure level, whilst lead concentrations were at a chronic exposure level in Brown Hawk Owls. Cadmium concentrations were at a chronic exposure level in all three owl species. Acute and chronic poisoning was significantly correlated between indicator tissues. We suggest that lead and cadmium contamination in Eurasian Eagle Owls may reflect a Korean source, Brown Hawk Owls may reflect Korean and wintering sites, and Collared Scops Owls may reflect breeding and/or wintering sites. This journal is © The Royal Society of Chemistry 2012

  3. Role of the node in controlling traffic of cadmium, zinc, and manganese in rice

    PubMed Central

    Yamaguchi, Noriko; Ishikawa, Satoru; Abe, Tadashi; Baba, Koji; Terada, Yasuko

    2012-01-01

    Heavy metals are transported to rice grains via the phloem. In rice nodes, the diffuse vascular bundles (DVBs), which enclose the enlarged elliptical vascular bundles (EVBs), are connected to the panicle and have a morphological feature that facilitates xylem-to-phloem transfer. To find a mechanism for restricting cadmium (Cd) transport into grains, the distribution of Cd, zinc (Zn), manganese (Mn), and sulphur (S) around the vascular bundles in node I (the node beneath the panicle) of Oryza sativa ‘Koshihikari’ were compared 1 week after heading. Elemental maps of Cd, Zn, Mn, and S in the vascular bundles of node I were obtained by synchrotron micro-X-ray fluorescence spectrometry and electron probe microanalysis. In addition, Cd K-edge microfocused X-ray absorption near-edge structure analyses were used to identify the elements co-ordinated with Cd. Both Cd and S were mainly distributed in the xylem of the EVB and in the parenchyma cell bridge (PCB) surrounding the EVB. Zn accumulated in the PCB, and Mn accumulated around the protoxylem of the EVB. Cd was co-ordinated mainly with S in the xylem of the EVB, but with both S and O in the phloem of the EVB and in the PCB. The EVB in the node retarded horizontal transport of Cd toward the DVB. By contrast, Zn was first stored in the PCB and then efficiently transferred toward the DVB. Our results provide evidence that transport of Cd, Zn, and Mn is differentially controlled in rice nodes, where vascular bundles are functionally interconnected. PMID:22291135

  4. Transformations of Heavy Metals and Plant Nutrients in Dredged Sediments as Affected by Oxidation Reduction Potential and pH. Volume 1. Literature Review

    DTIC Science & Technology

    1977-05-01

    895-896 (1974). 191. Fagerstrom, T., and Jernelov, A. "Formation of Methyl Mercury from Pure Mercuric Sulphide in Aerobic Organic Sediment." Water...was available. The toxic and nutrient elements included are lead, cadmium, mercury , arsenic, selenium, copper, zinc, manganese, iron, nitrogen...on the exchange of these materials between sediment and water. The toxic and nutrient elements included are lead, cadmium, mercury , ar- senic

  5. Redox dynamics of manganese as a mitochondrial life-death switch

    PubMed Central

    Smith, Matthew Ryan; Fernandes, Jolyn; Go, Young-Mi; Jones, Dean P.

    2017-01-01

    Sten Orrenius, M.D., Ph.D., pioneered many areas of cellular and molecular toxicology and made seminal contributions to our knowledge of oxidative stress and glutathione (GSH) metabolism, organellar functions and Ca+2-dependent mechanisms of cell death, and mechanisms of apoptosis. On the occasion of his 80th birthday, we summarize current knowledge on redox biology of manganese (Mn) and its role in mechanisms of cell death. Mn is found in all organisms and has critical roles in cell survival and death mechanisms by regulating Mn-containing enzymes such as manganese superoxide dismutase (SOD2) or affecting expression and activity of caspases. Occupational exposures to Mn cause “manganism”, a Parkinson's disease-like condition of neurotoxicity, and experimental studies show that Mn exposure leads to accumulation of Mn in the brain, especially in mitochondria, and neuronal cell death occurs with features of an apoptotic mechanism. Interesting questions are why a ubiquitous metal that is essential for mitochondrial function would accumulate to excessive levels, cause increased H2O2 production and lead to cell death. Is this due to the interactions of Mn with other essential metals, such as iron, or with toxic metals, such as cadmium? Why is the Mn loading in the human brain so variable, and why is there such a narrow window between dietary adequacy and toxicity? Are non-neuronal tissues similarly vulnerable to insufficiency and excess, yet not characterized? We conclude that Mn is an important component of the redox interface between an organism and its environment and warrants detailed studies to understand the role of Mn as a mitochondrial life-death switch. PMID:28212723

  6. Induction of reactivation of herpes simplex virus in murine sensory ganglia in vivo by cadmium.

    PubMed Central

    Fawl, R L; Roizman, B

    1993-01-01

    Herpes simplex viruses maintained in a latent state in sensory neurons in mice do not reactivate spontaneously, and therefore the factors or procedures which cause the virus to reactivate serve as a clue to the mechanisms by which the virus is maintained in a latent state. We report that cadmium sulfate induces latent virus to reactivate in 75 to 100% of mice tested. The following specific findings are reported. (i) The highest frequency of induction was observed after two to four daily administrations of 100 micrograms of cadmium sulfate. (ii) Zinc, copper, manganese, or nickel sulfate administered in equimolar amounts under the same regimen did not induce viral reactivation; however, zinc sulfate in molar ratios 25-fold greater than those of cadmium induced viral replication in 2 of 16 ganglia tested. (iii) Administration of zinc, nickel, or manganese prior to the cadmium sulfate reduced the incidence of ganglia containing infectious virus. (iv) Administration of cadmium daily during the first week after infection and at 2-day intervals to 13 days after infection resulted in the recovery from ganglia of infectious virus in titers 10- to 100-fold higher than those obtained from animals given saline. Moreover, infectious virus was recovered as late as 11 days after infection compared with 6 days in mice administered saline. (v) Administration of cadmium immediately after infection or repeatedly after establishment of latency did not exhaust the latent virus harbored by sensory neurons, inasmuch as the fraction of ganglia of mice administered cadmium and yielding infectious virus was similar to that observed in mice treated with saline. We conclude that induction of cadmium tolerance precludes reactivation of latent virus. If the induction of metallothionein genes was the sole factor required to cause reactivation of latent virus, it would have been expected that all metals which induce metallothioneins would also induce reactivation, which was not observed. The

  7. RESPIROMETRY AS A TOOL TO DETERMINE METAL TOXICITY IN A SULFATE REDUCING BACTERIAL CULTURE

    EPA Science Inventory

    A novel method under development for treatment of acid mine drainage waste uses biologically- generated hydrogen sulfide (H2S) to precipitate the metals in acid mine drainage (principally zinc, copper, aluminum, nickel, cadmium, arsenic, manganese, iron, and cobalt). The insolub...

  8. USE OF HYDROGEN RESPIROMETRY TO DETERMINE METAL TOXICITY TO SULFATE REDUCING BACTERIA

    EPA Science Inventory

    Acid mine drainage (AMD), an acidic metal-bearing wastewater poses a severe pollution problem attributed to post-mining activities. The metals (metal sulfates) encountered in AMD and considered of concern for risk assessment are: arsenic, cadmium, aluminum, manganese, iron, zinc ...

  9. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, Jessica N.; John, Seth G.; Marsay, Christopher M.; Hoffman, Colleen L.; Nicholas, Sarah L.; Toner, Brandy M.; German, Christopher R.; Sherrell, Robert M.

    2017-02-01

    Hydrothermally sourced dissolved metals have been recorded in all ocean basins. In the oceans' largest known hydrothermal plume, extending westwards across the Pacific from the Southern East Pacific Rise, dissolved iron and manganese were shown by the GEOTRACES program to be transported halfway across the Pacific. Here, we report that particulate iron and manganese in the same plume also exceed background concentrations, even 4,000 km from the vent source. Both dissolved and particulate iron deepen by more than 350 m relative to 3He--a non-reactive tracer of hydrothermal input--crossing isopycnals. Manganese shows no similar descent. Individual plume particle analyses indicate that particulate iron occurs within low-density organic matrices, consistent with its slow sinking rate of 5-10 m yr-1. Chemical speciation and isotopic composition analyses reveal that particulate iron consists of Fe(III) oxyhydroxides, whereas dissolved iron consists of nanoparticulate Fe(III) oxyhydroxides and an organically complexed iron phase. The descent of plume-dissolved iron is best explained by reversible exchange onto slowly sinking particles, probably mediated by organic compounds binding iron. We suggest that in ocean regimes with high particulate iron loadings, dissolved iron fluxes may depend on the balance between stabilization in the dissolved phase and the reversibility of exchange onto sinking particles.

  10. Bioaccumulation of manganese and its toxicity in feral pigeons (Columba livia) exposed to manganese oxide dust (Mn{sub 3}O{sub 4})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra, P.; Chakrabarti, S.; Tounkara, R.

    1998-11-01

    Manganese tetroxide (Mn{sub 3}O{sub 4}) is a product from the combustion of methylcyclopentadienyl manganese tricarbonyl. Exposure to high levels of manganese can lead to serious health effects especially to the central nervous and respiratory systems. Very few studies on the effects of long-term low level exposure to Mn{sub 3}O{sub 4} have been reported. The present study was therefore conducted to examine the bioaccumulation and toxicity of manganese in various organs of feral pigeons (Columba kivia) when exposed to low levels of Mn{sub 3}O{sub 4} via inhalation and hence to find any possible relationship between these two parameters. A total ofmore » 22 pigeons was exposed to 239 {micro}g/m{sup 3} of manganese for 7 h/day, 5 days/week for 5, 9, and 13 consecutive weeks. Manganese concentrations in various tissues, e.g., brain (mesencephalon), lung, liver, intestine, pancreas, kidney, muscle, bone, and whole blood, were measured by neutron activation analysis. Various biochemical parameters in blood, e.g., hematocrit, total proteins, glucose, uric acid, alinine aminotransferase, total iron, blood urea nitrogen and triglycerides, were also measured.« less

  11. Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins.

    PubMed

    Rouault, Tracey A; Zhang, De-Liang; Jeong, Suh Young

    2009-12-01

    Maintenance of appropriate iron homeostasis in the brain is important, but the mechanisms involved in brain iron uptake are incompletely understood. Here, we have analyzed where messenger RNAs that encode iron transport proteins are expressed in the brain, using the Allen Brain atlas, and we conclude that several important iron transporters are highly expressed in the choroid plexus. Based on recent estimates of the surface area of the choroid plexus and on MRI imaging studies of manganese uptake in the brain, we propose that the choroid plexus may have a much greater role than has been previously appreciated in brain iron transport.

  12. Corrosion-induced release of the main alloying constituents of manganese-chromium stainless steels in different media.

    PubMed

    Herting, Gunilla; Wallinder, Inger Odnevall; Leygraf, Christofer

    2008-09-01

    The main focus of this paper is the assessment of release rates of chromium, nickel, iron and manganese from manganese-chromium stainless steel grades of low nickel content. The manganese content varied between 9.7 and 1.5 wt% and the corresponding nickel content between 1 and 5 wt%. All grades were exposed to artificial rain and two were immersed in a synthetic body fluid of similar pH but of different composition and exposure conditions. Surface compositional studies were performed using X-ray photoelectron spectroscopy (XPS) in parallel to correlate the metal release process with changes in surface oxide properties. All grades, independent of media, revealed a time-dependent metal release process with a preferential low release of iron and manganese compared to nickel and chromium while the chromium content of the surface oxide increased slightly. Manganese was detected in the surface oxide of all grades, except the grade of the lowest manganese bulk content. No nickel was observed in the outermost surface oxide. Stainless steel grades of the lowest chromium content (approximately 16 wt%) and highest manganese content (approximately 7-9 wt%), released the highest quantity of alloy constituents in total, and vice versa. No correlation was observed between the release rate of manganese and the alloy composition. Released main alloy constituents were neither proportional to the bulk alloy composition nor to the surface oxide composition.

  13. Manganese

    MedlinePlus

    ... de Manganèse, Dioxyde de Manganèse, Gluconate de Manganèse, Glycérophosphate de Manganèse, Manganèse, Manganese Amino Acid Chelate, Manganese ... Chloridetetrahydrate, Manganese Citrate, Manganese Dioxide, Manganese ... Sulfate, Manganese Sulfate Monohydrate, Manganese Sulfate Tetrahydrate, ...

  14. Manganese micro-nodules on ancient brick walls.

    PubMed

    López-Arce, P; García-Guinea, J; Fierro, J L G

    2003-01-20

    Romans, Jews, Arabs and Christians built the ancient city of Toledo (Spain) with bricks as the main construction material. Manganese micro-nodules (circa 2 microm in diameter) have grown under the external bio-film surface of the bricks. Recent anthropogenic activities such as industrial emissions, foundries, or traffic and housing pollution have further altered these old bricks. The energy-dispersive X-ray microanalyses (XPS) of micro-nodules show Al, Si, Ca, K, Fe and Mn, with some carbon species. Manganese atoms are present only as Mn(4+) and iron as Fe(3+) (FeOOH-Fe(2)O(3) mixtures). The large concentration of alga biomass of the River Tagus and the Torcón and Guajaraz reservoirs suggest manganese micro-nodules are formed either from water solutions rich in anthropogenic MnO(4)K in a reduction environment (from Mn(7+) to Mn(4+)) or by oxidation mechanisms from dissolved Mn(2+) (from Mn(2+) to Mn(4+)) linked to algae biofilm onto the ancient brick surfaces. Ancient wall surfaces were also studied by scanning electron microscopy (SEM-EDS) and X-ray diffraction (XRD). Chemical and biological analyses of the waters around Toledo are also analysed for possible sources of manganese. Manganese micro-nodules on ancient brick walls are good indicators of manganese pollution. Copyright 2002 Elsevier Science B.V.

  15. [Effect of selenium on the uptake and translocation of manganese, iron, phosphorus and selenium in rice (Oryza sativa L.)].

    PubMed

    Hu, Ying; Huang, Yi-Zong; Huang, Yan-Chao; Liu, Yun-Xia; Liang, Jian-Hong

    2013-10-01

    A pot experiment was conducted to clarify the effect of selenium on the uptake and translocation of manganese (Mn), iron (Fe) , phosphorus (P) and selenium (Se) in rice ( Oryza sativa L.). The results showed that addition of Se led to the significant increase of Se concentration in iron plaque on the root surface, root, shoot, husk and brown rice, and significant decrease of Mn concentration in shoot, husk and brown rice. At the Se concentrations of 0.5 and 1.0 mg.kg-1 in soil, Mn concentrations in rice shoot decreased by 32. 2% and 35.0% respectively, in husk 22.0% and 42.6% , in brown rice 27.5% and 28.5% , compared with the Se-free treatment. There was no significant effect of Se on the P and Fe concentrations in every parts of rice, except for Fe concentrations in husk. The translocation of P and Fe from iron plaque, root, shoot and husk to brown rice was not significantly affected by Se addition, but Mn translocation from iron plaque and root to brown rice was significantly inhibited by Se addition. Addition of 1.0 mg.kg-1. Se resulted in the decrease of translocation factor from iron plaque and root to brown rice by 38.9% and 37.9%, respectively, compared with the control treatment. The distribution ratios of Mn, Fe, P and Se in iron plaque, root, shoot, husk and brown rice were also affected by Se addition. The results indicated that Mn uptake, accumulation and translocation in rice could be decreased by the addition of Se in soil, therefore, Se addition could reduce the Mn harm to human health through food chain.

  16. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. II. SEVENTEEN TRACE ELEMENTS IN FOUR NEW JERSEY COMMUNITIES (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...

  17. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. III. SEVENTEEN TRACE ELEMENTS IN BIRMINGHAM, ALABAMA AND CHARLOTTE, NORTH CAROLINA (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron, (B), cadmium, (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and Zinc (Zn) - were measured in human s...

  18. Predatory insects as bioindicators of heavy metal pollution.

    PubMed

    Nummelin, Matti; Lodenius, Martin; Tulisalo, Esa; Hirvonen, Heikki; Alanko, Timo

    2007-01-01

    Heavy metal concentrations of different predatory insects were studied near by a steel factory and from control sites. Waterstriders (Gerridae), dragon fly larvae (Odonata), antlion larvae (Myrmeleontidae) and ants (Formicidae) were analyzed by AAS. In most cases the metal concentrations were higher near the factory, but e.g. waterstriders had higher cadmium concentrations in control area. Discriminant analysis clearly reveals that all these insect groups can be used as heavy metal indicators. However, the commonly used ants were the least effective in indicating the differences between the factory and control sites. Waterstriders are good in detecting differences in iron and manganese, but seem to be poor in accumulating nickel and lead. Antlions are efficient in detecting differences in iron. Antlions and ants are effective in accumulating manganese; as well antlions are efficient in accumulating cadmium. Waterstriders are poor in accumulating lead, but antlions and ants are effective.

  19. Thermomagnetic identification of manganese and iron minerals present in soils and industrial dusts

    NASA Astrophysics Data System (ADS)

    Wawer, Małgorzata; Rachwał, Marzena; Jabłońska, Mariola; Krzykawski, Tomasz; Magiera, Tadeusz

    2017-04-01

    Many industries (e.g. metallurgy, power, cement, and coking plants) constitute a sources of industrial dusts containing technogenic magnetic particles (TMP). TMP are mostly iron oxides with ferrimagnetic or antiferromagnetic properties, therefore their presence in dusts, soils and sediments can be easily detected by magnetic susceptibility measurements. TMP, thanks their specific mineral and magnetic properties, and well developed specific surface area, are characterized by a chemical affinity for some elements like heavy metals. The main objective of this study was identification of manganese and iron (hydro)oxides occurring in industrial dusts and soils being under their deposition for long time period. In principle, Mn and Fe (hydro)oxides present in these samples originate from high-temperature technological processes. Soils samples (collected from different soil horizons) taken from surroundings of power station, iron/steel and non-ferrous plants as well as metallurgical dusts and fly ashes from power stations were subjected to investigation. During the studies temperature dependent magnetic susceptibility measurements and X-ray powder diffraction analyses were applied. Thermomagnetic analyses (K-T) revealed differences between samples from particular industries, however an inflexion at 450-500°C of all curves was observed indicating a probable occurrence of maghemite- or titanomagnetite-like phases. The curves of TMP emitted by power plants have inflection at 580 °C indicating that magnetite was the main magnetic phase. In case of TMP originated from non-ferrous metal smelting additional curve deflection at 130 and 210 °C occurred relating to intermediate titanomagnetite or iron sulfides. X-ray diffraction proved the occurrence of magnetite and maghemite in almost all samples, especially connected with power industry and iron/steel metallurgy. Mineral analysis revealed that kind of industrial process influenced on the dominating mineral forms found in

  20. Effects of cadmium, manganese, and lead on locomotor activity and neurexin 2a expression in zebrafish.

    PubMed

    Tu, Hongwei; Fan, Chengji; Chen, Xiaohui; Liu, Jiaxian; Wang, Bin; Huang, Zhibin; Zhang, Yiyue; Meng, Xiaojing; Zou, Fei

    2017-08-01

    The synaptic adhesion protein Neurexin 2a (Nrxn2a) plays a key role in neuronal development and is associated with cognitive functioning and locomotor behavior. Although low-level metal exposure poses a potential risk to the human nervous system, especially during the developmental stages, little is known about the effects of metal exposures on nrxn2a expression during embryonic development. We therefore exposed wild-type zebrafish embryos/larvae to cadmium (CdCl 2 ), manganese (MnCl 2 ), and lead ([CH 3 COO] 2 Pb), to determine their effect on mortality, malformation, and hatching rate. Concentrations of these metals in zebrafish were detected by inductively coupled plasma mass spectrometry analysis. Locomotor activity of zebrafish larvae was analyzed using a video-track tracking system. Expression of nrxn2a was assessed by in situ hybridization and quantitative polymerase chain reaction. The results showed that mortality, malformation, and bioaccumulation increased as the exposure dosages and duration increased. Developmental exposure to these metals significantly reduced larval swim distance and velocity. The nrxn2aa and nrxn2ab genes were expressed in the central nervous system and downregulated by almost all of the 3 metals, especially Pb. These data demonstrate that exposure to metals downregulates nrxn2a in the zebrafish model system, and this is likely linked to concurrent developmental processes. Environ Toxicol Chem 2017;36:2147-2154. © 2017 SETAC. © 2017 SETAC.

  1. Composition of the edible portion of raw (fresh or frozen) crustaceans, finfish, and mollusks. III. Microelements. [Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidwell, V.D.; Loomis, A.L.; Loomis, K.J.

    1978-09-01

    This report summarizes data from 224 publications referring to the microelements found in the flesh of commonly eaten seafoods. These microelements are: copper, iron, zinc, iodine, manganese, mercury, organic mercury, lead arsenic, fluorine, silver, cadmium, cobalt, selenium, chromium, vanadium, tin, aluminum, nickel, barium, and molybdenum.

  2. Antibacterial activity and spectral studies of trivalent chromium, manganese, iron macrocyclic complexes derived from oxalyldihydrazide and glyoxal.

    PubMed

    Singh, D P; Kumar, Ramesh; Singh, Jitender

    2009-06-01

    A new series of complexes is synthesized by template condensation of oxalyldihydrazide and glyoxal in methanolic medium in the presence of trivalent chromium, manganese and iron salts forming complexes of the type: [M(C(8)H(8)N(8)O(4))X]X(2) where M = Cr(III), Mn(III), Fe(III) and X = Cl(-1), NO(-1)(3), CH(3)COO(-1). The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic susceptibility measurements, electronic, NMR, infrared and far infrared spectral studies. On the basis of these studies, a five coordinate square pyramidal geometry for these complexes has been proposed. The biological activities of the metal complexes were tested in vitro against a number of pathogenic bacteria and some of the complexes exhibited remarkable antibacterial activities.

  3. Spectroscopic characterization of manganese minerals.

    PubMed

    Lakshmi Reddy, S; Padma Suvarna, K; Udayabhaska Reddy, G; Endo, Tamio; Frost, R L

    2014-01-03

    Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Frataxin Depletion in Yeast Triggers Up-regulation of Iron Transport Systems before Affecting Iron-Sulfur Enzyme Activities*

    PubMed Central

    Moreno-Cermeño, Armando; Obis, Èlia; Bellí, Gemma; Cabiscol, Elisa; Ros, Joaquim; Tamarit, Jordi

    2010-01-01

    The primary function of frataxin, a mitochondrial protein involved in iron homeostasis, remains controversial. Using a yeast model of conditional expression of the frataxin homologue YFH1, we analyzed the primary effects of YFH1 depletion. The main conclusion unambiguously points to the up-regulation of iron transport systems as a primary effect of YFH1 down-regulation. We observed that inactivation of aconitase, an iron-sulfur enzyme, occurs long after the iron uptake system has been activated. Decreased aconitase activity should be considered part of a group of secondary events promoted by iron overloading, which includes decreased superoxide dismutase activity and increased protein carbonyl formation. Impaired manganese uptake, which contributes to superoxide dismutase deficiency, has also been observed in YFH1-deficient cells. This low manganese content can be attributed to the down-regulation of the metal ion transporter Smf2. Low Smf2 levels were not observed in AFT1/YFH1 double mutants, indicating that high iron levels could be responsible for the Smf2 decline. In summary, the results presented here indicate that decreased iron-sulfur enzyme activities in YFH1-deficient cells are the consequence of the oxidative stress conditions suffered by these cells. PMID:20956517

  5. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels.

    PubMed

    Lešková, Alexandra; Giehl, Ricardo F H; Hartmann, Anja; Fargašová, Agáta; von Wirén, Nicolaus

    2017-07-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis ( Arabidopsis thaliana ) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Influence of welding fume on systemic iron status.

    PubMed

    Casjens, Swaantje; Henry, Jana; Rihs, Hans-Peter; Lehnert, Martin; Raulf-Heimsoth, Monika; Welge, Peter; Lotz, Anne; Gelder, Rainer Van; Hahn, Jens-Uwe; Stiegler, Hugo; Eisele, Lewin; Weiss, Tobias; Hartwig, Andrea; Brüning, Thomas; Pesch, Beate

    2014-11-01

    Iron is the major metal found in welding fumes, and although it is an essential trace element, its overload causes toxicity due to Fenton reactions. To avoid oxidative damage, excess iron is bound to ferritin, and as a result, serum ferritin (SF) is a recognized biomarker for iron stores, with high concentrations linked to inflammation and potentially also cancer. However, little is known about iron overload in welders. Within this study, we assessed the iron status and quantitative associations between airborne iron, body iron stores, and iron homeostasis in 192 welders not wearing dust masks. Welders were equipped with personal samplers in order to determine the levels of respirable iron in the breathing zone during a working shift. SF, prohepcidin and other markers of iron status were determined in blood samples collected after shift. The impact of iron exposure and other factors on SF and prohepcidin were estimated using multiple regression models. Our results indicate that respirable iron is a significant predictor of SF and prohepcidin. Concentrations of SF varied according to the welding technique and respiratory protection used, with a median of 103 μg l(-1) in tungsten inert gas welders, 125 μg l(-1) in those wearing air-purifying respirators, and 161 μg l(-1) in other welders. Compared to welders with low iron stores (SF < 25 μg l(-1)), those with excess body iron (SF ≥ 400 μg l(-1)) worked under a higher median concentration of airborne iron (60 μg m(-3) versus 148 μg m(-3)). Even though air concentrations of respirable iron and manganese were highly correlated, and low iron stores have been reported to increase manganese uptake in the gastrointestinal tract, no correlation was seen between SF and manganese in blood. In conclusion, monitoring SF may be a reasonable method for health surveillance of welders. Respiratory protection with air-purifying respirators can decrease iron exposure and avoid chronically higher SF in welders working with

  7. Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water

    PubMed Central

    Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei

    2017-01-01

    An iron-manganese co-oxide filter film (MeOx) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeOx was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeOx was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6–8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeOx included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeOx was formed by abiotic ways and the main elements on the surface of MeOx were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeOx as both ammonia molecules and ammonium ions and the active species of O2 were possibly •O and O2−. PMID:28753939

  8. Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water.

    PubMed

    Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei

    2017-07-19

    An iron-manganese co-oxide filter film (MeO x ) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeO x was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeO x was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6-8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeO x included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeO x was formed by abiotic ways and the main elements on the surface of MeO x were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeO x as both ammonia molecules and ammonium ions and the active species of O₂ were possibly • O and O₂ - .

  9. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment.

    PubMed

    Méndez-Rodríguez, Lia C; Alvarez-Castañeda, Sergio Ticul

    2016-07-01

    Areas where abandoned metal-extraction mines are located contain large quantities of mineral wastes derived from environmentally unsafe mining practices. These wastes contain many pollutants, such as heavy metals, which could be released to the environment through weathering and leaching, hence becoming an important source of environmental metal pollution. This study evaluates differences in the levels of lead, iron, nickel, manganese, copper and cadmium in rodents sharing the same type of diet under different microhabitat use in arid areas with past mining activities. Samples of soil, roots, branches and seeds of Palo Adán (Fouquieria diguetii) and specimens of two rodent species (Chaetodipus arenarius and C. spinatus) were collected in areas with impact from past metal mining activities as well as from areas with no mining impact. Both rodent species mirrored nickel and iron levels in soil and seeds, as well as lead levels in soil; however, C. arenarius accumulated higher levels of manganese, copper and cadmium.

  10. Trace elements in fruit juices.

    PubMed

    Bragança, Victor Luiz Cordoba; Melnikov, Petr; Zanoni, Lourdes Z

    2012-05-01

    Fruit juices are widely consumed in tropical countries as part of habitual diet. The concentrations of several minerals in these beverages were evaluated. Four commercially available brands of juices were analyzed for cadmium, lead, copper, zinc, aluminum, iron, chromium, manganese, and molybdenum. The levels ranged from 0.02 to 0.08 mg/L for copper, from 0.05 to 0.23 mg/L for zinc, from 0.1 to 0.4 mg/L for aluminum, from 0.02 to 0.45 mg/L for iron, and from 0.01 to 0.22 mg/L for manganese. The levels of cadmium, lead, and chromium in all samples were very low or undetectable. The metal contents of fruit juices depend on a number of factors, including the soil composition, the external conditions during fruit growing and fruit harvesting, as well as on details of the fruit juice manufacturing processes employed. The concentrations of none of the metals in juice samples analyzed exceeded the limits imposed by local legislation.

  11. Influence of Fe(2+)-catalysed iron oxide recrystallization on metal cycling.

    PubMed

    Latta, Drew E; Gorski, Christopher A; Scherer, Michelle M

    2012-12-01

    Recent work has indicated that iron (oxyhydr-)oxides are capable of structurally incorporating and releasing metals and nutrients as a result of Fe2+-induced iron oxide recrystallization. In the present paper, we briefly review the current literature examining the mechanisms by which iron oxides recrystallize and summarize how recrystallization affects metal incorporation and release. We also provide new experimental evidence for the Fe2+-induced release of structural manganese from manganese-doped goethite. Currently, the exact mechanism(s) for Fe2+-induced recrystallization remain elusive, although they are likely to be both oxide-and metal-dependent. We conclude by discussing some future research directions for Fe2+-catalysed iron oxide recrystallization.

  12. Isoelectronic Manganese and Iron Hydrogenation/Dehydrogenation Catalysts: Similarities and Divergences.

    PubMed

    Gorgas, Nikolaus; Kirchner, Karl

    2018-06-19

    Sustainable processes that utilize nontoxic, readily available, and inexpensive starting materials for organic synthesis constitute a major objective in modern chemical research. In this context, it is highly important to perform reactions under catalytic conditions and to replace precious metal catalysts by earth-abundant nonprecious metal catalysts. In particular, iron and manganese are promising candidates, as these are among the most abundant metals in the earth's crust, are inexpensive, and exhibit a low environmental impact. As far as chemical processes are concerned, hydrogenations and acceptorless alcohol dehydrogenation (AAD), sometimes in conjunction with hydrogen autotransfer reactions, are becoming important areas of research. While the first is a very important synthetic process representing a highly atom-efficient and clean methodology, AAD is an oxidant-free, environmentally benign reaction where carbonyl compounds together with dihydrogen as a valuable product and/or reactant (autotransfer) and water are formed. Carbonyl compounds, typically generated in situ, can be converted into other useful organic materials such as amines, imines, or heterocycles. In 2016 several groups, including ours, discovered for the first time the potential of hydride biscarbonyl Mn(I) complexes bearing strongly bound PNP pincer ligands or related tridentate ligands as highly effective and versatile catalysts for hydrogenation, transfer hydrogenation, and dehydrogenation reactions. These complexes are isoelectronic analogues of the respective hydride monocarbonyl Fe(II) PNP compounds and display similar reactivities but also quite divergent behavior depending on the coligands. Moreover, manganese compounds show improved long-term stability and high robustness toward harsh reaction conditions. In light of these recent achievements, this Account contrasts Mn(I) and Fe(II) PNP pincer catalysts, highlighting specific features that are connected to particular structural and

  13. [Studies on semen quality in workers exposed to manganese and electric welding].

    PubMed

    Wu, W; Zhang, Y; Zhang, F

    1996-09-01

    Three hundred and ten workers were selected to study the effects of manganese and electric welding on male reproductive function, with 211 occupationally exposed to manganess and electric welding fume and 99 controls. Concentrations of manganese and welding fume in the air of the workplace were 0.14-5.5 mg/m3 and 6.5-82.3 mg/m3, respectively. Semen concentrations of manganese, copper, chromium, nickel, and iron in workers employed in electric welding were significantly higher than those in controls. Time from ejaculation to liquefaction of semen in exposed workers was longer than that in controls, and volume of semen, sperm count, viable sperm count and percentage were significantly lower in the exposed workers than in the controls. Stepwise regression analysis suggests a direct toxic effect of manganese on sperm production.

  14. Heavy metals in hair of wild canids from the Brazilian Cerrado.

    PubMed

    Curi, Nelson Henrique de Almeida; Brait, Carlos Henrique Hoff; Antoniosi Filho, Nelson Roberto; Talamoni, Sônia Aparecida

    2012-06-01

    In this study, we aimed to assess whether free-ranging wild canids are exposed to heavy metals in one of the most developed and populated regions of Brazil. Hair of 26 wild canids (maned wolves Chrysocyon brachyurus, crab-eating foxes Cerdocyon thous, and hoary foxes Lycalopex vetulus) from the Cerrado biome in Southeast Brazil were analyzed by spectrophotometry to detect cadmium, chromium, and lead, and also the essential copper, iron, manganese, and zinc traces. All samples showed traces of copper, iron, manganese, and zinc. Non-essential lead was detected in 57% (2.35 ± 0.99 mg/kg), and chromium in 88% (2.98 ± 1.56 mg/kg) of samples. Cadmium traces (detection limit 0.8 mg/kg) were not found. Crab-eating foxes had more copper, iron, and manganese in hair than maned wolves. Correlations among element levels differed between maned wolves and crab-eating foxes. Concentrations of chromium and lead were outstandingly higher than in wild canids from other areas. Addressing the causes of such levels and the impacts of the heavy metal pollution in Neotropical ecosystems is urgent for animal health and conservation purposes. We argue that heavy metal pollution should be considered as dangerous threats to wildlife health in Brazil and recommend hair sampling as a biomonitoring tool for heavy metals in Neotropical terrestrial mammals.

  15. Structural basis for the metal-selective activation of the manganese transport regulator of Bacillus subtilis.

    PubMed

    Kliegman, Joseph I; Griner, Sarah L; Helmann, John D; Brennan, Richard G; Glasfeld, Arthur

    2006-03-21

    The manganese transport regulator (MntR) of Bacillus subtilis is activated by Mn(2+) to repress transcription of genes encoding transporters involved in the uptake of manganese. MntR is also strongly activated by cadmium, both in vivo and in vitro, but it is poorly activated by other metal cations, including calcium and zinc. The previously published MntR.Mn(2+) structure revealed a binuclear complex of manganese ions with a metal-metal separation of 3.3 A (herein designated the AB conformer). Analysis of four additional crystal forms of MntR.Mn(2+) reveals that the AB conformer is only observed in monoclinic crystals at 100 K, suggesting that this conformation may be stabilized by crystal packing forces. In contrast, monoclinic crystals analyzed at room temperature (at either pH 6.5 or pH 8.5), and a second hexagonal crystal form (analyzed at 100 K), all reveal the shift of one manganese ion by 2.5 A, thereby leading to a newly identified conformation (the AC conformer) with an internuclear distance of 4.4 A. Significantly, the cadmium and calcium complexes of MntR also contain binuclear complexes with a 4.4 A internuclear separation. In contrast, the zinc complex of MntR contains only one metal ion per subunit, in the A site. Isothermal titration calorimetry confirms the stoichiometry of Mn(2+), Cd(2+), and Zn(2+) binding to MntR. We propose that the specificity of MntR activation is tied to productive binding of metal ions at two sites; the A site appears to act as a selectivity filter, determining whether the B or C site will be occupied and thereby fully activate MntR.

  16. Human Calprotectin Is an Iron-Sequestering Host-Defense Protein

    PubMed Central

    Nakashige, Toshiki G.; Zhang, Bo; Krebs, Carsten; Nolan, Elizabeth M.

    2015-01-01

    Human calprotectin (CP) is a metal-chelating antimicrobial protein of the innate immune response. The current working model states that CP sequesters manganese and zinc from pathogens. We report the discovery that CP chelates iron and deprives bacteria of this essential nutrient. Elemental analysis of CP-treated growth medium establishes that CP reduces the concentrations of manganese, iron, and zinc. Microbial growth studies reveal that iron depletion by CP contributes to the growth inhibition of bacterial pathogens. Biochemical investigations demonstrate that CP coordinates Fe(II) at an unusual hexahistidine motif, and the Mössbauer spectrum of 57Fe(II)-bound CP is consistent with coordination of high-spin Fe(II) at this site (δ = 1.20 mm/s, ΔEQ = 1.78 mm/s). In the presence of Ca(II), CP turns on its iron-sequestering function and exhibits sub-picomolar affinity for Fe(II). Our findings expand the biological coordination chemistry of iron and support a previously unappreciated role for CP in mammalian iron homeostasis. PMID:26302479

  17. CADMIUM SOLUBILITY IN PADDY SOILS: EFFECTS OF SOIL OXIDATION, METAL SULFIDES AND COMPETITIVE IONS.

    EPA Science Inventory

    Cadmium (Cd) is a non-essential element for human nutrition and is an agricultural soil contaminant. Cadmium solubility in paddy soils affects Cd accumulation in the grain of rice. This is a human health risk, exacerbated by the fact that rice grains are deficient in iron (Fe) an...

  18. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels1[OPEN

    PubMed Central

    2017-01-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis (Arabidopsis thaliana) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. PMID:28500270

  19. Criticality of iron and its principal alloying elements.

    PubMed

    Nuss, Philip; Harper, E M; Nassar, N T; Reck, Barbara K; Graedel, T E

    2014-04-01

    Because modern technology depends on reliable supplies of a wide variety of materials and because of increasing concern about those supplies, a comprehensive methodology was created to quantify the degree of criticality of the metals of the periodic table. In this paper, we apply this methodology to iron and several of its main alloying elements (i.e., vanadium, chromium, manganese, and niobium). These elements represent the basic metals of any industrial society and are vital for national security and economic well-being. Assessments relating to the dimensions of criticality - supply risk, vulnerability to supply restriction, and environmental implications - for 2008 are made on the global level and for the United States. Evaluations of each of the multiple indicators are presented, with aggregate results plotted in "criticality space", together with Monte Carlo simulation-derived "uncertainty cloud" estimates. Iron has the lowest supply risk, primarily because of its widespread geological occurrence. Vanadium displays the highest cradle-to-gate environmental implications, followed by niobium, chromium, manganese, and iron. Chromium and manganese, both essential in steel making, display the highest vulnerability to supply restriction, largely because substitution or substitution at equal performance is not possible for all end-uses. From a comprehensive perspective, we regard the overall criticality as low for iron and modest for the alloying elements we evaluated.

  20. Development and Evaluation of a Manganese and Iron Food Frequency Questionnaire for Pediatrics

    PubMed Central

    Zipkin, Frida B; Falciglia, Grace A; Kuhnell, Pierce; Haynes, Erin N

    2017-01-01

    Manganese (Mn) is an essential nutrient, but overexposure can lead to neurotoxicity. Given the essentiality of Mn in the diet, particularly during children’s growth and development, it is imperative to quantify dietary Mn intake in populations that may be exposed to industrial sources of Mn. Dietary absorption of Mn is inversely associated with iron (Fe) stores, yet there is currently no food frequency questionnaire (FFQ) to assess dietary Mn and Fe intake. The study objective was to develop and evaluate the validity of a FFQ to measure dietary Mn and Fe intake in pediatrics by comparing the estimated intakes of Mn and Fe with biomarkers: Mn in blood and hair and Fe in serum. This study utilized a subset of the Communities Actively Researching Exposure Study (CARES) population residing in Guernsey County, Ohio. Dietary Mn was not correlated with either blood or hair Mn; however, dietary Mn and serum ferritin were significantly correlated, with a correlation coefficient of 0.51, p < 0.01. Moreover, dietary Fe and serum ferritin were also significantly correlated, with a correlation coefficient of 0.51, p < 0.01. This FFQ is a valid measurement tool for Fe intake as measured by serum ferritin; however, Mn intake did not correlate with either blood or hair Mn. PMID:28906436

  1. Development and Evaluation of a Manganese and Iron Food Frequency Questionnaire for Pediatrics.

    PubMed

    Zipkin, Frida B; Falciglia, Grace A; Kuhnell, Pierce; Haynes, Erin N

    2017-09-14

    Manganese (Mn) is an essential nutrient, but overexposure can lead to neurotoxicity. Given the essentiality of Mn in the diet, particularly during children's growth and development, it is imperative to quantify dietary Mn intake in populations that may be exposed to industrial sources of Mn. Dietary absorption of Mn is inversely associated with iron (Fe) stores, yet there is currently no food frequency questionnaire (FFQ) to assess dietary Mn and Fe intake. The study objective was to develop and evaluate the validity of a FFQ to measure dietary Mn and Fe intake in pediatrics by comparing the estimated intakes of Mn and Fe with biomarkers: Mn in blood and hair and Fe in serum. This study utilized a subset of the Communities Actively Researching Exposure Study (CARES) population residing in Guernsey County, Ohio. Dietary Mn was not correlated with either blood or hair Mn; however, dietary Mn and serum ferritin were significantly correlated, with a correlation coefficient of 0.51, p < 0.01. Moreover, dietary Fe and serum ferritin were also significantly correlated, with a correlation coefficient of 0.51, p < 0.01. This FFQ is a valid measurement tool for Fe intake as measured by serum ferritin; however, Mn intake did not correlate with either blood or hair Mn.

  2. Use of ferrous iron by metallo-β-lactamases.

    PubMed

    Cahill, Samuel T; Tarhonskaya, Hanna; Rydzik, Anna M; Flashman, Emily; McDonough, Michael A; Schofield, Christopher J; Brem, Jürgen

    2016-10-01

    Metallo-β-lactamases (MBLs) catalyse the hydrolysis of almost all β-lactam antibacterials including the latest generation carbapenems and are a growing worldwide clinical problem. It is proposed that MBLs employ one or two zinc ion cofactors in vivo. Isolated MBLs are reported to use transition metal ions other than zinc, including copper, cadmium and manganese, with iron ions being a notable exception. We report kinetic and biophysical studies with the di-iron(II)-substituted metallo-β-lactamase II from Bacillus cereus (di-Fe(II) BcII) and the clinically relevant B1 subclass Verona integron-encoded metallo-β-lactamase 2 (di-Fe(II) VIM-2). The results reveal that MBLs can employ ferrous iron in catalysis, but with altered kinetic and inhibition profiles compared to the zinc enzymes. A crystal structure of di-Fe(II) BcII reveals only small overall changes in the active site compared to the di-Zn(II) enzyme including retention of the di-metal bridging water; however, the positions of the metal ions are altered in the di-Fe(II) compared to the di-Zn(II) structure. Stopped-flow analyses reveal that the mechanism of nitrocefin hydrolysis by both di-Fe(II) BcII and di-Fe(II) VIM-2 is altered compared to the di-Zn(II) enzymes. Notably, given that the MBLs are the subject of current medicinal chemistry efforts, the results raise the possibility the Fe(II)-substituted MBLs may be of clinical relevance under conditions of low zinc availability, and reveal potential variation in inhibitor activity against the differently metallated MBLs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis.

    PubMed

    Barberon, Marie; Dubeaux, Guillaume; Kolb, Cornelia; Isono, Erika; Zelazny, Enric; Vert, Grégory

    2014-06-03

    In plants, the controlled absorption of soil nutrients by root epidermal cells is critical for growth and development. IRON-REGULATED TRANSPORTER 1 (IRT1) is the main root transporter taking up iron from the soil and is also the main entry route in plants for potentially toxic metals such as manganese, zinc, cobalt, and cadmium. Previous work demonstrated that the IRT1 protein localizes to early endosomes/trans-Golgi network (EE/TGN) and is constitutively endocytosed through a monoubiquitin- and clathrin-dependent mechanism. Here, we show that the availability of secondary non-iron metal substrates of IRT1 (Zn, Mn, and Co) controls the localization of IRT1 between the outer polar domain of the plasma membrane and EE/TGN in root epidermal cells. We also identify FYVE1, a phosphatidylinositol-3-phosphate-binding protein recruited to late endosomes, as an important regulator of IRT1-dependent metal transport and metal homeostasis in plants. FYVE1 controls IRT1 recycling to the plasma membrane and impacts the polar delivery of this transporter to the outer plasma membrane domain. This work establishes a functional link between the dynamics and the lateral polarity of IRT1 and the transport of its substrates, and identifies a molecular mechanism driving polar localization of a cell surface protein in plants.

  4. Iron as a possible aggravating factor for osteopathy in itai-itai disease, a disease associated with chronic cadmium intoxication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noda, M.; Yasuda, M.; Kitagawa, M.

    1991-03-01

    Itai-itai disease is thought to be the result of chronic cadmium (Cd) intoxication. We examined 23 autopsy cases of itai-itai disease and 18 cases of sudden death as controls. Urine and blood samples from 10 patients were collected before they died and revealed the presence of severe anemia and renal tubular injuries. Undecalcified sections of iliac bone were stained with Aluminon reagent, and ammonium salt of aurintricarboxylic acid, and Prussian blue reagent in all cases of itai-itai disease. These two reagents reacted at the same mineralization fronts. X-ray microanalysis revealed the presence of iron at mineralization fronts in itai-itai disease.more » Five patients showed evidence of hemosiderosis in the liver, spleen, and pancreas, probably as a result of post transfusion iron overload. Renal calculi and calcified aortic walls were also stained with Prussian blue reagent in several patients. Neither ferritin nor transferrin were visualized at mineralization fronts in itai-itai disease by immunohistochemical staining. These results suggest that iron is bound to calcium or to calcium phosphate by a physicochemical reaction. A marked osteomalacia was observed in 10 cases of itai-itai disease by histomorphometry. Regression analyses of data from cases of itai-itai disease suggested that an Aluminon-positive metal inhibited mineralization and that renal tubules were injured. Since bone Cd levels were increased in itai-itai disease, it is likely that renal tubules were injured by exposure to Cd. Therefore, stainable bone iron is another possible aggravating factor for osteopathy in itai-itai disease, and a synergistic effect between iron and Cd on mineralization is proposed.« less

  5. Nanostructured Iron and Manganese Oxide Electrode Materials for Lithium Batteries: Influence of Chemical and Physical Properties on Electrochemistry

    NASA Astrophysics Data System (ADS)

    Durham, Jessica L.

    The widespread use of portable electronics and growing interest in electric and hybrid vehicles has generated a mass market for batteries with increased energy densities and enhanced electrochemical performance. In order to address a variety of applications, commercially fabricated secondary lithium-ion batteries employ transition metal oxide based electrodes, the most prominent of which include lithium nickel manganese cobalt oxide (LiNixMn yCo1-x-yO2), lithium iron phosphate (LiFePO4), and lithium manganese oxide (LiMn 2O4). Transition metal oxides are of particular interest as cathode materials due to their robust framework for lithium intercalation, potential for high energy density, and utilization of earth-abundant elements (i.e. iron and manganese) leading to decreased toxicity and cost-effective battery production on industrial scales. Specifically, this research focuses on MgFe2O4, AgxMn8O16, and AgFeO 2 transition metal oxides for use as electrode materials in lithium-based batteries. The electrode materials are prepared via co-precipitation, reflux, and hydrothermal methods and characterized by several techniques (XRD, SEM, BET, TGA, DSC, XPS, Raman, etc.). The low-temperature syntheses allowed for precise manipulation of structural, compositional, and/or functional properties of MgFe2O4, AgxMn8 O16, and AgFeO2 which have been shown to influence electrochemical behavior. In addition, advanced in situ and ex situ characterization techniques are employed to study the lithiation/de-lithiation process and establish valid redox mechanisms. With respect to both chemical and physical properties, the influence of MgFe2O4 particle size and morphology on electrochemical behavior was established using ex situ X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) imaging. Based on composition, tunneled AgxMn8O16 nanorods, prepared with distinct Ag+ contents and crystallite sizes, display dramatic differences in ion-transport kinetics due to

  6. Arsenic, cadmium, chromium, lead, manganese, mercury, and selenium in feathers of Black-legged Kittiwake (Rissa tridactyla) and Black Oystercatcher (Haematopus bachmani) from Prince William Sound, Alaska

    PubMed Central

    Burger, Joanna; Gochfeld, Michael; Sullivan, Kelsey; Irons, David; McKnight, Aly

    2014-01-01

    Arsenic, cadmium, chromium, lead, manganese, mercury and selenium were analyzed in the feathers of Black-legged Kittiwakes (Rissa tridactyla) from Shoup Bay in Prince William Sound, Alaska to determine if there were age-related differences in metal levels, and in Black Oystercatchers (Haematopus bachmani)) from the same region to determine if there were differences in oiled and unoiled birds. Except for mercury, there were no age-related differences in metals levels in the feathers of kittiwakes. Kittiwakes over 13 years of age had the highest levels of mercury. There were no differences in levels of metals in the feathers of oystercatchers from oiled and unoiled regions of Prince William Sound. Except for mercury, the feathers of oystercatchers had significantly higher levels of all metals than those of kittiwakes. Levels of mercury in kittiwake feathers (mean of 2910 ng/g [ppb]) were within the range of many species of seabirds reported for other studies, and were generally below adverse effects levels. PMID:18440597

  7. Performances of metal concentrations from three permeable pavement infiltrates.

    PubMed

    Liu, Jiayu; Borst, Michael

    2018-06-01

    The U.S. Environmental Protection Agency constructed a 4000-m 2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)]. Samples of each permeable pavement infiltrate, surface runoff from traditional asphalt, and rainwater were analyzed in duplicate for 22 metals (total and dissolved) for 6 years. In more than 99% of the samples, the concentration of barium, chromium, copper, manganese, nickel and zinc, and in 60%-90% of the samples, the concentration of arsenic, cadmium, lead, and antimony in infiltrates from all three permeable pavements met both the groundwater effluent limitations (GEL) and maximum contaminant levels (MCL). The concentration of aluminum (50%) and iron (93%) in PICP infiltrates samples exceed the GELs; however, the concentration in more than 90% samples PA and PC infiltrates met the GELs. No measurable difference in metal concentrations was found from the five sources for arsenic, cadmium, lead, antimony, and tin. Large concentrations of eleven metals, including manganese, copper, aluminum, iron, calcium, magnesium, sodium, potassium, silica, strontium and vanadium, were detected in surface runoff than the rainwater. Chromium, copper, manganese, nickel, aluminum, zinc, iron and magnesium concentrations in PICP infiltrates; calcium, barium, and strontium concentrations in PA infiltrates; sodium, potassium and vanadium concentrations in PC infiltrates were statistically larger than the other two permeable pavement infiltrates. Published by Elsevier Ltd.

  8. Blood cadmium concentrations in Korean adolescents: From the Korea National Health and Nutrition Examination Survey 2010-2013.

    PubMed

    Ahn, Borami; Kim, Shin-Hye; Park, Mi-Jung

    2017-01-01

    To assess blood cadmium levels in Korean adolescents with respect to demographic and lifestyle factors. We analyzed data from the Korea National Health and Nutrition Examination Survey from 2010 to 2013, totaling 1472 adolescents aged 10-18 years. Geometric means of blood cadmium were calculated using a complex samples general linear model to compare blood levels in different demographic and lifestyle groups. Multivariate logistic regression analyses were also used to find predictors for high blood cadmium (>90th percentile). The geometric mean of the blood cadmium concentrations was 0.30μg/L in Korean adolescents. Older age, type of housing (multifamily house and commercial building), smoking and alcohol consumption, and iron deficiency/iron deficiency anemia (IDA) were significantly associated with higher blood cadmium concentrations (P<0.05). Blood cadmium concentrations were not significantly affected by gender, region, body mass index status, or household income. In multivariate logistic regression analysis, independent predictors for higher blood cadmium levels included current smoker (OR=7.77), alcohol consumption (OR=4.31), living in a multifamily house or commercial building (OR=3.11-3.46), and IDA (OR=2.64). Possible associations between blood cadmium levels and type of housing or alcohol consumption in adolescents are suggested for the first time in this study. Further studies are needed to elucidate the mechanism of these findings. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Globally sustainable manganese metal production and use.

    PubMed

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also

  10. Trace Metal Associations with Manganese-Rich Surface Coatings of Lead Service Lines

    EPA Science Inventory

    Analysis of lead service line samples from U. S. Environmental Protection Agency’s long-term research program to evaluate control and metal release from domestic drinking water service lines has revealed that Manganese-rich solids also contain Iron and sometimes Aluminum have fre...

  11. Milan Army Ammunition Plant. Remedial Investigation Report. Volume 4. Appendices M - T

    DTIC Science & Technology

    1991-12-01

    toxicity studies II. Hexavalent and trivalent chromium administered in drinking water to rats.. Arch. Ind. Health 18:232-234 Cobalt GILMAN, J.P.W...Beryllium Silver Cadmium Vanadium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel Potassium Sodium Zinc • . USATHAMA CERTIFIED AND UPPER...Arsenic AS 0.25 2.54 0.25 10 Barium BA 29.6 5 200 10,000 Beryllium BE 1.86 5 20 1,000 Cadmium CD 3.05 4 20 5,000 Calcium CA 59.0 500 5,000 20,000 Chromium

  12. Influence of coal ash and slag dumping on dump waste waters of the Kostolac power plants (Serbia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovic, A.; Djinovic, J.

    2006-10-01

    The content of selected trace and major elements in the river water used for transport, as well as in the subcategories of the waste waters (overflow and drainage) were analyzed in order to establish the influence of transport and dumping of coal ash and slag from the 'Kostolac A' and 'Kostolac B' power plants located 100 km from Belgrade (Serbia). It was found that during transport of coal ash and slag to the dump, the water used for transport becomes enriched with manganese, nickel, zinc, chromium, vanadium, titanium, cobalt, arsenic, aluminum, and silicon, while more calcium, iron, cadmium, and leadmore » are adsorbed by the ash and slag than is released from them. There is also an equilibrium between the release and adsorption processes of copper and magnesium during transport. The vertical penetration of the water used for transport results in a release of calcium, magnesium, manganese, and cadmium to the environment, while iron, nickel, zinc, chromium, copper, lead, vanadium, titanium, cobalt, and arsenic are adsorbed by the fractions of coal ash and slag in the dump.« less

  13. Reconnaissance of water-quality characteristics of streams in the City of Charlotte and Mecklenburg County, North Carolina

    USGS Publications Warehouse

    Eddins, W.H.; Crawford, J.K.

    1984-01-01

    In 1979-81, water samples were collected from 119 sites on streams throughout the City of Charlotte and Mecklenburg County, North Carolina, and were analyzed for specific conductance, dissolved chloride, hardness, pH, total alkalinity, total phosphorus, trace elements, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, silver, and zinc and biological measures including dissolved oxygen, biochemical oxygen demand, fecal coliform bacteria, and fecal streptococcus bacteria. Sampling was conducted during both low flow (base flow) and high flow. Several water-quality measures including pH, total arsenic, total cadmium, total chromium, total copper, total iron, total lead, total manganese, total mercury, total silver, total zinc, dissolved oxygen, and fecal coliform bacteria at times exceeded North Carolina water-quality standards in various streams. Runoff from non-point sources appears to contribute more to the deterioration of streams in Charlotte and Mecklenburg County than point-source effluents. Urban and industrial areas contribute various trace elements. Residential and rural areas and municipal waste-water treatment plants contribute high amounts of phosphorus.

  14. Variation in heavy metals and microelements in South African medicinal plants obtained from street markets.

    PubMed

    Street, R A; Kulkarni, M G; Stirk, W A; Southway, C; Van Staden, J

    2008-08-01

    South African medicinal plants are traditionally harvested from a wide range of undisclosed locations by plant gatherers. Thus, there is a risk that plant material may be exposed to a variety of pollutants. The variation in five heavy metals (arsenic, cadmium, cobalt, nickel, and lead) and six essential elements (boron, copper, iron, manganese, molybdenum, and zinc) was determined in commonly used South African medicinal plants obtained from street markets. Elemental content was determined using inductively coupled plasma optical emission spectrophotometry. The reliability of the procedure was ensured by analysing a certified reference material. Medicinal plant samples contained arsenic and cadmium at levels exceeding the World Health Organization limits of 1 and 0.3 mg kg(-1) respectively. Lead and nickel were detected in all samples. Elevated iron and manganese levels were recorded in certain plant species. Multiple metal contamination of parts of medicinal plants gives grounds for concern. This study emphasizes the unsafe consequences of the South African practice of collecting medicinal plants from undisclosed locations and making these readily available to the public.

  15. Impact of Bioreduction on Remobilization of Adsorbed Cadmium on Iron Minerals in Anoxic Condition.

    PubMed

    Ghorbanzadeh, Nasrin; Lakzian, Amir; Halajnia, Akram; Choi, Ui-Kyu; Kim, Ki-Hyun; Kim, Jong-Oh; Kurade, Mayur; Jeon, Byong-Hun

    2017-06-01

      The impact of bioreduction on the remobilization of adsorbed cadmium Cd(II) on minerals, including hematite, goethite, and two iron(III)-rich clay minerals nontronites (NAU-1 and NAU-2) under anoxic conditions was investigated. Langmuir isotherm equation better described the sorption of Cd(II) onto the all minerals. The maximum adsorption capacity was 6.2, 18.1, 3.6, and 4 mg g-1 for hematite, goethite, NAU-1 and NAU-2, respectively. The desorption of Cd(II) was due to the production of Fe(II) as a result of bioreduction of structural Fe(III) in the minerals by Shewanella putrefaciens. The bioreduction of Cd(II)-loaded Fe(III) minerals was negligible during the initial 5 days followed by a rapid increase up to 20 days. The amount of Cd(II) in solution phase at the end of 30 days increased up to 0.07 mmol L-1 for hematite, NAU-1, and NAU-2 and 0.02 mmol L-1 for goethite. The X-ray diffraction study showed negligible changes in bioreduced minerals phases.

  16. Isolation and reconstitution of iron- and manganese-containing superoxide dismutases from Bacteroides thetaiotaomicron.

    PubMed Central

    Pennington, C D; Gregory, E M

    1986-01-01

    Superoxide dismutase (SOD) from extracts of anaerobically maintained Bacteroides thetaiotaomicron was a dimer of equally sized 23,000-molecular-weight monomers joined noncovalently. A preparation with a specific activity of 1,200 U/mg contained 1.1 g-atom of Fe, 0.6 g-atom of Zn, and less than 0.05 g-atom of Mn per mol of dimer. The apoprotein, prepared by dialysis of iron-SOD in 5 M guanidinium chloride-20 mM 8-hydroxyquinoline, had no superoxide-scavenging activity when renatured without exogenous metal. Enzymatic activity was restored to the denatured apoprotein by dialysis against either 1 mM Fe(NH4)2 or 1 mM MnCl2 in 20 mM Tris (pH 7.0). The Fe-reconstituted enzyme and the native enzyme were inhibited approximately 50% by 0.2 mM NaN3, whereas the Mn-reconstituted enzyme was inhibited 60% by 10 mM NaN3. Aeration of the anaerobic cells resulted in a fourfold induction of an azide-resistant SOD. The enzyme (43,000 molecular weight) isolated from aerated cells was a dimer of equally sized subunits. The metal content was 1.0 g-atom of Mn, 0.55 g-atom of Fe, and 0.3 g-atom of Zn per mol of dimer. Enzymatic activity of the denatured apoprotein from this enzyme was also restored on addition of either iron or manganese. The constitutive Fe-SOD and the O2-induced Mn-SOD, tested alone and in combination, migrated identically on acrylamide gels, had similar amino acid compositions, and had alanine as the sole N-terminal amino acid. These data are consistent with the synthesis of a single apoprotein in either anaerobically maintained or oxygenated cells. We have observed a similar phenomenon with SOD from Bacteroides fragilis (E. M. Gregory, Arch. Biochem. Biophys. 238:83-89, 1985). PMID:3700336

  17. Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants.

    PubMed

    Chen, Rui; Zhang, Changbo; Zhao, Yanling; Huang, Yongchun; Liu, Zhongqi

    2018-01-01

    Nano-silicon (Si) may be more effective than regular fertilizers in protecting plants from cadmium (Cd) stress. A field experiment was conducted to study the effects of nano-Si on Cd accumulation in grains and other organs of rice plants (Oryza sativa L. cv. Xiangzaoxian 45) grown in Cd-contaminated farmland. Foliar application with 5~25 mM nano-Si at anthesis stage reduced Cd concentrations in grains and rachises at maturity stage by 31.6~64.9 and 36.1~60.8%, respectively. Meanwhile, nano-Si application significantly increased concentrations of potassium (K), magnesium (Mg), and iron (Fe) in grains and rachises, but imposed little effect on concentrations of calcium (Ca), zinc (Zn), and manganese (Mn) in them. Uppermost nodes under panicles displayed much higher Cd concentration (4.50~5.53 mg kg -1 ) than other aerial organs. After foliar application with nano-Si, translocation factors (TFs) of Cd ions from the uppermost nodes to rachises significantly declined, but TFs of K, Mg, and Fe from the uppermost nodes to rachises increased significantly. High dose of nano-Si (25 mM) was more effective than low dose of nano-Si in reducing TFs of Cd from roots to the uppermost nodes and from the uppermost nodes to rachises. These findings indicate that nano-Si supply reduces Cd accumulation in grains by inhibiting translocation of Cd and, meanwhile, promoting translocation of K, Mg, and Fe from the uppermost nodes to rachises in rice plants.

  18. Velocity of action of oxygen, hydrogen sulfide, and halogens on metals

    NASA Technical Reports Server (NTRS)

    Tammann, Gustav; Koster, Werner

    1952-01-01

    This report discusses a method of determining the rate of surface oxidation of a metal by the change in the color of the surface film produced by reactions with oxygen, chlorine, or iodine. The metals studied included iron, nickel, copper, zinc, cadmium, tin, lead, cobalt, and manganese. Tables are given for surface film thickness versus color for various times.

  19. Dyslipdemia induced by chronic low dose co-exposure to lead, cadmium and manganese in rats: the role of oxidative stress.

    PubMed

    Oladipo, Olusola Olalekan; Ayo, Joseph Olusegun; Ambali, Suleiman Folorunsho; Mohammed, Bisalla; Aluwong, Tanang

    2017-07-01

    Lead (Pb), cadmium (Cd) and manganese (Mn) have many potential adverse health effects in vitro and in animal models of clinical toxicity. The current study investigated the dyslipidaemic and oxidative stress effects of chronic low-dose oral exposure to Pb, Cd and Mn and the combination (Pb+Cd+Mn) in rats for 15 weeks. Chronic exposure to the metals did not significantly (P>0.05) alter serum lipid profiles. However, the atherogenic index decreased by 32.2% in the Pb+Cd+Mn group, relative to the control. The triglyceride/high-density lipoprotein cholesterol ratio decreased by 39.4% in the Pb+Cd+Mn group, relative to the control, and elevated by 81.8, 94.8 and 20.8%, relative to the Pb, Cd and Mn groups, respectively. While the serum concentrations of malondialdehyde significantly increased in the Mn and Pb+Cd+Mn groups, that of glutathione peroxidase-1 decreased in the Pb+Cd+Mn group, and metallothionein-1 and zinc concentrations markedly decreased in all the metal treatment groups. The results suggest that long-term exposure of rats to Pb+Cd+Mn may result in hypolipidaemia, mediated via oxidative stress and metal interactions. Individuals who are constantly exposed to environmentally relevant levels of the metals may be at risk of hypolipidaemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cadmium mobility in sediments and soils from a coal mining area on Tibagi River watershed: environmental risk assessment.

    PubMed

    Galunin, Evgeny; Ferreti, Jeferson; Zapelini, Iago; Vieira, Isadora; Ricardo Teixeira Tarley, César; Abrão, Taufik; Santos, Maria Josefa

    2014-01-30

    The risk of cadmium contamination in the Tibagi River watershed (Parana State, Brazil) affected by past coal mining activities was assessed through sorption-desorption modeling for sediment and soil samples. The acidic character of the samples resulted in more competition between the cadmium ions and protons, thereby influencing the cadmium sorption-desorption. The sorption isotherms were fitted to the Langmuir and Freundlich single models and to the dual-site Langmuir-Freundlich (or Sips) model. The single-site models indicated a low-energy character of sorption sites on the sample sorption sites, whereas the dual-site model explained the availability of higher-affinity and lower-affinity non-specific sites. The correlation of the sorption and desorption constants with the physicochemical and mineralogical characteristics of the samples showed that the cadmium sorption behavior was significantly affected by the pH, point of zero charge, and also by the magnesium, aluminum, calcium and manganese amounts. Besides, the desorption rate and hysteresis index suggested a high risk of cadmium mobilization along the Tibagi River basin. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Reducing acid leaching of manganiferous ore: effect of the iron removal operation on solid waste disposal.

    PubMed

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Vegliò, Francesco

    2009-01-01

    The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary iron removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO3, NaOH, and Na2CO3. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.

  2. Crystal Structure of Manganese Lipoxygenase of the Rice Blast Fungus Magnaporthe oryzae*

    PubMed Central

    Wennman, Anneli; Oliw, Ernst H.; Karkehabadi, Saeid; Chen, Yang

    2016-01-01

    Lipoxygenases (LOX) are non-heme metal enzymes, which oxidize polyunsaturated fatty acids to hydroperoxides. All LOX belong to the same gene family, and they are widely distributed. LOX of animals, plants, and prokaryotes contain iron as the catalytic metal, whereas fungi express LOX with iron or with manganese. Little is known about metal selection by LOX and the adjustment of the redox potentials of their protein-bound catalytic metals. Thirteen three-dimensional structures of animal, plant, and prokaryotic FeLOX are available, but none of MnLOX. The MnLOX of the most important plant pathogen, the rice blast fungus Magnaporthe oryzae (Mo), was expressed in Pichia pastoris. Mo-MnLOX was deglycosylated, purified to homogeneity, and subjected to crystal screening and x-ray diffraction. The structure was solved by sulfur and manganese single wavelength anomalous dispersion to a resolution of 2.0 Å. The manganese coordinating sphere is similar to iron ligands of coral 8R-LOX and soybean LOX-1 but is not overlapping. The Asn-473 is positioned on a short loop (Asn-Gln-Gly-Glu-Pro) instead of an α-helix and forms hydrogen bonds with Gln-281. Comparison with FeLOX suggests that Phe-332 and Phe-525 might contribute to the unique suprafacial hydrogen abstraction and oxygenation mechanism of Mo-MnLOX by controlling oxygen access to the pentadiene radical. Modeling suggests that Arg-525 is positioned close to Arg-182 of 8R-LOX, and both residues likely tether the carboxylate group of the substrate. An oxygen channel could not be identified. We conclude that Mo-MnLOX illustrates a partly unique variation of the structural theme of FeLOX. PMID:26783260

  3. Metal Tolerance Protein 8 Mediates Manganese Homeostasis and Iron Reallocation during Seed Development and Germination.

    PubMed

    Eroglu, Seckin; Giehl, Ricardo F H; Meier, Bastian; Takahashi, Michiko; Terada, Yasuko; Ignatyev, Konstantin; Andresen, Elisa; Küpper, Hendrik; Peiter, Edgar; von Wirén, Nicolaus

    2017-07-01

    Metal accumulation in seeds is a prerequisite for germination and establishment of plants but also for micronutrient delivery to humans. To investigate metal transport processes and their interactions in seeds, we focused on METAL TOLERANCE PROTEIN8 (MTP8), a tonoplast transporter of the manganese (Mn) subclade of cation diffusion facilitators, which in Arabidopsis ( Arabidopsis thaliana ) is expressed in embryos of seeds. The x-ray fluorescence imaging showed that expression of MTP8 was responsible for Mn localization in subepidermal cells on the abaxial side of the cotyledons and in cortical cells of the hypocotyl. Accordingly, under low Mn availability, MTP8 increased seed stores of Mn, required for efficient seed germination. In mutant embryos lacking expression of VACUOLAR IRON TRANSPORTER1 ( VIT1 ), MTP8 built up iron (Fe) hotspots in MTP8 -expressing cells types, suggesting that MTP8 transports Fe in addition to Mn. In mtp8 vit1 double mutant seeds, Mn and Fe were distributed in all cell types of the embryo. An Fe transport function of MTP8 was confirmed by its ability to complement Fe hypersensitivity of a yeast mutant defective in vacuolar Fe transport. Imbibing mtp8-1 mutant seeds in the presence of Mn or subjecting seeds to wet-dry cycles showed that MTP8 conferred Mn tolerance. During germination, MTP8 promoted reallocation of Fe from the vasculature. These results indicate that cell type-specific accumulation of Mn and Fe in seeds depends on MTP8 and that this transporter plays an important role in the generation of seed metal stores as well as for metal homeostasis and germination efficiency under challenging environmental conditions. © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. Repression of the Low Affinity Iron Transporter Gene FET4

    PubMed Central

    Caetano, Soraia M.; Menezes, Regina; Amaral, Catarina; Rodrigues-Pousada, Claudina; Pimentel, Catarina

    2015-01-01

    Cadmium is a well known mutagenic metal that can enter cells via nonspecific metal transporters, causing several cellular damages and eventually leading to death. In the yeast Saccharomyces cerevisiae, the transcription factor Yap1 plays a key role in the regulation of several genes involved in metal stress response. We have previously shown that Yap1 represses the expression of FET4, a gene encoding a low affinity iron transporter able to transport metals other than iron. Here, we have studied the relevance of this repression in cell tolerance to cadmium. Our results indicate that genomic deletion of Yap1 increases FET4 transcript and protein levels. In addition, the cadmium toxicity exhibited by this strain is completely reversed by co-deletion of FET4 gene. These data correlate well with the increased intracellular levels of cadmium observed in the mutant yap1. Rox1, a well known aerobic repressor of hypoxic genes, conveys the Yap1-mediated repression of FET4. We further show that, in a scenario where the activity of Yap1 or Rox1 is compromised, cells activate post-transcriptional mechanisms, involving the exoribonuclease Xrn1, to compensate the derepression of FET4. Our data thus reveal a novel protection mechanism against cadmium toxicity mediated by Yap1 that relies on the aerobic repression of FET4 and results in the impairment of cadmium uptake. PMID:26063801

  5. Comparison of machinability of manganese alloyed austempered ductile iron produced using conventional and two step austempering processes

    NASA Astrophysics Data System (ADS)

    Hegde, Ananda; Sharma, Sathyashankara

    2018-05-01

    Austempered Ductile Iron (ADI) is a revolutionary material with high strength and hardness combined with optimum ductility and toughness. The discovery of two step austempering process has lead to the superior combination of all the mechanical properties. However, because of the high strength and hardness of ADI, there is a concern regarding its machinability. In the present study, machinability of ADI produced using conventional and two step heat treatment processes is assessed using tool life and the surface roughness. Speed, feed and depth of cut are considered as the machining parameters in the dry turning operation. The machinability results along with the mechanical properties are compared for ADI produced using both conventional and two step austempering processes. The results have shown that two step austempering process has produced better toughness with good hardness and strength without sacrificing ductility. Addition of 0.64 wt% manganese did not cause any detrimental effect on the machinability of ADI, both in conventional and two step processes. Marginal improvement in tool life and surface roughness were observed in two step process compared to that with conventional process.

  6. Water Collection Purification System: Identifying CF Capabilities and Requirements, and Assessing off-the-Shelf Purification Systems

    DTIC Science & Technology

    2006-08-01

    hydrocarbons, salinity, mercury , arsenic, cyanide, mustard gas, and nerve agents. Field engineers and WFEs are in charge of the testing. Additional testing...and biological (microorganisms, viruses) or they can come from the sediments (iron and manganese oxides, sulphide and polysulfide colloids) (Stumm...They are classified as inorganic and organic compounds. Inorganic compounds are heavy metals (lead, mercury , nickel, cadmium), and come from

  7. Role of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium in carcinogenesis.

    PubMed Central

    Kazantzis, G

    1981-01-01

    The possible carcinogenicity of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium is reviewed, taking into account epidemiological data, the results of animal experimental studies, data on mutagenic effects and on other in vitro test systems. Of the great variety of occupations where exposure to one of these metals may occur, only haematite mining has been clearly shown to involve an increased human cancer risk. While the possibility that haematite might in some way act as a carcinogen has to be taken into consideration it is more likely that other carcinogens are responsible. Certain platinum coordination complexes are used in cancer chemotherapy, are mutagenic, and likely to be carcinogenic. Cobalt, its oxide and sulfide, certain lead salts, one organomanganese, and one organotitanium compound have been shown to have a limited carcinogenic effect in experimental animal studies, and except for titanium appear to be mutagenic. Certain mercury compounds are mutagenic but none have been shown to be carcinogenic. The presently available data are inadequate to assess the possible carcinogenicity of selenium compounds, but a few observations suggest that selenium may suppress the effect of other carcinogens administered to experimental animals and may even be associated with lower cancer mortality rates in man. Epidemiological observations are essential for the assessment of a human cancer risk, but the difficulty in collecting past exposure data in occupational groups and the complexity of multiple occupational exposures with changes over time, limits the usefulness of retrospective epidemiological studies. PMID:7023929

  8. Novel synergistic hydrous iron-nickel-manganese (HINM) trimetal oxide for hazardous arsenite removal.

    PubMed

    Nasir, A M; Goh, P S; Ismail, A F

    2018-06-01

    A novel hydrous iron-nickel-manganese (HINM) trimetal oxide was successfully fabricated using oxidation and coprecipitation method for metalloid arsenite removal. The atomic ratio of Fe:Ni:Mn for this adsorbent is 3:2:1. HINM adsorbent was identified as an amorphous nanosized adsorbent with particle size ranged from 30 nm to 60 nm meanwhile the total active surface area and pore diameter of HINM area of 195.78 m 2 /g and 2.43 nm, respectively. Experimental data of arsenite adsorption is best fitted into pseudo-second order and Freundlich isotherm model. The maximum adsorption capacity of arsenite onto HINM was 81.9 mg/g. Thermodynamic study showed that the adsorption of arsenite was a spontaneous and endothermic reaction with enthalpy change of 14.04 kJ/mol and Gibbs energy of -12 to -14 kJ/mol. Zeta potential, thermal gravimetric (TGA) and Fourier transform infrared (FTIR) analysis were applied to elucidate the mechanism of arsenite adsorption by HINM. Mechanism of arsenite adsorption by HINM involved both chemisorption and physisorption based on the electrostatic attraction between arsenite ions and surface charge of HINM. It also involved the hydroxyl substitution by arsenite ions through the formation of inner-sphere complex. Reusability of HINM trimetal oxide was up to 89% after three cycles of testing implied that HINM trimetal oxide is a promising and practical adsorbent for arsenite. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Manganese Deposits in the Artillery Mountains Region, Mohave County, Arizona

    USGS Publications Warehouse

    Lasky, S.G.; Webber, B.N.

    1944-01-01

    The manganese deposits of the Artillery Mountains region lie within an area of about 25 square miles between the Artillery and Rawhide Mountains, on the west side of the Bill Williams River in west-central Arizona. The richest croppings are on the northeast side of this area, among the foothills of the Artillery Mountains. They are 6 to 10 miles from Alamo. The nearest shipping points are Congress, about 50 miles to the east, and Aguila, about 50 miles to the southeast. The principal manganese deposits are part of a sequence of alluvial fan and playa material, probably of early Pliocene age, which were laid down in a fault basin. They are overlain by later Pliocene (?) basalt flows and sediments and by Quaternary basalt and alluvium. The Pliocene (?) rocks are folded into a shallow composite S1ncline ttat occupies the valley between the Artillery and Rawhide Mountains, and the folded rocks along either side of the valley, together with the overlying Quaternary basalt, are broken by faults that have produced a group of horsts, grabens, and step-fault blocks. The manganiferous beds, lie at two zones, 750 to 1,000 feet apart stratigraphically, each of which is locally as much as 300 to 400 feet thick. The main, or upper, zone contains three kinds of ore - sandstone ore, clay ore, and 'hard' ore. The sandstone and clay ores differ from the associated barren sandstone and clay, with which they are interlayered and into which they grade, primarily in containing a variable proportion of amorphous manganese oxides, besides iron oxides and clayey material such as are present in the barren beds. The 'hard' ore is sandstone that has been impregnated with opal and calcite and in which the original amorphous manganese oxides have been largely converted to psilomelane and manganite. The average manganese content of the sandstone and clay ores is between 3 and 4 percent and that of the 'hard' ore is between 6 and 7 percent. The ore contains an average of 3 percent of iron, 0

  10. Major inorganic elements in tap water samples in Peninsular Malaysia.

    PubMed

    Azrina, A; Khoo, H E; Idris, M A; Amin, I; Razman, M R

    2011-08-01

    Quality drinking water should be free from harmful levels of impurities such as heavy metals and other inorganic elements. Samples of tap water collected from 24 locations in Peninsular Malaysia were determined for inorganic element content. Minerals and heavy metals were analysed by spectroscopy methods, while non-metal elements were analysed using test kits. Minerals and heavy metals determined were sodium, magnesium, potassium, calcium, chromium, manganese, iron, nickel, copper, zinc, arsenic, cadmium and lead while the non-metal elements were fluoride, chloride, nitrate and sulphate. Most of the inorganic elements found in the samples were below the maximum permitted levels recommended by inter-national drinking water standard limits, except for iron and manganese. Iron concentration of tap water from one of the locations was higher than the standard limit. In general, tap water from different parts of Peninsular Malaysia had low concentrations of heavy metals and inorganic elements.

  11. Effects of heavy metals on sea urchin embryo development. Part 2. Interactive toxic effects of heavy metals in synthetic mine effluents.

    PubMed

    Kobayashi, Naomasa; Okamura, Hideo

    2005-12-01

    Interactive toxic effects between heavy metals were investigated using a sea urchin (Anthocidaris crassispina) bioassay. An effluent from an abandoned mine showed significant inhibitory effects on embryo development as well as producing specific malformations. The effects on the embryos were reproduced by synthetic polluted seawater consisting of eight metals (manganese, lead, cadmium, nickel, zinc, chromium, iron, and copper) at the concentrations detected in the mine effluent. This indicated that the heavy metals were responsible for the effects observed. Five heavy metals were ranked in decreasing order of toxicity as follows: Cu>Zn>Pb>Fe>Mn. Among these, zinc and manganese could cause malformation of the embryos. From bioassay results using 27 combinations of heavy metals, 16 combinations including zinc could produce specific malformations, such as radialized, exo-gastrulal, and spaceship Apollo-like gastrulal embryos. Zinc was one of the elements responsible for causing malformations and its effects were intensified by the presence of the other metals, such as manganese, lead, iron, and copper.

  12. Survey of mercury, cadmium and lead content of household batteries.

    PubMed

    Recknagel, Sebastian; Radant, Hendrik; Kohlmeyer, Regina

    2014-01-01

    The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline-manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc-carbon batteries, on average, contained the highest levels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Cadmium

    Cancer.gov

    Learn about cadmium, which may raise your risk of lung cancer. Cadmium is a natural element: all soils and rocks contain some cadmium. Exposure occurs mostly where cadmium products (such as batteries, pigments, metal coatings, and plastics) are made or recycled. Tobacco smoke also contains cadmium.

  14. Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta

    NASA Astrophysics Data System (ADS)

    Vetrimurugan, E.; Brindha, K.; Elango, L.; Ndwandwe, Osman Muzi

    2017-10-01

    Drinking water containing heavy metals above the maximum permissible limits cause potential risk to human health. The aim of this study was to determine the groundwater suitability for drinking use based on heavy metal concentration and the associated human exposure risk in an intensively irrigated part of the Cauvery river basin, Tamil Nadu, India. Sixteen heavy metals analysed were in the order of dominance of chromium < zinc < copper < cadmium < cobalt < iron < aluminium < nickel < titanium < zirconium < boron < silver < manganese < lead < lithium < silicon in groundwater. Chromium and zinc were within permissible limits of the Bureau of Indian Standards for drinking water quality, and silver, lead and nickel were above limits in all the groundwater samples. In less than 50 % of the groundwater samples, aluminium, boron, cadmium, copper, iron and manganese exceeded their individual permissible limits. Heavy metal pollution index based on 11 heavy metals indicated that groundwater quality of this area is poor-to-unsuitable. Non-carcinogenic risk for humans due to ingestion of groundwater through drinking water pathway was very high for infants, children and adults. Silver, lead, nickel, cadmium and manganese largely contributed to the health hazard. Sources of heavy metals were identified to be geological and from human activities, i.e., application of fertilizers in agricultural fields, seawater intrusion due to intensive pumping for agriculture and wastewater from industries. Groundwater and surface water in this area pose large threat due to high levels of heavy metals, and it is necessary to avoid this water for drinking due to potential risk of health hazard. This study also demonstrated the application of HPI and human exposure hazard index to study the groundwater quality based on heavy metals' concentration.

  15. The Single Superoxide Dismutase of Rhodobacter capsulatus Is a Cambialistic, Manganese-Containing Enzyme

    PubMed Central

    Tabares, Leandro C.; Bittel, Cristian; Carrillo, Néstor; Bortolotti, Ana; Cortez, Néstor

    2003-01-01

    The phototrophic bacterium Rhodobacter capsulatus contains a single, oxygen-responsive superoxide dismutase (SODRc) homologous to iron-containing superoxide dismutase enzymes. Recombinant SODRc, however, displayed higher activity after refolding with Mn2+, especially when the pH of the assay mixture was raised. SODRc isolated from Rhodobacter cells also preferentially contains manganese, but metal discrimination depends on the culture conditions, with iron fractions increasing from 7% in aerobic cultures up to 40% in photosynthetic cultures. Therefore, SODRc behaves as a Mn-containing dismutase with cambialistic properties. PMID:12730184

  16. Analysis of the world distribution of metal-rich subsea manganese nodules

    USGS Publications Warehouse

    McKelvey, Vincent Ellis; Wright, Nancy A.; Bowen, Roger W.

    1983-01-01

    Publicly available data on the composition of subsea manganese nodules extend previous reports of differences in average metal contents from ocean to ocean and of variations related to latitude and depth. Pacific Ocean nodules have the highest average manganese, nickel, and copper contents, and Atlantic Ocean nodules have the highest average iron content. The average manganese, nickel, and copper contents generally increase toward the equator in both hemispheres, and iron content generally decreases. The variation of metal content with water depth is not linear; instead, there appears to be a threshold depth of about 2,900 to 3,000 m, above which combined nickel and copper contents are generally less than 1 percent and below which cobalt content is generally less than about 0.6 percent. The composition of the nodules varies widely, but three rarely overlapping types that are of possible economic interest can be recognized. (1) Nodules containing more than about 1 percent combined nickel and copper only exceptionally contain more than 0.5 percent cobalt and 35 percent manganese. (2) Nodules containing more than 0.5 percent cobalt rarely contain more than 1 percent combined nickel and copper and 35 percent manganese. (3) Nodules containing more than 35 percent manganese only exceptionally contain more than 0.5 percent cobalt, although they average nearly 1.1 percent combined nickel and copper. Current economic interest in nodule mining is focused on the Clarion-Clipperton zone in the northeastern equatorial Pacific Ocean, the largest known area in which nodules average 1.8 percent or more combined nickel and copper. Several other areas in which nodules are rich in these metals are found in the Pacific and Indian Oceans and may be viewed as targets for exploration. Nearly 60 chemical elements have been found in manganese nodules, many in concentrations far exceeding their crustal abundances. The amounts in which many minor elements are present vary with the amounts of

  17. Water-quality characteristics of six small, semiarid watersheds in the Green River coal region of Colorado

    USGS Publications Warehouse

    Turk, John T.; Parker, Randolph S.

    1982-01-01

    Analysis of major and trace constituents in streams flowing through six semiarid watersheds indicates that the stream chemistry is characterized by saturation with respect to common carbonate minerals (calcium, magnesium, iron, manganese, and lead). The solubility of the carbonate minerals may be a major control on the absolute and relative concentrations of calcium, magnesium, bicarbonate, iron, manganese, and lead; however, other mechanisms probably control the concentrations of cadmium and zinc. Statistical analyses indicate that the mean concentrations of the major ions in the two climatic areas studied are significantly (P=0.05) different from one another, with larger mean concentrations in the more arid area. Trace-metal concentrations were similar from one area to another and indistinguishable from site to site (P=0.05) for lead, cadmium, and zinc. Linear regressions of major ion concentration to specific conductance are similar in both areas for sodium, bicarbonate, sulfate, and chloride. Results of the study may be useful in providing a first approximation of stream chemistry in other watersheds with the same geologic setting, determining watersheds with similar geochemical controls, and determining future changes in stream chemistry in the watersheds studied. (USGS)

  18. Assessment of metal transport into and out of Terrace Reservoir, Conejos County, Colorado, April 1994 through March 1995; interim report

    USGS Publications Warehouse

    Ferguson, Sheryl; Edelmann, Patrick

    1996-01-01

    Terrace Reservoir is the primary source of water for crops and livestock in the southwestern part of the San Luis Valley in southern Colorado. Mining activities have occurred in the basin for more than 100 years, and substantial mining of gold has occurred intermittently at the Summitville Mine.Historically, the Summitville Mine site has produced highly acidic, metal-enriched water that drained from the mine site into Wightman Fork and flowed to the Alamosa River and Terrace Reservoir. In 1994, a study was begun as part of risk-assessment and remediation efforts and to evaluate metal transport into and out of Terrace Reservoir. During the study period, the pH immediately upstream from Terrace Reservoir ranged from 4.3 to 7.8. The highest pH occurred during the pre-peak snowmelt period; the lowest pH occurred during storm runoff during summer. Downstream from Terrace Reservoir, the pH ranged from 4.6 to 7.6. The highest pH occurred during the pre-peak snowmelt period, and the lowest pH occurred during summer in mid-July. A comparison of the streamflow hydrographs upstream and downstream from Terrace Reservoir indicated that there was only a small difference between the annual volume of water that entered the reservoir and the annual volume of water that was released from the reservoir. Large spatial and temporal variations in concentrations of the metals of concern occurred during the study.The median and maximum concentrations of dissolved and total aluminum, iron, copper, cadmium, manganese, and zinc were larger upstream from the reservoir than downstream from the reservoir. The largest concentrations of dissolved aluminum, iron, copper, cadmium, manganese, and zinc generally occurred between mid-June and November. Throughout the study, aluminum was transported into the reservoir predominantly in the particulate or suspended form. Downstream from the reservoir, the suspended-aluminum fraction was predominant only during the pre-peak snowmelt and peak snowmelt

  19. Facilitated citrate-dependent iron translocation increases rice endosperm iron and zinc concentrations.

    PubMed

    Wu, Ting-Ying; Gruissem, Wilhelm; Bhullar, Navreet K

    2018-05-01

    Iron deficiency affects one third of the world population. Most iron biofortification strategies have focused on genes involved in iron uptake and storage but facilitating internal long-distance iron translocation has been understudied for increasing grain iron concentrations. Citrate is a primary iron chelator, and the transporter FERRIC REDUCTASE DEFECTIVE 3 (FRD3) loads citrate into the xylem. We have expressed AtFRD3 in combination with AtNAS1 (NICOTIANAMINE SYNTHASE 1) and PvFER (FERRITIN) or with PvFER alone to facilitate long-distance iron transport together with efficient iron uptake and storage in the rice endosperm. The citrate and iron concentrations in the xylem sap of transgenic plants increased two-fold compared to control plants. Iron and zinc levels increased significantly in polished and unpolished rice grains to more than 70% of the recommended estimated average requirement (EAR) for iron and 140% of the recommended EAR for zinc in polished rice grains. Furthermore, the transformed lines showed normal phenotypic growth, were tolerant to iron deficiency and aluminum toxicity, and had grain cadmium levels similar to control plants. Together, our results demonstrate that deploying FRD for iron biofortification has no obvious anti-nutritive effects and should be considered as an effective strategy for reducing human iron deficiency anemia. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Epidemiological and experimental aspects of metal carcinogenesis: physicochemical properties, kinetics, and the active species.

    PubMed Central

    Magos, L

    1991-01-01

    The carcinogenic properties of selected metals and their compounds are reviewed to provide a useful reference for existing knowledge on relationships between physical and chemical forms, kinetics and carcinogenic potential and between epidemiology, bioassays, and short-term tests. Extensive consideration is given to arsenic, beryllium, cadmium, chromium, lead, and nickel. Other metals such as antimony, cobalt, copper, iron, manganese, selenium, and zinc are discussed briefly. PMID:1821370

  1. Relationship between blood manganese and blood pressure in the Korean general population according to KNHANES 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Byung-Kook; Kim, Yangho, E-mail: yanghokm@nuri.net

    Introduction: We present data on the association of manganese (Mn) level with hypertension in a representative sample of the adult Korean population who participated in the Korean National Health and Nutrition Examination Survey (KNHANES) 2008. Methods: This study was based on the data obtained by KNHANES 2008, which was conducted for three years (2007-2009) using a rolling sampling design involving a complex, stratified, multistage, probability-cluster survey of a representative sample of the noninstitutionalized civilian population of South Korea. Results: Multiple regression analysis after controlling for covariates, including gender, age, regional area, education level, smoking, drinking status, hemoglobin, and serum creatinine,more » showed that the beta coefficients of log blood Mn were 3.514, 1.878, and 2.517 for diastolic blood pressure, and 3.593, 2.449, and 2.440 for systolic blood pressure in female, male, and all participants, respectively. Multiple regression analysis including three other blood metals, lead, mercury, and cadmium, revealed no significant effects of the three metals on blood pressure and showed no effect on the association between blood Mn and blood pressure. In addition, doubling the blood Mn increased the risk of hypertension 1.828, 1.573, and 1.567 fold in women, men, and all participants, respectively, after adjustment for covariates. The addition of blood lead, mercury, and cadmium as covariates did not affect the association between blood Mn and the prevalence of hypertension. Conclusion: Blood Mn level was associated with an increased risk of hypertension in a representative sample of the Korean adult population. - Highlights: {yields} We showed the association of manganese with hypertension in Korean population. {yields} This study was based on the data obtained by KNHANES 2008. {yields} Blood manganese level was associated with an increased risk of hypertension.« less

  2. UPTAKE OF HEAVY METALS IN BATCH SYSTEMS BY A RECYCLED IRON-BEARING MATERIAL

    EPA Science Inventory

    An iron-bearing material deriving from surface finishing operations in the manufacturing of cast-iron components demonstrates potential for removal of heavy metals from aqueous waste streams. Batch isotherm and rate experiments were conducted for uptake of cadmium, zinc, and lead...

  3. Metal Tolerance Protein 8 Mediates Manganese Homeostasis and Iron Reallocation during Seed Development and Germination1[OPEN

    PubMed Central

    Takahashi, Michiko; Terada, Yasuko

    2017-01-01

    Metal accumulation in seeds is a prerequisite for germination and establishment of plants but also for micronutrient delivery to humans. To investigate metal transport processes and their interactions in seeds, we focused on METAL TOLERANCE PROTEIN8 (MTP8), a tonoplast transporter of the manganese (Mn) subclade of cation diffusion facilitators, which in Arabidopsis (Arabidopsis thaliana) is expressed in embryos of seeds. The x-ray fluorescence imaging showed that expression of MTP8 was responsible for Mn localization in subepidermal cells on the abaxial side of the cotyledons and in cortical cells of the hypocotyl. Accordingly, under low Mn availability, MTP8 increased seed stores of Mn, required for efficient seed germination. In mutant embryos lacking expression of VACUOLAR IRON TRANSPORTER1 (VIT1), MTP8 built up iron (Fe) hotspots in MTP8-expressing cells types, suggesting that MTP8 transports Fe in addition to Mn. In mtp8 vit1 double mutant seeds, Mn and Fe were distributed in all cell types of the embryo. An Fe transport function of MTP8 was confirmed by its ability to complement Fe hypersensitivity of a yeast mutant defective in vacuolar Fe transport. Imbibing mtp8-1 mutant seeds in the presence of Mn or subjecting seeds to wet-dry cycles showed that MTP8 conferred Mn tolerance. During germination, MTP8 promoted reallocation of Fe from the vasculature. These results indicate that cell type-specific accumulation of Mn and Fe in seeds depends on MTP8 and that this transporter plays an important role in the generation of seed metal stores as well as for metal homeostasis and germination efficiency under challenging environmental conditions. PMID:28461400

  4. Heavy metals contamination in surface and groundwater supply of an urban city.

    PubMed

    Dixit, R C; Verma, S R; Nitnaware, V; Thacker, N P

    2003-04-01

    There is a continuous increase in the demand of water supply in cities due to the industrialization and growing population. This extra supply is generally met by groundwaters or nearby available surface waters. It may lead into incomplete treatment and substandard supply of drinking water. To ensure that the intake water derived from surface and groundwater is clear, palatable, neither corrosive nor scale forming, free from undesirable taste, odor and acceptable from aesthetic and health point of view, the final water quality at Delhi have been evaluated. The final water supply of four treatment plants and 80 tubewells at Delhi were surveyed in 2000-2001 for cadmium, chromium, copper, iron, lead, manganese, nickel, selenium and zinc. The levels of manganese, copper, selenium and cadmium were found marginally above the Indian Standards (IS) specification regulated for drinking water. The data was used to assess the final water quality supplied at Delhi.

  5. Design and characterization of sulfide-modified nanoscale zerovalent iron for cadmium(II) removal from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lv, Dan; Zhou, Xiaoxin; Zhou, Jiasheng; Liu, Yuanli; Li, Yizhou; Yang, Kunlun; Lou, Zimo; Baig, Shams Ali; Wu, Donglei; Xu, Xinhua

    2018-06-01

    Nanoscale zero-valent iron (nZVI) has high removal efficiency and strong reductive ability to organic and inorganic contaminants, but concerns over its stability and dispersity limit its application. In this study, nZVI was modified with sulfide to enhance Cd(II) removal from aqueous solutions. TEM and SEM analyses showed that sulfide-modified nZVI (S-nZVI) had a core-shell structure of nano-sized spherical particles, and BET results proved that sulfide modification doubled the specific surface area from 26.04 to 50.34 m2 g-1 and inhibited the aggregation of nZVI. Mechanism analysis indicated that Cd(II) was immobilized through complexation and precipitation. Cd(II) removal rate on nZVI was only 32% in 2 h, while complete immobilization could be achieved in 15 min on S-nZVI, and S-nZVI with an optimal S/Fe molar ratio of 0.3 offered a cadmium removal capacity of about 150 mg g-1 at pH 7 and 303 K. The process of Cd(II) immobilization on S-nZVI was fitted well with pseudo-second-order kinetic model, and the increase of temperature favored Cd(II) immobilization, suggesting an endothermic process. The presence of Mg2+ and Ca2+ hindered Cd(II) removal while Cu2+ did the opposite, which led to the order as Cu2+ > control > Mg2+ > Ca2+. The removal rate of 20 mg L-1 Cd(II) maintained a high level with the fluctuation of environmental conditions such as pH, ion strength and presence of HA. This study demonstrated that S-nZVI could be a promising adsorbent for Cd(II) immobilization from cadmium-contaminated water.

  6. Host-imposed manganese starvation of invading pathogens: two routes to the same destination

    PubMed Central

    Morey, Jacqueline R.; McDevitt, Christopher A.; Kehl-Fie, Thomas E.

    2015-01-01

    During infection invading pathogens must acquire all essential nutrients, including first row transition metals, from the host. To combat invaders, the host exploits this fact and restricts the availability of these nutrients using a defense mechanism known as nutritional immunity. While iron sequestration is the most well-known aspect of this defense, recent work has revealed that the host restricts the availability of other essential elements, notably manganese, during infection. Furthermore, these studies have revealed that the host utilizes multiple strategies that extend beyond metal sequestration to prevent bacteria from obtaining these metals. This review will discuss the mechanisms by which bacteria attempt to obtain the essential first row transition metal ion manganese during infection, and the approaches utilized by the host to prevent this occurrence. In addition, this review will discuss the impact of host-imposed manganese starvation on invading bacteria. PMID:25836716

  7. Reducing acid leaching of manganiferous ore: Effect of the iron removal operation on solid waste disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca

    2009-01-15

    The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary ironmore » removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO{sub 3}, NaOH, and Na{sub 2}CO{sub 3}. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.« less

  8. Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Long-Lian, E-mail: Longlian57@163.com; Lu, Ling; Pan, Ya-Juan

    Baseline blood concentrations of metals are important references for monitoring metal exposure in environmental and occupational settings. The purpose of this study was to determine the blood levels of manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) among the residents (aged 12–60 years old) living in the suburb southwest of Beijing in China and to compare the outcomes with reported values in various developed countries. Blood samples were collected from 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were determined by ICP-MS. The geometric means of blood levels of Mn, Cu,more » Zn, Pb and Cd were 11.4, 802.4, 4665, 42.6, and 0.68 µg/L, respectively. Male subjects had higher blood Pb than the females, while the females had higher blood Mn and Cu than the males. There was no gender difference for blood Cd and Zn. Smokers had higher blood Cu, Zn, and Cd than nonsmokers. There were significant age-related differences in blood levels of all metals studied; subjects in the 17–30 age group had higher blood levels of Mn, Pb, Cu, and Zn, while those in the 46–60 age group had higher Cd than the other age groups. A remarkably lower blood level of Cu and Zn in this population as compared with residents of other developed countries was noticed. Based on the current study, the normal reference ranges for the blood Mn were estimated to be 5.80–25.2 μg/L; for blood Cu, 541–1475 μg/L; for blood Zn, 2349–9492 μg/L; for blood Pb, <100 μg/L; and for blood Cd, <5.30 μg/L in the general population living in Beijing suburbs. - Highlights: • Baseline blood levels of metals in residents of Beijing suburb are investigated. • BMn and BPb in this cohort are higher than those in other developed countries. • Remarkably lower blood levels of Cu and Zn in this Chinese cohort are noticed. • The reference values for blood levels of Mn, Cu, Zn, Pb, and Cd are established.« less

  9. Intercritical heat treatments in ductile iron and steel

    NASA Astrophysics Data System (ADS)

    Aristizabal, Ricardo E.

    Materials such as dual phase (DP) steels, transformation induced plasticity (TRIP) steels and dual phase ductile irons are produced by intercritical heat treatments. These materials can provide significant weight savings in the automotive industry. The goal of this dissertation is to study intercritical heat treatments in ductile iron and steel to optimize the production parameters. Three different aspects were addressed. First, common steels were intercritically austenitized and austempered (intercritically austempered) under a variety conditions. The results showed that common grade steels that were intercritically austempered exhibited tensile properties in the same range as DP and TRIP steels. The second study consisted of determining the effect of heat treatment conditions on the tensile properties of intercritically austenitized, quenched and tempered ductile iron (IAQ&TDI). The results showed that (1) ultimate tensile strength (UTS) and yield strength (YS) were determined by the volume fraction of martensite, (2) tempering improved the elongation 1.7-2.5 times with only a slight decrease in strength, (3) the carbon in austenite formed during the intercritical heat treatment of ductile iron with a ferritic-pearlitic matrix came from the carbon available in the matrix and that carbon diffusion from the graphite nodules was restricted, and (4) limited segregation of substitutional elements occurred during intercritical austenitizing. Finally, intercritically austempered ductile iron (IADI) alloyed with different amounts of manganese and nickel was produced. Tensile properties and microstructure were determined. Also, the stability of the austenite during deformation and the lattice strains of the ferrite and the austenite phases were determined using x-ray diffraction (XRD) and neutron diffraction. The results indicated that: 1) high manganese concentrations produced materials with large blocky, low carbon austenite particles at the intercellular boundaries

  10. Thiosulfate and sulfite distributions in porewater of marine sediments related to manganese, iron, and sulfur geochemistry

    NASA Astrophysics Data System (ADS)

    Thamdrup, Bo; Finster, Kai; Fossing, Henrik; Hansen, Jens Würgler; Jørgensen, Bo Barker

    1994-01-01

    Depth distributions of thiosulfate (S 2O 32-) and sulfite (SO 32-) were measured in the porewaters of a Danish salt marsh and subtidal marine sediments by HPLC analysis after derivatization with DTNP [2,2'-dithiobis(5-nitropyridine)]. The distributions were compared to the redox zonation as indicated by Eh and Mn 2+, Fe 2+ and H 2S distributions. Concentrations of S 2O 32- varied from below detection (<50 nM) to 600 nM while SO 32- concentrations generally were 2-3 times higher, 100-1500 nM. Depth distributions of the two species were roughly similar. Lowest concentrations were found in the oxidized zone, including both the oxic surface layer and the suboxic zone of intense manganese and iron reduction, and concentrations tended to increase through the suboxic and into the reduced, sulfidic zone. The similarity of SO 32- and S 2O 32- profiles suggested a close coupling of the cycling of the two species. Rates of consumption were suggested as the main factor governing their distribution. Rapid turnover times for S 2O 32- and H 2S of 4 and 1.1 h, respectively, were estimated for the upper 0-1 cm of a subtidal sediment.

  11. Control of arsenic mobilization in paddy soils by manganese and iron oxides.

    PubMed

    Xu, Xiaowei; Chen, Chuan; Wang, Peng; Kretzschmar, Ruben; Zhao, Fang-Jie

    2017-12-01

    Reductive mobilization of arsenic (As) in paddy soils under flooded conditions is an important reason for the relatively high accumulation of As in rice, posing a risk to food safety and human health. The extent of As mobilization varies widely among paddy soils, but the reasons are not well understood. In this study, we investigated As mobilization in six As-contaminated paddy soils (total As ranging from 73 to 122 mg kg -1 ) in flooded incubation and pot experiments. Arsenic speciation in the solution and solid phases were determined. The magnitude of As mobilization into the porewater varied by > 100 times among the six soils. Porewater As concentration correlated closely with the concentration of oxalate-extractable As, suggesting that As associated with amorphous iron (oxyhydr)oxides represents the potentially mobilizable pool of As under flooded conditions. Soil containing a high level of manganese oxides showed the lowest As mobilization, likely because Mn oxides retard As mobilization by slowing down the drop of redox potential upon soil flooding and maintaining a higher arsenate to arsenite ratio in the solid and solution phases. Additions of a synthetic Mn oxide (hausmannite) to two paddy soils increased arsenite oxidation, decreased As mobilization into the porewater and decreased As concentrations in rice grain and straw. Consistent with previous studies using simplified model systems or pure mineral phases, the present study shows that Mn oxides and amorphous Fe (oxyhydr)oxides are important factors controlling reductive As mobilization in As-contaminated paddy soils. In addition, this study also suggests a potential mitigation strategy using exogenous Mn oxides to decrease As uptake by rice in paddy soils containing low levels of indigenous Mn oxides, although further work is needed to verify its efficacy and possible secondary effects under field conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Distribution of cadmium, iron and zinc in millstreams of hard winter wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Hard winter wheat (Triticum aestivum L.) is a major crop in the Great Plains of the United 14 States, and our previous work demonstrated that wheat genotypes vary for grain cadmium 15 accumulation, with some exceeding the CODEX standard (0.2 mg kg-1). Previous reports of 16 cadmium distribution in ...

  13. Electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue.

    PubMed

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Du, Jun; Tao, Changyuan

    2015-10-01

    Electrolytic manganese residue (EMR) is a solid waste found in filters after sulphuric acid leaching of manganese carbonate ore, which mainly contains manganese and ammonia nitrogen and seriously damages the ecological environment. This work demonstrated the use of electrokinetic (EK) remediation to remove ammonia nitrogen and manganese from EMR. The transport behavior of manganese and ammonia nitrogen from EMR during electrokinetics, Mn fractionation before and after EK treatment, the relationship between Mn fractionation and transport behavior, as well as the effects of electrolyte and pretreatment solutions on removal efficiency and energy consumption were investigated. The results indicated that the use of H2SO4 and Na2SO4 as electrolytes and pretreatment of EMR with citric acid and KCl can reduce energy consumption, and the removal efficiencies of manganese and ammonia nitrogen were 27.5 and 94.1 %, respectively. In these systems, electromigration and electroosmosis were the main mechanisms of manganese and ammonia nitrogen transport. Moreover, ammonia nitrogen in EMR reached the regulated level, and the concentration of manganese in EMR could be reduced from 455 to 37 mg/L. In general, the electrokinetic remediation of EMR is a promising technology in the future.

  14. Process for removing technetium from iron and other metals

    DOEpatents

    Leitnaker, J.M.; Trowbridge, L.D.

    1999-03-23

    A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag. 4 figs.

  15. The vertical distribution of selected trace metals and organic compounds in bottom materials of the proposed lower Columbia River export channel, Oregon, 1984

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Horowitz, Arthur J.

    1989-01-01

    A proposal to deepen the lower Columbia River navigation channel in Oregon prompted a study of the vertical distribution of selected trace metals and organic compounds in bottom sediments. These data are needed to evaluate the effects of dredging and disposal operations. Elutriation testing of bottom material indicated chemical concentrations as large as 900 ug/L for barium, 6,500 ug/L for manganese, and 14 ug/L for nickel. The amount of oxygen present during elutriation testing of reduced bottom material was shown to have a negligble effect on manganese elutriate-test concentrations, but it did affect barium and iron concentrations. Sediment-associated organochlorine compounds detected in bottom-sediment core samples were as large as 0.1 ug/kg (micrograms/kilogram) for aldrin, 2.0 ug/kg for chlordane, 27 ug/kg for DDD, 5.0 ug/kg for DDE, 0.2 ug/kg for DDT, 0.2 ug/kg for dieldrin, 37 ug/kg for PCB 's 1.0 ug/kg for PCN 's and 1.0 ug/kg for heptachlor epoxide. Concentrations of cadmium, lead, and zinc in selected cores were found to exceed those of local basalts. Concentrations of cadmium, lead, and zinc were as large as 3.6 ug/g, 26 ug/g, and 210 ug/g respectively. Bottom-sediment concentrations of cadmium , chromium, copper, iron, and zinc associated with the less-than-100-micrometer size fraction are larger than those associated with the greater-than-100-micrometer fraction. (USGS)

  16. Manganese Health Research Program (MHRP)

    DTIC Science & Technology

    2008-01-01

    NO3)2 Manganese sulphate or Manganese (II) sulphate – MnSO4 Manganese sulphide or Manganese (II) sulphide – MnS Manganese oxide – MnO Barium... sulphide or Manganese (II) sulphide – MnS 1344-43-0 Manganese oxide – MnO 7787-35-1 Barium manganate - BaMnO4 10294-64-1 Potassium manganate – K2MnO4...Characterization of welding fumes and their potential neurotoxic effects. International Workshop: Neurotoxic Metals- Lead, Mercury , and Manganese

  17. Milk trace elements in lactating cows environmentally exposed to higher level of lead and cadmium around different industrial units.

    PubMed

    Patra, R C; Swarup, D; Kumar, P; Nandi, D; Naresh, R; Ali, S L

    2008-10-01

    The present investigation was carried out to assess the trace mineral profile of milk from lactating cows reared around different industrial units and to examine the effect of blood and milk concentration of lead and cadmium on copper, cobalt, zinc and iron levels in milk. Respective blood and milk samples were collected from a total of 201 apparently healthy lactating cows above 3 years of age including 52 cows reared in areas supposed to be free from pollution. The highest milk lead (0.85+/-0.11 microg/ml) and cadmium (0.23+/-0.02 microg/ml) levels were recorded in lactating cows reared around lead-zinc smelter and steel manufacturing plant, respectively. Significantly (P<0.05) higher concentration of milk copper, cobalt, zinc and iron compared to control animals was recorded in cows around closed lead cum operational zinc smelter. Analysis of correlation between lead and other trace elements in milk from lactating cows with the blood lead level>0.20 microg/ml (n=79) revealed a significant negative correlations between milk iron and milk lead (r=-0.273, P=0.015). However, such trend was not recorded with blood lead level<0.20 microg/ml (n=122). The milk cobalt concentration was significantly correlated (r=0.365, P<0.001) with cadmium level in milk and the highest milk cadmium (>0.10 to 0.39 microg/ml) group had significantly (P<0.05) increased milk cobalt. It is concluded that increased blood and milk lead or cadmium level as a result of natural exposure of lactating cows to these environmental toxicants significantly influences trace minerals composition of milk and such alterations affect the milk quality and nutritional values.

  18. [The direct AAS determination of micro elements in hair and nail by base-digestion].

    PubMed

    Ju, Hong-fang

    2002-08-01

    The study of micro elements is more and more extensively, and people can gain some informations by the level of micro elements in tissue. This paper tempts to dissolve hair or nail in 2 mol.L-1 NaOH and determinate nine micro elements including calcium, zinc, iron, manganese, nickel, cadmium, copper, lead and bismuth in them by base-digestion with FAAS and GFAAS. It shows that the measured value of these elements is coincident with reference articles reported, except bismuth. The elements' percent recoveries are 90.0%-110.8%. The result also shows that the level of zinc and copper in hair are higher than in nail, and the level of bismuth, cadmium and iron in hair are lower than in nail, but the level of micro elements in hair and in nail are not correlative.

  19. Iron-[S,S']-EDDS (FeEDDS) Chelate as an Iron Source for Horticultural Crop Production: Marigold Growth and Nutrition, Spectral Properties, and Photodegradation

    USDA-ARS?s Scientific Manuscript database

    Aminopolycarboxylic acid (APCA) complexones, commonly referred to as ligands or chelating agents, like ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) are commonly used in soluble fertilizers to supply copper (Cu), iron (Fe), manganese (Mn), and/or zinc (Zn) to p...

  20. Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities

    PubMed Central

    Richter, Patricia; Faroon, Obaid; Pappas, R. Steven

    2017-01-01

    Metals are one of five major categories of carcinogenic or toxic constituents in tobacco and tobacco smoke. Cadmium is highly volatile and a higher percentage of the total tobacco cadmium content is efficiently transferred to mainstream tobacco smoke than many other toxic metals in tobacco. Inhaled cadmium bioaccumulates in the lungs and is distributed beyond the lungs to other tissues, with a total body biological half-life of one to two decades. Chronic cadmium exposure through tobacco use elevates blood and urine cadmium concentrations. Cadmium is a carcinogen, and an inducer of proinflammatory immune responses. Elevated exposure to cadmium is associated with reduced pulmonary function, obstructive lung disease, bronchogenic carcinoma, cardiovascular diseases including myocardial infarction, peripheral arterial disease, prostate cancer, cervical cancer, pancreatic cancer, and various oral pathologies. Cadmium and zinc have a toxicologically inverse relationship. Zinc is an essential element and is reportedly antagonistic to some manifestations of cadmium toxicity. This review summarizes associations between blood, urine, and tissue cadmium concentrations with emphasis on cadmium exposure due to tobacco use and several disease states. Available data about zinc and cadmium/zinc ratios and tobacco-related diseases is summarized from studies reporting smoking status. Collectively, data suggest that blood, urine, and tissue cadmium and cadmium/zinc ratios are often significantly different between smokers and nonsmokers and they are also different in smokers for several diseases and cancers. Additional biomonitoring data such as blood or serum and urine zinc and cadmium levels and cadmium/zinc ratios in smokers may provide further insight into the development and progression of diseases of the lung, cardiovascular system, and possibly other organs. PMID:28961214

  1. Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities.

    PubMed

    Richter, Patricia; Faroon, Obaid; Pappas, R Steven

    2017-09-29

    Metals are one of five major categories of carcinogenic or toxic constituents in tobacco and tobacco smoke. Cadmium is highly volatile and a higher percentage of the total tobacco cadmium content is efficiently transferred to mainstream tobacco smoke than many other toxic metals in tobacco. Inhaled cadmium bioaccumulates in the lungs and is distributed beyond the lungs to other tissues, with a total body biological half-life of one to two decades. Chronic cadmium exposure through tobacco use elevates blood and urine cadmium concentrations. Cadmium is a carcinogen, and an inducer of proinflammatory immune responses. Elevated exposure to cadmium is associated with reduced pulmonary function, obstructive lung disease, bronchogenic carcinoma, cardiovascular diseases including myocardial infarction, peripheral arterial disease, prostate cancer, cervical cancer, pancreatic cancer, and various oral pathologies. Cadmium and zinc have a toxicologically inverse relationship. Zinc is an essential element and is reportedly antagonistic to some manifestations of cadmium toxicity. This review summarizes associations between blood, urine, and tissue cadmium concentrations with emphasis on cadmium exposure due to tobacco use and several disease states. Available data about zinc and cadmium/zinc ratios and tobacco-related diseases is summarized from studies reporting smoking status. Collectively, data suggest that blood, urine, and tissue cadmium and cadmium/zinc ratios are often significantly different between smokers and nonsmokers and they are also different in smokers for several diseases and cancers. Additional biomonitoring data such as blood or serum and urine zinc and cadmium levels and cadmium/zinc ratios in smokers may provide further insight into the development and progression of diseases of the lung, cardiovascular system, and possibly other organs.

  2. Matrix isolation infrared spectra, assignment and DFT investigation on reactions of iron and manganese monoxides with CH3Cl.

    PubMed

    Zhao, Yanying; Fan, Kexue; Huang, Yongfei; Zheng, Xuming

    2013-12-01

    The reactions of iron and manganese monoxide molecules (FeO, and MnO) with monochloromethane in solid argon have been studied by matrix isolation infrared spectroscopy and quantum chemistry calculations. When annealing, the reactions of FeO and MnO with CH3Cl first form the OM-(η(Cl)-CH3Cl) (MMn, Fe) complexes, which can isomerize to CH3MOCl (MMn, Fe) upon 300<λ<580 nm irradiation. The products were characterized by isotopic IR studies with CD3Cl and (13)CH3Cl and density functional calculations. Based on theoretical calculations, the OFe-(η(Cl)-CH3Cl) and OMn-(η(Cl)-CH3Cl) complexes have (5)A' and (6)A' ground state with Cs symmetry, respectively. The accurate CCSD(T) single point calculations illustrate the CH3MOCl isomerism are 13.8 and 3.1 kcal/mol lower in energy than the OM-(η(Cl)-CH3Cl) (MMn, Fe) complexes. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Process for producing cadmium sulfide on a cadmium telluride surface

    DOEpatents

    Levi, Dean H.; Nelson, Art J.; Ahrenkiel, Richard K.

    1996-01-01

    A process for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness.

  4. Process for producing cadmium sulfide on a cadmium telluride surface

    DOEpatents

    Levi, D.H.; Nelson, A.J.; Ahrenkiel, R.K.

    1996-07-30

    A process is described for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness. 12 figs.

  5. Leaching of manganese from electrolytic manganese residue by electro-reduction.

    PubMed

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Chen, Hongliang; Tao, Changyuan

    2017-08-01

    In this study, an improved process for leaching manganese from electrolytic manganese residue (EMR) by electro-reduction was developed. The mechanisms of the electro-reduction leaching were investigated through X-ray diffraction, scanning electron microscopy, X-ray fluorescence, and Brunauer Emmett Teller. The results show that the electric field could change the surface charge distribution of EMR particles, and the high-valent manganese can be reduced by electric field. The leaching efficient of manganese reached 84.1% under the optimal leaching condition: 9.2 wt% H 2 SO 4 , current density of 25 mA/cm 2 , solid-to-liquid ratio of 1:5, and leaching time for 1 h. It is 37.9% higher than that attained without an electric field. Meanwhile, the manganese content in EMR decreased from 2.57% to 0.48%.

  6. Heavy Metals' Effect on Susceptibility to Attention-Deficit/Hyperactivity Disorder: Implication of Lead, Cadmium, and Antimony.

    PubMed

    Lee, Min-Jing; Chou, Miao-Chun; Chou, Wen-Jiun; Huang, Chien-Wei; Kuo, Ho-Chang; Lee, Sheng-Yu; Wang, Liang-Jen

    2018-06-10

    Background: Heavy metals are known to be harmful for neurodevelopment and they may correlate to attention deficit/hyperactivity disorder (ADHD). In this study, we aim to explore the relationships between multiple heavy metals (manganese, lead, cadmium, mercury, antimony, and bismuth), neurocognitive function, and ADHD symptoms. Methods: We recruited 29 patients with ADHD inattentive type (ADHD-I), 47 patients with ADHD hyperactivity/impulsivity type (ADHD-H/I), and 46 healthy control children. Urine samples were obtained to measure the levels of the aforementioned heavy metals in each child. Participants’ cognitive function and clinical symptoms were assessed, respectively. Results: We found ADHD-H/I patients demonstrated the highest antimony levels ( p = 0.028), and ADHD-I patients demonstrated the highest cadmium levels ( p = 0.034). Antimony levels were positively correlated with the severity of ADHD symptoms that were rated by teachers, and cadmium levels were negatively correlated with the Full Scale Intelligence Quotient. Lead levels were negatively correlated with most indices of the Wechsler Intelligence Scale for Children⁻Fourth Edition (WISC-IV), but positively correlated with inattention and hyperactivity/impulsivity symptoms ( p < 0.05). Conclusion: Lead, cadmium and antimony were associated with susceptibility to ADHD and symptom severity in school-age children. Eliminating exposure to heavy metals may help to prevent neurodevelopmental disorders in children.

  7. Root iron plaque alleviates cadmium toxicity to rice (Oryza sativa) seedlings.

    PubMed

    Fu, Youqiang; Yang, Xujian; Shen, Hong

    2018-06-18

    Iron plaque (IP) on root surface can enhance the tolerance of plants to environmental stresses. However, it remains unclear the impact of Fe 2+ on cadmium (Cd) toxicity to rice (Oryza sativa) seedlings. In this study, the effects of different Fe 2+ and Cd 2+ concentration combinations on rice growth were examined hydroponically. Results indicated that Fe 2+ concentration up to 3.2 mM did not damage rice roots while induced IP formation obviously. Cd 2+ of 10 μM repressed rice growth significantly, while the addition of 0.2 mM Fe 2+ to 10 μM Cd 2+ solution (Cd+Fe) did not damage rice roots, indicating that Fe 2+ could ameliorate Cd toxicity to rice seedlings. Microstructure analysis showed Cd+Fe treatment induced the formation of IP with dense and intricate network structure, Cd adsorption on the root surface was reduced significantly. Cd concentration of rice roots and shoots and Cd translocation from roots to shoots with Fe+Cd treatment were reduced by 34.1%, 36.0% and 20.1%, respectively, in comparison to a single Cd treatment. Noteworthy, the removal of IP resulted in a larger loss of root biomass under Cd treatment. In addition, Cd+Fe treatment increased the activities of root superoxide dismutase and catalase by 105.5% and 177.4%, and decreased H 2 O 2 and O 2 · - accumulation of rice roots by 56.9% and 35.9%, and recovered Cd-triggered electrolyte leakage obviously, when compared with a single Cd treatment. The results from this experiment indicated that the formed dense IP on rice roots decreased Cd absorption and reactive oxygen species accumulation, and Fe 2+ supply alleviated Cd toxicity to rice seedlings. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Chemically bonded phosphate ceramics of trivalent oxides of iron and manganese

    DOEpatents

    Wagh, Arun S.; Jeong, Seung-Young

    2002-01-01

    A new method for combining elemental iron and other metals to form an inexpensive ceramic to stabilize arsenic, alkaline red mud wastes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast.

  9. Extraction of manganese from electrolytic manganese residue by bioleaching.

    PubMed

    Xin, Baoping; Chen, Bing; Duan, Ning; Zhou, Changbo

    2011-01-01

    Extraction of manganese from electrolytic manganese residues using bioleaching was investigated in this paper. The maximum extraction efficiency of Mn was 93% by sulfur-oxidizing bacteria at 4.0 g/l sulfur after bioleaching of 9days, while the maximum extraction efficiency of Mn was 81% by pyrite-leaching bacteria at 4.0 g/l pyrite. The series bioleaching first by sulfur-oxidizing bacteria and followed by pyrite-leaching bacteria evidently promoted the extraction of manganese, witnessing the maximum extraction efficiency of 98.1%. In the case of sulfur-oxidizing bacteria, the strong dissolution of bio-generated sulfuric acid resulted in extraction of soluble Mn2+, while both the Fe2+ catalyzed reduction of Mn4+ and weak acidic dissolution of Mn2+ accounted for the extraction of manganese with pyrite-leaching bacteria. The chemical simulation of bioleaching process further confirmed that the acid dissolution of Mn2+ and Fe2+ catalyzed reduction of Mn4+ were the bioleaching mechanisms involved for Mn extraction from electrolytic manganese residues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Manganese intake is inversely associated with depressive symptoms during pregnancy in Japan: Baseline data from the Kyushu Okinawa Maternal and Child Health Study.

    PubMed

    Miyake, Yoshihiro; Tanaka, Keiko; Okubo, Hitomi; Sasaki, Satoshi; Furukawa, Shinya; Arakawa, Masashi

    2017-03-15

    One epidemiological study in Canada has addressed the association between zinc intake and depressive symptoms during pregnancy while another epidemiological study in Korea has examined the association between iron intake and depressive symptoms during pregnancy. The present cross-sectional study in Japan examined the association between intake of zinc, magnesium, iron, copper, and manganese and depressive symptoms during pregnancy. Study subjects were 1745 pregnant women. Dietary intake during the preceding month was assessed using a self-administered diet history questionnaire. Depressive symptoms were defined as a score ≥16 on the Center for Epidemiologic Studies Depression Scale. Adjustment was made for age, gestation, region of residence, number of children, family structure, history of depression, family history of depression, smoking, secondhand smoke exposure at home and at work, employment, household income, education, body mass index, and intake of saturated fatty acids, eicosapentaenoic acid plus docosahexaenoic acid, calcium, vitamin D, and isoflavones. In crude analysis, significant inverse associations were observed between intake levels of zinc, magnesium, iron, copper, and manganese and the prevalence of depressive symptoms during pregnancy. After adjustment for confounding factors, only manganese intake was independently inversely associated with depressive symptoms during pregnancy: the adjusted prevalence ratio between extreme quartiles was 0.74 (95% confidence interval:0.56-0.97, P for trend=0.046). Information was obtained between the 5th and 39th week of pregnancy. The current cross-sectional study of Japanese women demonstrated higher manganese intake to be independently associated with a lower prevalence of depressive symptoms during pregnancy. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Lead and cadmium content in human milk from the Northern Adriatic area of Croatia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frkovic, A.; Kras, M.; Alebic-Juretic, A.

    Though occupational exposure to toxic metals (lead, cadmium) is well documented, harmful effects of environmental exposure to lower levels of these two metals is still under investigation. Most toxic metals are emitted by human activities and the atmosphere is the main transport route for these elements. According to some authors, 332 358 t of lead and 7570 t of cadmium were emitted in the atmosphere from anthropogenic sources in 1983. The principle source of lead is traffic, e.g. leaded petrol, still widely used in Croatia, as well as coal combustion, iron and steal production. Volcanic activity, zinc production and wastemore » incineration are the main sources of cadmium. Recent study indicates that traffic could also be the main source of cadmium found along busy streets. Chronic lead exposure at low levels is associated with adverse health effects especially in fetus and young children. This study examines lead and cadmium levels in breast milk from nursing women living in the Northern Adriatic area of Croatia. 15 refs., 2 tabs.« less

  12. Spatio-temporal Distribution and Chemical Speciation of Iron and Manganese in Sediments from Lake Aha, China

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Hu, Jiwei; Qin, Fanxin; Jiang, Cuihong; Huang, Xianfei; Deng, Jiajun; Li, Cunxiong

    2010-11-01

    This paper reports an investigation on pollution and potential risk on elements of iron (Fe) and manganese (Mn) in sediments from Lake Aha, which is a drinking-water source for Guiyang City, the capital of Guizhou Province in southwestern China. In the present research, chemical speciation of Fe and Mn in sediments from the lake was studied based on the sequential extraction procedure developed by Tessier et al.. The results obtained from the study are as follows. The average values of total Fe were 47617 mg/kg and 70325 mg/kg in sediments from the lake in summer and winter respectively, and its speciation consisted mainly of residual and Fe-Mn oxides fractions. The amounts of total Fe and the distribution of its speciation in the sediments should be affected by effluents from a large quantity of deserted coal mines in the lake basin in summer and winter. The average values of total Mn were 7996 mg/kg and 1753 mg/kg in summer and winter respectively, and its speciation is primarily comprised of carbonate and Fe-Mn oxides fractions. The amounts of total Mn and its distribution in different fractions in the sediments were believed to be primarily influenced by effluents from those deserted coal mines in summer and by the condition of redox interface in winter.

  13. Solar abundance ratios of the iron-peak elements in the Perseus cluster.

    PubMed

    2017-11-23

    The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature of type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, high-resolution spectroscopy is required for an accurate determination of the abundances of these elements. Here we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.

  14. Solar abundance ratios of the iron-peak elements in the Perseus cluster

    DOE PAGES

    Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; ...

    2017-11-13

    The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae1. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode2–6. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature ofmore » type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, highresolution spectroscopy is required for an accurate determination of the abundances of these elements. Here in this paper we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.« less

  15. Solar abundance ratios of the iron-peak elements in the Perseus cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie

    The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae1. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode2–6. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature ofmore » type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, highresolution spectroscopy is required for an accurate determination of the abundances of these elements. Here in this paper we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.« less

  16. Arsenic, cadmium, and manganese levels in shellfish from Map Ta Phut, an industrial area in Thailand, and the potential toxic effects on human cells.

    PubMed

    Rangkadilok, Nuchanart; Siripriwon, Pantaree; Nookabkaew, Sumontha; Suriyo, Tawit; Satayavivad, Jutamaad

    2015-01-01

    Map Ta Phut Industrial Estate is a major industrial area in Thailand for both petrochemical and heavy industries. The release of hazardous wastes and other pollutants from these industries increases the potential for contamination in foods in the surrounding area, especially farmed shellfish. This study determined the arsenic (As), cadmium (Cd), and manganese (Mn) concentrations in the edible flesh of farmed shellfish, including Perna viridis, Meretrix meretrix, and Scapharca inaequivalvis, around the Map Ta Phut area using inductively coupled plasma mass spectrometry. The results showed that shellfish samples contained high levels of total As [1.84-6.42 mg kg(-1) wet weight (ww)]. High Mn concentrations were found in P. viridis and M. meretrix, whereas S. inaequivalis contained the highest Cd. Arsenobetaine (AsB) was found to be the major As species in shellfish (>45% of total As). The in vitro cytotoxicity of these elements was evaluated using human cancer cells (T47D, A549, and Jurkat cells). An observed decrease in cell viability in T47D and Jurkat cells was mainly caused by exposure to inorganic As (iAs) or Mn but not to AsB or Cd. The combined elements (AsB+Mn+Cd) at concentrations predicted to result from the estimated daily intake of shellfish flesh by the local people showed significant cytotoxicity in T47D and Jurkat cells.

  17. Manganese, Metallogenium, and Martian Microfossils

    NASA Technical Reports Server (NTRS)

    Stein, L. Y.; Nealson, K. H.

    1999-01-01

    Manganese could easily be considered an abundant element in the Martian regolith, assuming that the composition of martian meteorites reflects the composition of the planet. Mineralogical analyses of 5 SNC meteorites have revealed an average manganese oxide concentration of 0.48%, relative to the 0.1% concentration of manganese found in the Earth's crust. On the Earth, the accumulation of manganese oxides in oceans, soils, rocks, sedimentary ores, fresh water systems, and hydrothermal vents can be largely attributed to microbial activity. Manganese is also a required trace nutrient for most life forms and participates in many critical enzymatic reactions such as photosynthesis. The wide-spread process of bacterial manganese cycling on Earth suggests that manganese is an important element to both geology and biology. Furthermore, there is evidence that bacteria can be fossilized within manganese ores, implying that manganese beds may be good repositories for preserved biomarkers. A particular genus of bacteria, known historically as Metallogenium, can form star-shaped manganese oxide minerals (called metallogenium) through the action of manganese oxide precipitation along its surface. Fossilized structures that resemble metallogenium have been found in Precambrian sedimentary formations and in Cretaceous-Paleogene cherts. The Cretaceous-Paleogene formations are highly enriched in manganese and have concentrations of trace elements (Fe, Zn, Cu, and Co) similar to modern-day manganese oxide deposits in marine environments. The appearance of metallogenium-like fossils associated with manganese deposits suggests that bacteria may be preserved within the minerals that they form. Additional information is contained in the original extended abstract.

  18. The Properties of Fluorine, Oxygen Bifluoride, and Chlorine Trifluoride

    DTIC Science & Technology

    1949-09-06

    they should be of forg€;d steel. Welded joints are excellent provided the welds are slag -free. Cast iron or any ether material containing silica cannot...400°C brilliant light Manganese powder form; 500°C formation of fluoride with glowing Zinc Cadmium powder form; heating glowing and flashing...reaction upon heating Magnesium at first, no reaction; explosive reaction Aluminum after ignition with carbon Zinc TV „ 1X11 Lead Cupfier L

  19. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence

    PubMed Central

    Porcheron, Gaëlle; Garénaux, Amélie; Proulx, Julie; Sabri, Mourad; Dozois, Charles M.

    2013-01-01

    For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese, and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC) virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect. PMID:24367764

  20. Kinetics of the solid-state carbothermic reduction of wessel manganese ores

    NASA Astrophysics Data System (ADS)

    Akdogan, Guven; Eric, R. Hurman

    1995-02-01

    Reduction of manganese ores from the Wessel mine of South Africa has been investigated in the temperature range 1100 °C to 1350 °C with pure graphite as the reductant under argon atmosphere. The rate and degree of reduction were found to increase with increasing temperature and decreasing particle sizes of both the ore and the graphite. The reduction was found to occur in two stages: (1) The first stage includes the rapid reduction of higher oxides of manganese and iron to MnO and FeO. The rate control appears to be mixed, both inward diffusion of CO and outward diffusion of CO2 across the porous product layer, and the reaction of carbon monoxide on the pore walls of the oxide phase play important roles. The values of effective CO-CO2 diffusivities generated by the mathematical model are in the range from 2.15 x 10-5 to 6.17 X 10-5 cm2.s-1 for different ores at 1300 °C. Apparent activation energies range from 81. 3 to 94.6 kJ/kg/mol. (2) The second stage is slower during which MnO and FeO are reduced to mixed carbide of iron and manganese. The chemical reaction between the manganous oxide and carbon dissolved in the metal phase or metal carbide seems to be the rate-controlling process The rate constant of chemical reaction between MnO and carbide on the surface of the impervious core was found to lie in the range from 1.53 x 10-8 to 1.32 x 10-7 mol . s-1 . cm-2. Apparent activation energies calculated are in the range from 102.1 to 141.7 kJ/kg/mol.

  1. Cadmium telluride in tellurium—cadmium films consisting of ultradispersed particles

    NASA Astrophysics Data System (ADS)

    Tuleushev, Yu. Zh.; Volodin, V. N.; Migunova, A. A.; Lisitsyn, V. N.

    2015-08-01

    Solid solutions of tellurium in cadmium, cadmium in tellurium, and cadmium in cadmium telluride synthesized during sputtering are formed for the first time by ion-plasma sputtering and the codeposition of ultradispersed Te and Cd particle fluxes onto substrates moving with respect to the fluxes. This fact supports thermofluctuation melting and coalescence of small particles. The lattice parameter of cadmium telluride, which coexists with an amorphous solid solution of tellurium in cadmium in a coating, is smaller than the tabulated value and reaches it when the cadmium concentration in a coating increases to 70 at %. The lattice parameter of the fcc lattice of cadmium telluride increases with the cadmium concentration in a coating according to the linear relation a = 0.0002CCd + 0.6346 nm (where CCd is the cadmium concentration in the coating, at %), which is likely to indicate a certain broadening of the homogeneity area. The estimation of the particle size shows that the cadmium telluride grain size is 10-15 nm, which implies that the coatings are nanocrystalline. The absorption and transmission spectra of the tellurium—cadmium films at the fundamental absorption edge demonstrate that their energy gaps are larger than that of stoichiometric CdTe, which can be explained by the experimental conditions of crystal structure formation.

  2. Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment

    PubMed Central

    Su, Yiming; Adeleye, Adeyemi S.; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A.; Zhang, Yalei

    2016-01-01

    Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water. PMID:27095387

  3. Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment

    NASA Astrophysics Data System (ADS)

    Su, Yiming; Adeleye, Adeyemi S.; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A.; Zhang, Yalei

    2016-04-01

    Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water.

  4. Effect of coated urea on cadmium accumulation in Oryza sativa L. grown in contaminated soil.

    PubMed

    Xu, Chao; Wu, Zisong; Zhu, Qihong; Zhu, Hanhua; Zhang, Yangzhu; Huang, Daoyou

    2015-11-01

    Experiments were conducted to determine the effects of three types of coated urea on the accumulation of cadmium (Cd) in rice (Oryza sativa L.) grown in contaminated soil. Pot-culture experiments were conducted in a greenhouse from July to November 2012 on the rice cultivar "Hua Hang Si Miao" in Guangzhou (China). The experimental design was completely randomized with four treatments and three replications. The treatments were control (CK) (N 0 mg/kg), prilled urea (PU) (N 200 mg/kg), polymer-coated urea (PCU) (N 200 mg/kg), and sulfur-coated urea (SCU) (N 200 mg/kg). Our results indicated that applications of PCU and SCU slightly increased the dry weight of rice grains. The application of SCU significantly decreased the CaCl2 and toxicity characteristic leaching procedure (TCLP)-extractable Cd concentrations by 15.4 and 56.1%, respectively. Sequential extractions showed that PCU and SCU applications led to a significant decrease in Cd in the exchangeable fraction and an increase in the bound iron (Fe) and manganese (Mn) oxides fractions. Cd concentrations in grains treated with PCU were reduced by 11.7%, whereas SCU significantly reduced Cd concentrations by 29.1%. SCU reduced Cd transfer from the straws to the grain. Our results demonstrated that PCU and SCU may be effective in mitigating Cd accumulation in rice grown in acidic Cd-contaminated soil, especially in plants receiving SCU.

  5. Effect of Hfe Deficiency on Memory Capacity and Motor Coordination after Manganese Exposure by Drinking Water in Mice

    PubMed Central

    Alsulimani, Helal Hussain; Ye, Qi

    2015-01-01

    Excess manganese (Mn) is neurotoxic. Increased manganese stores in the brain are associated with a number of behavioral problems, including motor dysfunction, memory loss and psychiatric disorders. We previously showed that the transport and neurotoxicity of manganese after intranasal instillation of the metal are altered in Hfe-deficient mice, a mouse model of the iron overload disorder hereditary hemochromatosis (HH). However, it is not fully understood whether loss of Hfe function modifies Mn neurotoxicity after ingestion. To investigate the role of Hfe in oral Mn toxicity, we exposed Hfe-knockout (Hfe-/-) and their control wild-type (Hfe+/+) mice to MnCl2 in drinking water (5 mg/mL) for 5 weeks. Motor coordination and spatial memory capacity were determined by the rotarod test and the Barnes maze test, respectively. Brain and liver metal levels were analyzed by inductively coupled plasma mass spectrometry. Compared with the water-drinking group, mice drinking Mn significantly increased Mn concentrations in the liver and brain of both genotypes. Mn exposure decreased iron levels in the liver, but not in the brain. Neither Mn nor Hfe deficiency altered tissue concentrations of copper or zinc. The rotarod test showed that Mn exposure decreased motor skills in Hfe+/+ mice, but not in Hfe-/- mice (p = 0.023). In the Barns maze test, latency to find the target hole was not altered in Mn-exposed Hfe+/+ compared with water-drinking Hfe+/+ mice. However, Mn-exposed Hfe-/- mice spent more time to find the target hole than Mn-drinking Hfe+/+ mice (p = 0.028). These data indicate that loss of Hfe function impairs spatial memory upon Mn exposure in drinking water. Our results suggest that individuals with hemochromatosis could be more vulnerable to memory deficits induced by Mn ingestion from our environment. The pathophysiological role of HFE in manganese neurotoxicity should be carefully examined in patients with HFE-associated hemochromatosis and other iron overload

  6. Effect of Hfe Deficiency on Memory Capacity and Motor Coordination after Manganese Exposure by Drinking Water in Mice.

    PubMed

    Alsulimani, Helal Hussain; Ye, Qi; Kim, Jonghan

    2015-12-01

    Excess manganese (Mn) is neurotoxic. Increased manganese stores in the brain are associated with a number of behavioral problems, including motor dysfunction, memory loss and psychiatric disorders. We previously showed that the transport and neurotoxicity of manganese after intranasal instillation of the metal are altered in Hfe-deficient mice, a mouse model of the iron overload disorder hereditary hemochromatosis (HH). However, it is not fully understood whether loss of Hfe function modifies Mn neurotoxicity after ingestion. To investigate the role of Hfe in oral Mn toxicity, we exposed Hfe-knockout (Hfe (-/-)) and their control wild-type (Hfe (+/+)) mice to MnCl2 in drinking water (5 mg/mL) for 5 weeks. Motor coordination and spatial memory capacity were determined by the rotarod test and the Barnes maze test, respectively. Brain and liver metal levels were analyzed by inductively coupled plasma mass spectrometry. Compared with the water-drinking group, mice drinking Mn significantly increased Mn concentrations in the liver and brain of both genotypes. Mn exposure decreased iron levels in the liver, but not in the brain. Neither Mn nor Hfe deficiency altered tissue concentrations of copper or zinc. The rotarod test showed that Mn exposure decreased motor skills in Hfe (+/+) mice, but not in Hfe (-/-) mice (p = 0.023). In the Barns maze test, latency to find the target hole was not altered in Mn-exposed Hfe (+/+) compared with water-drinking Hfe (+/+) mice. However, Mn-exposed Hfe (-/-) mice spent more time to find the target hole than Mn-drinking Hfe (+/+) mice (p = 0.028). These data indicate that loss of Hfe function impairs spatial memory upon Mn exposure in drinking water. Our results suggest that individuals with hemochromatosis could be more vulnerable to memory deficits induced by Mn ingestion from our environment. The pathophysiological role of HFE in manganese neurotoxicity should be carefully examined in patients with HFE-associated hemochromatosis and

  7. Dietary Cadmium and Risk of Invasive Postmenopausal Breast Cancer in the VITAL Cohort

    PubMed Central

    Adams, Scott V.; Newcomb, Polly A.; White, Emily

    2012-01-01

    Purpose Estimate the association between dietary intake of cadmium, a carcinogenic heavy metal, and risk of invasive breast cancer. Methods Study subjects were 30,543 postmenopausal women in the VITamins And Lifestyle (VITAL) cohort who completed a food frequency questionnaire (FFQ) at baseline (2000–2002). Dietary cadmium consumption was estimated by combining FFQ responses with US Food and Drug Administration data on food cadmium content. Incidence of invasive breast cancer was ascertained through linkage of the cohort to the western Washington Surveillance, Epidemiology, and End Results cancer registry through December 31, 2009. Cox regression was applied to estimate adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for breast cancer with increasing dietary cadmium intake, adjusted for total energy intake, smoking history, consumption of vegetables, potatoes, and whole grains, multivitamin use, education, race, body mass index, physical activity, age at first birth, postmenopausal hormone use, and mammography. Results Vegetables and grains together contributed an average of 66% of estimated dietary cadmium. During a mean of 7.5 years of follow-up, 1,026 invasive postmenopausal breast cancers were identified. Among 899 cases with complete covariate information, no evidence of an association between dietary cadmium intake and breast cancer risk was observed (aHR (95% CI), highest to lowest quartile cadmium: 1.00 (0.72–1.41), Ptrend=0.95). No evidence was found for interactions between dietary cadmium and breast cancer risk factors, smoking habits, or total intake of calcium, iron, or zinc from diet, supplements, and multivitamins. Conclusions This study does not support the hypothesis that dietary cadmium intake is a risk factor for breast cancer. However, non-differential measurement error in the estimate of cadmium intake is likely the most important factor that could have obscured an association. PMID:22527162

  8. Gamma prime hardened nickel-iron based superalloy

    DOEpatents

    Korenko, Michael K.

    1978-01-01

    A low swelling, gamma prime hardened nickel-iron base superalloy useful for fast reactor duct and cladding applications is described having from about 7.0 to about 10.5 weight percent (wt%) chromium, from about 24 to about 35 wt% nickel, from about 1.7 to about 2.5 wt% titanium, from about 0.3 to about 1.0 wt% aluminum, from about 2.0 to about 3.3 wt% molybdenum, from about 0.05 to about 1.0 wt% silicon, from about 0.03 to about 0.06 wt% carbon, a maximum of about 2 wt% manganese, and the balance iron.

  9. Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast.

    PubMed

    Guo, Lan; Ganguly, Abantika; Sun, Lingling; Suo, Fang; Du, Li-Lin; Russell, Paul

    2016-10-13

    Heavy metals and metalloids such as cadmium [Cd(II)] and arsenic [As(III)] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron-sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5'-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt-Ada-Gcn5-acetyltransferase (SAGA) transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae, underscoring the utility of analyzing toxic metal defense mechanisms in both organisms. Copyright © 2016 Guo et al.

  10. Mutation in HFE gene decreases manganese accumulation and oxidative stress in the brain after olfactory manganese exposure.

    PubMed

    Ye, Qi; Kim, Jonghan

    2016-06-01

    Increased accumulation of manganese (Mn) in the brain is significantly associated with neurobehavioral deficits and impaired brain function. Airborne Mn has a high systemic bioavailability and can be directly taken up into the brain, making it highly neurotoxic. While Mn transport is in part mediated by several iron transporters, the expression of these transporters is altered by the iron regulatory gene, HFE. Mutations in the HFE gene are the major cause of the iron overload disorder, hereditary hemochromatosis, one of the prevalent genetic diseases in humans. However, whether or not HFE mutation modifies Mn-induced neurotoxicity has not been evaluated. Therefore, our goal was to define the role of HFE mutation in Mn deposition in the brain and the resultant neurotoxic effects after olfactory Mn exposure. Mice carrying the H67D HFE mutation, which is homologous to the H63D mutation in humans, and their control, wild-type mice, were intranasally instilled with MnCl2 with different doses (0, 0.2, 1.0 and 5.0 mg kg(-1)) daily for 3 days. Mn levels in the blood, liver and brain were determined using inductively-coupled plasma mass spectrometry (ICP-MS). H67D mutant mice showed significantly lower Mn levels in the blood, liver, and most brain regions, especially in the striatum, while mice fed an iron-overload diet did not. Moreover, mRNA expression of ferroportin, an essential exporter of iron and Mn, was up-regulated in the striatum. In addition, the levels of isoprostane, a marker of lipid peroxidation, were increased in the striatum after Mn exposure in wild-type mice, but were unchanged in H67D mice. Together, our results suggest that the H67D mutation provides decreased susceptibility to Mn accumulation in the brain and neurotoxicity induced by inhaled Mn.

  11. Two-iron rubredoxin of Pseudomonas oleovorans: production, stability and characterization of the individual iron-binding domains by optical, CD and NMR spectroscopies.

    PubMed

    Perry, A; Lian, L Y; Scrutton, N S

    2001-02-15

    A minigene encoding the C-terminal domain of the 2Fe rubredoxin of Pseudomonas oleovorans was created from the parental alk G gene contained in the expression plasmid pKK223-3. The vector directed the high-level production of the C-terminal domain of this rubredoxin; a simple procedure was used to purify the recombinant domain in the 1Fe form. The 1Fe form of the C-terminal domain was readily converted into the apoprotein and cadmium forms after precipitation with trichloroacetic acid and resolubilization in the presence or absence of cadmium chloride respectively. In steady-state assays, the recombinant 1Fe C-terminal domain is redox-active and able to transfer electrons from reduced rubredoxin reductase to cytochrome c. The absorption spectrum and dichroic features of the CD spectrum for the iron- and cadmium-substituted C-terminal domain are similar to those reported for the iron- and cadmium-substituted Desulfovibrio gigas rubredoxin [Henehen, Pountney, Zerbe and Vasak (1993) Protein Sci. 2, 1756-1764]. Difference absorption spectroscopy of the cadmium-substituted C-terminal domain revealed the presence of four Gaussian-resolved maxima at 202, 225, 240 and 276 nm; from Jørgensen's electronegativity theory, the 240 nm band is attributable to a CysS-Cd(II) charge-transfer excitation. Attempts to express the N-terminal domain of the 2Fe rubredoxin directly from a minigene were unsuccessful. However, the N-terminal domain was isolated through cleavage of an engineered 2Fe rubredoxin in which a factor Xa proteolysis site had been introduced into the putative interdomain linker. The N-terminal domain is characterized by absorption spectra typical of the 1Fe rubredoxins. The domain is folded as determined by CD and NMR spectroscopies and is redox-active. However, the N-terminal domain is less stable than the isolated C-terminal domain, a finding consistent with the known properties of the full-length 2Fe and cadmium-substituted Ps. oleovorans rubredoxin.

  12. Characterisation and Processing of Some Iron Ores of India

    NASA Astrophysics Data System (ADS)

    Krishna, S. J. G.; Patil, M. R.; Rudrappa, C.; Kumar, S. P.; Ravi, B. P.

    2013-10-01

    Lack of process characterization data of the ores based on the granulometry, texture, mineralogy, physical, chemical, properties, merits and limitations of process, market and local conditions may mislead the mineral processing entrepreneur. The proper implementation of process characterization and geotechnical map data will result in optimized sustainable utilization of resource by processing. A few case studies of process characterization of some Indian iron ores are dealt with. The tentative ascending order of process refractoriness of iron ores is massive hematite/magnetite < marine black iron oxide sands < laminated soft friable siliceous ore fines < massive banded magnetite quartzite < laminated soft friable clayey aluminous ore fines < massive banded hematite quartzite/jasper < massive clayey hydrated iron oxide ore < manganese bearing iron ores massive < Ti-V bearing magnetite magmatic ore < ferruginous cherty quartzite. Based on diagnostic process characterization, the ores have been classified and generic process have been adopted for some Indian iron ores.

  13. PfeT, a P1B4 -type ATPase, effluxes ferrous iron and protects Bacillus subtilis against iron intoxication.

    PubMed

    Guan, Guohua; Pinochet-Barros, Azul; Gaballa, Ahmed; Patel, Sarju J; Argüello, José M; Helmann, John D

    2015-11-01

    Iron is an essential element for nearly all cells and limited iron availability often restricts growth. However, excess iron can also be deleterious, particularly when cells expressing high affinity iron uptake systems transition to iron rich environments. Bacillus subtilis expresses numerous iron importers, but iron efflux has not been reported. Here, we describe the B. subtilis PfeT protein (formerly YkvW/ZosA) as a P1B4 -type ATPase in the PerR regulon that serves as an Fe(II) efflux pump and protects cells against iron intoxication. Iron and manganese homeostasis in B. subtilis are closely intertwined: a pfeT mutant is iron sensitive, and this sensitivity can be suppressed by low levels of Mn(II). Conversely, a pfeT mutant is more resistant to Mn(II) overload. In vitro, the PfeT ATPase is activated by both Fe(II) and Co(II), although only Fe(II) efflux is physiologically relevant in wild-type cells, and null mutants accumulate elevated levels of intracellular iron. Genetic studies indicate that PfeT together with the ferric uptake repressor (Fur) cooperate to prevent iron intoxication, with iron sequestration by the MrgA mini-ferritin playing a secondary role. Protection against iron toxicity may also be a key role for related P1B4 -type ATPases previously implicated in bacterial pathogenesis. © 2015 John Wiley & Sons Ltd.

  14. Changes in blood manganese concentration and MRI t1 relaxation time during 180 days of stainless steel welding-fume exposure in cynomolgus monkeys.

    PubMed

    Sung, Jae Hyuck; Kim, Choong Yong; Yang, Seoung Oh; Khang, Hyun Soo; Cheong, Hae Kwan; Lee, Jong Seong; Song, Chang-Woo; Park, Jung Duck; Han, Jeong Hee; Chung, Yong Hyun; Choi, Byung Sun; Kwon, Il Hoon; Cho, Myung Haeng; Yu, Il Je

    2007-01-01

    Welders are at risk of being exposed to high concentrations of welding fumes and developing pneumoconiosis or other welding-fume exposure-related diseases. Among such diseases, manganism resulting from welding-fume exposure remains a controversial issue, as although the movement of manganese into specific brain regions has been established, the similar movement of manganese presented with other metals, such as welding fumes, has not been clearly demonstrated as being similar to that of manganese alone. Meanwhile, the competition between Mn and iron for iron transporters, such as transferrin and DMT-1, to the brain has also been implicated in the welding-fume exposure. Thus, the increased signal intensities in the basal ganglia, including the globus pallidus and subcortical frontal white matter, based on T1-weighted magnetic resonances in welders, require further examination as regards the correspondence with an increased manganese concentration. Accordingly, to investigate the movement of manganese after welding-fume exposure, 6 cynomolgus monkeys were acclimated for 1 mo and assigned to 3 dose groups: unexposed, low dose of (total suspended particulate [TSP] 31 mg/m3, 0.9 mg/m3 of Mn), and high dose of total suspended particulate (62 mg/m3 TSP, 1.95 mg/m3 of Mn). The primates were exposed to manual metal-arc stainless steel (MMA-SS) welding fumes for 2 h/day in an inhalation chamber system equipped with an automatic fume generator for 6 mo. Magnetic resonance imaging (MRI) studies of the basal ganglia were conducted before the initiation of exposure and thereafter every month. During the exposure, the blood chemistry was monitored every 2 wk and the concentrations of metal components in the blood were measured every 2 wk and compared with ambient manganese concentrations. The manganese concentrations in the blood did not show any significant increase until after 2 mo of exposure, and then reached a plateau after 90 days of exposure, showing that an exposure period

  15. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  16. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  17. Phytoavailability and fractions of iron and manganese in calcareous soil amended with composted urban wastes.

    PubMed

    Gallardo-Lara, Francisco; Azcón, Mariano; Polo, Alfredo

    2006-01-01

    Little is known about the effects of applying composted urban wastes on the phytoavailability and distribution of iron (Fe) and manganese (Mn) among chemical fractions in soil. In order to study this concern several experiments in pots containing calcareous soil were carried out. The received treatments by adding separately two rates (20 and 80 Mg ha-1) of municipal solid waste (MSW) compost and/or municipal solid waste and sewage sludge (MSW-SS) co-compost. The cropping sequence was a lettuce crop followed by a barley crop. It was observed that treatments amended with composted urban wastes tended to promote slight increases in lettuce yield compared to the control. The highest Fe levels in lettuce were found when higher rates of MSW-SS co-compost were applied; these values were significant compared to those obtained in the other treatments. In all cases, the application of organic materials increased the concentration and uptake of Mn in lettuce compared to the control; however, these increases were significant only when higher rates of MSW compost were applied. The organic amendments had beneficial delayed effects on barley yields, showing, in most cases, significant increases compared to the control. In this context, treatments with MSW compost were found to be more effective than the equivalent treatments amended with MSW-SS co-compost. Compared to the control, composted urban wastes increased Fe concentration in straw and rachis, and decreased Fe concentration in barley grain. Similarly, a decreased concentration of Mn in the dry matter of barley crop grown in soils treated with composted urban wastes was observed.

  18. Inhibitory Effect of Dissolved Silica on the H2O2 Decomposition by Iron(III) and Manganese(IV) Oxides: Implications for H2O2-based In Situ Chemical Oxidation

    PubMed Central

    Pham, Anh Le-Tuan; Doyle, Fiona M.; Sedlak, David L.

    2011-01-01

    The decomposition of H2O2 on iron minerals can generate •OH, a strong oxidant that can transform a wide range of contaminants. This reaction is critical to In Situ Chemical Oxidation (ISCO) processes used for soil and groundwater remediation, as well as advanced oxidation processes employed in waste treatment systems. The presence of dissolved silica at concentrations comparable to those encountered in natural waters decreases the reactivity of iron minerals toward H2O2, because silica adsorbs onto the surface of iron minerals and alters catalytic sites. At circumneutral pH values, goethite, amorphous iron oxide, hematite, iron-coated sand and montmorillonite that were pre-equilibrated with 0.05 – 1.5 mM SiO2 were significantly less reactive toward H2O2 decomposition than their original counterparts, with the H2O2 loss rates inversely proportional to the SiO2 concentration. In the goethite/H2O2 system, the overall •OH yield, defined as the percentage of decomposed H2O2 producing •OH, was almost halved in the presence of 1.5 mM SiO2. Dissolved SiO2 also slows the H2O2 decomposition on manganese(IV) oxide. The presence of dissolved SiO2 results in greater persistence of H2O2 in groundwater, lower H2O2 utilization efficiency and should be considered in the design of H2O2-based treatment systems. PMID:22129132

  19. Monitoring of occupational exposure in manufacturing of stainless steel constructions. Part I: Chromium, iron, manganese, molybdenum, nickel and vanadium in the workplace air of stainless steel welders.

    PubMed

    Kucera, J; Bencko, V; Pápayová, A; Saligová, D; Tejral, J; Borská, L

    2001-11-01

    Exposure to workplace airborne pollutants was examined in a group of 20 workers dealing mainly with welding, polishing, drilling and assembling of stainless steel constructions. Airborne particulate matter (APM) collected using both personal and stationary samplers was analyzed by instrumental neutron activation analysis (INAA). Quality assurance procedures of both sampling and analytical stages are described. Of the elements determined, results are presented for chromium, iron, manganese, molybdenum, nickel and vanadium. The median values of element concentrations exceeded the maximum admissible limits for workplace pollutants only for chromium, while for nickel the limit was exceeded in several individual cases. Sampling of hair, nails, blood, urine and saliva to be used for biological monitoring of the exposed and control groups is also described.

  20. The synthesis of PNP-supported low-spin nitro manganese(I) carbonyl complexes

    DOE PAGES

    Tondreau, Aaron M.; Boncella, James M.

    2016-09-01

    In this study, the coordination chemistry of Mn(CO) 5Br was investigated with a series of PNP-pincer ligands. The ligands iPrPONOP ( iPrPONOP = 2,6-bis(diisopropylphosphinito)pyridine) and iPrPN HP ( iPrPN HP = HN{CH 2CH 2(PiPr 2)} 2) gave the desired organometallic manganese complexes ( iPrPONOP)Mn(CO) 2Br and ( iPrPN HP)Mn(CO) 2Br, respectively, upon chelation to Mn(CO) 5Br. The reactivity of iPrPNNNP ( iPrPNNNP = N,N'-bis(diisopropylphosphino)-2,6-diaminopyridine) with Mn(CO) 5Br yielded a pair of products, [( iPrPNNNP)Mn(CO) 3][Br] and ( iPrPNNNCO)Mn(CO) 3. The formation of the asymmetric chelate arises from a formal loss of iPr 2PBr and C–N bond formation from a carbonylmore » ligand and NH, yielding a Mn(I) amide core. The nitration reactions of ( iPrPONOP)Mn(CO) 2Br and ( iPrPN HP)Mn(CO) 2Br were carried out using silver nitrite, yielding the nitro compounds ( iPrPONOP)Mn(CO) 2(NO 2) and ( iPrPN HP)Mn(CO) 2(NO 2), respectively. The analogous iron complex ( iPrPONOP)Fe(CO)Cl 2 was nitrated under the same conditions to yield the salt pair [( iPrPONOP)Fe(CO) 2][FeCl 3NO]. This reactivity underlines the difference between iso-valent iron and manganese centers. The manganese complexes ( iPrPONOP)Mn(CO) 2(NO 2) and ( iPrPN HP)Mn(CO) 2(NO 2) were ineffective as oxygen atom transfer reagents for a variety of substrates.« less

  1. Trithiocyanurate complexes of iron, manganese and nickel and their anticholinesterase activity.

    PubMed

    Kopel, Pavel; Dolezal, Karel; Langer, Vratislav; Jun, Daniel; Adam, Vojtech; Kuca, Kamil; Kizek, Rene

    2014-04-08

    The complexes of Fe(II), Mn(II) and Ni(II) with a combination of a Schiff base, nitrogen-donor ligand or macrocyclic ligand and trithiocyanuric acid (ttcH3) were prepared and characterized by elemental analysis and spectroscopies. Crystal and molecular structures of the iron complex of composition [Fe(L1)](ttcH2)(ClO4)·EtOH·H2O (1), where L1 is Schiff base derived from tris(2-aminoethyl)amine and 2-pyridinecarboxaldehyde, were solved. It was found that the Schiff base is coordinated to the central iron atom by six nitrogens forming deformed octahedral arrangement, whereas trithiocyanurate(1-) anion, perchlorate and solvent molecules are not coordinated. The X-ray structure of the Schiff base sodium salt is also presented and compared with the iron complex. The anticholinesterase activity of the complexes was also studied.

  2. The aluminosilicate fraction of North Pacific manganese nodules

    USGS Publications Warehouse

    Bischoff, J.L.; Piper, D.Z.; Leong, K.

    1981-01-01

    Nine nodules collected from throughout the deep North Pacific were analyzed for their mineralogy and major-element composition before and after leaching with Chester-Hughes solution. Data indicate that the mineral phillipsite accounts for the major part (> 75%) of the aluminosilicate fraction of all nodules. It is suggested that formation of phillipsite takes place on growing nodule surfaces coupled with the oxidation of absorbed manganous ion. All the nodules could be described as ternary mixtures of amorphous iron fraction (Fe-Ti-P), manganese oxide fraction (Mn-Mg Cu-Ni), and phillipsite fraction (Al-Si-K-Na), these fractions accounting for 96% of the variability of the chemical composition. ?? 1981.

  3. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants

    PubMed Central

    Socha, Amanda L.; Guerinot, Mary Lou

    2014-01-01

    Manganese (Mn), an essential trace element, is important for plant health. In plants, Mn serves as a cofactor in essential processes such as photosynthesis, lipid biosynthesis and oxidative stress. Mn deficient plants exhibit decreased growth and yield and are more susceptible to pathogens and damage at freezing temperatures. Mn deficiency is most prominent on alkaline soils with approximately one third of the world's soils being too alkaline for optimal crop production. Despite the importance of Mn in plant development, relatively little is known about how it traffics between plant tissues and into and out of organelles. Several gene transporter families have been implicated in Mn transport in plants. These transporter families include NRAMP (natural resistance associated macrophage protein), YSL (yellow stripe-like), ZIP (zinc regulated transporter/iron-regulated transporter [ZRT/IRT1]-related protein), CAX (cation exchanger), CCX (calcium cation exchangers), CDF/MTP (cation diffusion facilitator/metal tolerance protein), P-type ATPases and VIT (vacuolar iron transporter). A combination of techniques including mutant analysis and Synchrotron X-ray Fluorescence Spectroscopy can assist in identifying essential transporters of Mn. Such knowledge would vastly improve our understanding of plant Mn homeostasis. PMID:24744764

  4. The effect of iron to manganese substitution on microperoxidase 8 catalysed peroxidase and cytochrome P450 type of catalysis.

    PubMed

    Primus, J L; Boersma, M G; Mandon, D; Boeren, S; Veeger, C; Weiss, R; Rietjens, I M

    1999-06-01

    This study describes the catalytic properties of manganese microperoxidase 8 [Mn(III)MP8] compared to iron microperoxidase 8 [Fe(III)MP8]. The mini-enzymes were tested for pH-dependent activity and operational stability in peroxidase-type conversions, using 2-methoxyphenol and 3,3'-dimethoxybenzidine, and in a cytochrome P450-like oxygen transfer reaction converting aniline to para-aminophenol. For the peroxidase type of conversions the Fe to Mn replacement resulted in a less than 10-fold decrease in the activity at optimal pH, whereas the aniline para-hydroxylation is reduced at least 30-fold. In addition it was observed that the peroxidase type of conversions are all fully blocked by ascorbate and that aniline para-hydroxylation by Fe(III)MP8 is increased by ascorbate whereas aniline para-hydroxylation by Mn(III)MP8 is inhibited by ascorbate. Altogether these results indicate that different types of reactive metal oxygen intermediates are involved in the various conversions. Compound I/II, scavenged by ascorbate, may be the reactive species responsible for the peroxidase reactions, the polymerization of aniline and (part of) the oxygen transfer to aniline in the absence of ascorbate. The para-hydroxylation of aniline by Fe(III)MP8, in the presence of ascorbate, must be mediated by another reactive iron-oxo species which could be the electrophilic metal(III) hydroperoxide anion of microperoxidase 8 [M(III)OOH MP8]. The lower oxidative potential of Mn, compared to Fe, may affect the reactivity of both compound I/II and the metal(III) hydroperoxide anion intermediate, explaining the differential effect of the Fe to Mn substitution on the pH-dependent behavior, the rate of catalysis and the operational stability of MP8.

  5. Selected Metals in Sediments and Streams in the Oklahoma Part of the Tri-State Mining District, 2000-2006

    USGS Publications Warehouse

    Andrews, William J.; Becker, Mark F.; Mashburn, Shana L.; Smith, S. Jerrod

    2009-01-01

    The abandoned Tri-State mining district includes 1,188 square miles in northeastern Oklahoma, southeastern Kansas, and southwestern Missouri. The most productive part of the Tri-State mining district was the 40-square mile part in Oklahoma, commonly referred to as 'the Picher mining district' in north-central Ottawa County, Oklahoma. The Oklahoma part of the Tri-State mining district was a primary producing area of lead and zinc in the United States during the first half of the 20th century. Sulfide minerals of cadmium, iron, lead, and zinc that remained in flooded underground mine workings and in mine tailings on the land surface oxidized and dissolved with time, forming a variety of oxide, hydroxide, and hydroxycarbonate metallic minerals on the land surface and in streams that drain the district. Metals in water and sediments in streams draining the mining district can potentially impair the habitat and health of many forms of aquatic and terrestrial life. Lakebed, streambed and floodplain sediments and/or stream water were sampled at 30 sites in the Oklahoma part of the Tri-State mining district by the U.S. Geological Survey and the Oklahoma Department of Environmental Quality from 2000 to 2006 in cooperation with the U.S. Environmental Protection Agency, and the Quapaw and Seneca-Cayuga Tribes of Oklahoma. Aluminum and iron concentrations of several thousand milligrams per kilogram were measured in sediments collected from the upstream end of Grand Lake O' the Cherokees. Manganese and zinc concentrations in those sediments were several hundred milligrams per kilogram. Lead and cadmium concentrations in those sediments were about 10 percent and 0.1 percent of zinc concentrations, respectively. Sediment cores collected in a transect across the floodplain of Tar Creek near Miami, Oklahoma, in 2004 had similar or greater concentrations of those metals than sediment cores collected at the upstream end of Grand Lake O' the Cherokees. The greatest concentrations of

  6. Assessment of Occupational Exposure to Manganese and Other Metals in Welding Fumes by Portable X-ray Fluorescence Spectrometer

    PubMed Central

    Laohaudomchok, Wisanti; Cavallari, Jennifer M.; Fang, Shona C.; Lin, Xihong; Herrick, Robert F.; Christiani, David C.; Weisskopf, Marc G.

    2011-01-01

    Elemental analysis of welding fume samples can be done using several laboratory-based techniques. However, portable measurement techniques could offer several advantages. In this study, we sought to determine whether the portable X-ray fluorescence spectrometer (XRF) is suitable for analysis of five metals (manganese, iron, zinc, copper, and chromium) on 37-mm polytetrafluoroethylene filters. Using this filter fitted on a cyclone in line with a personal pump, gravimetric samples were collected from a group of boilermakers exposed to welding fumes. We assessed the assumption of uniform deposition of these metals on the filters, and the relationships between measurement results of each metal obtained from traditional laboratory-based XRF and the portable XRF. For all five metals of interest, repeated measurements with the portable XRF at the same filter area showed good consistency (reliability ratios are equal or close to 1.0 for almost all metals). The portable XRF readings taken from three different areas of each filter were not significantly different (p-values = 0.77 to 0.98). This suggested that the metal rich PM2.5 deposits uniformly on the samples collected using this gravimetric method. For comparison of the two XRFs, the results from the portable XRF were well correlated and highly predictive of those from the laboratory XRF. The Spearman correlation coefficients were from 0.325 for chromium, to 0.995 for manganese and 0.998 for iron. The mean differences as a percent of the mean laboratory XRF readings were also small (<5%) for manganese, iron, and copper. The differences were greater for zinc and chromium, which were present at very low amounts in our samples and below the limits of detection of the portable XRF for many of the samples. These five metals were moderately to strongly correlated with the total fine particle fraction on filters (Spearman ρ = 0.41 for zinc to 0.97 for iron). Such strong correlations and comparable results suggested that the

  7. Assessment of occupational exposure to manganese and other metals in welding fumes by portable X-ray fluorescence spectrometer.

    PubMed

    Laohaudomchok, Wisanti; Cavallari, Jennifer M; Fang, Shona C; Lin, Xihong; Herrick, Robert F; Christiani, David C; Weisskopf, Marc G

    2010-08-01

    Elemental analysis of welding fume samples can be done using several laboratory-based techniques. However, portable measurement techniques could offer several advantages. In this study, we sought to determine whether the portable X-ray fluorescence spectrometer (XRF) is suitable for analysis of five metals (manganese, iron, zinc, copper, and chromium) on 37-mm polytetrafluoroethylene filters. Using this filter fitted on a cyclone in line with a personal pump, gravimetric samples were collected from a group of boilermakers exposed to welding fumes. We assessed the assumption of uniform deposition of these metals on the filters, and the relationships between measurement results of each metal obtained from traditional laboratory-based XRF and the portable XRF. For all five metals of interest, repeated measurements with the portable XRF at the same filter area showed good consistency (reliability ratios are equal or close to 1.0 for almost all metals). The portable XRF readings taken from three different areas of each filter were not significantly different (p-values = 0.77 to 0.98). This suggested that the metal rich PM(2.5) deposits uniformly on the samples collected using this gravimetric method. For comparison of the two XRFs, the results from the portable XRF were well correlated and highly predictive of those from the laboratory XRF. The Spearman correlation coefficients were from 0.325 for chromium, to 0.995 for manganese and 0.998 for iron. The mean differences as a percent of the mean laboratory XRF readings were also small (<5%) for manganese, iron, and copper. The differences were greater for zinc and chromium, which were present at very low amounts in our samples and below the limits of detection of the portable XRF for many of the samples. These five metals were moderately to strongly correlated with the total fine particle fraction on filters (Spearman rho = 0.41 for zinc to 0.97 for iron). Such strong correlations and comparable results suggested that

  8. Calcium carbonate-based permeable reactive barriers for iron and manganese groundwater remediation at landfills.

    PubMed

    Wang, Yu; Pleasant, Saraya; Jain, Pradeep; Powell, Jon; Townsend, Timothy

    2016-07-01

    High concentrations of iron (Fe(II)) and manganese (Mn(II)) reductively dissolved from soil minerals have been detected in groundwater monitoring wells near many municipal solid waste landfills. Two in situ permeable reactive barriers (PRBs), comprised of limestone and crushed concrete, were installed downgradient of a closed, unlined landfill in Florida, USA, to remediate groundwater containing high concentrations of these metals. Influent groundwater to the PRBs contained mean Fe and Mn concentrations of approximately 30mg/L and 1.62mg/L, respectively. PRBs were constructed in the shallow aquifer (maximum depth 4.6m below land surface) and groundwater was sampled from a network of nearby monitoring wells to evaluate barrier performance in removing these metals. PRBs significantly (p<0.05) removed dissolved Fe and Mn from influent groundwater; Fe was removed from influent water at average rates of 91% and 95% (by mass) for the limestone and crushed concrete PRBs, respectively, during the first year of the study. The performance of the PRBs declined after 3years of operation, with Fe removal efficiency decreasing to 64% and 61% for limestone and concrete PRBs, respectively. A comparison of water quality in shallow and deep monitoring wells showed a more dramatic performance reduction in the deeper section of the concrete PRB, which was attributed to an influx of sediment into the barrier and settling of particulates from the upper portions of the PRBs. Although removal of Fe and Mn from redox impacts was achieved with the PRBs, the short time frame of effectiveness relative to the duration of a full-scale remediation effort may limit the applicability of these systems at some landfills because of the construction costs required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of fulvic and humic acids on iron and manganese homeostasis in rats.

    PubMed

    Szabó, József; Vucskits, András Valentin; Berta, Erzsébet; Andrásofszky, Emese; Bersényi, András; Hullár, István

    2017-03-01

    The objective of this study was to investigate the effects of fulvic acid (FA) and humic acid (HA) as the two main compounds of humic substances, separately on Fe and Mn homeostasis. Seventy-two male Wistar rats were randomly divided into 9 experimental groups. The control diet (AIN-93G formula) and diets supplemented with 0.1%, 0.2%, 0.4% and 0.8% HA or FA were fed for 26 days. Fe and Mn concentrations of the large intestinal content, liver, kidney, femur and hair were determined. No significant differences were observed in the production parameters. The effects of FA and HA on iron homeostasis were significantly different. FA proved to be a good iron source, and slightly increased the iron content of liver and kidney, but - up to a dietary iron level of 52.7 mg/kg - it did not influence the efficiency of iron absorption. Above a dietary iron level of 52.7 mg/kg down-regulation of Fe absorption can be assumed. HA significantly stimulated the iron uptake and there was no down-regulation of Fe absorption up to 0.8% dietary HA supplementation level (61.5 mg Fe/kg diet). In the HA groups the iron content of the liver and kidney decreased significantly, suggesting that in spite of the better Fe absorption, the HA-Fe complex does not provide iron to the investigated organs. Neither FA nor HA supplementation influenced the Fe content of the femur and hair and slightly decreased the Mn concentration in the large intestinal content. This effect was significant (with a 22.7% Mn concentration decrease) only at the HA supplementation rate of 0.8%. Neither FA nor HA influenced significantly the Mn concentrations of the liver, kidney and femur. The Mn concentration of the hair in rats receiving FA- or HA-supplemented diets was higher than in the control rats; however, this result needs further confirmation.

  10. Comparative Analysis of Serum Mineral Levels and Parasite Load in Goats Naturally Infected with Gastrointestinal Nematodes.

    PubMed

    Ünübol Aypak, Serap; Aypak, Süleyman; Voyvoda, Hüseyin; Güven, Gülşen; Dereli Fidan, Evrim; Tosun, Gamze; Gültekin, Mehmet; Şimşek, Emrah; Gülçe Güler, Asude

    2016-09-01

    This study aimed to investigate the relationship between serum mineral levels and parasite load in Saanen (n=37) and Damascus (n=13) goats, which were all approximately 2 months pregnant and naturally infected with gastrointestinal nematodes. To determine parasite concentration individually, fecal samples were taken from each goat, and the eggs per gram (EPG) of feces was detected via a modified McMaster technique. To investigate the possible effects of parasite concentration on serum mineral levels, blood was drawn from the goats and serum calcium, phosphorus, magnesium, iron, copper, zinc, manganese, nickel, and cadmium levels were measured via the ICP-OES technique. In a correlation analysis of the individual EPG values and mineral levels performed on the basis of the species, it was seen that increased egg numbers did not cause a statistically significant increase or decrease in Saanens except for cadmium (significant moderate positive correlation, p<0.05) for both species. A comparison of the mineral element levels with the lower and upper normal limits in the published literature found that manganese and iron were below the normal range, while zinc and calcium levels were close to the lower limits. It is estimated that the effect of parasite load, which continuously increases with the progression of pregnancy and deliveries, on blood mineral levels would be much more significant.

  11. Manganese uptake of imprinted polymers

    DOE Data Explorer

    Susanna Ventura

    2015-09-30

    Batch tests of manganese imprinted polymers of variable composition to assess their ability to extract lithium and manganese from synthetic brines at T=45C . Data on manganese uptake for two consecutive cycles are included.

  12. Application of Emulsified Zero-Valent Iron to Marine Environments

    NASA Technical Reports Server (NTRS)

    Brooks, Kathleen B.; Quinn, Jacqueline W.; Clausen, Christian A.; Geiger, Cherie L.

    2005-01-01

    Contamination of marine waters and sediments with heavy metals and dense non-aqueous phase liquids (DNAPLs) including chlorinated solvents, pesticides and PCBs pose ecological and human health risks through the contaminant's potential bioaccumulation in fish, shellfish and avian populations. The contaminants enter marine environments through improper disposal techniques and storm water run-off. Current remediation technologies for application to marine environments include costly dredging and off-site treatment of the contaminated media. Emulsified zero-valent iron (EZVI) has been proven to effectively degrade dissolved-phase and DNAPL-phase contaminants in freshwater environments on both the laboratory and field-scale level. However, the application to marine environments is only just being explored. This paper discusses the potential use of EZVI in brackish and saltwater environments, with supporting laboratory data detailed. Laboratory studies were performed in 2005 to establish the effectiveness of EZVI to degrade trichloroethylene (TCE) in saltwater. Headspace vials were setup to determine the kinetic rate of TCE degradation using EZVI in seawater. The reaction vials were analyzed by Gas Chromatographic/Flame Ionization Detection (GC/FID) for ethene production after a 48 day period using a GC/FID Purge and Trap system. Analytical results showed that EZVI was very effective at degrading TCE. The reaction by-products (ethene, acetylene and ethane) were produced at 71% of the rate in seawater as in the fresh water controls. Additionally, iron within the EZVI particles was protected from oxidation of the corrosive seawater, allowing EZVI to perform in an environment where zero-valent iron alone could not compete. Laboratory studies were also performed to establish the effectiveness of emulsified zero-valent metal (EZVM) to remove dissolved-phase cadmium and lead found in seawater. EZVM is comprised of a combination of magnesium and iron metal surrounded by the

  13. Cadmium Transporters in the Kidney and Cadmium-Induced Nephrotoxicity

    PubMed Central

    Yang, Hong; Shu, Yan

    2015-01-01

    Among the organs in which the environmental pollutant cadmium causes toxicity, the kidney has gained the most attention in recent years. Numerous studies have sought to unravel the exact pathways by which cadmium enters the renal epithelial cells and the mechanisms by which it causes toxicity in the kidney. The purpose of this review is to present the progress made on the mechanisms of cadmium transport in the kidney and the role of transporter proteins in cadmium-induced nephrotoxicity. PMID:25584611

  14. Distribution of cadmium in the pearl oyster following exposure to cadmium in seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francesconi, K.A.

    1989-08-01

    Laboratory studies on the uptake of cadmium from seawater have shown that bivalve molluscs readily accumulated cadmium from this medium and that the relative concentrations of cadmium between viscera and muscle were always the same as those found in natural populations. These results suggested that in the natural environment seawater was a major source of cadmium for bivalve molluscs. Results of a recent study have indicated that seawater is not always the major contributor of cadmium to bivalve molluscs. These authors reported high levels of cadmium in the pearl oyster Pinctada albina albina, collected from Shark Bay in Western Australia,more » and noted that there was no correlation between cadmium concentrations in the oysters and cadmium concentrations in the surrounding seawater. Australia is one of several countries which have a maximum permissible level of cadmium in molluscs. The possibility that the pearl oyster, and perhaps other molluscs as well, may accumulate cadmium preferentially in different tissues depending upon the source of cadmium has important implications in the area of contaminants in marine foodstuffs. The present study reports the uptake and distribution of cadmium within P. albina albina when subjected to cadmium in seawater alone.« less

  15. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir.

    PubMed

    Greene, A C; Patel, B K; Sheehy, A J

    1997-04-01

    A thermophilic anaerobic bacterium, designated strain BMAT (T = type strain), was isolated from the production water of Beatrice oil field in the North Sea (United Kingdom). The cells were straight to bent rods (1 to 5 by 0.3 to 0.5 microns) which stained gram negative. Strain BMAT obtained energy from the reduction of manganese (IV), iron(III), and nitrate in the presence of yeast extract, peptone, Casamino Acids, tryptone, hydrogen, malate, acetate, citrate, pyruvate, lactate, succinate, and valerate. The isolate grew optimally at 60 degrees C (temperature range for growth, 50 to 65 degrees C) and in the presence of 2% (wt/vol) NaCl (NaCl range for growth, 0 to 5% [wt/vol]). The DNA base composition was 34 mol% G + C. Phylogenetic analyses of the 16S rRNA gene indicated that strain BMAT is a member of the domain Bacteria. The closest known bacterium is the moderate thermophile Flexistipes sinusarabici (similarity value, 88%). Strain BMAT possesses phenotypic and phylogenetic traits that do not allow its classification as a member of any previously described genus; therefore, we propose that this isolate should be described as a member of a novel species of a new genus, Deferribacter thermophilus gen. nov., sp. nov.

  16. Polymorphisms in Iron Homeostasis Genes and Urinary Cadmium Concentrations among Nonsmoking Women in Argentina and Bangladesh

    PubMed Central

    Rentschler, Gerda; Kippler, Maria; Axmon, Anna; Raqib, Rubhana; Ekström, Eva-Charlotte; Skerfving, Staffan; Vahter, Marie

    2013-01-01

    Background: Cadmium (Cd) is a human toxicant and carcinogen. Genetic variation might affect long-term accumulation. Cd is absorbed via iron transporters. Objectives: We evaluated the impact of iron homeostasis genes [divalent metal transporter 1 (SLC11A2), transferrin (TF), transferrin receptors (TFR2 and TFRC), and ferroportin (SLC40A1)] on Cd accumulation. Methods: Subjects were nonsmoking women living in the Argentinean Andes [n = 172; median urinary Cd (U-Cd) = 0.24 µg/L] and Bangladesh (n = 359; U-Cd = 0.54 µg/L) with Cd exposure mainly from food. Concentrations of U-Cd and Cd in whole blood or in erythrocytes (Ery-Cd) were measured by inductively coupled plasma mass spectrometry. Fifty polymorphisms were genotyped by Sequenom. Gene expression was measured in whole blood (n = 72) with Illumina DirectHyb HumanHT-12 v4.0. Results: TFRC rs3804141 was consistently associated with U-Cd. In the Andean women, mean U-Cd concentrations were 22% (95% CI: –2, 51%), and they were 56% (95% CI: 10, 120%) higher in women with GA and AA genotypes, respectively, relative to women with the GG genotype. In the Bangladeshi women, mean U-Cd concentrations were 22% (95% CI: 1, 48%), and they were 58% (95% CI: –3, 157%) higher in women with GA and AA versus GG genotype, respectively [adjusted for age and plasma ferritin in both groups; ptrend = 0.006 (Andes) and 0.009 (Bangladesh)]. TFRC expression in blood was negatively correlated with plasma ferritin (rS = –0.33, p = 0.006), and positively correlated with Ery-Cd (significant at ferritin concentrations of < 30 µg/L only, rS = 0.40, p = 0.046). Rs3804141 did not modify these associations or predict TFRC expression. Cd was not consistently associated with any of the other polymorphisms evaluated. Conclusions: One TFRC polymorphism was associated with urine Cd concentration, a marker of Cd accumulation in the kidney, in two very different populations. The consistency of the findings supports the possibility of a causal

  17. Manganese in Madison's drinking water.

    PubMed

    Schlenker, Thomas; Hausbeck, John; Sorsa, Kirsti

    2008-12-01

    Public concern over events of manganese-discolored drinking water and the potential for adverse health effects from exposure to excess manganese reached a high level in 2005. In response, Public Health Madison Dane County, together with the Madison Water Utility, conceived and implemented a public health/water utility strategy to quantify the extent of the manganese problem, determine the potential for adverse human health effects, and communicate these findings to the community. This strategy included five basic parts: taking an inventory of wells and their manganese levels, correlating manganese concentration with turbidity, determining the prevalence and distribution of excess manganese in Madison households, reviewing the available scientific literature, and effectively communicating our findings to the community. The year-long public health/water utility strategy successfully resolved the crisis of confidence in the safety of Madison's drinking water.

  18. Prioritizing hazardous pollutants in two Nigerian water supply schemes: a risk-based approach.

    PubMed

    Etchie, Ayotunde T; Etchie, Tunde O; Adewuyi, Gregory O; Krishnamurthi, Kannan; Saravanadevi, S; Wate, Satish R

    2013-08-01

    To rank pollutants in two Nigerian water supply schemes according to their effect on human health using a risk-based approach. Hazardous pollutants in drinking-water in the study area were identified from a literature search and selected pollutants were monitored from April 2010 to December 2011 in catchments, treatment works and consumer taps. The disease burden due to each pollutant was estimated in disability-adjusted life years (DALYs) using data on the pollutant's concentration, exposure to the pollutant, the severity of its health effects and the consumer population. The pollutants identified were microbial organisms, cadmium, cobalt, chromium, copper, iron, manganese, nickel, lead and zinc. All were detected in the catchments but only cadmium, cobalt, chromium, manganese and lead exceeded World Health Organization (WHO) guideline values after water treatment. Post-treatment contamination was observed. The estimated disease burden was greatest for chromium in both schemes, followed in decreasing order by cadmium, lead, manganese and cobalt. The total disease burden of all pollutants in the two schemes was 46 000 and 9500 DALYs per year or 0.14 and 0.088 DALYs per person per year, respectively, much higher than the WHO reference level of 1 × 10(-6) DALYs per person per year. For each metal, the disease burden exceeded the reference level and was comparable with that due to microbial contamination reported elsewhere in Africa. The estimated disease burden of metal contamination of two Nigerian water supply systems was high. It could best be reduced by protection of water catchment and pretreatment by electrocoagulation.

  19. Trace Element Status (Zinc, Copper, Selenium, Iron, Manganese) in Patients with Long-Term Home Parenteral Nutrition.

    PubMed

    Dastych, Milan; Šenkyřík, Michal; Dastych, Milan; Novák, František; Wohl, Petr; Maňák, Jan; Kohout, Pavel

    2016-01-01

    The objective of the present study was to determine concentrations of zinc (Zn), copper (Cu), iron (Fe), selenium (Se) in blood plasma and manganese (Mn) in the whole blood in patients with long-term home parenteral nutrition (HPN) in comparison to the control group. We examined 68 patients (16 men and 52 women) aged from 28 to 68 years on a long-term HPN lasting from 4 to 96 months. The short bowel syndrome was an indication for HPN. The daily doses of Zn, Cu, Fe, Se and Mn in the last 3 months were determined. No significant differences in blood plasma were found for Zn, Cu and Fe in patients with HPN and in the control group (p > 0.05). The concentration of Mn in whole blood was significantly increased in HPN patients (p < 0.0001), while Se concentration in these patients was significantly decreased (p < 0.005). The concentration of Mn in the whole blood of 16 patients with cholestasis was significantly increased compared to the patients without cholestasis (p < 0.001). The Cu concentration was increased with no statistical significance. In long-term HPN, the status of trace elements in the patients has to be continually monitored and the daily substitution doses of these elements have to be flexibly adjusted. Dosing schedule needs to be adjusted especially in cases of cholestatic hepatopathy. A discussion about the optimal daily dose of Mn in patients on HPN is appropriate. For clinical practice, the availability of a substitution mixture of trace elements lacking Mn would be advantageous. © 2016 S. Karger AG, Basel.

  20. Manganese ore tailing: optimization of acid leaching conditions and recovery of soluble manganese.

    PubMed

    Santos, Olívia de Souza Heleno; Carvalho, Cornélio de Freitas; Silva, Gilmare Antônia da; Santos, Cláudio Gouvêa Dos

    2015-01-01

    Manganese recovery from industrial ore processing waste by means of leaching with sulfuric acid was the objective of this study. Experimental conditions were optimized by multivariate experimental design approaches. In order to study the factors affecting leaching, a screening step was used involving a full factorial design with central point for three variables in two levels (2(3)). The three variables studied were leaching time, concentration of sulfuric acid and sample amount. The three factors screened were shown to be relevant and therefore a Doehlert design was applied to determine the best working conditions for leaching and to build the response surface. By applying the best leaching conditions, the concentrations of 12.80 and 13.64 %w/w of manganese for the global sample and for the fraction -44 + 37 μm, respectively, were found. Microbeads of chitosan were tested for removal of leachate acidity and recovering of soluble manganese. Manganese recovery from the leachate was 95.4%. Upon drying the leachate, a solid containing mostly manganese sulfate was obtained, showing that the proposed optimized method is efficient for manganese recovery from ore tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Biogeochemical cycling of manganese in Oneida Lake, New York: whole lake studies of manganese

    NASA Technical Reports Server (NTRS)

    Aguilar, C.; Nealson, K. H.

    1998-01-01

    Oneida Lake, New York is a eutrophic freshwater lake known for its abundant manganese nodules and a dynamic manganese cycle. Temporal and spatial distribution of soluble and particulate manganese in the water column of the lake were analyzed over a 3-year period and correlated with other variables such as oxygen, pH, and temperature. Only data from 1988 are shown. Manganese is removed from the water column in the spring via conversion to particulate form and deposited in the bottom sediments. This removal is due to biological factors, as the lake Eh/pH conditions alone can not account for the oxidation of the soluble manganese Mn(II). During the summer months the manganese from microbial reduction moves from the sediments to the water column. In periods of stratification the soluble Mn(II) builds up to concentrations of 20 micromoles or more in the bottom waters. When mixing occurs, the soluble Mn(II) is rapidly removed via oxidation. This cycle occurs more than once during the summer, with each manganese atom probably being used several times for the oxidation of organic carbon. At the end of the fall, whole lake concentrations of manganese stabilize, and remain at about 1 micromole until the following summer, when the cycle begins again. Inputs and outflows from the lake indicate that the active Mn cycle is primarily internal, with a small accumulation each year into ferromanganese nodules located in the oxic zones of the lake.

  2. Kinetics and Efficiency of H2O2 Activation by Iron-Containing Minerals and Aquifer Materials

    PubMed Central

    Pham, Anh Le-Tuan; Doyle, Fiona M.; Sedlak, David L.

    2014-01-01

    To gain insight into factors that control H2O2 persistence and ˙OH yield in H2O2-based in situ chemical oxidation systems, the decomposition of H2O2 and transformation of phenol were investigated in the presence of iron-containing minerals and aquifer materials. Under conditions expected during remediation of soil and groundwater, the stoichiometric efficiency, defined as the amount of phenol transformed per mole of H2O2 decomposed, varied from 0.005 to 0.28%. Among the iron-containing minerals, iron oxides were 2 to 10 times less efficient in transforming phenol than iron-containing clays and synthetic iron-containing catalysts. In both iron-containing mineral and aquifer materials systems, the stoichiometric efficiency was inversely correlated with the rate of H2O2 decomposition. In aquifer materials systems, the stoichiometric efficiency was also inversely correlated with the Mn content, consistent with the fact that the decomposition of H2O2 on manganese oxides does not produce ˙OH. Removal of iron and manganese oxide coatings from the surface of aquifer materials by extraction with citrate-bicarbonate-dithionite slowed the rate of H2O2 decomposition on aquifer materials and increased the stoichiometric efficiency. In addition, the presence of 2 mM of dissolved SiO2 slowed the rate of H2O2 decomposition on aquifer materials by over 80% without affecting the stoichiometric efficiency. PMID:23047055

  3. Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials.

    PubMed

    Pham, Anh Le-Tuan; Doyle, Fiona M; Sedlak, David L

    2012-12-01

    To gain insight into factors that control H(2)O(2) persistence and ·OH yield in H(2)O(2)-based in situ chemical oxidation systems, the decomposition of H(2)O(2) and transformation of phenol were investigated in the presence of iron-containing minerals and aquifer materials. Under conditions expected during remediation of soil and groundwater, the stoichiometric efficiency, defined as the amount of phenol transformed per mole of H(2)O(2) decomposed, varied from 0.005 to 0.28%. Among the iron-containing minerals, iron oxides were 2-10 times less efficient in transforming phenol than iron-containing clays and synthetic iron-containing catalysts. In both iron-containing mineral and aquifer materials systems, the stoichiometric efficiency was inversely correlated with the rate of H(2)O(2) decomposition. In aquifer materials systems, the stoichiometric efficiency was also inversely correlated with the Mn content, consistent with the fact that the decomposition of H(2)O(2) on manganese oxides does not produce ·OH. Removal of iron and manganese oxide coatings from the surface of aquifer materials by extraction with citrate-bicarbonate-dithionite slowed the rate of H(2)O(2) decomposition on aquifer materials and increased the stoichiometric efficiency. In addition, the presence of 2 mM of dissolved SiO(2) slowed the rate of H(2)O(2) decomposition on aquifer materials by over 80% without affecting the stoichiometric efficiency. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp.

    PubMed

    Sangthong, Chirawee; Setkit, Kunchaya; Prapagdee, Benjaphorn

    2016-01-01

    Cadmium-resistant Micrococcus sp. TISTR2221, a plant growth-promoting bacterium, has stimulatory effects on the root lengths of Zea mays L. seedlings under toxic cadmium conditions compared to uninoculated seedlings. The performance of Micrococcus sp. TISTR2221 on promoting growth and cadmium accumulation in Z. mays L. was investigated in a pot experiment. The results indicated that Micrococcus sp. TISTR2221significantly promoted the root length, shoot length, and dry biomass of Z. mays L. transplanted in both uncontaminated and cadmium-contaminated soils. Micrococcus sp. TISTR2221 significantly increased cadmium accumulation in the roots and shoots of Z. mays L. compared to uninoculated plants. At the beginning of the planting period, cadmium accumulated mainly in the shoots. With a prolonged duration of cultivation, cadmium content increased in the roots. As expected, little cadmium was found in maize grains. Soil cadmium was significantly reduced with time, and the highest percentage of cadmium removal was found in the bacterial-inoculated Z. mays L. after transplantation for 6 weeks. We conclude that Micrococcus sp. TISTR2221 is a potent bioaugmenting agent, facilitating cadmium phytoextraction in Z. mays L.

  5. Characterization and recycling of cadmium from waste nickel-cadmium batteries.

    PubMed

    Huang, Kui; Li, Jia; Xu, Zhenming

    2010-11-01

    A severe threat was posed due to improper and inefficient recycling of waste batteries in China. The present work considered the fundamental aspects of the recycling of cadmium from waste nickel-cadmium batteries by means of vacuum metallurgy separation in scale-up. In the first stage of this work, the characterization of waste nickel-cadmium batteries was carried out. Five types of batteries from different brands and models were selected and their components were characterized in relation to their elemental chemical composition and main phase. In the second stage of this work, the parameters affecting the recycling of cadmium by means of vacuum metallurgy separation were investigated and a L(16) (4(4)) orthogonal design was applied to optimize the parameters. With the thermodynamics theory and numerical analysis, it can be seen that the orthogonal design is an effective tool for investigating the parameters affecting the recycling of cadmium. The optimum operating parameters for the recycling of cadmium obtained by orthogonal design and verification test were 1073 K (temperature), 2.5h (heating time), 2 wt.% (the addition of carbon powder), and 30 mm (the loaded height), respectively, with recycling efficiency approaching 99.98%. The XRD and ICP-AES analyzed results show that the condensed product was characterized as metallic cadmium, and cadmium purity was 99.99% under the optimum condition. Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  6. Mutations in sit B and sit D genes affect manganese-growth requirements in Sinorhizobium meliloti.

    PubMed

    Platero, Raúl A; Jaureguy, Melina; Battistoni, Federico J; Fabiano, Elena R

    2003-01-21

    Two transposon-induced mutants of Sinorhizobium meliloti 242 were isolated based on their inability to grow on rich medium supplemented with the metal chelator ethylenediamine di-o-hydroxyphenylacetic acid (EDDHA) and either heme-compounds or siderophores as iron sources. Tagged loci of these mutants were identified as sit B and sit D genes. These genes encode components of an ABC (ATP-binding cassette) metal-type permease in several Gram-negative bacteria. In this work, the phenotypes of these two mutants were compared with those of two siderophore-mediated iron transport mutants. The results strongly implicate a role of the sit genes in manganese acquisition when this metal is limiting in S. meliloti.

  7. Reference values of cadmium, arsenic and manganese in blood and factors associated with exposure levels among adult population of Rio Branco, Acre, Brazil.

    PubMed

    Freire, Carmen; Koifman, Rosalina Jorge; Fujimoto, Denys; de Oliveira Souza, Vanessa Cristina; Barbosa, Fernando; Koifman, Sergio

    2015-06-01

    This study aimed to investigate the distribution and factors influencing blood levels of Cadmium (Cd), Arsenic (As), and Manganese (Mn), and to determine their reference values in a sample of blood donors residing in Rio Branco, capital city of Acre State, Brazil. Blood samples were collected from all blood donors attending the Central Hemotherapic Unit in Rio Branco between 2010 and 2011. Among these, 1183 donors (98.9%) answered to a questionnaire on sociodemographic and lifestyle factors. Blood metal concentrations were determined by atomic spectrometry. Association between Cd, As and Mn levels and donors' characteristics was examined by linear regression analysis. Reference values were estimated as the upper limit of the 95% confidence interval of the 95th percentile of metal levels. References values were 0.87 μg L(-1) for Cd, 9.87 μg L(-1) for As, and 29.32 μg L(-1) for Mn. Reference values of Cd and As in smokers were 2.66 and 10.86 μg L(-1), respectively. Factors contributing to increase Cd levels were smoking, ethnicity (non-white), and lower education, whereas drinking tea and non-bottled water were associated with lower Cd. Lower levels of As were associated with higher household income, living near industrial facilities, working in a glass factory, a compost plant or in metal mining activities. Risk factors for Mn exposure were not identified. In general, blood Cd concentrations were in the range of exposure levels reported for other people from the general population, whereas levels of As and Mn were higher than in other non-occupationally exposed populations elsewhere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Cadmium Alternatives

    DTIC Science & Technology

    2012-08-01

    Used non-hexavalent chromium passivates Trivalent chromium (TCP) Non-chromate post-treatment (NCP) NDCEE Salt Spray Testing Results Cadmium and...for Change Cadmium passivated with hexavalent chromium has been in use for many decades Cadmium is toxic, and is classified as a priority...Executive Orders 13514 & 13423 DoD initiatives – Young memo (April 2009) DFAR restricting use of hexavalent chromium Allows the use of hexavalent

  9. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... manganese violet is a violet pigment obtained by reacting phosphoric acid, ammonium dihydrogen orthophosphate, and manganese dioxide at temperatures above 450 °F. The pigment is a manganese ammonium...

  10. X-Ray Microanalytic Concentration Measurements in Unsectioned Specimens: a Technique and its Application to Zinc, Manganese, and Iron Enriched Mechanical Structures of Organisms from Three Phyla

    NASA Astrophysics Data System (ADS)

    Schofield, Robert M. S.

    A method for measuring concentrations of minor elements in microscopic volumes of heterogeneous, unsectioned biological specimens using an ion microprobe is developed. The element quantity is obtained from PIXE (Proton Induced X-ray Emission) and the total quantity of material is derived from STIM (Scanning Transmission Ion Microscopy) energy loss measurements. Sources of error, including changes in x-ray production cross section with proton energy and absorption of induced x-rays, are discussed and a method of calculating the total measurement uncertainty, typically about 25% here, is developed. The measurement accuracy is shown to be improved for symmetric specimens, and a method of using the bremsstrahlung background to correct for x-ray attenuation within irregular specimens is developed. Methods for measuring local concentrations in internal features are also discussed. With this technique, scorpions were found to contain cuticular accumulations of one or more heavy metals (manganese up to 5% of dry weight, iron up to 8%, zinc up to 24%) in the chelicera, pedipalp denticles, tarsal claws, and stingers; different region soften contained different metals. The stingers are argued to be of particular interest because they are not homologous to legs. Similar accumulations were found in spiders, some other chelicerates and crustaceans. Previous reports of manganese and zinc accumulations in insect and worm mouth parts were augmented with local concentration measurements and with the detection of other enrichment features (such as 6% iron in the paragnaths of the worm Nereis vexillosa). Zinc accumulations (up to only 0.1%) were also found in the tips of the teeth of a hagfish, Myxine + glutinosa. X-ray images of several of these features are presented. It is argued that the extreme magnitude of some concentration values suggests that some metals are incorporated in unusual biominerals rather than organically bound. Results of x-ray diffractometry and Vickers

  11. Quality of ground water in southeastern and south-central Washington, 1982

    USGS Publications Warehouse

    Turney, G.L.

    1986-01-01

    In 1982 groundwater was sampled at over 100 sites in the southeastern-south central region of Washington and analyzed for pH, specific conductance, and concentrations of fecal-coliform bacteria, major dissolved irons, and dissolved iron, manganese, and nitrate. Twenty percent of the samples were analyzed for concentrations of dissolved aluminum, arsenic, barium, cadmium, chromium, cooper, lead, mercury, selenium, silver, and zinc. The predominant water type was calcium bicarbonate. Some sodium bicarbonate water was found in samples from the Lower Yakima, Horse Heaven Hills, and Walla Walla-Tucannon subregions. Dissolved solids concentrations were typically less than 500 mg/L (milligrams per liter). Median iron and manganese concentrations were less than 20 micrograms/L except in the Palouse subregion, where the median concentration of iron was 200 micrograms/L and the median concentrations of manganese was 45 micrograms/L. Generally, trace-metal concentrations were also less than 10 micrograms/L except for barium, copper, and zinc. Nitrate concentrations were less than 1.0 mg/L in waters from half the wells sampled. Concentrations greater than 5.0 mg/L were found in areas of the Lower Yakima, Walla Walla-Tucannon and Hanford subregions. No fecal-coliform bacteria were detected. U.S. Environmental Protection Agency drinking water regulation limits were generally not exceeded, except for occasional high concentrations of nitrate or dissolved solids. The historical data for the region were evaluated for these same constituents. Quantitative differences were found, but the historical and 1982 data led to similar qualitative conclusions. (USGS)

  12. Cadmium--a metallohormone?

    PubMed

    Byrne, Celia; Divekar, Shailaja D; Storchan, Geoffrey B; Parodi, Daniela A; Martin, Mary Beth

    2009-08-01

    Cadmium is a heavy metal that is often referred to as the metal of the 20th century. It is widely used in industry principally in galvanizing and electroplating, in batteries, in electrical conductors, in the manufacture of alloys, pigments, and plastics, and in the stabilization of phosphate fertilizers. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. In the general population, exposure to cadmium occurs primarily through dietary sources, cigarette smoking, and, to a lesser degree, drinking water. Although the metal has no known physiological function, there is evidence to suggest that the cadmium is a potent metallohormone. This review summarizes the increasing evidence that cadmium mimics the function of steroid hormones, addresses our current understanding of the mechanism by which cadmium functions as a hormone, and discusses its potential role in development of the hormone dependent cancers.

  13. Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe.

    PubMed

    Braun, Burga; Richert, Inga; Szewzyk, Ulrich

    2009-10-01

    Iron-depositing bacteria play an important role in technical water systems (water wells, distribution systems) due to their intense deposition of iron oxides and resulting clogging effects. Pedomicrobium is known as iron- and manganese-oxidizing and accumulating bacterium. The ability to detect and quantify members of this species in biofilm communities is therefore desirable. In this study the fluorescence in situ hybridization (FISH) method was used to detect Pedomicrobium in iron and manganese incrusted biofilms. Based on comparative sequence analysis, we designed and evaluated a specific oligonucleotide probe (Pedo 1250) complementary to the hypervariable region 8 of the 16S rRNA gene for Pedomicrobium. Probe specificities were tested against 3 different strains of Pedomicrobium and Sphingobium yanoikuyae as non-target organism. Using optimized conditions the probe hybridized with all tested strains of Pedomicrobium with an efficiency of 80%. The non-target organism showed no hybridization signals. The new FISH probe was applied successfully for the in situ detection of Pedomicrobium in different native, iron-depositing biofilms. The hybridization results of native bioflims using probe Pedo_1250 agreed with the results of the morphological structure of Pedomicrobium bioflims based on scanning electron microscopy.

  14. Hydroxyapatite formation on titania-based materials in a solution mimicking body fluid: Effects of manganese and iron addition in anatase.

    PubMed

    Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara

    2015-03-01

    Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A Comparative Study of the Adsorption of Methylene Blue onto Synthesized Nanoscale Zero-Valent Iron-Bamboo and Manganese-Bamboo Composites

    PubMed Central

    Shaibu, Solomon E.; Adekola, Folahan A.; Adegoke, Halimat I.; Ayanda, Olushola S.

    2014-01-01

    In this study, bamboo impregnated with nanoscale zero-valent iron (nZVI) and nanoscale manganese (nMn) were prepared by the aqueous phase borohydride reduction method and characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and PIXE analysis. The synthesized nMn-bamboo and nZVI-bamboo composites were subsequently applied to the sorption of methylene blue (MB) dye from aqueous solution. The adsorption of MB dye was investigated under various experimental conditions such as pH, contact time, initial concentration of MB dye and adsorbent dosage. The results showed that the synthesized nZVI-bamboo composite was more effective than nMn-bamboo composite in terms of higher MB dye adsorption capacity of 322.5 mg/g compared to 263.5 mg/g of nMn-bamboo composite. At a concentration of 140 mg/L MB dye, 0.02 g of nZVI-bamboo and nMn-bamboo composites resulted in 79.6% and 78.3% removal, respectively, at 165 rpm, contact time of 120 min and at a solution pH of 7.6. The equilibrium data was best represented by Freundlich isotherm model and the pseudo-second order kinetic model better explained the kinetic data for both nZVI-bamboo and nMn-bamboo composites. PMID:28788688

  16. Characterization of Sumbawa manganese ore and recovery of manganese sulfate as leaching products

    NASA Astrophysics Data System (ADS)

    Kusumaningrum, Retno; Rahmani, Siti Astari; Widayatno, Wahyu Bambang; Wismogroho, Agus Sukarto; Nugroho, Dwi Wahyu; Maulana, Syahrizal; Rochman, Nurul Taufiqu; Amal, M. Ikhlasul

    2018-05-01

    The aims of this research were to study the leaching process of manganese ore which originated from Sumbawa, Indonesia and its characterization. A high grade Indonesian manganese ore from Sumbawa, West of Nusa Tenggara was characterized by X-Ray Fluorescence (XRF). The result showed composition of 78.8 % Mn, 17.77% Fe and the rest were trace elements such as Si, Co, Ti, Zn, V and Zr contents. X-Ray Diffraction analysis showed that the manganese ore was consisted of pyrolusite (MnO2), rhodonite (MnSiO3), rhodochrosite (MnCO3) and hematite (Fe2O3). Manganese ore was also analyzed by thermal analysis to observe their thermal decomposition character. In this study, sulphuric acid (H2SO4, 6 M) was deployed as leaching agent. The leaching process was performed at 90 °C for two hours with the addition of NH4OH to control pH. Recovery percentage of leaching process yielded of 87 % Mn extracted. The crystallization process result at heating temperature of 200 °C was confirmed by XRD as manganese sulfate.

  17. Descriptive and grade-tonnage models of volcanogenic manganese deposits in oceanic environments; a modification

    USGS Publications Warehouse

    Mosier, Dan L.; Page, Norman J

    1988-01-01

    Four types of volcanogenic manganese deposits, distinguished on the basis of geologic, geochemical, and geophysical characteristics, appear to result from a combination of volcanic and hydrothermal processes related to hot-spring activity in oceanic environments. We compare these four desposit types, here called the Franciscan, Cuban, Olympic Peninsula, and Cyprus, with respect to host rocks, associated rocks, minerals, deposit shape, dimensions, volume, tonnage, grade, and mineral-deposit density (number of deposits per unit area). Franciscan-type deposits occur in obducted oceanic ridge and backarc marginal-basin environments, are associated with chert, shale, and graywacke aroun the margins of mafic volcanic centers, and have a median tonnage of 450 t and median grades of 36 weight percent Mn and less than 5.1 weight percent Fe. Cuban-type deposits occur in island-arc environments, are associated with tuff and limestone around domal structures or intrusions inferred to be volcanic centers, and have a median tonnage of 6,400 t and median grades of 39 weight percent Mn and less than 4.4 weight percent Fe. Olympic Peninsula-type deposits occur in obducted oceanic midplate settings, are associated with argillaceous limestone, argillite, and graywacke around mafic volcanic centers (seamounts or islands), and have a median tonnage of 340 t and median grades of 35 weight percent Mn and less than 6.5 weight percent Fe. Cyprus-type deposits occur in the same tectonic environments as Franciscan type but are associated with basalt, marl, chalk, silt, and chert off the ridge-axis position and have a median tonnage of 41,000 t and median grades of 33 weight percent Fe and 8 weight percent Mn. All these deposits are thin ellipsoids, concordant to the host rocks, but Cyprus-and Cuban-type deposits are larger than Franciscan- and Olympic Peninsula-type deposits. Except for Cyprus-type deposits, which are manganiferous iron (umber) deposits composed of hydrated iron and

  18. Normal cadmium uptake in microcytic anemia mk/mk mice suggests that DMT1 is not the only cadmium transporter in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Tomohito; Momoi, Kanae; Hosoyamada, Makoto

    2008-03-15

    Divalent metal transporter 1 (DMT1) is a mammalian iron (Fe) transporter and also transports Cadmium (Cd) in vitro. This study compared Cd absorption in DMT1-dysfunctional MK/Rej-{sup mk}/{sub mk} mice (mk/mk mice) and in DMT1-functional, Fe-deficient wild-type (WT) mice, to clarify the role of DMT1 in intestinal Cd absorption in vivo. Mice were given 1 ppm CdCl{sub 2} aq in drinking water for 2 weeks, and the concentrations of Cd and Fe in liver, kidney, and intestinal epithelium were subsequently determined. The Fe concentration in intestinal epithelia of WT mice was decreased in proportion to the level of dietary Fe limitation,more » while Cd accumulation under the same conditions was increased. DMT1 mRNA expression in the small intestine of Fe-deficient WT mice was clearly increased compared to that in Fe-sufficient WT mice. Iron deficiency resulted in up-regulation of Cd uptake in the intestine of Fe-deficient WT mice. The mk/mk mice have a mutation in DMT1 and loss of its function led to decreased intestinal Fe concentration. However, intestinal Cd accumulation was the same as in WT mice and it was also increased in Fe-deficient situation. There is the possibility that an unknown Cd pathway has taken a role on Cd intestinal absorption in vivo and that this pathway is regulated by food Fe concentrations. Therefore, DMT1 is not the sole transporter of intestinal cadmium absorption in vivo.« less

  19. Room temperature chemical bath deposition of cadmium selenide, cadmium sulfide and cadmium sulfoselenide thin films with novel nanostructures

    NASA Astrophysics Data System (ADS)

    VanderHyde, Cephas A.; Sartale, S. D.; Patil, Jayant M.; Ghoderao, Karuna P.; Sawant, Jitendra P.; Kale, Rohidas B.

    2015-10-01

    A simple, convenient and low cost chemical synthesis route has been used to deposit nanostructured cadmium sulfide, selenide and sulfoselenide thin films at room temperature. The films were deposited on glass substrates, using cadmium acetate as cadmium ion and sodium selenosulfate/thiourea as a selenium/sulfur ion sources. Aqueous ammonia was used as a complex reagent and also to adjust the pH of the final solution. The as-deposited films were uniform, well adherent to the glass substrate, specularly reflective and red/yellow in color depending on selenium and sulfur composition. The X-ray diffraction pattern of deposited cadmium selenide thin film revealed the nanocrystalline nature with cubic phase; cadmium sulfide revealed mixture of cubic along with hexagonal phase and cadmium sulfoselenide thin film were grown with purely hexagonal phase. The morphological observations revealed the growth and formation of interesting one, two and three-dimensional nanostructures. The band gap of thin films was calculated and the results are reported.

  20. Cadmium - A metallohormone?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Celia; Divekar, Shailaja D.; Storchan, Geoffrey B.

    2009-08-01

    Cadmium is a heavy metal that is often referred to as the metal of the 20th century. It is widely used in industry principally in galvanizing and electroplating, in batteries, in electrical conductors, in the manufacture of alloys, pigments, and plastics, and in the stabilization of phosphate fertilizers. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. In the general population, exposure to cadmium occurs primarily through dietary sources, cigarette smoking, and, to a lesser degree, drinking water. Although the metal has no known physiological function, there is evidence to suggest that the cadmium is a potent metallohormone.more » This review summarizes the increasing evidence that cadmium mimics the function of steroid hormones, addresses our current understanding of the mechanism by which cadmium functions as a hormone, and discusses its potential role in development of the hormone dependent cancers.« less

  1. Impacts of iron and steelmaking facilities on soil quality.

    PubMed

    Strezov, Vladimir; Chaudhary, Chandrakant

    2017-12-01

    Iron and steel are highly important materials used in a wide range of products with important contribution to the economic development. The processes for making iron and steel are energy intensive and known to contribute to local pollution. Deposition of the metals may also have adverse impacts on soil quality, which requires detailed assessment. The aim of this study was to investigate the impacts of iron and steelmaking facilities on the local soil quality. Soil samples were collected in the vicinity of two steelmaking sites in Australia, one based on blast furnace steelmaking operation, while the second site was based on electric arc furnace steel recycling. The soil samples were compared to a background site where no industrial impact is expected. The soil collected near industrial facilities contained larger toxic metal contents, however this concentration for all priority metals was within the Australian National Environmental Protection Measure guidelines for the acceptable recreational soil quality. When compared to the international soil quality guidelines, some of the soils collected near the industrial sites, particularly near the blast furnace operated steelmaking, exceeded the arsenic, iron and manganese (according to United States Environmental Protection Agency guidelines) and chromium, copper and nickel concentrations (according to the Canadian guidelines). The work further provided a novel environmental assessment model taking into consideration the environmental and health impacts of each element. The environmental assessment revealed most significant contribution of manganese, followed by titanium, zinc, chromium and lead. Titanium was the second most important contributor to the soil quality, however this metal is currently not included in any of the international soil quality guidelines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Bacterially mediated diagenetic origin for chert-hosted manganese deposits in the Franciscan Complex, California Coast Ranges

    NASA Astrophysics Data System (ADS)

    Hein, James R.; Koski, Randolph A.

    1987-08-01

    Numerous manganese deposits in the Franciscan Complex, California, occur as conformable lenses within bedded radiolarian chert-argillite sequences that are, in turn, intercalated within thicker sections of sandstone and shale. The field relations, composition, and petro-graphic and isotopic characteristics indicate that the manganese was concentrated by diagenetic reconstitution of siliceous and hemipelagic sediment during burial. The ore lenses are Mn-rich and Fe-poor assemblages consisting largely of rhodochrosite, manganese silicates, opal-CT (disordered cristobalite-tridymite), and quartz. Highly negative δ13C values for the carbonate carbon in rhodochrosite indicate that CO2 likely originated from oxidation of methane; less negative values result from mixing of methanogenic carbon and CO2 derived from bacterial degradation of organic matter. The δ18O values for the carbonate of rhodochrosite indicate temperatures of formation between 12 and 100 °C. The oxidation of methane prior to carbonate precipitation may have used the minor (0.4% 0.5%) Mn and Fe oxyhydroxides and oxides deposited with the sediment. The mobilization of manganese from biogenic and terrigenous sources in the sediment column into discrete horizons and the fractioriation of manganese from iron reflect the presence of oxidation-reduction boundaries and gradients in the sediment column. Fluids derived from compaction and silica-dehydration reactions in the transformation of opal-A (X-ray amorphous biogenic silica) to quartz were involved in transportation of principal components. Sedimentary and geochemical attributes suggest that the deposits formed in a deep-water environment in a zone of oceanic upwelling near a continental margin.

  3. Simultaneous use of iron and copper anodes in photoelectro-Fenton process: concurrent removals of dye and cadmium.

    PubMed

    Babaei, Ali Akbar; Ghanbari, Farshid; Yengejeh, Reza Jalilzadeh

    2017-04-01

    Photoelectro-Fenton (PEF) was carried out for concurrent removals of inorganic and organic pollutants with simultaneous applications of two different anodes (iron and copper). Cadmium and Direct Orange 26 (DO26) were selected as samples of the contaminants of textile wastewater and influential parameters (pH, current density, H 2 O 2 dosage and electrolysis time) of PEF were evaluated on Cd and DO26 removals. Both mechanisms of coagulation and oxidation affected the removal of both pollutants. Optimal conditions were achieved with pH = 4.0, current density of 5 mA/cm 2 , 3 mM H 2 O 2 and 40 min electrolysis time, and under these conditions, the dye was completely removed and the Cd removal efficiency was about 80%. Unlike H 2 O 2 , persulfate had no scavenging effect in high dosages. The effects of different anions and two matrixes (tap water and wastewater) on Cd and dye removals were investigated. The results showed that decolorization was reduced by the phosphate and nitrate ions while chloride ion accelerated the decolorization rate. In terms of Cd removal, no significant change was observed in the presence of the anions except for phosphate ion. The sludge of PEF was assessed by Fourier transform infrared, field emission scanning electron microscope and energy-dispersive X-ray spectroscopy.

  4. Effect of land use pattern change from paddy soil to vegetable soil on the adsorption-desorption of cadmium by soil aggregates.

    PubMed

    Zhang, Qiu; Li, Zhongwu; Huang, Bin; Luo, Ninglin; Long, Lingzhi; Huang, Mei; Zhai, Xiuqing; Zeng, Guangming

    2017-01-01

    The influence of land use change from paddy soil to vegetable soil on the adsorption-desorption behavior of Cd in soil aggregates and the variation in soil properties were investigated. The vegetable soil was characterized by lower pH, organic matter content, cation exchange capacity (CEC), free iron oxides, manganese oxides, and catalase activity and higher urease activity compared with the paddy soil. In the isothermal adsorption and desorption experiments, the adsorption characteristics of Cd of the two soils could be well described by Langmuir and Freundlich equations. The adsorption capacity of vegetable soil decreased 22.72 %, and the desorption rate increased 35 % with respect to paddy soil. Therefore, conversion from paddy to vegetable field can reduce the adsorption ability to Cd of the soil to a certain extent. Both the two soils reached the maximum adsorption capacity and the minimum desorption rate in the <0.002-mm faction. The adsorption capacity of Cd in paddy and vegetable soils exhibited great reliance on the content of CEC. Desorption rate was negatively correlated with the four indicators: organic matter, CEC, free iron oxides, and manganese oxides, and specific adsorption was primarily controlled by soil organic matter and manganese oxides.

  5. Tellurium content of marine manganese oxides and other manganese oxides

    USGS Publications Warehouse

    Lakin, H.W.; Thompson, C.E.; Davidson, D.F.

    1963-01-01

    Tellurium in amounts ranging from 5 to 125 parts per million was present in all of 12 samples of manganese oxide nodules from the floor of the Pacific and Indian oceans. These samples represent the first recognized points of high tellurium concentration in a sedimentary cycle. The analyses may lend support to the theory that the minor-element content of seafloor manganese nodules is derived from volcanic emanations.

  6. Effect of quantity and route of administration of manganese monoxide on feed intake and serum manganese in ruminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, J.R.; Ammerman, C.B.; Henry, P.R.

    1985-02-01

    The experiment investigated effects of high quantities of manganese and route of administration (diet versus capsule-dosed) on feed intake and blood characteristics in sheep. Twenty-four Florida native or Florida native by St. Croix crossbred wethers, 47 kg initially, were assigned randomly to eight treatments including basal diet supplemented with 0, 3000, 6000, or 9000 ppm manganese as a reagent grade manganese monoxide or basal diet plus gelatin capsules containing the equivalent of 0, 3000, 6000, or 9000 ppm manganese based on intake of the previous day. Three sheep per treatment were provided feed and tap water for ad libitum intake.more » Sheep were fed basal diet for 7 days followed by a 21-day experimental period, then placed back on the basal diet for 7 days. Average daily feed intake was reduced by increasing supplemental manganese, regardless of route. Animals dosed by capsule consumed less feed than those administered manganese in the diet. Serum manganese increased as manganese supplementation increased, but route of administration had no effect.« less

  7. In which regions is breast-feeding safer from the impact of toxic elements from the environment?

    PubMed

    Cinar, Nursan; Ozdemir, Sami; Yucel, Oya; Ucar, Fatma

    2011-11-01

    Owing to its unique nutritional and immunological characteristics, breast milk is the most important food source for infants. But, children are at greater risk for exposure to environmental toxicants from breast milk. The aim of this study was to evaluate the influence of environmental pollution on essential and toxic element contents of breast milk and determine the risky locations in our population. This study was conducted on women who were breastfeeding (n=90). Milk samples were collected at three locations in Marmara region, Turkey: highly industrialized region highly affected by pollution, urbanized region moderately and rural area that is affected little. Breast milk samples (5 mL) were collected at approximately one month postpartum (mature milk). The concentrations of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn) in milk samples were compared to the milk samples coming from different locations.Lead, cadmium, nickel, chromium, iron and manganese levels in the breast milk are highest and engrossing especially in rural areas compared to the other regions but cobalt, copper, zinc levels are highest in highly industrial areas. The levels of essential and toxic elements in breast milk can vary in different regions. The levels presented in our study are above some countries' data albeit not at toxic levels. Because of global effects, environmental pollution is not the problem for industrializing regions only. Rural area also may not be safe for breastfeed babies.

  8. Influence of essential trace minerals and micronutrient insufficiencies on harmful metal overload in a Mongolian patient with multiple sclerosis.

    PubMed

    Komatsu, Fumio; Kagawa, Yasuo; Kawabata, Terue; Kaneko, Yoshinori; Kudoh, Hideki; Purvee, Baatar; Otgon, Jugder; Chimedregzen, Ulziiburen

    2012-07-01

    Parkinson's disease and other neurological disorders are prevalent in Mongolia. Our previous studies revealed a significant correlation of these diseases with high oxidative stress due to a high body burden of harmful metals, such as manganese, iron, lead, cadmium, and aluminum. This report describes a 37-year-old male Mongolian patient with multiple sclerosis and essential micronutrient deficiency. This patient demonstrated high oxidative stress, as shown by high urinary 8-hydroxy-2'-deoxyguanosine levels of 14.7 and 14.3 ng/mg creatinine (crea), although his hair levels of these toxic metals were markedly lower than other Mongolians. In addition, this patient was deficient not only in various essential minerals, including selenium, magnesium, copper, cobalt, vanadium, and nickel, but also in micronutrients such as vitamin B6, C, E, folic acid, niacin, and β-carotene. Furthermore, after taking 2,3-dimercaptosuccinic acid, a chelating agent, urinary excretion of lead, cadmium, manganese, aluminum, iron, copper, and lithium were increased 156-, 8.4-, 7.6-, 4.3-, 3.3-, 2.1-, and 2.1-fold, respectively. These results suggest that this patient suffered from a deficiency in micronutrients such as essential minerals and vitamins, which resulted in a disturbance in the ability to excrete harmful metals into the urine and hair. It is possible that a deficiency of micronutrients and a high burden of heavy metals play a role in the pathogenesis of multiple sclerosis. Nutritional treatment may be an effective approach to this disease.

  9. Survey of mercury, cadmium and lead content of household batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de; Radant, Hendrik; Kohlmeyer, Regina

    2014-01-15

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146more » different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.« less

  10. Quality of ground water in the Puget sound region, Washington, 1981

    USGS Publications Warehouse

    Turney, G.L.

    1986-01-01

    Groundwater from more than 100 sites in the Puget Sound region, Washington, was sampled and analyzed in 1981 for pH, specific conductance, and concentrations of fecal coliform bacteria, major ions, and dissolved iron, manganese, and nitrate. 20% of the samples were analyzed for concentrations of dissolved trace metals including aluminum, arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc. The predominant water types were calcium bicarbonate and calcium-magnesium bicarbonate. Some wells in San Juan and Island Counties contained sodium chloride as a result of seawater intrusion. Dissolved solids concentrations were generally < 150 mg/L. Iron concentrations > 300 micrograms/L in 14% of all samples. Manganese concentrations > 50 micrograms/L in 40% of all samples. Trace-metal concentrations were generally < 10 mg/L , except for barium, copper, lead, and zinc. Nitrate concentrations were < 1.0 mg/L in water for over 75% of the sites. Concentrations > 1.0 mg/L in samples from Skagit, Whatcom , and Pierce Counties, were probably due to agricultural activities or septic tanks. Fecal coliform bacteria were detected in isolated instances. EPA drinking water regulations were exceeded only in isolated instances, except for widespread excessive iron and manganese concentrations. The historical data for the region were also evaluated for the same constituents. There are quantitative differences between historical and 1981 data, but they may be due to inconsistencies in data collection and analytical methods. (Author 's abstract)

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockhart, L.; Ramial, K.; Wilkinson, P.

    Mercury concentrations were measured in sediment cores from lakes in central and northern Canada. Typically cores spanned periods of one hundred to several hundred years, as judged by profiles of unsupported lead-210 and cesium-137. Mercury in the uppermost slices of sediment from lakes in more easterly locations was consistently elevated above that in deeper slices from the same lakes. The authors have interpreted this surface enrichment as evidence of increased recent loadings in agreement with similar studies in Ontario, Quebec, USA and Scandinavia. Western sites showed less surface enrichment with mercury, sometimes almost none, in agreement with experience in Alaska.more » Surface grab samples and two deep cores from Lake Winnipeg indicated that mercury in surface sediments exceeded that at depths corresponding to several thousand years in the history of the lake. The current indication from the cores is a regional difference in loadings of mercury with higher enrichments over basal values in the East than in the West. Recent literature, however, has raised the possibility of vertical mobility of mercury in sediments. This has suggested that processes controlling the well-known concentration of iron and manganese in oxidized surface sediments may also concentrate mercury. A number of the cores were analyzed for iron and manganese but mercury (or lead or cadmium) failed to correlate with iron or manganese. Efforts are underway to develop ways to distinguish rigorously between natural mercury and contamination.« less

  12. Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo

    2015-06-24

    Spinel-structured LiMn 2 O 4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single-layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene-coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X-ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmissionmore » electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single-layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn 3+ at the LMO electrode surface, promoting an oxidation state change to Mn 4+ , which suppresses dissolution.« less

  13. New understanding on separation of Mn and Fe from ferruginous manganese ores by the magnetic reduction roasting process

    NASA Astrophysics Data System (ADS)

    Liu, Bingbing; Zhang, Yuanbo; Wang, Juan; Wang, Jia; Su, Zijian; Li, Guanghui; Jiang, Tao

    2018-06-01

    Magnetic reduction roasting followed by magnetic separation process is reported as a simple route to realize separation of Mn and Fe from ferruginous manganese ores (Fe-Mn ores). However, the separation and recovery of Mn and Fe oxides are not very effective. This work clarified the underlying reason for the poor separation and also proposed some suggestions for the magnetic reduction process. In this work, the effect of temperature on the magnetic reduction roasting - magnetic separation of Fe-Mn ore was investigated firstly. Then the reduction behaviors of MnO2-Fe2O3 system and MnO2-Fe2O3-10 wt.%SiO2 system under 10 vol.% CO-90 vol.% CO2 at 600-1000 °C were investigated by XRD, XPS, SEM-EDS, VSM, DSC and thermodynamics analyses. Reduction and separation tests showed that higher reduction temperature was beneficial to the recovery of iron while it's not in favor of the recovery of manganese when the temperature was over 800 °C. The formation of composite oxide MnxFe3-xO4 with strong magnetism between the interface of the MnO2 and Fe2O3 particles leaded to the poor separation of iron and manganese. In addition, the formation mechanism of MnxFe3-xO4 from MnO2 and Fe2O3 as well as the interface reaction reduced under 10 vol.% CO was discussed in this study. Finally, some suggestions were recommended for the magnetic reduction roasting for utilizing the Fe-Mn ores effectively.

  14. Iron promotes protein insolubility and aging in C. elegans

    PubMed Central

    Klang, Ida M.; Schilling, Birgit; Sorensen, Dylan J.; Sahu, Alexandria K.; Kapahi, Pankaj; Andersen, Julie K.; Swoboda, Peter; Killilea, David W.; Gibson, Bradford W.; Lithgow, Gordon J.

    2014-01-01

    Many late-onset proteotoxic diseases are accompanied by a disruption in homeostasis of metals (metallostasis) including iron, copper and zinc. Although aging is the most prominent risk factor for these disorders, the impact of aging on metallostasis and its role in proteotoxic disease remain poorly understood. Moreover, it is not clear whether a loss of metallostasis influences normal aging. We have investigated the role of metallostasis in longevity of Caenorhabditis elegans. We found that calcium, copper, iron, and manganese levels increase as a function of age, while potassium and phosphorus levels tend to decrease. Increased dietary iron significantly accelerated the age-related accumulation of insoluble protein, a molecular pathology of aging. Proteomic analysis revealed widespread effects of dietary iron in multiple organelles and tissues. Pharmacological interventions to block accumulation of specific metals attenuated many models of proteotoxicity and extended normal lifespan. Collectively, these results suggest that a loss of metallostasis with aging contributes to age-related protein aggregation. PMID:25554795

  15. Iron promotes protein insolubility and aging in C. elegans.

    PubMed

    Klang, Ida M; Schilling, Birgit; Sorensen, Dylan J; Sahu, Alexandria K; Kapahi, Pankaj; Andersen, Julie K; Swoboda, Peter; Killilea, David W; Gibson, Bradford W; Lithgow, Gordon J

    2014-11-01

    Many late-onset proteotoxic diseases are accompanied by a disruption in homeostasis of metals (metallostasis) including iron, copper and zinc. Although aging is the most prominent risk factor for these disorders, the impact of aging on metallostasis and its role in proteotoxic disease remain poorly understood. Moreover, it is not clear whether a loss of metallostasis influences normal aging. We have investigated the role of metallostasis in longevity ofCaenorhabditis elegans. We found that calcium, copper, iron, and manganese levels increase as a function of age, while potassium and phosphorus levels tend to decrease. Increased dietary iron significantly accelerated the age-related accumulation of insoluble protein, a molecular pathology of aging. Proteomic analysis revealed widespread effects of dietary iron in multiple organelles and tissues. Pharmacological interventions to block accumulation of specific metals attenuated many models of proteotoxicity and extended normal lifespan. Collectively, these results suggest that a loss of metallostasis with aging contributes to age-related protein aggregation.

  16. Prioritizing hazardous pollutants in two Nigerian water supply schemes: a risk-based approach

    PubMed Central

    Etchie, Ayotunde T; Etchie, Tunde O; Krishnamurthi, Kannan; SaravanaDevi, S; Wate, Satish R

    2013-01-01

    Abstract Objective To rank pollutants in two Nigerian water supply schemes according to their effect on human health using a risk-based approach. Methods Hazardous pollutants in drinking-water in the study area were identified from a literature search and selected pollutants were monitored from April 2010 to December 2011 in catchments, treatment works and consumer taps. The disease burden due to each pollutant was estimated in disability-adjusted life years (DALYs) using data on the pollutant’s concentration, exposure to the pollutant, the severity of its health effects and the consumer population. Findings The pollutants identified were microbial organisms, cadmium, cobalt, chromium, copper, iron, manganese, nickel, lead and zinc. All were detected in the catchments but only cadmium, cobalt, chromium, manganese and lead exceeded World Health Organization (WHO) guideline values after water treatment. Post-treatment contamination was observed. The estimated disease burden was greatest for chromium in both schemes, followed in decreasing order by cadmium, lead, manganese and cobalt. The total disease burden of all pollutants in the two schemes was 46 000 and 9500 DALYs per year or 0.14 and 0.088 DALYs per person per year, respectively, much higher than the WHO reference level of 1 × 10−6 DALYs per person per year. For each metal, the disease burden exceeded the reference level and was comparable with that due to microbial contamination reported elsewhere in Africa. Conclusion The estimated disease burden of metal contamination of two Nigerian water supply systems was high. It could best be reduced by protection of water catchment and pretreatment by electrocoagulation. PMID:23940402

  17. Data on snow chemistry of the Cascade-Sierra Nevada Mountains

    USGS Publications Warehouse

    Laird, L.B.; Taylor, Howard E.; Lombard, R.E.

    1986-01-01

    Snow chemistry data were measured for solutes found in snow core samples collected from the Cascade-Sierra Nevada Mountains from late February to mid-March 1983. The data are part of a study to assess geographic variations in atmospheric deposition in Washington, Oregon, and California. The constituents and properties include pH and concentrations of hydrogen ion, calcium, magnesium, sodium, potassium, chloride, sulfate, nitrate, fluoride, phosphate, ammonium, iron, aluminum, manganese, copper, cadmium, lead, and dissolved organic carbon. Concentrations of arsenic and bromide were below the detection limit. (USGS)

  18. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5455 Manganese glycerophosphate. (a) Product. Manganese glycerophosphate. (b...

  19. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5455 Manganese glycerophosphate. (a) Product. Manganese glycerophosphate. (b...

  20. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5455 Manganese glycerophosphate. (a) Product. Manganese glycerophosphate. (b...

  1. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5455 Manganese glycerophosphate. (a) Product. Manganese glycerophosphate. (b...

  2. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5455 Manganese glycerophosphate. (a) Product. Manganese glycerophosphate. (b...

  3. Selected toxic and essential heavy metals in impacted teeth and the surrounding mandibular bones of people exposed to heavy metals in the environment.

    PubMed

    Malara, Piotr; Fischer, Agnieszka; Malara, Beata

    2016-01-01

    The elemental composition of bones and teeth can allow exposure to heavy metals in the environment to be estimated. The aim of this study was to determine whether impacted mandibular teeth and the surrounding bones can be used as biomonitoring media to assess exposure to heavy metals. The research materials were 67 impacted lower third molars and samples of the cortical bone removed when the wisdom teeth were surgically extracted. The samples were from people living in two areas with different environmental concentrations of heavy metals. The cadmium, chromium, copper, iron, lead, manganese, and zinc concentrations in the samples were determined by atomic absorption spectrometry with flame atomization. The cadmium and lead concentrations in the impacted third molars and the bones surrounding the teeth were significantly higher for people living in the relatively polluted Ruda Slaska region than for people living in Bielsko-Biala region. Significantly higher chromium, copper, manganese, and zinc concentrations were found in the bones surrounding the impacted teeth from people living in Ruda Slaska than in the bones surrounding the impacted teeth from people living in Bielsko-Biala. The cadmium concentrations in impacted teeth and the surrounding bones were significantly positively correlated. The results indicated that impacted mandibular teeth and the surrounding mandibular bones may reflect the exposure of people to cadmium and lead in the environment. This conclusion, however, must be verified in future research projects designed to exclude the possibility of additional dietary, occupational, and other types of exposure to heavy metals.

  4. Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium, and lead in the liver and kidneys of dogs according to age, gender, and the occurrence of chronic kidney disease

    PubMed Central

    Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Zentek, Jürgen

    2015-01-01

    This study was conducted to measure the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se), and lead (Pb) in canine liver, renal cortex, and renal medulla, and the association of these concentrations with age, gender, and occurrence of chronic kidney disease (CKD). Tissues from 50 dogs were analyzed using inductively coupled plasma mass spectrometry. Cu, Zn, and Mn levels were highest in the liver followed by the renal cortex and renal medulla. The highest Sr, Cd, and Se concentrations were measured in the renal cortex while lower levels were found in the renal medulla and liver. Female dogs had higher tissue concentrations of Sr (liver and renal medulla), Cd (liver), Zn (liver and renal cortex), Cr (liver, renal cortex, and renal medulla), and Pb (liver) than male animals. Except for Mn and Sb, age-dependent variations were observed for all element concentrations in the canine tissues. Hepatic Cd and Cr concentrations were higher in dogs with CKD. In conclusion, the present results provide new knowledge about the storage of specific elements in canine liver and kidneys, and can be considered important reference data for diagnostic methods and further investigations. PMID:25234328

  5. Efficient determination of average valence of manganese in manganese oxides by reaction headspace gas chromatography.

    PubMed

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2017-08-18

    This work investigates a new reaction headspace gas chromatographic (HS-GC) technique for efficient quantifying average valence of manganese (Mn) in manganese oxides. This method is on the basis of the oxidation reaction between manganese oxides and sodium oxalate under the acidic condition. The carbon dioxide (CO 2 ) formed from the oxidation reaction can be quantitatively analyzed by headspace gas chromatography. The data showed that the reaction in the closed headspace vial can be completed in 20min at 80°C. The relative standard deviation of this reaction HS-GC method in the precision testing was within 1.08%, the relative differences between the new method and the reference method (titration method) were no more than 5.71%. The new HS-GC method is automated, efficient, and can be a reliable tool for the quantitative analysis of average valence of manganese in the manganese oxide related research and applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  7. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  8. Microbially-mediated thiocyanate oxidation and manganese cycling control arsenic mobility in groundwater at an Australian gold mine

    NASA Astrophysics Data System (ADS)

    Horvath, A. S.; Baldisimo, J. G.; Moreau, J. W.

    2010-12-01

    Arsenic contamination of groundwater poses a serious environmental and human health problem in many regions around the world. Historical groundwater chemistry data for a Western-Central Victorian gold mine (Australia) revealed a strong inverse correlation between dissolved thiocyanate and iron(II), supporting the interpretation that oxidation of thiocyanate, a major groundwater contaminant by-product of cyanide-based gold leaching, was coupled to reductive dissolution of iron ox(yhydrox)ides in tailings dam sediments. Microbial growth was observed in this study in a selective medium using SCN- as the sole carbon and nitrogen source. The potential for use of SCN- as a tracer of mining contamination in groundwater was evaluated in the context of biological SCN- oxidation potential in the aquifer. Geochemical data also revealed a high positive correlation between dissolved arsenic and manganese, indicating that sorption on manganese-oxides most likely controls arsenic mobility at this site. Samples of groundwater and sediments along a roughly straight SW-NE traverse away from a large mine tailings storage facility, and parallel to the major groundwater flow direction, were analysed for major ions and trace metals. Groundwater from wells approaching the tailings along this traverse showed a nearly five-fold increase (roughly 25-125 ppb) in dissolved arsenic concentrations relative to aqueous Mn(II) concentrations. Thus, equivalent amounts of dissolved manganese released a five-fold difference in the amount of adsorbed arsenic. The interpretation that reductive dissolution of As-bearing MnO2 at the mine site has been mediated by groundwater (or aquifer) microorganisms is consistent with our recovery of synthetic birnessite-reducing enrichment cultures that were inoculated with As-contaminated groundwaters.

  9. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor

    NASA Technical Reports Server (NTRS)

    Myers, Charles R.; Nealson, Kenneth H.

    1988-01-01

    Microbes that couple growth to the reduction of manganese could play an important role in the biogeochemistry of certain anaerobic environments. Such a bacterium, Alteromonas putrefaciens MR-1, couples its growth to the reduction of manganese oxides only under anaerobic conditions. The characteristics of this reduction are consistent with a biological, and not an indirect chemical, reduction of manganese, which suggest that this bacterium uses manganic oxide as a terminal electron acceptor. It can also utilize a large number of other compounds as terminal electron acceptors; this versatility could provide a distinct advantage in environments where electron-acceptor concentrations may vary.

  10. Cooking rice in excess water reduces both arsenic and enriched vitamins in the cooked grain.

    PubMed

    Gray, Patrick J; Conklin, Sean D; Todorov, Todor I; Kasko, Sasha M

    2016-01-01

    This paper reports the effects of rinsing rice and cooking it in variable amounts of water on total arsenic, inorganic arsenic, iron, cadmium, manganese, folate, thiamin and niacin in the cooked grain. We prepared multiple rice varietals both rinsed and unrinsed and with varying amounts of cooking water. Rinsing rice before cooking has a minimal effect on the arsenic (As) content of the cooked grain, but washes enriched iron, folate, thiamin and niacin from polished and parboiled rice. Cooking rice in excess water efficiently reduces the amount of As in the cooked grain. Excess water cooking reduces average inorganic As by 40% from long grain polished, 60% from parboiled and 50% from brown rice. Iron, folate, niacin and thiamin are reduced by 50-70% for enriched polished and parboiled rice, but significantly less so for brown rice, which is not enriched.

  11. Geochemical variability of soils and biogeochemical variability of plants in the Piceance Basin, Colorado

    USGS Publications Warehouse

    Tuttle, M.L.; Severson, R.C.; Dean, W.E.; Klusman, R.W.

    1986-01-01

    Geochemical baselines for native soils and biogeochemical baselines for plants in the Piceance basin provide data that can be used to assess geochemical and biogeochemical effects of oil-shale development, monitor changes in the geochemical and biogeochemical environment during development, and assess the degree of success of rehabilitation of native materials after development. Baseline values for 52 properties in native soils, 15 properties in big sagebrush, and 13 properties in western wheatgrass were established. Our Study revealed statistically significant regional variations of the following properties across the basin: in soil&-aluminum, cobalt, copper, iron, manganese, sodium, nickel, phosphorus, lead, scandium, titanium, vanadium, zinc, organic and total carbon, pH, clay, dolomite, sodium feldspar, and DTPA-extractable calcium, cadmium, iron, potassium, manganese, nickel, phosphorus, yttrium, and zinc; in big sagebrush-barium, calcium, copper, magnesium, molybdenum, sodium, strontium, zinc, and ash; and in western wheatgrass-boron, barium, calcium, magnesium, manganese, molybdenum, strontium, zinc, and ash. These variations show up as north-south trends across the basin, or they reflect differences in elevation, hydrology, and soil parent material. Baseline values for properties that do not have statistically significant regional variations can be represented by geometric means and deviations calculated from all values within the basin. Chemical and mineralogical analyses of soil and chemical analyses of western wheatgrass samples from Colorado State University's experimental revegetation plot at Anvil Points provide data useful in assessing potential effects on soil and plant properties when largescale revegetation operations begin. The concentrations of certain properties are related to the presence of topsoil over spent shale in the lysimeters. In soils, calcium, fluorine, lithium, magnesium, sodium, phosphorus, strontium, carbonate and total carbon

  12. Developmental manganese exposure in combination with developmental stress and iron deficiency: Effects on behavior and monoamines.

    PubMed

    Amos-Kroohs, Robyn M; Davenport, Laurie L; Gutierrez, Arnold; Hufgard, Jillian R; Vorhees, Charles V; Williams, Michael T

    2016-01-01

    Manganese (Mn) is an essential element but neurotoxic at higher exposures, however, Mn exposure seldom occurs in isolation. It often co-occurs in populations with inadequate dietary iron (Fe) and limited resources that result in stress. Subclinical FeD affects up to 15% of U.S. children and exacerbates Mn toxicity by increasing Mn bioavailability. Therefore, we investigated Mn overexposure (MnOE) in rats in combination with Fe deficiency (FeD) and developmental stress, for which we used barren cage rearing. For barren cage rearing (BAR), rats were housed in cages with a wire grid floor or standard bedding material (STD) from embryonic day (E)7 through postnatal day (P)28. For FeD, dams were fed a 90% Fe-deficient NIH-07 diet from E15 through P28. Within each litter, different offspring were treated with 100mg/kg Mn (MnOE) or vehicle (VEH) by gavage every other day from P4-28. Behavior was assessed at two ages and consisted of: open-field, anxiety tests, acoustic startle response (ASR) with prepulse inhibition (PPI), sociability, sucrose preference, tapered beam crossing, and the Porsolt's forced swim test. MnOE had main effects of decreasing activity, ASR, social preference, and social novelty. BAR and FeD transiently modified MnOE effects. BAR groups weighed less and showed decreased anxiety in the elevated zero maze, had increased ASR and decreased PPI, and exhibited reduced sucrose preference compared with the STD groups. FeD animals also weighed less and had increased slips on the tapered beam. Most of the monoamine effects were dopaminergic and occurred in the MnOE groups. The results showed that Mn is a pervasive developmental neurotoxin, the effects of which are modulated by FeD and/or BAR cage rearing. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Urinary Cadmium and Estimated Dietary Cadmium in the Women’s Health Initiative

    PubMed Central

    Quraishi, Sabah M.; Adams, Scott V.; Shafer, Martin; Meliker, Jaymie R.; Li, Wenjun; Luo, Juhua; Neuhouser, Marian L.; Newcomb, Polly A.

    2016-01-01

    Cadmium, a heavy metal dispersed in the environment as a result of industrial and agricultural applications, has been implicated in several human diseases including renal disease, cancers, and compromised bone health. In the general population, the predominant sources of cadmium exposure are tobacco and diet. Urinary cadmium (uCd) reflects long-term exposure and has been frequently used to assess cadmium exposure in epidemiological studies; estimated dietary intake of cadmium (dCd) has also been used in several studies. The validity of dCd in comparison to uCd is unclear. This study aimed to compare dCd, estimated from food frequency questionnaires (FFQs), to uCd measured in spot urine samples from 1,002 participants of the Women’s Health Initiative. Using linear regression, we found that dCd was not statistically significantly associated with uCd (β=0.006, p-value=0.14). When stratified by smoking status, dCd was not significantly associated with uCd both in never smokers (β=0.006, p-value=0.09) and in ever smokers (β=0.003, p-value=0.0.67). Our results suggest that because of the lack of association between estimated dietary cadmium and measured urinary cadmium exposure, dietary estimation of cadmium exposure should be used with caution in epidemiologic studies. PMID:26015077

  14. Manganese-enhanced magnetic resonance microscopy of mineralization

    USGS Publications Warehouse

    Chesnick, I.E.; Todorov, T.I.; Centeno, J.A.; Newbury, D.E.; Small, J.A.; Potter, K.

    2007-01-01

    Paramagnetic manganese (II) can be employed as a calcium surrogate to sensitize magnetic resonance microscopy (MRM) to the processing of calcium during bone formation. At high doses, osteoblasts can take up sufficient quantities of manganese, resulting in marked changes in water proton T1, T2 and magnetization transfer ratio values compared to those for untreated cells. Accordingly, inductively coupled plasma mass spectrometry (ICP-MS) results confirm that the manganese content of treated cell pellets was 10-fold higher than that for untreated cell pellets. To establish that manganese is processed like calcium and deposited as bone, calvaria from the skull of embryonic chicks were grown in culture medium supplemented with 1 mM MnCl2 and 3 mM CaCl2. A banding pattern of high and low T2 values, consistent with mineral deposits with high and low levels of manganese, was observed radiating from the calvarial ridge. The results of ICP-MS studies confirm that manganese-treated calvaria take up increasing amounts of manganese with time in culture. Finally, elemental mapping studies with electron probe microanalysis confirmed local variations in the manganese content of bone newly deposited on the calvarial surface. This is the first reported use of manganese-enhanced MRM to study the process whereby calcium is taken up by osteoblasts cells and deposited as bone. ?? 2007 Elsevier Inc. All rights reserved.

  15. Minerals, haem and non-haem iron contents of rhea meat.

    PubMed

    Ramos, A; Cabrera, M C; Del Puerto, M; Saadoun, A

    2009-01-01

    Mineral contents, haem and non-haem iron of rhea (Rhea americana) muscles Obturatorius medialis (OM), Iliotibialis lateralis (IL) and Iliofibularis (I) were determined. No differences between the three muscles were observed for calcium, phosphorus, magnesium and sodium. There is more potassium, zinc and copper in IL muscle than in OM and I muscles. For Manganese, OM and IL muscles show a higher content in comparison with I muscle. For selenium, IL and I muscles show the highest content compared to OM muscle. For total, haem and non-haem iron, the IL muscle shows the highest content respect to the other muscles. When compared to other meats, the minerals content of rhea meat show an elevated level in phosphorus, selenium and total and haem iron. The human health concern due to the deficient diet in selenium and iron, and their high contents in rhea meat will be of great importance in the promotion of this meat.

  16. Loss of hfe function reverses impaired recognition memory caused by olfactory manganese exposure in mice.

    PubMed

    Ye, Qi; Kim, Jonghan

    2015-03-01

    Excessive manganese (Mn) in the brain promotes a variety of abnormal behaviors, including memory deficits, decreased motor skills and psychotic behavior resembling Parkinson's disease. Hereditary hemochromatosis (HH) is a prevalent genetic iron overload disorder worldwide. Dysfunction in HFE gene is the major cause of HH. Our previous study has demonstrated that olfactory Mn uptake is altered by HFE deficiency, suggesting that loss of HFE function could alter manganese-associated neurotoxicity. To test this hypothesis, Hfe-knockout (Hfe (-/-)) and wild-type (Hfe (+/+)) mice mice were intranasally-instilled with manganese chloride (MnCl2 5 mg/kg) or water daily for 3 weeks and examined for memory function. Olfactory Mn diminished both short-term recognition and spatial memory in Hfe (+/+) mice, as examined by novel object recognition task and Barnes maze test, respectively. Interestingly, Hfe (-/-) mice did not show impaired recognition memory caused by Mn exposure, suggesting a potential protective effect of Hfe deficiency against Mn-induced memory deficits. Since many of the neurotoxic effects of manganese are thought to result from increased oxidative stress, we quantified activities of anti-oxidant enzymes in the prefrontal cortex (PFC). Mn instillation decreased superoxide dismutase 1 (SOD1) activity in Hfe (+/+) mice, but not in Hfe (-/-) mice. In addition, Hfe deficiency up-regulated SOD1 and glutathione peroxidase activities. These results suggest a beneficial role of Hfe deficiency in attenuating Mn-induced oxidative stress in the PFC. Furthermore, Mn exposure reduced nicotinic acetylcholine receptor levels in the PFC, indicating that blunted acetylcholine signaling could contribute to impaired memory associated with intranasal manganese. Together, our model suggests that disrupted cholinergic system in the brain is involved in airborne Mn-induced memory deficits and loss of HFE function could in part prevent memory loss via a potential up-regulation of

  17. Nickel and manganese transfer from soil to plant in lateritic mining soils from New Caledonia

    NASA Astrophysics Data System (ADS)

    Pouschat, P.; Rose, J.; Alliot, I.; Dominici, C.; Keller, C.; Laffont-Schwob, I.; Olivi, L.; Ambrosi, J.-P.

    2009-04-01

    New Caledonian ferritic soils (more than 50 % of iron) are naturally rich in metals (chromium, nickel, cobalt, and manganese), deficient in major nutrients (nitrogen, phosphorous, and potassium), and unbalanced for the calcium/magnesium ratio. Under these particular ecological conditions, New Caledonia, recognized as a hot-spot of biodiversity, is a natural laboratory to study and understand the adaptation strategies of plants to metalliferous soils, and particularly the tolerance and (hyper)accumulation of metals by plants. Moreover, understanding such mechanisms is essential to develop rehabilitation or phytoremediation techniques for polluted soils, as well as phytomining techniques. Thus, in order to understand the soil - plant relationship and metal mobility along a toposequence in a future nickel mining massif, field experiments were conducted in an isolated ultramafic massif of New Caledonia. Several plant species of two endemic and frequent plant genera were chosen: Tristaniopsis guillainii and T. calobuxus (Myrtaceae), and Phyllanthus serpentinus and P. favieri (Euphorbiaceae), because of their nickel and/or manganese accumulating or hyperaccumulating nature. Leaves, twigs, and roots of all plants were collected along the soil sequence and their associated rhizospheric and bulk soils were sampled. Next, a series of characterization techniques were adapted and then coupled to cryogenics. The combined use of those multiple techniques (cryo-microtomy, cryo-SEM, µXRF, cryo-XAS, and soil characterization) allowed to study co-location and speciation of nickel and manganese in the different plant organs and soils (rhizospheric and bulk). Bioaccumulated nickel and manganese had different distribution patterns. In leaves, Ni accumulated in non photosynthetic tissues (e.g. epidermis) whereas Mn preferentially accumulated in mesophyll whatever the plant species. Nevertheless, in spite of a different speciation in soils, nickel and manganese were both found as

  18. Concentrations of cadmium and selected essential elements in malignant large intestine tissue

    PubMed Central

    Dziki, Adam; Kilanowicz, Anna; Sapota, Andrzej; Duda-Szymańska, Joanna; Daragó, Adam

    2015-01-01

    Introduction Colorectal cancer is one of the most common cancers worldwide. Incidence rates of large intestine cancer indicate a role of environmental and occupational factors. The role of essential elements and their interaction with toxic metals can contribute to the explanation of a complex mechanism by which large intestine cancer develops. Bearing this in mind, determining the levels of essential and toxic elements in tissues (organs), as well as in body fluids, seems to shed light on their role in the mode of action in malignant disease. Aim Determination of the levels of cadmium, zinc, copper, selenium, calcium, magnesium, and iron in large intestine malignant tissue. Material and methods Two intraoperative intestine sections were investigated: one from the malignant tissue and the other one from the normal tissue, collected from each person with diagnosed large intestine cancer. Cadmium, zinc, copper, calcium, magnesium, and iron levels were determined with atomic absorption spectrometry, and selenium levels by spectrofluorimetric method. Results The levels of copper, selenium, and magnesium were higher in the malignant than in normal tissues. In addition, the zinc/copper and calcium/magnesium relationship was altered in malignant tissue, where correlations were lower compared to non-malignant tissue. Conclusions The results seems to demonstrate disturbed homeostasis of some essential elements. However, it is hard to confirm their involvement in the aetiology of colorectal cancer. PMID:27110307

  19. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese chloride. 184.1446 Section 184.1446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1446 Manganese chloride. (a) Manganese chloride (MnCl2·4H2O, CAS...

  20. Isotopic evidence for organic matter oxidation by manganese reduction in the formation of stratiform manganese carbonate ore

    USGS Publications Warehouse

    Okita, P.M.; Maynard, J.B.; Spiker, E. C.; Force, E.R.

    1988-01-01

    Unlike other marine-sedimentary manganese ore deposits, which are largely composed of manganese oxides, the primary ore at Molango (Hidalgo State, Mexico) is exclusively manganese carbonate (rhodochrosite, Mn-calcite, kutnahorite). Stable isotope studies of the carbonates from Molango provide critical new information relevant to the controversy over syngenetic and diagenetic models of stratiform manganese deposit formation. Negative ??13C values for carbonates from mineralized zones at Molango are strongly correlated with manganese content both on a whole rock scale and by mineral species. Whole rock ??13C data fall into three groups: high-grade ore = -16.4 to -11.5%.; manganese-rich, sub-ore-grade = -5.2 to 0%.; and unmineralized carbonates = 0 to +2.5%. (PDB). ??18O data show considerable overlap in values among the three groups: +4.8 to -2.8, -5.4 to -0.3%., and -7.4 to +6.2 (PDB), respectively. Isotopic data for individual co-existing minerals suggest a similar separation of ??13C values: ??13C values from calcite range from -1.1 to +0.7%. (PDB), whereas values from rhodochrosite are very negative, -12.9 to -5.5%., and values from kutnahorite or Mn-calcite are intermediate between calcite and rhodochrosite. 13C data are interpreted to indicate that calcite (i.e. unmineralized carbonate) formed from a normal marine carbon reservoir. However, 13C data for the manganese-bearing carbonates suggest a mixed seawater and organic source of carbon. The presence of only trace amounts of pyrite suggests sulfate reduction may have played a minor part in oxidizing organic matter. It is possible that manganese reduction was the predominant reaction that oxidized organic matter and that it released organic-derived CO2 to produce negative ??13C values and manganese carbonate mineralization. ?? 1988.

  1. Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice

    PubMed Central

    Mostofa, Mohammad Golam; Rahman, Anisur; Ansary, Md. Mesbah Uddin; Watanabe, Ayaka; Fujita, Masayuki; Phan Tran, Lam-Son

    2015-01-01

    We investigated the physiological and biochemical mechanisms by which H2S mitigates the cadmium stress in rice. Results revealed that cadmium exposure resulted in growth inhibition and biomass reduction, which is correlated with the increased uptake of cadmium and depletion of the photosynthetic pigments, leaf water contents, essential minerals, water-soluble proteins, and enzymatic and non-enzymatic antioxidants. Excessive cadmium also potentiated its toxicity by inducing oxidative stress, as evidenced by increased levels of superoxide, hydrogen peroxide, methylglyoxal and malondialdehyde. However, elevating endogenous H2S level improved physiological and biochemical attributes, which was clearly observed in the growth and phenotypes of H2S-treated rice plants under cadmium stress. H2S reduced cadmium-induced oxidative stress, particularly by enhancing redox status and the activities of reactive oxygen species and methylglyoxal detoxifying enzymes. Notably, H2S maintained cadmium and mineral homeostases in roots and leaves of cadmium-stressed plants. By contrast, adding H2S-scavenger hypotaurine abolished the beneficial effect of H2S, further strengthening the clear role of H2S in alleviating cadmium toxicity in rice. Collectively, our findings provide an insight into H2S-induced protective mechanisms of rice exposed to cadmium stress, thus proposing H2S as a potential candidate for managing toxicity of cadmium, and perhaps other heavy metals, in rice and other crops. PMID:26361343

  2. Prolactin levels in manganese-exposed male welders.

    PubMed

    Tutkun, Engin; Abuşoğlu, Sedat; Yılmaz, Hinç; Gündüzöz, Meşide; Gıynas, Nilgün; Bal, Ceylan Demir; Ünlü, Ali

    2014-12-01

    Early studies on manganese (Mn) exposure have demonstrated that this transition metal affects dopamine neurotransmission. Dopamine serves as a tonic inhibitor of prolactin release in the anterior hypophysis. Our aim was to determine the relation between serum prolactin levels and manganese-exposure. Whole blood was collected from 95 non-exposed control subjects and 179 manganese-exposed male welders. Whole blood manganese was analyzed by Inductively Coupled Plasma--Mass Spectrometer on Agilent 7700 (Agilent Technologies, USA). Serum prolactin levels (PRL), aspartate transaminase (AST), alanine transaminase (ALT), urea, creatinine, soduim (Na), potassium (K) were analyzed by immunological and spectrophotometric methods on Roche E170 Modular System (Roche Diagnostics, Mannheim, Germany). The mean ages for control and manganese-exposed group were 40.5 ± 7.8 and 39.5 ± 8.7, respectively (p = 0.258). The mean working period (years) for control and manganese-exposed group were 17.4 ± 9.8 and 18.2 ± 7.7 years, respectively (p = 0.581). Serum AST and potassium levels were significantly higher in control group than manganese-exposed group (p = 0.002 and p = 0.048, respectively) and body-mass index (BMI) was significantly lower in control group than manganese-exposed group (p = 0.033). There was a significantly positive correlation between whole blood manganese levels and serum prolactin (r = 0.860, p < 0.001). Serum ALT levels were positively correlated with serum AST, urea and sodium (r = 0.315, p < 0.001; r = 0.121, p = 0.046; r = 0.130, p = 0.031). Serum prolactin level is a diagnostic marker for determining the effect of manganese-exposure.

  3. Cobalt, manganese, and iron near the Hawaiian Islands: A potential concentrating mechanism for cobalt within a cyclonic eddy and implications for the hybrid-type trace metals

    NASA Astrophysics Data System (ADS)

    Noble, Abigail E.; Saito, Mak A.; Maiti, Kanchan; Benitez-Nelson, Claudia R.

    2008-05-01

    The vertical distributions of cobalt, iron, and manganese in the water column were studied during the E-Flux Program (E-Flux II and III), which focused on the biogeochemistry of cold-core cyclonic eddies that form in the lee of the Hawaiian Islands. During E-Flux II (January 2005) and E-Flux III (March 2005), 17 stations were sampled for cobalt ( n=147), all of which demonstrated nutrient-like depletion in surface waters. During E-Flux III, two depth profiles collected from within a mesoscale cold-core eddy, Cyclone Opal, revealed small distinct maxima in cobalt at ˜100 m depth and a larger inventory of cobalt within the eddy. We hypothesize that this was due to a cobalt concentrating effect within the eddy, where upwelled cobalt was subsequently associated with sinking particulate organic carbon (POC) via biological activity and was released at a depth coincident with nearly complete POC remineralization [Benitez-Nelson, C., Bidigare, R.R., Dickey, T.D., Landry, M.R., Leonard, C.L., Brown, S.L., Nencioli, F., Rii, Y.M., Maiti, K., Becker, J.W., Bibby, T.S., Black, W., Cai, W.J., Carlson, C.A., Chen, F., Kuwahara, V.S., Mahaffey, C., McAndrew, P.M., Quay, P.D., Rappe, M.S., Selph, K.E., Simmons, M.P., Yang, E.J., 2007. Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean. Science 316, 1017-1020]. There is also evidence for the formation of a correlation between cobalt and soluble reactive phosphorus during E-Flux III relative to the E-Flux II cruise that we suggest is due to increased productivity, implying a minimum threshold of primary production below which cobalt-phosphate coupling does not occur. Dissolved iron was measured in E-Flux II and found in somewhat elevated concentrations (˜0.5 nM) in surface waters relative to the iron depleted waters of the surrounding Pacific [Fitzwater, S.E., Coale, K.H., Gordon, M.R., Johnson, K.S., Ondrusek, M.E., 1996. Iron deficiency and phytoplankton growth in the equatorial Pacific. Deep

  4. Magnetic properties of manganites doped with gallium, iron, and chromium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troyanchuk, I. O., E-mail: troyan@physics.by; Bushinsky, M. V.; Tereshko, N. V.

    The magnetization and the crystal structure of the La{sub 0.7}Sr{sub 0.3}Mn{sub 1−x}M{sub x}O{sub 3} (M = Ga, Fe, Cr; x ≤ 0.3) systems are studied. The substitution of gallium and chromium is shown to cause phase separation into antiferromagnetic and ferromagnetic phases, whereas the substitution of iron for manganese stabilizes a spinglass state. The ferromagnetic phase in the chromium-substituted compositions is much more stable than that in the case of substitution by iron ions or diamagnetic gallium ions. The magnetic properties are explained in terms of the model of superexchange interactions and the localization of most e{sub g} electrons ofmore » manganese. The stabilization of ferromagnetism in the chromium-substituted compositions can be caused by the fact that the positive and negative contributions to the superexchange interaction between Mn{sup 3+} and Cr{sup 3+} ions are close to each other but the antiferromagnetic part of the exchange is predominant. Moreover, some chromium ions are in the tetravalent state, which maintains the optimum doping conditions.« less

  5. Iron-nickel-chromium alloy having improved swelling resistance and low neutron absorbence

    DOEpatents

    Korenko, Michael K.

    1986-01-01

    An iron-nickel-chromium age-hardenable alloy suitable for use in fast breeder reactor ducts and cladding which utilizes the gamma-double prime strengthening phase and characterized in having a delta or eta phase distributed at or near grain boundaries. The alloy consists essentially of about 33-39.5% nickel, 7.5-16% chromium, 1.5-4% niobium, 0.1-0.7% silicon, 0.01-0.2% zirconium, 1-3% titanium, 0.2-0.6% aluminum, and the remainder essentially all iron. Up to 0.4% manganese and up to 0.010% magnesium can be added to inhibit trace element effects.

  6. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS Reg. No. 7785-0987-097) is a... of pyrolusite (MnO2) ore with solid ferrous sulfate and coal, followed by leaching and...

  7. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... dioxide in sulfuric acid, and the roasting of pyrolusite (MnO2) ore with solid ferrous sulfate and coal...

  8. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... dioxide in sulfuric acid, and the roasting of pyrolusite (MnO2) ore with solid ferrous sulfate and coal...

  9. Arsenic, iron, lead, manganese, and uranium concentrations in private bedrock wells in southeastern New Hampshire, 2012-2013

    USGS Publications Warehouse

    Flanagan, Sarah M.; Belaval, Marcel; Ayotte, Joseph D.

    2014-01-01

    Trace metals, such as arsenic, iron, lead, manganese, and uranium, in groundwater used for drinking have long been a concern because of the potential adverse effects on human health and the aesthetic or nuisance problems that some present. Moderate to high concentrations of the trace metal arsenic have been identified in drinking water from groundwater sources in southeastern New Hampshire, a rapidly growing region of the State (Montgomery and others, 2003). During the past decade (2000–10), southeastern New Hampshire, which is composed of Hillsborough, Rockingham, and Strafford Counties, has grown in population by nearly 48,700 (or 6.4 percent) to 819,100. These three counties contain 62 percent of the State’s population but encompass only about 22 percent of the land area (New Hampshire Office of Energy and Planning, 2011). According to a 2005 water-use study (Hayes and Horn, 2009), about 39 percent of the population in these three counties in southeastern New Hampshire uses private wells as sources of drinking water, and these wells are not required by the State to be routinely tested for trace metals or other contaminants. Some trace metals have associated human-health benchmarks or nonhealth guidelines that have been established by the U.S. Environmental Protection Agency (EPA) to regulate public water supplies. The EPA has established a maximum contaminant level (MCL) of 10 micrograms per liter (μg/L) for arsenic (As) and a MCL of 30 μg/L for uranium (U) because of associated health risks (U.S. Environmental Protection Agency, 2012). Iron (Fe) and manganese (Mn) are essential for human health, but Mn at high doses may have adverse cognitive effects in children (Bouchard and others, 2011; Agency for Toxic Substances and Disease Registry, 2012); therefore, the EPA has issued a lifetime health advisory (LHA) of 300 μg/L for Mn. Recommended secondary maximum contaminant levels (SMCLs) for Fe (300 μg/L) and Mn (50 μg/L) were established primarily as

  10. Manganese As a Metal Accumulator

    EPA Science Inventory

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  11. Autonomic function in manganese alloy workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrington, W.W.; Angle, C.R.; Willcockson, N.K.

    1998-07-01

    The observation of orthostatic hypotension in an index case of manganese toxicity lead to this prospective attempt to evaluate cardiovascular autonomic function and cognitive and emotional neurotoxicity in eight manganese alloy welders and machinists. The subjects consisted of a convenience sample consisting of an index case of manganese dementia, his four co-workers in a frog shop for gouging, welding, and grinding repair of high manganese railway track and a convenience sample of three mild steel welders with lesser manganese exposure also referred because of cognitive or autonomic symptoms. Frog shop air manganese samples 9.6--10 years before and 1.2--3.4 years aftermore » the diagnosis of the index case exceeded 1.0 mg/m{sup 3} in 29% and 0.2 mg/m{sup 3} in 62%. Twenty-four-hour electrocardiographic (Holter) monitoring was used to determine the temporal variability of the heartrate (RR{prime} interval) and the rates of change at low frequency and high frequency. MMPI and MCMI personality assessment and short-term memory, figure copy, controlled oral word association, and symbol digit tests were used.« less

  12. End-of-life nickel-cadmium accumulators: characterization of electrode materials and industrial Black Mass.

    PubMed

    Hazotte, Claire; Leclerc, Nathalie; Diliberto, Sébastien; Meux, Eric; Lapicque, Francois

    2015-01-01

    The aim of this paper is the characterization of spent NiCd batteries and the characterization of an industrial Black Mass obtained after crushing spent NiCd batteries and physical separation in a treatment plant. The characterization was first performed with five cylindrical NiCd batteries which were manually dismantled. Their characterization includes mass balance of the components, active powders elemental analysis and phase identification by X-ray powder diffraction. Chemical speciation of the two metals was also investigated. For cadmium, speciation was previously developed on solid synthetic samples. In a spent battery, the active powders correspond to about 43% of the battery weight. The other components are the separator and polymeric pieces (5%), the support plates (25%) and the carbon steel external case (27%). The sequential procedure shows that the nickel in the positive powders from the dismantled Ni-Cd batteries is distributed between Ni0 (39.7%), Ni(OH)2 (58.5%) and NiOOH (1.8%). Cadmium in the negative powder is about 99.9% as the Cd(OH)2 form with 0.1% of metal cadmium. In the industrial Black Mass, the distribution of cadmium is the same, whereas the distribution of nickel is Ni0 (46.9%), Ni(OH)2 (43.2%) and NiOOH (9.9%). This material contains also 1.8% cobalt and approx. 1% iron.

  13. Facile N...N coupling of manganese(V) imido species.

    PubMed

    Yiu, Shek-Man; Lam, William W Y; Ho, Chi-Ming; Lau, Tai-Chu

    2007-01-31

    (Salen)manganese(V) nitrido species are activated by electrophiles such as trifluoroacetic anhydride (TFAA) or trifluoroacetic acid (TFA) to produce N2. Mechanistic studies suggest that the manganese(V) nitrido species first react with TFAA or TFA to produce an imido species, which then undergoes N...N coupling. It is proposed that the resulting manganese(III) mu-diazene species decomposes via internal redox to give N2 and manganese(II). The manganese(II) species is then rapidly oxidized by manganese(V) imide to give manganese(III) and CF3CONH2 (for TFAA) or NH3 (for TFA).

  14. Accumulation of iron and arsenic in the Chandina alluvium of the lower delta plain, Southeastern Bangladesh

    USGS Publications Warehouse

    Zahid, A.; Hassan, M.Q.; Breit, G.N.; Balke, K.-D.; Flegr, M.

    2009-01-01

    Accumulations of iron, manganese, and arsenic occur in the Chandina alluvium of southeastern Bangladesh within 2.5 m of the ground surface. These distinctive orange-brown horizons are subhorizontal and consistently occur within 1 m of the contact of the aerated (yellow-brown) and water-saturated (gray) sediment. Ferric oxyhydroxide precipitates that define the horizons form by oxidation of reduced iron in pore waters near the top of the saturated zone when exposed to air in the unsaturated sediment. Hydrous Fe-oxide has a high specific surface area and thus a high adsorption capacity that absorbs the bulk of arsenic also present in the reduced pore water, resulting in accumulations containing as much as 280 ppm arsenic. The steep redox gradient that characterizes the transition of saturated and unsaturated sediment also favors accumulation of manganese oxides in the oxidized sediment. Anomalous concentrations of phosphate and molybdenum also detected in the ferric oxyhydroxide-enriched sediment are attributed to sorption processes. ?? Springer Science+Business Media B.V. 2008.

  15. Urinary cadmium and estimated dietary cadmium in the Women's Health Initiative.

    PubMed

    Quraishi, Sabah M; Adams, Scott V; Shafer, Martin; Meliker, Jaymie R; Li, Wenjun; Luo, Juhua; Neuhouser, Marian L; Newcomb, Polly A

    2016-01-01

    Cadmium, a heavy metal dispersed in the environment as a result of industrial and agricultural applications, has been implicated in several human diseases including renal disease, cancers, and compromised bone health. In the general population, the predominant sources of cadmium exposure are tobacco and diet. Urinary cadmium (uCd) reflects long-term exposure and has been frequently used to assess cadmium exposure in epidemiological studies; estimated dietary intake of cadmium (dCd) has also been used in several studies. The validity of dCd in comparison with uCd is unclear. This study aimed to compare dCd, estimated from food frequency questionnaires, to uCd measured in spot urine samples from 1,002 participants of the Women's Health Initiative. Using linear regression, we found that dCd was not statistically significantly associated with uCd (β=0.006, P-value=0.14). When stratified by smoking status, dCd was not significantly associated with uCd both in never smokers (β=0.006, P-value=0.09) and in ever smokers (β=0.003, P-value=0.67). Our results suggest that because of the lack of association between estimated dCd and measured uCd, dietary estimation of cadmium exposure should be used with caution in epidemiologic studies.

  16. Accumulation and distribution of iron, cadmium, lead and nickel in cucumber plants grown in hydroponics containing two different chelated iron supplies.

    PubMed

    Csog, Árpád; Mihucz, Victor G; Tatár, Eniko; Fodor, Ferenc; Virág, István; Majdik, Cornelia; Záray, Gyula

    2011-07-01

    Cucumber plants grown in hydroponics containing 10 μM Cd(II), Ni(II) and Pb(II), and iron supplied as Fe(III) EDTA or Fe(III) citrate in identical concentrations, were investigated by total-reflection X-ray fluorescence spectrometry with special emphasis on the determination of iron accumulation and distribution within the different plant compartments (root, stem, cotyledon and leaves). The extent of Cd, Ni and Pb accumulation and distribution were also determined. Generally, iron and heavy-metal contaminant accumulation was higher when Fe(III) citrate was used. The accumulation of nickel and lead was higher by about 20% and 100%, respectively, if the iron supply was Fe(III) citrate. The accumulation of Cd was similar. In the case of Fe(III) citrate, the total amounts of Fe taken up were similar in the control and heavy-metal-treated plants (27-31 μmol/plant). Further, the amounts of iron transported from the root towards the shoot of the control, lead- and nickel-contaminated plants were independent of the iron(III) form. Although Fe mobility could be characterized as being low, its distribution within the shoot was not significantly affected by the heavy metals investigated. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. Fertility and content of cadmium in pheasant (Phasianus colchicus) following cadmium intake in drinking water.

    PubMed

    Toman, R; Massányi, P; Lukác, N; Ducsay, L; Golian, J

    2005-09-01

    In this study, the effects of cadmium applied per os on fertility, live weight of newly hatched chicks, and cadmium concentrations in some organs of young and adult pheasants were investigated. The metal was applied at the concentration of 1.5 mg Cd(2+)/L during 3 months. After the egg laying, the numbers of eggs laid, cracked, and unfertilized were determined and the live weights of newly hatched chicks were measured. The cadmium concentrations in liver, kidney, and muscle (m. pectoralis) of young and adult pheasants were analyzed. We found that cadmium exposure of the adults did not affect the number of eggs laid but resulted in more eggs being damaged. Hatchlings were significantly heavier in the cadmium-treated group (21.36 +/- 2.28 g) compared to the control group (20.91 +/- 1.97 g) 4 weeks after the cadmium intake. Higher cadmium concentrations were observed in the muscle and kidney tissue of newly hatched pheasants after 4 weeks compared to the cadmium-exposed groups after 8 and 12 weeks. The cadmium concentrations in kidneys and liver increased significantly in adult pheasants. The metal had accumulated especially in kidneys of the adult pheasants and reached levels up to 9.64 mg/kg wet weight 3 months after the daily cadmium intake in drinking water. The concentration in liver of the adults was 3.53 mg/kg wet weight.

  18. N-butylamine functionalized graphene oxide for detection of iron(III) by photoluminescence quenching.

    PubMed

    Gholami, Javad; Manteghian, Mehrdad; Badiei, Alireza; Ueda, Hiroshi; Javanbakht, Mehran

    2016-02-01

    An N-butylamine functionalized graphene oxide nanolayer was synthesized and characterized by ultraviolet (UV)-visible spectrometry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Detection of iron(III) based on photoluminescence spectroscopy was investigated. The N-butylamine functionalized graphene oxide was shown to specifically interact with iron (III), compared with other cationic trace elements including potassium (I), sodium (I), calcium (II), chromium (III), zinc (II), cobalt (II), copper (II), magnesium (II), manganese (II), and molybdenum (VI). The quenching effect of iron (III) on the luminescence emission of N-butylamine functionalized graphene oxide layer was used to detect iron (III). The limit of detection (2.8 × 10(-6)  M) and limit of quantitation (2.9 × 10(-5)  M) were obtained under optimal conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Periplasmic Manganese in a Subsurface Bacterium During Anaerobic Growth on Birnessite

    NASA Astrophysics Data System (ADS)

    Langley, S.; Glasauer, S.; Beveridge, T.

    2002-12-01

    In subsurface environments, where oxygen is not metabolically available for energy production, bacteria use alternate terminal electron acceptors (TEAs) to respire and grow. Anaerobic TEAs include, but are not limited to, Fe3+ and Mn4+. These metals can be present as mineral phases (e.g., ferrihydrite and hematite in the case of iron; birnessite and pyrolusite in the case of manganese). Bacteria bind strongly to minerals and reduce the metal by a process called dissimilatory metal reduction (DMR). Shewanella putrefaciens strain CN32 is a Gram-negative bacterium capable of DMR. In previous reports, when this organism was grown on birnessite, we observed cytoplasmic granules of a Mn-rich mineral phase, and an unusual deposition of electron-dense material within the periplasm (that region of the cell located between the inner and outer membranes). In an attempt to characterize the periplasmic precipitates, CN32 was inoculated into an anaerobic defined medium (DM), supplemented with 20 mM Mn (birnessite) and incubated in an anaerobic chamber. Reduced and total Mn concentrations were monitored using atomic absorption spectrophotometry, and cell numbers determined by viable counts on trypticase soy agar. TEM, combined with energy dispersive X-ray spectroscopy (EDS), was used to localize and confirm the presence of any Mn-rich depositions. Soluble Mn concentration increased steadily after inoculation, indicating active metabolism and metal reduction by the cells. Viable counts indicated that the cells reached their maximum number on day 9. Stained thin sections from 4-day-old samples examined with TEM showed cells in close association with the mineral. Secondary mineral products derived from birnessite reduction were evident (e.g., manganese phosphate). TEM-EDS also revealed the presence of ~30 nm-thick deposits of electron-dense material in the periplasm of some cells. However, examination of similar sections which had not been previously stained with osmium tetroxide

  20. Effects of Exogenous Gibberellic Acid3 on Iron and Manganese Plaque Amounts and Iron and Manganese Uptake in Rice

    PubMed Central

    Guo, Yue; Zhu, Changhua; Gan, Lijun; Ng, Denny; Xia, Kai

    2015-01-01

    Gibberellins (GA) regulate various components of plant development. Iron and Mn plaque result from oxiding and hydroxiding Fe and Mn, respectively, on the roots of aquatic plant species such as rice (Oryza sativa L.). In this study, we found that exogenous gibberellic acid3 (GA3) spray decreased Fe plaque, but increased Mn plaque, with applications of Kimura B nutrient solution. Similar effects from GA3, leading to reduced Fe plaque and increased Mn plaque, were also found by scanning electron microscopy and energy dispersive X-ray spectrometric microanalysis. Reduced Fe plaque was observed after applying GA3 to the groups containing added Fe2+ (17 and 42 mg•L-1) and an increasing trend was detected in Mn plaques of the Mn2+ (34 and 84 mg•L-1) added treatments. In contrast, an inhibitor of GA3, uniconazole, reversed the effects of GA3. The uptake of Fe or Mn in rice plants was enhanced after GA3 application and Fe or Mn plaque production. Strong synergetic effects of GA3 application on Fe plaque production were detected. However, no synergetic effects on Mn plaque production were detected. PMID:25710173

  1. Manganese

    Integrated Risk Information System (IRIS)

    Manganese ; CASRN 7439 - 96 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  2. Direct Comparison of Manganese Detoxification/Efflux Proteins and Molecular Characterization of ZnT10 Protein as a Manganese Transporter*

    PubMed Central

    Nishito, Yukina; Tsuji, Natsuko; Fujishiro, Hitomi; Takeda, Taka-aki; Yamazaki, Tomohiro; Teranishi, Fumie; Okazaki, Fumiko; Matsunaga, Ayu; Tuschl, Karin; Rao, Rajini; Kono, Satoshi; Miyajima, Hiroaki; Narita, Hiroshi; Himeno, Seiichiro; Kambe, Taiho

    2016-01-01

    Manganese homeostasis involves coordinated regulation of specific proteins involved in manganese influx and efflux. However, the proteins that are involved in detoxification/efflux have not been completely resolved nor has the basis by which they select their metal substrate. Here, we compared six proteins, which were reported to be involved in manganese detoxification/efflux, by evaluating their ability to reduce manganese toxicity in chicken DT40 cells, finding that human ZnT10 (hZnT10) was the most significant contributor. A domain swapping and substitution analysis between hZnT10 and the zinc-specific transporter hZnT1 showed that residue Asn43, which corresponds to the His residue constituting the potential intramembranous zinc coordination site in other ZnT transporters, is necessary to impart hZnT10's unique manganese mobilization activity; residues Cys52 and Leu242 in transmembrane domains II and V play a subtler role in controlling the metal specificity of hZnT10. Interestingly, the His → Asn reversion mutant in hZnT1 conferred manganese transport activity and loss of zinc transport activity. These results provide important information about manganese detoxification/efflux mechanisms in vertebrate cells as well as the molecular characterization of hZnT10 as a manganese transporter. PMID:27226609

  3. Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus.

    PubMed

    Prapagdee, Benjaphorn; Chanprasert, Maesinee; Mongkolsuk, Skorn

    2013-07-01

    Micrococcus sp. MU1 and Klebsiella sp. BAM1, the cadmium-resistant plant growth-promoting rhizobacteria (PGPR), produce high levels of indole-3-acetic acid (IAA) during the late stationary phase of their growth. The ability of PGPR to promote root elongation, plant growth and cadmium uptake in sunflowers (Helianthus annuus) was evaluated. Both species of bacteria were able to remove cadmium ions from an aqueous solution and enhanced cadmium mobilization in contaminated soil. Micrococcus sp. and Klebsiella sp. use aminocyclopropane carboxylic acid as a nitrogen source to support their growth, and the minimum inhibitory concentrations of cadmium for Micrococcus sp. and Klebsiella sp. were 1000 and 800mM, respectively. These bacteria promoted root elongation in H. annuus seedlings in both the absence and presence of cadmium compared to uninoculated seedlings. Inoculation with these bacteria was found to increase the root lengths of H. annuus that had been planted in cadmium-contaminated soil. An increase in dry weight was observed for H. annuus inoculated with Micrococcus sp. Moreover, Micrococcus sp. enhanced the accumulation of cadmium in the root and leaf of H. annuus compared to untreated plants. The highest cadmium accumulation in the whole plant was observed when the plants were treated with EDTA following the treatment with Micrococcus sp. In addition, the highest translocation of cadmium from root to the above-ground tissues of H. annuus was found after treatment with Klebsiella sp. in the fourth week after planting. Our results show that plant growth and cadmium accumulation in H. annuus was significantly enhanced by cadmium-resistant PGPRs, and these bacterial inoculants are excellent promoters of phytoextraction for the rehabilitation of heavy metal-polluted environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Performance evaluation of intermediate cover soil barrier for removal of heavy metals in landfill leachate.

    PubMed

    Suzuki, Kazuyuki; Anegawa, Aya; Endo, Kazuto; Yamada, Masato; Ono, Yusaku; Ono, Yoshiro

    2008-11-01

    This pilot-scale study evaluated the use of intermediate cover soil barriers for removing heavy metals in leachate generated from test cells for co-disposed fly ash from municipal solid waste incinerators, ash melting plants, and shredder residue. Cover soil barriers were mixtures of Andisol (volcanic ash soil), waste iron powder, (grinder dust waste from iron foundries), and slag fragments. The cover soil barriers were installed in the test cells' bottom layer. Sorption/desorption is an important process in cover soil bottom barrier for removal of heavy metals in landfill leachate. Salt concentrations such as those of Na, K, and Ca in leachate were extremely high (often greater than 30 gL(-1)) because of high salt content in fly ash from ash melting plants. Concentrations of all heavy metals (nickel, manganese, copper, zinc, lead, and cadmium) in test cell leachates with a cover soil barrier were lower than those of the test cell without a cover soil barrier and were mostly below the discharge limit, probably because of dilution caused by the amount of leachate and heavy metal removal by the cover soil barrier. The cover soil barriers' heavy metal removal efficiency was calculated. About 50% of copper, nickel, and manganese were removed. About 20% of the zinc and boron were removed, but lead and cadmium were removed only slightly. Based on results of calculation of the Langelier saturation index and analyses of core samples, the reactivity of the cover soil barrier apparently decreases because of calcium carbonate precipitation on the cover soil barriers' surfaces.

  5. Soil manganese enrichment from industrial inputs: a gastropod perspective.

    PubMed

    Bordean, Despina-Maria; Nica, Dragos V; Harmanescu, Monica; Banatean-Dunea, Ionut; Gergen, Iosif I

    2014-01-01

    Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems.

  6. Soil Manganese Enrichment from Industrial Inputs: A Gastropod Perspective

    PubMed Central

    Bordean, Despina-Maria; Nica, Dragos V.; Harmanescu, Monica; Banatean-Dunea, Ionut; Gergen, Iosif I.

    2014-01-01

    Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems. PMID:24454856

  7. Mineral commodity profiles: Cadmium

    USGS Publications Warehouse

    Butterman, W.C.; Plachy, Jozef

    2004-01-01

    Overview -- Cadmium is a soft, low-melting-point metal that has many uses. It is similar in abundance to antimony and bismuth and is the 63d element in order of crustal abundance. Cadmium is associated in nature with zinc (and, less closely, with lead and copper) and is extracted mainly as a byproduct of the mining and processing of zinc. In 2000, it was refined in 27 countries, of which the 8 largest accounted for two-thirds of world production. The United States was the third largest refiner after Japan and China. World production in 2000 was 19,700 metric tons (t) and U.S. production was 1,890 t. In the United States, one company in Illinois and another in Tennessee refined primary cadmium. A Pennsylvania company recovered cadmium from scrap, mainly spent nickel-cadmium (NiCd) batteries. The supply of cadmium in the world and in the United States appears to be adequate to meet future industrial needs; the United States has about 23 percent of the world reserve base.

  8. Divergent assembly mechanisms of the manganese/iron cofactors in R2lox and R2c proteins.

    PubMed

    Kutin, Yuri; Srinivas, Vivek; Fritz, Matthieu; Kositzki, Ramona; Shafaat, Hannah S; Birrell, James; Bill, Eckhard; Haumann, Michael; Lubitz, Wolfgang; Högbom, Martin; Griese, Julia J; Cox, Nicholas

    2016-09-01

    A manganese/iron cofactor which performs multi-electron oxidative chemistry is found in two classes of ferritin-like proteins, the small subunit (R2) of class Ic ribonucleotide reductase (R2c) and the R2-like ligand-binding oxidase (R2lox). It is unclear how a heterodimeric Mn/Fe metallocofactor is assembled in these two related proteins as opposed to a homodimeric Fe/Fe cofactor, especially considering the structural similarity and proximity of the two metal-binding sites in both protein scaffolds and the similar first coordination sphere ligand preferences of Mn II and Fe II . Using EPR and Mössbauer spectroscopies as well as X-ray anomalous dispersion, we examined metal loading and cofactor activation of both proteins in vitro (in solution). We find divergent cofactor assembly mechanisms for the two systems. In both cases, excess Mn II promotes heterobimetallic cofactor assembly. In the absence of Fe II , R2c cooperatively binds Mn II at both metal sites, whereas R2lox does not readily bind Mn II at either site. Heterometallic cofactor assembly is favored at substoichiometric Fe II concentrations in R2lox. Fe II and Mn II likely bind to the protein in a stepwise fashion, with Fe II binding to site 2 initiating cofactor assembly. In R2c, however, heterometallic assembly is presumably achieved by the displacement of Mn II by Fe II at site 2. The divergent metal loading mechanisms are correlated with the putative in vivo functions of R2c and R2lox, and most likely with the intracellular Mn II /Fe II concentrations in the host organisms from which they were isolated. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Cadmium effects on the thyroid gland.

    PubMed

    Jancic, Snezana A; Stosic, Bojan Z

    2014-01-01

    Cadmium has been listed as one of the 126 priority pollutants and a category I carcinogen. Carcinogenic effects of cadmium on the lungs, testicles, and prostate are widely recognized, but there has been insufficient research on the effect of cadmium on the thyroid gland. Cadmium has the affinity to accumulate not only in the liver, kidneys, and pancreas but also in the thyroid gland. It has been established that cadmium blood concentration correlates positively with its accumulation in the thyroid gland. Women of fertile age have higher cadmium blood and urine concentrations than men. In spite of its redox inertia, cadmium brings about oxidative stress and damage to the tissue by indirect mechanisms. Mitochondria are considered to be the main intracellular targets for cadmium. Colloid cystic goiter, adenomatoid follicular hyperplasia with low-grade dysplasia and thyroglobulin hypo- and asecretion, and parafollicular cell diffuse and nodular hyperplasia and hypertrophy are often found in chronic cadmium toxicity. © 2014 Elsevier Inc. All rights reserved.

  10. Enhanced cadmium phytoremediation of Glycine max L. through bioaugmentation of cadmium-resistant bacteria assisted by biostimulation.

    PubMed

    Rojjanateeranaj, Pongsarun; Sangthong, Chirawee; Prapagdee, Benjaphorn

    2017-10-01

    This study examined the potential of three strains of cadmium-resistant bacteria, including Micrococcus sp., Pseudomonas sp. and Arthrobacter sp., to promote root elongation of Glycine max L. seedlings, soil cadmium solubility and cadmium phytoremediation in G. max L. planted in soil highly polluted with cadmium with and without nutrient biostimulation. Micrococcus sp. promoted root length in G. max L. seedlings under toxic cadmium conditions. Soil inoculation with Arthrobacter sp. increased the bioavailable fraction of soil cadmium, particularly in soil amended with a C:N ratio of 20:1. Pot culture experiments observed that the highest plant growth was in Micrococcus sp.-inoculated plants with nutrient biostimulation. Cadmium accumulation in the roots, stems and leaves of G. max L. was significantly enhanced by Arthrobacter sp. with nutrient biostimulation. A combined use of G. max L. and Arthrobacter sp. with nutrient biostimulation accelerated cadmium phytoremediation. In addition, cadmium was retained in roots more than in stems and leaves and G. max L. had the lowest translocation factor at all growth stages, suggesting that G. max L. is a phytostabilizing plant. We concluded that biostimulation-assisted bioaugmentation is an important strategy for improving cadmium phytoremediation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Selection and Use of Manganese Dioxide by Neanderthals

    PubMed Central

    Heyes, Peter J.; Anastasakis, Konstantinos; de Jong, Wiebren; van Hoesel, Annelies; Roebroeks, Wil; Soressi, Marie

    2016-01-01

    Several Mousterian sites in France have yielded large numbers of small black blocs. The usual interpretation is that these ‘manganese oxides’ were collected for their colouring properties and used in body decoration, potentially for symbolic expression. Neanderthals habitually used fire and if they needed black material for decoration, soot and charcoal were readily available, whereas obtaining manganese oxides would have incurred considerably higher costs. Compositional analyses lead us to infer that late Neanderthals at Pech-de-l’Azé I were deliberately selecting manganese dioxide. Combustion experiments and thermo-gravimetric measurements demonstrate that manganese dioxide reduces wood’s auto-ignition temperature and substantially increases the rate of char combustion, leading us to conclude that the most beneficial use for manganese dioxide was in fire-making. With archaeological evidence for fire places and the conversion of the manganese dioxide to powder, we argue that Neanderthals at Pech-de-l’Azé I used manganese dioxide in fire-making and produced fire on demand. PMID:26922901

  12. Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles.

    PubMed

    Su, Yiming; Adeleye, Adeyemi S; Huang, Yuxiong; Sun, Xiaoya; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei; Keller, Arturo A

    2014-10-15

    Nanoscale zerovalent iron (nZVI) has demonstrated high efficacy for treating nitrate or cadmium (Cd) contamination, but its efficiency for simultaneous removal of nitrate and Cd has not been investigated. This study evaluated the reactivity of nZVI to the co-contaminants and by-product formation, employed different catalysts to reduce nitrite yield from nitrate, and examined the transformation of nZVI after reaction. Nitrate reduction resulted in high solution pH, negatively charged surface of nZVI, formation of Fe3O4 (a stable transformation of nZVI), and no release of ionic iron. Increased pH and negative charge contributed to significant increase in Cd(II) removal capacity (from 40 mg/g to 188 mg/g) with nitrate present. In addition, nitrate reduction by nZVI could be catalyzed by Cd(II): while 30% of nitrate was reduced by nZVI within 2 h in the absence of Cd(II), complete nitrate reduction was observed in the presence of 40 mg-Cd/L due to the formation of Cd islands (Cd(0) and CdO) on the nZVI particles. While nitrate was reduced mostly to ammonium when Cd(II) was not present or at Cd(II) concentrations ≥ 40 mg/L, up to 20% of the initial nitrate was reduced to nitrite at Cd(II) concentrations < 40 mg/L. Among nZVI particles doped with 1 wt. % Cu, Ag, or Au, nZVI deposited with 1 wt. % Au reduced nitrite yield to less than 3% of the initial nitrate, while maintaining a high Cd(II) removal capacity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Sunlight Promotes Fast Release of Hazardous Cadmium from Widely-Used Commercial Cadmium Pigment.

    PubMed

    Liu, Huiting; Gao, Han; Long, Mingce; Fu, Heyun; Alvarez, Pedro J J; Li, Qilin; Zheng, Shourong; Qu, Xiaolei; Zhu, Dongqiang

    2017-06-20

    Cadmium pigments are widely used in the polymer and ceramic industry. Their potential environmental risk is under debate, being the major barrier for appropriate regulation. We show that 83.0 ± 0.2% of hazardous cadmium ion (Cd 2+ ) was released from the commercial cadmium sulfoselenide pigment (i.e., cadmium red) in aqueous suspension within 24 h under simulated sunlit conditions. This photodissolution process also generated sub-20 nm pigment nanoparticles. Cd 2+ release is attributed to the reactions between photogenerated holes and the pigment lattices. The photodissolution process can be activated by both ultraviolet and visible light in the solar spectrum. Irradiation under alkaline conditions or in the presence of phosphate and carbonate species resulted in reduced charge carrier energy or the formation of insoluble and photostable cadmium precipitates on pigment surfaces, mitigating photodissolution. Tannic acid inhibited the photodissolution process by light screening and scavenging photogenerated holes. The fast release of Cd 2+ from the pigment was further confirmed in river water under natural sunlight, with 38.6 ± 0.1% of the cadmium released within 4 h. Overall, this study underscores the importance to account for photochemical effects to inform risk assessments and regulations of cadmium pigments which are currently based on their low solubility.

  14. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of use...

  15. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of use...

  16. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of use...

  17. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of use...

  18. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of use...

  19. Cadmium induces cadmium-tolerant gene expression in the filamentous fungus Trichoderma harzianum.

    PubMed

    Cacciola, Santa O; Puglisi, Ivana; Faedda, Roberto; Sanzaro, Vincenzo; Pane, Antonella; Lo Piero, Angela R; Evoli, Maria; Petrone, Goffredo

    2015-11-01

    The filamentous fungus Trichoderma harzianum, strain IMI 393899, was able to grow in the presence of the heavy metals cadmium and mercury. The main objective of this research was to study the molecular mechanisms underlying the tolerance of the fungus T. harzianum to cadmium. The suppression subtractive hybridization (SSH) method was used for the characterization of the genes of T. harzianum implicated in cadmium tolerance compared with those expressed in the response to the stress induced by mercury. Finally, the effects of cadmium exposure were also validated by measuring the expression levels of the putative genes coding for a glucose transporter, a plasma membrane ATPase, a Cd(2+)/Zn(2+) transporter protein and a two-component system sensor histidine kinase YcbA, by real-time-PCR. By using the aforementioned SSH strategy, it was possible to identify 108 differentially expressed genes of the strain IMI 393899 of T. harzianum grown in a mineral substrate with the addition of cadmium. The expressed sequence tags identified by SSH technique were encoding different genes that may be involved in different biological processes, including those associated to primary and secondary metabolism, intracellular transport, transcription factors, cell defence, signal transduction, DNA metabolism, cell growth and protein synthesis. Finally, the results show that in the mechanism of tolerance to cadmium a possible signal transduction pathway could activate a Cd(2+)/Zn(2+) transporter protein and/or a plasma membrane ATPase that could be involved in the compartmentalization of cadmium inside the cell.

  20. Influence and interaction of iron and cadmium on photosynthesis and antioxidative enzymes in two rice cultivars.

    PubMed

    Liu, Houjun; Zhang, Chengxin; Wang, Junmei; Zhou, Chongjun; Feng, Huan; Mahajan, Manoj D; Han, Xiaori

    2017-03-01

    In this study, a soil pot experiment was conducted to investigate the changes in photosynthesis and antioxidative enzymes in two rice varieties (Shendao 6 and Shennong 265) supplied with iron (Fe), cadmium (Cd), and Fe and Cd together. The concentrations of Fe and Cd in the soil were 0, 1.0 g Fe·kg -1 and 0, 2.0 mg Cd·kg -1 , respectively. Photosynthetic indices and antioxidative enzyme activities were recorded at different rice growth stages. At the early stage, Cd showed a transient stimulatory effect on the photosynthetic rate of Shennong 265. For Shendao 6, however, Cd showed a transient stimulatory effect on photosynthetic rate, intercellular CO 2 concentration, stomatal conductance and transpiration efficiency. In addition, the results show that Cd can also enhance the superoxide dismutase (SOD) and peroxidase (POD) activities, but reduce the malondialdehyde (MDA) and soluble protein contents in the two rice cultivars. Subsequently, Cd starts to inhibit photosynthesis and SOD activity until the ripening stage, causing the lowest photosynthetic rate and SOD activity at this stage. In contrast, Fe alleviates the Cd-induced changes at earlier or later growth stage. Notably at the later growth stage, the results show that the interaction between Fe and Cd increases the SOD and catalase (CAT) activities, while decreasing the lipid peroxidation and promoting photosynthesis. As a result, it ultimately increases the biomass. The results from this study suggest that Fe (as Fe fertilizer) is a promising alternative for agricultural use to enhance the plant development and, simultaneously, to reduce Cd toxicity in extensively polluted soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A manganese-dependent ribozyme in the 3'-untranslated region of Xenopus Vg1 mRNA.

    PubMed

    Kolev, Nikolay G; Hartland, Emilia I; Huber, Paul W

    2008-10-01

    The smallest catalytic RNA identified to date is a manganese-dependent ribozyme that requires only a complex between GAAA and UUU to effect site-specific cleavage. We show here that this ribozyme occurs naturally in the 3'-UTR of Vg1 and beta-actin mRNAs. In accord with earlier studies with model RNAs, cleavage occurs only in the presence of manganese or cadmium ions and proceeds optimally near 30 degrees C and physiological pH. The time course of cleavage in Vg1 mRNA best fits a two-step process in which both steps are first-order. In Vg1 mRNA, the ribozyme is positioned adjacent to a polyadenylation signal, but has no influence on translation of the mRNA in Xenopus oocytes. Putative GAAA ribozyme structures are also near polyadenylation sites in yeast and rat actin mRNAs. Analysis of sequences in the PolyA Cleavage Site and 3'-UTR Database (PACdb) revealed no particular bias in the frequency or distribution of the GAAA motif that would suggest that this ribozyme is currently or was recently used for cleavage to generate processed transcripts. Nonetheless, we speculate that the complementary strands that comprise the ribozyme may account for the origin of sequence elements that direct present-day 3'-end processing of eukaryotic mRNAs.

  2. 2.0 Angstrom Structure of Prostaglandin H2 Synthase-1 Reconstituted with a Manganese Porphyrin Cofactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta,K.; Selinsky, B.; Loll, P.

    2006-01-01

    Prostaglandin H{sub 2} synthase (EC 1.14.99.1) is a clinically important drug target that catalyzes two key steps in the biosynthesis of the eicosanoid hormones. The enzyme contains spatially distinct cyclooxygenase and peroxidase active sites, both of which require a heme cofactor. Substitution of ferric heme by Mn{sup III} protoporphyrin IX greatly diminishes the peroxidase activity, but has little effect on the cyclooxygenase activity. Here, the 2.0 Angstrom resolution crystal structure of the Mn{sup III} form of ovine prostaglandin H{sub 2} synthase-1 is described (R = 21.8%, R{sub free} = 23.7%). Substitution of Mn{sup III} for Fe{sup III} causes no structuralmore » perturbations in the protein. However, the out-of-plane displacement of the manganese ion with respect to the porphyrin is greater than that of the iron by approximately 0.2 Angstroms. This perturbation may help to explain the altered catalytic properties of the manganese enzyme.« less

  3. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  4. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use. This...

  5. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use. This...

  6. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  7. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  8. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use. This...

  9. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use. This...

  10. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  11. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  12. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use. This...

  13. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  14. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  15. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use. This...

  16. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  17. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use. This...

  18. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use. This...

  19. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  20. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use. This...

  1. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  2. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use. This...

  3. Environmental cadmium in Europe.

    PubMed

    Jensen, A; Bro-Rasmussen, F

    1992-01-01

    The present article reviews information from the latest 10 years concerning fate and exposure of cadmium in the environment, on ecotoxicological effects, and on critical pathways leading to human and environmental exposure. It emphasizes the situation within the Community of European Countries by referring to limit values used in the EEC and some of its member states for emissions to water, air and soil. Estimates have been made on total emission balances for the Netherlands, Denmark, and for the EEC as a whole. The balances show that 70-90% of all cadmium circulating in the Community is disposed of as waste in solid waste deposits. Production and use patterns are presently changing, as indicated by reduced consumption in recent years of cadmium for plating, stabilizers and pigments in several countries as a result of regulations. However, significant increases in consumption for cadmium-containing batteries have occurred, resulting globally in increasing trends for the total consumption and production. Cadmium in sediments is more mobile than described earlier. Aquatic organisms can be classified in order of decreasing accumulation: algae greater than molluscs greater than crustaceans greater than fish. There is no evidence of biomagnification of cadmium within marine or fresh water food webs. Cadmium may enter into plants via roots or by foliar adsorption following atmospheric deposition. Biomagnification in terrestrial food chains is not observed. The uptake into plants is plant specific. Within plants significant variations are seen with concentrations generally decreasing in the order: roots greater than leaves greater than fruiting parts greater than seeds. A compilation of cadmium in air, in the aquatic environment and in soil is given. A downward trend during the 1970s to mid-1980s seems to be evidenced from various Northern European studies on cadmium air concentrations as well as for deposition rates of cadmium. In rivers, the dissolved cadmium

  4. Production of Manganese Oxide Nanoparticles by Shewanella Species

    PubMed Central

    Farooqui, Saad M.; White, Alan R.

    2016-01-01

    ABSTRACT Several species of the bacterial genus Shewanella are well-known dissimilatory reducers of manganese under anaerobic conditions. In fact, Shewanella oneidensis is one of the most well studied of all metal-reducing bacteria. In the current study, a number of Shewanella strains were tested for manganese-oxidizing capacity under aerobic conditions. All were able to oxidize Mn(II) and to produce solid dark brown manganese oxides. Shewanella loihica strain PV-4 was the strongest oxidizer, producing oxides at a rate of 20.3 mg/liter/day and oxidizing Mn(II) concentrations of up to 9 mM. In contrast, S. oneidensis MR-1 was the weakest oxidizer tested, producing oxides at 4.4 mg/liter/day and oxidizing up to 4 mM Mn(II). Analysis of products from the strongest oxidizers, i.e., S. loihica PV-4 and Shewanella putrefaciens CN-32, revealed finely grained, nanosize, poorly crystalline oxide particles with identical Mn oxidation states of 3.86. The biogenic manganese oxide products could be subsequently reduced within 2 days by all of the Shewanella strains when culture conditions were made anoxic and an appropriate nutrient (lactate) was added. While Shewanella species were detected previously as part of manganese-oxidizing consortia in natural environments, the current study has clearly shown manganese-reducing Shewanella species bacteria that are able to oxidize manganese in aerobic cultures. IMPORTANCE Members of the genus Shewanella are well known as dissimilatory manganese-reducing bacteria. This study shows that a number of species from Shewanella are also capable of manganese oxidation under aerobic conditions. Characterization of the products of the two most efficient oxidizers, S. loihica and S. putrefaciens, revealed finely grained, nanosize oxide particles. With a change in culture conditions, the manganese oxide products could be subsequently reduced by the same bacteria. The ability of Shewanella species both to oxidize and to reduce manganese indicates

  5. Progress in batteries and solar cells - Volume 6

    NASA Astrophysics Data System (ADS)

    Shimotake, Hiroshi; Voss, Ernst

    The present conference encompasses topics in lithium cell development, manganese cell design, lead-acid batteries, fuel cells, nickel-cadmium and other rechargeable batteries, and battery chargers and related power systems. Attention is given to molten carbonate fuel cells, prospects for sodium/sulfur propulsion batteries, ultrathin lithium batteries, solid state batteries, a gelled electrolyte lead-acid battery for deep discharge applications, and phosphoric acid fuel cells. Also discussed are computer-based battery monitors, a novel nickel-iron battery for electric vehicle applications, conductive polymer electrode electrochemical cells, and catalyst- and electrode-related research for phosphoric acid fuel cells.

  6. High Manganese Tolerance and Biooxidation Ability of Serratia marcescens Isolated from Manganese Mine Water in Minas Gerais, Brazil.

    PubMed

    Barboza, Natália R; Morais, Mônica M C A; Queiroz, Pollyana S; Amorim, Soraya S; Guerra-Sá, Renata; Leão, Versiane A

    2017-01-01

    Manganese is an important metal for the maintenance of several biological functions, but it can be toxic in high concentrations. One of the main forms of human exposure to metals, such as manganese (Mn), is the consumption of solar salt contaminated. Mn-tolerant bacteria could be used to decrease the concentration of this metal from contaminated sites through safer environmental-friendly alternative technology in the future. Therefore, this study was undertaken to isolate and identify Mn resistant bacteria from water samples collected from a Mn mine in the Iron Quadrangle region (Minas Gerais, Brazil). Two bacterial isolates were identified as Serratia marcescens based on morphological, biochemical, 16S rDNA gene sequencing and phylogeny analysis. Maximum resistance of the selected isolates against increasing concentrations of Mn(II), up to 1200 mg L -1 was determined in solid media. A batch assay was developed to analyze and quantify the Mn removal capacities of the isolates. Biological Mn removal capacities of over 55% were detected for both isolates. Whereas that mechanism like biosorption, precipitation and oxidation could be explaining the Mn removal, we seek to give an insight into some of the molecular mechanisms adopted by S. marcescens isolates. For this purpose, the following approaches were adopted: leucoberbelin blue I assay, Mn(II) oxidation by cell-free filtrate and electron microscopy and energy-dispersive X-ray spectroscopy analyses. Overall, these results indicate that S. marcescens promotes Mn removal in an indirect mechanism by the formation of Mn oxides precipitates around the cells, which should be further explored for potential biotechnological applications for water recycling both in hydrometallurgical and mineral processing operations.

  7. High Manganese Tolerance and Biooxidation Ability of Serratia marcescens Isolated from Manganese Mine Water in Minas Gerais, Brazil

    PubMed Central

    Barboza, Natália R.; Morais, Mônica M. C. A.; Queiroz, Pollyana S.; Amorim, Soraya S.; Guerra-Sá, Renata; Leão, Versiane A.

    2017-01-01

    Manganese is an important metal for the maintenance of several biological functions, but it can be toxic in high concentrations. One of the main forms of human exposure to metals, such as manganese (Mn), is the consumption of solar salt contaminated. Mn-tolerant bacteria could be used to decrease the concentration of this metal from contaminated sites through safer environmental-friendly alternative technology in the future. Therefore, this study was undertaken to isolate and identify Mn resistant bacteria from water samples collected from a Mn mine in the Iron Quadrangle region (Minas Gerais, Brazil). Two bacterial isolates were identified as Serratia marcescens based on morphological, biochemical, 16S rDNA gene sequencing and phylogeny analysis. Maximum resistance of the selected isolates against increasing concentrations of Mn(II), up to 1200 mg L-1 was determined in solid media. A batch assay was developed to analyze and quantify the Mn removal capacities of the isolates. Biological Mn removal capacities of over 55% were detected for both isolates. Whereas that mechanism like biosorption, precipitation and oxidation could be explaining the Mn removal, we seek to give an insight into some of the molecular mechanisms adopted by S. marcescens isolates. For this purpose, the following approaches were adopted: leucoberbelin blue I assay, Mn(II) oxidation by cell-free filtrate and electron microscopy and energy-dispersive X-ray spectroscopy analyses. Overall, these results indicate that S. marcescens promotes Mn removal in an indirect mechanism by the formation of Mn oxides precipitates around the cells, which should be further explored for potential biotechnological applications for water recycling both in hydrometallurgical and mineral processing operations. PMID:29062307

  8. Effects of cadmium and mycorrhizal fungi on growth, fitness, and cadmium accumulation in flax (Linum usitatissimum; Linaceae).

    PubMed

    Hancock, Laura M S; Ernst, Charlotte L; Charneskie, Rebecca; Ruane, Lauren G

    2012-09-01

    Agricultural soils have become contaminated with a variety of heavy metals, including cadmium. The degree to which soil contaminants affect plants may depend on symbiotic relationships between plant roots and soil microorganisms. We examined (1) whether mycorrhizal fungi counteract the potentially negative effects of cadmium on the growth and fitness of flax (Linum usitatissimum) and (2) whether mycorrhizal fungi affect the accumulation of cadmium within plant parts. Two flax cultivars (Linott and Omega) were grown in three soil cadmium environments (0, 5, and 15 ppm). Within each cadmium environment, plants were grown in either the presence or absence of mycorrhizal fungi. Upon senescence, we measured growth and fitness and quantified the concentration of cadmium within plants. Soil cadmium significantly decreased plant fitness, but did not affect plant growth. Mycorrhizal fungi, which were able to colonize roots of plants growing in all cadmium levels, significantly increased plant growth and fitness. Although mycorrhizal fungi counteracted the negative effects of cadmium on fruit and seed production, they also enhanced the concentration of cadmium within roots, fruits, and seeds. The degree to which soil cadmium affects plant fitness and the accumulation of cadmium within plants depended on the ability of plants to form symbiotic relationships with mycorrhizal fungi. The use of mycorrhizal fungi in contaminated agricultural soils may offset the negative effects of metals on the quantity of seeds produced, but exacerbate the accumulation of these metals in our food supply.

  9. Factors influencing intestinal cadmium uptake in pregnant Bangladeshi women-A prospective cohort study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippler, M.; Goessler, W.; Nermell, B.

    Experimental studies indicate that zinc (Zn) and calcium (Ca) status, in addition to iron (Fe) status, affect gastrointestinal absorption of cadmium (Cd), an environmental pollutant that is toxic to kidneys, bone and endocrine systems. The aim of this study was to evaluate how various nutritional factors influence the uptake of Cd in women, particularly during pregnancy. The study was carried out in a rural area of Bangladesh, where malnutrition is prevalent and exposure to Cd via food appears elevated. The uptake of Cd was evaluated by associations between erythrocyte Cd concentrations (Ery-Cd), a marker of ongoing Cd exposure, and concentrationsmore » of nutritional markers. Blood samples, collected in early pregnancy and 6 months postpartum, were analyzed by inductively coupled plasma mass spectrometry (ICPMS). Ery-Cd varied considerably (range: 0.31-5.4 {mu}g/kg) with a median of 1.1 {mu}g/kg (approximately 0.5 {mu}g/L in whole blood) in early pregnancy. Ery-Cd was associated with erythrocyte manganese (Ery-Mn; positively), plasma ferritin (p-Ft; negatively), and erythrocyte Ca (Ery-Ca; negatively) in decreasing order, indicating common transporters for Cd, Fe and Mn. There was no evidence of Cd uptake via Zn transporters, but the association between Ery-Cd and p-Ft seemed to be dependent on adequate Zn status. On average, Ery-Cd increased significantly by 0.2 {mu}g/kg from early pregnancy to 6 months postpartum, apparently due to up-regulated divalent metal transporter 1 (DMT1). In conclusion, intestinal uptake of Cd appears to be influenced either directly or indirectly by several micronutrients, in particular Fe, Mn and Zn. The negative association with Ca may suggest that Cd inhibits the transport of Ca to blood.« less

  10. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    PubMed

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Stability Behavior and Thermodynamic States of Iron and Manganese in Sandy Soil Aquifer, Manukan Island, Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chin Yik, E-mail: cy_lin_ars@hotmail.com; Abdullah, Mohd. Harun; Musta, Baba

    2011-03-15

    A total of 20 soil samples were collected from 10 boreholes constructed in the low lying area, which included ancillary samples taken from the high elevation area. Redox processes were investigated in the soil as well as groundwater in the shallow groundwater aquifer of Manukan Island, Sabah, Malaysia. Groundwater samples (n = 10) from each boreholes were also collected in the low lying area to understand the concentrations and behaviors of Fe and Mn in the dissolved state. This study strives to obtain a general understanding of the stability behaviors on Fe and Mn at the upper unsaturated and themore » lower-saturated soil horizons in the low lying area of Manukan Island as these elements usually play a major role in the redox chemistry of the shallow groundwater. Thermodynamic calculations using PHREEQC showed that the groundwater samples in the study area are oversaturated with respect to goethite, hematite, Fe(OH){sub 3} and undersaturated with respect to manganite and pyrochroite. Low concentrations of Fe and Mn in the groundwater might be probably due to the lack of minerals of iron and manganese oxides, which exist in the sandy aquifer. In fact, high organic matters that present in the unsaturated horizon are believed to be responsible for the high Mn content in the soil. It was observed that the soil samples collected from high elevation area (BK) comprises considerable amount of Fe in both unsaturated (6675.87 mg/kg) and saturated horizons (31440.49 mg/kg) compared to the low Fe content in the low lying area. Based on the stability diagram, the groundwater composition lies within the stability field for Mn{sup 2+} and Fe{sup 2+} under suboxic condition and very close to the FeS/Fe{sup 2+} stability boundary. This study also shows that both pH and Eh values comprise a strong negative value thus suggesting that the redox potential is inversely dependent on the changes of pH.« less

  12. Water characterization and seasonal heavy metal distribution in the Odiel River (Huelva, Spain) by means of principal component analysis.

    PubMed

    Montes-Botella, C; Tenorio, M D

    2003-11-01

    The Iberian Pyrite Belt is the largest mass of sulfide and manganese ores in Western Europe. Its sulfide oxidation is the origin of a heavily acidic drainage that affects the Odiel River in southwestern Huelva (Spain). To assess physicochemical, contamination parameters, heavy metal distribution and its seasonal variation in the upper Odiel River and in El Lomero mines, three water samplings were undertaken and analyzed between July 1998 and November 1999. Water from the Odiel River in the polluted zone showed low pH values (2.76-3.51), high heavy metal content, and high values of conductivity (1410-3648 microS/cm) and dissolved solids (1484-5602 mg/L). Principal Component Analysis (PCA) showed that variables related with the products of the pyrite oxidation and the salts that are solubilized by the high acidity generated in the oxidation of sulfides, grouped in the first component, accounted for 40.88% of total variance, and were the main influential factor in physicochemical water sample properties. The second influential factor was minority metals (nickel, cobalt, cadmium). Heavy metals showed three different seasonal patterns, closely related with saline efflorescences formed next to the river bed: majority metals (iron, copper, manganese, zinc); minority metals (lead, nickel, cobalt, cadmium); and chromium, which had a distinctive behavior.

  13. Adaptation to Cadmium by Klebsiella aerogenes Growing in Continuous Culture Proceeds Mainly via Formation of Cadmium Sulfide

    PubMed Central

    Aiking, Harry; Kok, Karin; van Heerikhuizen, Harm; van 't Riet, Jan

    1982-01-01

    The adaptation of Klebsiella aerogenes to high levels of cadmium was studied in continuous culture under conditions of glucose limitation. When up to 6 × 10−4 M cadmium was added to a culture in steady state, growth ceased instantaneously but resumed within 5 h (dilution rate, 0.1 h−1). When again in steady state, these adapted cells exhibited a far greater tolerance to cadmium than did unadapted cells (not previously exposed to cadmium) when tested on solid media containing different concentrations of cadmium. This relative insensitivity of adapted cells to cadmium was subsequently lost in continuous culture within 5 days after omitting cadmium from the influent medium. Thus, the phenomenon was an inducible physiological process. Adapted cells contained substantial amounts of cadmium (up to 2.4% of the bacterial dry weight). The cadmium content of the cells was dependent on growth conditions and was found to be proportional to the inorganic sulfide content of the cells in all cases. This suggested that formation of CdS is probably the most important mechanism of detoxification in this organism. The presence of large numbers of electron-dense granules on the cell surface (absent in cultures without added cadmium) provided additional support for this conclusion. Images PMID:16346119

  14. Concentrations and sources of cadmium, copper, lead and zinc in house dust in Christchurch, New Zealand.

    PubMed

    Kim, N; Fergusson, J

    1993-09-30

    The amounts (microgram m-2) and concentrations (microgram g-1) of cadmium, copper, lead and zinc have been measured in house dust in Christchurch, New Zealand. For 120 houses surveyed the geometric mean concentrations of the four metals are 4.24 micrograms g-1, 165 micrograms g-1, 573 micrograms g-1 and 10,400 micrograms g-1, respectively. In addition eleven variables, such as house age, carpet wear and traffic density, were recorded for each property and the results analysed with respect to their effects on the amounts and concentrations of the four elements. The amounts of all the metals were highly correlated with the overall dustiness of the houses, which was found to be predominantly determined by the degree of carpet wear. No one dominant source of cadmium was identified, although several minor sources including carpet wear, galvanized iron roofs and red/orange/yellow coloured carpets were implicated. Petrol lead and lead-based paints were identified as significant sources of lead in house dust. Rubber carpet underlays or backings were identified as a significant source of zinc, with some contribution from galvanized iron roofs. Road traffic and probably the existence of a fire place appear to contribute to the copper levels.

  15. Anti-sigma factor YlaD regulates transcriptional activity of sigma factor YlaC and sporulation via manganese-dependent redox-sensing molecular switch in Bacillus subtilis.

    PubMed

    Kwak, Min-Kyu; Ryu, Han-Bong; Song, Sung-Hyun; Lee, Jin-Won; Kang, Sa-Ouk

    2018-05-14

    YlaD, a membrane-anchored anti-sigma factor of Bacillus subtilis , contains a HX 3 CXXC motif that functions as a redox-sensing domain and belongs to one of the zinc-coordinated anti-sigma factor families. Despite previously showing that the YlaC transcription is controlled by YlaD, experimental evidence of how the YlaC-YlaD interaction is affected by active cysteines and/or metal ions is lacking. Here, we showed that the P yla promoter is autoregulated solely by YlaC. Moreover, reduced YlaD contained zinc and iron, while oxidized YlaD did not. Cysteine substitution in YlaD led to changes in its secondary structure; Cys3 had important structural functions in YlaD, and its mutation caused dissociation from YlaC, indicating the essential requirement of a HX 3 CXXC motif for regulating interactions of YlaC with YlaD. Analyses of the far-UV CD spectrum and metal content revealed that the addition of Mn ions to Zn-YlaD changed its secondary structure and that iron was substituted for manganese. The ylaC gene expression using βGlu activity from P yla : gusA was observed at the late-exponential and early-stationary phase and the ylaC -overexpressing mutant constitutively expressed gene transcripts of clpP and sigH , an important alternative sigma factor regulated by ClpXP. Collectively, our data demonstrated that YlaD senses redox changes and elicits increase in manganese ion concentrations and that, in turn, YlaD-mediated transcriptional activity of YlaC regulates sporulation initiation under oxidative stress and manganese-substituted conditions by regulating clpP gene transcripts. This is the first report of the involvement of oxidative stress-responsive B. subtilis extracytoplasmic function sigma factors during sporulation via a manganese-dependent redox-sensing molecular switch. ©2018 The Author(s).

  16. Bent Laue X-ray Fluorescence Imaging of Manganese in Biological Tissues—Preliminary Results

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Bewer, Brian; Zhang, Honglin; Nichol, Helen; Thomlinson, Bill; Chapman, Dean

    2010-06-01

    Manganese (Mn) is not abundant in human brain tissue, but it is recognized as a neurotoxin. The symptoms of manganese intoxication are similar to Parkinson's disease (PD), but the link between environmental, occupational or dietary Mn exposure and PD in humans is not well established. X-ray Absorption Spectroscopy (XAS) and in particular X-ray fluorescence can provide precise information on the distribution, concentration and chemical form of metals. However the scattered radiation and fluorescence from the adjacent abundant element, iron (Fe), may interfere with and limit the ability to detect ultra-dilute Mn. A bent Laue analyzer based Mn fluorescence detection system has been designed and fabricated to improve elemental specificity in XAS imaging. This bent Laue analyzer of logarithmic spiral shape placed upstream of an energy discriminating detector should improve the energy resolution from hundreds of eV to several eV. The bent Laue detection system was validated by imaging Mn fluorescence from Mn foils, gelatin calibration samples and adult Drosophila at the Hard X-ray MicroAnalysis (HXMA) beamline at the Canadian Light Source (CLS). Optimization of the design parameters, fabrication procedures and preliminary experimental results are presented along with future plans.

  17. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism.

    PubMed

    Marelja, Zvonimir; Leimkühler, Silke; Missirlis, Fanis

    2018-01-01

    Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which

  18. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism

    PubMed Central

    Marelja, Zvonimir; Leimkühler, Silke; Missirlis, Fanis

    2018-01-01

    Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which

  19. Cadmium plating replacements

    NASA Technical Reports Server (NTRS)

    Nelson, Mary J.; Groshart, Earl C.

    1995-01-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  20. A Study on Characteristics of Atmospheric Heavy Metals in Subway Station

    PubMed Central

    Kim, Chun-Huem; Yoo, Dong-Chul; Kwon, Young-Min; Han, Woong-Soo; Kim, Gi-Sun; Park, Mi-Jung; Kim, Young Soon

    2010-01-01

    In this study, we investigated the atmospheric heavy metal concentrations in the particulate matter inside the subway stations of Seoul. In particular, we examined the correlation between the heavy metals and studied the effect of the heavy metals on cell proliferation. In six selected subway stations in Seoul, particulate matter was captured at the platforms and 11 types of heavy metals were analyzed. The results showed that the mean concentration of iron was the highest out of the heavy metals in particulate matter, followed by copper, potassium, calcium, zinc, nickel, sodium, manganese, magnesium, chromium and cadmium in that order. The correlation analysis showed that the correlations between the heavy metals was highest in the following order: (Cu vs Zn) , (Ca vs Na) , (Ca vs Mn) , (Ni vs Cr) , (Na vs Mn) , (Cr vs Cd) , (Zn vs Cd) , (Cu vs Cd) , (Ni vs Cd) , (Cu vs Ni) , (K vs Zn) , (Cu vs K) , (Cu vs Cr) , (K vs Cd) , (Zn vs Cr) , (K vs Ni) , (Zn vs Ni) , (K vs Cr) , and (Fe vs Cu) . The correlation coefficient between zinc and copper was 0.937, indicating the highest correlation. Copper, zinc, nickel, chromium and cadmium, which are generated from artificial sources in general, showed correlations with many of the other metals and the correlation coefficients were also relatively high. The effect of the heavy metals on cell proliferation was also investigated in this study. Cultured cell was exposed to 10 mg/l or 100 mg/l of iron, copper, calcium, zinc, nickel, manganese, magnesium, chromium and cadmium for 24 hours. The cell proliferation in all the heavy metal-treated groups was not inhibited at 10 mg/l of the heavy metal concentration. The only exception to this was with the cadmium-treated group which showed a strong cell proliferation inhibition. This study provides the fundamental data for the understanding of simultaneous heavy metal exposure tendency at the time of particulate matter exposure in subway stations and the identification of heavy metal

  1. Towards prenatal biomonitoring in Nanjing, China: lead and cadmium levels in the duration of pregnancy.

    PubMed

    Liu, Kang-sheng; Mao, Xiao-dong; Hao, Jia-hu; Shi, Juan; Dai, Chun-fang; Chen, Wen-jun

    2013-08-01

    Prenatal lead and cadmium exposure will not only influence the mother' organ systems, but also will provide an environment that may influence the fetus and neonate in a harmful way.In the present study, we detected the blood lead levels (BLLS) and cadmium levels for the duration of pregnancy and 6-12 weeks after delivery and to analyze the influencing factors of BLLs in healthy pregnant women. A cohort study survey was carried out. We recruited 174 healthy pregnant women without pregnancy or obstetric complications or abnormal pregnancy outcomes as the gravida group, and 120 healthy non-pregnant women as the control group. The lead concentrations in the three pregnancy trimesters and in the postpartum period were: (5.98 ± 2.43), (5.54 ± 2.01), (5.59 ± 1.97), and (6.76 ± 1.74) µg/dl; and (6.75 ± 2.13) µg/dl in the control group. The cadmium concentrations in the three pregnancy trimesters and postpartum period were 1.61 ± 0.45, 1.63 ± 0.46, 1.64 ± 0.49, and 1.67 ± 0.57. We found that the BLLs in the gravida group were lower than in the control group during all three trimesters. Occupations, supplement nutritional elements (dietary supplements and nutritional (food) elements), and the time of house painting could affect BLLs in pregnant women. Lead-related occupations, using cosmetics, and living in a house painted more recently than one year previously are risk factors of high BLLs among pregnant women, while calcium, iron, zinc, and milk supplements are protective factors. These findings may help people, especially pregnant women, to reduce lead exposure via supplements of calcium, iron, zinc, and milk or avoiding contacting risk factors.

  2. Galactoglucomannan oligosaccharides alleviate cadmium stress in Arabidopsis.

    PubMed

    Kučerová, Danica; Kollárová, Karin; Zelko, Ivan; Vatehová, Zuzana; Lišková, Desana

    2014-04-15

    Our study focused on the mediatory role of galactoglucomannan oligosaccharides (GGMOs) in plant protection against cadmium stress, examined mainly on the primary root growth of Arabidopsis thaliana. The application of GGMOs diminished the negative effect of cadmium on root length, root growth dynamics and also on photosynthetic pigment content. We tested the hypothesis that the effect of GGMOs is associated with decreased cadmium accumulation or its modified distribution. Cadmium distribution was observed chronologically from the first day of plant culture and depended on the duration of cadmium treatment. First, cadmium was stored in the root and hypocotyl and later transported by xylem to the leaves and stored there in trichomes. The protective effect of GGMOs was not based on modified cadmium distribution or its decreased accumulation. In cadmium and GGMOs+cadmium-treated plants, the formation of suberin lamellae was shifted closer to the root apex compared to the control and GGMOs. No significant changes between cadmium and GGMOs+cadmium variants in suberin lamellae development corresponded with any differences in cadmium uptake. GGMOs also stimulated Arabidopsis root growth under non-stress conditions. In this case, suberin lamellae were developed more distantly from the root apex in comparison with the control. Faster solute and water transport could explain the faster plant growth induced by GGMOs. Our results suggest that, in cadmium-stressed plants, GGMOs' protective action is associated with the response at the metabolic level. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Reagent removal of manganese from ground water

    NASA Astrophysics Data System (ADS)

    Brayalovsky, G.; Migalaty, E.; Naschetnikova, O.

    2017-06-01

    The study is aimed at the technology development of treating drinking water from ground waters with high manganese content and oxidizability. Current technologies, physical/chemical mechanisms and factors affecting in ground treatment efficiency are reviewed. Research has been conducted on manganese compound removal from ground waters with high manganese content (5 ppm) and oxidizability. The studies were carried out on granular sorbent industrial ODM-2F filters (0.7-1.5 mm fraction). It was determined that conventional reagent oxidization technologies followed by filtration do not allow us to obtain the manganese content below 0.1 ppm when treating ground waters with high oxidizability. The innovative oxidation-based manganese removal technology with continuous introduction of reaction catalytic agent is suggested. This technology is effective in alkalization up to pH 8.8-9. Potassium permanganate was used as a catalytic agent, sodium hypochlorite was an oxidizer and cauistic soda served an alkalifying agent.

  4. The long term tsunami impact: Evolution of iron speciation and major elements concentration in tsunami deposits from Thailand.

    PubMed

    Kozak, Lidia; Niedzielski, Przemyslaw

    2017-08-01

    The article describes the unique studies of the chemical composition changes of new geological object (tsunami deposits in south Thailand - Andaman Sea Coast) during four years (2005-2008) from the beginning of formation of it (deposition of tsunami transported material, 26 December 2004). The chemical composition of the acid leachable fraction of the tsunami deposits has been studied in the scope of concentration macrocompounds - concentration of calcium, magnesium, iron, manganese and iron speciation - the occurrence of Fe(II), Fe(III) and non-ionic iron species described as complexed iron (Fe complex). The changes of chemical composition and iron speciation in the acid leachable fraction of tsunami deposits have been observed with not clear tendencies of changes direction. For iron speciation changes the transformation of the Fe complex to Fe(III) has been recorded with no significant changes of the level of Fe(II). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Engineering low-cadmium rice through stress-inducible expression of OXS3-family member genes.

    PubMed

    Wang, Changhu; Guo, Weili; Cai, Xingzhe; Li, Ruyu; Ow, David W

    2018-04-21

    Cadmium (Cd) as a carcinogen poses a great threat to food security and public health through plant-derived foods such as rice, the staple for nearly half of the world's population. We have previously reported that overexpression of truncated gene fragments derived from the rice genes OsO3L2 and OsO3L3 could reduce Cd accumulation in transgenic rice. However, we did not test the full length genes due to prior work in Arabidopsis where overexpression of these genes caused seedling lethality. Here, we report on limiting the overexpression of OsO3L2 and OsO3L3 through the use of the stress- inducible promoter RD29B. However, despite generating 625 putative transformants, only 7 lines survived as T1 seedlings and only 1 line of each overexpressed OsO3L2 or OsO3L3-produced T2 progeny. The T2 homozygotes from these 2 lines showed the same effect of reducing accumulation of Cd in root and shoot as well as in T3 grain. As importantly, the concentrations of essential metals copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) were unaffected. Analysis of the expression profile suggested that low Cd accumulation may be due to high expression of OsO3L2 and OsO3L3 in the root tip region. Cellular localization of OsO3L2 and OsO3L3 indicate that they are histone H2A interacting nuclear proteins in vascular cells and especially in the root tip region. It is possible that interaction with histone H2A modifies chromatin to regulate downstream gene expression. Copyright © 2018. Published by Elsevier B.V.

  6. Biological regeneration of manganese (IV) and iron (III) for anaerobic metal oxide-mediated removal of pharmaceuticals from water.

    PubMed

    Liu, Wenbo; Langenhoff, Alette A M; Sutton, Nora B; Rijnaarts, Huub H M

    2018-05-18

    Applying manganese(IV)- or iron(III)-(hydr)oxides to remove pharmaceuticals from water could be attractive, due to the capacity of these metal oxides to remove pharmaceuticals and be regenerated. As pharmaceutical removal under anaerobic conditions is foreseen, Mn(IV) or Fe(III) regeneration under anaerobic conditions, or with minimum oxygen dosage, is preferred. In this study, batch experiments are performed to investigate (1) Mn(IV) and Fe(III) regeneration from Mn(II) and Fe(II); (2) the pharmaceutical removal during biological Mn(IV) and Fe(III) regeneration; and (3) anaerobic abiotic pharmaceutical removal with different Mn(IV) or Fe(III) species. Results show that biological re-oxidation of reduced Mn(II) to Mn(IV) occurs under oxygen-limiting conditions. Biological re-oxidation of Fe(II) to Fe(III) is obtained with nitrate under anaerobic conditions. Both bio-regenerated Mn(IV)-oxides and Fe(III)-hydroxides are amorphous. The pharmaceutical removal is insignificant by Mn(II)- or Fe(II)-oxidizing bacteria during regeneration. Finally, pharmaceutical removal is investigated with various Mn(IV) and Fe(III) sources. Anaerobic abiotic removal using Mn(IV) produced from drinking water treatment plants results in 23% metoprolol and 44% propranolol removal, similar to chemically synthesized Mn(IV). In contrast, Fe(III) from drinking water treatment plants outperformed chemically or biologically synthesized Fe(III); Fe (III) from drinking water treatment can remove 31-43% of propranolol via anaerobic abiotic process. In addition, one of the Fe(III)-based sorbents tested, FerroSorp ® RW, can also remove propranolol (20-25%). Biological regeneration of Mn(IV) and Fe(III) from the reduced species Mn(II) and Fe(II) could be more effective in terms of cost and treatment efficiency. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Cobalt-Iron-Manganese Catalysts for the Conversion of End-of-Life-Tire-Derived Syngas into Light Terminal Olefins.

    PubMed

    Falkenhagen, Jan P; Maisonneuve, Lise; Paalanen, Pasi P; Coste, Nathalie; Malicki, Nicolas; Weckhuysen, Bert M

    2018-03-26

    Co-Fe-Mn/γ-Al 2 O 3 Fischer-Tropsch synthesis (FTS) catalysts were synthesized, characterized and tested for CO hydrogenation, mimicking end-of-life-tire (ELT)-derived syngas. It was found that an increase of C 2 -C 4 olefin selectivities to 49 % could be reached for 5 wt % Co, 5 wt % Fe, 2.5 wt % Mn/γ-Al 2 O 3 with Na at ambient pressure. Furthermore, by using a 5 wt % Co, 5 wt % Fe, 2.5 wt % Mn, 1.2 wt % Na, 0.03 wt % S/γ-Al 2 O 3 catalyst the selectivity towards the fractions of C 5+ and CH 4 could be reduced, whereas the selectivity towards the fraction of C 4 olefins could be improved to 12.6 % at 10 bar. Moreover, the Na/S ratio influences the ratio of terminal to internal olefins observed as products, that is, a high Na loading prevents the isomerization of primary olefins, which is unwanted if 1,3-butadiene is the target product. Thus, by fine-tuning the addition of promoter elements the volume of waste streams that need to be recycled, treated or upgraded during ELT syngas processing could be reduced. The most promising catalyst (5 wt % Co, 5 wt % Fe, 2.5 wt % Mn, 1.2 wt % Na, 0.03 wt % S/γ-Al 2 O 3 ) has been investigated using operando transmission X-ray microscopy (TXM) and X-ray diffraction (XRD). It was found that a cobalt-iron alloy was formed, whereas manganese remained in its oxidic phase. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part frommore » coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.« less

  9. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging

    PubMed Central

    Zecca, Luigi; Stroppolo, Antonella; Gatti, Alberto; Tampellini, Davide; Toscani, Marco; Gallorini, Mario; Giaveri, Giuseppe; Arosio, Paolo; Santambrogio, Paolo; Fariello, Ruggero G.; Karatekin, Erdem; Kleinman, Mark H.; Turro, Nicholas; Hornykiewicz, Oleh; Zucca, Fabio A.

    2004-01-01

    In this study, a comparative analysis of metal-related neuronal vulnerability was performed in two brainstem nuclei, the locus coeruleus (LC) and substantia nigra (SN), known targets of the etiological noxae in Parkinson's disease and related disorders. LC and SN pars compacta neurons both degenerate in Parkinson's disease and other Parkinsonisms; however, LC neurons are comparatively less affected and with a variable degree of involvement. In this study, iron, copper, and their major molecular forms like ferritins, ceruloplasmin, neuromelanin (NM), manganese-superoxide dismutase (SOD), and copper/zinc-SOD were measured in LC and SN of normal subjects at different ages. Iron content in LC was much lower than that in SN, and the ratio heavy-chain ferritin/iron in LC was higher than in the SN. The NM concentration was similar in LC and SN, but the iron content in NM of LC was much lower than SN. In both regions, heavy- and light-chain ferritins were present only in glia and were not detectable in neurons. These data suggest that in LC neurons, the iron mobilization and toxicity is lower than that in SN and is efficiently buffered by NM. The bigger damage occurring in SN could be related to the higher content of iron. Ferritins accomplish the same function of buffering iron in glial cells. Ceruloplasmin levels were similar in LC and SN, but copper was higher in LC. However, the copper content in NM of LC was higher than that of SN, indicating a higher copper mobilization in LC neurons. Manganese-SOD and copper/zinc-SOD had similar age trend in LC and SN. These results may explain at least one of the reasons underlying lower vulnerability of LC compared to SN in Parkinsonian syndromes. PMID:15210960

  10. Excess iron: considerations related to development and early growth.

    PubMed

    Wessling-Resnick, Marianne

    2017-12-01

    What effects might arise from early life exposures to high iron? This review considers the specific effects of high iron on the brain, stem cells, and the process of erythropoiesis and identifies gaps in our knowledge of what molecular damage may be incurred by oxidative stress that is imparted by high iron status in early life. Specific areas to enhance research on this topic include the following: longitudinal behavioral studies of children to test associations between iron exposures and mood, emotion, cognition, and memory; animal studies to determine epigenetic changes that reprogram brain development and metabolic changes in early life that could be followed through the life course; and the establishment of human epigenetic markers of iron exposures and oxidative stress that could be monitored for early origins of adult chronic diseases. In addition, efforts to understand how iron exposure influences stem cell biology could be enhanced by establishing platforms to collect biological specimens, including umbilical cord blood and amniotic fluid, to be made available to the research community. At the molecular level, there is a need to better understand stress erythropoiesis and changes in iron metabolism during pregnancy and development, especially with respect to regulatory control under high iron conditions that might promote ineffective erythropoiesis and iron-loading anemia. These investigations should focus not only on factors such as hepcidin and erythroferrone but should also include newly identified interactions between transferrin receptor-2 and the erythropoietin receptor. Finally, despite our understanding that several key micronutrients (e.g., vitamin A, copper, manganese, and zinc) support iron's function in erythropoiesis, how these nutrients interact remains, to our knowledge, unknown. It is necessary to consider many factors when formulating recommendations on iron supplementation. © 2017 American Society for Nutrition.

  11. Cadmium removal from wastewater by sponge iron sphere prepared by charcoal direct reduction.

    PubMed

    Li, Junguo; Li, Jun; Li, Yungang

    2009-01-01

    Sponge iron sphere (SIS), made of concentrated iron powder and possessed high activity and intension, was prepared through the process of palletizing, roasting and direct reduction by charcoal. The sponge iron sphere could remove most of Cd(2+) from wastewater. The results showed the Cd(2+) removal followed the first order reaction. Initial pH value played an important role in Cd(2+) removal. With original initial pH, Cd(2+) removal decreased to the minimum and then increased slightly with the rising of original concentration. The removal rate constant was -0.1263 and -0.0711 h(-1), respectively, under the Cd(2+) concentration of 50 and 200 mg/L. When the initial pH was adjusted to 3.0, the removal rate constant could increase to -9.896 and -4.351 h(-1), respectively. The removal percentage almost reached to 100% when Cd(2+) concentration was below 100 mg/L. While Cd(2+) concentration was above 100 mg/L, Cd(2+) removal percentage decreased slightly. In dynamic experiments, the column filled with sponge iron sphere exhibited favorable permeability. There was no sphere pulverization and conglutination between spheres. In contrast to the static state experiments, the Cd(2+) removal percentage in dynamic state experiment was lower, and the removal Cd(2+) quantity was 1.749 mg/g.

  12. HLA phenotypes and cadmium blood level.

    PubMed

    Gualde, N; Delage, C

    1979-10-01

    The distribution of HLA phenotypes was studied and the amount of cadmium blood level was determined in a group of 100 healthy subjects. The HLA-A3 phenotype seems associated with high cadmium levels in the blood. The lymphocytes transformation test with PHA and different concentrations of cadmium indicates that A3 cells are more sensitive than others to inhibition by cadmium.

  13. Manganese biomining: A review.

    PubMed

    Das, A P; Sukla, L B; Pradhan, N; Nayak, S

    2011-08-01

    Biomining comprises of processing and extraction of metal from their ores and concentrates using microbial techniques. Currently this is used by the mining industry to extract copper, uranium and gold from low grade ores but not for low grade manganese ore in industrial scale. The study of microbial genomes, metabolites and regulatory pathways provide novel insights to the metabolism of bioleaching microorganisms and their synergistic action during bioleaching operations. This will promote understanding of the universal regulatory responses that the biomining microbial community uses to adapt to their changing environment leading to high metal recovery. Possibility exists of findings ways to imitate the entire process during industrial manganese biomining endeavor. This paper reviews the current status of manganese biomining research operations around the world, identifies factors that drive the selection of biomining as a processing technology, describes challenges in exploiting these innovations, and concludes with a discussion of Mn biomining's future. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Manganese oxide nanoparticles, methods and applications

    DOEpatents

    Abruna, Hector D.; Gao, Jie; Lowe, Michael A.

    2017-08-29

    Manganese oxide nanoparticles having a chemical composition that includes Mn.sub.3O.sub.4, a sponge like morphology and a particle size from about 65 to about 95 nanometers may be formed by calcining a manganese hydroxide material at a temperature from about 200 to about 400 degrees centigrade for a time period from about 1 to about 20 hours in an oxygen containing environment. The particular manganese oxide nanoparticles with the foregoing physical features may be used within a battery component, and in particular an anode within a lithium battery to provide enhanced performance.

  15. Persulfate activation by iron oxide-immobilized MnO2 composite: identification of iron oxide and the optimum pH for degradations.

    PubMed

    Jo, Young-Hoon; Do, Si-Hyun; Kong, Sung-Ho

    2014-01-01

    Iron oxide-immobilized manganese oxide (MnO2) composite was prepared and the reactivity of persulfate (PS) with the composite as activator was investigated for degradation of carbon tetrachloride and benzene at various pH levels. Brunauer-Emmett-Teller (BET) surface area of the composite was similar to that of pure MnO2 while the pore volume and diameter of composite was larger than those of MnO2. Scanning electron microscopy couples with energy dispersive spectroscopy (SEM-EDS) showed that Fe and Mn were detected on the surface of the composite, and X-ray diffraction (XRD) analysis indicated the possibilities of the existence of various iron oxides on the composite surface. Furthermore, the analyses of X-ray photoelectron (XPS) spectra revealed that the oxidation state of iron was identified as 1.74. In PS/composite system, the same pH for the highest degradation rates of both carbon tetrachloride and benzene were observed and the value of pH was 9. Scavenger test was suggested that both oxidants (i.e. hydroxyl radical, sulfate radical) and reductant (i.e. superoxide anion) were effectively produced when PS was activated with the iron-immobilized MnO2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The prion-ZIP connection: From cousins to partners in iron uptake

    PubMed Central

    Singh, Neena; Asthana, Abhishek; Baksi, Shounak; Desai, Vilok; Haldar, Swati; Hari, Sahi; Tripathi, Ajai K

    2015-01-01

    ABSTRACT Converging observations from disparate lines of inquiry are beginning to clarify the cause of brain iron dyshomeostasis in sporadic Creutzfeldt-Jakob disease (sCJD), a neurodegenerative condition associated with the conversion of prion protein (PrPC), a plasma membrane glycoprotein, from α-helical to a β-sheet rich PrP-scrapie (PrPSc) isoform. Biochemical evidence indicates that PrPC facilitates cellular iron uptake by functioning as a membrane-bound ferrireductase (FR), an activity necessary for the transport of iron across biological membranes through metal transporters. An entirely different experimental approach reveals an evolutionary link between PrPC and the Zrt, Irt-like protein (ZIP) family, a group of proteins involved in the transport of zinc, iron, and manganese across the plasma membrane. Close physical proximity of PrPC with certain members of the ZIP family on the plasma membrane and increased uptake of extracellular iron by cells that co-express PrPC and ZIP14 suggest that PrPC functions as a FR partner for certain members of this family. The connection between PrPC and ZIP proteins therefore extends beyond common ancestry to that of functional cooperation. Here, we summarize evidence supporting the facilitative role of PrPC in cellular iron uptake, and implications of this activity on iron metabolism in sCJD brains. PMID:26689487

  17. Chronic manganese poisoning in the dry battery industry

    PubMed Central

    Emara, A. M.; El-Ghawabi, S. H.; Madkour, O. I.; El-Samra, G. H.

    1971-01-01

    Emara, A. M., El-Ghawabi, S. H., Madkour, O. I., and El-Samra, G. H. (1971). Brit. J. industr. Med., 28, 78-82. Chronic manganese poisoning in the dry battery industry. A survey was carried out on 36 workers in the dry battery industry exposed to dust containing 65 to 70% manganese oxide. Eight (22·2%) were found to have neuropsychiatric manifestations, six (16·6%) had chronic manganese psychosis, one had left hemi-parkinsonism, and one had left choreoathetosis. An environmental study revealed a high concentration of manganese dust at the main working areas, far exceeding the accepted MAC. The manganese level in blood was almost within the normal range. Coproporphyrin in urine was normal. The electroencephalogram was abnormal in only two of the affected workers (25%) but there was no association between this and the clinical manifestations or duration of exposure. The concentration of manganese dust in air showed some association with the prevalence and rapidity of effect on workers according to their occupation. However, individual susceptibility was apparent. The shortest latent period was one year. PMID:5101169

  18. Gypsum crystallization from cadmium-poisoned solutions

    NASA Astrophysics Data System (ADS)

    Rinaudo, C.; Franchini-Angela, M.; Boistelle, R.

    1988-06-01

    Gypsum crystals, CaSO4⋯2H2O, are grown from solutions containing large amounts of cadmium chloride as an impurity. The initial supersaturations necessary for the gypsum nucleation increase with increasing cadmium concentration. Accordingly, at constant initial supersaturation, the induction periods also increase with increasing cadmium concentration. Cadmium and chlorine are incorporated into the crystals probably as CdCl+ or CdCl2, which are the most abundant complexes in the solutions. Consequently, the gypsum crystals grow curved, distorted and exhibit fractures along the [100] direction. The amount of incorporated cadmium increases with increasing supersaturation. Cadmium is mainly detected near the {120} faces in the area where the fractures release the internal stresses. Supersaturation and concentration of free ions and complexes are calculated for all solutions. Adsorption on {120} is discussed.

  19. Significance of tourmaline-rich rocks in the north range group of the cuyuna iron range, East-Central Minnesota

    USGS Publications Warehouse

    Cleland, J.M.; Morey, G.B.; McSwiggen, P.L.

    1996-01-01

    Concentrations of tourmaline in Early Proterozoic metasedirnentary rocks of the Cuyuna iron range, east-central Minnesota, provide a basis for redefinition of the evolutionary history of the area. Manganiferous iron ore forms beds within the Early Proterozoic Trommald Formation, between thick-bedded granular iron-formation having shallow-water depositional attributes and thin-bedded, nongranular iron-formation having deeper water attributes. These manganese-rich units were previously assumed to be sedimentary in origin. However, a revaluation of drill core and mine samples from the Cuyuna North range has identified strata-bound tourmaline and tourmalinite, which has led to a rethinking of genetic models for the geology of the North range. We interpret the tourmaline-rich rocks of the area to be a product of submarine-hydrothermal solutions flowing along and beneath the sedirnent-seawater interface. This model for the depositional environment of the tourmaline is supported by previously reported mineral assemblages within the Trommald Formation that comprise aegirine; barium feldspar; manganese silicates, carbonates, and oxides; and Sr-rich barite veins. In many places, tourmaline-rich metasedimentary rocks and tourmalinites are associated locally with strata-bound sulfide deposits. At those localities, the tourmaline-rich strata are thought to be lateral equivalents of exhalative sulfide zones or genetically related subsea-floor replacements. On the basis of the occurrence of the tourmaline-rich rocks and tourmalinites, and on the associated minerals, we suggest that there is a previously unrecognized potential for sediment-hosted sulfide deposits in the Cuyuna North range.

  20. Effects of chloride, sulfate and natural organic matter (NOM) on the accumulation and release of trace-level inorganic contaminants from corroding iron.

    PubMed

    Peng, Ching-Yu; Ferguson, John F; Korshin, Gregory V

    2013-09-15

    This study examined effects of varying levels of anions (chloride and sulfate) and natural organic matter (NOM) on iron release from and accumulation of inorganic contaminants in corrosion scales formed on iron coupons exposed to drinking water. Changes of concentrations of sulfate and chloride were observed to affect iron release and, in lesser extent, the retention of representative inorganic contaminants (vanadium, chromium, nickel, copper, zinc, arsenic, cadmium, lead and uranium); but, effects of NOM were more pronounced. DOC concentration of 1 mg/L caused iron release to increase, with average soluble and total iron concentrations being four and two times, respectively, higher than those in the absence of NOM. In the presence of NOM, the retention of inorganic contaminants by corrosion scales was reduced. This was especially prominent for lead, vanadium, chromium and copper whose retention by the scales decreased from >80% in the absence of NOM to <30% in its presence. Some of the contaminants, notably copper, chromium, zinc and nickel retained on the surface of iron coupons in the presence of DOC largely retained their mobility and were released readily when ambient water chemistry changed. Vanadium, arsenic, cadmium, lead and uranium retained by the scales were largely unsusceptible to changes of NOM and chloride levels. Modeling indicated that the observed effects were associated with the formation of metal-NOM complexes and effects of NOM on the sorption of the inorganic contaminants on solid phases that are typical for iron corrosion in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Methanogenesis from wastewater stimulated by addition of elemental manganese

    PubMed Central

    Qiao, Sen; Tian, Tian; Qi, Benyu; Zhou, Jiti

    2015-01-01

    This study presents a novel procedure for accelerating methanogenesis from wastewater by adding elemental manganese into the anaerobic digestion system. The results indicated that elemental manganese effectively enhanced both the methane yield and the production rate. Compared to the control test without elemental manganese, the total methane yield and production rate with 4 g/L manganese addition increased 3.4-fold (from 0.89 ± 0.03 to 2.99 ± 0.37 M/gVSS within 120 h) and 4.4-fold (from 6.2 ± 0.1 to 27.2 ± 2.2 mM/gVSS/h), respectively. Besides, more acetate consumption and less propionate generation were observed during the methanogenesis with manganese. Further studies demonstrated that the elemental manganese served as electron donors for the methanogenesis from carbon dioxide, and the final proportion of methane in the total generated gas with 4 g/L manganese addition reached 96.9%, which was 2.1-fold than that of the control (46.6%). PMID:26244609

  2. Aquatic Life Criteria - Cadmium

    EPA Pesticide Factsheets

    Documents pertaining to 2016 Acute and Chronic Aquatic Life Ambient Water Quality Criteria for Cadmium (Freshwater, Estuarine/marine). These documents contain the safe levels of Cadmium in water that should protect to the majority of species.

  3. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive... less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing...

  4. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive... less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing...

  5. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive... less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing...

  6. Cadmium in smoke particulates of regular and filter cigarettes containing low and high cadmium concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bache, C.A.; Reid, C.M.; Hoffman, D.

    In the work reported, filter and nonfilter cigarettes were prepared from high-cadmium tobacco grown on a municipal sludge-amended soil or a low-cadmium tobacco grown on untreated soil alone. These were smoked by machine to determine the effectiveness of the cigarette filters in possibly reducing the quantities of cadmium in the mainstream smoke particulates.

  7. Cadmium Recycling in the United States in 2000

    USGS Publications Warehouse

    Plachy, Jozef

    2003-01-01

    Recycling of cadmium is a young and growing industry that has been influenced by environmental concerns and regulatory constraints. Domestic recycling of cadmium began in 1989 as a byproduct of processing of spent nickel-cadmium batteries. In 1995, International Metals Reclamation Co. Inc. expanded its operations by building a dedicated cadmium recycling plant. In 2000, an estimated 13 percent of cadmium consumption in the United States was sourced from recycled cadmium, which is derived mainly from old scrap or, to lesser degree, new scrap. The easiest forms of old scrap to recycle are small spent nickel-cadmium batteries followed by flue dust generated during recycling of galvanized steel and small amounts of alloys that contain cadmium. Most of new scrap is generated during manufacturing processes, such as nickel-cadmium battery production. All other uses of cadmium are in low concentrations and, therefore, difficult to recycle. Consequently, much of this cadmium is dissipated and lost. The amount of cadmium in scrap that was unrecovered in 2000 was estimated to be 2,030 t, and an estimated 285 t was recovered. Recycling efficiency was estimated to be about 15 percent.

  8. Cadmium recycling in the United States in 2000

    USGS Publications Warehouse

    Plachy, Jozef

    2003-01-01

    Recycling of cadmium is a young and growing industry that has been influenced by environmental concerns and regulatory constraints. Domestic recycling of cadmium began in 1989 as a byproduct of processing of spent nickel-cadmium batteries. In 1995, International Metals Reclamation Co. Inc. expanded its operations by building a dedicated cadmium recycling plant. In 2000, an estimated 13 percent of cadmium consumption in the United States was sourced from recycled cadmium, which is derived mainly from old scrap or, to lesser degree, new scrap. The easiest forms of old scrap to recycle are small spent nickel-cadmium batteries followed by flue dust generated during recycling of galvanized steel and small amounts of alloys that contain cadmium. Most of new scrap is generated during manufacturing processes, such as nickel-cadmium battery production. All other uses of cadmium are in low concentrations and, therefore, difficult to recycle. Consequently, much of this cadmium is dissipated and lost. The amount of cadmium in scrap that was unrecovered in 2000 was estimated to be 2,030 metric tons, and an estimated 285 tons was recovered. Recycling efficiency was estimated to be about 15 percent.

  9. The relationship of the lipoprotein SsaB, manganese and superoxide dismutase in Streptococcus sanguinis virulence for endocarditis.

    PubMed

    Crump, Katie E; Bainbridge, Brian; Brusko, Sarah; Turner, Lauren S; Ge, Xiuchun; Stone, Victoria; Xu, Ping; Kitten, Todd

    2014-06-01

    Streptococcus sanguinis colonizes teeth and is an important cause of infective endocarditis. Our prior work showed that the lipoprotein SsaB is critical for S. sanguinis virulence for endocarditis and belongs to the LraI family of conserved metal transporters. In this study, we demonstrated that an ssaB mutant accumulates less manganese and iron than its parent. A mutant lacking the manganese-dependent superoxide dismutase, SodA, was significantly less virulent than wild-type in a rabbit model of endocarditis, but significantly more virulent than the ssaB mutant. Neither the ssaB nor the sodA mutation affected sensitivity to phagocytic killing or efficiency of heart valve colonization. Animal virulence results for all strains could be reproduced by growing bacteria in serum under physiological levels of O(2). SodA activity was reduced, but not eliminated in the ssaB mutant in serum and in rabbits. Growth of the ssaB mutant in serum was restored upon addition of Mn(2+) or removal of O(2). Antioxidant supplementation experiments suggested that superoxide and hydroxyl radicals were together responsible for the ssaB mutant's growth defect. We conclude that manganese accumulation mediated by the SsaB transport system imparts virulence by enabling cell growth in oxygen through SodA-dependent and independent mechanisms. © 2014 John Wiley & Sons Ltd.

  10. The Relationship of the Lipoprotein SsaB, Manganese, and Superoxide Dismutase in Streptococcus sanguinis Virulence for Endocarditis

    PubMed Central

    Crump, Katie E.; Bainbridge, Brian; Brusko, Sarah; Turner, Lauren S.; Ge, Xiuchun; Stone, Victoria; Xu, Ping; Kitten, Todd

    2014-01-01

    Summary Streptococcus sanguinis colonizes teeth and is an important cause of infective endocarditis. Our prior work showed that the lipoprotein SsaB is critical for S. sanguinis virulence for endocarditis and belongs to the LraI family of conserved metal transporters. In this study, we demonstrated that an ssaB mutant accumulates less manganese and iron than its parent. A mutant lacking the manganese-dependent superoxide dismutase, SodA, was significantly less virulent than wild-type in a rabbit model of endocarditis, but significantly more virulent than the ssaB mutant. Neither the ssaB nor the sodA mutation affected sensitivity to phagocytic killing or efficiency of heart valve colonization. Animal virulence results for all strains could be reproduced by growing bacteria in serum under physiological levels of O2. SodA activity was reduced, but not eliminated in the ssaB mutant in serum and in rabbits. Growth of the ssaB mutant in serum was restored upon addition of Mn2+ or removal of O2. Antioxidant supplementation experiments suggested that superoxide and hydroxyl radicals were together responsible for the ssaB mutant’s growth defect. We conclude that manganese accumulation mediated by the SsaB transport system imparts virulence by enabling cell growth in oxygen through SodA-dependent and independent mechanisms. PMID:24750294

  11. Cadmium determination in Mexican-produced tobacco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saldivar De R., L.; Soto, R.; Fortoul, T.I.

    Exposure to cadmium by inhalation or ingestion is dangerous for human health. This metal induces damage to the kidneys, the bones, the prostate, and the lungs. In the lungs, cadmium can produce cancer, emphysema, and fibrosis. It is well known that tobacco leaves are contaminated with cadmium, a metal that has been related to pulmonary damage. In this paper the authors report the concentration of cadmium in tobacco leaves and in cigarettes produced for domestic consumption. Fifty-five cigarettes of different brands, prices, and stocks were analyzed as well as 48 samples from four different types of tobacco. The average concentrationmore » of cadmium in cigarettes was 4.41 {plus minus} 0.67 {mu}g/g, and 2.65 {plus minus} 0.99 {mu}g/g for tobacco leaves; the content of cadmium, was 2.8 {plus minus} 0.4 {mu}g/cigarette. It was estimated that a person that smokes 20 Mexican cigarettes per day can increase his(her) cadmium burden by 1.4 to 2.8 {mu}g per day.« less

  12. Cadmium contamination of early human milk.

    PubMed

    Sikorski, R; Paszkowski, T; Radomański, T; Szkoda, J

    1989-01-01

    The concentration of cadmium was measured by flame atomic absorption spectrometry in colostrum samples obtained from 110 women on the 4th postpartum day. Detectable amounts of cadmium were found in 95% of the examined samples and the geometric mean of the determined values was 0.002 mg/kg. In 3 cases (2.7%, the examined neonates received via mother's milk an amount of cadmium exceeding the maximum daily intake level for this metal. Maternal age, parity and place of residence did not affect the determined cadmium levels of milk. Cadmium content in the early human milk of current smokers did not differ significantly from that of nonsmoking mothers.

  13. Mineral deposits of Central America, with a section on manganese deposits of Panama

    USGS Publications Warehouse

    Roberts, Ralph Jackson; Irving, Earl Montgomery; Simons, F.S.

    1957-01-01

    The mineral deposits of Central America were studied between 1942 and 1945, in cooperation with the United States Department of State and the Foreign Economic Administration. Emphasis was originally placed on the study of strategic-mineral deposits, especially of antimony, chromite, manganese, quartz, and mica, but deposits of other minerals that offered promise of significant future production were also studied. A brief appraisal of the base-metal deposits was made, and deposits of iron ore in Honduras and of lead and zinc ores in Guatemala were mapped. In addition, studies were made of the regional geology of some areas, data were collected from many sources, and a new map of the geology of Central America was compiled.

  14. Dinuclear complexes containing linear M-F-M [M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)] bridges: trends in structures, antiferromagnetic superexchange interactions, and spectroscopic properties.

    PubMed

    Reger, Daniel L; Pascui, Andrea E; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew

    2012-11-05

    The reaction of M(BF(4))(2)·xH(2)O, where M is Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), with the new ditopic ligand m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene (L(m)*) leads to the formation of monofluoride-bridged dinuclear metallacycles of the formula [M(2)(μ-F)(μ-L(m)*)(2)](BF(4))(3). The analogous manganese(II) species, [Mn(2)(μ-F)(μ-L(m)*)(2)](ClO(4))(3), was isolated starting with Mn(ClO(4))(2)·6H(2)O using NaBF(4) as the source of the bridging fluoride. In all of these complexes, the geometry around the metal centers is trigonal bipyramidal, and the fluoride bridges are linear. The (1)H, (13)C, and (19)F NMR spectra of the zinc(II) and cadmium(II) compounds and the (113)Cd NMR of the cadmium(II) compound indicate that the metallacycles retain their structure in acetonitrile and acetone solution. The compounds with M = Mn(II), Fe(II), Co(II), Ni(II), and Cu(II) are antiferromagnetically coupled, although the magnitude of the coupling increases dramatically with the metal as one moves to the right across the periodic table: Mn(II) (-6.7 cm(-1)) < Fe(II) (-16.3 cm(-1)) < Co(II) (-24.1 cm(-1)) < Ni(II) (-39.0 cm(-1)) ≪ Cu(II) (-322 cm(-1)). High-field EPR spectra of the copper(II) complexes were interpreted using the coupled-spin Hamiltonian with g(x) = 2.150, g(y) = 2.329, g(z) = 2.010, D = 0.173 cm(-1), and E = 0.089 cm(-1). Interpretation of the EPR spectra of the iron(II) and manganese(II) complexes required the spin Hamiltonian using the noncoupled spin operators of two metal ions. The values g(x) = 2.26, g(y) = 2.29, g(z) = 1.99, J = -16.0 cm(-1), D(1) = -9.89 cm(-1), and D(12) = -0.065 cm(-1) were obtained for the iron(II) complex and g(x) = g(y) = g(z) = 2.00, D(1) = -0.3254 cm(-1), E(1) = -0.0153, J = -6.7 cm(-1), and D(12) = 0.0302 cm(-1) were found for the manganese(II) complex. Density functional theory (DFT) calculations of the exchange integrals and the zero-field splitting on manganese(II) and iron(II) ions were performed

  15. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Manganese violet. 73.2775 Section 73.2775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive...

  16. Quantifying manganese and nitrogen cycle coupling in manganese-rich, organic carbon-starved marine sediments: Examples from the Clarion-Clipperton fracture zone

    NASA Astrophysics Data System (ADS)

    Mogollón, José M.; Mewes, Konstantin; Kasten, Sabine

    2016-07-01

    Extensive deep-sea sedimentary areas are characterized by low organic carbon contents and thus harbor suboxic sedimentary environments where secondary (autotrophic) redox cycling becomes important for microbial metabolic processes. Simulation results for three stations in the Eastern Equatorial Pacific with low organic carbon content (<0.5 dry wt %) and low sedimentation rates (10-1-100 mm ky-1) show that ammonium generated during organic matter degradation may act as a reducing agent for manganese oxides below the oxic zone. Likewise, at these sedimentary depths, dissolved reduced manganese may act as a reducing agent for oxidized nitrogen species. These manganese-coupled transformations provide a suboxic conversion pathway of ammonium and nitrate to dinitrogen. These manganese-nitrogen interactions further explain the presence and production of dissolved reduced manganese (up to tens of μM concentration) in sediments with high nitrate (>20 μM) concentrations.

  17. Exposure to Nickel, Chromium, or Cadmium Causes Distinct Changes in the Gene Expression Patterns of a Rat Liver Derived Cell Line

    PubMed Central

    Permenter, Matthew G.; Lewis, John A.; Jackson, David A.

    2011-01-01

    Many heavy metals, including nickel (Ni), cadmium (Cd), and chromium (Cr) are toxic industrial chemicals with an exposure risk in both occupational and environmental settings that may cause harmful outcomes. While these substances are known to produce adverse health effects leading to disease or health problems, the detailed mechanisms remain unclear. To elucidate the processes involved in the toxicity of nickel, cadmium, and chromium at the molecular level and to perform a comparative analysis, H4-II-E-C3 rat liver-derived cell lines were treated with soluble salts of each metal using concentrations derived from viability assays, and gene expression patterns were determined with DNA microarrays. We identified both common and unique biological responses to exposure to the three metals. Nickel, cadmium, chromium all induced oxidative stress with both similar and unique genes and pathways responding to this stress. Although all three metals are known to be genotoxic, evidence for DNA damage in our study only exists in response to chromium. Nickel induced a hypoxic response as well as inducing genes involved in chromatin structure, perhaps by replacing iron in key proteins. Cadmium distinctly perturbed genes related to endoplasmic reticulum stress and invoked the unfolded protein response leading to apoptosis. With these studies, we have completed the first gene expression comparative analysis of nickel, cadmium, and chromium in H4-II-E-C3 cells. PMID:22110744

  18. Cadmium removal by Lemna minor and Spirodela polyrhiza.

    PubMed

    Chaudhuri, Devaleena; Majumder, Arunabha; Misra, Amal K; Bandyopadhyay, Kaushik

    2014-01-01

    The present study investigates the ability of two genus of duckweed (Lemna minor and Spirodela polyrhiza) to phytoremediate cadmium from aqueous solution. Duckweed was exposed to six different cadmium concentrations, such as, 0.5,1.0,1.5, 2.0, 2.5, and 3.0 mg/L and the experiment was continued for 22 days. Water samples were collected periodically for estimation of residual cadmium content in aqueous solution. At the end of treatment period plant samples were collected and accumulated cadmium content was measured. Cadmium toxicity was observed through relative growth factor and changes in chlorophyll content Experimental results showed that Lemna minor and Spirodela polyrhiza were capable of removing 42-78% and 52-75% cadmium from media depending upon initial cadmium concentrations. Cadmium was removed following pseudo second order kinetic model Maximum cadmium accumulation in Lemna minor was 4734.56 mg/kg at 2 mg/L initial cadmium concentration and 7711.00 mg/kg in Spirodela polyrhiza at 3 mg/L initial cadmium concentration at the end of treatment period. Conversely in both cases maximum bioconcentration factor obtained at lowest initial cadmium concentrations, i.e., 0.5 mg/L, were 3295.61 and 4752.00 for Lemna minor and Spirodela polyrhiza respectively. The present study revealed that both Lemna minor and Spirodela polyrhiza was potential cadmium accumulator.

  19. Improvement of cadmium phytoremediation by Centella asiatica L. after soil inoculation with cadmium-resistant Enterobacter sp. FM-1.

    PubMed

    Li, Yi; Liu, Kehui; Wang, Yang; Zhou, Zhenming; Chen, Chaoshu; Ye, Panhua; Yu, Fangming

    2018-07-01

    This study examined the potential of a cadmium-resistant Enterobacter sp. FM-1 to promote plant growth and assist in cadmium accumulation in both mine-type C. asiatica L. and non-mine type C. asiatica L. tissues in highly cadmium-polluted soils. The results indicated that Enterobacter sp. FM-1 significantly promoted growth and alleviated metal toxicity in both types of C. asiatica L. Meanwhile, inoculation with Enterobacter sp. FM-1 in contaminated soil can increased cadmium bioavailability in soil. Furthermore, it will increase plant uptake and the accumulation of cadmium in C. asiatica L. leaves, stems and roots compared to that in an uninoculated plant. However, mine-type C. asiatica L. had better cadmium tolerance than the non mine-type C. asiatica L. Because of its native metal-tolerant ability, which could easily grow and proliferate, and had a better performance under cadmium-contamination conditions. Additionally, inoculation with Enterobacter sp. FM-1 significantly enhanced the bioaccumulation factor (BAF) and the translocation factor (TF) values in both types of C. asiatica L. even under high cadmium concentration soil condition. Hence, based on higher BAF and TF values and strong cadmium accumulation in the leaves and stems, we concluded that inoculation with Enterobacter sp. FM-1 is potentially useful for the phytoremediation of cadmium-contaminated sites by Centella asiatica L. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.).

    PubMed

    Fan, Jian-Ling; Hu, Zheng-Yi; Ziadi, Noura; Xia, Xu; Wu, Cong-Yang-Hui

    2010-02-01

    Human activities have resulted in cadmium (Cd) and sulfur (S) accumulation in paddy soils in parts of southern China. A combined soil-sand pot experiment was conducted to investigate the influence of excessive S supply on iron plaque formation and Cd accumulation in rice plants, using two Cd levels (0, 1.5 mg kg(-1)) combined with three S concentrations (0, 60, 120 mg kg(-1)). The results showed that excessive S supply significantly decreased Cd accumulation in brown rice due to the decrease of Cd availability and the increase of glutathione in rice leaves. But excessive S supply obviously increased Cd accumulation in roots due to the decrease of iron plaque formation on the root surface of rice. Therefore, excessive S supply may result in loss of rice yield, but it could effectively reduce Cd accumulation in brown rice exposed to Cd contaminated soils. Copyright (c) 2009 Elsevier Ltd. All rights reserved.